

Oracle® Fusion Middleware
Application Security Guide

11g Release 1 (11.1.1)

E10043-12

April 2012

Oracle Fusion Middleware Application Security Guide, 11g Release 1 (11.1.1)

E10043-12

Copyright © 2003, 2012, Oracle and/or its affiliates. All rights reserved.

Primary Author: Carlos Subi

Contributing Author: Vinaye Misra, Gail Flanegin

Contributor: Amit Agarwal, Soumya Aithal, Moushmi Banerjee, Andre Correa, Marc Chanliau, Pratik
Datta, Jordan Douglas, Guru Dutt, Todd Elwood, Vineet Garg, Vikas Ghorpade, Sandeep Guggilam,
Shiang-Jia Huang, Dan Hynes, Michael Khalandovsky, Supriya Kalyanasundaram, Lakshmi Kethana,
Ganesh Kirti, Ashish Kolli, Rohit Koul, Nithya Muralidharan, Frank Nimphius, Craig Perez, Sudip Regmi,
Bhupindra Singh, Kk Sriramadhesikan, Mamta Suri, Kavita Tippana, Srikant Tirumalai, Ramana Turlapati,
Jane Xu, Sam Zhou.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... xxix

Audience... xxix
Documentation Accessibility ... xxix
Related Documentation.. xxix
Conventions ... xxx

What’s New in This Guide.. xxxi

New Features in Release 11gR1 PS5 ... xxxi
New Features in Oracle Identity Management 11gR1 PS1 ... xxxi
New Features in Release 11gR1 PS3 .. xxxii
New Features in Oracle Identity Management 11gR1.. xxxii
New Features in Release 11gR1 PS2 .. xxxii
New Features in Release 11gR1 PS1 ... xxxiii
New Features in Release 11gR1... xxxiii
Desupported Features from 10.1.3.x... xxxiii
Links to Upgrade Documentation .. xxxiv

Part I Understanding Security Concepts

1 Introduction to Oracle Platform Security Services

What is Oracle Platform Security Services? .. 1-1
OPSS Main Features... 1-2
Supported Server Platforms ... 1-2

OPSS Architecture Overview... 1-3
Benefits of Using OPSS.. 1-3

Oracle ADF Security Overview ... 1-4
OPSS for Administrators .. 1-5
OPSS for Developers ... 1-5

Scenario 1: Enhancing Security in a Java EE Application .. 1-6
Scenario 2: Securing an Oracle ADF Application.. 1-6
Scenario 3: Securing a Java SE Application .. 1-7

2 Understanding Users and Roles

Terminology .. 2-1

iv

Role Mapping.. 2-4
Permission Inheritance and the Role Hierarchy.. 2-4

The Authenticated Role .. 2-7
The Anonymous User and Role... 2-7

Anonymous Support and Subject.. 2-8
Administrative Users and Roles.. 2-8
Managing User Accounts .. 2-9
Principal Name Comparison Logic ... 2-9

How Does Principal Comparison Affect Authorization? .. 2-9
System Parameters Controlling Principal Name Comparison... 2-10

The Role Category ... 2-11

3 Understanding Identities, Policies, Credentials, Keys, and Certificates

Authentication Basics .. 3-1
Supported LDAP Identity Store Types ... 3-2
Oracle WebLogic Authenticators... 3-2

Using an LDAP Authenticator.. 3-3
Configuring the LDAP Identity Store Service .. 3-3
Additional Authentication Methods.. 3-4

WebSphere Identity Stores ... 3-4
Policy Store Basics.. 3-4
Credential Store Basics.. 3-5
Keystore Service Basics ... 3-6

Keystore Repository Types... 3-6
Keystore Repository Scope and Reassociation .. 3-6

4 About Oracle Platform Security Services Scenarios

Supported LDAP-, DB-, and File-Based Services .. 4-1
Management Tools ... 4-2
Packaging Requirements .. 4-4
Example Scenarios.. 4-4
Other Scenarios... 4-6

Part II Basic OPSS Administration

5 Security Administration

Choosing the Administration Tool According to Technology... 5-1
Basic Security Administration Tasks.. 5-2

Setting Up a Brand New Production Environment .. 5-3
Typical Security Practices with Fusion Middleware Control .. 5-4
Typical Security Practices with the Administration Console .. 5-4
Typical Security Practices with Oracle Entitlements Server .. 5-5
Typical Security Practices with OPSS Scripts... 5-5

6 Deploying Secure Applications

Overview .. 6-2

v

Selecting the Tool for Deployment ... 6-2
Deploying Java EE and Oracle ADF Applications with Fusion Middleware Control............. 6-3

Deploying Oracle ADF Applications to a Test Environment .. 6-5
Deploying to a Test Environment.. 6-6

Typical Administrative Tasks after Deployment in a Test Environment........................... 6-7
Deploying Standard Java EE Applications ... 6-7
Migrating from a Test to a Production Environment .. 6-8

Migrating Providers other than Policy and Credential Providers.. 6-9
Migrating Identities Manually .. 6-9

Migrating Policies and Credentials at Deployment ... 6-10
Migrating Policies Manually .. 6-11
Migrating Credentials Manually ... 6-15
Migrating Large Volume Policy and Credential Stores ... 6-18

Migrating Audit Policies .. 6-19
Migrating Keystore Service Keys and Certificates .. 6-19

Part III Advanced OPSS Administration

7 Configuring the Identity Store Service

Introduction to the Identity Store Service ... 7-1
About the Identity Store Service .. 7-1
Service Architecture... 7-1
Application Server Support .. 7-2
Java SE Support .. 7-2

Configuring the Identity Store Provider .. 7-2
Configuring the Identity Store Service ... 7-3

What is Configured? .. 7-3
Configuring Multi-LDAP Lookup.. 7-3
Global/Connection Parameters .. 7-3
Back-End/Connection Parameters... 7-4

Configuration in WebLogic Server.. 7-4
Configuring the Service for Single LDAP ... 7-5
Configuring the Service for Multiple LDAP using Fusion Middleware Control.............. 7-5
Configuring the Service for Multiple LDAP using WLST .. 7-5
Configuring Other Parameters ... 7-6
Restarting Servers ... 7-6
Examples of the Configuration File.. 7-6

Configuring Split Profiles ... 7-7
Configuring Custom Authenticators... 7-7
Configuration in Other Application Servers.. 7-8

Configuring the Service for Single LDAP ... 7-8
Configuring the Service for Multiple LDAP... 7-8

Java SE Environments .. 7-11
Querying the Identity Store Programmatically ... 7-11
SSL for the Identity Store Service .. 7-12

Connections from Oracle WebLogic Server to Identity Store... 7-12

vi

One-way SSL in a Multi-LDAP Scenario ... 7-12
Two-way SSL in a Multi-LDAP Scenario ... 7-13
Connections in a Single-LDAP Scenario.. 7-13

8 Configuring the OPSS Security Store

Introduction to the OPSS Security Store ... 8-1
Using an LDAP-Based OPSS Security Store... 8-2

Multiple-Node Server Environments.. 8-3
Prerequisites to Using an LDAP-Based Security Store... 8-3
Setting Up a One- Way SSL Connection to the LDAP.. 8-4

Using a DB-Based OPSS Security Store .. 8-6
Prerequisites to Using a DB-Based Security Store... 8-6

Creating the OPSS Schema in an Oracle Database... 8-6
Dropping the OPSS Schema in an Oracle Database... 8-7
Creating a Data Source Instance ... 8-7

Maintaining a DB-Based Security Store .. 8-8
Setting Up an SSL Connection to the DB.. 8-9

Configuring the OPSS Security Store .. 8-9
Reassociating the OPSS Security Store... 8-10

Reassociating with Fusion Middleware Control .. 8-10
Securing Access to Oracle Internet Directory Nodes.. 8-14

Reassociating with the Script reassociateSecurityStore... 8-14
Migrating the OPSS Security Store ... 8-15

Migrating with Fusion Middleware Control .. 8-15
Migrating with the Script migrateSecurityStore... 8-16

Examples of Use ... 8-18
Configuring the Identity Provider, Property Sets, and SSO... 8-18

Configuring the Identity Store Provider.. 8-18
Configuring Properties and Property Sets .. 8-18
Specifying a Single Sign-On Solution... 8-19

The OPSS SSO Framework ... 8-19
Configuring an SSO Solution with Fusion Middleware Control 8-20
OAM Configuration Example.. 8-20

9 Managing the Policy Store

Managing the Policy Store.. 9-1
Managing Policies with Fusion Middleware Control... 9-2

Managing Application Policies .. 9-3
Managing Application Roles .. 9-4
Managing System Policies .. 9-6

Managing Application Policies with OPSS Scripts .. 9-7
listAppStripes ... 9-9
createAppRole ... 9-10
deleteAppRole ... 9-10
grantAppRole .. 9-11
revokeAppRole.. 9-11
listAppRoles... 9-12

vii

listAppRolesMembers .. 9-12
grantPermission... 9-13
revokePermission.. 9-14
listPermissions ... 9-15
deleteAppPolicies.. 9-15
createResourceType .. 9-16
getResourceType ... 9-17
deleteResourceType.. 9-17
createResource ... 9-18
deleteResource... 9-18
listResources .. 9-19
listResourceActions... 9-19
createEntitlement .. 9-20
getEntitlement.. 9-21
deleteEntitlement .. 9-21
addResourceToEntitlement ... 9-22
revokeResourceFromEntitlement ... 9-22
listEntitlements .. 9-23
grantEntitlement.. 9-23
revokeEntitlement... 9-24
listEntitlement.. 9-25
listResourceTypes ... 9-25
reassociateSecurityStore... 9-26
Running an Offline Script after Reassociating to a DB-Based Store .. 9-27

Caching and Refreshing the Cache.. 9-28
An Example.. 9-29

Granting Policies to Anonymous and Authenticated Roles with WLST Scripts 9-30
Application Stripe for Versioned Applications in WLST Scripts.. 9-30
Managing Application Policies with Oracle Entitlements Server... 9-31
Guidelines to Configure the Policy Store... 9-31

10 Managing the Credential Store

Credential Types .. 10-1
Encrypting Credentials... 10-1
Managing the Credential Store... 10-3
Managing Credentials with Fusion Middleware Control... 10-3
Managing Credentials with OPSS Scripts ... 10-6

listCred.. 10-7
updateCred .. 10-7
createCred .. 10-8
deleteCred .. 10-8
modifyBootStrapCredential... 10-9
addBootStrapCredential... 10-9
exportEncryptionKey ... 10-10
importEncryptionKey... 10-10
restoreEncryptionKey... 10-10

viii

11 Managing Keys and Certificates with the Keystore Service

About the Keystore Service ... 11-1
Structure of the Keystore Service.. 11-1
Types of Keystores .. 11-2
Domain Trust Store... 11-2

About Keystore Service Commands .. 11-3
Getting Help for Keystore Service Commands ... 11-3
Keystore Service Command Reference ... 11-3

changeKeyPassword .. 11-4
changeKeyStorePassword ... 11-5
createKeyStore .. 11-5
deleteKeyStore .. 11-6
deleteKeyStoreEntry .. 11-6
exportKeyStore ... 11-7
exportKeyStoreCertificate ... 11-7
exportKeyStoreCertificateRequest ... 11-8
generateKeyPair ... 11-8
generateSecretKey .. 11-9
getKeyStoreCertificates ... 11-9
getKeyStoreSecretKeyProperties ... 11-10
importKeyStore .. 11-10
importKeyStoreCertificate .. 11-11
listExpiringCertificates .. 11-12
listKeyStoreAliases .. 11-12
listKeyStores .. 11-13

12 Introduction to Oracle Fusion Middleware Audit Framework

Benefits and Features of the Oracle Fusion Middleware Audit Framework............................. 12-1
Objectives of Auditing.. 12-1
Today’s Audit Challenges.. 12-2
Oracle Fusion Middleware Audit Framework in 11g .. 12-2

Overview of Audit Features .. 12-3
Oracle Fusion Middleware Audit Framework Concepts... 12-4

Audit Architecture .. 12-4
Key Technical Concepts ... 12-7
Audit Metadata Storage ... 12-8
Audit Data Storage.. 12-8
Analytics ... 12-9

13 Configuring and Managing Auditing

Audit Administration Tasks.. 13-1
Managing the Audit Data Store ... 13-2

Create the Audit Schema using RCU ... 13-2
Set Up Audit Data Sources .. 13-3

Multiple Data Sources ... 13-4
Configure a Database Audit Data Store for Java Components .. 13-4

ix

View Audit Data Store Configuration .. 13-4
Configure the Audit Data Store .. 13-5
Deconfigure the Audit Data Store ... 13-6

Configure a Database Audit Data Store for System Components ... 13-6
Deconfigure the Audit Data Store .. 13-8

Tuning the Bus-stop Files... 13-8
Configuring the Stand-alone Audit Loader .. 13-9

Configuring the Environment.. 13-10
Running the Stand-Alone Audit Loader .. 13-10

Managing Audit Policies ... 13-11
Manage Audit Policies for Java Components with Fusion Middleware Control................ 13-11
Manage Audit Policies for System Components with Fusion Middleware Control 13-14
Manage Audit Policies with WLST .. 13-17

View Audit Policies with WLST .. 13-17
Update Audit Policies with WLST .. 13-17
Example 1: Configuring an Audit Policy for Users with WLST 13-18
Example 2: Configuring an Audit Policy for Events with WLST 13-18
Custom Configuration is Retained when the Audit Level Changes 13-19

Manage Audit Policies Manually ... 13-19
Location of Configuration Files for Java Components ... 13-19
Audit Service Configuration Properties in jps-config.xml for Java Components 13-20
Switching from Database to File for Java Components.. 13-20
Manually Configuring Audit for System Components.. 13-20

Audit Logs... 13-21
Location of Audit Logs... 13-22
Audit Log Timestamps... 13-22

Advanced Management of Database Store .. 13-22
Schema Overview ... 13-22
Table Attributes ... 13-23
Indexing Scheme ... 13-24
Backup and Recovery ... 13-24
Importing and Exporting Data.. 13-25
Partitioning... 13-25

 Partition Tables.. 13-25
Backup and Recovery of Partitioned Tables .. 13-27
Import, Export, and Data Purge .. 13-27
Tiered Archival... 13-27

14 Using Audit Analysis and Reporting

Setting up Oracle Business Intelligence Publisher for Audit Reports 14-1
About Oracle Business Intelligence Publisher .. 14-1
Install Oracle Business Intelligence Publisher .. 14-3
Set Up Oracle Reports in Oracle Business Intelligence Publisher.. 14-3
Set Up Audit Report Templates .. 14-4
Set Up Audit Report Filters ... 14-4
Configure Scheduler in Oracle Business Intelligence Publisher .. 14-5

Organization of Audit Reports .. 14-6

x

View Audit Reports .. 14-7
Example of Oracle Business Intelligence Publisher Reports ... 14-8
Audit Report Details... 14-10

List of Audit Reports in Oracle Business Intelligence Publisher.. 14-11
Attributes of Audit Reports in Oracle Business Intelligence Publisher 14-13

Customizing Audit Reports .. 14-14
Using Advanced Filters on Pre-built Reports ... 14-14
Creating Custom Reports... 14-15

Part IV Single Sign-On Configuration

15 Introduction to Single Sign-On in Oracle Fusion Middleware

Choosing the Right SSO Solution for Your Deployment.. 15-1
Introduction: OAM Authentication Provider for WebLogic Server.. 15-4

About Using the Identity Asserter Function with Oracle Access Manager 15-6
About Using the Authenticator Function with Oracle Access Manager 15-9
Choosing Applications for Oracle Access Manager SSO Scenarios and Solutions 15-10

Applications Using Oracle Access Manager for the First TIme 15-10
Applications Migrating from Oracle Application Server to Oracle WebLogic Server 15-11
Applications Using OAM Security Provider for WebLogic SSPI 15-11

Implementation: Using the Provider with OAM 11g versus OAM 10g 15-12
Requirements for the Provider with Oracle Access Manager ... 15-13

Setting Up Debugging in the WebLogic Administration Console.. 15-14

16 Configuring Single Sign-On with Oracle Access Manager 11g

Introduction to Oracle Access Manager 11g SSO ... 16-1
Previewing Pre-Seeded OAM 11g Policies for Use by the 10g AccessGate 16-4

Deploying the Oracle Access Manager 11g SSO Solution .. 16-7
Installing the Authentication Provider with Oracle Access Manager 11g.............................. 16-8
Converting Oracle Access Manager Certificates to Java Keystore Format............................. 16-9
Session Token: Provisioning an OAM Agent with Oracle Access Manager 11g................. 16-12

About WebGate Provisioning Methods for Oracle Access Manager 11g...................... 16-12
Provisioning a WebGate with Oracle Access Manager 11g... 16-13

Configuring Identity Assertion for SSO with Oracle Access Manager 11g.......................... 16-16
Establishing Trust with Oracle WebLogic Server ... 16-16
Configuring Providers in the WebLogic Domain .. 16-19
Trusted Header Assertion: Configuring Digital Signature Verification........................ 16-25
Trusted Header Assertion: Configuring Policies .. 16-28
Testing Oracle Access Manager Identity Assertion for Single Sign-on 16-29

Configuring the Authenticator Function for Oracle Access Manager 11g 16-29
Configuring Providers for the Authenticator in a WebLogic Domain 16-30
Configuring the Application Authentication Method for the Authenticator 16-33
Mapping the Authenticated User to a Group in LDAP ... 16-34
Testing the Oracle Access Manager Authenticator Implementation 16-34

Configuring Identity Assertion for Oracle Web Services Manager and OAM 11g............. 16-35
Configuring Providers in a WebLogic Domain for Oracle Web Services Manager..... 16-36

xi

Testing the Identity Asserter with Oracle Web Services Manager................................. 16-38
Configuring Centralized Log Out for Oracle Access Manager 11g ... 16-38

Logout for 11g WebGate and OAM 11g .. 16-39
Logout for 10g WebGate with Oracle Access Manager 11g ... 16-39

Synchronizing the User and SSO Sessions: SSO Synchronization Filter 16-40
Troubleshooting Tips.. 16-42

17 Configuring Single Sign-On Using Oracle Access Manager 10g

Deploying SSO Solutions with Oracle Access Manager 10g ... 17-1
Installing and Setting Up Authentication Providers for OAM 10g ... 17-1

About Oracle Access Manager 10g Installation and Setup.. 17-2
Installing Components and Files for Authentication Providers and OAM 10g 17-4
Converting Oracle Access Manager Certificates to Java Keystore Format 17-6
Creating Resource Types in Oracle Access Manager 10g .. 17-9

Configuring Global Logout for Oracle Access Manager 10g and 10g WebGates................ 17-10
Recommended Process for Configuring Logout ... 17-10
Alternative Process for Configuring Logout.. 17-13

Oracle Access Manager Authentication Provider Parameter List.. 17-14
Introduction to OAMCfgTool ... 17-15

OAMCfgTool Process Overview .. 17-17
OAMCfgTool Parameters and Values ... 17-17

Create Mode Parameters and Values.. 17-18
Validate Mode Parameters and Values .. 17-27
Delete Mode Parameters and Values .. 17-28

Sample Policy Domain and AccessGate Profile Created with OAMCfgTool 17-29
Known Issues: JAR Files and OAMCfgTool ... 17-33

Configuring OAM Identity Assertion for SSO with Oracle Access Manager 10g 17-34
Establishing Trust with Oracle WebLogic Server... 17-35

Setting Up the Application Authentication Method for SSO ... 17-35
Confirming mod_weblogic for Oracle Access Manager Identity Asserter 17-36
Establishing Trust between Oracle WebLogic Server and Other Entities 17-36

Configuring the Authentication Scheme for the Identity Asserter.. 17-38
Creating an Authentication Scheme, Policy Domain, and a WebGate Profile 17-38

Configuring Providers in the WebLogic Domain ... 17-40
About Oracle WebLogic Server Authentication and Identity Assertion Providers..... 17-41
About the Oracle WebLogic Scripting Tool (WLST)... 17-42
Setting Up Providers for Oracle Access Manager Identity Assertion............................ 17-44

Setting Up the Login Form for the Identity Asserter and OAM 10g..................................... 17-46
Testing Identity Assertion for SSO with OAM 10g.. 17-47

Configuring the Authenticator for Oracle Access Manager 10g .. 17-48
Creating an Authentication Scheme for the Authenticator .. 17-49
Configuring a Policy Domain for the Oracle Access Manager Authenticator 17-49

About Creating a Policy Domain... 17-49
Creating a Policy Domain and Access Policies for the Authenticator 17-50

Configuring Providers for the Authenticator in a WebLogic Domain.................................. 17-54
Configuring the Application Authentication Method for the Authenticator 17-57
Mapping the Authenticated User to a Group in LDAP... 17-58

xii

Testing the Oracle Access Manager Authenticator Implementation..................................... 17-58
Configuring Identity Assertion for Oracle Web Services Manager and OAM 10g................ 17-59

Creating an Policy Domain for Use with Oracle Web Services Manager 17-59
Configuring Providers in a WebLogic Domain for Oracle Web Services Manager............ 17-62
Testing the Identity Asserter with Oracle Web Services Manager .. 17-65

Synchronizing the User and SSO Sessions: SSO Synchronization Filter 17-65
Troubleshooting Tips for OAM Provider Deployments ... 17-67

About Using IPv6.. 17-68
Apache Bridge Failure: Timed Out .. 17-68
Authenticated User with Access Denied .. 17-69
Browser Back Button Results in Error.. 17-69
Cannot Reboot After Adding OAM and OID Authenticators ... 17-69
Client in Cluster with Load-Balanced WebGates... 17-69
Error 401: Unable to Access the Application... 17-71
Error 403: Unable to Access the Application... 17-72
Error 404: Not Found ... Anything Matching the Request URI .. 17-72
Error Issued with the Action URL in Form Login Page .. 17-72
Error or Failure on Oracle WebLogic Server Startup... 17-73
JAAS Control Flag... 17-73
Login Form is Shown Repeatedly Upon Credential Submission: No Error......................... 17-73
Logout and Session Time Out Issues ... 17-73
Not Found: The requested URL or Resource Was Not Found... 17-74
Oracle WebLogic Server Fails to Start.. 17-74
Oracle ADF Integration and Cert Mode .. 17-75
About Protected_JSessionId_Policy ... 17-76

18 Configuring Single Sign-On using OracleAS SSO 10g

Deploying the OracleAS 10g Single Sign-On (OSSO) Solution ... 18-1
Using the OSSO Identity Asserter ... 18-1

Oracle WebLogic Security Framework... 18-2
OSSO Identity Asserter Processing ... 18-2
Consumption of Headers with OSSO Identity Asserter .. 18-4

New Users of the OSSO Identity Asserter... 18-4
Configuring mod_weblogic.. 18-6
Registering Oracle HTTP Server mod_osso with OSSO Server 10.1.4 18-7
Configuring mod_osso to Protect Web Resources.. 18-8
Adding Providers to a WebLogic Domain for OSSO ... 18-12
Establishing Trust Between Oracle WebLogic Server and Other Entities 18-14
Configuring the Application for the OSSO Identity Asserter ... 18-15

Synchronizing the User and SSO Sessions: SSO Synchronization Filter 18-16
Troubleshooting for an OSSO Identity Asserter Deployment... 18-18

SSO-Related Problems.. 18-18
OSSO Identity Asserter-Related Problems.. 18-24
URL Rewriting and JSESSIONID.. 18-25
About mod_osso, OSSO Cookies, and Directives .. 18-25

New OssoHTTPOnly Directive in mod_osso .. 18-25
OssoSecureCookies Directive in mod_osso ... 18-26

xiii

Mod_osso Does Not Encode the Return URL.. 18-26
mod_osso: "Page Not found" error After Default Installation .. 18-26

About Using IPv6.. 18-27

Part V Developing with Oracle Platform Security Services APIs

19 Integrating Application Security with OPSS

Introduction.. 19-1
Security Integration Use Cases ... 19-2

Authentication ... 19-3
Java EE Application Requiring Authenticated Users ... 19-3
Java EE Application Requiring Programmatic Authentication .. 19-4
Java SE Application Requiring Authentication ... 19-4

Identities ... 19-4
Application Running in Two Environments ... 19-4
Application Accessing User Profiles in Multiple Stores .. 19-5

Authorization... 19-5
Java EE Application Accessible by Specific Roles... 19-5
ADF Application Requiring Fine-Grained Authorization... 19-5
Web Application Securing Web Services ... 19-6
Java EE Application Requiring Codebase Permissions.. 19-6
Non-ADF Application Requiring Fine-Grained Authorization.. 19-6

Credentials ... 19-6
Application Requiring Credentials to Access System .. 19-6

Audit ... 19-7
Auditing Security-Related Activity... 19-7
Auditing Business-Related Activity.. 19-7

Identity Propagation... 19-8
Propagating the Executing User Identity ... 19-8
Propagating a User Identity ... 19-9
Propagating Identities Across Domains ... 19-9
Propagating Identities over HTTP .. 19-9

Administration and Management .. 19-9
Application Requiring a Central Store.. 19-9
Application Requiring Custom Management Tool .. 19-10
Application Running in a Multiple Server Environment .. 19-10

Integration .. 19-10
Application Running in Multiple Domains ... 19-11

Some Use Cases Details ... 19-11
Propagating Identities over HTTP.. 19-11

The OPSS Trust Service... 19-11
Propagating Identities over the HTTP Protocol .. 19-11
Domains Using Both Protocols .. 19-17

A Custom Graphical User Interface ... 19-18
Imports Assumed... 19-20
Code Sample 1 .. 19-20

xiv

Code Sample 2 .. 19-21
Code Sample 3 .. 19-21
Code Sample 4 .. 19-22
Code Sample 5 .. 19-23
Code Sample 6 .. 19-25

Appendix - Security Life Cycle of an ADF Application .. 19-25
Development Phase .. 19-25
Deployment Phase .. 19-26
Management Phase ... 19-26
Summary of Tasks per Participant per Phase ... 19-26

Appendix - Code and Configuration Examples .. 19-27
Code Examples .. 19-27
Configuration Examples .. 19-28
Full Code Example of a Java EE Application with Integrated Security................................ 19-28

20 The OPSS Policy Model

The Security Policy Model .. 20-1
Authorization Overview .. 20-1

Introduction to Authorization... 20-1
The Java EE Authorization Model .. 20-2

Declarative Authorization .. 20-2
Programmatic Authorization ... 20-2
Java EE Code Example .. 20-3

The JAAS Authorization Model.. 20-4
The JAAS/OPSS Authorization Model ... 20-4

The Resource Catalog ... 20-4
Managing Policies ... 20-5
Checking Policies .. 20-6

Using the Method checkPermission.. 20-7
Using the Methods doAs and doAsPrivileged ... 20-11
Using the Method checkBulkAuthorization .. 20-12
Using the Method getGrantedResources.. 20-12

The Class ResourcePermission.. 20-12

21 Manually Configuring Java EE Applications to Use OPSS

Configuring the Servlet Filter and the EJB Interceptor ... 21-1
Interceptor Configuration Syntax ... 21-7
Summary of Filter and Interceptor Parameters .. 21-7
Configuring the Application Stripe for Application MBeans... 21-8

Choosing the Appropriate Class for Enterprise Groups and Users .. 21-9
Packaging a Java EE Application Manually... 21-9

Packaging Policies with Application.. 21-10
Packaging Credentials with Application... 21-10

Configuring Applications to Use OPSS.. 21-11
Parameters Controlling Policy Migration.. 21-11
Policy Parameter Configuration According to Behavior... 21-15

To Skip Migrating All Policies ... 21-16

xv

To Migrate All Policies with Merging... 21-16
To Migrate All Policies with Overwriting.. 21-16
To Remove (or Prevent the Removal of) Application Policies .. 21-17
To Migrate Policies in a Static Deployment ... 21-19
Recommendations ... 21-19

Using a Wallet-Based Credential Store .. 21-19
Parameters Controlling Credential Migration.. 21-20
Credential Parameter Configuration According to Behavior... 21-20

To Skip Migrating Credentials... 21-21
To Migrate Credentials with Merging .. 21-21
To Migrate Credentials with Overwriting ... 21-21

Supported Permission Classes .. 21-21
Policy Store Permission... 21-22
Credential Store Permission ... 21-23
Generic Permission .. 21-23

Specifying Bootstrap Credentials Manually.. 21-23
Migrating Identities with migrateSecurityStore... 21-24
Example of Configuration File jps-config.xml .. 21-25

22 Authentication for Java SE Applicaitons

Links to Authentication Topics for Java EE Applications ... 22-1
Authentication for Java SE Applications.. 22-2

The Identity Store.. 22-2
Configuring an LDAP Identity Store in Java SE Applications ... 22-2
Supported Login Modules for Java SE Applications ... 22-3

The Identity Store Login Module .. 22-3
Using the Identity Store Login Module for Authentication .. 22-4
Using the Identity Login Module for Assertion .. 22-6

Using the OPSS API LoginService in Java SE Applications.. 22-8
Configuration Examples .. 22-9

23 Authorization for Java SE Applications

Configuring Policy and Credential Stores in Java SE Applications ... 23-1
Configuring File-Based Policy and Credential Stores ... 23-1
Configuring LDAP-Based Policy and Credential Stores... 23-2
Configuring DB-Based OPSS Security Stores.. 23-3

Unsupported Methods for File-Based Policy Stores .. 23-4

24 Developing with the Credential Store Framework

About the Credential Store Framework API.. 24-1
Overview of Application Development with CSF ... 24-2
Setting the Java Security Policy Permissions... 24-2

Guidelines for Granting Permissions ... 24-3
Permissions Grant Example 1.. 24-3
Permissions Grant Example 2.. 24-3

Guidelines for the Map Name .. 24-4

xvi

Configuring the Credential Store... 24-5
Steps for Using the API.. 24-5

Using the CSF API in a Standalone Environment .. 24-5
Using the CSF API in Oracle WebLogic Server .. 24-6

Examples ... 24-6
Code for CSF Operations ... 24-6
Example 1: Java SE Application with Wallet Store .. 24-8
Example 2: Java EE Application with Wallet Store.. 24-11
Example 3: Java EE Application with LDAP Store .. 24-13

Best Practices ... 24-14

25 Developing with the User and Role API

 Introduction to the User and Role API Framework... 25-1
User and Role API and the Oracle WebLogic Server Authenticators 25-2

Summary of Roles and Classes... 25-2
Working with Service Providers... 25-5

Understanding Service Providers... 25-5
Setting Up the Environment .. 25-5
Selecting the Provider... 25-6
Creating the Provider Instance.. 25-7
Properties for Provider Configuration .. 25-7

Start-time and Run-time Configuration ... 25-8
ECID Propagation .. 25-10
When to Pass Configuration Values ... 25-10

Configuring the Provider when Creating a Factory Instance .. 25-11
Oracle Internet Directory Provider.. 25-11
Using Existing Logger Objects ... 25-11
Supplying Constant Values .. 25-12
Configuring Connection Parameters .. 25-12
Configuring a Custom Connection Pool Class .. 25-13

Configuring the Provider when Creating a Store Instance .. 25-13
Runtime Configuration .. 25-13
Programming Considerations ... 25-13

Provider Portability Considerations ... 25-14
Considerations when Using IdentityStore Objects ... 25-15

Provider Life cycle .. 25-15
Searching the Repository ... 25-15

Searching for a Specific Identity.. 25-16
Searching for Multiple Identities .. 25-16
Specifying Search Parameters ... 25-16
Using Search Filters .. 25-17

Operators in Search Filters ... 25-17
Handling Special Characters when Using Search Filters... 25-17
Search Filter for Logged-In User.. 25-17
Examples of Using Search Filters .. 25-18

Searching by GUID ... 25-20
User Authentication .. 25-20

xvii

Creating and Modifying Entries in the Identity Store... 25-20
Handling Special Characters when Creating Identities .. 25-21
Creating an Identity .. 25-21
Modifying an Identity .. 25-21
Deleting an Identity .. 25-22

Examples of User and Role API Usage.. 25-22
Example 1: Searching for Users... 25-22
Example 2: User Management in an Oracle Internet Directory Store 25-24
Example 3: User Management in a Microsoft Active Directory Store................................... 25-25

SSL Configuration for LDAP-based User and Role API Providers .. 25-28
Out-of-the-box Support for SSL .. 25-28

System Properties... 25-28
SSL configuration... 25-28

Customizing SSL Support for the User and Role API ... 25-29
SSL configuration... 25-29

The User and Role API Reference.. 25-29
Developing Custom User and Role Providers... 25-29

SPI Overview ... 25-29
Types of User and Role Providers .. 25-30
Developing a Read-Only Provider ... 25-30

SPI Classes Requiring Extension ... 25-30
oracle.security.idm.spi.AbstractIdentityStoreFactory .. 25-31
oracle.security.idm.spi.AbstractIdentityStore ... 25-31
oracle.security.idm.spi.AbstractRoleManager... 25-32
oracle.security.idm.spi.AbstractUserManager .. 25-32
oracle.security.idm.spi.AbstractRoleProfile... 25-32
oracle.security.idm.spi.AbstractUserProfile .. 25-33
oracle.security.idm.spi.AbstractSimpleSearchFilter ... 25-34
oracle.security.idm.spi.AbstractComplexSearchFilter ... 25-34
oracle.security.idm.spi.AbstractSearchResponse.. 25-34

Developing a Full-Featured Provider .. 25-35
Development Guidelines ... 25-35
Testing and Verification ... 25-35
Example: Implementing an Identity Provider .. 25-36

About the Sample Provider .. 25-36
Overview of Implementation ... 25-36
Configure jps-config.xml to use the Sample Identity Provider....................................... 25-37
Configure Oracle WebLogic Server... 25-38

26 Developing with the Identity Directory API

About the Identity Directory API .. 26-1
Feature Overview.. 26-1

Summary of Classes.. 26-2
Identity Directory Configuration ... 26-3
Working with the Identity Directory API... 26-3

Getting an Identity Directory API Instance... 26-4
Performing CRUD Operations on Users and Groups ... 26-4

xviii

User Operations ... 26-4
Group Operations .. 26-4

Examples of Identity Directory API .. 26-5
Initialize and Obtain Identity Directory Handle .. 26-5
Create a User.. 26-7
Get a User .. 26-7
Modify a User .. 26-8
Simple Search for a User .. 26-8
Complex Search for Users.. 26-8
Create a Group .. 26-9
Get a Group.. 26-10
Get Group Using a Search Filter ... 26-10
Delete a Group... 26-11
Add a Member to a Group... 26-11
Delete a Member from a Group .. 26-11

SSL Configuration... 26-12

27 Developing with the Keystore Service

About the Keystore Service API ... 27-1
Overview of Application Development with the Keystore Service.. 27-2
Setting the Java Security Policy Permission .. 27-2

Guidelines for Granting Permissions ... 27-3
Permissions Grant Example 1.. 27-3
Permissions Grant Example 2.. 27-4
Permissions Grant Example 3.. 27-4

Configuring the Keystore Service .. 27-5
Steps for Using the Keystore Service API .. 27-5

Using the Keystore Service API in a Standalone Environment.. 27-5
Using the Keystore Service API in Oracle WebLogic Server .. 27-6

Example of Keystore Service API Usage... 27-6
Java Program for Keystore Service Operations .. 27-6
Policy Store Setup.. 27-8
Configuration File ... 27-8
About Using the Keystore Service in the Java SE Environment .. 27-9

Best Practices ... 27-9

28 Developing with the Audit Service

Application Integration with Audit Flow .. 28-1
Audit Metadata Model ... 28-2

Attribute Groups ... 28-2
Audit Attribute Data Types.. 28-2
 Common Attribute Groups ... 28-3
 Generic Attribute Groups .. 28-3
Custom Attribute Groups... 28-4

Event Categories and Events... 28-4
System Categories and Events ... 28-4
Component/Application Categories .. 28-5

xix

The Audit Metadata Store ... 28-6
Integrating the Application with the Audit Framework ... 28-6
Create Audit Definition Files ... 28-7

Understand Mapping and Versioning Rules .. 28-9
Version Numbers ... 28-9
Custom Attribute to Database Column Mappings ... 28-10

Register Application with the Registration Service ... 28-11
Add Application Code to Log Audit Events .. 28-12

Audit Client API.. 28-12
Set System Grants.. 28-12
Obtain Auditor Instance... 28-13

Integrate with Oracle Business Intelligence Publisher ... 28-13
Update and Maintain Audit Definitions .. 28-14

Part VI Appendices

A OPSS Configuration File Reference

Top- and Second-Level Element Hierarchy.. A-1
Lower-Level Elements .. A-2

B File-Based Identity and Policy Store Reference

Hierarchy of Elements in system-jazn-data.xml ... B-1
Elements and Attributes of system-jazn-data.xml .. B-4

C Oracle Fusion Middleware Audit Framework Reference

Audit Events ... C-1
What Components Can be Audited? ... C-1
What Events can be Audited? ... C-2

Oracle Directory Integration Platform Events and their Attributes................................... C-2
Oracle Platform Security Services Events and their Attributes .. C-6
Oracle HTTP Server Events and their Attributes.. C-8
Oracle Internet Directory Events and their Attributes ... C-9
Oracle Identity Federation Events and their Attributes... C-11
Oracle Virtual Directory Events and their Attributes... C-16
OWSM-Agent Events and their Attributes .. C-18
OWSM-PM-EJB Events and their Attributes ... C-19
Reports Server Events and their Attributes ... C-20
WS-Policy Attachment Events and their Attributes ... C-21
Oracle Web Cache Events and their Attributes... C-21
Oracle Web Services Manager Events and their Attributes... C-24

Event Attribute Descriptions... C-24
Pre-built Audit Reports.. C-28

Common Audit Reports ... C-29
Component-Specific Audit Reports ... C-29

The Audit Schema ... C-31
WLST Commands for Auditing ... C-44

xx

getNonJava EEAuditMBeanName ... C-45
Description.. C-45
Syntax .. C-45
Example ... C-45

getAuditPolicy... C-45
Description.. C-45
Syntax .. C-46
Example ... C-46

setAuditPolicy ... C-46
Description.. C-46
Syntax .. C-46
Example ... C-47

getAuditRepository .. C-47
Description.. C-47
Syntax .. C-47
Example ... C-47

setAuditRepository ... C-47
Description.. C-48
Syntax .. C-48
Example ... C-48

listAuditEvents .. C-48
Description.. C-48
Syntax .. C-48
Example ... C-48

exportAuditConfig.. C-49
Description.. C-49
Syntax .. C-49
Example ... C-49

importAuditConfig ... C-49
Description.. C-49
Syntax .. C-50
Example ... C-50

Audit Filter Expression Syntax ... C-50
Naming and Logging Format of Audit Files .. C-51

D User and Role API Reference

Mapping User Attributes to LDAP Directories... D-1
Mapping Role Attributes to LDAP Directories... D-3
Default Configuration Parameters... D-4
Secure Connections for Microsoft Active Directory... D-9

E Administration with WLST Scripting and MBean Programming

Configuring OPSS Service Provider Instances with a WLST Script .. E-1
Configuring OPSS Services with MBeans ... E-3

List of Supported OPSS MBeans... E-3
Invoking an OPSS MBean .. E-3
Programming with OPSS MBeans.. E-4

xxi

Access Restrictions .. E-11
Annotation Examples ... E-11
Mapping of Logical Roles to WebLogic Roles .. E-12
Particular Access Restrictions.. E-13

F OPSS System and Configuration Properties

OPSS System Properties .. F-1
OPSS Configuration Properties.. F-4

Policy Store Properties ... F-4
Policy Store Configuration ... F-4
Runtime Policy Store Configuration ... F-10

Credential Store Properties.. F-14
LDAP Identity Store Properties .. F-15
Properties Common to All LDAP-Based Instances.. F-21
Anonymous and Authenticated Roles Properties.. F-23
Trust Service Properties ... F-24
Audit Service Properties .. F-25
Keystore Service Properties ... F-26

G Upgrading Security Data

Upgrading with upgradeSecurityStore ... G-1
Examples of Use .. G-4

Example 1 - Upgrading Identities.. G-4
Example 2 - Upgrading to File-Based Policies... G-5
Example 3 - Upgrading to Oracle Internet Directory LDAP-Based Policies..................... G-5
Example 4 - Upgrading File-Based Policies to Use the Resource Catalog......................... G-6

Upgrading Policies with upgradeOpss ... G-12
Command Syntax ... G-13

H References

OPSS API References ... H-1

I OPSS Scripts

Policy-Related Scripts... I-1
Credential-Related Scripts... I-2
Other Security Scripts .. I-2
Audit Scripts... I-3

J Using an OpenLDAP Identity Store

Using an OpenLDAP Identity Store... J-1

K Adapter Configuration for Identity Virtualization

About Split Profiles .. K-1
Configuring a Split Profile .. K-2

xxii

Deleting a Join Rule.. K-3
Deleting a Join Adapter ... K-3
Changing Adapter Visibility... K-4

L Troubleshooting Security in Oracle Fusion Middleware

Diagnosing Security Errors .. L-2
Log Files and OPSS Loggers... L-2

Diagnostic Log Files.. L-2
Generic Log Files... L-2
Authorization Loggers ... L-3
 Offline OPSS Scripts Loggers ... L-4
Other OPSS Loggers ... L-5
Audit Loggers.. L-5
Managing Loggers with Fusion Middleware Control... L-6

System Properties... L-7
jps.auth.debug ... L-7
jps.auth.debug.verbose .. L-8
Debugging the Authorization Process... L-9

Solving Security Errors... L-11
Understanding Sample Log Entries .. L-11
Searching Logs with Fusion Middleware Control .. L-13
Identifying a Message Context with Fusion Middleware Control L-13
Generating Error Listing Files with Fusion Middleware Control L-14

Reassociation Failure .. L-14
Missing Policies in Reassociated Policy Store... L-16
Unsupported Schema ... L-18

Server Fails to Start ... L-19
Missing Required LDAP Authenticator .. L-19
Missing Administrator Account ... L-20
Missing Permission ... L-21
Server with NFS-Mounted Domain Directory Fails to Start... L-21
Other Causes.. L-22

Failure to Grant or Revoke Permissions - Case Mismatch.. L-24
Failure to Connect to an LDAP Server .. L-25
Failure to Connect to the Embedded LDAP Authenticator... L-26
User and Role API Failure ... L-27
Failure to Access Data in the Credential Store .. L-28
Failure to Establish an Anonymous SSL Connection .. L-29
Authorization Check Failure... L-29
User Gets Unexpected Permissions ... L-30
Security Access Control Exception... L-31
Runtime Permission Check Failure ... L-32
Permission Failure Before Server Starts ... L-33
Policy Migration Failure .. L-34
Characters in Policies.. L-35

Use of Special Characters in Oracle Internet Directory 10.1.4.3 ... L-35
XML Policy Store that Contains Certain Characters.. L-35

xxiii

Characters in Application Role Names.. L-36
Missing Newline Characters in XML Policy Store ... L-36

Granting Permissions in Java SE Applications ... L-36
Troubleshooting Oracle Business Intelligence Reporting .. L-37

Audit Templates for Oracle Business Intelligence Publisher ... L-37
Oracle Business Intelligence Publisher Time Zone .. L-37

Search Failure when Matching Attribute in Policy Store ... L-37
Search Failure with an Unknown Host Exception.. L-40
Incompatible Versions of Binaries and Policy Store .. L-41
Incompatible Versions of Policy Stores .. L-42
Need Further Help?... L-42

Index

xxiv

xxv

List of Examples

7–1 Single-LDAP Configuration in Oracle WebLogic Server.. 7-6
7–2 Multi-LDAP Configuration in Oracle WebLogic Server... 7-6
7–3 Multi-LDAP Configuration in Third-Party Application Servers... 7-9
7–4 Querying the LDAP Identity Store Programmatically... 7-11
17–1 logout.html Script .. 17-11
17–2 OIM Integration-Related Parameter Usage.. 17-27
18–1 SSO Authentication with Dynamic Directives .. 18-10
18–2 SSO Logout with Dynamic Directives .. 18-11
25–1 Simple Filter to Retrieve Users by Name ... 25-18
25–2 Simple Filter to Find Users by Language Preference.. 25-18
25–3 Complex Filter for Names by Starting Letter... 25-18
25–4 Complex Filter with Restrictions on Starting Letter ... 25-18
25–5 Complete Search with Output ... 25-19
25–6 Obtaining the Identity of the Logged-in User ... 25-19
25–7 Obtaining the Role/Group Name ... 25-20
B–1 <jazn-policy> .. B-27
B–2 <jazn-policy> .. B-28

xxvi

List of Figures

1–1 The OPSS Architecture... 1-3
2–1 Application Policy Logical Model .. 2-3
7–1 The OPSS Identity Store Service ... 7-2
10–1 The Create Key Dialog .. 10-5
10–2 The Crteate Key Dialog ... 10-6
12–1 Audit Event Flow... 12-6
13–1 Audit Schema ... 13-23
15–1 Identity Asserter Configuration with Oracle Access Manager and WebGates 15-8
15–2 Authenticator for Web and non-Web Resources... 15-9
16–1 Pre-seeded Resources in the User ID Assertion Authentication Policy........................... 16-5
16–2 Pre-seeded Responses in the User ID Assertion Policy.. 16-5
16–3 Pre-seeded Application SSO Authentication Policy and Resources 16-6
16–4 Pre-seeded Responses for the Application SSO Authentication Policy........................... 16-6
16–5 Pre-seeded Application SSO Authorization Policy and Resources 16-7
16–6 Sample Authorization Policy for Trusted Header Assertion ... 16-28
17–1 Sample OAMCfgTool Policy Domain General Tab .. 17-30
17–2 Sample OAMCfgTool Policy Domain Resources Tab .. 17-30
17–3 Sample OAMCfgTool Policy Domain Authorization Rules Tab 17-30
17–4 Sample OAMCfgTool Policy Domain Default Rules Tab .. 17-31
17–5 Sample OAMCfgTool Policy Domain Policies Tab... 17-31
17–6 OAMCfgTool Policy Domain Delegated Access Admins Tab.. 17-32
17–7 Sample OAMCfgTool Host Identifiers ... 17-32
17–8 Sample OAMCfgTool AccessGate Profile .. 17-33
17–9 Default Login Form for Single Sign-On with 10g WebGates .. 17-47
17–10 Create Policy Domain Page in the Oracle Access Manager Policy Manager 17-49
18–1 Location of OSSO Components in the Oracle WebLogic Security Framework.............. 18-2
18–2 OSSO Identity Asserter Processing ... 18-3
19–1 Applications, Security Stores, and Management Tools.. 19-2
19–2 Identity Propagation with HTTP Calls ... 19-12
19–3 Mapping of Application Roles to Users and Groups ... 19-19
19–4 Application Life Cycle Phases.. 19-26
28–1 Integrating Applications with the Audit Framework .. 28-2

xxvii

List of Tables

2–1 Granted and Inherited Permissions .. 2-7
5–1 Basic Administrative Security Tasks and Tools .. 5-2
6–1 Tools to Deploy Applications after Development .. 6-3
7–1 Global LDAP Identity Store Parameters.. 7-3
8–1 SSO Provider Properties .. 8-22
11–1 Keystore Service Commands ... 11-4
13–1 Attributes of Base Table IAU_BASE ... 13-23
14–1 List of Audit Reports ... 14-11
14–2 Attributes of Audit Reports.. 14-14
15–1 Summary: Identity Assertion Mechanisms for Oracle Access Manager 15-5
15–2 Differences in Authentication Provider Implementation Tasks for OAM 11g versus OAM

10g 15-12
16–1 Options to Create DER Format Files from PEM... 16-11
16–2 Provisioning Methods for OAM 11g.. 16-12
16–3 Required Registration Details for OAM Agents... 16-13
16–4 Connection Filter Rules.. 16-18
16–5 addOAMSSOProvider Command-line Arguments... 16-22
16–6 SSO Sync Filter Properties and Sync Behavior ... 16-42
17–1 Options to Create DER Format Files from PEM... 17-8
17–2 Oracle Access Manager Authentication Provider Common Parameters 17-14
17–3 Provider-Specific Parameters .. 17-14
17–4 Provider-Specific Parameters: Oracle Access Manager Authenticator......................... 17-15
17–5 OAMCfgTool CREATE Mode Parameters and Values ... 17-18
17–6 Additional OIM Integration-Related Parameters and Values.. 17-26
17–7 OAMCfgTool VALIDATE Mode Parameters and Values .. 17-27
17–8 OAMCfgTool DELETE Mode Parameters .. 17-28
17–9 OAMCfgTool Known Issues ... 17-33
17–10 Connection Filter Rules.. 17-37
17–11 addOAMSSOProvider Command-line Arguments... 17-43
17–12 SSO Sync Filter Properties and Sync Behavior ... 17-67
18–1 Headers Sent by Oracle HTTP Server .. 18-4
18–2 ssoreg Parameters to Register Oracle HTTP Server mod_osso.. 18-7
18–3 Connection Filter Rules.. 18-14
18–4 SSO Sync Filter Properties and Sync Behavior ... 18-17
19–1 Security Tasks for the Application Architect .. 19-27
19–2 Security Tasks for the Application Developer.. 19-27
19–3 Security Tasks for the Application Security Administrator ... 19-27
20–1 Comparing Authorization in the Java EE Model ... 20-2
20–2 Behavior of checkPermission According to JAAS Mode .. 20-7
21–1 Summary of JpsFilter and JpsInterceptor Parameters ... 21-8
21–2 Settings to Skip Policy Migration ... 21-16
21–3 Settings to Migrate Policies with Merging .. 21-16
21–4 Settings to Migrate Policies with Overwriting ... 21-16
21–5 Settings to Remove Policies ... 21-17
21–6 Settings to Prevent the Removal of Policies .. 21-17
21–7 Settings to Migrate Policies with Static Deployments ... 21-19
21–8 Settings Not to Migrate Policies with Static Deployments ... 21-19
21–9 Settings to Skip Credential Migration.. 21-21
21–10 Settings to Migrate Credentials with Merging ... 21-21
21–11 Settings to Migrate Credentials with Overwriting .. 21-21
22–1 Idstore Types ... 22-11
25–1 Classes and Interfaces in the User and Role API... 25-3
25–2 LDAP Identity Provider Classes.. 25-7

xxviii

25–3 Start-time Identity Provider Configuration Properties .. 25-8
25–4 Runtime Identity Provider Configuration Properties .. 25-9
25–5 SPI Classes to Extend for Custom Provider ... 25-31
25–6 Methods of AbstractSimpleSearchFilter ... 25-46
25–7 Methods of Complex Search Filter .. 25-53
26–1 Classes in the Identity Directory API.. 26-2
28–1 Audit Attribute Data Types.. 28-3
28–2 Parameters for Audit Registration Service... 28-11
A–1 First- and Second-Level Elements in jps-config.xml.. A-2
A–2 Scenarios for <extendedProperty>... A-5
A–3 Scenarios for <property> ... A-15
B–1 Hierarchy of Elements in system-jazn-data.xml .. B-1
C–1 Oracle Directory Integration Platform Events ... C-2
C–2 Oracle Platform Security Services Events... C-6
C–3 Oracle HTTP Server Events .. C-8
C–4 Oracle Directory Integration Platform Events ... C-9
C–5 Oracle Identity Federation Events... C-11
C–6 Oracle Virtual Directory Events... C-17
C–7 OWSM-Agent Events .. C-19
C–8 OWSM-PM-EJB Events ... C-20
C–9 Reports Server Events ... C-21
C–10 WS-Policy Attachment Events ... C-21
C–11 Oracle Web Cache Events ... C-22
C–12 Oracle Web Services Manager Events... C-24
C–13 Attributes of Audited Events ... C-25
C–14 The Audit Schema.. C-31
C–15 Additional Audit Schema Tables... C-42
C–16 WLST Audit Commands ... C-44
D–1 User Attributes in UserProfile.Property .. D-1
D–2 Role Attribute Values in LDAP Directories ... D-4
D–3 Default Values - Oracle Internet Directory and Microsoft Active Directory D-4
D–4 Default Values - Oracle Directory Server Enterprise Edition and Novell eDirectory .. D-5
D–5 Default Values - OpenLDAP and Oracle Virtual Directory .. D-7
D–6 Default Values - Oracle WebLogic Server LDAP.. D-8
E–1 List of OPSS MBeans .. E-3
E–2 Mapping of Logical Roles to WebLogic Groups .. E-12
E–3 Roles Required per Operation... E-13
F–1 Java System Properties Used by OPSS... F-2
F–2 Policy Store Properties ... F-5
F–3 Runtime Policy Store Properties ... F-10
F–4 Credential Store Properties.. F-14
F–5 LDAP-Based Identity Store Properties .. F-16
F–6 Generic LDAP Properties... F-22
F–7 Anonymous and Authenticated Roles Properties.. F-23
F–8 Trust Service Properties ... F-24
F–9 Audit Service Properties ... F-25
F–10 Keystore Service Properties .. F-26
L–1 Log Files for Audit Diagnostics .. L-5

xxix

Preface

This manual explains the features and administration of the Oracle Platform Security
Services.

This preface is divided into the following sections:

■ Audience

■ Documentation Accessibility

■ Related Documentation

■ Conventions

Audience
The intended audience of this guide are experienced Java developers, administrators,
deployers, and application managers who want to understand and use Oracle
Platform Security Services.

The overall structure of the guide is divided into parts, each of which groups related
major topics. Parts I through III are relevant to administrators; parts IV contains
information about the OPSS policy model and is intended for developers; and part V
contains reference information.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documentation
Additional information is found in the following documents:

■ Oracle Fusion Middleware Administrator's Guide

■ Oracle Fusion Middleware 2 Day Administration Guide

xxx

■ Oracle Fusion Middleware Security and Administrator's Guide for Web Services

■ Oracle Fusion Middleware Administrator's Guide for Oracle Internet Directory

■ Oracle Fusion Middleware Integration Guide for Oracle Identity Management

■ Oracle Fusion Middleware Administrator's Guide for Oracle Identity Federation

■ Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework

■ Oracle Fusion Middleware Security Overview

■ Oracle Fusion Middleware Administrator's Guide for Oracle Entitlements Server

■ Oracle Fusion Middleware Third-Party Application Server Guide

■ For links to API documentation, see Section H.1, "OPSS API References."

For a comprehensive list of Oracle documentation or to search for a particular topic
within Oracle documentation libraries, see
http://www.oracle.com/technology/documentation/index.html.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action.

italic Italic type indicates book titles, emphasis, terms defined in text, or
placeholder variables for which you supply particular values.

monospace Monospace type within a paragraph indicates commands, URLs, Java
class names and method names, file and directory names, text that
appears on the screen, or text that you enter.

xxxi

What’s New in This Guide

This chapter describes the most important changes introduced in releases 11gR1,
11gR1 PS1, 11gR1 PS2, Oracle Identity Management 11gR1, 11gR1 PS3, Oracle Identity
Management 11gR1 PS1, and 11gR1 PS5.

New Features in Release 11gR1 PS5
The features introduced in release 11gR1 PS5 include the following:

■ Encrypting credentials. For details, see Section 10.2, "Encrypting Credentials."

■ Trusted Header Assertion with the Oracle Access Manager Identity Assertion
Provider. For details, see Chapter 15, "Introduction to Single Sign-On in Oracle
Fusion Middleware" and Chapter 16, "Configuring Single Sign-On with Oracle
Access Manager 11g".

■ Integrating application security with OPSS. For details, see Chapter 19,
"Integrating Application Security with OPSS."

■ Developing applications using the Audit Service. For details, see Chapter 28,
"Developing with the Audit Service".

■ Using the Identity Directory API in your applications. For details, see Chapter 26,
"Developing with the Identity Directory API".

■ Administering the Keystore Service. For details, see Chapter 11, "Managing Keys
and Certificates with the Keystore Service".

■ Developing applications using the Keystore Service. For details, see Chapter 27,
"Developing with the Keystore Service".

■ Upgrading to PS5 with upgradeOpss. For details, see Appendix G, "Upgrading
Security Data."

Documentation updates include the following:

■ Updates to the discussion of the Common Audit Framework. For details, see
Chapter 12, "Introduction to Oracle Fusion Middleware Audit Framework" and
Chapter 13, "Configuring and Managing Auditing".

■ Procedures to enable SSL for the Identity Store Service. See Section 7.5.

New Features in Oracle Identity Management 11gR1 PS1
The features introduced in Oracle Indentity Management 11gR1 PS1 include the
following:

xxxii

■ Oracle Entitlements Server, a tool that supersedes Oracle Authorization Policy
Manager. For details, see Oracle Fusion Middleware Administrator's Guide for Oracle
Entitlements Server.

■ The stand-alone audit loader.

New Features in Release 11gR1 PS3
The features introduced in release 11gR1 PS3 include the following:

■ Support for DB-based stores.

■ Support for the IBM WebSphere Application Server.

■ Support for identity virtualization, which allows querying multiple identity stores.

■ Support for security administrative scripts on IBM WebSphere Application Server.

■ The OPSS script upgradeOpss to upgrade security data from 11gR1 PS1 or 11gR1
PS2 to 11gR1 PS3.

■ Additional OPSS scripts.

■ Improved Fusion Middleware Control security pages.

■ Enhanced OAMCfgTool for OAM 10g SSO, with additional parameters.

■ User and Role API support for IBM Tivoli and Microsoft ADAM directories.

New Features in Oracle Identity Management 11gR1
The features introduced in Oracle Identity Management 11gR1 include the following:

■ Oracle Authorization Policy Manager, a tool to manage application security
artifacts. The set of available tools to administer application security is expanded
to Oracle WebLogic Administration Console, Oracle Enterprise Manager Fusion
Middleware Control, WLST commands, and Oracle Authorization Policy
Manager.

Additions to This Guide
New material in this guide includes:

■ An appendix that lists all security-related WLST commands.

New Features in Release 11gR1 PS2
The features introduced in release 11gR1 PS2 include the following:

■ The Resource Catalog, a way of specifying resource types, resources, actions, and
entitlements in an application policy grant. Starting with this release, OPSS
supports resource-based policies with the introduction of the resource catalog.

■ Instructions for developing custom User and Role providers.

■ Use of the class ResourcePermission in permissions.

■ New WLST commands to manage resource types.

■ The system property jps.deployment.handler.disabled of the Oracle
WebLogic Server has been introduced.

■ A new use of the command upgradeSecurityStore.

xxxiii

■ A new argument to the command migrateSecurityStore to control the
migration behavior upon encountering duplicate items. It applies only when
migrating application policies.

New Features in Release 11gR1 PS1
The features introduced in release 11gR1 PS1 include the following:

■ The class Resource Permission.

■ Principal name comparison has been enhanced.

■ Manual settings for policy migration have been simplified. In particular,
versioning the application is no longer required.

■ The WLST command migrateSecurityStore supports the embedded LDAP
store as a target.

■ The configuration of the identity store has been simplified. For example,
previously required properties such as username.attr and login.name.attr are no
longer needed when configuring an LDAP identity store.

■ The WLST command reassociateSecurityStore supports an existing LDAP
node as a target.

■ New and improved Oracle Fusion Middleware Control pages. In particular, using
these pages, one can specify the SSO service to use in a domain.

New Features in Release 11gR1
The single most important new feature in the 11gR1 release is the introduction of the
Oracle WebLogic Server as the environment where applications run and where
security is provisioned.

The features introduced in release 11gR1 include the following:

■ Support for application policies and roles, and the authenticated and anonymous
users and roles

■ Credential Store Framework

■ Auditing framework for Oracle Platform Security Services (OPSS) events for
credential and policy management, and authorization checks

■ Support for application lifecycle security integrated with JDeveloper

■ Enhanced authorization framework

■ Consolidation of code-based and subject-based policies in system-jazn-data.xml

■ Management of security with Oracle Fusion Middleware and WLST commands

■ New security-related WLST commands

Desupported Features from 10.1.3.x
The features de-supported in release 11gR1 include the following:

■ Jazn is replaced with OPSS.

■ Jazn Realm API is replaced by the User and Role API.

■ Migration of OSDT toolkit from proprietary objects to JCE is desupported.

xxxiv

■ The identity store, as previously configured in system-jazn-data.xml, is replaced
by the use of WebLogic authenticators.

■ The functions of Oracle Jazn Administration Tool are replaced as follows:

– User and Role CRUD operations are replaced by the use of the Embedded
LDAP configured and operated with the Oracle WebLogic Administration
Console

– The configuration of login modules is replaced with the use of the Oracle
WebLogic Administration Console to configure authenticators

■ JavaSSO is no longer supported. On a Oracle WebLogic Server domain, Single
Sign-On (SSO) is automatic within clusters only when session replication is turned
on.

Links to Upgrade Documentation
To upgrade from a previous release to the current, see any of the following
documents:

■ Oracle Fusion Middleware Upgrade Planning Guide

■ Oracle Fusion Middleware Upgrade Guide for Java EE

■ Oracle Fusion Middleware Upgrade Guide for Oracle SOA Suite, WebCenter, and ADF

■ Oracle Fusion Middleware Upgrade Guide for Oracle Portal, Forms, Reports, and
Discoverer

■ Oracle Fusion Middleware Upgrade Guide for Oracle Identity Management

Part I
Part I Understanding Security Concepts

This part contains the following chapters:

■ Chapter 1, "Introduction to Oracle Platform Security Services"

■ Chapter 2, "Understanding Users and Roles"

■ Chapter 3, "Understanding Identities, Policies, Credentials, Keys, and Certificates"

■ Chapter 4, "About Oracle Platform Security Services Scenarios"

1

Introduction to Oracle Platform Security Services 1-1

1Introduction to Oracle Platform Security
Services

Oracle Platform Security Services (OPSS) is a security platform that can be used to
secure applications deployed in any of the supported platforms or in standalone
applications. This chapter introduces the main features of this platform in the
following sections:

■ What is Oracle Platform Security Services?

■ OPSS Architecture Overview

■ Oracle ADF Security Overview

■ OPSS for Administrators

■ OPSS for Developers

The scope of this document does not include Oracle Web Services security. For details
about that topic, see Oracle Fusion Middleware Security and Administrator's Guide for Web
Services.

For an overview of Oracle Fusion Middleware security topics, see Oracle Fusion
Middleware Security Overview.

1.1 What is Oracle Platform Security Services?
OPSS provides enterprise product development teams, systems integrators, and
independent software vendors with a standards-based, portable, integrated,
enterprise-grade security framework for Java SE and Java EE applications.

OPSS is the underlying security platform that provides security to Oracle Fusion
Middleware including WebLogic Server, Server Oriented Architecture (SOA)
applications, Oracle WebCenter, Oracle Application Development Framework (ADF)
applications, and Oracle Entitlement Server. OPSS is designed to be portable to
third-party application servers, so developers can use OPSS as the single security
framework for both Oracle and third-party environments, thus decreasing application
development, administration, and maintenance costs.

OPSS provides an abstraction layer in the form of application programming interfaces
(APIs) that insulate developers from security and identity management
implementation details. With OPSS, developers do not need to know the details of, for
example, cryptographic key management, repository interfaces, or other identity
management infrastructures. Using OPSS, in-house developed applications,
third-party applications, and integrated applications benefit from the same, uniform
security, identity management, and audit services across the enterprise.

What is Oracle Platform Security Services?

1-2 Oracle Fusion Middleware Application Security Guide

For OPSS-related news, including FAQs, a whitepaper, and code examples, and forum
discussions, see http://www.oracle.com/technology/products/id_
mgmt/opss/index.html.

1.1.1 OPSS Main Features
OPSS complies with the following standards: role-based-access-control (RBAC); Java
Enterprise Edition (Java EE); and Java Authorization and Authentication Services
(JAAS).

Built upon these standards, OPSS provides an integrated security platform that
supports:

■ Authentication

■ Identity assertion

■ Authorization, based on fine-grained JAAS permissions

■ The specification and management of application policies

■ Secure storage and access of system credentials through the Credential Store
Framework

■ Secure storage and access of keys and certificates through the Keystore Service

■ Auditing

■ Role administration and role mappings

■ The User and Role API

■ Identity Virtualization

■ Security configuration and management

■ SAML and XACML

■ Oracle Security Developer Tools, including cryptography tools

■ Policy Management API

■ Java Authorization for Containers (JAAC)

Details about a given OPSS feature functionality are found in subsequent chapters of
this guide.

For details about the WebLogic Auditing Provider, see section Configuring the
WebLogic Auditing Provider in Oracle Fusion Middleware Securing Oracle WebLogic
Server.

1.1.2 Supported Server Platforms
OPSS is supported in the following application server platforms:

■ Oracle WebLogic Server

■ IBM WebSphere Application Server - Network Deployment (ND) 7.0

■ IBM WebSphere Application Server 7.0

This guide documents OPSS features relevant to the Oracle WebLogic Server that
apply uniformly to all other platforms. Those topics that apply specifically to
third-party servers are found in Oracle Fusion Middleware Third-Party Application Server
Guide.

OPSS Architecture Overview

Introduction to Oracle Platform Security Services 1-3

1.2 OPSS Architecture Overview
OPSS comprises the application server's security and Oracle's Fusion Middleware
security. Figure 1–1 illustrates the layered architecture that combines these two
security frameworks:

Figure 1–1 The OPSS Architecture

The top layer includes the OPSS security services; the next layer includes the service
providers, and the bottom layer includes the OPSS security store with a repository of
one of three kinds.

Security Services Providers
Security Services Provider Interface (SSPI) provides Java EE container security in
permission-based (JACC) mode and in resource-based (non-JACC) mode, and
resource-based authorization for the environment.

SSPI is a set of APIs for implementing pluggable security providers. A module
implementing any of these interfaces can be plugged into SSPI to provide a particular
type of security service, such as custom authentication or a particular role mapping.

For details, see section The Security Service Provider Interfaces (SSPIs) in Oracle Fusion
Middleware Understanding Security for Oracle WebLogic Server.

Oracle Platform Security Services
Java Authorization (JAZN) functionality includes the Credential Store Framework
(CSF), the Common Audit Framework (CAF), Keystore Service, and other
components, and combined with SSPI as Oracle Platform Security Services (OPSS).

1.2.1 Benefits of Using OPSS
The benefits that OPSS offers include the following:

■ Allows developers to focus on application and domain problems

■ Supports enterprise deployments

■ Supports several LDAP servers and SSO systems

■ Is certified on the Oracle WebLogic Server

■ Pre-integrates with Oracle products and technologies

Oracle ADF Security Overview

1-4 Oracle Fusion Middleware Application Security Guide

■ Offers a consistent security experience for developers and administrators

■ Provides a uniform set of APIs for all types of applications

■ Optimizes development time by offering abstraction layers (declarative APIs)

■ Provides a simplified application security maintenance

■ Allows changing security rules without affecting application code

■ Eases the administrator’s job

■ Integrates with identity management systems

■ Integrates with legacy and third-party security providers

OPSS combines SSPI and JPS to provide a framework where the application server and
Oracle applications can seamlessly run in a single environment.

OPSS supports security for Java EE applications and for Oracle Fusion Middleware
applications, such as Oracle WebCenter and Oracle SOA Suite.

Developers can use OPSS APIs to secure all types of applications and integrate them
with other security artifacts, such as LDAP servers, RDBMS, and custom security
components.

Administrators can use OPSS to deploy large enterprise applications with a small,
uniform set of tools and administer all security in them. OPSS simplifies the
maintenance of application security because it allows the modification of security
configuration without changing the application code.

By default and out-of-the-box, Oracle WebLogic Server stores users and groups in its
embedded LDAP repository. Domains can be configured, however, to use identity
data in other kinds of LDAP repositories, such as Oracle Internet Directory,
ActiveDirectory, Novell eDirectory, and OpenLDAP. In addition, Oracle WebLogic
Server provides a generic, default LDAP authenticator that can be used with other
LDAP servers not in the preceding list.

Out-of-the-box, policies and credentials are stored in file-based stores; these stores can
be moved (or reassociated) to an LDAP repository backed by an Oracle Internet
Directory.

Out-of-the-box, keys and certificates are stored in a file-based keystore, which can be
reassociated with a database or an LDAP repository.

1.3 Oracle ADF Security Overview
Oracle ADF is an end-to-end Java EE framework that simplifies development by
providing out-of-the-box infrastructure services and a visual and declarative
development experience.

Oracle ADF Security is based on the JAAS security model, and it uses OPSS. Oracle
ADF Security supports LDAP- or file-based policy and credential stores, uses
permission-based fine-grained authorization provided by OPSS, and simplifies the
configuration of application security with the aid of visual declarative editors and the
Oracle ADF Security wizard, all of them available in Oracle JDeveloper 11g (any
reference to this tool in this guide stands for its 11g release).

Note: This guide does not attempt to describe in detail WebLogic
security features; wherever specific information about SSPI is used or
assumed, the reader is referred to the appropriate document.

OPSS for Developers

Introduction to Oracle Platform Security Services 1-5

Oracle ADF Security authorization allows protecting components (flows and pages), is
integrated with Oracle JDeveloper at design time, and is available at run time when
the application is deployed to the integrated server where testing of security features
is typically carried out.

During the development of an Oracle ADF application, the authenticators are
configured with the Oracle WebLogic Server Administration Console for the particular
domain where the application is deployed, and the policy store is file-based and stored
in the file jazn-data.xml. For deployment details, see Section 6.3.1, "Deploying to a
Test Environment."

To summarize, Oracle ADF Security provides:

■ Control over granular declarative security

■ Visual and declarative development of security artifacts

■ Assignment of simplified permission through a role hierarchy

■ Use of EL (expression language) to access Oracle ADF resources

■ Integration with Oracle JDeveloper that allows quick development and test cycles

■ Rich Web user interfaces and simplified database access

For related information, see Scenario 2: Securing an Oracle ADF Application.

1.4 OPSS for Administrators
Depending on the application type, the guidelines to administer application security
with Oracle WebLogic Administration Console, OPSS scripts, Fusion Middleware
Control, or Oracle Entitlements Server are as follows:

■ For Java EE applications, security is managed with Oracle WebLogic
Administration Console, Oracle Entitlements Server, or OPSS scripts.

■ For Oracle SOA, Oracle WebCenter, MDS, and Oracle ADF applications,
authentication is managed with Oracle WebLogic Administration Console and
authorization is managed with Fusion Middleware Control and Oracle
Entitlements Server.

■ For Java EE applications integrating with OPSS, authentication is managed using
Oracle WebLogic Administration Console, and authorization is managed with
Fusion Middleware Control and Oracle Entitlements Server.

For details about security administration, see Chapter 5, "Security Administration."

1.5 OPSS for Developers
This section summarizes the main OPSS features typically used when securing
applications, in the following scenarios:

■ Scenario 1: Enhancing Security in a Java EE Application

■ Scenario 2: Securing an Oracle ADF Application

■ Scenario 3: Securing a Java SE Application

For other use cases, see Section 19.2, "Security Integration Use Cases."

OPSS for Developers

1-6 Oracle Fusion Middleware Application Security Guide

1.5.1 Scenario 1: Enhancing Security in a Java EE Application
A Java EE application can be enhanced to use OPSS APIs such as the CSF, User and
Role, or Policy Management: user attributes, such as a user's email, phone, or address,
can be retrieved using the Identity Governance Framework API or the User and Role
API; external system credentials (stored in a wallet or in a LDAP-based store) can be
retrieved using the CSF API; authorization policy data can be managed with the policy
management APIs; and application keys and certificates can be managed with
Keystore Service APIs.

Java EE applications, such as servlets, JSPs, and EJBs, deployed on Oracle WebLogic
Server can be configured to use authentication and authorization declaratively, with
specifications in the file web.xml, or programmatically, with calls to isUserInRole
and isCallerInRole.

Custom authenticators include the standard basic, form, and client certification
methods. Authentication between servlets and EJBs is controlled using user roles and
enterprise groups, typically stored in an LDAP repository, a database, or a custom
authenticators.

1.5.2 Scenario 2: Securing an Oracle ADF Application
Oracle Application Development Framework (ADF) is a Java EE development
framework available in Oracle JDeveloper that simplifies the development of Java EE
applications by minimizing the need to write code that implements the application’s
infrastructure, thus allowing developers to focus on the application features. Oracle
ADF provides these infrastructure implementations as part of the Oracle JDeveloper
framework, therefore enhancing the development experience with visual and
declarative approaches to Java EE development.

Oracle ADF implicitly uses OPSS, and, for most part, the developer does not have to
code directly to OPSS APIs; of course, the developer can nevertheless use direct calls
to OPSS APIs.

Oracle ADF leverages container authentication and subsequently uses JAAS based
authorization to control access to Oracle ADF resources. These authorization policies
may include application-specific roles and JAAS authorization permissions. Oracle
ADF connection credentials are stored securely in the credential store.

Oracle ADF and Oracle WebCenter applications deployed on Oracle WebLogic Server
include WebLogic authenticators, such as the default WebLogic authenticator, and
may include a single sign-on solution (Oracle Access Manager or Oracle Application
Server Single Sign-On).

Usually, applications also use one or several of the following OPSS features:
anonymous and authenticated role support, policy management APIs, and the
Credential Store Framework.

For details about these topics, see the following sections:

■ Section 2.3, "The Authenticated Role"

■ Section 2.4, "The Anonymous User and Role"

■ Section 3.2, "Policy Store Basics"

■ Section 3.3, "Credential Store Basics"

For details on how to develop and secure Oracle ADF applications, see chapter 29 in
Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

OPSS for Developers

Introduction to Oracle Platform Security Services 1-7

1.5.3 Scenario 3: Securing a Java SE Application
Most of the OPSS features that work in Java EE applications work in Java SE
applications, but there are some differences, which are noted in this section.

Configuration
All OPSS-related configuration and data files are located under configuration
directory in the domain home. For example, the configuration file for a Java SE
environment is defined in the file jps-config-jse.xml by default installed in the
following location:

$DOMAIN_HOME/config/fmwconfig/jps-config-jse.xml

To specify a different location, use the following switch:

-Doracle.security.jps.config=pathToConfigFile

The syntax of this file is identical to that of the file jps-config.xml. This file is used
by code running in WebLogic containers. For details, see Appendix A, "OPSS
Configuration File Reference."

For details about security configuration for Java SE applications, see Section 22.2,
"Authentication for Java SE Applications," and Section 23.1, "Configuring Policy and
Credential Stores in Java SE Applications."

Required JAR in Class Path
To make OPSS services available to a Java SE application, ensure that the following
JAR file is added to your class path, located in the modules area of the Oracle
installation home:

$ORACLE_HOME/oracle_common/modules/oracle.jps_11.1.1/jps-manifest.jar

Login Modules
Java SE applications can use standard JAAS login modules. However, to use the same
login module on WLS, implement a custom authentication provider that invokes the
login module. The SSPI interfaces allow integrating custom authentication providers
in WLS.

The login module recommended for Java SE applications is the IdentityStore login
module.

For details, see section Authentication Providers in Oracle Fusion Middleware Developing
Security Providers for Oracle WebLogic Server.

OPSS for Developers

1-8 Oracle Fusion Middleware Application Security Guide

2

Understanding Users and Roles 2-1

2Understanding Users and Roles

This chapter describes various characteristics of users and roles, such as the
anonymous role, the authenticated role, role mapping, and the role category. It also
includes the definition of terms used throughout this guide and an overview of the
User and Role API Framework.

OPSS delegates authentication to Oracle WebLogic Server authenticator providers
managed with the WebLogic Administration Console.

This chapter is divided into the following sections:

■ Terminology

■ Role Mapping

■ The Authenticated Role

■ The Anonymous User and Role

■ Administrative Users and Roles

■ Managing User Accounts

■ Principal Name Comparison Logic

■ The Role Category

For further details about managing users and roles programmatically, see Chapter 25,
"Developing with the User and Role API."

2.1 Terminology
This section definies most of the OPSS security terms.

Users
A user, or enterprise user, is an end-user accessing a service. User information is stored
in the identity store. An authenticated user is a user whose credentials have been
validated.

An anonymous user is a user whose credentials have not been validated (hence
unauthenticated) that is permitted access to only unprotected resources. This user is
specific to OPSS and its use can be enabled or disabled by an application. For details
about anonymous user support, see Section 2.4, "The Anonymous User and Role."

Roles
An enterprise role or enterprise group is a collection of users and other groups. It can be
hierarchical, that is, a group can include arbitrarily nested groups (other than itself).

Terminology

2-2 Oracle Fusion Middleware Application Security Guide

A Java EE logical role is a role specified declaratively or programmatically by a Java EE
application. It is defined in an application deployment descriptor and, typically, used
in the application code. It can be mapped to only enterprise groups or users, and it
cannot be mapped directly to application roles.

An application role is a collection of users, groups, and other application roles; it can be
hierarchical. Application roles are defined by application policies and not necessarily
known to a Java EE container. Application roles can be many-to-many mapped to
external roles. For example, the external group employee (stored in the identity store)
can be mapped to the application role helpdesk service request (in one stripe)
and to the application role self service HR (in another stripe).

For details about the anonymous role, see Section 2.4, "The Anonymous User and Role."
For details about the authenticated role, see Section 2.3, "The Authenticated Role."

Principal
A principal is the identity to which the authorization in the policy is granted. A
principal can be a user, an external role, or an application role. Most frequently, it is an
application role.

Application Policy
An application policy is a functional policy that specifies a set of permissions that an
entity (the grantee, a principal or code source) is allowed within an application, such
as viewing web pages or modifying reports. That is, it specifies who can do what in an
application.

An application policy uses:

■ Principals as grantees, and must have at least one principal.

■ Either one or more permissions, or an entitlement, but not both.

Policies that use an entitlement are called entitlement-based policies; policies that use
one or more permissions are called resource-based policies.

Figure 2–1 illustrates the application policy model.

Terminology

Understanding Users and Roles 2-3

Figure 2–1 Application Policy Logical Model

OPSS Subject
An OPSS subject is a collection of principals and, possibly, user credentials such as
passwords or cryptographic keys. The server authentication populates the subject with
users and groups, and then augments the subject with application roles. The OPSS
Subject is key in identity propagation using other Oracle Identity Management
products such as OAM, for example. For details about how anonymous data is
handled, see Section 2.4.1, "Anonymous Support and Subject."

Security Stores
The identity store is the repository of enterprise users and groups and must be
LDAP-based. Out-of-the-box the identity store is the WebLogic LDAP
DefaultAuthenticator. Other types of identity stores include Oracle Internet Directory,
Sun Directory Server, and Oracle Virtual Directory.

The policy store is the repository of application and system policies. This store is
administered with Oracle Enterprise Manager Fusion Middleware Control.

The credential store is the repository of credentials. This store is administered with
Oracle Enterprise Manager Fusion Middleware Control.

The OPSS security store is the logical repository of system and application-specific
policies, credentials, and keys. The only type of LDAP-based OPSS security store
supported is Oracle Internet Directory.

For details, see Chapter 3, "Understanding Identities, Policies, Credentials, Keys, and
Certificates."

Role Mapping

2-4 Oracle Fusion Middleware Application Security Guide

Other Terms
A system component is a manageable process that is not a WebLogic component.
Examples include Oracle Internet Directory, WebCache, and Java SE components.

A Java component is a peer of a system component, but managed by an application
server container. Generally it refers to a collection of applications and resources in
one-to-one relationship with a domain extension template. Examples include Oracle
SOA applications, Oracle WebCenter Spaces.

2.2 Role Mapping
OPSS supports many-to-many mapping of application roles in the policy store to
enterprise groups in the identity store, which allows users in enterprise groups to
access application resources as specified by application roles. Since this mapping is
many-to-many, it is alternatively referred to as the role-to-group mapping or as the
group-to-role mapping.

2.2.1 Permission Inheritance and the Role Hierarchy
OPSS roles can be structured hierarchically by the relation “is a member of.” Thus a
role can have as members users or other roles.

In a role hierarchy, role members inherit permissions from the parent role. Thus, if
roleA is a member of roleB, then all permissions granted to roleB are also permissions
granted to roleA. Of course, roleA may have its own particular permissions, but, just
by being a member of roleB, roleA inherits all the permissions granted to roleB.

For details about managing an application role hierarchy with OPSS scripts, see
Section 9.3.4, "grantAppRole," and Section 9.3.5, "revokeAppRole."

For details about managing an application role hierarchy with Oracle Entitlements
Server, see Oracle Fusion Middleware Administrator's Guide for Oracle Entitlements Server.

The following example illustrates a role hierarchy consisting of the following nested
application users and roles:

■ The role developerAppRole has the following members:

Notes: Oracle JDeveloper allows specifying this mapping when the
application is being developed in that environment. Alternatively, the
mapping can be also specified, after the application has been
deployed, using OPSS scripts, Fusion Middleware Control, or Oracle
Entitlements Server, as explained in Section 9.2.2, "Managing
Application Roles."

The mapping of an application role to an enterprise group rewrites the
privilege of the enterprise group as the union of its privileges and
those of the mapped application role. Therefore, it (possibly)
augments the privileges of the enterprise group but never removes
any from it.

Important: When building a role hierarchy, ensure that you do not
introduce circular dependencies to prevent unwanted behavior. For
example, setting roleA to be a member of roleB, and roleB to be a
member of roleA would create such a circular dependency.

Role Mapping

Understanding Users and Roles 2-5

developer
developer_group
managerAppRole
directorAppRole

■ In addition, the role directorAppRole has the following members:

developer
developer_group

Here is the relevant portions of the file jazn-data.xml specifying the above
hierarchy:

<policy-store>
 <applications>
 <application>
 <name>MyApp</name>
 <app-roles>
 <app-role>
 <name>developerAppRole</name>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <display-name>Application developer role</display-name>
 <description>Application developer role</description>
 <guid>61FD29C0D47E11DABF9BA765378CF9F5</guid>
 <members>
 <member>
 <class>weblogic.security.principal.WLSUserImpl</class>
 <name>developer</name>
 </member>
 <member>
 <class>weblogic.security.principal.WLSGroupImpl</class>
 <name>developer_group</name>
 </membe>
 <member>
 <class>
oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>managerAppRole</name>
 </member>
 </members>
 </app-role>
 <app-role>
 <name>directorAppRole</name>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <display-name>Application director role </display-name>
 <description>Application director role</description>
 <guid>61FD29C0D47E11DABF9BA765378CF9F8</guid>
 <members>
 <member>
 <class>weblogic.security.principal.WLSUserImpl</class>
 <name>developer</name>
 </member>
 <member>
 <class>weblogic.security.principal.WLSGroupImpl</class>
 <name>developer_group</name>
 </member>
 </members>
 </app-role> ...
 </app-roles>

 <jazn-policy>
 <grant>

Role Mapping

2-6 Oracle Fusion Middleware Application Security Guide

 <grantee>
 <principals>
 <principal>
 <class>
 oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>developerAppRole</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>java.io.FilePermission</class>
 <name>/tmp/oracle.txt</name>
 <actions>write</actions>
 </permission>
 </permissions>
 </grant>

 <grant>
 <grantee>
 <principals>
 <principal>
 <class>
 oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>managerAppRole</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>java.util.PropertyPermission</class>
 <name>myProperty</name>
 <actions>read</actions>
 </permission>
 </permissions>

 </grant>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>
oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>directorAppRole</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>foo.CustomPermission</class>
 <name>myProperty</name>
 <actions>*</actions>
 </permission>
 </permissions>
 </grant>
 </jazn-policy>
 </policy-store>

Table 2–1 summarizes the permissions that each of the five users and roles in the
above hierarchy gets according the inheritance rule:

The Anonymous User and Role

Understanding Users and Roles 2-7

2.3 The Authenticated Role
OPSS supports the use of a special role: the authenticated role. This role has the
following characteristics:

■ It need not be declared in any configuration file.

■ It is always represented by a principal attached to a subject after a successful
authentication. In another words: it is granted by default to any authenticated
user.

■ Its presence, within a subject, is mutually exclusive with the anonymous role, that
is, either (a) a subject has not gone through authentication, in which case it
contains a principal with the anonymous role as explained in Anonymous Support
and Subject or (b) the subject has gone through authentication successfully, in
which case it contains the authenticated role and, depending on the configuration,
the anonymous role.

■ It is an application role and, therefore, it can be used by any application and
participate in the application’s role hierarchy.

The permissions granted to the authenticated role need not be specified explicitly but
are implicitly derived from the enterprise groups and application roles of which it is a
member.

A typical use of the authenticated role is to allow authenticated users access to
common application resources, that is, to resources available to a user that has been
authenticated.

For details on how an application can manually configure the use of the authenticated
role, see Section 21.1, "Configuring the Servlet Filter and the EJB Interceptor."

2.4 The Anonymous User and Role
OPSS supports the use of two special entities: the anonymous user and the anonymous
role. Like the authenticated role, these entities need not be declared and applications
configure their use in the JpsFilter or JpsInterceptor. Any of them can be used by an
application in the application’s role hierarchy.

When enabled, before the user is authenticated and while the user is accessing
unprotected resources, the user is represented by a subject populated with just the
anonymous user and the anonymous role. Eventually, if that subject attempts access to
a protected resource, then authorization handles the subject as explained in
Anonymous Support and Subject.

The permissions granted to the anonymous user and role need not be specified
explicitly but are implicitly derived from the enterprise groups and application roles of
which they are a member.

Table 2–1 Granted and Inherited Permissions

Role Permission Granted Actual Permissions

developerAppRole P1=java.io.FilePermission P1

managerAppRole P2= java.util.PropertyPermission P2 and (inherited) P1

directorAppRole P3=foo.CustomPermission P3 and (inherited) P1

developer P1 and P3 (both inherited)

developer_group P1 and P3 (both inherited)

Administrative Users and Roles

2-8 Oracle Fusion Middleware Application Security Guide

A typical use of the anonymous user and role is to allow unauthenticated users to
access public, unprotected resources.

For details on how an application can manually configure the use of the anonymous
user and role, see Section 21.1, "Configuring the Servlet Filter and the EJB Interceptor."

2.4.1 Anonymous Support and Subject
Throughout this section, it is assumed that the use of the anonymous user and
anonymous role are enabled.

When an end-user first accesses an unprotected resource, the system creates a subject
and populates it with two principals corresponding with the anonymous user and the
anonymous role. While unprotected resources are involved, that subject is not
modified and authentication does not take place.

When a protected resource is accessed, then authentication kicks in, and the subject
(which thus far contained just the anonymous role) is modified according to the result
of the authentication process, as follows.

If authentication is successful, then:

1. The anonymous user is removed from the subject and replaced, as appropriate, by
an authenticated user.

2. The anonymous role is removed and the authenticated role is added.

3. Other roles are added to the subject, as appropriate.

Notice that a successful authentication results then in a subject that has exactly one
principal corresponding to a non-anonymous user, one principal corresponding to the
authenticated role, and possibly other principals corresponding to enterprise or
application roles.

If authentication is not successful, then the anonymous user is retained, the
anonymous role is removed or retained (according to how the application has
configured the JpsFilter or JpsInterceptor), and no other principals are added. By
default, the anonymous role is removed from the subject.

2.5 Administrative Users and Roles
A (WebLogic) administrator is any user member of the group Administrators, and any
user that exists in a security realm can be added to this group.

For details about the default groups that exist in a security realm, see section Users,
Groups, And Security Roles in Oracle Fusion Middleware Securing Resources Using Roles
and Policies for Oracle WebLogic Server.

Generally, there is no default name for an administrator, with just one exception: when
you install the examples, you get a default user name and password for the
administrator of the sample domain. It is recommended, however, that these examples
not be used in any production environment.

For details, see section Install WebLogic Server in a Secure Manner in Oracle Fusion
Middleware Securing a Production Environment for Oracle WebLogic Server.

Once a domain is configured, users that have been created in the security realm can be
added or removed from the Administrators group at anytime by any member of the
Administrators group. The two basic tools for managing these accounts are the Oracle
WebLogic Administration Console and the Oracle WebLogic Scripting Tool (WLST).

Principal Name Comparison Logic

Understanding Users and Roles 2-9

For details, see section Add Users to Groups in Oracle Fusion Middleware Oracle
WebLogic Server Administration Console Help, and section Using the WebLogic Scripting
Tool in Oracle Fusion Middleware Oracle WebLogic Scripting Tool.

2.6 Managing User Accounts
This section provides several links to information about creating user accounts and
protecting their passwords.

■ For general guidelines on creating passwords, see section Manage Users and
Groups in Oracle Fusion Middleware Oracle WebLogic Server Administration Console
Help. The default authentication provider requires a minimum password length of
8 characters, but this is configurable.

A few recommendations regarding password creation are explained in section
Securing the WebLogic Server Host in Oracle Fusion Middleware Securing a
Production Environment for Oracle WebLogic Server.

■ In general, passwords are stored in either an LDAP server or an RDBMS. The
particular location in which they are stored is determined by the specific
authentication provider that is configured in the environment (or more precisely,
the security realm of a domain). For details about out-of-the-box authentication
providers, see section Managing the Embedded LDAP Server in Oracle Fusion
Middleware Securing Oracle WebLogic Server.

■ For information about how to configure the optional Password Validation
provider, which is automatically called whenever you create a password and that
enforces a set of customizable password composition rules, see section
Configuring the Password Validation Provider in Oracle Fusion Middleware
Securing Oracle WebLogic Server.

■ When adding or deleting a user, consider the recommendations explained in
Section L.11, "User Gets Unexpected Permissions."

2.7 Principal Name Comparison Logic
This section explains how principal comparison affects OPSS authorization and
describes the system parameters that control the principal name comparison logic, in
the following sections:

■ How Does Principal Comparison Affect Authorization?

■ System Parameters Controlling Principal Name Comparison

2.7.1 How Does Principal Comparison Affect Authorization?
Upon a successful user authentication, the system populates a Subject with principals
whose names accord with the user and enterprise group names (of enterprise groups
the user is included in) stored in the identity store.

On the other hand, when the user (or enterprise group) needs to be authorized, the
system considers how application roles have been mapped to enterprise groups, and
builds another set of principals from names in application grants stored in the policy
store.

In order to authorized a principal, the principal names populated in the Subject (from
names found in the identity store) and those built from names in the policy store are
compared. The user (or group) is authorized if and only if a match of principal names
is found.

Principal Name Comparison Logic

2-10 Oracle Fusion Middleware Application Security Guide

It is therefore crucial that principal names be compared properly for the authorization
provider to work as expected.

Suppose, for instance, a scenario where the identity store contains the user name
"jdoe", but, in grants, that user is referred to as "Jdoe". Then one would want the
principal name comparison to be case insensitive, for otherwise the principals built
from the names "jdoe" and "Jdoe" will not match (that is, they will be considered
distinct) and the system will not authorize "jdoe" as expected.

2.7.2 System Parameters Controlling Principal Name Comparison
The following two WebLogic Server system parameters control the way principal
names are compared in a domain and allow, furthermore, to compare principals using
DN and GUID data:

PrincipalEqualsCaseInsensitive (True or False; False by default)
PrincipalEqualsCompareDnAndGuid (True or False; False by default)

To set these parameters using the WebLogic Server Console, proceed as follows:

1. In the left pane of the Console, under Domain Structure, select the domain for
which you intend to set the parameters above.

2. Select Configuration > Security and click Advanced.

3. Check (to set to true) or uncheck (to set to false) the box next to the following
entries:

■ Principal Equals Case Insensitive

■ Principal Equals Compare DN and GUID

4. Restart the server. Changes do not take effect until the server is restarted.

These parameters can alternatively be set using OPSS scripts. For more details about
configuring the WebLogic server, see section Configuring a Domain to Use JAAS
Authorization in Oracle Fusion Middleware Securing Oracle WebLogic Server.

The name comparison logic chosen at runtime is described by the following
pseudo-code fragment:

if PrincipalEqualsCompareDnAndGuid is true
//use GUID and DN to compare principals
{
 when GUID is present in both principals {
 use case insensitive to compare GUIDs
 }
 when DN is present in both principals {
 use case insensitive to compare DNs
 }
}

if PrincipalEqualsCaseInsensitive is true
//use just name to compare principals
{
 use case insensitive to compare principal names
}
else
{
 use case sensitive to compare principal names
}

The Role Category

Understanding Users and Roles 2-11

Since by default both PrincipalEqualsCompareDnAndGuid and
PrincipalEqualsCaseInsensitive are false, name principal comparison defaults
to case sensitive.

2.8 The Role Category
The role category allows a security administrator to organize application roles. Rather
than displaying the flat list of roles in an application, an administrator can organize
them arbitrarily in flat sets or categories.

For details about managing an application role category with Oracle Entitlements
Server, see Oracle Fusion Middleware Administrator's Guide for Oracle Entitlements Server.

The following fragment illustrates the configuration of a role category:

<role-categories>
<role-category>

 <name>RC_READONLY</name>
 <display-name>RC_READONLY display name</display-name>
 <description>RC_READONLY description</description>
 <members>
 <role-name-ref>AppRole1</role-name-ref>
 <role-name-ref>AppRole2</role-name-ref>
 <role-name-ref>AppRole3</role-name-ref>
 </members>
 </role-category>
</role-categories>

The role category name is case insensitive. The role category can be managed with the
interface RoleCategoryManager.

For details about this interface, see the Javadoc document Oracle Fusion Middleware Java
API Reference for Oracle Platform Security Services.

The Role Category

2-12 Oracle Fusion Middleware Application Security Guide

3

Understanding Identities, Policies, Credentials, Keys, and Certificates 3-1

3Understanding Identities, Policies,
Credentials, Keys, and Certificates

Applications use the identity, policy, credential stores and keystores configured in the
domain in which they run. This chapter introduces the basic concepts regarding
identity, policy, credential, and keystore data, and it is divided into the following
sections:

■ Authentication Basics

■ Policy Store Basics

■ Credential Store Basics

■ Keystore Service Basics

For definitions of the terms used in this chapter, see Section 2.1, "Terminology."

For scenarios illustrating the use of stores, see Chapter 4, "About Oracle Platform
Security Services Scenarios."

3.1 Authentication Basics
OPSS uses server authentication providers, components that validate user credentials
or system processes based on a user name-password combination or a digital
certificate. Authentication providers also make user identity information available to
other components in a domain (through subjects) when needed.

Java EE applications must use LDAP-based authentication providers; Java SE
applications use file-based identity stores out-of-the-box, but the identity store can be
configured to be LDAP-based.

For further details, see section Authentication in Oracle Fusion Middleware
Understanding Security for Oracle WebLogic Server.

This section covers the following topics:

■ Supported LDAP Identity Store Types

Note: OPSS does not support automatic migration of users and
groups used in application development to a remote WebLogic Server
where an application may be deployed. Instead, one must
independently create the necessary application identities using the
Oracle WebLogic Administration Console, OPSS scripts, or the
appropriate tool depending on the authentication provider(s)
configured in your domain.

Authentication Basics

3-2 Oracle Fusion Middleware Application Security Guide

■ Oracle WebLogic Authenticators

■ WebSphere Identity Stores

3.1.1 Supported LDAP Identity Store Types
The following list enumerates the LDAP repositories supported for an identity store:

■ Oracle Internet Directory 11g

■ Oracle Virtual Directory

■ Oracle Directory Server Enterprise Edition 11.1.1.3.0

■ Active Directory 2008

■ Novell eDirectory 8.8

■ OpenLDAP 2.2. For the special configuration required for this type, see
Appendix J, "Using an OpenLDAP Identity Store."

■ Tivoli Access Manager

■ Sun DS 6.3, 7.0

■ Oracle DB 10g, 11gR1, 11gR2

■ iPlanet Directory Server

■ Custom Authenticator

For information about Oracle Fusion Middleware Certification and Supported
Configurations, visit
http://www.oracle.com/technology/software/products/ias/files/fus
ion_certification.html.

In regards to support for reference integrity in Oracle Internet Directory servers, see
Important note Section 8.2, "Using an LDAP-Based OPSS Security Store."

3.1.2 Oracle WebLogic Authenticators
For a list of WebLogic authenticator providers, see chapter 4, Authentication Providers
in Oracle Fusion Middleware Developing Security Providers for Oracle WebLogic Server.

For details about the available authenticators, and choosing and configuring one, see
section Configuring Authentication Providers in Oracle Fusion Middleware Securing
Oracle WebLogic Server, and section Configure Authentication and Identity Assertion
providers in Oracle Fusion Middleware Oracle WebLogic Server Administration Console
Help.

By default and out-of-the-box, Oracle WebLogic Server stores users and groups in the
DefaultAuthenticator. This authenticator is setup to use cn as the default attribute.

The data stored in any LDAP authenticator can be accessed by the User and Role API
to query user profile attributes. For details about WebLogic LDAP authenticators, see
the following sections:

■ Using an LDAP Authenticator

■ Configuring the LDAP Identity Store Service

■ Additional Authentication Methods

Authentication Basics

Understanding Identities, Policies, Credentials, Keys, and Certificates 3-3

For details about X.509 identity assertion, see section How an LDAP X509 Identity
Assertion Provider Works in Oracle Fusion Middleware Securing Oracle WebLogic Server.

For details about authentication using the SAML 1.1 or SAML 2.0 identity assertion
provider, see section Configuring the SAML Authentication Provider in Oracle Fusion
Middleware Securing Oracle WebLogic Server.

3.1.2.1 Using an LDAP Authenticator
Oracle WebLogic Server offers several LDAP-based authenticators. For a choice of
available LDAP servers for the identity store, see Supported LDAP Identity Store
Types. The Weblogic DefaultAuthenticator is the default authenticator configured and
ready to use out-of-the-box after installation. Other authenticators can be configured
using the WebLogic Administration Console.

For details about the use of authenticators in Java SE applications, see Section 22.2.2,
"Configuring an LDAP Identity Store in Java SE Applications."

3.1.2.2 Configuring the LDAP Identity Store Service
Oracle WebLogic Server allows the configuration of multiple authenticators in a given
context, each of which has a control flag set. One of them must be an LDAP-based
authenticator.

OPSS initializes the identity store service with the LDAP authenticator chosen from
the list of configured LDAP authenticators according to the following algorithm:

1. Consider the subset of LDAP authenticators configured. Note that, since the
context is assumed to contain at least one LDAP authenticator, this subset is not
empty.

2. Within that subset, consider those that have set the maximum flag. The flag
ordering used to compute this subset is the following:

REQUIRED > REQUISITE > SUFFICIENT > OPTIONAL

Again, this subset (of LDAPs realizing the maximum flag) is not empty.

3. Within that subset, consider the first configured in the context.

The LDAP authenticator singled out in step 3 is the one chosen to initialize the identity
store service. For details about host name verification when establishing an SSL
connection with an LDAP authenticator, see Oracle Fusion Middleware Securing Oracle
WebLogic Server.

For details about the default values that OPPS uses to initialize the various supported
LDAP authenticators, see javadoc User and Role API documentation in Section H.1,
"OPSS API References." If a service instance initialization value is provided by default
and also (explicitly) in the service instance configuration, the value configured takes
precedence over the default one.

Important: If your domain uses the DefaultAuthenticator, then the
domain administration server must be running for an application to
query data using the User and Role API.

OPSS requires that a domain have at least one LDAP-based
authenticator configured in a domain.

Policy Store Basics

3-4 Oracle Fusion Middleware Application Security Guide

3.1.2.3 Additional Authentication Methods
The WebLogic Identity Assertion providers support certificate authentication using
X.509 certificates, SPNEGO tokens, SAML assertion tokens, and CORBA Common
Secure Interoperability version 2 (CSIv2) identity assertion.

The Negotiate Identity provider is used for SSO with Microsoft clients that support the
SPNEGO protocol. This provider decodes SPNEGO tokens to obtain Kerberos tokens,
validates the Kerberos tokens, and maps Kerberos tokens to WebLogic users.

For general information about identity assertion providers, see section Identity
Assertion Providers in Oracle Fusion Middleware Understanding Security for Oracle
WebLogic Server.

For an overview of SSO with Microsoft clients, see section Overview of Single Sign-On
with Microsoft Clients in Oracle Fusion Middleware Securing Oracle WebLogic Server.

For details about Kerberos identification, see section Creating a Kerberos Identification
for WebLogic Server in Oracle Fusion Middleware Securing Oracle WebLogic Server.

3.1.3 WebSphere Identity Stores
On WebSphere, OPSS supports LDAP-based registries only; in particular, it does not
support WebSphere’s built-in file-based user registry.

For details about configuration and seeding a registry, see Oracle Fusion Middleware
Third-Party Application Server Guide

3.2 Policy Store Basics
A Java 2 policy specifies the permissions granted to signed code loaded from a given
location.

A JAAS policy extends Java 2 grants by allowing an optional list of principals; the
semantics of the permissions are granted to only code from a given location, possibly
signed, and run by a user represented by those principals.

JACC extends the Java 2 and JAAS permission-based policy to EJBs and Servlets by
defining an interface to plug custom authorization providers, that is, pluggable
components that allow the control and customizing of authorizations granted to
running Java EE applications.

An application policy is a collection of Java 2 and JAAS policies, which is applicable to
just that application (in contrast to a Java 2 policy, which are applicable to the whole
JVM).

The policy store is a repository of system and application-specific policies and roles.
Application roles can include enterprise users and groups specific to the application
(such as administrative roles). A policy can use any of these groups or users as
principals.

In the case of applications that manage their own roles, Java EE application roles
(configured in files web.xml or ejb-jar.xml) get mapped to enterprise users and
groups and used by application-specific policies.

Important: Any LDAP-based authenticator used in a domain, other
than the DefaultAuthenticator, requires that the flag
UseRetrievedUserNameAsPrincipal be set. Out-of-the-box, this
flag is set in the DefaultAuthenticator.

Credential Store Basics

Understanding Identities, Policies, Credentials, Keys, and Certificates 3-5

Policy Store Types
A policy store can be file-, LDAP-, or DB-based. A file-based policy store is an XML
file, and this store is the out-of-the-box policy store provider. The only LDAP-based
policy store type supported is Oracle Internet Directory. The only DB-based policy
store type supported is Oracle RDBMS (releases 10.2.0.4 or later; releases 11.1.0.7 or
later; and releases 11.2.0.1 or later).

Policy Store Scope, Migration, and Reassociation
There is exactly one policy store per domain. During development, application policies
are file-based and specified in the file jazn-data.xml.

When the application is deployed on WebLogic with Fusion Middleware Control, they
can be automatically migrated into the policy store. For details about this feature, see
Section 8.6.1, "Migrating with Fusion Middleware Control." By default, the policy store
is file-based.

When the application is deployed on WebSphere, the behavior of migration at
deployment can be manually specified as described in Section 21.4.1, "Parameters
Controlling Policy Migration," and Section 21.4.4, "Parameters Controlling Credential
Migration."

For reassociation details, see Section 8.5, "Reassociating the OPSS Security Store."

For details about the resource catalog support within a policy store, see Section 20.3.1,
"The Resource Catalog."

3.3 Credential Store Basics
A credential store is a repository of security data (credentials) that certify the authority
of users, Java components, and system components. A credential can hold user name
and password combinations, tickets, or public key certificates. This data is used during
authentication, when principals are populated in subjects, and, further, during
authorization, when determining what actions the subject can perform.

OPSS provides the Credential Store Framework, a set of APIs that applications can use
to create, read, update, and manage credentials securely.

Credential Store Types
A credential store can be file-, LDAP-, or DB-based. A file-based credential store, also
referred to as wallet-based and represented by the file cwallet.sso, is the
out-of-the-box credential store. The only LDAP-based credential store type supported
is Oracle Internet Directory. The only DB-based credential store type supported is
Oracle RDBMS (releases 10.2.0.4 or later; releases 11.1.0.7 or later; and releases 11.2.0.1
or later).

Important: As long as a domain is pointing to a policy store, that
policy store cannot be deleted from the environment.

Note: All permission classes must be specified in the system class
path.

Keystore Service Basics

3-6 Oracle Fusion Middleware Application Security Guide

Credential Store Scope, Migration, and Reassociation
An application can use either the domain credential store or its own wallet-based
credential store. The domain credential store can be wallet-based (by default), LDAP-,
or DB-based. The only LDAP-based credential store type supported is Oracle Internet
Directory.

The migration of application credentials to the credential store can be configured to
take place automatically when the application is deployed. For details, see
Section 8.6.1, "Migrating with Fusion Middleware Control."

Credentials can also be reassociated from one type of store to another. For details, see
Section 8.5, "Reassociating the OPSS Security Store."

3.4 Keystore Service Basics
The Keystore Service provides a central repository for keystores and trust stores
containing all the keys and certificates used by a domain’s components and
applications. This eliminates the need to associate keystores with individual
applications.

The administrator works with a single user interface providing a unified way to view
and manage all keystores.

3.4.1 Keystore Repository Types
The central repository can be any of the following:

■ XML file-based

This is the out-of-the-box keystore repository, and it is named file-keystores.xml.

■ Oracle Database

■ LDAP directory

3.4.2 Keystore Repository Scope and Reassociation

Keys and certificates in the domain keystore repository can be reassociated from one
type to another. For details, see Section 8.5, "Reassociating the OPSS Security Store".

Note: This file is not present immediately after installation; rather, it
is generated later.

4

About Oracle Platform Security Services Scenarios 4-1

4About Oracle Platform Security Services
Scenarios

This chapter describes some typical security scenarios supported by Oracle Platform
Security Services. It also includes the list of LDAP, DB, and XML servers supported,
the management tools that an administrator would use to administer security data in
each scenario, and the package requirements for policies and credentials.

These topics are explained in the following sections:

■ Supported LDAP-, DB-, and File-Based Services

■ Management Tools

■ Packaging Requirements

■ Example Scenarios

■ Other Scenarios

4.1 Supported LDAP-, DB-, and File-Based Services
Oracle Platform Security Services supports the following LDAP-, DB-, and file-based
repositories:

■ For the OPSS security store:

– If file-based, XML for the policy store and cwallet for the credential store.

– If LDAP-based, Oracle Internet Directory (versions 10.1.4.3 or 11g) for the
policy store and credential store.

– If DB-based, Oracle RDBMS (releases 10.2.0.4 or later; releases 11.1.0.7 or later;
and releases 11.2.0.1 or later).

■ For the identity store, any of the LDAP authenticators supported by the Oracle
WebLogic Server. An XML identity store is supported in only Java SE applications.

■ For keystores:

– XML file

– LDAP (Oracle Internet Directory)

– RDBMS (Oracle Database)

Management Tools

4-2 Oracle Fusion Middleware Application Security Guide

For details about LDAP authenticators, see section Configuring LDAP Authentication
Providers in Oracle Fusion Middleware Securing Oracle WebLogic Server. In particular, the
DefaultAuthenticator is available out-of-the-box, but its use is recommended only in
developing environments for no more than ten thousand entries, for users, and for no
more than twenty five hundred entries, for groups.

Policies, credentials, and keys stored in an LDAP-based store must use the same
physical persistent repository. For details, see the following chapters:

■ Chapter 9, "Managing the Policy Store"

■ Chapter 10, "Managing the Credential Store"

■ Chapter 11, "Managing Keys and Certificates with the Keystore Service"

The Oracle WebLogic Server requires that a domain DB-based OPSS security store be
up and running for the server to start.

4.2 Management Tools
The tools available to a security administrator are the following:

■ WebLogic Administration Console

■ Oracle Enterprise Manager Fusion Middleware Control

■ Oracle Entitlements Server

■ OPSS scripts (available on all supported platforms)

■ LDAP server-specific utilities

The tool to manage security data depends on the type of data stored and the kind of
store used to keep that data. For applications deployed on WebSphere Application
Server, there is also the WebSphere Application Server Administration Console; for
details, see WebSphere Application Server documentation. Note that OPSS scripts are
available for both platforms: WebLogic and WebSphere.

Users and Groups
If a domain uses the DefaultAuthenticator to store identities, then use the Oracle
WebLogic Server Administration Console to manage the stored data. The data stored
in the DefaultAuthenticator can also be accessed by the User and Role API to query

Important: If using Oracle Internet Directory 10.1.4.3 with OPSS, a
mandatory one-off patch for bug number 8351672 is recommended on
top of Oracle Internet Directory 10.1.4.3. Download the patch for your
platform from Oracle Support at
http://myoraclesupport.oracle.com.

To ensure optimal performance, the following Oracle Internet
Directory tuning is recommended:

ldapmodify -D cn=orcladmin -w <password> -v <<EOF
dn: cn=dsaconfig,cn=configsets,cn=oracle internet directory
changetype: modify
add: orclinmemfiltprocess
orclinmemfiltprocess: (objectclass=orcljaznpermission)
orclinmemfiltprocess: (objectclass=orcljazngrantee)
EOF

Management Tools

About Oracle Platform Security Services Scenarios 4-3

user profile attributes. To insert additional attributes to users or groups in the
DefaultAuthenticator, an applications also uses the User and Role API.

For details about configuring this authenticator, see Section 3.1.2.1, "Using an LDAP
Authenticator."

Otherwise, if authentication uses any other LDAP server different from the default
authenticator or a DB, then, to manage users and groups, use the services of that
LDAP server.

Policies, Credentials, Keys, and Certificates
Policies, keys, and credentials must use the same kind of storage (file-, LDAP-, or
DB-based), and if LDAP-based, the same LDAP server (Oracle Internet Directory
only).

To manage policies and credentials use Fusion Middleware Control as explained in
Section 9.2, "Managing Policies with Fusion Middleware Control" and Section 10.4,
"Managing Credentials with Fusion Middleware Control," or the OPSS scripts, as
explained in Section 9.3, "Managing Application Policies with OPSS Scripts" and
Section 10.5, "Managing Credentials with OPSS Scripts."

Alternatively, to manage policy data, use Oracle Entitlements Server as explained in
Oracle Fusion Middleware Administrator's Guide for Oracle Entitlements Server.

Keys and certificates are managed with Fusion Middleware Control and WLST. For
details, see Chapter 11, "Managing Keys and Certificates with the Keystore Service".

The following list summarizes the tools used to manage security data:

■ Identity data

– Default Authenticator: use Administration Console

– Other LDAP or DB stores: use utilities provided by the LDAP server or DB

■ Policy and Credential data

– File-based: use Fusion Middleware Control or WLST

– LDAP-based: use Fusion Middleware Control, WLST, or Oracle Entitlements
Server to manage policies.

■ Keys and Certificates

– Use WLST

Changes to policies, credentials, or keys do not require server restart; changes to the
file jps-config.xml do require server restart.

Important: If your domain uses the DefaultAuthenticator, then the
domain administration server must be running for an application to
operate on identity data using the User and Role API.

Note: In general, domain configuration changes require the server to
be restarted; however, changes to the domain data do not require the
server to be restarted. An example of a domain configuration change
is the reassociation of domain stores.

Packaging Requirements

4-4 Oracle Fusion Middleware Application Security Guide

For details about the automatic migration of application policies and credentials to the
domain stores when the application is deployed, see Section 8.6, "Migrating the OPSS
Security Store."

For details about managing tools on WebSphere Application Server, see Oracle Fusion
Middleware Third-Party Application Server Guide.

4.3 Packaging Requirements
File-based application policies are defined in the file jazn-data.xml. The only
supported way to package this file with an application is to place it in the directory
META-INF of an EAR file.

File-based application credentials are defined in a file that must be named
cwallet.sso. The only supported way to package this file with an application is to
place it in the directory META-INF of an EAR file. For details, see Section 21.3,
"Packaging a Java EE Application Manually."

For information about deployment on WebLogic, see Chapter 6, "Deploying Secure
Applications."

On WebSphere, the behavior at deployment is controlled by properties specified in the
file META-INF/opss-application.xml. For details about policy migration, see
Oracle Fusion Middleware Third-Party Application Server Guide. For details about
credential migration, see Oracle Fusion Middleware Third-Party Application Server Guide.

4.4 Example Scenarios
The scenarios explained in this section describe the security features adopted by most
Oracle ADF applications, Oracle WebCenter, and Web Services Manager Control.

They assume that the application employs a security scheme that has the following
characteristics:

■ Authentication: it uses the WebLogic Default Authenticator to store users and
groups.

■ Authorization: it uses fine-grained JAAS authorization supported by file-based
policies and credentials packaged with the application and by policy and
credential stores (file- or LDAP-based).

One of these security schemes is typically employed by applications, such as Oracle
ADF or Oracle SOA applications, that require fine-grained JAAS authorization. The
various security components in these cases are managed with the appropriate tool.

Based on these assumptions, the following scenarios are typical variations on the basic
theme; note, however, that the list of variations is not exhaustive.

Related Documentation
For details about configuring the Default Authenticator, see section Configure
Authentication and Identity Assertion Providers in Oracle Fusion Middleware Oracle
WebLogic Server Administration Console Help.

Note: Oracle JDeveloper automatically packages the EAR file for a
secured Oracle ADF application with all the required files (and with
the appropriate security configurations), when the EAR file is
produced within that environment.

Example Scenarios

About Oracle Platform Security Services Scenarios 4-5

For details about configuring the OPSS security store, see Chapter 8, "Configuring the
OPSS Security Store."

For details about managing policies, see Chapter 9, "Managing the Policy Store."

For details about managing credentials, see Chapter 10, "Managing the Credential
Store."

For details about managing Oracle Fusion Middleware on WebSphere Application
Server, see Oracle Fusion Middleware Third-Party Application Server Guide.

For details about managing the Keystore Service, see the chapter on keystore
management.

Common Scenario 1
This scenario describes a Java EE application during development.

Authentication: The application uses the Default Authenticator, typical in
development environments.

Authorization: The policy and credential stores are file-based.

Variation: The application uses the WebLogic support for SSO and Java EE security.

For details about WebLogic support for SSO, see section Configuring Single Sign-On
with Web Browsers and HTTP Clients in Oracle Fusion Middleware Securing Oracle
WebLogic Server.

Common Scenario 2
This scenario describes a Java EE application during development.

Authentication: The application uses the Default Authenticator, typical in
development environments.

Authorization: The policy and credential stores are LDAP-based using the services of
the same instance of an Oracle Internet Directory LDAP server.

Variation: JAAS is enabled and policies include permissions for the anonymous and
the authenticated roles.

For details about configuring support for the anonymous and authenticated roles, see
Section 2.3, "The Authenticated Role," and Section 2.4, "The Anonymous User and
Role."

Common Scenario 3
This scenario describes a Java EE application during development.

Authentication: The application uses the Default Authenticator, typical in
development environments.

Authorization: The policy and credential stores are LDAP-based using the services of
the same instance of an Oracle Internet Directory LDAP server.

Variation: The application uses Java EE security, JAAS is enabled, and policies include
permissions for the anonymous and the authenticated role. It also uses the Credential
Store Framework (CSF) APIs to query, retrieve, and manage policies.

Other Scenarios

4-6 Oracle Fusion Middleware Application Security Guide

For details about configuring support for the anonymous and authenticated roles, see
Section 2.3, "The Authenticated Role," and Section 2.4, "The Anonymous User and
Role."

For details about CSF APIs, see Section 24.1, "About the Credential Store Framework
API."

4.5 Other Scenarios
The following scenarios differ from the common scenarios in that the application uses
an authenticator other than the DefaultAuthenticator (typically used in the application
development phase) or some API to access security data.

Scenario 4
Authentication: The application uses an LDAP authenticator (other than the
DefaultAuthenticator).

Authorization: Both, the policy and credential use the same Oracle Internet Directory
LDAP-based store.

Variation: The application uses the User and Role API to access user profiles in the DB
and the Credential Store Framework (CSF) APIs to access credentials.

For details about User and Role API, see Chapter 25, "Developing with the User and
Role API."

For details about CSF APIs, see Section 24.1, "About the Credential Store Framework
API."

Scenario 5
Authentication: The application uses the Oracle Internet Directory LDAP
authenticator, typical in test and production environments.

Authorization: The policy and credential stores are file-based and packaged with the
application. These data is automatically mapped to domain security data at
deployment.

Variation: Post-deployment, the policy and credential stores are reassociated to an
LDAP-based store configured through one-way SSL transmission channel.

For details about automatic migration of application security data at deployment, see
Section 8.6, "Migrating the OPSS Security Store."

For details about reassociation, see Section 8.5, "Reassociating the OPSS Security
Store."

For details about SSL configuration and related topics, see the following:

■ Section Configuring SSL in Oracle Fusion Middleware Securing Oracle WebLogic
Server.

■ Oracle Fusion Middleware Administrator's Guide.

■ Section Set up SSL in Oracle Fusion Middleware Oracle WebLogic Server
Administration Console Help.

■ Section Using SSL Authentication in Java Clients in Oracle Fusion Middleware
Programming Security for Oracle WebLogic Server.

Scenario 6
This scenario describes a Java SE application using OPPS APIs.

Other Scenarios

About Oracle Platform Security Services Scenarios 4-7

Authentication: The application uses the LoginService API.

Authorization: The application uses the method CheckPermission.

In addition, the application uses the User and Role API to query attributes into the
domain authenticator, and the Credential Store Framework API to query the
credential store.

Other Scenarios

4-8 Oracle Fusion Middleware Application Security Guide

Part II
Part II Basic OPSS Administration

This part describes basic OPSS administration features in the following chapters:

■ Chapter 5, "Security Administration"

■ Chapter 6, "Deploying Secure Applications"

5

Security Administration 5-1

5Security Administration

This chapter introduces the tools available to an administrator and the typical tasks to
manage application security; it is divided into the following sections:

■ Choosing the Administration Tool According to Technology

■ Basic Security Administration Tasks

■ Typical Security Practices with Fusion Middleware Control

■ Typical Security Practices with the Administration Console

■ Typical Security Practices with Oracle Entitlements Server

■ Typical Security Practices with OPSS Scripts

For advanced administrator tasks, see Appendix E, "Administration with WLST
Scripting and MBean Programming."

5.1 Choosing the Administration Tool According to Technology
The four basic tools available to a security administrator are Oracle Enterprise
Manager Fusion Middleware Control, Oracle WebLogic Administration Console,
Oracle Entitlements Server, and the Oracle WebLogic Scripting Tool (WLST). For
further details on these and other tools, see chapter 3, Getting Started Managing
Oracle Fusion Middleware in Oracle Fusion Middleware Administrator's Guide.

The main criterion that determines the tool to use to administer application security is
whether the application uses just container-managed security (Java EE application) or
it includes Oracle ADF security (Oracle ADF application).

Oracle-specific applications, such as Oracle Application Development Framework
(Oracle ADF) applications, Oracle Server-Oriented Architecture (SOA) applications,
and Web Center applications, are deployed, secured, and maintained with Fusion
Middleware Control and Oracle Entitlements Server.

Other applications, such as those developed by third parties, Java SE, and Java EE
applications, are typically deployed, secured, and administered with Oracle WebLogic
Administration Console or with WLST.

The recommended tool to develop Java applications is Oracle JDeveloper 11g. This
tool helps the developer configure file-based identity, policy, and credential stores
through specialized graphical editors. In particular, when developing Oracle ADF
applications, the developer can run a wizard to configure security for web pages
associated with Oracle ADF resources (such as Oracle ADF task flows and page
definitions), and define security artifacts using a specialized, visual editor for the file
jazn-data.xml.

Basic Security Administration Tasks

5-2 Oracle Fusion Middleware Application Security Guide

For details about procedures and related topics, see the following sections in the
Oracle JDeveloper online help documentation:

■ Securing a Web Application Using Oracle ADF Security

■ Securing a Web Application Using Java EE Security

■ About Oracle ADF Security as an Alternative to Security Constraints

■ About Securing Web Applications

For further details about Oracle ADF Security and its integration with Oracle
JDeveloper, see Accessing the Oracle ADF Security Design Time Tools, in Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

For further details about Oracle Entitlements Server, see Oracle Fusion Middleware
Administrator's Guide for Oracle Entitlements Server.

5.2 Basic Security Administration Tasks
Table 5–1 lists some basic security tasks and the tools used to execute them. Recall that
the tool chosen to configure and manage application security depends on the type of
the application: for Java EE applications, which use just container-managed security,
use the Oracle WebLogic Administration Console; for Oracle ADF applications, which
use OPSS authorization, use Fusion Middleware Control and Oracle Entitlements
Server.

Manual settings without the aid of the tools listed below are not recommended. For
information about using the Oracle WebLogic Administration Console, see the list of
links following the table below. For details about Oracle Entitlements Server, see
Oracle Fusion Middleware Administrator's Guide for Oracle Entitlements Server.

Table 5–1 Basic Administrative Security Tasks and Tools

Task
Use Fusion Middleware
Control Security Menu Use Other Tool

Configure WebLogic Domains WebLogic Admin Console

Configure WebLogic Security
Realms

WebLogic Admin Console

Manage WebLogic Domain
Authenticators

WebLogic Admin Console

Enable SSO for MS clients, Web
Browsers, and HTTP clients.

WebLogic Admin Console

Manage Domain Administrative
Accounts

WebLogic Admin Console

Configuring the identity store
service

WebLogic Admin Console or
the WebSphere command
configureIdentityStore

Manage Credentials for Oracle
ADF Application

Credentials

Enable anonymous role in Oracle
ADF Application

Security Provider
Configuration

Enable authenticated role in
Oracle ADF Application

Security Provider
Configuration

Basic Security Administration Tasks

Security Administration 5-3

Details about using the Oracle WebLogic Administration Console for the tasks above
are found in the following documents:

■ For general use of the Administration Console, see Oracle Fusion Middleware
Oracle WebLogic Server Administration Console Help.

■ To configure WebLogic domains, see Oracle Fusion Middleware Understanding
Domain Configuration for Oracle WebLogic Server.

■ To configure WebLogic security realms, see section Creating and Configuring a
New Security Realm: Main Steps in Oracle Fusion Middleware Securing Oracle
WebLogic Server.

■ To manage WebLogic domain authenticators, see chapter 5 in Oracle Fusion
Middleware Securing Oracle WebLogic Server.

■ To configure SSO with MS clients, see chapter 6 in Oracle Fusion Middleware
Securing Oracle WebLogic Server.

■ To manage domain administrative accounts, see chapter 6 in Oracle Fusion
Middleware Securing Resources Using Roles and Policies for Oracle WebLogic Server.

■ For details about configuring an LDAP identity store, see Section 3.1.2, "Oracle
WebLogic Authenticators," and Section 3.1.3, "WebSphere Identity Stores."

5.2.1 Setting Up a Brand New Production Environment
A new production environment based on an existing environment can be set up in
either of the following ways:

■ Replicating an established environment using Oracle Cloning utilities. For details,
see section 9.5, Cloning Oracle Fusion Middleware Entities, in Oracle Fusion
Middleware Administrator's Guide.

Enable JAAS in Oracle ADF
Application

Security Provider
Configuration

Map application to enterprise
groups for Oracle ADF
Application

Application Roles or
Application Policies

Oracle Entitlements Server

Manage system-wide policies for
Oracle ADF Applications

System Policies

Configure OPSS Properties Security Provider
Configuration

Reassociate Policy and Credential
Stores

Security Provider
Configuration

Note: OPSS does not support automatic backup or recovery of server
files. It is recommended that the server administrator periodically
back up all server configuration files, as appropriate.

For details about backing up and recovering Oracle Fusion
Middleware, see chapter 15, Introducing Backup and Recovery, in
Oracle Fusion Middleware Administrator's Guide.

Table 5–1 (Cont.) Basic Administrative Security Tasks and Tools

Task
Use Fusion Middleware
Control Security Menu Use Other Tool

Typical Security Practices with Fusion Middleware Control

5-4 Oracle Fusion Middleware Application Security Guide

■ Reinstalling software and configuring the environment, as it was done to set up
the established environment.

5.3 Typical Security Practices with Fusion Middleware Control
Fusion Middleware Control is a Web-based tool that allows the administration of a
network of applications from a single point. Fusion Middleware Control is used to
deploy, configure, monitor, diagnose, and audit Oracle SOA applications, Oracle ADF
applications, Oracle WebCenter, and other Oracle applications using OPSS. Note that
this section mentions only security-related operations.

In regards to security, it provides several administration tasks; using this tool, an
administrator can:

■ Post-installation and before deploying applications, reassociate the policy and
credential stores; for details, see Section 8.5.1, "Reassociating with Fusion
Middleware Control."

■ Post-installation and before deploying applications, define OPSS properties. For
details, see Section 8.7, "Configuring the Identity Provider, Property Sets, and
SSO."

■ At deploy time, configure the automatic migration of file-based application
policies and credentials to LDAP-based domain policies and credentials.

For details see:

– Section 6.3, "Deploying Oracle ADF Applications to a Test Environment."

– Section 8.6, "Migrating the OPSS Security Store."

■ For each application after it is deployed:

– Manage application policies. For details, see Section 9.1, "Managing the Policy
Store."

– Manage credentials; for details, see Section 10.3, "Managing the Credential
Store."

– Specify the mapping from application roles to users, groups, and application
roles. For details, see Section 9.2.2, "Managing Application Roles."

■ For the domain, manage system policies; for details see Section 9.2.3, "Managing
System Policies."

■ For the domain, manage OPSS properties; for details see Section 8.7, "Configuring
the Identity Provider, Property Sets, and SSO."

For a summary of security administrative tasks and the tools used to execute them, see
Basic Security Administration Tasks.

For further details about other functions, see the Fusion Middleware Control online
help documentation.

For details about managing Oracle Fusion Middleware on WebSphere Application
Server, see Oracle Fusion Middleware Third-Party Application Server Guide.

5.4 Typical Security Practices with the Administration Console
The Oracle WebLogic Administration Console is a Web-based tool that allows, among
other functions, application deployment and redeployment, domain configuration,
and monitoring of application status. Note that this section mentions only
security-related operations.

Typical Security Practices with OPSS Scripts

Security Administration 5-5

Typical tasks performed with the Oracle WebLogic Administration Console include
the following:

■ Starting and stopping Oracle WebLogic Servers; for details see section Starting and
Stopping Servers in Oracle Fusion Middleware Managing Server Startup and Shutdown
for Oracle WebLogic Server.

■ Configuring Oracle WebLogic Servers and Domains; for details see section
Configuring Existing Domains in Oracle Fusion Middleware Oracle WebLogic
Scripting Tool.

■ Deploying applications; for details, see Oracle Fusion Middleware Deploying
Applications to Oracle WebLogic Server.

■ Configuring fail over support; for details see section Failover and Replication in a
Cluster in Oracle Fusion Middleware Using Clusters for Oracle WebLogic Server.

■ Configuring WebLogic domains and WebLogic realms.

■ Managing users and groups in domain authenticators.

■ Enabling the use of Single Sign-On for MS clients, Web browsers, and HTTP
clients.

■ Managing administrative users and administrative policies.

For details about Oracle WebLogic Administration Console, see Oracle Fusion
Middleware Oracle WebLogic Server Administration Console Help.

5.5 Typical Security Practices with Oracle Entitlements Server
Typical security tasks performed with Oracle Entitlements Server include the
following:

■ Searching application security artifacts.

■ Managing application security artifacts, including policies.

■ Viewing the external role hierarchy.

■ Managing the application role hierarchy.

For a list of some of the most frequent security tasks to administer application security
with Oracle Entitlements Server, see Oracle Fusion Middleware Administrator's Guide for
Oracle Entitlements Server.

5.6 Typical Security Practices with OPSS Scripts
Most of the operations available in the Oracle WebLogic Administration Console can
be effected with OPSS scripts, a set of command-line interface that allows the scripting
and automation of administration tasks, including domain configuration and
application deployment.

For the list of security-related OPSS scripts, see Appendix I, "OPSS Scripts." For the
complete list of WLST scripts, see Oracle Fusion Middleware WebLogic Scripting Tool
Command Reference.

For details about managing Oracle Fusion Middleware on WebSphere Application
Server, see Oracle Fusion Middleware Third-Party Application Server Guide.

Typical Security Practices with OPSS Scripts

5-6 Oracle Fusion Middleware Application Security Guide

6

Deploying Secure Applications 6-1

6Deploying Secure Applications

An application can be deployed to an Oracle WebLogic Server using any of the
following tools: the Oracle WebLogic Server Administration Console, Oracle
Enterprise Manager Fusion Middleware Control, Oracle JDeveloper, or the WebSphere
Application Server console. An application can also be started by setting the its bits in
a location known to the WebLogic server, without the need to restart the server; this
kind of application start is known as hot deployment.

The recommended way to deploy an application depends on the platform, the
application type, and whether the application is in the developing phase or in a
post-development phase. For example, in the post-development phase, typically, the
appliction is started in a production environment by means of a hot deployment.

The recommendations stated in this chapter apply to Oracle ADF applications and to
Java EE applications using OPSS.

During development, the application is typically deployed with Oracle JDeveloper to
the embedded Oracle WebLogic Server. Once the application transitions to test or
production environments, it is typically deployed with Fusion Middleware Control or
the Oracle WebLogic Server Administration Console or by a hot deployment.

This chapter focuses on administrative tasks performed at deployment of an Oracle
ADF or pure Java EE application. The last section explains the packaging requirements
to secure Java EE applications, a topic relevant only when the application is packaged
manually.

This chapter is divided into the following sections:

■ Overview

■ Selecting the Tool for Deployment

■ Deploying Oracle ADF Applications to a Test Environment

■ Deploying Standard Java EE Applications

■ Migrating from a Test to a Production Environment

Additional Documentation
For further details about deployment, see Chapter 8, Deploying Applications, in Oracle
Fusion Middleware Administrator's Guide.

For an overview of the entire security life-cycle of an application, from development to
production, see Oracle Fusion Middleware Security Overview.

For details about securing an Oracle ADF application during development, see Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

Overview

6-2 Oracle Fusion Middleware Application Security Guide

For details about the application life cycle, see Section 19.4, "Appendix - Security Life
Cycle of an ADF Application."

For details about the files in an EAR file relevant to application security management
and configuration, such as web.xml and weblogic-application.xml, see
Chapter 21, "Manually Configuring Java EE Applications to Use OPSS."

6.1 Overview
The steps that lead to the deployment of an Oracle ADF application into a remote
Oracle WebLogic Server are, typically, as follows:

■ Using Oracle JDeveloper, a developer develops an Oracle ADF application into
which Oracle ADF security is included with the Oracle ADF Security Wizard.

■ Application users and groups, authorization policies, and credentials are copied
by Oracle JDeveloper to the integrated WebLogic Server, into which the
application is auto-deployed during the test cycles in that environment.

■ The developer creates an application EAR file which packs policies and
credentials.

■ The domain administrator deploys the EAR file to a remote Oracle WebLogic
Server using Fusion Middleware Control.

This flow is illustrated in the following graphic:

6.2 Selecting the Tool for Deployment
The types of application we consider in this chapter are Java EE applications, which
are further categorized into pure Java EE applications and Oracle Fusion Middleware
ADF applications. The distinction of these two kinds of Java EE applications is
explained in sections Section 1.5.1, "Scenario 1: Enhancing Security in a Java EE
Application," and Section 1.5.2, "Scenario 2: Securing an Oracle ADF Application."

Table 6–1 lists the tool used to deploy a developed application according to its type.

Selecting the Tool for Deployment

Deploying Secure Applications 6-3

6.2.1 Deploying Java EE and Oracle ADF Applications with Fusion Middleware Control
This section focuses on the security configurations available when deploying an
application that uses Oracle ADF security or a Java EE application that uses OPSS with
Fusion Middleware Control on the WebLogic server.

Specifically, it describes the options you find in the page Configure Application
Security at the third stage of the deploy settings.

The appearance of this page varies according to what is packaged in the EAR fie, as
follows:

■ If the EAR file packages jazn-data.xml with application policies, the
application policy migration section is shown.

■ If the EAR file packages credentials in cwallet.sso, the credential migration
section is shown.

■ If the EAR file does not include any of the above, then the page displays the
default Java EE security options.

This page, showing the policy migration sections, is partially illustrated in the
following graphic:

Table 6–1 Tools to Deploy Applications after Development

Application Type Tool to Use

Pure Java EE Application Oracle WebLogic Administration Console, Fusion Middleware
Control, WebSphere Application Server Administrator Console,
WebSphere Application Server WASAdmin commands. The
recommended tool is Oracle WebLogic Administration Console.

Oracle ADF Application Fusion Middleware Control or OPSS script. The recommended
tool is Fusion Middleware Control.

Selecting the Tool for Deployment

6-4 Oracle Fusion Middleware Application Security Guide

The settings in this page concern the migration of application policies and credentials
(packed in application EAR file) to the corresponding domain store, and they are
explained next.

Application Policy Migration Settings
These settings control of the policy migration in the following scenarios:

■ If you are deploying the application for the first time, you typically want
application policies to be migrated to the policy store. Therefore, select Append in
the Application Policy Migration area.

If for some reason you do not want the migration to take place, select instead
Ignore. The option Overwrite is also supported.

■ If you are redeploying the application, and assuming that the migration of
application policies has taken place in a previous deployment, you can choose
Append, to merge the packed policies with the existing ones in the domain, or
Ignore, to prevent policy migration.

The option Ignore is typically selected when an application is redeployed and you
want to leave the current application policies in the domain unchanged, that is,
when you want to preserve changes to the policy store made during previous
deployments.

■ When you choose Append, you can further specify which grants and roles should
be migrated; the basic distinction is between ADF application roles and grants
(needed in a production environment), and development-time only roles and
grants (not needed in a production environment).

To migrate ADF application roles and grants, and not to migrate
development-time only security roles and grants, check the box Migrate only
application roles and grants. Ignore identity store artifacts. Typically, this box is
checked when deploying to a production environment. Note that when this box is
checked, you will need to map application roles to enterprise groups once the
application has been deployed.

■ When you choose Append, you can further specify a particular stripe (different
from the default stripe, which is the application name) into which the application
policies should be migrated, by entering the name of that stripe in the box
Application Stripe Id.

About Application Stripes: The policy store is logically partitioned
in stripes, one for each application name specified in the file
system-jazn-data.xml under the element <applications>. Each
stripe identifies the subset of domain policies pertaining to a
particular application.

Deploying Oracle ADF Applications to a Test Environment

Deploying Secure Applications 6-5

■ I f nothing is specified, the default settings are Append (in deployment) and
Ignore (in redeployment).

Application Credential Migration Settings
These settings control of the credential migration in the following scenarios:

■ If you are deploying the application for the first time, you typically want
application credentials to be migrated to the credential store. Therefore, select
Append in the Application Credential Migration area.

■ In any case (first or succeeding deployment), if for some reason you do not want
the migration to take place, select instead Ignore.

■ The option Overwrite is supported only when the WebLogic server is running in
development mode.

■ If nothing is entered, the default is Ignore.

6.3 Deploying Oracle ADF Applications to a Test Environment
An Oracle ADF application is a Java EE application using JAAS authorization, and it is
typically developed and tested using Oracle JDeveloper; this environment allows a
developer to package the application and deploy it in the Embedded Oracle WebLogic
Server integrated with the tool. When transitioning to a test or production
environment, the application is deployed using Oracle Fusion Middleware Control to
leverage all the Oracle ADF security features that the framework offers. For details, see
Overview.

For step-by-step instructions on how to deploy an Oracle ADF application with Fusion
Middleware Control, see:

Typical Use Cases: This page supports specifying the migration of
policies in the following two most common scenarios:

■ Resolving inconsistent specifications found in the EAR file - The
specifications in the EAR file are validated; if specifications
regarding the application stripe found in the files
web.application.xml, web.xml, and ejb-jar.xml (packed
in the EAR file) are inconsistent (that is, do not match), you can
enter a new stripe to use or select one from the drop-down list.
The specified value trumps any other specified value in the EAR
file and it is used as the target of the migration and in the runtime
environment.

■ Allowing two or more applications to share an application stripe -
If your application is to share an existing stripe (populated
originally by some other application), you can specify that stripe.
The Overwrite option should be used carefully when sharing an
existing application stripe.

Note: Application code using credentials may not work if the
credential migration is ignored. Typically, one would choose the
Ignore option under the assumption that the credentials are manually
created with the same map and key, but with different values.

Deploying Oracle ADF Applications to a Test Environment

6-6 Oracle Fusion Middleware Application Security Guide

■ Section Deploy an Application Using Fusion Middleware Control in the Oracle
Fusion Middleware Control online help system.

■ Section 8.4, Deploying and Undeploying Oracle ADF Applications, in Oracle
Fusion Middleware Administrator's Guide.

This section is divided into the following topics:

■ Deploying to a Test Environment

■ Migrating from a Test to a Production Environment

6.3.1 Deploying to a Test Environment
The security options available at deployment are explained in Deploying Java EE and
Oracle ADF Applications with Fusion Middleware Control.

When deploying an Oracle ADF application to a test environment with Fusion
Middleware Control, the following operations take place:

Policy Management
■ Application-specific policies packed with the application are automatically

migrated to the policy store when the application is deployed.

Oracle JDeveloper automatically writes the necessary configuration for this
migration to occur.

Credential Management
■ Application-specific credentials packed with the application are automatically

migrated to the credential store when the application is deployed.

Oracle JDeveloper automatically writes the necessary configuration for this
migration to occur.

■ The bootstrap credentials necessary to access LDAP repositories during migration
are automatically produced by Fusion Middleware Control. For details about a
manual setup, see Section 21.4.7, "Specifying Bootstrap Credentials Manually."

Identity Management
Identities packed with the application are not migrated. The domain administrator
must configure the domain authenticator (with the Administration Console), update
identities (enterprise users and groups) in the environment, as appropriate, and map
application roles to enterprise users and groups (with Fusion Middleware Control).

Other Considerations
■ When deploying to a domain with LDAP-based security stores and to preserve

application data integrity, it is recommended that the application be deployed at
the cluster level or, otherwise, to just one managed server.

Note: Before migrating a file-based policy store (that is, the file
jazn-data.xml) to a production environment, verify that any grant
contains no duplicate permissions. If a duplicate permission (one that
has the same name and class) appears in a grant, the migration runs
into an error and it is halted. In this case, manually edit the
jazn-data.xml file to remove any duplicate permissions from a
grant definition, and invoke the migration again.

Deploying Standard Java EE Applications

Deploying Secure Applications 6-7

■ When deploying an application to multiple managed servers, be sure to include
the administration server so that data is migrated as expected.

■ The reassociation of domain stores is an infrequent operation and, typically, takes
place when the domain is set up before applications are deployed. For procedure
details, see Section 8.5.1, "Reassociating with Fusion Middleware Control."

6.3.1.1 Typical Administrative Tasks after Deployment in a Test Environment
At any time after an application is deployed in a test environment, an administrator
can perform the following tasks using Fusion Middleware Control or the
Administration Console:

■ Map application roles to enterprise groups. Until this mapping is accomplished,
security does not work as expected. For procedure details, see Section 9.2.2,
"Managing Application Roles."

■ Create additional application roles or customize existing ones. For details, see
Section 9.2.2, "Managing Application Roles."

■ Manage system policies. For procedure details, see Section 9.2.3, "Managing
System Policies."

■ Manage credentials. For procedure details, see Section 10.3, "Managing the
Credential Store."

6.4 Deploying Standard Java EE Applications
There are two ways to secure Java EE applications that do not use OPSS but that use
standard Java authorization: administratively, with the Administration Console or a
OPSS script; or programmatically, with deployment descriptors.

A Java EE application deployed to the Oracle WebLogic Server is a WebLogic
resource. Therefore, an administrator would set security for the deployed application
the same way that he would for any other resource.

For details about deployment procedures, see section 8.3, Deploying and Undeploying
Java EE Applications, in Oracle Fusion Middleware Administrator's Guide.

For details about deploying applications with WLST commands, see section
Deployment Commands in Oracle Fusion Middleware WebLogic Scripting Tool Command
Reference.

For an overview of WebLogic Server deployment features, see chapter Understanding
WebLogic Server Deployment in Oracle Fusion Middleware Deploying Applications to
Oracle WebLogic Server.

Notes: If the application is undeployed with Fusion Middleware
Control from a server running in production mode, then the
application-specific policies are automatically removed from the
policy store. Otherwise, if you use any other tool to undeploy the
application, then the removal of application-specific policies must be
performed manually.

Credentials are not deleted upon an application undeployment. A
credential may have started it life as being packaged with an
application, but when the application is undeployed credentials are
not removed.

Migrating from a Test to a Production Environment

6-8 Oracle Fusion Middleware Application Security Guide

Related Documentation
Further information about securing application resources, can be found in the
following documents:

In Oracle Fusion Middleware Securing Resources Using Roles and Policies for Oracle
WebLogic Server

■ Section Application Resources

■ Section Options for Securing Web Application and EJB Resources

In Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help:

■ Section Use Roles and Policies to Secure Resources

In Oracle Fusion Middleware Securing WebLogic Web Services for Oracle WebLogic Server:

■ Section Overview of Web Services Security

In Oracle Fusion Middleware Programming Security for Oracle WebLogic Server:

■ Section Securing Web Applications. Particularly relevant is the subsection Using
Declarative Security with Web Applications

■ Section Securing Enterprise JavaBeans (EJBs)

■ Section Using Java Security to Protect WebLogic Resources

6.5 Migrating from a Test to a Production Environment
The recommendations that follow apply only to Java EE applications using JAAS
authorization, such as Oracle Application Development Framework, Oracle SOA, and
Oracle WebCenter applications, and they do not apply to Java EE applications using
standard authorization. For deploying the latter, see Deploying Standard Java EE
Applications.

The recommended tool to deploy applications is Fusion Middleware Control, and the
user performing the operations described in the following sections must have the
appropriate privileges, including the privilege to seed a schema in an LDAP
repository.

It is assumed that a production has been set up as explained in Section 5.2.1, "Setting
Up a Brand New Production Environment."

The migration to a new production environment is divided into three major portions:
migrating providers other than policy or credential providers, migrating policy and
credential providers, and migrating audit policies, as explained in the following
sections:

■ Migrating Providers other than Policy and Credential Providers

■ Migrating Policies and Credentials at Deployment

■ Migrating Audit Policies

■ Migrating Keystore Service Keys and Certificates

Important Note: File-based stores are not recommended in
production environments.

Migrating from a Test to a Production Environment

Deploying Secure Applications 6-9

Migration can be used for backup and recoverer security data: to backup security data,
migrate to an XML-based store; to recover security data, migrate from a saved
XML-based store to the target security store.

6.5.1 Migrating Providers other than Policy and Credential Providers
The configuration of providers (other than policy and credential providers) in the
production environment must be repeated as it was done in the test environment. This
task may include:

■ The identity store configuration, including the provisioning of required users and
groups using the WebLogic Administrator Console or the OPSS script
configureIdentityStore. For details about this last command, see Migrating
Identities Manually.

■ Any particular provider configuration that you have performed in the test
environment.

6.5.1.1 Migrating Identities Manually
Identity data can be migrated manually from a source repository to a target repository
using the OPSS script migrateSecurityStore. This migration is needed, for
example, when transitioning from a test environment that uses a file-based identity
store to a production environment that uses an LDAP-based identity store.

This script is offline, that is, it does not require a connection to a running server to
operate; therefore, the configuration file passed to the argument configFile need
not be an actual domain configuration file, but it can be assembled just to specify the
source and destination repositories of the migration.

This script can be run in interactive mode or in script mode. In interactive mode, you
enter the script at a command-line prompt and view the response immediately after.
In script mode, you write scripts in a text file (with a py file name extension) and run it
without requiring input, much like the directives in a shell script.

For platform-specific requirements to run an OPSS script, see Important Note.

Script and Interactive Modes Syntaxes
To migrate identities on WebLogic, use the script (first) or interactive (second)
syntaxes (arguments are written in separate lines for clarity):

migrateSecurityStore -type idStore
 -configFile jpsConfigFileLocation
 -src srcJpsContext
 -dst dstJpsContext
 [-dstLdifFile LdifFileLocation]

migrateSecurityStore(type="idStore", configFile="jpsConfigFileLocation",
src="srcJpsContext", dst="dstJpsContext", [dstLdifFile="LdifFileLocation"])

The migration of identities on WebSphere is accomplished with a similar script. For
details, see Oracle Fusion Middleware Third-Party Application Server Guide.

The meaning of the arguments (all required except dstLdifFile) is as follows:

Note: Oracle WebLogic Server provides several tools to facilitate the
creation of domains, such as the pack and unpack commands. For
details, see Oracle Fusion Middleware Creating Templates and Domains
Using the Pack and Unpack Commands.

Migrating from a Test to a Production Environment

6-10 Oracle Fusion Middleware Application Security Guide

■ configFile specifies the location of a configuration file jps-config.xml
relative to the directory where the script is run.

■ src specifies the name of a jps-context in the configuration file passed to the
argument configFile, where the source store is specified.

■ dst specifies the name of another jps-context in the configuration file passed to
the argument configFile, where the destination store is specified. The
destination store must be an LDAP-based identity store. For list of supported
types, see Section 3.1.1, "Supported LDAP Identity Store Types."

■ dstLdifFile specifies the relative or absolute path to the LDIF file created.
Required only if destination is an LDAP-based Oracle Internet Directory store.
Notice that the LDIF file is not imported into the LDAP server.

The contexts passed to src and dst must be defined in the passed configuration file
and must have distinct names. From these two contexts, the script determines the
locations of the source and the target repositories involved in the migration.

After an LDIF file is generated, the next step typically involves manual editing this file
to customize the attributes of the LDAP repository where the LDIF file would,
eventually, be imported.

6.5.2 Migrating Policies and Credentials at Deployment
In a production environment, it is strongly recommended that the OPSS security store
(policy, credential, and key stores) be reassociated to an LDAP-based Oracle Internet
Directory; if the test policy and credential stores were also LDAP, the production
LDAP is assumed to be distinct from the test LDAP; if the test policy store was
file-based, verify that no grant has duplicate permissions; see note in Policy
Management.

For details on how to reassociate stores, see Section 8.5.1, "Reassociating with Fusion
Middleware Control."

The migration of policies and credentials can take place in the following ways:
automatically, when an application is deployed; or manually, before or after the
application is deployed.

To disable the automatic migration of policies and credentials for all applications
deployed in a WebLogic Server (regardless of the application migration particular
settings), set the system property jps.deployment.handler.disabled to TRUE.

When deploying an application to a production environment, an administrator should
know the answer the following question:

Have policies or credentials packed in the application EAR been modified in the test
environment?

Important Note: If the application is hot deployed, that is without
stoping and restarting the server, the migration of data in the file
jazn-data.xml to the domain security store is carried out provided
the security store does not contain a stripe with the same name as the
application. In particular, if the application is hot re-deployed (that is,
hot deployed for a second or later time), any changes introduced in
the file jazn-data.xml are not migrated over the domain security
store.

Migrating from a Test to a Production Environment

Deploying Secure Applications 6-11

Assuming that you know the answer to the above question, to deploy an application
to a production environment, proceed as follows:

1. Use Fusion Middleware Control to deploy the application EAR file to the
production environment using the following options:

■ If policies (application or system) have been modified in the test environment,
then disable the option to migrate policies at deploy time by selecting the
option Ignore under the Application Policy Migration area in Fusion
Middleware Control’s page Configuration Application Security; otherwise,
select Append.

■ If credentials have been modified in the test environment, then disable the
option to migrate credentials at deploy time by selecting the option Ignore
under the Application Credential Migration area in Fusion Middleware
Control’s page Configuration Application Security; otherwise, select
Append.

2. Use the script migrateSecurityStore to migrate modified data, as follows:

■ If you chose to Ignore application policy migration, then migrate application
and system policies from the test to the production LDAP. See example in
Migrating Policies Manually.

■ If you chose to Ignore application credential migration, then migrate
credentials from the test to the production LDAP. See example in Migrating
Credentials Manually.

3. In any case, use Fusion Middleware Control to map application roles to
production enterprise groups, as appropriate.

4. Use Fusion Middleware Control to verify that administrative credentials in the
production environment are valid; in particular, test passwords versus production
passwords; if necessary, modify the production data, as appropriate.

6.5.2.1 Migrating Policies Manually
By default, the script migrateSecurityStore recreates GUIDs and may take a long
time to migrate large volume of policies; for these reasons, during the transition from a

Note: You can select Append (that is, to migrate application policies)
in combination with checking the box Migrate only application roles
and grants. Ignore identity store artifacts, even when application
roles have been modified in the test environment to the extent of
mapping them to test enterprise groups.

Selecting this combination migrates application policies but
disregards the maps to test enterprise groups. Later on, in step 3
below, you must remap application roles to production enterprise
groups.

Note: There is a way to configure the application so that, at
deployment, the migration of policies preserves GUIDs (instead of
recreating them).

This setting can only be configured manually. For details, see
parameter jps.approle.preserveguid in Section 21.4.1,
"Parameters Controlling Policy Migration."

Migrating from a Test to a Production Environment

6-12 Oracle Fusion Middleware Application Security Guide

test to a production environment, you may want to consider migrating policies and
credentials with an alternate procedure that uses Oracle Internet Directory bulk
operations. For details, see Migrating Large Volume Policy and Credential Stores.

Migrating policies manually with the script migrateSecurityStore requires
assembling a configuration file where the source and destination are specified.

Here is a complete sample of a configuration file, named t2p-policies.xml,
illustrating the specification of policy sources in LDAP, DB, and XML storages, and of
policy destinations in LDAP and DB storages:

<?xml version="1.0" encoding="UTF-8" standalone='yes'?>
<jpsConfig xmlns="http://xmlns.oracle.com/oracleas/schema/11/jps-config-11_1.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/oracleas/schema/11/jps-config-11_
1.xsd" schema-major-version="11" schema-minor-version="1">

<serviceProviders>
 <serviceProvider
class="oracle.security.jps.internal.policystore.xml.XmlPolicyStoreProvider"
name="policystore.xml.provider" type="POLICY_STORE">
 <description>XML-based policy store provider</description>
 </serviceProvider>

 <serviceProvider
class="oracle.security.jps.internal.policystore.ldap.LdapPolicyStoreProvider"
name="ldap.policystore.provider" type="POLICY_STORE">
 <property value="OID" name="policystore.type"/>
 <description>LDAP-based policy store provider</description>
 </serviceProvider>

 <serviceProvider
class="oracle.security.jps.internal.policystore.ldap.LdapPolicyStoreProvider"
name="db.policystore.provider" type="POLICY_STORE">
 <property value="DB_ORACLE" name="policystore.type"/>
 <description>DB-based policy store provider</description>
 </serviceProvider>
</serviceProviders>

<serviceInstances>
 <!-- Source XML-based policy store instance -->
 <serviceInstance location="./system-jazn-data.xml"
provider="policystore.xml.provider" name="policystore.xml.source">
 <description>Replace location with the full path of the folder where the
system-jazn-data.xml is located in the source file system </description>
 </serviceInstance>

<!-- Source LDAP-based policy store instance -->
<serviceInstance provider="ldap.policystore.provider"
name="policystore.ldap.source">
 <description>Replace: A. mySourceDomain and mySourceRootName to appropriate
 values according to your source LDAP directory structure; B. OID with OVD,
 if your source LDAP is OVD; C. ldap://mySourceHost.com:3060 with the URL

and port number of your source LDAP</description>
 <property value="OID" name="policystore.type"/>
 <property value="bootstrap" name="bootstrap.security.principal.key"/>
 <property value="cn=mySourceDomain" name="oracle.security.jps.farm.name"/>
 <property value="cn=mySourceRootName" name="oracle.security.jps.ldap.root.name"/>
 <property value="ldap://mySourceHost.com:3060" name="ldap.url"/>
</serviceInstance>

Migrating from a Test to a Production Environment

Deploying Secure Applications 6-13

<!-- Source DB-based policy store instance -->
<serviceInstance provider="db.policystore.provider" name="policystore.db.source">
 <description>Replace: mySourceDomain and mySourceRootName to appropriate
 values according to your source DB policy store structure
 </description>
 <property value="DB_ORACLE" name="policystore.type"/>
 <property value="cn=mySourceDomain" name="oracle.security.jps.farm.name"/>
 <property value="cn=mySourceRootName" name="oracle.security.jps.ldap.root.name"/>
 <property value="jdbc:oracle:thin:@mySourceHost.com:1722:orcl" name="jdbc.url"/>
 <!-- the value of jdbc.url should be the value entered when the source

datasource was set up -->
 <property value="oracle.jdbc.driver.OracleDriver" name="jdbc.driver"/>
 <property name="bootstrap.security.principal.key" value="mySourceKeyName" />
 <property name="bootstrap.security.principal.map" value="mySourceMapName" />
 <!-- the values of bootstrap.security.principal.key and
 bootstratp.security.principal.map

should be the values entered when the bootstrap credential was set up -->
</serviceInstance>

 <!-- Destination LDAP-based policy store instance -->
 <serviceInstance provider="ldap.policystore.provider"
name="policystore.ldap.destination">
<description>Replace: A. myDestDomain and myDestRootName to appropriate values
according to your destination LDAP directory structure; B. OID with OVD, if your
destination LDAP is OVD; C. ldap://myDestHost.com:3060 with the URL and port
number of your destination LDAP</description>
 <property value="OID" name="policystore.type"/>
 <property value="bootstrap" name="bootstrap.security.principal.key"/>
 <property value="cn=myDestDomain" name="oracle.security.jps.farm.name"/>
 <property value="cn=myDestRootName" name="oracle.security.jps.ldap.root.name"/>
 <property value="ldap://myDestHost.com:3060" name="ldap.url"/>
</serviceInstance>

<!-- Destination DB-based policy store instance -->
 <serviceInstance provider="db.policystore.provider"
name="policystore.db.destination">
<description>Replace: myDestDomain and myDestRootName to appropriate values
 according to your destination DB policy store structure</description>
 <property value="DB_ORACLE" name="policystore.type"/>
 <property value="cn=myDestDomain" name="oracle.security.jps.farm.name"/>
 <property value="cn=myDestRootName" name="oracle.security.jps.ldap.root.name"/>
 <property value="jdbc:oracle:thin:@myDestHostcom:1722:orcl" name="jdbc.url"/>
 <!-- the value of jdbc.url should be the value entered when the destination
datasource was set up -->
 <property value="oracle.jdbc.driver.OracleDriver" name="jdbc.driver"/>
 <property name="bootstrap.security.principal.key" value="myDestKeyName" />
 <property name="bootstrap.security.principal.map" value="myDestMapName" />
 <!-- the value of bootstrap.security.principal.key and
 bootstratp.security.principal.map

should be the value entered when the bootstrap credential was set up -->
</serviceInstance>

<!-- Bootstrap credentials to access source and destination LDAPs or DBs-->
 <serviceInstance location="./bootstrap" provider="credstoressp"
name="bootstrap.cred">
 <description>Replace location with the full path of the directory where the
bootstrap file cwallet.sso is located; typically found in
destinationDomain/config/fmwconfig/</description>
 </serviceInstance>
 </serviceInstances>

Migrating from a Test to a Production Environment

6-14 Oracle Fusion Middleware Application Security Guide

 <jpsContexts>
 <jpsContext name="XMLsourceContext">
 <serviceInstanceRef ref="policystore.xml.source"/>
 </jpsContext>

 <jpsContext name="LDAPsourceContext">
 <serviceInstanceRef ref="policystore.ldap.source"/>
 </jpsContext>

<jpsContext name="DBsourceContext">
 <serviceInstanceRef ref="policystore.db.source"/>
 </jpsContext>

 <jpsContext name="LDAPdestinationContext">
 <serviceInstanceRef ref="policystore.ldap.destination"/>
 </jpsContext>

<jpsContext name="DBdestinationContext">
 <serviceInstanceRef ref="policystore.db.destination"/>
 </jpsContext>

 <!-- Do not change the name of the next context -->
 <jpsContext name="bootstrap_credstore_context">
 <serviceInstanceRef ref="bootstrap.cred"/>
 </jpsContext>
 </jpsContexts>
</jpsConfig>

Note that since the migration involves LDAP and DB stores, the file includes a
jps-context named bootstrap_credstore_context that specifies the directory
where the bootstrap credential file cwallet.sso is located. Furthermore, for each
pair of map name and key name in the sample above, you must provide the
corresponding bootstrap credentials using the WLST script
addBootStrapCredential as illustrated in the following example:

wls:/offline> addBootStrapCredential(jpsConfigFile='jps-config.xml',
 map='myMapName', key='myKeyName', username='myUserName',
 password='myPassword')

where myUserName and myPassaword specify the user account name and password
to access the target database.

The following examples of use of migrateSecurityStore assume that:

■ The file t2p-policies.xml is located on the target system in the directory
where the script is run.

■ The directory structure of LDAP or DB system policies in the test and production
environments should be identical. If this is not the case, before using the script,
restructure manually the system policy directory in the production environment to
match the corresponding structure in the test environment.

Under these assumptions, to migrate policies from a test (or source) LDAP store to a
production (or destination) LDAP store, invoke migrateSecurityStore in the
target system as follows:

>migrateSecurityStore(type="policyStore",configFile="t2p-policies.xml",src="LDAPso
urceContext",dst="LDAPdestinationContext")

Migrating from a Test to a Production Environment

Deploying Secure Applications 6-15

To migrate policies from a test (or source) XML store to a production (or destination)
LDAP store, invoke migrateSecurityStore in the target system as follows:

>migrateSecurityStore(type="policyStore",configFile="t2p-policies.xml",src="XMLsou
rceContext",dst="LDAPdestinationContext")

To migrate policies from a test (or source) DB store to a production (or destination) DB
store, invoke migrateSecurityStore in the target system as follows:

>migrateSecurityStore(type="policyStore",configFile="t2p-policies.xml",src="DBsour
ceContext",dst="DBdestinationContext")

6.5.2.2 Migrating Credentials Manually
The script migrateSecurityStore recreates GUIDs and may take a long time to
migrate large volume of credentials; for these reasons, during the transition from a test
to a production environment, you may want to consider migrating policies and
credentials with an alternate procedure that uses Oracle Internet Directory bulk
operations. For details, see Migrating Large Volume Policy and Credential Stores.

Migrating credentials manually with migrateSecurityStore requires assembling a
configuration file where the source and destination are specified.

Since migrateSecurityStore recreates GUIDs and takes a long time to migrate
large volume of data, you may want to consider migrating stores with an alternate
procedure that uses Oracle Internet Directory bulk operations. For details, see
Migrating Large Volume Policy and Credential Stores.

Here is a complete sample of a configuration file, named t2p-credentials.xml,
illustrating the specification of credential sources in LDAP, DB, and XML storages,
and of credential destinations in LDAP or DB storages:

<?xml version="1.0" encoding="UTF-8" standalone='yes'?>
<jpsConfig xmlns="http://xmlns.oracle.com/oracleas/schema/11/jps-config-11_1.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/oracleas/schema/11/jps-config-11_
1.xsd" schema-major-version="11" schema-minor-version="1">

<serviceProviders>
 <serviceProvider
class="oracle.security.jps.internal.credstore.ssp.SspCredentialStoreProvider"
name="credstoressp" type="CREDENTIAL_STORE">
 <description>File-based credential provider</description>
 </serviceProvider>

 <serviceProvider
class="oracle.security.jps.internal.credstore.ldap.LdapCredentialStoreProvider"
name="ldap.credentialstore.provider" type="CREDENTIAL_STORE">
 <description>LDAP-based credential provider</description>
 </serviceProvider>

<serviceProvider
class="oracle.security.jps.internal.credstore.rdbms.DbmsCredentialStoreProvider"
name="db.credentialstore.provider" type="CREDENTIAL_STORE">
 <description>DB-based credential provider</description>
 </serviceProvider>

</serviceProviders>

<serviceInstances>
 <!-- Source file-based credential store instance -->
 <serviceInstance location="myFileBasedCredStoreLocation" provider="credstoressp"

Migrating from a Test to a Production Environment

6-16 Oracle Fusion Middleware Application Security Guide

name="credential.file.source">
 <description>Replace location with the full path of the folder where the
file-based source credential store cwallet.sso is located in the source file
system; typically located in sourceDomain/config/fmwconfig/
</description>
 </serviceInstance>

<!-- Source LDAP-based credential store instance -->
<serviceInstance provider="ldap.credentialstore.provider"
name="credential.ldap.source">
 <description>Replace: A. mySourceDomain and mySourceRootName to appropriate
 values according to your source LDAP directory structure; B.
ldap://mySourceHost.com:3060 with the URL and port number of your source
LDAP</description>
 <property value="bootstrap" name="bootstrap.security.credential.key"/>
 <property value="cn=mySourceDomain" name="oracle.security.jps.farm.name"/>
 <property value="cn=mySourceRootName" name="oracle.security.jps.ldap.root.name"/>
 <property value="ldap://mySourceHost.com:3060" name="ldap.url"/>
</serviceInstance>

<!-- Source DB-based credential store instance -->
<serviceInstance provider="db.credentialstore.provider"
name="credential.db.source">
 <description>Replace: A. mySourceDomain and mySourceRootName to appropriate
 values according to your source DB credential store</description>
 <property value="cn=mySourceDomain" name="oracle.security.jps.farm.name"/>
 <property value="cn=mySourceRootName" name="oracle.security.jps.ldap.root.name"/>
 <property value="jdbc:oracle:thin:@mySourceHost:1722:orcl" name="jdbc.url"/>
 <!-- the value of jdbc.url should be the value entered when the source datasource
was set up -->
 <property value="oracle.jdbc.driver.OracleDriver" name="jdbc.driver"/>
 <property name="bootstrap.security.principal.key" value="mySourceKeyName" />
 <property name="bootstrap.security.principal.map" value="mySourceMapName" />
 <!-- the values of bootstrap.security.principal.key and
 bootstratp.security.principal.map

should be the values entered when the bootstrap credential was set up -->
</serviceInstance>

 <!-- Destination LDAP-based credential store instance -->
 <serviceInstance provider="ldap.credentialstore.provider"
name="credential.ldap.destination">
<description>Replace: A. myDestDomain and myDestRootName to appropriate values
according to your destination LDAP directory structure; B.
ldap://myDestHost.com:3060 with the URL and port number of your destination
LDAP</description>
 <property value="bootstrap" name="bootstrap.security.credential.key"/>
 <property value="cn=myDestDomain" name="oracle.security.jps.farm.name"/>
 <property value="cn=myDestRootName" name="oracle.security.jps.ldap.root.name"/>
 <property value="ldap://myDestHost.com:3060" name="ldap.url"/>
</serviceInstance>

<!-- Destination DB-based credential store instance -->
 <serviceInstance provider="db.credentialstore.provider"
name="credential.db.destination">
<description>Replace: myDestDomain and myDestRootName to appropriate values
according to your destination DB credential store</description>
 <property value="cn=myDestDomain" name="oracle.security.jps.farm.name"/>
 <property value="cn=myDestRootName" name="oracle.security.jps.ldap.root.name"/>
 <property value="jdbc:oracle:thin:@myDestHost.com:1722:orcl" name="jdbc.url"/>

Migrating from a Test to a Production Environment

Deploying Secure Applications 6-17

 <!-- the value of jdbc.url should be the value entered when the destination
datasource was set up -->
 <property value="oracle.jdbc.driver.OracleDriver" name="jdbc.driver"/>
 <property name="bootstrap.security.principal.key" value="myDestKeyName" />
 <property name="bootstrap.security.principal.map" value="myDestMapName" />
 <!-- the values of bootstrap.security.principal.key and
 bootstratp.security.principal.map

should be the values entered when the bootstrap credential was set up -->
</serviceInstance>

<!-- Bootstrap credentials to access source and destination LDAPs and DBs -->
 <serviceInstance location="./bootstrap" provider="credstoressp"
name="bootstrap.cred">
 <description>Replace location with the full path of the directory where the
bootstrap file cwallet.sso is located; typically found in
destinationDomain/config/fmwconfig/</description>
 </serviceInstance>
 </serviceInstances>

 <jpsContexts>
 <jpsContext name="FileSourceContext">
 <serviceInstanceRef ref="credential.file.source"/>
 </jpsContext>

 <jpsContext name="LDAPsourceContext">
 <serviceInstanceRef ref="credential.ldap.source"/>
 </jpsContext>

<jpsContext name="DBsourceContext">
 <serviceInstanceRef ref="credential.db.source"/>
 </jpsContext>

 <jpsContext name="LDAPdestinationContext">
 <serviceInstanceRef ref="credential.ldap.destination"/>
 </jpsContext>

<jpsContext name="DBdestinationContext">
 <serviceInstanceRef ref="credential.db.destination"/>
 </jpsContext>

 <!-- Do not change the name of the next context -->
 <jpsContext name="bootstrap_credstore_context">
 <serviceInstanceRef ref="bootstrap.cred"/>
 </jpsContext>
 </jpsContexts>
</jpsConfig>

Note that since the migration involves LDAP and/or DB stores, the file includes a
jps-context named bootstrap_credstore_context that specifies the directory
where the bootstrap credential file cwallet.sso is located.

The following examples of use of migrateSecurityStore assume that the file
t2p-credentials.xml is located on the target system in the directory where the
script is run.

Under that assumption, to migrate credentials from a test (or source) LDAP store to a
production (or destination) LDAP store, invoke migrateSecurityStore in the
target system as follows:

>migrateSecurityStore(type="credStore",configFile="t2p-credentials.xml",src="LDAPs
ourceContext",dst="LDAPdestinationContext")

Migrating from a Test to a Production Environment

6-18 Oracle Fusion Middleware Application Security Guide

To migrate credentials from a test (or source) XML store to a production (or
destination) LDAP store, invoke migrateSecurityStore in the target system as
follows:

>migrateSecurityStore(type="credStore",configFile="t2p-credentials.xml",src="FileS
ourceContext",dst="LDAPdestinationContext")
To migrate credentials from a test (or source) DB store to a production (or destination)
DB store, invoke migrateSecurityStore in the target system as follows:

>migrateSecurityStore(type="credStore",configFile="t2p-credentials.xml",src="DBSou
rceContext",dst="DBdestinationContext")

6.5.2.3 Migrating Large Volume Policy and Credential Stores
Migrating stores with the alternate procedure explained in this section is suitable to
preserve source GUIDs or for large volume stores (where migrating with the script
migrateSecurityStore would take an unacceptable amount of time).

For illustration purpose, assume that the policy store LDAP to be migrated is
configured in the file jps-config.xml with a service instance as in the following
fragment:

<serviceInstance provider="ldap.policystore.provider" name="policystore.ldap">
 <property name="policystore.type" value="OID" />
 <property name="bootstrap.security.principal" value="bootstrap"/>
 <property name="oracle.security.jps.farm.name" value="cn=base_domain"/>
 <property name="oracle.security.jps.ldap.root.name" value="cn=mySrcRootName"/>
 <property name="ldap.url" value="ldap://myCompany.com:7766"/>
</serviceInstance>

To migrate a source Oracle Internet Directory store to a destination Oracle Internet
Directory store using bulk commands, proceed as follows:

1. In the system where the source Oracle Internet Directory is located, produce an
LDIF file by running ldifwrite as illustrated in the following line:

>ldifwrite connect="srcOidDbConnectStr" baseDN="cn=jpsnode, c=us"
ldiffile="srcOid.ldif"

This command writes all entries under the node cn=jpsnode, c=us to the file
srcOid.ldif. Once generated, move this file, as appropriate, to the destination
Oracle Internet Directory file system so it is available to the commands that follow.

2. In the destination Oracle Internet Directory node, ensure that the JPS schema has
been seeded.

Note: Large volume migration of stores is supported for
LDAP-based stores only. It is not supported for DB-based stores.

Important: If you intend to use the procedure that follows with a
destination Oracle Internet Directory version 10.1.4.3.0, then you must
first apply a patch for bug number 8417224. To download this patch
for your platform, visit Oracle Support at
http://myoraclesupport.oracle.com.

Migrating from a Test to a Production Environment

Deploying Secure Applications 6-19

3. In the destination Oracle Internet Directory system, verify that there are no
schema errors or bad entries by running bulkload as illustrated in the following
line:

>bulkload connect="dstOidDbConnectStr" check=true generate=true restore=true
file="fullPath2SrcOidLdif"

If duplicated DNs (common entries between the source and destination
directories) are detected, review them to prevent unexpected results.

4. Backup the destination DB. If the next steps fails (and corrupts the DB), the DB
must be restored.

5. Load data into the destination Oracle Internet Directory, by running bulkload as
illustrated in the following line:

>bulkload connect="dstOidDbConnectStr" load=true file="fullPath2SrcOidLdif"

For details about the above commands, see chapter 14, Performing Bulk Operations, in
Oracle Fusion Middleware Administrator's Guide for Oracle Internet Directory.

6.5.3 Migrating Audit Policies
To migrate audit policies, use the export and import operations as explained next.

First, export the audit configuration from a test environment to a file using one of the
following tools:

■ Fusion Middleware Control: navigate to Domain > Security > Audit Policy, and
then click Export.

■ The OPSS script exportAuditConfig. For details, see Appendix C.4.7,
"exportAuditConfig."

Then, import that file into the production environment using one of the following
tools:

■ Fusion Middleware Control: navigate to Domain > Security > Audit Policy, and
then click Import.

■ The OPSS script importAuditConfig. For details, see Appendix C.4.8,
"importAuditConfig."

The import/export operations above migrate audit policies only, and they do not
migrate the audit data store settings. If you had configured an audit data source in
your test environment, repeat the steps to configure a data source in the production
environment. For details, see Section 13.2.2, "Set Up Audit Data Sources."

Normally, you would not want audit data records from a test environment to be
migrated to production; however, to do so, use the database import/export utilities for
that purpose. For details, see Section 13.5.5, "Importing and Exporting Data."

6.5.4 Migrating Keystore Service Keys and Certificates
To migrate keys and certificates manually with migrateSecurityStore, create a
configuration file to specify the source and destination service instances. Next use the
migrateSecurityStorecommand with appropriate options as shown in the
examples at the end of this section.

Here is a complete example of a configuration file, named t2p-keys.xml, illustrating
the specification of keystore service sources in LDAP, DB, and XML storages, and of
keystore service destinations in LDAP or DB storages:

Migrating from a Test to a Production Environment

6-20 Oracle Fusion Middleware Application Security Guide

<?xml version="1.0" encoding="UTF-8" standalone='yes'?>
<jpsConfig xmlns="http://xmlns.oracle.com/oracleas/schema/11/jps-config-11_1.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/oracleas/schema/11/jps-config-11_
1.xsd" schema-major-version="11" schema-minor-version="1">

<serviceProviders>

<serviceProvider
class="oracle.security.jps.internal.credstore.ssp.SspCredentialStoreProvider"
name="credstoressp" type="CREDENTIAL_STORE">
 <description>File-based credential provider</description>
 </serviceProvider>

<!--The following service provider configuration serves file-based, LDAP based
 And DB based keystore service instance -->
<serviceProvider type="KEY_STORE" name="keystore.provider"
class="oracle.security.jps.internal.keystore.KeyStoreProvider">
<description>PKI Based Keystore Provider</description>
</serviceProvider>

</serviceProviders>

<serviceInstances>

<!-- Source XML-based keystore service instance -->
 <serviceInstance location="./" provider="keystore.provider"
name="keystore.file.source">
<property name="keystore.provider.type" value="file"/>
<property name="keystore.file.path" value="./"/>
<description>Replace keystore.file.path with the full path of the folder where the
file-based source keystore service keystores.xml is located in the source file
system; typically located in sourceDomain/config/fmwconfig/</description>
 </serviceInstance>

<!-- Source LDAP-based keystore service instance -->
<serviceInstance provider="keystore.provider" name="keystore.ldap.source">
 <description>Replace: A. mySourceDomain and mySourceRootName to appropriate
 values according to your source LDAP directory structure; B.
ldap://mySourceHost.com:3060 with the URL and port number of your source
LDAP</description>
 <property value="bootstrap" name="bootstrap.security.credential.key"/>
 <property value="cn=mySourceDomain" name="oracle.security.jps.farm.name"/>
 <property value="cn=mySourceRootName" name="oracle.security.jps.ldap.root.name"/>
 <property value="ldap://mySourceHost.com:3060" name="ldap.url"/>
<property name="keystore.provider.type" value="ldap"/>
</serviceInstance>

<!-- Source DB-based keystore service instance -->
<serviceInstance provider="keystore.provider" name="keystore.db.source">
 <description>Replace: A. mySourceDomain and mySourceRootName to appropriate
 values according to your source DB </description>
 <property value="cn=mySourceDomain" name="oracle.security.jps.farm.name"/>
 <property value="cn=mySourceRootName" name="oracle.security.jps.ldap.root.name"/>
 <property value="jdbc:oracle:thin:@mySourceHost:1722:orcl" name="jdbc.url"/>
 <!-- the value of jdbc.url should be the value entered when the source datasource

Migrating from a Test to a Production Environment

Deploying Secure Applications 6-21

was set up -->
 <property value="oracle.jdbc.driver.OracleDriver" name="jdbc.driver"/>
 <property name="bootstrap.security.principal.key" value="mySourceKeyName" />
 <property name="bootstrap.security.principal.map" value="mySourceMapName" />
 <property name="keystore.provider.type" value="db"/>
 <!-- the values of bootstrap.security.principal.key and
 bootstratp.security.principal.map
 should be the values entered when the bootstrap credential was set up -->
</serviceInstance>

<!-- Destination LDAP-based keystore service instance -->
 <serviceInstance provider="keystore.provider" name="keystore.ldap.destination">
<description>Replace: A. myDestDomain and myDestRootName to appropriate values
according to your destination LDAP directory structure; B.
ldap://myDestHost.com:3060 with the URL and port number of your destination
LDAP</description>
 <property value="bootstrap" name="bootstrap.security.credential.key"/>
 <property value="cn=myDestDomain" name="oracle.security.jps.farm.name"/>
 <property value="cn=myDestRootName" name="oracle.security.jps.ldap.root.name"/>
 <property value="ldap://myDestHost.com:3060" name="ldap.url"/>
 <property name="keystore.provider.type" value="ldap"/>
</serviceInstance>

<!-- Destination DB-based keystore service instance -->
 <serviceInstance provider="keystore.provider" name="keystore.db.destination">
<description>Replace: myDestDomain and myDestRootName to appropriate values
according to your destination DB </description>
 <property value="cn=myDestDomain" name="oracle.security.jps.farm.name"/>
 <property value="cn=myDestRootName" name="oracle.security.jps.ldap.root.name"/>
 <property value="jdbc:oracle:thin:@myDestHost.com:1722:orcl" name="jdbc.url"/>
 <!-- the value of jdbc.url should be the value entered when the destination
datasource was set up -->
 <property value="oracle.jdbc.driver.OracleDriver" name="jdbc.driver"/>
 <property name="bootstrap.security.principal.key" value="myDestKeyName" />
 <property name="bootstrap.security.principal.map" value="myDestMapName" />
 <property name="keystore.provider.type" value="db"/>
 <!-- the values of bootstrap.security.principal.key and
 bootstratp.security.principal.map
 should be the values entered when the bootstrap credential was set up -->
</serviceInstance>

<!-- Bootstrap credentials to access source and destination LDAPs and DBs -->

 <serviceInstance location="./bootstrap" provider="credstoressp"
name="bootstrap.cred">
 <description>Replace location with the full path of the directory where the
bootstrap file cwallet.sso is located; typically found in
destinationDomain/config/fmwconfig/bootstrap</description>
 </serviceInstance>
 </serviceInstances>

 <jpsContexts>
 <jpsContext name="FileSourceContext">
 <serviceInstanceRef ref="keystore.file.source"/>
 </jpsContext>

 <jpsContext name="LDAPsourceContext">

Migrating from a Test to a Production Environment

6-22 Oracle Fusion Middleware Application Security Guide

 <serviceInstanceRef ref="keystore.ldap.source"/>
 </jpsContext>

<jpsContext name="DBsourceContext">
 <serviceInstanceRef ref="keystore.db.source"/>
 </jpsContext>

 <jpsContext name="LDAPdestinationContext">
 <serviceInstanceRef ref="keystore.ldap.destination"/>
 </jpsContext>

<jpsContext name="DBdestinationContext">
 <serviceInstanceRef ref="keystore.db.destination"/>
 </jpsContext>

 <!-- Do not change the name of the next context -->
 <jpsContext name="bootstrap_credstore_context">
 <serviceInstanceRef ref="bootstrap.cred"/>
 </jpsContext>
 </jpsContexts>
</jpsConfig>

Note that since the migration involves LDAP and/or DB stores, the file includes a
jps-context named bootstrap_credstore_context that specifies the directory where the
bootstrap credential file cwallet.sso is located.

Examples

To migrate all keys and certificates from a test (source) LDAP store to a production
(destination) LDAP store, invoke migrateSecurityStore in the target system as
follows:

>migrateSecurityStore(type="keyStore",configFile="t2p-keys.xml",
src="LDAPsourceContext",dst="LDAPdestinationContext")

To migrate all keys and certificates from a test (source) XML store to a production
(destination) LDAP store, invoke migrateSecurityStore in the target system as
follows:

>migrateSecurityStore(type="keyStore",configFile="t2p-keys.xml",
src="FileSourceContext",dst="LDAPdestinationContext")

To migrate keys and certificates for a specific application stripe from a test (source)
database store to a production (destination) database store, invoke
migrateSecurityStore in the target system as follows:

>migrateSecurityStore(type="stripeKeyStore",configFile="t2p-keys.xml",
src="DBSourceContext",dst="DBdestinationContext", srcStripe="application1",
dstStripe="application2")

Note: The following migrateSecurityStore examples assume
that the file t2p-keys.xml is located on the target system in the
directory where the script is run.

Part III
Part III Advanced OPSS Administration

This part describes advanced OPSS administration features in the following chapters:

■ Chapter 7, "Configuring the Identity Store Service"

■ Chapter 8, "Configuring the OPSS Security Store"

■ Chapter 9, "Managing the Policy Store"

■ Chapter 10, "Managing the Credential Store"

■ Chapter 11, "Managing Keys and Certificates with the Keystore Service"

■ Chapter 12, "Introduction to Oracle Fusion Middleware Audit Framework"

■ Chapter 13, "Configuring and Managing Auditing"

■ Chapter 14, "Using Audit Analysis and Reporting"

7

Configuring the Identity Store Service 7-1

7Configuring the Identity Store Service

This chapter explains how to use the identity store service in OPSS. Topics include:

■ Introduction to the Identity Store Service

■ Configuring the Identity Store Provider

■ Configuring the Identity Store Service

■ Querying the Identity Store Programmatically

■ SSL for the Identity Store Service

7.1 Introduction to the Identity Store Service
This section describes key concepts of the OPSS identity store service:

■ About the Identity Store Service

■ Service Architecture

■ Application Server Support

7.1.1 About the Identity Store Service
The identity store service enables you to query the identity store for user and role
(group) information.

By default, a service instance supports querying against a single LDAP identity store.
You can configure the service to support a virtualized identity store which queries
multiple LDAP identity stores. This feature, known as identity virtualization, is
described in Section 7.3, "Configuring the Identity Store Service".

7.1.2 Service Architecture
Figure 7–1 shows the architecture of the identity store service. Depending on the
configuration, the service can support either an XML file or one or more LDAP servers
as the identity store.

When the service is configured for LDAP, it queries a single LDAP store by default.
You can also configure the service to query multiple LDAP stores.

Configuring the Identity Store Provider

7-2 Oracle Fusion Middleware Application Security Guide

Figure 7–1 The OPSS Identity Store Service

7.1.3 Application Server Support
The identity store service supports:

■ Oracle WebLogic Server

■ Third-party application servers

The service configuration depends on the application server; you must specify the
provider that supports the service.

7.1.4 Java SE Support
The identity store service is available in a stand-alone Java SE environment.

For more information, see Section 7.3.6, "Java SE Environments".

7.2 Configuring the Identity Store Provider
Before you can make use of the identity store service, you need to configure the
identity store provider. OPSS support both XML- and LDAP-based providers.

This fragment from the jps-config.xml file shows the configuration of both XML and
LDAP providers. The serviceProvider elements are children of the
serviceProviders element.

<serviceProvider type="IDENTITY_STORE" name="idstore.ldap.provider"
class="oracle.security.jps.internal.idstore.ldap.LdapIdentityStoreProvider">
 <description>LDAP-based IdentityStore Provider</description>
</serviceProvider>

<serviceProvider type="IDENTITY_STORE" name="idstore.xml.provider"
class="oracle.security.jps.internal.idstore.xml.XmlIdentityStoreProvider">
 <description>XML-based IdentityStore Provider</description>
</serviceProvider>

 For details, see Section 8.7.1, "Configuring the Identity Store Provider".

Configuring the Identity Store Service

Configuring the Identity Store Service 7-3

7.3 Configuring the Identity Store Service
This section describes how to configure the identity store service to LDAP-based
stores. Topics include:

■ What is Configured?

■ Configuration in WebLogic Server

■ Configuring Split Profiles

■ Configuring Custom Authenticators

■ Configuration in Other Application Servers

■ Java SE Environments

7.3.1 What is Configured?
This section explains the different configuration parameters for the identity store
service. It includes:

■ Configuring Multi-LDAP Lookup

■ Global/Connection Parameters

■ Back-End/Connection Parameters

7.3.1.1 Configuring Multi-LDAP Lookup
You use the following parameters to configure the service for multi-LDAP queries:

■ The virtualize property - This property can be either true (multi-LDAP
lookup) or false (single-LDAP lookup). The default is false.

■ Global Connection Parameters (if 'virtualize' is enabled) - The calling
application uses these parameters to specify global LDAP configuration such as
the search base, create base, and so on. If any of these parameters are not
configured, OPSS uses default values.

■ Back-end Connection Parameters - These parameters are specific to each LDAP
store. One set of back-end parameters is specified for each LDAP. You do not need
to set these parameters unless you wish to overwrite existing values.

7.3.1.2 Global/Connection Parameters
Table 7–1 shows the global parameters and their default values, if applicable.

See Also: Appendix F, "OPSS System and Configuration Properties".

Table 7–1 Global LDAP Identity Store Parameters

Parameter Default Value

group.create.bases same as user.create.bases

group.filter.object.classes groupofuniquenames

The global value is used if explicitly provided.

group.mandatory.attrs -

group.member.attrs uniquemember

group.object.classes groupofuniquenames

group.search.bases -

Configuring the Identity Store Service

7-4 Oracle Fusion Middleware Application Security Guide

7.3.1.3 Back-End/Connection Parameters
As mentioned earlier, these are specific to the back-end LDAP store. For details, see:

■ Table F–5, " LDAP-Based Identity Store Properties"

■ Section F.2.1, "Policy Store Properties"

7.3.2 Configuration in WebLogic Server
You configure LDAP authenticators in Oracle WebLogic Server using either the
WebLogic console or WLST command-line. At runtime, Oracle WebLogic Server
passes the configuration details to OPSS. Oracle WebLogic Server allows you to
configure multiple authenticators in a given context, and selects the first authenticator
to initialize the identity store service by default. This process is explained in
Section 3.1.2.2, "Configuring the LDAP Identity Store Service".

After the authenticators are configured, the identity store service can be set up to
query one LDAP identity store or multiple stores. Configuring for multiple stores
requires setting up the virtualize property.

This section explains how to set up these options.

group.selected.create.base -

group.selected.search.base -

groupname.attr cn

If the global value is explicitly given, it is used.

max.search.filter.length -

search.type -

user.create.bases If only one authenticator, uses it as the create base value. If
multiple authenticators, no default value is set; user must
explicitly set the global value.

user.filter.object.classes inetorgperson

user.login.attr uid

user.mandatory.attrs -

user.object.classes inetorgperson

If the global value is explicitly given, it is used.

user.search.bases Same as group.search.bases

username.attr cn

The global value is used if explicitly provided.

See Also: Section F–6, " Generic LDAP Properties"

Table 7–1 (Cont.) Global LDAP Identity Store Parameters

Parameter Default Value

Configuring the Identity Store Service

Configuring the Identity Store Service 7-5

7.3.2.1 Configuring the Service for Single LDAP
You can configure the identity store service to query only one LDAP store. See
Example 7–1 which displays a fragment of the jps-config.xml file with a single
LDAP service instance.

7.3.2.2 Configuring the Service for Multiple LDAP using Fusion Middleware Control
As in the single LDAP setup, you start by configuring the authentication providers in
Oracle WebLogic Server.

Next, take these steps in Fusion Middleware Control:

1. Select the WebLogic domain in the navigation pane on the left.

2. Navigate to Security, then Security Provider Configuration.

3. Expand the Identity Store Provider section of the page.

4. Click Configure (corresponding to "Configure parameters for User and Role APIs
to interact with identity store").

5. The Identity Store Configuration page appears.

6. Under Custom Properties, click Add.

7. Add the new property as follows:

Property Name=virtualize
Value=true

8. Click OK.

7.3.2.3 Configuring the Service for Multiple LDAP using WLST
To configure the virtualize property using WLST, take these steps:

1. Create a py script file to connect to the administration server in the domain of
interest. You need to specify the userName, userPass, localHost, and
portNumber for the operation.

See Appendix E.1, "Configuring OPSS Service Provider Instances with a WLST
Script" for details about this script.

2. Navigate to $ORACLE_HOME/common/bin.

3. Run the wlst.sh command to execute the script.

For example, if the domain configuration file contains an authenticator named
idstore.ldap, the following command:

wlst.sh /tmp/updateServiceInstanceProperty.py -si idstore.ldap
-key "virtualize" -value "true"

configures the provider for multi-LDAP lookup.

Note: Be sure to add the property to the identity store service
instance in the default context.

See Also: Section E.1, "Configuring OPSS Service Provider Instances
with a WLST Script".

Configuring the Identity Store Service

7-6 Oracle Fusion Middleware Application Security Guide

7.3.2.4 Configuring Other Parameters
If desired, you can update jps-config.xml to set query parameters listed in
Section 7.3.1, "What is Configured?". These parameters are optional; default values are
provided.

7.3.2.5 Restarting Servers
After configuring for multi-LDAP query, restart Weblogic admin and managed
servers.

7.3.2.6 Examples of the Configuration File
Example 7–1 shows a sample jps-config.xml file configured for single-LDAP
queries in the Oracle WebLogic Server environment:

Example 7–1 Single-LDAP Configuration in Oracle WebLogic Server

<!-- JPS WLS LDAP Identity Store Service Instance -->
 <serviceInstance name=idstore.ldap provider=idstore.ldap.provider>
 <property name=idstore.config.provider

value=oracle.security.jps.wls.internal.idstore.
WlsLdapIdStoreConfigProvider/>

 <property name=CONNECTION_POOL_CLASS
value=oracle.security.idm.providers.stdldap.JNDIPool/>

 </serviceInstance>

Example 7–2 shows a sample jps-config.xml file configured for multi-LDAP
queries in the Oracle WebLogic Server environment:

Example 7–2 Multi-LDAP Configuration in Oracle WebLogic Server

<jpsConfig xmlns="http://xmlns.oracle.com/oracleas/schema/11/jps-config-11_1.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/oracleas/schema/11/jps-config-11_
1.xsd" schema-major-version="11" schema-minor-version="1">

 <serviceProviders>
 <serviceProvider type="IDENTITY_STORE" name="idstore.ldap.provider"

class="oracle.security.jps.internal.idstore.ldap.LdapIdentityStoreProvider">
 <description>LDAP-based IdentityStore Provider</description>
 </serviceProvider>
 </serviceProviders>

 <serviceInstances>
 <!-- IDstore instance connecting to multiple ldap -->
 <serviceInstance name="idstore.virtualize"
provider="idstore.ldap.provider">

 <!-- following property indicates using WLS ldap Authenticators -->
 <property name="idstore.config.provider"

value="oracle.security.jps.wls.internal.idstore.WlsLdapIdStoreConfigProvider"/>

 <!-- following property enables virtualization i.e., support for multiple
stores -->
 <property name="virtualize" value="true"/>

 <!-- Front end ldap properties (if not supplied, will use default
values) -->

Configuring the Identity Store Service

Configuring the Identity Store Service 7-7

 <extendedProperty>
 <name>user.create.bases</name>
 <values>
 <value>cn=users_front,dc=us,dc=oracle,dc=com</value>
 </values>
 </extendedProperty>
 <extendedProperty>
 <name>group.create.bases</name>
 <values>
 <value>cn=groups_front,dc=us,dc=oracle,dc=com</value>
 </values>
 </extendedProperty>
 </serviceInstance>
 </serviceInstances>

 <jpsContexts default="default">

 <!-- the identity store uses multiple ldaps -->
 <jpsContext name="default">
 <!-- use multiple ldap -->
 <serviceInstanceRef ref="idstore.virtualize"/>
 <!--other services -->
 </jpsContext>
 </jpsContexts>

</jpsConfig>

Note that:

■ the virtualize property of the service instance is set to true, enabling
multi-LDAP queries.

■ the extendedProperty element enables you to set front-end parameters if
desired to override default values.

For more information, see "Front-End Parameters" in Section 7.3.1, "What is
Configured?".

7.3.3 Configuring Split Profiles
Identity Virtualization supports a "split profile," where an application makes use of
attributes for a single identity that are stored on two different sources.

This feature requires additional configuration beyond that described in this chapter.
For details, see Appendix K, "Adapter Configuration for Identity Virtualization".

7.3.4 Configuring Custom Authenticators
OPSS supports the set of LDAP-based Oracle WebLogic Server authentication
providers (WebLogic authenticators) for access to identity stores. If the out-of-the-box
WebLogic authenticators are not applicable to your LDAP server type, you can
customize a generic authenticator for this task.

This section explains how you can configure such an authenticator when the
'virtualize' flag is enabled for the identity store service.

Note the following points in this context:

■ When using a generic LDAP authenticator, you need to tell the Identity Store
Service of the exact LDAP type so that it can find the proper LDAP plug-in. You
do this by overriding the 'idstore.type' property in jps-config.xml.

Configuring the Identity Store Service

7-8 Oracle Fusion Middleware Application Security Guide

■ As the 'virtualize' flag is enabled, and the Oracle WebLogic Server domain has
two or more authenticators (for example, the defaultAuthenticator and generic
LDAP), you need to tell the Identity Store Service which LDAP server's
'idstore.type' is to be overriden.

You provide this information as follows in jps-config.xml:

<serviceInstance name="idstore.ldap" provider="idstore.ldap.provider">
 <property name="idstore.config.provider"
value="oracle.security.jps.wls.internal.idstore.WlsLdapIdStoreConfigProvider"
/>
 <property name="CONNECTION_POOL_CLASS"
value="oracle.security.idm.providers.stdldap.JNDIPool" />

 <property value="true" name="virtualize" />

 <!-- the following refer to the Generic ldap name configured on the WLS
authenticator provider, you get this name from WebLogic config.xml file or admin
console -->
 <serviceInstanceRef ref="myGenericLDAPName"/>

 </serviceInstance>

 <!-- the following provide the overriding to the Generic ldap (e.g. AD)
-->
 <!-- "myGenericLDAPName" is the name used on WLS for the generic LDAP
authenticator provider -->
 <serviceInstance name="myGenericLDAPName" provider="idstore.ldap.provider">

 <!-- the following overrides the 'idstore.type' property to
"ACTIVE_DIRECTORY" -->
 <property name="idstore.type" value="ACTIVE_DIRECTORY" />
 </serviceInstance>

If you need to override an additional LDAP provider instance, simply add another
similar entry to the file.

7.3.5 Configuration in Other Application Servers
 Topics in this section include:

■ Configuring the Service for Single LDAP

■ Configuring the Service for Multiple LDAP

7.3.5.1 Configuring the Service for Single LDAP
See the example in Section 22.2.2, "Configuring an LDAP Identity Store in Java SE
Applications," for details.

7.3.5.2 Configuring the Service for Multiple LDAP
To configure the identity store service to handle multiple LDAPs in third-party
application servers:

1. Modify the jps-config.xml file to configure service instances for each supported
LDAP directory

2. Restart the application server to make the changes effective.

Configuring the Identity Store Service

Configuring the Identity Store Service 7-9

Example 7–3 shows a sample jps-config.xml file configured to run multi-LDAP queries
for third-party application servers:

Example 7–3 Multi-LDAP Configuration in Third-Party Application Servers

<jpsConfig xmlns="http://xmlns.oracle.com/oracleas/schema/11/jps-config-11_1.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/oracleas/schema/11/jps-config-11_
1.xsd" schema-major-version="11" schema-minor-version="1">

 <serviceProviders>
 <serviceProvider type="IDENTITY_STORE" name="idstore.ldap.provider"
class="oracle.security.jps.internal.idstore.ldap.LdapIdentityStoreProvider">
 <description>LDAP-based IdentityStore Provider</description>
 </serviceProvider>
 </serviceProviders>

 <serviceInstances>
 <!-- instance 'idstore.oid' to represent an ldap server 'oid' -->
 <serviceInstance name="idstore.oid" provider="idstore.ldap.provider">
 <property name="subscriber.name" value="dc=us,dc=oracle,dc=com"/>
 <property name="idstore.type" value="OID"/>
 <property name="security.principal.key" value="oid.ldap.credentials"/>
 <property name="security.principal.alias" value="JPS"/>
 <property name="ldap.url"

value="ldap://oid1.us.oracle.com:389,ldap://oid2.us.oracle.com:389"/>
 <extendedProperty>
 <name>user.search.bases</name>
 <values>
 <value>cn=users,dc=us,dc=oracle,dc=com</value>
 </values>
 </extendedProperty>
 <extendedProperty>
 <name>group.search.bases</name>
 <values>
 <value>cn=groups,dc=us,dc=oracle,dc=com</value>
 </values>
 </extendedProperty>
 <extendedProperty>
 <name>username.attr</name>
 <values>
 <value>uid</value>
 </values>
 </extendedProperty>
 <extendedProperty>
 <name>groupname.attr</name>
 <values>
 <value>cn</value>
 </values>
 </extendedProperty>
 </serviceInstance>

 <!-- instance 'idstore.ad' to represent an ldap server 'ad' -->
 <serviceInstance name="idstore.ad" provider="idstore.ldap.provider">
 <property name="subscriber.name" value="dc=us,dc=oracle,dc=com"/>
 <property name="idstore.type" value="ACTIVE_DIRECTORY"/>
 <property name="security.principal.key"
value="msad.ldap.credentials"/>
 <property name="security.principal.alias" value="JPS"/>

Configuring the Identity Store Service

7-10 Oracle Fusion Middleware Application Security Guide

 <property name="ldap.url"
value="ldap://msad1.us.oracle.com:389,ldap://msad2.us.oracle.com:389"/>
 <extendedProperty>
 <name>user.search.bases</name>
 <values>
 <value>cn=users,dc=us,dc=oracle,dc=com</value>
 </values>
 </extendedProperty>
 <extendedProperty>
 <name>group.search.bases</name>
 <values>
 <value>cn=groups,dc=us,dc=oracle,dc=com</value>
 </values>
 </extendedProperty>
 <extendedProperty>
 <name>username.attr</name>
 <values>
 <value>cn</value>
 </values>
 </extendedProperty>
 <extendedProperty>
 <name>groupname.attr</name>
 <values>
 <value>cn</value>
 </values>
 </extendedProperty>
 </serviceInstance>

 <!-- IDStore service "idservice.virtualize" to connect to multiple ldaps
('oid' and 'ad') using libOVD-->
 <serviceInstance name="idservice.virtualize"

provider="idstore.ldap.provider">

 <!--following property enables virtualization i.e., support for multiple
stores -->
 <property name="virtualize" value="true"/>
 <!-- backend ldap instance "idstore.oid"-->

<serviceInstanceRef ref="idstore.oid"/>
 <!-- backend ldap instance "idstore.ad"-->

<serviceInstanceRef ref="idstore.ad"/>
 <!-- Front end ldap properties (if not supplied, will use default
values) -->
 <extendedProperty>
 <name>user.create.bases</name>
 <values>
 <value>cn=users_front,dc=us,dc=oracle,dc=com</value>
 </values>
 </extendedProperty>
 <extendedProperty>
 <name>group.create.bases</name>
 <values>
 <value>cn=groups_front,dc=us,dc=oracle,dc=com</value>
 </values>
 </extendedProperty>
 </serviceInstance>
 </serviceInstances>

 <jpsContexts default="default">

 <!-- IdStore service connect to multiple ldaps ('oid'+'ad') through

Querying the Identity Store Programmatically

Configuring the Identity Store Service 7-11

libOVD-->
 <jpsContext name="default">
<!-- use multiple ldaps ('oid'+'ad') through libOVD-->
 <serviceInstanceRef ref="idservice.virtualize"/>
 <!--other services -->
 </jpsContext>

 </jpsContexts>

</jpsConfig>

Note that:

■ the first service instance defines the provider for Oracle Internet Directory.

■ the second service instance defines the provider for Microsoft Active Directory.

■ the virtualize property of the service instance is set to true, enabling
multi-LDAP queries.

■ the extendedProperty elements enable you to set front-end parameters if
desired to override default values.

For more information, see "Front-End Parameters" in Section 7.3.1, "What is
Configured?".

7.3.6 Java SE Environments
In the Java SE environment, you directly modify the jps-config.xml file as follows:

1. Define a new identity store service instance.

2. Add the new service instance to the JPS context, replacing any previously defined
IdentityStore instance.

3. Refer to Example 7–3 to enable the 'virtualize' flag in the identity store service.

See Section 22.2.2, "Configuring an LDAP Identity Store in Java SE Applications" for
details.

7.4 Querying the Identity Store Programmatically
To programmatically query the LDAP identity store, you use OPSS to obtain the JPS
context; this acts like a bridge to obtain the store instance. Subsequently you use the
User and Role API to query the store.

Example 7–4 Querying the LDAP Identity Store Programmatically

 try {
 //find the JPS context
 JpsContextFactory ctxFactory = JpsContextFactory.getContextFactory();
 JpsContext ctx = ctxFactory.getContext();

 //find the JPS IdentityStore service instance

//(assuming the backend is ldap type)
 LdapIdentityStore idstoreService =
(LdapIdentityStore)ctx.getServiceInstance(IdentityStoreService.class)

 //get the User/Role API's Idmstore instance
 oracle.security.idm.IdentityStore idmIdentityStore =
idstoreService.getIdmStore();

SSL for the Identity Store Service

7-12 Oracle Fusion Middleware Application Security Guide

 //use the User/Role API to query id store
 //

//alternatively, instead of using IdentityStore, use the
//IdentityDirectory to access LDAP
oracle.igf.ids.IdentityDirectory ids = idstoreService.getIdentityStore();
// ref. chapter "Developing with the Identity Directory API"
// on how to use IdentityDirectory

 } catch (Exception e) {
 e.printStackTrace()
}

To see how to enable the 'virtualize' property in the identity store service, refer to
Example 7–3.

For additional information about using MBeans, see Section E.2, "Configuring OPSS
Services with MBeans".

7.5 SSL for the Identity Store Service
Connections between the identity store and an LDAP server can be SSL-enabled. This
section explains how the connections are configured in the various scenarios.

■ Connections from Oracle WebLogic Server to Identity Store

■ One-way SSL in a Multi-LDAP Scenario

■ Two-way SSL in a Multi-LDAP Scenario

■ Connections in a Single-LDAP Scenario

7.5.1 Connections from Oracle WebLogic Server to Identity Store
When the connection to the identity store originates at a client residing in Oracle
WebLogic Server, SSL configuration is handled by Oracle WebLogic Server. For
details, see Section 8.2.3.

7.5.2 One-way SSL in a Multi-LDAP Scenario
Both the Identity Directory API and the User and Role API can operate in a
multi-LDAP identity store configuration (virtualize = true).

In this scenario, you can SSL-enable the connection from the identity store to the
LDAP servers.

The procedure is as follows:

1. Create a keystore to contain the LDAP server certificate(s) for use by the service.
You will need to provide passwords for the WebLogic Admin Server and the
keystore, respectively.

Create the keystore using the script $MW_HOME/oracle_
common/bin/libovdconfig.sh with the "-createKeyStore" option:

libovdconfig.sh -host wls_host -port wls_adminserver_port -userName
wls_user_name -domainPath full_path_domain_home -createKeyStore

where:

■ host is the Oracle WebLogic Server host

SSL for the Identity Store Service

Configuring the Identity Store Service 7-13

■ port is the Oracle WebLogic Server Admin Server port

■ username is the Oracle WebLogic Server admin user name

■ domainPath is the complete path to the domain home

2. Export the certificate from the LDAP directory using the appropriate export
command.

3. Import this certificate into the keystore you created in Step 1.

Import the certificate to the keystore using the keytool command. The syntax is
as follows, for a keystore named adapters.jks:

$JAVA_HOME/bin/keytool -importcert
-keystore $DOMAIN_HOME/config/fmwconfig/ovd/default/keystores/adapters.jks
-storepass keystore_password_used_in_libovdconfig.sh
-alias alias_name
-file full_path_to_LDAPCert_file
-noprompt

4. Restart Oracle WebLogic Server.

7.5.3 Two-way SSL in a Multi-LDAP Scenario
To implement two-way SSL in a multi-LDAP identity store configuration, take these
steps:

1. Perform the procedure described in Section 7.5.2.

2. In the keystore that was created by Step 1 of Section 7.5.2, generate a new key pair,
signed by a CA.

3. Export this certificate to a file.

4. Import the certificate into the server's keystore.

7.5.4 Connections in a Single-LDAP Scenario
Both the Identity Directory API and the User and Role API can operate in a
single-LDAP identity store configuration (virtualize = false).

For this scenario, SSL between the identity store and the LDAP server is configured
with the same basic steps outlined in Section 7.5.2. However, there is no need to create
a keystore using libovdconfig.sh. Instead, the trusted certificate must be imported
into the application server’s trust-store.

For example:

keytool -import -v -trustcacerts -alias mytrust -file oidServerTrust.cert
-keystore myTrustStore.jks -storepass trustStorePassword

SSL for the Identity Store Service

7-14 Oracle Fusion Middleware Application Security Guide

8

Configuring the OPSS Security Store 8-1

8Configuring the OPSS Security Store

The OPSS security store is the repository of system and application-specific policies,
credentials, and keys. For an introduction to policies, credentials, keys and certificates,
see the following sections:

■ Section 3.2, "Policy Store Basics"

■ Section 3.3, "Credential Store Basics"

■ Section 3.4, "Keystore Service Basics"

This chapter explains the features of the OPSS security store common to policies,
credentials, and keys, and it is divided into the following sections:

■ Introduction to the OPSS Security Store

■ Using an LDAP-Based OPSS Security Store

■ Using a DB-Based OPSS Security Store

■ Configuring the OPSS Security Store

■ Reassociating the OPSS Security Store

■ Migrating the OPSS Security Store

■ Configuring the Identity Provider, Property Sets, and SSO

For details about Java EE and WebLogic Security, see section Java EE and WebLogic
Security in Oracle Fusion Middleware Understanding Security for Oracle WebLogic Server.

8.1 Introduction to the OPSS Security Store
The OPSS security store is the repository of system and application-specific policies,
credentials, and keys. This centralization facilitates the administration and
maintenance of policy, credential, and key data.

Note: When a WebLogic domain is setup to use policies based on the
OPSS security store, JACC policies and the Java Security Manager
become unavailable on all managed servers in that domain.

Important: All permission classes used in policies in the OPSS
security store must be included in the class path, so the policy
provider can load them when a service instance is initialized.

Using an LDAP-Based OPSS Security Store

8-2 Oracle Fusion Middleware Application Security Guide

The OPSS security store can be file-, LDAP-, or DB-based depending on the choice of
repository type, and it can be reassociated (that is, the repository type can be changed)
from file-based to LDAP- or DB-based; from DB-based to LDAP- or DB-based; and
from LDAP-based to LDAP- or DB-based. No other reassociation is supported. For
details about the tools and procedures available to reassociate the OPSS security store,
see sections Reassociating with Fusion Middleware Control and Reassociating with
the Script reassociateSecurityStore. Out-of-the-box, the OPSS security store is
file-based.

The security data relevant to a Java EE application is typically packaged with the
application and it can be migrated at deploy time to the OPSS security store. For
details about the tools and procedures available to migrate to the OPSS security store,
see sections Migrating with Fusion Middleware Control and Migrating with the Script
migrateSecurityStore.

8.2 Using an LDAP-Based OPSS Security Store
An LDAP-based policy store is typically used in production environments. The only
LDAP server supported in this release is the Oracle Internet Directory (release 10.1.4.3
or later).

To use a domain LDAP-based OPSS security store the domain administrator must
configure it, as appropriate, using Oracle Enterprise Manager Fusion Middleware
Control or OPSS scripts.

Note: Depending on the version, the following patches to Oracle
Internet Directory are required:

■ Patch to fix bug 9093298 in Oracle Internet Directory 10.1.4.

■ Patch to fix bug 8736355 in Oracle Internet Directory 11.1.x

■ Patch to fix bug 8426457 in Oracle Internet Directory 11.1.x and
10.1.4.3.0

■ Patch to fix bug 8351672 in Oracle Internet Directory 10.1.4.3.0

To apply a patch, proceed as follows:

1. Visit Oracle Automated Release Updates.

2. Click the Patches tab.

3. Enter the bug number in the Request Number box, and click Search.

4. Apply the patch.

Important: OPSS does not support enabling referencial integrity on
Oracle Internet Directory servers. The server will not work as
expected if referencial integrity is enabled.

To disable a server’s referencial integrity, use Oracle Enterprise
Manager Fusion Middleware Control as follows:

1. Select Administration, then Shared Properties from the Oracle Internet
Directory menu, and then select General.

2. Select Disabled from the Enable referencial Integrity list.

Using an LDAP-Based OPSS Security Store

Configuring the OPSS Security Store 8-3

For a list of properties that can be specified in a service instance, see Appendix F.2.4,
"Properties Common to All LDAP-Based Instances."

The information in this section is divided into the following topics:

■ Multiple-Node Server Environments

■ Prerequisites to Using an LDAP-Based Security Store

8.2.1 Multiple-Node Server Environments
In domains where several server instances are distributed across multiple machines, it
is highly recommended that the OPSS security store be LDAP- or DB-based.

Typically, applications do not change policy, credential, or key data. When they do,
however, it is crucial that these changes be correctly propagated to all managed
servers and clusters in a domain and, therefore, it is recommended that any such
changes be performed in the domain administration server (and not in managed
servers).

In a single-node server domain, the propagation of local changes to security data is
irrelevant: in this scenario, local changes are equivalent to global changes.

In a multiple-node server domain, however, the JMX framework propagates local
changes to a file-based policy to each runtime environment, so that the data is
refreshed based on caching policies and configuration. For details about properties
you can set on policies and credentials, see sections Appendix F.2.1, "Policy Store
Properties," and Appendix F.2.2, "Credential Store Properties."

In a multiple-node server environment, it is highly recommended that both the policy
and credential stores be centralized in a LDAP- or DB-based store and configured in
the administration server.

8.2.2 Prerequisites to Using an LDAP-Based Security Store
The only supported LDAP-based OPSS security store is Oracle Internet Directory. In
order to ensure the proper access to the Oracle Internet Directory, you must set a node
in the server directory as explained below.

Fusion Middleware Control automatically provides bootstrap credentials in the file
cwallet.sso when that tool is used to reassociate to an LDAP-based repository. To
specify these required credentials manually, see section Section 21.4.7, "Specifying
Bootstrap Credentials Manually."

Setting a Node in an Oracle Internet Directory Server
The following procedure is carried out by an Oracle Internet Directory administrator.

To set a node in the LDAP Oracle Internet Directory directory, proceed as follows:

1. Create an LDIF file (assumed jpstestnode.ldif, for illustration purpose)
specifying the following DN and CN entries:

dn: cn=jpsroot
cn: jpsroot
objectclass: top
objectclass: OrclContainer

The distinguished name of the root node (illustrated by the string jpsroot above)
must be distinct from any other distinguished name. Some LDAP servers enforce
case sensitivity by default. One root node can be shared by multiple WebLogic
domains. It is not required that this node be created at the top level, as long as

Using an LDAP-Based OPSS Security Store

8-4 Oracle Fusion Middleware Application Security Guide

read and write access to the subtree is granted to the Oracle Internet Directory
administrator.

2. Import this data into the LDAP server using the command ldapadd, as illustrated
in the following example (there should be no line break in the command
invocation):

>ldapadd -h ldap_host -p ldap_port -D cn=orcladmin -w password -v -f
jpstestnode.ldif

3. Verify that the node has been successfully inserted using the command
ldapsearch, as illustrated in the following example (there should be no line
break in the command invocation):

>ldapsearch -h ldap_host -p ldap_port -D cn=orcladmin -w password -s base
-b "cn=jpsroot" objectclass="orclContainer"

4. Run the utility oidstats.sql to generate database statistics for optimal database
performance, as illustrated in the following example:

>$ORACLE_HOME/ldap/admin/oidstats.sql

The above utility must be run just once after the initial provisioning. For details
about this utility, consult the Oracle Fusion Middleware User Reference for Oracle
Identity Management.

To reassociate a policy store, see Reassociating the OPSS Security Store.

8.2.3 Setting Up a One- Way SSL Connection to the LDAP
This section describes how to set up a one-way SSL channel between Oracle WebLogic
server or a Java SE application and the LDAP Oracle Internet Directory. Such
connection may be required, for example, when reassociating to an LDAP-based target
store.

Prerequisite: Configuring the Oracle Internet Directory Server
To configure the Oracle Internet Directory server to listen in one-way SSL mode, see
section Enabling SSL on Oracle Internet Directory Listeners in Oracle Fusion Middleware
Administrator's Guide.

Exporting Oracle Internet Directory’s Certificate Authority (CA)
The use of orapki to create a certificate is needed only if the CA is unknown to the
Oracle WebLogic server.

The following sample illustrates the use of this command to create the certificate
serverTrust.cert:

>orapki wallet export -wallet CA -dn "CN=myCA" -cert serverTrust.cert

 The above invocation prompts the user to enter the keystore password.

Before You Begin
Before configuring SSL, note that:

■ The following procedures are required if the type of SSL being established is
server-auth, and they are not required in any other case (no-auth or client-auth).

■ If the flags specified in the procedures below are used in a multi-application
environment, then the trust store must be shared by all those applications.

Using an LDAP-Based OPSS Security Store

Configuring the OPSS Security Store 8-5

Setting Up the WebLogic Server in Case of a Java EE Application
The difference in the following procedures is because the identity store service and the
policy store service use different socket factories.

To establish a one-way SSL connection between the server and the identity store,
proceed as follows (if applicable, the trust CA is assumed exported):

1. If the CA is known to the Oracle WebLogic server, skip this step; otherwise, use
the utility keytool to import the Oracle Internet Directory’s CA into the
WebLogic truststore.

The following invocation, which outputs the file myKeys.jks, illustrates the use
of this command to import the file serverTrust.cert:

>keytool -import -v -trustcacerts -alias trust -file serverTrust.cert -keystore
myKeys.jks -storepass keyStorePassword

2. Modify the script (typically startWebLogic.sh) that starts the server to include a
line like the following, and then restart the server:

-Djavax.net.ssl.trustStore=<absolute path name to file myKeys.jks>

To establish a one-way SSL connection between the server and the policy store,
proceed as follows (if applicable, the trust CA is assumed exported):

1. Use the utility keytool to import trust CA to the trust key store, as illustrated in
the following invocation:

>keytool -import -v -trustcacerts -alias trust -file serverTrust.cert -keystore
myKeys.jks -storepass keyStorePassword

2. Modify the script (typically startWebLogic.sh) that starts the server to include a
line like the following, and then restart the server:

-Dweblogic.security.SSL.trustedCAKeyStore=<absolute path name to file
myKeys.jks>

3. If the OID server uses a wild card in the SSL certificate, then add the following line
to the script that starts the WebLogic server:

-Dweblogic.security.SSL.ignoreHostnameVerification=true

Setting Up the WebLogic Server in Case of a Java SE Application
The setting up in the case of Java SE applications is the same for both the identity and
the policy store services.

1. If the CA is known to the Oracle WebLogic server, skip this step; otherwise, use
the utility keytool to import the Oracle Internet Directory's CA into the
WebLogic truststore.

The following invocation, which outputs the file myKeys.jks, illustrates the use
of this command to import the file serverTrust.cert:

>keytool -import -v -trustcacerts -alias trust -file serverTrust.cert -keystore
myKeys.jks -storepass keyStorePassword

2. Modify the script that starts the JMV to include a line like the following:

-Djavax.net.ssl.trustStore=<absolute path name to file myKeys.jks>

Using a DB-Based OPSS Security Store

8-6 Oracle Fusion Middleware Application Security Guide

8.3 Using a DB-Based OPSS Security Store
A DB-based security store is typically used in production environments. The only
supported DB-based security store is Oracle RDBMS (releases 10.2.0.4 or later; releases
11.1.0.7 or later; and releases 11.2.0.1 or later).

To use a DB-based OPSS security store the domain administrator must configure it, as
appropriate, using Oracle Enterprise Manager Fusion Middleware Control or OPSS
scripts. In case any checks are needed before the server completes its initialization, see
Section L.14, "Permission Failure Before Server Starts."

For a list of properties that can be configured, see Appendix F.2, "OPSS Configuration
Properties."

This section contains the following topics:

■ Prerequisites to Using a DB-Based Security Store

■ Maintaining a DB-Based Security Store

■ Setting Up an SSL Connection to the DB

8.3.1 Prerequisites to Using a DB-Based Security Store
To use a database repository for the OPSS security store, one must first use Oracle
Fusion Middleware Repository Creation Utility (RCU) to create the required schema
and to seed some initial data. This setup is also required before reassociating the OPSS
security store to a DB-based security store.

For details about RCU, see chapters Repository Creation Utility Overview and
Running Repository Creation Utility in Oracle Fusion Middleware Repository Creation
Utility User's Guide.

The creation the schema and seeding of initial data are explained in the following
sections:

■ Creating the OPSS Schema in an Oracle Database

■ Dropping the OPSS Schema in an Oracle Database

■ Creating a Data Source Instance

8.3.1.1 Creating the OPSS Schema in an Oracle Database
To create the OPSS schema in an Oracle database with RCU, proceed as follows:

1. Start RCU to display the RCU Welcome page; in this page, click Next to display
the Create Repository page.

2. In that page, select the radio button Create; then click Next to display the
Database Connections Details page.

3. In that page, enter the appropriate connectivity information: Database Type, Host
Name, Port, Service Name, Username, Password, and Role.

Then click Next to have RCU check the entered data and perform pre-creation
operations; once this check is successfully completed, RCU displays the Select
Components dialog.

4. In that dialog, choose to use an existing schema prefix or create a new prefix, and
pick the OPSS component to install the schema.

When finished selecting components, click Next to display the Schema Passwords
dialog where you supply passwords, and then click Next to display the Map

Using a DB-Based OPSS Security Store

Configuring the OPSS Security Store 8-7

Tablespaces dialog which shows the tablespace summary. Use one default
tablespace and one temporary tablespace; the default tablespace names are
PREFIX_IAS_OPSS and PREFIX_IAS_TEMP, respectively.

To create a non-default tablespace or datafile, click the button Manage
Tablespaces to display the Manage Tablespaces dialog, where you can specify the
information to create them. When finished, click OK. If the specified tablespaces
are not yet in the database, RCU creates them and informs about this in the
Creating Tablespaces; click OK to display the Summary dialog, which displays
the summary of data you have entered, and then click Create to effect the creation
of the additional tablespace(s) or datafile(s).

5. When the creation is completed, RCU displays the Completion Summary, which
shows the database details.

6. Invoke the SQLPlus command illustrated below to verify that the database schema
has been properly created:

SQL> desc jps_dn;

8.3.1.2 Dropping the OPSS Schema in an Oracle Database
Dropping the OPSS schema is required only if one no longer wishes to use that DB for
storing OPSS security policies.

After the OPSS schema has been successfully created, use RCU to drop the OPSS
schema as follows:

1. Start RCU to display the RCU Welcome page; in this page, click Next to display
the Drop Repository page.

2. In that page, select the radio button Drop; then click Next to display the Database
Connections Details page.

3. In that page, enter the appropriate connectivity information: Database Type, Host
Name, Port, Service Name, Username, Password, and Role. Then click Next to
display the Select Components dialog.

4. In that dialog, select the prefix and, in the Component hierarchy, check AS
Common Schemas and Oracle Platform Security Services; then click Next to
display the Summary page.

5. In that page, verify that the details gathered are correct, and click Drop to trigger
the dropping; when the operation is successfully completed, RCU displays the
Completion Summary page detailing the schema dropped.

8.3.1.3 Creating a Data Source Instance
To create a JDBC data source in a WebLogic domain using the Oracle WebLogic
Administration Console, proceed as follows:

1. Login to the Console and navigate to Services > DataSources and select New >
Generic Data Source.

2. Enter the JNDI Name and then click Next. Note that this name is used when
configuring a DB-based store in the file jps-config.xml.

3. In the Database Driver pull-down, select Oracle’s Driver (Thin) for Instance
connections; Versions:9.0.1 and later (this is a non-XA JDBC driver) and then click
Next.

4. Make sure that Supports Global Transactions is deselected and then click Next.

Using a DB-Based OPSS Security Store

8-8 Oracle Fusion Middleware Application Security Guide

5. In the area Connection Properties, enter data for Database Name, Host Name,
Port, Database User Name, and Password. Then click Next.

6. Inspect and test your settings and, when satisfied, click Finish.

7. Deploy the just created data source on the appropriate server.

For more details on the above procedure, see section Creating a JDBC Data Source in
Oracle Fusion Middleware Configuring and Managing JDBC for Oracle WebLogic Server.

To set up a data source on WebSphere Application Server, see Oracle Fusion Middleware
Third-Party Application Server Guide.

8.3.2 Maintaining a DB-Based Security Store
This section describes a few tasks that an administrator can follow to maintain a
DB-based security store.

A DB-based security store maintains a change log that should be periodically purged.
To purge it, an administrator can use the provided SQL script
opss_purge_changelog.sql, which will purge change logs older than 24 hours, or
connect to the database and run SQL delete (with the appropriate arguments) as
illustrated in the following lines:

SQL>delete from jps_changelog where createdate < (select(max(createdate) - 1) from
jps_changelog);
SQL>Commit;

If the OPSS management API performs slowly while accessing the DB-based security
store, run the DBMS_STATS package to gather statistics about the physical storage of a
DB table, index, of cluster. This information is stored in the data dictionary and can be
used to optimize the execution plan for SQL statements accessing analyzed objects.

When loading large amount of data into a DB-based security store, such as when
creating thousands of new application roles, it is recommended that DBMS_STATS be
run within short periods and concurrently with the loading activity. Otherwise, when
the loading activity is small, DBMS_STATS needs to be run just once and according to
your needs.

The following sample illustrates the use of DBMS_STATS:

EXEC DBMS_STATS.GATHER_SCHEMA_STATS('DEV_OPSS', DBMS_STATS.AUTO_SAMPLE_SIZE,
no_invalidate=>FALSE);

where DEV_OPSS denotes the name of the DB schema created during the RCU setup
(see section Creating the OPSS Schema in an Oracle Database). For details about the
DBMS_STATS package, see the Oracle Database Administrator’s Guide.

To run DBMS_STATS periodically, use a shell script or an SQL script, as described next.

The following sample script runs the command DBMS_STATS every 10 minutes:

#!/bin/sh
i=1
while [$i -le 1000]
do

Note: 11.2 Oracle JDBC driver deprecated the following time zones:
Etc/UCT, UCT, Etc/UTC, Etc/Universal, Etc/Zulu, and Universal.
When setting a time zone for your Oracle JDBC driver, make sure that
it is a non-deprecated time zone.

Configuring the OPSS Security Store

Configuring the OPSS Security Store 8-9

echo $i
sqlplus dev_opss/welcome1@inst1 @opssstats.sql
sleep 600
i=`expr $i + 1`
done

where opssstats.sql contains the following text:

EXEC DBMS_STATS.gather_schema_stats('DEV_OPSS',DBMS_STATS.AUTO_SAMPLE_SIZE,
no_invalidate=>FALSE);
QUIT;

The following sample SQL script also runs the command DBMS_STATS every 10
minutes:

variable jobno number;
BEGIN
DBMS_JOB.submit
(job => :jobno,
what =>
'DBMS_STATS.gather_schema_stats(''DEV_OPSS'',DBMS_STATS.AUTO_SAMPLE_SIZE,no_invali
date=>FALSE);',
interval => 'SYSDATE+(10/24/60)');
COMMIT;
END;
/

To stop the periodic invocation of DBMS_STATS by the above SQL script, first find out
its job number by issuing the following commands:

sqlplus '/as sysdba'
SELECT job FROM dba_jobs WHERE schema_user = 'DEV_OPSS' AND what =
'DBMS_STATS.gather_schema_stats(''DEV_OPSS'',DBMS_STATS.AUTO_SAMPLE_SIZE,
no_invalidate=>FALSE);';

Then issue a command like the following, in which it is assumed that the query above
returned the job number 31:

EXEC DBMS_JOB.remove(31);

8.3.3 Setting Up an SSL Connection to the DB
Establishing a one- or two-way SSL connection to a DB-Based OPSS security store is
optional and explained in section Configuring SSL for the Database in Oracle Fusion
Middleware Administrator's Guide .

For additional information about SSL-related topics see the following documents:

■ SSL with Oracle JDBC Thin Driver at the following link:
http://www.oracle.com/technology/tech/java/sqlj_jdbc/pdf/wp-o
racle-jdbc_thin_ssl_2007.pdf.

■ Oracle Database JDBC Developer's Guide.

8.4 Configuring the OPSS Security Store
For examples of store configurations for Java SE applications, see Section 23.1,
"Configuring Policy and Credential Stores in Java SE Applications."

For examples of store configurations for Java EE applications, see Example 1 and
Example 4.

Reassociating the OPSS Security Store

8-10 Oracle Fusion Middleware Application Security Guide

For details about configuring other artifacts, see Configuring the Identity Provider,
Property Sets, and SSO.

8.5 Reassociating the OPSS Security Store
Reassociating the OPSS security store consists in relocating the policy, credential, and
key stores from one repository to another one. The source can be file-, LDAP-, or
DB-based; the target can be LDAP- or DB-based. The only type of LDAP target
supported is Oracle Internet Directory; the only type of DB target supported is
DB_ORACLE.

Reassociation changes the repository preserving the integrity of the data stored. For
each security artifact, reassociation searches the target store and, if it finds a match for
it, it updates the matching artifact; otherwise, creates a new artifact.

Reassociation is typically performed, for example, when setting a domain to use an
LDAP- or DB-based OPSS store instead of the out-of-the-box file-based store. This
operation can take place at any time after the OPSS store has been configured and
instantiated, and it is carried out using either Fusion Middleware Control or
reassociateSecurityStore as explained in the following sections:

■ Reassociating with Fusion Middleware Control

■ Reassociating with the Script reassociateSecurityStore

8.5.1 Reassociating with Fusion Middleware Control
Reassociation migrates the OPSS policy store (policies, credentials, and keys) from one
repository to another and reconfigures the appropriate security store providers. This
section explains how to perform reassociation with Fusion Middleware Control pages.

For information about other uses of the Security Provider Configuration page, see
Configuring the Identity Provider, Property Sets, and SSO.

Important Points
■ Before reassociating to a target LDAP store, ensure that your setup satisfies the

Prerequisites to Using an LDAP-Based Security Store.

■ Before reassociating to a target DB store, ensure that your setup satisfies the
Prerequisites to Using a DB-Based Security Store.

■ If reassociation requires a one-way SSL to a target LDAP, follow the instructions in
Setting Up a One- Way SSL Connection to the LDAP before reassociating.

■ After reassociating to an LDAP store, to secure access to the root node of the
Oracle Internet Directory store, follow the instructions in Securing Access to
Oracle Internet Directory Nodes.

■ The jps-config.xml file produced by reassociation is good for only Java EE
applications. In case of Java SE applications, edit the file jps-config-jse.xml
to match the one described in Section 23.1.3, "Configuring DB-Based OPSS
Security Stores."

To reassociate the OPSS security store with Fusion Middleware Control, proceed as
follows:

1. Log in to Fusion Middleware Control and navigate to Domain > Security >
Security Provider Configuration (if connected to Oracle WebLogic Server) or to
Cell > Security > Security Provider Configuration (if connected to WebSphere

Reassociating the OPSS Security Store

Configuring the OPSS Security Store 8-11

Application Server), to display the Security Provider Configuration page,
partially illustrated in the following graphic:

The table in the area Security Stores shows the characteristics of the current
provider configured in the domain.

2. Click the button Change Association to display the Set Security Provider page,
and choose the Store Type from the pull-down list. The text displayed on this
page depends on the store type selected. The following graphic partially illustrates
this page when Oracle Internet Directory is selected.

Reassociating the OPSS Security Store

8-12 Oracle Fusion Middleware Application Security Guide

3. If you have selected Database, enter the name of the data source in the Datasource
Name box. This should be the name of the JDBC data source entered when the
data source was created; see Creating a Data Source Instance for details. If needed,
click Select to obtain a list of configured data source names.

4. If you have selected Oracle Internet Directory, in the LDAP Server Details area,
specify details and connection information about the target LDAP server:

1. Enter the host name and port number of your target Oracle Internet Directory
LDAP server.

2. Optionally, check the box Use SSL to Connect to establish an anonymous SSL
transmission to the LDAP server.

When checking this box, keep in mind the following points:

The port of the target LDAP server must be configured to handle an
anonymous SSL transmission; this port is distinct from the default
(non-secure) LDAP server port.

If the reassociation is to use a one-way SSL to a target LDAP store, be sure to
follow the instructions in Setting Up a One- Way SSL Connection to the LDAP
before completing this step. Among other things, that setup identifies the port

Reassociating the OPSS Security Store

Configuring the OPSS Security Store 8-13

to support a one-way SSL channel, and it is that port that should be specified
in this step. Reassociation through a two-way SSL channel is not supported in
this release.

Fusion Middleware Control modifies the file weblogic.policy by adding
the necessary grant to support the anonymous SSL connection.

3. In the text box Connect DN, enter the full distinguished name, a string
containing between 1 and 256 characters. For example,
cn=orcladmin,dc=us,dc=oracle,dc=com.

4. In the box Password, enter the user password, also a string containing
between 1 and 256 characters.

5. To verify that the connection to the LDAP server using the entered data
works, click the button Test LDAP Authentication. If you run into any
connection problem, see Section L.9, "Failure to Establish an Anonymous SSL
Connection."

5. In the Root Node Details area, enter the root DN in the box Root DN, which
identifies the top of the tree that contains the data in the LDAP repository. The
Domain Name defaults to the name of the selected domain.

To solve most common errors arising from the specifications in these two fields,
see Section L.2, "Reassociation Failure."

6. Optionally, in the Policy Store Properties and Credential Store Properties areas,
enter service instance properties, such as Enable Lazy Load and Role Member
Cache Size.

To add a new property: click Add to display the Add New Property dialog; in this
dialog, enter strings for Property Name and Value; click OK. The added
property-value pair is displayed in the table Custom Properties.

These properties are typically used to initialize the instance when it is created.

A property-value pair you enter modifies the domain configuration file
jps-config.xml by adding a <property> element in the configuration of the
LDAP service instance.

To illustrate how a service instance is modified, suppose you enter the property
name foo and value bar; then the configuration for the LDAP service instance
changes to contain a <property> element as illustrated in the following excerpt:

<serviceInstance name="myNewLDAPprovider" provider="someProvider"
 ...
 <property name="foo" value="bar"/>
 ...
</serviceInstance>

7. When finished entering your data, click OK to return to the Security Provider
Configuration page. The system displays a dialog notifying the status of the
reassociation. The table in the Security Stores area is modified to reflect the
provider you have specified.

8. Restart the application server. Changes do not take effect until it has been
restarted.

Reassociation modifies the domain configuration file
$DOMAIN_HOME/config/fmwconfig/jps-config.xml: it deletes any
configuration for the old store provider, inserts a configuration for the new store
provider, and moves the policy and credential information from the source to the
destination store.

Reassociating the OPSS Security Store

8-14 Oracle Fusion Middleware Application Security Guide

If the destination store is LDAP-based, the information is stored under the domain DN
according to the following format:

cn=<domain_name>,cn=JpsContext,<JPS ROOT DN>

As long as the configuration of the installation relies upon the above domain DN, that
node should not be deleted from the LDAP Server.

8.5.1.1 Securing Access to Oracle Internet Directory Nodes
The procedure explained in this section is optional and performed only to enhance the
security to access an Oracle Internet Directory.

An access control list (ACL) is a list that specifies who can access information and
what operations are allowed on the Oracle Internet Directory directory objects. The
control list is specified at a node, and its restrictions apply to all entries in the subtree
under that node.

ACL can be used to control the access to policy and credential data stored in an LDAP
Oracle Internet Directory repository, and it is, typically, specified at the top, root node
of the store.

To specify an ACL at a node in an Oracle Internet Directory repository, proceed as
follows:

1. Create an LDIF file with a content that specifies the ACL:

dn: <storeRootDN>
changetype: modify
add: orclACI
access to entry by dn="<userDN>" (browse,add,delete) by * (none)
access to attr=(*) by dn="<userDN>" (search,read,write,compare) by * (none)

where storeRootDN stands for a node (typically the root node of the store), and
userDN stands for the DN of the administrator data (the same userDN that was
entered to perform reassociation).

2. Use the Oracle Internet Directory utility ldapmodify to apply these specifications
to the Oracle Internet Directory.

Here is an example of an LDIF file specifying an ACL:

dn: cn=jpsRootNode
changetype: modify
add: orclACI
access to entry by dn="cn=myAdmin,cn=users,dc=us,dc=oracle,dc=com"
(browse,add,delete) by * (none)
access to attr=(*) by dn="cn=myAdmin,cn=users,dc=us,dc=oracle,dc=com"
(search,read,write,compare) by * (none)

For more information about access control lists and the command ldapmodify, see
chapter 18 in Oracle Fusion Middleware Administrator's Guide for Oracle Internet
Directory.

8.5.2 Reassociating with the Script reassociateSecurityStore
The OPSS store can be reassociated with the OPSS script
reassociateSecurityStore. For details, see Section 9.3.29,
"reassociateSecurityStore."

Migrating the OPSS Security Store

Configuring the OPSS Security Store 8-15

8.6 Migrating the OPSS Security Store
A domain includes one and only one policy store. Applications can specify their own
policies, but these are stored as policies in the policy store when the application is
deployed to a server. All applications deployed in a domain use a common policy
store, the policy store. The policy store is logically partitioned in stripes, one for each
application name specified in the file
$DOMAIN_HOME/config/fmwconfig/system-jazn-data.xml under the element
<applications>.

Migrating the OPSS security store consists in relocating the policy, credential, and key
stores from one repository to another one. The source can be file-, LDAP-, or
DB-based; the target can be LDAP- or DB-based. The OPSS binaries and the target
policy store must have compatible versions; for details, see Section L.21, "Incompatible
Versions of Binaries and Policy Store."

During application development, an application specifies its own policies, and these
can be migrated to the OPSS security store when the application is deployed with
Fusion Middleware Control. Policies can also be migrated manually; in addition, each
application component can specify the use of anonymous user and role, authenticated
role, and JAAS mode.

The configuration of the policy store is performed by an administrator.

These topics are explained in the following sections:

■ Migrating with Fusion Middleware Control

■ Migrating with the Script migrateSecurityStore

8.6.1 Migrating with Fusion Middleware Control
Application policies are specified in the application file jazn-data.xml and can be
migrated to the policy store when the application is deployed to a server in the
WebLogic environment with Fusion Middleware Control; they can also be removed
from the policy store when the application is undeployed or be updated when the
application is redeployed.

All three operations, the migration, the removal, and the updating of application
policies, can take place regardless of the type of policy repository, but they do require
particular configurations.

For details, see procedure in Section 6.5.2, "Migrating Policies and Credentials at
Deployment."

Note: Use the system property
jps.deployment.handler.disabled to disable the migration of
application policies and credentials for applications deployed in a
WebLogic Server.

When this system property is set to TRUE, the migration of policies
and credentials at deployment is disabled for all applications
regardless of the particular application settings in the application file
weblogic-application.xml.

Migrating the OPSS Security Store

8-16 Oracle Fusion Middleware Application Security Guide

8.6.2 Migrating with the Script migrateSecurityStore
Application-specific policies or system policies can be migrated manually from a
source repository to a target repository using the OPSS script
migrateSecurityStore.

This script is offline, that is, it does not require a connection to a running server to
operate; therefore, the configuration file passed to the argument configFile need
not be an actual domain configuration file, but it can be assembled just to specify the
source and destination repositories of the migration.

For further details about OPSS scripts and their syntax, see section Overview of WLST
Command Categories, in Oracle Fusion Middleware WebLogic Scripting Tool Command
Reference.

For platform-specific requirements to run an OPSS script, see Important Note.

To migrate all policies (system and application-specific, for all applications) on
WebLogic use the script (first) or interactive (second) syntaxes (arguments are written
in separate lines for clarity):

migrateSecurityStore.py -type policyStore
 -configFile jpsConfigFileLocation
 -src srcJpsContext
 -dst dstJpsContext

migrateSecurityStore(type="policyStore", configFile="jpsConfigFileLocation",
src="srcJpsContext", dst="dstJpsContext")

The meanings of the arguments (all required) are as follows:

■ configFile specifies the location of a configuration file jps-config.xml
relative to the directory where the script is run. Typically, this configuration file is
created just to be used with the script and serves no other purpose. This files
contains two jps-contexts that specify the source and destination stores.

In addition, if the migration involves one or two LDAP-based stores, then this file
must contain a bootstrap jps-context that refers to the location of a cwallet.sso
file where the credentials to access the LDAP based involved in the migration are
kept.

■ src specifies the name of a jps-context in the configuration file passed to the
argument configFile.

■ dst specifies the name of another jps-context in the configuration file passed to
the argument configFile.

The contexts passed to src and dst must be defined in the passed configuration file
and must have distinct names. From these two contexts, the script determines the
locations of the source and the target repositories involved in the migration.

To migrate just system policies on WebLogic, use the script (first) or interactive
(second) syntaxes (arguments are written in separate lines for clarity):

Note: Since the script migrateSecurityStore recreates GUIDs
and takes a long time to migrate large volume of data, you may want
to consider migrating stores with an alternate procedure that uses
Oracle Internet Directory bulk operations. For details, see
Section 6.5.2.3, "Migrating Large Volume Policy and Credential
Stores.".

Migrating the OPSS Security Store

Configuring the OPSS Security Store 8-17

migrateSecurityStore.py -type globalPolicies
 -configFile jpsConfigFileLocation
 -src srcJpsContext
 -dst dstJpsContext

migrateSecurityStore(type="globalPolicies", configFile="jpsConfigFileLocation",
src="srcJpsContext", dst="dstJpsContext")

The meanings of the arguments (all required) are identical to the previous case.

To migrate just application-specific policies on WebLogic, for one application, use the
script (first) or interactive (second) syntaxes (arguments are written in separate lines
for clarity):

migrateSecurityStore.py -type appPolicies
 -configFile jpsConfigFileLocation
 -src srcJpsContext
 -dst dstJpsContext
 -srcApp srcAppName
 [-dstApp dstAppName]
 [-overWrite trueOrfalse]
 [migrateIdStoreMapping trueOrfalse]

[mode laxOrstrict]

migrateSecurityStore(type="appPolicies", configFile="jpsConfigFileLocation",
src="srcJpsContext", dst="dstJpsContext", srcApp="srcAppName",
[dstApp="dstAppName"], [overWrite="trueOrfalse"],
[migrateIdStoreMapping="trueOrfalse"], [mode="strict"])

The meanings of the arguments configFile, src, and dst are identical to the
previous cases. The meaning of other five arguments is as follows:

■ srcApp specifies the name of the source application, that is, the application whose
policies are being migrated.

■ dstApp specifies the name of the target application, that is, the application whose
policies are being written. If unspecified, it defaults to the name of the source
application.

■ migrateIdStoreMapping specifies whether enterprise policies should be
migrated. The default value is True. To filter out enterprise policies from the
migration, that is, to migrate just application policies, set it to False.

■ overWrite specifies whether a target policy matching a source policy should be
overwritten by or merged with the source policy. Set to true to overwrite the target
policy; set to false to merge matching policies. Optional. If unspecified, defaults to
false.

■ mode specifies whether the migration should stop and signal an error upon
encountering a duplicate principal or a duplicate permission in an application
policy. Either do not specify or set to lax to allow the migration to continue upon
encountering duplicate items, to migrate just one of the duplicated items, and to
log a warning to this effect.

If the input does not follow the syntax requirements above, the script execution fails
and returns an error. In particular, the input must satisfy the following requisites: (a)
the file jps-config.xml is found in the passed location; (b) the file
jps-config.xml includes the passed jps-contexts; and (c) the source and the
destination context names are distinct.

Configuring the Identity Provider, Property Sets, and SSO

8-18 Oracle Fusion Middleware Application Security Guide

8.6.2.1 Examples of Use
 For complete examples illustrating the use of this script, see Section 6.5.2.1, "Migrating
Policies Manually."

8.7 Configuring the Identity Provider, Property Sets, and SSO
This section explains how to use Fusion Middleware Control to configure parameters
used by the User and Role APIs, property and property sets, and to specify the Single
Sign-On Provider, in the following sections:

■ Configuring the Identity Store Provider

■ Configuring Properties and Property Sets

■ Specifying a Single Sign-On Solution

8.7.1 Configuring the Identity Store Provider
To configure the parameters used by the User and Role API that interact with the
identity store, proceed as follows:

1. Log in to Fusion Middleware Control and navigate to Domain > Security >
Security Provider Configuration, or to Cell > Security > Security Provider
Configuration to display the Security Provider Configuration page.

2. Expand, if necessary, the area Identity Store Provider, and click Configure to
display the page Identity Store Configuration.

3. Manage custom properties, as appropriate, using the buttons Add and Delete.

4. When finished, click OK to save your settings and to return to the Security
Provider Configuration page.

8.7.2 Configuring Properties and Property Sets
A property set is collection of properties typically used to define the properties of a
service instance or generic properties of the domain.

For a list of OPSS configuration properties, see Appendix F.2, "OPSS Configuration
Properties."

The elements <property> and <properySet> in the file
$DOMAIN_HOME/config/fmwconfig/jps-config.xml are used to define
property and property sets. Property sets can be referenced by the element
<propertySetRef>.

To define a property or a property set, proceed as follows:

1. Log in to Fusion Middleware Control and navigate to Domain > Security >
Security Provider Configuration, or to Cell > Security > Security Provider
Configuration to display the Security Provider Configuration page.

Note: The area of the page Security Provider Configuration labeled
Web Services Manager Authentication Providers pertains to the
configuration of Login Modules and the Keystore for Web Services
Manager only and is not relevant to ADF or Java EE applications.

For details about the login modules available, their parameters, and
the keystore for those components, see chapter 9 in Oracle Fusion
Middleware Security and Administrator’s Guide for Oracle Web Services.

Configuring the Identity Provider, Property Sets, and SSO

Configuring the OPSS Security Store 8-19

2. Expand, if necessary, the area Advanced Properties, and click Configure to
display the Advanced Properties page, in which you can enter properties and
property sets.

3. To enter a property, click Add in the Properties area to display the dialog Add
New Property, and enter a property name and value. When finished, click OK.
The entered property appears on the Properties table.

4. To enter a property set, click Add Property Set in the Property Sets area to display
the dialog Add Property Set, and enter the property set name.

5. To enter a property in a property set, select a property set from the existing ones,
then click Add Property to display the dialog Add New Property, and then enter a
property name and value. The entered property is added to the list of properties in
the selected property set.

6. Use the button Delete to remove a selected item from any table. When finished
entering or editing properties and property sets, click OK.

7. Restart the Oracle WebLogic Server. Changes do not take effect until the server
has been restarted.

The addition or deletion of property sets modifies the domain configuration file
$DOMAIN_HOME/config/fmwconfig/jps-config.xml; the changes do not take
effect until the server is restarted.

The elements <property> and <propertySet> added by the previous procedure
are inserted directly under the element <jpsConfig>.

8.7.3 Specifying a Single Sign-On Solution
This section explains the OPSS Single Sign-On (SSO) Framework and how to configure
an SSO solution using Fusion Middleware Control, in the following sections:

■ The OPSS SSO Framework

■ Configuring an SSO Solution with Fusion Middleware Control

■ OAM Configuration Example

8.7.3.1 The OPSS SSO Framework
The OPSS SSO Framework provides a way to integrate applications in a domain with
an SSO solution. Specifically, it provides applications a common set of APIs across
SSO products, to handle login, logout and auto login.

One of these solutions, the OAM solution, is available out-of-the-box, and it includes
the following features:

■ Dynamic authentication - Upon accessing a part of a secured artifact that requires
authentication, the application triggers authentication and redirects the user to be
authenticated by the appropriate solution.

■ Auto login - A user who has initially accessed an application anonymously
registers an account with the application; upon a successful registration, the user is
redirected to the authentication URL; the user can also be automatically logged in
without being prompted.

■ Global logout - When a user logs out of one application, the logout propagates
across to any other application that is enabled by the solution.

For a configuration example of an OAM solution, see OAM Configuration Example.

Configuring the Identity Provider, Property Sets, and SSO

8-20 Oracle Fusion Middleware Application Security Guide

An SSO solution must provide a standard way for applications to login and logout
users. After successful authentication, the SSO service is responsible to redirect the
user to the appropriate URL.

It is assumed that the domain where the solution is applied has been configured to
allow the Subject to contain the anonymous user and role before login and after
logout, and authenticated roles after login. It is also assumed that the SSO provider
has implemented a Credential Mapping Service. In the case of the out-of-the-box OAM
solution, the provider implements CredentialMapperService that produces the
appropriate OAM token.

The OPSS SSO framework does not support multi-level authentication.

Integration with the desired SSO solution requires a separate installation and
appropriate configuration of the solution. For details about recommended solutions,
see Part IV, "Single Sign-On Configuration".

8.7.3.2 Configuring an SSO Solution with Fusion Middleware Control
To specify the SSO solution used by a domain, proceed as follows:

1. Log in to Fusion Middleware Control and navigate to Domain > Security >
Security Provider Configuration or Cell > Security > Security Provider
Configuration to display the Security Provider Configuration page.

2. In that page, click the Configure in the Single Sign-On Provider area to display the
Single Sign-On Provider page.

3. In that page, check the box Configure Single Sign-On, to allow entering data for
the provider. All boxes are grayed out until this box is checked.

4. Select the Provider Type from the pull-down list, and enter the corresponding
data for the selected provider (the data required changes with the type selected).

5. Select the Authentication Level from the pull-down list.

6. Optionally, manage the provider Custom Properties using the buttons Add, Edit,
and Delete, at the bottom of the page.

7. When finished, click OK to save the entered data.

8.7.3.3 OAM Configuration Example
The SSO service configuration entered with the procedure described in Configuring an
SSO Solution with Fusion Middleware Control is written to the file jps-config.xml.
The data specified includes:

■ A particular SSO service

■ The auto-login and auto-logout URIs

■ The authentication level

■ The query parameters contained in the URLs returned by the selected SSO service

■ The appropriate settings for token generation

The following fragment of a jps-config.xml file illustrates the configuration of an
OAM SSO provider:

<propertySets>
 <propertySet name = "props.auth.url">
 <property name = "login.url.BASIC" value =
"http://host:port/oam_login.cgi?level=BASIC"/>
 <property name = "login.url.FORM" value =

Configuring the Identity Provider, Property Sets, and SSO

Configuring the OPSS Security Store 8-21

"http://host:port/oam_login.cgi?level=FORM"/>
 <property name = "login.url.DIGEST" value =
"http://host:port/oam_login.cgi?level= DIGEST"/>
 <property name = "autologin.url" value = " http://host:port/obrar.cgi"/>
 <property name = "logout.url" value = "http://host:port/logout.cgi"/>
 <property name = "param.login.successurl" value = "successurl"/>
 <property name = "param.login.cancelurl" value = "cancelurl"/>
 <property name = "param.autologin.targeturl" value = "redirectto"/>
 <property name = "param.autologin.token" value = "cookie"/>
 <property name = "param.logout.targeturl" value = "targeturl"/>
 </propertySet>

 <propertySet name="props.auth.uri">
 <property name="login.url.BASIC"
value="/${app.context}/adfauthentication?level=BASIC" />
 <property name="login.url.FORM"
value="/${app.context}/adfauthentication?level=FORM" />
 <property name="login.url.DIGEST"
value="/${app.context}/adfauthentication?level=DIGEST" />
 <property name="autologin.url" value="/obrar.cgi" />
 <property name="logout.url"
value="/${app.context}/adfauthentication?logout=true" />
 </propertySet>

 <propertySet name = "props.auth.level">
 <property name = "level.anonymous" value = "0"/>
 <property name = "level.BASIC" value = "1"/>
 <property name = "level.FORM" value = "2"/>
 <property name = "level.DIGEST" value = "3"/>
 </propertySet>
<propertySets>

<serviceProviders>
 <serviceProvider name = "sso.provider"
 class = "oracle.security.jps.internal.sso.SsoServiceProvider"
 type = "SSO">
 <description>SSO service provider</description>
 </serviceProvider>
</serviceProviders>

<serviceInstances>
 <serviceInstance name = "sso" provider = "sso.provider">
 <propertySetRef ref = "props.auth.url"/>
 <propertySetRef ref = "props.auth.level"/>
 <property name = "default.auth.level" value = "2"/>
 <property name = "token.type" value = "OAMSSOToken"/>
 <property name = "token.provider.class" value =
"oracle.security.jps.wls.internal.sso.WlsTokenProvider"/>
 <property name="sso.provider.class"
value="oracle.security.wls.oam.providers.sso.OAMSSOServiceProviderImpl"/>
 </serviceInstance>
</serviceInstances>

<jpsContexts default = "default">
 <jpsContext name = "default">
 <serviceInstanceRef ref = "sso"/>
 </jpsContext>
</jpsContexts>

Configuring the Identity Provider, Property Sets, and SSO

8-22 Oracle Fusion Middleware Application Security Guide

Table 8–1 describes the meaning of the properties involved in the configuration of an
SSO provider.

Regarding the configuration of an SSO provider, note the following important
remarks:

■ Any SSO provider must define the URI for at least the FORM login with the
property login.url.FORM. The value need not be a URL.

■ If the application supports a self-registration page URI or URL, it must be
specified with the property autologin.url.

■ If the SSO solution supports a global logout URI or URL, it must be specified with
the property logout.url. The OAM solution supports global logout.

■ The following properties, illustrated in the preceding example, are optional:

– param.login.successurl

– param.login.cancelurl

– param.autologin.targeturl

– param.login.token

– param.logout.targeturl

■ The use of the variable app.context in URI specifications, illustrated in values
within the property set props.auth.uri in the preceding example, is allowed
for only ADF applications when integrating with the OAM solution.

■ The property set props.auth.level is required.

■ The reference to props.auth.url is required.

■ The property sso.provider.class within a service instance of the SSO
provider is the fully qualified name of the class implementing a specific SSO
solution.

In the case of the OAM solution, the provided class name is
oracle.security.wls.oam.providers.sso.OAMSSOServiceProviderIm
pl.

Table 8–1 SSO Provider Properties

Property Name Description

logout.url The SSO provider logout URL.

login.url.BASIC The SSO provider BASIC logout URL.

login.url.FORM The SSO provider FORM logout URL.

login.url.DIGEST The SSO provider DIGEST logout URL.

autologin.url The self-registration URL for auto-login.

logout.url The SSO provider logout URL.

param.login.successurl The URL redirect after a succesful login.

param.login.cancelurl The URL redirect after a query cancelation.

param.autologin.targeturl The URL redirect after auto-login.

param.autologin.token The token for auto-login.

param.logout.targeturl The URL redirect after loggin out.

Configuring the Identity Provider, Property Sets, and SSO

Configuring the OPSS Security Store 8-23

■ The property name default.auth.level within a service instance of the SSO
provider must be set to 2, as illustrated in the preceding example.

■ The property token.type within a service instance of the SSO provider is
required.

This token type identifies the token set on the HTTP request by the SSO provider
upon a successful authentication; the SSO provider uses this token, after the first
time, to ensure that the user does not need to be reauthenticated and that his
sign-on is still valid. In the case of the OAM solution, the token type must be
OAMSSOToken, as illustrated in the preceding example.

■ The property token.provider.class within a service instance of the SSO
provider is the fully qualified name of the token class, and it is provider-specific.

■ If an application implements a self-registration logic and wants to auto login a
user after successful self-registration, it must call the OPSS autoLogin API; in turn,
to allow this call, it must grant that application a code source permission named
CredentialMapping with class JpsPermission.

The following fragment of the file system-jazn-data.xml illustrates the
specification of this permission to the application MyApp:

<grant>
 <grantee>
 <codesource>

<url>file:${oracle.deployed.app.dir}/<MyApp>${oracle.deployed.app.ext}
 </url>
 </codesource>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.jps.JpsPermission</class>
 <name>CredentialMapping</name>
 </permission>
 </permissions>
</grant>

Note the use of system variables in the URL specification. For details, see Example
in <url>.

Configuring the Identity Provider, Property Sets, and SSO

8-24 Oracle Fusion Middleware Application Security Guide

9

Managing the Policy Store 9-1

9Managing the Policy Store

The following sections explain how an administrator can manage policies using either
Fusion Middleware Control, OPSS scripts, or Oracle Entitlements Server:

■ Managing the Policy Store

■ Managing Policies with Fusion Middleware Control

■ Managing Application Policies with OPSS Scripts

■ Managing Application Policies with Oracle Entitlements Server

Typical operations include:

■ Changing the grants of an existing application role.

■ Revoking a permission from a principal.

■ Creating and deleting application roles.

■ Listing all application roles and members of an application role.

This chapter also includes the following sections:

■ Caching and Refreshing the Cache

■ Granting Policies to Anonymous and Authenticated Roles with WLST Scripts

■ Application Stripe for Versioned Applications in WLST Scripts

■ Guidelines to Configure the Policy Store

9.1 Managing the Policy Store
Only a user with the appropriate permissions, such as the domain administrator, can
access data in the policy store.

The following sections explain how an administrator can manage policies using either
Fusion Middleware Control, OPSS scripts, or Oracle Entitlements Server. Typical
operations include:

■ Managing Policies with Fusion Middleware Control

■ Managing Application Policies with OPSS Scripts

■ Managing Application Policies with Oracle Entitlements Server

To avoid unexpected authorization failures and to manage policies effectively, note
the following important points:

Managing Policies with Fusion Middleware Control

9-2 Oracle Fusion Middleware Application Security Guide

9.2 Managing Policies with Fusion Middleware Control
Fusion Middleware Control allows managing system and application policies in a
WebLogic domain, regardless of the type of policy store provider used in the domain,
as explained in the following sections:

Important Point 1: Before deleting a user, revoke all permissions,
application roles, and enterprise groups that have been granted to the
user. If you fail to remove all security artifacts referencing a user to be
deleted, they are left dangling and, potentially, be inadvertently
inherited if another user with the same name or uid is created at a
later time.

Similar considerations apply to when a user name or uid is changed:
all policies (grants, permissions, groups) referring to old data must be
updated so that it works as expected with the changed data.

See Section L.11, "User Gets Unexpected Permissions."

Important Point 2: Policies use case sensitivity in names when they
are applied. The best way to avoid possible authorization errors due
to case in user or group names is to use the spelling of those names
exactly as specified in the identity store.

It is therefore recommended that:

■ When provisioning a policy, the administrator spell the names of
users and groups used in the policy exactly as they are in the
identity repository. This guarantees that queries into the policy
store (involving a user or group name) work as expected.

■ When entering a user name at run-time, the end-user enter a name
that matches exactly the case of a name supplied in the identity
repository. This guarantees that the user is authorized as
expected.

See Section L.4, "Failure to Grant or Revoke Permissions - Case
Mismatch."

Important Point 3: The name of a resource type, a resource, or an
entitlement can contain printable charactes only and it cannot start or
end with a white space.

For other considerations regarding the use of characters in policies, in
particular in role names, see Section L.16, "Characters in Policies."

Important Point 4: Authorization failures are not visible, by default,
in the console. To have authorization failures sent to the console you
must set the system variable jps.auth.debug as follows:
-Djps.auth.debug=true

In particular, to have JpsAuth.checkPermission failures sent to
the console, you must set the variable as above.

Managing Policies with Fusion Middleware Control

Managing the Policy Store 9-3

■ Managing Application Policies

■ Managing Application Roles

■ Managing System Policies

9.2.1 Managing Application Policies
This section explains how to use Fusion Middleware Control to manage application
policies.

1. Log in to Fusion Middleware Control and navigate to Domain > Security >
Application Policies (if the application is deployed on Oracle WebLogic
Server), or to Cell > Security > Application Policies (if it is deployed on
WebSphere Application Server), to display the Application Policies page,
partially illustrated in the following graphic:

The area Policy Store Provider is read-only; when expanded, it displays the policy
store provider currently in use in the domain or cell.

2. To display policies in an application matching a given principal or permission,
expand the Search area, select the application stripe to search, enter a string to
match (a principal name, principal group, or application role), and click the blue
button. The results of the search are displayed in the table at the bottom of the
page.

Note: If multiple applications are to share a permission and to
prevent permission check failures, the corresponding permission class
must be specified in the system class path.

Managing Policies with Fusion Middleware Control

9-4 Oracle Fusion Middleware Application Security Guide

3. To create an application policy for the selected application stripe, click Create to
display the Create Application Grant page where you add principals and
permissions for the grant being created.

1. To add permissions, click Add in the Permissions area to display the Add
Permission dialog.

In the Search area of that dialog, first select Permissions or Resource Types; if
Permissions was selected, then identify permissions matching a class or
resource name, and determine the Permission Class and Resource Name; if
Resource Types was selected, then identify the resource types matching a type
name, and determine a type; then click OK to return to the Create Application
Grant page. The permission you selected is displayed in the table in the
Permissions area.

2. To add principals, click the button Add in the Grantee area to display the
dialog Add Principal.

In the Search area of that dialog, select a Type, enter strings to match
principal names and display names, and click the blue button; the result of the
query is displayed in the Searched Principals table; then select one or more
rows from that table, and click OK to return to the Create Application Grant
page. The principals you selected are displayed in the table in the Grantee
area

3. At any point you can remove an item from the table in the Grantee area by
selecting it and clicking the Delete button; similarly, you can modify an item
from that table by selecting it and clicking the Edit button.

4. When finished, click OK to return to the Application Policies page. The
principal and permissions of the policy created are displayed in the table at
the bottom of the page.

4. To create an application policy based on an existing one:

1. Select an existing policy from the table.

2. Click Create Like, to display the Create Application Grant Like page. Notice
that in this page the table of permissions is automatically filled in with the
data extracted from the policy you selected.

3. Modify those values, as appropriate, as explained in the substeps of step 3
above, and then click OK.

9.2.2 Managing Application Roles
This section explains how to use Fusion Middleware Control to manage application
roles.

1. Log in to Fusion Middleware Control and navigate to Domain > Security >
Application Roles (if the application is deployed on Oracle WebLogic Server), or
to Cell > Security > Application Roles (if it is deployed on WebSphere
Application Server), to display the Application Roles page partially illustrated in
the following graphic:

Managing Policies with Fusion Middleware Control

Managing the Policy Store 9-5

The area Policy Store Provider is read-only; when expanded, it displays the policy
store provider currently in use in the domain or cell.

2. To display roles in an application, expand the Search area, choose an application
stripe to search, enter the data to match role names, and click the blue button. The
results of the search are displayed in the table at the bottom of the page.

3. To create an application role, click Create to display the Create Application Role
page. Note that you need not enter data in all areas at once; for example, you
could create a role by entering the role name and display name, save your data,
and later on specify the members in it; similarly, you could enter data for role
mapping at a later time.

In the area General, specify the following attributes of the role being created:

1. The name of the role, in the text box Role Name.

2. Optionally, the name to display for the role, in the text box Display Name.

3. Optionally, a description of the role, the text box Description.

In the area Members, specify the users, groups, or other application roles, if any,
into which the role being created is mapped.

To add application roles to the application role being created:

1. Click Add , to display the Add Principal dialog.

2. In this dialog, select a Type (application role, group, or user), enter a string to
match principal names, and click the blue button; the result of the search is
displayed in the Searched Principals table; select one or more principals from
that table.

3. When finished, click OK to return to the Create Application Role page. The
selected application roles are displayed in the table Members.

Managing Policies with Fusion Middleware Control

9-6 Oracle Fusion Middleware Application Security Guide

4. At any point you can remove an item from the Members table by selecting it and
clicking the Delete button; similarly, you can modify an item from the table by
selecting it and clicking the Edit button.

5. Click OK to effect the role creation (or updating) and to return to the Application
Roles page. The role just created is displayed in the table at the bottom of that
page.

6. To create an application role based on an existing one:

1. Select an existing role from the table.

2. Click Create Like, to display the Create Application Role Like page. Notice
that in this page some data is automatically filled in with the data extracted
from the role you selected.

3. Modify the list of roles and users, as appropriate, and then click OK.

To understand how permissions are inherited in a role hierarchy, see Section 2.2.1,
"Permission Inheritance and the Role Hierarchy."

9.2.3 Managing System Policies
This section explains how to use Fusion Middleware Control to manage system
policies for an Oracle WebLogic Server domain or for a WebSphere Application Server
cell.

The procedure below enables creating two types of system policies: principal policies
and codebase policies. A principal policy grants permissions to a list of users or
groups. A codebase policy grants permissions to a piece of code, typically a URL or a
JAR file; for example, an application using the Credential Store Framework requires an
appropriate codebase policy. Wildcards and patterns are not supported in codebase
URLs.

1. Log in to Fusion Middleware Control and navigate to Domain > Security > System
Policies or to Cell > Security > System Policies, as appropriate, to display the
System Policies page partially illustrated in the following graphic:

Managing Application Policies with OPSS Scripts

Managing the Policy Store 9-7

The area Policy Store Provider is read-only; when expanded, it displays the policy
store provider currently in use in the domain or cell.

2. To display system policies matching a given type, name, and permission, expand
the Search area, enter the data to match, and click the blue button. The results of
the search are displayed in the table at the bottom of the page; to display all
current system policies, select the type All and leave the name and permission
boxes blank.

3. At any point, you can edit the characteristics of a selected policy by clicking the
Edit button, or remove it from the list by clicking the Delete button.

To create a system policy:

1. Click Create to display the Create System Grant page.

2. Select type of policy to create: Principal or Codebase. The UI differs slightly
depending on the type chosen; the steps below assume the selection Principal.

3. To add permissions, click the button Add in the Permissions area to display the
Add Permission dialog and choose a permission to add to the policy being
created.

1. Use the Search area to query permissions matching a type, principal name, or
permission name. The result of the search is display in the table in the Search
area.

2. To choose the permission to add, select a permission from the table; note that,
when a permission is selected, its details are rendered in the read-only
Customize area.

3. Click OK to return to the Create System Grant page. The selected permission
is added to the table Permissions.

4. At any point, you can select a permission from the Permissions table and use the
button Edit to change the characteristics of the permission, or the button Delete to
remove it.

5. Click OK to return to the System Policies page.

6. The table in the area Permissions for Codebase is read-only and it shows the
resource name, actions, and permission class associated with a codebase system
policy.

9.3 Managing Application Policies with OPSS Scripts
An OPSS script is either a WLST script, in the context of the Oracle WebLogic Server,
or a WASAdmin script, in the context of the WebSphere Application Server. The
scripts listed in this section apply to both platforms: WebLogic Application Server and
WebSphere Application Server.

An online script is a script that requires a connection to a running server. Unless
otherwise stated, scripts listed in this section are online scripts and operate on a policy
store, regardless of whether it is file-, LDAP-, or DB-based. There are a few scripts that
are offline, that is, they do not require a server to be running to operate.

Read-only scripts can be performed only by users in the following WebLogic groups:
Monitor, Operator, Configurator, or Admin. Read-write scripts can be performed only
by users in the following WebLogic groups: Admin or Configurator. All WLST scripts
are available out-of-the-box with the installation of the Oracle WebLogic Server.

Managing Application Policies with OPSS Scripts

9-8 Oracle Fusion Middleware Application Security Guide

WLST scripts can be run in interactive mode or in script mode. In interactive mode,
you enter the script at a command-line prompt and view the response immediately
after. In script mode, you write scripts in a text file (with a py file name extension) and
run it without requiring input, much like the directives in a shell script.

WASAdmin scripts can be run in interactive mode only.

Important Note
Before invoking an OPSS script you must run (according to the platform you use) one
of the scripts below to ensure that the required JARs are added to the class path.

On WebLogic:

>sh $ORACLE_HOME/common/bin/wlst.sh

To run an online script, you must connect to a WebLogic server as follows:

>java weblogic.WLST
>connect('servername', 'password', 'localhost:portnum')

For details about running OPSS scripts on WebSphere, see Oracle Fusion Middleware
Third-Party Application Server Guide.

OPSS provides the following scripts on all supported platforms to administer
application policies (all scripts are online, unless otherwise stated):

■ listAppStripes

■ createAppRole

■ deleteAppRole

■ grantAppRole

■ revokeAppRole

■ listAppRoles

■ listAppRolesMembers

■ grantPermission

■ revokePermission

■ listPermissions

■ deleteAppPolicies

■ createResourceType

■ getResourceType

■ deleteResourceType

■ createResource

■ deleteResource

■ listResources

■ listResourceActions

■ createEntitlement

■ getEntitlement

■ deleteEntitlement

■ addResourceToEntitlement

Managing Application Policies with OPSS Scripts

Managing the Policy Store 9-9

■ revokeResourceFromEntitlement

■ listEntitlements

■ grantEntitlement

■ revokeEntitlement

■ listEntitlement

■ listResourceTypes

■ reassociateSecurityStore

All class names specified in the above scripts must be fully qualified path names. The
argument appStripe refers to the application stripe (typically, identical to the
application name) and identifies the subset of policies pertaining to a particular
application.

For important information about the authenticated and the anonymous roles and
WLST scripts, see Section 9.5, "Granting Policies to Anonymous and Authenticated
Roles with WLST Scripts."

For the correct usage of the application stripe in versioned applications, see
Section 9.6, "Application Stripe for Versioned Applications in WLST Scripts."

9.3.1 listAppStripes
The script listAppStripes lists application stripes. This script can be run in offline
or online mode. When run in offline mode, a configuration file must be passed, and it
lists the application stripes in the policy store referred to by the configuration in the
default context of the passed configuration file. When run in online mode, a
configuration file must not be passed, and it lists stripes in the policy store of the
domain to which you connect. In any mode, if a regular expression is passed, it lists
the application stripes with names that match the regular expression; otherwise, it lists
all application stripes.

If this command is used in offline mode after reassociating to a DB-based, the
configuration file produced by the reassociation must be manually edited as described
in Running an Offline Script after Reassociating to a DB-Based Store.

Script Mode Syntax
listAppStripes.py [-configFile configFileName]
 [-regularExpression aRegExp]

Interactive Mode Syntax
listAppStripes([configFile="configFileName"] [, regularExpression="aRegExp"])

The meanings of the arguments are as follows:

■ configFile specifies the path to the OPSS configuration file. Optional. If
specified, the script runs offline; the default context in the specified configuration
file must not have a service instance reference to an identity store. If unspecified,
the script runs online and it lists application stripes in the policy store.

■ regularExpression specifies the regular expression that stripe names returned
should match. Optional. If unspecified, it matches all names. To match substrings,
use the character *.

Managing Application Policies with OPSS Scripts

9-10 Oracle Fusion Middleware Application Security Guide

Examples of Use
The following (online) invocation returns the list of application stripes in the policy
store:

listAppStripes.py

The following (offline) invocation returns the list of application stripes in the policy
store referenced in the default context of the specified configuration file:

listAppStripes.py -configFile /home/myFiles/jps-config.xml

The following (online) invocation returns the list of application stripes that contain the
prefix App:

listAppStripes.py -regularExpression App*

9.3.2 createAppRole
The script createAppRole creates an application role in the policy store with given
application stripe and role name.

Script Mode Syntax
createAppRole.py -appStripe appName
 -appRoleName roleName

Interactive Mode Syntax
createAppRole(appStripe="appName", appRoleName="roleName")

The meanings of the arguments (all required) are as follows:

■ appStripe specifies an application stripe.

■ appRoleName specifies a role name.

Example of Use
The following invocation creates an application role with application stripe myApp and
role name myRole:

createAppRole.py -appStripe myApp -appRoleName myRole

9.3.3 deleteAppRole
The script deleteAppRole removes an application role from the passed stripe.
Specifically, this script applies a cascading deletion by removing:

■ All grants where the role is present

■ The role from any other role of which it is a member

■ All roles that are member of the role

Script Mode Syntax
deleteAppRole.py -appStripe appName -appRoleName roleName

Interactive Mode Syntax
deleteAppRole(appStripe="appName", appRoleName="roleName")

Managing Application Policies with OPSS Scripts

Managing the Policy Store 9-11

The meanings of the arguments (all required) are as follows:

■ appStripe specifies an application stripe.

■ appRoleName specifies a role name.

Example of Use
The following invocation removes the role with application stripe myApp and name
myRole:

deleteAppRole.py -appStripe myApp -appRoleName myRole

9.3.4 grantAppRole
The script grantAppRole adds a principal (class and name) to a role with a given
application stripe and name, and it can be used to build or modify an application role
hierarchy.

Script Mode Syntax
grantAppRole.py -appStripe appName
 -appRoleName roleName
 -principalClass className
 -principalName prName

Interactive Mode Syntax
grantAppRole(appStripe="appName", appRoleName="roleName",
principalClass="className", principalName="prName")

The meanings of the arguments (all required) are as follows:

■ appStripe specifies an application stripe.

■ appRoleName specifies a role name.

■ principalClass specifies the fully qualified name of a class; this class must be
included in the class path so that it is available at runtime. Typically, if the
principal is a user, the class is
weblogic.security.principal.WLSUserImpl, and if the principal is a
group, the class is weblogic.security.principal.WLSGroupImpl.

■ principalName specifies the principal name.

Example of Use
The following invocation adds the principal myPrincipal, defined by the default
principal implementation class WLSGroupImpl, to the role myRole in the application
stripe myApp:

grantAppRole.py -appStripe myApp
 -appRoleName myRole
 -principalClass weblogic.security.principal.WLSGroupImpl
 -principalName myPrincipal

9.3.5 revokeAppRole
The script revokeAppRole removes a principal (class and name) from a role with a
given application stripe and name, and it can be used to modify an application role
hierarchy.

Managing Application Policies with OPSS Scripts

9-12 Oracle Fusion Middleware Application Security Guide

Script Mode Syntax
revokeAppRole.py -appStripe appName
 -appRoleName roleName
 -principalClass className
 -principalName prName

Interactive Mode Syntax
revokeAppRole(appStripe="appName", appRoleName="roleName",
principalClass="className", principalName="prName")

The meanings of the arguments (all required) are as follows:

■ appStripe specifies an application stripe.

■ appRoleName specifies a role name.

■ principalClass specifies the fully qualified name of the principal class.

■ principalName specifies the principal name.

Example of Use
The following invocation removes the principal myPrincipal, defined by the default
principal implementation class WLSGroupImpl, from the role myRole in the
application stripe myApp:

revokeAppRole.py -appStripe myApp
 -appRoleName myRole
 -principalClass weblogic.security.principal.WLSGroupImpl
 -principalName myPrincipal

9.3.6 listAppRoles
The script listAppRoles lists all roles with a given application stripe.

Script Mode Syntax
listAppRoles.py -appStripe appName

Interactive Mode Syntax
listAppRoles(appStripe="appName")

The meaning of the argument (required) is as follows:

■ appStripe specifies an application stripe.

Example of Use
The following invocation returns all the roles with application stripe myApp:

listAppRoles.py -appStripe myApp

9.3.7 listAppRolesMembers
The script listAppRoleMembers lists all members in a role with a given application
stripe and role name.

Script Mode Syntax
listAppRoleMembers.py -appStripe appName
 -appRoleName roleName

Managing Application Policies with OPSS Scripts

Managing the Policy Store 9-13

Interactive Mode Syntax
listAppRoleMembers(appStripe="appName", appRoleName="roleName")

The meanings of the arguments (all required) are as follows:

■ appStripe specifies an application stripe.

■ appRoleName specifies a role name.

Example of Use
The following invocation returns all the members in a role with application stripe
myApp and name myRole:

listAppRoleMembers.py -appStripe myApp
 -appRoleName myRole

9.3.8 grantPermission
The script grantPermission creates a permission granted to a codebase or URL or
principal, in either an application policy or the global policy section.

Script Mode Syntax
grantPermission [-appStripe appName]
 [-codeBaseURL url]
 [-principalClass prClassName]
 [-principalName prName]
 -permClass permissionClassName
 [-permTarget permName]
 [-permActions comma_separated_list_of_actions]

Interactive Mode Syntax
grantPermission([appStripe="appName",] [codeBaseURL="url",]
[principalClass="prClassName",] [principalName="prName",]
permClass="permissionClassName", [permTarget="permName",]
[permActions="comma_separated_list_of_actions"])

The meanings of the arguments (optional arguments are enclosed in between square
brackets) are as follows:

■ appStripe specifies an application stripe. If not specified, then the script works
on system policies.

■ codeBaseURL specifies the URL of the code granted the permission.

■ principalClass specifies the fully qualified name of a class (grantee).

■ principalName specifies the name of the grantee principal.

■ permClass specifies the fully qualified name of the permission class.

■ permTarget specifies, when available, the name of the permission target. Some
permissions may not include this attribute.

■ permActions specifies the list of actions granted. Some permissions may not
include this attribute and the actions available depend on the permission class.

Examples of Use
The following invocation creates an application permission (for the application with
application stripe myApp) with the specified data:

grantPermission.py -appStripe myApp

Managing Application Policies with OPSS Scripts

9-14 Oracle Fusion Middleware Application Security Guide

 -principalClass my.custom.Principal
 -principalName manager
 -permClass java.security.AllPermission

The following invocation creates a system permission with the specified data:

grantPermission.py -principalClass my.custom.Principal
 -principalName manager
 -permClass java.io.FilePermission
 -permTarget /tmp/fileName.ext
 -permActions read,write

9.3.9 revokePermission
The script revokePermission removes a permission from a principal or codebase
defined in an application or the global policy section.

Script Mode Syntax
revokePermission [-appStripe appName]
 [-codeBaseURL url]
 [-principalClass prClassName]
 [-principalName prName]
 -permClass permissionClassName
 [-permTarget permName]
 [-permActions comma_separated_list_of_actions]

Interactive Mode Syntax
revokePermission([appStripe="appName",][codeBaseURL="url",]
[principalClass="prClassName",] [principalName="prName",]
permClass="permissionClassName", [permTarget="permName",] [permActions="comma_
separated_list_of_actions"])

The meanings of the arguments (optional arguments are enclosed in between square
brackets) are as follows:

■ appStripe specifies an application stripe. If not specified, then the script works
on system policies.

■ codeBaseURL specifies the URL of the code granted the permission.

■ principalClass specifies the fully qualified name of a class (grantee).

■ principalName specifies the name of the grantee principal.

■ permClass specifies the fully qualified name of the permission class.

■ permTarget specifies, when available, the name of the permission target. (Note
that some permissions may not include this attribute.)

■ permActions specifies the list of actions removed. Note that some permissions
may not include this attribute and the actions available depend on the permission
class.

Examples of Use
The following invocation removes the application permission (for the application with
application stripe myApp) with the specified data:

revokePermission.py -appStripe myApp
 -principalClass my.custom.Principal
 -principalName manager

Managing Application Policies with OPSS Scripts

Managing the Policy Store 9-15

 -permClass java.security.AllPermission

The following invocation removes the system permission with the specified data:

revokePermission.py -principalClass my.custom.Principal
 -principalName manager
 -permClass java.io.FilePermission
 -permTarget /tmp/fileName.ext
 -permActions read,write

9.3.10 listPermissions
The script listPermissions lists all permissions granted to a given principal.

Script Mode Syntax
listPermissions [-appStripe appName]
 -principalClass className
 -principalName prName

Interactive Mode Syntax
listPermissions([appStripe="appName",] principalClass="className",
principalName="prName")

The meanings of the arguments (optional arguments are enclosed in between square
brackets) are as follows:

■ appStripe specifies an application stripe. If not specified, then the script works
on system policies.

■ principalClass specifies the fully qualified name of a class (grantee).

■ principalName specifies the name of the grantee principal.

Examples of Use
The following invocation lists all permissions granted to a principal by the policies of
application myApp:

listPermissions.py -appStripe myApp
 -principalClass my.custom.Principal
 -principalName manager

The following invocation lists all permissions granted to a principal by system
policies:

listPermissions.py -principalClass my.custom.Principal
 -principalName manager

9.3.11 deleteAppPolicies
The script deleteAppPolicies removes all policies with a given application stripe.

Script Mode Syntax
deleteAppPolicies -appStripe appName

Interactive Mode Syntax
deleteAppPolicies(appStripe="appName")

The meaning of the argument (required) is as follows:

Managing Application Policies with OPSS Scripts

9-16 Oracle Fusion Middleware Application Security Guide

■ appStripe specifies an application stripe. If not specified, then the script works
on just system policies.

Example of Use
deleteAppPolicies -appStripe myApp

9.3.12 createResourceType
The script createResourceType inserts a new <resource-type> entry in the policy
store within a given application stripe and with specified name, display name,
description, and actions. Optional arguments are enclosed in between square brackets;
all other arguments are required.

Script Mode Syntax
createResourceType -appStripe appStripeName

-resourceTypeName resTypeName
-displayName displName
-description descripString
 [-provider resTypeProvider]
[-matcher resTypeClass]
-actions resTypeActions
[-delimiter delimChar]

Interactive Mode Syntax
createResourceType(appStripe="appStripeName", resourceTypeName="resTypeName",
displayName="displName", description="descripString"
[, provider="resTypeProvider", matcher="resTypeClass"], actions="resTypeActions"[,
delimiter="delimChar"])

The meaning of the arguments is as follows:

■ appStripe specifies the application stripe where to insert the resource type.

■ resourceTypeName specifies the name of the resource type to insert.

■ displayName specifies the name for the resource type used in UI gadgets.

■ description specifies a brief description of the resource type.

■ provider specifies the provider for the resource type.

■ matcher specifies the class of the resource type. If unspecified, it defaults to
oracle.security.jps.ResourcePermission.

■ actions specifies the actions allowed on instances of the resource type.

■ delimiter specifies the character used to delimit the list of actions. If
unspecified, it defaults to comma ','.

Example of Use
The following invocation creates a resource type in the stripe myApplication with
actions BWPrint and ColorPrint delimited by a semicolon:

createResourceType -appStripe myApplication
 -resourceTypeName Printer
 -displayName PRINTER
 -description A resource type representing a Printer
 -provider Printer
 -matcher com.printer.Printer
 -allowedActions BWPrint;ColorPrint

Managing Application Policies with OPSS Scripts

Managing the Policy Store 9-17

 -delimiter ;

9.3.13 getResourceType
The script getResourceType returns the relevant parameters of a <resource-type>
entry in the policy store within a given application stripe and with specified name.

Script Mode Syntax
getResourceType -appStripe appStripeName

-resourceTypeName resTypeName

Interactive Mode Syntax
getResourceType(appStripe="stripeName", resourceTypeName="resTypeName")

The meaning of the arguments is as follows:

■ appStripe specifies the application stripe from where to fetch the resource type.

■ resourceTypeName specifies the name of the resource type to fetch.

Example of Use
The following invocation fetches the resource type myResType from the stripe
myApplication:

getResourceType -appStripe myApplication
-resourceTypeName myResType

9.3.14 deleteResourceType
The script deleteResourceType removes a resource type with a given name from
the passed application stripe. This script applies a cascading deletion by removing all
resource instances of the resource type from entitlements and all grants that use
resource instances of the resource type.

Script Mode Syntax
deleteResourceType -appStripe appStripeName

-resourceTypeName resTypeName

Interactive Mode Syntax
deleteResourceType(appStripe="stripeName", resourceTypeName="resTypeName")

The meaning of the arguments is as follows:

■ appStripe specifies the application stripe from where to remove the resource
type.

Important: A resource type cannot be modified after it has been
created. If you need to modify a resource type in any way (such as
adding, renaming, or deleting an action in it), you must delete the
resource type and create a new one with the appropriate values.
Specifically, you must:

■ Create a new resource type.

■ Create the required new resource instances.

■ Create the required grants.

Managing Application Policies with OPSS Scripts

9-18 Oracle Fusion Middleware Application Security Guide

■ resourceTypeName specifies the name of the resource type to remove.

Example of Use
The following invocation removes the resource type myResType from the stripe
myApplication:

deleteResourceType -appStripe myApplication
-resourceTypeName myResType

9.3.15 createResource
The script createResource creates a new resource of a specified type in a specified
application stripe. The passed resource type must exist in the passed application
stripe.

Script Mode Syntax
createResource -appStripe appStripeName

-name resName
 -type resTypeName
 [-displayName dispName]
 [-description descript]

Interactive Mode Syntax
createResource(appStripe="appStripeName", name="resName", type="resTypeName"
[,-displayName="dispName"] [,-description="descript"])

The meaning of the arguments is as follows:

■ appStripe specifies the application stripe where the resource is created.

■ name specifies the name of the resource created.

■ type specifies the type of resource created. The passed resource type must be
present in the application stripe at the time this script is invoked.

■ diplayName specifies the display name of the resource created. Optional.

■ description specifies the description of the resource created. Optional.

Example of Use
The following invocation creates the resource myResource in the stripe
myApplication:

createResource -appStripe myApplication
-name myResource

 -type myResType
 -displayName myNewResource

9.3.16 deleteResource
The script deleteResource deletes a resource and all its references from
entitlements in an application stripe. The script performs a cascading deletion: if the
entitlement refers to one resource only, it removes the entitlement; otherwise, it
removes from the entitlement the resource actions for the passed type.

Script Mode Syntax
deleteResource -appStripe appStripeName

-name resName
 -type resTypeName

Managing Application Policies with OPSS Scripts

Managing the Policy Store 9-19

Interactive Mode Syntax
deleteResource(appStripe="appStripeName", name="resName", type="resTypeName")

The meaning of the arguments is as follows:

■ appStripe specifies the application stripe where the resource is deleted.

■ name specifies the name of the resource deleted.

■ type specifies the type of resource deleted. The passed resource type must be
present in the application stripe at the time this script is invoked.

Example of Use
The following invocation deletes the resource myResource in the stripe
myApplication:

deleteResource -appStripe myApplication
-name myResource

 -type myResType

9.3.17 listResources
The script listResources lists resources in a specified application stripe. If a
resource type is specified, it lists all the resources of the specified resource type;
otherwise, it lists all the resources of all types.

Script Mode Syntax
listResources -appStripe appStripeName
 [-type resTypeName]

Interactive Mode Syntax
listResources(appStripe="appStripeName" [,type="resTypeName"])

The meaning of the arguments is as follows:

■ appStripe specifies the application stripe where the resources are listed.

■ type specifies the type of resources listed. The passed resource type must be
present in the application stripe at the time this script is invoked.

Examples of Use
The following invocation lists all resources of type myResType in the stripe
myApplication:

listResources -appStripe myApplication
 -type myResType

The following invocation lists all resources in the stripe myApplication:

listResources -appStripe myApplication

9.3.18 listResourceActions
The script listResourceActions lists the resources and actions in an entitlement
within an application stripe.

Script Mode Syntax
listResourceActions -appStripe appStripeName

 -permSetName entitlementName

Managing Application Policies with OPSS Scripts

9-20 Oracle Fusion Middleware Application Security Guide

Interactive Mode Syntax
listResourceActions(appStripe="appStripeName", permSetName="entitlementName")

The meaning of the arguments is as follows:

■ appStripe specifies the application stripe where the entitlement resides.

■ permSetName specifies the name of the entitlement whose resources and actions
to list.

Example of Use
The following invocation lists the resources and actions of the entitlement
myEntitlement in the stripe myApplication:

listResourceActions -appStripe myApplication
 -permSetName myEntitlement

9.3.19 createEntitlement
The script createEntitlement creates a new entitlement with just one resource and
a list of actions in a specified application stripe. Use addResourceToEntitlement
to add additional resources to an existing entitlement; use
revokeResourceFromEntitlement to delete resources from an existing
entitlement.

Script Mode Syntax
createEntitlement -appStripe appStripeName

 -name entitlementName
 -resourceName resName
 -actions actionList
 [-displayName dispName]
 [-description descript]

Interactive Mode Syntax
createEntitlement(appStripe="appStripeName", name="entitlementName",
resourceName="resName", actions="actionList" [,-displayName="dispName"]
[,-description="descript"])

The meaning of the arguments is as follows:

■ appStripe specifies the application stripe where the entitlement is created.

■ name specifies the name of the entitlement created.

■ resourceName specifies the name of the one resource member of the entitlement
created.

■ actions specifies a comma-separated the list of actions for the resource
resourceName.

■ diplayName specifies the display name of the resource created. Optional.

■ description specifies the description of the entitlement created. Optional.

Example of Use
The following invocation creates the entitlement myEntitlement with just the resource
myResource in the stripe myApplication:

createEntitlement -appStripe myApplication
 -name myEntitlement

Managing Application Policies with OPSS Scripts

Managing the Policy Store 9-21

 -resourceName myResource
 -actions read,write

9.3.20 getEntitlement
The script getEntitlement returns the name, display name, and all the resources
(with their actions) of an entitlement in an application stripe.

Script Mode Syntax
getEntitlement -appStripe appStripeName

-name entName

Interactive Mode Syntax
getEntitlement(appStripe="appStripeName", name="entName")

The meaning of the arguments is as follows:

■ appStripe specifies the application stripe where the entitlement is located.

■ name specifies the name of the entitlement to access.

Example of Use
The following invocation returns the information of the entitlement myEntitlement in
the stripe myApplication:

getEntitlement -appStripe myApplication
-name myEntitlement

9.3.21 deleteEntitlement
The script deleteEntitlement deletes an entitlement in a specified application
stripe. The script performs a cascading deletion by removing all references to the
specified entitlement in the application stripe.

Script Mode Syntax
deleteEntitlement -appStripe appStripeName

 -name entName

Interactive Mode Syntax
deleteEntitlement(appStripe="appStripeName", name="entName")

The meaning of the arguments is as follows:

■ appStripe specifies the application stripe where the entitlement is deleted.

■ name specifies the name of the entitlement to delete.

Example of Use
The following invocation deletes the entitlement myEntitlement in the stripe
myApplication:

deleteEntitlement -appStripe myApplication
 -name myEntitlement

Managing Application Policies with OPSS Scripts

9-22 Oracle Fusion Middleware Application Security Guide

9.3.22 addResourceToEntitlement
The script addResourceToEntitlement adds a resource with specified actions to
an entitlement in a specified application stripe. The passed resource type must exist in
the passed application stripe.

Script Mode Syntax
addResourceToEntitlement -appStripe appStripeName

 -name entName
 -resourceName resName
 -resourceType resType
 -actions actionList

Interactive Mode Syntax
addResourceToEntitlement(appStripe="appStripeName", name="entName",
resourceName="resName",actions="actionList")

The meaning of the arguments is as follows:

■ appStripe specifies the application stripe where the entitlement is located.

■ name specifies the name of the entitlement to modify.

■ resourceName specifies the resource to add.

■ resourceType specifies the type of the resource to add. The passed resource
type must be present in the application stripe at the time this script is invoked.

■ actions specifies the comma-separated list of actions for the added resource.

Example of Use
The following invocation adds the resource myResource to the entitlement
myEntitlement in the application stripe myApplication:

addResourceToEntitlement -appStripe myApplication
 -name myEntitlement

 -resourceName myResource
 -resourceType myResType
 -actions view,edit

9.3.23 revokeResourceFromEntitlement
The script revokeResourceFromEntitlement removes a resource from an
entitlement in a specified application stripe.

Script Mode Syntax
revokeResourceFromEntitlement -appStripe appStripeName

 -name entName
 -resourceName resName
 -resourceType resTypeName
 -actions actionList

Interactive Mode Syntax
revokeResourceFromEntitlement(appStripe="appStripeName", name="entName",
resourceName="resName" ,-resourceType="resTypeName", actions="actionList")

The meaning of the arguments is as follows:

■ appStripe specifies the application stripe where the entitlement is located.

Managing Application Policies with OPSS Scripts

Managing the Policy Store 9-23

■ name specifies the name of the entitlement to modify.

■ resourceName specifies the type of resource to remove.

■ resourceType specifies the type of the resource to remove.

■ actions specifies the comma-separated list of actions to remove.

Example of Use
The following invocation removes the resource myResource from the entitlement
myEntitlement in the stripe myApplication:

revokeResourceFromEntitlement -appStripe myApplication
 -name myEntitlement

 -resourceName myResource
 -resourceType myResType
 -actions view,edit

9.3.24 listEntitlements
The script listEntitlements lists all the entitlements in an application stripe. If a
resource name and a resource type are specified, it lists the entitlements that have a
resource of the specified type matching the specified resource name; otherwise, it lists
all the entitlements in the application stripe.

Script Mode Syntax
listEntitlements -appStripe appStripeName

 [-resourceTypeName resTypeName]
 [-resourceName resName]

Interactive Mode Syntax
listEntitlements(appStripe="appStripeName" [,resourceTypeName="resTypeName",
resourceName="resName"])

The meaning of the arguments is as follows:

■ appStripe specifies the application stripe from where to list entitlements.

■ resourceTypeName specifies the name of the type of the resources to list.
Optional.

■ resourceName specifies the name of resource to match. Optional.

Examples of Use
The following invocation lists all the entitlements in the stripe myApplication:

listEntitlements -appStripe myApplication

The following invocation lists all the entitlements in the stripe myApplication that
contain a resource type myResType and a resource whose name match the resource
name myResName:

listEntitlements -appStripe myApplication
 -resourceTypeName myResType

 -resourceName myResName

9.3.25 grantEntitlement
The script grantEntitlement creates a new entitlement with a specified principal in
a specified application stripe.

Managing Application Policies with OPSS Scripts

9-24 Oracle Fusion Middleware Application Security Guide

Script Mode Syntax
grantEntitlement -appStripe appStripeName

 -principalClass principalClass
 -principalName principalName
 -permSetName entName

Interactive Mode Syntax
grantEntitlement(appStripe="appStripeName", principalClass="principalClass",
principalName="principalName" ,-permSetName="entName")

The meaning of the arguments is as follows:

■ appStripe specifies the application stripe where the entitlement is created.

■ principalClass specifies the class associated with the principal.

■ principalName specifies the name of the principal to which the entitlement is
granted.

■ permSetName specifies the name of the entitlement created.

Example of Use
The following invocation creates the entitlement myEntitlement in the stripe
myApplication:

grantEntitlement -appStripe myApplication
 -principalClass

oracle.security.jps.service.policystore.ApplicationRole
 -principalName myPrincipalName
 -permSetName myEntitlement

9.3.26 revokeEntitlement
The script revokeEntitlement deletes an entitlement and revokes the entitlement
from the principal in a specified application stripe.

Script Mode Syntax
revokeEntitlement -appStripe appStripeName

 -principalClass principalClass
 -principalName principalName
 -permSetName entName

Interactive Mode Syntax
revokeEntitlement(appStripe="appStripeName", principalClass="principalClass",
principalName="principalName" ,-permSetName="entName")

The meaning of the arguments is as follows:

■ appStripe specifies the application stripe where the entitlement is deleted.

■ principalClass specifies the class associated with the principal.

■ principalName specifies the name of the principal to which the entitlement is
revoked.

■ permSetName specifies the name of the entitlement deleted.

Managing Application Policies with OPSS Scripts

Managing the Policy Store 9-25

Example of Use
The following invocation deletes the entitlement myEntitlement in the stripe
myApplication:

revokeEntitlement -appStripe myApplication
 -principalClass

oracle.security.jps.service.policystore.ApplicationRole
 -principalName myPrincipalName
 -permSetName myEntitlement

9.3.27 listEntitlement
The script listEntitlement lists an entitlement in a specified application stripe. If a
principal name and a class are specified, it lists the entitlements that match the
specified principal; otherwise, it lists all the entitlements.

Script Mode Syntax
listEntitlement -appStripe appStripeName

 [-principalName principalName
 -principalClass principalClass]

Interactive Mode Syntax
listEntitlement(appStripe="appStripeName" [, principalName="principalName",
principalClass="principalClass"])

The meaning of the arguments is as follows:

■ appStripe specifies the application stripe where the entitlement is located.

■ principalName specifies the name of the principal to match. Optional.

■ principalClass specifies the class of the principal to match. Optional.

Example of Use
The following invocation lists all entitlements in the stripe myApplication:

listEntitlement -appStripe myApplication

9.3.28 listResourceTypes
The script listResourceTypes lists all the resource types in a specified application
stripe.

Script Mode Syntax
listResourceTypes -appStripe appStripeName

Interactive Mode Syntax
listResourceTypes(appStripe="appStripeName")

The meaning of the arguments is as follows:

■ appStripe specifies the application stripe where the resource types are located.

Example of Use
The following invocation lists all resource types in the stripe myApplication:

listResourceTypes -appStripe myApplication

Managing Application Policies with OPSS Scripts

9-26 Oracle Fusion Middleware Application Security Guide

9.3.29 reassociateSecurityStore
The script reassociateSecurityStore migrates the OPSS security store from a
source to a target LDAP- or DB-based store, and it resets the default policy and
credential services to the target repository. It also allows specifying that the OPSS
security store be shared with that in a different domain (see optional argument join
below). The OPSS binaries and the target policy store must have compatible versions;
for details, see Section L.21, "Incompatible Versions of Binaries and Policy Store."

The source can be a file-, LDAP-, or DB-based store; the only type of LDAP target
supported is Oracle Internet Directory; the only type of DB target supported is DB_
ORACLE. This script uses and modifies the domain configuration file
jps-config.xml, and it is supported in only the interactive mode.

For recommendations involving reassociation, see Important Points. After
reassociating to a DB-based store and before using any OPSS script in offline mode,
some manual editing is necessary; for details, see Running an Offline Script after
Reassociating to a DB-Based Store.

Interactive Mode Syntax
The script syntax varies slightly according to the type of the target store.

When the target is an LDAP-based store, use the following syntax:

reassociateSecurityStore(domain="domainName", servertype="OID",
ldapurl="hostAndPort", jpsroot="cnSpecification", admin="cnSpecification",
password="passWord" [,join="trueOrfalse"][,keyFilePath="dirLoc",
keyFilePassword="password")

When the target is a DB-based store, use the following syntax:

reeassociateSecurityStore(domain="domainName", servertype="DB_ORACLE",
datasourcename="datasourceName", jpsroot="jpsRoot"[,admin="adminAccnt"]
[,password="passWord"][join="trueOrfalse"][)

The meaning of the arguments (all required) is as follows:

■ domain: on WebLogic, specifies the domain name where the reassociating takes
place; on WebSphere, specifies the WebSphere cell name.

■ admin specifies, in case of an LDAP target, the administrator’s user name on the
target server, and the format is cn=usrName.
In case of a DB target, it is required only when the DB has a protected data source
(protected with user/password); in this case, it specifies the user name set to
protect the data source when the data source was created; that user and password
must be present in the bootstrap credential store.

■ password specifies the password associated with the user specified for the
argument admin. It is required in case of an LDAP target.

In case of a DB target, it is required only when the DB has a protected data source;
in this case, it specifies the password associated with the user specified for the
argument admin.

■ ldapurl specifies the URI of the LDAP server. The format is
ldap//:host:port, if you are using the default port, or ldaps://host:port,
if you are using an anonymous SSL or one-way SSL transmission. The secure port
must be configured to handle the desired SSL connection mode, and must be
distinct from the default (non-secure) port.

■ servertype specifies the kind of the target LDAP server or DB server. The only
valid types are OID and DB_ORACLE.

Managing Application Policies with OPSS Scripts

Managing the Policy Store 9-27

■ jpsroot specifies the root node in the target LDAP repository under which all
data is migrated. The format is cn=nodeName.

■ join specifies whether the domain is to share an OPSS security store in another
domain. Optional. Set to true to share an existing store in another domain; set to
false otherwise. If unspecified, it defaults to false. The use of this argument allows
multiple WebLogic domains to point to the same logical OPSS security store.

■ datasourcename specifies the JNDI name of the JDBC data source; this should
be identical to the value of the JNDI name data source entered when the data
source was created; see Section 8.3.1.3, "Creating a Data Source Instance."

■ keyFilePath specifies the directory where the file ewallet.p12 is created; the
content of this file is encrypted and secured by the value passed to
keyFilePassword. Optional. Use in conjucntion with argument
keyFilePassword.

■ keyFilePassword specifies the password to secure the file ewallet.p12.
Optional. Use in conjucntion with argument keyFilePath.

Examples of Use
reassociateSecurityStore(domain="myDomain", admin="cn=adminName",
password="myPass", ldapurl="ldaps://myhost.example.com:3060", servertype="OID",
jpsroot="cn=testNode")

Suppose that you want some other domain (distinct from myDomain, say
otherDomain) to share the policy store in myDomain. Then you would invoke the
script as follows:

reassociateSecurityStore(domain="otherDomain", admin="cn=adminName",
password="myPass", ldapurl="ldaps://myhost.example.com:3060", servertype="OID",
jpsroot="cn=testNode", join="true")

9.3.30 Running an Offline Script after Reassociating to a DB-Based Store
The jps configuration file produced by the reassociation to a DB-based stored cannot
be passed, as is, to any offline OPSS script. Before running an OPSS script in offline
mode after having reassociated to a DB-based store, the configuration file must be
edited manually as described below.

The following examples illustrate fragments of jps configuration files before and after
reassociating to a DB-based OPSS security store, and the changes required on the
configuration file produced by the reassociation.

Before Reassociation
The following fragment illustrates the configuration of a file-based policy store before
being reassociated to a DB-based store:

<serviceInstance name="policystore.xml" provider="policystore.xml.provider"
location="./system-jazn-data.xml">

Important: When an OPSS security store is reassociated with
join=true, the bootstrap wallet from the first domain must be
manually copied to the second domain. The reason for this
requirement is that the first domain generates a local key that is used
to encrypt the keystore data and the second domain needs to have the
same key in its bootstrap wallet in order to decrypt that data.

Caching and Refreshing the Cache

9-28 Oracle Fusion Middleware Application Security Guide

 <description>File Based Policy Store Service Instance</description>
</serviceInstance>

After Reassociation
The following fragment illustrates the property set props.db.1 in the file generated
by the reassociation of the above store to a DB-based store:

<propertySet name="props.db.1">
 <property value="cn=soa_domain" name="oracle.security.jps.farm.name"/>
 <property value="cn=jpsroot" name="oracle.security.jps.ldap.root.name"/>
 <property value="jdbc/opss" name="datasource.jndi.name"/>
</propertySet>

<serviceInstance provider="policystore.provider" name="policystore.db">
 <property value="DB_ORACLE" name="policystore.type"/>
 <propertySetRef ref="props.db.1"/>
</serviceInstance>

Required Editing
The property set above must be replaced with the following:

<propertySet name="props.db.1">
 <property value="cn=myDomain" name="oracle.security.jps.farm.name"/>
 <property value="DB_ORACLE" name="server.type"/>
 <property value="cn=myRoot" name="oracle.security.jps.ldap.root.name"/>
 <property name="jdbc.url" value="jdbc:oracle:thin:@myhost.com:1521/srv_name"/>
 <property name="jdbc.driver" value="oracle.jdbc.driver.OracleDriver"/>
 <property name="bootstrap.security.principal.key" value="myKeyName" />
 <property name="bootstrap.security.principal.map" value="myMapName" />
</propertySet>

The value of the property jdbc.url must match the name of the JDBC data source
entered when the data source was created; the values of the bootstrap credentials (map
and key) must match those passed to the OPSS script addBootStrapCredential
when the bootstrap was created.

The edited file can then be passed to the offline script.

9.4 Caching and Refreshing the Cache
OPSS optimizes the authorization process by caching security artifacts.

When an application policy (or some other security artifact) is modified, the change
becomes effective depending on where the application and the tool used to modified
the artifact are running:

■ If both the application and the tool are running on the same host and in the same
domain, the change becomes effective immediately.

■ Otherwise, if the application and the tool are running on different hosts or in
different domains, the change becomes effective after the policy store cache is
refreshed. The frequency of the cache refresh is determined by the value of the
property oracle.security.jps.ldap.policystore.refresh.interval.
The default value is 10 minutes.

Caching and Refreshing the Cache

Managing the Policy Store 9-29

9.4.1 An Example
The following use case illustrates the authorization behavior in four scenarios when
(from a different domain or host) Oracle Entitlements Server is used to modify security
artifacts, and the property
oracle.security.jps.policystore.refresh.interval is set to 10 minutes.

The use case assumes that:

■ A user is member of an enterprise role.

■ That enterprise role is included as a member of an application role.

■ The application role is granted a permission that governs some application
functionality.

Under the above assumptions, we now examine the authorization result in the
following four scenarios.

Scenario A
1. The user logs in to the application.

2. The user accesses the functionality secured by the application role.

3. From another host (or domain), Oracle Entitlements Server is used to remove the
enterprise role from the application role.

4. The user logs out from the application, and immediately logs back in.

5. The user is still able to access the functionality secured by the application role.

The reason for this outcome is that the policy cache has not yet been refreshed with the
change introduced in step 3 above.

Scenario B
1. The user logs in to the application.

2. The user accesses the functionality secured by the application role.

3. From another host (or domain), Oracle Entitlements Server is used to remove the
enterprise role from the application role.

4. The user logs out from the application, and logs back in after 10 minutes.

5. The user is not able to access the functionality secured by the application role.

The reason for this outcome is that the policy cache has been refreshed with the
change introduced in step 3 above.

Scenario C
1. The user logs in to the application.

2. The user accesses the functionality secured by the application role.

3. From another host (or domain), Oracle Entitlements Server is used to remove the
enterprise role from the application role.

4. The user does not log out and remains able to access the functionality secured by
the application role within 10 minutes.

The reason for this outcome is that the policy cache has not yet been refreshed with the
change introduced in step 3 above.

Granting Policies to Anonymous and Authenticated Roles with WLST Scripts

9-30 Oracle Fusion Middleware Application Security Guide

Scenario D
1. The user logs in to the application.

2. The user accesses the functionality secured by the application role.

3. From another host (or domain), Oracle Entitlements Server is used to remove the
enterprise role from the application role.

4. The user does not log out, waits more than 10 minutes, and then attempts to access
the functionality secured by the application role: the access is denied.

The reason for this outcome is that the policy cache has been refreshed with the
change introduced in step 3 above.

9.5 Granting Policies to Anonymous and Authenticated Roles with WLST
Scripts

Several WLST scripts require the specification of the principal name and the principal
class for a role involved in the operation.

For example, the following invocation adds a principal to the role with application
stripe myApp and name myAppRole:

grantAppRole.py -appStripe myApp -appRoleName myAppRole
-principalClass myPrincipalClass -principalName myPrincipal

When in such scripts the principal refers to the authenticated role or the anonymous
role, the principal names and principal classes are fixed and must be one of the
following pairs:

■ Authenticated role

– Name: authenticated-role

– Class:
oracle.security.jps.internal.core.principals.JpsAuthentica
tedRoleImpl

■ Anonymous role

– Name: anonymous-role

– Class:
oracle.security.jps.internal.core.principals.JpsAnonymousR
oleImpl

The list of WLST scripts that required the above principal name and class specification
are the following:

■ grantAppRole

■ revokeAppRole

■ grantPermission

■ revokePermission

■ listPermissions

9.6 Application Stripe for Versioned Applications in WLST Scripts
Several WLST scripts require the specification of an application stripe. If the
application is not versioned, the application stripe defaults to the application name.

Guidelines to Configure the Policy Store

Managing the Policy Store 9-31

Otherwise, if the application is versioned, the application name and the application
stripe are not identical.

For example, the name of a versioned application with name myApp and version 1 is
displayed myApp(v1.0) in Fusion Middleware Control pages, but the application
stripe of this application is myApp#v1.0.

In general, an application with display name appName(vers) has application stripe
appName#vers. It is this last string that should be passed as the application stripe in
WLST scripts, as illustrated in the following invocation:

>listAppRoles myApp#v1.0

The list of WLST scripts that can use stripe specification are the following:

■ createAppRole

■ deleteAppRole

■ grantAppRole

■ revokeAppRole

■ listAppRoles

■ listAppRoleMembers

■ grantPermission

■ revokePermission

■ listPermissions

■ deleteAppPolicies

9.7 Managing Application Policies with Oracle Entitlements Server
Oracle Entitlements Server allows managing and searching application policies and
other security artifacts in a WebLogic domain that uses an Oracle Internet Directory
LDAP policy store.

For details, see the following topics in Oracle Fusion Middleware Administrator's Guide
for Oracle Entitlements Server:

■ Querying Security Artifacts

■ Managing Policies and Roles

9.8 Guidelines to Configure the Policy Store
For details about OPSS properties tune up, see section Oracle Platform Security
Services Tuning in Oracle Fusion Middleware Performance and Tuning Guide.

Guidelines to Configure the Policy Store

9-32 Oracle Fusion Middleware Application Security Guide

10

Managing the Credential Store 10-1

10Managing the Credential Store

A credential can hold user names, passwords, and tickets; credentials can be
encrypted. Credentials are used during authentication, when principals are populated
in subjects, and, further, during authorization, when determining what actions the
subject can perform.

Oracle Platform Security Services includes the Credential Store Framework (CSF), a set
of APIs that applications can use to create, read, update, and manage credentials
securely. A typical use of the credential store is to store user names and passwords to
access some external system, such as a database or an LDAP-based repository.

This chapter is divided into the following sections:

■ Credential Types

■ Encrypting Credentials

■ Managing Credentials with Fusion Middleware Control

■ Managing Credentials with OPSS Scripts

10.1 Credential Types
OPSS supports the following types of credentials according to the data they contain:

■ A password credential encapsulates a user name and a password.

■ A generic credential encapsulates any customized data or arbitrary token, such as a
symmetric key.

In CSF, a credential is uniquely identified by a map name and a key name. Typically,
the map name corresponds with the name of an application and all credentials with
the same map name define a logical group of credentials, such as the credentials used
by the application. The pair of map and key names must be unique for all entries in a
credential store.

Oracle Wallet is the default file-based credential store, and it can store X.509
certificates; production environments typically use either an Oracle Internet Directory
LDAP-based or an RDBMS DB-based credential store.

10.2 Encrypting Credentials
OPSS supports storing encrypted data in file- and LDAP-based credential stores. (In
case of DB-based credential stores, data is always encrypted.) OPSS uses an encryption
key to encrypt and decrypt data when it is read from or written to the credential store.
To enable the encryption of credentials in a file- or LDAP-based store, set the following
property in the credential store service instance of the file jps-config.xml:

Encrypting Credentials

10-2 Oracle Fusion Middleware Application Security Guide

<property name="encrypt" value="true" />

By default, credentials are kept in clear-text.

The Encryption Key
Assuming the above property set, OPSS automatically generates a random 256-bit AES
key when the domain is restarted. Since the keys generated are practically distinct, a
domain uses a unique encryption key. In addition to the first generated encryption key,
there may be other keys (roll-over keys) automatically generated over time and used to
encrypt and decrypt data. The only way to get a roll-over key is by restarting the
domain.

When a new roll-over key is produced, data in the credential store is not immediately
re-encrypted with the new key. Instead, data is re-encrypted (with the new key) only
when it is written. This implies that to get all data to use the same encryption key, all
credentials must be read and written.

Domains Sharing a Credential Store
If two or more domains share a credential store and encryption is enabled in that store,
then each of those domains must use the same encryption key; this applies regardless
of the type, LDAP or DB, of the credential store. To ensure this, OPSS provides offline
scripts to export, import, and restore keys in the domain bootstrap wallet, so that an
encryption key generated in one domain can be carried over to all other domains
sharing the credential store. For details about these commands, see Managing
Credentials with OPSS Scripts.

The following scenarios illustrate how to set credential encryption in a cluster of two
domains, Domain1 and Domain2. (In case of more than two domains, treat each
additional domain as Domain2 in the illustration below.)

First Scenario
Assume that Domain1 has reassociated to an LDAP-based credential store, and
Domain2 has not yet joined to that store. Then, to enable credential encryption on that
store, proceed as follows:

1. Set the property encrypt to true in Domain1’s jps-config.xml file and restart
the domain.

2. Use the OPSS script exportEncryptionKey to extract the key from Domain1’s
bootstrap wallet into the file ewallet.p12; note that the value of the argument
keyFilePassword passed to the script must be used later when importing that
key into another domain.

3. Set the property encrypt to true in Domain2’s jps-config.xml file.

At this point you can complete the procedure in one of two ways; both of them use
the OPSS script reassociateSecurityStore, but with different syntaxes. For
details about this script, see Section 9.3.29, "reassociateSecurityStore."

The first approach is as follows:

Note: The following scenarios assume that the credential store is
LDAP-based, but the use of exportEncryptionKey and
exportEncryptionKey to import and export keys across domains
applies also to DB-based credential stores (in which data is always
encrypted).

Managing Credentials with Fusion Middleware Control

Managing the Credential Store 10-3

1. Use the OPSS script reassociateSecurityStore to reassociate Domain2’s
credential store to that used by Domain1; use the argument join and do not use
the arguments keyFilePassword and keyFilePath.

2. Use the OPSS script importEncryptionKey to write the extracted
ewallet.p12 into Domain2’s bootstrap wallet; note that the value of the
argument keyFilePassword must be identical to the one used when the file
ewallet.p12 was generated.

3. Restart Domain2’s server.

The second approach is as follows:

1. Use the OPSS script reassociateSecurityStore to reassociate Domain2’s
credential store to that used by Domain1; use the arguments join,
keyFilePassword, and keyFilePath.

2. Restart Domain2’s server.

Second Scenario
Assume that Domain1 has reassociated to an LDAP-based credential store and
Domain2 has already joined to that store. Then, to enable credential encryption on that
store, proceed as follows:

1. Set the property encrypt to true in Domain1’s jps-config.xml file and restart
the domain.

2. Use the OPSS script exportEncryptionKey to extract the key from Domain1’s
bootstrap wallet into the file ewallet.p12; note that the value of the argument
keyFilePassword passed to the script must be used later when importing that
key into another domain.

3. Set the property encrypt to true in Domain2’s jps-config.xml file.

4. Use the OPSS script importEncryptionKey to write the extracted
ewallet.p12 into Domain2’s bootstrap wallet; note that the value of the
argument keyFilePassword must be identical to the one used when the file
ewallet.p12 was generated.

5. Restart Domain2’s server.

10.3 Managing the Credential Store
Credentials can be provisioned, retrieved, modified, or deleted, but only by a user in
the appropriate administration role. The following sections explain how an
administrator can manage credentials using Fusion Middleware Control pages or
OPSS scripts, and how code can access data in the CSF.

10.4 Managing Credentials with Fusion Middleware Control
The following procedure explains how to use Fusion Middleware Control to manage
credentials.

Important Note: In case of multiple domains sharing a credential
store in which encryption has been enabled, every time a roll-over
key is generated in one of those domains, the administrator must
import that key to each of the other domains in the cluster using the
OPSS scripts exportEncryptionKey and importEncryptionKey.

Managing Credentials with Fusion Middleware Control

10-4 Oracle Fusion Middleware Application Security Guide

1. Log in to Fusion Middleware Control and navigate to Domain > Security >
Credentials (if the application is deployed on Oracle WebLogic Server), or to Cell
> Security > Application Policies (if it is deployed on WebSphere Application
Server), to display the Credentials page partially illustrated in the following
graphic:

The area Credential Store Provider is read-only; when expanded, it displays the
credential store provider currently in use in the domain or cell.

2. To display credentials matching a given key name, enter the string to match in the
Credential Key Name box, and then click the blue button. The result of the search
is displayed in the table at the bottom of the page.

3. At any point, you can remove an item by selecting it and clicking the Delete
button; similarly, you can modify an item from the table by selecting it and
clicking Edit button. Note that deleting a credential map, deletes all keys in it.

To create a credential map:

1. Click Create Map to display the Create Map dialog.

2. In this dialog, enter the name of the map for the credential being created.

3. Click OK to return to the Credentials page. The new credential map name is
displayed with a map icon in the table.

To add a key to a credential map:

1. Click Create Key to display the Create Key dialog.

2. In this dialog, select a map from the menu Select Map for the key being created,
enter a key in the text Key box, and select a type (Password or Generic) from the
pull-down menu Type. The dialog display changes according the type selected.

If Password was selected, enter the required fields (Key, User Name, Password,
Confirm Passwords).

If Generic was selected, enter the required field Key and the credential
information either as text (select Enter as Text radio button), or as a list of
key-value pairs (select Enter Map of Property Name and Value Pairs radio
button); to add a key-value pair, click Add Row, and then enter the Property
Name, Value, and Confirm Value in the added arrow.

Figure 10–1 illustrates th dialog used to create a password key.

Managing Credentials with Fusion Middleware Control

Managing the Credential Store 10-5

3. Click OK to return to the Credentials page. The new key is displayed under the
map icon corresponding to the map you selected.

Figure 10–1 The Create Key Dialog

To edit a key:

1. Select a key from the table.

2. Click Edit to bring up the Edit Key dialog.

3. In that dialog, modify the key data as appropriate. In case of editing a generic key,
use the red X next to a row to delete the corresponding property-value pair.

Figure 10–2 illustrates the dialog used to edit a generic key.

4. Click OK to save your changes and return to the Credentials page.

For specific considerations that apply to ADF applications only, see section How to
Edit Credentials Deployed with the Application in Oracle Fusion Middleware
Administrator's Guide for Oracle Application Development Framework.

Managing Credentials with OPSS Scripts

10-6 Oracle Fusion Middleware Application Security Guide

Figure 10–2 The Crteate Key Dialog

10.5 Managing Credentials with OPSS Scripts
An OPSS script is either a WLST script, in the context of the Oracle WebLogic Server,
or a WASAdmin script, in the context of the WebSphere Application Server. The
scripts listed in this section apply to both platforms: WebLogic Application Server and
WebSphere Application Server.

An online script is a script that requires a connection to a running server. Unless
otherwise stated, scripts listed in this section are online scripts and operate on a policy
store, regardless of whether it is file-, LDAP-, or DB-based. There are a few scripts that
are offline, that is, they do not require a server to be running to operate.

Read-only scripts can be performed only by users in the following WebLogic groups:
Monitor, Operator, Configurator, or Admin. Read-write scripts can be performed only
by users in the following WebLogic groups: Admin or Configurator. All WLST scripts
are available out-of-the-box with the installation of the Oracle WebLogic Server.

WLST scripts can be run in interactive mode or in script mode. In interactive mode,
you enter the script at a command-line prompt and view the response immediately
after. In script mode, you write scripts in a text file (with a py file name extension) and
run it without requiring input, much like the directives in a shell script.

WASAdmin scripts can be run in interactive mode only. For details, see Oracle Fusion
Middleware Third-Party Application Server Guide.

For platform-specific requirements to run an OPSS script, see Important Note.

OPSS provides the following scripts on all supported platforms to administer
credentials (all scripts are online, unless otherwise stated):

■ listCred

■ updateCred

■ createCred

■ deleteCred

Managing Credentials with OPSS Scripts

Managing the Credential Store 10-7

■ modifyBootStrapCredential

■ addBootStrapCredential

■ exportEncryptionKey

■ importEncryptionKey

■ restoreEncryptionKey

10.5.1 listCred
The script listCred returns the list of attribute values of a credential in the credential
store with given map name and key name. This script lists the data encapsulated in
credentials of type password only.

Script Mode Syntax
listCred.py -map mapName -key keyName

Interactive Mode Syntax
listCred(map="mapName", key="keyName")

The meanings of the arguments (all required) are as follows:

■ map specifies a map name (folder).

■ key specifies a key name.

Example of Use
The following invocation returns all the information (such as user name, password,
and description) in the credential with map name myMap and key name myKey:

listCred.py -map myMap -key myKey

10.5.2 updateCred
The script updateCred modifies the type, user name, and password of a credential in
the credential store with given map name and key name. This script updates the data
encapsulated in credentials of type password only. Only the interactive mode is
supported.

Interactive Mode Syntax
updateCred(map="mapName", key="keyName", user="userName", password="passW",
[desc="description"])

The meanings of the arguments (optional arguments are enclosed by square brackets)
are as follows:

■ map specifies a map name (folder) in the credential store.

■ key specifies a key name.

■ user specifies the credential user name.

■ password specifies the credential password.

■ desc specifies a string describing the credential.

Managing Credentials with OPSS Scripts

10-8 Oracle Fusion Middleware Application Security Guide

Example of Use
The following invocation updates the user name, password, and description of the
password credential with map name myMap and key name myKey:

updateCred(map="myMap", key="myKey", user="myUsr", password="myPassw")

10.5.3 createCred
The script createCred creates a credential in the credential store with a given map
name, key name, user name and password. This script can create a credential of type
password only. Only the interactive mode is supported.

Interactive Mode Syntax
createCred(map="mapName", key="keyName", user="userName", password="passW",
[desc="description"])

The meanings of the arguments (optional arguments are enclosed by square brackets)
are as follows:

■ map specifies the map name (folder) of the credential.

■ key specifies the key name of the credential.

■ user specifies the credential user name.

■ password specifies the credential password.

■ desc specifies a string describing the credential.

Example of Use
The following invocation creates a password credential with the specified data:

createCred(map="myMap", key="myKey", user="myUsr", password="myPassw")

10.5.4 deleteCred
The script deleteCred removes a credential with given map name and key name
from the credential store.

Script Mode Syntax
deleteCred.py -map mapName -key keyName

Interactive Mode Syntax
deleteCred(map="mapName",key="keyName")

The meanings of the arguments (all required) are as follows:

■ map specifies a map name (folder).

■ key specifies a key name.

Example of Use
The following invocation removes the credential with map name myMap and key name
myKey:

deleteCred.py -map myMap -key myKey

Managing Credentials with OPSS Scripts

Managing the Credential Store 10-9

10.5.5 modifyBootStrapCredential
The offline script modifyBootStrapCredential modifies the bootstrap credentials
configured in the default jps context, and it is typically used in the following scenario:
suppose that the policy and credential stores are LDAP-based, and the credentials to
access the LDAP store (stored in the LDAP server) are changed. Then this script can be
used to seed those changes into the bootstrap credential store.

This script is available in interactive mode only.

Interactive Mode Syntax
modifyBootStrapCredential(jpsConfigFile="pathName", username="usrName",
password="usrPass")

The meanings of the arguments (all required) are as follows:

■ jpsConfigFile specifies the location of the file jps-config.xml relative to the
location where the script is run.

■ username specifies the distinguished name of the user in the LDAP store.

■ password specifies the password of the user.

Example of Use
Suppose that in the LDAP store, the password of the user with distinguished name
cn=orcladmin has been changed to welcome1, and that the configuration file
jps-config.xml is located in the current directory.

Then the following invocation changes the password in the bootstrap credential store
to welcome1:

modifyBootStrapCredential(jpsConfigFile='./jps-config.xml',
username='cn=orcladmin', password='welcome1')

Any output regarding the audit service can be disregarded.

10.5.6 addBootStrapCredential
The offline script addBootStrapCredential adds a password credential with given
map, key, user name, and user password to the bootstrap credentials configured in the
default jps context of a jps configuration file.

This script is available in interactive mode only.

Interactive Mode Syntax
addBootStrapCredential(jpsConfigFile="pathName", map="mapName", key="keyName",
username="usrName", password="usrPass")

The meanings of the arguments (all required) are as follows:

■ jpsConfigFile specifies the location of the file jps-config.xml relative to the
location where the script is run.

■ map specifies the map of the credential to add.

■ key specifies the key of the credential to add.

■ username specifies the name of the user in the credential to add.

■ password specifies the password of the user in the credential to add.

Managing Credentials with OPSS Scripts

10-10 Oracle Fusion Middleware Application Security Guide

Example of Use
The following invocation adds a credential to the bootstrap credential store:

addBootStrapCredential(jpsConfigFile='./jps-config.xml', map=’myMapName’,
key=’myKeyName’, username='myUser', password='myPassword')

10.5.7 exportEncryptionKey
The offline script exportEncryptionKey extracts the encryption key from a
domain’s bootstrap wallet to the file ewallet.p12.

Interactive Mode Syntax
exportEncryptionKey(jpsConfigFile="pathName", keyFilePath="dirloc"
,keyFilePassword="password")

The meanings of the arguments (all required) are as follows:

■ jpsConfigFile specifies the location of the file jps-config.xml relative to the
location where the script is run.

■ keyFilePath specifies the directory where the file ewallet.p12 is created; note
that the content of this file is encrypted and secured by the value passed to
keyFilePassword.

■ keyFilePassword specifies the password to secure the file ewallet.p12; note
that this same password must be used when importing that file.

10.5.8 importEncryptionKey
The offline script importEncryptionKey writes an encryption key from the file
ewallet.p12 to a domain’s bootstrap wallet.

Interactive Mode Syntax
importEncryptionKey(jpsConfigFile="pathName", keyFilePath="dirloc"
,keyFilePassword="password")

The meanings of the arguments (all required) are as follows:

■ jpsConfigFile specifies the location of the file jps-config.xml relative to the
location where the script is run.

■ keyFilePath specifies the directory where the ewallet.p12 is located.

■ keyFilePassword specifies the password used when the file ewallet.p12 was
generated.

10.5.9 restoreEncryptionKey
The offline script restoreEncryptionKey restores the last key to a bootstrap wallet.

Interactive Mode Syntax
restoreEncryptionKey(jpsConfigFile="pathName")

The meaning of the argument (required) is as follows:

■ jpsConfigFile specifies the location of the file jps-config.xml relative to the
location where the script is run.

11

Managing Keys and Certificates with the Keystore Service 11-1

11Managing Keys and Certificates with the
Keystore Service

This chapter explains how to use the Keystore Service to administer keys and
certificates.

■ About the Keystore Service

■ About Keystore Service Commands

■ Getting Help for Keystore Service Commands

■ Keystore Service Command Reference

11.1 About the Keystore Service
The OPSS Keystore Service enables you to manage keys and certificates for SSL,
message security, encryption, and related tasks. You use the Keystore Service to create
and maintain keystores that contain keys, certificates, and other artifacts.

■ Structure of the Keystore Service

■ Types of Keystores

■ Domain Trust Store

11.1.1 Structure of the Keystore Service
Each keystore created with the Keystore Service is uniquely referenced by an
application stripe and keystore:

■ Application Stripe

Keys and certificates created in the keystore reside in an application stripe or
product, and each stripe in a domain is uniquely named.

■ Keystore

The keystore name is unique within an application stripe. Each product or
application is allowed to create more than one key store within its application
stripe.

Thus (appstripe1, keystoreA) is unique and distinct from (appstripe1,
keystoreB), which is distinct from (appstripe2, keystoreA).

In turn, each keystore may contain the following entries, referenced by an alias that is
unique within the keystore :

About the Keystore Service

11-2 Oracle Fusion Middleware Application Security Guide

■ Asymmetric Keys - These include the public key and the corresponding private
key, and are typically used for SSL communication. The public key is wrapped in
a certificate.

■ Symmetric Keys - These keys are generally used for encryption.

■ Trusted Certificates - These certificates are typically used to establish trust with an
SSL peer.

11.1.2 Types of Keystores
The Keystore Service lets you create two types of keystores:

■ Keystores protected solely by Permission

These types of key stores are protected by authorization policies and any access to
them by runtime code is protected by code source permissions. The key data in the
backend is encrypted using an encryption key that is generated uniquely per
domain.

■ Keystores protected by both Permission and Password

These types of key stores are protected both by authorization policies and key
store and/or key passwords. Any access to them by runtime code requires both
code source permissions as well as access to the key store and key password (if
different from the key store password). The key data in the backend is encrypted
using the key store/key password through password based encryption (PBE).

It is recommended that you use permission-protected keystores for applications. If you
require high security and are willing to manage passwords, however, consider using
keystores that are both password- and permission-protected.

11.1.3 Domain Trust Store
Although each application may configure multiple keystores for its SSL usage, a
domain-level trust store comes pre-configured for all products and applications to use
for trust management.

This domain trust store contains the trusted certificates of most well-known
third-party Certificate Authorities (CAs) as well as the trusted certificate of the demo
CA that is configured with the Keystore Service. Each application can simply point to
this domain trust store for its SSL needs, eliminating the need to create a dedicated
trust store for this task.

One-Way SSL
For one-way SSL, applications can simply use the domain trust store and do not need
to create any keystore or trust store.

Two-Way SSL
For two-way SSL, applications should create only the keystore containing their
identity certificate, and use the domain trust store for trust.

Note: The Keystore Service does not manage passwords for keystore
or keys. The product or application is responsible for managing them
in an appropriate repository. For example, you may choose to store
the passwords for your applications in a credential store.

Keystore Service Command Reference

Managing Keys and Certificates with the Keystore Service 11-3

11.2 About Keystore Service Commands
The Keystore Service uses a dedicated set of commands for keystore operations such
as creating and managing keystores, exporting certificates, and generating keypairs.
While their usage is similar, these commands are distinct from other OPSS commands.

The starting point for using the Keystore Service command set is getOpssService,
which gets an OPSS service command object that enables you to:

■ execute commands for the service

■ obtain command help

The general syntax is:

variable = getOpssService(name='service_name')

where

■ the variable stores the command object

■ the service name refers to the service whose command object is to be obtained. The
only valid value is 'KeyStoreService'.

For example:

svc = getOpssService(name='KeyStoreService')

11.3 Getting Help for Keystore Service Commands
To obtain help for any Keystore Service command, start by obtaining a service
command object as explained in Section 11.2. Use this object in conjunction with the
help command and the command in question.

To obtain a list of all Keystore Service commands, enter:

svc.help()

To obtain help for a specific command, enter:

svc.help(’command-name’)

For example, the following returns help for the exportKeyStore command:

svc.help('exportKeyStore')

11.4 Keystore Service Command Reference
This section provides a reference to the keystore service commands, which are listed in
Table 11–1.

Note: The domain trust store is a shared store for all products and
applications in a domain. The decision to add or remove trust should
not be taken lightly since it may affect all other products in the
domain.

Consider creating a custom trust store only if a product's trust
management requirements are not met by the domain trust store.

Keystore Service Command Reference

11-4 Oracle Fusion Middleware Application Security Guide

11.4.1 changeKeyPassword

Description
Changes the password for a key.

Syntax
svc.changeKeyPassword(appStripe='stripe', name='keystore', password='password',
alias='alias', currentkeypassword='currentkeypassword',
newkeypassword='newkeypassword')

where:

■ svc=the service command object obtained through a call to getOpssService().

■ appStripe= the name of the stripe containing the keystore.

■ name= name of the keystore.

■ password= the keystore password.

■ alias= alias of the key entry whose password is changed.

■ currentkeypassword= the current key password.

■ newkeypassword= the new key password.

Table 11–1 Keystore Service Commands

Command Description

changeKeyPassword Changes the password for a key.

changeKeyStorePassword Changes the password of a keystore.

createKeyStore Creates a new keystore.

deleteKeyStore Deletes the named keystore.

deleteKeyStoreEntry Deletes a keystore entry.

exportKeyStore Exports a keystore to file.

exportKeyStoreCertificate Exports a certificate, trusted certificate, or certificate chain.

exportKeyStoreCertificateRequest Generates and exports a certificate request.

generateKeyPair Generates a key pair in a keystore.

generateSecretKey Generates a symmetric key in a keystore.

getKeyStoreCertificates Retrieves information about a certificate or trusted certificate.

getKeyStoreSecretKeyProperties Retrieves secret key properties.

importKeyStore Imports a keystore from a file.

importKeyStoreCertificate Imports a certificate, trusted certificate or certificate chain.

listExpiringCertificates Lists expiring certificates and optionally renews them.

listKeyStoreAliases Lists the aliases in a keystore.

listKeyStores Lists the keystores in a stripe.

Keystore Service Command Reference

Managing Keys and Certificates with the Keystore Service 11-5

Example
svc.changeKeyPassword(appStripe='system', name='keystore', password='password',
alias='orakey', currentkeypassword='currentkeypassword',
newkeypassword='newkeypassword')

11.4.2 changeKeyStorePassword

Description
Changes the password of a keystore.

Syntax
svc.changeKeyStorePassword(appStripe='stripe', name='keystore',
currentpassword='currentpassword', newpassword='newpassword')

where:

■ svc=the service command object obtained through a call to getOpssService().

■ appStripe= the name of the stripe containing the keystore.

■ name= the name of the keystore whose password is changed.

■ currentpassword= current keystore password.

■ newpassword= new keystore password

Example
svc.changeKeyStorePassword(appStripe='system', name='keystore2',
currentpassword='currentpassword', newpassword='newpassword')

11.4.3 createKeyStore

Description
Creates a new keystore.

Syntax
svc.createKeyStore(appStripe='stripe', name='keystore',
password='password',permission=true|false)

where:

■ svc=the service command object obtained through a call to getOpssService().

■ appStripe= the name of the stripe in which the keystore is created.

■ name= the name of the keystore.

■ password= Password of the keystore.

■ permission= true if keystore is protected by permission only, false if protected by
both permission and password.

Example
svc.createKeyStore(appStripe='system', name='keystore1',
password='password',permission=true)

Keystore Service Command Reference

11-6 Oracle Fusion Middleware Application Security Guide

11.4.4 deleteKeyStore

Description
Deletes the named keystore.

Syntax
svc.deleteKeyStore(appStripe='stripe', name='keystore', password='password')

where:

■ svc=the service command object obtained through a call to getOpssService().

■ appStripe= the name of the stripe in which keystore is deleted.

■ name= the name of the keystore to be deleted.

■ password= password of the keystore to be deleted.

Example
svc.deleteKeyStore(appStripe='system', name='keystore1', password='password')

11.4.5 deleteKeyStoreEntry

Description
Deletes a keystore entry.

Syntax
svc.deleteKeyStoreEntry(appStripe='stripe', name='keystore', password='password',
alias='alias', keypassword='keypassword')

where:

■ svc=the service command object obtained through a call to getOpssService().

■ appStripe= the name of the stripe containing the keystore.

■ name= the name of the keystore.

■ password= the keystore password.

■ alias= alias of the entry to be deleted.

■ keypassword= the key password of the entry to be deleted.

Example
svc.deleteKeyStoreEntry(appStripe='system', name='keystore2', password='password',
alias='orakey', keypassword='keypassword')

Keystore Service Command Reference

Managing Keys and Certificates with the Keystore Service 11-7

11.4.6 exportKeyStore

Description
Exports a keystore to a file.

Syntax
svc.exportKeyStore(appStripe='stripe', name='keystore', password='password',
aliases='comma-separated-aliases', keypasswords='comma-separated-keypasswords',
type='keystore-type', filepath='absolute_file_path')

where:

■ svc=the service command object obtained through a call to getOpssService().

■ appStripe= the name of the stripe containing the keystore.

■ name= the name of the keystore.

■ password= the keystore password.

■ aliases= comma separated list of aliases to be exported.

■ keypasswords= comma separated list of the key passwords correspo nding to
aliases.

■ type= exported keystore type. Valid values are 'JKS' or 'JCEKS'.

■ filepath= absolute path of the file where keystore is exported.

Example
svc.exportKeyStore(appStripe='system', name='keystore2',
password='password',aliases='orakey,seckey',
keypasswords='keypassword1,keypassword2', type='JKS',filepath='/tmp/file.jks')

11.4.7 exportKeyStoreCertificate

Description
Exports a certificate, trusted certificate or certificate chain.

Syntax
svc.exportKeyStoreCertificate(appStripe='stripe', name='keystore',
password='password', alias='alias', keypassword='keypassword',
type='entrytype',filepath='absolute_file_path')

where:

■ svc=the service command object obtained through a call to getOpssService().

■ appStripe= the name of the stripe containing the keystore.

■ name= the name of the keystore.

■ password= the keystore password.

■ alias= alias of the entry to be exported.

■ keypassword= the key password.

Keystore Service Command Reference

11-8 Oracle Fusion Middleware Application Security Guide

■ type= type of keystore entry to be exported. Valid values are 'Certificate',
'TrustedCertificate' or 'CertificateChain'.

■ filepath= absolute path of the file where certificate, trusted certificate or certificate
chain is exported.

Example
svc.exportKeyStoreCertificate(appStripe='system', name='keystore2',
password='password', alias='orakey', keypassword='keypassword',
type='Certificate', filepath='/tmp/cert.txt')

11.4.8 exportKeyStoreCertificateRequest

Description
Generates and exports a certificate request.

Syntax
svc.exportKeyStoreCertificateRequest(appStripe='stripe', name='keystore',
password='password', alias='alias', keypassword='keypassword', filepath='absolute_
file_path')

where:

■ svc=the service command object obtained through a call to getOpssService().

■ appStripe= the name of the stripe containing the keystore.

■ name= the name of the keystore.

■ password= the keystore password.

■ alias= alias of the key pair from which certifiate request is generated.

■ keypassword= the key pair password.

■ filepath= absolute path of the file where certificate request should be exported.

Example
svc.exportKeyStoreCertificateRequest(appStripe='system', name='keystore2',
password='password', alias='orakey', keypassword='keypassword',
filepath='/tmp/certreq.txt')

11.4.9 generateKeyPair

Description
Generates a key pair in a keystore and wraps it in a demo CA-signed certificate.

Syntax
svc.generateKeyPair(appStripe='stripe', name='keystore', password='password',
dn='distinguishedname', keysize='keysize', alias='alias',
keypassword='keypassword')

where:

Keystore Service Command Reference

Managing Keys and Certificates with the Keystore Service 11-9

■ svc=the service command object obtained through a call to getOpssService().

■ appStripe= the name of the stripe containing the keystore.

■ name= the name of the keystore where key pair is generated.

■ password= the keystore password.

■ dn= the distinguished name of the certificate wrapping the key pair.

■ keysize= the key size.

■ alias= the alias of the key pair entry.

■ keypassword= the key password.

Example
svc.generateKeyPair(appStripe='system', name='keystore2', password='password',
dn='cn=www.oracle.com', keysize='1024', alias='orakey', keypassword='keypassword')

11.4.10 generateSecretKey

Description
Generates a symmetric key in a keystore.

Syntax
svc.generateSecretKey(appStripe='stripe', name='keystore', password='password',
algorithm='algorithm', keysize='keysize', alias='alias',
keypassword='keypassword')

where:

■ svc=the service command object obtained through a call to getOpssService().

■ appStripe= the name of the stripe containing the keystore.

■ name= the name of the keystore where symmetric key is generated.

■ password= the keystore password.

■ algorithm= the symmetric key algorithm.

■ keysize= the key size.

■ alias= the alias of the key entry.

■ keypassword= the key password.

Example
svc.generateSecretKey(appStripe='system', name='keystore2', password='password',
algorithm='AES', keysize='128', alias='seckey', keypassword='keypassword')

11.4.11 getKeyStoreCertificates

Description
Retrieves information about a certificate or trusted certificate.

Keystore Service Command Reference

11-10 Oracle Fusion Middleware Application Security Guide

Syntax
svc.getKeyStoreCertificates(appStripe='stripe', name='keystore',
password='password', alias='alias', keypassword='keypassword')

where:

■ svc=the service command object obtained through a call to getOpssService().

■ appStripe= the name of the stripe containing the keystore.

keypassword= the key password.

■ name= the name of the keystore.

■ password= the keystore password.

■ alias= the alias of the certificate, trusted certificate, or certificate chain to be
displayed.

Example
svc.getKeyStoreCertificates(appStripe='system', name='keystore3',
password='password', alias='orakey', keypassword='keypassword')

11.4.12 getKeyStoreSecretKeyProperties

Description
Retrieves secret key properties like the algorithm.

Syntax
svc.getKeyStoreSecretKeyProperties(appStripe='stripe', name='keystore',
password='password', alias='alias', keypassword='keypassword')

where:

■ svc=the service command object obtained through a call to getOpssService().

■ appStripe= the name of the stripe containing the keystore.

■ name= the name of the keystore.

■ password= the keystore password.

■ alias= the alias of the secret key whose properties are displayed.

■ keypassword= the secret key password.

Example
svc.getKeyStoreSecretKeyProperties(appStripe='system', name='keystore3',
password='password', alias='seckey', keypassword='keypassword')

11.4.13 importKeyStore

Description
Imports a keystore from file.

Keystore Service Command Reference

Managing Keys and Certificates with the Keystore Service 11-11

Syntax
svc.importKeyStore(appStripe='stripe', name='keystore', password='password',
aliases='comma-separated-aliases', keypasswords='comma-separated-keypasswords',
type='keystore-type', permission=true|false, filepath='absolute_file_path')

where:

■ svc=the service command object obtained through a call to getOpssService().

■ appStripe= the name of the stripe containing the keystore.

■ name= the name of the keystore.

■ password= the keystore password.

■ aliases= comma separated aliases of the entries to be imported from file.

■ keypasswords= comma separated passwords of the keys in file.

■ type= Imported keystore type. Valid values are 'JKS' or 'JCEKS'.

■ filepath= absolute path of the keystore file to be imported.

Example
svc.importKeyStore(appStripe='system', name='keystore2',
password='password',aliases='orakey,seckey', keypasswords='keypassword1,
keypassword2', type='JKS', permission=true, filepath='/tmp/file.jks')

11.4.14 importKeyStoreCertificate

Description
Imports a certificate, trusted certificate or certificate chain.

Syntax
svc.importKeyStoreCertificate(appStripe='stripe', name='keystore',
password='password', alias='alias', keypassword='keypassword',
type='entrytype',filepath='absolute_file_path')

where:

■ svc=the service command object obtained through a call to getOpssService().

■ appStripe= the name of the stripe containing the keystore.

■ name= the name of the keystore.

■ password= the keystore password.

■ alias= alias of the entry to be imported.

■ keypassword= the key password of the newly imported entry.

■ type= type of keystore entry to be imported. Valid values are 'Certificate',
'TrustedCertificate' or 'CertificateChain'.

■ filepath= absolute path of the file from where certificate, trusted certificate or
certificate chain is imported.

Example
svc.importKeyStoreCertificate(appStripe='system', name='keystore2',

Keystore Service Command Reference

11-12 Oracle Fusion Middleware Application Security Guide

password='password', alias='orakey', keypassword='keypassword',
type='Certificate', filepath='/tmp/cert.txt')

11.4.15 listExpiringCertificates

Description
Lists expiring certificates and optionally renews them.

Syntax
svc.listExpiringCertificates(days='days', autorenew=true|false)

where:

■ svc=the service command object obtained through a call to getOpssService().

■ days=only list certificates within these many days from expiration.

■ autorenew= true for automatically renewing expiring certificates, false for only
listing them.

Example
svc.listExpiringCertificates(days='365', autorenew=true)

11.4.16 listKeyStoreAliases

Description
Lists the aliases in a keystore for a given type of entry.

Syntax
svc.listKeyStoreAliases(appStripe='stripe', name='keystore', password='password',
type='entrytype')

where:

■ svc=the service command object obtained through a call to getOpssService().

■ appStripe= the name of the stripe containing the keystore.

■ name= the name of the keystore.

■ password= the keystore password.

■ type= the type of entry for which aliases are listed. Valid values are 'Certificate',
'TrustedCertificate', 'SecretKey' or '*'.

Examples
svc.listKeyStoreAliases(appStripe='system', name='keystore2', password='password',
type='Certificate')

svc.listKeyStoreAliases(appStripe='system', name='keystore2', password='password',
type='TrustedCertificate')

svc.listKeyStoreAliases(appStripe='system', name='keystore2', password='password',

Keystore Service Command Reference

Managing Keys and Certificates with the Keystore Service 11-13

type='SecretKey')

svc.listKeyStoreAliases(appStripe='system', name='keystore2', password='password',
type='*')

11.4.17 listKeyStores

Description
Lists all the keystores in a stripe.

Syntax
svc.listKeyStores(appStripe='stripe')

where:

■ svc=the service command object obtained through a call to getOpssService().

■ appStripe= the name of the stripe whose keystores are listed.

Examples
svc.listKeyStores(appStripe='system')

svc.listKeyStores(appStripe='*')

Keystore Service Command Reference

11-14 Oracle Fusion Middleware Application Security Guide

12

Introduction to Oracle Fusion Middleware Audit Framework 12-1

12 Introduction to Oracle Fusion Middleware
Audit Framework

In Oracle Fusion Middleware 11g Release 1 (11.1.1), auditing provides a measure of
accountability and answers the "who has done what and when" types of questions.
This chapter introduces auditing in Oracle Fusion Middleware. It contains the
following topics:

■ Benefits and Features of the Oracle Fusion Middleware Audit Framework

■ Overview of Audit Features

■ Oracle Fusion Middleware Audit Framework Concepts

12.1 Benefits and Features of the Oracle Fusion Middleware Audit
Framework

This section contains these topics:

■ Objectives of Auditing

■ Today’s Audit Challenges

■ Oracle Fusion Middleware Audit Framework in 11g

12.1.1 Objectives of Auditing
With compliance becoming an integral part of any business requirement, audit
support is also becoming a focus in enterprise deployments. Customers are looking
for application vendors to provide out-of-the-box audit support. In addition,
middleware customers who are deploying custom applications would like to
centralize the auditing of their deployed applications wherever audit is appropriate.

IT organizations are looking for several key audit features driven by compliance,
monitoring, and analytics requirements.

Compliance
Compliance is obviously a major requirement in the enterprise. With regulations such
as Sarbanes-Oxley (financial) and Health Insurance Portability and Accountability Act
(healthcare), many customers must now be able to audit on identity information and
user access on applications and devices. These include events like:

■ User profile change

■ Access rights changes

■ User access activity

Benefits and Features of the Oracle Fusion Middleware Audit Framework

12-2 Oracle Fusion Middleware Application Security Guide

■ Operational activities like starting and stopping applications, upgrades, and
backups

This allows compliance officers to perform periodic reviews of compliance policies.

Monitoring
The audit data naturally provides a rich set of data for monitoring purpose. In
addition to any log data and component metrics that are exposed, audit data can be
used to create dashboards and to build Key Performance Indicators (KPIs) for alerts to
monitor the health of the various systems on an ongoing basis.

Analytics
Audit data can also be used in assessing the efficacy of controls through analysis on
the audit data. The data can also be used for risk analysis. Based on historical data, a
risk score can be calculated and assigned to any user. Any runtime evaluation of user
access can include the various risk scores as additional criteria to protect access to the
systems.

12.1.2 Today’s Audit Challenges
To satisfy the audit requirements, IT organizations often battle with the deficiencies in
audit support for their deployed applications. There is no reliable standard for:

■ Audit Record Generation

■ Audit Record Format and Storage

■ Audit Policy Definition

As a result, today's audit solutions suffer from a number of key drawbacks:

■ There is no centralized audit framework.

■ The quality of audit support is inconsistent from application to application.

■ Audit data is scattered across the enterprise.

■ Complex data correlation is required before any meaningful cross-component
analysis can be conducted.

■ Audit policies and their configurations are also scattered.

These factors are costing IT organization considerable amount of time and resources to
build and maintain any reasonable audit solutions. With the data scattered among
individual silos, and the lack of consistency and centralization, the audit solutions also
tend to be fragile with idiosyncrasies among applications from different vendors with
their current audit capabilities.

12.1.3 Oracle Fusion Middleware Audit Framework in 11g
Oracle Fusion Middleware Audit Framework, introduced in11g Release 1 (11.1.1), is
designed to provide a centralized audit framework for the middleware family of
products. The framework provides audit service for the following:

■ Middleware Platform - This includes Java components such as Oracle Platform
Security Services (OPSS) and Oracle Web Services. These are components that are
leveraged by applications deployed in the middleware. Indirectly, all the
deployed applications leveraging these Java components will benefit from the
audit framework auditing events that are happening at the platform level.

Overview of Audit Features

Introduction to Oracle Fusion Middleware Audit Framework 12-3

■ Java EE applications - The objective is to provide a framework for Java EE
applications, including Oracle's own Java EE-based components. Java EE
applications are able to create application-specific audit events.

■ System Components - For system components in the middleware that are
managed by Oracle Process Manager and Notification Server, the audit framework
also provides an end-to-end structure similar to that for Java components.

12.2 Overview of Audit Features
Key features of the Oracle Fusion Middleware Audit Framework include:

■ A uniform system for administering audits across a range of Java components,
system components, and applications

■ Extensive support for Java component auditing, which includes:

– support for Oracle Platform Security Services auditing for non-audit-aware
applications

– the ability to search for audit data at any application level

■ Capturing authentication history/failures, authorization history, user
management, and other common transaction data

■ Flexible audit policies

– pre-seeded audit policies, capturing customers’ most common audit events,
are available for ease of configuration

– tree-like policy structure simplifies policy setup

■ Prebuilt compliance reporting features

– Oracle Fusion Middleware Audit Framework provides out-of-the-box
analytical reporting capabilities within Oracle BI Publisher; data can be
analyzed on multiple dimensions (Execution Context ID (ECID), user ID, and
so on) across multiple components. These reports can also be customized
according to your preferences.

– Reports are based on centralized audit data.

– Customers can customize the reports or write their own based on the
published audit schema.

See Chapter 14, "Using Audit Analysis and Reporting" for details.

■ Audit record storage

Audit data store (database) and files (bus-stop) are available. Maintaining a
common location for all audit records simplifies maintenance.

Using an audit data store lets you generate reports with Oracle Business
Intelligence Publisher.

■ Common audit record format

Highlights of the audit trail include:

– baseline attributes like outcome (status), event date-time, user, and so on

– event-specific attributes like authentication method, source IP address, target
user, resource, and so on

See Also: Understanding Key Oracle Fusion Middleware Concepts
in the Oracle Fusion Middleware Administrator's Guide.

Oracle Fusion Middleware Audit Framework Concepts

12-4 Oracle Fusion Middleware Application Security Guide

– contextual attributes like the execution context ID (ECID), session ID, and
others

■ Common mechanism for audit policy configuration

Oracle Fusion Middleware Audit Framework offers a unified method for
configuring audit policies in the domain.

■ Leverages the Oracle Fusion Middleware 11g infrastructure

– is usable across Oracle Fusion Middleware 11g components and services such
as Oracle Web Services Manager, Oracle Internet Directory, Oracle Virtual
Directory, and Oracle Directory Integration and Provisioning

– integrates with Oracle Enterprise Manager Fusion Middleware Control for
UI-based configuration and management

– integrates with wlst for command-line, script-based configuration

– leverages the SPI infrastructure of Oracle Platform Security Services

■ Utilizes a new dynamic metadata model in 11g Release 1 (11.1.1) Patch Set 5 to
enable applications to integrate with the audit framework:

– applications can register with the audit service at any time

– simplifies the ability of applications to leverage the audit framework to define
and log audit events

– provides versioning of event definitions and enables audit clients to upgrade
definitions independent of release cycles.

12.3 Oracle Fusion Middleware Audit Framework Concepts
This section introduces basic concepts of the Oracle Fusion Middleware Audit
Framework:

■ Audit Architecture

■ Key Technical Concepts

■ Audit Metadata Storage

■ Audit Data Storage

■ Analytics

12.3.1 Audit Architecture
The Oracle Fusion Middleware Audit Framework consists of the following key
components:

■ Audit APIs

These are APIs provided by the audit framework for any audit-aware components
integrating with the Oracle Fusion Middleware Audit Framework. During
runtime, applications may call these APIs where appropriate to audit the
necessary information about a particular event happening in the application code.
The interface allows applications to specify event details such as username and
other attributes needed to provide the context of the event being audited.

■ The audit framework provides these APIs:

– audit service API

Oracle Fusion Middleware Audit Framework Concepts

Introduction to Oracle Fusion Middleware Audit Framework 12-5

– audit client API

■ Audit Events and Configuration

The Oracle Fusion Middleware Audit Framework provides a set of generic events
for convenient mapping to application audit events. Some of these include
common events such as authentication. The framework also allows applications to
define application-specific events.

These event definitions and configurations are implemented as part of the audit
service in Oracle Platform Security Services. Configurations can be updated
through Enterprise Manager (UI) and WLST (command-line tool)

■ The Audit Bus-stop

Bus-stops are local files containing audit data records before they are pushed to
the audit data store. In the event that no audit data store is configured, audit data
remains in these bus-stop files. The bus-stop files are simple text files that can be
queried easily to look up specific audit events. When an audit data store is in
place, the bus-stop acts as an intermediary between the component and the audit
data store. The local files are periodically uploaded to the audit data store based
on a configurable time interval.

A key advantage of the audit data store is that audit data from multiple
components can be correlated and combined in reports, for example,
authentication failures in all middleware components, instances and so on.

■ Audit Loader

As its name implies, the audit loader loads audit data from the audit bus-stop into
the audit data store, if one is configured. For Java component auditing, the audit
loader is is a startup class that is started as part of the container start-up. For
system components, the audit loader is a periodically spawned process that is
invoked by OPMN.

■ Audit Data Store

The audit data store is a database that contains a pre-defined Oracle Fusion
Middleware Audit Framework schema, created by Repository Creation Utility
(RCU). Once configured, all the audit loaders are aware of the audit data store
and upload data to it periodically. The audit data in the store is expected to be
cumulative and will grow overtime. Ideally, this should not be an operational
database used by any other applications - rather, it should be a standalone RDBMS
used for audit purposes only.

The audit database can store audit events generated by Oracle components as well
as user applications integrated with the audit framework.

■ Audit Metadata Store

The audit metadata store contains audit event definitions for components and
applications.

■ Audit Configuration Mbeans

All audit configuration is managed through audit configuration MBeans. For Java
components and applications, these MBeans are present in the domain
administration server and the audit configuration is centrally managed. For
system components, separate MBean instances are present for every component
instance. Enterprise Manager UI and command-line tools manage Audit
configuration using these MBeans.

■ Oracle Business Intelligence Publisher

Oracle Fusion Middleware Audit Framework Concepts

12-6 Oracle Fusion Middleware Application Security Guide

The data in the audit data store is exposed through pre-defined reports in Oracle
Business Intelligence Publisher. The reports allow users to drill down the audit
data based on various criteria. For example:

– Username

– Time Range

– Application Type

– Execution Context Identifier (ECID)

You can also use Oracle Business Intelligence Publisher to create your own audit
reports.

Figure 12–1 Audit Event Flow

Audit Flow
The process can be illustrated by looking at the actions taken in the framework when
an auditable event (say, login) occurs within an application server instance:

1. During application deployment or audit service start-up, a client such as a Java EE
application or Oracle component registers with the audit service.

2. The service reads the application’s pre-configured audit definition file and
updates the metadata store with the audit definitions.

3. When a user accesses the component or application, an audit API function is
called to audit the event.

4. The audit framework checks if events of this type, status, and with certain
attributes need to be audited.

5. If so, the audit function is invoked to create the audit event structure and collect
event information like the status, initiator, resource, ECID, and so on.

Note: The architecture shown in Figure 12–1 contains an audit data
store; if your site did not configure an audit data store, the audit
records reside in the bus-stop files.

Oracle Fusion Middleware Audit Framework Concepts

Introduction to Oracle Fusion Middleware Audit Framework 12-7

6. The event is stored on a local file in an intermediate location known as the
bus-stop; each component has its own bus-stop.

7. If a database is configured for an audit store, the audit loader pulls the events
from the bus-stops, uses the application’s metadata to format the data, and moves
the data to the audit store.

8. Reports can also be generated from the audit data using Oracle BI Publisher. A set
of pre-defined reports are available. (See Chapter 14, "Using Audit Analysis and
Reporting".)

Application Behavior in Case of Audit Failure
It is important to note that an application does not stop execution if it is unable to
record an audit event for any reason.

12.3.2 Key Technical Concepts
This section introduces key concepts in the Oracle Fusion Middleware Audit
Framework.

Audit-Aware Components
The term "audit-aware" refers to components that are integrated with the Oracle
Fusion Middleware Audit Framework so that audit policies can be configured and
events can be audited for those components. Oracle Internet Directory is an example of
an audit-aware component.

Stand-alone applications can integrate with the Oracle Fusion Middleware Audit
Framework through configuration with the jps-config.xml file. For details, see
see Chapter 28.

Audit Metadata Store
The audit metadata store contains audit event definitions for components as well as
applications integrated with the audit framework.

Audit Data Store
The audit data store is the repository for audit event data.

Audit Loader
The Audit Loader is a module of the Oracle WebLogic Server instance and provides
process control for that instance. The audit loader is responsible for collecting the
audit records for all components running in that instance and loading them to the
audit data store.

Audit Policy
An audit policy is a declaration of the type of events to be captured by the audit
framework for a particular component. For Java components, the audit policy is
defined at the domain level. For system components, the audit policy is managed at
the component instance level.

Oracle Fusion Middleware Audit Framework provides several pre-defined policy
types:

■ None

Note: The metadata store is separate from the audit data store.

Oracle Fusion Middleware Audit Framework Concepts

12-8 Oracle Fusion Middleware Application Security Guide

■ Low (audits fewer events, definition is component-dependent)

■ Medium (audits many events, definition is component-dependent)

■ Custom (implements filters to narrow the scope of audited events)

Audit Policy Component Type
This refers to the component type to be audited; for example, Oracle Internet Directory
is a source of auditable events during authentication.

For lists of the events that can be audited for each component, see Section C.1, "Audit
Events".

Event Filters
Certain audit events implement filters to control when the event is logged. For
example, a successful login event for the Oracle Internet Directory component may be
filtered for specific users.

For details, see Section 13.3, "Managing Audit Policies".

Oracle Platform Security Services
Oracle Platform Security Services, a key component of the Oracle Fusion Middleware
11g, is the Oracle Fusion Middleware security implementation for Java features such
as Java Authentication and Authorization Service (JAAS) and Java EE security.

For more information about OPSS, see Section 1.1, "What is Oracle Platform Security
Services?".

12.3.3 Audit Metadata Storage
Audit metadata refers to information about audit events, their attributes and
categories.

For details, see Chapter 28.

12.3.4 Audit Data Storage
As shown in Figure 12–1, audit data can reside in two types of storage:

■ bus-stop files for intermediate storage of audit data. Each component instance
writes to its own bus-stop.

Bus-stop files are the default out-of-the-box storage mechanism for audit records:

– For Java components, there is one bus-stop for each Oracle WebLogic Server
instance. Audit records generated for all Java EE components running in a
given Oracle WebLogic Server instance are stored in the same bus-stop.

– For system components, there is a separate bus-stop for each component; thus,
for example, each instance of Oracle Internet Directory has its own bus-stop.

Bus-stop files are text-based and easy to query. For further details, see
Section 12.3.1, "Audit Architecture"

■ permanent storage in a database; this is known as the audit data store.

If using a database, audit records generated by all components in all Oracle Fusion
Middleware 11g instances in the domain are stored in the same store. You must
use an audit data store to utilize Oracle Business Intelligence Publisher reports.

Oracle Fusion Middleware Audit Framework Concepts

Introduction to Oracle Fusion Middleware Audit Framework 12-9

You can move from file-based storage to an audit data store. This requires a specific
configuration procedure. See Section 13.2.3, "Configure a Database Audit Data Store
for Java Components" for details.

Advantages of Using a Database Store
Having the audit records in the bus-stop files has some practical limitations:

■ you cannot view domain-level audit data

■ reports cannot be run on Oracle BI Publisher

Thus, there are certain advantages to using a database audit data store:

■ You can use Oracle Business Intelligence Publisher for reporting.

■ The database store centralizes records from all components in the domain,
whereas the bus-stop stores audit records on a per-instance basis.

■ performance may be improved compared to file-based storage

For these reasons, Oracle recommends that customers switch to a database store for
enhanced auditing capabilities.

12.3.5 Analytics
With Oracle Fusion Middleware 11g, you can utilize Oracle Business Intelligence as a
full-featured tool for structured reporting.

A large number of pre-defined reports are available, such as:

■ Users created/deleted

■ User transactions

■ Authentication and authorization failures

■ Policy violations

With Oracle Business Intelligence:

■ You can select records based on criteria like username, date-time range, and so on.

Note that Oracle Business Intelligence works with the database audit store only,
and is not usable with bus-stop files.

Oracle Fusion Middleware Audit Framework Concepts

12-10 Oracle Fusion Middleware Application Security Guide

The pre-defined audit report types available with Oracle Business Intelligence include:

■ errors and exceptions

■ operational

■ user activity

■ authentication and authorization history

■ transaction history

For further details, see Section C.2, "Pre-built Audit Reports." You can also use the
audit schema details to create custom audit reports as needed.

13

Configuring and Managing Auditing 13-1

13Configuring and Managing Auditing

This chapter explains how to perform day-to-day audit administration tasks.

■ Audit Administration Tasks

■ Managing the Audit Data Store

■ Managing Audit Policies

■ Audit Logs

■ Advanced Management of Database Store

13.1 Audit Administration Tasks
The audit administrator should plan the site’s audit setup carefully by following the
steps in these areas:

■ Implementation Planning

This includes planning the type of store to use for audit records, data store
configuration details, and so on.

See Section 13.2, "Managing the Audit Data Store" for details.

■ Policy administration

The administrator must configure the appropriate audit policies to ensure that the
required audit events are generated.

This is an ongoing activity since the audit policies must be able to reflect changes
to the application environment, addition of components and users, and so on.

See Section 13.3, "Managing Audit Policies" for details.

■ Reports Management

This includes planning for and configuring audit reports and queries.

See Chapter 14, "Using Audit Analysis and Reporting" for details.

■ Data Administration

This includes planning/increasing the database size required to store the audit
data generated, backing up the audit data and purging the audit data based on
company policy.

See Also: Chapter 12, "Introduction to Oracle Fusion Middleware
Audit Framework" for background information about auditing in
Oracle Fusion Middleware.

Managing the Audit Data Store

13-2 Oracle Fusion Middleware Application Security Guide

See Section 13.5, "Advanced Management of Database Store" for details about
audit data store administration.

13.2 Managing the Audit Data Store
Out of the box, the audit framework uses the file system to store audit records. In a
production environment, however, Oracle recommends that you use a database audit
data store to provide scalability and high-availability for the audit framework.

In addition, an audit data store residing in a database allows the audit data to be
viewed through Oracle Business Intelligence Publisher with pre-packaged audit
reports that are available with that product. Oracle Business Intelligence Publisher is
available in the 11g Release 1 (11.1.1) CD pack.

This section explains these audit data store management tasks in detail:

■ Create the Audit Schema using RCU

■ Set Up Audit Data Sources

■ Configure a Database Audit Data Store for Java Components

■ Configure a Database Audit Data Store for System Components

■ Tuning the Bus-stop Files

■ Configuring the Stand-alone Audit Loader

13.2.1 Create the Audit Schema using RCU
To switch to a database as the permanent store for your audit records, you first use the
Repository Creation Utility (RCU) to create a database store for audit data.

This section explains how to create the audit schema. Once the database schema is
created, you can:

■ create a datasource to point to this schema

■ update the domain configuration to switch the audit data store for audit records
(see Section 13.2.3.2, "Configure the Audit Data Store").

Before You Begin
Before you begin, make sure to collect the details on which database to use, along with
the DBA credentials to use.

Configuring the Database Schema
Take these steps to configure a schema for the audit data store:

1. Go to $RCU_HOME/bin and execute the RCU utility.

2. Choose Create at the starting screen. Click Next.

Note: The bus-stop files store audit records in the absence of
database storage.

Note: This discussion assumes that RCU and the database is already
installed in your environment. See the Installation Guide for more
information.

Managing the Audit Data Store

Configuring and Managing Auditing 13-3

3. Enter your database details and click Next.

4. Choose the option to create a new prefix, for example IDM.

5. Also, select 'Audit Services' from the list of schemas.

6. Click Next and accept the tablespace creation.

7. Check for any errors while the schemas are being created.

This process will take several minutes to complete.

13.2.2 Set Up Audit Data Sources
As explained in Section 13.2.1, "Create the Audit Schema using RCU", after you create
a database schema to store audit records in a database, you must set up an Oracle
WebLogic Server audit data source that points to that schema.

Take these steps to set up an audit data source:

1. Connect to the Oracle WebLogic Server administration console:

http://host:7001/console

2. Under JDBC, click the Data Sources link.

3. The Data Sources page appears. Click New to create a new data source.

4. Enter the following details for the new data source:

■ Name: Enter a name such as Audit Data Source-0.

■ JNDI Name: jdbc/AuditDB

■ Database Type: Oracle

■ Database Driver: Oracle's Driver (Thin XA) Versions: 9.0.1, 9.0.2, 10, 11

If deploying to a managed cluster server, also check AdminServer; this ensures
that the data source is listed in the audit data store when switching from file to
database store.

Click Next.

5. The Transaction Options page appears. Click Next.

6. The Connection Properties page appears. Enter the following information:

■ Database Name: Enter the name of the database to which you will connect.
This usually maps to the SID.

■ Host Name: Enter the hostname of the database.

■ Port: Enter the database port.

■ Database User Name: This is the name of the audit schema that you created in
RCU. The suffix is always IAU for the audit schema. For example, if you gave
the prefix as test, then the schema name is test_iau.

■ Password: This is the password for the audit schema that you created in RCU.

Click Next.

Note: This task is performed with the Oracle WebLogic Server
administration console.

Managing the Audit Data Store

13-4 Oracle Fusion Middleware Application Security Guide

7. The next page lists the JDBC driver class and database details. Accept the defaults,
and click Test Configuration to test the connection. If you see the message
"Connection established Successfully", click Next. If it displays any error, go back
and check the connection details.

8. In the Select Targets page, select the servers where this data source needs to be
configured, and click Finish.

13.2.2.1 Multiple Data Sources
For scalability and high availability, you can configure Oracle Real Application
Clusters for your audit data.

For details, see:

■ Setting Up Auditing with a RAC Database Store in the Oracle Fusion Middleware
High Availability Guide

■ Using WebLogic Server to Configure Audit Data Sources and Multi Data Sources
in the Oracle Fusion Middleware High Availability Guide

■ Configuring the JDBC String for the Audit Loader in the Oracle Fusion Middleware
High Availability Guide

■ Using WebLogic Server with Oracle RAC in Oracle Fusion Middleware Configuring
and Managing JDBC for Oracle WebLogic Server

13.2.3 Configure a Database Audit Data Store for Java Components
After the schema is created, configuring a database-based audit data store involves:

■ creating a data source that points to the audit schema you created, and

■ configuring the audit data store to point to the data source

This section describes the following tasks related to audit data store configuration:

■ View Audit Data Store Configuration

■ Configure the Audit Data Store

13.2.3.1 View Audit Data Store Configuration

To view the current audit data store configuration, navigate to Domain, then Security,
then Audit Store.

Note:

These steps configure the audit data store for Java components only.
Separate steps are needed to configure the audit data store for system
components. See Section 13.2.4, "Configure a Database Audit Data
Store for System Components".

By configuring the same database to store audit records for Java
components and system components, you can ensure that reports for
both types of components can be viewed together.

Note: This task is performed with Oracle Enterprise Manager Fusion
Middleware Control.

Managing the Audit Data Store

Configuring and Managing Auditing 13-5

This page shows:

■ whether or not a database is configured as the audit data store. By default a
database is not configured, and audit records are stored in bus-stop files.

■ Datasource JNDI Name - If a database store is configured for audit records, this
field shows the JNDI name of the datasource. This field is empty when the audit
data store is not configured.

■ Datasource Name - If a database store is configured for audit records, this field
shows the datasource name. This field is not displayed when the audit data store
is file-based.

■ URL - If a database repository is configured for audit records, this field shows the
data source URL, which is the connect string used to connect to the database. This
field is not displayed when the audit data store is file-based.

See Section 13.2.2, "Set Up Audit Data Sources" for datasource examples.

13.2.3.2 Configure the Audit Data Store
You can change from storing audit records in a file to using a database audit data
store.

Take these steps to configure the audit data store:

1. Navigate to Domain, then Security, then Audit Store. The Audit Store page
appears.

2. Click the searchlight icon next to the Datasource JNDI Name field.

3. A dialog box appears showing the list of datasources available for audit records in
the domain. Select the desired datasource and click OK.

4. The selected datasource is displayed in the Datasource JNDI Name field. Click
Apply to continue, or Revert to abandon the update.

5. Restart all the Oracle WebLogic Servers in the domain. This enables Audit Loader
Startup Class present in Oracle WebLogic Server to re-read the configuration.

6. You can test the changes by setting an audit policy to test event collection. For
example, you can set the Medium audit policy for Oracle Platform Security
Services. For details, see Section 13.3.1, "Manage Audit Policies for Java
Components with Fusion Middleware Control".

Note: You can also use the WLST setAuditRepository()
command to change the audit data store settings. See Appendix D,
Fusion Middleware Audit Framework Reference for details.

Managing the Audit Data Store

13-6 Oracle Fusion Middleware Application Security Guide

7. Execute a scenario so that auditing can generate an audit event. For example,
creating a credential will trigger an audit record based on the policy you
configured in Step 6.

8. Check for errors and exceptions in the server logs

■ Check $DOMAIN_HOME/jrfServer_admin.out

■ Check $DOMAIN_HOME/servers/$SERVER_NAME/logs/.

13.2.3.3 Deconfigure the Audit Data Store
Since a database is the recommended store for audit records, switching from database
to file mode is discouraged. However, Section 13.3.4, "Manage Audit Policies
Manually" discusses a property called the audit.repositoryType whose value can
be set to 'File' to switch to file storage.

When you switch from database to file, events that were collected in the database are
not transferred back to the file system. If this switch is temporary, then the audit
events collected in the file are automatically pushed to database when you switch to
database store again.

13.2.4 Configure a Database Audit Data Store for System Components
Oracle Process Manager and Notification Server (OPMN) manages several system
components running in Oracle WebLogic Server. For these components, the
mechanism through which the audit events are pushed from local bus-stop files to the
database audit data store is handled by OPMN.

You must execute the following steps in every instance of the component to configure
an audit data store:

1. Open the opmn.xml file, which resides in

$ORACLE_INSTANCE/config/OPMN/opmn/opmn.xml

Note: You cannot use Fusion Middleware Control or WLST to
switch from database to file mode; this requires manual configuration
as explained in Section 13.3.4, "Manage Audit Policies Manually".

Note: If your system component runs in a clustered deployment, you
must configure the audit data store at each instance of the component
so that all instances push out records to the store.

Note:

These steps configure the audit data store for system components
only. Separate steps are needed to configure the audit data store for
Java components. See Section 13.2.3, "Configure a Database Audit
Data Store for Java Components".

By configuring the same database to store audit records for Java
components and system components, you can ensure that reports for
both types of components can be viewed together.

Managing the Audit Data Store

Configuring and Managing Auditing 13-7

2. Locate the rmd-definitions element, which looks like this:

<rmd-definitions>
 <rmd name="AuditLoader" interval="15">
 <conditional>
 <![CDATA[({time}>=00:00)]]>
 </conditional>
 <action value="exec $ORACLE_HOME/jdk/bin/java -classpath
 $COMMON_COMPONENTS_HOME/modules/oracle.osdt_11.1.1/osdt_cert.jar:
 $COMMON_COMPONENTS_HOME/modules/oracle.osdt_11.1.1/osdt_core.jar:
 $ORACLE_HOME/jdbc/lib/ojdbc5.jar:
 $COMMON_COMPONENTS_HOME/modules/oracle.iau_11.1.1/fmw_audit.jar:
 $COMMON_COMPONENTS_HOME/modules/oracle.pki_11.1.1/oraclepki.jar
 -Doracle.home=$ORACLE_HOME
 -Doracle.instance=$ORACLE_INSTANCE
 -Dauditloader.jdbcString=jdbc:oracle:thin:@host:port:sid
 -Dauditloader.username=username
 oracle.security.audit.ajl.loader.StandaloneAuditLoader"/>
 <exception value="exec /bin/echo

PERIODICAL CALL For Audit Loader FAILED"/>
 </rmd>
</rmd-definitions>

3. Replace the existing RMD definition for audit loader; you need to modify only
these values:

■ jdbcString - this is the database JDBC connection string; change this from the
default string to a valid connection string.

■ username

■ interval - this is the interval in seconds at which audit records are pushed from
the component’s bus-stop file to the audit data store.

By default the interval value is set very high (31536000 seconds) so that the
audit loader is effectively disabled. Change this to a reasonable interval such
as 15 seconds.

4. Save and exit the file.

5. Ensure that ORACLE_HOME, ORACLE_INSTANCE , and COMMON_COMPONENTS_
HOME are defined. For example:

ORACLE_HOME = /u01/oracle/as11_oh
ORACLE_INSTANCE = /u01/oracle/instances/instance
COMMON_COMPONENTS_HOME = $MW_HOME/oracle_common

6. Populate the audit data store password in the secret store. This is the password
that you have specified when creating the audit schema in RCU:

ORACLE_HOME/jdk/bin/java -classpath
 $COMMON_COMPONENTS_HOME/modules/oracle.osdt_11.1.1/osdt_cert.jar:
 $COMMON_COMPONENTS_HOME/modules/oracle.osdt_11.1.1/osdt_core.jar:
 $ORACLE_HOME/jdbc/lib/ojdbc5.jar:
 $COMMON_COMPONENTS_HOME/modules/oracle.iau_11.1.1/fmw_audit.jar:
 $COMMON_COMPONENTS_HOME/modules/oracle.pki_11.1.1/oraclepki.jar
 -Doracle.home=$ORACLE_HOME -Doracle.instance=$ORACLE_INSTANCE
 -Dauditloader.jdbcString=jdbc:oracle:thin:@host:port:sid
 -Dauditloader.username=username

Note: Insert these lines after the <ias-instance> tag is closed.

Managing the Audit Data Store

13-8 Oracle Fusion Middleware Application Security Guide

 -Dstore.password=true
 -Dauditloader.password=password
 oracle.security.audit.ajl.loader.StandaloneAuditLoader

Enter the appropriate values for jdbcString, username, password.

7. Reload OPMN:

 $ORACLE_INSTANCE/bin/opmnctl validate (Validation step to verify edits)
 $ORACLE_INSTANCE/bin/opmnctl reload

8. Execute a scenario in an audited component to generate an audit event.

9. Check for errors/events uploaded at $ORACLE_
INSTANCE/diagnostics/logs/OPMN/opmn/rmd.out. The output will look
like this

8/08/26 10:54:24 global:AuditLoader

13.2.4.1 Deconfigure the Audit Data Store
Since a database is the recommended store for audit records, switching from database
to file mode is discouraged. However, if needed, you can use the same steps that were
shown in the preceding task for configuring the audit data store through the
opmn.xml file to update the RMD definition to deconfigure the audit data store.
Locate the rmd-definitions element and replace the existing RMD definition for
audit loader:

■ jdbcString - Change the database JDBC connection string back to the default
string jdbc:oracle:thin:@host:port:sid.

■ interval - Set this interval back to the default value of 31536000.

Save and exit the file, and reload OPMN.

13.2.5 Tuning the Bus-stop Files
This section contains topics related to maintaining file-based storage of audit records,
including:

■ bus-stop file locations

■ file size

■ directory size

Note: The above syntax is relevant to Linux. For Windows,
substitute ":" with ";" to separate the jars in the classpath.

Note: If your system component runs in a clustered deployment, you
must deconfigure the audit data store at each instance of the
component.

Note: Manually purging audit files to free up space is not
recommended. Instead, use file and directory sizing features to
control space, as described below.

Managing the Audit Data Store

Configuring and Managing Auditing 13-9

Location of Bus-stop Files
Bus-stop files for Java components are located in:

$DOMAIN_HOME/servers/$SERVER_NAME/logs/auditlogs/Component_Type

Bus-stop files for system components are located in:

$ORACLE_INSTANCE/auditlogs/Component_Type/Component_Name

File Size
Java Components

The size of a file for the file storage mode can be managed using the max.fileSize
property described in the configuration file jps-config.xml. This property
controls the maximum size of a bus-stop file for Java components.

Specify the sizes in bytes as described in Section 13.3.4, "Manage Audit Policies
Manually".

System Components

The size of a file for the file storage mode can be set in the auditconfig.xml file.
SeeSection 13.3.4.4, "Manually Configuring Audit for System Components".

Directory Size
Java Components

The size of a directory for the file can be managed using the max.DirSize property
described in the configuration file jps-config.xml. This property controls the
maximum size of a bus-stop directory.

Specify the sizes in bytes as described in Section 13.3.4, "Manage Audit Policies
Manually".

System Components

The size of a directory for the file storage mode can be set in the auditconfig.xml file.
See Section 13.3.4.4, "Manually Configuring Audit for System Components".

13.2.6 Configuring the Stand-alone Audit Loader
As shown in Figure 12–1, Common Audit Framework’s audit loader moves records
from bus-stop files to the audit data store. The mechanism driving the audit loader
depends on the application environment:

■ Java EE components and applications deployed in Oracle WebLogic Server use the
audit loader functionality provided through the application server.

■ System components and non-Java applications use the audit loader functionality
provided through Oracle Process Manager and Notification Server (OPMN).

■ Java SE applications, which run outside an application server container, use a
stand-alone audit loader.

This section explains how to set up and execute the stand-alone audit loader:

Note: If you switch from file to database store for audit data, all the
events collected in the audit files are pushed into the database tables
and the audit files are deleted.

Managing the Audit Data Store

13-10 Oracle Fusion Middleware Application Security Guide

■ Configuring the Environment

■ Running the Stand-Alone Audit Loader

13.2.6.1 Configuring the Environment
Before you can run the stand-alone audit loader, you must a) configure certain
properties, and b) ensure that the password for the database schema user exists in the
secret store.

13.2.6.1.1 Property Configuration

You must configure the following properties:

■ ORACLE_HOME environment variable

■ COMMON_COMPONENTS_HOME environment variable

■ ORACLE_INSTANCE environment variable

■ auditloader.jdbcString system property

■ auditloader.username system property

13.2.6.1.2 Password Storage for the Database Schema User

The password for the database schema user is kept in the secret store. Storing the
password is a one-time operation for which you use the StandAloneAuditLoader
command with the -Dstore.password=true option.

Issue the StandAloneAuditLoader command to store the password as follows:

$ORACLE_HOME/jdk/bin/java
-classpath $COMMON_COMPONENTS_HOME/modules/oracle.osdt_11.1.1/osdt_cert.jar:
$COMMON_COMPONENTS_HOME/modules/oracle.osdt_11.1.1/osdt_core.jar:
$COMMON_COMPONENTS_HOME/modules/oracle.jdbc_11.1.1/ojdbc6dms.jar:
$COMMON_COMPONENTS_HOME/modules/oracle.iau_11.1.1/fmw_audit.jar:
$COMMON_COMPONENTS_HOME/modules/oracle.pki_11.1.1/oraclepki.jar
-Doracle.instance=$ORACLE_INSTANCE
-Dauditloader.jdbcString=jdbc:oracle:thin:@host:port:sid
-Dauditloader.username=username
-Dstore.password=true
oracle.security.audit.ajl.loader.StandaloneAuditLoader

13.2.6.2 Running the Stand-Alone Audit Loader
Issue the StandAloneAuditLoader command to load audit records as follows:

$ORACLE_HOME/jdk/bin/java
-classpath $COMMON_COMPONENTS_HOME/modules/oracle.osdt_11.1.1/osdt_cert.jar:
$COMMON_COMPONENTS_HOME/modules/oracle.osdt_11.1.1/osdt_core.jar:
$COMMON_COMPONENTS_HOME/modules/oracle.jdbc_11.1.1/ojdbc6dms.jar:
$COMMON_COMPONENTS_HOME/modules/oracle.iau_11.1.1/fmw_audit.jar:
$COMMON_COMPONENTS_HOME/modules/oracle.pki_11.1.1/oraclepki.jar
-Doracle.home=$ORACLE_HOME
-Doracle.instance=$ORACLE_INSTANCE
-Dauditloader.jdbcString=jdbc:oracle:thin:host:port:sid
-Dauditloader.username=username
oracle.security.audit.ajl.loader.StandaloneAuditLoader

You can schedule this command through a batch or kron job so that audit records are
periodically uploaded to the audit data store.

Managing Audit Policies

Configuring and Managing Auditing 13-11

13.3 Managing Audit Policies

What is an Audit Policy?
An audit policy is a declaration of the type of events to be captured by the audit
framework for a particular component. For Java components, the audit policy is
defined at the domain level. For system components, the audit policy is managed at
the component instance level.

For example, an audit policy could specify that all authentication failures should be
audited for an Oracle Internet Directory instance.

How Policies are Configured
Oracle Fusion Middleware Audit Framework lets you configure audit policies and
provides highly granular controls over the types of events and data being audited.
Policies can be configured through the Enterprise Manager UI tool and through the
WLST command-line interface.

Policy changes do not require server or instance restart.

 The remainder of this section explains how to view, and update audit policy:

■ Manage Audit Policies for Java Components with Fusion Middleware Control

■ Manage Audit Policies for System Components with Fusion Middleware Control

■ Manage Audit Policies with WLST

■ Manage Audit Policies Manually

13.3.1 Manage Audit Policies for Java Components with Fusion Middleware Control
The domain Audit Policy Settings page manages audit events for all Java components
such as Oracle Identity Federation, and system libraries like Oracle Platform Security
Services.

See Also:

■ Section 12.3.2, "Key Technical Concepts" for additional
background.

■ Appendix D, Oracle Fusion Middleware Audit Framework
Reference for a list of Java components and system components.

■ Oracle Fusion Middleware Third-Party Application Server Guide for
details about executing audit commands on third-party
application servers.

Note:

■ Audit policy for system components is managed in the
component home pages. See Section 13.3.2, "Manage Audit
Policies for System Components with Fusion Middleware
Control"

■ See the note at the beginning of Section 13.3, "Managing Audit
Policies" titled "Policy Changes Require Server or Instance
Restart".

Managing Audit Policies

13-12 Oracle Fusion Middleware Application Security Guide

Each component and its events are organized in a tree structure under the Name
column. The tree can be expanded to reveal the details of the events available.

Use these steps to view and update the currently configured audit policies:

1. Log in to Fusion Middleware Control.

2. Using the topology panel to the left, navigate to the domain of interest under
"WebLogic Domain".

3. From the domain menu, navigate to Domain > Security > Audit Policy
Settings. The Audit Policy Settings page appears

4. A drop-down list of pre-configured audit levels can be selected. Two pre-defined
levels (Low, Medium) will automatically pick up a subset of the audit events for
all the components. In most cases, the pre-defined levels are sufficient.

■ None - No events are selected for audit.

■ Low - A small set of events is selected, typically those having the smallest
impact on component performance.

■ Medium - This is a superset of the "Low" set of events. These events may
have a higher impact on component performance.

■ Custom - This level enables you to fine-tune the policy, and is described in
Step 5 below.

The table shows the applications running in the domain.

The table consists of these columns:

■ Name - shows components and applications in the domain.

■ Enable Audit - shows whether the corresponding event type is being audited.
This column is greyed out unless the Custom audit policy is in force.

■ Filter - shows any filters in effect for the event type.

See Also : Section C.1.1, "What Components Can be Audited?" for
the list of auditable components.

Note: The table of events under the drop-down box cannot be edited
for the pre-defined levels. It can only be edited in custom level.

Managing Audit Policies

Configuring and Managing Auditing 13-13

5. To customize the audit policy, use the "Custom" option from the drop-down. This
allows you to select all the events or hand-pick the appropriate subset as desired
by checking the relevant boxes under the "Enable Audit" column. When you
choose the Custom level, an optional filter available for success and failure
outcomes of each individual event to further control how they are audited, as
explained in Step 6 below.

6. Filters are rule-based expressions that you can define to qualify or filter events for
audit. The expressions are based on attributes of the event. For example, a Login
type event could specify an initiator as a user filter in which case the event would
generate an audit record whenever the specified user logged in.

A pencil icon indicates that a filter is available for the corresponding event.

Click on the icon to bring up the Edit Filter dialog.

7. Click the "Select Failures Only" button to select only failed events in the policy -
for example, a failed authentication. The Enable Audit box is now checked for
failed events.

8. Import/Export - These buttons enable you to save and re-use a policy
configuration. At any time while editing the policy, click Export to save the
current settings to a file, and Import to load the settings from a saved file.

9. Optionally, under “Users to Always Audit”, you can specify a comma-separated
list of users to force the audit framework to audit events initiated by these users;
auditing occurs regardless of the audit level or filters that have been specified.

Note: Each filter attribute has a formal name and a display name.
You may see either name in the filter edit dialog. Display names are
shown in the drop-down, while names are shown in the edit dialog.
For example, if you select 'Client Address IP' in the drop-down box, it
is renamed to 'RemoteIP' after you add it to the filter expression.

Managing Audit Policies

13-14 Oracle Fusion Middleware Application Security Guide

10. If you made any policy changes, click Apply to save the changes. For Java
components, you must restart the managed Oracle WebLogic Server (on which the
affected Java component is running) for the changes to be effective.

Click Revert to discard any policy changes and revert to the existing policy.

About Component Events
Each component and application in the domain defines its own set of auditable events.
Thus, when you expand the Names column of the table, each component displays a
list of events that applies to instances of that component.

13.3.2 Manage Audit Policies for System Components with Fusion Middleware Control
This section describes how to view and update audit policies for system components
that are managed through OPMN.

Audit policy for system components is managed in their home pages. The domain
Audit Policy Settings page manages audit events for Java components running in the
domain.

The events are organized in a tree structure under the Name column. The tree can be
expanded to reveal the details of the events available.

Use these steps to view and update audit policies for OPMN-managed components:

1. Log in to Fusion Middleware Control.

2. Using the topology panel to the left, navigate to the system component of interest
such as Oracle Internet Directory.

3. From the component menu, navigate to Security, then Audit Policy. The
Audit Policy Settings page appears

Notes:

■ Be aware that if you use this feature to audit key users such as
system administrators, this will generate audit traffic anytime that
user touches any of the auditable events for any component. For
example, a component’s audit policy may be set to None, but if
these users perform some activity in the component instance, it is
still audited.

■ No validation is performed for user names you enter in this field.

Notes:

■ Audit policy for Java components is managed in the domain
context. See Section 13.3.1, "Manage Audit Policies for Java
Components with Fusion Middleware Control"

■ See the note at the beginning of Section 13.3, "Managing Audit
Policies" titled "Policy Changes Require Server or Instance
Restart". Oracle Internet Directory instances do not require a
restart.

See Also : Section C.1.1, "What Components Can be Audited?" for
the list of auditable components.

Managing Audit Policies

Configuring and Managing Auditing 13-15

4. A drop-down list of pre-configured audit levels can be selected. Two pre-defined
levels (Low, Medium) will automatically pick up a subset of the audit events for
all the components.

■ None - No events are selected for audit.

■ Low - A small set of events is selected, typically those having the smallest
impact on component performance.

■ Medium - This is a superset of the "Low" set of events. These events may
have a higher impact on component performance.

■ Custom - This level enables you to fine-tune the policy, and is described in
Step 5 below.

The table shows the events you can audit for the component instance. This
example is for Oracle Internet Directory:

The table consists of these columns:

■ Name - shows the component events grouped by type, such as Authorization
events.

■ Enable Audit - shows whether the corresponding event type is being audited.
This column is greyed out unless the Custom audit policy is in force.

■ Filter - shows any filters in effect for the event type.

5. To customize the audit policy, use the "Custom" option from the drop-down. This
allows you to select all the events or hand-pick the appropriate subset as desired
by checking the relevant boxes under the "Enable Audit" column. When you
choose the Custom level, an optional filter available for success and failure
outcomes of each individual event to further control how they are audited, as
explained in Step 6 below.

6. Filters are rule-based expressions that you can define to qualify or filter events for
audit. The expressions are based on attributes of the event. For example, a Login
type event could specify an initiator as a user filter in which case the event would
generate an audit record whenever the specified user logged in.

Note: The table of events under the drop-down box cannot be edited
for the pre-defined levels. It can only be edited in custom level.

Managing Audit Policies

13-16 Oracle Fusion Middleware Application Security Guide

A pencil icon indicates that a filter is available for the corresponding event.

Click on the icon to bring up the Edit Filter dialog.

7. Click "Select Failures Only" to select only failed events in the policy - for example,
a failed authentication. The Enable Audit box is now checked for failed events.

8. Import/Export - These buttons enable you to save and re-use a policy
configuration. At any time while editing the policy, click Export to save the
current settings to a file, and Import to load the settings from a saved file.

9. Optionally, under “Users to Always Audit”, a comma-separated list of users can
be specified to force the audit framework to audit events initiated by these users;
auditing occurs regardless of the audit level or filters that have been specified.

10. If you made any policy changes, click Apply to save the changes.

Note: Each filter attribute has a formal name and a display name.
You may see either name in the filter edit dialog. Display names are
shown in the drop-down, while names are shown in the edit dialog.
For example, if you select 'Client Address IP' in the drop-down box, it
is renamed to 'RemoteIP' after you add it to the filter expression.

Notes:

■ Be aware that if you use this feature to audit key users such as
system administrators, this will generate audit traffic anytime that
user touches any of the auditable events for any component. For
example, a component’s audit policy may be set to None, but if
these users perform some activity in the component instance, it is
still audited.

■ No validation is performed for user names you enter in this field.

Managing Audit Policies

Configuring and Managing Auditing 13-17

Click Revert to discard any policy changes and revert to the existing policy.

13.3.3 Manage Audit Policies with WLST
This section explains how to view and update audit policies using the Oracle
WebLogic Scripting Tool (WLST) command-line tool:

■ View Audit Policies with WLST

■ Update Audit Policies with WLST

■ Example 1: Configuring an Audit Policy for Users with WLST

■ Example 2: Configuring an Audit Policy for Events with WLST

■ Custom Configuration is Retained when the Audit Level Changes

13.3.3.1 View Audit Policies with WLST
Take these steps to view audit policies with WLST:

■ Connect to the WebLogic Server using the following commands:

java weblogic.WLST
connect('servername', 'password', 'localhost:portnum')

■ Use the getAuditPolicy command to view the audit policy configuration. For
example:

wls:/mydomain/serverConfig> getAuditPolicy()

■ For system components:

– obtain the MBean name using the getNonJava EEAuditMBeanName
command. See Section C.4.1, "getNonJava EEAuditMBeanName" for details.

– Use the getAuditPolicy command and include the MBean name to view
the audit policy configuration. For example:

wls:/mydomain/serverConfig> getAuditPolicy
 (on="oracle.security.audit.test:type=CSAuditMBean,name=CSAuditProxyMBean")

13.3.3.2 Update Audit Policies with WLST
Take these steps to update audit policies with the Oracle WebLogic Scripting Tool
(WLST) command-line tool:

Note: When running audit WLST commands, you must invoke the
WLST script from the Oracle Common home. See "Using Custom
WLST Commands" in the Oracle Fusion Middleware Administrator's
Guide for more information.

Note: This discussion assumes that you are invoking WLST
interactively. For details about WLST and the different options for
invoking the tool, see "Getting Started Using the Oracle WebLogic
Scripting Tool (WLST)" in the Oracle Fusion Middleware Administrator's
Guide.

Managing Audit Policies

13-18 Oracle Fusion Middleware Application Security Guide

■ Connect to the WebLogic Server using the following commands:

java weblogic.WLST
connect('servername', 'password', 'localhost:portnum')

■ Navigate the bean hierarchy to access the domain of interest. For example, if the
domain is called mydomain:

wls:/mydomain/serverConfig>

■ Use the setAuditPolicy command to update the audit policy configuration.

■ For components that manage their policy locally, use the setAuditPolicy
command and include an MBean name to update the audit policy configuration.

■ Explicitly call save after issuing a setAuditPolicy, or importAuditConfig,
command.

If you do not invoke save, the new settings will not take effect.

For an example of this call, see Managing Auditing by Using WLST in the Oracle
Fusion Middleware Administrator's Guide for Oracle Internet Directory, which
demonstrates this call for Oracle Internet Directory auditing.

13.3.3.3 Example 1: Configuring an Audit Policy for Users with WLST
In this scenario, the domain’s current policy audits a user named user1. We would like
to add two names, user2 and user3, to the list of users who are always audited, and
remove user1 from the list.

The following invocation of setAuditPolicy performs this task:

setAuditPolicy
 (filterPreset="None",addSpecialUsers="user2,user3",removeSpecialUsers="user1")

13.3.3.4 Example 2: Configuring an Audit Policy for Events with WLST
In this scenario, the domain’s current policy audits user logout events. We would like
to remove the logout events from the policy and instead, audit login events.

The following invocation of setAuditPolicy performs this task:

setAuditPolicy

Note: This discussion assumes that you are invoking WLST
interactively. For details about WLST and the different options for
invoking the tool, see "Getting Started Using the Oracle WebLogic
Scripting Tool (WLST)" in the Oracle Fusion Middleware Administrator's
Guide.

See Also: The WLST command reference for details about WLST
commands for audit.

See Also: Section C.4.3, "setAuditPolicy"

Note: This example uses the component type OHS for Oracle HTTP
Server. Substitute the relevant component type when using the
command.

Managing Audit Policies

Configuring and Managing Auditing 13-19

(filterPreset="Custom",addCustomEvents="OHS:UserLogin",
removeCustomEvents="OHS:UserLogout")

Notice that we had to set the Custom filter preset to add and remove events.

13.3.3.5 Custom Configuration is Retained when the Audit Level Changes
When auditing is configured at the custom audit level, and you subsequently use
WLST to switch to a different (non-custom) audit level, the custom audit settings are
retained unless you explicitly remove those custom settings.

An example illustrates this behavior:

1. Custom audit level is set for a component's policy. An audit filter is specified as
part of the configuration.

2. At run-time, audit data is collected according to the specified filter.

3. The component's audit policy is now changed from custom audit level to, say, the
low audit level using the WLST setauditpolicy command. However, the filter
that was set up as part of the custom audit level persists in the audit configuration.

4. Audit data is now collected based on the low audit level, not the custom level.

5. The component's audit policy is changed back to custom level. An additional filter
is added; this filter is appended to the originally configured filter. Unless the
original filter is explicitly deleted, it remains part of the configuration.

6. At run-time, audit data is collected based on all prevailing filters at the custom
level.

13.3.4 Manage Audit Policies Manually
This section explains how to configure auditing policies and other features by
manually updating:

■ the platform configuration file jps-config.xml for Java components

■ component-specific files for system components

This section contains these topics:

■ Location of Configuration Files for Java Components

■ Audit Service Configuration Properties in jps-config.xml for Java Components

■ Switching from Database to File for Java Components

■ Manually Configuring Audit for System Components

13.3.4.1 Location of Configuration Files for Java Components
The jps-config.xml domain configuration file can be found at this location:

$DOMAIN_HOME/config/fmwconfig/jps-config.xml

Note: This behavior only occurs when using WLST; if you use
Fusion Middleware Control to manage audit configuration, the
custom audit settings are cleared when you switch from the custom
audit level to a different audit level.

Managing Audit Policies

13-20 Oracle Fusion Middleware Application Security Guide

13.3.4.2 Audit Service Configuration Properties in jps-config.xml for Java
Components
The Audit Service Configuration in jps-config.xml consists of the properties
shown in Table F–9. Taken together, the set of properties and their values are known
as the audit policy.

Example jps-config.xml file
Here is a sample file illustrating an audit policy:

<?xml version="1.0" encoding="UTF-8" standalone='yes'?>
<jpsConfig xmlns="http://xmlns.oracle.com/oracleas/schema/11/jps-config-11_1.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/oracleas/schema/11/jps-config-11_
1.xsd" schema-major-version="11" schema-minor-version="1">

 <serviceProviders>
 <serviceProvider name="audit.provider" type="AUDIT"
class="oracle.security.jps.internal.audit.AuditProvider">
 </serviceProvider>
 </serviceProviders>

 <serviceInstances>
 <serviceInstance name="audit" provider="audit.provider">
 <property name="audit.filterPreset" value="Low"/>
 <property name="audit.specialUsers" value ="admin, fmwadmin" />
 <property name="audit.customEvents" value ="JPS:CheckAuthorization,

CreateCredential; OIF:UserLogin"/>
 <property name="audit.loader.jndi" value="jdbc/AuditDB"/>
 <property name="audit.loader.interval" value="15" />
 <property name="audit.maxDirSize" value="102400" />
 <property name="audit.maxFileSize" value="10240" />
 <property name=" audit.loader.repositoryType " value="Db" />
 </serviceInstance>
 </serviceInstances>
 <jpsContexts default="default">
 <jpsContext name="default">
 <serviceInstanceRef ref="audit"/>
 </jpsContext>
 </jpsContexts>
</jpsConfig>

13.3.4.3 Switching from Database to File for Java Components
In rare instances, you may wish to revert from using a (database) data store to using a
file for audit records. This requires manual configuration of the property
audit.loader.repositoryType described in Table F–9.

To switch from database to file, set the audit.loader.repositoryType to File.

When you switch from database to file, events that were collected in the database are
not transferred back to the file system. If this switch is temporary, the audit events
collected in the file are automatically pushed to the database when you switch to a
database store again.

13.3.4.4 Manually Configuring Audit for System Components
System components do not use the jps-config.xml file to store the audit
configuration. Instead:

Audit Logs

Configuring and Managing Auditing 13-21

■ Oracle HTTP Server uses the auditconfig.xml file which is located in:

ORACLE_INSTANCE/instance_name/config/OHS/<ohs_name>/auditconfig.xml

■ Oracle Web Cache uses the auditconfig.xml file which is located in:

ORACLE_INSTANCE/instance_name/config/WebCache/<webcache_name>/auditconfig.xml

■ Oracle Reports uses the jps-config-jse.xml file which is located in:

$DOMAIN_HOME/config/fmwconfig/jps-config-jse.xml

■ Oracle Virtual Directory uses jps-config.-jse.xml file which is located in:

ORACLE_INSTANCE/instance_name/config/JPS/jps-config-jse.xml

■ Oracle Internet Directory’s audit configuration is stored in the database.

Format of the auditconfig.xml File
Here is the format of the auditconfig.xml file:

<AuditConfig xmlns="http://xmlns.oracle.com/ias/audit/audit.xsd">
 <Filters>
 <!-- FilterPreset can be None,Low,Medium,All or Custom. Default value: None
-->
 <FilterPreset>Low</FilterPreset>

 <!-- Comma separated list of special users for whom auditing is always turned
on. Default value: no users -->
 <SpecialUsers>u1,u2</SpecialUsers>

 <!-- In case of custom, a comma separate list of events that are to be enabled
for auditing. Default value: no events -->
 <CustomEvents>e1,e1</CustomEvents>

 </Filters>
 <LogsDir>

 <!-- Maximum dir size of the log directory (busstop). 0 implies unlimited
size. Default value: 0 -->
 <MaxDirSize>0</MaxDirSize>

 <!-- Maximum file size of each audit.log file. Default value: 100MB -->
 <MaxFileSize>104857600</MaxFileSize>

 </LogsDir>
<AuditConfig>

13.4 Audit Logs
Fusion Middleware Audit Framework provides a set of log files to help with audit
administration. You can use these logs to trace errors and for diagnostic purposes
when the audit framework is not functioning properly.

This section contains the following topics:

■ Location of Audit Logs

■ Audit Log Timestamps

Advanced Management of Database Store

13-22 Oracle Fusion Middleware Application Security Guide

13.4.1 Location of Audit Logs
For a listing of all audit log locations, how to configure the loggers, and how to use the
logs to diagnose issues, see Section L.1.1.6, "Audit Loggers".

13.4.2 Audit Log Timestamps
Time stamps in the audit logs are recorded in Coordinated Universal Time. This may
differ from the machine time depending on the machine’s time zone setting.

13.5 Advanced Management of Database Store
The audit schema is created through the Repository Creation Utility (RCU). This
section explains the organization of the audit schema and contains topics related to
maintaining the schema.

13.5.1 Schema Overview
The Oracle Fusion Middleware Audit Framework schema consists of the following:

■ A base table: IAU_BASE

■ A translation table: IAU_DISP_NAMES_TL

■ A set of component-specific tables of audit data, for example OVDCOMPONENT,
OIDCOMPONENT, JPS and so on

When generated, audit records are stored in a file; if an audit database store is
configured, the audit loader stores each audit record in one row of the base table and
one row of a component table:

■ General information (such as Time, EventType, and EventStatus) is written into
the base table

■ component-specific information (such as CodeSource) is written into the
component table

The audit loader assigns unique sequential numbers to all records during storage.

Here is a sample bus-stop file for Oracle Platform Security Services. By default, this file
is maintained in the directory

WebLogic Domain Home/servers/server_
name/diagnostics/auditlogs/JPS/audit.log

#Fields:Date Time Initiator EventType EventStatus MessageText HomeInstance ECID
RID ContextFields SessionId TargetComponentType ApplicationName EventCategory
ThreadId InitiatorDN TargetDN FailureCode RemoteIP Target Resource Roles
CodeSource InitiatorGUID Principals PermissionAction PermissionClass mapName key
#Remark Values:ComponentType="JPS"
2008-12-08 10:46:05.492 - "CheckAuthorization" true "Oracle Platform Security
Authorization Check Permission SUCCEEDED." - - - - - - - "Authorization" "48" - -
"true" - - "(oracle.security.jps.service.policystore.PolicyStoreAccessPermission
context=APPLICATION,name=SimpleServlet getApplicationPolicy)" -

See Also: For more information on RCU, see Oracle Fusion
Middleware Repository Creation Utility User's Guide.

Note: The attribute ComponentType in the bus-stop file determines
which component table stores the record.

Advanced Management of Database Store

Configuring and Managing Auditing 13-23

"file:/oracle/work/middleware/oracle_common/modules/oracle.jps_
11.1.1/jps-internal.jar" - "[]" - - - -

Figure 13–1 shows the data in the base table and how it relates to the
component-specific tables.

Figure 13–1 Audit Schema

The average record size in the base table IAU_BASE is approximately 0.3 KB. When
you plan for tablespace sizing:

■ use this number as a guideline for the average record size

■ monitor how audit database size is growing based on the audit policy selected and
the level of activity

■ take into account the period of time for which the audit data is being stored.

13.5.2 Table Attributes
The attributes of the base table and the component-specific tables respectively are
derived from these files:

$ORACLE_HOME/modules/oracle.iau_11.1.1/components/generic/generic_events.xml

for the base table, and

$ORACLE_HOME/modules/oracle.iau_11.1.1/components/componentName/component_
events.xml

for each component table.

Table 13–1 lists a few important attributes defined in the base table IAU_BASE. The
first four attributes are common in that table and all component tables. The primary
key is defined as IAU_ID + IAU_TSTZORIGINATING.

See Also: Section C.3, "The Audit Schema"

Table 13–1 Attributes of Base Table IAU_BASE

Attribute Description

IAU_ID A unique sequential number for every audit record

IAU_TstzOriginating Date and time when the audit event was generated (data type
TIMESTAMP)

Advanced Management of Database Store

13-24 Oracle Fusion Middleware Application Security Guide

You can use the listAuditEvents WLST command to get a list of all attribute
names for individual component tables.

13.5.3 Indexing Scheme
For efficient queries, an index is created by default on the Timestamp (IAU_
TSTZORIGINATING) in the base table and on each of the component-specific tables.

The default index in IAU_BASE is named EVENT_TIME_INDEX, and in the component
tables it is named tableName_INDEX (such as OVDCOMPONENT_INDEX,
OIDCOMPONENT_INDEX, JPS_INDEX and so on).

13.5.4 Backup and Recovery
Compliance regulations require that audit data be stored for long periods. A backup
and recovery plan is needed to protect the data.

A good backup plan takes account of these basic guidelines:

■ Growth rate of Audit Events

The number of audit events generated depends on your audit policy. The number
of audit events generated daily determines, in turn, how often you want to
perform backups to minimize the loss of your audit data.

■ Compliance regulations

Consult you organization's compliance regulations to determine the frequency of
backups and number of years for which audit data storage is mandatory.

■ Online or Offline Data Management

Consult you organization's compliance regulations to determine the frequency of
backups and the portion of audit data that needs to be easily accessible.

Oracle Database uses Oracle Recovery Manager (RMAN) for backup and recovery. For
details, see:

IAU_EventType The type (name) of the audit event

IAU_EventCategory The category of the audit event

IAU_EventStatus The outcome of the audit event - success or failure

IAU_MessageText Description of the audit event

IAU_Initiator UID of the user who was doing the operation

Note: A SEQUENCE, an Oracle database object, is created to
coordinate the assignment of sequential numbers (IAU_ID) for audit
records.

See Also:

■ Section C.4, "WLST Commands for Auditing".

■ Section C.3, "The Audit Schema"

Table 13–1 (Cont.) Attributes of Base Table IAU_BASE

Attribute Description

Advanced Management of Database Store

Configuring and Managing Auditing 13-25

http://www.oracle.com/technology/deploy/availability/htdocs/BR_
Overview.htm

http://www.oracle.com/technology/deploy/availability/htdocs/rman
_overview.htm

13.5.5 Importing and Exporting Data
You can import and export the audit schema to migrate data if you started with
multiple audit databases and wish to combine them into a single audit data store, or if
you wish to change the database to scale up.

Oracle Database sites can utilize the utilities of Oracle Data Pump to import and
export data. For details, refer to:

http://www.oracle.com/technology/products/database/utilities/htd
ocs/data_pump_overview.html

13.5.6 Partitioning
Not all database systems support partitioning, all the tables in the audit schema are
unpartitioned by default.

Since audit data is cumulative and older data is never removed, if you store a high
volume of audit data you should consider partitioning the audit schema, as it will
allow for easier archiving.

Benefits of partitioning include:

■ Improved Performance: If a table is range-partitioned by Timestamps, for
example, queries by Timestamps can be processed on the partitions within that
time-frame only.

■ Better Manageability: Partitions can be created on separate tablespaces (thus
different disks). This enables you to move older data to slower and larger disks,
while keeping newer data in faster and smaller disks.

In addition, partitioning makes archival much easier. For example, you can
compress a singlve partition rather than having to partition the entire table.

■ Increased Availability: If a single partition is unavailable, for example, and you
know that your query can eliminate this partition from consideration, the query
can be successfully processed without needing to wait for the unavailable
partition.

13.5.6.1 Partition Tables
In this example, IAU_BASE is used as an example to demonstrate how to convert the
unpartitioned tables in the audit schema into partitioned tables.

It is recommended that partitioning is done before using this schema for an audit data
store to minimize the application down time.

Note: The translation table, IAU_DISP_NAMES_TL, needs to be
backed up only once, since it should not change over time.

Advanced Management of Database Store

13-26 Oracle Fusion Middleware Application Security Guide

The partitioning steps are as follows:

1. Rename the existing unpartitioned table. For example:

RENAME IAU_BASE TO IAU_BASE_NONPART;

2. Create a new partitioned table that follows the table structure of the unpartitioned
table. This example uses the range-partitioning (by Timestamp) scheme:

CREATE TABLE IAU_BASE
PARTITION BY RANGE (IAU_TSTZORIGINATING)
(
 PARTITION IAU_BASE_DEFAULT VALUES LESS THAN (MAXVALUE)
)
AS SELECT * FROM IAU_BASE_NONPART;

3. Enable row movement to allow data to automatically move from partition to
partition when new partitions are created. For example:

ALTER TABLE IAU_BASE
ENABLE ROW MOVEMENT;

4. Create a local prefix index for the partitioned table. For example:

ALTER INDEX EVENT_TIME_INDEX
RENAME TO EVENT_TIME_INDEX_NONPART;

CREATE INDEX EVENT_TIME_INDEX
ON IAU_BASE(IAU_TSTZORIGINATING) LOCAL;

5. Partitions can now be created. In this example partitions are created by calendar
quarter:

ALTER TABLE IAU_BASE
SPLIT PARTITION IAU_BASE_DEFAULT AT (TO_DATE('01/04/2008', 'DD/MM/YYYY')) INTO
(PARTITION IAU_BASE_Q1_2008, PARTITION IAU_BASE_DEFAULT)
UPDATE INDEXES;

Note: Two sample SQL scripts are shipped with the product:

■ $RCU_
HOME/rcu/integration/iau/scripts/convertPartition
edTables.sql (linux) or %RCU_
HOME\rcu\integration\iau\scripts\convertPartition
edTables.sql (Windows) converts the base and component
tables in audit schema into partitioned tables

■ $RCU_
HOME/rcu/integration/iau/scripts/createPartitions
ByQuarter.sql (linux) or %RCU_
HOME\rcu\integration\iau\scripts\createPartitions
ByQuarter.sql (Windows) creates partitions by quarter for the
base and component tables in the audit schema

Note: It is recommended that you deactivate the audit loader prior
to partitioning. See Section 13.2.4.1, "Deconfigure the Audit Data
Store" for details.

Advanced Management of Database Store

Configuring and Managing Auditing 13-27

ALTER TABLE IAU_BASE
SPLIT PARTITION IAU_BASE_DEFAULT AT (TO_DATE('01/07/2008', 'DD/MM/YYYY')) INTO
(PARTITION IAU_BASE_Q2_2008, PARTITION IAU_BASE_DEFAULT)
UPDATE INDEXES;

ALTER TABLE IAU_BASE
SPLIT PARTITION IAU_BASE_DEFAULT AT (TO_DATE('01/10/2008', 'DD/MM/YYYY')) INTO
(PARTITION IAU_BASE_Q3_2008, PARTITION IAU_BASE_DEFAULT)
UPDATE INDEXES;

ALTER TABLE IAU_BASE
SPLIT PARTITION IAU_BASE_DEFAULT AT (TO_DATE('01/01/2009', 'DD/MM/YYYY')) INTO
(PARTITION IAU_BASE_Q4_2008, PARTITION IAU_BASE_DEFAULT)
UPDATE INDEXES;

13.5.6.2 Backup and Recovery of Partitioned Tables
Backup and recovery were discussed in Section 13.5.4, "Backup and Recovery". Note
that read-only tablespaces can be excluded from whole database backup, so long as a
backup copy was created. Thus, you can avoid unnecessarily repeating backups for
the partitions of archived data residing on those tablespaces, improving performance.

13.5.6.3 Import, Export, and Data Purge
Import and export were discussed in Section 13.5.5, "Importing and Exporting Data".
Keep in mind that with a range-partitioned table it is much more efficient to drop a
partition when you want to remove old data, rather than deleting the rows
individually.

ALTER TABLE IAU_BASE DROP PARTITION IAU_BASE_Q4_2008;

It is also easy to load a partition of new data without having to modify the entire table.
However, you have to remove the default partition of "values less than (MAXVALUE)"
first, and add it back once finished, using a command like the following:

ALTER TABLE IAU_BASE ADD PARTITION IAU_BASE_Q4_2008 VALUES LESS THAN
('01-JAN-2009');

Once partitions are created, you can purge/backup a particular partition. Refer to
your database documentation for details.

In the database mode, the audit loader automatically manages bus-stop files.

13.5.6.4 Tiered Archival
Partitioning enables individual partitions (or groups of partitions) to be stored on
different storage tiers. You can create tablespaces in high-performance or low-cost
disks, and create partitions in different tablespaces based on the value of the data or
other criteria. It is also easy to move data in partitions between the tablespaces
(storage tiers).

Here is an example:

ALTER TABLE IAU_BASE MOVE PARTITION IAU_BASE_Q1_2008
TABLESPACE AUDITARCHIVE UPDATE INDEXES;

Note: New partitions should be created periodically for new
quarters.

Advanced Management of Database Store

13-28 Oracle Fusion Middleware Application Security Guide

The Oracle Information Lifecycle Management (ILM) Assistant is a free tool that
shows you how to partition tables and advise you when it is the time to move
partitions. For details, refer to:

http://www.oracle.com/technology/deploy/ilm/index.html

Note : Partitions can be moved only in Range, List, System, and
Hash partitioning schemes.

14

Using Audit Analysis and Reporting 14-1

14Using Audit Analysis and Reporting

This chapter describes how to configure audit reporting and how to view audit
reports. It contains these topics:

■ Setting up Oracle Business Intelligence Publisher for Audit Reports

■ Organization of Audit Reports

■ View Audit Reports

■ Example of Oracle Business Intelligence Publisher Reports

■ Audit Report Details

■ Customizing Audit Reports

14.1 Setting up Oracle Business Intelligence Publisher for Audit Reports
When your audit data resides in a database, you can run pre-defined Oracle Business
Intelligence Publisher reports and create your own reports on the data. This section
contains these topics about configuring your environment for audit reports:

■ About Oracle Business Intelligence Publisher

■ Install Oracle Business Intelligence Publisher

■ Set Up Oracle Reports in Oracle Business Intelligence Publisher

■ Set Up Audit Report Templates

■ Set Up Audit Report Filters

■ Configure Scheduler in Oracle Business Intelligence Publisher

14.1.1 About Oracle Business Intelligence Publisher
Reports help auditors determine whether there are any violations with respect to
various industry regulations such as HIPPA, SOX, and other regulatory compliance
demands. Oracle Fusion Middleware Audit Framework is integrated with Oracle
Business Intelligence Publisher for out-of-the box reports.

Pre-defined reports are available as part of the Oracle Fusion Middleware Audit
Framework. These reports are integrated with Oracle Business Intelligence Publisher
to work in conjunction with the audit data in the audit store.

See Also: Oracle Business Intelligence Publisher Enterprise
documentation at:

http://www.oracle.com/technology/documentation/bi_
pub.html

Setting up Oracle Business Intelligence Publisher for Audit Reports

14-2 Oracle Fusion Middleware Application Security Guide

Oracle Fusion Middleware Audit Framework ships with over twenty pre-built reports
in 11g Release 1 (11.1.1). For convenience, the reports are grouped in Oracle Business
Intelligence Publisher according to functional areas and by component.

The functional areas consists of the following:

■ Error and Exception reports like authentication and authorization failures

■ User Activities including transaction history and authorization history

■ Operational reports including created, deleted, and locked-out users

■ Audit Service Events

The component-specific reports, as the name implies, are grouped based on the
components themselves, for example, Oracle HTTP Server reports and Oracle Identity
Federation reports.

Other features of Oracle Business Intelligence Publisher include:

■ Flexible Report Displays

You can view reports online, change report parameters, change output types (pdf,
html, rtf, excel and others), modify the appearance of reports, export to the desired
format, and send to an E-mail address, fax or other destination.

■ Report Filters

You can filter audit records to be included in the report using a range of options
including the ability to modify the SQL used to extract records from the audit
repository.

■ Scheduling Reports

You can schedule reports to be run based on a range of criteria such as filters,
templates, formats, locale, viewing restrictions and so on.

■ Custom Reporting

You can design your own reports and specify the data model, layout, parameters,
bursting (for example, you can enable delivery based on delivery preference).

All the auditing reports available in Oracle Business Intelligence Publisher provide
these report filtering and formatting options:

■ View - View the report using the current parameters.

See Also: For more information about scheduling features, see the
Oracle Business Intelligence Publisher Enterprise documentation at:

http://www.oracle.com/technology/documentation/bi_
pub.html

See Also:

■ Section L.18, "Troubleshooting Oracle Business Intelligence
Reporting" for troubleshooting tips and other useful information
about Oracle Business Intelligence

■ Oracle Business Intelligence Publisher Enterprise documentation
at:

http://www.oracle.com/technology/documentation/bi
_pub.html

Setting up Oracle Business Intelligence Publisher for Audit Reports

Using Audit Analysis and Reporting 14-3

■ Schedule - Set up a schedule for the report along with job parameters and data
filters.

■ History

■ Edit - Modify the query and parameter display formats.

■ Configure - Set up runtime configuration controls.

■ Export

14.1.2 Install Oracle Business Intelligence Publisher
If you already have Oracle Business Intelligence Publisher 10.1.3.4 or later installed at
your site, you can skip this section and go to Section 14.1.3, "Set Up Oracle Reports in
Oracle Business Intelligence Publisher".

If you need to install Oracle Business Intelligence Publisher, follow the instructions
provided with the Oracle Business Intelligence Publisher Companion CD.

14.1.3 Set Up Oracle Reports in Oracle Business Intelligence Publisher
In this section you configure Oracle Business Intelligence Publisher to work with the
audit datasource.

Take these steps to set up Oracle Business Intelligence Publisher for use with audit
reports:

1. Navigate to the Reports folder in your Oracle Business Intelligence Publisher
installation. By default, the Reports folder is at %BIP_HOME%\XMLP\Reports.

2. Unjar the AuditReportTemplates.jar into your Reports folder. You should
see a new folder called Oracle_Fusion_Middleware_Audit. You can find
AuditReportTemplates.jar at:

$MW_ORA_HOME/oracle_common/modules/oracle.iau_11.1.1/reports/
AuditReportTemplates.jar

3. Set up the data source for audit repository as follows:

■ Navigate to the Admin tab.

■ If you deployed on Oracle WebLogic Server in Step 1, set up JNDI as follows:

– Click JNDI Connection.

– Click Add DataSource.

– Specify the DataSource details:

See Also: Oracle Business Intelligence Publisher Enterprise
documentation at:

http://www.oracle.com/technology/documentation/bi_
pub.html

Note: 11g Release 1 (11.1.1.4.0) PS3 reports can work only with an
11g Release 1 (11.1.1.4.0) PS3 schema; they cannot work with an earlier
schema such as 11g Release 1 (11.1.1).

Details about upgrading schemas with the Patch Set Assistant are
available in the Oracle Fusion Middleware Patching Guide.

Setting up Oracle Business Intelligence Publisher for Audit Reports

14-4 Oracle Fusion Middleware Application Security Guide

Name the Data Source Audit.

JNDI Name - 'jdbc/AuditDB'

– Test for a successful connection. If the connection is not successful, check
the values you entered.

– Press Apply to save your changes.

■ If you deployed on Oracle Containers for Java EE in Step 1, set up JNDI as
follows:

– Click JDBC Connection.

– Click Add DataSource.

– Specify the DataSource details:

Name the Data Source Audit.

Enter the details for the URL, username, and password for the audit
schema. (Note: The username and password consist of the audit schema
name including a prefix, for example, username: dev_iau or test_iau.)

– Test for a successful connection. If the connection is not successful, check
the values you entered.

– Press Apply to save your changes.

14.1.4 Set Up Audit Report Templates
You can use the standard audit reports in their default formats out-of-the-box.
However, if you wish to customize the appearance and other related aspects of the
reports, you do so by setting up audit report templates.

From a report’s Edit dialog, you can click the Layout option in the left panel to control
layouts and output formats. Using this feature, you can:

■ Customize the report template and design your own layout; for example you can
rearrange fields and highlight selected field labels.

■ Restrict the formats to which the report output is generated - by default, a large
number of output formats are available including HTML, PDF, Excel spreadsheet,
RTF, and others.

14.1.5 Set Up Audit Report Filters
You can use the standard audit reports in their default formats out-of-the-box.
However, if you wish to customize the scope of data and other related aspects of the
reports, you do so by setting up audit report filters.

Note: The reports refer to the audit data source, so the naming
convention is important.

Note: The reports refer to the audit data source, so the naming
convention is important.

See Also: Oracle Business Intelligence Publisher User's Guide.

Setting up Oracle Business Intelligence Publisher for Audit Reports

Using Audit Analysis and Reporting 14-5

Oracle Business Intelligence Publisher provides both basic and advanced filtering
options for your audit reports.

Basic Filters
Clicking on the report’s Schedule button brings up a page which you can use to
schedule and administer the report.

In the Report Parameters area you can provide high-level filters to restrict the report:

■ Date Filters

– show only recent audit records such as last hour or last week

– show records generated within a specified starting and ending dates

– limit number of records returned

■ Selected Report Fields

For example, the Authentication Failures report can be filtered by:

– Username

– Component Type

– Component Name

– Application Name

– Domain Name

Advanced Filters
Clicking on the report’s Edit button brings up a page at which you can specify more
detailed report filters and properties. This page consists of two panels. The left panel
lets you select what element of the report is to be modified through these options. For
each element you select, the right panel displays the corresponding information.

■ Data Model - This contains the SQL query that fetches the raw data for the report.
The query can be modified according to your needs.

■ List of Values - Shows all the report columns. Selecting on a column displays the
underlying SQL query that filters data for the attribute. You can modify the query
as needed; for example you can specify more restrictive filter values.

■ Parameters - Shows all the report columns, and lets you select any column to
modify display settings for that column. For example, you can specify a date
display format for timestamp fields.

■ Layouts and output formats - This feature is described in Section 14.1.6,
"Configure Scheduler in Oracle Business Intelligence Publisher".

14.1.6 Configure Scheduler in Oracle Business Intelligence Publisher
Clicking on the report’s Schedule button brings up a page which you can use to
schedule and administer the report. Information you can specify on this page includes:

See Also: Oracle Business Intelligence Publisher User's Guide.

Note: This feature assumes that the Oracle Business Intelligence
Publisher repository is already configured.

Organization of Audit Reports

14-6 Oracle Fusion Middleware Application Security Guide

■ Report Parameters - filters to restrict the data included in the report, for example
records for the last hour only.

■ Job Properties - the job name, formatting locale and time zone, and so on.

■ Notification - one or more users to be notified by E-mail when the job completes or
fails.

■ Time - report scheduling options; the report can be scheduled to run periodically
or on a one-time basis.

■ Delivery - deliver the report to one or more users

14.2 Organization of Audit Reports
Oracle Fusion Middleware Audit Framework ships with a set of pre-defined reports
that are designed to work, out-of-the-box, with Oracle Fusion Middleware
components. These reports are organized into two main categories:

■ Common Reports

These reports capture common events such as authentication success and failures,
account-related status (lockout, disabled, and so on). Many components have
implemented audit capability for these common events. The common reports are
located under the Common Reports subfolder of the Audit Reports, and all
audit-enabled events from across the components are captured in these reports.

For example, "Authentication History" displays authentication history across all
the components where authentication events are being captured.

You can use these reports to examine audit records for a specific area across
components or to examine the audit records of a single user across multiple
components for that specific area.

■ Component-specific Reports

These reports focus on individual components. They are needed because not all
audit events may be relevant to each component. The Component Specific folder
serves two purposes. First, it identifies the valid reports among the Common
Reports that are relevant to the component and show only the audit records for
that component. Secondly, for some components, component-specific reports have
been defined to suit the specific needs of that component. While audit records
themselves are generic for all the components, the representation of an audit
record may have component-specific requirements. For example, an access policy
may need to be shown in a format to be useful.

For example, you can locate the Authentication History report in the Common
folder, where it displays authentication events for all components. You can also
find the same report under a component-specific folder, where it displays
authentication events for that component only.

■ There is also a generic report at the top level called "All Events", which shows all
the events across all audit-enabled components. The "All Events" report is also
available in each component-specific folder, to show all the events for individual
components.

This report can be used to query audit data.

See Also: Section 14.1.5, "Set Up Audit Report Filters"

View Audit Reports

Using Audit Analysis and Reporting 14-7

14.3 View Audit Reports
This section explains how to view audit reports using Oracle Business Intelligence
Publisher.

Take these steps to view an audit report:

1. Log in to Oracle Business Intelligence Publisher using a URL of the form:

http://host.domain.com:port/xmlpserver/

2. On the main page, click Oracle Fusion Middleware Audit under Shared Folders.

3. The audit reports are organized into:

■ reports that are common to multiple components; these are further organized
by report types

■ reports that are specific to a component; these are further organized by
component

4. Navigate to the report of interest; for example, you can click on the Common
Reports folder, then Errors and Exceptions, then click on All Errors and
Exceptions.

The report is displayed.

5. The report display page contains these major areas:

■ Filters at the top of the page enable you to determine the type, scope, and
number of records to include in the report. These filters include:

– User

– Start and End Dates

– Last n time period

– Component type and name

– Application Name

– Domain Name

Use relevant filters to limit the report to the desired records.

■ Format control buttons enable you to determine:

– the template type, which can be:

HTML - This is the default display format.

PDF - Displays a printable PDF view.

Data - Displays an unformatted XML data set.

To change the template type while viewing a report, select the type from
the drop-down list and click View.

– output format

See Also: Table 14–1 for a description of the standard reports.

Note: Initially, the report is displayed with default filter values that
you can modify.

Example of Oracle Business Intelligence Publisher Reports

14-8 Oracle Fusion Middleware Application Security Guide

– delivery options

■ The report record display area. The appearance and number of columns
depend on previously selected options and filters.

Each column header also acts as a sort option.

6. View, save or export the report as desired.

14.4 Example of Oracle Business Intelligence Publisher Reports
This section uses a common scenario to demonstrate how Oracle Business Intelligence
Publisher reports are used to view audit data generated by Oracle Platform Security
Services events.

In this example, some activity is generated on the credential store for an Oracle
WebLogic Server domain. We then use Oracle Business Intelligence Publisher to take a
look at the relevant report to see the audit records. Subsequently, a few other reports
are examined.

1. As the system administrator, locate the domain whose credentials are to be
managed.

2. Use the relevant commands to generate some credential management records; for
example, create and delete some user credentials.

3. Log in to Oracle Business Intelligence Publisher using a URL of the form:

http://host.domain.com:port/xmlpserver/

4. Under the Reports tab, click on Shared Folders, and select Fusion Middleware
Audit.

5. On the main page, click Fusion Middleware Audit under Shared Folders.

6. The audit report menu appears. Audit reports are organized in various folders by
type.

7. To view audit records for Oracle Platform Security Services, for example, navigate
to the Component Specific folder, then Oracle Platform Security Services.

8. The Oracle Platform Security Services folder contains several reports. Click All
Events.

The report shows activity in a default time range. Modify the time range to show
only the day’s events.

The activity performed on that day appears on the page.

Observe the different regions of the report and their functions: report filters,
format control, scheduling, and the data display itself.

See Also: Section 10.3, "Managing the Credential Store" for details
about credential management.

Example of Oracle Business Intelligence Publisher Reports

Using Audit Analysis and Reporting 14-9

9. In each report, the last data column is a Detail column. Click on a detail to view all
the attributes of the specific audit record.

10. Return to the main folder to view some other reports of interest. For example, in
the Common Reports folder, navigate to the Account Management folder, and
click Account Profile History.

The Account Profile History report appears.

11. Click on the Event Details for an event of interest:

12. Finally, return to the Common Reports folder and select Errors and Exceptions.
Select the All Errors and Exceptions report.

Audit Report Details

14-10 Oracle Fusion Middleware Application Security Guide

13. A number of records are displayed. To narrow the report to records of interest, use
the Event drop-down to select checkPermission events.

One row is returned showing an authorization check failure:

14. Click Details to obtain more information:

14.5 Audit Report Details
This section provides detailed reference information about the standard (pre-built)
audit report.

The standard audit reports are grouped as follows:

1. The All Events report

This report contains all audit records generated in a pre-defined interval.

2. Common Reports

These are reports that contain audit records across multiple components.

3. Component-Specific Reports

Each report is dedicated to a specific component.

Common Reports
Common reports are organized as follows:

■ Account Management

– Account Profile History

– Accounts Deleted

– Accounts Enabled

Audit Report Details

Using Audit Analysis and Reporting 14-11

– Accounts Disabled

– Accounts Created

– Accounts Locked Out

– Password Changes

– dashboard

■ User Activities

– Authentication History

– Multiple Logins from Same IP

– Authorization History

– Event Details

– Related Audit Events

– Dashboard

■ Errors and Exceptions

– All Errors and Exceptions

– Authorization Failures

– Authentication Failures

– Dashboard

Component-Specific Reports
For a list of reports, see Section C.2.2, "Component-Specific Audit Reports".

14.5.1 List of Audit Reports in Oracle Business Intelligence Publisher
Table 14–1 provides a brief description of each audit report in Oracle Business
Intelligence Publisher.

Important: Run the Event Details report only against an 11g Release
1 (11.1.1.4.0) PS3 (patch set 3) schema.

Note: The folder path shown in the column titled "Located in Folder"
is relative to the Oracle Fusion Middleware Audit folder. To get to this
folder, log in to Oracle Business Intelligence Publisher, and navigate
to Shared Folders, then Oracle Fusion Middleware Audit.

Table 14–1 List of Audit Reports

Report Description Located in Folder

Accounts Created shows accounts created in
various components

Common Reports, then
Account Management. Also in
Component Specific folders.

Accounts Deleted shows accounts deleted in
various components

Common Reports, then
Account Management. Also in
Component Specific folders.

Audit Report Details

14-12 Oracle Fusion Middleware Application Security Guide

Accounts Disabled shows accounts disabled in
various components

Common Reports, then
Account Management. Also in
Component Specific folders.

Accounts Enabled shows accounts enabled in
various components

Common Reports, then
Account Management. Also in
Component Specific folders.

Accounts Locked Out shows accounts locked out
due to excessive
authentication failures

Common Reports, then
Account Management. Also in
Component Specific folders.

Account Profile History shows profile changes in
accounts, such as change in
address and password
changes

Common Reports, then
Account Management. Also in
Component Specific folders.

All Errors and Exceptions captures all errors and
exceptions across components

Common Reports, then Errors
and Exceptions. Also in
Component Specific folders.

All Events displays all audit events Oracle Fusion Middleware
Audit. Also in Component
Specific folders.

Application Policy
Management

displays application level
policy management

Component Specific, then
Oracle Platform Security
Services.

Application Role Management shows application role to
enterprise role mappings

Component Specific, then
Oracle Platform Security
Services.

Assertion Activity Assertion Activity in Oracle
Identity Federation

Component Specific, then
Oracle Identity Federation.

Assertion Template
Management

lists assertion Template
management operations in
Oracle Web Services Manager

Component Specific, then
Oracle Web Services Manager,
then Policy Management

Authentication Failures authentication errors and
exceptions; can be
cross-component or specific to
a component.

Common Reports, then Errors
and Exceptions. Also in
Component Specific folders.

Authentication History Authentications across all
components

Common Reports, then User
Activities. Also in Component
Specific folders.

Authorization Failures captures authorization
failures

Common Reports, then Errors
and Exceptions. Also in
Component Specific folders.

Authorization History Authorizations across all
components

Common Reports, then User
Activities. Also in Component
Specific folders.

Confidentiality Enforcements lists enforcements related to
confidentiality in Oracle Web
Services Manager

Component Specific, then
Oracle Web Services Manager,
then Policy Enforcements

Configuration Changes configuration changes made
in Fusion Middleware Audit
Framework.

Component Specific, then
Oracle Fusion Middleware
Audit Framework

Credential Access displays credential accesses by
users and applications in
Oracle Platform Security
Services

Component Specific, then
Oracle Platform Security
Services.

Table 14–1 (Cont.) List of Audit Reports

Report Description Located in Folder

Audit Report Details

Using Audit Analysis and Reporting 14-13

14.5.2 Attributes of Audit Reports in Oracle Business Intelligence Publisher
Table 14–2 lists the attributes that appear in the various audit reports. When viewing a
report, you can use this table to learn more about the attributes that appear in the
report.

Note the following:

■ Not all attributes appear in each report.

■ The user or users attribute, which appears in each report, can mean different
things in different reports; see Table 14–1 for an explanation of this attribute.

■ Not all the attributes are displayed in Oracle Business Intelligence Publisher audit
reports. If you wish to include some additional attributes in your custom reports,
see Appendix C, "Oracle Fusion Middleware Audit Framework Reference".

Credential Management displays credential
management operations
performed in Oracle Platform
Security Services.

Component Specific, then
Oracle Platform Security
Services.

Federation User Activity lists federation user activities
in Oracle Identity Federation

Component Specific, then
Oracle Identity Federation.

Message Integrity
Enforcements

shows enforcements related to
message integrity in Oracle
Web Services Manager

Component Specific, then
Oracle Web Services Manager,
then Policy Enforcements

Multiple Logins from Same IP lists machines from where
successful logins are made
into different user accounts.

Common Reports, then User
Activities.

Password Changes shows password changes
done in various accounts.

Common Reports, then
Account Management. Also in
Component Specific folders.

Policy Attachments shows Policy to web service
endpoint attachments

Component Specific, then
Oracle Web Services Manager

Policy Enforcements general policy enforcements
for Oracle Web Services
Manager

Component Specific, then
Oracle Web Services Manager,
then Policy Enforcements

Profile Management Events shows changes to Directory
Integration Platform's profiles.

Component Specific, then
Directory Integration
Platform.

Request Response shows requests sent and
responses received from web
services

Component Specific, then
Oracle Web Services Manager

System Policy Management displays system level policy
management operations

Component Specific, then
Oracle Platform Security
Services.

Violations Enforcement violations. Component Specific, then
Oracle Web Services Manager,
then Policy Enforcements

Web Services Policy
Management

shows policy management
operations.

Component Specific, then
Oracle Web Services Manager,
then Policy Management

Table 14–1 (Cont.) List of Audit Reports

Report Description Located in Folder

Customizing Audit Reports

14-14 Oracle Fusion Middleware Application Security Guide

14.6 Customizing Audit Reports
This section discusses advanced report generation and creation options:

■ Using Advanced Filters on Pre-built Reports

■ Creating Custom Reports

14.6.1 Using Advanced Filters on Pre-built Reports
Clicking on the report’s Edit button brings up a page at which you can specify more
detailed report filters and properties. This page consists of two panels. The left panel
lets you select what element of the report is to be modified through these options. For
each element you select, the right panel displays the corresponding information.

■ Data Model - This contains the SQL query that fetches the raw data for the report.
The query can be modified according to your needs.

■ List of Values - Shows all the report columns. Selecting on a column displays the
underlying SQL query that filters data for the attribute. You can modify the query
as needed; for example you can specify more restrictive filter values.

■ Parameters - Shows all the report columns, and lets you select any column to
modify display settings for that column. For example, you can specify a date
display format for timestamp fields.

■ Layouts and output formats - This feature is described in the following section.

Table 14–2 Attributes of Audit Reports

Attribute Description

Activity The type of action, either user- or system-initiated.

Application Name The complete application path and name.

Application Server Instance The instance of the application server in use.

Attempted The action that was attempted, for example, a single sign-on
attempted by the user.

Component Name The name of the component instance.

Component Type The type of component, for example Oracle Identity Federation.

Domain Name Oracle WebLogic Server domain name.

ECID The execution context ID.

Event Type The type of event that occurred, for example, account creation.

Initiator The user who initiated the event.

Internet Protocol Address,
IP Address

The IP address of the user’s machine from which the action was
initiated.

Message Text The text of the message; a description of the event.

Policy Name The name of the policy involved in the action.

Time Range The time range which allows you to limit your data set to a
specific time interval, for example, the last 24 hours.

Timestamp The date and time of the event.

Transaction ID The transaction identifier.

Customizing Audit Reports

Using Audit Analysis and Reporting 14-15

14.6.2 Creating Custom Reports
Oracle Business Intelligence Publisher provides a complete set of capabilities for
designing and creating custom reports.

Here is a simple example illustrating the basic steps to customize an existing audit
report with Oracle Business Intelligence Publisher.

1. Log in to Oracle Business Intelligence Publisher as administrator.

2. Navigate to the Oracle Fusion Middleware Audit folder.

3. Create a folder to maintain your custom reports. Under Folder and Event Tasks,
click New Folder.

Enter a folder name.

See Also:

■ Oracle Business Intelligence Publisher User's Guide.

■ Section C.3, "The Audit Schema"

Customizing Audit Reports

14-16 Oracle Fusion Middleware Application Security Guide

4. The new folder, Custom BI Reports, appears on the main audit reports folder.

5. Select an existing report that will be a starting point to create a custom report, by
clicking the icon to the left of the report. In this example the All Events report is
selected:

Click Copy this report.

6. This action copies the report to the clipboard. To send it to the new folder:

■ Select the Custom BI Reports folder.

■ Under Folder and Report Tasks, click Paste from clipboard.

■ A dialog box appears requesting confirmation. Click Yes.

The report is now moved from the clipboard to the custom folder:

■ Provide a descriptive name for the new report by selecting the icon to the left
of the report, and clicking Rename this report.

Customizing Audit Reports

Using Audit Analysis and Reporting 14-17

7. Now you are ready to customize the report. Click Edit from the menu choices
under the report title.

8. The Edit page appears.

Two panels are displayed; on the main panel titled General Settings, you can
control basic features like the report title and runtime controls. To the left of the
main panel, a second panel displays two sets of information that you can use to
create relevant content for your report:

■ List of Values shows the fields that are being used currently in the report.
When you click on a field, the main panel automatically displays the name
and the SQL query used to select the values to include for that field.

■ Parameters shows the available parameters from which you can choose the
ones to include in the report. Notice that a subset of the parameters is already
in the report; for example, userid (which is the initiator of the audit event)
provides the Users data, while timeRange provides the Time Range data.

The palette of choices on the left panel is context-sensitive and provides
information to help you build the report.

9. You can use the Query Builder to customize the data to include in your report. For
example, to include only login events for a component, you can:

■ Select ComponentName from the list of values and click Query Builder.

Customizing Audit Reports

14-18 Oracle Fusion Middleware Application Security Guide

■ A table appears listing the available components. Select the component, say
JPS. A second table appears showing the component event fields:

■ In the JPS table select IAU_EVENTTYPE.

■ Click Conditions, enter the condition login and click Save.

10. The condition is now included in the report. Be sure to click Save again on the
upper left corner to commit your changes to the report definition.

Customizing Audit Reports

Using Audit Analysis and Reporting 14-19

11. You can now return to the report in the Custom BI Reports folder and view the
data.

Customizing Audit Reports

14-20 Oracle Fusion Middleware Application Security Guide

Part IV
Part IV Single Sign-On Configuration

This part describes how to configure single sign-on in Oracle Fusion Middleware in
the following chapters:

■ Chapter 15, "Introduction to Single Sign-On in Oracle Fusion Middleware"

■ Chapter 16, "Configuring Single Sign-On with Oracle Access Manager 11g"

■ Chapter 17, "Configuring Single Sign-On Using Oracle Access Manager 10g"

■ Chapter 18, "Configuring Single Sign-On using OracleAS SSO 10g"

15

Introduction to Single Sign-On in Oracle Fusion Middleware 15-1

15Introduction to Single Sign-On in Oracle
Fusion Middleware

The chapter outlines a set of recommended single sign-on solutions for Oracle Fusion
Middleware. This chapter includes the following major sections:

■ Choosing the Right SSO Solution for Your Deployment

■ Introduction: OAM Authentication Provider for WebLogic Server

■ Setting Up Debugging in the WebLogic Administration Console

15.1 Choosing the Right SSO Solution for Your Deployment
Oracle Platform Security Services comprise Oracle WebLogic Server’s internal security
framework. A WebLogic domain uses a separate software component called an
Authentication Provider to store, transport, and provide access to security data.
Authentication Providers can use different types of systems to store security data. The
Authentication Provider that WebLogic Server installs uses an embedded LDAP
server.

Oracle Fusion Middleware 11g supports new single sign-on solutions that applications
can use to establish and enforce perimeter authentication:

■ Oracle Access Manager solutions

■ Oracle Single Sign-On (OSSO) solution

Customers must carefully choose the solution appropriate to their needs. Selecting the
right SSO solution requires careful consideration and depends upon your
requirements. This section outlines some general information and guidelines to help
you choose the best solution for your needs.

Note: Oracle recommends that you consider upgrading to Oracle
Access Manager 11g Single Sign on solution to take advantage of
additional functionality and architecture.

See Also:

■ Oracle Fusion Middleware Security Overview

■ Oracle Fusion Middleware Administrator's Guide for Oracle Access
Manager with Oracle Security Token Service

Choosing the Right SSO Solution for Your Deployment

15-2 Oracle Fusion Middleware Application Security Guide

■ Development or Small Stand-Alone Environment: Oracle recommends a
light-weight SSO solution when deployed applications are not integrated into an
enterprise-level single sign-on framework.

In such cases, a SAML-based solution that uses the Oracle WebLogic Server SAML
Credential Mapping Provider is best. The embedded LDAP server is used as the
default user repository. Alternatively, an LDAP Authenticator can be configured to
leverage an external LDAP server as a user repository.

■ Enterprise-Level SSO with Oracle Fusion Middleware 11g: Oracle Access
Manager supports:

– A wide variety of LDAP vendors as the user and group repository and also
works with Oracle Virtual Directory

– Integration with non-Oracle application server vendors and Web Tier
components on a large variety of OS platforms to provide a flexible solution.

– Oracle Access Manager 11g supports out-of-the-box integration with Oracle
Fusion Middleware applications

Oracle Access Manager 11g (Release 1): Oracle recommends Oracle Access
Manager 11g whether:

– You are new to Oracle Fusion Middleware

– You are considering a migration from OSSO

– You are considering an enterprise-level SSO solution

– You want to implement Identity Propagation with the OAM Token, as
described in the Oracle Fusion Middleware Administrator's Guide for Oracle
Access Manager with Oracle Security Token Service

Oracle Access Manager 10g (10.1.4.3): You can continue using this when you have:

– Existing Oracle Access Manager 10g implementations

– An enterprise-level SSO solution

Selecting the right Oracle Access Manager solution (11g versus 10g (10.1.4.3)) as
your enterprise-level Single-Sign-on solution depends upon your requirements.
Refer to product documentation in this chapter and in the respective
administration guides to evaluate the release that best meets your overall
requirements.

■ Existing OSSO 10g Customers: Oracle Single Sign-On is part of the 10g Oracle
Application Server suite. OSSO is an enterprise-level single sign-on solution that
works with the OC4J application server in conjunction with Oracle Internet
Directory and Oracle HTTP Server 11g.

If OSSO is already in place as the enterprise solution for your existing Oracle
deployment, Oracle Fusion Middleware continues to support the existing OSSO as
a solution. However, Oracle recommends that you consider upgrading to Oracle
Access Manager 11g Single Sign on solution, which is a strategic Oracle SSO

See Also: "Configuring Single Sign-On with Web Browsers and
HTTP Clients" in Oracle Fusion Middleware Securing Oracle WebLogic
Server

See Also: "Introduction: OAM Authentication Provider for
WebLogic Server" on page 15-4

Choosing the Right SSO Solution for Your Deployment

Introduction to Single Sign-On in Oracle Fusion Middleware 15-3

solution. For more information when planning your upgrade, check the Lifetime
Support Middleware Policy for the OSSO end of support dates at:
http://www.oracle.com/support/lifetime-support-policy.html

■ Portal, Forms, Reports, and Discoverer 11g: Oracle Access Manager 11g is
certified with Oracle Portal, Forms, Reports, and Discover 11g. With Oracle classic
components, Oracle Delegated Administration Services 10g is a required and
important feature of the Oracle Identity Management infrastructure.

See the Oracle Identity Management Guide to Delegated Administration in the Oracle
Identity Management 10g (10.1.4.0.1) Online Documentation Library at:

http://www.oracle.com/technology/documentation/oim1014.html

See the Oracle Fusion Middleware Supported System Configurations page for
more details:

http://www.oracle.com/technology/software/products/ias/files/fusion
_certification.html

■ Oracle Access Manager Integration with OSSO: Oracle recommends Oracle
Access Manager 11g as the recommended enterprise-wide solution. If applications
(Oracle Portal for example) are deployed that previously required OracleAS Single
Sign-On, you can delegate the authentication (from OSSO 10g) to Oracle Access
Manager 11g. Oracle Internet Directory is needed for applications that require
integrating Oracle Access Manager and OSSO.

See Also:

■ "Introduction: OAM Authentication Provider for WebLogic
Server" on page 15-4

■ Oracle Fusion Middleware Upgrade Planning Guide

■ Oracle Fusion Middleware Upgrade Guide for Oracle Identity
Management—For information about the types of Java EE
environments available in 10g and instructions for upgrading
those environments to Oracle Fusion Middleware 11g

See Also: The following topics and other 11g manuals:

■ "Introduction: OAM Authentication Provider for WebLogic
Server" on page 15-4

■ Chapter 18, "Configuring Single Sign-On using OracleAS SSO
10g"

■ Oracle Fusion Middleware Administrator's Guide for Oracle Portal

■ Oracle Fusion Middleware Forms Services Deployment Guide

■ Oracle Fusion Middleware Publishing Reports to the Web with Oracle
Reports Services

■ Oracle Fusion Middleware Administrator's Guide for Oracle Business
Intelligence Discoverer

Introduction: OAM Authentication Provider for WebLogic Server

15-4 Oracle Fusion Middleware Application Security Guide

■ Windows Native Authentication for Microsoft Clients: OSSO and Oracle Access
Manager 11g both support this integration. Oracle WebLogic Server can be
configured to use the Simple and Protected Negotiate (SPNEGO) mechanism for
authentication to provide Windows Native Authentication support.

15.2 Introduction: OAM Authentication Provider for WebLogic Server
Unless explicitly stated, information here applies equally to both Oracle Access
Manager 11g and 10g deployments.

The Oracle Access Manager Authentication Provider is one of several Providers that
operate with Oracle WebLogic Server. The Oracle Access Manager Authentication
Provider does not require the entire Oracle WebLogic Suite nor Oracle Java Required
Files (JRF) to operate with Oracle Access Manager 11g or 10g.

In a WebLogic Server domain where JRF is installed, the JRF template is present as
part of the domain in an Oracle Fusion Middleware product. In this case, the OAM
Identity Asserter and OAM Authentication Provider are automatically available for
configuration. If JRF is not installed in your WebLogic domain, you must add the
OAMAuthnProvider.jar to a specific location in your domain as described later.

You can use the OAM Authentication Provider for WebLogic Server when you have:

■ Applications that are (or will be) deployed in a WebLogic container outside the
Identity Management domain

■ WebGate is (or will be) deployed in front of the Authentication Provider

See Also:

■ "Introduction: OAM Authentication Provider for WebLogic
Server" on page 15-4

■ Oracle Fusion Middleware Administrator's Guide for Oracle Access
Manager for details about registering OSSO (mod_osso) Agents
with Oracle Access Manager 11g to delegate authentication and
for details about co-existence with Oracle Access Manager 11g
during the OSSO 10g upgrade.

■ Oracle Fusion Middleware Upgrade Guide for Java EE—For
information about the types of Java EE environments available in
10g and instructions for upgrading those environments to Oracle
Fusion Middleware 11g

■ "Integrating with Oracle Application Servers" in the 10g (10.1.4.3)
Oracle Access Manager Integration Guide.

See Also:

■ The chapter on configuring Oracle Access Manager 11g to use
Windows Native Authentication for Microsoft Clients in the
Oracle Fusion Middleware Integration Guide for Oracle Access
Manager

■ "Configuring Single Sign-On with Microsoft Clients" in Oracle
Fusion Middleware Securing Oracle WebLogic Server

Note: The JRF template is present as part of the domain in an Oracle
Fusion Middleware product.

Introduction: OAM Authentication Provider for WebLogic Server

Introduction to Single Sign-On in Oracle Fusion Middleware 15-5

The Authentication Provider can be configured to provide either (or both) of the
following functions for WebLogic users:

■ Identity Asserter for Single Sign-on function

■ Authenticator function

Identity Asserter for Single Sign-on Function
When the application is protected using a perimeter Webgate, the identity of the
authenticated user that is communicated to the WebLogic Server is made available to
container security layers using the Oracle Access Manager identity asserter. The
Identity Asserter only asserts the incoming identity and then passes control to the
configured Authentication Providers to continue with the rest of the authentication
process (populating the subject with the right principals).

Oracle provides the following mechanisms, each with slightly different characteristics
and requirements:

■ Trusted Header Assertion: This newest mechanism, for use with Oracle Access
Manager 11.1.1.5.2 or later (and either a 10g or 11g Webgate), is triggered for the
OAM_IDENTITY_ASSERTION token present for applications protected by 11g or
10g WebGate. This provides maximum security and is easy to configure.

■ Clear Text Header: This default mechanism is triggered for the OAM_REMOTE_
USER token present for applications protected by 10g or 11g WebGate.

■ Session Token: This mechanism is available for use with only perimeter 10g
Webgates and either the 10g Access Server or 11g OAM Server.

Table 15–1 lists the benefits and requirements for each.

Note: A Web-only applications implementation handles nearly all
SSO use cases. The exception is when you have Oracle Web Services
Manager protected Web services. In this case, there is no trusted
WebGate. Instead the AccessGate provided with the Identity Asserter
is contacted and interacts with your OAM 10g Access Server or 11g
OAM Server; all other processing is essentially the same.

See Also: "About Using the Identity Asserter Function with Oracle
Access Manager" on page 15-6

Table 15–1 Summary: Identity Assertion Mechanisms for Oracle Access Manager

Mechanism Benefits Requirements

Trusted Header Assertion

OAM_IDENTITY_ASSERTION

Maximum security

Easy configuration

Oracle Access Manager
11.1.1.5.2 or later

10g or 11g Webgate

Clear Text Header

OAM_REMOTE_USER

Maximum performance

Default Mechanism

Oracle Access Manager
11.1.1.5.0

10g or 11g Webgate

Session Token (ObSSOCookie)

To be deprecated

10g Webgate with either
OAM 10g or 11g Server

Oracle Access Manager
11.1.1.3.0

Oracle Access Manager
10.1.4.3

10g Webgate

Introduction: OAM Authentication Provider for WebLogic Server

15-6 Oracle Fusion Middleware Application Security Guide

Authenticator Function
The Authenticator function does not provide single sign-on. The Authenticator
requests credentials from the user based on the authentication method specified in the
application configuration file, web.xml, not according to the Oracle Access Manager
authentication scheme. However, an Oracle Access Manager authentication scheme is
required for the application domain.

For more information, see the following topics:

■ About Using the Identity Asserter Function with Oracle Access Manager

■ About Using the Authenticator Function with Oracle Access Manager

■ Choosing Applications for Oracle Access Manager SSO Scenarios and Solutions

15.2.1 About Using the Identity Asserter Function with Oracle Access Manager
This topic describes and illustrates the use of the Identity Asserter function with
Oracle Access Manager 11g and 10g WebGates. Processing is similar, with few
exceptions, whether you have OAM 11g with 11g (or 10g) WebGates or OAM 10g with
10g WebGates). For instance, with Oracle Access Manager 11g, the Access Server is
known as the OAM Server.

All requests are first routed to a reverse proxy Web server and requests are intercepted
by WebGate. The user is challenged for credentials based on the authentication scheme
that is configured within Oracle Access Manager. Oracle recommends Form
(form-based login) as the authentication scheme.

The Identity Asserter function relies on perimeter authentication performed by
WebGate on the Web Tier. Triggering the Identity Asserter function requires the
appropriate chosen Active Type for your WebGate release.

After triggering the Identity Asserter function, configured Authentication Providers
(Login Modules) for constructing the Subject and populating it with the appropriate
Principals are invoked.

Chosen Active Types
The Identity Asserter function's Active Type configuration parameter lists supported
values under the Available UI section. One of the following must be selected as the
"Chosen" type to trigger the Identity Asserter function:

■ Identity Assertion: Triggers Identity Assertion based on the trusted header
OAM_IDENTITY_ASSERTION.

■ OAM_REMOTE_USER: Triggers Identity Assertion based on OAM_REMOTE_USER
header.

Note: You can skip this topic if you are using the Identity Asserter
function.

Note: The only difference between using the Identity Asserter
function with 11g WebGates versus 10g WebGates is the provider’s
chosen Active Type.

See Also: Table 15–1, " Summary: Identity Assertion Mechanisms
for Oracle Access Manager"

Introduction: OAM Authentication Provider for WebLogic Server

Introduction to Single Sign-On in Oracle Fusion Middleware 15-7

■ ObSSOCookie: Triggers Identity Assertion based on the obSSOCookie.

OAM_REMOTE_USER header includes the uid of the logged in user. Configuring
OAM_REMOTE_USER as the chosen Active Type for the Identity Asserter requires
Oracle Access Manager policies that set OAM_REMOTE_USER as part of the
authorization success response headers.

Authentication Processing and the Identity Assertion Function
Unless explicitly stated, information here applies equally to Oracle Access Manager
11g and Oracle Access Manager 10g.

WebGate, using the configured authentication scheme, authenticates the user, and
then:

■ WebGate:

11g WebGate sets the OAMAuthnCookie and triggers the token (either OAM_
IDENTITY_ASSERTION or OAM_REMOTE_USER).

10g WebGate triggers assertion based on the obSSOCookie or OAM_REMOTE_
USER or OAM_IDENTITY_ASSERTION are possible

■ The OHS Web server mod_weblogic module forwards the request to Oracle
WebLogic Server

■ The Identity Asserter is invoked when the configured Active token type is present
in the request coming into the container: OAM_REMOTE_USER (default),
obSSOCookie, OAM_IDENTITY_ASSERTION.

■ After Assertion Processing: Authentication Providers configured in the security
realm are invoked to populate the 'Subject' with Principals (Users and Groups)

Figure 15–1, and the overview that follows, describe processing between components
when the Identity Asserter function is used with Web-only applications. This
implementation handles nearly all SSO use cases. Exception: Oracle Web Services
Manager protected Web services. In this case, there is no trusted WebGate. Instead the
AccessGate provided with the Identity Asserter (dotted line in Figure 15–1) is
contacted and interacts with the 11g OAM Server (or 10g OAM Access Server); all
other processing is essentially the same.

For more information, see "Oracle Access Manager Authentication Provider Parameter
List" on page 17-14.

Figure 15–1 illustrates the processing overview using the Identity Asserter
configuration with Oracle Access Manager 11g and

Note: mod_weblogic is the generic name of the WebLogic Server
plug-in for Apache. For Oracle HTTP Server 11g, the name of this
plug-in is mod_wl_ohs; the actual binary name is mod_wl_ohs.so.

Introduction: OAM Authentication Provider for WebLogic Server

15-8 Oracle Fusion Middleware Application Security Guide

Figure 15–1 Identity Asserter Configuration with Oracle Access Manager and WebGates

Assertion takes place based on which token type is configured in the authorization
policy. Alone, the presence of token in the request is not sufficient to invoke the
asserter. Simply configuring a particular active token type in WebLogic is not sufficient
OAM_IDENTITY_ASSERTION will be set in the request if it is configured in the
authorization policy.

Process overview: Identity Assertion with OAM 11g, 11g WebGate, and Web-only
applications
1. A user attempts to access an Oracle Access Manager protected Web application

that is deployed on the Oracle WebLogic Server.

2. WebGate on a reverse proxy Web server intercepts the request and queries the
OAM Server to determine whether the requested resource is protected.

3. If the requested resource is protected, WebGate challenges the user for credentials
based on the type of Oracle Access Manager authentication scheme configured for
the resource (Oracle recommends Form Login). The user presents credentials such
as user name and password.

4. WebGate forwards the authentication request to the OAM Server.

5. OAM 11g Server validates user credentials against the primary user identity store
and returns the response to WebGate (OAM 10g Access Server validates user
credentials against configured user directories). Upon:

■ Successful Authentication: Processing continues with Step 6.

■ Authentication Not Successful: The login form appears asking the user for
credentials again; no error is reported.

6. OAM Server generates the session token and sends it to the WebGate:

11g WebGate: Sets and returns the OAMAuthn cookie and triggers the OAM_
REMOTE_USER (or OAM_IDENTITY_ASSERTER) token when policies are
configured for this.

10g WebGate: Sets and returns OAM_REMOTE_USER or OAM_IDENTITY_
ASSERTION headers in the request when policies are configured for this.

The Web server forwards this request to the proxy, which in turn forwards the
request to the Oracle WebLogic Server using the mod_weblogic plug-in.

mod_weblogic forwards requests as directed by its configuration.

Introduction: OAM Authentication Provider for WebLogic Server

Introduction to Single Sign-On in Oracle Fusion Middleware 15-9

7. WebLogic Server security service invokes the Oracle Access Manager Identity
Asserter which is configured to accept tokens of type "OAM_REMOTE_USER" (or
"OAM_IDENTITY_ASSERTER"). The Identity Asserter initializes a
CallbackHandler with the header. In addition, the Identity Asserter sets up
NameCallback with the username for downstream LoginModules.

8. Oracle WebLogic Security service authorizes the user and allows access to the
requested resource.

9. A response is sent back to the reverse proxy Web server.

10. A response is sent back to the browser.

15.2.2 About Using the Authenticator Function with Oracle Access Manager
This topic describes and illustrates use of the Authenticator configured to protect
access to Web and non-Web resources with Oracle Access Manager.

The Authenticator function relies on Oracle Access Manager services to authenticate
users who access applications deployed in WebLogic Server. Users are authenticated
based on their credentials, such as a user name and password.

When a user attempts to access a protected resource, the Oracle WebLogic Server
challenges the user for credentials according to the authentication method specified in
the application’s web.xml file. Oracle WebLogic Server then invokes the
Authentication Provider, which passes the credentials to Oracle Access Manager
Access Server for validation through the enterprise directory server.

Figure 15–2 illustrates the distribution of components and flow of information for
Oracle Access Manager authentication for Web and non-Web resources. Details follow
the figure. In this case, the Authenticator communicates with the 11g OAM Server (or
the OAM 10g Access Server) through a custom AccessGate.

Figure 15–2 Authenticator for Web and non-Web Resources

Note: mod_weblogic is the generic name of the WebLogic Server
plug-in for Apache For Oracle HTTP Server 11g, the name of this
plug-in is mod_wl_ohs.

Note: Unless explicitly stated, information applies equally to Oracle
Access Manager 11g and Oracle Access Manager 10g.

Introduction: OAM Authentication Provider for WebLogic Server

15-10 Oracle Fusion Middleware Application Security Guide

Process overview: Authenticator Function for Web and non-Web Resources
1. A user attempts to access a Java EE application (secured with the authentication

mechanism in the application’s web.xml file) that is deployed on the Oracle
WebLogic Server.

2. Oracle WebLogic Server intercepts the request.

3. Oracle Access Manager Authentication Provider LoginModule is invoked by the
Oracle WebLogic security service. The LoginModule uses the OAP library to
communicate with the 11g OAM Server (or 10g Access Server) and validate the
user credentials.

■ If the user identity is authenticated successfully, WLSUserImpl and
WLSGroupImpl principals are populated in the Subject.

■ If Oracle Access Manager LoginModule fails to authenticate the identity of the
user, it returns a LoginException (authentication failure) and the user is not
allowed to access the Oracle WebLogic resource.

4. Oracle Access Manager Authenticator supports Oracle WebLogic Server
UserNameAssertion.

5. Oracle Access Manager Authenticator can be used with any Identity Asserter. In
this case, the Oracle Access Manager Authenticator performs user name resolution
and gets the roles and groups associated with the user name.

15.2.3 Choosing Applications for Oracle Access Manager SSO Scenarios and
Solutions

This section introduces choosing applications to use Oracle Access Manager and the
Authentication Provider according to current application setup. Details are similar
whether you plan to use Oracle Access Manager 11g or 10g with the Authentication
Provider:

■ Applications Using Oracle Access Manager for the First TIme

■ Applications Migrating from Oracle Application Server to Oracle WebLogic Server

■ Applications Using OAM Security Provider for WebLogic SSPI

15.2.3.1 Applications Using Oracle Access Manager for the First TIme
If your application is to use Oracle Access Manager Authentication Provider for the
first time, proceed based on the functionality that you want to use:

■ Identity Asserter for Single Sign-On: The Web-only applications implementation
handles nearly all SSO use cases. See "Installing the Authentication Provider with
Oracle Access Manager 11g" on page 16-8.

Oracle Web Services Manager-Protected Web Services: This requires the
AccessGate that is provided with the Identity Asserter to interact with the OAM
Server. See "Configuring Identity Assertion for Oracle Web Services Manager and
OAM 11g" on page 16-35.

See Also:

■ "Configuring the Authenticator Function for Oracle Access
Manager 11g" on page 16-29

■ "Configuring the Authenticator for Oracle Access Manager 10g"
on page 17-48

Introduction: OAM Authentication Provider for WebLogic Server

Introduction to Single Sign-On in Oracle Fusion Middleware 15-11

■ Authenticator: No single sign-on is provided. The Authenticator requests
credentials from the user based on the authentication method specified in the
application configuration file, web.xml. See "Configuring the Authenticator
Function for Oracle Access Manager 11g" on page 16-29.

15.2.3.2 Applications Migrating from Oracle Application Server to Oracle WebLogic
Server
If your application has been deployed on the old Oracle Application Server (OC4J),
you can perform a few steps to make the application use the Authentication provider
with Oracle WebLogic Server, proceed as follows:

■ Remove all OC4J-specific settings from the application configuration

■ Identity Asserter for Single Sign-On: The Web-only applications implementation
handles nearly all SSO use cases. See the appropriate topic for your environment:

—OAM 11g: "Configuring Identity Assertion for SSO with Oracle Access Manager
11g" on page 16-16

—OAM 10g: "Configuring OAM Identity Assertion for SSO with Oracle Access
Manager 10g" on page 16-16

■ Oracle Web Services Manager-Protected Web Services: Require the AccessGate
provided with the Identity Asserter. See the appropriate topic for your
environment:

—OAM 11g: "Configuring Identity Assertion for Oracle Web Services Manager
and OAM 11g" on page 16-35

—OAM 10g: "Configuring Identity Assertion for Oracle Web Services Manager
and OAM 10g" on page 17-59

■ Authenticator: No single sign-on is provided. The Authenticator requests
credentials from the user based on the authentication method specified in the
application configuration file, web.xml. See the appropriate topic for your
environment:

—OAM 11g:"Configuring the Authenticator Function for Oracle Access Manager
11g" on page 16-29

—OAM 10g: "Configuring the Authenticator for Oracle Access Manager 10g" on
page 17-48

15.2.3.3 Applications Using OAM Security Provider for WebLogic SSPI
The Oracle Access Manager Security Provider for WebLogic SSPI provides
authentication, authorization, and single sign-on across Java EE applications that are
deployed in the WebLogic platform. The Security Provider for WebLogic SSPI enables
WebLogic administrators to use Oracle Access Manager to control user access to
business applications.

The Oracle Access Manager Security Provider for WebLogic SSPI provides
authentication to Oracle WebLogic Portal resources and supports single sign-on
between Oracle Access Manager and Oracle WebLogic Portal Web applications. Apart

Note: Security Provider for WebLogic SSPI is also known as
"Security Provider" in the 10g (10.1.4.3) Oracle Access Manager
Integration Guide.

Introduction: OAM Authentication Provider for WebLogic Server

15-12 Oracle Fusion Middleware Application Security Guide

from this, the Security Provider for WebLogic SSPI also offers user and group
management functions.

The Oracle Access Manager Authentication Provider is more easily installed and
configured than the Security Provider for WebLogic SSPI. The Authentication
Provider offers authentication and single sign-on (SSO) services, and also works with
all platforms supported by Oracle WebLogic Server.

If your application has been using the Oracle Access Manager Security Provider for
WebLogic SSPI for only authentication and SSO, the deployment is a good candidate
for the latest Authentication Provider. However, if your application relies on features
other than those offered by the latest Oracle Access Manager Authentication Provider,
you can continue to use the Oracle Access Manager 10g Security Provider for
WebLogic SSPI.

15.2.4 Implementation: Using the Provider with OAM 11g versus OAM 10g
With a very few differences, implementing solutions is similar whether you are using
OAM 11g or OAM 10g to protect for applications in a WebLogic container.

Table 15–2 outlines the differences when deploying the Authentication Provider with
OAM 11g versus OAM 10g. Topic headings are highlighted.

Note: WebLogic SSPI connector can be used with Oracle Access
Manager 10g but is not supported with Oracle Access Manager 11g

See Also: "Applications Using OAM Security Provider for
WebLogic SSPI" on page 15-11

Table 15–2 Differences in Authentication Provider Implementation Tasks for OAM 11g versus OAM 10g

OAM 11g Implementation Details OAM 10g Implementation Details

Included in the OAM 11g implementation are the following
tasks, which are described in the Oracle Fusion Middleware
Administrator's Guide for Oracle Access Manager with Oracle
Security Token Service:

■ Installing the Authentication Provider with Oracle
Access Manager 11g

■ Previewing Pre-Seeded OAM 11g Policies for Use by the
10g AccessGate

■ Session Token: Provisioning an OAM Agent with
Oracle Access Manager 11g (ObSSOCookie only)

Note: The OAM 11g remote registration tool automates
provisioning WebGates and policies. For WebLogic Server
resources, a wl_authen resource type is created by default.

■ Configuring Identity Assertion for SSO with Oracle
Access Manager 11g

Or

Configuring Identity Assertion for Oracle Web Services
Manager and OAM 11g

Or

Configuring the Authenticator Function for Oracle
Access Manager 11g

■ Configuring Centralized Log Out for Oracle Access
Manager 11g

Tasks for implementing SSO solutions with OAM 10g are
described in this chapter:

■ Installing and Setting Up Authentication Providers for
OAM 10g

■ Configuring OAM Identity Assertion for SSO with
Oracle Access Manager 10g

Note: OAM 10g OAMCfgTool automates provisioning
WebGates and policies.

Install 10g WebGate: Oracle Fusion Middleware
Administrator's Guide for Oracle Access Manager with
Oracle Security Token Service.

■ Configuring the Authenticator for Oracle Access
Manager 10g requires manual policy domain creation

Configuring Identity Assertion for Oracle Web Services
Manager and OAM 10g

■ Configuring Global Logout for Oracle Access Manager
10g and 10g WebGates

Introduction: OAM Authentication Provider for WebLogic Server

Introduction to Single Sign-On in Oracle Fusion Middleware 15-13

15.2.5 Requirements for the Provider with Oracle Access Manager
The required components and files for implementing the Authentication Provider are
nearly identical whether you have OAM 11g or OAM 10g as the SSO solution. The few
exceptions are noted in the following list:

■ An enterprise directory server (Oracle Internet Directory or Oracle Sun One
directory server) for Oracle Access Manager and Oracle WebLogic Server.

■ Oracle WebLogic Server 10.3.1+ to be configured to use the Oracle Access
Manager Authentication Provider as described later in this chapter.

■ Optional: A Fusion Middleware product (Oracle Identity Manager, Oracle SOA
Suite, or Oracle Web Center for example).

■ Authentication Provider: For applications deployed in a WebLogic container,
Oracle Access Manager JAR are WAR files are available when you install an
Oracle Fusion Middleware product (Oracle Identity Management, Oracle SOA
Suite, or Oracle WebCenter).

– oamAuthnProvider.jar: Includes files for both the Oracle Access Manager
Identity Asserter for single sign-on and the Authenticator for Oracle
WebLogic Server 10.3.1+. A custom Oracle Access Manager AccessGate is also
provided to process requests for Web and non-Web resources (non-HTTP)
from users or applications.

– oamauthenticationprovider.war: Restricts the list of providers that you see in
the Oracle WebLogic Server Console to only those needed for use with Oracle
Access Manager.

When you deploy the extension, the WebLogic Administration Console creates
an in-memory union of the files and directories in its WAR file with the files
and directories in the extension WAR file. Once the extension is deployed, it is
a full member of the WebLogic Administration Console: it is secured by the
WebLogic Server security realm, it can navigate to other sections of the
Administration Console, and when the extension modifies WebLogic Server
resources, it participates in the change control process For more information,
see the Oracle Fusion Middleware Extending the Administration Console for Oracle
WebLogic Server.

– Oracle Access Manager 11g: A remote registration command-line utility
streamlines WebGate provisioning and creates a fresh application domain
with security policies. Administrators can specify WebGate parameters and
values using a template.

– Oracle Access Manager 10g: The platform-agnostic OAMCfgTool and scripts
(oamcfgtool.jar) automate creation of the Oracle Access Manager form-based
authentication scheme, policy domain, access policies, and WebGate profile
for the Identity Asserter for single sign-on. OAMCfgTool requires JRE 1.5 or
1.6. Internationalized login forms for Fusion Middleware applications are
supported with the policies protecting those applications.

■ OHS 11g must be configured as a reverse proxy for the WebGate (required by the
Oracle Access Manager Identity Asserter)

Note: With a stand-alone Oracle WebLogic Server (no Fusion
Middleware), you must obtain the Authentication Provider JAR and
WAR files from Oracle Technology Network as described in Step 1 of
procedures later in this chapter.

Setting Up Debugging in the WebLogic Administration Console

15-14 Oracle Fusion Middleware Application Security Guide

■ Oracle Access Manager:

OAM 11g: Deployed with initial configuration using the Oracle Fusion
Middleware Configuration Wizard, as described in Oracle Fusion Middleware
Installation Guide for Oracle Identity Management. See "Deploying the Oracle
Access Manager 11g SSO Solution" on page 16-7.

OAM 10g: Installed with initial setup as described in Oracle Access Manager
Installation Guide. See "Deploying SSO Solutions with Oracle Access Manager 10g"
on page 17-1.

■ WebGate/AccessGate: Whether you need to provision a WebGate or an
AccessGate with Oracle Access Manager depends on your use of the OAM
Authentication Provider:

Identity Asserter for Single Sign-On: Requires a separate WebGate for each
application to define perimeter authentication.

Authenticator (or Oracle Web Services Manager): Requires the custom 10g
AccessGate that is available with the Authentication Provider.

15.3 Setting Up Debugging in the WebLogic Administration Console
The Authentication Providers use messages with verbose descriptions of low-level
activity within the application when Debug mode issued. Ordinarily, you do not need
this much information. However, if you must call Oracle Support, you might be
advised to set up debugging. When set, Authentication Providers messages appear in
the Oracle WebLogic Server default log location.

To set up debugging
1. Log into WebLogic Administration Console.

2. Go to Domain, Environment, Servers, yourserver.

3. Click the Debug tab.

4. Under Debug Settings for this Server, click to expand the following: weblogic,
security, atn.

5. Click the option beside DebugSecurityAtn to enable it.

6. Save Changes.

7. Restart the Oracle WebLogic Server.

8. In the Oracle WebLogic Server default log location, search for
SSOAssertionProvider. For example:

####<Apr 10, 2009 2:32:16 AM PDT> <Debug> <SecurityAtn> <sta00483>
<AdminServer> <[ACTIVE]
ExecuteThread: '0' for queue: 'weblogic.kernel.Default (self-tuning)'>
<<WLS Kernel>> <> <> <1239355936490> <BEA-000000>
<SSOAssertionProvider:Type = Proxy-Remote-User>

16

Configuring Single Sign-On with Oracle Access Manager 11g 16-1

16Configuring Single Sign-On with Oracle
Access Manager 11g

The chapter provides information on configuring single sign-on using Oracle Access
Manager 11g. It includes the following major sections:

■ Introduction to Oracle Access Manager 11g SSO

■ Deploying the Oracle Access Manager 11g SSO Solution

■ Configuring Centralized Log Out for Oracle Access Manager 11g

■ Synchronizing the User and SSO Sessions: SSO Synchronization Filter

■ Troubleshooting Tips

16.1 Introduction to Oracle Access Manager 11g SSO
Oracle Access Manager 11g is part of Oracle's enterprise class suite of security
products. Intended for use in new and existing SSO deployments, Oracle Access
Manager 11g provides a full range of Web perimeter security functions that include
Web single sign-on; authentication and authorization; policy administration, and
more.

Oracle Access Manager 11g single sign-on (SSO) and single log-out (SLO) supports a
variety of application platforms including:

■ SOA

■ WebCenter

Oracle Access Manager 11g supports integration with a variety of applications, as
described in the Oracle Fusion Middleware Integration Guide for Oracle Access Manager.

■ Oracle Identity Navigator

■ Oracle Identity Federation

■ Oracle Identity Manager

■ Oracle Adaptive Access Manager

As described in the Oracle Fusion Middleware Administrator's Guide for Oracle Access
Manager with Oracle Security Token Service, Oracle Access Manager 11g differs from
Oracle Access Manager 10g in that identity administration features have been
transferred to Oracle Identity Manager 11g. This includes user self-service and self
registration, workflow functionality, dynamic group management, and delegated
identity administration.

Introduction to Oracle Access Manager 11g SSO

16-2 Oracle Fusion Middleware Application Security Guide

Console Protection for Oracle Identity Management Applications
Oracle Access Manager 11g and other Oracle Identity Management applications are
deployed in a WebLogic container. Individual administration consoles include Oracle
Access Manager, Oracle Adaptive Access Manager, Oracle Identity Navigator, Oracle
Identity Manager, Oracle WebLogic Server, and Oracle Entitlements Server.

These are protected by default using pre-configured Authentication Providers in the
WebLogic Administration Console and a pre-registered IAMSuiteAgent with Oracle
Access Manager 11g. OAM 11g SSO policies are pre-seeded. No further configuration
is needed for the consoles.

Preview of OAM 11g Deployments
You can configure Oracle Access Manager in a new WebLogic administration domain
or in an existing WebLogic administration domain using the Oracle Fusion
Middleware Configuration Wizard.

See "Requirements for the Provider with Oracle Access Manager" on page 15-13

Oracle Access Manager 11g provides new server-side components that maintain
backward compatibility with new or existing policy-enforcement agents. Dynamic
Server-initiated updates are performed for any policy or configuration changes.

■ Oracle Access Manager Console (installed on WebLogic Administration Server)
replaces the OAM 10g Policy Manager

■ OAM Server (installed on a WebLogic Managed Sever; replaces the OAM 10g
Access Server)

Oracle Access Manager 11g provides single sign-on (SSO), authentication,
authorization, and other services to registered Agents (in any combination) protecting
resources:

■ 11g WebGates

■ 10g WebGates

■ Java-based IAMSuiteAgent

■ OSSO Agents (10g mod_osso)

You can integrate with Oracle Access Manager 11g, any Web applications currently
using Oracle ADF Security and the OPSS SSO Framework.

Only users with sufficient privileges can log in to the Oracle Access Manager
Administration Console or use OAM administrative command-line tools. Your
enterprise might require independent sets of administrators: one set of users
responsible for OAM administration and a different set for WebLogic administration.
For more information, see "Defining a New OAM Administrator Role" in the Oracle
Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle Security
Token Service.

Overview of OAM 11g
The following outlines some of the basic features of Oracle Access Manager 11g:

See Also: Oracle Fusion Middleware Administrator's Guide for Oracle
Access Manager with Oracle Security Token Service

See Also: Oracle Fusion Middleware Installation Guide for Oracle
Identity Management

Introduction to Oracle Access Manager 11g SSO

Configuring Single Sign-On with Oracle Access Manager 11g 16-3

Provisioning/Remote Registration: A new remote registration tool enables
administrators inside or outside the network to register agents and policies. A
username and password must be set in the primary User Identity Store for OAM 11g.

Authentication: Oracle Access Manager 11g application domains aggregate resources
and security policies (one policy per resource). Oracle Access Manager 11g
authentication policies include a specific scheme. Supported authentication modules
include LDAP, X.509, and Kerberos. Authentication user mapping is performed
against the primary user-identity provider by the centralized credential collector.

Authorization: Oracle Access Manager 11g performs authorization based on security
policies defined in the application domain and persisted in the database.
Authorization policies define the resource and constraint evaluation.

Responses: Administrators can set session attributes using authentication and
authorization Responses. Aside from session attributes, a Response can also obtain
user-related data and request-related data. Responses, once set, are then sent as either
HTTP Headers or Cookies to the agent that helps manifest them. For cookie values
and header variables, Responses can retrieve session attributes previously set by
another Response. For example, session attributes set by a Response upon
authentication can be retrieved as a header value during authorization.

Session Management: Oracle Access Manager 11g session management services track
active user sessions through a high performance distributed cache system based on
technology from Oracle Coherence. Each Oracle Access Manager runtime instance is a
node within the distributed cache system. Secure communication between the nodes is
facilitated using a symmetric key. The Oracle Access Manager runtime instances move
user session data in the local cache into the distributed cache for other nodes to pick
up. Each Oracle Access Manager runtime instance can also configure the replication
factor and determine how session data is distributed.

Administrators can configure the session lifecycle, locate and remove specific active
sessions, and set a limit on the number of concurrent sessions a user can have at any
time. Out-of-band session termination prevents unauthorized access to systems when
a user has been terminated.

Keys: The Oracle Access Manager 11g runtime is deployed as an application to a
WebLogic Managed Server or Cluster. New Oracle Access Manager 11g WebGates
support a shared secret per agent trust model. 11g WebGates use agent/host specific
cookies, which offers superior security. Oracle Access Manager 11g WebGates are all
trusted at the same level; a cookie specific for the WebGate is set and cannot be used to
access any other WebGate-protected applications on a user's behalf. Cookie-replay
types of attacks are prevented.

SSO and SLO: The Oracle Access Manager 11g Server Session Token forms the basis
for SSO between Oracle Access Manager and OSSO Agents. Logout is driven through
Oracle Access Manager 11g Server Global Logout, which terminates the central session
and logs out the user from each agent that was visited.

■ With Oracle Access Manager 10g WebGates, logout removes the ObSSOCookie
and then redirects to the Global Logout page.

■ With Oracle Access Manager 11g WebGates and mod_osso agents, logout
redirects to the Global Logout page and each agent is called back to remove the
agent-specific cookie.

Logging and Auditing: Oracle Access Manager 11g components use the same logging
infrastructure and guidelines as any other component in Oracle Fusion Middleware
11g. Oracle Access Manager 11g provides agent and server monitoring functions.
Oracle Access Manager 11g auditing functions are based on the Common Audit

Introduction to Oracle Access Manager 11g SSO

16-4 Oracle Fusion Middleware Application Security Guide

Framework; audit-report generation is supported using Oracle Business Intelligence
Publisher.

Access Tester: The new Oracle Access Manager 11g Access Tester enables IT
professionals and administrators to simulate interactions between registered Oracle
Access Manager Agents and Servers. This is useful when testing security policy
definitions or troubleshooting issues involving agent connections.

Transition from Test to Production: Oracle Access Manager 11g enables moving
configuration or policy data from one Oracle Access Manager 11g deployment to
another (from a small test deployment to a production deployment, for example).
Support for the creation of new topologies is based on templates. You can also copy
and move policy changes.

Co-existence and Upgrades for OSSO 10g: The Oracle-provided Upgrade Assistant
scans the existing OracleAS 10g SSO server configuration, accepts as input the 10g
OSSO policy properties file and schema information, and transfers configured partner
applications into the destination Oracle Access Manager 11g SSO.

16.1.1 Previewing Pre-Seeded OAM 11g Policies for Use by the 10g AccessGate
This topic is required for only 10g custom AccessGates. Skip this topic if it does not
apply to your environment.

The Application Authenticator application domain is delivered with OAM 11g.
It is pre-seeded with the policy objects that enables integration with applications
deployed in WebLogic environments using the OAM Authentication Provider as the
security provider. It is not associated with WebGate provisioning. When you provision
a WebGate or AccessGate to use this (or another existing application domain), you will
decline having policies created automatically.

The Application Authenticator application domain comes into play with the
custom 10g AccessGate used with the OAM Authenticator (and the Identity Asserter
for Oracle Web Services Manager). In this case, the custom AccessGate (not WebGate)
contacts the WebLogic Server directly with a token to authenticate the user before
OAM 11g is contacted.

The Application Authenticator application domain protects only resources of
type wl_authen and is seeded with two authentication policies and one authorization
policy. The following wl_authen resources are also seeded in this domain:

■ /Authen/Basic

■ /Authen/SSOToken

■ /Authen/UsernameAssertion protected by LDAPNoPasswordValidationScheme

See Also:

■ Oracle Fusion Middleware Administrator's Guide for Oracle Access
Manager with Oracle Security Token Service for an "Introduction to
Post-Upgrade Co-existence Between Oracle Access Manager 11g
and OSSO 10g Servers"

■ Oracle Fusion Middleware Upgrade Planning Guide

■ Oracle Fusion Middleware Upgrade Guide for Oracle Identity
Management

Introduction to Oracle Access Manager 11g SSO

Configuring Single Sign-On with Oracle Access Manager 11g 16-5

Figure 16–1 illustrates details of the seeded Application Authenticator
application domain in the OAM 11g Administration Console. The page shown
describes the pre-seeded User ID Assertion authentication policy, which protects the
/Authen/UsernameAssertion resource. The authentication scheme for this policy is
also shown along with the resources that are protected by the policy.

Figure 16–1 Pre-seeded Resources in the User ID Assertion Authentication Policy

Figure 16–2 illustrates pre-seeded Responses for the User ID Assertion authentication
policy. For more information about Responses, see the Oracle Fusion Middleware
Administrator's Guide for Oracle Access Manager with Oracle Security Token Service.

Figure 16–2 Pre-seeded Responses in the User ID Assertion Policy

Figure 16–3 illustrates the pre-seeded Application SSO authentication policy, the
resources protected by this policy, and the authentication scheme.

Note: Only resources of type wl_authen are allowed in this domain;
no other resource types can be added. Policies and Responses for wl_
authen resources can be added. However, ideally, you will not need to
modify this domain.

Introduction to Oracle Access Manager 11g SSO

16-6 Oracle Fusion Middleware Application Security Guide

Figure 16–3 Pre-seeded Application SSO Authentication Policy and Resources

Figure 16–4 illustrates Pre-seeded Responses for the Application SSO authentication
policy in the application domain.

Figure 16–4 Pre-seeded Responses for the Application SSO Authentication Policy

Figure 16–5 illustrates the pre-seeded Application SSO authorization policy and
Resources in the application domain.

Deploying the Oracle Access Manager 11g SSO Solution

Configuring Single Sign-On with Oracle Access Manager 11g 16-7

Figure 16–5 Pre-seeded Application SSO Authorization Policy and Resources

Authorization Constraints: There are no pre-seeded Application SSO authorization
policy Constraints in this application domain. However, you can add constraints as
described in the Oracle Fusion Middleware Administrator's Guide for Oracle Access
Manager with Oracle Security Token Service.

Authorization Responses: There are no pre-seeded Application SSO authorization
policy Responses in the application domain. However, you can add responses as
described in the Oracle Fusion Middleware Administrator's Guide for Oracle Access
Manager with Oracle Security Token Service.

16.2 Deploying the Oracle Access Manager 11g SSO Solution
This section introduces how to implement OAM 11g with the Authentication Provider
when you have applications that are (or will be) deployed in a WebLogic container.

This section provides the following topics to help you implement OAM 11g SSO when
you have applications deployed in a WebLogic container. Aside from these uniquely
OAM 11g methods, implementing OAM solutions are the same whether you have
OAM 11g or OAM 10g:

■ Installing the Authentication Provider with Oracle Access Manager 11g

■ Session Token: Provisioning an OAM Agent with Oracle Access Manager 11g

■ Configuring Identity Assertion for SSO with Oracle Access Manager 11g

■ Configuring the Authenticator Function for Oracle Access Manager 11g

■ Configuring Identity Assertion for Oracle Web Services Manager and OAM 11g

■ Configuring Centralized Log Out for Oracle Access Manager 11g

See Also:

■ Configuring the Authenticator Function for Oracle Access
Manager 11g

■ Configuring Identity Assertion for Oracle Web Services Manager
and OAM 11g

See Also: Oracle Fusion Middleware Administrator's Guide for Oracle
Access Manager with Oracle Security Token Service for details about the
scenario for Identity Propagation with the OAM Token.

Deploying the Oracle Access Manager 11g SSO Solution

16-8 Oracle Fusion Middleware Application Security Guide

16.2.1 Installing the Authentication Provider with Oracle Access Manager 11g
The following overview outlines the tasks that must be completed to install the
required components and files for the Oracle Access Manager 11g SSO solution using
the Authentication Provider. While many of these tasks are nearly the same for Oracle
Access Manager 11g and Oracle Access Manager 10g, there are a few differences.

Task overview: Installing components for use with the Authentication Provider
and OAM 11g
1. Install and set up Oracle Internet Directory for Oracle Access Manager.

2. Install and set up Oracle WebLogic Server 10.3.1+.

3. Optional: Install a Fusion Middleware product (Oracle Identity Manager, Oracle
SOA Suite, or Oracle Web Center for example):

4. Install OHS 11g for the Oracle Access Manager WebGate, if needed:

■ Identity Asserter: Requires Oracle HTTP Server 11g Web server configured as
a reverse proxy in front of Oracle WebLogic Server.

WebGate: For identity assertion with the OAM Identity Asserter, a perimeter
Webgate is required (installed and configured) on the OHS Web Server.

■ Authenticator or Oracle Web Services Manager: No Web server is required
for the custom AccessGate. The protected resource is accessed using its URL
on the Oracle WebLogic Server.

5. Authentication Provider Files: Confirm the required JAR and WAR files as
follows:

a. Confirm the location of required JAR files in the following Fusion Middleware
path:

ORACLE_INSTANCE/modules/oracle.oamprovider_11.1.1/oamAuthnProvider.jar

b. Locate the console-extension WAR file in the following path:

ORACLE_INSTANCE/modules/oracle.oamprovider_11.1.1/oamauthenticationprov
ider.war

See Also: Oracle Fusion Middleware Installation Guide for Oracle
Identity Management for installation and initial configuration details
for Oracle Access Manager 11g.

See Also:

■ Oracle Fusion Middleware Installation Guide for Oracle Identity
Management

■ Oracle Fusion Middleware Administrator's Guide for Oracle Internet
Directory

See Also: Item 3 in this list, and the Oracle Fusion Middleware Getting
Started With Installation for Oracle WebLogic Server

Note: Without a Fusion Middleware application, you must acquire
the required JAR and WAR files as described in later procedures.

Deploying the Oracle Access Manager 11g SSO Solution

Configuring Single Sign-On with Oracle Access Manager 11g 16-9

c. Copy the WAR file to the following path in the WebLogic Server home:

WL_HOME/server/lib/console-ext/autodeploy/oamauthenticationprovider.war

6. Oracle Access Manager 11g:

a. Install Oracle Access Manager and perform initial configuration as described
in Oracle Fusion Middleware Installation Guide for Oracle Identity Management.

b. Trusted Header Assertion: Go to My Oracle Support, retrieve Bundle Patch 02
(Oracle Access Manager Bundle Patch 11.1.1.5.2), and apply it as described in
the companion readme file: http://support.oracle.com.

7. AccessGate for the Authenticator (or for Oracle Web Services Manager):

■ You can provision the 10g AccessGate as described in "Session Token:
Provisioning an OAM Agent with Oracle Access Manager 11g" on page 16-12
(or refer to an existing OAM Agent registration when configuring the
Authentication Provider).

■ Deploy the custom 10g AccessGate available in oamAuthnProvider.jar

16.2.2 Converting Oracle Access Manager Certificates to Java Keystore Format
Oracle recommends that all Java components and applications use JKS as the keystore
format. This topic provides steps to convert Oracle Access Manager X.509 certificates
to Java Keystore (JKS) format. These steps, when followed properly, generate the JKS
stores that can be used while the Java NAP client wants to communicate with an OAM
Server in Simple or Cert (certificate) mode.

When communicating in Simple or Cert mode, the OAM Server uses a key, server
certificate, and CA chain files:

■ aaa_key.pem: the random key information generated by the certificate-generating
utilities while it sends a request to a Root CA. This is your private key. The
certificate request for WebGate generates the certificate-request file aaa_req.pem.
You must send this WebGate certificate request to a root CA that is trusted by the
OAM Server. The root CA returns the WebGate certificates, which can then be
installed either during or after WebGate installation.

■ aaa_cert.pem: the actual certificate for the OAM Server, signed by the Root CA.

■ aaa_chain.pem: the public certificate of the Root CA. This is used when peers
communicating in Simple or Cert mode perform an SSL handshake and exchange
their certificates for validity. In Simple Mode, the aaa_chain.pem is the OpenSSL
certificate located inOAMServer_install_
dir/access/oblix/tools/openssl/simpleCA/cacert.pem

Here, aaa is the name you specify for the file (applicable only to Cert and chain files).

You can edit an existing certificate with a text editing utility to remove all data except
that which is contained within the CERTIFICATE blocks. You then convert the edited
certificate to JKS format, and import it into the keystore. Java KeyTool does not allow
you to import an existing Private Key for which you already have a certificate. You
must convert the PEM format files to DER format files using the OpenSSL utility.

Note: This procedure is required regardless of the SSO mechanism
you choose.

Deploying the Oracle Access Manager 11g SSO Solution

16-10 Oracle Fusion Middleware Application Security Guide

To convert an Oracle Access Manager certificate to JKS format and import it
1. Install and configure Java 1.6 or the latest version.

2. Copy the following files before editing to retain the originals:

■ aaa_chain.pem

■ aaa_cert.pem

■ cacert.pem, only if configuring for Simple mode

3. Edit aaa_chain.pem using TextPad to remove all data except that which is
contained within the CERTIFICATE blocks, and save the file in a new location to
retain the original.

-----BEGIN CERTIFICATE-----
...
CERTIFICATE
...
-----END CERTIFICATE-----

4. Run the following command for the edited aaa_chain.pem:

JDK_HOME\bin\keytool" -import -alias root_ca -file aaa_chain.pem -keystore
rootcerts

Here you are assigning an alias (short name) root_ca to the key. The input file
aaa_chain.pem is the one that you manually edited in step 3. The keystore name is
rootcerts.

You must give a password to access the keys stored in the newly created keystore.

5. Enter the keystore password, when asked. For example:

Enter keystore password: <keystore_password>
Re-enter new keystore password: <keystore_password>

6. Enter Yes when asked if you trust this tool:

Trust this certificate? [no]: yes

7. Confirm that the certificate has been imported to the JKS format by executing the
following command and then the password.

JDK_HOME\bin\keytool" -list -v -keystore "rootcerts"
Enter keystore password: <keystore_password>

8. Look for a response like the following:

Keystore type: JKS
Keystore provider: SUN
Your keystore contains n entries
Alias name: root_ca
Creation date: April 19, 2009
Entry type: trustedCertEntry

Note: To ensure security, Oracle recommends that you allow the
keytool to prompt you to enter the password. This prompt occurs
automatically when the "-storepass" flag is omitted from the command
line.

Deploying the Oracle Access Manager 11g SSO Solution

Configuring Single Sign-On with Oracle Access Manager 11g 16-11

Owner: CN=NetPoint Simple Security CA - Not for General Use, OU=NetPoint,
O="Oblix, Inc.", L=Cupertino, ST= California , C=US

Issuer: CN=NetPoint Simple Security CA - Not for General Use, OU=NetPoint,
O="Oblix, Inc.", L=Cupertino, ST= California ,C=US

Serial number: x
Valid from: Tue Jul 25 23:33:57 GMT+05:30 2000 until: Sun Jul 25 23:33:57
GMT+05:30 2010

Certificate fingerprints
 MD5: CE:45:3A:66:53:0F:FD:D6:93:AD:A7:01:F3:C6:3E:BC
 SHA1: D6:86:9E:83:CF:E7:24:C6:6C:E1:1A:20:28:63:FE:FE:43:7F:68:95
 Signature algorithm name: MD5withRSA
 Version: 1

9. Repeat steps 3 through 7 for the other PEM files (except aaa_chain.pem unless
there is a chain).

10. Convert the aaa_key.pem file to DER format using the OpenSSL utility in the
OAM Server installation directory path. For example:

OAM_Server_HOME\access\oblix\tools\openssl>openssl pkcs8 -topk8
-nocrypt -in aaa_key.pem -inform PEM -out aaa_key.der –outform DER

Here the input file is aaa_key.pem and the output file is aaa_key.der. Additional
options include:

11. Simple or Cert Mode: In the PEM file (in this case, aaa_cert.pem), enter the pass
phrase for the OAM Server if it is configured for Simple or Cert mode.

Passphrase for the certificate

12. Run the following command to convert the aaa_cert.pem file to DER format.

AccessServer_install_dir\access\oblix\tools\openssl>openssl x509 -in
aaa_cert.pem -inform PEM -out aaa_cert.der -outform DER

13. Import the DER format files into a Java keystore using the ImportKey utility. For
example:

Java_install_dir\doc>java -Dkeystore=jkscerts ImportKey aaa_key.der

Table 16–1 Options to Create DER Format Files from PEM

Option Description

-topk8 Reads a traditional format private key and writes a PKCS#8
format key. This reverses the default situation where a PKCS#8
private key is expected on input and a traditional format private
key is written.

-nocrypt An unencrypted PrivateKeyInfo structure is expected for output.

-inform Specifies the input format. If a PKCS#8 format key is expected
on input, then either a DER or PEM encoded version of a
PKCS#8 key is expected. Otherwise the DER or PEM format of
the traditional format private key is used.

-outform Specifies the output format. If a PKCS#8 format key is expected
on output, then either a DER or PEM encoded version of a
PKCS#8 key is expected. Otherwise the DER or PEM format of
the traditional format private key is used.

Deploying the Oracle Access Manager 11g SSO Solution

16-12 Oracle Fusion Middleware Application Security Guide

aaa_cert.der

14. Review the results in the window, which should look something like the following
example:

Using keystore-file : jkscerts
One certificate, no chain
Key and certificate stored
Alias:importkey Password:your_password

16.2.3 Session Token: Provisioning an OAM Agent with Oracle Access Manager 11g
This task is required for only the session token mechanism (ObSSOCookie). If you are
implementing either a trusted header assertion or clear text header mechanism, skip
this topic.

Provisioning is the process of registering an agent and creating an application domain
to use OAM 11g authentication and authorization services.You must provision a
WebGate with OAM 11g whether you are preparing to install a fresh 11g or 10g
instance or you have a legacy 10g WebGate installed.

The term WebGate is used for WebGates (and for the custom 10g AccessGates used
with the Authenticator and the Identity Asserter for Oracle Web Services Manager).
Unless explicitly stated, topics apply equally to both.

When you have multiple agents, each one can be provisioned independently or you
can use a single OAM Agent registration for multiple agents.

 The following topics are provided:

■ About WebGate Provisioning Methods for Oracle Access Manager 11g

■ Provisioning a WebGate with Oracle Access Manager 11g

16.2.3.1 About WebGate Provisioning Methods for Oracle Access Manager 11g
This task is required for only the session token mechanism (ObSSOCookie). If you are
implementing either a trusted header or clear text header mechanism, skip this topic.

Table 16–2 outlines the methods and tools you can use to provision WebGates for use
with OAM 11g. The remote registration tool enables you to specify a small amount or
all WebGate parameters using templates.

Note: The Application Authenticator application domain is
pre-seeded and delivered with OAM 11g. When you provision an
OAM Agent to use this (or another existing) application domain,
decline the option of having policies automatically created.

Table 16–2 Provisioning Methods for OAM 11g

Method Description

Oracle Access Manager
Administration Console

Enables OAM Administrators to manually enter information and set
parameters directly in Oracle Access Manager. This method is required if you
are using the Authenticator, or if you have Oracle Web Services Manager
policies protecting Web services.

Deploying the Oracle Access Manager 11g SSO Solution

Configuring Single Sign-On with Oracle Access Manager 11g 16-13

During remote registration, you must provide the details discussed in Table 16–3.

16.2.3.2 Provisioning a WebGate with Oracle Access Manager 11g
This task is required for only the session token mechanism (ObSSOCookie). If you are
implementing either a trusted header or clear text header mechanism, skip this topic.

Provisioning a WebGate or AccessGate involves the same steps. You can provision a
new instance for use with the Authentication Provider or you can refer to an existing
registration when configuring the provider.

In this example, an OAM 10g WebGate is provisioned using the OAMRequest_
short.xml template. The registered agent is named my-wl-agent1, protecting /.../*, and
declaring a public resource, /public/index.html. Your values will be different.

Remote Registration Application administrators who are implementing the Identity Asserter for
single sign-on, can register the WebGate using the command line. This also
creates a new application domain with security policies for a fresh or existing
Web Tier.

Required parameters are provisioned using values for your environment
specified in a template. Default values are accepted for non-required
parameters. After registration, values can be modified in the Oracle Access
Manager Console.

See Also: Oracle Fusion Middleware Administrator's Guide for Oracle
Access Manager with Oracle Security Token Service for a complete list of
WebGate parameters

Table 16–3 Required Registration Details for OAM Agents

OAM Agent Element Description

<serverAddress> Points to a running instance of the Oracle Access Manager Administration
Console, including the host and port.

<webDomain>

OSSO requests only

Defines the Web server domain under which the Agent Base URL is stored
internally.

<agentName> Defines a unique identifier for the agent on the OAM (Administration)
Server.

For every agent on the same server instance, this tag must be unique to
avoid re-registering the same agent.

Re-registering an agent on the same server instance is not supported.

<hostIdentifier> This identifier represents the Web server host. The field is filled in
automatically when you specify a value for the OAM Agent Name. If the
agent name or host identifier of the same name already exists, an error
occurs during registration.

<protectedResourcesList> Specifies the resource URLs that you want the OAM Agent to protect with
some authentication scheme. The resource URLs should be relative paths to
the agentBaseUrl.

<publicResourcesList> Specifies the resource URLs that you want to keep public (not protected by
the OAM Agent). The resource URLs should be relative paths to the
agentBaseUrl. For instance, you might want to specify the Home page or the
Welcome page of your application

Note: When provisioning an OAM 11g WebGate, use the
OAM11gRequest_short.xml template.

Table 16–2 (Cont.) Provisioning Methods for OAM 11g

Method Description

Deploying the Oracle Access Manager 11g SSO Solution

16-14 Oracle Fusion Middleware Application Security Guide

To provision a WebGate with OAM 11g
1. Acquire the Tool: On the computer to host the WebGate, acquire the remote

registration tool and set up the script for your environment. For example:

a. Locate RREG.tar.gz file in the following path:

WLS_home/Middleware/domain_home/oam/server/rreg/client/RREG.tar.gz

b. Untar RREG.tar.gz file to any suitable location. For example:
rreg/bin/oamreg.

c. In the oamreg script, set the following environment variables based on your
situation (client side or server side) and information in Table 6–7 in the Oracle
Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle
Security Token Service:

 OAM_REG_HOME = exploded_dir_for_RREG.tar/rreg
 JDK_HOME = Java_location_on_the_computer

2. Create the registration request:

a. Locate the *Request_short.xml file and copy it to a new location and name. For
example:

WLS_home/Middleware/domain_home/oam/server/rreg/bin/oamreg/

Copy: OAMRequest_short.xml (or OAM 11gRequest.xml)

To: my-wl-agent1.xml

b. Edit my-wl-agent1.xml to include details for your environment, and set
automatic policy creation to false. For example:

<OAMRegRequest>
 <serverAddress>http://sample.us.oracle.com:7001</serverAddress>
 <hostIdentifier>my-wl</hostIdentifier>
 <agentName>my-wl-agent1</agentName>
 <primaryCookieDomain>.us.example.com</primaryCookieDomain>
 <autoCreatePolicy>false</autoCreatePolicy>
 <logOutUrls><url>/oamsso/logout.html</url></logOutUrls>
</OAMRegRequest>

3. Provision the agent. For example:

a. Locate the remote registration script.

 Linux: rreg/bin/oamreg.sh
 Ensure the script has executable permission: chmod +x oamreg.sh

 Windows: rreg\bin\oamreg.bat

b. From the directory containing the script, execute the script using inband
mode. For example:

See Also: Oracle Fusion Middleware Administrator's Guide for Oracle
Access Manager with Oracle Security Token Service

See Also: "Creating the Registration Request" in the Oracle Fusion
Middleware Administrator's Guide for Oracle Access Manager with Oracle
Security Token Service

Deploying the Oracle Access Manager 11g SSO Solution

Configuring Single Sign-On with Oracle Access Manager 11g 16-15

$./bin/oamreg.sh inband input/my-wl-agent1.xml

Welcome to OAM Remote Registration Tool!
Parameters passed to the registration tool are:
Mode: inband
Filename: ...

c. When prompted, enter the following information using values for your
environment:

Enter your agent username: userame
 Username: userame
Enter agent password: ********
Do you want to enter a Webgate password?(y/n)
 n
iv.Do you want to import an URIs file?(y/n)
 n

d. Review the final message to confirm that this was a successful registration:

Inband registration process completed successfully! Output artifacts are
created in the output folder"

4. Confirm in the Console: Log in to the Oracle Access Manager Console and review
the new registration:

a. From the OAM 11g Console System Configuration tab, Access Manager
Settings section, expand the SSO Agents nodes to search for the agent you just
provisioned:

 Access Manager Settings
 SSO Agents
 OAM Agents
 Search

b. In the Search Results table, click the agent’s name to display the registration
page and review the details, which you will use later. For example:

Agent Name—During WebGate installation, enter this as the WebGate ID. If
you deploy the custom 10g AccessGate, enter this as the AccessGate Name
when configuring the OAM Authentication Provider in the WebLogic
Administration Console.

Access Client Password—During WebGate installation, enter this as the
WebGate password. If no password was entered, you can leave the field blank.

Access Server Host Name—Enter the DNS host name for the primary OAM
11g Server with which this WebGate is registered.

c. OAM Proxy Port—From the Oracle Access Manager Console, System
Configuration tab, Common Configuration section, open Server Instances and
locate the port on which the OAM Proxy is running.

5. Ignore the Obaccessclient.xml file, which is created during provisioning, for now.

6. Proceed as needed for your environment:

■ Agent is Installed: Go to the appropriate topic for your implementation:

– Configuring Identity Assertion for SSO with Oracle Access Manager 11g

– Configuring the Authenticator Function for Oracle Access Manager 11g

Deploying the Oracle Access Manager 11g SSO Solution

16-16 Oracle Fusion Middleware Application Security Guide

– Configuring Identity Assertion for Oracle Web Services Manager and
OAM 11g

– Configuring Centralized Log Out for Oracle Access Manager 11g

■ Agent is Not Installed:

11g WebGate: See Oracle Fusion Middleware Installation Guide for Oracle Identity
Management.

10g WebGate: See Oracle Fusion Middleware Administrator's Guide for Oracle
Access Manager with Oracle Security Token Service.

16.2.4 Configuring Identity Assertion for SSO with Oracle Access Manager 11g
This section describes the unique steps needed to configure Oracle Access Manager
11g Identity Assertion for Single Sign-On with your application.

Task overview: Deploying the Identity Asserter for SSO with OAM 11g includes
1. Finishing all prerequisite tasks for the mechanism you are implementing:

■ Installing the Authentication Provider with Oracle Access Manager 11g

■ Converting Oracle Access Manager Certificates to Java Keystore Format

■ Session Token: Provisioning an OAM Agent with Oracle Access Manager 11g

2. Establishing Trust with Oracle WebLogic Server

3. Configuring Providers in the WebLogic Domain

4. Trusted Header Assertion: Configuring Digital Signature Verification

5. Trusted Header Assertion: Configuring Policies

6. Configuring Centralized Log Out for Oracle Access Manager 11g

7. Synchronizing the User and SSO Sessions: SSO Synchronization Filter

8. Testing Oracle Access Manager Identity Assertion for Single Sign-on

16.2.4.1 Establishing Trust with Oracle WebLogic Server
The following topics explain the tasks you must perform to set up the application for
single sign-on with the Oracle Access Manager Identity Asserter.

Task overview: Establishing Trust with Oracle WebLogic Server
1. Setting Up the Application Authentication Method for Identity Asserter for Single

Sign-On

2. Confirming mod_weblogic for Oracle Access Manager Identity Asserter

3. Clear Text Header: Establishing Trust between Oracle WebLogic Server and Other
Entities

16.2.4.1.1 Setting Up the Application Authentication Method for Identity Asserter for Single
Sign-On This topic describes how to create the application authentication method for
Oracle Access Manager Identity Assertion.

See Also: Oracle Fusion Middleware Deploying Applications to Oracle
WebLogic Server

Deploying the Oracle Access Manager 11g SSO Solution

Configuring Single Sign-On with Oracle Access Manager 11g 16-17

When you use the Oracle Access Manager Identity Asserter, all web.xml files in the
application EAR file must specify CLIENT-CERT in the element auth-method for the
appropriate realm.

You can add comma separated values here when you want applications accessed
directly over the WebLogic Server host:port to be authenticated by the container. For
instance: <auth-method>CLIENT-CERT,FORM</auth-method>.

The auth-method can use BASIC, FORM, or CLIENT-CERT values. While these look
like similar values in Oracle Access Manager, the auth-method specified in web.xml
files are used by Oracle WebLogic Server (not Oracle Access Manager).

To specify authentication in web.xml for the Identity Asserter
1. Locate the web.xml file in the application EAR file:

my_app/WEB-INF/web.xml

2. Locate the auth-method in login-config and enter CLIENT-CERT.

<login-config>
 <auth-method>CLIENT-CERT</auth-method>
</login-config>

3. Save the file.

4. Redeploy and restart the application.

5. Repeat for each web.xml file in the application EAR file.

6. Proceed to "Confirming mod_weblogic for Oracle Access Manager Identity
Asserter".

16.2.4.1.2 Confirming mod_weblogic for Oracle Access Manager Identity Asserter Oracle
Oracle HTTP Server includes the mod_weblogic plug-in module (mod_wl_ohs.so in
11g) which is already enabled. You can perform the following procedure to confirm
this or skip this procedure.

With Oracle HTTP Server 11g, the mod_weblogic configuration is present in mod_wl_
ohs.conf by default, and the path of this file is included in httpd.conf. If the mod_
weblogic configuration is not present then you must edit httpd.conf.

To configure mod_weblogic for the Oracle Access Manager Identity Asserter
1. Locate httpd.conf. For example:

ORACLE_INSTANCE/config/OHS/<ohs_name>/httpd.conf

2. Confirm that the following statement is in the file with appropriate values for your
deployment (add or uncomment this, if needed):

<IfModule mod_weblogic.c>
 WebLogicHost myHost.myDomain.com
 WebLogicPort myWlsPortNumber
</IfModule>

<Location http://request-uri-pattern>
 SetHandler weblogic-handler
</Location>

3. Save the file.

4. Proceed as needed for your implementation:

Deploying the Oracle Access Manager 11g SSO Solution

16-18 Oracle Fusion Middleware Application Security Guide

■ Clear Text Header: Establishing Trust between Oracle WebLogic Server and
Other Entities

■ Configuring Providers in the WebLogic Domain

16.2.4.1.3 Clear Text Header: Establishing Trust between Oracle WebLogic Server and Other
Entities The Oracle WebLogic Connection Filtering mechanism must be configured for
creating access control lists and for accepting requests from only the hosts where
Oracle HTTP Server and the front-end Web server are running.

A network connection filter is a component that controls the access to network level
resources. It can be used to protect resources of individual servers, server clusters, or
an entire internal network. For example, a filter can deny non-SSL connections
originating outside of a corporate network. A network connection filter functions like
a firewall since it can be configured to filter protocols, IP addresses, or DNS node
names. It is typically used to establish trust between Oracle WebLogic Server and
foreign entities.

To configure a connection filter to allow requests from only mod_weblogic and the
host where OHS 11g is running, perform the procedure here.

WebLogic Server provides a default connection filter:
weblogic.security.net.ConnectionFilterImpl. This filter accepts all incoming
connections and also provides static factory methods that allow the server to obtain
the current connection filter. To configure this connection filter to deny access, simply
enter the connection filters rules in the WebLogic Server Administration Console.

You can also use a custom connection filter by implementing the classes in the
weblogic.security.net package. Like the default connection filter, custom connection
filters are configured in the WebLogic Server Administration Console.

Connection Filter Rules: The format of filter rules differ depending on whether you are
using a filter file to enter the filter rules or you enter the filter rules in the
Administration Console. When entering the filter rules on the Administration Console,
enter them in the following format:

targetAddress localAddress localPort action protocols

Table 16–4 provides a description of each parameter in a connection filter.

Note: This filter is required for security when you use Identity
Assertion with the Clear Text Header mechanism. This task is
optional when you use one of the other mechanisms.

Note: This chapter uses the generic name of the WebLogic Server
plug-in for Apache: mod_weblogic. For Oracle HTTP Server 11g, the
name of this plug-in is mod_wl_ohs; the actual binary name is mod_
wl_ohs.so. Examples show exact syntax for implementation.

Table 16–4 Connection Filter Rules

Parameter Description

target Specifies one or more systems to filter

localAddress Defines the host address of the WebLogic Server instance. (If you specify an
asterisk (*), the match returns all local IP addresses.)

Deploying the Oracle Access Manager 11g SSO Solution

Configuring Single Sign-On with Oracle Access Manager 11g 16-19

The Connection Logger Enabled attribute logs successful connections and connection
data in the server. This information can be used to debug problems relating to server
connections.

To configure a connection filter to allow requests from Oracle HTTP Server host
1. Log in to the Oracle WebLogic Administration Console.

2. Click Domain under Domain Configurations.

3. Click the Security tab, click the Filter tab.

4. Click the Connection Logger Enabled attribute to enable the logging of accepted
messages for use when debugging problems relating to server connections.

5. Specify the connection filter to be used in the domain:

■ Default Connection Filter: In the Connection Filter attribute field, specify
weblogic.security.net.ConnectionFilterImpl.

■ Custom Connection Filter: In the Connection Filter attribute field, specify the
class that implements the network connection filter, which should also be
specified in the CLASSPATH for Oracle WebLogic Server.

6. Enter the appropriate syntax for the connection filter rules.

7. Click Save.

8. Restart the Oracle WebLogic Server.

9. Proceed to "Configuring Providers in the WebLogic Domain".

16.2.4.2 Configuring Providers in the WebLogic Domain
The information here applies equally to OAM 11g and OAM 10g. This topic is divided
as follows:

■ About Oracle WebLogic Server Authentication and Identity Assertion Providers

■ About the Oracle WebLogic Scripting Tool (WLST)

■ Configuring Oracle WebLogic Server for a Web Application Using ADF Security,
OAM SSO, and OPSS SSO

■ Setting Up Providers for Oracle Access Manager 11g Identity Assertion

16.2.4.2.1 About Oracle WebLogic Server Authentication and Identity Assertion Providers This
topic introduces only a few types of Authentication Providers for a WebLogic security
realm, if you are new to them.

localPort Defines the port on which the WebLogic Server instance is listening. (If you
specify an asterisk, the match returns all available ports on the server.)

action Specifies the action to perform. This value must be allow or deny

protocols Is the list of protocol names to match. The following protocols may be
specified: http, https, t3, t3s, giop, giops, dcom, ftp, ldap. If no protocol is
defined, all protocols match a rule.

See Also: "Configuring Security in a WebLogic Domain" in Oracle
Fusion Middleware Securing Oracle WebLogic Server

Table 16–4 (Cont.) Connection Filter Rules

Parameter Description

Deploying the Oracle Access Manager 11g SSO Solution

16-20 Oracle Fusion Middleware Application Security Guide

Each WebLogic security realm must have one at least one Authentication Provider
configured. The WebLogic Security Framework is designed to support multiple
Authentication Providers (and thus multiple LoginModules) for multipart
authentication. As a result, you can use multiple Authentication Providers as well as
multiple types of Authentication Providers in a security realm. The Control Flag
attribute determines how the LoginModule for each Authentication Provider is used in
the authentication process.

Oracle WebLogic Server offers several types of Authentication and Identity Assertion
providers including, among others:

■ The default WebLogic Authentication Provider (Default Authenticator) allows you
to manage users and groups in one place, the embedded WebLogic Server LDAP
server. This Authenticator is used by the Oracle WebLogic Server to login
administrative users.

■ Identity Assertion uses token-based authentication; the Oracle Access Manager
Identity Asserter is one example. This must be configured to use the appropriate
action for the installed WebGate (either 10g or 11g).

■ LDAP Authentication Providers store user and group information in an external
LDAP server. They differ primarily in how they are configured by default to match
typical directory schemas for their corresponding LDAP server.

Oracle WebLogic Server 10.3.1+ provides OracleInternetDirectoryAuthenticator.

When you configure multiple Authentication Providers, use the JAAS Control Flag for
each provider to control how the Authentication Providers are used in the login
sequence. You can choose the following the JAAS Control Flag settings, among others:

■ REQUIRED—The Authentication Provider is always called, and the user must
always pass its authentication test. Regardless of whether authentication succeeds
or fails, authentication still continues down the list of providers.

■ SUFFICIENT—The user is not required to pass the authentication test of the
Authentication Provider. If authentication succeeds, no subsequent Authentication
Providers are executed. If authentication fails, authentication continues down the
list of providers.

■ OPTIONAL—The user is allowed to pass or fail the authentication test of this
Authentication Provider. However, if all Authentication Providers configured in a
security realm have the JAAS Control Flag set to OPTIONAL, the user must pass
the authentication test of one of the configured providers.

When additional Authentication Providers are added to an existing security realm, the
Control Flag is set to OPTIONAL by default. You might need to change the setting of
the Control Flag and the order of providers so that each Authentication Provider
works properly in the authentication sequence.

16.2.4.2.2 About the Oracle WebLogic Scripting Tool (WLST) This topic introduces WLST, if
you are new to it.

You can add providers to a WebLogic domain using either the Oracle WebLogic
Administration Console or Oracle WebLogic Scripting Tool (WLST) command-line
tool.

See Also: "Configuring Authentication Providers" in Oracle Fusion
Middleware Securing Oracle WebLogic Server for a complete list of
Authentication Providers and details about configuring the Oracle
Internet Directory provider to match the LDAP schema for user and
group attributes

Deploying the Oracle Access Manager 11g SSO Solution

Configuring Single Sign-On with Oracle Access Manager 11g 16-21

WLST is a Jython-based command-line scripting environment that you can use to
manage and monitor WebLogic Server domains. Generally, you can use this tool online
or offline. You can use this tool interactively on the command line in batches supplied
in a file (Script Mode, where scripts invoke a sequence of WLST commands without
requiring your input), or embedded in Java code.

When adding Authentication Providers to a WebLogic domain, you can use WLST
online to interact with an Authentication Provider and add, remove, or modify users,
groups, and roles.

When you use WLST offline to create a domain template, WLST packages the
Authentication Provider's data store along with the rest of the domain documents. If
you create a domain from the domain template, the new domain has an exact copy of
the Authentication Provider's data store from the domain template. However, you
cannot use WLST offline to modify the data in an Authentication Provider's data store.

16.2.4.2.3 Configuring Oracle WebLogic Server for a Web Application Using ADF Security, OAM
SSO, and OPSS SSO

On the Oracle WebLogic Server, you can run a Web application that uses Oracles
Application Development Framework (Oracle ADF) security, integrates with Oracle
Access Manager Single Sign On (SSO), and uses Oracle Platform Security Services
(OPSS) SSO for user authentication. However before the Web application can be run,
you must configure the domain-level jps-config.xml file on the application's target
Oracle WebLogic Server for the Oracle Access Manager security provider.

The domain-level jps-config.xml file is in the following path and should not be
confused with the deployed application's jps-config.xml file:

domain_home/config/fmwconfig/jps-config.xml

You can use an Oracle Access Manager-specific WLST script to configure the
domain-level jps-config.xml file, either before or after the Web application is deployed.
This Oracle JRF WLST script is named as follows:

Linux: wlst.sh

Windows: wlst.cmd

The Oracle JRF WLST script is available in the following path if you are running
through JDev:

 $JDEV_HOME/oracle_common/common/bin/

In a standalone JRF WebLogic installation, the path is:

 $Middleware_home/oracle_common/wlst

Note: You cannot use WLST offline to modify the data in an
Authentication Provider's data store.

See Also:

■ "Configuring Oracle WebLogic Server for a Web Application
Using ADF Security, OAM SSO, and OPSS SSO"

■ Oracle Fusion Middleware Oracle WebLogic Scripting Tool

■ Oracle Fusion Middleware WebLogic Scripting Tool Command
Reference "Infrastructure Security Commands" chapter

Deploying the Oracle Access Manager 11g SSO Solution

16-22 Oracle Fusion Middleware Application Security Guide

Command Syntax
addOAMSSOProvider(loginuri, logouturi, autologinuri)

Table 16–5 defines the expected value for each argument in the addOAMSSOProvider
command line.

Prerequisites
Configuring Providers in the WebLogic Domain

To modify domain-level jps-config.xml for a Fusion Web application with Oracle
ADF Security enabled
1. On the computer hosting the Oracle WebLogic Server and the Web application

using Oracle ADF security, locate the Oracle JRF WLST script. For example:

cd $ORACLE_HOME/oracle_common/common/bin

2. Connect to the computer hosting the Oracle WebLogic Server:

connect login_id password hostname:port

For example, the Oracle WebLogic Administration Server host could be
localhost using port 7001. However, your environment might be different.

3. Enter the following command-line arguments with values for the application with
ADF security enabled:

addOAMSSOProvider(loginuri="/${app.context}/adfAuthentication",
logouturi="/oamsso/logout.html", autologinuri="/obrar.cgi")

4. Stop and start the Oracle WebLogic Server.

5. Perform the following tasks as described in:

■ Setting Up Providers for Oracle Access Manager 11g Identity Assertion

■ Configuring Centralized Log Out for Oracle Access Manager 11g

■ Testing Oracle Access Manager Identity Assertion for Single Sign-on

Note: The Oracle JRF WLST script is required. When running WLST
for Oracle Java Required Files (JRF), do not use the WLST script under
$JDEV_HOME/wlserver_10.3/common/bin.

Table 16–5 addOAMSSOProvider Command-line Arguments

Argument Definition

loginuri Specifies the URI of the login page

autologinuri Specifies the URI of the autologin page.

logouturi Specifies the URI of the logout page

See Also:

■ Oracle Fusion Middleware Oracle WebLogic Scripting Tool

■ Oracle Fusion Middleware WebLogic Scripting Tool Command
Reference "Infrastructure Security Commands" chapter

Deploying the Oracle Access Manager 11g SSO Solution

Configuring Single Sign-On with Oracle Access Manager 11g 16-23

16.2.4.2.4 Setting Up Providers for Oracle Access Manager 11g Identity Assertion This topic
describes how to configure providers in the WebLogic security domain to perform
single sign-on with the Oracle Access Manager Identity Asserter. Several
Authentication Provider types must be configured and ordered:

■ OAM Identity Asserter: REQUIRED (also specify a chosen Active Type for the
mechanism you are using (Table 15–1))

■ OID Authenticator: SUFFICIENT

■ DefaultAuthenticator: SUFFICIENT

The following procedure uses the WebLogic Administration Console.

To set up Providers for Oracle Access Manager single sign-on in a WebLogic
domain
1. No Oracle Fusion Middleware Application: Obtain the Oracle Access Manager

provider:

a. Log in to Oracle Technology Network at:

http://www.oracle.com/technology/software/products/middleware/ht
docs/111110_fmw.html

b. Locate the oamAuthnProvider ZIP file with Access Manager WebGates
(10.1.4.3.0):

oamAuthnProvider<version number>.zip

c. Extract and copy oamAuthnProvider.jar to the following path on the computer
hosting Oracle WebLogic Server:

BEA_HOME/wlserver_10.x/server/lib/mbeantypes/oamAuthnProvider.jar

2. With Oracle Fusion Middleware Application Installed:

a. Locate oamauthenticationprovider.war in the following path:

ORACLE_INSTANCE/modules/oracle.oamprovider_11.1.1/oamauthenticationprovi
der.war

b. Copy oamauthenticationprovider.war to the following location:

BEA_HOME/wlserver_10.x/server/lib/console-ext/autodeploy/oamauthentication
provider.war

3. Log in to the WebLogic Administration Console.

4. Click Security Realms, Default Realm Name, and click Providers.

5. OAM Identity Asserter: Perform the following steps to add this provider:

a. Click New, and then enter a name and select a type:

Name: OAM Identity Asserter

See Also: "About Oracle WebLogic Server Authentication and
Identity Assertion Providers" on page 16-19

Note: With an Oracle Fusion Middleware application installed, you
have the required provider JAR file. Skip Step 1.

Deploying the Oracle Access Manager 11g SSO Solution

16-24 Oracle Fusion Middleware Application Security Guide

Type: OAMIdentityAsserter

OK

b. In the Authentication Providers table, click the newly added authenticator.

c. Click the Common tab, set the Control Flag to REQUIRED.

d. On the Common tab, specify one Chosen Active Type for your SSO
mechanism (Table 15–1). For example:

 OAM_IDENTITY_ASSERTION

e. Save the configuration.

6. OID Authenticator: Perform the following steps to add this provider.

a. Click Security Realms, Default Realm Name, and click Providers.

b. Click New, enter a name, and select a type:

Name: OID Authenticator

Type: OracleInternetDirectoryAuthenticator

OK

c. In the Authentication Providers table, click the newly added authenticator.

d. On the Settings page, click the Common tab, set the Control Flag to
SUFFICIENT, and then click Save.

e. Click the Provider Specific tab and specify the following required settings
using values for your own environment:

Host: Your LDAP host. For example: localhost

Port: Your LDAP host listening port. For example: 6050

Principal: LDAP administrative user. For example: cn=orcladmin

Credential: LDAP administrative user password.

User Base DN: Same searchbase as in Oracle Access Manager.

All Users Filter: For example: (&(uid=*)(objectclass=person))

User Name Attribute: Set as the default attribute for username in the LDAP
directory. For example: uid

Group Base DN: The group searchbase (same as User Base DN)

Do not set the All Groups filter as the default works fine as is.

Save.

7. Default Authenticator: Perform the following steps to set up the Default
Authenticator for use with the Identity Asserter:

a. Go to Security Realms, Default Realm Name, and click Providers.

b. Click Authentication, Click DefaultAuthenticator to see its configuration
page.

c. Click the Common tab and set the Control Flag to SUFFICIENT.

d. Save.

8. Reorder Providers:

a. Click Security Realms, Default Realm Name, Providers.

Deploying the Oracle Access Manager 11g SSO Solution

Configuring Single Sign-On with Oracle Access Manager 11g 16-25

b. On the Summary page where providers are listed, click the Reorder button

c. On the Reorder Authentication Providers page, select a provider name and
use the arrows beside the list to order the providers as follows:

OAM Identity Asserter (REQUIRED)

OID Authenticator (SUFFICIENT)

Default Authenticator (SUFFICIENT)

d. Click OK to save your changes

9. Activate Changes: In the Change Center, click Activate Changes.

10. Reboot Oracle WebLogic Server.

11. Proceed as follows:

■ Successful: Proceed as needed or your implementation.

Trusted Header Assertion: Configuring Digital Signature Verification

Testing Oracle Access Manager Identity Assertion for Single Sign-on

■ Not Successful: Confirm that all providers have the proper specifications for
your environment, are in the proper order, and that
oamAuthnProvider.jar is in the correct location.

As mentioned earlier, a login form shipped with 10g WebGate is used only with OAM
10g Access Server. For OAM 11g, neither the 10g WebGate nor 11g WebGate provide a
login page.

16.2.4.3 Trusted Header Assertion: Configuring Digital Signature Verification
This is a manual task. The Oracle Access Manager certificate public key is required for
digital signature verification. The certificate, which is consumed by the Identity
Asserter, must be in the .oamkeystore.

For the SSO Sync Filter to consume the certificate, you need to provide the truststore to
the filter. SSO Sync Filter behavior can be altered for application requirements by
passing various over-riding system properties to WebLogic. To do this, you add a
property in Oracle WebLogic startup script (setDomainEnv.sh) under EXTRA_JAVA_
PROPERTIES. The truststore location can be provided as the system property. By
default filter will look for keystore at ssofilter.jar location. If not found then it looks in
system property.

The following procedure guides as you retrieve the .oamkeystore password required
to perform export and import operations. After you export and import the required
OAM certificate, you provision the keystore to enable the Identity Asserter to consume
the certificate. Finally, you choose the OAM_IDENTITY_ASSERTION token type,
provision the certificate in the SSO Sync Filter, and confirm that the authorization
policy enables Identity Assertion.

To configure digital signature verification for trusted header assertion
1. Retrieve the .oamkeystore password using WLST script tool as follows:

a. Locate the WLST tool in your $MW_HOME/Oracle_IDM1/common/bin.

Note: The OAM 11g Server displays a login page. No set up is
needed.

Deploying the Oracle Access Manager 11g SSO Solution

16-26 Oracle Fusion Middleware Application Security Guide

b. Execute wst.sh: $./wlst.sh.

c. Confirm execution with the following onscreen messages:

Initializing WebLogic Scripting Tool (WLST) ...

Jython scans all the jar files it can find at first startup. Depending on
the system, this process may take a few minutes to complete, and WLST may
not return a prompt right away

Welcome to WebLogic Server Administration Scripting Shell

Type help() for help on available commands

d. Execute wls:/offline> connect() and supply information for your environment
(WebLogic Administrator username and password and AdminServer URL).
For example:

Please enter your username: weblogic
Please enter your password: password
Please enter your server URL //localhost:7001
not return a prompt right away

Connecting to ...
Successfully connected to Admin Server 'AdminServer' ... domain 'base_
domain'.

Warning: An insecure protocol was used to connect to the server.
To ensure on-the-wire security, the SSL port or Admin port should be used
instead.
wls:/base_domain/serverConfig

e. Execute wls:/base_domain/serverConfig> domainRuntime() and check the
following onscreen messages. For example:

Location changed to domainRuntime tree. This is a read-only tree with
DomainMBean as the root

For more help, use help(domainRuntime)

wls:/base_domain/domainRuntime>

f. Execute wls:/base_domain/domainRuntime> listCred(map="OAM_
STORE",key="jks"). For example:

Already in Domain Runtime Tree
PASSWORD: lleoi4sbkpo3bj8fg55k7jgbgh
wls:/base_domain/domainRuntime>

2. Export the alias to a certificate file using the JDK6 keytool, as follows:

jdk/bin]$ keytool -exportcert -alias "assertion-cert" -keystore .oamkeystore
-storepass gtml6es9qderjc66f76hvtqm5a -storetype JCEKS -file assertion.cer

3. Import the certificate file using the JDK6 keytool, as follows:

jdk/bin $ keytool -importcert -trustcacerts -alias "oam.assertion.cert" -file

Note: The keystore alias oam.assertion.cert and the keystore
name oamiap-keystore.jks are fixed. Use those names only.

Deploying the Oracle Access Manager 11g SSO Solution

Configuring Single Sign-On with Oracle Access Manager 11g 16-27

assertion.cer -keystore /scratch/oamiap-keystore.jks -storepass password
-storetype JKS

4. Provision the Identity Asserter keystore for consumption of the OAM certificate
with the public key in oamiap-keystore.jks:

a. From the WebLogic Console, Security Realm, Identity Asserter entry, add the
absolute path of oamiap-keystore.jks in the provider-specific configuration.

b. Select token type OAM_IDENTITY_ASSERTION in provider-specific
configuration.

c. Save this configuration.

5. Provision .oamkeystore in the SSO Sync Filter, as follows:

By default, the filter looks for the keystore in the ssofilter.jar location. If not found
there, the system property is checked.

a. Default configuration: Place the keystore file oamiap-keystore.jks in the same
location as ssofilter.jar. For example: $MW_HOME/oracle_
common/modules/oracle.ssofilter_11.1.1

b. Fallback Mechanism: Set the keystore file oamiap-keystore.jks as a
systemproperty in setDomainEnv.sh ($MW_HOME/user_
projects/domains/base_domain/bin/setDomainEnv.sh):

-Dsso.filter.oam.keystore=/scratch/keystore/oamiap-keystore.jks

6. Set System Properties for OAM_IDENTITY_ASSERTION, as follows:

a. Stop the WebLogic Server.

b. Open the file setDomainEnv.sh in $MW_HOME/user_
projects/domains/base_domain/bin/setDomainEnv.sh

Deploying the Oracle Access Manager 11g SSO Solution

16-28 Oracle Fusion Middleware Application Security Guide

c. Add the following property under EXTRA_JAVA_PROPERTIES, and save the
file:

 -Dsso.filter.ssotoken=OAM_IDENTITY_ASSERTION

7. Start the WebLogic Server.

8. Proceed to "Trusted Header Assertion: Configuring Policies".

16.2.4.4 Trusted Header Assertion: Configuring Policies
To use OAM_IDENTITY_ASSERTION as a token type for the assertion, the Identity
Assertion option must be enabled within the authorization policy that protects the
resources. Default policies are generated during agent registration. You can also create
policies manually using the Oracle Access Manager Console.

Figure 16–6 provides an example of an authorization policy for the Trusted Header
Assertion mechanism.

Figure 16–6 Sample Authorization Policy for Trusted Header Assertion

The following procedure provides the steps to enable Identity Assertion within the
Oracle Access Manager 11g authorization policy that protects the resources.

To enable Identity Assertion for Trusted Header Assertion
1. From the Policy Configuration tab, navigation tree, open the following nodes:

 Application Domains
 Desired Domain
 Authorization Policies
 PolicyName

2. Enable Identity Assertion (check the box).

3. Resources:

See Also: Oracle Fusion Middleware Administrator's Guide for
Oracle Access Manager with Oracle Security Token Service

Deploying the Oracle Access Manager 11g SSO Solution

Configuring Single Sign-On with Oracle Access Manager 11g 16-29

■ On the Resource tab, confirm the desired resources are protected by this
policy.

■ Add or remove resources as needed.

4. Click Apply to save changes and close the Confirmation window.

5. Close the page when you finish.

6. Proceed with "Testing Oracle Access Manager Identity Assertion for Single
Sign-on".

16.2.4.5 Testing Oracle Access Manager Identity Assertion for Single Sign-on
The following procedure describes how to test your Oracle Access Manager Identity
Assertion setup, regardless of the mechanism you are using.

Alternatively, you can run Access Tester in Oracle Access Manager to test your policy
domain, as described in the Oracle Fusion Middleware Administrator's Guide for Oracle
Access Manager with Oracle Security Token Service.

To validate Oracle Access Manager Identity Assertion for Single Sign-on
1. Enter the URL to access the protected resource in your environment. For example:

http://ohs_server:port/<protected url>

2. Provide appropriate credentials when the login form appears.

■ Successful: The implementation works.

■ Not Successful: See "Troubleshooting Tips" on page 16-42.

16.2.5 Configuring the Authenticator Function for Oracle Access Manager 11g
With the Authenticator function, the user is challenged for credentials based on the
authentication method that is configured within the application web.xml. However, an
Oracle Access Manager authentication scheme is required and available in the
pre-seeded application domain that is delivered with Oracle Access Manager 11g. It
protects the following resources (resource type wl_authen):

■ /Authen/Basic

■ /Authen/SSOToken

■ /Authen/UsernameAssertion

You can add Responses and Constraints to policies. However, no other configuration is
needed.

For more information about the pre-seeded application domain, see "Previewing
Pre-Seeded OAM 11g Policies for Use by the 10g AccessGate" on page 16-4.

Prerequisites
■ Installing the Authentication Provider with Oracle Access Manager 11g

■ Session Token: Provisioning an OAM Agent with Oracle Access Manager 11g

Note: You can provision the custom 10g AccessGate for the
Authenticator or simply refer to an existing OAM Agent registration
when configuring providers for the Authenticator.

Deploying the Oracle Access Manager 11g SSO Solution

16-30 Oracle Fusion Middleware Application Security Guide

Tasks to configure the Oracle Access Manager Authenticator are described in the
following overview.

Task overview: Configuring the Authenticator function for OAM includes
1. Ensuring that all prerequisite tasks have been performed

2. Configuring Providers for the Authenticator in a WebLogic Domain

3. Configuring the Application Authentication Method for the Authenticator

4. Mapping the Authenticated User to a Group in LDAP

5. Configuring Centralized Log Out for Oracle Access Manager 11g

6. Testing the Oracle Access Manager Authenticator Implementation

16.2.5.1 Configuring Providers for the Authenticator in a WebLogic Domain
This topic includes a procedure that you can use to add and configure the appropriate
Authentication providers in a WebLogic domain.

The Oracle Access Manager Authenticator must be configured along with the Default
Authentication Provider in a WebLogic domain.

■ DefaultAuthenticator: SUFFICIENT

■ OAM Authenticator: OPTIONAL

The following procedure describes this task using the WebLogic Administration
Console. You can also add these using the Oracle WebLogic Scripting Tool (WLST).

To configure providers for the Oracle Access Manager Authenticator in a
WebLogic domain
1. No Oracle Fusion Middleware Application: Obtain the Oracle Access Manager

provider if you have no Oracle Fusion Middleware application.

a. Log in to Oracle Technology Network at:

http://www.oracle.com/technology/software/products/middleware/ht
docs/111110_fmw.html

b. Locate the oamAuthnProvider ZIP file with Access Manager WebGates
(10.1.4.3.0). For example:

oamAuthnProvider<version>.zip

c. Extract and copy the oamAuthnProvider.jar to the following path on the
computer hosting Oracle WebLogic Server:

See Also:

■ "About Oracle WebLogic Server Authentication and Identity
Assertion Providers" on page 16-19

■ Oracle Fusion Middleware Oracle WebLogic Scripting Tool

■ Oracle Fusion Middleware WebLogic Scripting Tool Command
Reference

Note: When an Oracle Fusion Middleware application is installed,
you have the required files and can skip Step 1.

Deploying the Oracle Access Manager 11g SSO Solution

Configuring Single Sign-On with Oracle Access Manager 11g 16-31

BEA_HOME/wlserver_10.x/server/lib/mbeantypes/oamAuthnProvider.jar

2. Go to the Oracle WebLogic Administration Console.

3. With Oracle Fusion Middleware Application Installed:

a. Locate oamauthenticationprovider.war in the following path:

ORACLE_INSTANCE/modules/oracle.oamprovider_11.1.1/oamauthenticationprovi
der.war

b. Copy oamauthenticationprovider.war to the following location:

BEA_HOME/wlserver_10.x/server/lib/console-ext/autodeploy/oamauthentication
provider.war

4. Go to the Oracle WebLogic Administration Console.

5. Click Lock & Edit, if desired.

6. OAM Authenticator:

a. Click Security Realms and select the realm you want to configure.

b. Select Providers, Authentication, and click New to display the Create a New
Authentication Provider page

c. Enter a name and select a type:

Name OAMAuthN

Type: OAMAuthenticator

OK

d. Click the name of the Authentication provider you have just created to display
the Provider Configuration page.

e. In the Provider Configuration page, set the required values as follows:

Access Gate Name: The name of the AccessGate used by the Provider. This
must match exactly the name of an OAM Agent registration in the Oracle
Access Manager Console.

Access Gate Password: The same password, if any, that is as defined for the
Agent registration (see the Oracle Access Manager Console).

Primary Access Server: The host:port of the primary OAM Server that is
associated with this AccessGate in the Oracle Access Manager Console.

Advanced Configuration: Following are several advanced configuration
values.

Transport Security: The communication mode between OAM Server and
AccessGate: open, simple, or cert.

If transport security is Simple or Cert, include the following parameters and
values:

Trust Store: The absolute path of JKS trust store used for SSL communication
between the provider and the OAM Server.

Note: You can have one or more 10g OAM Agents registered with
OAM 11g. Be sure to choose the correct Agent registration name.

Deploying the Oracle Access Manager 11g SSO Solution

16-32 Oracle Fusion Middleware Application Security Guide

Key Store: The absolute path of JKS key store used for SSL communication
between the provider and the OAM Server.

Key Store Pass Phrase: The password to access the key store.

Simple mode pass phrase: The password shared by AccessGate and OAM
Server for simple communication modes.

Secondary OAM Server: The host:port of the secondary OAM Server that is
associated with this AccessGate in the Oracle Access Manager Console.

Maximum OAM Server Connections in Pool: The maximum number of
connections that the AccessGate opens to the OAM Server. The default value is
10.

Minimum Access Server Connections in Pool: The minimum number of
connections that the Authentication provider uses to send authentication
requests to the OAM Server. The default value is 5.

f. Ensure that the parameter Control Flag is set to OPTIONAL initially.

7. In the Change Center, click Activate Changes.

8. DefaultAuthenticator: Under the Providers tab, select DefaultAuthenticator,
which changes its control flag to SUFFICIENT.

9. Reorder: Under the Providers tab, reorder the providers so that
DefaultAuthenticator is first (OAMAuthenticator follows DefaultAuthenticator).

10. Oracle Access Manager Authenticator REQUIRED or the Only Authenticator:
Perform the following steps to set user rights for booting Oracle WebLogic Server.

a. Create an Administrators group in the directory server, if one does not already
exist (or any other group for which you want boot access).

Note: The Maximum OAM Server Connections in Pool (or Minimum
OAM Server Connections in Pool) settings in the WebLogic
Administration Console are different from the Maximum (or
Minimum) Connections specified in the Oracle Access Manager
Console.

See Also: "Oracle Access Manager Authentication Provider
Parameter List" on page 17-14 for descriptions and values of the
common and provider-specific parameters

Note: Do not set the parameter Control Flag to REQUIRED until you
have verified that the Authentication Provided is operational and
configured correctly.

Note: If the Oracle Access Manager Authenticator flag is set to
REQUIRED, or if Oracle Access Manager Authenticator is the only
Authentication provider, perform the next step to ensure that the
LDAP user who boots Oracle WebLogic Server is included in the
administrator group that can perform this task. By default the Oracle
WebLogic Server Admin Role includes the Administrators group.

Deploying the Oracle Access Manager 11g SSO Solution

Configuring Single Sign-On with Oracle Access Manager 11g 16-33

b. Confirm that the LDAP user who boots Oracle WebLogic Server is included in
the Administrators (or other) group.

c. From the WebLogic Administration Console, go to Security Realms, myrealm,
Roles and Policies, Global Roles.

d. Select View Conditions for the Admin Role.

e. Add the group and click Save.

11. Reboot the WebLogic Server.

12. Once the server has started, reset the Authentication Provider parameter Control
Flag to the appropriate value (REQUIRED, OPTIONAL, or SUFFICIENT).

13. Proceed with "Configuring the Application Authentication Method for the
Authenticator".

16.2.5.2 Configuring the Application Authentication Method for the Authenticator
This topic describes how to create the application authentication method for Oracle
Access Manager Authenticator.

When you use the Oracle Access Manager Authenticator, all web.xml files in the
application EAR file must specify BASIC in the element auth-method for the
appropriate realm.

The auth-method can use BASIC or FORM values. While these look like similar values
in Oracle Access Manager, the auth-method specified in web.xml files are used by
Oracle WebLogic Server (not Oracle Access Manager).

To configure the application authentication method for the Authenticator
1. Locate the web.xml file in the application EAR file:

WEB-INF/web.xml

2. Locate the auth-method in login-config and enter BASIC. For example:

<security-constraint>
<web-resource-collection>
<web-resource-name>protected</web-resource-name>
<url-pattern>/servlet</url-pattern>
</web-resource-collection>

Note: To provide access to any other group, you must create that
group in the directory server and add the user who boots WebLogic
Server in that group.

Note: The recommended value is REQUIRED. To prevent a known
issue, see "JAAS Control Flag" on page 17-73.

See Also: Oracle Fusion Middleware Deploying Applications to Oracle
WebLogic Server

Note: For the Oracle Access Manager Authenticator, Oracle
recommends auth-method BASIC in login-config within web.xml.

Deploying the Oracle Access Manager 11g SSO Solution

16-34 Oracle Fusion Middleware Application Security Guide

<auth-constraint>
<role-name>auth-users</role-name>
</auth-constraint>
</security-constraint>
<login-config>
<auth-method>BASIC</auth-method>
</login-config>
<security-role>
<description>Authenticated Users</description>
<role-name>auth-users</role-name>
</security-role>

3. Save the file.

4. Redeploy and restart the application.

5. Repeat for each web.xml file in the application EAR file.

6. Proceed with "Mapping the Authenticated User to a Group in LDAP".

16.2.5.3 Mapping the Authenticated User to a Group in LDAP
This topic describes how to map the authenticated user to a group in LDAP. To do this,
you must edit the weblogic.xml file. For example, you might need to map your
role-name auth-users to a group named managers in LDAP.

To map the authenticated user to a group in LDAP for the Oracle Access
Manager Authenticator
1. Go to the application’s weblogic.xml file.

2. Add the following information for your environment anywhere in the file:

<weblogic-web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.bea.com/ns/weblogic/weblogic-web-app
http://www.bea.com/ns/weblogic/weblogic-web-app/1.0/weblogic-web-app.xsd"
xmlns="http://www.bea.com/ns/weblogic/weblogic-web-app">
<security-role-assignment>
<principal-name>managers</principal-name>
<role-name>auth-users</role-name>
</security-role-assignment>
</weblogic-web-app>

3. Save the file.

4. Restart the WebLogic Server.

5. Configure centralized logout as described in "Configuring Centralized Log Out for
Oracle Access Manager 11g" and then return here to perform "Testing the Oracle
Access Manager Authenticator Implementation".

16.2.5.4 Testing the Oracle Access Manager Authenticator Implementation
After performing all tasks to implement the Authenticator, you can test it by
attempting to log in to the application using valid credentials. If the configuration is
incorrect, a valid user is denied access.

The following procedure describes how to test your Authenticator setup. Alternatively,
you can run Access Tester in Oracle Access Manager to test your policy domain, as
described in the Oracle Fusion Middleware Administrator's Guide for Oracle Access
Manager with Oracle Security Token Service.

Deploying the Oracle Access Manager 11g SSO Solution

Configuring Single Sign-On with Oracle Access Manager 11g 16-35

To validate the Oracle Access Manager Authenticator implementation
1. Enter the URL to access the protected resource in your environment. For example:

http://yourdomain.com:port

2. Provide appropriate credentials when the login form appears.

■ Successful: The implementation works.

■ Not Successful: See "Troubleshooting Tips" on page 16-42.

16.2.6 Configuring Identity Assertion for Oracle Web Services Manager and OAM 11g
This section describes how to set up the Oracle Access Manager Identity Asserter to
enable validation of the token when you have Oracle Web Services Manager
protecting Web services.

As discussed earlier, the Oracle Access Manager Identity Asserter works in two
modes. The default mode of operation simply asserts the header that is set by
WebGate at the perimeter, which handles most SSO situations. The alternate mode
uses the custom AccessGate in oamAuthnProvider.jar. In this case, and with the
absence of the header, the Identity Asserter contacts the OAM Server to validate the
token. For more information about the token, see "Installing the Authentication
Provider with Oracle Access Manager 11g" on page 16-8.

With OAM 10g, you would need to manually create the policy domain and policies for
this configuration. However, with OAM 11g, a pre-seeded application domain is
delivered with policies that protect the following resources (resource type wl_authen):

■ /Authen/Basic

■ /Authen/SSOToken

■ /Authen/UsernameAssertion

You can add policies, Responses, or Constraints for resources of type wl_authen only.
Ideally, however, you can use this application domain with no further configuration.
For more information, see "Previewing Pre-Seeded OAM 11g Policies for Use by the
10g AccessGate" on page 16-4.

When the Oracle Access Manager Identity Asserter is configured for both header and
token validation modes, preference is given to the presence of the header. If the header
is not present, the Identity Asserter contacts the OAM Server to validate the token. For
more information on the token, see "Oracle Access Manager Authentication Provider
Parameter List" on page 17-14.

Prerequisites
Installing the Authentication Provider with Oracle Access Manager 11g

Session Token: Provisioning an OAM Agent with Oracle Access Manager 11g

Task overview: Deploying the Identity Asserter with Oracle Web Services
Manager includes
1. Configuring Providers in a WebLogic Domain for Oracle Web Services Manager

Note: The 10g custom AccessGate provided with the Authentication
Provider is required for Identity Assertion for Oracle Web Services
Manager.

Deploying the Oracle Access Manager 11g SSO Solution

16-36 Oracle Fusion Middleware Application Security Guide

2. Configuring Centralized Log Out for Oracle Access Manager 11g

3. Testing the Identity Asserter with Oracle Web Services Manager

16.2.6.1 Configuring Providers in a WebLogic Domain for Oracle Web Services
Manager
To use Oracle Access Manager Identity Asserter with Oracle Web Services Manager
protected Web services, several Authentication providers must be configured and
ordered in a WebLogic domain:

■ OAM Identity Asserter: REQUIRED

■ OID Authenticator: SUFFICIENT

■ DefaultAuthenticator: SUFFICIENT

This procedure is nearly identical to the one for the Oracle Access Manager Identity
Asserter with OAM 11g. The difference in this case is that Oracle Web Services
Manager requires the custom 10g AccessGate and additional provider-specific values:

■ Primary Access Server: Specify the primary OAM Server host and port. For
example: mnop:8888

■ Access Gate Name: The name of the AccessGate registration protecting the
application. For example: AG1

■ Access Gate Password: The AccessGate password as specified in the Oracle Access
Manager Console.

You can add these using either the Oracle WebLogic Administration Console or Oracle
WebLogic Scripting Tool (WLST) command-line tool.

To set up providers in a WebLogic domain
1. No Oracle Fusion Middleware Application: Obtain the Oracle Access Manager

provider if you have no Oracle Fusion Middleware application.

a. Log in to Oracle Technology Network at:

http://www.oracle.com/technology/software/products/middleware/ht
docs/111110_fmw.html

b. Locate the oamAuthnProvider ZIP file with Access Manager WebGates
(10.1.4.3.0). For example:

oamAuthnProvider<version>.zip

c. Extract and copy the oamAuthnProvider.jar to the following path on the
computer hosting Oracle WebLogic Server:

See Also:

■ "About Oracle WebLogic Server Authentication and Identity
Assertion Providers" on page 16-19

■ Oracle Fusion Middleware Oracle WebLogic Scripting Tool

■ Oracle Fusion Middleware WebLogic Scripting Tool Command
Reference

Note: With a Oracle Fusion Middleware application installed, you
have the required provider file. Skip Step 1.

Deploying the Oracle Access Manager 11g SSO Solution

Configuring Single Sign-On with Oracle Access Manager 11g 16-37

BEA_HOME/wlserver_10.x/server/lib/mbeantypes/oamAuthnProvider.jar

2. Log in to the Oracle WebLogic Administration Console.

3. OAM Identity Asserter: Perform the following steps to add this provider:

a. Click Security Realms, Default Realm Name, and click Providers.

b. Click Authentication, click New, and then enter a name and select a type:

Name: OAM Identity Asserter

Type: OAMIdentityAsserter

OK

c. In the Authentication Providers table, click the newly added authenticator.

d. On the Common tab, set the Control Flag to REQUIRED, and click Save.

e. Click the Common tab, specify ObSSOCookie as the chosen Active Type for
the 10g custom AccessGate, and click Save.

f. Click the Provider Specific tab and configure these parameters:

Primary Access Server: Specify the primary OAM Server host and port. For
example: abcd:7777

Access Gate Name: The name of the OAM Agent registration protecting the
application. For example: AG1

Access Gate Password: The AccessGate password, if any, that was specified in
during provisioning.

Save.

4. OID Authenticator: Perform the following steps to add this provider.

a. Click Security Realms, Default Realm Name, and click Providers

b. Click New, enter a name, and select a type:

Name: OID Authenticator

Type: OracleInternetDirectoryAuthenticator

Click OK.

c. In the Authentication Providers table, click the newly added authenticator.

d. On the Settings page, click the Common tab, set the Control Flag to
SUFFICIENT, and then click Save.

e. Click the Provider Specific tab and specify the following required settings
using values for your own environment:

Host: Your LDAP host. For example: localhost

Port: Your LDAP host listening port. For example: 6050

Principal: LDAP administrative user. For example: cn=orcladmin

Credential: LDAP administrative user password.

User Base DN: Same searchbase as in Oracle Access Manager.

All Users Filter: For example: (&(uid=*)(objectclass=person))

User Name Attribute: Set as the default attribute for username in the LDAP
directory. For example: uid

Configuring Centralized Log Out for Oracle Access Manager 11g

16-38 Oracle Fusion Middleware Application Security Guide

Group Base DN: The group searchbase (same as User Base DN)

Click Save.

5. Default Authenticator: Perform the following steps to set up the Default
Authenticator for use with the Identity Asserter:

a. Go to Security Realms, Default Realm Name, and click Providers.

b. Click Authentication, Click DefaultAuthenticator to see its configuration
page.

c. Click the Common tab and set the Control Flag to SUFFICIENT.

d. Click Save.

6. Reorder Providers:

a. Click Security Realms, Default Realm Name, Providers.

b. On the Summary page where providers are listed, click the Reorder button

c. On the Reorder Authentication Providers page, select a provider name and
use the arrows beside the list to order the providers as follows:

OAM Identity Asserter (REQUIRED)

OID Authenticator (SUFFICIENT)

Default Authenticator (SUFFICIENT)

d. Click OK to save your changes

7. Activate Changes: In the Change Center, click Activate Changes

8. Reboot Oracle WebLogic Server.

9. Proceed as follows:

■ Successful: Go to "Configuring Centralized Log Out for Oracle Access
Manager 11g", and then return here to perform "Testing the Identity Asserter
with Oracle Web Services Manager".

■ Not Successful: Confirm the all providers have the proper specifications for
your environment, are in the proper order, and that
oamAuthnProvider.jar is in the correct location as described in "Installing
the Authentication Provider with Oracle Access Manager 11g" on page 16-8.

16.2.6.2 Testing the Identity Asserter with Oracle Web Services Manager
To validate the use of the Oracle Access Manager Identity Asserter with Oracle Web
Services Manager, you can access the Web service protected by the Identity Asserter
and Oracle Web Services Manager policies. If access is granted, the implementation
works. If not, see "Troubleshooting Tips" on page 16-42.

16.3 Configuring Centralized Log Out for Oracle Access Manager 11g
This section introduces Centralized logout for Oracle Access Manager 11g.

With OAM 11g, centralized logout refers to the process of terminating an active user
session. Guidelines include:

Note: Do not set the All Groups filter as the default works fine as is.

Configuring Centralized Log Out for Oracle Access Manager 11g

Configuring Single Sign-On with Oracle Access Manager 11g 16-39

■ Applications must not provide their own logout page for use in an SSO
environment.

■ Applications must make their logout links configurable with a value that points to
the logout URL specified by the OAM WebGate Administrator.

For more information, see:

■ Logout for 11g WebGate and OAM 11g

■ Logout for 10g WebGate with Oracle Access Manager 11g

16.3.1 Logout for 11g WebGate and OAM 11g
Several elements in the OAM 11g Agent registration page enable centralized logout for
OAM 11g WebGates. After agent registration, the ObAccessClient.xml file is populated
with the information.

11g WebGate logout options that you must have in the agent registration include the
following:

■ Logout URL: Triggers the logout handler, which removes the cookie
(ObSSOCookie for 10g WebGates; OAMAuthnCookie for 11g WebGates) and
requires the user to re-authenticate the next time he accesses a resource protected
by Oracle Access Manager.

■ Logout Callback URL: The URL to oam_logout_success, which clears cookies
during the call back. This can be a URI format without host:port (recommended),
where the OAM Server calls back on the host:port of the original resource request.

■ Logout Redirect URL: This parameter is automatically populated after agent
registration completes.By default, this is based on the OAM Server host name with
a default port of 14200.

■ Logout Target URL: The value for this is name for the query parameter that the
OPSS applications passes to WebGate during logout. This query parameter
specifies the target URL of the landing page after logout.

For more information, see "Configuring Centralized Logout for 11g WebGate with
OAM 11g Server" in the Oracle Fusion Middleware Administrator's Guide for Oracle Access
Manager with Oracle Security Token Service.

16.3.2 Logout for 10g WebGate with Oracle Access Manager 11g
Logout is initiated when an application causes the invocation of the logout.html file
configured for the OAM Agent (in this case, a 10g WebGate). The application might
also pass end_url as a query string to logout.html. The end_url parameter could
either be a URI or a URL.

Note: Oracle strongly recommends that applications use the ADF
Authentication servlet, which in turn interfaces with OPSS, where a
domain wide configuration parameter can be used to specify the
logout URL. This way applications need not be modified or
redeployed to change logout configuration.

Synchronizing the User and SSO Sessions: SSO Synchronization Filter

16-40 Oracle Fusion Middleware Application Security Guide

Task overview: Configuring centralized logout for 10g WebGates
1. Create a default logout page (logout.html) and make it available on the WebGate

installation directory: For example, WebGate_install_dir/oamsso/logout.html.

2. In your logout.html, confirm that the logOutUrls parameter is configured for each
resource WebGate and that <callBackUri> is the second value as part of
'logOutUrls'.

3. In your logout.html, confirm (from Step 1), confirm that the user is redirected to
the central logout URI on the OAM 11g Server, "/oam/server/logout'.

4. Optional: Allow the application to pass the end_url parameter indicating where to
redirect the user after logout.

5. Check the OHS Web server configuration file, httpd.conf, on which the 10g
WebGate is configured and if the following lines exist delete them.

<LocationMatch "/oamsso/*">
Satisfy any
</LocationMatch>

For more information, see "Configuring Centralized Logout for 10g WebGate with
OAM 11g Servers" in the Oracle Fusion Middleware Administrator's Guide for Oracle
Access Manager with Oracle Security Token Service.

16.4 Synchronizing the User and SSO Sessions: SSO Synchronization
Filter

In Fusion Middleware 11g, a new component that synchronizes the container user
session and SSO session has been introduced. SSO Sync Filter is an Oracle WebLogic
system filter implementation that intercepts all requests to the container, acts on
protected resource requests, and attempts to synchronize the container's user session
with the user identifying header in OSSO (Proxy-Remote-User) or the user data in the
Oracle Access Manager SSO session cookie (ObSSOCookie).

SSO Synchronization Filter (SSO Sync Filter) is an implementation of the Servlet Filter
based on Java Servlet Specification version 2.3. SSO sync filter relieves applications
from tracking the SSO user session and synchronizing it with their respective sessions.
Instead, applications would only need to synchronize with container's user session.

SSO Sync Filter intercepts each request to the container and determines whether to act
on it based on certain HTTP headers that are attached to the request. Filter expects SSO
agent to have set those headers in the Web Tier. When access is made to unprotected
areas of the application, the filter acts as a pass through. Once a protected resource is
accessed, SSO agents in the Web Tier, direct user to perform authentication with SSO
system such as Oracle Access Manager. After the authentication, Oracle Access
Manager Identity Asserter helps establish a user identity in form of JAAS Subject to
the container and a user session is created. WebLogic maintains the user session data
as part of HTTP Session Cookie (JSESSIONID).

See Also: Oracle Fusion Middleware Administrator's Guide for Oracle
Access Manager with Oracle Security Token Service

■ About Centralized Logout with OAM 10g Agents and OAM 11g
Servers

■ Example 15-5: logout.html Script

■ Configuring Centralized Logout for 10g Webgate with OAM

Synchronizing the User and SSO Sessions: SSO Synchronization Filter

Configuring Single Sign-On with Oracle Access Manager 11g 16-41

Subsequent access to the application resources provides two pieces of information to
the SSO Sync Filter:

■ User identifying header in OSSO (Proxy-Remote-User)

■ User data in the Oracle Access Manager SSO session cookie (ObSSOCookie)

The job of SSO Sync Filter is to make sure that the user identity in the container
matches with that of the SSO session. If there is a mismatch, filter invalidates the
container's user session. As a result, the downstream application would only have to
track container user session and react in a consistent fashion regardless of SSO
environment in use.

Notes:

■ Enabled and Active by Default: SSO Sync Filter fetches the user information from
the configured tokens, gets the user from existing session (if any), invalidates the
session and redirects to the requested URL in case the CurrentSessionUser does
not match the incoming SSO User. Otherwise, the request is simply passed
through.

If you have not configured the OSSO or Oracle Access Manager Assertion
Providers in your domain, the filter disables automatically during WebLogic
Server start-up.

■ Active for All URI's by Default (/*): No changes are required in the application
code.

■ Configured for the OSSO Tokens/Header: Proxy-Remote-User, and performs a
case insensitive match.

■ Configured for the Oracle Access Manager SSO Tokens/Header: OAM_
REMOTE_USER and REMOTE_USER, and does a case insensitive match.

■ Configured for the Oracle Access Manager SSO Tokens/Header: OAM_
IDENTITY_ASSERTION, a case insensitive match. For details, see "Trusted
Header Assertion: Configuring Digital Signature Verification" on page 16-25.

■ Global Logout: SSO Sync Filter is intended to provide the Single Logout
Experience to the Oracle Fusion Middleware applications that use the OSSO or
Oracle Access Manager Solutions. Is handled similarly to single sign-on. After
global logout is performed, SSO filter reconciles the session when subsequent
access to an application that has not cleaned up its session is made.

Any application that use the OSSO or Oracle Access Manager Solutions is
expected to invalidate its session before making a call to OSSO logout or Oracle
Access Manager logout. For more information on OSSO logout, see Example 18–2,
"SSO Logout with Dynamic Directives" on page 18-11. For details about Oracle
Access Manager logout, see "Configuring Global Logout for Oracle Access
Manager 10g and 10g WebGates" on page 17-10.

■ Application Session Time Out: SSO cookies typically track user inactivity/idle
times and force users to login when a time out occurs. OSSO and Oracle Access
Manager are no exception. Oracle Access Manager takes a sophisticated approach
at this and specifically tracks Maximum Idle Session Time and Longest Idle
Session Time along with SSO session creation time and time when it was last
refreshed.

The general recommendation for applications that are maintaining their own
sessions when integrating with SSO systems is to configure their session time outs
close to that of SSO session time outs so as to make user experience remains
consistent across SSO and application session time outs.

Troubleshooting Tips

16-42 Oracle Fusion Middleware Application Security Guide

You can alter the behavior of the SSO Sync Filter for application requirements by
passing various over-riding system properties to WebLogic. To do this, you change the
Oracle WebLogic startup script and check for EXTRA_JAVA_PROPERTIES in
setDomainEnv.sh. The properties and Sync behavior is shown in Table 16–6.

You cannot enable the filter for selected applications. The SSO Sync Filter is a system
filter. As such, it is activated for all deployed applications (the URI mapping is /*).

The following procedure gives some tips about modifying the SSO Sync filter
properties and behavior.

To modify the SSO Sync Filter properties and behavior
1. Disable the Filter: Change the system property "sso.filter.enable" to "false" (pass as

-D to the jvm) and restart the Oracle WebLogic Server. This toggles the filter status.

2. User-Identifying Header Differs from Pre-Configured Sync Filter Tokens:
Over-ride the SSO token that the Sync Filter looks for using the system property
"sso.filter.ssotoken".

For example, pass to the WebLogic Server jvm in the WebLogic Server startup
script -Dsso.filter.ssotoken=HEADERNAME, and restart the server.

When you contact Oracle Support you might be requested to set up debugging, as
described in "Setting Up Debugging in the WebLogic Administration Console" on
page 15-14.

16.5 Troubleshooting Tips
For more information, see "Troubleshooting" in the Oracle Fusion Middleware
Administrator's Guide for Oracle Access Manager with Oracle Security Token Service.

Table 16–6 SSO Sync Filter Properties and Sync Behavior

Area Overriding System Property
Default value of
System property Default Behavior of the Sync Filter

Status
(Active or
Inactive)

sso.filter.enable Not configured Enabled

Case
sensitive
matches

sso.filter.name.exact.match Not configured Case Ignore Match

Configured
Tokens

sso.filter.ssotoken Not configured ■ OSSO: Look for Proxy-Remote-User

■ Oracle Access Manager: Look for OAM_
REMOTE_USER and REMOTE_USER.

OAM_REMOTE_USER takes precedence.

URI
Mappings

Not Applicable Not Applicable /*

Note: You cannot enable the filter for selected applications.

See Also: "Troubleshooting Tips for OAM Provider Deployments"
on page 17-67

17

Configuring Single Sign-On Using Oracle Access Manager 10g 17-1

17Configuring Single Sign-On Using Oracle
Access Manager 10g

The chapter describes how to configure single sign-on using Oracle Access Manager
10g. It includes the following major sections:

■ Deploying SSO Solutions with Oracle Access Manager 10g

■ Oracle Access Manager Authentication Provider Parameter List

■ Introduction to OAMCfgTool

■ Configuring OAM Identity Assertion for SSO with Oracle Access Manager 10g

■ Configuring the Authenticator for Oracle Access Manager 10g

■ Configuring Identity Assertion for Oracle Web Services Manager and OAM 10g

■ Synchronizing the User and SSO Sessions: SSO Synchronization Filter

■ Troubleshooting Tips for OAM Provider Deployments

17.1 Deploying SSO Solutions with Oracle Access Manager 10g
This section provides the following topics:

■ Installing and Setting Up Authentication Providers for OAM 10g

■ Oracle Access Manager Authentication Provider Parameter List

■ Configuring Global Logout for Oracle Access Manager 10g and 10g WebGates

17.1.1 Installing and Setting Up Authentication Providers for OAM 10g
This topic provides an overview of Oracle Access Manager installation and initial
setup and additional information about installing components and files for use when
you deploy the Oracle Access Manager Authentication Provider.

Unless explicitly stated, these topics describe requirements for both the Oracle Access
Manager Identity Asserter and the Oracle Access Manager Authenticator:

■ About Oracle Access Manager 10g Installation and Setup

■ Installing Components and Files for Authentication Providers and OAM 10g

■ Converting Oracle Access Manager Certificates to Java Keystore Format

■ Creating Resource Types in Oracle Access Manager 10g

Deploying SSO Solutions with Oracle Access Manager 10g

17-2 Oracle Fusion Middleware Application Security Guide

17.1.1.1 About Oracle Access Manager 10g Installation and Setup
This topic provides a brief installation and setup overview if you are new to Oracle
Access Manager.

Access Servers: For the Oracle Access Manager Authentication Provider, you need
two Access Servers for WebGates or AccessGates: one primary server and one
secondary server. Currently, only one secondary Access Server is supported. Installing
Access Servers includes:

■ Adding an Access Server configuration profile in the Access System Console for
the primary server. Ensure that the Access Management Service is On (also
known as Policy Manager API Support Mode).

■ Adding a secondary Access Server configuration profile with the Access
Management Service On.

■ Installing the primary Access Server instance.

■ Installing the secondary Access Server instance.

WebGate/AccessGate: Whether you need a WebGate or an AccessGate depends on
your use of the Oracle Access Manager Authentication Provider. For instance, the:

■ Identity Asserter for Single Sign-On: Requires a separate WebGate and
configuration profile for each application to define perimeter authentication.
Ensure that the Access Management Service is On.

■ Authenticator or Oracle Web Services Manager: Requires a separate AccessGate
and configuration profile for each application. Ensure that the Access
Management Service is On.

About OAM 10g WebGate/AccessGate Profiles and Policy Domains
This topic introduces the WebGate/AccessGate profiles, policy domains, and the
methods you can use the create these.

While there are subtle differences between WebGates and AccessGates, these terms are
often used interchangeably. In the Access System Console, the configuration profile for
WebGates or AccessGates is known as an AccessGate profile. The Policy Manager is
where an Oracle Access Manager policy domain is created.

Access System Console Method: Enables users with specific Oracle Access Manager
administration rights to enter information and set parameters directly in Oracle Access
Manager. This method is required if you are using the Authenticator, or if you have
Oracle Web Services Manager policies protecting Web services.

OAMCfgTool Method: Application administrators who are implementing the Identity
Asserter for single sign-on, can use OAMCfgTool to create a new WebGate profile for a
fresh Web Tier. Required parameters are provisioned using values for your
environment specified on the command line. Default values are accepted for
non-required parameters; the Access Management Service is set to On. After creating a
profile, values can be modified in the Access System Console.

Each AccessGate profile must include the following parameters; those marked with an
asterisk, *, are provisioned with OAMCfgTool:

■ *AccessGate Name—A unique name without spaces. With OAMCfgTool the name
is derived from the app_domain value, appended with _AG.

See Also: "Requirements for the Provider with Oracle Access
Manager" on page 15-13

Deploying SSO Solutions with Oracle Access Manager 10g

Configuring Single Sign-On Using Oracle Access Manager 10g 17-3

■ *Hostname—The name of the computer where the WebGate/AccessGate is or will
be installed. With OAMCfgTool the app_domain value is used as the host name.

■ *AccessGate Password—A unique password to verify and identify the
component. This prevents unauthorized AccessGates from connecting to Access
Servers and obtaining policy information. With OAMCfgTool, this is specified
with the app_agent_password parameter. This should differ for each
WebGate/AccessGate instance.

■ Transport Security—The level of transport security between the Access Server and
associated WebGates (these must match). The default value is Open. You can
specify a different value with OAMCfgTool oam_aaa_mode value.

■ *Preferred HTTP Host—The host name as it appears in all HTTP requests as users
attempt to access the protected Web server. The host name in the HTTP request is
translated into the value entered into this field, regardless of the way it was
defined in a user's HTTP request. With OAMCfgTool the Preferred HTTP Host is
the app_domain value.

The Preferred Host function prevents security holes that can be inadvertently
created if a host's identifier is not included in the Host Identifiers list. However, it
cannot be used with virtual Web hosting. For virtual hosting, you must use the
Host Identifiers feature.

■ *Primary HTTP Cookie Domain: The Web server domain on which the WebGate
is deployed. The cookie domain is required to enable single sign-on among Web
servers; each must have the same Primary HTTP Cookie Domain value. Use the
cookie_domain parameter with the OAMCfgTool to set this value.

About Administrative Requirements for AccessGate Profiles and Policy Domains
This topic introduces the administrative rights needed for the methods you can use
when creating new WebGate and AccessGate profiles and policy domains for Oracle
Access Manager.

An Oracle Access Manager Master Access Administrator must create the first policy
domain after the policy domain root is defined. He or she can then create policy
domains for URLs beneath the first one and delegate administration of those policy
domains to other administrators.

Access System Console Method: You must be a Master or Delegated Access
Administrator can use the Access System Console to create a new AccessGate profile,
associate it with an Access Server, and create an authentication scheme. Master or
Delegated Access Administrators can also use the Policy Manager to create a policy
domain. The following deployments require this method:

■ Authenticator

■ Identity Asserter when Oracle Web Services Manager is protecting Web services

OAMCfgTool Method: You do not need specific Oracle Access Manager
administration rights for OAMCfgTool, which automates creating and associating a

See Also:

■ "About Administrative Requirements for AccessGate Profiles and
Policy Domains" on page 17-3

■ "Introduction to OAMCfgTool" on page 17-15

■ "Configuring WebGates and Access Servers" in the Oracle Access
Manager Access Administration Guide

Deploying SSO Solutions with Oracle Access Manager 10g

17-4 Oracle Fusion Middleware Application Security Guide

WebGate profile and creating a new policy domain. However, this method can be used
for only Identity Assertion. In a:

■ Fresh Web Tier: Use OAMCfgTool to streamline creating a new WebGate profile
and policy domain for Identity Asserter only.

After creating the profile and policy domain with OAMCfgTool, these can be
modified in the Access System Console.

■ Existing Web Tier: When one or more WebGates exist in the Web Tier, no new
WebGate is needed. However, you can specify an existing host identifier to make
newly established policies enforceable by an existing WebGate.

17.1.1.2 Installing Components and Files for Authentication Providers and OAM
10g
The following task overview outlines the components and files that must be installed
and where to locate more information.

Unless specifically stated, all details apply whether you intend to deploy the Identity
Asserter for single sign-on, or the Authenticator, or if Oracle Web Services Manager
policies are protecting Web services.

Task overview: Installing required components and files for Oracle Access
Manager 10g Authentication Provider
1. An Oracle Internet Directory or Oracle Sun One LDAP directory server configured

to be used by the Oracle Access Manager Access Server. Ensure that the directory
server is tuned for your deployment.

2. Install and set up Oracle WebLogic Server 10.3.1+.

See Also: "Introduction to OAMCfgTool" on page 17-15

See Also:

■ "Installing Components and Files for Authentication Providers
and OAM 10g"

■ "Configuring WebGates and Access Servers" in the Oracle Access
Manager Access Administration Guide

Note: If you already have components installed and set up, you do
not need to install new ones. Skip any steps that do not apply to your
deployment.

See Also: The following Release 11g (11.1.1.1.0) manuals

■ Oracle Fusion Middleware Installation Guide for Oracle Identity
Management

■ Oracle Fusion Middleware Administrator's Guide for Oracle Internet
Directory

See Also: Item 3 in this list, and the Oracle Fusion Middleware Getting
Started With Installation for Oracle WebLogic Server

Deploying SSO Solutions with Oracle Access Manager 10g

Configuring Single Sign-On Using Oracle Access Manager 10g 17-5

3. Optional: Install a Fusion Middleware product (Oracle Identity Manager, Oracle
SOA Suite, or Oracle Web Center for example):

a. Confirm the location of required JAR files in the following Fusion Middleware
path:

ORACLE_INSTANCE/modules/oracle.oamprovider_11.1.1/oamAuthnProvider.jar
ORACLE_INSTANCE/modules/oracle.oamprovider_11.1.1/oamcfgtool.jar

b. Locate the console-extension WAR file in the following path:

ORACLE_INSTANCE/modules/oracle.oamprovider_11.1.1/oamauthenticationprov
ider.war

c. Copy the WAR file to the following path in the WebLogic Server home:

WL_HOME/server/lib/console-ext/autodeploy/oamauthenticationprovider.war

4. Install OHS 11g for the Oracle Access Manager 10g (10.1.4.3) WebGate, if needed:

■ Authenticator or Oracle Web Services Manager: No Web server is required
for the custom AccessGate. The protected resource is accessed using its URL
on the Oracle WebLogic Server.

■ Oracle Access Manager Identity Asserter: Requires Oracle HTTP Server 11g
Web server configured as a reverse proxy in front of Oracle WebLogic Server.

5. Install Oracle Access Manager 10g (10.1.4.3) components and perform initial setup
as follows:

a. Install an Identity Server; install a WebPass; set up the Identity System.

b. Install and set up Policy Manager. Ensure that the policy protecting the Policy
Manager, /access, is created and enabled, as well as the default authentication
schemes.

c. Install Access Servers (one as a primary server and one as a secondary server
for WebGate).

– Add an Access Server configuration profile in the Access System Console
for the primary server for WebGate. Ensure that the Access Management
Service is On (also known as Policy Manager API Support Mode).

– Add a secondary Access Server configuration profile with the Access
Management Service On.

– Install the primary Access Server instance and then install the secondary
Access Server instance.

d. WebGate for Identity Asserter for Single Sign-On: In an existing Web Tier
with one or more WebGates, no new WebGates or profiles are needed.

Note: Without a Fusion Middleware application, you must acquire
the required JAR and WAR files as described in later procedures.

See Also: "About Oracle Access Manager 10g Installation and Setup"
on page 17-2

Note: Only one secondary Access Server is supported

Deploying SSO Solutions with Oracle Access Manager 10g

17-6 Oracle Fusion Middleware Application Security Guide

In a fresh Web Tier, you must create a profile to define the WebGate for
perimeter authentication, as follows:

– Create an AccessGate configuration profile to define the WebGate for
perimeter authentication. Ensure that the Access Management Service is
On. You can use the OAMCfgTool or Access System Console.

– Associate the WebGate profile with a primary and a secondary Access
Server.

– Install a WebGate for Oracle HTTP Server 11g configured as a reverse
proxy for every application.

– Repeat until you have a profile and a WebGate protecting each
application.

e. AccessGate: For the Authenticator, or when you have Oracle Web Services,
Manager you must add a new profile for custom AccessGates in the Access
System Console

– Add an AccessGate configuration profile in the Access System Console
and ensure that the Access Management Service is On.

– Associate the AccessGate profile with a primary and a secondary Access
Server.

– Deploy the custom AccessGate in oamAuthnProvider.jar.

– Repeat until you have a profile and a AccessGate protecting each
application.

6. Proceed as follows:

■ Simple or Cert Mode: "Converting Oracle Access Manager Certificates to Java
Keystore Format"

■ Authenticator or Oracle Web Services Manager: "Creating Resource Types in
Oracle Access Manager 10g" on page 17-9 must be performed if you use the
Oracle Access Manager Authenticator or if you have Oracle Web Services
Manager policies protecting Web services.

■ Identity Asserter for Single Sign-On: Perform tasks in "Configuring OAM
Identity Assertion for SSO with Oracle Access Manager 10g" on page 17-34.

17.1.1.3 Converting Oracle Access Manager Certificates to Java Keystore Format
Oracle recommends that all Java components and applications use JKS as the keystore
format. This topic provides steps to convert Oracle Access Manager X.509 certificates
to Java Keystore (JKS) format.

These steps, when followed properly, generate the JKS stores that can be used while
the Java NAP client wants to communicate with an Oracle Access Manager Access
Server in Simple or Cert (certificate) mode.

When communicating in Simple or Cert mode, the Access Server uses a key, server
certificate, and CA chain files:

See Also: "Introduction to OAMCfgTool" on page 17-15

See Also: "About OAM 10g WebGate/AccessGate Profiles and
Policy Domains" on page 17-2

Deploying SSO Solutions with Oracle Access Manager 10g

Configuring Single Sign-On Using Oracle Access Manager 10g 17-7

■ aaa_key.pem: the random key information generated by the certificate-generating
utilities while it sends a request to a Root CA. This is your private key. The
certificate request for WebGate generates the certificate-request file aaa_req.pem.
You must send this WebGate certificate request to a root CA that is trusted by the
Access Server. The root CA returns the WebGate certificates, which can then be
installed either during or after WebGate installation.

■ aaa_cert.pem: the actual certificate for the Access Server, signed by the Root CA.

■ aaa_chain.pem: the public certificate of the Root CA. This is used when peers
communicating in Simple or Cert mode perform an SSL handshake and exchange
their certificates for validity. In Simple Mode, the aaa_chain.pem is the OpenSSL
certificate located inAccessServer_install_
dir/access/oblix/tools/openssl/simpleCA/cacert.pem

Here, aaa is the name you specify for the file (applicable only to Cert and chain files).

You can edit an existing certificate with a text editing utility to remove all data except
that which is contained within the CERTIFICATE blocks. You then convert the edited
certificate to JKS format, and import it into the keystore. Java KeyTool does not allow
you to import an existing Private Key for which you already have a certificate. You
must convert the PEM format files to DER format files using the OpenSSL utility.

To convert an Oracle Access Manager certificate to JKS format and import it
1. Install and configure Java 1.6 or the latest version.

2. Copy the following files before editing to retain the originals:

■ aaa_chain.pem

■ aaa_cert.pem

■ cacert.pem, only if configuring for Simple mode

3. Edit aaa_chain.pem using TextPad to remove all data except that which is
contained within the CERTIFICATE blocks, and save the file in a new location to
retain the original.

-----BEGIN CERTIFICATE-----
...
CERTIFICATE
...
-----END CERTIFICATE-----

4. Run the following command for the edited aaa_chain.pem:

JDK_HOME\bin\keytool" -import -alias root_ca -file aaa_chain.pem -keystore
rootcerts

Here you are assigning an alias (short name) root_ca to the key. The input file
aaa_chain.pem is the one that you manually edited in step 3. The keystore name is
rootcerts.

You must give a password to access the keys stored in the newly created keystore.

Note: To ensure security, Oracle recommends that you allow the
keytool to prompt you to enter the password. This prompt occurs
automatically when the “-storepass” flag is omitted from the
command line.

Deploying SSO Solutions with Oracle Access Manager 10g

17-8 Oracle Fusion Middleware Application Security Guide

5. Enter the keystore password, when asked. For example:

Enter keystore password: <keystore_password>
Re-enter new keystore password: <keystore_password>

6. Enter Yes when asked if you trust this tool:

Trust this certificate? [no]: yes

7. Confirm that the certificate has been imported to the JKS format by executing the
following command and then the password.

JDK_HOME\bin\keytool" -list -v -keystore "rootcerts"
Enter keystore password: <keystore_password>

8. Look for a response like the following:

Keystore type: JKS
Keystore provider: SUN
Your keystore contains n entries
Alias name: root_ca
Creation date: April 19, 2009
Entry type: trustedCertEntry

Owner: CN=NetPoint Simple Security CA - Not for General Use, OU=NetPoint,
O="Oblix, Inc.", L=Cupertino, ST= California , C=US

Issuer: CN=NetPoint Simple Security CA - Not for General Use, OU=NetPoint,
O="Oblix, Inc.", L=Cupertino, ST= California ,C=US

Serial number: x
Valid from: Tue Jul 25 23:33:57 GMT+05:30 2000 until: Sun Jul 25 23:33:57
GMT+05:30 2010

Certificate fingerprints
 MD5: CE:45:3A:66:53:0F:FD:D6:93:AD:A7:01:F3:C6:3E:BC
 SHA1: D6:86:9E:83:CF:E7:24:C6:6C:E1:1A:20:28:63:FE:FE:43:7F:68:95
 Signature algorithm name: MD5withRSA
 Version: 1

9. Repeat steps 3 through 7 for the other PEM files (except aaa_chain.pem unless
there is a chain).

10. Convert the aaa_key.pem file to DER format using the OpenSSL utility in the
Access Server installation directory path. For example:

AccessServer_install_dir\access\oblix\tools\openssl>openssl pkcs8 -topk8
-nocrypt -in aaa_key.pem -inform PEM -out aaa_key.der –outform DER

Here the input file is aaa_key.pem and the output file is aaa_key.der. Additional
options include:

Table 17–1 Options to Create DER Format Files from PEM

Option Description

-topk8 Reads a traditional format private key and writes a PKCS#8
format key. This reverses the default situation where a PKCS#8
private key is expected on input and a traditional format private
key is written.

-nocrypt An unencrypted PrivateKeyInfo structure is expected for output.

Deploying SSO Solutions with Oracle Access Manager 10g

Configuring Single Sign-On Using Oracle Access Manager 10g 17-9

11. Simple or Cert Mode: In the PEM file (in this case, aaa_cert.pem), enter the pass
phrase for the Oracle Access Manager Access Server if it is configured for Simple
or Cert mode.

Passphrase for the certificate

12. Run the following command to convert the aaa_cert.pem file to DER format.

AccessServer_install_dir\access\oblix\tools\openssl>openssl x509 -in
aaa_cert.pem -inform PEM -out aaa_cert.der -outform DER

13. Import the DER format files into a Java keystore using the ImportKey utility. For
example:

Java_install_dir\doc>java -Dkeystore=jkscerts ImportKey aaa_key.der
aaa_cert.der

14. Review the results in the window, which should look something like the following
example:

Using keystore-file : jkscerts
One certificate, no chain
Key and certificate stored
Alias:importkey Password:your_password

15. Proceed as follows:

■ Identity Asserter for Single Sign-On: Go to "Configuring OAM Identity
Assertion for SSO with Oracle Access Manager 10g" on page 17-34.

■ Authenticator or Oracle Web Services Manager: Perform steps in "Creating
Resource Types in Oracle Access Manager 10g".

17.1.1.4 Creating Resource Types in Oracle Access Manager 10g
This section describes how to create resource types in Oracle Access Manager to
identify the types of resources that you want the policy domain to protect. This task is
required if you use the Oracle Access Manager Authenticator or if you have Oracle
Web Services Manager policies protecting Web services.

You use the Oracle Access Manager Access System Console to define resource types as
described here.

-inform Specifies the input format. If a PKCS#8 format key is expected
on input, then either a DER or PEM encoded version of a
PKCS#8 key is expected. Otherwise the DER or PEM format of
the traditional format private key is used.

-outform Specifies the output format. If a PKCS#8 format key is expected
on output, then either a DER or PEM encoded version of a
PKCS#8 key is expected. Otherwise the DER or PEM format of
the traditional format private key is used.

Note: If you are using the Oracle Access Manager Identity Asserter
for single sign-on, you can skip this task. In this case, only the default
http resource type is used.

Table 17–1 (Cont.) Options to Create DER Format Files from PEM

Option Description

Deploying SSO Solutions with Oracle Access Manager 10g

17-10 Oracle Fusion Middleware Application Security Guide

Defining the wl_authen resource type in Oracle Access Manager is required only
when you are using:

■ Oracle Access Manager Authenticator

■ Identity Asserter with Oracle Web Services Manager

To define resource types in Oracle Access Manager 10g
1. Go to the Access System Console and log in.

2. Select the Access System Configuration tab, and then click Common Information
Configuration, Resource Type Definitions, to display the List All Resource Types
page.

3. On the List All Resource Types page, click Add, to display the Define a new
Resource Type page.

4. Define the resource type with the following details:

■ Name: wl_authen

■ Display name: wl_authen

■ Resource matching: Case insensitive

■ Resource operation: LOGIN

5. Save the resource type you just defined.

6. Proceed as follows:

■ Authenticator: "Configuring the Authenticator for Oracle Access Manager
10g" on page 17-48

■ Oracle Web Services Manager: "Configuring Identity Assertion for Oracle
Web Services Manager and OAM 10g" on page 17-48

17.1.2 Configuring Global Logout for Oracle Access Manager 10g and 10g WebGates
This section discusses configuring logout for applications protected by a 10g WebGate
with Oracle Access Manager 10g. In Oracle Access Manager 10g, global logout (also
known as single log out (SLO) can be handled in various ways. This section describes
the recommended method.

For more information on killing the ObSSOCookie, see:

■ Recommended Process for Configuring Logout

■ Alternative Process for Configuring Logout

17.1.2.1 Recommended Process for Configuring Logout
There are two steps in the Oracle-recommended approach to configuring logout:

■ Configuring WebGate for Logout using the Sample Logout File

■ Configuring Applications for Logout

Note: Oracle Access Manager SSO user session tracking is performed
using DOMAIN cookies, specifically the ObSSOCookie. WebGates
look for the ObSSOCookie. Global or SLO for Oracle Access Manager
simply means killing the ObSSOCookie. Without the ObSSOCookie,
WebGates enforce a re-authentication workflow.

Deploying SSO Solutions with Oracle Access Manager 10g

Configuring Single Sign-On Using Oracle Access Manager 10g 17-11

17.1.2.1.1 Configuring WebGate for Logout using the Sample Logout File

WebGate configuration consist of:

■ logout.html: A logout page must be available on the Web server in the WebGate
installation directory: WebGate_install_dir/oamsso/logout.html.

If the file is located elsewhere on the Web server, ensure that the logout link is
correctly specified to load logout.html. See the logout.html in Example 17–1 on
page 17-11, which you can customize further depending on your needs.

■ logOutUrls (optional): If this parameter has already been configured for the
WebGate, the value "/oamsso/logout.html" must be added to the existing list.

■ Web Server Configuration: Check the Oracle HTTP Server Web server
configuration file, httpd.conf, on which the 10g WebGate is configured and delete
the following lines if they are present

<LocationMatch "/oamsso/*">
Satisfy any
</LocationMatch>

Use Example 17–1 when you begin constructing a logout.html for logout configuration
for an application protected by 10g WebGate in an OAM 10g deployment.

Example 17–1 logout.html Script

<html>
<head>
<script language="javascript" type="text/javascript">

function handleLogout() {

 //get protocol used at the server (http/https)
 var webServerProtocol = window.location.protocol;
 //get server host:port
 var webServerHostPort = window.location.host;
 //get query string present in this URL
 var origQueryString = window.location.search.substring(1);

 //vars to parse the querystring
 var params = new Array();
 var par = new Array();
 var val;

 if (origQueryString != null && origQueryString != "") {

 params = origQueryString.split("&");

 //search for end_url and redirect the user to this
 for (var i=0; i<params.length; i++) {

 par = params[i].split("=");

 if ("end_url" == par[0]) {

 endUrlVal = par[1];

 //check if val (value of end_url) begins with "/" or "%2F" (is it an URI?)
 if (endUrlVal.substring(0,1) == "/" || endUrlVal.substring(0,1) == "%") {

 if (endUrlVal.substring(0,1) == "%")

Deploying SSO Solutions with Oracle Access Manager 10g

17-12 Oracle Fusion Middleware Application Security Guide

 endUrlVal = "/" + endUrlVal.substring(3);

 //modify the end_url value now
 endUrlVal = webServerProtocol + "//" + webServerHostPort + endUrlVal;
 }
 //redirect the user to this URL
 window.location.href = endUrlVal;
 }
 }
 }
}
</script>
</head>

<body onLoad="handleLogout();">

<h3>You have been logged out<h3>

</body>
</html>

17.1.2.1.2 Configuring Applications for Logout Application configuration for logout
depends on whether it is an ADF application integrated with OPSS or if it is not
integrated with OPSS.

One of the following must be done to configure the application for logout:

■ A non-ADF application must be coded to invoke the logout link:
"/oamsso/logout.html?end_url=<target uri>".

■ An ADF application that has been integrated with OPSS requires configuring
OPSS for the OAM SSO provider and the application must send the 'end_url'
parameter.

Non-ADF Application
A non-ADF application must be coded to invoke the link for logout:
"/oamsso/logout.html?end_url=<target uri>".

The application can pass a parameter (named end_url) indicating the location where
the user should eventually be redirected to after logout. The value that is part of end_
url could either be a URL or a URI. For example, the logout link for the application
might be specified as

/oamsso/logout.html?end_url=<someUri>

or

/oamsso/logout.html?end_url=<someUrl>

Note: The logout configuration assumes that the applications are
present in a single DNS domain. If you would like SLO (single log
out) across applications deployed in different DNS domains, you must
customize the logout script to ensure processing for each WebGate. If
you have a multi DNS domain deployment, see the Oracle Access
Manager Access Administration Guide.

Deploying SSO Solutions with Oracle Access Manager 10g

Configuring Single Sign-On Using Oracle Access Manager 10g 17-13

If the end_url querystring is a URI, then the logout.html must construct the URL by
determining the host:port of the server where logout.html is hosted.

ADF-Coded Applications
If the Application is an ADF application that has been integrated with OPSS, then you
can use the following procedure to configure logout.

To configure centralized logout for ADF-coded applications
1. Check with the OAM Administrator to confirm the location of the logout.html

script configured with the Agent, which you need in following steps.

2. Configure OPSS for OAM as the SSO provider to update jps-config.xml for the
WebLogic administration domain, as follows:

a. Run wlst.sh (Linux) or wlst.cmd (Windows) from the following directory path:

WLST_install_dir/middleware/oracle_common/common/bin

b. At the WLS prompt, enter the OAM administrator ID and password and the
WebGate host and port:

wls:/> /connect("admin_ID", "admin_pw", "hostname:port"

The last parameter is optional if the server is running on localhost at the
default port (7001).

c. Enter the login URI for ADF authentication and the logout URI (location of the
logout.html script configured with the agent); the host and port are not
needed.

wls:/>addOAMSSOProvider(loginuri="/$<loginuri>",
logouturi="<logouturival>," autologinuri=None")

Here, logouturival is the URI of the logout script /oamsso/logout.html.
The logouturl could either begin with "logout" (exceptions are logout.gif and
logout.jpg) or could be any other value configured by the OAM Administrator.

3. Required: The ADF application must pass the end_url parameter indicating where
to redirect the user after logout. For ADF applications, logout is initiated when the
application causes the following URI to be invoked:

 /<app context root>/adfAuthentication?logout=true&end_url=<any uri>

17.1.2.2 Alternative Process for Configuring Logout
Oracle does not recommend this method unless your application already has a custom
logout page that you do not wish to change for any reason.

WebGate logs out of any request for a URL that has the string "logout." in it.
Exception: Image files such as logout.gif and logout.jpg. This is the simplest way to
integrate an application with OAM SLO. If your logout page begins with "logout." (for
example, logout.jsp) then you do not need to do any thing.

If your logout page does not begin with "logout.", then you must add your logout URL
to the WebGate LogOutUrls parameter. For instance: LogOutUrls = "/myapplication
/customscript.jsp".

Note: If your logout page begins with "logout." (for example,
logout.jsp) then you do not need to do any thing.

Oracle Access Manager Authentication Provider Parameter List

17-14 Oracle Fusion Middleware Application Security Guide

17.2 Oracle Access Manager Authentication Provider Parameter List
This section enumerates the common and provider-specific parameters relevant to the
Oracle Access Manager Authentication Provider. These are specified in the Oracle
WebLogic Administration Console. For more information, see:

■ Table 17–2, " Oracle Access Manager Authentication Provider Common
Parameters"

■ Table 17–3, " Provider-Specific Parameters"

■ Table 17–4, " Provider-Specific Parameters: Oracle Access Manager Authenticator"

The WebLogic Server Administration Console sets the JAAS Control Flag to
OPTIONAL when you create a new security provider. The default value for
out-of-the-box security providers is REQUIRED. For more details about the control
flag, see the online help.

Table 17–3 lists the provider-specific parameters for Oracle Access Manager the
Authenticator or the Identity Asserter for Oracle Web Services Manager.

Table 17–2 Oracle Access Manager Authentication Provider Common Parameters

Parameter Name Parameter Description

Name The name of the provider. Read-only.

Description The description of the provider. Read-only.

Version The version of the provider. Read-only.

Control Flag The provider JAAS control flag. Set one of the following: REQUIRED,
REQUISITE, OPTIONAL, or SUFFICIENT. When configuring multiple
Authentication Providers, use this flag to control how they are use in the
login sequence. See JAAS Control Flag.

Active Types This parameter is relevant to only Oracle Access Manager Identity
Asserter. This parameter determines the token types that the Identity
Asserter Provider processes. Set as follows for OAM 10g and 10g
WebGate:

■ OAM 10g and 10g WebGate: ObSSOCookie

■ OAM_REMOTE_USER

Base64 Decoding Required False is Read-only (the default).

Note: With OAM 11g, the Access Server is known as the OAM
Server.

Table 17–3 Provider-Specific Parameters

Parameter Name Parameter Description

Transport Security The mode of communication between AccessGate and Access Server.

Minimum Access Server
Connections In Pool

The minimum number of connections allowed. Default is 5.

Access Gate Password The password of the AccessGate used by the provider.

Key Store Pass Phrase The password to access the key store.

Access Gate Name The name of the AccessGate used by the provider. Required.

Primary Access Server The name of the primary access server. It must conform to the format
host:port. Required. See "Installing and Setting Up Authentication
Providers for OAM 10g" on page 17-1.

Introduction to OAMCfgTool

Configuring Single Sign-On Using Oracle Access Manager 10g 17-15

Table 17–4 lists provider-specific parameters for the Oracle Access Manager
Authenticator.

17.3 Introduction to OAMCfgTool
This topic introduces OAMCfgTool, which can be used only if you are deploying the
Oracle Access Manager 10g Identity Asserter for single sign-on.

Maximum Access Server
Connections In Pool

The maximum number of connections allowed. Default is 10. Set to 1.

Simple Mode PassPhrase The password shared by AccessGate and Access Server for Simple or
Cert communication modes.

Trust Store The absolute path of JKS trust store used for SSL communication
between the provider and the Oracle Access Manager Access Server.

SSOHeader Name OAM_REMOTE_USER

Secondary Access Server The name of the secondary access server. It must conform to the format
host:port. See "Installing and Setting Up Authentication Providers for
OAM 10g" on page 17-1.

Key Store The absolute path of JKS key store used for SSL communication between
the provider and the Oracle Access Manager Access Server.

Table 17–4 Provider-Specific Parameters: Oracle Access Manager Authenticator

Parameter Name Parameter Description

Transport Security The mode of communication between AccessGate and Access Server.

Maximum Access Server
Connections In Pool

The maximum number of connections allowed. Default is 10. Set to 1.

Simple Mode Pass Phrase The password shared by AccessGate and Access Server for simple or cert
communication modes.

Minimum Access Server
Connections In Pool

The minimum number of connections allowed. Default is 5.

Trust Store The absolute path of JKS trust store used for SSL communication
between the provider and the Oracle Access Manager Access Server.

Use Retrieved username As
Principal

Specifies whether to use the user name retrieved from Oracle Access
Manager as the Principal in the Subject.

Access Gate Password The password of the AccessGate used by the provider.

Key Store Pass Phrase The password to access the key store.

Access Gate Name The name of the AccessGate used by the provider. Required.

Secondary Access Server The name of the secondary access server. It must conform to the format
host:port. See:

■ "Installing and Setting Up Authentication Providers for OAM 10g"
on page 17-1

Key Store The absolute path of JKS key store used for SSL communication between
the provider and the Oracle Access Manager Access Server.

Primary Access Server The name of the primary access server. It must conform to the format
host:port. Required. See:

■ "Installing and Setting Up Authentication Providers for OAM 10g"
on page 17-1

Table 17–3 (Cont.) Provider-Specific Parameters

Parameter Name Parameter Description

Introduction to OAMCfgTool

17-16 Oracle Fusion Middleware Application Security Guide

OAMCfgTool launches a series of scripts to request information and set up the
required profiles and policies in Oracle Access Manager 10g. OAMCfgTool runs in the
following modes:

■ CREATE mode

java -jar oamcfgtool.jar mode=CREATE param=value

■ VALIDATE mode

java -jar oamcfgtool.jar mode=VALIDATE param=value

■ DELETE mode

java -jar oamcfgtool.jar mode=DELETE param=value

Unless you specify an LDIF output file, configuration changes are written directly in
the LDAP directory server that is configured with Oracle Access Manager. In addition,
without an LDIF file, OAM Access Server's cache is updated with the configuration
changes.

You can also specify a log level and an output file for logging details. If errors occur
when running OAMCfgTool, these are reported on the command line.

Passwords
OAMCfgTool expects four passwords: LDAP user, Application agent, OAM mode, and
Test user.

Without the -noprompt parameter, OAMCfgTool attempts to fetch passwords first
from the command line. If no password is found, then OAMCfgTool pauses and
prompts for a password to be entered on the command line.

However if you specify the -noprompt parameter, OAMCfgTool checks for
passwords passed from the command line:

■ If the password was not passed from command line, then OAMCfgTool checks for
passwords passed from System.in.

■ If no password is passed from System.in, OAMCfgTool stops execution with an
exception indicating that the required password was not provided.

Passwords can be passed from a shell using an echo command and a semi-colon as a
separator. For instance:

■ To specify all four passwords:

$ (echo ldapUserPwd; echo appAgentPwd; echo OAMModePwd; echo
TestUserPwd) | java -jar oamcfgtool.jar <args> -noprompt

■ To specify only ldapUsrPwd and appAgentPwd:

$ (echo ldapUserPwd; echo appAgentPwd) | java -jar
oamcfgtool.jar <args> -noprompt

■ To specify only appAgentPwd:

$ (echo; echo appAgentPwd) | java -jar oamcfgtool.jar <args>
-noprompt

Note: When configuration changes are written to an LDIF file, it can
be loaded into the directory server for Oracle Access Manager at a
later time.

Introduction to OAMCfgTool

Configuring Single Sign-On Using Oracle Access Manager 10g 17-17

For more information, see "OAMCfgTool Parameters and Values" on page 17-17.

17.3.1 OAMCfgTool Process Overview
This topic describes the processing that occurs when you use OAMCfgTool with
various parameters and values for your environment.

This topic focuses on using OAMCfgTool for OAM 10g. If you are using OAM 11g,
skip this topic and instead refer to the chapter Chapter 16, "Configuring Single
Sign-On with Oracle Access Manager 11g".

Process overview: OAMCfgTool creates the authentication scheme, policy
domain, and WebGate profile
1. The app_domain parameter creates a policy domain in the Policy Manager to

enable authentication for the application.

2. The web_domain parameter creates a host identifier that connects the WebGate
host sending requests to your application and links the policy to the existing
WebGate.

3. The protected_uris parameter defines application-specific URL's to protect HTTP
resources using the host identifier.

4. The public_uris parameter creates a policy to protect certain URIs with the
Anonymous Authentication scheme for http resources (GET and POST operations)
in the app_domain name.

5. The LDAP parameters specify the directory server used by Oracle Access
Manager to identity the searchbase from which all LDAP queries are performed.
For more information, see Table 17–5

6. The log file and level parameters specify an output file and logging level for
OAMCfgTool.

7. The output_ldif_file parameter defines the name of the LDIF file that is created to
be loaded later in the directory server, if specified. Otherwise, configuration
changes are written to the directory server

17.3.2 OAMCfgTool Parameters and Values
Find the following topics here:

■ Create Mode Parameters and Values

■ Validate Mode Parameters and Values

See Also:

■ "OAMCfgTool Parameters and Values" on page 17-17

■ "Sample Policy Domain and AccessGate Profile Created with
OAMCfgTool" on page 17-29

Note: See the web_domain parameter in Table 17–5.

Note: See the uris_file parameter in Table 17–5 for details about
specifying protected and public URIs in a file.

Introduction to OAMCfgTool

17-18 Oracle Fusion Middleware Application Security Guide

■ Delete Mode Parameters and Values

17.3.2.1 Create Mode Parameters and Values
Table 17–5 provides both required and optional OAMCfgTool parameters and values
for CREATE mode. You can specify multiple parameters at one time.

Table 17–5 OAMCfgTool CREATE Mode Parameters and Values

Parameters CREATE Mode Values

Required Parameters Required Parameter Values

app_domain Name of the Oracle Access Manager policy domain to protect the application. Within
the Policy Manager this is known as the policy domain name.

protected_uris URIs for the protected application in a comma separated list (with or without spaces):
/myapp/login, for example.

See Also: The uris_file parameter in this table.

uris_file The full path to a file containing any number of protected or public URIs and
eliminates the need to use the protected_uris or public_uris parameters. Ensure that
the file uses the following syntax and format:

--At least one protected URI is required.
--Only one product family is allowed per file.
--Comments begin with '#'
--Keyword: public_uris. List public URIs on separate lines after this key word.
--Key word: protected_uris. List URIs to be protected on separate lines after this key
word.
For example:

########################
#Finance
########################
.
########################
protected_uris
########################
/finance/protected/test1
/finance/protected/test2
########################
public_uris
########################
/finance/public
/finance/protected/test1/public

app_agent_password Password to be provisioned for the WebGate. In the AccessGate Profile within the 10g
Access System Console, this parameter is known as the AccessGate Password. Your
entry appears in clear text on the command line but is not captured in a log file.

Note: This parameter is not required if you will not create a WebGate profile. See
Also: -noprompt later in this table and the discussion "Passwords" on page 17-16.

ldap_host DNS name of the computer hosting the LDAP directory server for Oracle Access
Manager. This is the directory server containing the OAM policy data.

Note: SSL-enabled communication with the directory server is not supported.

ldap_port Port of the LDAP directory server.

ldap_userdn The valid DN of the LDAP administrative user, entered as a quoted string. In Oracle
Access Manager this is known as the Root DN or Bind DN.

Introduction to OAMCfgTool

Configuring Single Sign-On Using Oracle Access Manager 10g 17-19

ldap_userpassword Password of LDAP administrative user. Passwords appear in clear text but are not
captured in a log file. See Also: -noprompt later in this table.

See Also: -noprompt later in this table and the discussion "Passwords" on
page 17-16.

oam_aaa_host DNS name of the computer hosting an accessible Access Server.

After making appropriate changes to the Directory Server, a Cache flush request
would be sent to this Access Server so that Access Servers refresh their appropriate
caches.

If the 'primary_oam_servers' parameter is not specified, then the WebGate profile
being created would be configured to use the Access Server, specified as part of oam_
aaa_host, as the Primary Access Server. Number of connections would default to 1.

See Also: primary_oam_servers and secondary_oam_servers, later in this table.

oam_aaa_port Listening port on the accessible Access Server

Optional Parameters Optional Parameter Values

help Provides a list of parameters and descriptions.

version Lists the version of the OAMCfgTool.

web_domain Primarily used to specify the host identifier.

Note: OAMCfgTool either creates a host identifier and Webgate profile together or
does not create either of them, as described in the following two scenarios:

Creation of a Fresh Web Tier: If the host identifier specified by the parameter "web_
domain" (or "app_domain" if "web_domain" is not specified) does not exist in OAM,
then the following would be created in OAM:

1. A new host identifier is created with the value specified by "web_domain" (or
"app_domain" if "web_domain" is not specified).

2. A new WebGate profile, the name of which is derived using the following rules:

a. If "webgate_id" is specified, then the WebGate profile is created with the value
specified in "webtate_id"

b. If "webgate_id" is not specified, then the WebGate profile is created with the
value specified in "web_domain" with "_AG" appended to it. For example: <web_
domain>_AG.

c.If "webgate_id" and "web_domain" are not specified, then the WebGate profile
is created with the value specified in "app_domain" with "_AG" appended to it.
For example: <app_domain>_AG.

3. The value of the "Preferred Http Host" field of the WebGate profile and the
"hostname variations" as part of the Host Identifier created in step 1 above are
automatically populated with a same value.

See Also: The hostname_variations parameter in this table for configuring virtual
hosts.

Using an existing Web Tier (Join a web domain): If the host identifier specified as
part of "web_domain" (or "app_domain", if "web_domain" is not specified) exists in
OAM, then:

■ A host identifier is not created

■ A WebGate profile is not created

Note: The host identifier created in a fresh Web Tier is used in the policy domain
being used.

If virtual Web hosting is supported, supply a reserved name in the Preferred HTTP
Host field instead of a host name variation.

See Also: The hostname_variations parameter in this table and the Oracle Access
Manager Access Administration Guide.

Table 17–5 (Cont.) OAMCfgTool CREATE Mode Parameters and Values

Parameters CREATE Mode Values

Introduction to OAMCfgTool

17-20 Oracle Fusion Middleware Application Security Guide

cookie_domain Name of the domain to use for the ObSSOCookie. Within the AccessGate Profile in
the Access System Console, this is known as the Primary HTTP Cookie Domain.

Use this parameter when you create a new WebGate profile in a fresh Web Tier.

public_uris URIs that must be unprotected using the Anonymous authentication scheme. You can
identify public URIs by providing a comma separated list: "uri1,uri2,uri3", for
example.

See Also: The uris_file parameter in this table.

ldap_base Base from which all LDAP searches are performed.

oam_aaa_mode Transport security mode of the accessible Access Server: OPEN, SIMPLE, or CERT.
Default presumes OPEN.

oam_aaa_passphrase Passphrase required for SIMPLE mode transport security mode only. The passphrase
appears in clear text but is not captured in a log file.

See Also: The discussion "Passwords" on page 17-16.

log_file Name of the OAMCfgTool log file. Output to the screen is the default.

log_level Level for OAMCfgTool logging: ALL, SEVERE, WARNING, INFO, CONFIG, FINE,
FINER, FINEST, OFF.

Default = WARNING

output_ldif_file Name of the LDIF file in which to store details from OAMCfgTool operations to load
into the LDAP directory server later. If none is specified, changes are written
immediately to the LDAP directory server and caches in Oracle Access Manager are
flushed to make new information available.

noprompt Disables password prompts from OAMCfgTool and enables password checks as
follows:

■ If no password was passed from the command line, then OAMCfgTool checks for
passwords passed from System.in. See Also: "Passwords" on page 17-16 for more
information.

■ If no password is passed from System.in, OAMCfgTool stops execution with an
exception indicating that the required password was not provided.

authenticating_wg_url URI containing the host and port of the authenticating WebGate (when you have both
an authenticating and a resource WebGate). For example:

authenticating_wg_uri=http://host:port

This parameter configures the "Challenge Redirect Parameter" of both the following
authentication schemes:

■ OraDefaultFormAuthenNScheme

■ OraDefaultI18NformAuthenNScheme

Note: The 'Challenge Redirect' parameter is added when the authentication scheme is
created. The 'Challenge Redirect' parameter of an existing authentication scheme is
not updated.

configOIMPwdPolicy Creates the Oracle Identity Manager (OIM) password policy to automate integration
with Oracle Access Manager. Also, the corresponding authentication scheme used by
the policy is enabled to check password policies.

See Also: "OIM Integration-Related Parameters and Values" on page 17-25.

Table 17–5 (Cont.) OAMCfgTool CREATE Mode Parameters and Values

Parameters CREATE Mode Values

Introduction to OAMCfgTool

Configuring Single Sign-On Using Oracle Access Manager 10g 17-21

OimOhsHostPort Required when integrating Oracle Identity Manager (OIM) with Oracle Access
Manager and an authentication WebGate and resource WebGate.

See Also: "OIM Integration-Related Parameters and Values" on page 17-25.

Not required without an authenticating WebGate. In this case, Oracle Identity
Manager (OIM) password policy (OraOIMDefPasswdPolicy) automates integration
with Oracle Access Manager and the corresponding authentication scheme used by
the policy is enabled to check password policies. Default values are used for the
password policy-related parameters with the value in OimOhsHostPort prepended to
these. For example:

-OimLostPwdRedirectUrl (Lost Password Redirect URL):
<OimOHSHostPort>/admin/faces/pages/forgotpwd.jspx
-OimPwdRedirectUrl (Password Change Redirect URL):
<OimOHSHostPort>/admin/faces/pages/pwdmgmt.jspx?backUrl=%RESOURCE%
-OimLockoutRedirectUrl (Account Lockout Redirect URL):
<OimOHSHostPort>/ApplicationLockoutURI

OimOhsHostPort parameter is applicable only if the -configOimPwdPolicy flag is
present.

See Also: "OIM Integration-Related Parameters and Values" on page 17-25.

logouturi Facilitates configuration of LogoutRedirectUrl on the Resource WebGate by pointing
to the URL location on the Authenticating WebGate where the perl script for logout is
configured.

The value of logouturi parameter must be a URI. The WebGate LogoutRedirectUrl
parameter is configured using the authenticating_wg_url and logouturi parameters:

http://<awghost>:<awgport>/cgi-bin/logout.pl

LogoutRedirectUrl http://myhost.us.myco.com:7777/cgi-bin/logout.pl.

Note: Do not configure the LogoutRedirectUrl parameter on the authenticating
WebGate itself. Instead, leave the LogoutRedirectUrl blank on the authenticating
WebGate.

To configure the logout URI when you create an application domain and provision a
fresh WebGate:

$ (echo ldapUserPwd; echo appAgentPwd; echo OAMModePwd; echo TestUserPwd)
java -jar oamcfgtool.jar app_domain=app_domain protected_uris="/protUri"
ldap_host=<ldap-host> ldap_port=3899 ldap_userdn="cn=Directory Manager"
oam_aaa_host=<aaa_host> oam_aaa_port=7054 oam_aaa_mode=simple ldap_
base="o=company,c=us" oam_aaa_passphrase=welcome1 authenticating_wg_
url=http://myhost.us.myco.com:7777 -logouturi=/cgi-bin/logout.pl
-noprompt

Note: To use an existing WebGate, use the webgate_id parameter as described next.

Table 17–5 (Cont.) OAMCfgTool CREATE Mode Parameters and Values

Parameters CREATE Mode Values

Introduction to OAMCfgTool

17-22 Oracle Fusion Middleware Application Security Guide

webgate_id Specifies the name of the existing WebGate for which "LogoutRedirectUrl" is not yet
configured.

Notes: The WebGate profile is created only if the corresponding host identifier does
not already exist in Oracle Access Manager. Further:

■ If you do not provide webgate_id, the profile is created with the name specified
with the value of web_domain, appended with _AG (web_domain_AG).

■ If web_domain is not specified, then app_domain is used to create the name of
the profile, appended with _AG (app_domain_AG)

Following is a sample command using webgate_id.:

$ (echo ldapUserPwd; echo appAgentPwd; echo OAMModePwd; echo TestUserPwd)
java -jar oamcfgtool.jar app_domain=myapp webgate_id=MyWebgate
protected_uris="/protUri"
ldap_host=<ldap-host> ldap_port=3899 ldap_userdn="cn=Directory Manager"
oam_aaa_host=<aaa_host> oam_aaa_port=7054 oam_aaa_mode=simple ldap_
base="o=company,c=us" oam_aaa_passphrase=welcome1 authenticating_wg_
url=http://myhost.us.myco.com:7777 -logouturi=/cgi-bin/logout.pl
-noprompt

hostname_variations Enables you to add values to the Hostname Variations section of the Host Identifier in
Oracle Access Manager.

To configure virtual hosts for Apache-based Web servers (including OHS), include
this parameter as follows:

java -jar oamcfgtool.jar app_domain=<app domain> web_domain=<hostid1> ...
hostname_variations=vhost1,vhost2

Note:

■ If a host identifier specified with web_domain parameter does not exist in Oracle
Access Manager, it is created and values of hostname_variations are added
to the hostname variations section of this host identifier.

■ If the specified host identifier already exists in Oracle Access Manager, values of
hostname_variations are appended to the existing set of hostname variations for
the host identifier.

■ If the WebGate profile identified by the webgate_id parameter (or the
web-domain parameter or the app_domain parameter) does not exist, it is
created and its "preferred http host" field is set to 'SERVER_NAME: the
preferred_http_host parameter is not required in this case.

To configure virtual hosts for non-Apache-based Web servers, include the parameter,
preferred_http_host as described next.

Table 17–5 (Cont.) OAMCfgTool CREATE Mode Parameters and Values

Parameters CREATE Mode Values

Introduction to OAMCfgTool

Configuring Single Sign-On Using Oracle Access Manager 10g 17-23

preferred_http_host Makes configurable the Preferred Http Host field of the WebGate profile.

To configure virtual hosts for non-Apache-based Web servers, include this parameter,
with a value of HOST_HTTP_HEADER, as follows:

java -jar oamcfgtool.jar app_domain=<app domain> web_domain=<hostid1> ...
hostname_variations=vhost1,vhost2 preferred_http_host=HOST_HTTP_HEADER

You can simply add multiple hostname variations to a host identifier using the
hostname_variations and preferred_http_host parameters as follows:

java -jar oamcfgtool.jar app_domain=<app domain> web_domain=<hostid1> ...
hostname_variations=hostname1,hostname2 preferred_http_host=SOME_
HOSTNAME_VARIATION_VALUE

The virtual environment notes apply. Additionally, if the WebGate profile is being
created, then you can set the preferred http host field of the profile to any value from
the hostname variations

Generally, you do not need additional hostname variations when creating a host
identifier in a non-virtual host environment. OAMCfgTool adds a default value to the
preferred http host field of the WebGate profile and to the hostname variation section
of the host identifier being created.

Table 17–5 (Cont.) OAMCfgTool CREATE Mode Parameters and Values

Parameters CREATE Mode Values

Introduction to OAMCfgTool

17-24 Oracle Fusion Middleware Application Security Guide

default_authn_scheme Configures the default authentication scheme for a policy domain. You must pass the
authentication scheme name as displayed in the Access System Console.

OAMCfgTool always provisions the following authentication schemes:

■ OraDefaultBasicAuthNScheme: The default Basic authentication scheme

■ OraDefaultFormAuthNScheme: The default Form authentication scheme

■ OraDefaultI18NFormAuthNScheme: The default i18n authentication scheme

■ OraDefaultAnonAuthNScheme: The default Anonymous Authentication scheme

The first time you run the tool in a new deployment, the schemes in the previous list
are created.

The authentication scheme specified as part of the "default_authn_scheme" parameter
is used to configure the Default Authentication Rule section of the Policy Domain
being configured.

With the OAM URIs file, you can configure the authentication scheme for a protected
policy (policies that are specified after the key word "protected_uris" for the Policy
Domain. You must pass the Authentication Scheme name in the URIs file in the
following format (the policy name and authentication scheme name must be
separated by a tab character):

<Policy Name> 'tab' <Authentication Scheme Name>.

Following is an example of entries in a URIs file (for more information, see the uris_
file parameter earlier in this table):

#---
protected_uris

protected policy1 Basic Over LDAP
/protected1 public1/mystuff.html

protected policy2 OraDefaultFormAuthNScheme
/protected2/public2/prot2 /.../{*.js,*.png,*.gif}

protected policy3 Client Certificate
/protected2/public2/prot2/.../{*.js,*.png,*.gif}
#--

The previous entries in a URIs file produce the following named policies:

■ protected policy1 is configured to use the Basic Over LDAP scheme

■ protected policy2 is configured to use the OraDefaultFormAuthNScheme
scheme

■ protected policy3 is configured to use the Client Certificate scheme

Table 17–5 (Cont.) OAMCfgTool CREATE Mode Parameters and Values

Parameters CREATE Mode Values

Introduction to OAMCfgTool

Configuring Single Sign-On Using Oracle Access Manager 10g 17-25

17.3.2.1.1 OIM Integration-Related Parameters and Values Table 17–6 identifies OIM
integration-related parameters and values for OAMCfgTool.

max_oam_connections Supports high availability and multiple Access Servers by specifying the maximum
number of connections ('Maximum Connections') for the WebGate profile being
created.

primary_oam_servers Supports high availability and multiple Access Servers by configuring the WebGate
profile with more than one primary Access Server. The format of this parameter is:

■ Colons join each Access Server name with the number of connections to the
WebGate. For example: primary_oam_servers="aaaid1:3". If no numeric value is
specified, the default is 1.

■ Comma-separated list of Access Server names and the number of connections to
the WebGate. For example: primary_oam_
servers="aaaid1:3,aaaid2:1,aaaid3,aaaid4:2"

Notes:

■ Access Server IDs must exist within OAM and must be unique (no duplicates
and not present in both primary and secondary values).

■ Transport Security mode of WebGate and Access Servers must match.

■ The Access Management Service mode of WebGate and Access Server must
match.

secondary_oam_servers Supports high availability and multiple Access Servers by configuring the WebGate
profile with more than one secondary Access Server. The format of this parameter is:

■ Colons join each Access Server name with the number of connections to the
WebGate. For example: secondary_oam_servers="aaaid1:3". If no numeric value
is specified, the default is 1.

■ Comma-separated list of Access Server names and the number of connections to
the WebGate. For example: secondary_oam_
servers="aaaid1:3,aaaid2:1,aaaid3,aaaid4:2"

Notes:

■ Access Server IDs must exist within OAM and must be unique (no duplicates
and not present in both primary and secondary values).

■ Transport Security mode of WebGate and Access Servers must match.

■ The Access Management Service mode of WebGate and Access Server must
match.

See Also: The section on integrating Oracle Access Manager 10g
with Oracle Identity Manager 11g in the Oracle Fusion Middleware
Enterprise Deployment Guide for Oracle Identity Management

Table 17–5 (Cont.) OAMCfgTool CREATE Mode Parameters and Values

Parameters CREATE Mode Values

Introduction to OAMCfgTool

17-26 Oracle Fusion Middleware Application Security Guide

Table 17–6 Additional OIM Integration-Related Parameters and Values

Parameter Description

configOIMPwdPolicy Creates the Oracle Identity Manager (OIM) password policy
(OraOIMDefPasswdPolicy) to automate integration with Oracle
Access Manager. Additionally, the corresponding authentication
scheme used by the policy is enabled to check password policies.

For example, if the policy is used with the default authentication
scheme (OraDefaultFormAuthnScheme), then the scheme’s
"Validate_Password" plug-in is updated to include
'obReadPasswdMode="LDAP",obWritePasswdMode="LDAP"'.

Note: Use default values for password-related parameters in
Identity System Console, prepended with the value specified
with OimOhsHostPort.

When configOIMPwdPolicy is used, ensure that you do not have
the default OIM password policy created using the tool
previously and do not pass any of the following parameters:

When configOIMPwdPolicy is used, ensure that you do not have
the default OIM password policy created using the tool
previously and do not pass any of the following parameters:

OimOhsHostPort Required when integrating Oracle Identity Manager (OIM) with
Oracle Access Manager and an authentication WebGate and
resource WebGate.

Not required without an authenticating WebGate. In this case,
Oracle Identity Manager (OIM) password policy
(OraOIMDefPasswdPolicy) automates integration with Oracle
Access Manager and the corresponding authentication scheme
used by the policy is enabled to check password policies. Default
values are used for the password policy-related parameters with
the value in OimOhsHostPort prepended to these. For example:

-OimLostPwdRedirectUrl (Lost Password Redirect URL):
<OimOHSHostPort>/admin/faces/pages/forgotpwd.jspx
-OimPwdRedirectUrl (Password Change Redirect URL):
<OimOHSHostPort>/admin/faces/pages/pwdmgmt.jspx?backUrl
=%RESOURCE%
-OimLockoutRedirectUrl (Account Lockout Redirect URL):
<OimOHSHostPort>/ApplicationLockoutURI

OimOhsHostPort parameter is applicable only if the
-configOimPwdPolicy flag is present.

OimPwdRedirectUrl Required for configOIMPwdPolicy. Configures the Password
Change Redirect URL parameter in Oracle Access Manager.

OimLockoutRedirectUrl Required for configOIMPwdPolicy. Configures the Custom
Account Lockout Redirect URL parameter in Oracle Access
Manager.

OimLostPwdRedirectUrl Required for configOIMPwdPolicy. Configures the Lost
Password Redirect URL parameter in Oracle Access Manager.

Note: This is a one time setup requirement. If the
OraOIMDefPasswdPolicy policy already exists, it is not created anew.
You must restart the Identity and Access Servers after this operation.
See Example 17–2.

Introduction to OAMCfgTool

Configuring Single Sign-On Using Oracle Access Manager 10g 17-27

Example 17–2 OIM Integration-Related Parameter Usage

$ (echo ldapUserPwd; echo appAgentPwd; echo OAMModePwd; echo TestUserPwd)
java -jar oamcfgtool.jar app_domain=app_domain protected_uris="/protUri"
ldap_host=<ldap-host> ldap_port=3899 ldap_userdn="cn=Directory Manager"
oam_aaa_host=<aaa_host> oam_aaa_port=7054 oam_aaa_mode=simple ldap_
base="o=company,c=us" oam_aaa_passphrase=welcome1 authenticating_wg_
url=http://myhost.us.myco.com:7777 -configOIMPwdPolicy
OimPwdRedirectUrl="http://oimredirectutl.com
OimLockoutRedirectUrl="http://oimlockouturl.com"
OimLostPwdRedirectUrl="http://oimLostpwdurl.com"
-noprompt

17.3.2.2 Validate Mode Parameters and Values
Master or Delegated Access Administrators can check Oracle Access Manager directly
to validate policy domain and WebGate profile setup.

Using OAMCfgTool in VALIDATE mode, you can ensure that the policy domain for
single sign-on configuration is correct. In this case, a set of requests are sent
automatically to protected resources.

Table 17–7 provides both required and optional OAMCfgTool parameters and values
for VALIDATE mode.

Note: You cannot use OAMCfgTool mode to validate AccessGate
profile creation.

Table 17–7 OAMCfgTool VALIDATE Mode Parameters and Values

VALIDATE Mode
Parameters VALIDATE Mode Values for Required Parameters

Required Parameters Values

app_domain Name of the Oracle Access Manager policy domain that was created to protect the
Application.

ldap_host DNS name of the computer hosting the LDAP directory server for Oracle Access
Manager.

ldap_port Port of the LDAP directory server.

ldap_userdn The valid DN of the LDAP administrative user, entered as a quoted string. In Oracle
Access Manager this is known as the Root DN or Bind DN.

ldap_userpassword Password of the LDAP administrative user. Passwords appear in clear text but are not
captured in a log file. See Also: noprompt in this table.

ldap_base Base from which all LDAP searches are done. In Oracle Access Manager this is known
as the search base or configuration base. For example: dc=company,c=us.

oam_aaa_host DNS name of the computer hosting the Access Server.

oam_aaa_port Listening port on the Access Server host.

test_username User name to be used for policy validation.

test_userpassword User password to be used for policy validation. Passwords appear in clear text but are
not captured in a log file. See Also: noprompt in this table.

Introduction to OAMCfgTool

17-28 Oracle Fusion Middleware Application Security Guide

17.3.2.3 Delete Mode Parameters and Values
Using OAMCfgTool in DELETE mode, you can remove the provisioned policies, the
web domain, WebGate registration, and authentication scheme.

Table 17–8 provides both required and optional OAMCfgTool parameters and values
for DELETE mode.

noprompt Enables OAMCfgTool to read passwords from System.in to ensure safe passage.
Passwords can be passed from a shell using an echo command and a semi-colon as a
separator. ConfigTool expects four passwords: Ldap user, App agent, OAM mode and
Test user:

See Also: noprompt in Table 17–5.

Optional Parameters Values

web_domain Host identifier

ldap_base Base from which all LDAP searches are done. In Oracle Access Manager this is known
as the search base or configuration base. For example: dc=company,c=us.

oam_aaa_mode Transport security mode of the accessible Access Server: OPEN, SIMPLE, or CERT.
Default presumes OPEN.

oam_aaa_passphrase Passphrase required for SIMPLE mode transport security mode only. Your entry
appears in clear text. However, it is not captured in a log file.

log_file Name of the OAMCfgTool log file. Output to the screen is the default.

log_level Level for OAMCfgTool logging: ALL, SEVERE, WARNING, INFO, CONFIG, FINE,
FINER, FINEST, OFF (the default).

noprompt Enables OAMCfgTool to read passwords from System.in to ensure safe passage.
Passwords can be passed from a shell using an echo command and a semi-colon as a
separator. OAMCfgTool expects four passwords: LDAP user, Application agent, OAM
mode and Test user.

See Also Table 17–5.

Table 17–8 OAMCfgTool DELETE Mode Parameters

DELETE Mode Parameters DELETE Mode Values for Required Parameters

ldap_host DNS name of the computer hosting the LDAP directory server for Oracle Access Manager.

ldap_port Port of the LDAP directory server.

ldap_userdn The valid DN of the LDAP administrative user, entered as a quoted string. In Oracle Access
Manager this is known as the Root DN or Bind DN.

ldap_userpassword Password of the LDAP administrative user. Passwords appear in clear text but are not captured
in a log file. See Also: -noprompt in Table 17–5.

oam_aaa_host DNS name of the computer hosting the Access Server.

oam_aaa_port Listening port on the Access Server host.

Optional Parameters Values

app_domain To delete the entire application domain, specify only app_domain with no URI-related
parameters.

web_domain web_domain=existing_host_Identifier

To delete the host identifier identified by this parameter and the WebGate registration.

See Also: Table 17–5.

Table 17–7 (Cont.) OAMCfgTool VALIDATE Mode Parameters and Values

VALIDATE Mode
Parameters VALIDATE Mode Values for Required Parameters

Introduction to OAMCfgTool

Configuring Single Sign-On Using Oracle Access Manager 10g 17-29

17.3.3 Sample Policy Domain and AccessGate Profile Created with OAMCfgTool
This topic describes and illustrates the results of running OAMCfgTool when viewed
in Oracle Access Manager:

■ My Policy Domains

■ Policy Domain, General Tab

■ Policy Domain, Resources Tab

■ Policy Domain, Authorization Rules Tab

■ Policy Domain, Default Rules Tab

■ Policy Domain, Policies Tab

■ Policy Domain, Delegated Access Admins Tab

■ Host Identifiers

■ AccessGate Profile

My Policy Domains
Name: app_domain value specified with OAMCfgTool.

Policy Domain, General Tab
Figure 17–1 illustrates the General tab in a sample policy domain created with
OAMCfgTool. The Description is provided automatically.

Name: app_domain value specified with OAMCfgTool
Description: includes the app_domain value created by user@hostname ...

protected_uris URIs for the protected application in a comma separated list (with or without spaces):
/myapp/login, for example.

Deletes one or more protected URIs from an application domain.

See Also: The uris_file parameter in this table.

public_uris Deletes one or more public URIs from an application domain.

See Also: The uris_file parameter in this table.

uris_file The full path to a file containing any number of protected or public URIs and eliminates the
need to use the protected_uris or public_uris parameters. Ensure that the file uses the following
syntax and format.

See Also: Table 17–5.

authn_scheme The name of the authentication scheme to delete: OraDefAuthSchemes,
OraDefaultAWGFormAuthNScheme, OraDefaultI18NFormAuthNScheme.

To delete all three, specify OraDefAuthSchemes:

You can include the following options:

-noconfirm With this parameter there is no prompt for confirmation before deleting.

noprompt Enables OAMCfgTool to read passwords from System.in to ensure safe passage. Passwords can
be passed from a shell using an echo command and a semi-colon as a separator. OAMCfgTool
expects four passwords: LDAP user, Application agent, OAM mode and Test user.

See Also Table 17–5.

Note: For descriptions only, the Java API retrieves the current user
from the operative platform and the name of the computer host:
user@hostname.

Table 17–8 (Cont.) OAMCfgTool DELETE Mode Parameters

DELETE Mode Parameters DELETE Mode Values for Required Parameters

Introduction to OAMCfgTool

17-30 Oracle Fusion Middleware Application Security Guide

Figure 17–1 Sample OAMCfgTool Policy Domain General Tab

Policy Domain, Resources Tab
Figure 17–2 illustrates the Resources tab in a sample policy domain created with
OAMCfgTool. The http resource type is the default. The host identifier and URL
prefixes are derived from OAMCfgTool parameters and the values you enter. The
Description is provided automatically.

Host Identifier: app_domain value
URL Prefix: protected_uris values

Figure 17–2 Sample OAMCfgTool Policy Domain Resources Tab

Policy Domain, Authorization Rules Tab
Figure 17–3 illustrates the Authorization Rules tab in a sample policy domain created
with OAMCfgTool. Details found on sub tabs follow the figure. Authorization rules
are automatically configured for the policy domain when you use OAMCfgTool.

Figure 17–3 Sample OAMCfgTool Policy Domain Authorization Rules Tab

Timing Conditions: There are no timing conditions defined. This rule is always valid.
Actions: There are no actions defined.
Allow Access: Role: Anyone
Deny Access: No one is denied access.

Policy Domain, Default Rules Tab
Figure 17–4 illustrates the Default Rules tab in a sample policy domain created with
OAMCfgTool. All values are configured automatically for the policy domain; details
on sub tabs follow the figure.

Authentication Rule
 General, see Figure 17–4.

Introduction to OAMCfgTool

Configuring Single Sign-On Using Oracle Access Manager 10g 17-31

 Actions: There are no actions defined.

Figure 17–4 Sample OAMCfgTool Policy Domain Default Rules Tab

Authorization Expression
Authorization Expression: Default_Authorization
 Duplicate Actions: No policy defined for this Authorization Expression. The
 Access System level default policy for dealing with duplicate
 action headers are employed.
 Actions
 Authorization Success
 Return Type Name Attribute
 HeaderVar REMOTE_USER uid
 HeaderVar OAM_REMOTE_USER uid

Policy Domain, Policies Tab
Figure 17–5 illustrates the Policies tab, General sub tab, in a sample policy domain
created using parameters and values that you specify with OAMCfgTool. The host
identifiers are based on your app_domain value. Details on other sub tabs follow the
figure.

Figure 17–5 Sample OAMCfgTool Policy Domain Policies Tab

Authentication Rule
 General
 Name: Anonymous
 Description: Authentication scheme allows un-authenticated access to some
 URIs
 Authentication Scheme: Anonymous Authentication (Default)
 Actions: There are no actions defined.

Authorization Expression

Introduction to OAMCfgTool

17-32 Oracle Fusion Middleware Application Security Guide

 There is no Authorization Expression defined.

Audit Rule
 There is no Master Audit Rule defined.
 If you would like to add an auditing rule to this Policy, please contact your
 Access System Administrator.

Policy Domain, Delegated Access Admins Tab
Figure 17–6 illustrates the Delegated Access Admins tab in a sample policy domain
created using OAMCfgTool. No parameters are specified with the tool to set up
delegated rights for Master Web resource Admins.

Figure 17–6 OAMCfgTool Policy Domain Delegated Access Admins Tab

Host Identifiers
You can find the Host Identifiers created with OAMCfgTool in the Access System
Console, under the Access System Configuration tab.

Figure 17–7 illustrates a sample host identifiers created using OAMCfgTool. As
described here, required parameters are derived from the value entered with
OAMCfgTool app_domain parameter. A Description is provided by OAMCfgTool.

Figure 17–7 Sample OAMCfgTool Host Identifiers

AccessGate Profile
Figure 17–8 illustrates a sample AccessGate profile created using OAMCfgTool when
the web_domain parameter is omitted. The profile is in the Access System Console. As
described here, required profile parameters are derived from values entered with
OAMCfgTool. Other profile parameters use default values. A Description is provided
by OAMCfgTool.

Name: app_domain value _AG
Hostname: app_domain value
Access Gate Password: app_agent_password value
ASDK Client
Access Management Service: On
Web Server Client

See Also: "Protecting Resources with Policy Domains" in the Oracle
Access Manager Access Administration Guide.

Introduction to OAMCfgTool

Configuring Single Sign-On Using Oracle Access Manager 10g 17-33

Primary HTTP Cookie Domain: cookie_domain value
Preferred HTTP Host: app_domain value

Figure 17–8 Sample OAMCfgTool AccessGate Profile

17.3.4 Known Issues: JAR Files and OAMCfgTool
Table 17–9 identifies known issues with this release. For more information about the
tool, parameters, and values, see "Introduction to OAMCfgTool" on page 17-15.

Table 17–9 OAMCfgTool Known Issues

Bug Number Description

n/a The location where you obtain Oracle Access Manager Authentication Provider and
OAMCfgTool JAR files when you do not have an Oracle Fusion Middleware
application installed could change. If the location is different than the one stated in this
chapter, see the Release Notes for the latest information.

8362080 OAMCfgTool provides Create, Validate, and Delete modes. It does not provide an
Overwrite option.

Configuring OAM Identity Assertion for SSO with Oracle Access Manager 10g

17-34 Oracle Fusion Middleware Application Security Guide

17.4 Configuring OAM Identity Assertion for SSO with Oracle Access
Manager 10g

This section describes the unique steps needed to configure Oracle Access Manager
Identity Assertion for Single Sign-On.

Prerequisites
Unless explicitly noted for the Authenticator or Oracle Web Services Manager, all tasks
described in "Installing and Setting Up Authentication Providers for OAM 10g" on
page 17-1 should be performed, including:

■ Installing Components and Files for Authentication Providers and OAM 10g

To configure Oracle Access Manager Identity Asserter for single sign-on with your
application, perform the tasks as described in the following task overview.

Task overview: Deploying and configuring the Oracle Access Manager Identity
Asserter for single sign-on includes
1. Ensuring that all prerequisite tasks have been performed

2. Establishing Trust with Oracle WebLogic Server

3. Configuring the Authentication Scheme for the Identity Asserter

4. Configuring Providers in the WebLogic Domain

5. Setting Up the Login Form for the Identity Asserter and OAM 10g

8362039 OAMCfgTool does not provide explicit options to specify the Web Tier host and port.
Instead, without web_domain specified the app_domain value specifies the WebGate
name, host, and Preferred HTTP Host. For example:

■ app_domain=ABC (without web_domain specified)

■ AccessGate Name: ABC_AG

■ Hostname: ABC

■ Port: Not specified

■ Preferred HTTP Host: ABC

n/a With OAMCfgTool, if web_domain parameter is included in the command line, you
must provide a WebGate password. Otherwise, the command can fail.

The app_agent_password parameter accepts as the password whatever follows the
equal sign, =. For instance, if you enter app_agent_password= and then enter a space
character and web_domain=value, the app_agent_password is presumed to be a space
character followed by web_domain.

n/a SSL-enabled communication with the directory server is not supported by
OAMCfgTool.

Note: If you are implementing:

■ OAM 11g: Provision WebGates and security policies using the
remote registration tool as described in "Session Token:
Provisioning an OAM Agent with Oracle Access Manager 11g".

■ OAM 10g: Add WebGate profiles and policies with OAMCfgTool
as described in the following Task 3.

Table 17–9 (Cont.) OAMCfgTool Known Issues

Bug Number Description

Configuring OAM Identity Assertion for SSO with Oracle Access Manager 10g

Configuring Single Sign-On Using Oracle Access Manager 10g 17-35

6. Testing Identity Assertion for SSO with OAM 10g

7. Configuring Global Logout for Oracle Access Manager 10g and 10g WebGates

17.4.1 Establishing Trust with Oracle WebLogic Server
The following topics explain the tasks you must perform to set up the application for
single sign-on with the Oracle Access Manager Identity Asserter:

■ Setting Up the Application Authentication Method for SSO

■ Confirming mod_weblogic for Oracle Access Manager Identity Asserter

■ Establishing Trust between Oracle WebLogic Server and Other Entities

17.4.1.1 Setting Up the Application Authentication Method for SSO
This topic describes how to create the application authentication method for Oracle
Access Manager Identity Assertion.

When you use the Oracle Access Manager Identity Asserter, all web.xml files in the
application EAR file must specify CLIENT-CERT in the element auth-method for the
appropriate realm.

The auth-method can use BASIC, FORM, or CLIENT-CERT values. While these look
like similar values in Oracle Access Manager, the auth-method specified in web.xml
files are used by Oracle WebLogic Server (not Oracle Access Manager).

To specify authentication in web.xml for the Identity Asserter and OAM 10g
1. Locate the web.xml file in the application EAR file:

your_app/WEB-INF/web.xml

2. Locate the auth-method in login-config and enter CLIENT-CERT.

<login-config>
 <auth-method>CLIENT-CERT</auth-method>
</login-config>

3. Save the file.

4. Redeploy and restart the application.

5. Repeat for each web.xml file in the application EAR file.

6. Proceed to "Confirming mod_weblogic for Oracle Access Manager Identity
Asserter".

Note: This task is the same for both OAM 11g and OAM 10g.

See Also: Oracle Fusion Middleware Deploying Applications to Oracle
WebLogic Server

Note: You can specify CLIENT-CERT, FORM if you are also planning
to access the applications directly over WebLogic and want the
WebLogic authentication scheme to be invoked.

Configuring OAM Identity Assertion for SSO with Oracle Access Manager 10g

17-36 Oracle Fusion Middleware Application Security Guide

17.4.1.2 Confirming mod_weblogic for Oracle Access Manager Identity Asserter
Oracle HTTP Server includes the mod_weblogic plug-in module (mod_wl_ohs.so in
11g) which is already enabled. You can perform the following procedure to confirm
this or skip this procedure.

With Oracle HTTP Server 11g, the mod_weblogic configuration is present in mod_wl_
ohs.conf by default, and the path of this file is included in httpd.conf. If the mod_
weblogic configuration is not present then you must edit httpd.conf.

To configure mod_weblogic for the Identity Asserter and OAM 10g
1. Locate httpd.conf. For example:

ORACLE_INSTANCE/config/OHS/<ohs_name>/httpd.conf

2. Confirm that the following statement is in the file with appropriate values for your
deployment (add or uncomment this, if needed):

<IfModule mod_weblogic.c>
 WebLogicHost yourHost.yourDomain.com
 WebLogicPort yourWlsPortNumber
</IfModule>

<Location http://request-uri-pattern>
 SetHandler weblogic-handler
</Location>

3. Save the file.

4. Proceed to "Establishing Trust between Oracle WebLogic Server and Other
Entities".

17.4.1.3 Establishing Trust between Oracle WebLogic Server and Other Entities
The Oracle WebLogic Connection Filtering mechanism must be configured for creating
access control lists and for accepting requests from only the hosts where Oracle HTTP
Server and the front-end Web server are running.

A network connection filter is a component that controls the access to network level
resources. It can be used to protect resources of individual servers, server clusters, or
an entire internal network. For example, a filter can deny non-SSL connections
originating outside of a corporate network. A network connection filter functions like
a firewall since it can be configured to filter protocols, IP addresses, or DNS node
names. It is typically used to establish trust between Oracle WebLogic Server and
foreign entities.

To configure a connection filter to allow requests from only mod_weblogic and the
host where OHS 11g is running, perform the procedure here.

Note: This topic is the same whether you are using OSSO or Oracle
Access Manager.

Note: This chapter uses the generic name of the WebLogic Server
plug-in for Apache: mod_weblogic. For Oracle HTTP Server 11g, the
name of this plug-in is mod_wl_ohs; the actual binary name is mod_
wl_ohs.so. Examples show exact syntax for implementation.

Configuring OAM Identity Assertion for SSO with Oracle Access Manager 10g

Configuring Single Sign-On Using Oracle Access Manager 10g 17-37

WebLogic Server provides a default connection filter:
weblogic.security.net.ConnectionFilterImpl. This filter accepts all incoming
connections and also provides static factory methods that allow the server to obtain
the current connection filter. To configure this connection filter to deny access, simply
enter the connection filters rules in the WebLogic Server Administration Console.

You can also use a custom connection filter by implementing the classes in the
weblogic.security.net package. Like the default connection filter, custom connection
filters are configured in the WebLogic Server Administration Console.

Connection Filter Rules: The format of filter rules differ depending on whether you are
using a filter file to enter the filter rules or you enter the filter rules in the
Administration Console. When entering the filter rules on the Administration Console,
enter them in the following format:

targetAddress localAddress localPort action protocols

Table 17–10 provides a description of each parameter in a connection filter.

The Connection Logger Enabled attribute logs successful connections and connection
data in the server. This information can be used to debug problems relating to server
connections.

To configure a connection filter to allow requests from the host of the 11g Oracle
HTTP Server
1. Log in to the Oracle WebLogic Administration Console.

2. Click Domain under Domain Configurations.

3. Click the Security tab, click the Filter tab.

4. Click the Connection Logger Enabled attribute to enable the logging of accepted
messages for use when debugging problems relating to server connections.

5. Specify the connection filter to be used in the domain:

■ Default Connection Filter: In the Connection Filter attribute field, specify
weblogic.security.net.ConnectionFilterImpl.

■ Custom Connection Filter: In the Connection Filter attribute field, specify the
class that implements the network connection filter, which should also be
specified in the CLASSPATH for Oracle WebLogic Server.

Table 17–10 Connection Filter Rules

Parameter Description

target Specifies one or more systems to filter

localAddress Defines the host address of the WebLogic Server instance. (If you specify an
asterisk (*), the match returns all local IP addresses.)

localPort Defines the port on which the WebLogic Server instance is listening. (If you
specify an asterisk, the match returns all available ports on the server.)

action Specifies the action to perform. This value must be allow or deny

protocols Is the list of protocol names to match. The following protocols may be
specified: http, https, t3, t3s, giop, giops, dcom, ftp, ldap. If no protocol is
defined, all protocols match a rule.

See Also: "Configuring Security in a WebLogic Domain" in Oracle
Fusion Middleware Securing Oracle WebLogic Server

Configuring OAM Identity Assertion for SSO with Oracle Access Manager 10g

17-38 Oracle Fusion Middleware Application Security Guide

6. Enter the appropriate syntax for the connection filter rules.

7. Click Save.

8. Restart the Oracle WebLogic Server.

9. Proceed to "Configuring the Authentication Scheme for the Identity Asserter".

17.4.2 Configuring the Authentication Scheme for the Identity Asserter
This topic focuses on using OAMCfgTool for OAM 10g. If you are using OAM 11g,
skip this topic and instead perform tasks in "Session Token: Provisioning an OAM
Agent with Oracle Access Manager 11g".

After setting up your application, you must protect it with Oracle Access Manager. To
help automate this task, Oracle provides the command-line tool: OAMCfgTool in the
Fusion Middleware application-provided oamcfgtool.jar file for OAM 10g.

While you can perform steps manually in the Access System Console and Policy
Manager, you can optionally use OAMCfgTool to setup and validate a form-based
authentication scheme, a policy domain for the application, and Oracle Access
Manager access policies required for Identity Assertion for single sign-on.
Additionally, you can create a new WebGate profile in a fresh Web Tier or modify a
WebGate profile in an existing Web Tier.

For more information, see "Creating an Authentication Scheme, Policy Domain, and a
WebGate Profile".

17.4.2.1 Creating an Authentication Scheme, Policy Domain, and a WebGate Profile
This topic provides a procedure that you can use as a model when you run
OAMCfgTool.

This example presumes a fresh Web Tier that requires a new WebGate profile.
Therefore, the web_domain= parameter is omitted. A new profile is created and
named with the app_domain value (appended with _AG).

The following procedure is only an example to illustrate how to use the tool. Values for
your environment will be different.

To create a form authentication scheme, policy domain, and access polices with
OAMCfgTool
1. No Oracle Fusion Middleware Application: Obtain the OAMCfgTool if you have

no Oracle Fusion Middleware application.

a. Log in to Oracle Technology Network at:

http://www.oracle.com/technology/software/products/middleware/ht
docs/111110_fmw.html

b. Locate the OAMCfgTool ZIP file with Access Manager Core Components
(10.1.4.3.0):

oamcfgtool<version>.zip

See Also: "Introduction to OAMCfgTool" on page 17-15

Note: If you have an Oracle Fusion Middleware application
installed you already have the OAMCfgTool. In this case, skip Step 1.

Configuring OAM Identity Assertion for SSO with Oracle Access Manager 10g

Configuring Single Sign-On Using Oracle Access Manager 10g 17-39

c. Extract and copy oamcfgtool.jar to the computer hosting WebGate.

2. Confirm that JDK 1.6 (or the latest version) is installed and configured.

3. Log in to the computer that is hosting the application to protect, change to the file
system directory containing OAMCfgTool.

4. Create a WebGate Profile, Authentication Scheme, and Policy Domain: Run the
following command using values for your environment as described in
Table 17–5. For example:

(echo ldappwd | java -jar oamcfgtool.jar
mode=CREATE app_domain=IASSO_App1
protected_uris=/myapp/login
cookie_domain=<preferred_http_cookie_domain>
ldap_host=wxyz
ldap_port=6633
ldap_userdn=orcladmin
oam_aaa_host=abcd
oam_aaa_port=7789
oam_aaa_mode=cert
log_file=OAMCfg_date.log
log_level=INFO
output_ldif_file=<LDIF_filename>
-noprompt

5. Review the information provided by the tool. For example, the parameters and
values in Step 3 would provide the following information:

Processed input parameters
Initialized Global Configuration
Successfully completed the Create operation.
 Operation Summary:
 Policy Domain : IASSO_App1
 Host Identifier: IASSO_App1
 Access Gate ID : IASSO_App1_AG

6. Output LDIF Created: Import the LDIF to write information to the directory
server. Otherwise, skip this step.

7. Validate: Run OAMCfgTool to validate the policy domain that was created (see
Table 17–7). For example:

(echo ldappwd | java -jar oamcfgtool.jar mode=VALIDATE app_domain=IASSO_App1
protected_uris=/myapp/login
ldap_host=wxyz
ldap_port=6633
ldap_userdn=orcladmin
oam_aaa_host=abcd
oam_aaa_port=7789
log_file=OAMCfg_date.log
log_level=INFO
test_username=gcf

Note:

■ Fresh Web Tier: Omit web_domain parameter to create and
associate a new a profile. Include the cookie_domain parameter.

■ Existing Web Tier: Include web_domain parameter with the value
of an existing host identifier.

Configuring OAM Identity Assertion for SSO with Oracle Access Manager 10g

17-40 Oracle Fusion Middleware Application Security Guide

test_userpassword=<test_userpassword>
-noprompt

8. Fresh WebGate Profile/WebGate Not Installed: Specify the same values when
you install the WebGate as you specified when creating the profile (plus additional
values to properly finish the installation).

9. Fresh WebGate Profile with Installed WebGate: Using output from the
OAMCfgTool Create command, run the Oracle Access Manager
configureWebgate tool to set up the installed WebGate. For example:

a. Go to:

WebGate_install_dir\access\oblix\tools\configureWebGate

where WebGate_install_dir is the directory where WebGate is installed.

b. Run the following command to configure the WebGate using values specified
with OAMCfgTool and other values needed to finish the profile. For example:

configureWebGate -i WebGate_install_dir -t WebGate WebGate_Name -P
WebGate_password
-m <open|simple|cert>
-h Access_Server_Host_Name
-p Access_Server_Port
-a Access_Server_ID
-r Access_Server_Pass_Phrase (must be the same as the WebGate_password)
-Z Access_Server_Retry count

10. Confirm Profile in the Access System Console: Perform the following steps to
view or modify the WebGate profile.

a. Log in to the Access System Console as a Master or Delegated Access
Administrator. For example:

 http://hostname:port/access/oblix

hostname refers to computer that hosts the WebPass Web server; port refers to
the HTTP port number of the WebPass Web server instance; /access/oblix
connects to the Access System Console.

b. Click Access System Configuration, and then click AccessGate
Configuration.

c. Click the All button to find all profiles (or select the search attribute and
condition from the lists) and then click Go.

d. Click a WebGate's name to view its details.

e. Click Cancel to dismiss the page without changes, or click Modify to change
values as described in the Oracle Access Manager Access Administration Guide.

11. Repeat Steps 3 through 8 for each application that you are protecting.

12. Proceed to "Configuring Providers in the WebLogic Domain".

17.4.3 Configuring Providers in the WebLogic Domain
This topic is divided as follows:

■ About Oracle WebLogic Server Authentication and Identity Assertion Providers

See Also: "Configuring AccessGates and WebGates" in the Oracle
Access Manager Access Administration Guide

Configuring OAM Identity Assertion for SSO with Oracle Access Manager 10g

Configuring Single Sign-On Using Oracle Access Manager 10g 17-41

■ About the Oracle WebLogic Scripting Tool (WLST)

■ Configuring Oracle WebLogic Server for a Web Application Using ADF Security,
OAM SSO, and OPSS SSO

■ Setting Up Providers for Oracle Access Manager Identity Assertion

17.4.3.1 About Oracle WebLogic Server Authentication and Identity Assertion
Providers
This topic introduces only a few types of Authentication Providers for a WebLogic
security realm, if you are new to them.

Each WebLogic security realm must have one at least one Authentication Provider
configured. The WebLogic Security Framework is designed to support multiple
Authentication Providers (and thus multiple LoginModules) for multipart
authentication. As a result, you can use multiple Authentication Providers as well as
multiple types of Authentication Providers in a security realm. The Control Flag
attribute determines how the LoginModule for each Authentication Provider is used in
the authentication process.

Oracle WebLogic Server offers several types of Authentication and Identity Assertion
providers including, among others:

■ The default WebLogic Authentication Provider (Default Authenticator) allows you
to manage users and groups in one place, the embedded WebLogic Server LDAP
server. This Authenticator is used by the Oracle WebLogic Server to login
administrative users.

■ Identity Assertion providers use token-based authentication; the Oracle Access
Manager Identity Asserter is one example.

■ LDAP Authentication Providers store user and group information in an external
LDAP server. They differ primarily in how they are configured by default to match
typical directory schemas for their corresponding LDAP server.

Oracle WebLogic Server 10.3.1+ provides the
OracleInternetDirectoryAuthenticator.

When you configure multiple Authentication Providers, use the JAAS Control Flag for
each provider to control how the Authentication Providers are used in the login
sequence. You can choose the following the JAAS Control Flag settings, among others:

■ REQUIRED—The Authentication Provider is always called, and the user must
always pass its authentication test. Regardless of whether authentication succeeds
or fails, authentication still continues down the list of providers.

■ SUFFICIENT—The user is not required to pass the authentication test of the
Authentication Provider. If authentication succeeds, no subsequent Authentication
Providers are executed. If authentication fails, authentication continues down the
list of providers.

■ OPTIONAL—The user is allowed to pass or fail the authentication test of this
Authentication Provider. However, if all Authentication Providers configured in a
security realm have the JAAS Control Flag set to OPTIONAL, the user must pass
the authentication test of one of the configured providers.

When additional Authentication Providers are added to an existing security realm, the
Control Flag is set to OPTIONAL by default. You might need to change the setting of
the Control Flag and the order of providers so that each Authentication Provider
works properly in the authentication sequence.

Configuring OAM Identity Assertion for SSO with Oracle Access Manager 10g

17-42 Oracle Fusion Middleware Application Security Guide

17.4.3.2 About the Oracle WebLogic Scripting Tool (WLST)
This topic introduces WLST, if you are new to it.

You can add providers to a WebLogic domain using either the Oracle WebLogic
Administration Console or Oracle WebLogic Scripting Tool (WLST) command-line
tool.

WLST is a Jython-based command-line scripting environment that you can use to
manage and monitor WebLogic Server domains. Generally, you can use this tool online
or offline. You can use this tool interactively on the command line in batches supplied
in a file (Script Mode, where scripts invoke a sequence of WLST commands without
requiring your input), or embedded in Java code.

When adding Authentication Providers to a WebLogic domain, you can use WLST
online to interact with an Authentication Provider and add, remove, or modify users,
groups, and roles.

When you use WLST offline to create a domain template, WLST packages the
Authentication Provider's data store along with the rest of the domain documents. If
you create a domain from the domain template, the new domain has an exact copy of
the Authentication Provider's data store from the domain template. However, you
cannot use WLST offline to modify the data in an Authentication Provider's data store.

17.4.3.2.1 Configuring Oracle WebLogic Server for a Web Application Using ADF Security, OAM
SSO, and OPSS SSO

On the Oracle WebLogic Server, you can run a Web application that uses Oracles
Application Development Framework (Oracle ADF) security, integrates with Oracle
Access Manager Single Sign On (SSO), and uses Oracle Platform Security Services
(OPSS) SSO for user authentication. However before the Web application can be run,
you must configure the domain-level jps-config.xml file on the application's target
Oracle WebLogic Server for the Oracle Access Manager security provider.

The domain-level jps-config.xml file is in the following path and should not be
confused with the deployed application's jps-config.xml file:

domain_home/config/fmwconfig/jps-config.xml

See Also: "Configuring Authentication Providers" in Oracle Fusion
Middleware Securing Oracle WebLogic Server for a complete list of
Authentication Providers and details about configuring the Oracle
Internet Directory provider to match the LDAP schema for user and
group attributes

Note: You cannot use WLST offline to modify the data in an
Authentication Provider's data store.

See Also:

■ "Configuring Oracle WebLogic Server for a Web Application
Using ADF Security, OAM SSO, and OPSS SSO"

■ Oracle Fusion Middleware Oracle WebLogic Scripting Tool

■ Oracle Fusion Middleware WebLogic Scripting Tool Command
Reference "Infrastructure Security Commands" chapter

Configuring OAM Identity Assertion for SSO with Oracle Access Manager 10g

Configuring Single Sign-On Using Oracle Access Manager 10g 17-43

You can use an Oracle Access Manager-specific WLST script to configure the
domain-level jps-config.xml file, either before or after the Web application is deployed.
This Oracle JRF WLST script is named as follows:

Linux: wlst.sh

Windows: wlst.cmd

The Oracle JRF WLST script is available in the following path if you are running
through JDev:

 $JDEV_HOME/oracle_common/common/bin/

In a standalone JRF WebLogic installation, the path is:

 $Middleware_home/oracle_common/wlst

Command Syntax
addOAMSSOProvider(loginuri, logouturi, autologinuri)

Table 17–11 defines the expected value for each argument in the
addOAMSSOProvider command line.

Prerequisites
Before starting this task, ensure that all previous tasks have been performed as
described in:

■ Establishing Trust with Oracle WebLogic Server

■ Configuring the Authentication Scheme for the Identity Asserter

To modify domain-level jps-config.xml for a Fusion Web application with Oracle
ADF Security enabled
1. On the computer hosting the Oracle WebLogic Server and the Web application

using Oracle ADF security, locate the Oracle JRF WLST script. For example:

cd $ORACLE_HOME/oracle_common/common/bin

2. Connect to the computer hosting the Oracle WebLogic Server:

Note: The Oracle JRF WLST script is required. When running WLST
for Oracle Java Required Files (JRF), do not use the WLST script under
$JDEV_HOME/wlserver_10.3/common/bin.

Table 17–11 addOAMSSOProvider Command-line Arguments

Argument Definition

loginuri Specifies the URI of the login page

logouturi Specifies the URI of the logout page

autologinuri Specifies the URI of the autologin page

See Also:

■ Oracle Fusion Middleware Oracle WebLogic Scripting Tool

■ Oracle Fusion Middleware WebLogic Scripting Tool Command
Reference "Infrastructure Security Commands" chapter

Configuring OAM Identity Assertion for SSO with Oracle Access Manager 10g

17-44 Oracle Fusion Middleware Application Security Guide

connect login_id password hostname:port

For example, the Oracle WebLogic Administration Server host could be
localhost using port 7001. However, your environment might be different.

3. Enter the following command-line arguments with values for the application with
ADF security enabled:

addOAMSSOProvider(loginuri="/${app.context}/adfAuthentication",
logouturi="/oamsso/logout.html", autologinuri="/obrar.cgi")

4. Stop and start the Oracle WebLogic Server.

5. Perform the following tasks as described in this chapter:

■ Setting Up the Login Form for the Identity Asserter and OAM 10g

■ Testing Identity Assertion for SSO with OAM 10g

■ Configuring Global Logout for Oracle Access Manager 10g and 10g WebGates

6. Run the application.

17.4.3.3 Setting Up Providers for Oracle Access Manager Identity Assertion
This topic describes how to configure providers in the WebLogic security domain to
perform single sign-on with the Oracle Access Manager Identity Asserter. Several
Authentication Provider types must be configured and ordered:

■ OAM Identity Asserter: REQUIRED

■ OID Authenticator: SUFFICIENT

■ DefaultAuthenticator: SUFFICIENT

The following procedure uses the WebLogic Administration Console.

To set up Providers for Oracle Access Manager single sign-on in a WebLogic
domain
1. No Oracle Fusion Middleware Application: Obtain the Oracle Access Manager

provider:

a. Log in to Oracle Technology Network at:

http://www.oracle.com/technology/software/products/middleware/ht
docs/111110_fmw.html

b. Locate the oamAuthnProvider ZIP file with Access Manager WebGates
(10.1.4.3.0):

oamAuthnProvider<version number>.zip

c. Extract and copy oamAuthnProvider.jar to the following path on the computer
hosting Oracle WebLogic Server:

BEA_HOME/wlserver_10.x/server/lib/mbeantypes/oamAuthnProvider.jar

See Also: "About Oracle WebLogic Server Authentication and
Identity Assertion Providers" on page 17-41

Note: With an Oracle Fusion Middleware application installed, you
have the required provider JAR file. Skip Step 1.

Configuring OAM Identity Assertion for SSO with Oracle Access Manager 10g

Configuring Single Sign-On Using Oracle Access Manager 10g 17-45

2. With Oracle Fusion Middleware Application Installed:

a. Locate oamauthenticationprovider.war in the following path:

ORACLE_INSTANCE/modules/oracle.oamprovider_11.1.1/oamauthenticationprovi
der.war

b. Copy oamauthenticationprovider.war to the following location:

BEA_HOME/wlserver_10.x/server/lib/console-ext/autodeploy/oamauthentication
provider.war

3. Log in to the WebLogic Administration Console.

4. Click Security Realms, Default Realm Name, and click Providers.

5. OAM Identity Asserter: Perform the following steps to add this provider:

a. Click Authentication, click New, and then enter a name and select a type:

Name: OAM Identity Asserter

Type: OAMIdentityAsserter

OK

b. In the Authentication Providers table, click the newly added authenticator.

c. Click the Common tab, set the Control Flag to REQUIRED, and click Save

6. OID Authenticator: Perform the following steps to add this provider.

a. Click Security Realms, Default Realm Name, and click Providers

b. Click New, enter a name, and select a type:

Name: OID Authenticator

Type: OracleInternetDirectoryAuthenticator

OK

c. In the Authentication Providers table, click the newly added authenticator.

d. On the Settings page, click the Common tab, set the Control Flag to
SUFFICIENT, and then click Save.

e. Click the Provider Specific tab and specify the following required settings
using values for your own environment:

Host: Your LDAP host. For example: localhost

Port: Your LDAP host listening port. For example: 6050

Principal: LDAP administrative user. For example: cn=orcladmin

Credential: LDAP administrative user password.

User Base DN: Same searchbase as in Oracle Access Manager.

All Users Filter: For example: (&(uid=*)(objectclass=person))

User Name Attribute: Set as the default attribute for username in the LDAP
directory. For example: uid

Group Base DN: The group searchbase (same as User Base DN)

Do not set the All Groups filter as the default works fine as is.

Save.

Configuring OAM Identity Assertion for SSO with Oracle Access Manager 10g

17-46 Oracle Fusion Middleware Application Security Guide

7. Default Authenticator: Perform the following steps to set up the Default
Authenticator for use with the Identity Asserter:

a. Go to Security Realms, Default Realm Name, and click Providers.

b. Click Authentication, Click DefaultAuthenticator to see its configuration
page.

c. Click the Common tab and set the Control Flag to SUFFICIENT.

d. Save.

8. Reorder Providers:

a. Click Security Realms, Default Realm Name, Providers.

b. On the Summary page where providers are listed, click the Reorder button

c. On the Reorder Authentication Providers page, select a provider name and
use the arrows beside the list to order the providers as follows:

OAM Identity Asserter (REQUIRED)

OID Authenticator (SUFFICIENT)

Default Authenticator (SUFFICIENT)

d. Click OK to save your changes

9. Activate Changes: In the Change Center, click Activate Changes

10. Reboot Oracle WebLogic Server.

11. Proceed as follows:

■ Successful: Go to "Setting Up the Login Form for the Identity Asserter and
OAM 10g".

■ Not Successful: Confirm that all providers have the proper specifications for
your environment, are in the proper order, and that
oamAuthnProvider.jar is in the correct location as described in "Installing
Components and Files for Authentication Providers and OAM 10g" on
page 17-4.

17.4.4 Setting Up the Login Form for the Identity Asserter and OAM 10g
This topic introduces the login form provided for the Oracle Access Manager Identity
Asserter for single sign-on and provides a procedure that you can use to deploy the
form.

The form shown in Figure 17–9 is provided with the WebGate installation for Oracle
HTTP Server 11g Web server. The form contains two fields (UserID and Password)
and a Login button. The variables in this form are required by the Form Login
authentication scheme that was generated by the OAMCfgTool and used in the policy
domain protecting resources for Identity Assertion.

Configuring OAM Identity Assertion for SSO with Oracle Access Manager 10g

Configuring Single Sign-On Using Oracle Access Manager 10g 17-47

Figure 17–9 Default Login Form for Single Sign-On with 10g WebGates

The following information is added to the Oracle HTTP Server 11g Web server
httpd.conf file during WebGate installation and configuration. It ensures that WebGate
for Oracle HTTP Server 11g can find the default login form.

Alias /oamsso "/oam/webgate/access/oamsso"

Delete the following three lines if they exist:

<LocationMatch "/oamsso/*">
Satisfy any
</LocationMatch>

The following procedure guides as you set up the login form for your environment.

To set up the login form for Identity Assertion and OAM 10g
1. Verify that the login form is located in the following Oracle HTTP Server11g

WebGate path on the computer hosting the application:

WebGate_install_dir/access/oamsso/login.html

2. From your browser, go to the following URL:

http://WebGatehost:port/oamsso/login.html

3. Confirm that the /access policy was created and enabled to protect Policy
Manager resources to ensure that the login process can redirect authenticated
users to the originally requested application URL.

4. Proceed to:

■ Configuring Global Logout for Oracle Access Manager 10g and 10g WebGates

■ Testing Identity Assertion for SSO with OAM 10g

17.4.5 Testing Identity Assertion for SSO with OAM 10g
The following procedure describes how to test your Oracle Access Manager Identity
Assertion setup.

Alternatively, you can run Access Tester within Oracle Access Manager 10g to test
your policy domain, as described in the 10g Oracle Access Manager Access
Administration Guide.

Note: Do not alter any variables in this login form. Variables are
required for use with Oracle Access Manager Identity Asserter.

Note: The Login form is for only 10g WebGates with OAM 10g.

Configuring the Authenticator for Oracle Access Manager 10g

17-48 Oracle Fusion Middleware Application Security Guide

To validate Identity Assertion for SSO with OAM 10g
1. Enter the URL to access the protected resource in your environment. For example:

http://ohs_server:port/<protected url>

2. Provide appropriate credentials when the login form appears.

■ Successful: The implementation works.

■ Not Successful: See "Troubleshooting Tips for OAM Provider Deployments"
on page 17-67.

17.5 Configuring the Authenticator for Oracle Access Manager 10g
To configure the Oracle Access Manager Authentication Provider as the Authenticator,
you must perform the tasks in this section.

Prerequisites
Unless explicitly labeled Identity Assertion, all tasks described in "Installing and
Setting Up Authentication Providers for OAM 10g" on page 17-1 must be completed:

■ Installing Components and Files for Authentication Providers and OAM 10g
which includes manually creating AccessGate profiles in the Access System
Console and accepting defaults during Policy Manager setup

■ Converting Oracle Access Manager Certificates to Java Keystore Format, if you are
using Simple or Cert transport security mode.

■ Creating Resource Types in Oracle Access Manager 10g

Remaining tasks to configure the Oracle Access Manager Authenticator are described
in the following task overview.

Task overview: Configuring the Oracle Access Manager Authenticator includes
1. Ensuring that all prerequisite tasks have been performed

2. Creating an Authentication Scheme for the Authenticator

3. Configuring a Policy Domain for the Oracle Access Manager Authenticator

4. Configuring Providers for the Authenticator in a WebLogic Domain

5. Configuring the Application Authentication Method for the Authenticator

6. Mapping the Authenticated User to a Group in LDAP

7. Testing the Oracle Access Manager Authenticator Implementation

See Also:

■ "About Oracle Access Manager 10g Installation and Setup" on
page 17-2

■ "About OAM 10g WebGate/AccessGate Profiles and Policy
Domains" on page 17-2

Note: You must be either a Master or Delegated Access
Administrator in Oracle Access Manager to perform tasks here. There
is no tool available to automate tasks outside Oracle Access Manager.

Configuring the Authenticator for Oracle Access Manager 10g

Configuring Single Sign-On Using Oracle Access Manager 10g 17-49

17.5.1 Creating an Authentication Scheme for the Authenticator
This topic describes how to create an authentication scheme for the policy domain you
will define for the Authenticator later. The Oracle Access Manager authentication
scheme must be available before you create the policy domain.

With the Authenticator, the user is challenged for credentials based on the
authentication method that is configured within the application web.xml. However, an
Oracle Access Manager authentication scheme is required for the policy domain.

17.5.2 Configuring a Policy Domain for the Oracle Access Manager Authenticator
After creating an authentication scheme for the Authenticator, you must create a policy
domain in Oracle Access Manager to user the scheme.

A policy domain in Oracle Access Manager includes several types of information.
Individual tabs are provided where you can enter specific details, as shown in
Figure 17–10.

Figure 17–10 Create Policy Domain Page in the Oracle Access Manager Policy Manager

For more information, see the following topics:

■ About Creating a Policy Domain

■ Creating a Policy Domain and Access Policies for the Authenticator

17.5.2.1 About Creating a Policy Domain
This topic describes the tabs in the Policy Manager that you use to enter details for
your policy domain and access policies. While you might not use every tab in your
policy domain, the following general information is provided:

■ General Tab: Enter a short alphanumeric string to name this policy domain. You
can use spaces in the Name field. A description is optional. Do not enable this
policy domain until all details are saved and you are ready to use the domain.

■ Resources Tab: Add resources to be protected by this policy domain. You use URL
prefixes to define the policy domain content. A description is optional.

■ Authorization Rules Tab: specify an authorization rule that consists of general
information, Allow Access and Deny Access conditions, and actions for the rule, if
any, to be used in an Authorization Expression later. You must specify an
authorization scheme for every authorization rule you define.

Configuring the Authenticator for Oracle Access Manager 10g

17-50 Oracle Fusion Middleware Application Security Guide

■ Default Rules Tab: Create default rules that apply to the resources protected by the
policy domain, unless the resource is protected by a specific policy. From this tab
you add the authentication rule, authorization expression, and audit rule for this
policy domain.

Authentication Rule: A policy domain must have at least one authentication rule,
which specifies one authentication scheme and authentication actions.

Authorization Expression: These include authorization rules and the operators
used to combine them. The Authenticator function requires an Authorization rule
that allows access by anyone.

Audit Rule: If there is no Master Audit Rule defined, you are instructed to contact
your Access System Administrator.

■ Policies Tab: If no rules are defined, the default rules for the policy domain remain
in effect. For each policy you create, you can assign a specific authentication rule,
authorization expression, and auditing rule. You can create policies with granular
URL patterns. Before setting up a policy, decide the level of access control needed
for the URL you to be protected.

■ Delegated Administrators Tab: When adding URL prefixes to a policy domain, the
Delegated Access Administrator must specify a server hosting the URL prefix.

17.5.2.2 Creating a Policy Domain and Access Policies for the Authenticator
The Authenticator implementation requires several default and some unique values in
the policy domain. You must be a Master or Delegated Access Administrator in Oracle
Access Manager to create, view, or modify a policy domain.

In the following procedure, you create a policy domain for the Authenticator to:

■ Use the default Basic Authentication scheme (set up with Policy Manager)
internally to authenticate users and to protect URL resources prefixed with
/Authen/Basic.

■ Protect resources of type wl_authen, which was defined earlier. See also,
"Creating Resource Types in Oracle Access Manager 10g" on page 17-9

■ Request user credentials using the Oracle Access Manager authentication scheme
created earlier.

■ Require a default authentication rule and actions, which you configure in the
following procedure to return users and groups on authentication success.

■ Require a default authorization rule with no actions, which you configure in the
following procedure to allow access by anyone.

See Also: "Creating a Policy Domain and Access Policies for the
Authenticator" and the following topics in the Oracle Access Manager
Access Administration Guide:

■ "Creating an Authentication Rule for a Policy Domain"

■ "Creating an Audit Rule for a Policy Domain"

Note: The Authenticator requires the BASIC authentication method
defined in the application web.xml file, which you will set up later as
described in "Configuring the Application Authentication Method for
the Authenticator" on page 17-57.

Configuring the Authenticator for Oracle Access Manager 10g

Configuring Single Sign-On Using Oracle Access Manager 10g 17-51

Examples in the following procedure are for illustration only. Be sure to enter
appropriate values for your environment.

To create a policy domain for the Oracle Access Manager Authenticator
1. Go to the Policy Manager and log in. For example:

http://Webserver:port/access/oblix

where Webserver refers to computer that hosts the Policy Manager Web server; port
refers to the HTTP port number of the Web server instance; /access/oblix connects
to the Access System.

2. Click Policy Manager.

3. Click Create Policy Domain in the left navigation pane to display the Create Policy
Domain page.

4. General Tab: Fill in the name and optional description that appear in pages
showing lists of policy domains, and then click Save. For example:

 Name: Default OAM Authenticator

 Description: For Username Resolution

5. Resources Tab: Click the Resources tab, click the Add button, select resource
types, enter URL prefixes, and save as follows:

 Resource Type: wl_authen

 Host Identifier (optional): Select the Preferred HTTP host for the AccessGate.

 URL prefix: /Authen/Basic

 Description: OAM Authenticator validates user name, password

 Click Add.

 Resource Type: wl_authen

 URL prefix: /Authen/UsernameAssertion

 Description: Authenticator Resource to validate user name

 Click Save.

6. Default Rules Tab: From this tab you add the authentication rule, authorization
expression, and audit rule for this policy domain. The policy domain's default
rules apply to the resources it contains, unless the resource is protected by a
specific policy.

a. Click Default Rules, and then click Add to create the rule for the Basic
Authentication scheme.

Note: The Authenticator does not perform authorization. However,
you must create the authorization rule to allow access by anyone (but
no authorization expression is required).

Note: Do not enable this policy domain until you finish all
specifications.

Configuring the Authenticator for Oracle Access Manager 10g

17-52 Oracle Fusion Middleware Application Security Guide

b. Authentication Rule: A policy domain must have at least one authentication
rule, which specifies one authentication scheme and authentication actions.
Enter a Name, optional description, and choose an Authentication Scheme.

 Click Authentication Rule and fill in the General tab as follows.

 Name: Basic Authentication Scheme

 Description: User name and password based authentication

 Authentication Scheme: Basic over LDAP

 Click Save.

c. Authentication Rule, Actions: For the Authenticator (or to boot Oracle
WebLogic with Administrator users who exist in Oracle Access Manager, or if
you are using Oracle Web Services Manager).

 Click the Actions tab, click Add.

 Enter the following for Authentication Success:

 Redirection URL: Leave blank

 Return

 Type: WL_REALM

 Name: obmygroups

 Return Attribute: obmygroups

This return attribute directs the Access Server to return all groups to which the
user belongs.

Next, enter the name of the login parameter for user name to help in
identifying the user uniquely in the LDAP directory server

 Type: WL_REALM

 Name: uid

 Return Attribute: uid

This return attribute should be the name of the login parameter for the user
name. This helps in identifying the user uniquely in the LDAP directory server
used by Oracle Access Manager.

7. Authorization Rule: Click the Authorization Rules tab, click Add and:

a. Specify a rule name and, optionally, a brief description. For example:

Name: Default rule for Authenticator.

Description: Default rule enables Authenticator function for
anyone.

b. Select Yes from the Enabled list and then click Save.

Note: For the Authenticator you need only an Authentication
Success Return Action in the rule for the ObMyGroups attribute. This
Access Server-specific attribute returns all the groups to which the
user belongs. Two other implementations require this action, as
described in Step C.

Configuring the Authenticator for Oracle Access Manager 10g

Configuring Single Sign-On Using Oracle Access Manager 10g 17-53

c. Click the rule, click the Allow Access tab, click Add, Under Role, select
Anyone to allow anyone access to the protected resources.

d. Click Save.

8. Policies Tab: Click the Policies tab, click Add.

Fill in and save General details:

 Name: Default Username Resolution Policy

 Description: Default Username Policy for Authenticator

 Resource Type: wl_authen

 Resource operation(s): LOGIN

 Resource: /Authen/UsernameAssertion

 Leave other items as they are.

 Click Save.

Click the Authentication Rule sub tab, click Add, and fill in General details
(Name, optional Description, Authentication Scheme).

 Name: Username Resolution Authentication Rule

 Authentication Scheme: UsernameAssertion Authentication Scheme

 See "Creating an Authentication Scheme for the Authenticator".

 Click Save.

Click the Actions sub tab and add the following details for Authentication
Success:

■ Return Type: WL_REALM

■ Return Name: uid

■ Return Attribute: uid

Click the Actions sub tab and add the following details for Authentication
Success:

■ Return Type: WL_REALM

■ Return Name: obmygroups

■ Return Attribute: obmygroups

9. Delegated Access Admins: When adding URL prefixes to a policy domain, the
Delegated Access Administrator must specify a server hosting the URL prefix.

Note: Be sure to enter Return Attribute. uid is the name of the login
attribute in the LDAP ObjectClass that helps to identity the user
uniquely in the directory server used by Oracle Access Manager.

Note: obmygroups returns all groups to which a member belongs.

See Also: Oracle Access Manager Access Administration Guide,
"Delegating Policy Domain Administration"

Configuring the Authenticator for Oracle Access Manager 10g

17-54 Oracle Fusion Middleware Application Security Guide

10. Proceed with "Configuring Providers for the Authenticator in a WebLogic
Domain".

17.5.3 Configuring Providers for the Authenticator in a WebLogic Domain
This topic includes a procedure that you can use to add and configure the appropriate
Authentication Providers in a WebLogic domain.

The Oracle Access Manager Authenticator must be configured along with the Default
Authentication Provider in a WebLogic domain.

■ DefaultAuthenticator: SUFFICIENT

■ OAM Authenticator: OPTIONAL

The following procedure describes this task using the WebLogic Administration
Console. You can also add these using the Oracle WebLogic Scripting Tool (WLST).

To configure providers for the Oracle Access Manager Authenticator in a
WebLogic domain
1. No Oracle Fusion Middleware Application: Obtain the Oracle Access Manager

provider if you have no Oracle Fusion Middleware application.

a. Log in to Oracle Technology Network at:

http://www.oracle.com/technology/software/products/middleware/ht
docs/111110_fmw.html

b. Locate the oamAuthnProvider ZIP file with Access Manager WebGates
(10.1.4.3.0). For example:

oamAuthnProvider<version>.zip

c. Extract and copy the oamAuthnProvider.jar to the following path on the
computer hosting Oracle WebLogic Server:

BEA_HOME/wlserver_10.x/server/lib/mbeantypes/oamAuthnProvider.jar

2. Go to the Oracle WebLogic Administration Console.

3. With Oracle Fusion Middleware Application Installed:

a. Locate oamauthenticationprovider.war in the following path:

ORACLE_INSTANCE/modules/oracle.oamprovider_11.1.1/oamauthenticationprovi
der.war

b. Copy oamauthenticationprovider.war to the following location:

See Also:

■ "About Oracle WebLogic Server Authentication and Identity
Assertion Providers" on page 17-41

■ Oracle Fusion Middleware Oracle WebLogic Scripting Tool

■ Oracle Fusion Middleware WebLogic Scripting Tool Command
Reference

Note: When a Oracle Fusion Middleware application is installed,
you have the required files and can skip Step 1.

Configuring the Authenticator for Oracle Access Manager 10g

Configuring Single Sign-On Using Oracle Access Manager 10g 17-55

BEA_HOME/wlserver_10.x/server/lib/console-ext/autodeploy/oamauthentication
provider.war

4. Go to the Oracle WebLogic Administration Console.

5. Click Lock & Edit, if desired.

6. OAM Authenticator:

a. Click Security Realms and select the realm you want to configure.

b. Select Providers, Authentication, and click New to display the Create a New
Authentication Provider page

c. Enter a name and select a type:

Name OAMAuthN

Type: OAMAuthenticator

OK

d. Click the name of the Authentication Provider you have just created to display
the Provider Configuration page.

e. In the Provider Configuration page, set the required values as follows:

Access Gate Name: The name of the AccessGate profile used by the provider.
This must match exactly the name in the AccessGate configuration profile in
the Access System Console.

Access Gate Password: The same password, if any, that is as defined for the
AccessGate configuration profile in the Access System Console.

Primary Access Server: The host:port of the primary Access Server that is
associated with this AccessGate in the Access System Console.

Advanced Configuration: Following are several advanced configuration
values.

Transport Security: The communication mode between Access Server and
AccessGate: open, simple, or cert.

If transport security is Simple or Cert, include the following parameters and
values:

Trust Store: The absolute path of JKS trust store used for SSL communication
between the provider and the Oracle Access Server.

Key Store: The absolute path of JKS key store used for SSL communication
between the provider and the Oracle Access Server.

Key Store Pass Phrase: The password to access the key store.

Simple mode pass phrase: The password shared by AccessGate and Access
Server for simple communication modes.

Secondary Access Server: The host:port of the secondary Access Server that is
associated with this AccessGate in the Access System Console.

Note: You might have only one AccessGate configuration profile for
the Authenticator.

Configuring the Authenticator for Oracle Access Manager 10g

17-56 Oracle Fusion Middleware Application Security Guide

Maximum Access Server Connections in Pool: The maximum number of
connections that the AccessGate opens to the Access Server. The default value
is 10.

Minimum Access Server Connections in Pool: The minimum number of
connections that the Authentication Provider uses to send authentication
requests to the Access Server. The default value is 5.

f. Ensure that the parameter Control Flag is set to OPTIONAL initially.

7. In the Change Center, click Activate Changes.

8. DefaultAuthenticator: Under the Providers tab, select DefaultAuthenticator,
which changes its control flag to SUFFICIENT.

9. Reorder: Under the Providers tab, reorder the providers so that
DefaultAuthenticator is first (OAMAuthenticator follows DefaultAuthenticator).

10. Oracle Access Manager Authenticator REQUIRED or the Only Authenticator:
Perform the following steps to set user rights for booting Oracle WebLogic Server.

a. Create an Administrators group in the directory server, if one does not already
exist (or any other group for which you want boot access).

b. Confirm that the LDAP user who boots Oracle WebLogic Server is included in
the Administrators (or other) group.

Note: The Maximum Access Server Connections in Pool (or
Minimum Access Server Connections in Pool) settings in the
WebLogic Administration Console are different from the Maximum
(or Minimum) Connections specified in profiles within the Access
System Console.

See Also: "Oracle Access Manager Authentication Provider
Parameter List" on page 17-14 for descriptions and values of the
common and provider-specific parameters

Note: Do not set the parameter Control Flag to REQUIRED until you
have verified that the Authentication Provided is operational and
configured correctly.

Note: If the Oracle Access Manager Authenticator flag is set to
REQUIRED, or if Oracle Access Manager Authenticator is the only
Authentication Provider, perform the next step to ensure that the
LDAP user who boots Oracle WebLogic Server is included in the
administrator group that can perform this task. By default the Oracle
WebLogic Server Admin Role includes the Administrators group.

Note: To provide access to any other group, you must create that
group in the directory server and add the user who boots WebLogic
Server in that group.

Configuring the Authenticator for Oracle Access Manager 10g

Configuring Single Sign-On Using Oracle Access Manager 10g 17-57

c. From the WebLogic Administration Console, go to Security Realms, myrealm,
Roles and Policies, Global Roles.

d. Select View Conditions for the Admin Role.

e. Add the group and click Save.

11. Reboot the WebLogic Server.

12. Once the server has started, reset the Authentication Provider parameter Control
Flag to the appropriate value (REQUIRED, OPTIONAL, or SUFFICIENT).

13. Proceed with "Configuring the Application Authentication Method for the
Authenticator".

17.5.4 Configuring the Application Authentication Method for the Authenticator
This topic describes how to create the application authentication method for Oracle
Access Manager Authenticator.

When you use the Oracle Access Manager Authenticator, all web.xml files in the
application EAR file must specify BASIC in the element auth-method for the
appropriate realm.

The auth-method can use BASIC or FORM values. While these look like similar values
in Oracle Access Manager, the auth-method specified in web.xml files are used by
Oracle WebLogic Server (not Oracle Access Manager).

To configure the application authentication method for the Authenticator
1. Locate the web.xml file in the application EAR file:

WEB-INF/web.xml

2. Locate the auth-method in login-config and enter BASIC. For example:

<security-constraint>
<web-resource-collection>
<web-resource-name>protected</web-resource-name>
<url-pattern>/servlet</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>auth-users</role-name>
</auth-constraint>
</security-constraint>
<login-config>
<auth-method>BASIC</auth-method>
</login-config>
<security-role>

Note: The recommended value is REQUIRED. To prevent a known
issue, see "JAAS Control Flag" on page 17-73.

See Also: Oracle Fusion Middleware Deploying Applications to Oracle
WebLogic Server

Note: For the Oracle Access Manager Authenticator, Oracle
recommends auth-method BASIC in login-config within web.xml.

Configuring the Authenticator for Oracle Access Manager 10g

17-58 Oracle Fusion Middleware Application Security Guide

<description>Authenticated Users</description>
<role-name>auth-users</role-name>
</security-role>

3. Save the file.

4. Redeploy and restart the application.

5. Repeat for each web.xml file in the application EAR file.

6. Proceed with "Mapping the Authenticated User to a Group in LDAP".

17.5.5 Mapping the Authenticated User to a Group in LDAP
This topic describes how to map the authenticated user to a group in LDAP. To do this,
you must edit the weblogic.xml file. For example, you might need to map your
role-name auth-users to a group named managers in LDAP.

To map the authenticated user to a group in LDAP for the Oracle Access
Manager Authenticator
1. Go to the application’s weblogic.xml file.

2. Add the following information for your environment anywhere in the file:

<weblogic-web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.bea.com/ns/weblogic/weblogic-web-app
http://www.bea.com/ns/weblogic/weblogic-web-app/1.0/weblogic-web-app.xsd"
xmlns="http://www.bea.com/ns/weblogic/weblogic-web-app">
<security-role-assignment>
<principal-name>managers</principal-name>
<role-name>auth-users</role-name>
</security-role-assignment>
</weblogic-web-app>

3. Save the file.

4. Restart the WebLogic Server.

5. Proceed to:

■ Configuring Global Logout for Oracle Access Manager 10g and 10g WebGates

■ Testing the Oracle Access Manager Authenticator Implementation

17.5.6 Testing the Oracle Access Manager Authenticator Implementation
After performing all tasks to implement the Authenticator, you can test it by
attempting to log in to the application using valid credentials. If the configuration is
incorrect, a valid user is denied access.

The following procedure describes how to test your Authenticator setup. Alternatively,
you can run Access Tester in Oracle Access Manager to test your policy domain, as
described in the Oracle Access Manager Access Administration Guide.

To validate the Oracle Access Manager Authenticator implementation
1. Enter the URL to access the protected resource in your environment. For example:

http://yourdomain.com:port

2. Provide appropriate credentials when the login form appears.

■ Successful: The implementation works.

Configuring Identity Assertion for Oracle Web Services Manager and OAM 10g

Configuring Single Sign-On Using Oracle Access Manager 10g 17-59

■ Not Successful: See "Troubleshooting Tips for OAM Provider Deployments"
on page 17-67

17.6 Configuring Identity Assertion for Oracle Web Services Manager and
OAM 10g

This section describes how to set up the Oracle Access Manager Identity Asserter to
enable validation of ObSSOCookie token when you have Oracle Web Services
Manager protecting Web services.

When the Oracle Access Manager Identity Asserter is configured for both header and
ObSSOCookie token validation modes, preference is given to the presence of the
header. If the header is not present, the Identity Asserter contacts the Access Server to
validate the ObSSOCookie token.

Oracle Access Manager Identity Asserter works in two modes:

■ The default mode of operation simply asserts the header that is set by WebGate at
the perimeter.

■ The alternate mode uses the custom AccessGate in oamAuthnProvider.jar. In this
case, and with the absence of the header, the Identity Asserter contacts with the
Access Server to validate the ObSSOCookie token.

Prerequisites
■ Installing Components and Files for Authentication Providers and OAM 10g

which includes manually creating AccessGate profiles in the Access System
Console for the custom AccessGate and accepting defaults during Policy Manager
setup

■ Creating Resource Types in Oracle Access Manager 10g

Task overview: Deploying the Identity Asserter with Oracle Web Services
Manager includes
1. Ensuring that all prerequisite tasks have been performed

2. Creating an Policy Domain for Use with Oracle Web Services Manager

3. Configuring Providers in a WebLogic Domain for Oracle Web Services Manager

4. Testing the Identity Asserter with Oracle Web Services Manager

17.6.1 Creating an Policy Domain for Use with Oracle Web Services Manager
This topic describes how to set up a policy domain for use by the Oracle Access
Manager Identity Asserter when you have Oracle Web Services Manager protecting

Note: The AccessGate is required for Oracle Web Services Manager.

See Also:

■ "About Oracle Access Manager 10g Installation and Setup" on
page 17-2

■ "About OAM 10g WebGate/AccessGate Profiles and Policy
Domains" on page 17-2

Configuring Identity Assertion for Oracle Web Services Manager and OAM 10g

17-60 Oracle Fusion Middleware Application Security Guide

Web services. You must be a Master or Delegated Access Administrator in Oracle
Access Manager to create, view, or modify a policy domain.

The following unique values are required in this policy domain:

■ Requires the default Basic over LDAP Authentication scheme (set up with Policy
Manager) internally to authenticate users and to protect URL resources prefixed
with /Authen/SSOToken.

■ Protects resources of type wl_authen, which were defined in "Creating Resource
Types in Oracle Access Manager 10g" on page 17-9

■ Requires a default authentication rule with no actions, which you set up in the
following procedure

■ Requires a default authorization rule with actions, which you set up in the
following procedure.

The following procedure walks you through creating a policy domain for use with
Oracle Web Services Manager and the Oracle Access Manager Identity Asserter.

To create a policy domain for the Identity Asserter with Oracle Web Services
Manager
1. Go to the Policy Manager and log in. For example:

http://Webserver:port/access/oblix

where Webserver refers to computer that hosts the Policy Manager Web server; port
refers to the HTTP port number of the Web server instance; /access/oblix connects
to the Access System Console.

2. Click Policy Manager.

3. Click Create Policy Domain in the left navigation pane to display the Create Policy
Domain page.

4. General Tab: Fill in a name and optional description that appears in pages
showing lists of policy domains, and then click Save. For example:

 Name: OAM IA OWSM

 Description: Used by Identity Asserter with Oracle Web
Services Manager

5. Resources Tab: Click the Resources tab, click the Add button, select resource
types, enter URL prefixes, and save as follows:

 Resource Type: wl_authen

 URL prefix: /Authen/SSOToken

 Description: Used by IA OWS to validate SSO token

 Save.

6. Authorization Rules Tab: Add an authorization rule to use in an Authorization
Expression later.

Click the Authorization Rules tab, then click the Add button

Note: Do not enable this policy domain until you finish all details.

Configuring Identity Assertion for Oracle Web Services Manager and OAM 10g

Configuring Single Sign-On Using Oracle Access Manager 10g 17-61

a. General Tab: For Authorization Rules, enter a rule name and, optionally, a
brief description.

 Name: Default_OAM_IA_OWS_AuthZ_Rule

 Description: For use with OWS and Identity Asserter.

 Enabled: Yes

 Allow takes precedence: No

 Update Cache: Yes (updates all Access Server caches immediately)

b. Timing Conditions: None required for this scenario.

c. Actions: None required on this tab. Instead, you set these up under the
Default Rules tab.

d. Allow Access: Add details that define to whom the Allow Access part of the
rule applies.

Role: Any one

e. Deny Access: Not Needed for this scenario.

f. Return to the General tab for Authorization Rules and enable the rule so that
you can add it to an authorization expression later.

7. Default Rules Tab: From here you can add the authentication rule, authorization
expression, and audit rule for this policy domain. These default rules apply to the
resources it contains, unless the resource is protected by a specific policy.

Click Default Rules, and then click Add.

a. Authentication Rule: A policy domain must have at least one authentication
rule, which specifies one authentication scheme and optional authentication
actions. Enter a Name, optional description, and choose an Authentication
Scheme.

General tab: Fill in the as follows:

 Name: Default AuthN Rule

 Description: Default Rule for OAM IA OSW

 Authentication Scheme: Basic over LDAP

 Click Save.

Actions tab: No authentication actions are needed in the default rule for
Oracle Web Services Manager.

b. Authorization Expression: The authorization expression in the default rules
for a policy domain applies to all resources of the domain unless those
resources are protected by a policy containing an expression.

Click the Authorization Expression tab, and then click Add.

See Also: Chapter 6 in Oracle Access Manager Access Administration
Guide for details about configuring authorization schemes and rules.

Note: With Oracle Web Services Manager you need an Authorization
rule.

Configuring Identity Assertion for Oracle Web Services Manager and OAM 10g

17-62 Oracle Fusion Middleware Application Security Guide

Expression tab: Select the authorization rule you created in Step 6:

 Select Authorization Rule: Default_OAM_IA_OWS_AuthZ_Rule

 Click Add.

 Click Save.

Actions tab: In Step 6 you defined to whom the Allow Access part of a rule
applies. Here, you specify actions for Authorization success for both rules and
expressions.

Click Actions, click Add, and then create a return action on Authorization
Success with the following to specify what actions should be invoked when
authorization succeeds.

Authorization Success: Applies to Allow Access conditions.

 Return Type: WL_REALM

 Return Name: uid

 Return Attribute: uid

 Click Save.

8. Policies Tab: No policies are needed. Default Rules apply.

9. Delegated Access Admins: When adding URL prefixes to a policy domain, the
Delegated Access Administrator must specify a server hosting the URL prefix.

10. Validate Policy Domain: Click My Policy Domains, click the new policy domain
you created, then click View As a Page to see all specifications at once.

11. Proceed with "Configuring Providers in a WebLogic Domain for Oracle Web
Services Manager".

17.6.2 Configuring Providers in a WebLogic Domain for Oracle Web Services Manager
To use Oracle Access Manager Identity Asserter with Oracle Web Services Manager
protected Web services, several Authentication Providers must be configured and
ordered in a WebLogic domain:

■ OAM Identity Asserter: REQUIRED

■ OID Authenticator: SUFFICIENT

■ DefaultAuthenticator: SUFFICIENT

Note: Return Attribute uid should match the value of the login
parameter for the user name to help identify the user uniquely in the
Oracle Access Manager LDAP repository. Here, uid is the canonical
name of the login attribute. If your LDAP directory uses a different
attribute as the login attribute, the Name should still be "uid".
However, the Return Attribute would be whatever your login
attribute is configured as (mail, for example). Be careful to put these
values under Return Attribute (not Return Value).

See Also: Oracle Access Manager Access Administration Guide,
"Delegating Policy Domain Administration"

Configuring Identity Assertion for Oracle Web Services Manager and OAM 10g

Configuring Single Sign-On Using Oracle Access Manager 10g 17-63

This procedure is nearly identical to the one for the Oracle Access Manager Identity
Asserter. The difference in this case is that Oracle Web Services Manager requires a
custom AccessGate and additional provider-specific values are required:

■ Primary Access Server: Specify the host and part. For example: abcd:7777

■ Access Gate Name: The name of the AccessGate protecting the application. For
example: mmmm

■ Access Gate Password: The AccessGate password as specified in the Access
System Console.

You can add these using either the Oracle WebLogic Administration Console or Oracle
WebLogic Scripting Tool (WLST) command-line tool.

To set up providers in a WebLogic domain
1. No Oracle Fusion Middleware Application: Obtain the Oracle Access Manager

provider if you have no Oracle Fusion Middleware application.

a. Log in to Oracle Technology Network at:

http://www.oracle.com/technology/software/products/middleware/ht
docs/111110_fmw.html

b. Locate the oamAuthnProvider ZIP file with Access Manager WebGates
(10.1.4.3.0). For example:

oamAuthnProvider<version>.zip

c. Extract and copy the oamAuthnProvider.jar to the following path on the
computer hosting Oracle WebLogic Server:

BEA_HOME/wlserver_10.x/server/lib/mbeantypes/oamAuthnProvider.jar

2. Log in to the Oracle WebLogic Administration Console.

3. OAM Identity Asserter: Perform the following steps to add this provider:

a. Click Security Realms, Default Realm Name, and click Providers.

b. Click Authentication, click New, and then enter a name and select a type:

Name: OAM Identity Asserter

Type: OAMIdentityAsserter

OK

c. In the Authentication Providers table, click the newly added authenticator.

d. On the Common tab, set the Control Flag to REQUIRED, and click Save.

See Also:

■ "About Oracle WebLogic Server Authentication and Identity
Assertion Providers" on page 17-41

■ Oracle Fusion Middleware Oracle WebLogic Scripting Tool

■ Oracle Fusion Middleware WebLogic Scripting Tool Command
Reference

Note: With a Oracle Fusion Middleware application installed, you
have the required provider file. Skip Step 1.

Configuring Identity Assertion for Oracle Web Services Manager and OAM 10g

17-64 Oracle Fusion Middleware Application Security Guide

e. Click Platform-Specific tab and configure these parameters:

Primary Access Server: Specify the host and part. For example: abcd:7777

Access Gate Name: The name of the AccessGate protecting the application.
For example: mmmm

Access Gate Password: The AccessGate password as specified in the Access
System Console.

Save

4. OID Authenticator: Perform the following steps to add this provider.

a. Click Security Realms, Default Realm Name, and click Providers

b. Click New, enter a name, and select a type:

Name: OID Authenticator

Type: OracleInternetDirectoryAuthenticator

Click OK.

c. In the Authentication Providers table, click the newly added authenticator.

d. On the Settings page, click the Common tab, set the Control Flag to
SUFFICIENT, and then click Save.

e. Click the Provider Specific tab and specify the following required settings
using values for your own environment:

Host: Your LDAP host. For example: localhost

Port: Your LDAP host listening port. For example: 6050

Principal: LDAP administrative user. For example: cn=orcladmin

Credential: LDAP administrative user password.

User Base DN: Same searchbase as in Oracle Access Manager.

All Users Filter: For example: (&(uid=*)(objectclass=person))

User Name Attribute: Set as the default attribute for username in the LDAP
directory. For example: uid

Group Base DN: The group searchbase (same as User Base DN)

Click Save.

5. Default Authenticator: Perform the following steps to set up the Default
Authenticator for use with the Identity Asserter:

a. Go to Security Realms, Default Realm Name, and click Providers.

b. Click Authentication, Click DefaultAuthenticator to see its configuration
page.

c. Click the Common tab and set the Control Flag to SUFFICIENT.

d. Click Save.

6. Reorder Providers:

a. Click Security Realms, Default Realm Name, Providers.

Note: Do not set the All Groups filter as the default works fine as is.

Synchronizing the User and SSO Sessions: SSO Synchronization Filter

Configuring Single Sign-On Using Oracle Access Manager 10g 17-65

b. On the Summary page where providers are listed, click the Reorder button

c. On the Reorder Authentication Providers page, select a provider name and
use the arrows beside the list to order the providers as follows:

OAM Identity Asserter (REQUIRED)

OID Authenticator (SUFFICIENT)

Default Authenticator (SUFFICIENT)

d. Click OK to save your changes

7. Activate Changes: In the Change Center, click Activate Changes

8. Reboot Oracle WebLogic Server.

9. Proceed as follows:

■ Successful: Go to "Testing the Identity Asserter with Oracle Web Services
Manager".

■ Not Successful: Confirm the all providers have the proper specifications for
your environment, are in the proper order, and that
oamAuthnProvider.jar is in the correct location as described in "Installing
Components and Files for Authentication Providers and OAM 10g" on
page 17-4.

17.6.3 Testing the Identity Asserter with Oracle Web Services Manager
To validate the use of the Oracle Access Manager Identity Asserter with Oracle Web
Services Manager, you can access the Web service protected by the Identity Asserter
and Oracle Web Services Manager policies. If access is granted, the implementation
works. If not, see "Troubleshooting Tips for OAM Provider Deployments" on
page 17-67.

17.7 Synchronizing the User and SSO Sessions: SSO Synchronization
Filter

In Fusion Middleware 11g, a new component that synchronizes the container user
session and SSO session has been introduced. SSO Sync Filter is an Oracle WebLogic
system filter implementation that intercepts all requests to the container, acts on
protected resource requests, and attempts to synchronize the container's user session
with the user identifying header in OSSO (Proxy-Remote-User) or the user data in the
Oracle Access Manager SSO session cookie (ObSSOCookie).

SSO Synchronization Filter (SSO Sync Filter) is an implementation of the Servlet Filter
based on Java Servlet Specification version 2.3. SSO sync filter relieves applications
from tracking the SSO user session and synchronizing it with their respective sessions.
Instead, applications would only need to synchronize with container's user session.

SSO Sync Filter intercepts each request to the container and determines whether to act
on it based on certain HTTP headers that are attached to the request. Filter expects SSO
agent to have set those headers in the Web Tier. When access is made to unprotected
areas of the application, the filter acts as a pass through. Once a protected resource is
accessed, SSO agents in the Web Tier, direct user to perform authentication with SSO
system such as Oracle Access Manager. After the authentication, Oracle Access
Manager Identity Asserter helps establish a user identity in form of JAAS Subject to
the container and a user session is created. WebLogic maintains the user session data
as part of HTTP Session Cookie (JSESSIONID).

Synchronizing the User and SSO Sessions: SSO Synchronization Filter

17-66 Oracle Fusion Middleware Application Security Guide

Subsequent access to the application resources provides two pieces of information to
the SSO Sync Filter:

■ User identifying header in OSSO (Proxy-Remote-User)

■ User data in the Oracle Access Manager SSO session cookie (ObSSOCookie)

The job of SSO Sync Filter is to make sure that the user identity in the container
matches with that of the SSO session. If there is a mismatch, filter invalidates the
container's user session. As a result, the downstream application would only have to
track container user session and react in a consistent fashion regardless of SSO
environment in use.

Notes:

■ Enabled and Active by Default: SSO Sync Filter fetches the user information from
the configured tokens, gets the user from existing session (if any), invalidates the
session and redirects to the requested URL in case the CurrentSessionUser does
not match the incoming SSO User. Otherwise, the request is simply passed
through.

If you have not configured the OSSO or Oracle Access Manager Assertion
Providers in your domain, the filter disables automatically during WebLogic
Server start-up.

■ Active for All URI's by Default (/*): No changes are required in the application
code.

■ Configured for the OSSO Tokens/Header: Proxy-Remote-User, and performs a
case insensitive match.

■ Configured for the Oracle Access Manager SSO Tokens/Header: OAM_
REMOTE_USER and REMOTE_USER, and does a case insensitive match.

■ Global Logout: SSO Sync Filter is intended to provide the Single Logout
Experience to the Oracle Fusion Middleware applications that use the OSSO or
Oracle Access Manager Solutions. Is handled similarly to single sign-on. After
global logout is performed, SSO filter reconciles the session when subsequent
access to an application that has not cleaned up its session is made.

Any application that use the OSSO or Oracle Access Manager Solutions is
expected to invalidate its session before making a call to OSSO logout or Oracle
Access Manager logout. For more information on OSSO logout, see Example 18–2,
"SSO Logout with Dynamic Directives" on page 18-11. For details about Oracle
Access Manager logout, see "Configuring Global Logout for Oracle Access
Manager 10g and 10g WebGates" on page 17-10.

■ Application Session Time Out: SSO cookies typically track user inactivity/idle
times and force users to login when a time out occurs. OSSO and Oracle Access
Manager are no exception. Oracle Access Manager takes a sophisticated approach
at this and specifically tracks Maximum Idle Session Time and Longest Idle
Session Time along with SSO session creation time and time when it was last
refreshed.

The general recommendation for applications that are maintaining their own
sessions when integrating with SSO systems is to configure their session time outs
close to that of SSO session time outs so as to make user experience remains
consistent across SSO and application session time outs.

You can alter the behavior of the SSO Sync Filter for application requirements by
passing various over-riding system properties to WebLogic. To do this, you change the

Troubleshooting Tips for OAM Provider Deployments

Configuring Single Sign-On Using Oracle Access Manager 10g 17-67

Oracle WebLogic startup script and check for EXTRA_JAVA_PROPERTIES in
setDomainEnv.sh. The properties and Sync behavior is shown in Table 17–12.

You cannot enable the filter for selected applications. The SSO Sync Filter is a system
filter. As such, it is activated for all deployed applications (the URI mapping is /*).

The following procedure gives some tips about modifying the SSO Sync filter
properties and behavior.

To modify the SSO Sync Filter properties and behavior
1. Disable the Filter: Change the system property "sso.filter.enable" to "false" (pass as

-D to the jvm) and restart the Oracle WebLogic Server. This toggles the filter status.

2. User-Identifying Header Differs from Pre-Configured Sync Filter Tokens:
Over-ride the SSO token that the Sync Filter looks for using the system property
"sso.filter.ssotoken".

For example, pass to the WebLogic Server jvm in the WebLogic Server startup
script -Dsso.filter.ssotoken=HEADERNAME, and restart the server.

When you contact Oracle Support you might be requested to set up debugging, as
described in "Setting Up Debugging in the WebLogic Administration Console" on
page 15-14.

17.8 Troubleshooting Tips for OAM Provider Deployments
This section contains the following topics:

■ About Using IPv6

■ Apache Bridge Failure: Timed Out

■ Authenticated User with Access Denied

■ Browser Back Button Results in Error

Table 17–12 SSO Sync Filter Properties and Sync Behavior

Area Overriding System Property
Default value of
System property Default Behavior of the Sync Filter

Status
(Active or
Inactive)

sso.filter.enable Not configured Enabled

Case
sensitive
matches

sso.filter.name.exact.match Not configured Case Ignore Match

Configured
Tokens

sso.filter.ssotoken Not configured ■ OSSO: Look for Proxy-Remote-User

■ Oracle Access Manager: Look for OAM_
REMOTE_USER and REMOTE_USER.

OAM_REMOTE_USER takes precedence.

URI
Mappings

Not Applicable Not Applicable /*

Note: You cannot enable the filter for selected applications.

Troubleshooting Tips for OAM Provider Deployments

17-68 Oracle Fusion Middleware Application Security Guide

■ Cannot Reboot After Adding OAM and OID Authenticators

■ Client in Cluster with Load-Balanced WebGates

■ Error 401: Unable to Access the Application

■ Error 403: Unable to Access the Application

■ Error 404: Not Found ... Anything Matching the Request URI

■ Error Issued with the Action URL in Form Login Page

■ Error or Failure on Oracle WebLogic Server Startup

■ JAAS Control Flag

■ Login Form is Shown Repeatedly Upon Credential Submission: No Error

■ Logout and Session Time Out Issues

■ Not Found: The requested URL or Resource Was Not Found

■ Oracle WebLogic Server Fails to Start

■ Oracle ADF Integration and Cert Mode

17.8.1 About Using IPv6
Oracle Fusion Middleware and Oracle Access Manager support Internet Protocol
Version 4 (IPv4) and Internet Protocol Version 6 (IPv6.) Among other features, IPv6
supports a larger address space (128 bits) than IPv4 (32 bits), providing an exponential
increase in the number of computers that can be addressable on the Web.

17.8.2 Apache Bridge Failure: Timed Out
If you experience a failure of the Apache bridge, you might see a message stating that
there is no back-end server available for connection. In this case, the connection times
out.

The Oracle WebLogic Server might be down or there might be incorrect values set in
mod_weblogic.

To recover from an Apache Bridge Failure
1. Check the Oracle WebLogic Server to ensure that it is available.

2. Confirm that host and port information is specified correctly in the WebGate’s
Web server httpd.conf. For example:

ORACLE_INSTANCE/config/OHS/<ohs_name>/httpd.conf

 <IfModule mod_weblogic.c>
 WebLogicHost yourHost.yourDomain.com
 WebLogicPort yourWlsPortNumber
 </IfModule>

See Also: "Setting Up Debugging in the WebLogic Administration
Console" on page 15-14

See Also: Oracle Fusion Middleware Administrator's Guide for details
about using IPv6.

Troubleshooting Tips for OAM Provider Deployments

Configuring Single Sign-On Using Oracle Access Manager 10g 17-69

17.8.3 Authenticated User with Access Denied
It is possible that an authenticated user does not have access rights to the requested
resource.

If a user login is inconclusive or invalid, the user can be authenticated but not
recognized as authorized for the requested resource. In this case, no explicit error
message states the issue. Instead, the user is prompted to log in again.

17.8.4 Browser Back Button Results in Error
After successful authentication, if you click the Back button in the browser window,
you might get an error for access/oblix/apps/webgate/bin/webgate.so.

When form-based authentication is used, Oracle Access Manager creates a form login
cookie that holds information about the requested resource. On successful
authentication, the state of the cookie changes. When the user clicks the Back button,
the login form appears. When re-posted, the form login cookie no longer holds
redirection details.

The ObSSOCookie is also sent with the form login cookie.The ObSSOCookie is
correctly checked. As the form login cookie state changes, the form-based
authentication does not occur and the form action is considered as a request for the
resource.

Solution
Retry the request using the original URL.

17.8.5 Cannot Reboot After Adding OAM and OID Authenticators
If the Oracle Access Manager Authenticator flag is set to REQUIRED, or if Oracle
Access Manager Authenticator is the only Authentication Provider, perform the next
step to ensure that the LDAP user who boots Oracle WebLogic Server is included in
the administrator group that can perform this task. By default the Oracle WebLogic
Server Admin Role includes the Administrators group.

To provide access to any other group, you must create that group in the directory
server and add the user who boots WebLogic Server in that group.

To ensure you can restart the WebLogic Server
1. Create an Administrators group in the directory server, if one does not already

exist (or any other group for which you want boot access).

2. Confirm that the LDAP user who boots Oracle WebLogic Server is included in the
Administrators (or other) group.

3. From the WebLogic Administration Console, go to Security Realms, myrealm,
Roles and Policies, Global Roles.

4. Select View Conditions for the Admins Role.

5. Add the group and click Save.

17.8.6 Client in Cluster with Load-Balanced WebGates
Out of the box, Oracle Access Manager does not support load balanced AccessGates;
you must use a third-party load balancer.

Suppose you have two WebGates: WebGateA and WebGateB. You can use the
OAMCfgTool to create the profile to be shared by the two WebGates.

Troubleshooting Tips for OAM Provider Deployments

17-70 Oracle Fusion Middleware Application Security Guide

If you have an Oracle Fusion Middleware Application installed you already have the
OAMCfgTool. In this case, skip Step 1.

Solution:
1. No Oracle Fusion Middleware Application: Obtain the OAMCfgTool if you have

no Oracle Fusion Middleware application installed.

a. Log in to Oracle Technology Network at:

http://www.oracle.com/technology/software/products/middleware/ht
docs/111110_fmw.html

b. Locate the OAMCfgTool ZIP file with Access Manager Core Components
(10.1.4.3.0):

oamcfgtool<version>.zip

c. Extract and copy oamcfgtool.jar to the computer hosting WebGate:

2. Log in to the computer for WebGateA (even if WebGate is not yet installed).

3. Change to the file system directory containing OAMCfgTool and run a command
like the following one to create one AccessGate Profile to be shared by the two
WebGates. For example:

java -jar oamcfgtool.jar mode=CREATE app_domain=SharedA_B
app_agent_password=<WebGate_password>
cookie_domain=<preferred_http_cookie_domain>
ldap_host=wxyz
ldap_port=6633
ldap_userdn=orcladmin
ldap_userpassword=<ldap_userpassword>
oam_aaa_host=abcd
oam_aaa_port=7789
oam_aaa_mode=cert
log_file=OAMCfg_date.log
log_level=INFO
output_ldif_file=<LDIF_filename>

4. Review the information provided by the tool. For example, the parameters and
values in Step 3 would provide the following information:

Processed input parameters
Initialized Global Configuration
Successfully completed the Create operation.
 Operation Summary:
 Policy Domain : SharedA_B
 Host Identifier: SharedA_B_WD
 Access Gate ID : SharedA_B_AG

See Also: "Introduction to OAMCfgTool" on page 17-15

Note:

■ Perform Step 5 if you have WebGate installed.

■ Perform Step 6 if WebGate is not yet installed.

Troubleshooting Tips for OAM Provider Deployments

Configuring Single Sign-On Using Oracle Access Manager 10g 17-71

5. Output LDIF Created: Import the LDIF to write information to the directory
server. Otherwise, skip this step.

6. WebGates Not Installed: Install WebGateA and WebGateB and specify the same
values as you did when creating the profile (plus additional values to properly
finish the installation).

7. Installed WebGates: Using output from the OAMCfgTool Create command, run
the Oracle Access Manager configureWebGate tool to set up the WebGate. For
example:

a. Go to:

WebGate_install_dir\access\oblix\tools\configureWebGate

where WebGate_install_dir is the directory where WebGate is installed.

b. Run the following command to configure the WebGate using values specified
with OAMCfgTool and other values needed to finish the installation. For
example:

configureWebGate -i WebGate_install_dir -t WebGate SharedA_B_AG
-P WebGate_password
-m <open|simple|cert>
-h Access_Server_Host_Name
-p Access_Server_Port
-a Access_Server_ID
-r Access_Server_Pass_Phrase (must be the same as the WebGate_password)
-Z Access_Server_Retry count

c. Repeat these steps to configure WebGateB.

8. Confirm Profile in the Access System Console: Perform the following steps to
view or modify the WebGate profile.

a. Log in to the Access System Console as a Master or Delegated Access
Administrator. For example:

 http://hostname:port/access/oblix

hostname refers to computer that hosts the Web server; port refers to the HTTP
port number of the Web server instance; /access/oblix connects to the Access
System Console.

b. Click Access System Configuration, and then click AccessGate
Configuration.

c. Click the All button to find all profiles (or select the search attribute and
condition from the lists) and then click Go.

d. Click a WebGate's name to view its details.

e. Click Cancel to dismiss the page without changes, or click Modify to change
values as described in the Oracle Access Manager Access Administration Guide.

9. In the load balancer host identifiers, add host name variations for both WebGates:
WebGateA and WebGateB.

17.8.7 Error 401: Unable to Access the Application
An error message like the following:

See Also: "Configuring AccessGates and WebGates" in the Oracle
Access Manager Access Administration Guide

Troubleshooting Tips for OAM Provider Deployments

17-72 Oracle Fusion Middleware Application Security Guide

401 Authorization Required

This typically means that the Oracle Access Manager Authentication Provider is
incorrectly configured. For a listing of correct configurations, see "Oracle Access
Manager Authentication Provider Parameter List" on page 17-14.

17.8.8 Error 403: Unable to Access the Application
An error message like the following:

403 Forbiden

This typically means that the post-authenticate actions are incorrectly configured in
the policy domain.

Under the policy domain’s authentication success actions, ensure that you have set
obmygroups and uid in the Return Attribute field (not in the Return Value field).

For more information, see "Configuring a Policy Domain for the Oracle Access
Manager Authenticator" on page 17-49.

17.8.9 Error 404: Not Found ... Anything Matching the Request URI
Generally, this error indicates that the server has not found anything matching the
Request-URI. This message informs that the Oracle WebLogic Server is not able to find
a resource.

There is no indication of whether the condition is temporary or permanent:

■ If the server cannot make temporary or permanent information available to the
client, the status code 403 (Forbidden) can be used.

■ If, through some internally configurable mechanism, the server could state that an
old resource is permanently unavailable and has no forwarding address, the 410
(Gone) status code should be used.

To recover from Error 404
Confirm that the resource is deployed on the Oracle WebLogic Server. For example, if
the pattern is /private1/Hello, confirm that Hello is accessible on the server with
private1 as the root.

17.8.10 Error Issued with the Action URL in Form Login Page
This issue occurs if Form Authentication scheme is not properly configured in Oracle
Access Manager. However, this cannot occur if you use the OAMCfgTool to set up a
policy domain. For example:

Symptoms include:

■ The user name and password fields in the login form must match the details in the
Form authentication scheme

■ The credential_mapping filter must be specified correctly in the Form
authentication scheme

■ The login form action URL must be protected with a policy

■ The login form action URL must match the Action value specified in the
authentication scheme’s challenge parameter

Troubleshooting Tips for OAM Provider Deployments

Configuring Single Sign-On Using Oracle Access Manager 10g 17-73

17.8.11 Error or Failure on Oracle WebLogic Server Startup
If the WebLogic Server user is not part of the administrator’s group in Oracle Access
Manager, Oracle WebLogic Server restart and Authentication Provider initialization
can fail. In this case, one of the following messages might appear in the
AdminServer.log in $DOMAIN_
HOME/servers/AdminServer/logs/AdminServer.log:

)<Failed ---- FatalError:InvalidSchemeMapping
...
Authentication Failed.
...
Login failed.
...

Solution
1. Confirm that the implementation is using the Oracle-provided default login form.

2. Create a group named "Administrators" in the Oracle Access Manager Identity
System, and include the Oracle WebLogic Server user.

3. Login to Oracle WebLogic Server using the credentials of the user in the
Administrators group defined within the Oracle Access Manager Identity System.

4. Restart the Oracle WebLogic Server.

17.8.12 JAAS Control Flag
If this flag is set to REQUIRED and any other parameter is set to an incorrect value, the
server does not start.

To prevent this issue, ensure that the Oracle Access Manager Authentication Provider
is properly configured while this parameter value is set to OPTIONAL. Only after you
have validated proper behavior in this way, should you reset the control flag to
REQUIRED.

For more information, see "Configuring Providers for the Authenticator in a WebLogic
Domain" on page 17-54.

17.8.13 Login Form is Shown Repeatedly Upon Credential Submission: No Error
This issue typically points to an incorrect user name or password. No error is shown.

Ensure that you are supplying the correct user name and password. The user login
name must be the value of the attribute that is configured in the Form Login
authentication scheme. For example, Challenge Parameter creds: userid.

17.8.14 Logout and Session Time Out Issues
When a user logs out, or a user session times out, the user should be challenged for
reauthentication. However, the following might occur instead:

■ Logout: After logging out, if the user attempts to access the application in the
same browser window the application is still accessible without reauthenticating.

See Also: Oracle Access Manager Identity and Common Administration
Guide

Troubleshooting Tips for OAM Provider Deployments

17-74 Oracle Fusion Middleware Application Security Guide

■ Session Time Out: After a user session time out, the user is challenged to
reauthenticate. However, if the user gives a different user ID he is granted the
same privileges as the previous user.

The ObSSOCookie is still present. Some configuration must be done at the application
level to kill the ObSSOCookie. For proper behavior, WebLogic application session time
out values should be the same as WebGate session time out values.

If setting up an Identity Asserter in the WebLogic Application Console, the Web
application using the Identity Asserter must have its auth-method set to
CLIENT-CERT. For more information, see "Configuring OAM Identity Assertion for
SSO with Oracle Access Manager 10g" on page 17-34.

17.8.15 Not Found: The requested URL or Resource Was Not Found
If you receive a message stating that the requested URL or resource was not found on
this server, the reverse proxy Web server might not be forwarding requests to the
Oracle WebLogic Server.

To ensure that the reverse proxy is forwarding requests to Oracle WebLogic
Server
1. Locate the httpd.conf file on the reverse proxy WebGate Web server. For example:

ORACLE_INSTANCE/config/OHS/<ohs_name>/httpd.conf

2. Confirm the correct settings to forward requests to the correct host and port of the
Oracle WebLogic Server:

 #httpd.conf
 <IfModule mod_weblogic.c>
 WebLogicHost <host>
 WebLogicPort yourWlsPortNumber
 </IfModule>

 <Location /request-uri-pattern>
 SetHandler weblogic-handler
 </Location>

17.8.16 Oracle WebLogic Server Fails to Start
If the Oracle WebLogic Server fails to start, you can take the following actions.

1. Determine whether the Oracle Access Manager Authentication Provider is the
only provider configured in the Oracle WebLogic Server realm. If it is, continue
with Step 2.

2. Confirm whether the Oracle Access Manager Authentication Provider is
configured correctly and make any changes needed.

3. Determine whether the Oracle Access Manager Authentication Provider control
flag is set to REQUIRED. In this case, perform the following steps:

a. Create an Administrators group in the directory server, if one does not already
exist (or any other group for which you want boot access).

Note: To provide access to any other group, you must create that
group in the directory server and add the user who boots WebLogic
Server in that group.

Troubleshooting Tips for OAM Provider Deployments

Configuring Single Sign-On Using Oracle Access Manager 10g 17-75

b. Confirm that the LDAP user who boots Oracle WebLogic Server is included in
the Administrators (or other) group.

c. From the WebLogic Administration Console, go to Security Realms, Your
Realm, Roles and Policies, Global Roles.

d. Select View Conditions for the Administrators (or other) role.

e. Add the group and click Save.

17.8.17 Oracle ADF Integration and Cert Mode

Problem
WebGate configuration of cache directives might not be compatible with certain
browser versions (specifically Internet Explorer v7) when accessing certain URLs that
allow you to download Microsoft Office documents (.xls, .doc, and so on).

For example, suppose that you have an Excel workbook deployed along with an
Oracle ADF application in an Oracle Access Manager Cert-based environment.

If the ADFDi component is trying to access two URLs, and trying the second URL first,
a failure occurs regardless of the ADFDi client side code. It is not able to handle the
redirect from Oracle Access Manager WebGate to the SSL enabled endpoint and fails
with the following stack trace:

WebException: The request was aborted: Could not create SSL/TLS secure channel

If you attempt to access the workbook, and the following message appears:

Microsoft Office Excel cannot access the file

The cause could be any of the following:

■ The file name or path does not exist.

■ The file is being used by another program.

■ The workbook you are trying to save has the same name as a currently open
workbook.

However, if the message appears when the URL to workbook is explicitly pasted to
Internet Explorer v7 address bar it might be due to WebGate default Cache Directives.

WebGates have default Cache Directives (Pragma=no-cache and
CacheControl=no-cache) that might cause a problem with Internet Explorer v7 when a
URL to an .xls workbook is directly pasted into the browser’s address bar.

Solution
If the message appears when the URL to workbook is explicitly pasted to Internet
Explorer v7 address bar, Oracle recommends removing the cache directives from
respective WebGate configuration pages in the Access System Console.

To remove cache directives from respective WebGate configurations
1. From the Access System Console, click the Access System Configuration tab.

2. Click AccessGate Configuration, click Go on the search page, and then click the
link to the desired AccessGate configuration page.

3. On the Details for AccessGate page, click Modify.

Troubleshooting Tips for OAM Provider Deployments

17-76 Oracle Fusion Middleware Application Security Guide

4. On the Modify AccessGate page, locate Web Server Client label and clear the
following fields:

■ CachePragmaHeader

■ CacheControlHeader

5. Click Save.

17.8.18 About Protected_JSessionId_Policy
OAM Policies are evaluated based on the URIs passed to it. With earlier releases, there
was no policy for protecting *;jsessionid*. When an application resource URL was
accessed and the JSESSIONID cookie was not found, WebLogic Server wrote the URL
by including the JSESSIONID as part of the URL. If the URL in question was protected,
Oracle Access Manager and OSSO Web agents could have issues matching the
re-written URL.

In this release, a new policy is available that uses a pattern "*;jessionid=*" for all URIs
under the context-root. Therefore, any URI under the context-root, with
";jsessionid=string" appended to it, is considered protected.

The /context-root itself must be listed as a resource. The URL pattern is *;jsessionid=*.
The Default authentication rule is a protected authenticating scheme. The Default
authorization expression is also used. When ordering policies, this policy must be first.

Suppose you have one protected resource named /test/protectedUri and a public
resource named /test. When you create a public policy with the pattern *jessionid;*
and apply this policy to both the above resources the public policy should have
precedence over the public resource.

■ When /test;jessionid=blah is requested, OAM first checks for a default rule for
"/test;jessionid=blah". Without such a rule, OAM then checks for a rule for "/".
Without this rule, the URI, "/test;jessionid=blah" is considered to be unprotected.

■ When "/test/protectedUri;jessionid=blah" is requested, OAM checks for a default
rule to protect this. Without such a rule, OAM then checks for a rule for "/test".
With "/test" in the Resources list, OAM further determines which policy to apply.
In this case, the jessionid policy is applied and the request deemed to be protected.

18

Configuring Single Sign-On using OracleAS SSO 10g 18-1

18Configuring Single Sign-On using OracleAS
SSO 10g

The chapter describes how to implement SSO using OracleAS SSO (OSSO) 10g. It
includes the following major sections:

■ Deploying the OracleAS 10g Single Sign-On (OSSO) Solution

■ Synchronizing the User and SSO Sessions: SSO Synchronization Filter

■ Troubleshooting for an OSSO Identity Asserter Deployment

18.1 Deploying the OracleAS 10g Single Sign-On (OSSO) Solution
The OracleAS Single Sign-On solution provides single sign-on access to Web
Applications. Oracle Internet Directory is the LDAP-based repository.

This solution is intended for applications that have been deployed on Oracle WebLogic
Server but do not yet have single sign-on implemented. Requirements and steps to
configure the OSSO solution are explained in "New Users of the OSSO Identity
Asserter" on page 18-4.

Applications that are already using the OracleAS Single Sign-On solution with the JPS
login module and dynamically re-directing requests to OSSO are unaffected by the
new OSSO solution. In this case, there is no need to configure the new OSSO
Authentication Provider described in this section.

This section is divided as follows:

■ Using the OSSO Identity Asserter

■ New Users of the OSSO Identity Asserter

■ Troubleshooting for an OSSO Identity Asserter Deployment

18.1.1 Using the OSSO Identity Asserter
This section describes the expected behavior when you implement the OracleAS Single
Sign-On Identity Asserter. This section is divided as follows:

■ Oracle WebLogic Security Framework

Note: Oracle recommends using Oracle Access Manager 11g, as
described in "Introduction to Oracle Access Manager 11g SSO" on
page 16-1.

Deploying the OracleAS 10g Single Sign-On (OSSO) Solution

18-2 Oracle Fusion Middleware Application Security Guide

■ OSSO Identity Asserter Processing

■ Consumption of Headers with OSSO Identity Asserter

18.1.1.1 Oracle WebLogic Security Framework
Figure 18–1 illustrates the location of components in the Oracle WebLogic Security
Framework, including the OSSO Identity Asserter. Additional details follow.

Figure 18–1 Location of OSSO Components in the Oracle WebLogic Security
Framework

At the top of the figure, Oracle HTTP Server is installed. This installation includes
mod_weblogic and mod_osso, which are required to pass the identity token to the
Providers and Oracle WebLogic Server. The Oracle WebLogic Server includes the
partner application and the Identity Asserter (also known as the Identity Assertion
Provider). The 10g OracleAS Single Sign-On server (OSSO Server), on the right side of
the figure, communicates directly with the directory server and Oracle HTTP Server.

18.1.1.2 OSSO Identity Asserter Processing
Figure 18–2 illustrates the processing that occurs when you have OSSO implemented
with the Identity Asserter. Additional details follow the figure.

Note: For simplicity in text, this chapter uses the generic name of the
WebLogic Server plug-in for Apache: mod_weblogic. For Oracle
HTTP Server, the name of this plug-in differs from release 10g to 11g:

■ Oracle HTTP Server 10g: mod_wl (actual binary name is mod_wl_
20.so)

■ Oracle HTTP Server 11g: mod_wl_ohs (actual binary name is
mod_wl_ohs.so)

Deploying the OracleAS 10g Single Sign-On (OSSO) Solution

Configuring Single Sign-On using OracleAS SSO 10g 18-3

Figure 18–2 OSSO Identity Asserter Processing

The first time a request for a protected resource arrives at the mid-tier Web server, the
request is redirected to the 10g OracleAS Single Sign-On server, which requires user
credentials For a certificate-based authentication, no login page is displayed. After the
user has been successfully authenticated, all further requests from that user require
only that the user identity be asserted by the OSSO Identity Asserter before the
population of a JAAS Subject takes place. The Subject is consumed by the downstream
applications.

For example, suppose you have an application residing on an Oracle WebLogic Server
that is front-ended with the Oracle HTTP Server. The application is protected using
resource mappings in the mod_osso configuration. This case is described in the
following process overview.

Process overview: OSSO Identity Asserter
1. The user requests a protected application.

2. The Oracle HTTP Server intercepts the request and processes it using mod_osso to
check for an existing, valid Oracle HTTP Server cookie.

3. If there is no valid Oracle HTTP Server cookie, mod_osso redirects to the OracleAS
SSO Server, which contacts the directory during authentication.

4. After successful authentication mod_osso decrypts the encrypted user identity
populated by the OSSO server and sets the headers with user attributes.

5. mod_weblogic completes further processing and redirects the request to the
Oracle WebLogic Server.

6. The WebLogic security layer invokes providers depending on their settings and
the order specified. For example: the security layer invokes the:

■ Identity Asserter, which makes the identity assertion based on retrieved
tokens

■ Oracle Internet Directory Authenticator (OID Authenticator), which populates
the Subject with necessary Principals

See Also: "Consumption of Headers with OSSO Identity Asserter"

Deploying the OracleAS 10g Single Sign-On (OSSO) Solution

18-4 Oracle Fusion Middleware Application Security Guide

7. A response is sent to the user through the Oracle HTTP Server, and access to the
application is granted.

18.1.1.3 Consumption of Headers with OSSO Identity Asserter
This topic describes the headers sent by Oracle HTTP Server and the tokens set in the
header and the headers consumed by the OSSO Identity Asserter. If the application
needs to use the JAAS subject, configure OSSO Identity Asserter.

Table 18–1 provides the list of headers set by Oracle HTTP Server (mod_osso and
mod_weblogic). An application whose logic consumes the JAAS subject for identifying
user information, should be configured to use the OSSO Identity Asserter. which uses
the OracleAS SSO token type set in bold in the table (Proxy-Remote-User). The OSSO
Identity Asserter looks for the Proxy-Remote-User header and asserts the user’s
identity. The follow up OID Authenticator populates the JAAS subject.

Applications that do not require the JAAS subject for identifying user information, can
read the headers directly using the request.getHeader() API. Such applications are free
to read any header they need. Headers with user info are Osso-User-Dn,
Osso-User-Guid, and Proxy-Remote-User.

18.1.2 New Users of the OSSO Identity Asserter
The new OracleAS Single Sign-On solution includes the OSSO Identity Asserter, one of
the two new Authentication Providers for the Oracle WebLogic Server.

To have your application use the OSSO solution, you need the components described
in the following task.

Task overview: Deploying and configuring the OSSO Identity Asserter
1. Install the following components:

a. OracleAS Single Sign-On Server 10g (10g OSSO server

Table 18–1 Headers Sent by Oracle HTTP Server

Attribute Sample Value Description

Cookie OHS-Stads42.us.oracle.com:7777=....... Cookies

Osso-User-Guid 4F4E3D2BF4BFE250E040548CE9816D7E GUID of the authenticated user

Osso-User-Dn cn=orcladmin,cn=users, dc=us,dc=oracle,dc=com DN of the authenticated user

Osso-Subscriber DEFAULT COMPANY Subscriber name

Osso-Subscriber-Dn dc=us,dc=oracle,dc=com Base DN of the subscriber

Osso-Subscriber-Guid 4F4E3D2BF410E250E040548CE9816D7E GUID of the subscriber

Proxy-Remote-User ORCLADMIN The authenticated user

Proxy-Auth-Type Basic SSO Authentication type

Note: If you already have components installed and set up, you do
not need more. You can skip any steps that do not apply to your
deployment.

Deploying the OracleAS 10g Single Sign-On (OSSO) Solution

Configuring Single Sign-On using OracleAS SSO 10g 18-5

b. An Oracle Internet Directory repository configured to be used by the 10g
OSSO server. Ensure that the directory server is tuned for your deployment.

c. One of the following Web servers (based on Apache 2):

– Oracle HTTP Server 11g as a front end to the Oracle WebLogic Server. This
installation includes mod_osso and mod_weblogic.

– OHS 10g, available in the companion CD release Oracle HTTP Server
10.1.3. This includes mod_osso. However, mod_weblogic must be added.

d. Oracle WebLogic Server 10.3.1+

e. An Oracle Fusion Middleware product such as Oracle Identity Management,
Oracle SOA Suite, or Oracle WebCenter is required; it includes the provider
required for OSSO by Oracle WebLogic Server in the following path:

ORACLE_INSTANCE/modules/oracle.ossoiap_11.1.1/ossoiap.jar

2. Configure mod_weblogic so that it forwards requests to Oracle WebLogic Server,
as explained in section "Configuring mod_weblogic" on page 18-6.

3. Register the module mod_osso with the 10g SSO Server as a partner application,
as described in "Registering Oracle HTTP Server mod_osso with OSSO Server
10.1.4" on page 18-7.

4. Configure mod_osso, as described in "Configuring mod_osso to Protect Web
Resources" on page 18-8.

See Also: Oracle Application Server Installation Guide on Oracle
Technology Network at:
http://www.oracle.com/technology/documentation/oim10
14.html

See Also: The following manuals for Release 11g (11.1.1.1.0)

■ Oracle Fusion Middleware Installation Guide for Oracle Identity
Management

■ Oracle Fusion Middleware Administrator's Guide for Oracle Internet
Directory

See Also: The following manuals for Release 11g (11.1.1.1.0)

■ Oracle Fusion Middleware Installation Guide for Web Tier

■ Oracle Fusion Middleware Administrator's Guide for Oracle HTTP
Server

See Also: Oracle Fusion Middleware Getting Started With Installation for
Oracle WebLogic Server

See Also:

■ Oracle Fusion Middleware Installation Guide for Oracle Identity
Management

■ Oracle Fusion Middleware Installation Guide for Oracle SOA Suite

■ Oracle Fusion Middleware Installation Guide for Oracle WebCenter

Deploying the OracleAS 10g Single Sign-On (OSSO) Solution

18-6 Oracle Fusion Middleware Application Security Guide

5. Add the OSSO Identity Asserter to the appropriate domain, as explained in section
"Adding Providers to a WebLogic Domain for OSSO" on page 18-12.

6. Configure a connection filter, as explained in section "Establishing Trust Between
Oracle WebLogic Server and Other Entities" on page 18-14.

7. Configure the use of the solution by the application, as explained in section
"Configuring the Application for the OSSO Identity Asserter" on page 18-15.

8. Identify and resolve issues with your OSSO Identity Asserter implementation, see
"Troubleshooting for an OSSO Identity Asserter Deployment" on page 18-18.

18.1.2.1 Configuring mod_weblogic
You can either edit the Oracle HTTP Server httpd.conf file directly or add mod_
weblogic configuration in a separate file and include that file in httpd.conf.

The following procedure includes steps for two different Web server releases. Perform
steps as needed for your deployment:

■ OHS 11g ships with mod_wl_ohs.so. In this case, skip Step 1.

■ OHS 10g does not ship with mod_weblogic (mod_wl_.so). If Oracle HTTP Server
10g is installed, start with Step 1 to copy mod_wl_20.so before configuration.

To install and configure mod_weblogic
1. Oracle HTTP Server 10.1.3: Copy mod_wl_20.so to the Oracle HTTP Server

modules directory: For example:

From: WL_HOME/wlserver_10.0/server/plugin/linux/i686

To: ORACLE_HOME/ohs/modules

2. Locate the Oracle HTTP Server httpd.conf file. For example:

Oracle HTTP Server 10.1.3:

ORACLE_HOME/ohs/conf/httpd.conf

Oracle HTTP Server 11g:

ORACLE_INSTANCE/config/OHS/<ohs_name>/httpd.conf

3. Verify that mod_weblogic configuration is in httpd.conf, either by inclusion of the
appropriate configuration file or the configuration itself directly. For example, for
Oracle HTTP Server 10g:

LoadModule weblogic_module ${ORACLE_HOME}/ohs/modules/mod_wl_20.so
<IfModule mod_weblogic.c>
 WebLogicHost yourHost.yourDomain.com
 WebLogicPort yourWlsPortNumber
</IfModule>

<Location /request-uri-pattern>

Note: For Oracle HTTP Server, the name of this plug-in differs from
release 10g to 11g:

■ Oracle HTTP Server 10g: mod_wl (actual binary name is mod_wl_
20.so)

■ Oracle HTTP Server 11g: mod_wl_ohs (actual binary name is
mod_wl_ohs.so)

Deploying the OracleAS 10g Single Sign-On (OSSO) Solution

Configuring Single Sign-On using OracleAS SSO 10g 18-7

 SetHandler weblogic-handler
</Location>

18.1.2.2 Registering Oracle HTTP Server mod_osso with OSSO Server 10.1.4
The mod_osso module is an Oracle HTTP Server module that provides authentication
to OracleAS applications. This module resides on the Oracle HTTP Server that enables
applications protected by OracleAS Single Sign-On to accept HTTP headers in lieu of a
user name and password once the user has logged into the OracleAS Single Sign-On
server. The values for these headers are stored in a mod_osso cookie.

The mod_osso module enables single sign-on for Oracle HTTP Server by examining
incoming requests and determining whether the requested resource is protected. If it
is, then it retrieves the Oracle HTTP Server cookie.

Under certain circumstances, you must register Oracle HTTP Server mod_osso using
the 10.1.4 Oracle Identity Manager single sign-on registration tool (ssoreg.sh or
ssoreg.bat). Table 18–2 provides a summary of parameters and values for this purpose.
Running the tool updates the mod_osso registration record in osso.conf. The tool
generates this file whenever it runs.

Table 18–2 ssoreg Parameters to Register Oracle HTTP Server mod_osso

Parameter Description

-oracle_home_path Path to the 10.1.4 SSO Oracle_Home

-site_name Any site name to be covered

-config_mod_osso TRUE. If set to TRUE, this parameter indicates that the application being
registered is mod_osso. You must include config_mod_osso for osso.conf to be
generated.

-mod_osso_url URL for front-ending Oracle HTTP Server Host:port. This is the URL that is used
to access the partner application. The value should be specified in the URL
format:

http://oracle_http_host.domain:port

-update_mode Optional. CREATE, the default, generates a new record.

 -remote_midtier Specifies that the mod_osso partner application to be registered is at a remote
mid-tier. Use this option only when the mod_osso partner application to be
configured is at a different ORACLE_HOME, and the OracleAS Single Sign-On
server runs locally at the current ORACLE_HOME.

-config_file Path where osso.conf is to be generated

[-admin_info Optional. User name of the mod_osso administrator. If you omit this parameter,
the Administer Information field on the Edit Partner Application page is left
blank.

admin_id Optional. Any additional information, such as email address, about the
administrator. If you omit this parameter, the Administrator E-mail field on the
Edit Partner Application page is left blank.

<VirtualHost ...> Host name. Optional. Include this parameter only if you are registering an Oracle
HTTP virtual host with the single sign-on server. Omit the parameter if you are
not registering a virtual host.

If you are creating an HTTP virtual host, use the httpd.conf file to fill in the
directive for each protected URL.

Deploying the OracleAS 10g Single Sign-On (OSSO) Solution

18-8 Oracle Fusion Middleware Application Security Guide

The following procedure includes a sample command to register mod_osso. Values for
your environment will be different.

To register mod_osso
1. Go to the following 10.1.4 Oracle Identity Manager directory path:

ORACLE_HOME/sso/bin/ssoreg

2. Run ssoreg with the following parameters and values for your environment. For
example, on Unix, this might look like:

./ssoreg.sh -oracle_home_path \OraHome -site_name wls_server
-config_mod_osso TRUE -mod_osso_url http://oracle_http_host.domain:7788
-update_mode CREATE -remote_midtier -config_file \tmp\osso.conf

3. Verify that the module mod_osso of the required Oracle HTTP Server is registered.

4. Proceed to "Configuring mod_osso to Protect Web Resources".

18.1.2.3 Configuring mod_osso to Protect Web Resources
mod_osso redirects the user to the single sign-on server only if the URL you request is
configured to be protected. You can secure URLs in one of two ways: statically or
dynamically. Static directives simply protect the application, ceding control over user
interaction to mod_osso. Dynamic directives not only protect the application, they also
enable it to regulate user access.

For more information, see:

■ Configuring mod_osso with Static Directives

■ Protecting URLs and Logout Dynamically (without mod_osso)

18.1.2.3.1 Configuring mod_osso with Static Directives You can statically protect URLs
with mod_osso by applying directives to the mod_osso.conf file. You must configure
mod_osso to ensure that requests are intercepted properly. In addition, you specify the
location of protected URIs, time out interval, and the authentication method. Oracle
recommends that you place in the httpd.conf file the include statement for mod_
osso.conf before the one wherein the weblogic_module statement is loaded.

The following procedure describes how to configure mod_osso by editing the mod_
osso.conf file. This procedure provides details for two different releases. Ensure that
you follow instructions for your OHS deployment:

■ Oracle HTTP Server 11g: Requires Step 2 and AuthType Osso in Step 4. The
path name in Step 5 differs for Oracle HTTP Server 11g.

■ Oracle HTTP Server 10g: Requires Step 3 and AuthType Basic in Step 4. The
path name in Step 5 differs for Oracle HTTP Server 10g.

See Also: The following books on Oracle Technology Network at:
http://www.oracle.com/technology/documentation/oim10
14.html

■ Oracle Application Server Single Sign-On Administrator's Guide 10g
(10.1.4.0.1) Part Number B15988-01

■ Oracle Identity Management Application Developer's Guide 10g
(10.1.4.0.1) Part Number B15997-01

Deploying the OracleAS 10g Single Sign-On (OSSO) Solution

Configuring Single Sign-On using OracleAS SSO 10g 18-9

To configure mod_osso to protect Web resources
1. Copy osso.conf from the location where it was generated to the following location:

From: /tmp/osso.conf

To:

ORACLE_INSTANCE/config/OHS/<ohs_name>/osso/osso.conf

2. Oracle HTTP Server 11g: Copy mod_osso.conf from the disabled directory to the
moduleconf directory for editing. For example:

From:

ORACLE_INSTANCE/config/OHS/<ohs_name>/disabled/mod_osso.conf

To:

ORACLE_INSTANCE/config/OHS/<ohs_name>/moduleconf/mod_osso.conf

3. Oracle HTTP Server 10g: Locate mod_osso.conf for editing. For example:

ORACLE_HOME/ohs/conf/mod_osso.conf

4. Edit mod_osso.conf to add the following information using values for your
deployment. For example, using Oracle HTTP Server as an example (paths are
different for 10g):

LoadModule osso_module ${ORACLE_HOME}/ohs/modules/mod_osso.so
<IfModule mod_osso.c>

OssoIdleTimeout off
OssoIpCheck on
OssoConfigFile ORACLE_INSTANCE/config/OHS/<ohs_name>/osso/osso.conf

#Location is the URI you want to protect
<Location />
require valid-user
#OHS 11g AuthType Osso
#OHS 10g AuthType Basic
AuthType Osso

</Location>

</IfModule>

5. Locate the httpd.conf file for editing. For example:

Oracle HTTP Server 10.1.3:

ORACLE_HOME/ohs/config/httpd.conf

Oracle HTTP Server 11g:

ORACLE_INSTANCE/config/OHS/<ohs_name>/httpd.conf

6. In the httpd.conf, confirm that the mod_osso.conf file path for your environment is
included. For example:

include /ORACLE_INSTANCE/config/OHS/<ohs_name>/moduleconf/mod_osso.conf

7. Restart the Oracle HTTP Server.

Deploying the OracleAS 10g Single Sign-On (OSSO) Solution

18-10 Oracle Fusion Middleware Application Security Guide

8. Proceed to "Adding Providers to a WebLogic Domain for OSSO".

18.1.2.3.2 Protecting URLs and Logout Dynamically (without mod_osso) Applications that
use dynamic directives require no entry in mod_osso.conf because mod_osso
protection is written directly into the application as one or more dynamic directives.

Dynamic directives are HTTP response headers that have special error codes that
enable an application to request granular functionality from the single sign-on system
without having to implement the intricacies of the single sign-on protocol. Upon
receiving a directive as part of a simple HTTP response from the application, mod_
osso creates the appropriate single sign-on protocol message and communicates it to
the single sign-on server.

OracleAS supports dynamic directives for Java servlets and JSPs. The product does not
currently support dynamic directives for PL/SQL applications. The JSPs that follow
show how such directives are incorporated. Like their "static" counterparts, these
sample "dynamic" applications generate user information:

■ Example 18–1, "SSO Authentication with Dynamic Directives"

■ Example 18–2, "SSO Logout with Dynamic Directives"

Example 18–1 SSO Authentication with Dynamic Directives

The home.jsp includes ssodynauth.jsp that uses the
request.getUserPrincipal().getName() method to check the user in the session. If the
user is absent, it issues dynamic directive 499, a request for simple authentication. The
key lines are in boldface.

//home.jsp

<%@ include file="ssodynauth.jsp" %>
<%
//page content goes here
%>

//ssodynauth.jsp

<%
response.setHeader("Cache-Control", "no-cache");
response.setHeader("Pragma", "no-cache");
response.setHeader("Expires", "0");
%>
<%
// Check for user
String ssoUser = null;
try
(
//ssoUser = request.getRemoteUser();
ssoUser = request.getUserPrincipal().getName();
ssoUser = ssoUser.trim();

Tip: If the interception of requests is not working properly, consider
placing the include statement for mod_osso.conf before the
LoadModule weblogic_module statement in the httpd.conf.

Note: After adding dynamic directives, be sure to restart the Oracle
HTTP Server, and the proceed to "Adding Providers to a WebLogic
Domain for OSSO".

Deploying the OracleAS 10g Single Sign-On (OSSO) Solution

Configuring Single Sign-On using OracleAS SSO 10g 18-11

 }
catch(Exception e)
{
ssoUser = null;
 }

// If user is not authenticated then generate
// dynamic directive for authentication
if((ssoUser == null) || (ssoUser.length() < 1))
{
response.sendError(499, "Oracle SSO");
return;
}%>

Example 18–2 SSO Logout with Dynamic Directives

To achieve global logout (also known as single log-out), applications are expected to
first invalidate sessions and then make a call to OSSO logout. The logout.jsp issues
dynamic directive 470, a request for OSSO logout. The osso-return-logout is set by the
application to specify the return URL after logout.

The key lines for SSO logout with dynamic directives appear in boldface in the
following example. In 11g, the SSOFilter handles session synchronization.

//logout.jsp
<%@page session="false"%>
<%
 response.setHeader("Osso-Return-Url", "http://my.oracle.com/");
 HttpSession session = null;
 session = request.getSession();
 if (null != session)
 {
 // necessary for achieving SLO
 session.invalidate();
 }
 response.sendError(470, "Oracle SSO");
%>

See Also: Oracle Identity Management Application Developer's Guide
10g (10.1.4.0.1) Part Number B15997-01 on Oracle Technology network
at:
http://www.oracle.com/technology/software/products/i
as/htdocs/101401.html

See Also:

■ "Synchronizing the User and SSO Sessions: SSO Synchronization
Filter" on page 18-16

■ Oracle Identity Management Application Developer's Guide 10g
(10.1.4.0.1) Part Number B15997-01 on Oracle Technology
Network at:
http://www.oracle.com/technology/software/product
s/ias/htdocs/101401.html

Note: After adding dynamic directives, be sure to restart the Oracle
HTTP Server, and the proceed to "Adding Providers to a WebLogic
Domain for OSSO".

Deploying the OracleAS 10g Single Sign-On (OSSO) Solution

18-12 Oracle Fusion Middleware Application Security Guide

18.1.2.4 Adding Providers to a WebLogic Domain for OSSO
You must add the OSSO Identity Asserter to a WebLogic domain. In addition to the
OSSO Identity Asserter, Oracle recommends the following Authentication Providers:

■ OSSO Identity Asserter

■ DefaultAuthenticator

■ OID Authenticator

You can add providers using either the Oracle WebLogic Administration Console or
Oracle WebLogic Scripting Tool (WLST) command-line tool.

The following procedure illustrates adding Authentication Providers using the Oracle
WebLogic Administration Console. Before you begin, there is a condition to pay
attention to:

Step 10: If your application requires the user in the same case as in Oracle Internet
Directory (uppercase, lowercase, initial capitals), check Use Retrieved User Name as
Principal. Otherwise, leave it unchecked.

To add providers to your WebLogic domain for OSSO Identity Assertion
1. Log in to the WebLogic Administration Console.

2. OSSO Identity Asserter: Perform the following steps to add this to the domain:

a. Click Security Realms, Default Realm Name, Providers.

b. Select New under the Authentication Providers table.

c. Enter a name for the new provider, select its type, and then click OK. For
example:

Name: OSSO Identity Asserter

Type: OSSOIdentityAsserter

Ok

d. Click the name of the newly added provider.

e. On the Common tab, set the appropriate values for common parameters and
set the Control Flag to SUFFICIENT and then save the settings.

3. Default Authentication Provider:

a. Click Security Realms, Default Realm Name, Providers.

b. Click Default Authentication Provider.

c. Set the control flag to OPTIONAL, and click Save

See Also: "About Oracle WebLogic Server Authentication and
Identity Assertion Providers" on page 16-19

See Also:

■ "About Oracle WebLogic Server Authentication and Identity
Assertion Providers" on page 16-19

■ Oracle Fusion Middleware Oracle WebLogic Scripting Tool

■ Oracle Fusion Middleware WebLogic Scripting Tool Command
Reference

Deploying the OracleAS 10g Single Sign-On (OSSO) Solution

Configuring Single Sign-On using OracleAS SSO 10g 18-13

4. OID Authenticator: Perform the following steps to add this provider.

a. Click Security Realms, Default Realm Name, Providers.

b. Click New, and enter a name and type:.

Name. OID Authenticator

Type: OracleInternetDirectoryAuthenticator

Click Save.

c. Click the newly added authenticator to see the Settings page. Retain the
default settings; do not change the Control Flag until you have verified that
the Oracle Internet Directory configuration is valid.

d. Click the Provider Specific tab and specify the following required settings:

Propagate Cause For Login Exception: Check

Principal: LDAP administrative user. For example: cn=orcladmin

Host: The Oracle Internet Directory hostname

Use Retrieved User Name as Principal: Check

Credential: LDAP administrative user password. For example: password

Confirm Credential: For example: password

Group Base DN: Oracle Internet Directory group search base

User Base DN: Oracle Internet Directory user search base.

Port: Oracle Internet Directory port

5. Reorder Providers: The order in which providers populate a subject with
principals is significant and you might want to reorder the list of all providers in
your realm and bring the newly added provider to the top of the list.

6. Save all configuration settings.

7. Stop and restart the Oracle WebLogic Server for the changes to take effect.

8. Log in to the WebLogic Administration Console:

a. Click Security Realms, Default Realm Name, Providers.

b. Select the Users and Groups tab to see a list of users and groups contained in
the configured Authentication Providers.

You should see usernames from the Oracle Internet Directory configuration,
which implicitly verifies that the configuration is working.

--If the Oracle Internet Directory instance is configured successfully, you can
change the Control Flag.

--If the Oracle Internet Directory authentication is sufficient for an application
to identify the user, then choose the SUFFICIENT flag. SUFFICIENT means
that if a user can be authenticated against Oracle Internet Directory, no further
authentication is processed. REQUIRED means that the Authentication

Note: If OID Authenticator is the only provider, ensure the WebLogic
Server user account and its granted group memberships are created in
Oracle Internet Directory. Otherwise the WebLogic domain does not
start properly.

Deploying the OracleAS 10g Single Sign-On (OSSO) Solution

18-14 Oracle Fusion Middleware Application Security Guide

Provider must succeed even if another provider already authenticated the
user.

9. Application Requires User in Same Case as in Oracle Internet Directory: Check
Use Retrieved User Name as Principal. Otherwise, leave it unchecked.

10. Save the changes.

11. Activate the changes and restart Oracle WebLogic Server.

12. Proceed with "Establishing Trust Between Oracle WebLogic Server and Other
Entities".

18.1.2.5 Establishing Trust Between Oracle WebLogic Server and Other Entities
The Oracle WebLogic Connection Filtering mechanism must be configured for creating
access control lists and for accepting requests from only the hosts where Oracle HTTP
Server and the front-end Web server are running.

A network connection filter is a component that controls the access to network level
resources. It can be used to protect resources of individual servers, server clusters, or
an entire internal network. For example, a filter can deny non-SSL connections
originating outside of a corporate network. A network connection filter functions like
a firewall since it can be configured to filter protocols, IP addresses, or DNS node
names. It is typically used to establish trust between Oracle WebLogic Server and
foreign entities.

Connection Filter Rules: The format of filter rules differ depending on whether you are
using a filter file to enter the filter rules or you enter the filter rules in the
Administration Console. When entering the filter rules on the Administration Console,
enter them in the following format:

targetAddress localAddress localPort action protocols

Table 18–3 provides a description of each parameter in a connection filter.

Note: This topic is the same whether you are using OSSO or Oracle
Access Manager. In the WebLogic Administration Console.

See Also: "Configuring Security in a WebLogic Domain" in Oracle
Fusion Middleware Securing Oracle WebLogic Server

Table 18–3 Connection Filter Rules

Parameter Description

target Specifies one or more systems to filter

localAddress Defines the host address of the WebLogic Server instance. (If you specify an
asterisk (*), the match returns all local IP addresses.)

localPort Defines the port on which the WebLogic Server instance is listening. (If you
specify an asterisk, the match returns all available ports on the server.)

action Specifies the action to perform. This value must be allow or deny.

protocols Is the list of protocol names to match. The following protocols may be
specified: http, https, t3, t3s, giop, giops, dcom, ftp, ldap. If no protocol is
defined, all protocols match a rule.

Deploying the OracleAS 10g Single Sign-On (OSSO) Solution

Configuring Single Sign-On using OracleAS SSO 10g 18-15

The Connection Logger Enabled attribute logs successful connections and connection
data in the server. This information can be used to debug problems relating to server
connections.

To configure a connection filter to allow requests from the host of the 11g Oracle
HTTP Server
1. Log in to the Oracle WebLogic Administration Console.

2. Click Domain under Domain Configurations.

3. Click the Security tab, click the Filter tab.

4. Click the Connection Logger Enabled attribute to enable the logging of accepted
messages for use when debugging problems relating to server connections.

5. Specify the connection filter to be used in the domain:

■ Default Connection Filter: In the Connection Filter attribute field, specify
weblogic.security.net.ConnectionFilterImpl.

■ Custom Connection Filter: In the Connection Filter attribute field, specify the
class that implements the network connection filter, which should also be
specified in the CLASSPATH for Oracle WebLogic Server.

6. Enter the appropriate syntax for the connection filter rules.

7. Click Save.

8. Restart the Oracle WebLogic Server.

9. Proceed to "Configuring the Application for the OSSO Identity Asserter".

18.1.2.6 Configuring the Application for the OSSO Identity Asserter
This topic describes how to create the application authentication method for the OSSO
Identity Asserter.

Oracle WebLogic Server supports adding multiple auth-methods. If you are setting up
an OSSO Identity Asserter in the WebLogic Application Console, the Web application
using the OSSO Identity Asserter must have its auth-method set to CLIENT-CERT.

After deploying the application on the Oracle WebLogic Server, all web.xml files in
the application EAR file must include CLIENT-CERT in the element auth-method for
the appropriate realm, as described in the following procedure.

To edit web.xml for the OSSO Identity Asserter
1. Locate the web.xml file in the application EAR file. For example:

WEB-INF/web.xml

2. Locate the auth-method for the appropriate realm and enter CLIENT-CERT. For
example:

<login-config>
 <auth-method>CLIENT-CERT</auth-method>
 <realm-name>myRealm</realm-name>
</login-config>

3. Save the file.

See Also: Oracle Fusion Middleware Deploying Applications to Oracle
WebLogic Server

Synchronizing the User and SSO Sessions: SSO Synchronization Filter

18-16 Oracle Fusion Middleware Application Security Guide

4. Redeploy and restart the application.

5. Repeat for each web.xml file in the application EAR file.

18.2 Synchronizing the User and SSO Sessions: SSO Synchronization
Filter

In Fusion Middleware 11g, a new component that synchronizes the container user
session and SSO session has been introduced. SSO Sync Filter is an Oracle WebLogic
system filter implementation that intercepts all requests to the container, acts on
protected resource requests, and attempts to synchronize the container's user session
with the user identifying header in OSSO (Proxy-Remote-User) or the user data in the
Oracle Access Manager SSO session cookie (ObSSOCookie).

SSO Synchronization Filter (SSO Sync Filter) is an implementation of the Servlet Filter
based on Java Servlet Specification version 2.3. SSO sync filter relieves applications
from tracking the SSO user session and synchronizing it with their respective sessions.
Instead, applications would only need to synchronize with container's user session.

SSO Sync Filter intercepts each request to the container and determines whether to act
on it based on certain HTTP headers that are attached to the request. Filter expects SSO
agent to have set those headers in the Web Tier. When access is made to unprotected
areas of the application, the filter acts as a pass through. Once a protected resource is
accessed, SSO agents in the Web Tier, direct user to perform authentication with SSO
system such as Oracle Access Manager. After the authentication, Oracle Access
Manager Identity Asserter helps establish a user identity in form of JAAS Subject to
the container and a user session is created. WebLogic maintains the user session data
as part of HTTP Session Cookie (JSESSIONID).

Subsequent access to the application resources provides two pieces of information to
the SSO Sync Filter:

■ User identifying header in OSSO (Proxy-Remote-User)

■ User data in the Oracle Access Manager SSO session cookie (ObSSOCookie)

The job of SSO Sync Filter is to make sure that the user identity in the container
matches with that of the SSO session. If there is a mismatch, filter invalidates the
container's user session. As a result, the downstream application would only have to
track container user session and react in a consistent fashion regardless of SSO
environment in use.

Notes:

■ Enabled and Active by Default: SSO Sync Filter fetches the user information from
the configured tokens, gets the user from existing session (if any), invalidates the
session and redirects to the requested URL in case the CurrentSessionUser does
not match the incoming SSO User. Otherwise, the request is simply passed
through.

If you have not configured the OSSO or Oracle Access Manager Assertion
Providers in your domain, the filter disables automatically during WebLogic
Server start-up.

■ Active for All URI's by Default (/*): No changes are required in the application
code.

■ Configured for the OSSO Tokens/Header: Proxy-Remote-User, and performs a
case insensitive match.

Synchronizing the User and SSO Sessions: SSO Synchronization Filter

Configuring Single Sign-On using OracleAS SSO 10g 18-17

■ Configured for the Oracle Access Manager SSO Tokens/Header: OAM_
REMOTE_USER and REMOTE_USER, and does a case insensitive match.

■ Global Logout: SSO Sync Filter is intended to provide the Single Logout
Experience to the Oracle Fusion Middleware applications that use the OSSO or
Oracle Access Manager Solutions. Is handled similarly to single sign-on. After
global logout is performed, SSO filter reconciles the session when subsequent
access to an application that has not cleaned up its session is made.

Any application that use the OSSO or Oracle Access Manager Solutions is
expected to invalidate its session before making a call to OSSO logout or Oracle
Access Manager logout. For more information on OSSO logout, see "SSO Logout
with Dynamic Directives" on page 18-11. For details about Oracle Access Manager
logout, see "Configuring Global Logout for Oracle Access Manager 10g and 10g
WebGates" on page 17-10.

■ Application Session Time Out: SSO cookies typically track user inactivity/idle
times and force users to login when a time out occurs. OSSO and Oracle Access
Manager are no exception. Oracle Access Manager takes a sophisticated approach
at this and specifically tracks Maximum Idle Session Time and Longest Idle
Session Time along with SSO session creation time and time when it was last
refreshed.

The general recommendation for applications that are maintaining their own
sessions when integrating with SSO systems is to configure their session time outs
close to that of SSO session time outs so as to make user experience remains
consistent across SSO and application session time outs.

You can alter the behavior of the SSO Sync Filter for application requirements by
passing various over-riding system properties to WebLogic. To do this, you change the
Oracle WebLogic startup script and check for EXTRA_JAVA_PROPERTIES in
setDomainEnv.sh. The properties and Sync behavior is shown in Table 18–4.

You cannot enable the filter for selected applications. The SSO Sync Filter is a system
filter. As such, it is activated for all deployed applications (the URI mapping is /*).

Table 18–4 SSO Sync Filter Properties and Sync Behavior

Area Overriding System Property
Default value of
System property Default Behavior of the Sync Filter

Status
(Active or
Inactive)

sso.filter.enable Not configured Enabled

Case
sensitive
matches

sso.filter.name.exact.match Not configured Case Ignore Match

Configured
Tokens

sso.filter.ssotoken Not configured ■ OSSO: Look for Proxy-Remote-User

■ Oracle Access Manager: Look for OAM_
REMOTE_USER and REMOTE_USER.

OAM_REMOTE_USER takes precedence.

URI
Mappings

Not Applicable Not Applicable /*

Note: You cannot enable the filter for selected applications.

Troubleshooting for an OSSO Identity Asserter Deployment

18-18 Oracle Fusion Middleware Application Security Guide

The following procedure gives some tips about modifying the SSO Sync filter
properties and behavior.

To modify the SSO Sync Filter properties and behavior
1. Disable the Filter: Change the system property "sso.filter.enable" to "false" (pass as

-D to the jvm) and restart the Oracle WebLogic Server. This toggles the filter status.

2. User-Identifying Header Differs from Pre-Configured Sync Filter Tokens:
Over-ride the SSO token that the Sync Filter looks for using the system property
"sso.filter.ssotoken".

For example, pass to the WebLogic Server jvm in the WebLogic Server startup
script -Dsso.filter.ssotoken=HEADERNAME, and restart the server.

When you contact Oracle Support you might be requested to set up debugging, as
described in "Setting Up Debugging in the WebLogic Administration Console" on
page 15-14.

18.3 Troubleshooting for an OSSO Identity Asserter Deployment
The troubleshooting items described in this section are grouped into the following
categories:

■ SSO-Related Problems

■ OSSO Identity Asserter-Related Problems

■ URL Rewriting and JSESSIONID

■ About mod_osso, OSSO Cookies, and Directives

■ About Using IPv6

18.3.1 SSO-Related Problems
This section addresses the following troubleshooting items:

■ OHS Is Not Redirecting to SSO - Internal Server Error 500

■ Is Attribute AuthName Required?

■ URL Request not Redirected to SSO

■ Error 404 - Not Found is Issued (OHS Side)

■ Error 404 - Not Found is Issued (Oracle WebLogic Server Side)

■ Oracle SSO Failure - Unable to process request

■ OSSO Solution for Applications Deployed on a Stand-alone WebLogic Server

■

See Also:

■ "Setting Up Debugging in the WebLogic Administration Console"
on page 15-14

■ Oracle Application Server Single Sign-On Administrator's Guide for
10g, Troubleshooting, on the Oracle Technology Network at:
http://www.oracle.com/technology/documentation/oi
m1014.html

Troubleshooting for an OSSO Identity Asserter Deployment

Configuring Single Sign-On using OracleAS SSO 10g 18-19

OHS Is Not Redirecting to SSO - Internal Server Error 500
The most likely source of this problem is an incorrect configuration.

The following sample uses Oracle HTTP Server 11g. Path names are different if you
have Oracle HTTP Server 10g.

To address it, proceed as follows:

1. Open the file mod_osso.conf and ensure that the resource is protected. For
example:

ORACLE_INSTANCE/config/OHS/<ohs_name>/moduleconf/mod_osso.conf

<Location /protected-resource-uri>
require valid-user
AuthType Basic
</Location>

2. Ensure that osso.conf is present and included in mod_osso.conf. For
example, using Oracle HTTP Server 11g (paths are different for 10g)

OssoConfigFile ORACLE_INSTANCE/config/OHS/<ohs_name>/osso/osso.conf

3. Ensure that httpd.conf includes mod_osso.conf. For example, using Oracle
HTTP Server 11g (paths are different for 10g):

ORACLE_INSTANCE/config/OHS/<ohs_name>/httpd.conf

include /ORACLE_INSTANCE/config/OHS/<ohs_name>/moduleconf/mod_osso.conf

4. If all of the above were correctly specified, the SSO registration did not complete
successfully and you must re-register SSO.

To register SSO, proceed as follows using the appropriate ssoreg tool for your
platform. For example:

a. Run ssoreg.sh in 10.1.4 ORACLE_HOME/sso/bin to produce the file
osso.conf. The following is a sample usage of this utility that produces the
file in /tmp/osso.conf (the arguments are displayed in different lines only
for illustration):

>ssoreg.sh -oracle_home_path /OraHome
 -site_name wls_server
 -config_mod_osso TRUE
 -mod_osso_url http://host.domain.com:6666
 -update_mode CREATE
 -remote_midtier
 -config_file /tmp/osso.conf

b. Copy the generated osso.confto another file system directory. For example:
ORACLE_INSTANCE/config/OHS/<ohs_name>/osso.

c. Restart OHS.

Note: There is no set location for osso.conf. The value is determined
at registration time; it can be any absolute path.

Troubleshooting for an OSSO Identity Asserter Deployment

18-20 Oracle Fusion Middleware Application Security Guide

Is Attribute AuthName Required?
Log messages might suggest that the attribute AuthName is required, and certain
versions of Apache do require this attribute.

This example uses Oracle HTTP Server 11g. Path names are different for Oracle HTTP
Server 10g.

To include this attribute, edit the file mod_osso.conf and insert a fragment like the
following:

LoadModule osso_module modules/mod_osso.so
<IfModule mod_osso.c>
OssoIdleTimeout off
OssoIpCheck on
OssoConfigFile ORACLE_INSTANCE/config/OHS/<ohs_name>/osso/osso.conf

<Location />
AuthName "Oracle Single Sign On"
require valid-user
AuthType Basic
</Location>
</IfModule>

URL Request not Redirected to SSO
Once a URL request is issued, if a basic pop-up is displayed instead of being redirected
to SSO, then, most likely, the URL request has been intercepted by the Apache
authorization module.

To address this problem, proceed as follows:

1. Edit the file httpd.conf and comment out the loading authorization modules as
illustrated in the following fragment:

ORACLE_INSTANCE/config/OHS/<ohs_name>/httpd.conf

LoadModule access_module modules/mod_access.so
#LoadModule auth_module modules/mod_auth.so
#LoadModule auth_anon_module modules/mod_auth_anon.so
#LoadModule auth_db_module modules/mod_auth_dbm.so
LoadModule proxy_module modules/mod_proxy.so

2. Restart OHS.

Error 404 - Not Found is Issued (OHS Side)
Typically, this error has the following format:

The requested URL <request-uri> was not found on this server

Most likely, the WebLogic redirect is not happening, and the request is attempting to
grab an OHS resource not available.

To address this problem, verify that mod_weblogic is included in the file
httpd.conf and that the WebLogic handler is set for the request pattern, as
illustrated in the following fragment:

#httpd.conf
<IfModule mod_weblogic.c>
 WebLogicHost <host>
 WebLogicPort yourWlsPortNumber
</IfModule>

Troubleshooting for an OSSO Identity Asserter Deployment

Configuring Single Sign-On using OracleAS SSO 10g 18-21

<Location /request-uri-pattern>
 SetHandler weblogic-handler
</Location>

Error 404 - Not Found is Issued (Oracle WebLogic Server Side)
Typically, this error has the following format:

Error 404--Not Found

Cause
This message informs that the Oracle WebLogic Server is not able to find a resource.

Solution
To address the problem, check that the resource is indeed deployed on the server. For
example, if the pattern is /private1/Hello, check that Hello is accessible on the
server with private1 as root.

Oracle SSO Failure - Unable to process request

Problem
You receive a message stating:

Oracle SSO Failure - Unable to process request
Either the requested URL was not specified in terms of a fully-qualified host
name or Oracle HTTP Server single sign-on is incorrectly configured.
Please notify your administrator.

Solution
Modify the Oracle HTTP Server httpd.conf file to include a port number in the
ServerName and restart the Web server. For example:

From: ServerName host.domain.com

To: ServerName host.domain.com:port

OSSO Solution for Applications Deployed on a Stand-alone WebLogic Server
This chapter describes how to configure single sign-on (SSO) for applications that are
deployed on Oracle Fusion Middleware Oracle WebLogic Server. However, details for
applications that are deployed on a stand-alone Oracle WebLogic Server (one without
Fusion Middleware) are provided here:

■ Oracle Fusion Middleware with OSSO: The required OSSO Identity Asserter
(ossoiap.jar) is provided automatically when you install Oracle Fusion
Middleware: Oracle Identity Management, Oracle SOA Suite, or Oracle
WebCenter.

■ Stand-Alone Oracle WebLogic Server with OSSO: The required OSSO Identity
Asserter (ossoiap.jar) must be acquired from the Oracle Web Tier, as described
here.

Note: Oracle Fusion Middleware with OSSO enables you to use
either the Oracle HTTP Server 10g or 11g Web server.

Troubleshooting for an OSSO Identity Asserter Deployment

18-22 Oracle Fusion Middleware Application Security Guide

Whether you use OSSO for Oracle Fusion Middleware applications or other
applications, the Identity Asserter performs the same functions as those illustrated and
described in "Using the OSSO Identity Asserter".

Included in the following are additional, optional, details that you can use to configure
and test Single Logout for session invalidation and synchronization between the SSO
cookie and the JSESSIONID cookie. Required files must be acquired from the Oracle
Web Tier.

Task overview: Deploying and configuring the OSSO Identity Asserter for
applications on a stand-alone WebLogic Server
1. Install Oracle WebLogic Server 10.3.1+ and other required components as follows:

a. Perform Step 1, a-d as described in the "Task overview: Deploying and
configuring the OSSO Identity Asserter for applications on a stand-alone
WebLogic Server" on page 18-22.

b. Skip Step 1e and instead deploy your application.

2. Create a WebLogic security domain with the weblogin domain extension template
that is supplied with Oracle WebLogic Server and can be used from $WLS_
HOME/common/bin/config.sh.

3. Configure mod_weblogic to forward requests to Oracle WebLogic Server, as
explained in "Configuring mod_weblogic" on page 18-6.

4. Register and configure the module mod_osso with the 10g SSO Server as a partner
application, as described in "New Users of the OSSO Identity Asserter" on
page 18-4.

a. Perform steps described in "Registering Oracle HTTP Server mod_osso with
OSSO Server 10.1.4" on page 18-7.

b. Perform steps described in "Configuring mod_osso to Protect Web Resources"
on page 18-8.

5. Add Authentication Providers to the appropriate security domain as follows:

a. Acquire the OSSO Identity Asserter (ossoiap.jar from the Oracle Web Tier at:

$ORACLE_INSTANCE/modules/oracle.ossoiap_11.1.1/ossoiap.jar

b. Copy ossoiap.jar into $WLS_HOME/wlserver_10.x/server/lib/mbeantype,
then restart the Oracle WebLogic Server.

c. Configure providers as described in "Adding Providers to a WebLogic
Domain for OSSO" on page 18-12.

6. Configure the Oracle WebLogic Connection Filtering mechanism to create access
control lists and accept requests from the hosts where Oracle HTTP Server and the
front-end Web server are running, as explained in "Establishing Trust Between
Oracle WebLogic Server and Other Entities" on page 18-14.

Note: Without Fusion Middleware, OSSO requires Oracle HTTP
Server 11g.

Note: Test the secured application to ensure that it is working with
the default authenticator using the Oracle WebLogic Server host and
port.

Troubleshooting for an OSSO Identity Asserter Deployment

Configuring Single Sign-On using OracleAS SSO 10g 18-23

7. Configure the application authentication method for the OSSO Identity Asserter
(all web.xml files in the application EAR file must include CLIENT-CERT in the
element auth-method), as explained in "Configuring the Application for the
OSSO Identity Asserter" on page 18-15.

8. Optional: You can configure and test Single Logout [Session Invalidation and
synchronization between the SSO cookie and JSESSIONID cookie] as follows:

a. Acquire ssofilter.jar and configure Oracle WebLogic Server to use it as follows:

1. Acquire ssofilter.jar from the Oracle Web Tier at:

$ORACLE_INSTANCE/modules/oracle.ssofilter_11.1.1/ssofilter.jar

2. Copy it to an appropriate directory in Oracle Middleware home: WLS_
INSTALL/Oracle/Middleware/modules directory, for example.

3. Add the absolute path of ssofilter.jar to the Oracle WebLogic Server
classpath (by editing the setDomainEnv.sh script POST_CLASSPATH variable
or CLASSPATH variable).

b. Deploy system-filters.war as a system filter, as follows:

1. Acquire system-filters.war from the Oracle Web Tier at:

$ORACLE_INSTANCE/modules/oracle.jrf_11.1.1/system-filters.war

2. Copy system-filters.war to an appropriate directory in Oracle Middleware
home: WLS_INSTALL/Oracle/Middleware/modules directory, for example.

3. Deploy system-filters.war as an application library: From the WebLogic
Administration Console, click Deployment, select New, and choose the
location of file.

4. Restart the Oracle WebLogic Server, if asked.

c. Enable Logs to verify that the SSOFilter is working, as follows:

1. From the WebLogic Administration Console, click Domain, Environment,
Servers, AdminServer.

2. Click the Logging tab.

3. From the Advanced drop-down, select "Minimum Severity to Log" as
"Debug".

4. From the Advanced drop-down, "Message destinations", select LogFile:
Severity Level as "Debug".

5. Save changes and restart the Oracle WebLogic Server.

d. Confirm that the SSOFilter is loaded as a system filter:

1. Open the AdminServer.log file in
DomainHome/Servers/AdminServer/log/AdminServer.log.

Note: Test the application with users authenticated by OSSO while
accessing the application with the Oracle HTTP Server host and port.

See Also: ""Synchronizing the User and SSO Sessions: SSO
Synchronization Filter" on page 18-16 for details on SSOFilter

Troubleshooting for an OSSO Identity Asserter Deployment

18-24 Oracle Fusion Middleware Application Security Guide

2. Search for "SSOFilter" and confirm that you can see <Debug> messages,
which indicate SSOFilter initialization nd confirm a filter load

e. Test the filter functionality to confirm that the SSO and JSESSIONID cookie are
cleaned up after user logout and that attempts to access the application after
logout require another login.

f. Test logout with applications to confirm that the session is ends cleanly.

SSO Users Specified in "Users to Always Audit" Must Be Uppercase
When you specify SSO users in the Oracle HTTP Server audit configuration "Users to
Always Audit" section, the SSO username must be specified in uppercase characters.

A comma-separated list of users can be specified to force the audit framework to audit
events initiated by these users. Auditing occurs regardless of the audit level or filters
that have been specified. This is true for all authentication types.

For more information, see "Managing Audit Policies" in the chapter "Configuring and
Managing Auditing" in the Oracle Fusion Middleware Application Security Guide.

18.3.2 OSSO Identity Asserter-Related Problems
This section addresses the following troubleshooting items:

■ Error 403 - Forbidden

■ Error 401 - Unauthorized

■ OSSO Identity Assertion Not Getting Invoked

Error 403 - Forbidden
This message informs that the user does not have the required permission to access a
resource. This message is shown, for example, when the application has been
configured to allow access to users belonging to WLS Group SSOUsers and the
asserted user belongs to a different group.

If you have verified that this is not a permissions issue, then check whether the JAAS
Control Flag for the Default Identity Authenticator is set to REQUIRED, and if so,
change the setting to OPTIONAL or to SUFFICIENT, as appropriate.

Error 401 - Unauthorized
This message informs that the access to a resource requires the user to be first
authenticated.

Solution
1. Check that the user is indeed authenticated.

2. Check whether the server is being hit without first going through authentication
using SSO.

Note: You must have OSSO Identity Asserter configured in the
WebLogic security domain, otherwise the filter will automatically
disable during its initialization.

Troubleshooting for an OSSO Identity Asserter Deployment

Configuring Single Sign-On using OracleAS SSO 10g 18-25

OSSO Identity Assertion Not Getting Invoked
Situations in which the OSSO Identity Asserter is not getting invoked for a protected
source, typically, involve incorrect configuration. Make sure that your environment
accurately includes a configuration as that described in "Configuring the Application
for the OSSO Identity Asserter" on page 18-15.

18.3.3 URL Rewriting and JSESSIONID
In some cases when an application resource (URL) is accessed and the JSESSIONID
cookie is not found, WebLogic Server rewrites the URL by including the JSESSIONID
as part of the URL. If the URL in question is protected, Oracle Access Manager and
OSSO Web agents might have issues matching the re-written URL.

To avoid issues of a mismatch, you can append an asterisk, *, to the end of the
protected resource specified in mod_osso.conf. For example, if the protected URL is:

/myapp/login

The location in the mod_osso entry would be:

<Location /myapp/login*>
valid user
AuthType OSSO
</Location>

18.3.4 About mod_osso, OSSO Cookies, and Directives
Mod_osso module provides communication between the SSO-enabled login server
and the Oracle HTTP Server listener. The mod_osso module is controlled by editing
the mod_osso.conf file:

■ Oracle HTTP Server 11g installation includes mod_osso and mod_weblogic.

■ OHS 10g, available in the companion CD release Oracle HTTP Server 10.1.3,
includes mod_osso.

This section provides the following information:

■ New OssoHTTPOnly Directive in mod_osso

■ OssoSecureCookies Directive in mod_osso

■ Mod_osso Does Not Encode the Return URL

■ mod_osso: "Page Not found" error After Default Installation

18.3.4.1 New OssoHTTPOnly Directive in mod_osso
A new configuration directive has been added to mod_osso to configure setting the
HTTPOnly flag on OSSO cookies. The new Directive is: OssoHTTPOnly. Values are On
(to enable) and Off (to disable) the flag. By default, the HTTPOnly flag is set to On; the
directive is not set in the configuration.

See Also: The following topic and Release 1 (11.1.1) manuals

■ "Configuring mod_osso to Protect Web Resources" on page 18-8

■ Oracle Fusion Middleware Installation Guide for Web Tier

■ Oracle Fusion Middleware Administrator's Guide for Oracle HTTP
Server

Troubleshooting for an OSSO Identity Asserter Deployment

18-26 Oracle Fusion Middleware Application Security Guide

This directive appends the HttpOnly flag to the OSSO cookies set in the browser. This
purpose of this flag is to prevent cross-site scripting. Cookies that have this flag set are
not accessible by javascript code or applets running on the browser. Cookies that have
this flag set is only sent to the server that set the cookie for the particular domain
across over http or https.

This is a per VirtualHost directive. It can only be set at the global scope or inside a
VirtualHost section. The following example shows the new directive:

<VirtualHost *.7778>
OssoConfigFile conf/osso.conf
OssoHTTPOnly On

<Location /osso>
AuthType Osso

</Location>

</VirtualHost>

18.3.4.2 OssoSecureCookies Directive in mod_osso
In mod_osso 10g, the OssoSecureCookies directive is disabled by default. However, in
mod_osso 11g, this behavior is enabled by default. In mod_osso 11g, to disable the
OssoSecureCookies directive you must set OssoSecureCookies to Off in the
corresponding configuration file. When mod_osso is enabled, the mod_osso.conf file is
available at:

ORACLE_INSTANCE/config/OHS/<ohs_name>/moduleconf/mod_osso.conf

Set the OssoSecureCookies directive as follows:

OssoSecureCookies "Off"

18.3.4.3 Mod_osso Does Not Encode the Return URL
Mod_osso does not encode the return URL in the query when redirecting to the Oracle
SSO Server for logout.

To fix this issue, the encoded URL must be passed. For example:
response.setHeader("Osso-Return-Url", encoded-url)

18.3.4.4 mod_osso: "Page Not found" error After Default Installation
The following causes might result in a "Page Not Found" error when trying to display
SSO page:

■ Multiple routing relationships with the same OHS in the absence of load balancer:
This is not supported.

■ No routing relationship

Solutions: Multiple Routing Relationships
Locate and remove the extra routing relationship that is not related to this oc4j_im.
Leave the routing relationship that is related to this oc4j_im.

1. Use the following command to display all routing relationships in your
environment:

Troubleshooting for an OSSO Identity Asserter Deployment

Configuring Single Sign-On using OracleAS SSO 10g 18-27

asctl:/imha/inst1/ohs_im>ls -a -l
oc4j_im_ohs_im_routing_relationship -> /imha/inst12/oc4j_im
oc4j_im_ohs_im_routing_relationship_ -> /imha/inst11/oc4j_im

2. Remove the routing relationship that is not related to this specific oc4j_im using
the following command with values for your environment. For example:

asctl:/imha/inst1/ohs_im> rmrel(name='oc4j_im_ohs_im_routing_relationship_
',pt='/imha/inst11/oc4j_im')

3. Stop and start both OHS Web server and oc4j_im.

4. Confirm that the SSO page displays.

Solutions: No Routing Relationships
By default, the installer creates a routing relationship between each OHS and each
oc4j_im. If there is no routing relationship between OHS and oc4j_im, you must create
one.

1. Use the following command to create a routing relationship using values for your
environment:

createRoutingRelationship(name='rr1',ut='/imha/inst1/ohs_im',pt='/imha/inst12/
@ oc4j_im')

2. Stop and start both OHS Web server and oc4j_im.

3. Confirm that the SSO page displays.

18.3.5 About Using IPv6
Oracle Fusion Middleware supports Internet Protocol Version 4 (IPv4) and Internet
Protocol Version 6 (IPv6.) Among other features, IPv6 supports a larger address space
(128 bits) than IPv4 (32 bits), providing an exponential increase in the number of
computers that can be addressable on the Web.

See Also: Oracle Fusion Middleware Administrator's Guide for details
about using IPv6 with the Oracle Single Sign-on Server.

Troubleshooting for an OSSO Identity Asserter Deployment

18-28 Oracle Fusion Middleware Application Security Guide

Part V
Part V Developing with Oracle Platform Security

Services APIs

This part explains how to develop custom security solutions in your applications
using OPSS APIs, and it contains the following chapters:

■ Chapter 19, "Integrating Application Security with OPSS"

■ Chapter 20, "The OPSS Policy Model"

■ Chapter 21, "Manually Configuring Java EE Applications to Use OPSS"

■ Chapter 22, "Authentication for Java SE Applicaitons"

■ Chapter 24, "Developing with the Credential Store Framework"

■ Chapter 23, "Authorization for Java SE Applications"

■ Chapter 25, "Developing with the User and Role API"

19

Integrating Application Security with OPSS 19-1

19Integrating Application Security with OPSS

This chapter describes a number of security-related use cases and the typical life cycle
of an ADF application security. It also lists code and configuration samples presented
elsewhere in this Guide.

This chapter contains the following sections:

■ Introduction

■ Security Integration Use Cases

■ Some Use Cases Details

■ Appendix - Security Life Cycle of an ADF Application

■ Appendix - Code and Configuration Examples

19.1 Introduction
The audience for the material presented in this chapter are developers, security
architects, and security administrators. The presentation is not feature-driven, as in
most topics in this Guide, but use case-driven: a number of use cases that solve typical
application security challenges are introduced as a departing point to solve particular
application security requirements. Some of the use cases describe a declarative
approach (and do not require changes in application code); others provide a
programmatic approach; and others require both approaches.

The top security issues that security architects and developers face include managing
users, user passwords, and access to resources. OPSS is a suite of security services that
provides solutions to these challenges by supporting:

■ Externalizing security artifacts and the security logic from the application

■ A declarative approach to security

■ A complete user identity life cycle

■ Policy-driven access controls

Figure 19–1 illustrates how applications access the security stores and the tools to
manage those stores.

Security Integration Use Cases

19-2 Oracle Fusion Middleware Application Security Guide

Figure 19–1 Applications, Security Stores, and Management Tools

Links to Related Documentation
Topics explained elsewhere include the following:

■ The OPSS Security Architecture - see Section 1.2, "OPSS Architecture Overview."

■ Single Sign On - see Part IV.

■ ADF applications - see Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework.

■ Oracle Development Tools - see Oracle Fusion Middleware Reference for Oracle
Security Developer Tools.

For the list of OPSS APIs, see Appendix H, "References."

19.2 Security Integration Use Cases
This section introduces a number of use cases categorized according to a main security
feature or security artifact, in the following sections:

■ Authentication

■ Identities

■ Authorization

■ Credentials

■ Audit

■ Identity Propagation

■ Administration and Management

■ Integration

Security Integration Use Cases

Integrating Application Security with OPSS 19-3

Each use case contains a brief description of the problem it attempts to solve, the
security artifacts required, the features involved, and links to details solving the stated
problem. Unless otherwise stated, all the descriptions apply to the Oracle WebLogic
Application Server and to the WebSphere Application Server.

19.2.1 Authentication
The authentication use cases are the following:

■ Java EE Application Requiring Authenticated Users - Users must be authenticated
in order to access a Java EE application.

■ Java EE Application Requiring Programmatic Authentication - Java EE application
requires authenticating a user programmatically.

■ Java SE Application Requiring Authentication - Java SE application requires
authenticating against a domain identity store.

19.2.1.1 Java EE Application Requiring Authenticated Users
In order to access a Java EE application, users must be authenticated against the
identity store in cases where the identity store is any of the following:

■ Single LDAP-based store

■ Several LDAP-based stores of the same kind (such as all OID, for example)

■ Several LDAP-based stores of different kinds; in particular two LDAP-based
stores: one AD LDAP and a second one OID LDAP

■ Single DB-based store

■ Several LDAP- and DB-based stores

This use case requires:

■ Allowing access to the application to only authenticated users

■ Not modifying the application code, even when customers have user identities in
different repositories

This use case features:

■ Deploying an application to a WebLogic container

■ Configuring the appropriate authenticators according to the particular set of user
repositories

■ Configuring the OVD authenticator in case of a mixed LDAP types or mixed
LDAP and DB types

According to the repository used, the details of this use case are split into the following
scenarios:

■ Single user repository - Configure the appropriate authenticator with the
WebLogic console

■ Multiple user repositories (or split profiles across LDAP of the same of different
kinds) - Configure the OVD authenticator

■ DB-based repositories - Configure the OVD authenticator

For details, see Section 3.1.2, "Oracle WebLogic Authenticators."

Security Integration Use Cases

19-4 Oracle Fusion Middleware Application Security Guide

19.2.1.2 Java EE Application Requiring Programmatic Authentication
A Java EE application, not using deployment descriptors, must authenticate the user
programmatically against the configured identity store(s); it applies only to Java EE
applications deployed to the Oracle WebLogic Application Server.

This use case requires using the OPSS public API to authenticate a user, and it
features:

■ Configuring authenticators for a Java EE container

■ Using the LoginService API to authenticate the user

For details about this use case, see Section 22.1, "Links to Authentication Topics for
Java EE Applications."

19.2.1.3 Java SE Application Requiring Authentication
A Java SE application must authenticate users against the LDAP identity store in use
in a domain; the application code requesting authentication must be same regardless
of the specifics of the domain’s identity store.

This use case requires configuring the identity store(s) against which the
authentication should take place and using the LoginService; note that a Java SE
application can use only one id login module.

For details about this use case, see Section 22.2.4, "Using the OPSS API LoginService in
Java SE Applications."

19.2.2 Identities
The identity use cases are the following:

■ Application Running in Two Environments - Application, running in two different
environments, needs to access user profile information in an LDAP-based store.

■ Application Accessing User Profiles in Multiple Stores - Application needs to
access user profile information stored in multiple LDAP-based stores.

19.2.2.1 Application Running in Two Environments
An application, which runs in two different environments, needs to access user profile
information, such as a user’s email address, stored in an LDAP-based store; the LDAP
server can be of any of the supported types and that type may differ with the
environment. For details on supported types, see Section 4.1, "Supported LDAP-, DB-,
and File-Based Services."

More specifically, this use case assumes that:

■ The application uses the method UserProfile.getEmail().

■ In one environment, there is an AD LDAP configured as follows:

mail.attr = msad_email

■ In the second environment, there is an OID LDAP configured as follows:

mail.attr = mail

In order for the application to retrieve the correct information without modifying the
code and regardless of the environment (first or second) in which it runs, the identity
store provider must be configured with the correct property in each of those two
environments.

Security Integration Use Cases

Integrating Application Security with OPSS 19-5

In the first environment (AD LDAP), the identity store provider is set to have the
following property:

<property name="mail.attr" value="msad_mail">

In the second one (OID LDAP), the identity store provider is set to have the following
property:

<property name="mail.attr" value="mail"

For details about this use case, see Section 7.2, "Configuring the Identity Store
Provider."

19.2.2.2 Application Accessing User Profiles in Multiple Stores
An application needs access to user profile information located in more than one
LDAP-based stores.

This use case requires configuring the environment for multiple LDAP-based stores.

For details about:

■ Configuring multiple LDAPs, see Section 7.3.2.6, "Examples of the Configuration
File"

■ Configuring the identity store service, see Section 7.3, "Configuring the Identity
Store Service"

19.2.3 Authorization
The authorization use cases are the following:

■ Java EE Application Accessible by Specific Roles - Java EE application accessible
only by users configured in web descriptors.

■ ADF Application Requiring Fine-Grained Authorization - ADF application
requires fine-grained authorization.

■ Web Application Securing Web Services - Web services application requires
securing web services.

■ Java EE Application Requiring Codebase Permissions - Java EE application
requires codebase permissions.

■ Non-ADF Application Requiring Fine-Grained Authorization - Non-ADF
application requires fine-grained authorization.

19.2.3.1 Java EE Application Accessible by Specific Roles
A Java EE application needs to be accessible only by users that had been assigned
specific roles in web descriptors; the group-to-role assignment must be configurable at
deployment based on the customer's environment.

For details about this use case, see sections Using Declarative Security with Web
Applications and Using Declarative Security with EJBs in Oracle Fusion Middleware
Programming Security for Oracle WebLogic Server.

19.2.3.2 ADF Application Requiring Fine-Grained Authorization
An ADF application in container requires fine-grained authorization at the level of
individual controls on the pages in the web application; while the application initiates
the authorization check, the policies need to be externalized and customizable per
customer post application deployment.

Security Integration Use Cases

19-6 Oracle Fusion Middleware Application Security Guide

For details on how to develop and secure Oracle ADF applications, see chapter 30,
Enabling ADF Security in a Fusion Web Application, in Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework.

For general information about ADF applications, see Section 1.5.2, "Scenario 2:
Securing an Oracle ADF Application."

For details about the life cycle of an ADF application, see Appendix - Security Life
Cycle of an ADF Application.

19.2.3.3 Web Application Securing Web Services
A web application requires securing web services with fine grained policies.

For details about web services security administration, see Oracle Fusion Middleware
Security and Administrator's Guide for Web Services.

19.2.3.4 Java EE Application Requiring Codebase Permissions
A Java EE application requires codebase permissions to perform specific actions;
typical examples are reading a credential from the credential store or looking up
policies in the policy store.

For details about creating codebase policies with Fusion Middleware Control, see
Section 9.2.3, "Managing System Policies."

19.2.3.5 Non-ADF Application Requiring Fine-Grained Authorization
A non-ADF application needs to be secured with fine-grained authorization checks.

This use case requires:

■ Placing checks in the application code at the appropriate places

■ Configuring the appropriate policies

For details see Section 20.3, "The JAAS/OPSS Authorization Model."

19.2.4 Credentials
The credential use case is the following:

■ Application Requiring Credentials to Access System - Application requires
credentials to access a back-end system.

19.2.4.1 Application Requiring Credentials to Access System
An application requires a credential to connect to a back-end system, such as a
database or an LDAP server. The application code should reference this credential in
such a way that the specifics of the credential can be changed per customer post
deployment without modifying the application code. Furthermore, this use case also
requires specifying who can access the credential store and what operations an
authorized user can perform on credential data.

This use case features:

■ Using the credential store to persist credentials

■ Fetching credentials at runtime with the CSF API in application code

■ Defining and enforcing system policies on codebase

For details about:

Security Integration Use Cases

Integrating Application Security with OPSS 19-7

■ Configuration and code examples, see Section 24.3, "Setting the Java Security
Policy Permissions," and Section 24.7, "Examples"

■ Credential management, see Section 10.3, "Managing the Credential Store"

■ Packaging, see Section 21.3.2, "Packaging Credentials with Application."

19.2.5 Audit
The audit use cases are the following:

■ Auditing Security-Related Activity - An application requires recording
security-related activity.

■ Auditing Business-Related Activity - An application requires recording business
activity in the context of a flow.

19.2.5.1 Auditing Security-Related Activity
An application needs to record security-related activity in several security areas;
specifically, the application requires logging the following information:

■ Changes to a policy: what and when

■ The policies that were evaluated in a particular time interval

■ Changes to credentials or keys: what and when

The settings explained in this use case apply to all applications and components in a
domain.

This use case requires that auditable applications:

■ Integrate with the Common Audit Framework (CAF)

■ Have built-in capabilities to log security activities

■ Set the proper audit filter level to capture activities in specific security areas

This use case features:

■ Integrating with the Common Audit Framework

■ Allowing applications to define their own audit categories and events in security
areas, and making the application audit-aware

■ Allowing applications to set the appropriate filter level

For details about:

■ Integrating with CAF, see Section 28.4, "Integrating the Application with the Audit
Framework."

■ Registering applications, see Section 28.6, "Register Application with the
Registration Service."

■ Log audit events, see Section 28.7, "Add Application Code to Log Audit Events."

19.2.5.2 Auditing Business-Related Activity
An application needs to record business-related activity in the context of a functional
flow; specifically, the application requires logging the users and the business actions
performed by them in a particular time interval.

The settings explained in this use case apply to all applications and components in a
domain.

Security Integration Use Cases

19-8 Oracle Fusion Middleware Application Security Guide

This use case requires that applications:

■ Create their own audit events based on their business needs

■ Be able to log business activities with runtime attributes to audit data repository

■ Generate audit reports from audit events

■ Manage runtime audit policies

■ Modify audit event definitions, if necessary

This use case features:

■ Allowing applications to define business functional areas (as audit categories),
business activities (as audit events in categories), and attributes in each category.

■ Registering applications at deployment; updating audit definitions; deregistering
applications after deployment.

■ Managing audit artifacts with Fusion Middleware Control or WSLT scripts.

For details about:

■ Integrating with CAF, see Section 28.4, "Integrating the Application with the Audit
Framework."

■ Registering applications, see Section 28.6, "Register Application with the
Registration Service."

■ Log audit events, see Section 28.7, "Add Application Code to Log Audit Events."

■ A sample component_events.xml file, see Section 28.5, "Create Audit
Definition Files."

■ Managing audit policies, seeSection 13.3, "Managing Audit Policies."

19.2.6 Identity Propagation
The identity propagation use cases are the following:

■ Propagating the Executing User Identity - Propagating the executing user identity
to a web service over SOAP.

■ Propagating a User Identity - Propagating a user identity to a web service over
SOAP.

■ Propagating Identities Across Domains - Propagating a user identity across
WebLogic domains.

■ Propagating Identities over HTTP - Propagating a user identity over HTTP.

19.2.6.1 Propagating the Executing User Identity
A client application in container needs to propagate the executing user identity to a
web service over SOAP; the web service can be running on a different managed server,
in the same domain, or in a different domain.

This use case requires that the current executing user identity be propagated to a web
service over SOAP.

The features that facilitate this use case are primarily those of Oracle Web Services
Manager (OWSM).

For details about OWSM, see chapter 4, Examining the Rearchitecture of Oracle Web
Services Manager in Oracle Fusion Middleware, in Oracle Fusion Middleware Security
and Administrator's Guide for Web Services.

Security Integration Use Cases

Integrating Application Security with OPSS 19-9

For details about propagating identities over SOAP, see chapter 11, Configuring
Policies, in Oracle Fusion Middleware Security and Administrator's Guide for Web Services.

19.2.6.2 Propagating a User Identity
A client application in container needs to propagate a user identity (which is not the
executing user identity) to a web service over SOAP; the identity to be propagated is
stored in the OPSS security store.

This use case requires that an identity of a user, distinct from the current executing
user, be propagated to a web service over SOAP.

This use case features:

■ The OPSS security store, where credentials are stored, from where the application
gets the specific identity that needs to be propagated as a PasswordCredential.

■ Oracle Web Services Manager ability to fetch and propagate the identity to a
remote web service.

For details about this use case, see chapter 9, Creating and Managing Policies Sets, in
Oracle Fusion Middleware Security and Administrator's Guide for Web Services.

19.2.6.3 Propagating Identities Across Domains
A client application in container in a WebLogic domain needs to propagate a user
identity (stored in the OPSS security store) to a different WebLogic domain over RMI.

For details about this use case, see section Enabling Trust Between WebLogic Server
Domains in shar.

19.2.6.4 Propagating Identities over HTTP
A client application in container (in a WebLogic domain or a WAS cell) needs to
propagate identities over HTTP.

For requirements and details about this use case, see Propagating Identities over
HTTP.

19.2.7 Administration and Management
The administration use cases are the following:

■ Application Requiring a Central Store - Application requires a central repository
of security artifacts where those artifacts are managed.

■ Application Requiring Custom Management Tool - Application requires a custom
tool to manage a central repository of externalized security artifacts.

■ Application Running in a Multiple Server Environment - Application requires
modifying security artifacts in a multiple node server environment.

19.2.7.1 Application Requiring a Central Store
An application requires a central repository of policies, credentials, audit
configuration, trusts, and keys, and a set of tools to manage that central repository,
which is the OPSS security store.

This use case features:

■ The OPSS security store

■ Managing security artifacts with Fusion Middleware Control

Security Integration Use Cases

19-10 Oracle Fusion Middleware Application Security Guide

■ Managing security artifacts with WLST scripts

For details about:

■ The OPSS security store, see Section 8.1, "Introduction to the OPSS Security Store."

■ Managing security artifacts, see:

– Section 9.2, "Managing Policies with Fusion Middleware Control"

– Section 9.3, "Managing Application Policies with OPSS Scripts"

– Section 10.4, "Managing Credentials with Fusion Middleware Control"

– Section 10.5, "Managing Credentials with OPSS Scripts"

– Chapter 11, "Managing Keys and Certificates with the Keystore Service"

19.2.7.2 Application Requiring Custom Management Tool
An application requires a custom tool to manage externalized security artifacts in a
context that is meaningful to the application's business.

This use case requires building a custom graphical user interface with calls to OPSS
APIs to display and manage security artifacts in the OPSS security store in a context
that is meaningful to the application.

This use case features:

■ Managing security artifacts with OPSS API

For details about:

■ Code sample illustrating the use of the OPSS API to implement some of the
operations needed to manage security artifacts, see A Custom Graphical User
Interface.

■ The list of OPSS APIs, see Appendix H, "References."

19.2.7.3 Application Running in a Multiple Server Environment
Application running in a WebLogic domain where several server instances are
distributed across multiple machines requires modifying security artifacts; changes
must take effect in all components of the application regardless of where they are
running.

This use case features:

■ Propagating changes to security artifacts whenever those changes are initiated on
the administration server; data on managed server nodes is refreshed based on
caching policies.

■ Using the MBeans API or Management API to modify security artifacts.

For details about:

■ Multiple server nodes, see Section 8.2.1, "Multiple-Node Server Environments"

■ OPSS services and MBeans, see Appendix E.2, "Configuring OPSS Services with
MBeans"

19.2.8 Integration
The integration use case is the following:

■ Application Running in Multiple Domains - Several WebLogic domains sharing a
single repository of security artifacts.

Some Use Cases Details

Integrating Application Security with OPSS 19-11

19.2.8.1 Application Running in Multiple Domains
A product requires multiple WebLogic domains to run and those domains share a
single central OPSS security store.

This use case features:

■ OPSS support for several domains to share a security store

For details about:

■ Domains sharing a credential store, see Section 10.2, "Encrypting Credentials"

■ Using reassociateSecurityStore to join to an existing OPSS security store,
see Section 9.3.29, "reassociateSecurityStore"

19.3 Some Use Cases Details
This section describes the following use cases in some detail:

■ Propagating Identities over HTTP

■ A Custom Graphical User Interface

19.3.1 Propagating Identities over HTTP
This section explains how an identity can be propagated across containers and
domains using the OPSS trust service and the HTTP protocol.

■ The OPSS Trust Service

■ Propagating Identities over the HTTP Protocol

■ Domains Using Both Protocols

19.3.1.1 The OPSS Trust Service
The OPSS trust service allows the propagation of identities across HTTP-enabled
applications by providing and validating tokens. The OPSS trust service uses an
asserter that is available only on the following platforms:

■ Oracle WebLogic Application Server - the Identity Asserter

■ IBM WebSphere Application Server - the Trust Asserter Interceptor (TAI)

Even though the scenarios in this section are illustrated with applications running on
WebLogic domains, they also apply to applications running on WebSphere cells;
except for the asserter configuration, all other configurations and samples are identical
on both platforms. For configuration properties, see Section F.2.6, "Trust Service
Properties."

There is one asserter per WebLogic domain or WebSphere cell; the keystore stores
digital certificates, private keys, and trusted CA certificates; the storage service used
by the keystore is JKS.

19.3.1.2 Propagating Identities over the HTTP Protocol
Identity propagation using HTTP calls typically runs as follows (see Figure 19–2):

1. A client application in Domain1 requests a token for an authenticated user from
Domain1's OPSS trust service instance.

2. The trust service accesses Domain1’s keystore and issues a token to the client
application.

Some Use Cases Details

19-12 Oracle Fusion Middleware Application Security Guide

3. The client application encodes the token in an HTML header and dispatches an
HTTP request to a servlet application in Domain2. Domain 2's asserter intercepts
the request and extracts the token.

4. The asserter requests a validation of that token from Domain2's OPSS trust service
instance.

5. The trust service accesses Domain2’s keystore to validate the token and returns a
response.

6. Assuming that the validation is successful, the asserter sends the request to the
servlet application using the asserted identity.

7. The servlet application sends an HTTP response to the client application request.

Figure 19–2 Identity Propagation with HTTP Calls

The remainder of this section explains and illustrates the configuration required for
the above scenario to work, in the following sections:

■ Single Domain Scenario

■ Multiple Domain Scenario

19.3.1.2.1 Single Domain Scenario In this scenario, the client and the servlet applications
use the same trust service instance to issue and validate tokens. The following code
and configuration samples illustrate a sample client and a servlet applications running
in the same domain.

Client Application Code Sample

The following sample illustrates a client application; note that the file jps-api.jar
must be included the class path for the code to compile.

// Authentication type name
public static final String AUTH_TYPE_NAME = "OIT";
// The authenticated username
String user = "weblogic";
// URL of the target application
URL url = "http://host:port/destinationApp";
//---
JpsContextFactory ctxFactory = JpsContextFactory.getContextFactory();
JpsContext jpsCtx = ctxFactory.getContext();
final TrustService trustService = jpsCtx.getServiceInstance(TrustService.class);
final TokenManager tokenMgr = trustService.getTokenManager();
final TokenContext ctx = tokenMgr.createTokenContext(
 TokenConfiguration.PROTOCOL_EMBEDDED);
UsernameToken ut = WSSTokenUtils.createUsernameToken("wsuid", user);

Some Use Cases Details

Integrating Application Security with OPSS 19-13

GenericToken gtok = new GenericToken(ut);
ctx.setSecurityToken(gtok);
ctx.setTokenType(SAML2URI.ns_saml);
Map<String, Object> ctxProperties = ctx.getOtherProperties();
ctxProperties.put(TokenConstants.CONFIRMATION_METHOD,
 SAML2URI.confirmation_method_bearer);

AccessController.doPrivileged(new PrivilegedAction<String>() {
 public String run() {
 try {
 tokenMgr.issueToken(ctx);
 } catch (Exception e) {
 e.printStackTrace();
 }
 return null;
 }
});

Token token = ctx.getSecurityToken();
String b64Tok = TokenUtil.encodeToken(token);

HttpURLConnection connection = (HttpURLConnection) url.openConnection();
connection.setRequestMethod("GET");
connection.setDoOutput(true);
connection.setReadTimeout(10000);
connection.setRequestProperty("Authorization", AUTH_TYPE_NAME + " " + b64Tok);
connection.connect();
BufferedReader rd = new BufferedReader(new InputStreamReader(
 connection.getInputStream()));
StringBuilder sb = new StringBuilder();

String line = null;
while ((line = rd.readLine()) != null) {
 sb.append(line);
}
connection.disconnect();
System.out.println(sb.toString());

Keystore Service Configuration

Assuming that the domain name is jrfServer_admin, the following command
illustrates the creation of the domain keystore, represented by the generated file
default-keystore.jks:

JAVA_HOME/bin/keytool -genkeypair
 -alias jrfServer_admin
 -keypass welcome
 -keyalg RSA
 -dname "CN=jrfServer_admin,O=Oracle,C=US"
 -keystore default-keystore.jks
 -storepass password

cp default-keystore.jks ${domain.home}/config/fmwconfig

Make sure that the keystore service configured in the file jps-config.xml points to
the generated default-keystore.jks; the following sample illustrates a keystore
service configuration:

<!-- KeyStore Service Instance -->
<serviceInstance name="keystore"
 provider="keystore.provider" location="./default-keystore.jks">

Some Use Cases Details

19-14 Oracle Fusion Middleware Application Security Guide

 <description>Default JPS Keystore Service</description>
 <property name="keystore.provider.type" value="file"/>
 <property name="keystore.file.path" value="./"/>
 <property name="keystore.type" value="JKS"/>
 <property name="keystore.csf.map" value="oracle.wsm.security"/>
 <property name="keystore.pass.csf.key" value="keystore-csf-key"/>
 <property name="keystore.sig.csf.key" value="sign-csf-key"/>
 <property name="keystore.enc.csf.key" value="enc-csf-key"/>
</serviceInstance >

CSF Configuration

Create a map/key pair used to open the keystore and another map/key pair used to
issue tokens. The following commands illustrate these operations using the OPSS
script createCred:

// JKS keystore opening password
createCred(map="oracle.wsm.security", key="keystore-csf-key",
 user="keystore", password="password")

// Private key password to issue tokens
createCred(map="oracle.wsm.security", key="sign-csf-key",
 user="orakey", password="password")

For details about the OPSS script createCred, see Section 10.5, "Managing
Credentials with OPSS Scripts."

Grant Configuration

Add a grant like the following to the policy store, which allows the client application
to use the trust service API:

<grant>
 <grantee>
 <codesource>
 <url>file:${oracle.deployed.app.dir}/<MyApp>${oracle.deployed.app.ext}</url>
 </codesource>
 </grantee>
 <permissions>
 <permission>
<class>oracle.security.jps.service.trust.TrustServiceAccessPermission</class>
 <name>appId=*</name>
 <actions>issue</actions>
 </permission>
 </permissions>
</grant>

The Oracle WebLogic Server must be stopped and re-started for the above grant to
take effect.

Servlet Code

The following sample illustrates how a servlet can obtain an asserted user name:

public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 String username = request.getRemoteUser();
 ServletOutputStream out = response.getOutputStream();
 out.print("Asserted username: " + username);
 out.close();
}

web.xml Configuration

Some Use Cases Details

Integrating Application Security with OPSS 19-15

Set the appropriate login method in the file web.xml, as illustrated in the following
snippet:

<web-app id="WebApp_ID"
…
 <login-config>
 <auth-method>CLIENT-CERT</auth-method>
 <realm-name>Identity Assertion</realm-name>
 </login-config>
…
</web-app>

WebLogic Asserter and Trust Service Configuration

To configure the WebLogic asserter, proceed as follows:

1. Copy the WebLogic identity asserter JAR jps-wls-trustprovider.jar to the
location ${domain.home}/lib/mbeantypes, as illustrated by the following
command, and then restart the WebLogic Server:

cp ${common.components.home}/modules/oracle.jps_
11.1.1/jps-wls-trustprovider.jar ${domain.home}/lib/mbeantypes

2. Use WebLogic Console to configure the asserter, as follows:

1. Login to the console as an administrator.

2. Navigate to Security Settings > Security Realms > myrealm > Providers Tab
> Authentication, and click New to open the Create a New Authentication
Provider dialog.

3. In that dialog, enter TrustServiceIdentityAsserter in the name box,
and select TrustServiceIdentityAsserter from the pull-down in the
type box; then click OK.

3. Verify that a grant like the following is present in the policy store; this grant is
required for the asserter to use the OPSS trust service API; if necessary, use WSLT
scripts to specify the grant:

<grant>
 <grantee>
 <codesource>

<url>file:${domain.home}/lib/mbeantypes/jps-wls-trustprovider.jar</url>
 </codesource>
 </grantee>
 <permissions>
 <permission>

<class>oracle.security.jps.service.trust.TrustServiceAccessPermission</class>
 <name>appId=*</name>
 <actions>validate</actions>
 </permission>
 </permissions>
</grant>

Any changes to the file jps-config.xml) requires the server to be re-started
before updates take effect.

WebSphere Trust Asserter Interceptor Configuration

For details on this topic, see section Configuring the Trust Association Interceptor in
Oracle Fusion Middleware Third-Party Application Server Guide.

Some Use Cases Details

19-16 Oracle Fusion Middleware Application Security Guide

19.3.1.2.2 Multiple Domain Scenario In this scenario there are two different domains:
Domain1 and Domain2. The client application is running in Domain1; the servlet
application is running in Domain2. It is assumed that each of these two domains have
each a trust store service and keystore properly configured as explained under the
heading WebLogic Asserter and Trust Store Configuration in the Single Domain
Scenario. In this scenario, the client application uses Domain1’s trust service for token
generation, and the servlet application uses Domain2’s trust service for token
validation.

In Domain1, the client sample code and the following configurations are identical to
those described in the Single Domain Scenario:

■ the client application is illustrated by the code under the heading Client
Application Code Sample.

■ the configuration of the keystore is illustrated under the heading Keystore Service
Configuration.

■ the CSF configuration is illustrated under the heading CSF Configuration.

■ the grant configuration is illustrated under the heading Grant Configuration.

In Domain 2, the servlet sample code and web.xml configuration are identical to those
described in the Single Domain Scenario, but there is some extra setup required:

■ The servlet application code is illustrated by the code under the heading Servlet
Code in the Single Domain Scenario.

■ The configuration of the file web.xml is illustrated under the heading web.xml
Configuration in the Single Domain Scenario.

■ The client certificate that is used to sign the token in Domain1 must be present in
Domain2’s keystore; therefore, the administrator proceeds as follows:

1. Exports the certificate from Domain 1’s keystore, as illustrated by the
following command:

JAVA_HOME/bin/keytool -export
-alias jrfServer_admin.cer
-keystore default-keystore.jks
-storepass password

2. Imports the certificate into Domain 2’s keystore as illustrated by the command
below. Note that the alias passed must be the same as the alias used in step 1
for the export; if you overwrite the issuer name in the client side then that
issuer name should be used as the alias.

JAVA_HOME/bin/keytool -importcert
 -alias jrfServer_admin
 -keypass welcome
 -keyalg RSA
 -dname "CN=jrfServer_admin,O=Oracle,C=US"
 -keystore default-keystore.jks
 -storepass password

3. Sets the Domain2’s keystore password in the (Domain2’s) credential store
using the OPSS script createCred as follows:

createCred(map="oracle.wsm.security", key="keystore-csf-key",
user="keystore", password="password")

Some Use Cases Details

Integrating Application Security with OPSS 19-17

19.3.1.3 Domains Using Both Protocols
In this scenario, applications use either the HTTP protocol or the SOAP protocol, and
not all applications in the domain use the same protocol. In such scenario, the keystore
can be shared by the trust service used by the HTTP protocol and the SOAP service
used by Oracle Web Services Manager. But in order for the trust service to work in this
case, some special configurations in the file jps-config.xml are required as
explained in the following sections:

■ Single Domain Scenario

■ Multiple Domain Scenario

19.3.1.3.1 Single Domain Scenario In this scenario, there is one keystore. The following
snippet illustrates the configuration required for a certificate with alias orakey:

<propertySet name="trust.provider.embedded">
 <property name="trust.provider.className"

value="oracle.security.jps.internal.trust.provider.embedded.EmbeddedProviderImpl"/
>
 <property name="trust.clockSkew" value="60"/>
 <property name="trust.token.validityPeriod" value="1800"/>
 <property name="trust.token.includeCertificate" value="false"/>

 <!-- The alias used to get the signing certificate from JKS -->
 <property name="trust.aliasName" value="orakey"/>

 <!-- The issuer name to be added in the token used by the destination
 trust service instance as an alias to pick up the corresponding certificate
 to validate the token signature -->
 <property name="trust.issuerName" value="orakey"/>
</propertySet>

19.3.1.3.2 Multiple Domain Scenario In this scenario, there are two domains and two
keystores. The following snippet illustrates the configuration required in the domain
that is issuing tokens for a certificate with alias orakey:

<!-- issuer domain trust store must have a signing certif. w. alias orakey -->
<propertySet name="trust.provider.embedded">
 <property name="trust.provider.className"

value="oracle.security.jps.internal.trust.provider.embedded.EmbeddedProviderImpl"/
>
 <property name="trust.clockSkew" value="60"/>
 <property name="trust.token.validityPeriod" value="1800"/>
 <property name="trust.token.includeCertificate" value="false"/>

 <!-- the signing certificate alias in local JKS -->
 <property name="trust.aliasName" value="orakey"/>

 <!-- the token issuer’s name -->
 <property name="trust.issuerName" value="domain1"/>
</propertySet>

The following snippet illustrates the configuration required in the domain that is
receiving tokens for a certificate with alias orakey:

<!- important: recipient domain must have a token validation certificate for
domain1,
which is the one was used to sign the token with alias "domain1" -->
<propertySet name="trust.provider.embedded">

Some Use Cases Details

19-18 Oracle Fusion Middleware Application Security Guide

 <property name="trust.provider.className"

value="oracle.security.jps.internal.trust.provider.embedded.EmbeddedProviderImpl"/
>
 <property name="trust.clockSkew" value="60"/>
 <property name="trust.token.validityPeriod" value="1800"/>
 <property name="trust.token.includeCertificate" value="false"/>

 <!-- the signing certificate alias in local JKS -->
 <property name="trust.aliasName" value="orakey"/>

 <!-- the token issuer’s name -->
 <property name="trust.issuerName" value="domain2"/>
</propertySet>

19.3.2 A Custom Graphical User Interface
This use case illustrates some of the operations needed, for example, when
implementing a custom graphic UI to manage policies. The samples presented use the
OPSS APIs and demonstrate the following operations:

■ Querying users in the identity store.

■ Querying application roles in the policy store.

■ Querying the mapping of users and groups to application roles; specifically, given
a user identify all the application roles mapped to that user (Recall that the
mapping of users and groups to application roles is a many-to-many relationship).

■ Creating, reading, updating, and deleting the mapping of users and groups to
application roles.

This use case assumes that:

■ The identity store is an OID LDAP-based store.

■ The policy store is an OID LDAP-based store.

■ The identity store contains the following hierarchy of users and groups (enterprise
roles):

– The users Mary, John, Tom, and Helen.

– The groups IT, Training, and Development.

– The groups Training and Development are members of the group IT.

– The user Mary is a member of the group Training.

– The users Tom and John are members of the group Development.

■ The policy store contains the following application policies and hierarchy of
application roles:

– The application policies ApplicationPolicy1 and ApplicationPolicy2.

– The roles System Manager, System Developer, and System Analyst are
application roles referenced in the policy ApplicationPolicy1; the System
Manager role is a member of the System Developer role; the System Developer
role is a member of the System Analyst role.

– The roles Director, Instructor, and Lecturer are application roles referenced in
the application policy ApplicationPolicy2; the Director role is a member of the
Instructor role; the Instructor role is member of the Lecturer role.

Some Use Cases Details

Integrating Application Security with OPSS 19-19

■ The mapping of application roles to users and groups is as follows:

– The role System Manager is mapped to the user Helen.

– The role System Developer is mapped to the group Development.

– The role Director is mapped to the user Tom.

– The role Instructor is mapped to the groups Training and Development.

Figure 19–3 illustrates the hierarchy of application roles, the users and groups, and the
mapping of application roles to users and groups, as assumed in this use case.

Figure 19–3 Mapping of Application Roles to Users and Groups

Note that the above role hierarchy implies, for instance, that a user in the System
Manager role is also in the System Developer role, and similarly with the other roles.
Therefore the role membership for each of the four users is as follows:

■ User Tom is a member of the following application roles: System Developer,
System Analyst, Director, Instructor, and Lecturer.

■ User Helen is a member of the following application roles: System Manager,
System Developer, and System Analyst.

■ User Mary is a member of the following application roles: Instructor and Lecturer.

■ User John is a member of the following application roles: System Developer,
System Analyst, Instructor, and Lecturer.

The code samples are detailed in the following sections:

■ Imports Assumed - List of imports

■ Code Sample 1 - Querying the identity store.

■ Code Sample 2 - Creating application roles and assigning members to a role.

Some Use Cases Details

19-20 Oracle Fusion Middleware Application Security Guide

■ Code Sample 3 - Querying application roles.

■ Code Sample 4 - Mapping application roles to users and groups.

■ Code Sample 5 - Getting all the roles that have a given user as a member.

■ Code Sample 6 - Removing the mapping of an application role to a group.

19.3.2.1 Imports Assumed
The sample codes in this use case assume the following import statements:

import java.security.AccessController;
import java.security.Policy;
import java.security.Principal;
import java.security.PrivilegedExceptionAction;
import java.security.Security;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import javax.security.auth.Subject;
import oracle.security.idm.Identity;
import oracle.security.idm.IdentityStore;
import oracle.security.idm.ObjectNotFoundException;
import oracle.security.idm.Role;
import oracle.security.idm.RoleManager;
import oracle.security.idm.SearchParameters;
import oracle.security.idm.SearchResponse;
import oracle.security.idm.SimpleSearchFilter;
import oracle.security.idm.User;
import oracle.security.idm.UserProfile;
import oracle.security.jps.ContextFactory;
import oracle.security.jps.JpsContext;
import oracle.security.jps.JpsContextFactory;
import oracle.security.jps.principals.JpsApplicationRole;
import oracle.security.jps.service.idstore.IdentityStoreService;
import oracle.security.jps.service.policystore.ApplicationPolicy;
import oracle.security.jps.service.policystore.PolicyObjectNotFoundException;
import oracle.security.jps.service.policystore.PolicyStore;
import oracle.security.jps.service.policystore.PolicyStoreException;
import oracle.security.jps.service.policystore.entitymanager.AppRoleManager;
import oracle.security.jps.service.policystore.info.AppRoleEntry;
import oracle.security.jps.service.policystore.search.AppRoleSearchQuery;
import oracle.security.jps.service.policystore.search.ComparatorType;
import oracle.security.jps.util.JpsAuth;
import weblogic.security.principal.PrincipalFactory;

19.3.2.2 Code Sample 1
The following sample code illustrates two queries to users in the identity store:

private void queryUsers() throws Exception {
 // Using IDM U/R to query ID store
 IdentityStore idmStore = idStore.getIdmStore();

 // Query an individual user by name
 User employee = idmStore.searchUser(USER_TOM);
 log("--");
 log("### Query individual user (Tom) from ID store ###");
 log(USER_TOM + ": " + employee.getName() + " GUID: " +
 employee.getGUID());
 log();

Some Use Cases Details

Integrating Application Security with OPSS 19-21

 // Get all users whose name is not "Paul"
 SimpleSearchFilter filter =
 idmStore.getSimpleSearchFilter(UserProfile.NAME,
 SimpleSearchFilter.TYPE_NOTEQUAL,
 "Paul");
 SearchParameters sps =
 new SearchParameters(filter, SearchParameters.SEARCH_USERS_ONLY);
 SearchResponse result = idmStore.searchUsers(sps);
 log("--");
 log("### Query all users (whose name is not Paul) from ID store ###");
 log("Found the following users:");
 while (result.hasNext()) {
 Identity user = result.next();
 log("\t user: " + user.getName() + ", GUID: " + user.getGUID());
 }
 log();
 }

19.3.2.3 Code Sample 2
The following sample code illustrates how to create an application role and how to
make a role a member of another role:

private void createAppRoles1() throws Exception {
 AppRoleManager arm1 = ap1.getAppRoleManager();
 log("--");
 log("### Creating app roles in app policy1 with hierachy ###");

 AppRoleEntry sysAnalystRole =
 arm1.createAppRole(APP_ROLE_SYS_ANALYST, APP_ROLE_SYS_ANALYST,
 APP_ROLE_SYS_ANALYST);
 AppRoleEntry sysDeveloperRole =
 arm1.createAppRole(APP_ROLE_SYS_DEVELOPER, APP_ROLE_SYS_DEVELOPER,
 APP_ROLE_SYS_DEVELOPER);
 AppRoleEntry sysManagerRole =
 arm1.createAppRole(APP_ROLE_SYS_MANAGER, APP_ROLE_SYS_MANAGER,
 APP_ROLE_SYS_MANAGER);

 ap1.addPrincipalToAppRole(sysManagerRole, APP_ROLE_SYS_DEVELOPER);
 ap1.addPrincipalToAppRole(sysDeveloperRole, APP_ROLE_SYS_ANALYST);
 log("### App roles in app policy #1 have been created ###");
 log();

 }

19.3.2.4 Code Sample 3
The following code sample illustrates several ways to query application roles:

private void queryAppRolesInApplicationPolicy1() throws Exception {
 AppRoleManager arm1 = ap1.getAppRoleManager();

 // Get role that matches a name
 AppRoleEntry are = arm1.getAppRole(APP_ROLE_SYS_MANAGER);
 log("--");
 log("### Query app roles in application policy #1, by name ###");
 log("Found " + are.getName() + " by app role name.");
 log();

 // Get the role that matches a name exactly

Some Use Cases Details

19-22 Oracle Fusion Middleware Application Security Guide

 AppRoleSearchQuery q =
 new AppRoleSearchQuery(AppRoleSearchQuery.SEARCH_PROPERTY.NAME,
 false, ComparatorType.EQUALITY,
 APP_ROLE_SYS_ANALYST,
 AppRoleSearchQuery.MATCHER.EXACT);
 List<AppRoleEntry> arel = arm1.getAppRoles(q);
 log("### Query app roles in application policy #1, by exact query ###");
 log("Found " + arel.get(0).getName() + " by exact query.");
 log();

 // Get roles with names that begin with a given string
 q =
 new AppRoleSearchQuery(AppRoleSearchQuery.SEARCH_PROPERTY.NAME, false,
 ComparatorType.EQUALITY,
 APP_ROLE_SYS_DEVELOPER.subSequence(0, 7),
 AppRoleSearchQuery.MATCHER.BEGINS_WITH);
 arel = arm1.getAppRoles(q);
 log("### Query app roles in app policy #1, by begins_with query ###");
 log("Found " + arel.get(0).getName() + " by begins_with query.");
 log();

 // Get roles with names that contain a given substring
 q =
 new AppRoleSearchQuery(AppRoleSearchQuery.SEARCH_PROPERTY.NAME, false,
 ComparatorType.EQUALITY, "dummy",
 AppRoleSearchQuery.MATCHER.ANY);
 arel = arm1.getAppRoles(q);
 log("### Query app roles in app policy #1, by matcher any ###");
 log("Found " + arel.size() + " app roles by matcher any.");
 for (AppRoleEntry ar : arel) {
 log("\t" + ar.getName());
 }
 log();
 }

19.3.2.5 Code Sample 4
The following sample illustrates how to map application roles to users and groups:

private void assignAppRoleToUsersAndGroups() throws Exception {
 // Obtain the user/group principals
 IdentityStore idmStore = idStore.getIdmStore();
 User tom = idmStore.searchUser(USER_TOM);
 User helen = idmStore.searchUser(USER_HELEN);

 Role trainingRole =
 idmStore.searchRole(IdentityStore.SEARCH_BY_NAME, GROUP_TRAINING);
 Role devRole =
 idmStore.searchRole(IdentityStore.SEARCH_BY_NAME, GROUP_DEV);

 Principal tomPrincipal =
 PrincipalFactory.getInstance().createWLSUser(tom.getName(),
 tom.getGUID(),
 tom.getUniqueName());
 Principal helenPrincipal =
 PrincipalFactory.getInstance().createWLSUser(helen.getName(),
 helen.getGUID(),
 helen.getUniqueName());

 Principal trainingPrincipal =
 PrincipalFactory.getInstance().createWLSGroup(trainingRole.getName(),

Some Use Cases Details

Integrating Application Security with OPSS 19-23

 trainingRole.getGUID(),

trainingRole.getUniqueName());
 Principal devPrincipal =
 PrincipalFactory.getInstance().createWLSGroup(devRole.getName(),
 devRole.getGUID(),

devRole.getUniqueName());

 // Application policy #1
 log("--");
 log("### Assigning appl roles to users and groups, app policy #1 ###");
 ap1.addPrincipalToAppRole(helenPrincipal, APP_ROLE_SYS_MANAGER);
 ap1.addPrincipalToAppRole(devPrincipal, APP_ROLE_SYS_DEVELOPER);

 // Application policy #2
 log("### Assigning app roles to users and groups, app policy #2 ###");
 ap2.addPrincipalToAppRole(tomPrincipal, APP_ROLE_DIRECTOR);
 ap2.addPrincipalToAppRole(devPrincipal, APP_ROLE_INSTRUCTOR);
 ap2.addPrincipalToAppRole(trainingPrincipal, APP_ROLE_INSTRUCTOR);

 log("### App roles have been assigned to users and groups ###");
 log();
 }

19.3.2.6 Code Sample 5
The following code sample illustrates how to get all the roles that have a given user as
a member:

private void showAppRoles() throws Exception {
 Subject tomSubject = getUserSubject(USER_TOM);
 Subject helenSubject = getUserSubject(USER_HELEN);
 Subject johnSubject = getUserSubject(USER_JOHN);
 Subject marySubject = getUserSubject(USER_MARY);

 Set<String> applications = new HashSet<String>();
 applications.add(APPLICATION_NAME1);
 applications.add(APPLICATION_NAME2);

 log("--");
 log("### Query application roles for Tom ###");
 showAppRoles(applications, USER_TOM, tomSubject);
 log();

 log("### Query application roles for Helen ###");
 showAppRoles(applications, USER_HELEN, helenSubject);
 log();

 log("### Query application roles for John ###");
 showAppRoles(applications, USER_JOHN, johnSubject);
 log();

 log("### Query application roles for Mary ###");
 showAppRoles(applications, USER_MARY, marySubject);
 log();
 }

private Subject getUserSubject(String userName) throws Exception {
 Subject subject = new Subject();

Some Use Cases Details

19-24 Oracle Fusion Middleware Application Security Guide

 // Query users from ID store using user/role API,for user principal
 IdentityStore idmStore = idStore.getIdmStore();
 User user = idmStore.searchUser(userName);

 Principal userPrincipal =
 PrincipalFactory.getInstance().createWLSUser(user.getName(),
 user.getGUID(),
 user.getUniqueName());

 subject.getPrincipals().add(userPrincipal);

 // Query users from ID store using user/role API, for enterprise roles
 RoleManager rm = idmStore.getRoleManager();
 SearchResponse result = null;
 try {
 result = rm.getGrantedRoles(user.getPrincipal(), false);
 } catch (ObjectNotFoundException onfe) {
 // ignore
 }

 // Add group principals to the subject
 while (result != null && result.hasNext()) {
 Identity role = result.next();
 Principal groupPrincipal =
 PrincipalFactory.getInstance().createWLSGroup(role.getName(),
 role.getGUID(),
 role.getUniqueName());
 subject.getPrincipals().add(groupPrincipal);
 }

 // The subject now contains both user and group principals.
 // In the WebLogic Server, this setting is done by a login module
 return subject;
 }

private void showAppRoles(Set<String> applications, String user, Subject subject)
{
 // Get all granted application roles for this subject
 Set<JpsApplicationRole> result = null;
 try {
 result = JpsAuth.getAllGrantedAppRoles(subject, applications);
 } catch (PolicyStoreException pse) {
 log(pse.toString());
 }

 if (result.size() <= 1) {
 log(user + " has " + result.size() + " application role.");
 if (result.size() == 1) {
 for (JpsApplicationRole ar : result) {
 log("\tApplication role: " + ar.getName());
 }
 }
 } else {
 System.out.println(user + " has " + result.size() +
 " application roles.");
 for (JpsApplicationRole ar : result) {
 log("\tApplication role: " + ar.getAppID() + "/" +
 ar.getName());
 }
 }

Appendix - Security Life Cycle of an ADF Application

Integrating Application Security with OPSS 19-25

 }

19.3.2.7 Code Sample 6
The following sample code illustrates how to remove the mapping of an application
role to a group:

private void removeAppRoleForUserDirector() throws Exception {
 // Remove instructor role from Dev group
 log("--");
 log("### Removing Instructor application role from Dev group ###");

 IdentityStore idmStore = idStore.getIdmStore();
 Role devRole =
 idmStore.searchRole(IdentityStore.SEARCH_BY_NAME, GROUP_DEV);
 Principal devPrincipal =
 PrincipalFactory.getInstance().createWLSGroup(devRole.getName(),
 devRole.getGUID(),

devRole.getUniqueName());

 ap2.removePrincipalFromAppRole(devPrincipal, APP_ROLE_INSTRUCTOR);
 log("### Instructor app role has been removed from Dev group ###");
 log();

 log("--");
 log("### Now query application roles for user John, again ###");
 Set<String> applications = new HashSet<String>();
 applications.add(APPLICATION_NAME1);
 applications.add(APPLICATION_NAME2);

 Subject johnSubject = getUserSubject(USER_JOHN);
 showAppRoles(applications, USER_JOHN, johnSubject);
 log();
 }

19.4 Appendix - Security Life Cycle of an ADF Application
This section explains the phases that the security of an application goes through. It is
assumed that the application uses ADF and that it is developed in the Oracle
JDeveloper environment.

The phases of the security life cycle of an application are the development phase, the
deployment phase, and the management phase. The participants are the product
manager or application architect, application developers, and application security
administrators. For a summary of tasks, see Summary of Tasks per Participant per
Phase.

19.4.1 Development Phase
In the development phase developers design the application to work with the full
range of security options available in Oracle Fusion Middleware. Developers have
access to a rich set of security services exposed by Oracle JDeveloper, the built-in ADF
framework, and the Oracle WebLogic Server. All these components are based on
OPSS, which ensures a consistent approach to security throughout the application’s
life span.

Typically, a developer uses the ADF Security Wizard (an authorization editor) and an
expression language editor, all within Oracle JDeveloper; additionally and optionally,

Appendix - Security Life Cycle of an ADF Application

19-26 Oracle Fusion Middleware Application Security Guide

he may use OPSS APIs to implement more complex security tasks. Thus, some parts of
the application use declarative security, others use programmatic security, and they
both rely on security features available in the development and run-time environment.

Application developers also define a number of application entitlements and roles
(policy seed data) required to secure the application. This policy seed data is kept in a
source control system together with the application source code.

19.4.2 Deployment Phase
Once developed, the application is typically tested in a staging environment before
being deployed to a production environment. In a production environment, both the
application and the run-time services are integrated with other security components,
such as user directories, single sign-on systems, user provisioning systems, and
auditing. The security services usually change with the phase: for example, during
development, a developer relies on a file or Oracle Wallet to store user credentials, but,
in a production environment, credentials are stored in an LDAP directory (the OPSS
security store).

In the deployment phase, typically, an administrator migrates the policy seed data to
the production policy store (the OPSS security store), and maps application roles to
enterprise groups to effect application security policies.

19.4.3 Management Phase
The management phase starts once an application has been deployed to a production
environment. In this phase, application administrators or enterprise security
administrators manage day-to-day security tasks, such as granting users access to
application resources, reviewing audit logs, responding to security incidents, and
applying security patches.

19.4.4 Summary of Tasks per Participant per Phase
The following tables summarize the major responsibilities per participant in each of
the security life cycle phases and Figure 19–4 illustrates the basic flow.

Figure 19–4 Application Life Cycle Phases

Appendix - Code and Configuration Examples

Integrating Application Security with OPSS 19-27

19.5 Appendix - Code and Configuration Examples
This section lists most of the code and configuration samples found elsewhere in this
Guide, and a fully-written code example.

■ Code Examples

■ Configuration Examples

■ Full Code Example of a Java EE Application with Integrated Security

19.5.1 Code Examples
The following list includes typical security-related programming tasks and links to
sample code illustrating implementations:

■ Querying an LDAP identity store - See Section 7.4, "Querying the Identity Store
Programmatically."

Table 19–1 Security Tasks for the Application Architect

Phase Task

Development Defines high-level application roles based on functional security and data
security requirements.

Populates the initial file-based application policy store (jazn-data.xml).

Deployment Defines real-world customer scenarios to be tested by the QA team.

Management Understands and identifies the requirements to customize application
policies.

Considers defining templates for vertical industries.

Table 19–2 Security Tasks for the Application Developer

Phase Task

Development Uses tools and processes, specifically Oracle JDeveloper, to build the
application and to create security artifacts, such as application roles and
permissions.

Uses FND Grants to specify data-level security.

Tests the application using a local policy store with sample users and roles.

Deployment Assists the QA team to troubleshoot and resolve runtime issues.

Table 19–3 Security Tasks for the Application Security Administrator

Phase Task

Deployment Uses deployment services to migrate security seed data in jazn-data.xml
to the production policy store.

Maps application roles to enterprise groups so that security policies can be
enforced.

Management Applies patches and upgrades software, as necessary.

Manages users and roles, as enterprise users and the application role
hierarchy changes overtime.

Manages policies packed with the application and creates new ones.

Integrates with and manages the IAM infrastructure.

Appendix - Code and Configuration Examples

19-28 Oracle Fusion Middleware Application Security Guide

■ Querying application roles and the mapping of users and groups to application
roles - See A Custom Graphical User Interface.

■ Invoking the method isUserInRole - See Section 20.2.2.2, "Programmatic
Authorization."

■ Managing policies - See Section 20.3.2, "Managing Policies."

■ Checking policies - See Section 20.3.3, "Checking Policies."

■ Using the class ResourcePermission - See Section 20.3.4, "The Class
ResourcePermission."

■ Using the Identity Store Login Module for authentication in Java SE applications -
See Section 22.2.3.2, "Using the Identity Store Login Module for Authentication."

■ Using the Identity Store Login Module for assertion in Java SE applications - See
Section 22.2.3.3, "Using the Identity Login Module for Assertion."

19.5.2 Configuration Examples
The following list includes typical security-related configuration tasks and links to
sample configuration:

■ Configuring an OAM SSO provider - See Section 8.7.3.3, "OAM Configuration
Example."

■ Configuring resource permissions - See Section 20.3.4, "The Class
ResourcePermission."

■ Configuring the servlet filter and the EJB interceptor - See Section 21.1,
"Configuring the Servlet Filter and the EJB Interceptor."

■ Configurations involved with migrateSecurityStore - See Section 6.5.2.1,
"Migrating Policies Manually," and Section 6.5.2.2, "Migrating Credentials
Manually."

■ Configuring an LDAP identity store - See Section 7.3.2.6, "Examples of the
Configuration File," and Section 22.2.2, "Configuring an LDAP Identity Store in
Java SE Applications."

■ Configuring the policy and credential stores in Java SE applications - See
Section 23.1, "Configuring Policy and Credential Stores in Java SE Applications."

19.5.3 Full Code Example of a Java EE Application with Integrated Security
ezshare is a full example of a Java EE application whose security has been integrated
with OPSS that uses permission-based grants and available at the Oracle Network. To
locate the example, search for the keyword ezshare.

20

The OPSS Policy Model 20-1

20The OPSS Policy Model

This chapter explains the OPSS policy and authorization models in the following
sections:

■ The Security Policy Model

■ Authorization Overview

■ The JAAS/OPSS Authorization Model

20.1 The Security Policy Model
For details about the OPSS policy model and the security artifacts used in it, see Oracle
Fusion Middleware Administrator's Guide for Oracle Entitlements Server.

20.2 Authorization Overview
This section compares and contrasts the authorization available in the Java EE and the
JAAS models, in the following sections:

■ Introduction to Authorization

■ The Java EE Authorization Model

■ The JAAS Authorization Model

20.2.1 Introduction to Authorization
A Java 2 policy specifies the permissions granted to signed code loaded from a given
location. A JAAS policy extends Java 2 grants by allowing an optional list of
principals; permissions are granted only to code from a given location, possibly
signed, and run by a user represented by those principals.

The Policy Store is a repository of system and application-specific policies and roles.
Application roles can be granted (mapped) to enterprise users and groups specific to
the application (such as administrative roles). A policy can grant permissions to any of
these roles, groups, or users as principals.

For more details about policy-related security artifacts, see Chapter 3.2, "Policy Store
Basics."

An application can delegate the enforcement of authorization to the container, or it can
implement its own enforcement of policy checking with calls to methods such as
checkPermission, checkBulkAuthorization, or getGrantedResources.

For details about policy checking with API calls, see Checking Policies.

Authorization Overview

20-2 Oracle Fusion Middleware Application Security Guide

20.2.2 The Java EE Authorization Model
The Java EE authorization model uses role membership to control access to EJB
methods and web resources that are referenced by URLs; policies assign permissions
to users and roles, and they are enforced by the container to protect resources.

In the Java EE model, authorization is implemented in either of the following ways:

■ Declaratively, where authorization policies are specified in deployment
descriptors; the container reads those policies from deployment descriptors and
enforces them. No special application code is required to enforce authorization.

■ Programmatically, where authorization policies are checked in application code;
the code checks whether a subject has the appropriate permission to execute
specific sections of code. If the subject fails to have the proper permission, the code
throws an exception.

Table 20–1 shows the advantages and disadvantages of each approach.

A container can provide authorization to applications running in it in two ways:
declaratively and programmatically; these topics and an example are explained in the
following sections:

■ Declarative Authorization

■ Programmatic Authorization

■ Java EE Code Example

20.2.2.1 Declarative Authorization
Declarative authorization allows to control access to URL-based resources (such as
servlets and pages) and methods in EJBs.

The basic steps to configure declarative authorization are the following:

1. In standard deployment descriptors, specify the resource to protect, such as a web
URL or an EJB method, and a logical role that has access to the resource.

Alternatively, since Java EE 1.5 supports annotations, use code annotations instead
of deployment descriptors.

2. In proprietary deployment descriptors (such as web.xml), map the logical role
defined in step 1 to an enterprise group.

For details, see the chapter Using Security Services in Oracle Fusion Middleware
Enterprise JavaBeans Developer's Guide for Oracle Containers for Java EE.

20.2.2.2 Programmatic Authorization
Programmatic authorization provides a finer grained authorization than the
declarative approach, and it requires that the application code invoke the method

Table 20–1 Comparing Authorization in the Java EE Model

Authorization Type Advantages Disadvantages

Declarative No coding needed; easy to
update by modifying just
deployment descriptors.

Authorization is coarse-grained and
specified at the URL level or at the
method level (for EJBs).

Programmatic Specified in application code; can
protect code at a finer levels of
granularity.

Not so easy to update, since it
involves code changes and
recompilation.

Authorization Overview

The OPSS Policy Model 20-3

isUserInRole (for servlets and JSPs) or the method isCallerInRole (for EJBs),
both available from standard Java APIs.

Although these methods still depend on role membership to determine authorization,
they give finer control over authorization decisions since the controlling access is not
limited at the resource level (EJB method or URL).

20.2.2.3 Java EE Code Example
The following example illustrates a servlet calling the method isUserInRole. It is
assumed that the EAR file packing the servlet includes the configuration files
web.xml and weblogic-application.xml, and that these files include the
following configuration fragments:

web.xml
<!-- security roles -->
 <security-role>
 <role-name>sr_developer</role-name>
 </security-role>

weblogic-application.xml
The following snippet shows the mapping between the user weblogic and the
security role sr_developer:

<wls:security-role-assignment>
<wls:role-name>sr_developer</wls:role-name>
<wls:principal-name>weblogic</wls:principal-name>

</wls:security-role-assignment>

Code Example Invoking isUserInRole
import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.ServletOutputStream;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;
import java.util.Date;

public class PolicyServlet extends HttpServlet {

 public PolicyServlet() {
 super();
 }

 public void init(ServletConfig config)
 throws ServletException {
 super.init(config);
 }

 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 final ServletOutputStream out = response.getOutputStream();

 response.setContentType("text/html");
 out.println("<HTML><BODY bgcolor=\"#FFFFFF\">");
 out.println("Time stamp: " + new Date().toString());
 out.println("
request.getRemoteUser = " + request.getRemoteUser() +
"
");

The JAAS/OPSS Authorization Model

20-4 Oracle Fusion Middleware Application Security Guide

 out.println("request.isUserInRole('sr_developer') = " +
request.isUserInRole("sr_developer") + "
");
 out.println("request.getUserPrincipal = " + request.getUserPrincipal() +
"
");
 out.println("</BODY>");
 out.println("</HTML>");
 }
}

20.2.3 The JAAS Authorization Model
The JAAS authorization introduces permissions but can still use the notion of roles. An
authorization policy binds permissions with a Subject (role, group, or user) and,
optionally, with source code. Granting to a role is achieved through calls to
addPrincipalsToAppRole.

Permissions are evaluated by calls to the AccessController, and the model allows
fine-grained control to resources.

In this model, an authorization policy specifies the following information:

■ Application roles and enterprise groups.

■ Permissions granted to users, groups, and code sources. For users and groups,
they determine what a user or the member of a group is allowed to access. For
code sources, they determine what actions the code is allowed to perform.

When programming with this model, sensitive lines of code are preceded with calls to
check whether the current user or role is granted the appropriate permissions to access
the code. If the user has the appropriate permissions, the code is run. Otherwise, the
code throws and exception.

For details about JAAS standard permissions, see http://java.sun.com/Java
SE/6/docs/technotes/guides/security/permissions.html.

20.3 The JAAS/OPSS Authorization Model
JAAS/OPSS authorization is based on controlling the operations that a class can
perform when it is loaded and run in the environment.

This section is divided into the following sections:

■ The Resource Catalog

■ Managing Policies

■ Checking Policies

■ The Class ResourcePermission

20.3.1 The Resource Catalog
OPSS supports the specification and runtime support of the resource catalog in file-,
LDAP-, and DB-based policy stores.

Using the resource catalog provides the following benefits:

■ Describes policies and secured artifacts in human-readable terms.

■ Allows defining and modifying policies independently of and without knowledge
of the application source code.

■ Allows browsing and searching secured artifacts.

The JAAS/OPSS Authorization Model

The OPSS Policy Model 20-5

■ Allows grouping of secured artifacts in building blocks (entitlements or
permission sets) which can be later used in authorization policies.

20.3.2 Managing Policies
Resource catalog artifacts can be managed with the policy management API.
Specifically, the following interfaces, all subinterfaces of the interface
oracle.security.jps.service.policystore.EntityManager, are directly
relevant to the artifacts in the resource catalog:

■ GrantManager - This interface includes methods to query grants using search
criteria, to obtain list of grants that satisfy various combinations of resource
catalog artifacts, and to grant or revoke permissions to principals.

■ PermissionSetManager - This interface includes methods to create, modify,
and query permission sets (entitlements).

■ ResourceManager - This interface includes methods to create, delete, and
modify resource (instances).

■ ResourceTypeManager - This interface includes methods to create, delete,
modify, and query resource types.

For details about these interfaces, see the Javadoc document Oracle Fusion Middleware
Java API Reference for Oracle Platform Security Services.

The following code snippet illustrates the creation of a resource type, a resource
instance, actions, and a permission set:

import oracle.security.jps.service.policystore.entitymanager.*;
import oracle.security.jps.service.policystore.search.*;
import oracle.security.jps.service.policystore.info.resource.*;
import oracle.security.jps.service.policystore.info.*;
import oracle.security.jps.service.policystore.*;
import java.util.*;

public class example {
 public static void main(String[] args) throws Exception {
 ApplicationPolicy ap;

ResourceTypeManager rtm = ap.getEntityManager(ResourceTypeManager.class);
ResourceTypeSearchQuery query = new ResourceTypeSearchQuery();
query.setANDMatch();
query.addQuery(ResourceTypeSearchQuery.SEARCH_PROPERTY.NAME, false,
ComparatorType.EQUALITY, "resourceType", BaseSearchQuery.MATCHER.EXACT);
List<ResourceTypeEntry> allResourceTypes = rtm.getResourceTypes(query);

ResourceManager rm = ap.getEntityManager(ResourceManager.class);
ResourceSearchQuery ResourceQuery = new ResourceSearchQuery();
ResourceQuery.setANDMatch();
ResourceQuery.addQuery(ResourceSearchQuery.SEARCH_PROPERTY.NAME, false,
ComparatorType.EQUALITY, "R2", BaseSearchQuery.MATCHER.EXACT);
List<ResourceEntry> allResources = rm.getResources("RT2", ResourceQuery);

PermissionSetManager psm = ap.getEntityManager(PermissionSetManager.class);
PermissionSetSearchQuery pssq = new PermissionSetSearchQuery();
pssq.setANDMatch();
pssq.addQuery(PermissionSetSearchQuery.SEARCH_PROPERTY.NAME, false,
ComparatorType.EQUALITY, "PS1", BaseSearchQuery.MATCHER.EXACT);
List<PermissionSetEntry> allPermSets = psm.getPermissionSets(pssq);

The JAAS/OPSS Authorization Model

20-6 Oracle Fusion Middleware Application Security Guide

RoleCategoryManager rcm = ap.getEntityManager(RoleCategoryManager.class);
RoleCategorySearchQuery rcsq = new RoleCategorySearchQuery();
rcsq.setANDMatch();
rcsq.addQuery(RoleCategorySearchQuery.SEARCH_PROPERTY.NAME, false,
ComparatorType.EQUALITY, "roleCategoryCartoon",
BaseSearchQuery.MATCHER.EXACT);

List<RoleCategoryEntry> allRoleCategories = rcm.getRoleCategories(rcsq);
 }
}

The following code snippet illustrates a complex query involving resource catalog
elements:

//ApplicationPolicy ap as in the preceeding example
ResourceTypeManager rtm = ap.getEntityManager(ResourceTypeManager.class);
ResourceTypeSearchQuery query = new ResourceTypeSearchQuery();
query.setANDMatch();
query.addQuery(ResourceTypeSearchQuery.SEARCH_PROPERTY.NAME, false,
ComparatorType.EQUALITY, "resourceType", BaseSearchQuery.MATCHER.EXACT);
List<ResourceTypeEntry> enties = rtm.getResourceTypes(query);

ResourceManager rm = ap.getEntityManager(ResourceManager.class);
ResourceSearchQuery ResourceQuery = new ResourceSearchQuery();
ResourceQuery.setANDMatch();
ResourceQuery.addQuery(ResourceSearchQuery.SEARCH_PROPERTY.NAME, false,
ComparatorType.EQUALITY, "R2", BaseSearchQuery.MATCHER.EXACT);
ArrayList<BaseSearchQuery> querries = ResourceQuery.getQueries();
List<ResourceEntry> resources = rm.getResources("RT2", ResourceQuery);

PermissionSetManager psm = ap.getEntityManager(PermissionSetManager.class);
PermissionSetSearchQuery pssq = new PermissionSetSearchQuery();
pssq.setANDMatch();
pssq.addQuery(PermissionSetSearchQuery.SEARCH_PROPERTY.NAME, false,
ComparatorType.EQUALITY, "PS1", BaseSearchQuery.MATCHER.EXACT);
List<PermissionSetEntry> psets = psm.getPermissionSets(pssq);

RoleCategoryManager rcm = ap.getEntityManager(RoleCategoryManager.class);
RoleCategorySearchQuery rcsq = new RoleCategorySearchQuery();
rcsq.setANDMatch();
rcsq.addQuery(RoleCategorySearchQuery.SEARCH_PROPERTY.NAME, false,
ComparatorType.EQUALITY, "roleCategoryCartoon", BaseSearchQuery.MATCHER.EXACT);
ArrayList<BaseSearchQuery> queries = rcsq.getQueries();
List<RoleCategoryEntry> rcs = rcm.getRoleCategories(rcsq);

The following code sample illustrates how to create a grant:

GrantManager gm = ap.getEntityManager(GrantManager.class);
Set<PrincipalEntry> pe = new HashSet<PrincipalEntry>();
List<AppRoleEntry> are = ap.searchAppRoles(appRoleName);
pe.addAll(are);
gm.grant(pe, null, permissionSetName);

20.3.3 Checking Policies
This section illustrates several ways to check policies programmatically, in the
following sections:

■ Using the Method checkPermission

■ Using the Methods doAs and doAsPrivileged

The JAAS/OPSS Authorization Model

The OPSS Policy Model 20-7

■ Using the Method checkBulkAuthorization

■ Using the Method getGrantedResources

20.3.3.1 Using the Method checkPermission
Oracle Fusion Middleware supports the use of the method checkPermission in the
classes java.security.AccessController and
oracle.security.jps.util.JpsAuth.

Oracle recommends the use of checkPermission in the class JpsAuth because it
provides better debugging support, better performance, and audit support.

The static method AccessController.checkPermission uses the default access
control context (the context inherited when the thread was created). To check
permissions on some other context, call the instance method checkPermission on a
particular AccessControlContext instance.

The method checkPermission behaves according to the value of the JAAS mode
(see JAAS mode in Chapter 21.1, "Configuring the Servlet Filter and the EJB
Interceptor"), as listed in the following table:

Important Note 1: Authorization failures are not visible, by default,
in the console. To have authorization failures sent to the console you
must set the system variable jps.auth.debug as follows:
-Djps.auth.debug=true

In particular, to have JpsAuth.checkPermission failures sent to
the console, you must set the variable as above.

Important Note 2: The OPSS policy provider must be explicitly set in
Java SE applications, as illustrated in the following snippet:

java.security.Policy.setPolicy(new
oracle.security.jps.internal.policystore.JavaPolicyProvider())

Not setting the policy provider explicitly in a Java SE application may
cause runtime methods (such as JpsAuth.checkPermission) to
return incorrect values.

Table 20–2 Behavior of checkPermission According to JAAS Mode

JAAS Mode Setting checkPermission

off or undefined Enforces codebase security based on the security policy in effect,
and there is no provision for subject-based security.

doAs Enforces a combination of codebase and subject-based security
using the access control context created through the doAs block.

doAsPrivileged Enforces subject-based security using a null access control
context.

subjectOnly Takes into consideration grants involving principals only (and it
disregards those involving codebase) when evaluating a
permission.

The JAAS/OPSS Authorization Model

20-8 Oracle Fusion Middleware Application Security Guide

The following example illustrates a servlet checking a permission. It is assumed that
the EAR file packing the servlet includes the configuration files jazn-data.xml and
web.xml.

jazn-data.xml
The application file-based policy store is as follows:

<?xml version="1.0" ?>
<jazn-data>
 <policy-store>
 <applications>
 <application>
 <name>MyApp</name>

 <app-roles>
 <app-role>
 <name>AppRole</name>
 <display-name>AppRole display name</display-name>
 <description>AppRole description</description>
 <guid>F5494E409CFB11DEBFEBC11296284F58</guid>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 </app-role>
 </app-roles>

 <role-categories>
 <role-category>
 <name>MyAppRoleCategory</name>
 <display-name>MyAppRoleCategory display name</display-name>
 <description>MyAppRoleCategory description</description>
 </role-category>
 </role-categories>

 <resource-types>
 <resource-type>
 <name>MyResourceType</name>
 <display-name>MyResourceType display name</display-name>
 <description>MyResourceType description</description>
 <provider-name>MyResourceType provider</provider-name>
 <matcher-class>oracle.security.jps.ResourcePermission</matcher-class>
 <actions-delimiter>,</actions-delimiter>
 <actions>write,read</actions>
 </resource-type>
 </resource-types>

 <resources>
 <resource>
 <name>MyResource</name>
 <display-name>MyResource display name</display-name>
 <description>MyResource description</description>
 <type-name-ref>MyResourceType</type-name-ref>
 </resource>
 </resources>

Note: If checkPermission is called inside a doAs block and the
check permission call fails, to display the failed protection domain you
must set the system property
java.security.debug=access,failure.

The JAAS/OPSS Authorization Model

The OPSS Policy Model 20-9

 <permission-sets>
 <permission-set>
 <name>MyEntitlement</name>
 <display-name>MyEntitlement display name</display-name>
 <description>MyEntitlement description</description>
 <member-resources>
 <member-resource>
 <type-name-ref>MyResourceType</type-name-ref>
 <resource-name>MyResource</resource-name>
 <actions>write</actions>
 </member-resource>
 </member-resources>
 </permission-set>
 </permission-sets>

 <jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>

oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>AppRole</name>
 <guid>F5494E409CFB11DEBFEBC11296284F58</guid>
 </principal>
 </principals>
 </grantee>

 <!-- entitlement-based permissions -->
 <permission-set-refs>
 <permission-set-ref>
 <name>MyEntitlement</name>
 </permission-set-ref>
 </permission-set-refs>
 </grant>
 </jazn-policy>
 </application>
 </applications>
 </policy-store>
 <jazn-policy></jazn-policy>
</jazn-data>

web.xml
The filter JpsFilter is configured as follows:

<web-app>
<display-name>PolicyTest: PolicyServlet</display-name>
<filter>
<filter-name>JpsFilter</filter-name>
<filter-class>oracle.security.jps.ee.http.JpsFilter</filter-class>
<init-param>
<param-name>application.name</param-name>
<param-value>PolicyServlet</param-value>
</init-param>
</filter>
<filter-mapping>
<filter-name>JpsFilter</filter-name>
<servlet-name>PolicyServlet</servlet-name>
<dispatcher>REQUEST</dispatcher>
</filter-mapping>...

The JAAS/OPSS Authorization Model

20-10 Oracle Fusion Middleware Application Security Guide

Code Example
In the following example, Subject.doAsPrivileged may be replaced by
JpsSubject.doAsPrivileged:

import javax.security.auth.Subject;
import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.ServletOutputStream;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;
import java.io.PrintWriter;
import java.io.StringWriter;
import java.security.*;
import java.util.Date;
import java.util.PropertyPermission;
import java.io.FilePermission;

public class PolicyServlet extends HttpServlet {

 public PolicyServlet() {
 super();
 }

 public void init(ServletConfig config)
 throws ServletException {
 super.init(config);
 }

 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 final ServletOutputStream out = response.getOutputStream();

 response.setContentType("text/html");
 out.println("<HTML><BODY bgcolor=\"#FFFFFF\">");
 out.println("Time stamp: " + new Date().toString());
 out.println("
request.getRemoteUser = " + request.getRemoteUser() +
"
");
 out.println("request.isUserInRole('sr_developer') = " +
request.isUserInRole("sr_developer") + "
");
 out.println("request.getUserPrincipal = " + request.getUserPrincipal() +
"
");

 Subject s = null;
 s = Subject.getSubject(AccessController.getContext());

 out.println("Subject in servlet " + s);
 out.println("
");
 final RuntimePermission rtPerm = new RuntimePermission("getClassLoader");
 try {
 Subject.doAsPrivileged(s, new PrivilegedAction() {
 public Object run() {
 try {
 AccessController.checkPermission(rtPerm);
 out.println("
");
 out.println("CheckPermission passed for permission: " +
rtPerm+ " seeded in application policy");
 out.println("
");
 } catch (IOException e) {

The JAAS/OPSS Authorization Model

The OPSS Policy Model 20-11

 e.printStackTrace();
 printException ("IOException", e, out);
 } catch (AccessControlException ace) {
 ace.printStackTrace();
 printException ("Accesscontrol Exception", ace, out);
 }
 return null;
 }
 }, null);

} catch (Throwable e) {
 e.printStackTrace();
 printException("application policy check failed", e, out);
 }
 out.println("</BODY>");
 out.println("</HTML>");
 }

 void printException(String msg, Throwable e, ServletOutputStream out) {
 Throwable t;
 try {
 StringWriter sw = new StringWriter();
 PrintWriter pw = new PrintWriter(sw, true);
 e.printStackTrace(pw);

 out.println("<p>" + msg + "<p>");
 out.println("<code>");
 out.println(sw.getBuffer().toString());
 t = e;
 /* Print the root cause */
 while ((t = t.getCause()) != null) {
 sw = new StringWriter();
 pw = new PrintWriter(sw, true);
 t.printStackTrace(pw);

 out.println("<hr>");
 out.println("<p> Caused By ... </p>");
 out.println(sw.getBuffer().toString());
 }
 out.println("</code><p>");
 } catch (IOException ioe) {
 ioe.printStackTrace();
 }
 }
}

20.3.3.2 Using the Methods doAs and doAsPrivileged
Oracle Fusion Middleware supports the methods doAs and doAsPrivileged in the
standard class javax.security.auth.Subject.

Oracle recommends, however, the use of these methods in the class
oracle.security.jps.util.JpsSubject because they render better
performance and provide auditing.

Note: If checkPermission is called inside a doAs block and the
check permission call fails, to display the failed protection domain you
must set the system property
java.security.debug=access,failure.

The JAAS/OPSS Authorization Model

20-12 Oracle Fusion Middleware Application Security Guide

20.3.3.3 Using the Method checkBulkAuthorization
The method checkBulkAuthorization determines whether a Subject has access to
one or more resource actions. Specifically, the method returns the set of resource
actions the passed Subject is authorized to access in the passed resources.

When invoking this method (in a Java SE application), make sure that:

1. The system property java.security.policy has been set to the location of the
OPSS/Oracle WebLogic Server policy file.

2. Your application must call first the method setPolicy to explicitly set the policy
provider, as illustrated in the following lines:

java.security.Policy.setPolicy(new
oracle.security.jps.internal.policystore.JavaPolicyProvider())

3. Your application calls checkBulkAuthorization() after the call to setPolicy.

In any application, checkBulkAuthorization assumes that the caller can provide:

■ A Subject with User and Enterprise Role Principals.

■ A list of resources including the stripe each resource belongs to.

Grants using resource permissions must include the required resource type.

checkBulkAuthorization also assumes that the application has visibility into the policy
store stripes configured in the domain where the application is running.

checkBulkAuthorization does not require resources to be present in the policy
store.

20.3.3.4 Using the Method getGrantedResources
The method getGrantedResources provides a runtime authorization query to fetch
all granted resources on a given Subject by returning the resource actions that have
been granted to the Subject; only permissions associated with resource types (directly
or indirectly through permission sets) are returned by this method, and it is available
only when the policy store is LDAP-based.

20.3.4 The Class ResourcePermission
A permission class provides the means to control the actions that a grantee is allowed
on a resource. Even though a custom permission class provides the application
designer complete control over the actions, target matching, and the "implies" logic, to
work as expected at runtime, a custom permission class must be specified in the
system classpath of the server so that it is available and can be loaded when required.
But modifying the system class path in environments is difficult and, in some
environments, such modification might not be even possible.

OPSS includes the class oracle.security.jps.ResourcePermission that can
be used as the permission class within any application grant to protect application or
system resources. Therefore, the application developer no longer needs to write
custom permission classes, since the class ResourcePermission is available
out-of-the-box and can be readily used in permissions within application grants stored
in any supported policy provider. This class is not designed to be used in system
policies, but only in application policies.

The JAAS/OPSS Authorization Model

The OPSS Policy Model 20-13

Configuring Resource Permissions
A permission that uses the class ResourcePermission is called a resource permission,
and it specifies the resource type, the resource name, and an optional list of actions
according to the format illustrated in the following XML sample:

<permission>
 <class>oracle.security.jps.ResourcePermission</class>
 <name>resourceType=type,resourceName=name</name>
 <actions>character-separated-list-of-actions</actions>
</permission>

The above specification requires that the resource type encoded in the type name be
defined. Even though the resource type information is not used at runtime, its
definition must be present for a resource permission to be migrated successfully;
moreover, resource types help administrators model resources and manage their use.

The following fragments illustrate the specifications of resource permissions and the
corresponding required resource types:

<permission>
 <class>oracle.security.jps.ResourcePermission</class>
 <name>resourceType=epm.calcmgr.permission,resourceName=EPM_Calc_Manager</name>
</permission>

<resource-types>
 <resource-type>
 <name>epm.calcmgr.permission</name>
 <display-name>CalcManager ResourceType</display-name>
 <description>Resourcetype for managing CalcManager grants</description>
 <provider-name></provider-name>
 <matcher-class>oracle.security.jps.ResourcePermission</matcher-class>
 <actions-delimiter>,</actions-delimiter>
 <actions></actions>
 </resource-type>
</resource-types>

<permission>
 <class>oracle.security.jps.ResourcePermission</class>
 <name>resourceType=oracle.bi.publisher.Reports,resourceName=GLReports</name>
 <actions>develop;schedule</actions>
</permission>

<resource-types>
 <resource-type>
 <name>oracle.bi.publisher.Reports</name>
 <display-name>BI Publisher Reports</display-name>
 <provider-name></provider-name>
 <matcher-class>oracle.security.jps.ResourcePermission</matcher-class>
 <actions-delimiter>;</actions-delimiter>
 <actions>view;develop;schedule</actions>
 </resource-type>
</resource-types>

Note that a resource type associated with a resource permission can have an empty list
of actions. The following important points apply to a resource permission:

■ The name must conform to the following format:

resourceType=aType,resourceName=aName

The JAAS/OPSS Authorization Model

20-14 Oracle Fusion Middleware Application Security Guide

The resource type of a resource permission must be defined and it is returned by
the method ResourcePermission.getType().

■ The character-separated list of actions is optional; if specified, it must be a subset
of the actions specified in the associated resource type. This list is returned by the
method ResourcePermission.getActions().

The character used to separate the items of the list must equal to the character
specified in the <actions-delimiter> of the associated resource type.

■ The display name of a resource used in a permission is returned by the method
ResourcePermission.getResourceName().

■ No wildcard use is supported in a resource permission.

Managing and Checking Resource Permissions
The code snippet below illustrates the instantiation of a resource permission and how
to check it programmatically; the following code snippet is based on one of the
configuration examples described in Configuring Resource Permissions:

ResourcePermission rp =
new ResourcePermission("oracle.bi.publisher.Reports","GLReports","develop");

JpsAuth.checkPermission(rp);

At runtime the permission check will succeed if the resource permission satisfies all
the following four conditions:

■ The permission is an instance of the class ResourcePermision.

■ The resource type name (first argument) matches (ignoring case) the name of a
resource type.

■ The resource (second argument) name matches exactly the name of a resource
instance.

■ The list of actions (third argument) is a comma-separated subset of the set of
actions specified in the resource type.

About the Matcher Class for a Resource Type
When creating a resource type, a matcher class can be optionally supplied. If
unspecified, it defaults to oracle.security.jps.ResourcePermission.

If, however, two or more resource types are to share the same resource matcher class,
then that class must be one of the following:

■ The class oracle.security.jps.ResourcePermission.

■ A concrete class extending the abstract class
oracle.security.jps.AbstractTypedPermission, as illustrated by the
class MyAbstractTypedPermission in the following sample:

public class MyAbstractTypedPermission extends AbstractTypedPermission {
 private static final long serialVersionUID = 8665318227676708586L;
 public MyAbstractTypedPermission(String resourceType,

 String resourceName,
 String actions) {super(resourceType,

resourceName, actions);
 }
}

■ A class implementing the class oracle.security.jps.TypePermission and
extending the class java.security.Permission.

21

Manually Configuring Java EE Applications to Use OPSS 21-1

21Manually Configuring Java EE Applications
to Use OPSS

This chapter describes the manual configuration and packaging recommended for Java
EE applications that use OPSS but do not use Oracle ADF security. Note that,
nevertheless, some topics apply also to Oracle ADF applications.

The information is directed to developers that want to configure and package a Java
EE application outside Oracle JDeveloper environment.

This chapter is divided into the following sections:

■ Configuring the Servlet Filter and the EJB Interceptor

■ Choosing the Appropriate Class for Enterprise Groups and Users

■ Packaging a Java EE Application Manually

■ Configuring Applications to Use OPSS

The files relevant to application management during development, deployment,
runtime, and post-deployment are the following:

■ DOMAIN_HOME/config/fmwconfig/jps-config.xml

■ DOMAIN_HOME/config/fmwconfig/system-jazn-data.xml

■ jazn-data.xml (in application EAR file)

■ cwallet.sso (in application EAR file)

■ web.xml (in application EAR file)

■ weblogic-application.xml (in application EAR file)

21.1 Configuring the Servlet Filter and the EJB Interceptor
OPSS provides a servlet filter, the JpsFilter, and an EJB interceptor, the
JpsInterceptor. The first one is configured in the file web.xml packed in a WAR
file; the second one in the file ejb-jar.xml packed in a JAR file. OPSS also provides
a way to configure in the file web.xml the stripe that application Mbeans should
access; for details, see Configuring the Application Stripe for Application MBeans.

All of them are available on WebLogic and WebSphere. The configuration available
differs slightly according to the server platform as follows:

On WebLogic, the JpsFilter is out-of-the-box automatically set with default parameter
values and need not be explicitly configured in the deployment descriptor; it needs to
be configured manually only if a value different from the default value is required. The
JpsInterceptor must be manually configured.

Configuring the Servlet Filter and the EJB Interceptor

21-2 Oracle Fusion Middleware Application Security Guide

On WebSphere, both the JpsFilter and the JpsInterceptor must be manually
configured.

OPSS allows the specification of the application stripe used by MBeans; for details, see
Configuring the Application Stripe for Application MBeans.

The servlet filter and the EJB interceptor can be configured using the same set of
parameters to customize the following features of a servlet or of an Enterprise Java
Bean (EJB):

■ Application Name (Stripe)

■ Application Roles Support

■ Anonymous User and Anonymous Role Support

■ Authenticated Role Support

■ JAAS Mode

The application name, better referred to as the application stripe and optionally
specified in the application web.xml file, is used at runtime to determine which set of
policies are applicable. If the application stripe is not specified, it defaults to the
application id (which includes the application name).

An application stripe defines a subset of policies in the policy store. An application
wanting to use that subset of policies would define its application stripe with a string
identical to that application name. In this way, different applications can use the same
subset of policies in the policy store.

The function of the anonymous and authenticated roles is explained in sections The
Anonymous User and Role and The Authenticated Role.

A servlet specifies the use a filter with the element <filter-mapping>. There must
be one such element per filter per servlet.

An EJB specifies the use of an interceptor with the element
<interceptor-binding>. There must be one such element per interceptor per EJB.
For more details, see Interceptor Configuration Syntax.

For a summary of the available parameters, see Summary of Filter and Interceptor
Parameters.

Application Name (Stripe)
This value is controlled by the following parameter:

application.name

The specification of this parameter is optional and case sensitive; if unspecified, it
defaults to the name of the deployed application. Its value defines the subset of
policies in the policy store that the application intents to use.

Note: Oracle JDeveloper automatically inserts the required servlet
filter (JpsFilter) and EJB interceptor (JpsInterceptor)
configurations for Oracle ADF applications.

The manual configurations explained in this section are required only
if you are packaging or configuring a Java EE application using the
OPSS features detailed next outside the Oracle JDeveloper
environment.

Configuring the Servlet Filter and the EJB Interceptor

Manually Configuring Java EE Applications to Use OPSS 21-3

One way of specifying the application stripe is withing the filter element, as illustrated
in the following sample:

<filter>
 <filter-name>JpsFilter</filter-name>
 <filter-class>oracle.security.jps.ee.http.JpsFilter</filter-class>
 <init-param>
 <param-name>application.name</param-name>
 <param-value>stripeid</param-value>
 </init-param>
</filter>

Another way to specify it, is to specify it is within the context-param element as
illustrated in the following sample:

<context-param>
 <description>JPS custom stripe id</description>
 <param-name>application.name</param-name>
 <param-value>stripeid</param-value>
</context-param>

This last configuration is required if the application contains MBeans accesssing the
application policy store and the application name is different from the application
stripe name. For details, see Configuring the Application Stripe for Application
MBeans.

Configuration Examples
The following two samples illustrate the configuration of this parameter for a servlet
and for an EJB.

The following fragment of a web.xml file shows how to configure two different
servlets, MyServlet1 and MyServlet2, to be enabled with the filter so that
subsequent authorization checks evaluate correctly. Note that servlets in the same
WAR file always use the same policy stripe.

<filter>
 <filter-name>JpsFilter</filter-name>
 <filter-class>oracle.security.jps.ee.http.JpsFilter</filter-class>
 <init-param>
 <param-name>application.name</param-name>
 <param-value>MyAppName</param-value>
 </init-param>
</filter>
<filter-mapping>
 <filter-name>JpsFilter</filter-name>
 <servlet-name>MyServlet1</servlet-name>
 <dispatcher>REQUEST</dispatcher>
</filter-mapping>
<filter-mapping>
 <filter-name>JpsFilter</filter-name>
 <servlet-name>MyServlet2</servlet-name>
 <dispatcher>REQUEST</dispatcher>
</filter-mapping>

The following fragment of an ejb-jar.xml file illustrates the setting of the
application stripe of an interceptor to MyAppName and the use of that interceptor by
the EJB MyEjb:

<interceptor>
 <interceptor-class>oracle.security.jps.ee.ejb.JpsInterceptor</interceptor-class>

Configuring the Servlet Filter and the EJB Interceptor

21-4 Oracle Fusion Middleware Application Security Guide

 <env-entry>
 <env-entry-name>application.name</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>MyAppName</env-entry-value>
 <injection-target>
 <injection-target-class>

oracle.security.jps.ee.ejb.JpsInterceptor</injection-target-class>
 <injection-target-name>application_name</injection-target-name>
 </injection-target>
 </env-entry>
</interceptor>
...
<interceptor-binding>
 <ejb-name>MyEjb</ejb-name>
 <interceptor-class>

oracle.security.jps.ee.ejb.JpsInterceptor</interceptor-class>
</interceptor-binding>

Note how the preceding example satisfies the interceptor configuration syntax
requirements.

Application Roles Support
The addition of application roles to a subject is controlled by the following parameter,
which can be set to true or false:

add.application.roles

To add application roles to a subject, set the property to true; otherwise, set it to false.
The default value is true.

The principal class for the application role is:

oracle.security.jps.service.policystore.ApplicationRole

Anonymous User and Anonymous Role Support
The use of anonymous for a servlet is controlled by the following parameters, which
can be set to true or false:

enable.anonymous
remove.anonymous.role

For an EJB, only the second parameter above is available, since the use of the
anonymous user and role is always enabled for EJBs.

To enable the use of the anonymous user for a servlet, set the first property to true; to
disable it, set it to false. The default value is true.

To remove the anonymous role from a subject, set the second property to true; to retain
it, set it to false. The default value is false. Typically, one would want to remove the
anonymous user and role after authentication, and only in special circumstances
would want to retain them after authentication.

The default name and the principal class for the anonymous user are:

anonymous
oracle.security.jps.internal.core.principals.JpsAnonymousUserImpl

The default name and the principal class for the anonymous role are:

anonymous-role
oracle.security.jps.internal.core.principals.JpsAnonymousRoleImpl

Configuring the Servlet Filter and the EJB Interceptor

Manually Configuring Java EE Applications to Use OPSS 21-5

The following fragment of a web.xml file illustrates a setting of these parameters and
the use of the filter JpsFilter by the servlet MyServlet:

<filter>
 <filter-name>JpsFilter</filter-name>
 <filter-class>oracle.security.jps.ee.http.JpsFilter</filter-class>
 <init-param>
 <param-name>enable.anonymous</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>remove.anonymous.role</param-name>
 <param-value>false</param-value>
 </init-param>
</filter>
<filter-mapping>
 <filter-name>JpsFilter</filter-name>
 <servlet-name>MyServlet</servlet-name>
 <dispatcher>REQUEST</dispatcher>
 </filter-mapping>

The following fragment of an ejb-jar.xml file illustrates the setting of the second
parameter to false and the use of the interceptor by the Enterprise Java Bean MyEjb:

<interceptor>
 <interceptor-class>oracle.security.jps.ee.ejb.JpsInterceptor</interceptor-class>
 <env-entry>
 <env-entry-name>remove.anonymous.role</env-entry-name>
 <env-entry-type>java.lang.Boolean</env-entry-type>
 <env-entry-value>false</env-entry-value>
 <injection-target>
 <injection-target-class>
 oracle.security.jps.ee.ejb.JpsInterceptor</injection-target-class>
 <injection-target-name>remove_anonymous_role/injection-target-name>
 </injection-target>
 </env-entry>
</interceptor>
...
<interceptor-binding>
 <ejb-name>MyEjb</ejb-name>
 <interceptor-class>
 oracle.security.jps.ee.ejb.JpsInterceptor</interceptor-class>
</interceptor-binding>

The following fragments illustrate how to access programmatically the anonymous
subject, and the anonymous role and anonymous user from a subject:

import oracle.security.jps.util.SubjectUtil;

// The next call returns the anonymous subject
javax.security.auth.Subject subj = SubjectUtil.getAnonymousSubject();

// The next call extracts the anonymous role from the subject
java.security.Principal p =
SubjectUtil.getAnonymousRole(javax.security.auth.Subject subj)
// Remove or retain anonymous role
...

// The next call extracts the anonymous user from the subject
java.security.Principal p =
SubjectUtil.getAnonymousUser(javax.security.auth.Subject subj)

Configuring the Servlet Filter and the EJB Interceptor

21-6 Oracle Fusion Middleware Application Security Guide

// Remove or retain anonymous user
...

Authenticated Role Support
The use of the authenticated role is controlled by the following parameter, which can
be set to true or false:

add.authenticated.role

To add the authenticated role to a subject, set the parameter to true; otherwise it, set it
to false. The default value is true.

The default name and the principal class for the authenticated role are:

authenticated-role
oracle.security.jps.internal.core.principals.JpsAuthenticatedRoleImpl

The following fragment of a web.xml file illustrates a setting of this parameter and
the use of the filter JpsFilter by the servlet MyServlet:

<filter>
 <filter-name>JpsFilter</filter-name>
 <filter-class>oracle.security.jps.ee.http.JpsFilter</filter-class>
 <init-param>
 <param-name>add.authenticated.role</param-name>
 <param-value>false</param-value>
 </init-param>
</filter>
<filter-mapping>
 <filter-name>JpsFilter</filter-name>
 <servlet-name>MyServlet</servlet-name>
 <dispatcher>REQUEST</dispatcher>
</filter-mapping>

JAAS Mode
The use of JAAS mode is controlled by the following parameter:

oracle.security.jps.jaas.mode

This parameter can be set to:

doAs
doAsPrivileged
off
undefined
subjectOnly

The default value is doAsPrivileged. For details on how these values control the
behavior of the method checkPermission, see Section 20.3.3.1, "Using the Method
checkPermission."

The following two samples illustrate configurations of a servlet and an EJB that use
this parameter.

The following fragment of a web.xml file illustrates a setting of this parameter and
the use of the filter JpsFilter by the servlet MyServlet:

<filter>
 <filter-name>JpsFilter</filter-name>
 <filter-class>oracle.security.jps.ee.http.JpsFilter</filter-class>
 <init-param>
 <param-name>oracle.security.jps.jaas.mode</param-name>

Configuring the Servlet Filter and the EJB Interceptor

Manually Configuring Java EE Applications to Use OPSS 21-7

 <param-value>doAs</param-value>
 </init-param>
</filter>
<filter-mapping>
 <filter-name>JpsFilter</filter-name>
 <servlet-name>MyServlet</servlet-name>
 <dispatcher>REQUEST</dispatcher>
</filter-mapping>

The following fragment of an ejb-jar.xml file illustrates a setting of this parameter
to doAs and the use of the interceptor JpsInterceptor by the Enterprise Java Bean
MyEjb:

<interceptor>
 <interceptor-class>oracle.security.jps.ee.ejb.JpsInterceptor</interceptor-class>
 <env-entry>
 <env-entry-name>oracle.security.jps.jaas.mode</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>doAs</env-entry-value>
 <injection-target>
 <injection-target-class>
 oracle.security.jps.ee.ejb.JpsInterceptor</injection-target-class>
 <injection-target-name>oracle_security_jps_jaas_mode
 </injection-target-name>
 </injection-target>
 </env-entry>
</interceptor>
...
<interceptor-binding>
 <ejb-name>MyEjb</ejb-name>
 <interceptor-class>
 oracle.security.jps.ee.ejb.JpsInterceptor</interceptor-class>
</interceptor-binding>

21.1.1 Interceptor Configuration Syntax
The following requirements and characteristics of the specifications apply to all
parameters configured for the JpsInterceptor:

■ The setting of a parameter requires specifying its type (in the element
<env-entry-type>).

■ The setting of a parameter requires the element <injection-target>, which
specifies the same class as that of the interceptor (in the element
<injection-target-class>), and the parameter name rewritten as a string
where the dots are replaced by underscores (in the element
<injection-target-name>).

■ The binding of an interceptor to an EJB is specified by the EJB name and the
interceptor’s class, that is, the interceptor is referred to by its class, not by name.

21.1.2 Summary of Filter and Interceptor Parameters
The following table summarizes the description of the parameters used by the JpsFilter
and the JpsInterceptor:

Configuring the Servlet Filter and the EJB Interceptor

21-8 Oracle Fusion Middleware Application Security Guide

21.1.3 Configuring the Application Stripe for Application MBeans
If your application satisfies the following conditions:

■ It contains MBeans that access the policy store and perform authorization checks.

■ The application stripe name is not equal to the application name.

then, for the MBean to access the application stripe in the domain security store, the
stripe name must be specified by the global parameter (or context parameter)
application.name in the file web.xml, as illustrated in the following sample:

<context-param>
 <description>JPS custom stripe id</description>
 <param-name>application.name</param-name>
 <param-value>stripeid</param-value>
</context-param>

Table 21–1 Summary of JpsFilter and JpsInterceptor Parameters

Parameter Name Values Default Function Notes

application.name Any valid
string. The
value is case
sensitive.

The name of
the deployed
application.

To specify the
subset of policies
that the servlet or
EJB is to use.

It should be specified if
several servlets or EJBs are to
share the same subset of
policies in the policy store.

add.application.roles TRUE or FALSE TRUE To add
application roles
to a Subject.

Since it defaults to TRUE, it
must be set (to FALSE) only
if the application is not to
add application roles to a
Subject.

enable.anonymous TRUE or FALSE TRUE To enable or
disable the
anonymous user
in a Subject.

If set to TRUE, it creates a
Subject with the anonymous
user and the anonymous
role.

remove.anonymous.role TRUE or FALSE FALSE To keep or remove
the anonymous
role from a Subject
after
authentication.

Available for servlets only.
For EJBs, the anonymous
role is always removed from
a Subject. If set to FALSE, the
Subject retains the
anonymous role after
authentication; if set to
TRUE, it is removed after
authentication.

add.authenticated.role TRUE or FALSE TRUE To allow addition
of the
authenticated role
in a Subject.

Since it defaults to TRUE, it
needs be set (to FALSE) only
if the authenticated role is
not be included in a Subject.

oracle.security.jps.jaas.mode doAsPrivileged

doAs

off

undefined

subjectOnly

doAsPrivileged To set the JAAS
mode.

Packaging a Java EE Application Manually

Manually Configuring Java EE Applications to Use OPSS 21-9

21.2 Choosing the Appropriate Class for Enterprise Groups and Users

The classes specified in members of an application role must be either other
application role class or one of the following:

weblogic.security.principal.WLSUserImpl
weblogic.security.principal.WLSGroupImpl

The following fragment illustrates the use of these classes in the specification of
enterprise groups (in bold face).

<app-role>
 <name>app_monitor</name>
 <display-name>application role monitor</display-name>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <members>
 <member>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>app_operator</name>
 </member>
 <member>
 <class>weblogic.security.principal.WLSGroupImpl</class>
 <name>Developers</name>
 </member>
 </members>
 </app-role>

21.3 Packaging a Java EE Application Manually
This section explains the packaging requirements for a servlet or an EJB (using custom
policies and credentials) that is to be deployed on WebLogic Application Server or
WebSphere Application Server.

Application policies are defined in the file jazn-data.xml. The only supported way
to include this file with an application is to package it in the directory META-INF of an
EAR file.

Servlets are packaged in a WAR file that contains the configuration file web.xml; EJBs
are packaged in a WAR file that contains the configuration file ejb-jar.xml. The
WAR file must include the configuration of the filter JpsFilter (for servlets) or of
the interceptor JpsInterceptor (for EJBs) in the corresponding configuration file.

Note: If you are using Oracle JDeveloper, the tool chooses the
appropriate classes. Therefore, the configuration explained next is
only necessary if policies are entered outside the Oracle JDeveloper
environment.

Important: Application role names are case insensitive; for example,
app_operator in the following sample.

Enterprise user and group names are case sensitive; for example,
Developers in the following sample.

For related information about case, see Section L.4, "Failure to Grant
or Revoke Permissions - Case Mismatch."

Packaging a Java EE Application Manually

21-10 Oracle Fusion Middleware Application Security Guide

The description that follows considers the packaging of a servlet and the configuration
of the JpsFilter in the file web.xml, but it applies equally to the packaging of an
EJB and the configuration of the JpsInterceptor in the file ejb-jar.xml.

For details about the JpsFilter and the JpsInterceptor, see Configuring the Servlet Filter
and the EJB Interceptor.

The packaging requirements and assumptions for a Java EE application that wants to
use custom policies and credentials are the following:

■ The application to be deployed must be packaged in a single EAR file.

■ The EAR file must contain exactly one file META-INF/jazn-data.xml, where
application policies and roles are specified; these apply equally to all components
in the EAR file.

■ The EAR file may contain one or more WAR files.

■ Each WAR or JAR file in the EAR file must contain exactly one web.xml (or
ejb-jar.xml) where the JpsFilter (or JpsInterceptor) is configured, and
such configurations in all EAR files must be identical.

■ Component credentials in cwallet.sso files can be packaged in the EAR file.
These credentials can be migrated to the credential store when the application is
deployed with Oracle Enterprise Manager Fusion Middleware Control.

21.3.1 Packaging Policies with Application
Application policies are defined in the file jazn-data.xml. The only supported way
to include this file with an application is to package it in the directory META-INF of an
EAR file. The EAR file may contain zero or more WAR files, but the policies can be
specified only in that XML file located in that EAR directory. To specify particular
policies for a component in a WAR file, that component must be packaged in a
separate EAR file with its own jazn-data.xml file as specified above. No other
policy package combination is supported in this release, and policy files other than the
top jazn-data.xml are disregarded.

21.3.2 Packaging Credentials with Application
Application credentials are defined in a file that must be named cwallet.sso. The
only supported way to include this file with an application is to package it in the
directory META-INF of an EAR file. The EAR file may contain zero or more WAR files,
but credentials can be specified only in that cwallet.sso file located in that EAR
directory. To specify particular credentials for a component in a WAR file, that
component must be packaged in a separate EAR file with its own cwallet.sso file
as specified above. No other credential package combination is supported in this
release, and credential files other than the top cwallet.sso are disregarded.

Important: Currently all JpsFilter configurations in all web.xml
files in an EAR file must have the same configuration. Same constrains
apply to the JpsInterceptor.

Note: If a component should require a filter configuration different
from that of other components, then it must be packaged in a separate
EAR file and deployed separately.

Configuring Applications to Use OPSS

Manually Configuring Java EE Applications to Use OPSS 21-11

21.4 Configuring Applications to Use OPSS
This section describes several configurations that a developer would perform
manually for a Java EE application developed outside the Oracle JDeveloper
environment, in the following sections:

■ Parameters Controlling Policy Migration

■ Policy Parameter Configuration According to Behavior

■ Parameters Controlling Credential Migration

■ Credential Parameter Configuration According to Behavior

■ Using a Wallet-Based Credential Store

■ Supported Permission Classes

■ Specifying Bootstrap Credentials Manually

■ Migrating Identities with migrateSecurityStore

■ Example of Configuration File jps-config.xml

21.4.1 Parameters Controlling Policy Migration
The migration of application policies at deployment is controlled by several
parameters configured in the file META-INF/weblogic-application.xml.

For details about the specification of parameters on WebSphere, see Oracle Fusion
Middleware Third-Party Application Server Guide.

The parameters that control migration of policies during application deployment or
redeployment, and the removal of policies during undeployment are the following:

■ Migration

– jps.policystore.migration

– jps.apppolicy.idstoreartifact.migration

– jps.policystore.removal

■ Listener

– JpsApplicationLifecycleListener

■ Principal Validation

– jps.policystore.migration.validate.principal

■ Target of Migration (application stripe)

– jps.policystore.applicationid

The configuration and function of each of the above is explained next.

Note: Use the system property
jps.deployment.handler.disabled to disable the migration of
application policies and credentials for applications deployed in a
WebLogic Server.

When this system property is set to TRUE, the migration of policies
and credentials at deployment is disabled for all applications
regardless of the particular application settings in the application file
weblogic-application.xml.

Configuring Applications to Use OPSS

21-12 Oracle Fusion Middleware Application Security Guide

jps.policystore.migration
This parameter specifies whether the migration should take place, and, when it does,
whether it should merge with or overwrite matching policies present in the target
store.

On WebLogic, it is configured as illustrated in the following fragment:

<wls:application-param>
 <wls:param-name>jps.policystore.migration</wls:param-name>
 <wls:param-value>Option</wls:param-value>
</wls:application-param>

Option stands for one of the following value is MERGE, OVERWRITE, or OFF.

For details about the configuration of this parameter on WebSphere, see Oracle Fusion
Middleware Third-Party Application Server Guide.

Set to OFF to prevent policy migration; otherwise, set to MERGE to migrate and merge
with existing policies, or to OVERWRITE to migrate and overwrite existing policies.
The default value (at deploy) is MERGE.

jps.policystore.applicationid
This parameter specifies the target stripe into which policies are migrated.

On WebLogic, it is configured as illustrated in the following fragment:

<wls:application-param>
 <wls:param-name>jps.policystore.applicationid</wls:param-name>
 <wls:param-value>myApplicationStripe</wls:param-value>
</wls:application-param>

For details about the configuration of this parameter on WebSphere, see Oracle Fusion
Middleware Third-Party Application Server Guide.

This parameter’s value can be any valid string; if unspecified, Oracle WebLogic Server
picks up a stripe name based on the application name and version, namely, application_
name#version.

Notes: Fusion Middleware Control allows setting of most of these
parameters when the application is deployed, redeployed, or
undeployed. For details, see Section 6.2.1, "Deploying Java EE and
Oracle ADF Applications with Fusion Middleware Control."

The configurations explained next need be entered manually only if
you are not using Fusion Middleware Control to manage your
application.

When deploying an application that is using file-based stores to a
managed server running in a computer different from that where the
administration server is running, do not use the life cycle listener.
Otherwise, the data maintained by the managed server and the
administration server would not match, and security may not work as
expected. Instead of employing the life cycle listener, use the OPSS
script migrateSecurityStore to migrate application policies and
credentials to the domain stores.

The above remark applies only when using file-based stores.

Configuring Applications to Use OPSS

Manually Configuring Java EE Applications to Use OPSS 21-13

The value of this parameter must match the value of application.name specified
for the JpsServlet (in the file web.xml) or for the JpsInterceptor (in the file
ejb-jar.xml). For details, see Application Name (Stripe).

The value picked from weblogic-application.xml is used at deploy time; the
value picked from web.xml or ejb-jar.xml is used at runtime.

JpsApplicationLifecycleListener
This parameter is supported on WebLogic only, and it must be set as illustrated in the
following fragment:

<wls:listener>
 <wls:listener-class>

 oracle.security.jps.wls.listeners.JpsApplicationLifecycleListener
 </wls:listener-class>
</wls:listener>

jps.apppolicy.idstoreartifact.migration
This parameter is supported on WebLogic only, and it specifies whether the policy
migration should exclude migrating references to enterprise users or groups, such as
application roles grants to enterprise users or groups, and permission grants to
enterprise users or groups; thus it allows the migration of just application policies and,
when enabled, the migration ignores the mapping of application roles to enterprise
groups or users.

It is configured as illustrated in the following fragment:

<wls:application-param>
 <wls:param-name>jps.apppolicy.idstoreartifact.migration</wls:param-name>
 <wls:param-value>Option</wls:param-value>
</wls:application-param>

Option stands for one of the values TRUE or FALSE. Set to FALSE to exclude the
migration of artifacts referencing enterprise users or groups; otherwise, set it to TRUE;
if unspecified, it defaults to TRUE.

The following examples show fragments of the same jazn-data.xml files. This file,
packaged in the application EAR file, describes the application authorization policy.

The file system-jazn-data.xml represents the domain file-based policy store into
which application policies are migrated (and used in the example for simplicity).

It is assumed that the parameter jps.apppolicy.idstoreartifact.migration
has been set to FALSE.

<!-- Example 1: app role applicationDeveloperRole in jazn-data.xml that references
the enterprise group developers -->
<app-role>

Important: When an application is deployed with this parameter set
to FALSE (that is, to exclude the migration of non-application specific
policies), before the application can be used in the domain, the
administrator should perform the mapping of application roles to
enterprise groups or users with Fusion Middleware Control or the
WebLogic Administration Console.

Note how this setting allows the administrator further control over
application roles.

Configuring Applications to Use OPSS

21-14 Oracle Fusion Middleware Application Security Guide

<class>weblogic.security.principal.WLSGroupImpl</class>
 <name>applicationDeveloperRole</name>
 <display-name>application role applicationDeveloperRole</display-name>
 <members>
 <member>
 <class>weblogic.security.principal.WLSGroupImpl</class>
 <name>developers</name>
 </member>
 </members>
</app-role>

<!-- app role applicationDeveloperRole in system-jazn-data.xml after migration:
notice how the role developers has been excluded -->
<app-role>
 <name>applicationDeveloperRole</name>
 <display-name>application role applicationDeveloperRole</display-name>
 <guid>CB3633A0D0E811DDBF08952E56E4544A</guid>
 <class>weblogic.security.principal.WLSGroupImpl</class>
</app-role>

<!-- Example 2: app role viewerApplicationRole in jazn-data.xml makes reference
to the anonymous role -->
<app-role>
 <name>viewerApplicationRole</name>
 <display-name>viewerApplicationRole</display-name>
 <class>weblogic.security.principal.WLSGroupImpl</class>
 <members>
 <member>
 <class>
oracle.security.jps.internal.core.principals.JpsAnonymousRoleImpl
 </class>
 <name>anonymous-role</name>
 </member>
 </members>
</app-role>

<!-- app role viewerApplicationRole in system-jazn-data.xml after migration:
notice that references to the anonymous role are never excluded -->
<app-role>
 <name>viewerApplicationRole</name>
 <display-name>viewerApplicationRole</display-name>
 <guid>CB3D86A0D0E811DDBF08952E56E4544A</guid>
<class>weblogic.security.principal.WLSGroupImpl</class>
<members>

 <member>
 <class>
oracle.security.jps.internal.core.principals.JpsAnonymousRoleImpl
 </class>
 <name>anonymous-role</name>

</member>
</members>

</app-role>

jps.policystore.removal
This parameter specifies whether the removal of policies at undeployment should not
take place.

On WebLogic, it is configured as illustrated in the following fragment:

<wls:application-param>

Configuring Applications to Use OPSS

Manually Configuring Java EE Applications to Use OPSS 21-15

 <wls:param-name>jps.policystore.removal</wls:param-name>
 <wls:param-value>OFF</wls:param-value>
</wls:application-param>

For details about the configuration of this parameter on WebSphere, see Oracle Fusion
Middleware Third-Party Application Server Guide.

When set, the parameter’s value must be OFF. By default, it is not set.

Set to OFF to prevent the removal of policies; if not set, policies are removed.

The above setting should be considered when multiple applications are sharing the
same application stripe. The undeploying application would choose not to remove
application policies because other applications may be using the common set of
policies.

jps.policystore.migration.validate.principal
This parameter is supported on WebLogic only, and it specifies whether the check for
principals in system and application policies at deployment or redeployment should
take place.

It is configured as illustrated in the following fragment:

<wls:application-param>
 <wls:param-name>jps.policystore.migration.validate.principal</wls:param-name>
 <wls:param-value>TRUE</wls:param-value>
</wls:application-param>

When set, the parameter’s value must be TRUE or FALSE.

When set to TRUE the system checks the validity of enterprise users and groups: if a
principal (in an application or system policy) refers to an enterprise user or group not
found in the identity store, a warning is issued. When set to FALSE, the check is
skipped.

If not set, the parameter value defaults to FALSE.

Validation errors are logged in the server log, and they do not terminate the operation.

21.4.2 Policy Parameter Configuration According to Behavior
This section describes the settings required to manage application policies with the
following behaviors:

■ To Skip Migrating All Policies

■ To Migrate All Policies with Merging

■ To Migrate All Policies with Overwriting

■ To Remove (or Prevent the Removal of) Application Policies

■ To Migrate Policies in a Static Deployment

Any value settings other than the ones described in the following sections are not
recommended and may lead to unexpected migration behavior. For more details, see
Recommendations.

Note: Deciding to set this parameter to OFF for a given application
requires knowing, at the time the application is deployed, whether the
application stripe is shared by other applications.

Configuring Applications to Use OPSS

21-16 Oracle Fusion Middleware Application Security Guide

All behaviors can be specified with Fusion Middleware Control when the application
is deployed, redeployed, or undeployed with that tool.

21.4.2.1 To Skip Migrating All Policies
The following matrix shows the settings that prevent the migration from taking place:

Typically, you would skip migrating policies when redeploying the application when
you want to keep domain policies as they are, but you would migrate policies when
deploying the application for the first time.

21.4.2.2 To Migrate All Policies with Merging
The following matrix shows the setting of required and optional parameters that
migrates only policies that are not in the target store (optional parameters are enclosed
in between brackets):

Typically, you would choose migrating policies with merging at redeploy when the
policies have changed and you want to add to the existing policies.

21.4.2.3 To Migrate All Policies with Overwriting
The following matrix shows the setting that migrates all policies overwriting matching
target policies (optional parameters are enclosed in between brackets):

Table 21–2 Settings to Skip Policy Migration

Valid at deploy or redeploy

JpsApplicationLifecycleListener Set

jps.policystore.migration OFF

Table 21–3 Settings to Migrate Policies with Merging

Valid at deploy or redeploy

JpsApplicationLifecycleListener Set

jps.policystore.migration MERGE

[jps.policystore.applicationid] Set to the appropriate string. Defaults to
servlet or EJB name.

[jps.apppolicy.idstoreartifact.migration] Set to FALSE to exclude migrating
policies that reference enterprise artifacts;
otherwise set to TRUE. Defaults to TRUE.

[jps.policystore.migration.validate.principal] Set to TRUE to validate enterprise users
and roles in application and system
policies. Set to FALSE, otherwise. If
unspecified, it defaults to FALSE.

Table 21–4 Settings to Migrate Policies with Overwriting

Valid at deploy or redeploy

JpsApplicationLifecycleListener Set

jps.policystore.migration OVERWRITE

[jps.policystore.migration.validate.principal] Set to TRUE to validate enterprise users and
roles in application and system policies. Set
to FALSE, otherwise. If unspecified, it
defaults to FALSE.

Configuring Applications to Use OPSS

Manually Configuring Java EE Applications to Use OPSS 21-17

Typically, you would choose migrating policies with overwriting at redeploy when a
new set of policies should replace existing policies. Note that if the optional parameter
jps.policy.migration.validate.principal is needed, it must be set
manually.

21.4.2.4 To Remove (or Prevent the Removal of) Application Policies
The removal of application policies at undeployment is limited since code source
grants in the system policy are not removed. For details, see example in What Gets
Removed and What Remains.

The following matrix shows the setting that removes policies at undeployment:

The following matrix shows the setting that prevents the removal of application
policies at undeployment:

What Gets Removed and What Remains
Consider the application myApp, which has been configured for automatic migration
and removal of policies. The following fragment of the application’s jazn-data.xml
file (packed in the application EAR file) illustrates the application policies that are
migrated when the application is deployed with Fusion Middleware Control and
those that are and are not removed when the application is undeployed with Fusion
Middleware Control:

<jazn-data>
 <policy-store>
 <applications>
 <!-- The contents of the following element application is migrated

to the element policy-store in domain system-jazn-data.xml;
when myApp is undeployed with EM, it is removed from domain store -->

 <application>
 <name>myApp</name>

Table 21–5 Settings to Remove Policies

Valid at undeploy

JpsApplicationLifecycleListener Set

jps.policystore.removal Not set (default)

Note: The policies removed at undeploy are determined by the stripe
that the application specified at deploy or redeploy. If an application is
redeployed with a stripe specification different than the original one,
then policies in that stripe (the original) are not removed.

Table 21–6 Settings to Prevent the Removal of Policies

Valid at undeploy

JpsApplicationLifecycleListener Set

jps.policystore.removal OFF

Note: Deciding to set this parameter to OFF for a given application
requires knowing, at the time the application has been deployed,
whether the application stripe is shared by other applications.

Configuring Applications to Use OPSS

21-18 Oracle Fusion Middleware Application Security Guide

 <app-roles>
 <app-role>
 <class>oracle.security.jps.service.policystore.SomeRole</class>
 <name>applicationDeveloperRole</name>
 <display-name>application role applicationDeveloperRole</display-name>
 <members>
 <member>
 <class>oracle.security.somePath.JpsXmlEnterpriseRoleImpl</class>
 <name>developers</name>
 </member>
 </members>
 </app-role>
 </app-roles>
 <jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>applicationDeveloperRole</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.jps.JpsPermission</class>
 <name>loadPolicy</name>
 </permission>
 </permissions>
 </grant>
 </jazn-policy>
 </application>
 </applications>
 </policy-store>

 <jazn-policy>
<!-- The following codebase application grant is migrated to the element

jazn-policy in domain system-jazn-data.xml; when myApp is undeployed
 with EM, it is not removed from domain store -->
 <grant>
 <grantee>
 <codesource>
 <url>file:${domain.home}/servers/${weblogic.Name}/Foo.ear/-</url>
 </codesource>
 </grantee>
 <permissions>
 <permission>
<class>oracle.security.jps.service.credstore.CredentialAccessPermission</class>
 <name>context=SYSTEM,mapName=*,keyName=*</name>
 <actions>*</actions>
 </permission>
 </permissions>
 </grant>
 </jazn-policy>
</jazn-data>

To summarize: in regards to what gets removed, the important points to remember are
the following:

Configuring Applications to Use OPSS

Manually Configuring Java EE Applications to Use OPSS 21-19

■ All data inside the element <application> can be automatically removed at
undeployment. In case of an LDAP-based policy store, the application scoped
authorization policy data nodes get cleaned up.

■ All data inside the element <jazn-policy> cannot be automatically removed at
undeployment.

21.4.2.5 To Migrate Policies in a Static Deployment
Table 21–7 shows the setting that migrates application policies when the application is
statically deployed. The MERGE or OVERWRITE operation takes place only if the
application policies do not already exist in the domain.

Table 21–8 shows the setting that skip the migration of application policies when the
application is statically deployed.

21.4.2.6 Recommendations
Keep in mind the following suggestions:

When a LDAP-based policy store is used and the application is to be deployed to
multiple managed servers, then choose to migrate to one of the servers only. The rest
of the deployments should choose not to migrate policies. This ensures that the policies
are migrated only once from the application store to the policy store.

All the deployments must use the same application id.

Attempting policy migration to the same node for the same application multiple times
(for example, on different managed servers) can result in policy migration failures. An
alternative is to migrate the policy data to the store outside of the deployment process
using the OPSS script migrateSecurityStore.

If, however, the application is deployed to several servers and the policy store is
file-based, the deployment must include the administration server for the migration to
update the policy file $DOMAIN_
HOME/config/fmwconfig/system-jazn-data.xml.

21.4.3 Using a Wallet-Based Credential Store
The content of a wallet-based credential store is defined in a file that must be named
cwallet.sso. A wallet-based credential store is also referred to as a file-based
credential store.

For instructions on how to create a wallet, see section Common Wallet Operations in
Oracle Fusion Middleware Administrator's Guide.

The location of the file cwallet.sso is specified in the configuration file
jps-config.xml with the element <serviceInstance>, as illustrated in the
following example:

Table 21–7 Settings to Migrate Policies with Static Deployments

JpsApplicationLifecycleListener Set

jps.policystore.migration MERGE or OVERWRITE

Table 21–8 Settings Not to Migrate Policies with Static Deployments

JpsApplicationLifecycleListener Set

jps.policystore.migration OFF

Configuring Applications to Use OPSS

21-20 Oracle Fusion Middleware Application Security Guide

<serviceInstance name="credstore" provider="credstoressp">
 <property name="location" value="myCredStorePath"/>
</serviceInstance>

For other types of credential storage, see chapter Managing Keystores, Wallets, and
Certificates in Oracle Fusion Middleware Administrator's Guide.

21.4.4 Parameters Controlling Credential Migration
The migration of application credentials at deployment is controlled by several
parameters configured in the file META-INF/weblogic-application.xml.

For details about the specification of these parameters on WebSphere, see Oracle Fusion
Middleware Third-Party Application Server Guide.

The parameter that controls credential migration is jps.credstore.migration. The
listener is JpsApplicationLifecycleListener - Credentials.

jps.credstore.migration
This parameter specifies whether the migration should take place, and, when it does,
whether it should merge with or overwrite matching credentials present in the target
store.

On WebLogic, it is configured as illustrated in the following fragment:

<wls:application-param>
 <wls:param-name>jps.credstore.migration</wls:param-name>
 <wls:param-value>behaviorValue</wls:param-value>
</wls:application-param>

For details about the specification this parameter on WebSphere, see Oracle Fusion
Middleware Third-Party Application Server Guide.

If set, this parameter’s value must be one of the following: MERGE, OVERWRITE, or
OFF. The OVERWRITE value is available on WebLogic only and when the server is
running in development mode.

If not set, the migration of credentials takes place with the option MERGE.

JpsApplicationLifecycleListener - Credentials
This listener is supported only on WebLogic and it is configured as illustrated in the
following fragment:

<wls:listener>
 <wls:listener-class>
 oracle.security.jps.wls.listeners.JpsApplicationLifecycleListener
 </wls:listener-class>
</wls:listener>

21.4.5 Credential Parameter Configuration According to Behavior
This section describes the manual settings required to migrate application credentials
with the following behaviors:

■ To Skip Migrating Credentials

■ To Migrate Credentials with Merging

■ To Migrate Credentials with Overwriting

Configuring Applications to Use OPSS

Manually Configuring Java EE Applications to Use OPSS 21-21

Any value settings other than the ones described in the following sections are not
recommended and may lead to unexpected migration behavior.

If the migration target is an LDAP-based credential store, it is recommended that the
application be deployed to just one managed server or cluster. Otherwise, application
credentials may not work as expected.

21.4.5.1 To Skip Migrating Credentials
The following matrix shows the setting that prevents the migration from taking place:

21.4.5.2 To Migrate Credentials with Merging
The following matrix shows the setting of required and optional parameters that
migrates only credentials that are not present in the target store (optional parameters
are enclosed in between brackets):

21.4.5.3 To Migrate Credentials with Overwriting
This operation is valid on WebLogic only and when the server is running in
development mode. The following matrix shows the setting that migrates all
credentials overwriting matching target credentials:

21.4.6 Supported Permission Classes
The components of a permission are illustrated in the following snippet from a
system-jazn-data.xml file:

<grant>
 <grantee>
 <codesource>
 <url>file:${oracle.deployed.app.dir}/<MyApp>${oracle.deployed.app.ext}</url>

Note: Credentials are not deleted upon an application
undeployment. A credential may have started its life as being
packaged with an application, but when the application is
undeployed credentials are not removed.

Table 21–9 Settings to Skip Credential Migration

Valid at deploy or redeploy

jps.credstore.migration OFF

Table 21–10 Settings to Migrate Credentials with Merging

Valid at deploy or redeploy

JpsApplicationLifecycleListener Set

jps.credstore.migration MERGE

Table 21–11 Settings to Migrate Credentials with Overwriting

Valid at deploy or redeploy

JpsApplicationLifecycleListener Set

jps.credstore.migration OVERWRITE

jps.app.credential.overwrite.allowed This system property must
be set to TRUE

Configuring Applications to Use OPSS

21-22 Oracle Fusion Middleware Application Security Guide

 </codesource>
 </grantee>
 <permissions>
 <permission>
 <class>
oracle.security.jps.service.policystore.PolicyStoreAccessPermission
 </class>
 <name>context=SYSTEM</name>
 <actions>getConfiguredApplications</actions>
 </permission>
 <permission>
 <class>
oracle.security.jps.service.policystore.PolicyStoreAccessPermission
 </class>
 <name>context=APPLICATION,name=*</name>
 <actions>getApplicationPolicy</actions>
 </permission>
 </permissions>
</grant>

This section describes the supported values for the elements <class>, <name>, and
<actions> within a <permission>.

21.4.6.1 Policy Store Permission
Class name:

oracle.security.jps.service.policystore.PolicyStoreAccessPermission

When the permission applies to a particular application, use the following pattern for
the corresponding element <name>:

context=APPLICATION,name=appStripeName

When the permission applies to all applications, use the following name pattern for
the corresponding element <name>:

context=APPLICATION,name=*

When the permission applies to all applications and system policies, use the following
name pattern for the corresponding element <name>:

context=APPLICATION

The list of values allowed in the corresponding element <actions> are the following
(* stands for any allowed action):

*
createPolicy
getConfiguredApplications
getSystemPolicy
getApplicationPolicy
createApplicationPolicy
deleteApplicationPolicy
grant
revoke

Important: All permission classes used in policies must be included
in the class path, so the policy provider can load them when a service
instance is initialized.

Configuring Applications to Use OPSS

Manually Configuring Java EE Applications to Use OPSS 21-23

createAppRole
alterAppRole
removeAppRole
addPrincipalToAppRole
removePrincipalFromAppRole
hasPermission
containsAppRole

21.4.6.2 Credential Store Permission
Class name:

oracle.security.jps.service.credstore.CredentialAccessPermission

When the permission applies to a particular map and a particular key in that map, use
the following pattern for the corresponding element <name>:

context=SYSTEM,mapName=myMap,keyName=myKey

When the permission applies to a particular map and all keys in that map, use the
following pattern for the corresponding element <name>:

context=SYSTEM,mapName=myMap,keyName=*

The list of values allowed in the corresponding element <actions> are the following
(* stands for any allowed action):

*
read
write
update
delete

21.4.6.3 Generic Permission
Class name:

oracle.security.jps.JpsPermission

When the permission applies to an assertion performed by a callback instance of
oracle.security.jps.callback.IdentityCallback, use the following
pattern for the corresponding element <name>:

IdentityAssertion

The only value allowed in the corresponding element <actions> is the following:

execute

21.4.7 Specifying Bootstrap Credentials Manually
This topic is for an administrator who is not using Oracle Fusion Middleware Control
to perform reassociation to an LDAP-based store.

The credentials needed for an administrator to connect to and access an LDAP
directory must be specified in a separate file named cwallet.sso (bootstrap
credentials) and configured in the file jps-config.xml. These credentials are stored
after the LDAP reassociation process. Bootstrap credentials are always file-based.

Every instance of an LDAP-based policy or credential store must specify bootstrap
credentials in a <jpsContex> element that must be named bootstrap_
credstore_context, as illustrated in the following excerpt:

Configuring Applications to Use OPSS

21-24 Oracle Fusion Middleware Application Security Guide

<serviceInstances>
 ...
 <serviceInstance location="./bootstrap" provider="credstoressp"
name="bootstrap.cred">
 <property value="./bootstrap" name="location"/>
 </serviceInstance>
 ...
</serviceInstances>

<jpsContext name="bootstrap_credstore_context">
 <serviceInstanceRef ref="bootstrap.cred"/>
</jpsContext>

In the example above, the bootstrap credential cwallet.sso is assumed located in
the directory bootstrap.

An LDAP-based policy or credential store instance references its credentials using the
properties bootstrap.security.principal.key and
bootstrap.security.principal.map, as illustrated in the following instance of
an LDAP-based policy store:

<serviceInstance provider="ldap.policystore.provider" name="policystore.ldap">
 ...
 <property value="bootstrapKey" name="bootstrap.security.principal.key"/>
 ...
</serviceInstance>

If the property bootstrap.security.principal.map is not specified in the
service instance, its value defaults to BOOTSTRAP_JPS.

To modify or add bootstrap credentials with OPSS scripts, see Section 10.5.5,
"modifyBootStrapCredential," and Section 10.5.6, "addBootStrapCredential."

21.4.8 Migrating Identities with migrateSecurityStore
Identity data can be migrated manually from a source repository to a target LDAP
repository using the OPSS script migrateSecurityStore. The script produces an
LDIF file that (after minor manual editing) can be imported into an LDAP-based
identity store and can be used with any source 10g or 11g file-based identity store.

For example, this script can be used to convert user and role information in a 10.1.x
jazn-data.xml file to user and role information in WebLogic LDIF format; the LDIF
output file can then be imported into the WebLogic embedded LDAP identity store
after changing the password for each user (see note at the end of this section).

This script is offline, that is, it does not require a connection to a running server to
operate; therefore, the configuration file passed to the argument configFile need
not be an actual domain configuration file, but it can be assembled just to specify the
source and destination repositories of the migration.

This script can be run in interactive mode or in script mode, on WebLogic Server, and
in interactive mode only, on WebSphere. In interactive mode, you enter the script at a
command-line prompt and view the response immediately after. In script mode, you
write scripts in a text file (with a py file name extension) and run it without requiring
input, much like the directives in a shell script.

For platform-specific requirements to run an OPSS script, see Important Note.

Configuring Applications to Use OPSS

Manually Configuring Java EE Applications to Use OPSS 21-25

Script and Interactive Modes Syntaxes
To migrate identities on WebLogic, use the script (first) or interactive (second) syntaxes
(arguments are written in separate lines for clarity):

migrateSecurityStore -type idStore
 -configFile jpsConfigFileLocation
 -src srcJpsContext
 -dst dstJpsContext
 [-dstLdifFile LdifFileLocation]

migrateSecurityStore(type="idStore", configFile="jpsConfigFileLocation",
src="srcJpsContext", dst="dstJpsContext", [dstLdifFile="LdifFileLocation"])

For details about running OPSS scripts on WebSphere Application Server, see

The meaning of the arguments (all required except dstLdifFile) is as follows:

■ configFile specifies the location of a configuration file jps-config.xml
relative to the directory where the script is run.

■ src specifies the name of a jps-context in the configuration file passed to the
argument configFile, where the source store is specified.

■ dst specifies the name of another jps-context in the configuration file passed to
the argument configFile, where the destination store is specified.
The destination store must be an LDAP-based identity store. For list of supported
types, see Section 3.1.1, "Supported LDAP Identity Store Types."

■ dstLdifFile specifies the relative or absolute path to the LDIF file created.
Applies only when the destination is an LDAP-based Oracle Internet Directory
store, such as the embedded LDAP. Notice that the LDIF file is not imported into
the LDAP server and, typically, requires manual editing.

The contexts passed to src and dst must be defined in the passed configuration file
and must have distinct names. From these two contexts, the script determines the
locations of the source and the target repositories involved in the migration.

21.4.9 Example of Configuration File jps-config.xml
The following sample shows a complete jps-config.xml file that illustrates the
configuration of several services and properties; they apply to both Java EE and Java
SE applications.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<jpsConfig xmlns="http://xmlns.oracle.com/oracleas/schema/11/jps-config-11_1.xsd">
 <property value="off" name="oracle.security.jps.jaas.mode"/>
 <propertySets>
 <propertySet name="saml.trusted.issuers.1">
 <property value="www.oracle.com" name="name"/>
 </propertySet>
 </propertySets>

Important: The password of every user in the output LDIF file is not
the real user password, but the fake string weblogic. In case the
destination is an LDAP-based Oracle Internet Directory store, the fake
string is change.

Therefore, before importing the LDIF file into the target LDAP store,
the security administrator would typically edit this file and change the
fake passwords for real ones.

Configuring Applications to Use OPSS

21-26 Oracle Fusion Middleware Application Security Guide

 <serviceProviders>
 <serviceProvider
class="oracle.security.jps.internal.credstore.ssp.SspCredentialStoreProvider"
name="credstoressp" type="CREDENTIAL_STORE">
 <description>SecretStore-based CSF Provider</description>
 </serviceProvider>
 <serviceProvider
class="oracle.security.jps.internal.idstore.ldap.LdapIdentityStoreProvider"
name="idstore.ldap.provider" type="IDENTITY_STORE">
 <description>LDAP-based IdentityStore Provider</description>
 </serviceProvider>
 <serviceProvider
class="oracle.security.jps.internal.idstore.xml.XmlIdentityStoreProvider"
name="idstore.xml.provider" type="IDENTITY_STORE">
 <description>XML-based IdentityStore Provider</description>
 </serviceProvider>
 <serviceProvider
class="oracle.security.jps.internal.policystore.xml.XmlPolicyStoreProvider"
name="policystore.xml.provider" type="POLICY_STORE">
 <description>XML-based PolicyStore Provider</description>
 </serviceProvider>
 <serviceProvider
class="oracle.security.jps.internal.login.jaas.JaasLoginServiceProvider"
name="jaas.login.provider" type="LOGIN">
 <description>JaasLoginServiceProvider to conf loginMod servInsts</description>
 </serviceProvider>
 <serviceProvider class="oracle.security.jps.internal.keystore.KeyStoreProvider"
name="keystore.provider" type="KEY_STORE">
 <description>PKI Based Keystore Provider</description>
 <property value="owsm" name="provider.property.name"/>
 </serviceProvider>
 <serviceProvider class="oracle.security.jps.internal.audit.AuditProvider"
name="audit.provider" type="AUDIT">
 <description>Audit Service</description>
 </serviceProvider>
 <serviceProvider
class="oracle.security.jps.internal.credstore.ldap.LdapCredentialStoreProvider"
name="ldap.credentialstore.provider" type="CREDENTIAL_STORE"/>
 <serviceProvider
class="oracle.security.jps.internal.policystore.ldap.LdapPolicyStoreProvider"
name="ldap.policystore.provider" type="POLICY_STORE">
 <property value="OID" name="policystore.type"/>
 </serviceProvider>
 </serviceProviders>

 <serviceInstances>
 <serviceInstance location="./" provider="credstoressp" name="credstore">
 <description>File Based Credential Store Service Instance</description>
 </serviceInstance>
 <serviceInstance provider="idstore.ldap.provider" name="idstore.ldap">
 <property
value="oracle.security.jps.wls.internal.idstore.WlsLdapIdStoreConfigProvider"
name="idstore.config.provider"/>
 </serviceInstance>
 <serviceInstance location="./system-jazn-data.xml"
provider="idstore.xml.provider" name="idstore.xml">
 <description>File Based Identity Store Service Instance</description>
 <property value="jazn.com" name="subscriber.name"/>
 </serviceInstance>

Configuring Applications to Use OPSS

Manually Configuring Java EE Applications to Use OPSS 21-27

 <serviceInstance location="./system-jazn-data.xml"
provider="policystore.xml.provider" name="policystore.xml">
 <description>File Based Policy Store Service Instance</description>
 </serviceInstance>
 <serviceInstance location="./default-keystore.jks" provider="keystore.provider"
name="keystore">
 <description>Default JPS Keystore Service</description>
 <property value="JKS" name="keystore.type"/>
 <property value="oracle.wsm.security" name="keystore.csf.map"/>
 <property value="keystore-csf-key" name="keystore.pass.csf.key"/>
 <property value="enc-csf-key" name="keystore.sig.csf.key"/>
 <property value="enc-csf-key" name="keystore.enc.csf.key"/>
</serviceInstance>
<serviceInstance provider="audit.provider" name="audit">
 <property value="None" name="audit.filterPreset"/>
 <property value="0" name="audit.maxDirSize"/>
 <property value="104857600" name="audit.maxFileSize"/>
 <property value="jdbc/AuditDB" name="audit.loader.jndi"/>
 <property value="15" name="audit.loader.interval"/>
 <property value="File" name="audit.loader.repositoryType"/>
</serviceInstance>
<serviceInstance provider="jaas.login.provider" name="saml.loginmodule">
 <description>SAML Login Module</description>
 <property
value="oracle.security.jps.internal.jaas.module.saml.JpsSAMLLoginModule"
name="loginModuleClassName"/>
 <property value="REQUIRED" name="jaas.login.controlFlag"/>
 <propertySetRef ref="saml.trusted.issuers.1"/>
</serviceInstance>
<serviceInstance provider="jaas.login.provider" name="krb5.loginmodule">
 <description>Kerberos Login Module</description>
 <property value="com.sun.security.auth.module.Krb5LoginModule"
name="loginModuleClassName"/>
 <property value="REQUIRED" name="jaas.login.controlFlag"/>
 <property value="true" name="storeKey"/>
 <property value="true" name="useKeyTab"/>
 <property value="true" name="doNotPrompt"/>
 <property value="./krb5.keytab" name="keyTab"/>
 <property value="HOST/localhost@EXAMPLE.COM" name="principal"/>
</serviceInstance>
<serviceInstance provider="jaas.login.provider"
name="digest.authenticator.loginmodule">
 <description>Digest Authenticator Login Module</description>
 <property
value="oracle.security.jps.internal.jaas.module.digest.DigestLoginModule"
name="loginModuleClassName"/>
 <property value="REQUIRED" name="jaas.login.controlFlag"/>
</serviceInstance>
<serviceInstance provider="jaas.login.provider"
name="certificate.authenticator.loginmodule">
<description>X509 Certificate Login Module</description>
<property value="oracle.security.jps.internal.jaas.module.x509.X509LoginModule"

name="loginModuleClassName"/>
 <property value="REQUIRED" name="jaas.login.controlFlag"/>
</serviceInstance>
<serviceInstance provider="jaas.login.provider" name="wss.digest.loginmodule">
 <description>WSS Digest Login Module</description>
 <property
value="oracle.security.jps.internal.jaas.module.digest.WSSDigestLoginModule"
name="loginModuleClassName"/>

Configuring Applications to Use OPSS

21-28 Oracle Fusion Middleware Application Security Guide

 <property value="REQUIRED" name="jaas.login.controlFlag"/>
</serviceInstance>
<serviceInstance provider="jaas.login.provider"
name="user.authentication.loginmodule">
 <description>User Authentication Login Module</description>
 <property
value="oracle.security.jps.internal.jaas.module.authentication.JpsUserAuthenticati
onLoginModule" name="loginModuleClassName"/>
 <property value="REQUIRED" name="jaas.login.controlFlag"/>
</serviceInstance>
<serviceInstance provider="jaas.login.provider"
name="user.assertion.loginmodule">
 <description>User Assertion Login Module</description>
 <property
value="oracle.security.jps.internal.jaas.module.assertion.JpsUserAssertionLoginMod
ule" name="loginModuleClassName"/>
 <property value="REQUIRED" name="jaas.login.controlFlag"/>
</serviceInstance>
<serviceInstance provider="ldap.credentialstore.provider" name="credstore.ldap">
 <property value="bootstrap" name="bootstrap.security.principal.key"/>
 <property value="cn=wls-jrfServer" name="oracle.security.jps.farm.name"/>
 <property value="cn=jpsTestNode" name="oracle.security.jps.ldap.root.name"/>
 <property value="ldap://stadw12.us.oracle.com:3060" name="ldap.url"/>
</serviceInstance>
<serviceInstance location="./bootstrap" provider="credstoressp"
name="bootstrap.cred">
 <property value="./bootstrap" name="location"/>
</serviceInstance>
<serviceInstance provider="ldap.policystore.provider" name="policystore.ldap">
 <property value="OID" name="policystore.type"/>
 <property value="bootstrap" name="bootstrap.security.principal.key"/>
 <property value="cn=wls-jrfServer" name="oracle.security.jps.farm.name"/>
 <property value="cn=jpsTestNode" name="oracle.security.jps.ldap.root.name"/>
 <property value="ldap://stadw12.us.oracle.com:3060" name="ldap.url"/>
</serviceInstance>
</serviceInstances>

<jpsContexts default="default">
 <jpsContext name="default">
 <serviceInstanceRef ref="keystore"/>
 <serviceInstanceRef ref="audit"/>
 <serviceInstanceRef ref="credstore.ldap"/>
 <serviceInstanceRef ref="policystore.ldap"/>
 </jpsContext>
 <jpsContext name="oracle.security.jps.fmw.authenticator.DigestAuthenticator">
 <serviceInstanceRef ref="digest.authenticator.loginmodule"/>
 </jpsContext>
 <jpsContext name="X509CertificateAuthentication">
 <serviceInstanceRef ref="certificate.authenticator.loginmodule"/>
 </jpsContext>
 <jpsContext name="SAML">
 <serviceInstanceRef ref="saml.loginmodule"/>
 </jpsContext>
 <jpsContext name="bootstrap_credstore_context">
 <serviceInstanceRef ref="bootstrap.cred"/>
 </jpsContext>
</jpsContexts>
</jpsConfig>

22

Authentication for Java SE Applicaitons 22-1

22Authentication for Java SE Applicaitons

The information in this chapter applies only to Java SE applications, and the audience
are developers of Java SE applications. For details about authentication for Java EE
applications, see any of the documents listed in Links to Authentication Topics for
Java EE Applications.

This chapter includes in the following topics:

■ Authentication for Java SE Applications

■ Configuration Examples

22.1 Links to Authentication Topics for Java EE Applications
The following documents are a good source of information for developing
authentication in Java EE applications:

■ For general information about authentication in the Oracle WebLogic Server, see
section Authentication in chapter 3 in Oracle Fusion Middleware Understanding
Security for Oracle WebLogic Server.

■ Oracle Fusion Middleware Programming Security for Oracle WebLogic Server

– Chapter 3, Securing Web Applications

– Chapter 4, Using JAAS Authentication in Java Clients

– Chapter 5, Using SSL Authentication in Java Clients

■ Oracle Fusion Middleware Developing Security Providers for Oracle WebLogic Server

– Chapter 4, Authentication Providers

– Chapter 5, Identity Assertion Providers

– Chapter 13, Servlet Authentication Filters

■ Custom modules in Java EE applications required to be wrapped in an
authenticator provider. For details, see section How to Develop a Custom
Authentication Provider in Oracle Fusion Middleware Developing Security Providers
for Oracle WebLogic Server.

■ For login modules used in Java EE applications, see the following documentation:

– Section Login Modules in chapter 4 in Oracle Fusion Middleware Developing
Security Providers for Oracle WebLogic Server.

– Section JAAS Authentication Development Environment in Chapter 4 in
Oracle Fusion Middleware Programming Security for Oracle WebLogic Server

■ For links to all OPSS API javadocs, see Section H.1, "OPSS API References."

Authentication for Java SE Applications

22-2 Oracle Fusion Middleware Application Security Guide

22.2 Authentication for Java SE Applications
This section explains the identity store support for Java SE applications, and it
includes the following sections:

■ The Identity Store

■ Configuring an LDAP Identity Store in Java SE Applications

■ Supported Login Modules for Java SE Applications

■ Using the OPSS API LoginService in Java SE Applications

For details about authorization in Java SE applications, see Section 23.1, "Configuring
Policy and Credential Stores in Java SE Applications."

22.2.1 The Identity Store
Authentication is the mechanism by which callers prove that they are acting on behalf
of specific users or system. Using data, such as name-password combinations,
authentication answers the question Who are you? The term identity store refers to the
storage where identity data is kept, and authentication providers are ways to access an
identity store.

An application obtains information from an OPSS security store (identity, policy, or
credential store) and manages its contents using the OPSS APIs, as illustrated in the
following graphic:

22.2.2 Configuring an LDAP Identity Store in Java SE Applications
A Java SE application can use an LDAP-based identity store configured in the file
jps-config-jse.xml with the elements <serviceProvider>,
<serviceInstance>, and <jpsContext>, as illustrated in the following snippet:

<serviceProviders>
 <serviceProvider type="IDENTITY_STORE" name="idstore.ldap.provider"
class="oracle.security.jps.internal.idstore.ldap.LdapIdentityStoreProvider">
 <description>Prototype LDAP-based ID store</description>
 </serviceProvider>
</serviceProviders>

<serviceInstances>
<serviceInstance name="idstore.ldap" provider="idstore.ldap.provider">
<property name="idstore.type" value="OID"/>
<property name="security.principal.alias" value="MyCredentialMapName"/>
<property name="security.principal.key" value="MyCredentialMapKey"/>
<property name="ldap.url" value="${LDAP_URI}"/>
<property name="max.search.filter.length" value="500"/>
<extendedProperty>

Authentication for Java SE Applications

Authentication for Java SE Applicaitons 22-3

<name>user.search.bases</name>
<values>
<value>cn=users,dc=us,dc=oracle,dc=com</value>

</values>
</extendedProperty>
<extendedProperty>
<name>group.search.bases</name>
<values>
<value>cn=groups,dc=us,dc=oracle,dc=com</value>
</values>

</extendedProperty>
</serviceInstance>
</serviceInstances>

<jpsContexts default="ldap_idstore">
 <jpsContext name="ldap_idstore">
 <serviceInstanceRef ref="idstore.ldap"/>
 </jpsContext>

 <jpsContext name="bootstrap_credstore_context">
 <serviceInstanceRef ref="bootstrap.cred"/>
 </jpsContext>
</jpsContexts>

Note the following points:

■ The name of the <serviceInstance> (idstore.ldap in the example above)
can have any value, but it must match the instance referenced in element
<serviceInstanceRef>.

■ The name of the <serviceProvider> (idstore.ldap.provider in the
example above) can have any value, but it must match the provider in element
<serviceInstance>.

■ To add properties to a provider instance with a prescribed script, see
Appendix E.1, "Configuring OPSS Service Provider Instances with a WLST Script."

■ The credentials to access the identity LDAP store are specified with the instance
properties security.principal.key and security.principal.alias and
stored in the bootstrap credential store.

22.2.3 Supported Login Modules for Java SE Applications
A login module is a component that authenticates users and populates a subject with
principals. This process occurs in two distinct phases: during the first phase, the login
module attempts to authenticate a user requesting, as necessary, a name and a
password or some other credential data; only if this phase succeeds, the second phase
is invoked. During the second phase, the login module assigns relevant principals to a
subject, which is eventually used to perform some privileged action.

22.2.3.1 The Identity Store Login Module
A Java SE application can use a stack of login modules to authenticate its users; each
module in the stack performs its own computations independently from the others in
the stack. These and other services are specified in the file jps-config-jse.xml.

OPSS APIs includes the interface
oracle.security.jps.service.login.LoginService which allows a Java SE
application to invoke not just all login modules in a stack, but a subset of them in a
prescribed order.

Authentication for Java SE Applications

22-4 Oracle Fusion Middleware Application Security Guide

The name of the jps context (defined in the configuration file jps-config-jse.xml)
passed to the method LoginContext in the LoginService interface (which is)
determines the stack of login modules that an application uses.

The standard JAAS API LoginContext can also be user to invoke the login modules
defined in the default context.

The sequence in which a jps context lists the login modules in a stack is significant,
since the authentication algorithm takes this order into account in addition to other
data, such as the flag that identifies the module security level (required, sufficient,
requisite, or optional).

Out-of-the-box, the identity store service is file-based, its contents being provisioned
the file system-jazn-data.xml, but it can be reconfigured to be an LDAP-based
identity store.

OPSS supports the Identity Store login module in Java SE applications, which can be
used for authentication or identity assertion.

Identity Store Login Module
The class associated with this login module is the following:

oracle.security.jps.internal.jaas.module.idstore.IdStoreLoginModule

An instance of this module is configured in the file jps-config-jse.xml as
illustrated in the following fragment:

<serviceInstance name="idstore.loginmodule" provider="jaas.login.provider">
 <description>Identity Store Login Module</description>
 <property name="loginModuleClassName"
value="oracle.security.jps.internal.jaas.module.idstore.IdStoreLoginModule"/>
 <property name="jaas.login.controlFlag" value="REQUIRED"/>
</serviceInstance>

Properties specific to this login module include the following:

remove.anonymous.role (defaults to true)
add.application.role (defaults to true)

22.2.3.2 Using the Identity Store Login Module for Authentication
This section illustrates the use of the Identity Store login module for basic username
and password authentication.

Invoke IdStoreLoginModule
The following code fragment illustrates how to set a callback handler and a context:

import javax.security.auth.Subject;
import javax.security.auth.login.LoginContext;

Subject sub = new Subject();
CallbackHandler cbh = new YourCallbackHandler();
LoginContext context = new LoginContext(appName, subject, cbh);
context.login();

The callback handler must be able to handle NameCallback and
PasswordCallback.

Authentication for Java SE Applications

Authentication for Java SE Applicaitons 22-5

Configure jps-config-jse.xml
The following jps-config-jse.xml fragment illustrates the configuration of the
context appName:

<jpsContext name="appName">
 <serviceInstanceRef ref="jaaslm.idstore1"/>
</jpsContext>

<serviceProvider type="JAAS_LM" name="jaaslm.idstore"
 class="oracle.security.jps.internal.jaas.module.idstore.IdStoreLoginModule">
 <description>Identity Store-based LoginModule
 </description>
</serviceProvider>

<serviceInstance name="jaaslm.idstore1" provider="jaaslm.idstore">
 <property name="jaas.login.controlFlag" value="REQUIRED"/>
 <property name="debug" value="true"/>
 <property name="addAllRoles" value="true"/>
</serviceInstance>

Write the Callback Handler
The following code snippet illustrates a callback handler able to handle name and
password callback:

import javax.security.auth.callback.*;
import java.io.IOException;
public class SampleCallbackHandler implements CallbackHandler {
//For name/password callbacks
private String name = null;private char[] password = null;
public SampleCallbackHandler(String name, char[] pwd) {
 if (name == null || name.length() == 0)
 throw new IllegalArgumentException("Invalid name ");
 else
 this.name = name;
 if (pwd == null || pwd.length == 0)
 throw new IllegalArgumentException("Invalid password ");
 else
 this.password = pwd;
}
public String getName() {
 return name;
 } public char[] getPassword() {
 return password;
 }
public void handle(Callback[] callbacks)
 throws IOException, UnsupportedCallbackException {
 if (callbacks != null && callbacks.length > 0) {
 for (Callback c : callbacks) {
 if (c instanceof NameCallback) {
 ((NameCallback) c).setName(name);
 }
 else
 if (c instanceof PasswordCallback) {
 ((PasswordCallback) c).setPassword(password);
 }
 else {
 throw new UnsupportedCallbackException(c);
 }
 }
 }

Authentication for Java SE Applications

22-6 Oracle Fusion Middleware Application Security Guide

 }
}

22.2.3.3 Using the Identity Login Module for Assertion
To use the Identity Store login module for assertion, a developer must:

■ Provide the appropriate permission for the caller to execute the protected method
setIdentity. This requires granting the permission
oracle.security.jps.JpsPermission with the name
IdentityAssertion.

■ Implement a callback handler that uses the class
oracle.security.jps.callback.IdentityCallback as shown in the code
sample below.

The above two requirements are illustrated in the following configuration and code
samples.

Provisioning the JpsPermission
The following configuration sample illustrates a grant allowing the code MyApp the
required JpsPermission to execute protected methods in the assertion login
module:

<grant>
 <grantee>
 <codesource>
 <url>file:${soa.oracle.home}/application/myApp.ear</url>

<--! soa.oracle.home is a system property set when
the server JVM is started -->

 </codesource>
</grantee>
<permissions>

 <permission>
 <class>oracle.security.jps.JpsPermission</class>
 <name>IdentityAssertion</name>
 </permission>
 </permissions>
</grant>

The following configuration sample illustrates a grant allowing the principal jdoe the
required JpsPermission to execute the assertion login module:

<grant>
 <grantee>
 <principals>
 <principal>
 <class>weblogic.security.principal.WLSUserImpl</class>
 <name>jdoe</name>
 </principal>
 </principals>
 </grantee>
 <permissions>

<permission>
 <class>oracle.security.jps.JpsPermission</class>
 <name>IdentityAssertion</name>
 </permission>
</permissions>

</grant>

Authentication for Java SE Applications

Authentication for Java SE Applicaitons 22-7

Implementing the CallbackHandler
The following code fragment illustrates an implementation of the callback handler:

import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.NameCallback;
import javax.security.auth.callback.PasswordCallback;
import javax.security.auth.callback.UnsupportedCallbackException;

import oracle.security.jps.callback.IdentityCallback;

public class CustomCallbackHandler implements CallbackHandler {
 private String name = null;
 private char[] password;

 public CustomCallbackHandler(String name) {
 this.name = name;
 }

 public CustomCallbackHandler(String name, char[] password) {
 this.name = name;
 this.password = password;
 }

 public void handle(Callback[] callbacks) throws IOException,
 UnsupportedCallbackException {
 for (Callback callback : callbacks) {
 if (callback instanceof NameCallback) {
 NameCallback nc = (NameCallback) callback;
 nc.setName(name);
 }
 else if (callback instanceof PasswordCallback) {
 PasswordCallback pc = (PasswordCallback) callback;
 pc.setPassword(password);
 }
 else if (callback instanceof IdentityCallback) {
 IdentityCallback idcb = (IdentityCallback)callback;
 idcb.setIdentity(name);
 idcb.setIdentityAsserted(true);
 idcb.setAuthenticationType("CUSTOM");
 } else {
 //throw exception
 throw new UnsupportedCallbackException(callback);
 }
 }
 }
}

The following code fragment illustrates the implementation of a login module:

import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.login.LoginContext;

import oracle.security.jps.service.JpsServiceLocator;
import oracle.security.jps.service.login.LoginService;

public class LoginModuleExample {
 private static final String CONTEXT_NAME = "JSE_UserAuthnAssertion";

 public LoginModuleExample() {
 super();

Authentication for Java SE Applications

22-8 Oracle Fusion Middleware Application Security Guide

 }

 public Subject assertUser(final String username) throws Exception {
 CallbackHandler cbh =
 AccessController.doPrivileged(new
PrivilegedExceptionAction<CallbackHandler>() {
 public CallbackHandler run() throws Exception {
 return new CustomCallbackHandler(username);
 }
 });
 Subject sub = new Subject();
 LoginService ls =
 JpsServiceLocator.getServiceLocator().lookup(LoginService.class);
 LoginContext context = ls.getLoginContext(sub, cbh);

 context.login();
 Subject s = context.getSubject();

 return s;
 }

 public Subject authenticate(final String username, final char[] password)
throws Exception {
 CallbackHandler cbh = new CustomCallbackHandler(username, password);
 Subject sub = new Subject();
 LoginService ls =
 JpsServiceLocator.getServiceLocator().lookup(LoginService.class);
 LoginContext context = ls.getLoginContext(sub, cbh);

 context.login();
 Subject s = context.getSubject();

 return s;
 }

 public static void main(String[] args) {
 LoginModuleExample loginModuleExample = new LoginModuleExample();
 try {
 System.out.println("authenticated user subject = " +
 loginModuleExample.authenticate("testUser",
 "welcome1".toCharArray()));
 System.out.println("asserted user subject = " +
 loginModuleExample.assertUser("testUser"));
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

22.2.4 Using the OPSS API LoginService in Java SE Applications
To invoke a login module programmatically in Java SE applications, use the method
getLoginContext of the interface
oracle.security.jps.service.login.LoginService.

Similar to the method LoginContext in the standard JAAS API, getLoginContext
returns an instance of a LoginContext object that can be used to authenticate a user,
but, more generally, it also allows the use of any number of login modules in any
order. Authentication is then performed on just those login modules and in the order
they were passed.

Configuration Examples

Authentication for Java SE Applicaitons 22-9

The following code fragment illustrates user authentication against a subset of login
modules in a prescribed order using getLoginContext:

import oracle.security.jps.service.ServiceLocator;
import oracle.security.jps.service.JpsServiceLocator;
import oracle.security.jps.service.login.LoginService;

//Obtain the login service
ServiceLocator locator = JpsServiceLocator.getServiceLocator();
LoginService loginService = locator.lookup(LoginService.class);

//Create the handler for given name and password
CallbackHandler cbh = new MyCallbackHandler("name", "password".toCharArray());

//Invoke login modules selectively in a given order
selectiveModules = new Sting[]{"lmName1", "lmName2", "lmName3"};
LoginContext ctx = loginService.getLoginContext(new Subject(), cbh,
selectiveModules);
ctx.login();
Subject s = ctx.getSubject();

selectiveModules is an array of (login module) names, and the authentication uses
precisely those login modules named in the array in the order listed in the array. Each
name in the array must be the name of a service instance listed in the default context of
the file jps-config-jse.xml.

The following fragment illustrates the configuration of a stack of two login modules:

<serviceProvider type="LOGIN" name="jaas.login.provider"
class="oracle.security.jps.internal.login.jaas.JaasLoginServiceProvider">
 <description>Common definition for any login module instances</description>
</serviceProvider>

<serviceInstance name="auth.loginmodule" provider="jaas.login.provider">
 <description>User Authentication Login Module</description>
 <property name="loginModuleClassName"
value="oracle.security.jps.internal.jaas.module.authentication.JpsUserAuthenticati
onLoginModule"/>
 <property name="jaas.login.controlFlag" value="REQUIRED"/>
</serviceInstance>

<serviceInstance name="custom.loginmodule" provider="jaas.login.provider">
 <description>My Custom Login Module</description>
 <property name="loginModuleClassName" value="my.custom.MyLoginModuleClass"/>
 <property name="jaas.login.controlFlag" value="REQUIRED"/>
</serviceInstance>

<jpsContexts default="aJpsContext">
 <jpsContext name="aJpsContext">
 <serviceInstanceRef ref="auth.loginmodule"/>
 <serviceInstanceRef ref="custom.loginmodule"/>
 </jpsContext>
</jpsContexts>

22.3 Configuration Examples
This section illustrates the configuration of the following artifacts:

■ XML policy and credential stores

■ XML and LDAP identity stores

Configuration Examples

22-10 Oracle Fusion Middleware Application Security Guide

■ Login Module Principals

XML Policy and Credential Stores Configuration
The following snippets illustrate the configuration of XML-based policy and credential
stores. The contents of an XML-based policy store is specified in the file
system-jazn-data.xml; the contents of an XML-based credential store is specified
in the file cwallet.sso.

<serviceProviders>
<serviceProvider
class="oracle.security.jps.internal.policystore.xml.XmlPolicyStoreProvider"
name="policystore.xml.provider" type="POLICY_STORE">
 <description>XML-based PolicyStore Provider</description>
 </serviceProvider>

<serviceProvider
class="oracle.security.jps.internal.credstore.ssp.SspCredentialStoreProvider"
name="credstoressp" type="CREDENTIAL_STORE">
 <description>SecretStore-based CSF Provider</description>
 </serviceProvider>
</serviceProviders>

<serviceInstances>
 <serviceInstance location="./" provider="credstoressp" name="credstore">
 <description>File-based Credential Store Service Instance</description>
 </serviceInstance>

<serviceInstance location="./system-jazn-data.xml"
provider="policystore.xml.provider" name="policystore.xml">
 <description>File-based Policy Store Service Instance</description>
 </serviceInstance>
</serviceInstances>

XML Identity Store Configuration
The following snippets illustrate the configuration of an XML-based identity store. The
contents of an XML-based identity store is specified in the file
system-jazn-data.xml.

<serviceProvider
 class="oracle.security.jps.internal.idstore.xml.XmlIdentityStoreProvider"
 name="idstore.xml.provider"
 type="IDENTITY_STORE">
 <description>XML-based Identity Store Service Provider</description>
</serviceProvider>

<serviceInstance
 location="./system-jazn-data.xml" provider="idstore.xml.provider"
 name="idstore.xml">
 <description>File Based Identity Store Service Instance</description>
 <property value="jazn.com" name="subscriber.name"/>
</serviceInstance>

LDAP Identity Store Configuration
The snippets below illustrate the configuration of an LDAP-based identity store, which
includes the required configuration of the bootstrap credentials to access the LDAP
server. The service instance property idstore.type can have the following values,
according to the LDAP used:

Configuration Examples

Authentication for Java SE Applicaitons 22-11

<serviceProvider
 class="oracle.security.jps.internal.idstore.ldap.LdapIdentityStoreProvider"
 name="idstore.ldap.provider" type="IDENTITY_STORE">
 <description>LDAP-based Identity Store Service Provider</description>
</serviceProvider>

<serviceProvider
 class="oracle.security.jps.internal.credstore.ssp.SspCredentialStoreProvider"
 name="credstoressp" type="CREDENTIAL_STORE">

 <description>SecretStore-based CSF Provider</description>
</serviceProvider>

<serviceInstance name="idstore.oid" provider="idstore.ldap.provider">
 <property name="subscriber.name" value="dc=us,dc=oracle,dc=com"/>
 <property name="idstore.type" value="OID"/>
<property value=ldap://myOID.com:3555 name="ldap.url"/>
 <extendedProperty>
 <name>user.search.bases</name>
 <values>

<value>cn=users,dc=us,dc=oracle,dc=com</value>
</values>

 </extendedProperty>
<extendedProperty>
 <name>group.search.bases</name>
 <values>

<value>cn=groups,dc=us,dc=oracle,dc=com</value>
</values>
</extendedProperty>
<property name="username.attr" value="uid"/>
 <propperty name="group.attr" value="cn"/>
</serviceInstance>

<serviceInstance location="./bootstrap" provider="credstoressp"
 name="bootstrap.cred">
 <property value="./bootstrap" name="location"/>
</serviceInstance>

Login Module Principals
The following properties are set in the out-of-the-box jps-config-jse.xml:

 <property name="oracle.security.jps.enterprise.user.class"
 value="weblogic.security.principal.WLSUserImpl"/>

Table 22–1 Idstore Types

Supported LDAP Idstore.type value

Oracle Internet Directory 10g and 11g OID

Oracle Virtual Directory 10g and 11g OVD

Sun Java System Directory Server 6.3 IPLANET

Active Directory 2003, 2008 ACTIVE_DIRECTORY

Novell eDirectory 8.8 EDIRECTORY

Oracle Directory Server Enterprise Edition
11gR1 (11.1.1.3+)

IPLANET

IBM Tivoli DS 6.2 OPEN_LDAP

OpenLDAP 2.2. OPEN_LDAP

Configuration Examples

22-12 Oracle Fusion Middleware Application Security Guide

 <property name="oracle.security.jps.enterprise.role.class"

value="weblogic.security.principal.WLSGroupImpl"/>

The above propeties must be used in any login module; this implies that the principals
that represent users and groups in the identity store are the following:

weblogic.security.principal.WLSUserImpl
weblogic.security.principal.WLSGroupImpl

23

Authorization for Java SE Applications 23-1

23Authorization for Java SE Applications

This chapter explains how to develop and configure authorization in Java SE
applications and lists some unsupported methods in the following sections:

■ Configuring Policy and Credential Stores in Java SE Applications

■ Unsupported Methods for File-Based Policy Stores

For details about the policy model, see Section 20.3, "The JAAS/OPSS Authorization
Model."

23.1 Configuring Policy and Credential Stores in Java SE Applications
The configuration of policy and credential stores in Java SE applications is explained
in the following sections:

■ Configuring File-Based Policy and Credential Stores

■ Configuring LDAP-Based Policy and Credential Stores

■ Configuring DB-Based OPSS Security Stores

For details about configuring authentication for Java SE applications, see Section 22.2,
"Authentication for Java SE Applications."

System properties should be set, as appropriate, for authorization to work in Java SE
applications. For a complete list of properties, see Section F.1, "OPSS System
Properties."

A Java SE application can use file-, LDAP-, or DB-based store providers; these services
are configured in the application file jps-config-jse.xml.

23.1.1 Configuring File-Based Policy and Credential Stores
A file-based policy store is specified in the file system-jazn-data.xml; a file-based
credential store is specified in the file cwallet.sso (this wallet file should not be
confused with the bootstrap file, also named cwallet.sso, which contains the
credentials to access LDAP stores, when the application security is LDAP-based).

For details about wallets, see Section 21.4.3, "Using a Wallet-Based Credential Store."
For details about modifying or adding bootstrap credentials, see Section 10.5.5,
"modifyBootStrapCredential," and Section 10.5.6, "addBootStrapCredential."

The following fragments illustrate the configuration of file-based policy and credential
stores, and the jpsContext that reference them:

<serviceProviders>
<serviceProvider type="CREDENTIAL_STORE" name="credstoressp"

 class="oracle.security.jps.internal.credstore.ssp.SspCredentialStoreProvider">

Configuring Policy and Credential Stores in Java SE Applications

23-2 Oracle Fusion Middleware Application Security Guide

<description>SecretStore-based CSF Provider</description>
</serviceProvider>
<serviceProvider type="POLICY_STORE" name="policystore.xml.provider"

class="oracle.security.jps.internal.policystore.xml.XmlPolicyStoreProvider">
<description>XML-based PolicyStore Provider</description>

 </serviceProvider>
</serviceProviders>

<serviceInstances>
<serviceInstance name="credstore" provider="credstoressp" location="./">
<description>File-based Credential Store Service Instance</description>

</serviceInstance>

<serviceInstance name="policystore.xml" provider="policystore.xml.provider"

location="./system-jazn-data.xml">
<description>File-based Policy Store Service Instance</description>

 <property name="oracle.security.jps.policy.principal.cache.key" value="false"/>
</serviceInstance>

</serviceInstances>

<jpsContexts default="TestJSE">
<jpsContext name="TestJSE">
<serviceInstanceRef ref="credstore"/>
<serviceInstanceRef ref="policystore.xml"/>
...

</jpsContext>
...

</jpsContexts>

Note the required setting of the property oracle.security.jps.policy.principal.cache.key
to false in the policy store instance.

23.1.2 Configuring LDAP-Based Policy and Credential Stores
This section assumes that an LDAP-based store has been set to be used as the policy
and credential stores; for details about setting up nodes in an Oracle Internet Directory,
see section Section 8.2.2, "Prerequisites to Using an LDAP-Based Security Store."

The following fragments illustrate the configurations of providers and instances for
LDAP-based policy and credential stores for a Java SE application:

<serviceProviders
 <serviceProvider type="POLICY_STORE" mame="ldap.policystore.provider"
 class=oracle.security.jps.internal.policystore.ldap.LdapPolicyStoreProvider"/>

 <serviceProvider type="CREDENTIAL_STORE" mame="ldap.credential.provider"
 class=oracle.security.jps.internal.credstore.ldap.LdapCredentialStoreProvider"/>
</serviceProviders>

<serviceInstances>
 <serviceInstance provider="ldap.policystore.provider" name="policystore.ldap">
 <property value="OID" name="policystore.type"/>
 <property value="bootstrap" name="bootstrap.security.principal.key"/>
 <property value="cn=PS1domainRC3" name="oracle.security.jps.farm.name"/>
 <property value="cn=myTestNode" name="oracle.security.jps.ldap.root.name"/>
 <property value="ldap://myComp.com:1234" name="ldap.url"/>
 </serviceInstance>

 <serviceInstance provider="ldap.credential.provider" name="credstore.ldap">
 <property value="bootstrap" name="bootstrap.security.principal.key"/>

Configuring Policy and Credential Stores in Java SE Applications

Authorization for Java SE Applications 23-3

 <property value="cn=PS1domainRC3" name="oracle.security.jps.farm.name"/>
 <property value="cn=myTestNode" name="oracle.security.jps.ldap.root.name"/>
 <property value="ldap://myComp.com:1234" name="ldap.url"/>
 </serviceInstance>
</serviceInstances>

The following fragment illustrates the configuration of the bootstrap credentials file
(cwallet.sso), which allows the program access to the LDAP server:

<serviceInstance location="./bootstrap" provider="credstoressp"
name="bootstrap.cred">
 <property value="./bootstrap" name="location"/>
</serviceInstance>

The following fragment illustrates the configuration of the necessary jpsContexts that
reference the instances above:

<jpsContexts default="TestJSE">
 <jpsContext name="TestJSE">
 <serviceInstanceRef ref="policystore.ldap"/>
 <serviceInstanceRef ref="credstore.ldap"/>
 </jpsContext>
 <jpsContext name="bootstrap_credstore_context">
 <serviceInstanceRef ref="bootstrap.cred"/>
 </jpsContext>
</jpsContexts>

The following code fragment illustrates how to obtain programmatically a reference to
the LDAP-based policy store configured above, and it assumes that the system
property oracle.security.jps.config has been set to the location of the file
jps-config-jse.xml:

String contextName="TestJSE"; ...
public static PolicyStore getPolicyStore(String contextName) {
 try-block
 JpsContextFactory ctxFact;
 ctxFact = JpsContextFactory.getContextFactory();
 JpsContext ctx = ctxFact.getContext(contextName);
 return ctx.getServiceInstance(PolicyStore.class);
 catch-block
...

23.1.3 Configuring DB-Based OPSS Security Stores
This section assumes that a DB-based store has been set to be used as the OPSS
security store. For details about setting up nodes in a DB, see section Section 8.3.1,
"Prerequisites to Using a DB-Based Security Store."

Note the following important points regarding the sample configuration below:

■ The value of the configuration property jdbc.url should be identical to the
name of the JDBC data source entered when the data source was created.

■ The values of the bootstrap credentials (map and key) must match those passed to
the WLST script addBootStrapCredential when the bootstrap credential was
created.

The following fragment illustrates configuration of DB-based policy, credential, and
key stores in the file jps-config-jse.xml:

<jpsConfig …>
 <propertySets>

Unsupported Methods for File-Based Policy Stores

23-4 Oracle Fusion Middleware Application Security Guide

 <propertySet name="props.db.1">
 <property value="cn=myDomain" name="oracle.security.jps.farm.name"/>
 <property value="DB_ORACLE" name="server.type"/>
 <property value="cn=myRoot" name="oracle.security.jps.ldap.root.name"/>
 <property name="jdbc.url" value="jdbc:oracle:thin:@myhost.com:1521/srv_name"/>
 <property name="jdbc.driver" value="oracle.jdbc.driver.OracleDriver"/>
 <property name="bootstrap.security.principal.key" value="myKeyName" />
 <property name="bootstrap.security.principal.map" value="myMapName" />

</propertySet>
</propertySets>
<serviceProviders>
<serviceProvider

class="oracle.security.jps.internal.policystore.OPSSPolicyStoreProvider"
 type="POLICY_STORE" name="policy.rdbms">
 <description>DBMS based PolicyStore</description>
 </serviceProvider>

<serviceProvider
class="oracle.security.jps.internal.credstore.rdbms.DbmsCredentialStoreProvider"
 type="CREDENTIAL_STORE" name="db.credentialstore.provider" >

 <serviceProvider class="oracle.security.jps.internal.keystore.KeyStoreProvider"
 type="KEY_STORE" name="keystore.provider" >

 <property name="provider.property.name" value="owsm"/>
</serviceProvider>
</serviceProviders>

<serviceInstances>
<serviceInstance name="policystore.rdbms" provider="db.policystore.provider">

 <propertySetRef ref = "props.db.1"/>
 <property name="policystore.type" value="DB_ORACLE"/>
 </serviceInstance>

 <serviceInstance name="credstore.rdbms" provider="db.credstore.provider">
 <propertySetRef ref = "props.db.1"/>

</serviceInstance>

<serviceInstance name="keystore.rdbms" provider="db.keystore.provider">
 <propertySetRef ref = "props.db.1"/>
 <property name="keystore.provider.type" value="db"/>

</serviceInstance>
</serviceInstances>

<jpsContexts default="default">
<jpsContext name="default">

 <serviceInstanceRef ref="policystore.rdbms"/>
 <serviceInstanceRef ref="credstore.rdbms"/>
 <serviceInstanceRef ref="keystore.rdbms"/>
 </jpsContext>
 </jpsContexts>
</jpsConfig>

23.2 Unsupported Methods for File-Based Policy Stores
This release does not support, for file-based policy stores, methods involving the
following features:

■ Bulk authorization

■ Complex queries

Unsupported Methods for File-Based Policy Stores

Authorization for Java SE Applications 23-5

■ Cascading deletions

Bulk authorization is encapsulated in the following method of the interface
oracle.security.jps.service.policystore:

java.util.Set<ResourceActionsEntry>
checkBulkAuthorization(javax.security.auth.Subject subject,

java.util.Set<ResourceActionsEntry> requestedResources)
throws PolicyStoreException

Complex queries relates to any method that takes a query. When the policy store is
file-based, the query must be simple; if such a method is passed a complex query and
the policy store is file-based, the method will throw an exception.

A simple query is a query with just one search criterion; a complex query is a query
with two or more search criteria; each call to addQuery adds a criterion to the query.

The following code fragment that illustrates the building of a simple query that
returns of all permissions with a display name matching the string MyDisplayName:

PermissionSetSearchQuery query = new PermissionSetSearchQuery();
query.addQuery(PermissionSetSearchQuery.SEARCH_PROPERTY.DISPLAY_NAME,

false,
ComparatorType.EQUALITY,
"MyDisplayName",
BaseSearchQuery.MATCHER.EXACT);

getPermissionSets(query);

The following example illustrates the building of a complex query that returns all
permission sets with a given resource type and a given resource instance name:

PermissionSetSearchQuery query = new PermissionSetSearchQuery();
query.addQuery(PermissionSetSearchQuery.SEARCH_PROPERTY.RESOURCE_TYPE,

false,
ComparatorType.EQUALITY,
"MyResourceType",
BaseSearchQuery.MATCHER.EXACT);

query.addQuery(PermissionSetSearchQuery.SEARCH_PROPERTY.RESOURCE_NAME,

false,
ComparatorType.EQUALITY,
"MyResourceInstanceName",
BaseSearchQuery.MATCHER.EXACT);

query.setANDMatch();
getPermissionSets(query);

Cascading deletions relates to any method that includes the Boolean argument
cascadeDelete. The only value allowed for this argument in case the policy store is
file-based is FALSE. Here is an example of such a method in the interface
ResourceTypeManager:

void deleteResourceType(EntryReference rtRef, boolean cascadeDelete)
throws PolicyObjectNotFoundException,

PolicyStoreOperationNotAllowedException,
PolicyStoreException

Unsupported Methods for File-Based Policy Stores

23-6 Oracle Fusion Middleware Application Security Guide

24

Developing with the Credential Store Framework 24-1

24 Developing with the Credential Store
Framework

This chapter describes how to work with the Credential Store Framework (CSF) APIs
in the following sections:

■ About the Credential Store Framework API

■ Overview of Application Development with CSF

■ Setting the Java Security Policy Permissions

■ Guidelines for the Map Name

■ Configuring the Credential Store

■ Steps for Using the API

■ Examples

■ Best Practices

24.1 About the Credential Store Framework API
A credential store is used for secure storage of credentials. The credential store
framework (CSF) API is used to access and perform operations on the credential store.

The Credential Store Framework:

■ enables you to manage credentials securely

■ provides an API for storage, retrieval, and maintenance of credentials in different
back-end repositories

■ supports file-based (Oracle wallet) and LDAP-based credential management

Critical (create, update, delete) functions provided by the CSF API include:

■ verifying if a credential map, or a credential with a given key, exists in the store

■ returning credentials associated with <mapname, key>

■ assigning credentials to <mapname, key>

■ deleting credentials associated with a given map name, or a given map name and
key

■ resetting credentials for a specified <mapname, key>

Operations on CredentialStore are secured by CredentialAccessPermission,
which implements the fine-grained access control model utilized by CSF.

Overview of Application Development with CSF

24-2 Oracle Fusion Middleware Application Security Guide

24.2 Overview of Application Development with CSF
Knowledge of the following areas is helpful in getting your applications to work with
the credential store framework:

■ Determining appropriate map names and key names to use. This is critical in an
environment with multiple applications storing credentials in the common
credential store.

■ Provisioning Java security policies.

Policy permissions are set in the policy store, which can be file-based
(system-jazn-data.xml) or LDAP-based. Setting appropriate permissions to
enable application usage without compromising the security of your data requires
careful consideration of permission settings.

■ How to define the credential store instance in jps-config.xml.

You will need to define the service instance in jps-config.xml only if manually
crafting the configuration file.

■ Steps to take in setting up the environment.

The steps are different for stand-alone applications and those that operate in an
Oracle WebLogic Server environment.

Subsequent sections provide details about each of these tasks.

24.3 Setting the Java Security Policy Permissions
The Oracle Platform Security Services policy provider is set when the server is started.
When the provider is file-based, the policy data is stored in
system-jazn-data.xml.

CSF supports securing credentials:

■ at the map level, or

■ with finer granularity for specific <mapname, key>

See Also:

■ Chapter 10, "Managing the Credential Store"

See Also: Section 9.1, "Managing the Policy Store".

Note: The file-based provider is already configured by default, and
can be changed to an LDAP-based provider. See Section 8.6,
"Migrating the OPSS Security Store".

Notes:

■ To properly access the CSF APIs, you need to grant Java
permissions in the policy store.

■ The code invoking CSF APIs needs code source permission. The
permissions are typically for specific code jars and not for the
complete application.

Setting the Java Security Policy Permissions

Developing with the Credential Store Framework 24-3

24.3.1 Guidelines for Granting Permissions
The Credential Store Framework relies on Java permissions to grant permissions to
credential store objects.

It is highly recommended that only the requisite permissions be granted, and no more.

24.3.2 Permissions Grant Example 1

 The CredentialStore maintains mappings between map names and credential
maps. Each map name is mapped to a CredentialMap, which is a secure map of keys
to Credential objects.

This example grants permissions for a specific map name and a specific key name of
that map.

<jazn-policy>
 <grant>
 <grantee>
 <principals>...</principals>

<!-- This is the location of the jar -->
<!-- as loaded with the run-time -->

 <codesource>
 <url>file:${oracle.deployed.app.dir}/<MyApp>${oracle.deployed.app.ext}</url>
 </codesource>
 </grantee>
 <permissions>

<permission>
<class>oracle.security.jps.service.credstore.

CredentialAccessPermission</class>
<name>context=SYSTEM,mapName=myMap,keyName=myKey</name>
<!-- All actions are granted -->
<actions>*</actions>

</permission>
 </permissions>
 </grant>
</jazn-policy>

where:

■ MapName is the name of the map (typically the name of the application) for which
you want to grant these permissions (read, write, update, and delete permissions
denoted by the wildcarded actions).

■ KeyName is the key name in use.

24.3.3 Permissions Grant Example 2
In this example permissions are granted for a specific map name and all its key names.

<jazn-policy>
 <grant>

WARNING: It is risky and inadvisable to grant unnecessary
permissions, particularly permissions to all maps and/or keys.

Note: In the examples, the application jar file name is
AppName.jar.

Guidelines for the Map Name

24-4 Oracle Fusion Middleware Application Security Guide

 <grantee>
 <principals>...</principals>
 <codesource>
 <url>file:${oracle.deployed.app.dir}/<MyApp>${oracle.deployed.app.ext}</url>
 </codesource>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.jps.service.credstore.
 CredentialAccessPermission</class>
 <name>context=SYSTEM,mapName=myMap,keyName=*</name>

<!-- Certain actions are explicitly specified -->
<!-- Compare to wild-card grant in previous example -->

 <actions>read,write,update,delete</actions>
 </permission>
 </permissions>
 </grant>
</jazn-policy>

24.4 Guidelines for the Map Name
When the domain-level credential store is used, name conflicts can arise with the
various map names in the store for different applications. To avoid this, each
application must have a unique map name in the store.

To achieve this, it is recommended that the map name you use uniquely identify the
application.

Within a given map name, an application can store multiple credentials each of which
is identifiable by a key. The map name and the key together constitute a primary key
within a given credential store.

If there is a requirement that an application use more than one map name, then
uniqueness continues to be maintained.

For example, consider three applications:

■ a Repository Creation Utility (RCU) based application,

■ a Oracle WebCenter application, and

■ a Fusion Middleware Control application

For RCU, a map name of RCU is chosen and the keys for three credentials are (say)
Key1, Key2, and Key3:

MapName -> RCU, Key -> Key1 and Credential -> PasswordCredential1
MapName -> RCU, Key -> Key2 and Credential -> PasswordCredential2
MapName -> RCU, Key -> Key3 and Credential -> GenericCredential1

For Oracle WebCenter, the map name is Web and the key for a single credential is
Key1:

MapName -> Web, Key -> Key1 and Credential -> PasswordCredential3

Note: The map names and key names used here are arbitrary and
chosen for illustration only. Your application can use altogether
different map names and/or keynames.

Steps for Using the API

Developing with the Credential Store Framework 24-5

For Fusion Middleware Control, the map name is denoted by EM and the keys for two
credentials are Key1 and Key2 respectively:

MapName -> EM, Key -> Key1 and Credential -> PasswordCredential4
MapName -> EM, Key -> Key2 and Credential -> GenericCredential2

Note that the map name and key name are just two arbitrary strings and can have any
valid string values in practice. However, implementing this way makes map names
easier to manage.

24.5 Configuring the Credential Store
The administrator needs to define the credential store instance in a configuration file
which contains information about the location of the credential store and the provider
classes. Configuration files are located in:

$DOMAIN_HOME/config/fmwconfig

and are named as follows:

■ jps-config.xml for Oracle WebLogic Server

■ jps-config-jse.xml for Java SE

For details, see Chapter 10, "Managing the Credential Store".

24.6 Steps for Using the API
You can use the credential store framework within Oracle WebLogic Server or in a
standalone environment.

■ Using the CSF API in a Standalone Environment

■ Using the CSF API in Oracle WebLogic Server

24.6.1 Using the CSF API in a Standalone Environment
The steps for using the API in a standalone environment are:

1. Set up the classpath. Ensure that the jps-manifest.jar file is in your classpath.
For details, see Required JAR in Classpath in Section 1.5.3, "Scenario 3: Securing a
Java SE Application".

2. Set up the policy; to provide access to the CSF APIs, you need to configure the
access permissions in the reference policy store. For examples, see Section 24.3,
"Setting the Java Security Policy Permissions".

3. Run the application.

Command-line options include:

-Doracle.security.jps.config
specifies the full path to the configuration file

-Djava.security.policy
specifies the location of the OPSS/Oracle WebLogic Server policy file

-Djava.security.debug=all
is helpful for debugging purposes

Examples

24-6 Oracle Fusion Middleware Application Security Guide

24.6.2 Using the CSF API in Oracle WebLogic Server
The steps for using the API in an Oracle WebLogic Server environment are:

1. The credential store service provider section of the jps-config.xml file is
configured out-of-the-box in the following directory:

$DOMAIN_HOME/config/fmwconfig

If needed, reassociate to an LDAP credential store.

2. Set up the policy; to provide access to the CSF APIs, you need to configure the
access permissions in the reference policy store. For examples, see Section 24.3,
"Setting the Java Security Policy Permissions".

3. Start Oracle WebLogic Server.

4. Deploy and test the application.

24.7 Examples
This section provides several examples of using the credential store framework APIs.
It shows:

■ a "utility" Java program which is called by all examples and performs the actual
credential store operations

■ the Java SE or Java EE code that calls the utility program,

■ the policy store setup

■ the configuration file

In each example, the test code is set up to show how the credential store operations are
affected by the permissions. For each example the policy file, the test code, and the
configuration file are provided to demonstrate how the provider information must be
specified, and to enable you to compare the defined permissions on the map/key with
the operation attempted in the code.

The section is structured as follows:

■ Code for CSF Operations

■ Example 1: Java SE Application with Wallet Store

■ Example 2: Java EE Application with Wallet Store

■ Example 3: Java EE Application with LDAP Store

24.7.1 Code for CSF Operations
The following common "utility" program performs the CSF API operations. It is called
by the example programs.

package demo.util;

import java.security.AccessController;
import java.security.PrivilegedAction;

import oracle.security.jps.JpsException;
import oracle.security.jps.service.credstore.Credential;
import oracle.security.jps.service.credstore.CredentialAlreadyExistsException;
import oracle.security.jps.service.credstore.CredentialFactory;
import oracle.security.jps.service.credstore.CredentialStore;

Examples

Developing with the Credential Store Framework 24-7

import oracle.security.jps.service.credstore.PasswordCredential;

public class CsfUtil {
 final CredentialStore store;
 public CsfUtil(CredentialStore store) {
 super();
 this.store = store;
 }

 private void doOperation() {
 try {
 PasswordCredential pc = null;
 try {
 // this call requires read privilege
 pc = (PasswordCredential)store.getCredential("pc_map", "pc_key");
 if (pc == null) {
 // key not found, create one
 pc = CredentialFactory.newPasswordCredential("jdoe",
 "password".toCharArray());
 // this call requires write privilege
 store.setCredential("pc_map", "pc_key", pc);
 System.out.print("Created ");
 }
 else {
 System.out.print("Found ");
 }

 System.out.println("password credential: Name=" + pc.getName() +
 ",Password=" +
 new String(pc.getPassword()));

 } catch (CredentialAlreadyExistsException e) {
 // ignore since credential already exists.
 System.out.println("Credential already exists for
 <pc_map, pc_key>: " + pc.getName() + ":" +
 new String(pc.getPassword()));
 }

 try {
 // permission corresponding to
 // "context=SYSTEM,mapName=gc_map,keyName=gc_key"
 byte[] secret =
 new byte[] { 0x7e, 0x7f, 0x3d, 0x4f, 0x10,
 0x20, 0x30 };
 Credential gc =
 CredentialFactory.newGenericCredential(secret);
 store.setCredential("gc_map", "gc_key", gc);
 System.out.println("Created generic credential");
 } catch (CredentialAlreadyExistsException e) {
 // ignore since credential already exists.
 System.out.println("Generic credential already exists
 for <gc_map,gc_key>");
 }

 try {
 //no permission for pc_map2 & pc_key2 to perform
 //operation on store
 Credential pc2 =
 CredentialFactory.newPasswordCredential("pc_jode2",
 "pc_password".toCharArray());

Examples

24-8 Oracle Fusion Middleware Application Security Guide

 store.setCredential("pc_map2", "pc_key2", pc2);

 } catch (Exception expected) {
 //CredentialAccess Exception expected here. Not enough permission
 System.out.println("This is expected :" +
 expected.getLocalizedMessage());
 }

 } catch (JpsException e) {
 e.printStackTrace();
 }

 }

 /*
 * This method performs a non-privileged operation. Either all code
 * in the call stack must have CredentialAccessPermission
 * OR
 * the caller must have the CredentialAccessPermission only and
 * invoke this operation in doPrivileged block
 */
 public void doCredOperation() {
 doOperation();
 }

 /*
 * Since this method performs a privileged operation, only current class or
 * jar containing this class needs CredentialAccessPermission
 */
 public void doPrivilegedCredOperation() {
 AccessController.doPrivileged(new PrivilegedAction<String>() {
 public String run() {
 doOperation();
 return "done";
 }
 });
 }
}

24.7.2 Example 1: Java SE Application with Wallet Store
This example shows a sample Java SE application using wallet credentials, that is, a
file-based provider.

The example illustrates:

■ how the permissions are set in an xml-based policy store (jazn-data-xml)

■ how the configuration file is set up

■ the Java SE code

jazn-data.xml File
For illustration, the example uses an xml-based policy store file which has the
appropriate permissions needed to access the given credential from the store. The file
defines the permissions for different combinations of map name (alias) and key. Other
combinations, or attempts to access the store beyond the permissions defined here,
will be disallowed.

Examples

Developing with the Credential Store Framework 24-9

Here the system property projectsrc.home is set to point to the directory
containing the Java SE application, and clientApp.jar is the application jar file
which is present in sub-directory dist.

The corresponding policy grant looks like this:

<grant>
 <grantee>
 <codesource>
 <url>file:${projectsrc.home}/dist/clientApp.jar</url>
 </codesource>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.jps.service.credstore.CredentialAccessPermission
 </class>
 <name>context=SYSTEM,mapName=pc_map,keyName=*</name>
 <actions>read,write</actions>
 </permission>
 <permission>
 <class>oracle.security.jps.service.credstore.CredentialAccessPermission
 </class>
 <name>context=SYSTEM,mapName=gc_map,keyName=gc_key</name>
 <actions>write</actions>
 </permission>
 </permissions>
</grant>

Note that no permission has been granted to
mapName=pc_map2,keyName=pc_key2, hence the setCredential call for this
map and key combination in Section 24.7.1, "Code for CSF Operations" is expected to
fail.

jps-config-jse.xml File

The location property of the credential store service shows the directory containing the
wallet file:

<jpsConfig>
 ...
 <serviceInstances>
 <serviceInstance name="credstore_file_instance"
 provider="credstore_file_provider">
 <property name="location" value="store" />
 </serviceInstance>
 </serviceInstances>
...
</jpsConfig>

Note: The default policy store to which this grant is added is
$DOMAIN_HOME/config/fmwconfig/system-jazn-data.xml.

Note: For the complete configuration file see the default file shipped
with the distribution at
$DOMAIN_HOME/config/fmwconfig/jps-config-jse.xml.

Examples

24-10 Oracle Fusion Middleware Application Security Guide

The wallet name is always cwallet.sso which is the default file-based Oracle wallet.

Java Code
Here is the Java SE code that calls the utility program.

package demo;

import java.io.ByteArrayInputStream;

import java.security.AccessController;
import java.security.PrivilegedAction;

import oracle.security.jps.JpsContext;
import oracle.security.jps.JpsContextFactory;
import oracle.security.jps.JpsException;
import oracle.security.jps.internal.policystore.JavaPolicyProvider;
import oracle.security.jps.jaas.JavaPolicy;
import oracle.security.jps.service.credstore.Credential;
import oracle.security.jps.service.credstore.CredentialAlreadyExistsException;
import oracle.security.jps.service.credstore.CredentialFactory;
import oracle.security.jps.service.credstore.CredentialStore;
import oracle.security.jps.service.credstore.PasswordCredential;
import oracle.security.jps.service.policystore.PolicyStore;
import oracle.security.jps.service.policystore.PolicyStoreException;

import demo.util.CsfUtil;

public class CsfApp {

 // set the OPSS policy provider explicitly, as required in a Java SE application
 static {
 java.security.Policy.setPolicy(new
oracle.security.jps.internal.policystore.JavaProvider());
 }

 public CsfApp() {
 super();
 }

 public static void main(String[] a) {
 // perform operation as privileged code
 JpsContextFactory ctxFactory;
 try {
 ctxFactory = JpsContextFactory.getContextFactory();
 JpsContext ctx = ctxFactory.getContext();

 CredentialStore store =
 ctx.getServiceInstance(CredentialStore.class);
 CsfUtil csf = new CsfUtil(store);
 // #1 - this call is in a doPrivileged block
 // #1 - this should succeed.
 csf.doPrivilegedCredOperation();

Note: The default value of location is "./", that is, the current
directory relative to the location of jps-config-jse.xml. To use a
different path, be sure to specify the full path.

Examples

Developing with the Credential Store Framework 24-11

 // #2 - this will also pass since granted all application
 // code necessary permission
 // NOTE: Since this call is not in a doPrivileged block,
 // this call would have failed if CredentialAccessPermission
 // wasn't granted to this class.
 /*
 csf.doCredOperation();
 */
 } catch (JpsException e) {
 e.printStackTrace();
 }

 }
}

24.7.3 Example 2: Java EE Application with Wallet Store
This example shows a sample Java EE application using wallet credentials. A simple
servlet calls the CSF API.

The jazn-data.xml File
The jazn-data.xml file for this example defines the appropriate permissions needed
to access the given credential from the store. The file defines both the codesource
permissions and the permissions for different combinations of map name (alias) and
key. Other combinations, or attempts to access the store beyond the permissions
defined here, will be disallowed.

A fragment of the policy file showing the corresponding policy grant looks like this:

<grant>
 <grantee>
 <codesource>
 <url>file:${oracle.deployed.app.dir}/<MyApp>${oracle.deployed.app.ext}</url>
 </codesource>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.jps.service.credstore.CredentialAccessPermission
 </class>
 <name>context=SYSTEM,mapName=pc_map,keyName=*</name>
 <actions>read,write</actions>
 </permission>
 <permission>
 <class>oracle.security.jps.service.credstore.CredentialAccessPermission
 </class>
 <name>context=SYSTEM,mapName=gc_map,keyName=gc_key</name>
 <actions>write</actions>
 </permission>

Notes:

■ It is not necessary to replace the JDK-wide policy object. Since the
example grant shown conforms to the OPSS XML policy store, it is
reasonable to set the policy provider to the OPSS provider.

■ In a Java EE environment for a JRF install for a supported
application server, the OPSS policy provider will have been
initialized.

Examples

24-12 Oracle Fusion Middleware Application Security Guide

 </permissions>
</grant>

Note that the first map and key permissions enable both read and write operations; the
second enable write operations but not reads.

jps-config.xml File
A portion of the default configuration file jps-config.xml showing the credential
store configuration is as follows:

<jpsConfig>
 <serviceProviders>
 <serviceProvider type="CREDENTIAL_STORE" name="credstoressp"
 class="oracle.security.jps.internal.credstore.ssp.SspCredentialStoreProvider">
 <description>SecretStore-based CSF provider</description>
 </serviceProvider>
 </serviceProviders>

 <serviceInstances>
 <serviceInstance name="credstore" provider="credstoressp">
 <property name="location" value="./" />
 </serviceInstance>
 </serviceInstances>

 <jpsContexts default="default">
 <jpsContext name="default">

...
 <serviceInstanceRef ref="credstore"/>

...
 </jpsContext>
 </jpsContexts>
</jpsConfig>

The location property specifies the wallet location; this specification is essentially
the same as in Example 1, except that in this example the wallet is located inside the
configuration directory. The wallet name is always cwallet.sso.

Java Code
package demo;

import demo.util.CsfUtil;

import java.io.IOException;
import java.io.PrintWriter;

import java.net.URL;

import java.util.Date;

import javax.servlet.*;
import javax.servlet.http.*;

import oracle.security.jps.JpsException;
import oracle.security.jps.service.JpsServiceLocator;
import oracle.security.jps.service.credstore.CredentialStore;

public class CsfDemoServlet extends HttpServlet {
 private static final String CONTENT_TYPE = "text/html; charset=windows-1252";

Examples

Developing with the Credential Store Framework 24-13

 public void init(ServletConfig config) throws ServletException {
 super.init(config);
 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException {
 response.setContentType(CONTENT_TYPE);
 PrintWriter out = response.getWriter();
 //ServletOutputStream out = response.getOutputStream();
 try {
 response.setContentType("text/html");
 out.println("<html><body bgcolor=\"#FFFFFF\">");
 out.println("Current Time: " + new Date().toString() +
 "

");

 //This is to get hold of app-level CSF service store
 //Outside app context, this call returns domain-level CSF store
 //This call also works in Java SE env
 final CredentialStore store =
 JpsServiceLocator.getServiceLocator().lookup(CredentialStore.class);
 CsfUtil csf = new CsfUtil(store);

 csf.doPrivilegedCredOperation();
 out.println("Credential operations completed using privileged code.");
 } catch (JpsException e) {
 e.printStackTrace(out);
 }
 }
}

The credential create operation is conducted using privileged code. The success of the
operation can be verified by using the WLST listCred command:

listCred(map="pc_map", key="pc_key")

Note About Java SE Environment
In the Java SE environment, the following calls are equivalent:

CredentialStore store =
JpsServiceLocator.getServiceLocator().lookup(CredentialStore.class);

and:

CredentialStore store =
JpsContextFactory.getContextFactory().getContext().getServiceInstance(CredentialSt
ore.class);

The latter call is shown in Section 24.7.2, "Example 1: Java SE Application with Wallet
Store".

24.7.4 Example 3: Java EE Application with LDAP Store
This example uses the same Java EE application used earlier in Example 2. The only
difference is that the credential store is LDAP-based and not file (wallet) based.

You need to configure the following properties in the domain-level jps-config.xml
file:

■ root name

Best Practices

24-14 Oracle Fusion Middleware Application Security Guide

<property name="oracle.security.jps.ldap.root.name"
value="cn=OracleJpsContainer"/>

■ farm name

<property name="oracle.security.jps.farm.name" value="cn=OracleFarmContainer"
/>

The configuration of the LDAP store in jps-config.xml is as follows:

<jpsConfig>
 <serviceProviders>
 <serviceProvider name="credstore_ldap_provider"
 class="oracle.security.jps.internal.credstore.ldap.LdapCredentialStoreProvider">
 <description>Prototype LDAP-based CSF provider</description>
 </serviceProvider>
 </serviceProviders>

 <serviceInstances>

<serviceInstance provider="ldap.credentialstore.provider"
name="credstore.ldap">

 <property value="bootstrap"
name="bootstrap.security.principal.key"/>

 <property value="cn=wls-jrfServer"
name="oracle.security.jps.farm.name"/>

 <property value="cn=jpsTestNode"
name="oracle.security.jps.ldap.root.name"/>

 <property value="ldap://mynode.us.mycorp.com:1234"
name="ldap.url"/>

</serviceInstance>
 </serviceInstances>

 <jpsContexts default="appdefault">
 <jpsContext name="appdefault">
 <serviceInstanceRef ref="credstore_ldap_instance"/>
 </jpsContext>
 </jpsContexts>
</jpsConfig>

The highlighted lines define the LDAP parameters necessary to locate the credentials.

24.8 Best Practices
In a clustered environment, use the Credential Store Mbean API over the Credential
Store Framework API to create, retrieve, update, and delete credentials for an
application.

If you are simply reading credentials, however, either API can be used.

25

Developing with the User and Role API 25-1

25Developing with the User and Role API

This chapter contains these topics:

■ Introduction to the User and Role API Framework

■ Summary of Roles and Classes

■ Working with Service Providers

■ Searching the Repository

■ User Authentication

■ Creating and Modifying Entries in the Identity Store

■ SSL Configuration for LDAP-based User and Role API Providers

■ The User and Role API Reference

■ Developing Custom User and Role Providers

■ The User and Role SPI Reference

25.1 Introduction to the User and Role API Framework
The User and Role API framework allows applications to access identity information
(users and roles) in a uniform and portable manner regardless of the particular
underlying identity repository. The repository could be an LDAP directory server such
as Oracle Internet Directory, Active Directory (from Microsoft), or Oracle Directory
Server Enterprise Edition, or could be a database, flat file, or some other custom
repository.

This API framework provides a convenient way to access repositories
programmatically in a portable way, freeing the application developer from the
potentially difficult task of accounting for the intricacies of particular identity sources.
The framework allows an application to work against different repositories
seamlessly. An application can switch between various identity repositories without
any code changes being required.

Note: The User and Role API is deprecated and may be withdrawn
in a future release. Your new applications should be developed on the
Identity Governance Framework. Plan to migrate existing applications
to the Identity Governance Framework in a future release.

For details, see the Oracle Fusion Middleware Identity Governance
Framework ArisID API Developer's Guide.

Summary of Roles and Classes

25-2 Oracle Fusion Middleware Application Security Guide

Supported operations include creating, updating, or deleting users and roles, or
searching users and roles for attributes or information of interest. For example, you
may want to search for the e-mail addresses of all users in a certain role.

You can use a basic usage model (without container integration) or a usage model
with container integration that allows your code to be portable.

When the application is intended to run in the context of an Oracle WebLogic Server
container, the principal class should be cast to
weblogic.security.principal.WLSUserImpl.

A Note about Using the User and Role API
As a general rule of thumb, authentication should only be performed by
authentication providers, not through the User and Role API.

Additionally, it is recommended that authentication providers be configured with the
connect DN of a user that does not have write privileges.

25.1.1 User and Role API and the Oracle WebLogic Server Authenticators
The User and Role API is automatically configured to use the first Oracle WebLogic
Server authenticator and does not require any special configuration. F

Note, however, that configuration is required if the User and Role API is going against
other authenticators.

The API can access data only from the first LDAP authenticator listed in an Oracle
WebLogic Server domain. When more than one authenticator is present, the
precedence is determined by their control flag priority. If both have the same priority,
the first one is picked. Any LDAP authenticators below the first one on the list are not
accessed.

About Concurrent Use of WebLogic APIs
Your application should not try to use both the User and Role API and the WebLogic
LDAPAuthenticator API (such as EmbeddedLDAPAuthenticator,
OracleInternetDirectoryAuthenticator, OracleVirturalDirectoryAuthenticator) to work
on entries in the same LDAP server concurrently. To understand why, consider two
LDAP clients, both with caching enabled, that access the same LDAP server; one is
deleting entries, and the other tries to use the deleted entries.

The conflict caused by the two clients cannot be resolved unless caching capability is
disabled, and the LDAP operations are coordinated among the clients.

25.2 Summary of Roles and Classes
Table 25–1 lists the classes and interfaces of the User and Role API.

Note: These APIs are not meant for authentication or authorization
functions, but for maintaining identity information.

Note: The following are required to invoke the User and Role API:

■ The identity store is LDAP-based

■ The domain administration server is up and running

Summary of Roles and Classes

Developing with the User and Role API 25-3

Table 25–1 Classes and Interfaces in the User and Role API

Name Type Description

AuthenticationException Class This exception is thrown when an authentication error
occurs while accessing the identity store. An
authentication error can happen, for example, when the
credentials supplied by the user program is invalid or
otherwise fails to authenticate the user to the identity
store.

AuthenticationWarningException Class This class extends IMException (see below).

ComplexSearchFilter Interface A complex search filter represents a complex logical
expression that can be used to filter results from
underlying identity repository. Complex search filter
combines multiple SearchFilter instances together with
a single logical operator (AND/OR). Each of these
component SearchFilter can itself be a complex filter,
enabling you to form a complex nested search filter.

See the Javadoc (Section 25.9, "The User and Role API
Reference") for an example of creating a complex search
filter.

ConfigurationException Class This exception is thrown when there is a configuration
problem. This can arise when configuration
information required to access the service provider is
malformed or missing.

Identity Interface This interface represents a basic identity in the identity
repository.

IdentityStore Interface IdentityStore represents a handle to actual identity
repository. This handle can be used to search, create,
drop, and modify identities in the repository.

IdentityStoreFactory Interface IdentityStoreFactory is a programmatic representation
of underlying identity repository. Actual handle to the
identity repository can be obtained by calling
getIdentityStoreInstance(Hashtable) on this
object.

IdentityStoreFactoryBuilder Class This class builds the identity store factory.

IMException Class This exception is the superclass of all the exceptions
thrown by ADF identity management APIs. The nature
of failure is described by the name of the subclass.

See the Javadoc (Section 25.9, "The User and Role API
Reference") for a list of the direct known subclasses.

ModProperty Class This class represents the modification of a property
object. ModProperty is called with property name,
modified value(s) and type of modification.
Modification type can be one of ADD, REMOVE, or
REPLACE.

NoPermissionException Class This exception is thrown when attempting to perform
an operation for which the API caller has no
permission. The access control/permission model is
dictated by the underlying identity store.

ObjectExistsException Class This exception is thrown when an identity with given
name is already present in the underlying identity
store. For example this exception is thrown when create
user API call tries to create a user with the name of an
existing user.

ObjectNotFoundException Class This exception is thrown when a specified identity does
not exist in the identity store.

OperationFailureException Class This exception is thrown when an operation fails
during execution in the underlying identity store.

Summary of Roles and Classes

25-4 Oracle Fusion Middleware Application Security Guide

OperationNotSupportedException Class This exception is thrown by an service provider if it
does not support an operation. For example this can be
thrown by the service provider, in
IdentityStore.getUserManager() call, if it does not
provide support for UserManager.

PasswordPolicyException Class This class extends IMException (see above).

Property Class Property contains name-value information.

PropertySet Class A collection of property name and value pairs. Property
class is used to represent the property name and
value(s) pair. PropertySet guarantees that no two
properties have same name.

Role Interface This interface represents a role in the identity store.

RoleManager Interface This interface represents a role manager that manages
execution of various operations, involving roles, in the
identity repository.

RoleProfile Interface This interface represents the detailed profile of a role.

SearchFilter Interface This interface represents a search filter to be used in
searching the identity repository.

SearchParameters Class This class represents search parameters that need to be
specified while performing searches on the identity
store. These search parameters are:

■ Search filter,

■ Search identity type,

■ page size,

■ time limit, and

■ count limit.

SearchResponse Interface This interface represents search results obtained after
searching the identity store. Its implementation is
service provider-specific.

SimpleSearchFilter Interface This interface represents a simple search filter to be
used while searching the identity repository. Each
simple search filter is a logical expression consisting of
a search attribute/property, evaluation operator and
value. This logical expression will be applied to the
underlying identity repository while searching and
matching results will be filtered out.

See the Javadoc (Section 25.9, "The User and Role API
Reference") for an example of a simple search filter.

StoreConfiguration Interface StoreConfiguration holds the configuration properties
for a given IdentityStore instance. The behavior of this
IdentityStore instance can be controlled by changing
the properties in this configuration object. The actual
configuration properties and their values are specific to
the service provider. Some service providers may not
support any configuration property at all.

SubjectParser Interface This interface provides utility methods for extracting
out the user and role principals from the given Subject.
Service provider needs to provide the implementation
for this interface.

User Interface This interface represents a user in the identity store.

UserManager Interface This interface represents a user manager that manages
execution of various operations, involving users, in the
identity repository.

Table 25–1 (Cont.) Classes and Interfaces in the User and Role API

Name Type Description

Working with Service Providers

Developing with the User and Role API 25-5

25.3 Working with Service Providers
In this section we describe basic provider concepts and life cycle, and explain how to
set up, configure, and use the provider to work with user repositories in an Oracle
Platform Security Services environment.

After ensuring the environment is properly set up, implementing the provider
involves:

■ identifying the underlying repository and selecting the provider factory class
appropriate to that repository

■ creating instances of the provider factory and the identity store

■ configuring the provider

This section contains these topics:

■ Understanding Service Providers

■ Setting Up the Environment

■ Selecting the Provider

■ Properties for Provider Configuration

■ Programming Considerations

■ Provider Life cycle

25.3.1 Understanding Service Providers
Although the User and Role API is called for user and role management, the API does
not directly interact with the underlying identity repository. Instead, security
applications make use of providers which carry out the actual communication with the
underlying repository. This offers flexibility since the same code can be used with
various underlying repositories simply by modifying the provider/connection
information.

25.3.2 Setting Up the Environment

Jar Configuration
Several jars must be present in your environment:

■ the provider jar file, which implements the desired underlying identity repository

■ the User and Role API jars

UserProfile Interface This interface represents the detailed profile of a user. It
allows for user properties to be accessed in a generic
manner.

You can read or modify any property of user with
these APIs:

■ getProperty(java.lang.String)

■ getProperties(java.lang.String[])

■ setProperty(oracle.security.idm.ModProperty)

■ setProperties(oracle.security.idm.ModProperty[])

Table 25–1 (Cont.) Classes and Interfaces in the User and Role API

Name Type Description

Working with Service Providers

25-6 Oracle Fusion Middleware Application Security Guide

■ other component jars which the provider may need, including Toplink, jdbc, xdb,
and so on

Ensure that your application classpath includes the relevant jars.

User Classes in jps-config.xml (Oracle Virtual Directory only)

For efficiency when fetching user attributes, add the following entry in
jps-config.xml to specify the user object classes for the search:

.

.
 <serviceInstance name="idstore.ldap" provider="idstore.ldap.provider">
 <property name="idstore.config.provider"
value="oracle.security.jps.wls.internal.idstore.WlsLdapIdStoreConfigProvider"/
>
 <property name="CONNECTION_POOL_CLASS"
value="oracle.security.idm.providers.stdldap.JNDIPool"/>
 <extendedProperty>
 <name>user.object.classes</name>
 <values>
 <value>top</value>
 <value>person</value>
 <value>inetorgperson</value>
 <value>organizationalperson</value>
 <value>otherActiveDirectorySpecificClasses</value>
 ...
 </values>
 </extendedProperty>
.
.

25.3.3 Selecting the Provider
Oracle Platform Security Services support a range of user repositories, including the
following LDAP directories:

■ Microsoft Active Directory

■ Novell eDirectory

■ Oracle Directory Server Enterprise Edition

■ Oracle Internet Directory

■ Oracle Virtual Directory

■ OpenLDAP

■ Oracle WebLogic Server Embedded LDAP Directory

■ Microsoft ADAM

■ IBM Tivoli

The choice of identity repository dictates the provider class to use with the provider.
The provider class must implement the interface specified by the User and Role API
framework. Table 25–2 shows the available provider classes:

Note: Make this change only for the Oracle Virtual Directory
authenticator.

Working with Service Providers

Developing with the User and Role API 25-7

25.3.4 Creating the Provider Instance
Once the provider’s class name is identified, take these steps to create the provider:

1. Use the getIdentityStoreFactory method of the IdentityStoreFactoryBuilder
class to build a factory instance. The builder class API accepts:

■ the provider class name

■ the necessary environment properties from a hash table

2. Use the getIdentityStoreInstance method of the IdentityStoreFactory class
to create a store instance

The following example creates a factory instance for the Oracle Internet Directory
store:

IdentityStoreFactoryBuilder builder = new
IdentityStoreFactoryBuilder ();

IdentityStoreFactory oidFactory = builder.getIdentityStoreFactory(

“oracle.security.idm.providers.oid.OIDIdentityStoreFactory", factEnv);

Now obtain the store reference, which is the actual handle to the identity store:

oidStore = oidFactory.getIdentityStoreInstance(storeEnv);

Note that two hash-table objects are supplied in these examples:

■ the factEnv hash table provides the factory instance environment

■ the storeEnv hash table provides the store instance environment

25.3.5 Properties for Provider Configuration
Configuration is dependent on the identity store provider being used.

Table 25–2 LDAP Identity Provider Classes

Provider Factory Name

Microsoft Active
Directory

oracle.security.idm.providers.ad.ADIdentityStoreFactory

Novell eDirectory oracle.security.idm.providers.edir.EDIdentityStoreFactory

Oracle Directory
Server Enterprise
Edition

oracle.security.idm.providers.iplanet.IPIdentityStoreFactory

Oracle Internet
Directory

oracle.security.idm.providers.oid.OIDIdentityStoreFactory

OpenLDAP oracle.security.idm.providers.openldap.OLdapIdentityStoreFactory

Oracle WebLogic
Server Embedded
LDAP Directory

oracle.security.idm.providers.wlsldap.WLSLDAPIdentityStoreFactory

Oracle Virtual
Directory

oracle.security.idm.providers.ovd.OVDIdentityStoreFactory

Microsoft ADAM oracle.security.idm.providers.ad.ADIdentityStoreFactory

IBM Tivoli oracle.security.idm.providers.openldap.OLdapIdentityStoreFactory

Working with Service Providers

25-8 Oracle Fusion Middleware Application Security Guide

You can fine-tune the behavior of all types of LDAP-based identity store providers by
configuring a number of properties for the factory instance and the store instance. The
following properties are relevant for LDAP-based providers only:

■ URL

■ the port at which the repository runs

■ the user and password to use in accessing the repository

For a list of supported LDAP-based providers, see Section 25.3.3, "Selecting the
Provider".

This section explains the following provider configuration topics:

■ Start-time and Run-time Configuration

■ ECID Propagation

■ When to Pass Configuration Values

25.3.5.1 Start-time and Run-time Configuration
The properties that can be configured fall into two categories:

■ Start-time configuration - the naming convention uses property names starting
with ST_.

■ Run-time configuration - the naming convention uses property names starting
with RT_.

Start-time Configuration Properties
Start-time configuration is performed only once, and once set, the configuration
settings persist for the duration of the provider’s lifetime.

With the exception of ST_SUBSCRIBER_NAME, the start-time properties are specified
when creating the provider factory instance; ST_SUBSCRIBER_NAME is set when
creating the store instance.

Table 25–3 lists the start-time configuration properties:

Table 25–3 Start-time Identity Provider Configuration Properties

Property Name Description

ST_BINARY_ATTRIBUTES An array of Array of String objects containing the names of
binary attributes stored in the underlying LDAP server. The
provider will treat these attributes as binary while sending data
to and receiving it from the LDAP server.

ST_CONNECTION_POOL External connection pool, an instance of class
oracle.idm.connection.ConnectionPool. If set, the provider uses
this pool to acquire connections to the LDAP server, and the
properties ST_SECURITY_PRINCIPAL, ST_SECURITY_
CREDENTIALS, and ST_LDAP_URL are ignored.

ST_USER_NAME_ATTR The attribute used to determine the username of the user in the
identity repository.

ST_GROUP_NAME_ATTR The attribute used to determine the role name in the identity
repository.

ST_USER_LOGIN_ATTR The attribute used to determine the login ID of the user in the
identity repository.

ST_SECURITY_PRINCIPAL The user (principal).

Working with Service Providers

Developing with the User and Role API 25-9

Run-time Configuration Properties
Properties set at runtime affect all subsequent operations executed by the provider and
control the behavior of the IdentityStore instance of the provider.

Runtime properties are configured by specifying the appropriate parameters and
values for the StoreConfiguration object obtained from the IdentityStore instance. All
runtime properties have default values when the IdentityStore instance is created, and
can be subsequently changed.

Table 25–3 lists the run-time configuration properties:

ST_SECURITY_
CREDENTIALS

The credentials necessary to log in to the identity repository.

ST_LDAP_URL The URL of the identity repository.

ST_MAX_SEARCHFILTER_
LENGTH

The maximum length of the search filter allowed by the LDAP
server.

ST_LOGGER The logger object that is to be used by the API.

ST_SUBSCRIBER_NAME The base DN of operations in the LDAP server. This property is
specified while creating the IdentityStore instance and is used to
determine default values for remaining properties. This
property must be specified while creating the IdentityStore
instance; however, subsequent changes to its value have no
effect on IdentityStore behavior.

ST_CONNECTION_POOL_
CLASS

The fully-qualified Connection Pool implementation class name.

ST_INITIAL_CONTEXT_
FACTORY

The fully-qualified class name of the initial context factory that
will create the initial context.

Table 25–4 Runtime Identity Provider Configuration Properties

Property Name Description

RT_USER_OBJECT_
CLASSES

array of object classes required to create a user in the LDAP
server

RT_USER_MANDATORY_
ATTRS

attribute names that must be specified while creating a user

RT_USER_CREATE_BASES Base DNs in the LDAP server where a new user can be created

RT_USER_SEARCH_BASES

RT_USER_SEARCH_BASES the base DNs in the LDAP server that can be searched for users

RT_USER_FILTER_
OBJECT_CLASSES

array of object classes to use when searching for a user in the
LDAP server

RT_GROUP_OBJECT_
CLASSES

array of object classes required to create a role in the LDAP
server

RT_GROUP_
MANDATORY_ATTRS

attribute names that must be specified when creating a role

RT_GROUP_CREATE_
BASES

the base DNs in the LDAP server where a new role can be
created

RT_GROUP_SEARCH_
BASES

the base DNs in the LDAP server that can be searched for a role

Table 25–3 (Cont.) Start-time Identity Provider Configuration Properties

Property Name Description

Working with Service Providers

25-10 Oracle Fusion Middleware Application Security Guide

25.3.5.2 ECID Propagation
By default, ECID support is disabled in the User and Role API.

When initializing the API, set the ST_ECID_ENABLED property to true for ECID
support, as illustrated in the following example:

factEnv.put(OVDIdentityStoreFactory.ST_ECID_ENABLED, "true");

25.3.5.3 When to Pass Configuration Values
You can specify configuration data:

■ when creating a factory instance

■ when creating a store instance

RT_GROUP_MEMBER_
ATTRS

An array of member attribute(s) in a role. All members of a role
have value(s) for the attribute(s).

RT_GROUP_FILTER_
OBJECT_CLASSES

an array of object classes to use when searching for a role in the
LDAP server

RT_USER_SELECTED_
CREATE_BASE

The currently selected user create base. The user will be created
in this base DN upon execution of the createUser() call. If the
selected create base is null and the ST_SUBSCRIBER_NAME is
not specified, the first supplied value of the RT_USER_
CREATE_BASE is used. If the ST_SUBSCRIBER_NAME is
specified, the default value is relative to the subscriber name
based on the identity store type.

RT_GROUP_SELECTED_
CREATE_BASE

The currently selected role create base. This role will be created
in this base DN upon execution of the createRole() call. If the
selected create base is null and the ST_SUBSCRIBER_NAME is
not specified, the first supplied value of the RT_GROUP_
CREATE_BASE is used. If the ST_SUBSCRIBER_NAME is
specified, the default value is relative to the subscriber name
based on the identity store type.

RT_GROUP_GENERIC_
SEARCH_BASE

A generic role search base to use in searching the roles related to
a given identity. For example while searching all granted roles
for a user, or all managed roles for a user, we need a search base
under which all the required groups would reside; this helps in
optimizing the searches. This search base is usually a common
parent. By default, in all LDAP providers this value is set to the
subscriber name if provider, else it uses the first group search
base.

RT_SEARCH_TYPE determines whether a search on the LDAP server should be of
type SIMPLE, PAGED, or VIRTUAL_LIST_VIEW

Note: This action is necessary only if either Oracle Internet Directory
or Oracle Virtual Directory is used as the back-end identity store. It is
not necessary if using other repositories such as Microsoft Active
Directory or Novell eDirectory.

See Also: Section 25.3.6, "Configuring the Provider when Creating a
Factory Instance"

Table 25–4 (Cont.) Runtime Identity Provider Configuration Properties

Property Name Description

Working with Service Providers

Developing with the User and Role API 25-11

■ at runtime, through a store configuration object

25.3.6 Configuring the Provider when Creating a Factory Instance
This section contains topics related to configuring the provider during factory instance
creation.

Configuration at this stage affects the entire factory object as well as objects created
using this specific factory instance. Many start-time properties are set at this time,
including these common properties:

■ ST_LDAP_URL - the URL of the LDAP repository

■ ST_SECURITY_PRINCIPAL - the user name

■ ST_SECURITY_CREDENTIAL - the user credentials required to connect to the
repository

25.3.6.1 Oracle Internet Directory Provider
In this example, the provider is configured when setting up an Oracle Internet
Directory (OID) factory:

IdentityStoreFactoryBuilder builder = new
IdentityStoreFactoryBuilder();

IdentityStoreFactory oidFactory = null;
Hashtable factEnv = new Hashtable();

// Creating the factory instance
factEnv.put(OIDIdentityStoreFactory.ST_SECURITY_PRINCIPAL,

"<User DN>");
factEnv.put(OIDIdentityStoreFactory.ST_SECURITY_CREDENTIALS,

"<User password>");
factEnv.put(OIDIdentityStoreFactory.ST_LDAP_URL,

"ldap://ldaphost:port/");
oidFactory = builder.getIdentityStoreFactory(

"oracle.security.idm.providers.oid.
OIDIdentityStoreFactory", factEnv);

25.3.6.2 Using Existing Logger Objects
You can supply named logger objects to the User and Role API. The API uses the
specified logger to log messages. You must supply the external logger’s name as an
environment variable during the factory creation.

Here is an example:

Logger mylogr = Logger.getLogger("mylogger.abc.com");
FileHandler fh = new FileHandler("userroleapi.log");
mylogr.addHandler(fh);

See Also: Section 25.3.7, "Configuring the Provider when Creating a
Store Instance"

See Also: Section 25.3.8, "Runtime Configuration"

Note: The values in italics must be replaced with appropriate values
prior to execution.

Working with Service Providers

25-12 Oracle Fusion Middleware Application Security Guide

…

factEnv.put(OIDIdentityStoreFactory.ST_LOGGER_NAME,
"mylogger.abc.com");
oidFactory = builder.getIdentityStoreFactory(

"oracle.security.idm.providers.oid.
OIDIdentityStoreFactory", factEnv);

This code directs that all the log messages should be redirected to the log file named
userroleapi.log.

25.3.6.3 Supplying Constant Values
You can overwrite constants or pre-supply values for missing constants by supplying
the map in the ST_PROPERTY_ATTRIBUTE_MAPPING property during factory
creation.

This example code sets the mapping of RoleProfile.OWNER to the "myowner"
attribute. In this way, all operations related to the owner, such as getOwners(),
getOwnedRoles(), and so on, are performed using this attribute.

factEnv.put
 (IPIdentityStoreFactory.ST_SECURITY_PRINCIPAL, "<User DN>");
factEnv.put
 (IPIdentityStoreFactory.ST_SECURITY_CREDENTIALS, "<User password>");
factEnv.put(IPIdentityStoreFactory.ST_LDAP_URL,
 "ldap://ldaphost:port/");

Map m = new Hashtable();
m.put(RoleProfile.OWNER, "myowner");

factEnv.put
 (IPIdentityStoreFactory.ST_PROPERTY_ATTRIBUTE_MAPPING, m);

ipFactory = builder.getIdentityStoreFactory(
 "oracle.security.idm.providers.iplanet.IPIdentityStoreFactory",
 factEnv);

25.3.6.4 Configuring Connection Parameters
You can configure the connection pool parameters for minimum/maximum
connections using ST_CONNECTION_POOL_MIN_CONNECTIONS and ST_
CONNECTION_POOL_MAX_CONNECTIONS respectively. By default, the values
for these parameters are "0" and "10" respectively. There is an additional restriction
that:

(ST_CONNECTION_POOL_MAX_CONNECTIONS - ST_CONNECTION_POOL_MIN_CONNECTIONS) >= 10

Here is an example:

factEnv.put
(LDIdentityStoreFactory.ST_CONNECTION_POOL_MIN_CONNECTIONS, "3");

factEnv.put

(LDIdentityStoreFactory.ST_CONNECTION_POOL_MAX_CONNECTIONS, "16");

Working with Service Providers

Developing with the User and Role API 25-13

25.3.6.5 Configuring a Custom Connection Pool Class
To use a custom connection pool, you must provide the fully qualified class name of
the custom connection pool class, as follows:

factEnv.put(OIDIdentityStoreFactory.ST_CONNECTION_POOL_CLASS,
"oracle.security.idm.providers.stdldap.JNDIPool");

For related information, see Section L.6, "Failure to Connect to the Embedded LDAP
Authenticator."

25.3.7 Configuring the Provider when Creating a Store Instance
The IdentityStore configuration affects the store object and all objects that are created
using this store instance. A configuration parameter commonly used with the store is
ST_SUBSCRIBER_NAME, which is the only start-time property accepted here. (All the
runtime properties can be supplied during identity store creation.)

Continuing with the earlier example in Section 25.3.6, "Configuring the Provider when
Creating a Factory Instance" which created a factory instance, this code creates a
handle instance to the store.

IdentityStore oidStore = null;
Hashtable storeEnv = new Hashtable();

// Creating the store instance
storeEnv.put(OIDIdentityStoreFactory.ST_SUBSCRIBER_NAME,
 "dc=us,dc=oracle,dc=com");
oidStore = oidFactory.getIdentityStoreInstance(storeEnv);

25.3.8 Runtime Configuration
Earlier, in Section 25.3.6, "Configuring the Provider when Creating a Factory Instance"
and Section 25.3.7, "Configuring the Provider when Creating a Store Instance", we
demonstrated how to perform configuration when creating an instance. To facilitate
adding and modifying properties at runtime, the User and Role APIs also provide a
Configuration class.

The Configuration instance can be obtained from the store instance using the
IdentityStore.getStoreConfiguration() API call. Properties can be modified
using the configuration object.

Only runtime properties can be modified using this approach, and the effect is visible
only at runtime.

This example sets the RT_USER_SEARCH_BASES property:

StoreConfiguration conf = oidStore.getStoreConfiguration();
conf.setProperty(“RT_USER_SEARCH_BASES”, “dc=us,dc=oracle,dc=com”);

25.3.9 Programming Considerations
This section contains tips for working with providers and provider artifacts.

Note: Directories require that you supply a valid subscriber name.
For Oracle Internet Directory, you can supply the STsubscriber name
as either a proper DN or as the nickname of the realm.

Working with Service Providers

25-14 Oracle Fusion Middleware Application Security Guide

25.3.9.1 Provider Portability Considerations
To ensure that your application is portable when switching providers (say, from
OpenLDAP provider to Oracle Internet Directory provider or the converse), follow
these guidelines when working with the User and Role API:

1. Use only the corresponding oracle.security.idm.UserProfile constants
to refer to user properties. Avoid using native names which are not portable across
identity repositories. For example, if the application needs to obtain a user’s login
name, fetch it using the UserProfile.USER_NAME constant:

Property prop = usrprofile.getProperty(UserProfile.USER_NAME);

2. For obvious reasons, UserProfile constants are provided for most standard
user properties but not for all possible properties. If the application needs to
obtain all the properties of a user generically, use the following code:

UserProfile upf = null;

// Obtain the user profile from user object. User object can be obtained using
search

// get the properties supported for given user in currently configured
repository
List proplst = store.getUserPropertyNames();

String[] proparr = (String[]) proplst.toArray(new String[proplst.size()]);

// get all properties of the user
PropertySet pset = upf.getProperties(proparr);

3. When creating search filters, do not use native wild card characters directly in
your search filter string. Instead, use the
SimpleSearchFilter.getWildCardChar() method. This will fetch the
correct wild character based upon the underlying provider. For example, the API
will return % for say a database provider and return * for the Oracle Internet
Directory provider.

SmpleSearchFilter sf = m_identityStore.getSimpleSearchFilter(
attrName, SimpleSearchFilter.TYPE_EQUAL, null);

sf.setValue(filterStringWithoutWildcard+sf.getWildCardChar());

4. If your application accepts user-supplied filter strings with a predefined wild card
character, apply the following conversion on the filter while generating the User
and Role API filter:

//User supplied filter which assumes “%” as the wildcard character

String userDefinedFilter =

SmpleSearchFilter sf = m_identityStore.getSimpleSearchFilter(
attrName, SimpleSearchFilter.TYPE_EQUAL, null);

userDefinedFilter =
userDefinedFilter.replaceall("%", sf.getWildCardChar());

sf.setValue(userDefinedFilter);

The line in bold converts the user-supplied filter to the generic User and Role API
filter format.

Searching the Repository

Developing with the User and Role API 25-15

25.3.9.2 Considerations when Using IdentityStore Objects
Keep the following considerations in mind when coding your applications.

Thread Safety
The current IdentityStore implementations are not thread-safe. The User and Role API
assumes that the store instances are not generally shared among threads. If the store
instance is shared among threads, the application code must take care to handle any
required thread safety issues.

There are trade-offs between thread safety and performance. Use cases that need to
implement thread safety must be willing to consider the performance implications of
doing so.

One Store Instance per Session
In applications such as Delegated Administration Server, each session (corresponding
to one logged-in user) can change its own create/search bases and various other
runtime settings; these are defined as runtime properties in the User and Role API.
The IdentityStore object encapsulates all these settings and changes its runtime
behavior accordingly. For this reason, the rule of one IdentityStore instance per session
is enforced.

25.3.10 Provider Life cycle
A given provider exists for the lifetime of the factory instance created for that
provider. The life of a factory instance ends whenever the close() API is called on that
instance. When the provider instance ends, all the objects that were created using that
instance become invalid, and subsequent API calls on those objects return
unanticipated output.

Similar considerations apply to IdentityStore instances.

25.4 Searching the Repository
The User and Role API provides two types of query functions:

■ functions that return a single identity

■ functions that return a list of identities

This section describes searches and related tasks you can accomplish with the API, and
provides details on specifying search parameters:

■ Searching for a Specific Identity

■ Searching for Multiple Identities

■ Specifying Search Parameters

■ Using Search Filters

■ Searching by GUID

Note:

■ Factory instances are thread-safe while this is not the case with
IdentityStore instances.

■ It is best practice to cascade close server connections and explicitly
delete objects and instances no longer in use.

Searching the Repository

25-16 Oracle Fusion Middleware Application Security Guide

25.4.1 Searching for a Specific Identity
You can query the identity store directly for a specific user or role using the
searchUser and searchRole APIs:

IdentityStore.searchUser(String name);

IdentityStore.searchUser(Principal principal);

IdentityStore.searchUser(int searchType, String name);

where searchType can be:

■ SEARCH_BY_NAME

■ SEARCH_BY_UNIQUE_NAME

IdentityStore.searchRole(int searchType, Sting value);

These functions facilitate simple queries where a particular user/role identity is
known to exist in the store, and you simply need the object reference to that identity.
The functions are minimal in that:

■ they accept only string values

■ they do not support regular expressions

The functions raise an exception if multiple entities with the same value exist in the
store.

25.4.2 Searching for Multiple Identities
The User and Role APIs contain several functions that can perform searches to return
multiple identities:

IdentityStore.search(SearchParams params);
IdentityStore.searchUsers(SearchParams params);
IdentityStore.searchRoles(int searchType, SearchParams params);
IdentityStore.searchProfiles(SearchParams params);

Each function accepts a search object and returns a search response object.

25.4.3 Specifying Search Parameters

The SearchParams Object
The SearchParams object contains the following information:

■ Search Filter - this is discussed in Section 25.4.4, "Using Search Filters"

■ Search Identity of type - you can search identities of type Roles or Users

■ Page Size - By default the paging option is turned off. If the query needs paging,
set the page size to a relevant positive value.

■ Timeout limit – timeout is specified in seconds

■ Count Limit – limits the number of results returned by the query

The SearchResponse Object
SearchResponse is a data structure used when retrieving multiple identities. Your code
can iterate through the identities contained in this structure using these functions:

Searching the Repository

Developing with the User and Role API 25-17

■ hasNext() - returns true if more elements are present, false otherwise

■ next() – returns the next element if it is available, an exception otherwise

25.4.4 Using Search Filters
The User and Role API includes different types of search filters to facilitate a variety of
search operations. This section explains key facts about the use of search filters:

■ Operators in Search Filters

■ Handling Special Characters when Using Search Filters

■ Search Filter for Logged-In User

■ Examples of Using Search Filters

25.4.4.1 Operators in Search Filters
Observe these rules when using search filter operators.

Supported Operators
The standard LDAP store accepts only "=" (equals operator), "<" (less-than operator),
">" (greater-than operator), "&" (AND operator), "|" (OR operator) and "!" (NOT
operator). IdentityStore provides two more operators to simplify usage, namely "<="
(less than or equal to) and ">=" (greater than or equal to).

The operators "=", "<",">", "<=" and ">=" are used to create simple search filters while
the "&" and "|" operators are used to combine two or more search strings to make a
complex search filter.

NOT Operator
You can use the NOT operator in both the simple search filter and complex search
filters. This operator is used to negate the state of the filter, that is, the state of the filter
is changed to accept the entities which were earlier rejected by the filter, or to reject
entities that were earlier accepted.

The NOT operator is accessible using the following SearchFilter API:

■ void negate();

■ boolean isNegated();

25.4.4.2 Handling Special Characters when Using Search Filters
According to RFC-2254 (String Representation of LDAP Search Filters), "*", "(", ")","\"
and NULL characters are to be handled separately. The User and Role API handles "(",
")" and "\" operators but does not handle the "*" operator, which is also a wild-card
character for LDAP stores. The API user is not required to separately handle these
characters as the User and Role API framework handles these characters.

25.4.4.3 Search Filter for Logged-In User
Applications commonly need to retrieve the identity of the logged-in user and the
user’s group name.

The Oracle WebLogic Server authenticator uses two attributes related to users:
user.login.attr and groupname.attr. Upon login, the authenticator uses
user.login.attr to store the user and groupname.attr for the group.

Searching the Repository

25-18 Oracle Fusion Middleware Application Security Guide

Your application should use UserProfile.getUserName() (which maps to
user.login.attr) to obtain the identity of the logged-in user. To obtain the role
(group) name, it should use RoleProfile.getProperty(RoleProfile.NAME)
(which maps to groupname.attr).

Sample calls showing how to obtain the logged-in user and role are shown in
Example 25–6 and Example 25–7, respectively.

25.4.4.4 Examples of Using Search Filters
Several usage examples are presented in this section.

Example 25–1 Simple Filter to Retrieve Users by Name

The implementation of the simple search filter depends on the underlying store; you
can obtain an instance of the search filter through the store instance.

In this example, the filter allows all entries with a non-null value for the "name" field:

SimpleSearchFilter sf =
oidStore.getSimpleSearchFilter(UserProfile.NAME,
SimpleSearchFilter.TYPE_EQUAL, null);

sf.setValue(sf.getWildCardChar());

Example 25–2 Simple Filter to Find Users by Language Preference

This example retrieves users whose preferred language is not English:

SimpleSearchFilter sf =
oidStore.getSimpleSearchFilter(

UserProfile.PREFERRED_LANGUAGE,
SimpleSearchFilter.TYPE_EQUAL,
"english");

sf.negate();

Example 25–3 Complex Filter for Names by Starting Letter

This complex filter combines multiple search filters with operators "&" or "|". It
searches for users whose name starts with a letter between "a" and "j":

SimpleSearchFilter sf1 =
oidStore.getSimpleSearchFilter(

UserProfile.NAME,
SimpleSearchFilter.TYPE_GREATER,
null);

sf1.setValue("a"+sf1.getWildCardChar());
SimpleSearchFilter sf2 =

oidStore.getSimpleSearchFilter(UserProfile.NAME,
SimpleSearchFilter.TYPE_LESS, null);

sf2.setValue("j"+sf2.getWildCardChar());
SimpleSearchFilter sfArray[] = new SimpleSearchFilter[] {sf1, sf2};
ComplexSearchFilter cf1 =
store.getComplexSearchFilter(sfArray, ComplexSearchFilter.TYPE_AND);

Example 25–4 Complex Filter with Restrictions on Starting Letter

In this example, complex filters are nested to enable a search for users whose name
starts with a letter between "a" and "j" but not with the letter "i":

[continue from Example 3]

SimpleSearchFilter sf3 =

Searching the Repository

Developing with the User and Role API 25-19

 oidStore.getSimpleSearchFilter(
 UserProfile.NAME,
 SimpleSearchFilter.TYPE_EQUAL,
 null);

sf3.setValue(“i”+sf3.getWildCardChar());
sf3.negate();

SearchFilter sfArray2[] = new SearchFilter[] {cf1, sf3};
ComplexSearchFilter cf2 =
 store.getComplexSearchFilter(sfArray2, ComplexSearchFilter.TYPE_AND);

Example 25–5 Complete Search with Output

This example filters names starting with the letter "a" and outputs the return values:

// search filter (cn=a*)
SimpleSearchFilter sf = oidStore.getSimpleSearchFilter(

UserProfile.NAME,
SimpleSearchFilter.TYPE_EQUAL,
null);

sf.setValue("a"+sf.getWildCardChar());

SearchParameters params = new SearchParameters();
params.setFilter(sf);

// Searching for users
SearchResponse resp = oidStore.searchUsers(params);
System.out.println("Searched users are:");
while (resp.hasNext()) {

Identity idy = resp.next();
System.out.println("Unique name: "+idy.getUniqueName());

}

Example 25–6 Obtaining the Identity of the Logged-in User

This example shows how to retrieve the logged-in user:

SimpleSearchFilter sf = oidStore.getSimpleSearchFilter(
 UserProfile.USER_NAME, SimpleSearchFilter.TYPE_EQUAL, "sampleUserName");
 SearchParameters ssp = new SearchParameters(sf, SearchParameters.SEARCH_USERS_
ONLY);

 // Searching for users
 SearchResponse resp = oidStore.searchUsers(params);
 System.out.println("Searched users are:");
 while (resp.hasNext()) {
 Identity idy = resp.next();
 String foundUserName = ((User)idy).getUserProfile().getUserName();
 System.out.println("Found user name: "+ foundUserName);
 }

Note: The name returned by ((User)idy).getName is derived
from the RDN, which might be different from the login name.

User Authentication

25-20 Oracle Fusion Middleware Application Security Guide

Example 25–7 Obtaining the Role/Group Name

This example shows how to retrieve the role (group) name:

Role aRole = idStore.searchRole(IdentityStore.SEARCH_BY_NAME, "sampleRoleName");
 Property prop = aRole.getRoleProfile().getProperty(RoleProfile.NAME);

 List roleList = prop.getValues();
 Iterator itr = roleList.iterator();
 System.out.println("Searched roles are:");
 while (itr.hasNext()) {
 String foundRoleName = (String)itr.next();
 System.out.println("Found role name: "+ foundRoleName);
 }

25.4.5 Searching by GUID
In this example, GUID values obtained from the User and Role API can be directly
used in the search:

// up = user.getUserProfile();
String guid = up.getGUID();
SimpleSearchFilter sf1 = oidStore.getSimpleSearchFilter(

UserProfile.GUID,
SimpleSearchFilter.TYPE_EQUAL, guid);

SearchParameters params = new SearchParameters();
params.setFilter(sf1);
SearchResponse resp = oidStore.search(params);
while (resp.hasNext())

System.out.println("user for guid : " + guid + ","+ resp.next());

25.5 User Authentication
For verification purposes, you can use the User and Role API for password-based
authentication of users. (As mentioned earlier, the API is not meant for authentication
and authorization.)

The authenticateUser API accepts a user login name and attempts to authenticate
the user with the specified password. If authentication is successful, it returns the user
object.

Here is an example of password-based authentication:

store.getUserManager().authenticateUser(“testuser”,”password”);

25.6 Creating and Modifying Entries in the Identity Store
The User and Role API facilitates adding new identities to the identity store and
modifying identities in the store. The UserManager and RoleManager classes address
the user- and role-specific data creation, modification and deletion operations.

UserManager and RoleManager instances can be obtained from the store instance as
follows:

UserManager um = oidStore.getUserManager();
RoleManager rm = oidStore.getRoleManager();

Topics in this section include:

Creating and Modifying Entries in the Identity Store

Developing with the User and Role API 25-21

■ Handling Special Characters when Creating Identities

■ Creating an Identity

■ Modifying an Identity

■ Deleting an Identity

25.6.1 Handling Special Characters when Creating Identities
RFC-2253 defines the string representation of Distinguished Names for LDAP v3. This
means that all the characters specified in the RFC are handled. The User and Role API
user does not need to escape/de-escape those special characters; attempting to do so
will cause erroneous results.

There could be a problem when creating identities with empty properties. In this case,
the "RDN name" is used to fill in the values of various mandatory attributes. Some of
these attributes could have stricter validation rules. In this case, the creation of the
identity fails and an exception is raised.

25.6.2 Creating an Identity
Two functions in the UserManager class facilitate creating a user:

createUser(java.lang.String name, char[] password)

creates a user with the specified name and password in the underlying repository.

When the identity store designates that some attributes are mandatory, all such
fields will be populated with the "name" value.

createUser(java.lang.String name, char[] password, PropertySet suppliedProps)

Properties are set using the supplied property values. If any mandatory attribute
values are not supplied, the missing attributes will use the "name" value as the
default.

Likewise, RoleManager APIs are used to create roles.

Roles are organized into two categories:

■ application scope

■ enterprise scope

When you invoke RoleManager to create a role, by default the role is created in the
enterprise scope unless you specify otherwise.

RoleManager APIs supporting role creation are:

createRole(String roleName);
createRole(String roleName, int roleScope);

The procedure for creating a role is similar to that for creating a user, and all
mandatory attributes must be supplied with roleName.

25.6.3 Modifying an Identity
To modify an identity, you need a reference to the identity. The User, UserProfile,
Role, and RoleProfile classes provide the following APIs to facilitate modifying
identities:

user.setProperty(ModProperty prop);

Examples of User and Role API Usage

25-22 Oracle Fusion Middleware Application Security Guide

user.setProperties(ModProperty [] props);

ModProperty structure consists of:

■ the field name

■ its new value(s)

■ the modifying operator

Valid operators are:

ModProperty.ADD
ModProperty.REMOVE
ModProperty.REPLACE

In this example, a display name is replaced:

UserProfile usrprofile = usr.getUserProfile();

ModProperty mprop = new ModProperty(UserProfile.DISPLAY_NAME,

"modified display name",
ModProperty.REPLACE);

usrprofile.setProperty(mprop);

Modifying a particular value in a multi-valued attribute is a two-step process; first
remove the value, then add the new value.

25.6.4 Deleting an Identity
You drop an identity with the dropUser and dropRole APIs.

You need both user and role references in your code when dropping an identity. Here
is an example:

User usr;
Role role;
…
…
usrmanager.dropUser(usr);
rolemanager.dropRole(role);

25.7 Examples of User and Role API Usage
This section contains some examples illustrating practical applications of the User and
Role API:

■ Example 1: Searching for Users

■ Example 2: User Management in an Oracle Internet Directory Store

■ Example 3: User Management in a Microsoft Active Directory Store

25.7.1 Example 1: Searching for Users
In this example the identity store is Oracle Internet Directory, and a simple search
filter is set up to search for users:

import oracle.security.idm.*;
import oracle.security.idm.providers.oid.*;
import java.util.*;

Examples of User and Role API Usage

Developing with the User and Role API 25-23

import java.io.*;

public class SearchUsersOID
{
 public static void main(String args[])
 {
 IdentityStoreFactoryBuilder builder = new
IdentityStoreFactoryBuilder();
 IdentityStoreFactory oidFactory = null;
 IdentityStore oidStore = null;

 try
 {

 Hashtable factEnv = new Hashtable();
 Hashtable storeEnv = new Hashtable();

 // creating the factory instance
 factEnv.put(OIDIdentityStoreFactory.ST_SECURITY_PRINCIPAL,

 "<User DN>");
 factEnv.put(OIDIdentityStoreFactory.ST_SECURITY_CREDENTIALS,
 "<User password>");
 factEnv.put(OIDIdentityStoreFactory.ST_LDAP_URL,
 "ldap://ldaphost:port/");
oidFactory = builder.getIdentityStoreFactory(

"oracle.security.idm.providers.oid.OIDIdentityStoreFactory",
factEnv);

 // creating the store instance

storeEnv.put(OIDIdentityStoreFactory.RT_SUBSCRIBER_NAME,
"<Subscriber name>");

 oidStore = oidFactory.getIdentityStoreInstance(storeEnv);

 // search filter (cn=a*)
 SimpleSearchFilter sf = oidStore.getSimpleSearchFilter(
 UserProfile.NAME, SimpleSearchFilter.TYPE_EQUAL, null);
 sf.setValue("a"+sf.getWildCardChar());
// sf2 search filter (!(cn=*a))
SimpleSearchFilter sf2 = oidStore.getSimpleSearchFilter(
 UserProfile.NAME, SimpleSearchFilter.TYPE_EQUAL, null);
sf2.setValue(sf.getWildCardChar()+"a");
sf2.negate();

SimpleSearchFilter sfArray[] = new SimpleSearchFilter[] {sf,sf2};
ComplexSearchFilter cf1 = oidStore.getComplexSearchFilter(sfArray,
ComplexSearchFilter.TYPE_AND);

SearchParameters params = new SearchParameters();
params.setFilter(cf1);

 // Searching for users
SearchResponse resp = oidStore.searchUsers(params);
System.out.println("Searched users are:");
while (resp.hasNext()) {
 Identity idy = resp.next();
 System.out.println("Unique name: "+idy.getUniqueName());
}
 }catch (IMException e)
 {
 e.printStackTrace();

Examples of User and Role API Usage

25-24 Oracle Fusion Middleware Application Security Guide

 }
 }
}

Searching for Users and Searching for Groups
When searching for users, you invoke UserProfile, as in the above example with
SimpleSearchFilter. When searching for groups, however, you use
RoleProfile instead.

25.7.2 Example 2: User Management in an Oracle Internet Directory Store
In this example several user management tasks such as creating, modifying, and
dropping an identity are performed in an Oracle Internet Directory store:

■ creating a user

■ modifying the user’s display name

■ dropping the user

public class CreateModifyDeleteUser
{
 public static void main(String args[])
 {
 IdentityStoreFactoryBuilder builder = new
IdentityStoreFactoryBuilder();
 IdentityStoreFactory oidFactory = null;
 IdentityStore oidStore = null;

 try
 {

 Hashtable factEnv = new Hashtable();
 Hashtable storeEnv = new Hashtable();

 // creating the factory instance
 factEnv.put(OIDIdentityStoreFactory.ST_SECURITY_PRINCIPAL,
 "<User DN>");
 factEnv.put(OIDIdentityStoreFactory.ST_SECURITY_CREDENTIALS,
 "<User password>");
 factEnv.put(OIDIdentityStoreFactory.ST_LDAP_URL,
 "ldap://ldaphost:port/");
 oidFactory = builder.getIdentityStoreFactory(
 "oracle.security.idm.providers.oid.
OIDIdentityStoreFactory",
 factEnv);

 // creating the store instance
 storeEnv.put(OIDIdentityStoreFactory.RT_SUBSCRIBER_NAME,
 "dc=us,dc=oracle,dc=com");
 oidStore = oidFactory.getIdentityStoreInstance(storeEnv);

 //get UserManager
 UserManager usrmanager = oidStore.getUserManager();

 // create user
 String usrname = "testuser";
 // delete user if already exists
 try
 {

Examples of User and Role API Usage

Developing with the User and Role API 25-25

 User usr = oidStore.searchUser(usrname);
 usrmanager.dropUser(usr);
 }catch(IMException ime){}

 System.out.println("creating user "+usrname);
 User usr =
usrmanager.createUser(usrname,"passwd1".toCharArray());
 System.out.println("user (" +usr.getUniqueName() + ") created");

 // modifying user properties
 System.out.println("modifying property
UserProfile.DISPLAY_NAME");
 UserProfile usrprofile = usr.getUserProfile();
 ModProperty mprop = new ModProperty(
UserProfile.DISPLAY_NAME,
 "modified display name",
 ModProperty.REPLACE);

 usrprofile.setProperty(mprop);

 System.out.println("get property values
UserProfile.DISPLAY_NAME");
 Property prop = usrprofile.getProperty(UserProfile.DISPLAY_NAME);
 List values = prop.getValues();
 Iterator itr = values.iterator();
 while(itr.hasNext()) {
 System.out.println(UserProfile.DISPLAY_NAME+": "+ itr.next());
 }
 System.out.println();

 // drop user
 System.out.println("Now dropping user "+usrname);
 usrmanager.dropUser(usr);
 System.out.println("user dropped");

 }catch (IMException e)
 {
 e.printStackTrace();
 }
 }
}

25.7.3 Example 3: User Management in a Microsoft Active Directory Store
In this example several user management tasks such as creating, modifying, and
dropping an identity are performed in a Microsoft Active Directory store:

■ creating a user

■ modifying the user’s display name

■ dropping the user

package oracle.security.idm.samples;

import oracle.security.idm.*;
import oracle.security.idm.providers.ad.*;
import java.util.*;
import java.io.*;

Examples of User and Role API Usage

25-26 Oracle Fusion Middleware Application Security Guide

public class CreateModifyDeleteUserAD
{
 public static void main(String args[])
 {
 IdentityStoreFactoryBuilder builder = new IdentityStoreFactoryBuilder();
 IdentityStoreFactory adFactory = null;
 IdentityStore adStore = null;

 try
 {

 Hashtable factEnv = new Hashtable();
 Hashtable storeEnv = new Hashtable();

 String keystore = "/home/bhusingh/client_keystore.jks";
 System.setProperty("javax.net.ssl.trustStore",keystore);
 System.setProperty("javax.net.ssl.trustStorePassword","welcome1");

 // creating the factory instance
 factEnv.put(ADIdentityStoreFactory.ST_SECURITY_PRINCIPAL,
 "sramaset@upad.us.oracle.com");
 factEnv.put(ADIdentityStoreFactory.ST_SECURITY_CREDENTIALS,
 "ntrtntrt");
 factEnv.put(ADIdentityStoreFactory.ST_LDAP_URL,
 "ldaps://mynode.us.mycorp.com:123/");
 factEnv.put("java.naming.security.protocol","SSL");

 adFactory = builder.getIdentityStoreFactory(
 "oracle.security.idm.providers.ad.ADIdentityStoreFactory",
 factEnv);

 // creating the store instance
 storeEnv.put(ADIdentityStoreFactory.ST_SUBSCRIBER_NAME,
 "dc=upad,dc=us,dc=oracle,dc=com");
 adStore = adFactory.getIdentityStoreInstance(storeEnv);

 //get UserManager
 UserManager usrmanager = adStore.getUserManager();

 // create user
 String usrname = "amyd";
 // delete user if already exists
 try
 {
 User usr = adStore.searchUser(usrname);
 usrmanager.dropUser(usr);
 }catch(IMException ime){}

 System.out.println("creating user "+usrname);
 char[] password = {'w', 'e', 'l', 'c', 'o', 'm','e','3'};
 User usr = usrmanager.createUser(usrname, password);
 System.out.println("user (" +usr.getUniqueName() + ") created with
guid="+usr.getGUID());
 System.out.println("user name = "+usr.getName());

 // modifying user properties
 System.out.println("DISPLAY_NAME="+usr.getDisplayName());
 System.out.println("modifying property UserProfile.DISPLAY_NAME");
 UserProfile usrprofile = usr.getUserProfile();

Examples of User and Role API Usage

Developing with the User and Role API 25-27

 ModProperty mprop = new ModProperty(UserProfile.DISPLAY_NAME,
 "modified display name",
 ModProperty.REPLACE);
 usrprofile.setProperty(mprop);

 System.out.println("get property values UserProfile.DISPLAY_NAME");
 Property prop = usrprofile.getProperty(UserProfile.DISPLAY_NAME);
 List values = prop.getValues();
 Iterator itr = values.iterator();
 while(itr.hasNext())
 {
 System.out.println(UserProfile.DISPLAY_NAME+": "+ itr.next());
 }
 System.out.println();

 System.out.println("now verifying the password");
 boolean pass = false;
 try
 {
 usrmanager.authenticateUser(usrname, password);
 pass= true;
 }catch (oracle.security.idm.AuthenticationException e)
 {
 System.out.println(e);
 e.printStackTrace();
 }
 if (pass)
 System.out.println("password verification SUCCESS !!");
 else
 System.out.println("password verification FAILED !!");

 SimpleSearchFilter sf = adStore.getSimpleSearchFilter(
 UserProfile.NAME, SimpleSearchFilter.TYPE_EQUAL, usrname);

 SearchParameters params = new SearchParameters();
 params.setFilter(sf);

 // Searching for users
 SearchResponse resp = adStore.searchUsers(params);
 System.out.println("Searched users are:");
 while (resp.hasNext())
 {
 Identity idy = resp.next();
 System.out.println("name: "+idy.getName()+"\tUnique name:
"+idy.getUniqueName());
 }

 // drop user
 System.out.println("Now dropping user "+usrname);
 usrmanager.dropUser(usr);
 System.out.println("user dropped");

 }catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

SSL Configuration for LDAP-based User and Role API Providers

25-28 Oracle Fusion Middleware Application Security Guide

25.8 SSL Configuration for LDAP-based User and Role API Providers
This section describes SSL support for the User and Role API. It contains these topics:

■ Out-of-the-box Support for SSL

■ Customizing SSL Support for the User and Role API

25.8.1 Out-of-the-box Support for SSL
LDAP-based providers for the User and Role API rely on the Sun Java Secure Sockets
Extension (JSSE) to provide secure SSL communication with LDAP-based identity
stores. JSSE is part of JDK 1.4 and higher.

These LDAP providers are:

■ Microsoft Active Directory

■ Novell eDirectory

■ Oracle Directory Server Enterprise Edition

■ Oracle Internet Directory

■ OpenLDAP

■ Oracle WebLogic Server Embedded LDAP Directory

25.8.1.1 System Properties
To support SSL you must provide the following information in the form of system
properties:

javax.net.ssl.keyStore

javax.net.ssl.keyStorePassword

javax.net.ssl.trustStore

javax.net.ssl.trustStorePassword

Refer to Sun Microsystems’ documentation on JSSE for details.

25.8.1.2 SSL configuration
You need to provide SSL configuration details during User and Role API
configuration.

Provide your keystore location and password as system properties to the JVM:

String keystore = "<key store location>";
String keypasswd = "<key store password>";
System.setProperty("javax.net.ssl.trustStore",keystore);
System.setProperty("javax.net.ssl.trustStorePassword", keypasswd);

Specify following properties in the environment when creating the
IdentityStoreFactory instance:

1. Set the SSL URL of the LDAP server, as in this example:

factEnv.put(ADIdentityStoreFactory.ST_LDAP_URL,
 "ldaps://ldaphost:sslport/");

2. Set the security protocol to SSL:

Developing Custom User and Role Providers

Developing with the User and Role API 25-29

factEnv.put("java.naming.security.protocol","SSL");

25.8.2 Customizing SSL Support for the User and Role API
You can customize SSL support by providing a customized SSLSocketFactory to
the User and Role API provider.

25.8.2.1 SSL configuration
Specify the following properties when creating the IdentityStoreFactory
instance:

1. Specify the custom SSL socket factory name:

factEnv.put("java.naming.ldap.factory.socket",
"fully qualified custom socket factory name");

2. Set the SSL URL of the LDAP server, as in this example:

factEnv.put(ADIdentityStoreFactory.ST_LDAP_URL,
 "ldaps://ldaphost:sslport/");

3. Set the security protocol to SSL:

factEnv.put("java.naming.security.protocol","SSL");

25.9 The User and Role API Reference
The User and Role API reference (Javadoc) is available at:

Oracle Fusion Middleware User and Role Java API Reference for Oracle Platform Security
Services

25.10 Developing Custom User and Role Providers
This section explains how to develop custom providers that security developers can
use to manage identities (users and roles). It contains these topics:

■ SPI Overview

■ Types of User and Role Providers

■ Developing a Read-Only Provider

■ Developing a Full-Featured Provider

■ Development Guidelines

■ Testing and Verification

■ Example: Implementing an Identity Provider

25.10.1 SPI Overview
The User and Role API is accompanied by a service provider interface (SPI) that makes
it possible to develop custom user/role providers. You can use the service provider
interface to develop a custom provider for any identity data repository.

Developing Custom User and Role Providers

25-30 Oracle Fusion Middleware Application Security Guide

The SPI is bundled as the oracle.security.idm.spi package, which is a set of
abstract classes. Custom User and Role providers are created by extending this SPI to
fit your requirements.

25.10.2 Types of User and Role Providers
The User and Role API offers functions for both search and
Create/Read/Update/Delete (CRUD) operations. A User and Role provider based on
read-only functions supports only search operations. A full-featured provider
supports both search operations and CRUD operations. In other words, the
full-featured provider is a superset of a read-only provider.

As a developer you have the choice of creating either read-only or full-functionality
providers depending upon the requirements.

It is reasonable to develop a read-only provider in the following situations:

■ if the underlying identity repository operates in read-only mode

■ if applications consuming the User and Role API do not make any CRUD API calls

For example, it makes sense to develop a read-only provider for use with the SOA
identity service.

25.10.3 Developing a Read-Only Provider
This section describes the classes used to implement a provider. Topics include:

■ SPI Classes Requiring Extension

■ oracle.security.idm.spi.AbstractIdentityStoreFactory

■ oracle.security.idm.spi.AbstractIdentityStore

■ oracle.security.idm.spi.AbstractRoleManager

■ oracle.security.idm.spi.AbstractUserManager

■ oracle.security.idm.spi.AbstractRoleProfile

■ oracle.security.idm.spi.AbstractUserProfile

■ oracle.security.idm.spi.AbstractSimpleSearchFilter

■ oracle.security.idm.spi.AbstractComplexSearchFilter

■ oracle.security.idm.spi.AbstractSearchResponse

25.10.3.1 SPI Classes Requiring Extension
Table 25–5 shows that SPI classes that must be extended to implement a read-only
provider:

See Also: "The User and Role SPI Reference"

Note: All abstract methods must be implemented.

Developing Custom User and Role Providers

Developing with the User and Role API 25-31

Additional requirements and notes for each class are provided below.

25.10.3.2 oracle.security.idm.spi.AbstractIdentityStoreFactory
The class extending this SPI class must have following constructors:

1. The default constructor (one which has no arguments).

2. A constructor that accepts a java.util.Hashtable object as an argument. You
can use the hash table to accept any configuration properties required by the
provider.

The configuration properties are passed to this constructor during the user and
role configuration phase. The properties are key-value pairs passed in the
Hashtable argument:

■ The key must be java.lang.String.

■ The value can be java.lang.Object.

It is recommended that the value be of type String. This guarantees that the property
can be specified in jps-config.xml, which is a text file.

25.10.3.3 oracle.security.idm.spi.AbstractIdentityStore
"The User and Role SPI Reference" provides details about the methods that need to be
implemented in this class. Note that:

■ Method getStoreConfiguration() is optional and can throw
OperationNotSupportedException.

■ Method getSubjectParser() can return null.

When there are no search results to be returned, all search APIs should throw:

oracle.security.idm.ObjectNotFoundException

Table 25–5 SPI Classes to Extend for Custom Provider

Class Usage Notes

oracle.security.idm.spi.AbstractIdentityStoreFactory The extending class must include a
default constructor and a constructor
accepting a java.util.Hashtable object.

oracle.security.idm.spi.AbstractIdentityStore

oracle.security.idm.spi.AbstractRoleManager

oracle.security.idm.spi.AbstractUserManager

oracle.security.idm.spi.AbstractRoleProfile

oracle.security.idm.spi.AbstractUserProfile

oracle.security.idm.spi.AbstractSimpleSearchFilter The constructor of the extending
class must call the constructor of the
abstract (super) class.

oracle.security.idm.spi.AbstractComplexSearchFilter The constructor of the extending
class must call the constructor of the
abstract (super) class.

oracle.security.idm.spi.AbstractSearchResponse

See Also: "The User and Role SPI Reference" for details about the
methods that need to be implemented in this class. All listed methods
must be implemented.

Developing Custom User and Role Providers

25-32 Oracle Fusion Middleware Application Security Guide

Never return an empty SearchResponse.

25.10.3.4 oracle.security.idm.spi.AbstractRoleManager
"The User and Role SPI Reference" provides details about the methods that need to be
implemented in this class. Note that only the following methods need concrete/actual
implementations:

■ getGrantedRoles()

■ getOwnedRoles()

■ getManagedRoles()

■ isGranted()

■ isManagedBy()

■ isOwnedBy()

■ isDropRoleSupported() – should always return false

■ isCreateRoleSupported() – should always return false

■ isModifyRoleSupported() – should always return false

The remaining methods must throw the following in their respective implementations:

oracle.security.idm.OperationNotSupportedException

25.10.3.5 oracle.security.idm.spi.AbstractUserManager
"The User and Role SPI Reference" provides details about the methods that need to be
implemented in this class. Only the following methods need concrete/actual
implementations:

■ authenticateUser(User, char[])

■ authenticateUser(String, char[])

■ isDropUserSupported() – should always return false

■ isCreateUserSupported() – should always return false

■ isModifyUserSupported() – should always return false

The remaining methods must throw the following in their respective implementations:

oracle.security.idm.OperationNotSupportedException

25.10.3.6 oracle.security.idm.spi.AbstractRoleProfile
oracle.security.idm.spi.AbstractRoleProfile is an abstract class that can be used to
return a detailed role profile.

"The User and Role SPI Reference" provides details about the methods that need to be
implemented in this class. Only the following methods need concrete/actual
implementations:

■ getDisplayName()

■ getGUID()

■ getName()

Developing Custom User and Role Providers

Developing with the User and Role API 25-33

■ getUniqueName()

■ getPrincipal()

■ getDescription()

■ getGrantees()

■ getManagers()

■ getOwners()

■ getProperty() - If requested property is not set/valid for corresponding role
then null should be returned as value.

■ isApplicationRole() - must always return false

■ isEnterpriseRole() - must always return false

■ isSeeded() - must always return false

■ getRoleProfile() – should return reference to current object.

The remaining methods must throw the following in their respective implementations:

oracle.security.idm.OperationNotSupportedException

25.10.3.7 oracle.security.idm.spi.AbstractUserProfile
oracle.security.idm.spi.AbstractUserProfile is an abstract class that can
be used to return a detailed user profile.

"The User and Role SPI Reference" provides details about the methods that need to be
implemented in this class. Only the following methods need concrete/actual
implementations:

■ getDisplayName()

■ getGUID()

■ getName()

■ getUniqueName()

■ getPrincipal()

■ getProperty() - If the requested property is not set/valid for corresponding
role then a null value must be returned.

■ getProperties() – If the requested property is not set/valid for the
corresponding user, then a null value must be returned.

■ getAllUserProperties() – Only the properties set for the corresponding user
should be returned.

■ getReportees()

■ getManagementChain()

■ getUserProfile() – must return reference to current object.

These two methods:

■ setProperty()

■ setProperties()

must throw the following in their implementation:

Developing Custom User and Role Providers

25-34 Oracle Fusion Middleware Application Security Guide

oracle.security.idm.OperationNotSupportedException

25.10.3.8 oracle.security.idm.spi.AbstractSimpleSearchFilter
oracle.security.idm.spi.AbstractSimpleSearchFilter is an abstract class
that can be extended to implement a simple search filter.

The implementing class must have a constructor that calls the constructor of the
abstract class:

AbstractSimpleSearchFilter (
String attrname, int type, Object value)

"The User and Role SPI Reference" provides details about the methods that need to be
implemented in this class. Only the following methods need concrete/actual
implementations:

■ getNativeRepresentation() – convert filter into the native representation to
be used with the underlying identity repository.

■ getWildCardChar() – wild card character, for example "*", to be used in
searches. The specific character depends on the underlying identity repository.

25.10.3.9 oracle.security.idm.spi.AbstractComplexSearchFilter
oracle.security.idm.spi.AbstractComplexSearchFilter is an abstract
class that can be extended to implement a search filter of any complexity.

The implementing class must have a constructor that calls the constructor of the
abstract class:

AbstractComplexSearchFilter (
oracle.security.idm.SearchFilter[] filters, int oper_type)

"The User and Role SPI Reference" provides details about the methods that need to be
implemented in this class. Only the following methods need concrete/actual
implementations:

■ getNativeRepresentation() – convert the filter into the native representation
to be used with the underlying identity repository.

25.10.3.10 oracle.security.idm.spi.AbstractSearchResponse
The SearchResponse object contains search results being returned from a repository.
Each result entry corresponds to one user or role in the underlying identity repository,
represented by the corresponding UserProfile/RoleProfile class implementation.

The SearchResponse object must return one or more results. This means that the
hasNext() method must return TRUE at least once.

Do not use if there are zero results to return. When no results are to be returned, the
corresponding search API should throw the following exception:

oracle.security.idm.ObjectNotFoundException

Developing Custom User and Role Providers

Developing with the User and Role API 25-35

25.10.4 Developing a Full-Featured Provider
The full-featured provider implements all the functionality supported by a read-only
provider, and additionally supports CRUD operations. This requires that the CRUD
APIs be implemented in the SPI implementation classes.

In the read-only provider, these APIs were implemented simply by throwing an
OperationNotSupportedException (see the class descriptions in Section 25.10.3,
"Developing a Read-Only Provider").

For a full-featured provider, this needs to be replaced by concrete/actual
implementation of the corresponding CRUD operations.

25.10.5 Development Guidelines
This section provides some guidelines for developing providers.

Mapping of Names
Be aware of the usage of naming constants such as UserProfile.NAME, UNIQUE_
NAME, UserProfile.USER_NAME, UserProfile.USER_ID.

■ NAME – name of the user or role in the underlying repository.

■ UNIQUE_NAME – Complete name with which the user or role is represented in
the underlying repository.

■ USER_NAME – login ID of the user in the underlying repository.

■ USER_ID – always same as USER_NAME constant mapping.

Depending on the identity repository, these constants might map to the same
underlying identity repository attribute or they might map to different attributes. If
the underlying repository is an LDAP v3 server, the mappings are as follows:

■ NAME – mapped to naming attribute of user/group entry, for example "cn"

■ UNIQUE_NAME - mapped to "DN" of user/group entry

■ USER_NAME/USER_ID – mapped to login attribute, for example "uid" or "mail"

Thread Safety
The following objects are likely to be shared among multiple threads:

■ IdentityStoreFactory,

■ IdentityStore,

■ UserManager,

■ RoleManager

You should ensure that there are no thread safety-related issues in the corresponding
implementation classes of your provider.

25.10.6 Testing and Verification
The User and Role API ships with a test suite to enable you to test the basic operations
of providers that you develop.

The test suite can be used to test both read-only and full-featured providers.

Usage
java oracle.security.idm.tests.SPITest propertiesfile

Developing Custom User and Role Providers

25-36 Oracle Fusion Middleware Application Security Guide

where propertiesfile contains the provider class name and any configuration data for the
provider. It also contains information about the tests to be run.

You need to edit this file and update it with correct information before running the
tests; the file contents are self-explanatory.

One such file (ffprovider.properties) is available with the sample provider
discussed in Section 25.10.7.1, "About the Sample Provider".

Results
The test will produce the results on-screen. All providers that you develop must pass
the "Lookup tests", "Role membership tests" and "Profile tests" in the test suite.
Full-featured providers must pass all the tests in the suite including Create/Drop tests.

The log of test results will be output to the file results.out in current working
directory.

25.10.7 Example: Implementing an Identity Provider
The distribution includes a sample identity provider that you can use to understand
how custom providers are built.

This section describes how to access the sample provider, and explains the steps
needed to implement a custom provider. The steps rely on the sample for illustration.

■ About the Sample Provider

■ Overview of Implementation

■ Configure jps-config.xml to use the Sample Identity Provider

■ Configure Oracle WebLogic Server

25.10.7.1 About the Sample Provider
The sample provider is bundled in sampleprovider.zip. Unzip the file. It should
generate the following structure:

sampleprovider/
build.xml - ant build file
ffprovider.properties - properties file required for testing
jlib - provider jar file location
out - location of generated class files
samples - Folder for samples
src - provider source code

Run ant help for instructions on building and testing this provider.

The provider relies on an ad-hoc identity repository for fetching identity information
and has been tested with Oracle SOA Suite. It is not intended for production use
without appropriate testing for your environment.

25.10.7.2 Overview of Implementation
The sample identity provider used in this example is a custom
Identity/Authentication provider that uses an RDBMS as the underlying store. It can
be used as both an identity provider and an authentication provider.

Developing Custom User and Role Providers

Developing with the User and Role API 25-37

These steps are required to set up the sample provider:

1. Implement the User and Role APIs to access the database repository serving as the
identity store. This involves:

a. Building the sample provider. Run ant help for instructions.

b. Creating the identity store schema in the database.

2. Configure the sample provider as the identity store, as shown in Section 25.10.7.3,
"Configure jps-config.xml to use the Sample Identity Provider".

3. Set up Weblogic Authenticator to use this provider as SQLAuthenticator, as
explained in Section 25.10.7.4, "Configure Oracle WebLogic Server".

25.10.7.3 Configure jps-config.xml to use the Sample Identity Provider
Configure jps-config.xml as follows to enable the sample identity provider to be
used as the identity store:

1. Add a new provider in the service providers list:

<serviceProviders>

 <serviceProvider type="IDENTITY_STORE" name="custom.provider"
class="oracle.security.jps.internal.idstore.generic.GenericIdentityStoreProvide
r">
 <description>Custom IdStore Provider</description>
 </serviceProvider>
</serviceProviders>

2. Add the service instance:

<serviceInstances>
........
 <serviceInstance name="idstore.custom" provider="custom.provider"

location="dumb">
 <description>Custom Identity Store Service Instance</description>
 <property name="idstore.type" value="CUSTOM"/>
 <property name="ADF_IM_FACTORY_CLASS"

value="custom_provider_identityStoreFactoryClassName"/>
 <property name="DB_SERVER_NAME" value="db_server_name"/>

<property name="DB_SERVER_PORT" value="db_port"/>
<property name="DB_DATABASE_NAME" value="db_service_name"/>
<property name="ST_SECURITY_PRINCIPAL" value="user_name"/>
<property name="ST_SECURITY_CREDENTIALS" value="password"/>

</serviceInstance>
........
<serviceInstances>

Note: The sample provider is intended solely for demonstration
purposes, and it is not advisable to use this provider in production
without exhaustive testing.

Note: custom_provider_identityStoreFactoryClassName for the
sample provider is org.sample.providers.db.DBIdentityStoreFactory

Developing Custom User and Role Providers

25-38 Oracle Fusion Middleware Application Security Guide

3. Ensure that the default jpsContext points to the identity store service instance
added in Step 2 above:

<jpsContext name="default">
 <serviceInstanceRef ref="credstore"/>
 <serviceInstanceRef ref="keystore"/>
 <serviceInstanceRef ref="policystore.xml"/>
 <serviceInstanceRef ref="audit"/>
 <serviceInstanceRef ref="idstore.custom"/>
</jpsContext>

4. Add the path of the custom provider jar to the classpath.

5. Restart the server.

25.10.7.4 Configure Oracle WebLogic Server
The final task is to configure Oracle WebLogic Server to use SQLAuthenticator. The
steps are as follows:

1. Log in to the Oracle WebLogic Server console. Select Security Realms, then
myrealm, then Providers. Click New to add a new provider.

2. Enter a name for the provider and select SQLAuthenticator as the authenticator
type.

3. On the Providers page, click on the newly created authenticator.

4. Set the Control Flag to SUFFICIENT. Click Save.

5. Set the control flag to sufficient for all authenticators in the list.

6. Click on the "Provider Specific" tab to enter the details for the authenticator server.
Enter the DataSource name that was used to create the schema for the provider.
Click Save.

7. Return to the Providers tab and reorder the providers so that SQLAuthenticator is
at the top of the list.

The User and Role SPI Reference

Developing with the User and Role API 25-39

The User and Role SPI Reference

This section contains the User and Role SPI reference (Javadoc), describing each
abstract class in the SPI with package name oracle.security.idm.spi. The classes are:

■ oracle.security.idm.spi.AbstractUserProfile

■ oracle.security.idm.spi.AbstractUserManager

■ oracle.security.idm.spi.AbstractUser

■ oracle.security.idm.spi.AbstractSubjectParser

■ oracle.security.idm.spi.AbstractStoreConfiguration

■ oracle.security.idm.spi. AbstractSimpleSearchFilter

■ oracle.security.idm.spi.AbstractSearchResponse

■ oracle.security.idm.spi.AbstractRoleProfile

■ oracle.security.idm.spi.AbstractRoleManager

■ oracle.security.idm.spi.AbstractRole

■ oracle.security.idm.spi.AbstractIdentityStoreFactory

■ oracle.security.idm.spi.AbstractIdentityStore

■ oracle.security.idm.spi.AbstractComplexSearchFilter

oracle.security.idm.spi.AbstractUserProfile

25-40 Oracle Fusion Middleware Application Security Guide

oracle.security.idm.spi.AbstractUserProfile

This class represents a detailed user profile and enables you to set or obtain attributes
of the user profile.

Constructors
public AbstractUserProfile()

Methods
public void setPassword(char[] oldPasswd, char[] newPasswd)
public byte[] getUserCertificate()
public void setUserCertificate(byte[] cert)
public java.lang.String getEmployeeNumber()
public void setEmployeeNumber(String employeeNumber)
public java.lang.String getBusinessPostalAddr()
public void setBusinessPostalAddr(String addr)
public java.lang.String getBusinessPOBox()
public void setBusinessPOBox(String pobox)
public byte[] getJPEGPhoto()
public void setJPEGPhoto(String imgpath)
public java.lang.String getTimeZone()
public void setTimeZone(String zone)
public java.lang.String getDescription()
public void setDescription(String desc)
public java.lang.String getDepartmentNumber()
public void setDepartmentNumber(String departmentnumber)
public java.lang.String getGivenName()
public void setGivenName(String givenname)
public java.lang.String getBusinessEmail()
public void setBusinessEmail(String email)
public java.lang.String getBusinessPager()
public void setBusinessPager(String pager)
public java.lang.String getOrganization()
public void setOrganization(String org)
public void setName(String name)
public java.lang.String getBusinessCity()
public void setBusinessCity(String city)
public java.lang.String getMaidenName()
public void setMaidenName(String maidenname)
public java.lang.String getDepartment()
public void setDepartment(String dept)
public java.lang.String getBusinessFax()
public void setBusinessFax(String fax)
public java.lang.String getUserName()
public void setUserName(String uname)
public java.lang.String getBusinessMobile()
public void setBusinessMobile(String mobile)
public java.lang.String getDateofHire()
public void setDateofHire(String hiredate)
public java.lang.String getTitle()
public void setTitle(String title)
public java.lang.String getNameSuffix()
public void setNameSuffix(String suffix)
public java.lang.String getMiddleName()
public void setMiddleName(String middlename)
public java.lang.String getHomePhone()

The User and Role SPI Reference

Developing with the User and Role API 25-41

public void setHomePhone(String homephone)
public void setDisplayName(String dispname)
public java.lang.String getEmployeeType()
public void setEmployeeType(String emptype)
public java.lang.String getLastName()
public void setLastName(String lastname)
public java.lang.String getDateofBirth()
public void setDateofBirth(String dob)
public java.lang.String getManager()
public void setManager(String manager)
public java.lang.String getBusinessState()
public void setBusinessState(String state)
public java.lang.String getHomeAddress()
public void setHomeAddress(String homeaddr)
public java.lang.String getBusinessStreet()
public void setBusinessStreet(String street)
public java.lang.String getBusinessPostalCode()
public void setBusinessPostalCode(String postalcode)
public java.lang.String getInitials()
public void setInitials(String initials)
public java.lang.String getUserID()
public void setUserID(String userid)
public java.lang.String getFirstName()
public void setFirstName(String firstname)
public java.lang.String getDefaultGroup()
public void setDefaultGroup(String defgroup)
public java.lang.String getOrganiztionalUnit()
public void setOrganizationalUnit(String ouUnit)
public java.lang.String getWirelessAcctNumber()
public void setWirelessAcctNumber(String wirelessacct)
public java.lang.String getBusinessPhone()
public void setBusinessPhone(String phone)
public java.lang.String getBusinessCountry()
public void setBusinessCountry(String country)
public java.lang.String getPreferredLanguage()
public void setPreferredLanguage(String language)
public java.lang.String getUIAccessMode()
public void setUIAccessMode(String accessMode)
public java.lang.Object getPropertyVal(String prop)
public oracle.security.idm.SearchResponse getReportees(boolean direct)
public java.util.List getManagementChain(int max, String upToManagerName, String
upToTitle)
public oracle.security.idm.PropertySet getAllUserProperties()

oracle.security.idm.spi.AbstractUserManager

25-42 Oracle Fusion Middleware Application Security Guide

oracle.security.idm.spi.AbstractUserManager

This class represents a user manager and includes basic authentication methods.

Constructors
public AbstractUserManager()

Methods
public oracle.security.idm.User authenticateUser(

String user_id, String authProperty, char[] passwd)

public oracle.security.idm.User authenticateUser(

User user, char[] passwd)

The User and Role SPI Reference

Developing with the User and Role API 25-43

oracle.security.idm.spi.AbstractUser

This class represents a user.

Constructors
public AbstractUser()

Methods
None.

oracle.security.idm.spi.AbstractSubjectParser

25-44 Oracle Fusion Middleware Application Security Guide

oracle.security.idm.spi.AbstractSubjectParser

This abstract class provides a constructor for a subject parser.

Constructors
public AbstractSubjectParser()

Methods
None

The User and Role SPI Reference

Developing with the User and Role API 25-45

oracle.security.idm.spi.AbstractStoreConfiguration

This abstract class provides a constructor for identity store configuration.

Constructors
public AbstractStoreConfiguration()

Methods
None

oracle.security.idm.spi. AbstractSimpleSearchFilter

25-46 Oracle Fusion Middleware Application Security Guide

oracle.security.idm.spi. AbstractSimpleSearchFilter

This abstract class represents a simple search filter that can be used to search the
identity store. Each simple filter consists of a search attribute, matching operator type,
and value. Search results are filtered based on this condition.

This class is abstract as its actual underlying representation (provided by method
@link #getNativeRepresentation()) is implementation-specific. A service
provider can extend this class by setting up a specific implementation of that method.

Constructors
public AbstractSimpleSearchFilter(

String attrname, int type, Object value)

Methods
Table 25–6 lists the methods of AbstractSimpleSearchFilter.

Table 25–6 Methods of AbstractSimpleSearchFilter

Method Description

public void
setAttribute(String
name)

Set attribute name. .

public void setType(int
type)

Set filter type.

public void
setValue(Object value)

Set attribute value.

public java.lang.String
getAttributeName()

Retrieve attribute name.

public java.lang.Object
getValue()

Retrieve attribute value.

public int getType() Retrieve filter type.

public void setNegate() Negate the current NOT state of the search filter. Behaves like a
toggle switch.

public void negate() Negate the current NOT state of the search filter. Behaves like a
toggle switch.

public boolean
isNegated()

Return the current NOT state of the search filter. Returns true if
the NOT operator is set; false otherwise.

The User and Role SPI Reference

Developing with the User and Role API 25-47

oracle.security.idm.spi.AbstractSearchResponse

This is an abstract class that represents search response results.

Constructors
public AbstractSearchResponse()

Methods
None.

oracle.security.idm.spi.AbstractRoleProfile

25-48 Oracle Fusion Middleware Application Security Guide

oracle.security.idm.spi.AbstractRoleProfile

This class represents the detailed profile of a role.

Constructors
public AbstractRoleProfile()

Methods
public oracle.security.idm.SearchResponse getManagers(

SearchFilter filter, boolean direct)

public oracle.security.idm.SearchResponse getManagers(
SearchFilter filter)

public oracle.security.idm.SearchResponse getOwners(
SearchFilter filter, boolean direct)

public oracle.security.idm.SearchResponse getOwners(
SearchFilter filter)

public void addManager(
Principal principal)

public void removeManager(
Principal principal)

public void addOwner(
Principal principal)

public void removeOwner(
Principal principal)

public boolean isOwnedBy(
Principal principal)

public boolean isManagedBy(
Principal principal)

public void addOwner(
User user)

public void removeOwner(
User user)

public void setDisplayName(
String displayName)

public void setDescription(
String discription)

public java.lang.String getDescription()

public oracle.security.idm.Property getProperty(
String propName)

The User and Role SPI Reference

Developing with the User and Role API 25-49

oracle.security.idm.spi.AbstractRoleManager

This class is an abstract representation of a role manager.

Constructors
public AbstractRoleManager()

Methods
public boolean isOwnedBy(

Role role, Principal principal)

public boolean isManagedBy(
Role role, Principal principal)

public oracle.security.idm.SearchResponse getOwnedRoles(
Principal principal, boolean direct)

public oracle.security.idm.SearchResponse getManagedRoles(
Principal principal, boolean direct)

oracle.security.idm.spi.AbstractRole

25-50 Oracle Fusion Middleware Application Security Guide

oracle.security.idm.spi.AbstractRole

This class provides a constructor for a role.

Constructors
public AbstractRole()

Methods
None

The User and Role SPI Reference

Developing with the User and Role API 25-51

oracle.security.idm.spi.AbstractIdentityStoreFactory

This class represents an identity store factory.

Constructors
public AbstractIdentityStoreFactory()

Methods
public oracle.security.idm.IdentityStore getIdentityStoreInstance()

See Also: "IdentityStoreFactory" in Table 25–1.

oracle.security.idm.spi.AbstractIdentityStore

25-52 Oracle Fusion Middleware Application Security Guide

oracle.security.idm.spi.AbstractIdentityStore

This abstract class represents an identity store.

Constructors
public AbstractIdentityStore()

Methods
public oracle.security.idm.RoleManager getRoleManager() public
oracle.security.idm.UserManager getUserManager() public java.util.List
getMandatoryUserPropertyNames() public java.util.List getUserPropertySchema()

The User and Role SPI Reference

Developing with the User and Role API 25-53

oracle.security.idm.spi.AbstractComplexSearchFilter

This class represents a complex search filter. This type of search filter is used to
combine multiple SearchFilter instances with a single boolean AND or OR operator.
Each of the component search filters can itself be a complex filter, enabling you to form
nested search filters with a high degree of complexity.

This class is abstract in that its actual underlying representation, provided by the
@link #getNativeRepresentation() method, is implementation-specific.

A service provider can extend this class by creating a specific implementation of this
method.

Constructors
public AbstractComplexSearchFilter(SearchFilter[] filters, int oper_type)

Methods

See Also: "oracle.security.idm.spi. AbstractSimpleSearchFilter"

Table 25–7 Methods of Complex Search Filter

Method Description

public void
addFilterComponent(
SearchFilter filter)

Add the SearchFilter component to this complex filter's list.

public void setNegate() Negate the current NOT state of the search filter. Behaves like a
toggle switch.

public void negate() Negate the current NOT state of the search filter. Behaves like a
toggle switch.

public boolean isNegated() Return the current NOT state of the search filter. Returns true if
the NOT operator is set; false otherwise.

public int
getOperatorType()

Logical operator type which binds together the SearchFilter
components.

oracle.security.idm.spi.AbstractComplexSearchFilter

25-54 Oracle Fusion Middleware Application Security Guide

26

Developing with the Identity Directory API 26-1

26Developing with the Identity Directory API

This chapter explains how to access and work with identity stores using the Identity
Directory API.

This chapter contains these topics:

■ About the Identity Directory API

■ Summary of Classes

■ Identity Directory Configuration

■ Working with the Identity Directory API

■ Examples of Identity Directory API

■ SSL Configuration

26.1 About the Identity Directory API
The Identity Directory API allows applications to access identity information (users
and other entities) in a uniform and portable manner regardless of the particular
underlying identity repository.

The Identity Directory API:

■ is flexible

■ is fully configurable by clients supporting a variety of identity stores having
standard and specific schemas

■ supports retrieving and managing users, groups, and organizations

■ is extensible, supporting new entity types with relationships defined between
those entities

■ is robust, with high-availability/fail-over support.

The Identity Directory API uses the Identity Governance framework, providing all the
benefits of the framework to enable you to control how identity related information,
including Personally Identifiable Information (PII), access entitlements, attributes, and
other entities are used, stored, and propagated between organizations.

26.1.1 Feature Overview
This section explains the features supported by the Identity Directory API.

Features for User Entities
The following features are supported for users:

Summary of Classes

26-2 Oracle Fusion Middleware Application Security Guide

■ Perform Create/Update/Delete (CRUD) operations on users

■ Perform the following actions:

– get and set user attributes

– authenticate the user with the identity store’s native authentication
mechanism

– get the group to which the user belongs (optionally, including nested groups)

– make user a member of a group

■ Change user password

■ Force user password change

■ Get and set user state (enable/disable, lockout, password must change)

Features for Group Entities
The following features are supported for groups:

■ Perform CRUD operations on groups

■ Perform the following actions:

– get and set attributes

– get and search for members of a group

– get the groups to which a groups belongs (optionally, including nested
groups)

– determine if the group is a member of another group

■ Support multi-valued attributes

■ Support static and dynamic groups

26.2 Summary of Classes
Table 26–1 lists the classes in the Identity Directory API:

Table 26–1 Classes in the Identity Directory API
Class Description

Capabilities Contains an entity’s capabilities.

CreateOptions Contains options for entity creation operations.

DeleteOptions Contains options for entity deletion operations.

Entity Generic entity class holding the list of attributes of the entity fetched using search
or read methods.

EntityAlreadyExistsException Returned following an attempt to create an existing entity.

EntityCapabilities

EntityManager Handles operations like read, create and search of generic entity.

EntityNotFoundException Returned when requested entity is not found.

EntityNotUniqueException Returned when the entity is not uniquely defined.

EntityRelationManager Handles entity relationship operations like read, create, delete, search relationship.

Group A generic entity class holding the list of members of the group. It also provides
methods to modify group membership.

Working with the Identity Directory API

Developing with the Identity Directory API 26-3

26.3 Identity Directory Configuration
The identity directory configuration is a combination of the logical entity
configuration and the physical identity store configuration.

The identity directory with logical entity configuration is stored in:

DOMAIN_HOME/config/fmwconfig/ids-config.xml

The physical identity store configuration for the default identity directory is located at:

DOMAIN_HOME/config/fmwconfig/ovd/default

The default identity directory uses the same identity store properties (namely host,
port, credentials, search base, create base, name attribute, and so on) configured in
OPSS (weblogic authenticator or in jps-config.xml). For more information, see
Section F.2.3, "LDAP Identity Store Properties".

26.4 Working with the Identity Directory API
This section explains how applications can use the Identity Directory API to view and
manage identity store data. It contains these sections:

GroupManager Handles operations like creating, deleting, and searching for groups.

IDSException Handles exceptions.

IDSPrincipal Contains the principal related to the exception.

IdentityDirectory Represents a handle to IdentityDirectory for creation of IdentityDirectory instance.

The instance provides handles to User, Group, and generic Entity Manager so that
operations on the corresponding entities can be performed.

IdentityDirectoryFactory A factory class for creating IdentityDirectoryService.

IdentityDirectoryInfo

InvalidAttributesException Used for exceptions related to invalid entity attributes.

InvalidFilterException Used for exceptions generated within Identity Beans

ModAttribute

ModifyOptions Extends OperationOptions containing options for entity modify operation

OperationNotSupportedExce
ption

Used for exceptions generated within Identity Beans

ReadOptions Extends OperationOptions containing options for entity read operation. Read
options include Locale and Requested Attributes settings.

ResultSet An interface for the object returned by search interaction with paged results.

SearchFilter Used to construct simple or complex nested search filters for searching the entities

SearchOptions Extends ReadOptions containing options for entity search operation.

User Generic class for User entities.

UserCapabilities Contains user capability attributes.

UserManager Contains methods for creating, deleting, and searching for users by various
criteria.

Table 26–1 (Cont.) Classes in the Identity Directory API
Class Description

Working with the Identity Directory API

26-4 Oracle Fusion Middleware Application Security Guide

■ Getting an Identity Directory API Instance

■ Performing CRUD Operations on Users and Groups

26.4.1 Getting an Identity Directory API Instance
You can obtain the identity directory handle from the jps-context and get a directory
instance as follows:

JpsContextFactory ctxFactory = JpsContextFactory.getContextFactory();
JpsContext ctx = ctxFactory.getContext();

//find the JPS IdentityStore service instance
IdentityStoreService idstoreService =
ctx.getServiceInstance(IdentityStoreService.class)

//get the Identity Directory instance
oracle.igf.ids.IdentityDirectory ids = idstoreService.getIdentityStore();

26.4.2 Performing CRUD Operations on Users and Groups
You can perform Create, Retrieve, Update, and Delete (CRUD) operations on users
and groups.

■ User Operations

■ Group Operations

26.4.2.1 User Operations
Basic CRUD operations on users are as follows:

Create User
Principal UserManager.createUser(List<Attribute> attrVals, CreateOptions opts)

Get User
User UserManager.getUser(Principal principal, ReadOptions opts)

Search for User
User UserManager.searchUser(String id, ReadOptions opts)

Delete User
void UserManager.deleteUser(String id, DeleteOtions opts)

Update User
void UserManager.modify(List<ModAttribute> attrVals, ModifyOptions opts)

Retrieve List of Users
ResultSet UserManager.searchUsers(SearchFilter filter, SearchOptions opts)

26.4.2.2 Group Operations
Basic CRUD operations on groups are as follows:

Examples of Identity Directory API

Developing with the Identity Directory API 26-5

Create Group
Principal GroupManager.createGroup(List<Attribute> attrVals, CreateOptions opts)

Get Group
User GroupManager.getGroup(Principal principal, ReadOptions opts)

Search for Group
User GroupManager.searchGroup(String id, ReadOptions opts)

Delete Group
void GroupManager.deleteGroup(String id, DeleteOtions opts)

Modify Group Attributes
void GroupManager.modify(List<ModAttribute> attrVals, ModifyOptions opts)

Retrieve List of Groups
ResultSet GroupManager.searchGroups(SearchFilter filter, SearchOptions opts)

26.5 Examples of Identity Directory API
This section contains the following examples of using the Identity Directory API:

■ Initialize and Obtain Identity Directory Handle

■ Create a User

■ Get a User

■ Modify a User

■ Simple Search for a User

■ Complex Search for Users

■ Create a Group

■ Get a Group

■ Get Group Using a Search Filter

■ Delete a Group

■ Add a Member to a Group

■ Delete a Member from a Group

26.5.1 Initialize and Obtain Identity Directory Handle
This sample code initializes and obtains a handle to the identity directory:

/**
 * This is a sample program for initializing Identity Directory Service with the
configuration
 * that is already persisted in IDS config location.
 * Basic User and Group CRUDS are performed using this IDS instance
 */

import java.util.ArrayList;
import java.util.List;
import java.util.Iterator;
import java.util.Map;

Examples of Identity Directory API

26-6 Oracle Fusion Middleware Application Security Guide

import java.security.Principal;

import oracle.igf.ids.Entity;
import oracle.igf.ids.User;
import oracle.igf.ids.UserManager;
import oracle.igf.ids.Group;
import oracle.igf.ids.GroupManager;
import oracle.igf.ids.config.OperationalConfig;
import oracle.igf.ids.IdentityDirectoryFactory;
import oracle.igf.ids.IdentityDirectoryInfo;
import oracle.igf.ids.IdentityDirectory;
import oracle.igf.ids.IDSException;
import oracle.igf.ids.ReadOptions;
import oracle.igf.ids.CreateOptions;
import oracle.igf.ids.ModifyOptions;
import oracle.igf.ids.DeleteOptions;
import oracle.igf.ids.SearchOptions;
import oracle.igf.ids.SearchFilter;
import oracle.igf.ids.ResultSet;
import oracle.igf.ids.Attribute;
import oracle.igf.ids.ModAttribute;

import oracle.dms.context.ExecutionContext;

public class Ids1Test {

 private IdentityDirectory ids;
 private UserManager uMgr;
 private GroupManager gMgr;

 /**
 * Get Identity Store Service
 */
 public Ids1Test() throws IDSException {

 // Set Operational Config
 OperationalConfig opConfig = new OperationalConfig();

 // Set the application credentials: this overrides the credentials

// set in physical ID store configuration
 //opConfig.setApplicationUser("cn=venkat_medam,l=amer,dc=oracle,dc=com");
 //opConfig.setApplicationPassword("welcome123".toCharArray());

 // Set search/crate base, name, objclass, etc. config.

// This overrides default operational configuration in IDS
 opConfig.setEntityProperty("User", opConfig.SEARCH_BASE,

"l=amer,dc=oracle,dc=com");
 opConfig.setEntityProperty("User", opConfig.CREATE_BASE,

"l=amer,dc=oracle,dc=com");
 opConfig.setEntityProperty("User", opConfig.FILTER_OBJCLASSES, "person");
 opConfig.setEntityProperty("User", opConfig.CREATE_OBJCLASSES,

"inetorgperson");
 opConfig.setEntityProperty("Group", opConfig.SEARCH_BASE,

"cn=dlcontainerOCS,dc=oracle,dc=com");
 opConfig.setEntityProperty("Group", opConfig.CREATE_BASE,

"cn=dlcontainerOCS,dc=oracle,dc=com");
 opConfig.setEntityProperty("Group", opConfig.FILTER_OBJCLASSES,

Examples of Identity Directory API

Developing with the Identity Directory API 26-7

"groupofuniquenames");
 opConfig.setEntityProperty("Group", opConfig.CREATE_OBJCLASSES,

"groupofuniquenames,orclgroup");

 // Get IdentityDirectoryService "userrole" configured in IDS config
 IdentityDirectoryFactory factory = new IdentityDirectoryFactory();
 //ids = factory.getDefaultIdentityDirectory(opConfig);
 ids = factory.getIdentityDirectory("userrole", opConfig);

 // Get UserManager and GroupManager handles
 uMgr = ids.getUserManager();
 gMgr = ids.getGroupManager();
 }

26.5.2 Create a User
This sample code creates a user in the identity store:

 public Principal createUser() {
 Principal principal = null;

 List<Attribute> attrs = new ArrayList<Attribute>();
 attrs.add(new Attribute("commonname", "test1_user1"));
 attrs.add(new Attribute("password", "welcome123".toCharArray()));
 attrs.add(new Attribute("firstname", "test1"));
 attrs.add(new Attribute("lastname", "user1"));
 attrs.add(new Attribute("mail", "test1.user1@oracle.com"));
 attrs.add(new Attribute("telephone", "1 650 123 0001"));
 attrs.add(new Attribute("title", "Senior Director"));
 attrs.add(new Attribute("uid", "tuser1"));
 // Adding locale specific value
 attrs.add(new Attribute("description", "created test user 1",

new java.util.Locale("us", "en")));
 try {
 CreateOptions createOpts = new CreateOptions();
 createOpts.setCreateBase("l=apac,dc=oracle,dc=com");

 principal = uMgr.createUser(attrs, createOpts);

 System.out.println("Created user " + principal.getName());

 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }

 return principal;
 }

26.5.3 Get a User
This sample code obtains a user from the identity store:

 public User getUser(Principal principal) {
 User user = null;

 try {
 ReadOptions readOpts = new ReadOptions();
 // Getting specific locale values

Examples of Identity Directory API

26-8 Oracle Fusion Middleware Application Security Guide

 readOpts.setLocale("us-en");

 user = uMgr.getUser(principal, readOpts);

 printEntity(user);

 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }

 return user;
 }

26.5.4 Modify a User
This sample code modifies an existing user by adding a new user attribute:

 public void modifyUser(User user) {

 try {
 ModifyOptions modifyOpts = new ModifyOptions();

 List<ModAttribute> attrs = new ArrayList<ModAttribute>();
 attrs.add(new ModAttribute("description", "modified test user 1"));
 //attrs.add(new ModAttribute("uid", "venkatmedam"));

 user.modify(attrs, modifyOpts);

 System.out.println("Modified user " + user.getName());

 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }
 }

26.5.5 Simple Search for a User
This sample code performs a basic user search:

 try {
 ReadOptions readOpts = new ReadOptions();
 readOpts.setSearchBase("l=apac");

 User user = uMgr.searchUser("tuser1", readOpts);

 printEntity(user);

 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }
 }

26.5.6 Complex Search for Users
This sample code uses a complex search filter to return matching users:

Examples of Identity Directory API

Developing with the Identity Directory API 26-9

public void searchUsers() {

try {
// Complex search filter with nested AND and OR conditiions
SearchFilter filter = new SearchFilter(

SearchFilter.LogicalOp.OR,
new SearchFilter(SearchFilter.LogicalOp.AND,
new SearchFilter("firstname", SearchFilter.Operator.BEGINS_WITH, "ve"),
new SearchFilter("telephone", SearchFilter.Operator.CONTAINS, "506")),
new SearchFilter(SearchFilter.LogicalOp.AND,
new SearchFilter("firstname", SearchFilter.Operator.BEGINS_WITH, "ra"),
new SearchFilter(SearchFilter.LogicalOp.OR,
new SearchFilter("orgunit", SearchFilter.Operator.BEGINS_WITH, "ldap"),
new SearchFilter("orgunit", SearchFilter.Operator.BEGINS_WITH, "sun"),
new SearchFilter("orgunit", SearchFilter.Operator.BEGINS_WITH,
"access")),
new SearchFilter("telephone", SearchFilter.Operator.CONTAINS, "506")));

// Requesting attributes
List<String> reqAttrs = new ArrayList<String>();
reqAttrs.add("jpegphoto");

SearchOptions searchOpts = new SearchOptions();
searchOpts.setPageSize(3);
searchOpts.setRequestedPage(1);
searchOpts.setRequestedAttrs(reqAttrs);
searchOpts.setSearchBase("l=amer");

ResultSet<User> sr = uMgr.searchUsers(filter, searchOpts);

while (sr.hasMore()) {
User user = sr.getNext();
//printEntity(user);
//System.out.println(" ");
System.out.println(user.getSubjectName());
System.out.println(" " + user.getAttributeValue("commonname"));

}

} catch (Exception e) {
System.out.println(e.getMessage());
e.printStackTrace();

}
 }

26.5.7 Create a Group
This sample code creates a group:

 public Principal createGroup() {
 Principal principal = null;

 List<Attribute> attrs = new ArrayList<Attribute>();
 attrs.add(new Attribute("name", "test1_group1"));
 attrs.add(new Attribute("description", "created test group 1"));
 attrs.add(new Attribute("displayname", "test1 group1"));
 try {
 CreateOptions createOpts = new CreateOptions();

 principal = gMgr.createGroup(attrs, createOpts);

Examples of Identity Directory API

26-10 Oracle Fusion Middleware Application Security Guide

 System.out.println("Created group " + principal.getName());

 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }

 return principal;
 }

26.5.8 Get a Group
This sample code returns a specific group:

 public Group getGroup(Principal principal) {
 Group group = null;

 try {
 ReadOptions readOpts = new ReadOptions();

 group = gMgr.getGroup(principal, readOpts);

 printEntity(group);

 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }

 return group;
 }

26.5.9 Get Group Using a Search Filter
This sample code uses a search filter to return groups:

 public void searchGroups() {

 try {
 SearchFilter filter = new SearchFilter("name",
 SearchFilter.Operator.BEGINS_WITH, "test");

 SearchOptions searchOpts = new SearchOptions();
 searchOpts.setPageSize(10);

 ResultSet<Group> sr = gMgr.searchGroups(filter, searchOpts);
 while (sr.hasMore()) {
 Group group = sr.getNext();
 System.out.println(group.getSubjectName());
 }

 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }
 }

Examples of Identity Directory API

Developing with the Identity Directory API 26-11

26.5.10 Delete a Group
This sample code deletes a group from the store:

 public void deleteGroup(Principal principal) {

 try {
 DeleteOptions deleteOpts = new DeleteOptions();

 gMgr.deleteGroup(principal, deleteOpts);

 System.out.println("Deleted group " + principal.getName());

 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }
 }

26.5.11 Add a Member to a Group
This sample code adds a member to a group:

 public void addMember() {
 try {
 ReadOptions readOpts = new ReadOptions();
 User user = uMgr.searchUser("amsharma", readOpts);
 Group group = gMgr.searchGroup("test1_group1", readOpts);

 ModifyOptions modOpts = new ModifyOptions();
 user.addMemberOf(group, modOpts);

 System.out.println("added amsharma as member of test1_group1");

 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }
 }

26.5.12 Delete a Member from a Group
This sample code deletes a member from a group:

 public void deleteMember() {
 try {
 ReadOptions readOpts = new ReadOptions();
 User user = uMgr.searchUser("amsharma", readOpts);
 Group group = gMgr.searchGroup("test1_group1", readOpts);

 ModifyOptions modOpts = new ModifyOptions();
 group.deleteMember(user, modOpts);

 System.out.println("deleted amsharma from the group test1_group1");

 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }

SSL Configuration

26-12 Oracle Fusion Middleware Application Security Guide

 }

26.6 SSL Configuration
For details about SSL configuration when using the Identity Directory API, see
Section 7.5, "SSL for the Identity Store Service".

27

Developing with the Keystore Service 27-1

27Developing with the Keystore Service

This chapter explains how to utilize the Keystore Service when developing
applications.

■ About the Keystore Service API

■ Overview of Application Development with the Keystore Service

■ Setting the Java Security Policy Permission

■ Configuring the Keystore Service

■ Steps for Using the Keystore Service API

■ Example of Keystore Service API Usage

■ Best Practices

27.1 About the Keystore Service API
A keystore is used for secure storage of and access to keys and certificates. The
Keystore Service API is used to access and perform operations on the keystores.

The Keystore Service:

■ enables you to manage keys and certificates securely

■ provides an API for storage, retrieval, and maintenance of keys and certificates in
different back-end repositories

■ supports file, database, LDAP-based keystore management

Critical (create, update, delete) functions provided by the Keystore Service API
include:

■ creating keystores

■ deleting keystores

■ obtaining a handle to the domain trust store

■ obtaining a handle to a keystore

■ obtaining the configured properties for a keystore

■ obtaining a list of the keystores within an application stripe

Operations on a KeyStore are secured by KeyStoreAccessPermission, which
implements the fine-grained access control model utilized by the Keystore Service.

Overview of Application Development with the Keystore Service

27-2 Oracle Fusion Middleware Application Security Guide

27.2 Overview of Application Development with the Keystore Service
Knowledge of the following areas is helpful in getting your applications to work with
the Keystore Service:

■ Determining appropriate application stripe and keystore names to use.

■ Provisioning Java security policies.

Policy permissions are set in the policy store, which can be file-based
(system-jazn-data.xml) or LDAP-based. Setting appropriate permissions to
enable application usage without compromising the security of your data requires
careful consideration of permission settings.

■ Defining the Keystore Service instance in jps-config.xml.

You will need to define the service instance in jps-config.xml only if manually
crafting the configuration file.

■ Steps to take in setting up the environment.

The steps are different for stand-alone applications and those that operate in an
Oracle WebLogic Server environment.

27.3 Setting the Java Security Policy Permission
The Oracle Platform Security Services keystore provider is set when the server is
started. When the provider is file-based, the data is stored in system-jazn-data.xml.

Keystore Service supports securing keys:

■ at the application stripe level,

■ at the keystore level, or

■ with finer granularity for specific <application stripe, keystore, key>

See Also:

■ Chapter 11, "Managing Keys and Certificates with the Keystore
Service".

See Also: Section 9.1, "Managing the Policy Store".

Note: The file-based provider is already configured by default, and
can be changed to an LDAP-based provider. See Section 8.6,
"Migrating the OPSS Security Store".

Setting the Java Security Policy Permission

Developing with the Keystore Service 27-3

This section provides guidelines for permission grants to keystore objects, along with
several examples:

■ Guidelines for Granting Permissions

■ Permissions Grant Example 1

■ Permissions Grant Example 2

■ Permissions Grant Example 3

27.3.1 Guidelines for Granting Permissions
The Keystore Service relies on Java permissions to grant permissions to keystore or
key objects. It is highly recommended that only the requisite permissions be granted,
and no more.

27.3.2 Permissions Grant Example 1
The Keystore Service stores objects in a hierarchy:

application stripe -> keystore(s) -> key(s)/certificate(s)

This example grants permissions for a specific application stripe and a specific
keystore name within that stripe.

<jazn-policy>
 <grant>
 <grantee>
 <principals>...</principals>
 <!-- This is the location of the jar -->
 <!-- as loaded with the run-time -->
 <codesource>
 <url>file:${oracle.deployed.app.dir}/<MyApp>${oracle.deployed.app.ext}</url>
 </codesource>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.jps.service.keystore.

Notes:

■ To properly access the Keystore Service APIs, you need to grant
Java permissions in the policy store.

■ The code invoking Keystore Service APIs needs code source
permission. The permissions are typically for specific code jars
and not for the complete application.

Note: In the examples, the application jar file name is AppName.jar.

WARNING: It is risky and inadvisable to grant unnecessary
permissions, particularly permissions to all application stripes
and/or keystores.

See Also: Section 11.1.1 for details about the object hierarchy in the
Keystore Service.

Setting the Java Security Policy Permission

27-4 Oracle Fusion Middleware Application Security Guide

 KeyStoreAccessPermission</class>
 <name>stripeName=keystoreapp,keystoreName=ks1,alias=*</name>
 <!-- All actions are granted -->
 <actions>*</actions>
 </permission>
 </permissions>
 </grant>
</jazn-policy>

where:

■ stripeName is the name of the application stripe (typically the name of the
application) for which you want to grant these permissions (read, write, update,
and delete permissions denoted by the wildcarded actions).

■ keystoreName is the key store name in use.

■ alias indicates the key alias within the key store.

27.3.3 Permissions Grant Example 2
In this example, permissions are granted for a specific application stripe name and all
its keystores.

<jazn-policy>
 <grant>
 <grantee>
 <principals>...</principals>
 <codesource>
 <url>file:${oracle.deployed.app.dir}/<MyApp>${oracle.deployed.app.ext}</url>
 </codesource>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.jps.service.keystore.
 KeyStoreAccessPermission</class>
 <name>stripeName=keystoreapp,keystoreName=*,alias=*</name>
 <!-- Certain actions are explicitly specified -->
 <!-- Compare to wild-card grant in previous example -->
 <actions>read,write,update,delete</actions>
 </permission>
 </permissions>
 </grant>
</jazn-policy>

27.3.4 Permissions Grant Example 3
In this example, read permissions are granted for a specific key alias within an
application stripe name and a keystore.

<jazn-policy>
 <grant>
 <grantee>
 <principals>...</principals>
 <codesource>
 <url>file:${oracle.deployed.app.dir}/<MyApp>${oracle.deployed.app.ext}</url>

Note: The wildcard indicates the application is granted permission
for all aliases.

Steps for Using the Keystore Service API

Developing with the Keystore Service 27-5

 </codesource>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.jps.service.keystore.
 KeyStoreAccessPermission</class>
 <name>stripeName=keystoreapp,keystoreName=ks1,alias=orakey</name>
 <actions>read</actions>
 </permission>
 </permissions>
 </grant>
</jazn-policy>

27.4 Configuring the Keystore Service
You need to define the Keystore Service instance in a configuration file which contains
information about the location of the keystore and the provider classes. Configuration
files are located in:

$DOMAIN_HOME/config/fmwconfig

and are named as follows:

■ jps-config.xml for Oracle WebLogic Server

■ jps-config-jse.xml for Java SE

27.5 Steps for Using the Keystore Service API
You can use the Keystore Service within Oracle WebLogic Server or in a standalone
environment.

■ Using the Keystore Service API in a Standalone Environment

■ Using the Keystore Service API in Oracle WebLogic Server

27.5.1 Using the Keystore Service API in a Standalone Environment
The steps for using the API in a standalone environment are:

1. Set up the classpath. Ensure that the jps-manifest.jar file is in your classpath.
For details, see Required JAR in Classpath in Section 1.5.3, "Scenario 3: Securing a
Java SE Application".

2. Set up the policy; to provide access to the Keystore Service APIs, you need to
configure the access permissions in the reference policy store. For examples, see
Section 27.3, "Setting the Java Security Policy Permission".

3. Run the application.

Command-line options include:

-Doracle.security.jps.config
specifies the full path to the configuration file

-Djava.security.policy
specifies the location of the OPSS/Oracle WebLogic Server policy file

-Djava.security.debug=all
is helpful for debugging purposes

Example of Keystore Service API Usage

27-6 Oracle Fusion Middleware Application Security Guide

27.5.2 Using the Keystore Service API in Oracle WebLogic Server
Take these steps to use the API in an Oracle WebLogic Server environment:

1. Out-of-the-box, the keystore service provider section of the jps-config.xml file is
configured in the following directory:

$DOMAIN_HOME/config/fmwconfig

If needed, reassociate to an LDAP or database store.

2. Set up the policy. To provide access to the Keystore Service APIs, you need to
configure the access permissions in the reference policy store. For examples, see
Section 27.3, "Setting the Java Security Policy Permission".

3. Start Oracle WebLogic Server.

4. Deploy and test the application.

27.6 Example of Keystore Service API Usage
This section provides an example of using the key store service APIs. It contains these
topics:

■ Java Program for Keystore Service Operations

■ Policy Store Setup

■ Configuration File

■ About Using the Keystore Service in the Java SE Environment

27.6.1 Java Program for Keystore Service Operations
The following Java code demonstrates common Keystore Service operations:

import oracle.security.jps.JpsContext;
import oracle.security.jps.JpsContextFactory;
import oracle.security.jps.JpsException;
import oracle.security.jps.internal.policystore.JavaPolicyProvider;
import oracle.security.jps.service.keystore.KeyStoreProperties;
import oracle.security.jps.service.keystore.KeyStoreService;
import oracle.security.jps.service.keystore.KeyStoreServiceException;

import java.security.AccessController;
import java.security.PrivilegedAction;

public class KeyStoreTest {

 static {
 java.security.Policy.setPolicy(new JavaPolicyProvider());
 }

 private static KeyStoreService ks = null;

 public KeyStoreTest() {
 super();
 }

 /*
 * This method performs a non-privileged operation. Either all code
 * in the call stack must have KeyStoreAccessPermission

Example of Keystore Service API Usage

Developing with the Keystore Service 27-7

 * OR
 * the caller must have the KeyStoreAccessPermission only and
 * invoke this operation in doPrivileged block
 */
 public static void doKeyStoreOperation() {
 doOperation();
 }

 /*
 * Since this method performs a privileged operation, only current class or
 * jar containing this class needs KeyStoreAccessPermission
 */
 public static void doPrivilegedKeyStoreOperation() {
 AccessController.doPrivileged(new PrivilegedAction<String>() {
 public String run() {
 doOperation();
 return "done";
 }
 });
 }

 private static void doOperation() {
 try {
 ks.deleteKeyStore("keystoreapp", "ks1", null);
 } catch(KeyStoreServiceException e) {
 e.printStackTrace();
 }

 /*
 * Since this method performs a privileged operation, only current class or
 * jar containing this class needs KeyStoreAccessPermission
 */
 public static void doPrivilegedKeyStoreOperation() {
 AccessController.doPrivileged(new PrivilegedAction<String>() {
 public String run() {
 doOperation();
 return "done";
 }
 });
 }

 private static void doOperation() {
 try {
 ks.deleteKeyStore("keystoreapp", "ks1", null);
 } catch(KeyStoreServiceException e) {
 e.printStackTrace();
 }

 public static void main(String args[]) throws Exception {

 try {

 JpsContext ctx = JpsContextFactory.getContextFactory().getContext();
 ks = ctx.getServiceInstance(KeyStoreService.class);

 // #1 - this call is in a doPrivileged block
 // #1 - this should succeed.
 doPrivilegedKeyStoreOperation();

 // #2 - this will also pass since granted all application

Example of Keystore Service API Usage

27-8 Oracle Fusion Middleware Application Security Guide

 // code necessary permission
 // NOTE: Since this call is not in a doPrivileged block,
 // this call would have failed if KeyStoreAccessPermission
 // wasn't granted to this class.

 /*
 doKeyStoreOperation();
 */

 } catch (JpsException je) {
 je.printStackTrace();
 }

 }
}

27.6.2 Policy Store Setup
For illustration, the example uses an xml-based policy store file
(system-jazn-data.xml) which has the appropriate permissions needed to access the
given key store from the store. The file defines the permissions for different
combinations of application stripe and key store name. Other combinations, or
attempts to access the store beyond the permissions defined here, will be disallowed.

Here the system property projectsrc.home is set to point to the directory containing
the Java SE application, and clientApp.jar is the application jar file which is present
in sub-directory dist.

The corresponding policy grant looks like this:

<grant>
 <grantee>
 <codesource>
 <url>file:${projectsrc.home}/dist/clientApp.jar</url>
 </codesource>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.jps.service.keystore.KeyStoreAccessPermission
 </class>
 <name>stripeName=keystoreapp,keystoreName=ks1,alias=*</name>
 <actions>*</actions>
 </permission>
 </permissions>
</grant>

27.6.3 Configuration File
Here is a sample configuration file (jps-config-jse.xml). The keystore.file.path
property of the keystore service shows the directory containing the keystores.xml
file:

Note: The default policy store to which this grant is added is
$DOMAIN_HOME/config/fmwconfig/system-jazn-data.xml.

Best Practices

Developing with the Keystore Service 27-9

<jpsConfig>
 ...
 <serviceInstances>
 <serviceInstance name="keystore_file_instance"
 provider="keystore_file_provider">
 <property name="keystore.file.path" value="store" />
 <property name="keystore.provider.type" value="file" />
 </serviceInstance>
 </serviceInstances>
 ...
</jpsConfig>

27.6.4 About Using the Keystore Service in the Java SE Environment

In the Java SE environment, the following calls are equivalent:

KeyStoreService store =
JpsServiceLocator.getServiceLocator().lookup(KeyStoreService.class);

and:

KeyStoreService store =
JpsContextFactory.getContextFactory().getContext().getServiceInstance
(KeyStoreService.class);

27.7 Best Practices
In a clustered environment, use the Keystore Service Mbean API over the Keystore
Service API to create, retrieve, update, and delete keys for an application.

If you are simply reading keys, however, either API can be used.

Note: For the complete configuration file see the default file shipped
with the distribution at $DOMAIN_
HOME/config/fmwconfig/jps-config-jse.xml.

Best Practices

27-10 Oracle Fusion Middleware Application Security Guide

28

Developing with the Audit Service 28-1

28Developing with the Audit Service

This chapter explains how applications (also known as audit clients) can use the
Oracle Fusion Middleware Audit Framework to provide auditing capabilities. 11g
Release 1 (11.1.1.6) introduces an audit service that enables you to integrate with the
audit framework programmatically to log audit events and generate compliance
reports using the same capabilities available to Oracle components.

Using the audit service, applications can:

■ create event definitions without the use of custom tables

■ register with the audit service when you deploy the application

■ change event definitions when redeploying the application

■ change audit configuration settings at run-time

This chapter contains these topics:

■ Application Integration with Audit Flow

■ Audit Metadata Model

■ The Audit Metadata Store

■ Integrating the Application with the Audit Framework

■ Create Audit Definition Files

■ Register Application with the Registration Service

■ Add Application Code to Log Audit Events

■ Integrate with Oracle Business Intelligence Publisher

■ Update and Maintain Audit Definitions

28.1 Application Integration with Audit Flow
As Figure 28–1 shows, Java EE applications running on Oracle WebLogic Server can
integrate with and leverage the audit framework seamlessly:

Audit Metadata Model

28-2 Oracle Fusion Middleware Application Security Guide

Figure 28–1 Integrating Applications with the Audit Framework

During application deployment or audit service start-up, a client such as a Java EE
application or Oracle component registers with the audit service. The registration
service updates the metadata store with the latest audit definitions contained in
component_events.xml and related files.

The rest of this chapter explains the metadata model, and how you can integrate your
applications with the audit flow to log audit events and create audit reports.

28.2 Audit Metadata Model
The audit framework supports a metadata model which enables applications to
specify their audit artifacts in a flexible manner. Applications can dynamically define
attribute groups, categories, and events.

28.2.1 Attribute Groups
Attribute groups provide broad classification of audit attributes and consist of three
types:

■ The common attribute group contains all the system attributes common to all
applications, such as component type, system IP address, hostname, and others.

The IAU_COMMON database table contains attributes in this group.

■ Generic attribute groups contain attributes for audit application areas such as
authentication and user provisioning.

■ Custom attribute groups are those defined by an application to meet its specific
needs. Attributes in a custom group are limited to that component scope.

28.2.1.1 Audit Attribute Data Types
Table 28–1 shows the supported attribute data types and the corresponding Java object
types:

See Also: Section 12.3 for details about the audit flow.

Audit Metadata Model

Developing with the Audit Service 28-3

28.2.1.2 Common Attribute Groups
The common attribute group is stored in the IAU_COMMON database table.

28.2.1.3 Generic Attribute Groups
A generic attribute group is defined with a namespace, a version number, and one or
more attributes. This example defines an attribute group with namespace
authorization and version 1.0:

<AuditConfig xmlns="http://xmlns.oracle.com/ias/audit/audit-2.0.xsd" >
 <Attributes ns="authorization" version="1.0">
 <Attribute displayName="CodeSource" maxLength="2048" name="CodeSource"
type="string"/>
 <Attribute displayName="Principals" maxLength="1024" name="Principals"
type="string"/>
 <Attribute displayName="InitiatorGUID" maxLength="1024"
name="InitiatorGUID" type="string"/>
 <Attribute displayName="Subject" maxLength="1024" name="Subject"
type="string">
 <HelpText>Used for subject in authorization</HelpText>
 </Attribute>
 </Attributes>
……

Your application can reference the CodeSource attribute like this:

<Attribute name="CodeSource" ns="authorization" version="1.0" />

Each generic attribute group is stored in a dedicated database table. The naming
conventions are:

■ IAU_GENERIC_ATTRIBUTE_GROUP_NAME for table names

■ IAU_ATTRIBUTE_NAME for table columns

For example, the attribute group authorization is stored in database table IAU_
AUTHORIZATION with these columns:

■ IAU_CODESOURCE as string

■ IAU_PRINCIPALS as string

■ IAU_INITIATORGUID as string

Table 28–1 Audit Attribute Data Types

Attribute Data Type Java Object Type Notes

Integer Integer

Long Long

Float Float

Double Double

Boolean Boolean

DateTime java.util.Date

String String Maximum length 2048 bytes

LongString String Unlimited length

Binary byte[]

Audit Metadata Model

28-4 Oracle Fusion Middleware Application Security Guide

28.2.1.4 Custom Attribute Groups
A custom attribute group is defined with a namespace, a version number, and one or
more attributes.

Attributes consist of:

■ attribute name

■ data type

■ attribute-database column mapping order, which specifies the order in which an
attribute is mapped to a database column of a specific data type in the custom
attribute table

■ help text (optional)

■ maximum length

■ display name

This example defines attribute group Accounting with namespace accounting and
version 1.0:

<Attributes ns="accounting" version="1.0">

 <Attribute name="TransactionType" displayName="Transaction Type"
type="string" order="1"/>
 <Attribute name="AccountNumber" displayName="Account Number"
type="int" order="2">
 <HelpText>Account number.</HelpText>
 </Attribute>
 ……
 </Attributes>

Custom attribute groups and attributes are stored in the IAU_CUSTOM table.

28.2.2 Event Categories and Events
An audit event category contains related events in a functional area. For example, a
session category could contain login and logout events that are significant in a user
session’s life cycle.

An event category does not itself define attributes. Instead, it references attributes in
component and system attribute groups.

There are two types of event categories:

■ System Categories

■ Component and Application Categories

28.2.2.1 System Categories and Events
A system category references common and generic attribute groups and contains audit
events. System categories are the base set of component event categories and events.
Applications can reference them directly, log audit events, and set filter preset
definitions.

The following example shows several elements of the metadata model:

■ common attribute group

■ generic attribute groups identity and authorization

Audit Metadata Model

Developing with the Audit Service 28-5

■ system category UserSession with an attribute referencing to a common attribute
AuthenticationMethod

■ audit events such as UserLogin and UserLogout

<SystemComponent major="1" minor="0">
+<Attributes ns="common" version ="1.0"></Attributes>
+<Attributes ns="identity" version ="1.0"></Attributes>
+<Attributes ns="authorization" version ="1.0"></Attributes>
-<Events>
 -<Category name="UserSession" displayName="User Sessions">
 -<Attributes>
 <Attribute name="AuthenticationMethod" ns="common" version ="1.0" />
 </Attributes>
 -<HelpText></HelpText>
 -<Event name="UserLogin" displayName="User Logins" shortName="uLogin"></Event>
 -<Event name="UserLogout" displayName="User Logouts" shortName="uLogout"
 xdasName="terminateSession"></Event>
 -<Event name="Authentication" displayName="Authentication"></Event>
 -<Event name="InternalLogin" displayName="Internal Login" shortName="iLogin"
 xdasName="CreateSession"></Event>
 -<Event name="InternalLogout" displayName="Internal Logout" shortName="iLogout"
 xdasName="terminateSession"></Event>
 -<Event name="QuerySession" displayName="Query Session"

shortName="qSession"></Event>
 -<Event name="ModifySession" displayName="Modify Session"

shortName="mSession"></Event>
 </Category>
 +<Category displayName="Authorization" name="Authorization"></Category>
 +<Category displayName="ServiceManagement" name="ServiceManagement"></Category>
 </Events>
</SystemComponent>

28.2.2.2 Component/Application Categories
A component or application can define extend system categories or define new
component event categories. In this example, a transaction category references
attributes AccountNumber, Date, and Amount from the accounting attribute group,
and includes events 'purchase' and 'deposit':

 <Category displayName="Transaction" name="Transaction">
 <Attributes>
 <Attribute name="AccountNumber" ns="accounting" version="1.0"/>
 <Attribute name="Date" ns="accounting" version="1.0" />
 <Attribute name="Amount" ns="accounting" version="1.0" />
 </Attributes>

 <Event displayName="purchase" name="purchase"/>
 <Event displayName="deposit" name="deposit">
 <HelpText>depositing funds.</HelpText>
 </Event>
……
 </Category>

You extend system categories by creating category references in your application audit
definitions. List the system events that the system category includes, and add new
attribute references and events to it.

In this example, a new category references a system category ServiceManagement with
a new attribute reference ServiceTime, and a new event restartService:

The Audit Metadata Store

28-6 Oracle Fusion Middleware Application Security Guide

<CategoryRef name="ServiceManagement" componentType="SystemComponent">
 <Attributes>
 <Attribute name="ServiceTime" ns="accounting" version="1.0" />
 </Attributes>

 <EventRef name="startService"/>
 <EventRef name="stopService"/>

 <Event displayName="restartService" name="restartService">
 <HelpText>restart service</HelpText>
 </Event>

</CategoryRef>

28.3 The Audit Metadata Store
The audit metadata store provides the repository for the metadata model and contains
component audit definitions, NLS translation entries, runtime policies, and database
mapping tables.

The audit metadata store supports several critical auditing functions:

■ The audit registration service creates, modifies, and deletes event definition
entries.

■ The audit runtime service retrieves event definitions and runtime policies.

■ The audit data loader creates attribute database mappings to store audit data.

■ Audit MBean commands look up and modify component audit definitions and
runtime policies.

The audit framework supports three types of metadata store:

■ XML file-based

■ database

■ LDAP

When a new application registers to the audit service, the following audit artifacts are
stored in the audit store:

■ audit event definitions including custom attribute group, categories, events, and
filter preset definitions

■ localized translation entries

■ custom attribute-database column mapping table

■ run-time audit policies

28.4 Integrating the Application with the Audit Framework
Take these steps to integrate your application with the audit framework:

1. Create an audit definition file, component_events.xml.

2. Package the component_events.xml file in the application EAR file.

Note: The metadata store is separate from the audit data store.

Create Audit Definition Files

Developing with the Audit Service 28-7

3. Add the audit event API to the application code to enable it to log audit events.

4. Integrate with Oracle Business Intelligence Publisher for reporting.

5. Update the audit event definition and redeploy as needed.

The following sections provide more details on these tasks:

■ Create Audit Definition Files

■ Register Application with the Registration Service

■ Add Application Code to Log Audit Events

■ Integrate with Oracle Business Intelligence Publisher

■ Update and Maintain Audit Definitions

28.5 Create Audit Definition Files
This task involves creating the following files:

■ component_events.xml definition file

■ translation files

component_events.xml File
The component_events.xml file includes these elements:

■ basic properties - and the major and minor version

– the component type, which is the property that applications use to register
with the audit service and obtain runtime auditor instances

– Major and minor version of the application.

■ at most one custom attribute group

■ event categories with attribute references and events

■ component level filter definitions

■ runtime policies, which include:

– filterPreset - specifies the audit filter level

– Custom FilterPresetDefinition- specifies the custom Filter Preset Definition

– specialUsers - specifies the users to always audit

– maxBusstopDirSize

– maxBusstopFileSize

For details about run-time policies, see Section 13.3.

Here is an example component_events.xml file:

<?xml version="1.0"?>
<AuditConfig xmlns="http://xmlns.oracle.com/ias/audit/audit-2.0.xsd">
 <AuditComponent componentType="ApplicationAudit" major="1" minor="0">
 <Attributes ns="accounting" version="1.0">

 <Attribute name="TransactionType" displayName="Transaction Type"
type="string" order="1">
 <HelpText>Transaction type.</HelpText>
 </Attribute>
 <Attribute name="AccountNumber" displayName="Account Number"

Create Audit Definition Files

28-8 Oracle Fusion Middleware Application Security Guide

type="int" order="2">
 <HelpText>Account number.</HelpText>
 </Attribute>
 <Attribute name="Date" displayName="Date" type="dateTime" order="3"/>
 <Attribute name="Amount" displayName="Amount" type="float" order="4">
 <HelpText>Transaction amount.</HelpText>
 </Attribute>
 <Attribute name="Status" displayName="Account Status" type="string"
order="5">
 <HelpText>Account status.</HelpText>
 </Attribute>

 </Attributes>

 <Events>
 <Category displayName="Transaction" name="Transaction">
 <Attributes>
 <Attribute name="AccountNumber" ns="accounting" version="1.0"
/>
 <Attribute name="Date" ns="accounting" version="1.0" />
 <Attribute name="Amount" ns="accounting" version="1.0" />
 </Attributes>

 <Event displayName="purchase" name="purchase">
 <HelpText>direct purchase.</HelpText>
 </Event>
 <Event displayName="deposit" name="deposit">
 <HelpText>depositing funds.</HelpText>
 </Event>
 <Event displayName="withdrawing" name="withdrawing">
 <HelpText>withdrawing funds.</HelpText>
 </Event>
 <Event displayName="payment" name="payment">
 <HelpText>paying bills.</HelpText>
 </Event>
 </Category>
 <Category displayName="Account" name="Account">
 <Attributes>
 <Attribute name="AccountNumber" ns="accounting" version="1.0"
/>
 <Attribute name="Status" ns="accounting" version="1.0" />
 </Attributes>

 <Event displayName="open" name="open">
 <HelpText>Open a new account.</HelpText>
 </Event>
 <Event displayName="close" name="close">
 <HelpText>Close an account.</HelpText>
 </Event>
 <Event displayName="suspend" name="suspend">
 <HelpText>Suspend an account.</HelpText>
 </Event>
 </Category>
 </Events>
 <FilterPresetDefinitions>
 <FilterPresetDefinition displayName="Low" helpText="" name="Low">
 <FilterCategory enabled="partial"
name="Transaction">deposit.SUCCESSESONLY(HostId -eq
"NorthEast"),withdrawing</FilterCategory>
 <FilterCategory enabled="partial"

Create Audit Definition Files

Developing with the Audit Service 28-9

name="Account">open.SUCCESSESONLY,close.FAILURESONLY</FilterCategory>
 </FilterPresetDefinition>
 <FilterPresetDefinition displayName="Medium" helpText=""
name="Medium">
 <FilterCategory enabled="partial"
name="Transaction">deposit,withdrawing</FilterCategory>
 <FilterCategory enabled="partial"
name="Account">open,close</FilterCategory>
 </FilterPresetDefinition>
 <FilterPresetDefinition displayName="High" helpText="" name="High">
 <FilterCategory enabled="partial"
name="Transaction">deposit,withdrawing,payment</FilterCategory>
 <FilterCategory enabled="true" name="Account"/>
 </FilterPresetDefinition>
 </FilterPresetDefinitions>

 <Policy filterPreset="Low">
 <CustomFilters>
 <FilterCategory enabled="partial"
name="Transaction">purchase</FilterCategory>
 </CustomFilters>

 </Policy>

 </AuditComponent>
</AuditConfig>

Translation Files
Create the translation files required for your application.

Translation files are used to display audit definition in different languages. Generate
the files in XLIFF format; during registration, this information is stored in the audit
metadata store along with the component audit event definition.

28.5.1 Understand Mapping and Versioning Rules
When creating your audit definition file, you must be aware of certain rules that the
registration service uses to create the audit metadata for the application. This metadata
is used to maintain different versions of the audit definition, and to load audit data
and generate reports.

28.5.1.1 Version Numbers
Each audit definition must have a major and a minor version number, which are
integers, for example, major = 1 minor=3. Any change to an audit event definition
requires that the version ID be modified by changing the minor and/or major number.

Version numbers are used by the audit registration service to determine the
compatibility of event definitions and attribute mappings between versions.

Versioning for Oracle Components
When registering an Oracle component such as Oracle Virtual Directory, the audit
registration service checks if this is a first-time registration or an upgrade.

Note: These version numbers have no relation to Oracle Fusion
Middleware version numbers.

Create Audit Definition Files

28-10 Oracle Fusion Middleware Application Security Guide

For a new registration, the service:

1. retrieves the component audit and translation information.

2. parses and validates the definition, and stores it in the audit metadata store.

3. generates the attribute-column mapping table, and saves this in the audit
metadata store.

For upgrades, the current major and minor numbers for the component in the
metadata store are compared to the new major and minor numbers to determine
whether to proceed with the upgrade.

Versioning for JavaEE Applications
When modifying your application’s audit definition, it is recommended that you set
the major and minor numbers as follows:

■ Only increase the minor version number when making version-compatible
changes, meaning changes in an audit definition such that the attribute database
mapping table generated from the new audit definition should still work with the
audit data created by the previous attribute database mapping table.

For example, suppose the current definition version is major=2 and minor=1.
When adding a new event that does not affect the attribute database mapping
table, you can change the minor version to 2 (minor=2), while the major version
remains unchanged (major=2).

■ Increase major version number when making version changes where the new
mapping table is incompatible with the previous table.

28.5.1.2 Custom Attribute to Database Column Mappings
When registering a new component or application, the registration service creates an
attribute-to-database column mapping table from the component’s custom attributes,
and then saves this table to the audit metadata store.

 Attribute-database mapping tables are required to ensure unique mappings between
your application's attribute definitions and database columns. The audit loader uses
mapping tables to load data into the audit store; the tables are also used to generate
audit reports from custom database table IAU_CUSTOM.

A custom attribute-database column mapping has properties of attribute name,
database column name, and data type.

Each custom attribute must have a mapping order number in its definition. Attributes
with the same data type are mapped to the database column in the sequence of
attribute mapping order. For example, if the definition file looks like this:

<Attributes ns="accounting" version="1.1">
<Attribute name="TransactionType" type="string" maxLength="0"
displayName="Transaction Type" order="1"/>
<Attribute name="AccountNumber" type="int" displayName="Account Number"
order="2">
<Attribute name="Date" type="dateTime" displayName="Date" order="3"/>
<Attribute name="Amount" type="float" displayName="Amount" order="4"/>
<Attribute name="Status" type="string" maxLength="0" displayName="Account
Status" order="5"/>
<Attribute name="Balance" type="float" displayName="Account Balance"
order="6"/>

</Attributes>

then the mapping is as follows:

Register Application with the Registration Service

Developing with the Audit Service 28-11

<AttributesMapping ns="accounting" tableName="IAU_CUSTOM" version="1.1">
<AttributeColumn attribute="TransactionType" column="IAU_STRING_001"
datatype="string"/>
<AttributeColumn attribute="AccountNumber" column="IAU_INT_001"
datatype="int"/>
<AttributeColumn attribute="Date" column="IAU_DATETIME_001"
datatype="dateTime"/>
<AttributeColumn attribute="Amount" column="IAU_FLOAT_001" datatype="float"/>
<AttributeColumn attribute="Status" column="IAU_STRING_002" datatype="string"/>
<AttributeColumn attribute="Balance" column="IAU_FLOAT_002" datatype="float"/>

</AttributesMapping>

The version ID of the attribute-database column mapping table matches the version ID
of the custom attribute group. This allows your application to maintain the backward
compatibility of attribute mappings across audit definition versions. For more
information about versioning, see Section 28.5.1.1.

28.6 Register Application with the Registration Service
Java EE applications can be registered by packaging component_events.xml and
component_events_xlf.jar in the META-INF folder of the application’s EAR files. The
audit registration service will process them automatically when the application is
deployed.

Options include:

■ Deployment - Registers the audit event definition to the audit metadata store if the
application is not yet registered.

■ Redeployment - Upgrades the component audit event definition if the component
is already registered. See Section 28.5.1 for details.

■ Undeployment - Removes the application's audit event definition from the audit
metadata store.

Registration parameters are set in the OPSS deployment descriptor
opss-application.xml, which is also packaged in the META-INF folder of the
application EAR files. Table 28–2 shows the parameters with their options:

Table 28–2 Parameters for Audit Registration Service

Parameter Option Description

opss.audit.registration OVERWRITE Register component audit definition
whether or not it is registered.

UPGRADE Register component audit definition
according to versioning support.

DISABLE Do not register component audit
definition.

opss.audit.deregistration DELETE (default
option)

Delete component audit definition from
audit store when undeploying
applications.

DISABLE Keep component audit definition in
audit store when undeploying
applications.

Add Application Code to Log Audit Events

28-12 Oracle Fusion Middleware Application Security Guide

28.7 Add Application Code to Log Audit Events
Applications can programmatically access the run-time audit service to generate their
own audit events using the client API.

28.7.1 Audit Client API
The audit client API is as follows:

Interface AuditService {

Auditor getAuditor(String componentType);

void register(AuditRegistration auditRegistration);

void unregister(AuditRegistration auditRegistration);

}

Interface Auditor {

 boolean log(AuditEvent ev);

boolean isEnabled(String categoryName, String eventType, boolean eventStatus,
Map<String, Object> properties);

}

public class oracle.security.jps.service.audit.AuditEvent {
public AuditEvent(AuditContext ctx, String eventType,
String eventCategory, boolean eventStatus, String messageText);
public void setInitiator(String initiator);
public void setAttributeBoolean(String attributeName, Boolean attributeValue);
public void setAttributeDouble(String attributeName, double attributeValue);
public void setAttributeDate(String attributeName, Date attributeValue);
public void setAttributeByteArray(String attributeName, byte[] attributeValue);
public void setAttributeFloat(String attributeName, float attributeValue);
public void setAttributeLong(String attributeName, long attributeValue);
public void setAttributeInt(String attributeName, int attributeValue);
public void setAttributeString(String attributeName, String attributeValue);
public void setAttribute(String attributeName, Object attributeValue)

}

Subsequent sections explain how to obtain permissions and a run-time auditor
instance.

28.7.2 Set System Grants
You must have system grants to get auditor instances from the audit service. In this
example, the grant allows application MyApp to call
auditService.getAuditor("MyApp") in AccessController.doPrivileged block:

<grant>
 <grantee>
 <codesource>
 <url>file:${oracle.deployed.app.dir}/MyApp${oracle.deployed.app.ext}</url>
 </codesource>

Integrate with Oracle Business Intelligence Publisher

Developing with the Audit Service 28-13

 </grantee>
 <permissions>
 <permission>

<class>oracle.security.jps.service.audit.AuditStoreAccessPermission</class>
 <name>MyApp</name>
 <actions>read</actions>
 </permission>
 </permissions>
 </grant>

28.7.3 Obtain Auditor Instance
After your application registers to the audit service, it can get its runtime auditor
instance programmatically from the OPSS audit service, as shown in the following
sample code fragment:

//Gets audit service instance

final AuditService auditService =
JpsServiceLocator.getServiceLocator().lookup(AuditService.class);

//Gets Auditor instance for application 'MyApp'
Auditor auditor = AccessController.doPrivileged(
 new PrivilegedExceptionAction<Auditor>() {
 public Auditor run() throws AuditException {
 return auditService.getAuditor("MyApp");
 }
 });

final String category = "Transaction";
final String eventName = "deposit";

//Check if event 'deposit' is enabled in filtering.
boolean enabled = auditor.isEnabled(category, eventName, "true", null);
if (enabled) {
 AuditContext ctx = new AuditContext();
 String message = "deposit transaction";
 //Creates an audit event
 AuditEvent ev = new AuditEvent(ctx, eventName, category, "true", message);

 //Sets event attributes
 ev.setInitiator("johnsmith");
 ev.setAttributeInt("accounting:AccountNumber", 2134567);
 ev.setAttributeDate("accounting:Date", new Date());
 ev.setAttributeFloat("accounting:Amount", 100.00);

 //Logs audit event
 boolean ret = auditor.log(event);
}

28.8 Integrate with Oracle Business Intelligence Publisher
You can leverage Oracle Business Intelligence Publisher to generate reports from your
application’s audit data, utilizing the same reporting capabilities available to Oracle
components.

The basic steps are as follows:

Update and Maintain Audit Definitions

28-14 Oracle Fusion Middleware Application Security Guide

1. Use the mapping table to generate an Oracle BI Publisher report template.

2. Set up the Oracle BI Publisher report service.

3. Copy the report template into Oracle BI Publisher to view component audit
events.

4. Generate reports with Oracle BI Publisher.

28.9 Update and Maintain Audit Definitions
As the application’s audit requirements evolve, you can update the integration to
reflect the changes. The steps are as follows:

1. Update the audit definition file. Be mindful of the versioning rules as you take this
step.

2. Redeploy the application EAR file with the updated event definition file.
Alternatively, you can notify the audit registration service of the existence of a
newer version.

3. Verify your changes.

See Also: Chapter 14, "Using Audit Analysis and Reporting".

See Also: Section 28.5.1, "Understand Mapping and Versioning
Rules".

Part VI
Part VI Appendices

This part contains the following appendices:

■ Appendix A, "OPSS Configuration File Reference"

■ Appendix B, "File-Based Identity and Policy Store Reference"

■ Appendix C, "Oracle Fusion Middleware Audit Framework Reference"

■ Appendix D, "User and Role API Reference"

■ Appendix E, "Administration with WLST Scripting and MBean Programming"

■ Appendix F, "OPSS System and Configuration Properties"

■ Appendix G, "Upgrading Security Data"

■ Appendix H, "References"

■ Appendix I, "OPSS Scripts"

■ Appendix J, "Using an OpenLDAP Identity Store"

■ Appendix L, "Troubleshooting Security in Oracle Fusion Middleware"

A

OPSS Configuration File Reference A-1

AOPSS Configuration File Reference

This appendix describes the element hierarchy and attributes in the file that configures
OPSS services. By default, this file is named jps-config.xml (for Java EE
applications) or jps-config-jse.xml (for Java SE applications) and is located in
the directory $DOMAIN_HOME/config/fmwconfig.

For Java SE applications, an alternative location can be specified using the system
property oracle.security.jps.config.

The configuration file is used to configure the policy, credential, and identity stores,
the login modules, and the audit service. For a complete example of a configuration
file see Section 21.4.9, "Example of Configuration File jps-config.xml."

To configure services programmatically, see Section E.2, "Configuring OPSS Services
with MBeans."

This appendix includes the following sections:

■ Top- and Second-Level Element Hierarchy

■ Lower-Level Elements

A.1 Top- and Second-Level Element Hierarchy
The top element in the file jps-config.xml is <jpsConfig>. It contains the following
second-level elements:

■ <property>

■ <propertySets>

■ <extendedProperty>

■ <serviceProviders>

■ <serviceInstances>

■ <jpsContexts>

Table A–1 describes the function of these elements. The annotations between curly
braces{} indicate the number of occurrences the element is allowed. For example, {0
or more} indicates that the element can occur 0 or more times; {1} indicates that the
element must occur once.

These elements are not application-specific configurations: all items in the
configuration file pertain to an entire domain and apply to all managed servers and
applications deployed in the domain.

Lower-Level Elements

A-2 Oracle Fusion Middleware Application Security Guide

A.2 Lower-Level Elements
This section describes, in alphabetical order, the complete set of elements that can
occur in under the second-level elements described in the Top- and Second-Level
Element Hierarchy.

■ <description>

■ <extendedProperty>

■ <extendedPropertySet>

■ <extendedPropertySetRef>

■ <extendedPropertySets>

■ <jpsConfig>

■ <jpsContext>

Table A–1 First- and Second-Level Elements in jps-config.xml

Elements Description

<jpsConfig> {1} Defines the top-level element in the configuration file.

<property> {0 or more} Defines names and values of properties. It can also
appear elsewhere in the hierarchy, such as under the
elements <propertySet>, <serviceProvider>, and
<serviceInstance>.

<propertySets> {0 or 1}
<propertySet> {1 or more}

<property> {1 or more}

Groups one or more <propertySet> elements so that
they can referenced as a group.

<extendedProperty> {0 or more}
<name> {1}
<values> {1}

<value> {1 or more}

Defines a property that has multiple values. It can also
appear elsewhere in the hierarchy, such as under the
elements extendedProperty and serviceInstance.

<extendedPropertySets> {0 or 1}
<extendedPropertySet> {1 or more}

<extendedProperty> {1 or more}
<name> {1}
<values> {1}

<value> {1 or more}

Groups one or more <extendedPropertySet>
elements so that they can referenced a group.

<serviceProviders> {0 or 1}
<serviceProvider> {1 or more}

<description> {0 or 1}
<property> {0 or more}

Groups one or more <serviceProvider> elements,
each of which defines an implementation of an OPSS
service, such as a policy store provider, a credential store
provider, or a login module.

<serviceInstances> {0 or 1}
<serviceInstance> {1 or more}

<description> {0 or 1}
<property> {0 or more}
<propertySetRef> {0 or more}
<extendedProperty> {0 or more}

<name> {1}
<values> {1}

<value> {1 or more}
<extendedPropertySetRef> {0 or more}

Groups one or more <serviceInstance> elements,
each of which configures and specifies property values
for a service provider defined in a
<serviceProvider> element.

<jpsContexts> {1}
<jpsContext> {1 or more}

<serviceInstanceRef> {1 or more}

Groups one or more <jpsContext> elements, each of
which is a collection of service instances that an
application can use.

Lower-Level Elements

OPSS Configuration File Reference A-3

■ <jpsContexts>

■ <name>

■ <property>

■ <propertySet>

■ <propertySetRef>

■ <propertySets>

■ <serviceInstance>

■ <serviceInstanceRef>

■ <serviceInstances>

■ <serviceProvider>

■ <serviceProviders>

■ <value>

■ <values>

<description>

A-4 Oracle Fusion Middleware Application Security Guide

<description>

This element describes the corresponding entity (a service instance or service
provider).

Parent Elements
<serviceInstance> or <serviceProvider>

Child Element
None.

Occurrence
<description> can be a child of <serviceInstance> or <serviceProvider>.

■ As a child of <serviceInstance>:

<serviceInstances> {0 or 1}
<serviceInstance> {1 or more}

<description> {0 or 1}
<property> {0 or more}
<propertySetRef> {0 or more}
<extendedProperty> {0 or more}

<name> {1}
<values> {1}

<value> {1 or more}
<extendedPropertySetRef> {0 or more}

■ As a child of <serviceProvider>:

<serviceProviders> {0 or 1}
<serviceProvider> {1 or more}

<description> {0 or 1}
<property> {0 or more}

Example
The following example sets a description for a service provider.

<serviceProvider ... >
 <description>XML-based IdStore Provider</description>
 ...
</serviceProvider>

<extendedProperty>

OPSS Configuration File Reference A-5

<extendedProperty>

This element defines an extended property in the following scenarios:

An extended property typically includes multiple values. Use a <value> element to
specify each value. Several LDAP identity store properties are in this category, such as
the specification of the following values:

■ Object classes used for creating user objects

■ Attribute names that must be specified when creating a user

■ Base DNs for searching users

Parent Elements
<extendedPropertySet>, <jpsConfig>, or <serviceInstance>

Child Elements
<name> or <values>

Occurrence
<extendedProperty> can be a child of <extendedPropertySet>, <jpsConfig>, or
<serviceInstance>.

■ As a child of <extendedPropertySet>:

<extendedPropertySets> {0 or 1}
<extendedPropertySet> {1 or more}

<extendedProperty> {1 or more}
<name> {1}
<values> {1}

<value> {1 or more}

■ As a child of <jpsConfig>:

<jpsConfig>
<extendedProperty> {0 or more}

<name> {1}
<values> {1}

<value> {1 or more}

■ As a child of <serviceInstance>:

<serviceInstances> {0 or 1}

Table A–2 Scenarios for <extendedProperty>

Location in jps-config.xml Function

Directly under <jpsConfig> Defines an extended property for general use. As a
child of <jpsConfig>, an extended property can
specify, for example, all the base DNs in an
LDAP-based authenticators.

Directly under <extendedPropertySet> Defines an extended property for general use that is
part of an extended property set.

Directly under <serviceInstance> Defines an extended property for a particular
service instance.

<extendedProperty>

A-6 Oracle Fusion Middleware Application Security Guide

<serviceInstance> {1 or more}
<description> {0 or 1}
<property> {0 or more}
<propertySetRef> {0 or more}
<extendedProperty> {0 or more}

<name> {1}
<values> {1}

<value> {1 or more}
<extendedPropertySetRef> {0 or more}

Example
The following example sets a single value:

<extendedProperty>
<name>user.search.bases</name>
<values>

<value>cn=users,dc=us,dc=oracle,dc=com</value>
</values>

</extendedProperty>

<extendedPropertySet>

OPSS Configuration File Reference A-7

<extendedPropertySet>

This element defines a set of extended properties. The extended property set can then
be referenced by an <extendedPropertySetRef> element to specify the given
properties as part of the configuration of a service instance.

Attributes

Parent Element
<extendedPropertySets>

Child Element
<extendedProperty>

Occurrence
Required within <extendedPropertySets>, one or more:

<extendedPropertySets> {0 or 1}
<extendedPropertySet> {1 or more}

<extendedProperty> {1 or more}
<name> {1}
<values> {1}

<value> {1 or more}

Name Description

name Designates a name for the extended property set. No two
<extendedPropertySet> elements may have the same name
attribute setting within a configuration file.

Values: string

Default: n/a (required)

<extendedPropertySetRef>

A-8 Oracle Fusion Middleware Application Security Guide

<extendedPropertySetRef>

This element configures a service instance by referring to an extended property set
defined elsewhere in the file.

Attributes

Parent Element
<serviceInstance>

Child Element
None.

Occurrence
Optional, zero or more.

<serviceInstances> {0 or 1}
<serviceInstance> {1 or more}

<description> {0 or 1}
<property> {0 or more}
<propertySetRef> {0 or more}
<extendedProperty> {0 or more}

<name> {1}
<values> {1}

<value> {1 or more}
<extendedPropertySetRef> {0 or more}

Name Description

ref Refers to an extended property set whose extended properties are
used for the service instance defined in the <serviceInstance>
parent element. The ref value of
<extendedPropertySetRef> must match the name value of
an <extendedPropertySet> element.

Values: string

Default: n/a (required)

<extendedPropertySets>

OPSS Configuration File Reference A-9

<extendedPropertySets>

This element specifies a set of properties.

Parent Element
<jpsConfig>

Child Element
<extendedPropertySet>

Occurrence
Optional, zero or one.

<jpsConfig>
<extendedPropertySets> {0 or 1}

<extendedPropertySet> {1 or more}
<extendedProperty> {1 or more}

<name> {1}
<values> {1}

<value> {1 or more}

<jpsConfig>

A-10 Oracle Fusion Middleware Application Security Guide

<jpsConfig>

This is the root element of a configuration file.

Parent Element
None.

Child Elements
<extendedProperty>, <extendedPropertySets>, <jpsContexts>, <property>,
<propertySets>, <serviceInstances>, or <serviceProviders>

Occurrence
Required, one only.

Example
<jpsConfig xmlns="http://xmlns.oracle.com/oracleas/schema/11/jps-config-11_1.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/oracleas/schema/11/jps-config-11_

1.xsd"
schema-major-version="11" schema-minor-version="1">

...
</jpsConfig>

<jpsContext>

OPSS Configuration File Reference A-11

<jpsContext>

This element declares an OPSS context, a collection of service instances common to a
domain, either by referring to a set of service instances that comprise the context
(typical usage), or by referring to another context. Each <jspContext> in a
configuration file must have a distinct name.

Attributes

Parent Element
<jpsContexts>

Child Element
<serviceInstanceRef>

Occurrence
There must be at least one <jpsContext> element under <jpsContexts>. A
<jpsContext> element contains the <serviceInstanceRef> element.

<jpsContexts> {1}
<jpsContext> {1 or more}

<serviceInstanceRef> {1 or more}

Example
The following example illustrates the definition of two contexts; the first one, named
default, is the default context (specified by the attribute default in <jpsContexts>),
and it references several service instances by name.

The second one, named anonymous, is used for unauthenticated users, and it
references the anonymous and anonymous.loginmodule service instances.

<serviceInstances>
...

<serviceInstance provider="credstoressp" name="credstore">
 <description>File Based Default Credential Store Service Instance</description>
 <property name="location" value="${oracle.instance}/config/JpsDataStore/JpsSystemStore"/>

</serviceInstance>
...

<serviceInstance provider="anonymous.provider" name="anonymous">
<property value="anonymous" name="anonymous.user.name"/>
<property value="anonymous-role" name="anonymous.role.name"/>

</serviceInstance>
...

<serviceInstance provider="jaas.login.provider" name="anonymous.loginmodule">
<description>Anonymous Login Module</description>
<property value="oracle.security.jps.internal.jaas.module.anonymous.AnonymousLoginModule"

Name Description

name Designates a name for the OPSS context. Each context must have
a unique name.

Values: string

Default: n/a (required)

<jpsContext>

A-12 Oracle Fusion Middleware Application Security Guide

name="loginModuleClassName"/>
<property value="REQUIRED"

name="jaas.login.controlFlag"/>
</serviceInstance>

...
</serviceInstances>
...
<jpsContexts default="default">
...
 <jpsContext name="default">
 <!-- This is the default JPS context. All the mandatory services and Login Modules must be

configured in this default context -->
 <serviceInstanceRef ref="credstore"/>

 <serviceInstanceRef ref="idstore.xml"/>
 <serviceInstanceRef ref="policystore.xml"/>
 <serviceInstanceRef ref="idstore.loginmodule"/>
 <serviceInstanceRef ref="idm"/>
 </jpsContext>
 <jpsContext name="anonymous">
 <serviceInstanceRef ref="anonymous"/>
 <serviceInstanceRef ref="anonymous.loginmodule"/>
 </jpsContext>
...
</jpsContexts>

<jpsContexts>

OPSS Configuration File Reference A-13

<jpsContexts>

This element specifies a set of contexts.

Attributes

Parent Element
<jpsConfig>

Child Element
<jpsContext>

Occurrence
Required, one only.

<jpsConfig>
<jpsContexts> {1}

<jpsContext> {1 or more}

Example
See <jpsContext> for an example.

Name Description

default Specifies the context that is used by an application if none is
specified. The default value of the <jpsContexts> element
must match the name of a <jpsContext> child element.

Values: string

Default: n/a (required)

Note: The default context must configure all mandatory services
and login modules.

<name>

A-14 Oracle Fusion Middleware Application Security Guide

<name>

This element specifies the name of an extended property.

Parent Element
<extendedProperty>

Child Element
None

Occurrence
Required, one only.

<extendedProperty> {0 or more}
<name> {1}
<values> {1}

<value> {1 or more}

Example
See <extendedProperty> for an example.

<property>

OPSS Configuration File Reference A-15

<property>

This element defines a property in the following scenarios:

For a list of properties, see Appendix F, "OPSS System and Configuration Properties".

Attributes

Parent Elements
<jpsConfig>, <propertySet>, <serviceInstance>, or <serviceProvider>

Child Element
None.

Occurrence
Under a<propertySet>, it is required, one or more; otherwise, it is optional, zero or
more.

■ As a child of <jpsConfig>:

<jpsConfig>
<property> {0 or more}

■ As a child of <propertySet>:

<propertySets> {0 or 1}
<propertySet> {1 or more}

<property> {1 or more}

■ As a child of <serviceInstance>:

<serviceInstances> {0 or 1}

Table A–3 Scenarios for <property>

Location in jps-config.xml Function

Directly under <jpsConfig> Defines a one-value property for general use.

Directly under <propertySet> Defines a multi-value property for general use that
is part of a property set.

Directly under <serviceInstance> Defines a property for use by a particular service
instance.

Directly under <serviceProvider> Defines a property for use by all service instances of
a particular service provider.

Name Description

name Specifies the name of the property being set.

Values: string

Default: n/a (required)

value Specifies the value of the property being set.

Values: string

Default: n/a (required)

<property>

A-16 Oracle Fusion Middleware Application Security Guide

<serviceInstance> {1 or more}
<description> {0 or 1}
<property> {0 or more}
<propertySetRef> {0 or more}
<extendedProperty> {0 or more}

<name> {1}
<values> {1}

<value> {1 or more}
<extendedPropertySetRef> {0 or more}

■ As a child of <serviceProvider>:

<serviceProviders> {0 or 1}
<serviceProvider> {1 or more}

<description> {0 or 1}
<property> {0 or more}

Example
The following example illustrates a property to disable JAAS mode for authorization:

<jpsConfig ... >
 ...
 <property name="oracle.security.jps.jaas.mode" value="off"/>
 ...
</jpsConfig>

For additional examples, see <propertySet> and <serviceInstance>.

<propertySet>

OPSS Configuration File Reference A-17

<propertySet>

This element defines a set of properties. Each property set has a name so that it can be
referenced by a <propertySetRef> element to include the properties as part of the
configuration of a service instance.

Attributes

Parent Element
<propertySets>

Child Element
<property>

Occurrence
Required within a<propertySets>, one or more

<propertySets> {0 or 1}
<propertySet> {1 or more}

<property> {1 or more}

Example
<propertySets>
...
 <!-- For property that points to valid Access SDK installation directory -->
 <propertySet name="access.sdk.properties">
 <property name="access.sdk.install.path" value="$ACCESS_SDK_HOME"/>
 </propertySet>
...
</propertySets>

<serviceInstances>
...

<serviceInstance provider="jaas.login.provider" name="oam.loginmodule">
<description>Oracle Access Manager Login Module</description>

 <property
 value="oracle.security.jps.internal.jaas.module.oam.OAMLoginModule"
 name="loginModuleClassName"/>

<property value="REQUIRED" name="jaas.login.controlFlag"/>
 <propertySetRef ref="access.sdk.properties"/>

</serviceInstance>
...
</serviceInstances>

Name Description

name Designates a name for the property set. No two
<propertySet> elements may have the same name within a
jps-config.xml file.

Values: string

Default: n/a (required)

<propertySetRef>

A-18 Oracle Fusion Middleware Application Security Guide

<propertySetRef>

This element configures a service instance by referring to a property set defined
elsewhere in the file.

Attributes

Parent Element
<serviceInstance>

Child Element
None.

Occurrence
Optional, zero or more.

<serviceInstances> {0 or 1}
<serviceInstance> {1 or more}

<description> {0 or 1}
<property> {0 or more}
<propertySetRef> {0 or more}
<extendedProperty> {0 or more}

<name> {1}
<values> {1}

<value> {1 or more}
<extendedPropertySetRef> {0 or more}

Example
See <propertySet> for an example.

Name Description

ref Refers to a property set whose properties are used by the service
instance defined in the <serviceInstance> parent element. The
ref value of a <propertySetRef> element must match the
name of a <propertySet> element.

Values: string

Default: n/a (required)

<propertySets>

OPSS Configuration File Reference A-19

<propertySets>

This element specifies a set of property sets.

Parent Element
<jpsConfig>

Child Element
<propertySet>

Occurrence
Optional. If present, there can be only one <propertySets> element.

<jpsConfig>
<propertySets> {0 or 1}

<propertySet> {1 or more}
<property> {1 or more}

Example
See <propertySet> for an example.

<serviceInstance>

A-20 Oracle Fusion Middleware Application Security Guide

<serviceInstance>

This element defines an instance of a service provider, such as an identity store service
instance, policy store service instance, or login module service instance.

Each provider instance specifies the name of the instance, used to refer to the provider
within the configuration file; the name of the provider being instantiated; and,
possibly, the properties of the instance. Properties include the location of the instance
and can be specified directly, within the instance element itself, or indirectly, by
referencing a property or a property set. To change the properties of a service instance,
you can use the procedure explained in Section E.1, "Configuring OPSS Service
Provider Instances with a WLST Script."

Set properties and extended properties of a service instance in the following ways:

■ Set properties directly through <property> subelements.

■ Set extended properties directly through <extendedProperty> subelements.

■ Refer to previously defined sets of properties through <propertySetRef>
subelements.

■ Refer to previously defined sets of extended properties through
<extendedPropertySetRef> subelements.

Attributes

Parent Element
<serviceInstances>

Child Elements
<description>, <extendedProperty>, <extendedPropertySetRef>, <property>, or
<propertySetRef>

Occurrence
Required within <serviceInstances>, one or more.

<serviceInstances> {0 or 1}
<serviceInstance> {1 or more}

<description> {0 or 1}
<property> {0 or more}

Name Description

name Designates a name for this service instance. Note that no two
<serviceInstance> elements may have the same name
attribute setting within a jps-config.xml file.

Values: string

Default: n/a (required)

provider Indicates which service provider this is an instance of.

The provider value of a <serviceInstance> element must
match the name value of a <serviceProvider> element.

Values: string

Default: n/a (required)

<serviceInstance>

OPSS Configuration File Reference A-21

<propertySetRef> {0 or more}
<extendedProperty> {0 or more}

<name> {1}
<values> {1}

<value> {1 or more}
<extendedPropertySetRef> {0 or more}

Examples

Example 1
The following example illustrates the configuration of a file-based identity store
service. For a file-based identity store, the subscriber name is the default realm. The
example sets the lo cation using the location property.

<serviceInstances>
 <serviceInstance name="idstore.xml" provider="idstore.xml.provider">
 <!-- Subscriber name must be defined for XML Identity Store -->
 <property name="subscriber.name" value="jazn.com"/>
 <!-- This is the location of XML Identity Store -->
 <property name="location" value="./system-jazn-data.xml"/>
 </serviceInstance>
...
</serviceInstances>

Example 2
The following example illustrates the configuration a credential store service. It uses
the location property to set the location of the credential store.

<serviceInstances>
<serviceInstance provider="credstoressp" name="credstore">

<description>File Based Default Credential Store Service
 Instance</description>

<property name="location"
 value="${oracle.instance}/config/JpsDataStore/JpsSystemStore" />

</serviceInstance>
...
</serviceInstances>

Example 3
The following example illustrates the configuration of an LDAP-based identity store
using Oracle Internet Directory:

<serviceInstance name="idstore.oid" provider="idstore.ldap.provider">
 <property name="subscriber.name" value="dc=us,dc=oracle,dc=com"/>
 <property name="idstore.type" value="OID"/>
 <property name="security.principal.key" value="ldap.credentials"/>
 <property name="security.principal.alias" value="JPS"/>
 <property name="ldap.url" value="ldap://myServerName.com:389"/>
 <extendedProperty>
 <name>user.search.bases</name>
 <values>
 <value>cn=users,dc=us,dc=oracle,dc=com</value>
 </values>
 </extendedProperty>
 <extendedProperty>
 <name>group.search.bases</name>
 <values>

<serviceInstance>

A-22 Oracle Fusion Middleware Application Security Guide

 <value>cn=groups,dc=us,dc=oracle,dc=com</value>
 </values>
 </extendedProperty>
 <property name="username.attr" value="uid"/>
 <property name="groupname.attr" value="cn"/>
</serviceInstance>

Example 4
The following example illustrates the configuration of an audit provider:

<serviceInstances>
 <serviceInstance name="audit" provider="audit.provider">
 <property name="audit.filterPreset" value="Low"/>
 <property name="audit.specialUsers" value ="admin, fmwadmin" />
 <property name="audit.customEvents" value ="JPS:CheckAuthorization,

CreateCredential, OIF:UserLogin"/>
 <property name="audit.loader.jndi" value="jdbc/AuditDB"/>
 <property name="audit.loader.interval" value="15" />
 <property name="audit.maxDirSize" value="102400" />
 <property name="audit.maxFileSize" value="10240" />
 <property name=" audit.loader.repositoryType " value="Db" />
 </serviceInstance>
 </serviceInstances>

See Also:

■ <serviceProvider>, for related examples defining service
providers referenced here.

■ <jpsContext>, for a corresponding example of
<serviceInstanceRef>.

<serviceInstanceRef>

OPSS Configuration File Reference A-23

<serviceInstanceRef>

This element refers to service instances.

Attributes

Parent Element
<jpsContext>

Child Element
None

Occurrence
Required within a <jpsContext>, one or more.

<jpsContexts> {1}
<jpsContext> {1 or more}

<serviceInstanceRef> {1 or more}

Example
See <jpsContext> for an example.

Name Description

ref Refers to a service instance that are part of the context defined in
the <jpsContext> parent element. The ref value of a
<serviceInstanceRef> element must match the name of a
<serviceInstance> element.

Values: string

Default: n/a (required)

<serviceInstances>

A-24 Oracle Fusion Middleware Application Security Guide

<serviceInstances>

This element is the parent of a <serviceInstance> element.

Parent Element
<jpsConfig>

Child Element
<serviceInstance>

Occurrence
Optional, zero or one.

<jpsConfig>
<serviceInstances> {0 or 1}

<serviceInstance> {1 or more}
<description> {0 or 1}
<property> {0 or more}
<propertySetRef> {0 or more}
<extendedProperty> {0 or more}

<name> {1}
<values> {1}

<value> {1 or more}
<extendedPropertySetRef> {0 or more}

Example
See <serviceInstance> for an example.

<serviceProvider>

OPSS Configuration File Reference A-25

<serviceProvider>

This element defines a service provider. Each provider specifies the type of the
provider, such as credential store, authenticators, policy store, or login module; the
name of the provider, used to refer to the provider within the configuration file; and
the Java class that implements the provider and that is instantiated when the provider
is created. Furthermore, the element property specifies settings used to instantiate
the provider.

It specifies the following data:

■ The type of service provider (specified in the type attribute)

■ A designated name of the service provider (to be referenced in each
<serviceInstance> element that defines an instance of this service provider)

■ The class that implements this service provider and is instantiated for instances of
this service provider

■ Optionally, properties that are generic to any instances of this service provider

Attributes

Name Description

type Specifies the type of service provider being declared; it must be
either of the following:

CREDENTIAL_STORE

IDENTITY_STORE

POLICY_STORE

AUDIT

LOGIN

ANONYMOUS

KEY_STORE

IDM (for pluggable identity management)

CUSTOM

The implementation class more specifically defines the type of
provider, such as by implementing a file-based identity store or
LDAP-based policy store, for example.

Values: string (a value above)

Default: n/a (required)

name Designates a name for this service provider. This name is
referenced in the provider attribute of <serviceInstance>
elements to create instances of this provider. No two
<serviceProvider> elements may have the same name
attribute setting within a configuration file.

Values: string

Default: n/a (required)

<serviceProvider>

A-26 Oracle Fusion Middleware Application Security Guide

Parent Element
<serviceProviders>

Child Elements
<description> or <property>

Occurrence
Required within the <serviceProviders> element, one or more.

<serviceProviders> {0 or 1}
<serviceProvider> {1 or more}

<description> {0 or 1}
<property> {0 or more}

Examples
The following example illustrates the specification of a login module service provider:

<serviceProviders>
 <serviceProvider type="LOGIN" name="jaas.login.provider"
 class="oracle.security.jps.internal.login.jaas.JaasLoginServiceProvider">
 <description>This is Jaas Login Service Provider and is used to configure
 login module service instances</description>
 </serviceProvider>
</serviceProviders>

The following example illustrates the definition of an audit service provider:

 <serviceProviders>
 <serviceProvider name="audit.provider" type="AUDIT"
class="oracle.security.jps.internal.audit.AuditProvider">
 </serviceProvider>
 </serviceProviders>

See <serviceInstance> for other examples.

class Specifies the fully qualified name of the Java class that
implements this service provider (and that is instantiated to
create instances of the service provider).

Values: string

Default: n/a (required)

Name Description

<serviceProviders>

OPSS Configuration File Reference A-27

<serviceProviders>

This element specifies a set of service providers.

Parent Element
<jpsConfig>

Child Element
<serviceProvider>

Occurrence
Optional, one only.

<jpsConfig>
<serviceProviders> {0 or 1}

<serviceProvider> {1 or more}
<description> {0 or 1}
<property> {0 or more}

Example
See <serviceProvider> for an example.

<value>

A-28 Oracle Fusion Middleware Application Security Guide

<value>

This element specifies a value of an extended property, which can have multiple
values. Each <value> element specifies one value.

Parent Element
<values>

Child Element
None.

Occurrence
Required within <values>, one or more.

<extendedProperty> {0 or more}
<name> {1}
<values> {1}

<value> {1 or more}

Example
See <extendedProperty> for an example.

<values>

OPSS Configuration File Reference A-29

<values>

This element is the parent element of a <value> element.

Parent Element
<extendedProperty>

Child Element
<value>

Occurrence
Required within <extendedProperty>, one only.

<extendedProperty> {0 or more}
<name> {1}
<values> {1}

<value> {1 or more}

Example
See <extendedProperty> for an example.

<values>

A-30 Oracle Fusion Middleware Application Security Guide

B

File-Based Identity and Policy Store Reference B-1

BFile-Based Identity and Policy Store
Reference

This appendix describes the elements and attributes in system-jazn-data.xml,
which is the default store for file-based identity and policy stores in Oracle Platform
Security Services.

This appendix covers the following topics:

■ Hierarchy of Elements in system-jazn-data.xml

■ Elements and Attributes of system-jazn-data.xml

B.1 Hierarchy of Elements in system-jazn-data.xml
This section shows the element hierarchy of system-jazn-data.xml, or an
application-specific jazn-data.xml file. The direct subelements of the
<jazn-data> root element are:

■ <jazn-realm>

■ <policy-store>

■ <jazn-policy>

Note: The file-based identity store is supported for Java SE
applications only.

Note: The <jazn-principal-classes> and
<jazn-permission-classes> elements and their subelements
may appear in the system-jazn-data.xml schema definition as
subelements of <policy-store>, but are for backward compatibility
only.

Table B–1 Hierarchy of Elements in system-jazn-data.xml

Hierarchy Description

<jazn-data> This is the top-level element in the
system-jazn-data.xml file.

Hierarchy of Elements in system-jazn-data.xml

B-2 Oracle Fusion Middleware Application Security Guide

 <jazn-realm> {0 or 1}
 <realm> {0 or more}
 <name> {1}
 <users> {0 or 1}
 <user> {0 or more}
 <name> {1}
 <display-name> {0 or 1}
 <description> {0 or 1}
 <guid> {0 or 1}
 <credentials> {0 or 1}
 <roles> {0 or 1}
 <role> {0 or more}
 <name> {1}
 <display-name> {0 or 1}
 <description> {0 or 1}
 <guid> {0 or 1}
 <members> {0 or 1}
 <member> {0 or more}
 <type> {1}
 <name> {1}
 <owners> {0 or 1}
 <owner> {0 or more}
 <type> {1}
 <name> {1}

The <jazn-realm> section specifies security
realms, and the users and enterprise groups
(as opposed to application-level roles)
included in each realm.

Table B–1 (Cont.) Hierarchy of Elements in system-jazn-data.xml

Hierarchy Description

Hierarchy of Elements in system-jazn-data.xml

File-Based Identity and Policy Store Reference B-3

 <policy-store> {0 or 1}
 <applications> {0 or 1}
 <application> {1 or more}
 <name> {1}
 <description> {0 or 1}
 <app-roles> {0 or 1}
 | <app-role> {1 or more}
 | <name> {1}
 | <class> {1}
 | <display-name> {0 or 1}
 | <description> {0 or 1}
 | <guid> {0 or 1}
 | <uniquename> {0 or 1}
 | <extended-attributes> {0 or 1}
 | | <attribute> {1 or more}
 | | <name> {1}
 | | <values> {1}
 | | <value> {1 or more}
 | <members> {0 or 1}
 | <member> {1 or more}
 | <name> {1}
 | <class> {1}
 | <uniquename> {0 or 1}
 | <guid> {0 or 1}

<role-categories>
| <role-category>
| <name>
| <display-name>
| <description>
| <members>
| <role-name-ref>
<resource-types>
| <resource-type>
| <name>
| <display-name>
| <description>
| <provider-name>
| <matcher-class>
| <actions-delimiter>
| <actions>
<resources>
| <resource>
| <name>
| <display-name>
| <description>
| <type-name-ref>
<permission-sets>
| <permission-set>
| <name>
| <member-resources>
| <member-resource>
| <resource-name>
| <type-name-ref>
| <actions>

 <jazn-policy> {0 or 1}
 | <grant> {0 or more}
 | <description> {0 or 1}
 | <grantee> {0 or 1}
 | | <principals> {0 or 1}
 | | <principal> {0 or more}
 | | <name> {1}
 | | <class> {1}
 | | <uniquename> {0 or 1}

The <policy-store> section configures
application-level policies. You can define roles
at the application level, and members in the
roles. Members can be users or roles.

When <jazn-policy> is specified under the
<application> element, it specifies policies
at the application level.

<jazn-policy> can also appear under the
<jazn-data> element, in which case it
specifies policies at the system level.

Table B–1 (Cont.) Hierarchy of Elements in system-jazn-data.xml

Hierarchy Description

Elements and Attributes of system-jazn-data.xml

B-4 Oracle Fusion Middleware Application Security Guide

B.2 Elements and Attributes of system-jazn-data.xml
This section describes the elements and attributes in the system-jazn-data.xml
file.

■ <actions>

■ <actions-delimiter>

■ <app-role>

■ <app-roles>

■ <application>

■ <applications>

■ <attribute>

■ <class>

■ <codesource>

■ <credentials>

■ <description>

■ <display-name>

■ <extended-attributes>

 <jazn-policy> {0 or 1}
 <grant> {0 or more}
 <description> {0 or 1}
 <grantee> {0 or 1}
 | <principals> {0 or 1}
 | <principal> {0 or more}
 | <name> {1}
 | <class> {1}
 | <uniquename> {0 or 1}
 | <guid> {0 or 1}
 | <codesource> {0 or 1}
 | <url> {1}
 <permissions> {0 or 1}
 <permission> {1 or more}
 <class> {1}
 <name> {0 or 1}
 <actions> {0 or 1}

<permission-sets>
| <permission-set>
| <name>

When the <jazn-policy> element is located
under the <jazn-data> element, it specifies
policies at the system-level.

<jazn-policy> can also appear under the
<application> element, in which case it
specifies policies at the application level.

Notes:

■ You can update most settings in system-jazn-data.xml
through Oracle Enterprise Manager Fusion Middleware Control.

Table B–1 (Cont.) Hierarchy of Elements in system-jazn-data.xml

Hierarchy Description

Elements and Attributes of system-jazn-data.xml

File-Based Identity and Policy Store Reference B-5

■ <grant>

■ <grantee>

■ <guid>

■ <jazn-data>

■ <jazn-policy>

■ <jazn-realm>

■ <matcher-class>

■ <member>

■ <member-resource>

■ <member-resources>

■ <members>

■ <name>

■ <owner>

■ <owners>

■ <permission>

■ <permissions>

■ <permission-set>

■ <permission-sets>

■ <policy-store>

■ <principal>

■ <principals>

■ <provider-name>

■ <realm>

■ <resource>

■ <resource-name>

■ <resources>

■ <resource-type>

■ <resource-types>

■ <role>

■ <role-categories>

■ <role-category>

■ <role-name-ref>

■ <roles>

■ <type>

■ <type-name-ref>

■ <uniquename>

■ <url>

Elements and Attributes of system-jazn-data.xml

B-6 Oracle Fusion Middleware Application Security Guide

■ <user>

■ <users>

■ <value>

■ <values>

<actions>

File-Based Identity and Policy Store Reference B-7

<actions>

This element specifies the operations permitted by the associated permission class.
Values are case-sensitive and are specific to each permission implementation.
Examples of actions are "invoke" and "read,write".

Parent Element
<permission>

Child Elements
None

Occurrence
Optional, zero or one:

 <jazn-policy> {0 or 1}
 <grant> {0 or more}
 <description> {0 or 1}
 <grantee> {0 or 1}
 <principals> {0 or 1}
 ...
 <codesource> {0 or 1}
 <url> {1}
 <permissions> {0 or 1}
 <permission> {1 or more}
 <class> {1}
 <name> {0 or 1}
 <actions> {0 or 1}

Examples
See <jazn-policy> for examples.

<actions-delimiter>

B-8 Oracle Fusion Middleware Application Security Guide

<actions-delimiter>

This element specifies the character used to separate the actions of the associated
resource type.

Parent Element
<resource-types>

Child Elements
<name>, <display-name>, <description>, <actions><roles>, <users>

Occurrence
Optional, zero or more

 <policy-store> {0 or 1}
 <applications> {0 or 1}
 <application> {1 or more}
 <name> {1}
 <description> {0 or 1}
 <app-roles> {0 or 1}

...
<role-categories>
...
<resource-types>

<resource-type>
<name>
<display-name>
<description>
<provider-name>
<matcher-class>
<actions-delimiter>
<actions>

Example
For an example, see <resource-type>.

<app-role>

File-Based Identity and Policy Store Reference B-9

<app-role>

This element specifies an application role.

Required subelements specify the following:

■ <name> specifies the name of the application role.

■ <class> specifies the fully qualified name of the class implementing the
application role.

Optional subelements can specify the following:

■ <description> provides more information about the application role.

■ <display-name> specifies a display name for the application role, such as for
use by GUI interfaces.

■ <guid> specifies a globally unique identifier to reference the application role. This
is for internal use only.

■ <members> specifies the users, roles, or other application roles that are members
of this application role.

■ <uniquename> specifies a unique name to reference the application role. This is
for internal use only.

Parent Element
<app-roles>

Child Elements
<class>, <description>, <display-name>, <guid>, <members>, <name>,
<uniquename>

Occurrence
Required, one or more:

<policy-store> {0 or 1}
 <applications> {0 or 1}
 <application> {1 or more}
 <name> {1}
 <description> {0 or 1}
 <app-roles> {0 or 1}
 <app-role> {1 or more}
 <name> {1}
 <class> {1}
 <display-name> {0 or 1}
 <description> {0 or 1}
 <guid> {0 or 1}
 <uniquename> {0 or 1}
 <extended-attributes> {0 or 1}
 <attribute> {1 or more}
 <name> {1}
 <values> {1}
 <value> {1 or more}
 <members> {0 or 1}
 <member> {1 or more}
 <name> {1}

<app-role>

B-10 Oracle Fusion Middleware Application Security Guide

 <class> {1}
 <uniquename> {0 or 1}
 <guid> {0 or 1}

Examples
See <policy-store> for examples.

<app-roles>

File-Based Identity and Policy Store Reference B-11

<app-roles>

This element specifies a set of application roles.

Parent Element
<application>

Child Elements
<app-role>

Occurrence
Optional, zero or one:

<policy-store> {0 or 1}
 <applications> {0 or 1}
 <application> {1 or more}
 <name> {1}
 <description> {0 or 1}
 <app-roles> {0 or 1}
 <app-role> {1 or more}
 ...

Example
See <policy-store> for examples.

<application>

B-12 Oracle Fusion Middleware Application Security Guide

<application>

This element specifies roles and policies for an application.

Required subelements specify the following information for an application:

■ <name> specifies the name of the application.

Optional subelements can specify the following:

■ <description> provides information about the application and its roles and
policies.

■ <app-roles> specifies any application-level roles

■ <jazn-policy> specifies any application-level policies.

Parent Element
<applications>

Child Elements
<app-roles>, <description>,, <jazn-policy>, <name>,
<permission-sets>, <resource-types>, <resources>, <role-categories>

Occurrence
Required, one or more:

<policy-store> {0 or 1}
 <applications> {0 or 1}
 <application> {1 or more}
 <name> {1}
 <description> {0 or 1}
 <app-roles> {0 or 1}
 <app-role> {1 or more}
 ...

Example
See <policy-store> for examples.

<applications>

File-Based Identity and Policy Store Reference B-13

<applications>

This element specifies a set of applictions.

Parent Element
<policy-store>

Child Elements
<application>

Occurrence
Optional, zero or one

<policy-store> {0 or 1}
 <applications> {0 or 1}
 <application> {1 or more}
 ...

Example
See <policy-store> for an example.

<attribute>

B-14 Oracle Fusion Middleware Application Security Guide

<attribute>

This element specifies an attribute of an application role.

Parent Element
<extended-attributes>

Child Elements
<name>, <values>

Occurrence
Required, one or more:

<policy-store> {0 or 1}
 <applications> {0 or 1}
 <application> {1 or more}
 <name> {1}
 <description> {0 or 1}
 <app-roles> {0 or 1}
 <app-role> {1 or more}
 <name> {1}
 <class> {1}
 <display-name> {0 or 1}
 <description> {0 or 1}
 <guid> {0 or 1}
 <uniquename> {0 or 1}
 <extended-attributes> {0 or 1}
 <attribute> {1 or more}
 <name> {1}
 <values> {1}
 <value> {1 or more}
 <guid> {0 or 1}

<class>

File-Based Identity and Policy Store Reference B-15

<class>

This element specifies several values depending on its location in the configuration
file:

■ Within the <app-role> element, <class> specifies the fully qualified name of
the class implementing the application role.

<app-role>
...

<class>oracle.security.jps.service.policystore.ApplicationRole</class>

■ Within the <member> element, <class> specifies the fully qualified name of the
class implementing the role member.

<app-role>
...

<members>
<member>
...

<class>
weblogic.security.principal.WLSUserImpl
</class>

■ Within the <permission> element (for granting permissions to a principal),
<class> specifies the fully qualified name of the class implementing the
permission. Values are case-insensitive.

<jazn-policy>
<grant>
...

<permissions>
<permission>

<class>java.io.FilePermission</class>

■ Within the <principal> element (for granting permissions to a principal), it
specifies the fully qualified name of the principal class, which is the class that is
instantiated to represent a principal that is being granted a set of permissions.

<jazn-policy>
<grant>
...

<grantee>
<principals>

<principal>
...

<class>oracle.security.jps.service.policystore.TestUser</class>

Parent Element
<app-role>, <member>, <principal>, or <permission>

Child Elements
None

Occurrence
Required, one only

<class>

B-16 Oracle Fusion Middleware Application Security Guide

<policy-store> {0 or 1}
 <applications> {0 or 1}
 <application> {1 or more}
 <name> {1}
 <description> {0 or 1}
 <app-roles> {0 or 1}
 <app-role> {1 or more}
 <name> {1}
 <class> {1}
 ...
 <members> {0 or 1}
 <member> {1 or more}
 <name> {1}
 <class> {1}
 <uniquename> {0 or 1}
 <guid> {0 or 1}

<jazn-policy> {0 or 1}
 <grant> {0 or more}
 <description> {0 or 1}
 <grantee> {0 or 1}
 <principals> {0 or 1}
 <principal> {0 or more}
 <name> {1}
 <class> {1}
 ...
 <permissions> {0 or 1}
 <permission> {1 or more}
 <class> {1}
 <name> {0 or 1}
 <actions> {0 or 1}

Example
See <jazn-policy> and <policy-store> for examples.

<codesource>

File-Based Identity and Policy Store Reference B-17

<codesource>

This element specifies the URL of the code to which permissions are granted.

The policy configuration can also include a <principals> element, in addition to the
<codesource> element. Both elements are children of a <grantee> element and
they specify who or what the permissions in question are being granted to.

For variables that can be used in the specification of a <codesource> URL, see <url>.

Parent Element
<grantee>

Child Elements
<url>

Occurrence
Optional, zero or one

<jazn-policy> {0 or 1}
 <grant> {0 or more}
 <description> {0 or 1}
 <grantee> {0 or 1}
 <principals> {0 or 1}
 <principal> {0 or more}
 <name> {1}
 <class> {1}
 <uniquename> {0 or 1}
 <guid> {0 or 1}
 <codesource> {0 or 1}
 <url> {1}
 <permissions> {0 or 1}
 <permission> {1 or more}
 <class> {1}
 <name> {0 or 1}
 <actions> {0 or 1}

Example
See <jazn-policy> for examples.

<credentials>

B-18 Oracle Fusion Middleware Application Security Guide

<credentials>

This element specifies the authentication password for a user. The credentials are, by
default, in obfuscated form.

Parent Element
<user>

Child Elements
None

Occurrence
Optional, zero or one

<jazn-realm> {0 or 1}
 <realm> {0 or more}
 <name> {1}
 <users> {0 or 1}
 <user> {0 or more}
 <name> {1}
 <display-name> {0 or 1}
 <description> {0 or 1}
 <guid> {0 or 1}
 <credentials> {0 or 1}

Example
See <jazn-realm> for examples.

<description>

File-Based Identity and Policy Store Reference B-19

<description>

This element specifies a text string that provides textual information about an item.
Depending on the parent element, the item can be an application role, application
policy, permission grant, security role, or user.

Parent Element
<app-role>, <application>, <grant>, <role>, or <user>

Child Elements
None

Occurrence
Optional, zero or one

<jazn-realm> {0 or 1}
 <realm> {0 or more}
 <name> {1}
 <users> {0 or 1}
 <user> {0 or more}
 ...
 <description> {0 or 1}
 ...
 <roles> {0 or 1}
 <role> {0 or more}
 ...
 <description> {0 or 1}
 ...

<policy-store> {0 or 1}
 <applications> {0 or 1}
 <application> {1 or more}
 <name> {1}
 <description> {0 or 1}
 <app-roles> {0 or 1}
 <app-role> {1 or more}
 ...
 <description> {0 or 1}

<jazn-policy> {0 or 1}
 <grant> {0 or more}
 <description> {0 or 1}
 <grantee> {0 or 1}

Example
The fmwadmin user might have the following description:

<description>User with administrative privileges</description>

See <jazn-realm> for additional examples.

<display-name>

B-20 Oracle Fusion Middleware Application Security Guide

<display-name>

This element specifies the name of an item typically used by a GUI tool. Depending on
the parent element, an item can be an application role, user, or enterprise group.

Parent Element
<app-role>, <role>, or <user>

Child Elements
None

Occurrence
Optional, zero or one

<jazn-realm> {0 or 1}
 <realm> {0 or more}
 <name> {1}
 <users> {0 or 1}
 <user> {0 or more}
 <name> {1}
 <display-name> {0 or 1}
 ...
 <roles> {0 or 1}
 <role> {0 or more}
 <name> {1}
 <display-name> {0 or 1}
 ...

<policy-store> {0 or 1}
 <applications> {0 or 1}
 <application> {1 or more}
 <name> {1}
 <description> {0 or 1}
 <app-roles> {0 or 1}
 <app-role> {1 or more}
 <name> {1}
 <class> {1}
 <display-name> {0 or 1}

Example
The fmwadmin user might have the following display name:

<display-name>Administrator</display-name>

See <jazn-realm> for additional examples.

<extended-attributes>

File-Based Identity and Policy Store Reference B-21

<extended-attributes>

This element specifies attributes of an application role.

Parent Element
<app-role>

Child Elements
<attribute>

Occurrence
Optional, zero or one

<policy-store> {0 or 1}
 <applications> {0 or 1}
 <application> {1 or more}
 <name> {1}
 <description> {0 or 1}
 <app-roles> {0 or 1}
 <app-role> {1 or more}
 <name> {1}
 <class> {1}
 <display-name> {0 or 1}
 <description> {0 or 1}
 <guid> {0 or 1}
 <uniquename> {0 or 1}
 <extended-attributes> {0 or 1}
 <attribute> {1 or more}
 <name> {1}
 <values> {1}
 <value> {1 or more}
 <members> {0 or 1}
 <member> {1 or more}
 <name> {1}
 <class> {1}
 <uniquename> {0 or 1}
 <guid> {0 or 1}

Example
<app-roles>
 <app-role>
 <name>Knight</name>
 <display-name>Fellowship For the Ring</display-name>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <extended-attributes>
 <attribute>
 <name>SCOPE</name>
 <values>
 <value>Part-I</value>
 </values>
 </attribute>
 </extended-attributes>
 </app-role>

<grant>

B-22 Oracle Fusion Middleware Application Security Guide

<grant>

This element specifies the recipient of the grant - a codesource, or a set of principals, or
both- and the permissions assigned to it.

Parent Element
<jazn-policy>

Child Elements
<description>, <grantee>, <permissions>, <permission-sets>

Occurrence
Optional, zero or more

<jazn-policy> {0 or 1}
 <grant> {0 or more}
 <description> {0 or 1}
 <grantee> {0 or 1}
 <principals> {0 or 1}
 <principal> {0 or more}
 <name> {1}
 <class> {1}
 <uniquename> {0 or 1}
 <guid> {0 or 1}
 <codesource> {0 or 1}
 <url> {1}
 <permissions> {0 or 1}
 <permission> {1 or more}
 <class> {1}
 <name> {0 or 1}
 <actions> {0 or 1}

Example
See <jazn-policy> for examples.

<grantee>

File-Based Identity and Policy Store Reference B-23

<grantee>

This element, in conjunction with a parallel <permissions> element, specifies who
or what the permissions are granted to: a set of principals, a codesource, or both.

Parent Element
<grant>

Child Elements
<codesource>, <principals>

Occurrence
Optional, zero or one

<jazn-policy> {0 or 1}
 <grant> {0 or more}
 <description> {0 or 1}
 <grantee> {0 or 1}
 <principals> {0 or 1}
 <principal> {0 or more}
 <name> {1}
 <class> {1}
 <uniquename> {0 or 1}
 <guid> {0 or 1}
 <codesource> {0 or 1}
 <url> {1}
 <permissions> {0 or 1}
 <permission> {1 or more}
 <class> {1}
 <name> {0 or 1}
 <actions> {0 or 1}

Example
See <jazn-policy> for examples.

<guid>

B-24 Oracle Fusion Middleware Application Security Guide

<guid>

This element is for internal use only. It specifies a globally unique identifier (GUID) to
reference the item.

Depending on the parent element, the item to be referenced may be an application
role, application role member, principal, enterprise group, or user. It is typically used
with an LDAP provider to uniquely identity the item (a user, for example). A GUID is
sometimes generated and used internally by Oracle Platform Security Services, such as
in migrating a user or role to a different security provider. It is not an item that you
would set yourself.

Parent Element
<app-role>, <member>, <principal>, <role>, or <user>

Child Elements
None

Occurrence
Optional, zero or one

<jazn-realm> {0 or 1}
 <realm> {0 or more}
 <name> {1}
 <users> {0 or 1}
 <user> {0 or more}
 <name> {1}
 <display-name> {0 or 1}
 <description> {0 or 1}
 <guid> {0 or 1}
 <credentials> {0 or 1}
 <roles> {0 or 1}
 <role> {0 or more}
 <name> {1}
 <display-name> {0 or 1}
 <description> {0 or 1}
 <guid> {0 or 1}
 ...

<policy-store> {0 or 1}
 <applications> {0 or 1}
 <application> {1 or more}
 <name> {1}
 <description> {0 or 1}
 <app-roles> {0 or 1}
 <app-role> {1 or more}
 <name> {1}
 <class> {1}
 <display-name> {0 or 1}
 <description> {0 or 1}
 <guid> {0 or 1}
 <uniquename> {0 or 1}
 <extended-attributes> {0 or 1}
 <attribute> {1 or more}
 <name> {1}
 <values> {1}

<guid>

File-Based Identity and Policy Store Reference B-25

 <value> {1 or more}
 <members> {0 or 1}
 <member> {1 or more}
 <name> {1}
 <class> {1}
 <uniquename> {0 or 1}
 <guid> {0 or 1}

<jazn-policy> {0 or 1}
 <grant> {0 or more}
 <description> {0 or 1}
 <grantee> {0 or 1}
 <principals> {0 or 1}
 <principal> {0 or more}
 <name> {1}
 <class> {1}
 <uniquename> {0 or 1}
 <guid> {0 or 1}
 <codesource> {0 or 1}
 <url> {1}
 ...

Example
See <jazn-realm> for examples.

<jazn-data>

B-26 Oracle Fusion Middleware Application Security Guide

<jazn-data>

This element specifies the top-level element in the system-jazn-data.xml
file-based policy store.

Attributes

Parent Element
n/a

Child Elements
<jazn-policy>, <jazn-realm>, <policy-store>

Occurrence
Required, one only

<jazn-data ... > {1}
 <jazn-realm> {0 or 1}
 ...

 <policy-store> {0 or 1}
 ...

 <jazn-policy> {0 or 1}
 ...

Example
<jazn-data
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://xmlns.oracle.com/oracleas/schema/jazn-data-11_0.xsd">
...
</jazn-data

Name Description

schema-major-version Specifies the major version number of the
system-jazn-data.xml XSD. The value of this attribute is
fixed at 11 for use with Oracle Fusion Middleware 11g.

schema-minor-version Specifies the minor version number of the
system-jazn-data.xml XSD. The value of this attribute is
fixed at 0 for use with the Oracle Fusion Middleware 11.1.1
implementation.

<jazn-policy>

File-Based Identity and Policy Store Reference B-27

<jazn-policy>

This element specifies policy grants that associate grantees (principals or codesources)
with permissions.

This element can appear in two different locations in the system-jazn-data.xml
file:

■ Under the <jazn-data> element, it specifies global policies.

■ Under the <application> element, it specifies application-level policies.

Parent Element
<application> or <jazn-data>

Child Elements
<grant>

Occurrence
Optional, zero or one

<jazn-data> {1}
 <jazn-policy> {0 or 1}
 <grant> {0 or more}
 <description> {0 or 1}
 <grantee> {0 or 1}
 <principals> {0 or 1}
 ...
 <codesource> {0 or 1}
 <url> {1}
 <permissions> {0 or 1}
 <permission> {1 or more}
 <class> {1}
 <name> {0 or 1}
 <actions> {0 or 1}

Example

Example B–1 <jazn-policy>

 <jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>
 oracle.security.jps.service.policystore.TestUser
 </class>
 <name>jack</name>
 </principal>
 <principal>
 <class>
 oracle.security.jps.service.policystore.TestUser
 </class>
 <name>jill</name>

<jazn-policy>

B-28 Oracle Fusion Middleware Application Security Guide

 </principal>
 </principals>
 <codesource>
 <url>file:${oracle.deployed.app.dir}/<MyApp>${oracle.deployed.app.ext}</url>
 </codesource>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.jps.JpsPermission</class>
 <name>getContext</name>
 </permission>
 <permission>
 <class>java.io.FilePermission</class>
 <name>/foo</name>
 <actions>read,write</actions>
 </permission>
 </permissions>
 </grant>
 </jazn-policy>

Example B–2 <jazn-policy>

 <jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>
 oracle.security.jps.service.policystore.TestAdminRole
 </class>
 <name>Farm=farm1,name=FullAdministrator</name>
 </principal>
 </principals>
 <codesource>
 <url>file://some-file-path</url>
 </codesource>
 </grantee>
 <permissions>
 permission>
 <class>javax.management.MBeanPermission</class>
 <name>
 oracle.as.management.topology.mbeans.InstanceOperations#getAttribute
 </name>
 <actions>invoke</actions>
 </permission>
 </permissions>
 </grant>
 </jazn-policy>

<jazn-realm>

File-Based Identity and Policy Store Reference B-29

<jazn-realm>

This element specifies security realms and the users and enterprise groups (as
opposed to application-level roles) they include, and is the top-level element for user
and role information

Attribute

Parent Element
<jazn-data>

Child Elements
<realm>

Occurrence
Optional, zero or one

<jazn-data> {1}
 <jazn-realm> {0 or 1}
 <realm> {0 or more}
 <name> {1}
 <users> {0 or 1}
 ...
 <roles> {0 or 1}
 ...

Example
<jazn-data ... >
 ...
 <jazn-realm default="jazn.com">
 <realm>
 <name>jazn.com</name>
 <users>
 <user deactivated="true">
 <name>anonymous</name>
 <guid>61FD29C0D47E11DABF9BA765378CF9F3</guid>
 <description>The default guest/anonymous user</description>
 </user>
 <user>
 <name>developer1</name>
 <credentials>!password</credentials>
 </user>
 <user>
 <name>developer2</name>

Name Description

default Specifies which of the realms defined under this element is the default
realm. The value of this attribute must match a <name> value under
one of the <realm> subelements.

Values: string

Default: n/a (required)

<jazn-realm>

B-30 Oracle Fusion Middleware Application Security Guide

 <credentials>!password</credentials>
 </user>
 <user>
 <name>manager1</name>
 <credentials>!password</credentials>
 </user>
 <user>
 <name>manager2</name>
 <credentials>!password</credentials>
 </user>
 <!-- these are for testing the admin role hierachy. -->
 <user>
 <name>farm-admin</name>
 <credentials>!password</credentials>
 </user>
 <user>
 <name>farm-monitor</name>
 <credentials>!password</credentials>
 </user>
 <user>
 <name>farm-operator</name>
 <credentials>!password</credentials>
 </user>
 <user>
 <name>farm-auditor</name>
 <credentials>!password</credentials>
 </user>
 <user>
 <name>farm-auditviewer</name>
 <credentials>!password</credentials>
 </user>
 </users>
 <roles>
 <role>
 <name>users</name>
 <guid>31FD29C0D47E11DABF9BA765378CF9F7</guid>
 <display-name>users</display-name>
 <description>users role for rmi/ejb access</description>
 </role>
 <role>
 <name>ascontrol_appadmin</name>
 <guid>51FD29C0D47E11DABF9BA765378CF9F7</guid>
 <display-name>ASControl App Admin Role</display-name>
 <description>
 Application Administrative role for ASControl
 </description>
 </role>
 <role>
 <name>ascontrol_monitor</name>
 <guid>61FD29C0D47E11DABF9BA765378CF9F7</guid>
 <display-name>ASControl Monitor Role</display-name>
 <description>Monitor role for ASControl</description>
 </role>
 <role>
 <name>developers</name>
 <members>
 <member>
 <type>user</type>
 <name>developer1</name>
 </member>

<jazn-realm>

File-Based Identity and Policy Store Reference B-31

 <member>
 <type>user</type>
 <name>developer2</name>
 </member>
 </members>
 </role>
 <role>
 <name>managers</name>
 <members>
 <member>
 <type>user</type>
 <name>manager1</name>
 </member>
 <member>
 <type>user</type>
 <name>manager2</name>
 </member>
 </members>
 </role>
 </roles>
 </realm>
 </jazn-realm>
 ...
</jazn-data>

<matcher-class>

B-32 Oracle Fusion Middleware Application Security Guide

<matcher-class>

This element specifies the fully qualified name of the class within a resource type;
queries for resources of this type delegate to this matcher class. Values are
case-sensitive.

Parent Element
<resource-type>

Child Elements
None

Occurrence
Optional, zero or more

 <policy-store> {0 or 1}
 <applications> {0 or 1}
 <application> {1 or more}
 <name> {1}
 <description> {0 or 1}
 <app-roles> {0 or 1}

...
<role-categories> {0 or 1}
...
<resource-types> {0 or 1}

<resource-type> {1 or more}
<name> {1}
<display-name> {1}
<description> {0 or 1}
<provider-name> {1}
<matcher-class> {1}
<actions-delimiter> {1}
<actions> {1 or more}

Example
For an example, see <resource-type>.

<member>

File-Based Identity and Policy Store Reference B-33

<member>

This element specifies the members of a set, such as a <role> or an<app-role>
element:

■ When under a <role> element, it specifies a member of the enterprise group. A
member can be a user or another enterprise group. The <name> subelement
specifies the name of the member, and the <type> subelement specifies whether
the member type (a user or an enterprise group).

■ When under an <app-role> element, it specifies a member of the application
role. A member can be a user, an enterprise group, or an application role. The
<name> subelement specifies the name of the member, and the <class>
subelement specifies the class that implements it. The member type is determined
through the <class> element.

Optional subelements include <uniquename> and <guid>, which specify a
unique name and unique global identifier; these optional subelements are for
internal use only.

Parent Element
<members>

Child Elements
■ When under a <role> element, the <member> element has the following child

elements: <name>, <type>

■ When under an <app-role> element, the <member> element has the following
child elements: <name>, <class>, <uniquename>, <guid>

Occurrence
Optional, zero or more

<jazn-realm> {0 or 1}
 <realm> {0 or more}
 <name> {1}
 <users> {0 or 1}
 ...
 <roles> {0 or 1}
 <role> {0 or more}
 <name> {1}
 <display-name> {0 or 1}
 <description> {0 or 1}
 <guid> {0 or 1}
 <members> {0 or 1}
 <member> {0 or more}
 <type> {1}
 <name> {1}
 <owners> {0 or 1}
 <owner> {0 or more}
 <type> {1}
 <name> {1}

<policy-store> {0 or 1}

<member>

B-34 Oracle Fusion Middleware Application Security Guide

 <applications> {0 or 1}
 <application> {1 or more}
 <name> {1}
 <description> {0 or 1}
 <app-roles> {0 or 1}
 <app-role> {1 or more}
 <name> {1}
 <class> {1}
 <display-name> {0 or 1}
 <description> {0 or 1}
 <guid> {0 or 1}
 <uniquename> {0 or 1}
 <extended-attributes> {0 or 1}
 ...
 <members> {0 or 1}
 <member> {1 or more}
 <name> {1}
 <class> {1}
 <uniquename> {0 or 1}
 <guid> {0 or 1}

Example
See <jazn-realm> and <policy-store> for examples.

<member-resource>

File-Based Identity and Policy Store Reference B-35

<member-resource>

This element specifies resources for a permission set.

Parent Element
<member-resources>

Child Elements
<resource-name>, <type-name-ref>,<actions>

Occurrence
Required within <member-resources>, one or more.

 <policy-store> {0 or 1}
 <applications> {0 or 1}
 <application> {1 or more}
 <name> {1}
 <description> {0 or 1}
 <app-roles> {0 or 1}

...
<role-categories>
...
<permission-sets>

<permission-set>
<name>
<member-resources>

<member-resource>
<resource-name>
<type-name-ref>
<actions>

Example
For an example, see <permission-set>.

<member-resources>

B-36 Oracle Fusion Middleware Application Security Guide

<member-resources>

This element specifies a set of member resources.

Parent Element
<permission-set>

Child Elements
<member-resource>

Occurrence
Required within <permission-sets>; one or more.

 <policy-store> {0 or 1}
 <applications> {0 or 1}
 <application> {1 or more}
 <name> {1}
 <description> {0 or 1}
 <app-roles> {0 or 1}

...
<role-categories>
...
<permission-sets>

<permission-set>
<name>
<member-resources>

<member-resource>
<resource-name>
<type-name-ref>
<actions>

Example
For an example, see <permission-set>.

<members>

File-Based Identity and Policy Store Reference B-37

<members>

This element specifies a set of members.

Parent Element
<role>, <app-role>

Child Elements
<member>

Occurrence
Optional, zero or one

<jazn-realm> {0 or 1}
 <realm> {0 or more}
 <name> {1}
 <users> {0 or 1}
 ...
 <roles> {0 or 1}
 <role> {0 or more}
 <name> {1}
 <display-name> {0 or 1}
 <description> {0 or 1}
 <guid> {0 or 1}
 <members> {0 or 1}
 <member> {0 or more}
 <type> {1}
 <name> {1}
 <owners> {0 or 1}
 <owner> {0 or more}
 <type> {1}
 <name> {1}

<policy-store> {0 or 1}
 <applications> {0 or 1}
 <application> {1 or more}
 <name> {1}
 <description> {0 or 1}
 <app-roles> {0 or 1}
 <app-role> {1 or more}
 <name> {1}
 <class> {1}
 <display-name> {0 or 1}
 <description> {0 or 1}
 <guid> {0 or 1}
 <uniquename> {0 or 1}
 <extended-attributes> {0 or 1}
 ...
 <members> {0 or 1}
 <member> {1 or more}
 <name> {1}
 <class> {1}
 <uniquename> {0 or 1}
 <guid> {0 or 1}

<members>

B-38 Oracle Fusion Middleware Application Security Guide

Example
See <jazn-realm> and <policy-store> for examples.

<name>

File-Based Identity and Policy Store Reference B-39

<name>

This element has different uses, depending on its location in the file:

■ Within the <app-role> element, it specifies the name of an application-level role
in the policy configuration. For example:

<name>Farm=farm1,name=FullAdministrator</name>

Or a simpler example:

<name>Myrolename</name>

■ Within the <application> element, it specifies the policy context identifier.
Typically, this is the name of the application during deployment.

■ Within the <attribute> element, it specifies the name of an additional attribute
for the application-level role.

■ Within the <member> element, it specifies the name of a member of an enterprise
group or application role (depending on where the <member> element is located).
For example, if the fmwadmin user is to be a member of the role:

<name>fmwadmin</name>

■ Within the <owner> element, it specifies the name of an owner of an enterprise
group. For example:

<name>mygroupowner</name>

■ Within the <permission> element, as applicable, it can specify the name of a
permission that is meaningful to the permission class. Values are case-sensitive.
For example:

<name>
 oracle.as.management.topology.mbeans.InstanceOperations#getAttribute
</name>

Or:

<name>getContext</name>

■ Within the <principal> element (for granting permissions to a principal), it
specifies the name of a principal within the given realm. For example:

<name>Administrators</name>

■ Within the <realm> element, it specifies the name of a realm. For example:

<name>jazn.com</name>

■ Within the <role> element, it specifies the name of an enterprise group in a
realm. For example:

<name>Administrators</name>

■ Within the <user> element, it specifies the name of a user in a realm. For
example:

<name>fmwadmin</name>

<name>

B-40 Oracle Fusion Middleware Application Security Guide

■ Within the <resource-type> element, it specifies the name of a resource type
and is required. For example:

<name>restype1</name>

Parent Element
<app-role>, <application>, <attribute>, <member>, <owner>,
<permission>, <principal>, <realm>, <role>, or <user>

Child Elements
None

Occurrence
Required within any parent element other than <permission>, one only; optional
within <permission>, zero or one

<jazn-realm> {0 or 1}
 <realm> {0 or more}
 <name> {1}
 <users> {0 or 1}
 <user> {0 or more}
 <name> {1}
 <display-name> {0 or 1}
 <description> {0 or 1}
 <guid> {0 or 1}
 <credentials> {0 or 1}
 <roles> {0 or 1}
 <role> {0 or more}
 <name> {1}
 <display-name> {0 or 1}
 <description> {0 or 1}
 <guid> {0 or 1}
 <members> {0 or 1}
 <member> {0 or more}
 <type> {1}
 <name> {1}
 <owners> {0 or 1}
 <owner> {0 or more}
 <type> {1}
 <name> {1}

<policy-store> {0 or 1}
 <applications> {0 or 1}
 <application> {1 or more}
 <name> {1}
 <description> {0 or 1}
 <app-roles> {0 or 1}
 <app-role> {1 or more}
 <name> {1}
 <class> {1}
 <display-name> {0 or 1}
 <description> {0 or 1}
 <guid> {0 or 1}
 <uniquename> {0 or 1}
 <extended-attributes> {0 or 1}
 <attribute> {1 or more}
 <name> {1}

<name>

File-Based Identity and Policy Store Reference B-41

 <values> {1}
 <value> {1 or more}
 <members> {0 or 1}
 <member> {1 or more}
 <name> {1}
 <class> {1}
 <uniquename> {0 or 1}
 <guid> {0 or 1}

<jazn-policy> {0 or 1}
 <grant> {0 or more}
 <description> {0 or 1}
 <grantee> {0 or 1}
 <principals> {0 or 1}
 <principal> {0 or more}
 <name> {1}
 <class> {1}
 <uniquename> {0 or 1}
 <guid> {0 or 1}
 <codesource> {0 or 1}
 <url> {1}
 <permissions> {0 or 1}
 <permission> {1 or more}
 <class> {1}
 <name> {0 or 1}
 <actions> {0 or 1}

Example
<application>
 <name>peanuts</name>
 <app-roles>
 <app-role>
 <name>snoopy</name>
 <display-name>application role snoopy</display-name>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <members>
 <member>

.......

See <jazn-policy>, <jazn-realm>, and <policy-store> for examples.

<owner>

B-42 Oracle Fusion Middleware Application Security Guide

<owner>

This element specifies the owner of the enterprise group, where an owner has
administrative authority over the role.

An owner is a user or another enterprise group. The <type> subelement specifies the
owner’s type. The concept of role (group) owners specifically relates to BPEL or Oracle
Internet Directory functionality. For example, in BPEL, a role owner has the capability
to create and update workflow rules for the role.

Parent Element
<owners>

Child Elements
<name>, <type>

Occurrence
Optional, zero or more

<jazn-realm> {0 or 1}
 <realm> {0 or more}
 <name> {1}
 <users> {0 or 1}
 ...
 <roles> {0 or 1}
 <role> {0 or more}
 <name> {1}
 <display-name> {0 or 1}
 <description> {0 or 1}
 <guid> {0 or 1}
 <members> {0 or 1}
 <member> {0 or more}
 <type> {1}
 <name> {1}
 <owners> {0 or 1}
 <owner> {0 or more}
 <type> {1}
 <name> {1}

Note: To create a group owner in Oracle Internet Directory, use the
Oracle Delegated Administration Services. For external (third-party)
LDAP servers, set values for the group’s owner attribute through
ldapmodify or tools of the particular directory server.

<owners>

File-Based Identity and Policy Store Reference B-43

<owners>

This element specifies a set of owners.

Parent Element
<role>

Child Elements
<owner>

Occurrence
Optional, zero or one

<jazn-realm> {0 or 1}
 <realm> {0 or more}
 <name> {1}
 <users> {0 or 1}
 ...
 <roles> {0 or 1}
 <role> {0 or more}
 <name> {1}
 <display-name> {0 or 1}
 <description> {0 or 1}
 <guid> {0 or 1}
 <members> {0 or 1}
 <member> {0 or more}
 <type> {1}
 <name> {1}
 <owners> {0 or 1}
 <owner> {0 or more}
 <type> {1}
 <name> {1}

<permission>

B-44 Oracle Fusion Middleware Application Security Guide

<permission>

This element specifies the permission to grant to grantees, where a grantee is a set of
principals, a codesource, or both, as part of a policy configuration.

Parent Element
<permissions>

Child Elements
<actions>, <class>, <name>

Occurrence
Required within parent element, one or more

<jazn-policy> {0 or 1}
 <grant> {0 or more}
 <description> {0 or 1}
 <grantee> {0 or 1}
 <principals> {0 or 1}
 <principal> {0 or more}
 <name> {1}
 <class> {1}
 <uniquename> {0 or 1}
 <guid> {0 or 1}
 <codesource> {0 or 1}
 <url> {1}
 <permissions> {0 or 1}
 <permission> {1 or more}
 <class> {1}
 <name> {0 or 1}
 <actions> {0 or 1}

Example
See <jazn-policy> for examples.

<permissions>

File-Based Identity and Policy Store Reference B-45

<permissions>

This element specifies a set of permissions.

The <permissions> element (used in conjunction with a parallel <grantee>
element) specifies the permissions being granted, through a set of <permission>
subelements.

Parent Element
<grant>

Child Elements
<permission>

Occurrence
Optional, zero or one

<jazn-policy> {0 or 1}
 <grant> {0 or more}
 <description> {0 or 1}
 <grantee> {0 or 1}
 <principals> {0 or 1}
 <principal> {0 or more}
 <name> {1}
 <class> {1}
 <uniquename> {0 or 1}
 <guid> {0 or 1}
 <codesource> {0 or 1}
 <url> {1}
 <permissions> {0 or 1}
 <permission> {1 or more}
 <class> {1}
 <name> {0 or 1}
 <actions> {0 or 1}

Example
See <jazn-policy> for examples.

Note: The system-jazn-data.xml schema definition does not
specify this as a required element, but the Oracle Platform Security
runtime implementation requires its use within any <grant>
element.

<permission-set>

B-46 Oracle Fusion Middleware Application Security Guide

<permission-set>

A permission set or entitlement specifies a set of permissions.

Parent Element
<permission-sets>

Child Elements
<name>

Occurrence
Optional, zero or more

 <policy-store> {0 or 1}
 <applications> {0 or 1}
 <application> {1 or more}
 <name> {1}
 <description> {0 or 1}
 <app-roles> {0 or 1}

...
<role-categories>
...
<permission-sets>

<permission-set>
<name>
<member-resources>

<member-resource>
<resource-name>
<type-name-ref>
<actions>

Example
The following fragment illustrates the configuration of a permission set (or
entitlement):

<permission-sets>
 <permission-set>

<name>permsetName</name>
<member-resources>

 <member-resource>
 <type-name-ref>TaskFlowResourceType</type-name-ref>

<resource-name>resource1</resource-name>
 <actions>customize,view</actions>
 </member-resource>
 </member-resources>
 </permission-set>
</permission-sets>

Note the following points about a permission set:

■ The actions specified in a <member-resource> must match one or more of the
actions specified for the resource type that is referenced through
<resource-name-ref>.

■ A <member-resources> can have multiple <member-resource> elements in it.

<permission-set>

File-Based Identity and Policy Store Reference B-47

■ A permission set must have at least one resource.

■ Permission sets can be exist without necessarily being referenced in any grants,
that is, without granting them to any principal.

In addition, the following strings in a permission set entry conform to the case
sensitivity rules:

■ The name is case insensitive.

■ The description string is case insensitive.

■ The display name is case insensitive.

<permission-sets>

B-48 Oracle Fusion Middleware Application Security Guide

<permission-sets>

This element specifies a set of permission sets.

Parent Element
<application>

Child Elements
<permission-set>

Occurrence
Optional, zero or more

 <policy-store> {0 or 1}
 <applications> {0 or 1}
 <application> {1 or more}
 <name> {1}
 <description> {0 or 1}
 <app-roles> {0 or 1}

...
<role-categories>
...
<permission-sets>

<permission-set>
<name>
<member-resources>

<member-resource>
<resource-name>
<type-name-ref>
<actions>

Example
For an example, see <permission-set>.

<policy-store>

File-Based Identity and Policy Store Reference B-49

<policy-store>

This element configures application-level policies, through an <applications>
subelement. Under the <applications> element is an <application> subelement
for each application that is to have application-level policies. The policies are specified
through a <jazn-policy> subelement of each <application> element.

Parent Element
<jazn-data>

Child Elements
<applications>

Occurrence
Optional, zero or one

<jazn-data> {1}
 <policy-store> {0 or 1}
 <applications> {0 or 1}
 <application> {1 or more}
 ...

Example
<jazn-data ... >
 ...
 <policy-store>
 <!-- application policy -->
 <applications>
 <application>
 <name>policyOnly</name>
 <jazn-policy>
 ...
 </jazn-policy>
 </application>
 <application>
 <name>roleOnly</name>
 <app-roles>
 <app-role>
 <name>Fellowship</name>
 <display-name>Fellowship of the Ring</display-name>
 <class>
 oracle.security.jps.service.policystore.ApplicationRole
 </class>
 </app-role>
 <app-role>
 <name>King</name>

Note: The <jazn-principal-classes> and
<jazn-permission-classes> elements and their subelements
may appear in the system-jazn-data.xml schema definition as
subelements of <policy-store>, but are for backward compatibility
only.

<policy-store>

B-50 Oracle Fusion Middleware Application Security Guide

 <display-name>Return of the King</display-name>
 <class>
 oracle.security.jps.service.policystore.ApplicationRole
 </class>
 </app-role>
 </app-roles>
 </application>
 <application>
 <app-roles>
 <app-role>
 <name>Farm=farm1,name=FullAdministrator</name>
 <display-name>farm1.FullAdministrator</display-name>
 <guid>61FD29C0D47E11DABF9BA765378CF9F2</guid>
 <class>
 oracle.security.jps.service.policystore.ApplicationRole
 </class>
 <members>
 <member>
 <class>
 oracle.security.jps.internal.core.principals.JpsXmlEnterpriseRoleImpl
 </class>
 <name>admin</name>
 </member>
 </members>
 </app-role>
 </app-roles>
 <jazn-policy>
 ...
 </jazn-policy>
 </application>
 ...
 </applications>
 </policy-store

</jazn-data

See <jazn-policy> for examples of that element.

<principal>

File-Based Identity and Policy Store Reference B-51

<principal>

This element specifies a principal being granted the permissions specified in a
<permissions> element as part of a policy configuration. Required under <principals>.

Subelements specify the name of the principal and the class that implements it, and
optionally specify a unique name and unique global identifier (the latter two for
internal use only).

For details about how principal names can be compared, see Section 2.7, "Principal
Name Comparison Logic."

Parent Element
<principals>

Child Elements
<class>, <guid>, <name>, <uniquename>

Occurrence
Optional, zero or more

<jazn-policy> {0 or 1}
 <grant> {0 or more}
 <description> {0 or 1}
 <grantee> {0 or 1}
 <principals> {0 or 1}
 <principal> {0 or more}
 <name> {1}
 <class> {1}
 <uniquename> {0 or 1}
 <guid> {0 or 1}
 <codesource> {0 or 1}
 <url> {1}
 <permissions> {0 or 1}
 <permission> {1 or more}
 <class> {1}
 <name> {0 or 1}
 <actions> {0 or 1}

Example
See <jazn-policy> for examples.

<principals>

B-52 Oracle Fusion Middleware Application Security Guide

<principals>

This element specifies a set of principals.

For policy configuration, a <principals> element and/or a <codesource> element
are used under a <grantee> element to specify who or what the permissions in
question are being granted to. A <principals> element specifies a set of principals
being granted the permissions.

For a subject to be granted these permissions, the subject should include all the
specified principals.

Parent Element
<grantee>

Child Elements
<principal>

Occurrence
Optional, zero or one

<jazn-policy> {0 or 1}
 <grant> {0 or more}
 <description> {0 or 1}
 <grantee> {0 or 1}
 <principals> {0 or 1}
 <principal> {0 or more}
 <name> {1}
 <class> {1}
 <uniquename> {0 or 1}
 <guid> {0 or 1}
 <codesource> {0 or 1}
 <url> {1}
 <permissions> {0 or 1}
 <permission> {1 or more}
 <class> {1}
 <name> {0 or 1}
 <actions> {0 or 1}

Example
See <jazn-policy> for examples.

<provider-name>

File-Based Identity and Policy Store Reference B-53

<provider-name>

This element specifies the name of a resource type provider. The resource resides in a
location external to the OPSS policy store. Values are case-insensitive.

Parent Element
<resource-type>

Child Elements
None

Occurrence
Optional, zero or more

 <policy-store> {0 or 1}
 <applications> {0 or 1}
 <application> {1 or more}
 <name> {1}
 <description> {0 or 1}
 <app-roles> {0 or 1}

...
<role-categories>
...
<resource-types>

<resource-type>
<name>
<display-name>
<description>
<provider-name>
<matcher-class>
<actions-delimiter>
<actions>

Example
For an example, see <resource-type>.

<realm>

B-54 Oracle Fusion Middleware Application Security Guide

<realm>

This element specifies a security realm, and the users and roles that belong to the
realm.

Parent Element
<jazn-realm>

Child Elements
<name>, <roles>, <users>

Occurrence
Optional, zero or more

<jazn-realm> {0 or 1}
 <realm> {0 or more}
 <name> {1}
 <users> {0 or 1}
 ...
 <roles> {0 or 1}
 ...

Example
See <jazn-realm> for an example.

<resource>

File-Based Identity and Policy Store Reference B-55

<resource>

This element specifies an application resource and contains information about the
resource.

Parent Element
<resources>

Child Elements
<name>, <description>, <display-name>, <type-name-ref>.

Occurrence
Required under <resources>.

<resources> (0 or more)
 <resource> (1 or more)
 <name> (1)
 <display-name> (1)
 <description> {0 or 1}
 <type-name-ref> (1)

Example
The following fragment illustrates the configuration of a resource (instance):

<resources>
<resource>

 <name>resource1</name>
 <display-name>Resource1DisplayName</display-name>
 <description>Resource1 Description</description>
 <type-name-ref>TaskFlowResourceType</type-name-ref>
 </resource>
</resources>

Note the following points about case sensitivity of various strings in a resource entry:

■ The name is case sensitive.

■ The description string is case insensitive.

■ The display name is case insensitive.

<resources>

B-56 Oracle Fusion Middleware Application Security Guide

<resources>

This element specifies a collection of application resources.

Parent Element
<application>

Child Elements
<resource>

Occurrence
Optional, zero or more

<resources> (0 or more)
 <resource> (1 or more)
 <name> (1)
 <display-name> (1)
 <description> {0 or 1}
 <type-name-ref> (1)

Example
For an example, see <resource>.

<resource-name>

File-Based Identity and Policy Store Reference B-57

<resource-name>

This element specifies a member resource in a permission set. Values are
case-sensitive.

Parent Element
<member-resource>

Child Elements
None

Occurrence
Optional, zero or more

 <policy-store> {0 or 1}
 <applications> {0 or 1}
 <application> {1 or more}
 <name> {1}
 <description> {0 or 1}
 <app-roles> {0 or 1}

...
<role-categories>
...
<permission-sets>

<permission-set>
<name>
<member-resources>

<member-resource>
<resource-name>
<type-name-ref>
<actions>

Example
For an example, see <permission-set>.

<resource-type>

B-58 Oracle Fusion Middleware Application Security Guide

<resource-type>

This element specifies the type of a secured artifact, such as a flow, a job, or a web
service. Values are case-insensitive.

Parent Element
<resource-types>

Child Elements
<name>, <display-name>, <description>, <actions>,
<actions-delimiter>, <matcher-class>, <provider-name>.

Occurrence
Optional, zero or more

 <policy-store> {0 or 1}
 <applications> {0 or 1}
 <application> {1 or more}
 <name> {1}
 <description> {0 or 1}
 <app-roles> {0 or 1}

...
<role-categories>
...
<resource-types>

<resource-type>
<name>
<display-name>
<description>
<provider-name>
<matcher-class>
<actions-delimiter>
<actions>

Example
The following fragment illustrates the configuration of a resource type:

<resource-types>
 <resource-type>
 <name>TaskFlowResourceType</name>
 <display-name>TaskFlowResourceType_disp</display-name>
 <description>Resource Type for Task Flow</description>
 <provider-name>resTypeProv</provider-name>
 <matcher-class>
oracle.adf.controller.security.TaskFlowPermission</matcher-class>
 <actions-delimiter>,</actions-delimiter>
 <actions>customize,view</actions>
</resource-type>

</resource-types>

The following points apply to the specification of a resource type:

■ The name is required and case insensitive.

<resource-type>

File-Based Identity and Policy Store Reference B-59

■ The provider name is optional and case insensitive. A provider is typically used
when there are resources managed in an external store, that is, in a store other than
the OPSS domain policy store.

When specified, the class in a <provider-name> element is used as a resource
finder; queries for resources of this type (via the ResourceManager search APIs)
delegate to this matcher class instead of using the built-in resource finder against
the OPSS domain policy store.

■ The matcher class name is required and case sensitive.

■ The description string is optional and case insensitive.

■ The display name is optional and case insensitive.

■ The action string is optional and case sensitive. The list of actions in a resource
type can be empty. An empty action list indicates that the actions on instances of
the resource type are determined externally and are opaque to OPSS.

<resource-types>

B-60 Oracle Fusion Middleware Application Security Guide

<resource-types>

This element specifies a set of resource types.

Parent Element
<application>

Child Elements
<resource-type>

Occurrence
Optional, zero or more

 <policy-store> {0 or 1}
 <applications> {0 or 1}
 <application> {1 or more}
 <name> {1}
 <description> {0 or 1}
 <app-roles> {0 or 1}

...
<role-categories>
...
<resource-types>

<resource-type>
<name>
<display-name>
<description>
<provider-name>
<matcher-class>
<actions-delimiter>
<actions>

Example
For an example, see <resource-type>.

<role>

File-Based Identity and Policy Store Reference B-61

<role>

This element specifies an enterprise security role, as opposed to an application-level
role, and the members (and optionally owners) of that role.

Parent Element
<roles>

Child Elements
<description>, <display-name>, <guid>, <members>, <name>, <owners>

Occurrence
Optional, zero or more

<jazn-realm> {0 or 1}
 <realm> {0 or more}
 <name> {1}
 <users> {0 or 1}
 <user> {0 or more}
 <name> {1}
 <display-name> {0 or 1}
 <description> {0 or 1}
 <guid> {0 or 1}
 <credentials> {0 or 1}
 <roles> {0 or 1}
 <role> {0 or more}
 <name> {1}
 <display-name> {0 or 1}
 <description> {0 or 1}
 <guid> {0 or 1}
 <members> {0 or 1}
 <member> {0 or more}
 <type> {1}
 <name> {1}
 <owners> {0 or 1}
 <owner> {0 or more}
 <type> {1}
 <name> {1}

Example
See <jazn-realm> for examples.

<role-categories>

B-62 Oracle Fusion Middleware Application Security Guide

<role-categories>

This element specifies the parent element of <role-category> elements.

Parent Element
<application>

Child Elements
<role-category>

Occurrence
Optional, zero or one

 <application> {1 or more}
 <name> {1}
 <description> {0 or 1}
 <app-roles> {0 or 1}
 <app-role> {1 or more}
 <name> {1}
 <class> {1}
 <display-name> {0 or 1}
 <description> {0 or 1}
 <guid> {0 or 1}
 <uniquename> {0 or 1}
 <extended-attributes> {0 or 1}
 <attribute> {1 or more}
 <name> {1}
 <values> {1}
 <value> {1 or more}
 <members> {0 or 1}
 <member> {1 or more}
 <name> {1}
 <class> {1}
 <uniquename> {0 or 1}
 <guid> {0 or 1}

<role-categories>
 <role-category>

 <name>
<description>
<display-name>

Example
See Section 20.3.3.1, "Using the Method checkPermission" for an example.

<role-category>

File-Based Identity and Policy Store Reference B-63

<role-category>

This element specifies a category, that is, a flat set of application roles.

Parent Element
<role-categories>

Child Elements
<name>, <display-name>, <description>, <members>

Occurrence
Optional, zero or one

 <application> {1 or more}
 <name> {1}
 <description> {0 or 1}
 <app-roles> {0 or 1}
 <app-role> {1 or more}
 <name> {1}
 <class> {1}
 <display-name> {0 or 1}
 <description> {0 or 1}
 <guid> {0 or 1}
 <uniquename> {0 or 1}
 <extended-attributes> {0 or 1}
 <attribute> {1 or more}
 <name> {1}
 <values> {1}
 <value> {1 or more}
 <members> {0 or 1}
 <member> {1 or more}
 <name> {1}
 <class> {1}
 <uniquename> {0 or 1}
 <guid> {0 or 1}

<role-categories>
 <role-category>

 <name>
<description>
<display-name>
<members>

Example
See Section 20.3.3.1, "Using the Method checkPermission" for an example.

<role-name-ref>

B-64 Oracle Fusion Middleware Application Security Guide

<role-name-ref>

This element specifies an application role within a role category.

Parent Element
<members>

Child Elements
None

Occurrence
Optional, zero or one

 <application> {1 or more}
 <name> {1}
 <description> {0 or 1}
 <app-roles> {0 or 1}
 <app-role> {1 or more}
 <name> {1}
 <class> {1}
 <display-name> {0 or 1}
 <description> {0 or 1}
 <guid> {0 or 1}
 <uniquename> {0 or 1}
 <extended-attributes> {0 or 1}
 <attribute> {1 or more}
 <name> {1}
 <values> {1}
 <value> {1 or more}
 <members> {0 or 1}
 <member> {1 or more}
 <name> {1}
 <class> {1}
 <uniquename> {0 or 1}
 <guid> {0 or 1}

<role-categories>
 <role-category>

 <name>
<description>
<members>

<role-name-ref>

<roles>

File-Based Identity and Policy Store Reference B-65

<roles>

This element specifies a set of enterprise security roles that belong to a security realm.

Parent Element
<realm>

Child Elements
<role>

Occurrence
Optional, zero or one

<jazn-realm> {0 or 1}
 <realm> {0 or more}
 <name> {1}
 <users> {0 or 1}
 <user> {0 or more}
 <name> {1}
 <display-name> {0 or 1}
 <description> {0 or 1}
 <guid> {0 or 1}
 <credentials> {0 or 1}
 <roles> {0 or 1}
 <role> {0 or more}
 <name> {1}
 <display-name> {0 or 1}
 <description> {0 or 1}
 <guid> {0 or 1}
 <members> {0 or 1}
 <member> {0 or more}
 <type> {1}
 <name> {1}
 <owners> {0 or 1}
 <owner> {0 or more}
 <type> {1}
 <name> {1}

Example
See <jazn-realm> for an example.

<type>

B-66 Oracle Fusion Middleware Application Security Guide

<type>

This element specifies the type of an enterprise group member or role owner:
specifically, whether the member or owner is a user or another role:

<type>user</type>

Or:

<type>role</type>

Parent Element
<member> or <owner>

Child Elements
None

Occurrence
Required, one only

<jazn-realm> {0 or 1}
 <realm> {0 or more}
 <name> {1}
 <users> {0 or 1}
 ...
 <roles> {0 or 1}
 <role> {0 or more}
 <name> {1}
 <display-name> {0 or 1}
 <description> {0 or 1}
 <guid> {0 or 1}
 <members> {0 or 1}
 <member> {0 or more}
 <type> {1}
 <name> {1}
 <owners> {0 or 1}
 <owner> {0 or more}
 <type> {1}
 <name> {1}

Example
See <jazn-realm> for examples.

<type-name-ref>

File-Based Identity and Policy Store Reference B-67

<type-name-ref>

This element specifies the resource type of a resource.

Parent Element
<member-resource>, <resource>

Child Elements
None

Occurrence
Required within <resource> or <member-resource>.

<resources> (0 or more)
 <resource> (1 or more)
 <name> (1)
 <display-name> (1)
 <description> {0 or 1}
 <type-name-ref> (1)

Example
For an example, see <resource>.

<uniquename>

B-68 Oracle Fusion Middleware Application Security Guide

<uniquename>

This element, for internal use, takes a string value to specify a unique name to
reference the item. (The JpsPrincipal class can use a GUID and unique name, both
computed by the underlying policy provisioning APIs, to uniquely identify a
principal.) Depending on the parent element, the item could be an application role,
application role member (not an enterprise group member), or principal. It is typically
used with an LDAP provider to uniquely identity the item (an application role
member, for example). A unique name is sometimes generated and used internally by
Oracle Platform Security.

The unique name for an application role would be: "appid=application_name,
name=actual_rolename". For example:

<principal>
 <class>
 oracle.security.jps.service.policystore.adminroles.AdminRolePrincipal
 </class>
 <uniquename>
 APPID=App1,name="FARM=D.1.2.3,APPLICATION=PolicyServlet,TYPE=OPERATOR"
 </uniquename>
</principal>

Parent Element
<app-role>, <member>, or <principal>

Child Elements
None

Occurrence
Optional, zero or one

<policy-store> {0 or 1}
 <applications> {0 or 1}
 <application> {1 or more}
 <name> {1}
 <description> {0 or 1}
 <app-roles> {0 or 1}
 <app-role> {1 or more}
 <name> {1}
 <class> {1}
 <display-name> {0 or 1}
 <description> {0 or 1}
 <guid> {0 or 1}
 <uniquename> {0 or 1}
 <extended-attributes> {0 or 1}
 ...
 <members> {0 or 1}
 <member> {1 or more}
 <name> {1}
 <class> {1}
 <uniquename> {0 or 1}
 <guid> {0 or 1}

<jazn-policy> {0 or 1}

<uniquename>

File-Based Identity and Policy Store Reference B-69

 <grant> {0 or more}
 <description> {0 or 1}
 <grantee> {0 or 1}
 <principals> {0 or 1}
 <principal> {0 or more}
 <name> {1}
 <class> {1}
 <uniquename> {0 or 1}
 <guid> {0 or 1}
 <codesource> {0 or 1}
 <url> {1}
 <permissions> {0 or 1}
 <permission> {1 or more}
 <class> {1}
 <name> {0 or 1}
 <actions> {0 or 1}

<url>

B-70 Oracle Fusion Middleware Application Security Guide

<url>

This element specifies the URL of the code that is granted permissions.

Note the following points:

■ URL values cannot be restricted to a single class.

■ URL values with ".jar" suffix match the JAR files in the specified directory.

■ URL values with "/" suffix match all class files (not JAR files) in the specified
directory.

■ URL values with "/*" suffix match all files (both class and JAR files) in the
specified directory.

■ URL values with "/-" suffix match all files (both class and JAR files) in the
specified directory and, recursively, all files in subdirectories.

■ The system variables oracle.deployed.app.dir and
oracle.deployed.app.ext can be used to specify a URL independent of the
platform.

Parent Element
<codesource>

Child Elements
None

Occurrence
Required within parent element, one only

<jazn-policy> {0 or 1}
 <grant> {0 or more}
 <description> {0 or 1}
 <grantee> {0 or 1}
 <principals> {0 or 1}
 <principal> {0 or more}
 <name> {1}
 <class> {1}
 <uniquename> {0 or 1}
 <guid> {0 or 1}
 <codesource> {0 or 1}
 <url> {1}
 <permissions> {0 or 1}
 <permission> {1 or more}
 <class> {1}
 <name> {0 or 1}
 <actions> {0 or 1}

Example
The following example illustrates the use of the system variables
oracle.deployed.app.dir and oracle.deployed.app.ext to specify URLs
independent of the server platform.

<url>

File-Based Identity and Policy Store Reference B-71

Suppose an application grant requires a codesource URL that differs with the server
platform:

On WebLogic
<grant>
 <grantee>
 <codesource>
 <url>file:${domain.home}/servers/${weblogic.Name}/tmp/_WL_user/myApp/-</url>
 </codesource>
 </grantee>
 <permissions> ... </permissions>
</grant>

On WebSphere
<grant>
 <grantee>
 <codesource>
 <url>file:${user.install.root}/installedApps/${was.cell.name}/myApp/-</url>
 </codesource>
 </grantee>
 <permissions> ... </permissions>
</grant>

Then, using the following system variable settings:

On WebLogic
-Doracle.deployed.app.dir=${DOMAIN_HOME}/servers/${SERVER_NAME}/tmp/_WL_user
-Doracle.deployed.app.ext=/-

On WebSphere
-Doracle.deployed.app.dir=${USER_INSTALL_ROOT}/installedApps/${CELL}
-Doracle.deployed.app.ext=.ear/-

the following specification would work for both platforms, WebLogic and WebSphere:

<grant>
<grantee>

 <codesource>
 <url>file:${oracle.deployed.app.dir}/<MyApp>${oracle.deployed.app.ext}</url>
 </codesource>
 </grantee>
 <permissions> ... </permissions>
</grant>

<user>

B-72 Oracle Fusion Middleware Application Security Guide

<user>

This element specifies a user within a realm.

Attributes

Parent Element
<users>

Child Elements
<name>, <display-name>, <description>, <guid>, <credentials>

Occurrence
Optional, zero or more

<jazn-realm> {0 or 1}
 <realm> {0 or more}
 <name> {1}
 <users> {0 or 1}
 <user> {0 or more}
 <name> {1}
 <display-name> {0 or 1}
 <description> {0 or 1}
 <guid> {0 or 1}
 <credentials> {0 or 1}
 <roles> {0 or 1}
 ...

Example
See <jazn-realm> for examples.

Name Description

deactivated Specifies whether the user is valid or not.

Set this attribute to true if you want to maintain a user in the
configuration file but not have it be a currently valid user. This is the
initial configuration of the anonymous user in the jazn.com realm, for
example.

Values: true or false

Default: false

<users>

File-Based Identity and Policy Store Reference B-73

<users>

This element specifies the set of users belonging to a realm.

Parent Element
<realm>

Child Elements
<user>

Occurrence
Optional, zero or one

<jazn-realm> {0 or 1}
 <realm> {0 or more}
 <name> {1}
 <users> {0 or 1}
 <user> {0 or more}
 <name> {1}
 <display-name> {0 or 1}
 <description> {0 or 1}
 <guid> {0 or 1}
 <credentials> {0 or 1}
 <roles> {0 or 1}
 ...

Example
See <jazn-realm> for an example.

<value>

B-74 Oracle Fusion Middleware Application Security Guide

<value>

This element specifies a value for an attribute. You can specify additional attributes for
application-level roles using the <extended-attributes> element.

Parent Element
<attribute>

Child Elements
None

Occurrence
Required within the parent element, one only

<policy-store> {0 or 1}
 <applications> {0 or 1}
 <application> {1 or more}
 <name> {1}
 <description> {0 or 1}
 <app-roles> {0 or 1}
 <app-role> {1 or more}
 <name> {1}
 <class> {1}
 <display-name> {0 or 1}
 <description> {0 or 1}
 <guid> {0 or 1}
 <uniquename> {0 or 1}
 <extended-attributes> {0 or 1}
 <attribute> {1 or more}
 <name> {1}
 <values> {1}
 <value> {1 or more}
 <members> {0 or 1}
 <member> {1 or more}
 <name> {1}
 <class> {1}
 <uniquename> {0 or 1}
 <guid> {0 or 1}

Example
<app-roles>
 <app-role>
 <name>Knight</name>
 <display-name>Fellowship of the Ring</display-name>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <extended-attributes>
 <attribute>
 <name>SCOPE</name>
 <values>
 <value>Part-I</value>
 </values>
 </attribute>
 </extended-attributes>
 </app-role>

<value>

File-Based Identity and Policy Store Reference B-75

<values>

B-76 Oracle Fusion Middleware Application Security Guide

<values>

This element specifies a set of values, each of which specify the value of an attribute.
An attribute can have more than one value.

Parent Element
<attribute>

Child Elements
<value>

Occurrence
Required within the parent element, one only

<policy-store> {0 or 1}
 <applications> {0 or 1}
 <application> {1 or more}
 <name> {1}
 <description> {0 or 1}
 <app-roles> {0 or 1}
 <app-role> {1 or more}
 <name> {1}
 <class> {1}
 <display-name> {0 or 1}
 <description> {0 or 1}
 <guid> {0 or 1}
 <uniquename> {0 or 1}
 <extended-attributes> {0 or 1}
 <attribute> {1 or more}
 <name> {1}
 <values> {1}
 <value> {1 or more}
 <members> {0 or 1}
 <member> {1 or more}
 <name> {1}
 <class> {1}
 <uniquename> {0 or 1}
 <guid> {0 or 1}

Example
<app-roles>
 <app-role>
 <name>Knight</name>
 <display-name>Fellowship of the Ring</display-name>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <extended-attributes>
 <attribute>
 <name>SCOPE</name>
 <values>
 <value>Part-I</value>
 </values>
 </attribute>
 </extended-attributes>
 </app-role>

<values>

File-Based Identity and Policy Store Reference B-77

<values>

B-78 Oracle Fusion Middleware Application Security Guide

C

Oracle Fusion Middleware Audit Framework Reference C-1

C Oracle Fusion Middleware Audit Framework
Reference

This appendix provides reference information for the Oracle Fusion Middleware
Audit Framework. It contains these topics:

■ Audit Events

■ Pre-built Audit Reports

■ The Audit Schema

■ WLST Commands for Auditing

■ Audit Filter Expression Syntax

■ Naming and Logging Format of Audit Files

C.1 Audit Events
This section describes the components that are audited and the types of events that can
be audited.

C.1.1 What Components Can be Audited?
In 11g Release 1 (11.1.1), specific Java components and system components can
generate audit records; they are known as audit-aware components.

Java Components that can be Audited
The following components can be audited with Fusion Middleware Audit Framework:

■ Directory Integration Platform Server

■ Oracle Platform Security Services

■ Oracle Web Services Manager

– Agent

– Policy Manager

– Policy Attachment

■ Oracle Web Services

■ Oracle Identity Federation

■ Reports Server

Audit Events

C-2 Oracle Fusion Middleware Application Security Guide

System Components that can be Audited
The following components can be audited with Fusion Middleware Audit Framework:

■ Oracle HTTP Server

■ Oracle Web Cache

■ Oracle Internet Directory

■ Oracle Virtual Directory

C.1.2 What Events can be Audited?
The set of tables in this section shows, for each audit-aware system components and
subcomponent, what event types can be audited:

■ Oracle Directory Integration Platform Events and their Attributes

■ Oracle Platform Security Services Events and their Attributes

■ Oracle HTTP Server Events and their Attributes

■ Oracle Internet Directory Events and their Attributes

■ Oracle Identity Federation Events and their Attributes

■ Oracle Virtual Directory Events and their Attributes

■ OWSM-Agent Events and their Attributes

■ OWSM-PM-EJB Events and their Attributes

■ Reports Server Events and their Attributes

■ WS-Policy Attachment Events and their Attributes

■ Oracle Web Cache Events and their Attributes

■ Oracle Web Services Manager Events and their Attributes

C.1.2.1 Oracle Directory Integration Platform Events and their Attributes

Table C–1 Oracle Directory Integration Platform Events

Event Category Event Type Attributes used by Event

ServiceUtilize

InvokeService ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName, Initiator,
MessageText, FailureCode, RemoteIP, Target, Resource, Roles

TerminateService ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName, Initiator,
MessageText, FailureCode, RemoteIP, Target, Resource, Roles

SynchronizationEvents

Audit Events

Oracle Fusion Middleware Audit Framework Reference C-3

Add ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName, Initiator,
MessageText, FailureCode, AssociateProfileName,
ProfileName, EntryDN

Modify ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName, Initiator,
MessageText, FailureCode, AssociateProfileName,
ProfileName, EntryDN

Delete ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName, Initiator,
MessageText, FailureCode, AssociateProfileName,
ProfileName, EntryDN

ProvisioningEvents UserAdd ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName, Initiator,
MessageText, FailureCode, ProfileName, ProvEvent

UserModify ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName, Initiator,
MessageText, FailureCode, ProfileName, ProvEvent

UserDelete ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName, Initiator,
MessageText, FailureCode, ProfileName, ProvEvent

GroupAdd ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName, Initiator,
MessageText, FailureCode, ProfileName, ProvEvent

GroupModify ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName, Initiator,
MessageText, FailureCode, ProfileName, ProvEvent

GroupDelete ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName, Initiator,
MessageText, FailureCode, ProfileName, ProvEven

Table C–1 (Cont.) Oracle Directory Integration Platform Events

Event Category Event Type Attributes used by Event

Audit Events

C-4 Oracle Fusion Middleware Application Security Guide

IdentityAdd ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName, Initiator,
MessageText, FailureCode, ProfileName, ProvEvent

IdentityModify ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName, Initiator,
MessageText, FailureCode, ProfileName, ProvEvent

IdentityDelete ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName, Initiator,
MessageText, FailureCode, ProfileName, ProvEvent

SubscriptionAdd ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName, Initiator,
MessageText, FailureCode, ProfileName, ProvEvent

SubscriptionModify ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName, Initiator,
MessageText, FailureCode, ProfileName, ProvEvent

SubscriptionDelete ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName, Initiator,
MessageText, FailureCode, ProfileName, ProvEvent

ProfileManagementEvent
s

DeleteProvProfile ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName, Initiator,
MessageText, FailureCode

UpdateProvProfile ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName, Initiator,
MessageText, FailureCode

ActivateProvProfile ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName, Initiator,
MessageText, FailureCode

Table C–1 (Cont.) Oracle Directory Integration Platform Events

Event Category Event Type Attributes used by Event

Audit Events

Oracle Fusion Middleware Audit Framework Reference C-5

DeactivateProvProfile ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName, Initiator,
MessageText, FailureCode

CreateSyncProfile ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName, Initiator,
MessageText, FailureCode

DeleteSyncProfile ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName, Initiator,
MessageText, FailureCode

UpdateSyncProfile ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName, Initiator,
MessageText, FailureCode

ActivateSyncProfile ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName, Initiator,
MessageText, FailureCode

DeactivateSyncProfile ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName, Initiator,
MessageText, FailureCode

SyncProfileUpdateCh
gNum

ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName, Initiator,
MessageText, FailureCode

ExpressSyncSetup ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName, Initiator,
MessageText, FailureCode

SyncProfileBootstrap ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName, Initiator,
MessageText, FailureCode

Table C–1 (Cont.) Oracle Directory Integration Platform Events

Event Category Event Type Attributes used by Event

Audit Events

C-6 Oracle Fusion Middleware Application Security Guide

C.1.2.2 Oracle Platform Security Services Events and their Attributes

SyncProfileExtAuthPl
ugins

ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName, Initiator,
MessageText, FailureCode

ProvProfileBulkProv ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName, Initiator,
MessageText, FailureCode

SchedulerEvents

AddJob ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName, Initiator,
MessageText, FailureCode, RemoteIP, Target, Resource,
Roles, JobName, JobType

RemoveJob ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName, Initiator,
MessageText, FailureCode, RemoteIP, Target, Resource,
Roles, JobName, JobType

Table C–2 Oracle Platform Security Services Events

Event Category Event Type Attributes used by Event

Authorization

CheckPermission ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, CodeSource, Principals,
InitiatorGUID, Subject, PermissionAction,
PermissionTarget, PermissionClass

CheckSubject ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, CodeSource, Principals,
InitiatorGUID, Subject

Table C–1 (Cont.) Oracle Directory Integration Platform Events

Event Category Event Type Attributes used by Event

Audit Events

Oracle Fusion Middleware Audit Framework Reference C-7

CredentialManagement CreateCredential ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, mapName, key,
CodeSource, Principals, InitiatorGUID

DeleteCredential ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, mapName, key,
CodeSource, Principals, InitiatorGUID

AccessCredential ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, mapName, key,
CodeSource, Principals, InitiatorGUID

ModifyCredential ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, mapName, key,
CodeSource, Principals, InitiatorGUID

PolicyManagement PolicyGrant ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, CodeSource, Principals,
InitiatorGUID, PermissionAction, PermissionTarget,
PermissionClass, PermissionScope

PolicyRevoke ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, CodeSource, Principals,
InitiatorGUID, PermissionAction, PermissionTarget,
PermissionClass, PermissionScope

Table C–2 (Cont.) Oracle Platform Security Services Events

Event Category Event Type Attributes used by Event

Audit Events

C-8 Oracle Fusion Middleware Application Security Guide

C.1.2.3 Oracle HTTP Server Events and their Attributes

RoleManagement RoleMembershipAdd ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, CodeSource, Principals,
InitiatorGUID, ApplicationRole, EnterpriseRoles,
PermissionScope

RoleMembershipRemove ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, CodeSource, Principals,
InitiatorGUID, ApplicationRole, EnterpriseRoles,
PermissionScope

Table C–3 Oracle HTTP Server Events

Event Category Event Type Attributes used by Event

UserSession UserLogin ComponentType, InstanceId, HostId, HostNwaddr,
ProcessId, OracleHome, HomeInstance, ECID, RID,
ContextFields, SessionId, TargetComponentType,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Resource, AuthenticationMethod, Reason

UserLogout ComponentType, InstanceId, HostId, HostNwaddr,
ProcessId, OracleHome, HomeInstance, ECID, RID,
ContextFields, SessionId, TargetComponentType,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Resource, AuthenticationMethod, Reason

Table C–2 (Cont.) Oracle Platform Security Services Events

Event Category Event Type Attributes used by Event

Audit Events

Oracle Fusion Middleware Audit Framework Reference C-9

C.1.2.4 Oracle Internet Directory Events and their Attributes

Authentication ComponentType, InstanceId, HostId, HostNwaddr,
ProcessId, OracleHome, HomeInstance, ECID, RID,
ContextFields, SessionId, TargetComponentType,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Resource, AuthenticationMethod, Reason,
SSLConnection

Authorization CheckAuthorization ComponentType, InstanceId, HostId, HostNwaddr,
ProcessId, OracleHome, HomeInstance, ECID, RID,
ContextFields, SessionId, TargetComponentType,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Resource, Reason, AuthorizationType

Table C–4 Oracle Directory Integration Platform Events

Event Category Event Type Attributes used by Event

UserSession UserLogin ComponentType, InstanceId, HostId, HostNwaddr,
ProcessId, OracleHome, HomeInstance, ECID, RID,
ContextFields, SessionId, TargetComponentType,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Roles, custEventStatusDetail, custEventOp,
AuthenticationMethod

UserLogout ComponentType, InstanceId, HostId, HostNwaddr,
ProcessId, OracleHome, HomeInstance, ECID, RID,
ContextFields, SessionId, TargetComponentType,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Roles, custEventStatusDetail, custEventOp

Authorization CheckAuthorization ComponentType, InstanceId, HostId, HostNwaddr,
ProcessId, OracleHome, HomeInstance, ECID, RID,
ContextFields, SessionId, TargetComponentType,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, custEventStatusDetail,
custEventOp

DataAccess ModifyDataItemAttribut
es

ComponentType, InstanceId, HostId, HostNwaddr,
ProcessId, OracleHome, HomeInstance, ECID, RID,
ContextFields, SessionId, TargetComponentType,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Resource, custEventStatusDetail, custEventOp

Table C–3 (Cont.) Oracle HTTP Server Events

Event Category Event Type Attributes used by Event

Audit Events

C-10 Oracle Fusion Middleware Application Security Guide

CompareDataItemAttrib
utes

ComponentType, InstanceId, HostId, HostNwaddr,
ProcessId, OracleHome, HomeInstance, ECID, RID,
ContextFields, SessionId, TargetComponentType,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Resource, custEventStatusDetail, custEventOp

AccountManagement ChangePassword ComponentType, InstanceId, HostId, HostNwaddr,
ProcessId, OracleHome, HomeInstance, ECID, RID,
ContextFields, SessionId, TargetComponentType,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, custEventStatusDetail,
custEventOp

CreateAccount ComponentType, InstanceId, HostId, HostNwaddr,
ProcessId, OracleHome, HomeInstance, ECID, RID,
ContextFields, SessionId, TargetComponentType,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, custEventStatusDetail,
custEventOp

DeleteAccount ComponentType, InstanceId, HostId, HostNwaddr,
ProcessId, OracleHome, HomeInstance, ECID, RID,
ContextFields, SessionId, TargetComponentType,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, custEventStatusDetail,
custEventOp

DisableAccount ComponentType, InstanceId, HostId, HostNwaddr,
ProcessId, OracleHome, HomeInstance, ECID, RID,
ContextFields, SessionId, TargetComponentType,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, custEventStatusDetail,
custEventOp

EnableAccount ComponentType, InstanceId, HostId, HostNwaddr,
ProcessId, OracleHome, HomeInstance, ECID, RID,
ContextFields, SessionId, TargetComponentType,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, custEventStatusDetail,
custEventOp

ModifyAccount ComponentType, InstanceId, HostId, HostNwaddr,
ProcessId, OracleHome, HomeInstance, ECID, RID,
ContextFields, SessionId, TargetComponentType,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, custEventStatusDetail,
custEventOp

Table C–4 (Cont.) Oracle Directory Integration Platform Events

Event Category Event Type Attributes used by Event

Audit Events

Oracle Fusion Middleware Audit Framework Reference C-11

C.1.2.5 Oracle Identity Federation Events and their Attributes

LockAccount ComponentType, InstanceId, HostId, HostNwaddr,
ProcessId, OracleHome, HomeInstance, ECID, RID,
ContextFields, SessionId, TargetComponentType,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, custEventStatusDetail,
custEventOp

LDAPEntryAccess custInternalOperation ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, custEventStatusDetail,
custEventOp

Table C–5 Oracle Identity Federation Events

Event Category Event Type Attributes used by Event

UserSession LocalAuthentication ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, SessionID,
AuthenticationMethod, UserID,
AuthenticationMechanism, AuthenticationEngineID

LocalLogout ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, SessionID,
AuthenticationMethod, UserID

CreateUserSession ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, SessionID,
AuthenticationMethod, UserID,
AuthenticationMechanism

Table C–4 (Cont.) Oracle Directory Integration Platform Events

Event Category Event Type Attributes used by Event

Audit Events

C-12 Oracle Fusion Middleware Application Security Guide

DeleteUserSession ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, SessionID,
AuthenticationMethod, UserID

CreateUserFederation ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, RemoteProviderID,
ProtocolVersion, NameIDQualifier, NameIDValue,
NameIDFormat, FederationID, UserID,
FederationType

DeleteUserFederation ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, RemoteProviderID,
ProtocolVersion, NameIDQualifier, NameIDValue,
NameIDFormat, FederationID, UserID,
FederationType

CreateActiveUserFederat
ion

ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, RemoteProviderID,
ProtocolVersion, SessionID, FederationID,
AuthenticationMethod, UserID, FederationType

DeleteActiveUserFederat
ion

ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, RemoteProviderID,
ProtocolVersion, SessionID, FederationID,
AuthenticationMethod, UserID, FederationType

Table C–5 (Cont.) Oracle Identity Federation Events

Event Category Event Type Attributes used by Event

Audit Events

Oracle Fusion Middleware Audit Framework Reference C-13

UpdateUserFederation ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, RemoteProviderID,
ProtocolVersion, NameIDQualifier, NameIDValue,
NameIDFormat, FederationID, UserID,
FederationType, OldNameIDQualifier,
OldNameIDValue

ProtocolFlow IncomingMessage ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, RemoteProviderID,
ProtocolVersion, Binding, Role, UserID,
MessageType, IncomingMessageString,
IncomingMessageStringCLOB

OutgoingMessage ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, RemoteProviderID,
ProtocolVersion, Binding, Role, UserID,
MessageType, OutgoingMessageString,
OutgoingMessageStringCLOB

AssertionCreation ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, RemoteProviderID,
ProtocolVersion, NameIDQualifier, NameIDValue,
NameIDFormat, SessionID, FederationID, UserID,
AssertionVersion, IssueInstant, Issuer, AssertionID

AssertionConsumption ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, RemoteProviderID,
ProtocolVersion, NameIDQualifier, NameIDValue,
NameIDFormat, SessionID, FederationID, UserID,
AssertionVersion, IssueInstant, Issuer, AssertionID

Table C–5 (Cont.) Oracle Identity Federation Events

Event Category Event Type Attributes used by Event

Audit Events

C-14 Oracle Fusion Middleware Application Security Guide

Security CreateSignature ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, RemoteProviderID,
ProtocolVersion, NameIDQualifier, NameIDValue,
NameIDFormat, SessionID, FederationID, Type

VerifySignature ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, RemoteProviderID,
ProtocolVersion, NameIDQualifier, NameIDValue,
NameIDFormat, SessionID, FederationID, Type

EncryptData ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, RemoteProviderID,
ProtocolVersion, NameIDQualifier, NameIDValue,
NameIDFormat, SessionID, FederationID, Type

DecryptData ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, RemoteProviderID,
ProtocolVersion, NameIDQualifier, NameIDValue,
NameIDFormat, SessionID, FederationID, Type

ServerConfiguration ChangeCOT ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, RemoteProviderID,
NameIDQualifier, NameIDValue, NameIDFormat,
SessionID, FederationID, COTBefore, COTAfter

Table C–5 (Cont.) Oracle Identity Federation Events

Event Category Event Type Attributes used by Event

Audit Events

Oracle Fusion Middleware Audit Framework Reference C-15

ChangeServerProperty ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, RemoteProviderID,
NameIDQualifier, NameIDValue, NameIDFormat,
SessionID, FederationID, ServerConfigBefore,
ServerConfigAfter

ChangeDataStore ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, RemoteProviderID,
NameIDQualifier, NameIDValue, NameIDFormat,
SessionID, FederationID, DataStoreBefore,
DataStoreAfter

CreateConfigProperty ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, RemoteProviderID,
NameIDQualifier, NameIDValue, NameIDFormat,
SessionID, FederationID, PropertyName,
PropertyType, PeerProviderID, PropertyContext,
NewValue

ChangeConfigProperty ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, RemoteProviderID,
NameIDQualifier, NameIDValue, NameIDFormat,
SessionID, FederationID, PropertyName,
PropertyType, PeerProviderID, PropertyContext,
OldValue, NewValue

DeleteConfigProperty ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, RemoteProviderID,
ProtocolVersion, NameIDQualifier, NameIDValue,
NameIDFormat, SessionID, FederationID,
PropertyName, PropertyType, PeerProviderID,
PropertyContext, Description, OldValue

Table C–5 (Cont.) Oracle Identity Federation Events

Event Category Event Type Attributes used by Event

Audit Events

C-16 Oracle Fusion Middleware Application Security Guide

C.1.2.6 Oracle Virtual Directory Events and their Attributes

CreatePeerProvider ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, RemoteProviderID,
ProtocolVersion, NameIDQualifier, NameIDValue,
NameIDFormat, SessionID, FederationID,
PeerProviderID, Description, ProviderType

UpdatePeerProvider ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, RemoteProviderID,
ProtocolVersion, NameIDQualifier, NameIDValue,
NameIDFormat, SessionID, FederationID,
PeerProviderID, Description, ProviderType

DeletePeerProvider ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, RemoteProviderID,
ProtocolVersion, NameIDQualifier, NameIDValue,
NameIDFormat, SessionID, FederationID,
PeerProviderID, Description, ProviderType

LoadMetadata ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, RemoteProviderID,
NameIDQualifier, NameIDValue, NameIDFormat,
SessionID, FederationID, Description, Metadata

SetDataStoreType ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, RemoteProviderID,
NameIDQualifier, NameIDValue, NameIDFormat,
SessionID, FederationID, OldValue,
NewDataStoreType, DataStoreName

Table C–5 (Cont.) Oracle Identity Federation Events

Event Category Event Type Attributes used by Event

Audit Events

Oracle Fusion Middleware Audit Framework Reference C-17

Table C–6 Oracle Virtual Directory Events

Event Category Event Type Attributes used by Event

UserSession UserLogin ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory,
EventStatus, TstzOriginating, ThreadId,
ComponentName, Initiator, MessageText, FailureCode,
RemoteIP, Target, Resource, Roles, AuthenticationMethod

UserLogout ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory,
EventStatus, TstzOriginating, ThreadId,
ComponentName, Initiator, MessageText, FailureCode,
RemoteIP, Target, Resource, Roles

Authorization CheckAuthorization ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory,
EventStatus, TstzOriginating, ThreadId,
ComponentName, Initiator, MessageText, FailureCode,
RemoteIP, Target, Resource, Roles

DataAccess QueryDataItemAttribute
s

ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory,
EventStatus, TstzOriginating, ThreadId,
ComponentName, Initiator, MessageText, FailureCode,
RemoteIP, Target, Resource, Roles

ModifyDataItemAttribut
es

ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory,
EventStatus, TstzOriginating, ThreadId,
ComponentName, Initiator, MessageText, FailureCode,
RemoteIP, Target, Resource, Roles

CompareDataItemAttrib
utes

ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory,
EventStatus, TstzOriginating, ThreadId,
ComponentName, Initiator, MessageText, FailureCode,
RemoteIP, Target, Resource, Roles

ServiceManagement RemoveService ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory,
EventStatus, TstzOriginating, ThreadId,
ComponentName, Initiator, MessageText, FailureCode,
RemoteIP, Target, Resource, Roles, ServiceOperation

Audit Events

C-18 Oracle Fusion Middleware Application Security Guide

C.1.2.7 OWSM-Agent Events and their Attributes

ModifyServiceConfig ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory,
EventStatus, TstzOriginating, ThreadId,
ComponentName, Initiator, MessageText, FailureCode,
RemoteIP, Target, Resource, Roles, ServiceOperation

AddService ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory,
EventStatus, TstzOriginating, ThreadId,
ComponentName, Initiator, MessageText, FailureCode,
RemoteIP, Target, Resource, Roles, ServiceOperation

LDAPEntryAccess Add ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory,
EventStatus, TstzOriginating, ThreadId,
ComponentName, Initiator, MessageText, FailureCode,
RemoteIP, Target, Resource, Roles

Delete ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory,
EventStatus, TstzOriginating, ThreadId,
ComponentName, Initiator, MessageText, FailureCode,
RemoteIP, Target, Resource, Roles

Modify ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory,
EventStatus, TstzOriginating, ThreadId,
ComponentName, Initiator, MessageText, FailureCode,
RemoteIP, Target, Resource, Roles

Rename ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory,
EventStatus, TstzOriginating, ThreadId,
ComponentName, Initiator, MessageText, FailureCode,
RemoteIP, Target, Resource, Roles

Compare ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance, ECID,
RID, ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory,
EventStatus, TstzOriginating, ThreadId,
ComponentName, Initiator, MessageText, FailureCode,
RemoteIP, Target, Resource, Roles

Table C–6 (Cont.) Oracle Virtual Directory Events

Event Category Event Type Attributes used by Event

Audit Events

Oracle Fusion Middleware Audit Framework Reference C-19

C.1.2.8 OWSM-PM-EJB Events and their Attributes

Table C–7 OWSM-Agent Events

Event Category Event Type Attributes used by Event

UserSession Authentication ComponentType, InstanceId, HostId, HostNwaddr,
ProcessId, OracleHome, HomeInstance, ECID, RID,
ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory,
EventStatus, TstzOriginating, ThreadId,
ComponentName, Initiator, MessageText,
FailureCode, RemoteIP, Resource, AssertionName,
CompositeName, Endpoint, AgentMode,
ModelObjectName, Operation, ProcessingStage,
Version, Protocol

Authorization CheckAuthorization ComponentType, InstanceId, HostId, HostNwaddr,
ProcessId, OracleHome, HomeInstance, ECID, RID,
ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory,
EventStatus, TstzOriginating, ThreadId,
ComponentName, Initiator, MessageText,
FailureCode, RemoteIP, Resource, AssertionName,
CompositeName, Endpoint, AgentMode,
ModelObjectName, Operation, ProcessingStage,
Version, Protocol

PolicyEnforcement EnforceConfidentiality ComponentType, InstanceId, HostId, HostNwaddr,
ProcessId, OracleHome, HomeInstance, ECID, RID,
ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory,
EventStatus, TstzOriginating, ThreadId,
ComponentName, Initiator, MessageText,
FailureCode, RemoteIP, Resource, AssertionName,
CompositeName, Endpoint, AgentMode,
ModelObjectName, Operation, ProcessingStage,
Version, Protocol

EnforceIntegrity ComponentType, InstanceId, HostId, HostNwaddr,
ProcessId, OracleHome, HomeInstance, ECID, RID,
ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory,
EventStatus, TstzOriginating, ThreadId,
ComponentName, Initiator, MessageText,
FailureCode, RemoteIP, Resource, AssertionName,
CompositeName, Endpoint, AgentMode,
ModelObjectName, Operation, ProcessingStage,
Version, Protocol

EnforcePolicy ComponentType, InstanceId, HostId, HostNwaddr,
ProcessId, OracleHome, HomeInstance, ECID, RID,
ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory,
EventStatus, TstzOriginating, ThreadId,
ComponentName, Initiator, MessageText,
FailureCode, RemoteIP, Resource, AssertionName,
CompositeName, Endpoint, AgentMode,
ModelObjectName, Operation, ProcessingStage,
Version, Protocol

Audit Events

C-20 Oracle Fusion Middleware Application Security Guide

C.1.2.9 Reports Server Events and their Attributes

Table C–8 OWSM-PM-EJB Events

Event Category Event Type Attributes used by Event

AssertionTemplateAuthori
ng

CreateAssertionTemplate ComponentType, InstanceId, HostId, HostNwaddr,
ProcessId, OracleHome, HomeInstance, ECID, RID,
ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory,
EventStatus, TstzOriginating, ThreadId,
ComponentName, Initiator, MessageText,
FailureCode, Resource, Version

DeleteAssertionTemplate ComponentType, InstanceId, HostId, HostNwaddr,
ProcessId, OracleHome, HomeInstance, ECID, RID,
ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory,
EventStatus, TstzOriginating, ThreadId,
ComponentName, Initiator, MessageText,
FailureCode, Resource, Version, ToVersion

ModifyAssertionTemplat
e

ComponentType, InstanceId, HostId, HostNwaddr,
ProcessId, OracleHome, HomeInstance, ECID, RID,
ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory,
EventStatus, TstzOriginating, ThreadId,
ComponentName, Initiator, MessageText,
FailureCode, Resource, Version

PolicyAuthoring CreatePolicy ComponentType, InstanceId, HostId, HostNwaddr,
ProcessId, OracleHome, HomeInstance, ECID, RID,
ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory,
EventStatus, TstzOriginating, ThreadId,
ComponentName, Initiator, MessageText,
FailureCode, Resource, Version

DeletePolicy ComponentType, InstanceId, HostId, HostNwaddr,
ProcessId, OracleHome, HomeInstance, ECID, RID,
ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory,
EventStatus, TstzOriginating, ThreadId,
ComponentName, Initiator, MessageText,
FailureCode, Resource, Version, ToVersion,

ModifyPolicy ComponentType, InstanceId, HostId, HostNwaddr,
ProcessId, OracleHome, HomeInstance, ECID, RID,
ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory,
EventStatus, TstzOriginating, ThreadId,
ComponentName, Initiator, MessageText,
FailureCode, Resource, Version

Audit Events

Oracle Fusion Middleware Audit Framework Reference C-21

C.1.2.10 WS-Policy Attachment Events and their Attributes

C.1.2.11 Oracle Web Cache Events and their Attributes

Table C–9 Reports Server Events

Event Category Event Type Attributes used by Event

UserSession UserLogin ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles

Authorization CheckAuthorization ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles

Table C–10 WS-Policy Attachment Events

Event Category Event Type Attributes used by Event

PolicyAttachment PolicyAttachmentEvent ComponentType, InstanceId, HostId, HostNwaddr,
ProcessId, OracleHome, HomeInstance, ECID, RID,
ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory,
EventStatus, TstzOriginating, ThreadId,
ComponentName, Initiator, MessageText,
FailureCode, RemoteIP, Target, Resource,
PolicyChangeType, PolicyURI, PolicyCategory,
PolicyStatus, ServiceEndPoint,
PolicySubjRescPattern

Audit Events

C-22 Oracle Fusion Middleware Application Security Guide

Table C–11 Oracle Web Cache Events

Event Category Event Type Attributes used by Event

UserSession UserLogin ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, AuthenticationMethod

UserLogout ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles, AuthenticationMethod

Authorization CheckAuthorization ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles

DataAccess FilterRequest ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles

ServiceManagement ModifyServiceConfig ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles

ConfigServicePermission
s

ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles

Audit Events

Oracle Fusion Middleware Audit Framework Reference C-23

ServiceUtilize InvokeService ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles

TerminateService ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles

PeerAssocManagement CreatePeerAssoc ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles

TerminatePeerAssoc ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles

ChallengePeerAssoc ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles

Table C–11 (Cont.) Oracle Web Cache Events

Event Category Event Type Attributes used by Event

Audit Events

C-24 Oracle Fusion Middleware Application Security Guide

C.1.2.12 Oracle Web Services Manager Events and their Attributes

C.1.3 Event Attribute Descriptions
 lists all attributes for all audited events. Use this table to learn about the attributes
used in the event of interest.

Authentication ClientAuthentication ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles

ServerAuthentication ComponentType, InstanceId, HostId, HostNwaddr,
ModuleId, ProcessId, OracleHome, HomeInstance,
ECID, RID, ContextFields, SessionId,
TargetComponentType, ApplicationName,
EventType, EventCategory, EventStatus,
TstzOriginating, ThreadId, ComponentName,
Initiator, MessageText, FailureCode, RemoteIP,
Target, Resource, Roles

Table C–12 Oracle Web Services Manager Events

Event Category Event Type Attributes used by Event

WS-Processing RequestReceived ComponentType, InstanceId, HostId, HostNwaddr,
ProcessId, OracleHome, HomeInstance, ECID, RID,
ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory,
EventStatus, TstzOriginating, ThreadId,
ComponentName, Initiator, MessageText,
FailureCode, RemoteIP, Target, Resource, Protocol,
Endpoint, Operation, FaultUrl

ResponseSent ComponentType, InstanceId, HostId, HostNwaddr,
ProcessId, OracleHome, HomeInstance, ECID, RID,
ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory,
EventStatus, TstzOriginating, ThreadId,
ComponentName, Initiator, MessageText,
FailureCode, RemoteIP, Target, Resource, Protocol,
Endpoint, Operation, FaultUri

WS-Fault SoapFaultEvent ComponentType, InstanceId, HostId, HostNwaddr,
ProcessId, OracleHome, HomeInstance, ECID, RID,
ContextFields, SessionId, TargetComponentType,
ApplicationName, EventType, EventCategory,
EventStatus, TstzOriginating, ThreadId,
ComponentName, Initiator, MessageText,
FailureCode, RemoteIP, Target, Resource, URI,
Source, Protocol, Endpoint, Operation

Table C–11 (Cont.) Oracle Web Cache Events

Event Category Event Type Attributes used by Event

Audit Events

Oracle Fusion Middleware Audit Framework Reference C-25

Table C–13 Attributes of Audited Events

Attribute Name Description

AgentMode Mode in which agent performed policy enforcement.

ApplicationName The Java EE application name

ApplicationRole This attribute used for application roles audit for role
membership management

AssertionID The value of the "AssertionID" attribute of the assertion

AssertionName Name of the assertion that failed enforcement.

AssertionVersion The version number of the assertion corresponding to this event
(ex. 2.0)

AssociateProfileName This attribute is used to audit the Associate Profile Name

AuthenticationEngineID The identifier of the authentication engine used during local
authentication

AuthenticationMechanism The authentication mechanism used during local authentication

AuthenticationMethod The Authentication method - password / SSL / Kerberos and so
on.

AuthorizationType Access/authorization configuration directive: Regular =
'Require' directive, SSL = 'SSLRequire' directive

Binding The binding used to send the message (SOAP, POST, GET,
Aritifact,...)

COTAfter The contents of the federations configuration file after the
change

COTBefore The contents of the federations configuration file before the
change

CodeSource This attribute used for code source audit for
rolemembershipmanagement

ComponentName ComponentName

ComponentType Type of the component.

CompositeName Name of the composite (apply to SOA application only) against
which the policy is being enforced.

ContextFields This attribute contains the context fields extracted from dms
context.

custEventOp This attribute specifies the LDAP operation name associated
with this event, e.g. ldapbind, ldapadd, ldapsearch and so on.

custEventStatusDetail This attribute conveys event status detail info, e.g. error code
and other details in case of failure of the associated LDAP
operation.

DataStoreAfter The data stores configuration after the change

DataStoreBefore The data stores configuration before the change

DataStoreName The name of the data store being modified (examples: user data
store, federation datastore)

Description Description of the trusted provider

ECID Identifies the thread of execution that the originating component
participates in.

Endpoint The URI which identifies the endpoint for which the event was
triggered. For example, an HTTP require will record the URL.

Audit Events

C-26 Oracle Fusion Middleware Application Security Guide

EnterpriseRoles This attribute used for enterprise roles audit for
rolemembershipmanagement

EntryDN This attribute is used to audit the entry Distinguished Name

EventCategory The category of the audit event.

EventStatus The outcome of the audit event - success or failure

EventType The type of the audit event. Use wlst listAuditEvents to list out
all the events.

FailureCode The error code in case EventStatus = failure

FaultUri If processing yielded a fault, the URI of the fault that will be
sent.

FederationID The ID of the federation

FederationType The type of the federation that is being created or deleted
(SP/IdP)

HomeInstance The ORACLE_INSTANCE directory of the component

HostId DNS hostname of originating host

HostNwaddr IP or other network address of originating host

IncomingMessageString null

IncomingMessageStringCL
OB

null

Initiator Identifies the UID of the user who is doing the operation

InitiatorGUID This attribute used for initiator guid audit for authorization

InstanceId Name of the Oracle Instance to which this component belongs.

IssueInstant The value of the "IssueInstant" attribute of the assertion

Issuer The value of the "Issuer" attribute of the assertion

JobName This attribute is used to audit the Scheduler Job Name

JobType This attribute is used to audit the Scheduler Job Name

key This is the credential key for the Credential Store

mapName This is the map name (alias name) for the Credential Store

MessageText Description of the audit event

MessageType The type of the message (ex.
SSOLoginRequest/SSOLoginResponse/SSOLogoutRequest/...)

Metadata The provider metadata loaded

ModelObjectName Name of the Web service or client name against which the policy
is being enforced.

ModuleId ID of the module that originated the message. Interpretation is
specific to the Component ID.

NameIDFormat The format of the NameID of the subject

NameIDQualifier The qualifier of the nameID of the subject

NameIDValue The value of the nameID of the subject

NewDataStoreType The new type of the data store

Table C–13 (Cont.) Attributes of Audited Events

Attribute Name Description

Audit Events

Oracle Fusion Middleware Audit Framework Reference C-27

NewValue The value of the property after the configuration change

OldNameIDQualifier The nameID qualifier before the update took place

OldNameIDValue The nameID value before the update took place

OldValue The value of the property before the configuration change

Operation For SOAP requests, the operation for which the event was
triggered.

OracleHome The ORACLE_HOME directory of the component

OutgoingMessageString null

OutgoingMessageStringCL
OB

null

PeerProviderID The ID of the trusted provider associated with the modified
property (If the modified property does not correspond to a
trusted provider, this attribute is empty.)

PermissionAction This attribute used for permission action audit for authorization

PermissionClass This attribute used for permission class audit for policy store

PermissionScope This attribute used for permission scope audit for role
membership management

PermissionTarget This attribute used for permission target audit for policy store

PolicyCategory The category of the policy for which the event was
triggered.(comma-separated list)

PolicyChangeType The type of change that occurred.

PolicyStatus The status of the policy for which the event was
triggered.(comma-separated list)

PolicySubjRescPattern The policy subject resource pattern which identifies the policy
subject for which the event was triggered.

PolicyURI The URI which identifies the policy for which the event was
triggered.(comma-separated list)

Principals This attribute used for principals audit for role membership
management

ProcessId ID of the process that originated the message

ProcessingStage Processing stage during which the policy enforcement occurred.

ProfileName This attribute is used to audit the Sync Profile Name

PropertyContext The location of the property in the configuration

PropertyName The name of the configuration property

PropertyType The type of the property (examples: PropertiesList,
PropertiesMap, String, Boolean)

Protocol The protocol of the request.

ProtocolVersion The version of the protocol being used (examples: SAML2.0,
Libv11)

ProvEvent This attribute is used to audit the Prov Event

ProviderType The type of the provider (examples: sp, idp, sp idp)

Table C–13 (Cont.) Attributes of Audited Events

Attribute Name Description

Pre-built Audit Reports

C-28 Oracle Fusion Middleware Application Security Guide

C.2 Pre-built Audit Reports
Oracle Fusion Middleware Audit Framework provides a range of out-of-the-box
reports that are accessible through Oracle Business Intelligence Publisher. The reports
are grouped according to the type of audit data they contain:

■ Common Audit Reports

■ Component-Specific Audit Reports

RID This is the relationship identifier, it is used to provide the full
and correct calling relationships between threads and processes.

Reason The reason this event occurred

RemoteIP IP address of the client initiating this event

RemoteProviderID The provider ID of the remote server

Resource Identifies a resource that is being accessed. A resource can be
many things - web page, file, directory share, web service, XML
document, a portlet. The resource can be named as a
combination of a host name, and an URI.

Role The role of Oracle Identity Federation during the protocol step
performed (for example Service Provider/ Identity
Provider/Attribute Authority/..)

Roles The roles that the user was granted at the time of login.

SSLConnection Was SSL connection used by client to transmit request?

ServerConfigAfter The server configuration after the change

ServerConfigBefore The server configuration before the change

ServiceEndPoint The URI which identifies the service for which the event was
triggered.

ServiceOperation Name of the operation performed that changes the service
configuration

SessionID The ID of the current session

SessionId ID of the login session.

Source The source of the fault.

Subject This attribute used for subject audit for authorization

Target Identifies the UID of the user on whom the operation is being
done. E.g. is Alice changes Bob's password, then Alice is the
initiator and Bob is the target

TargetComponentType This is the target component type.

ThreadId ID of the thread that generated this event

ToVersion Upper end when deleting a range of policy versions.

TstzOriginating Date and time when the audit event was generated

Type The type of cryptographic data being processed (XML, String)

URI The URI of the fault.

UserID The identifier of the user in this protocol step

Version Version of policy that was modified.

Table C–13 (Cont.) Attributes of Audited Events

Attribute Name Description

Pre-built Audit Reports

Oracle Fusion Middleware Audit Framework Reference C-29

C.2.1 Common Audit Reports
A list of common reports appears in Section 14.5, "Audit Report Details".

C.2.2 Component-Specific Audit Reports
Component-Specific reports are organized as follows:

■ Oracle Fusion Middleware Audit Framework

– Configuration Changes

■ Oracle HTTP Server

– Errors and Exceptions

– User Activities

– All Events

■ Oracle Internet Directory

– Account Management

* Account Profile History

* Accounts Deleted

* Accounts Enabled

* Password Changes

* Accounts Created

* Accounts Disabled

* Accounts Locked Out

– User Activities

* Authentication History

* Authorization History

– Errors and Exceptions

* All Errors and Exceptions

* Authentication Failures

* Authorization Failures

– All Events

■ Oracle Virtual Directory

– User Activities

* Authentication History

* Authorization History

– Errors and Exceptions

* All Errors and Exceptions

* Authentication Failures

* Authorization Failures

– All Events

Pre-built Audit Reports

C-30 Oracle Fusion Middleware Application Security Guide

■ Reports Server

– User Activities

* Authentication History

* Authorization History

– Errors and Exceptions

* All Errors and Exceptions

* Authentication Failures

* Authorization Failures

– All Events

■ Oracle Directory Integration Platform

– All Errors and Exceptions

– Profile Management Events

– All Events

■ Oracle Identity Federation

– Errors and Exceptions

* All Errors and Exceptions

* Authentication Failures

– All Events

– Federation user Activity

– Authentication History

– Assertion Activity

■ Oracle Platform Security Services

– Errors and Exceptions

* All Errors and Exceptions

* Authentication Failures

– All Events

– Application Role Management

– Credential Management

– Authorization History

– Application Policy Management

– Credential Access

– System Policy Management

■ Oracle Web Services Manager

– User Activities

* Authentication History

* Authorization History

– Errors and Exceptions

The Audit Schema

Oracle Fusion Middleware Audit Framework Reference C-31

* All Errors and Exceptions

* Authentication Failures

* Authorization Failures

– All Events

– Policy Management

* Assertion Template Management

* Web Services Policy Management

– Policy Enforcements

* Confidentiality Enforcements

* Policy Enforcements

* Message Integrity Enforcements

* Violations

– Request Response

– Policy Attachments

■ Oracle Web Cache

– User Activities

* Authentication History

* Authorization History

– Errors and Exceptions

* All Errors and Exceptions

* Authentication Failures

* Authorization Failures

– All Events

C.3 The Audit Schema
If you have additional audit reporting requirements beyond the pre-built reports
described in Section C.2, "Pre-built Audit Reports", you can create custom reports
using your choice of reporting tools. For example, while the pre-built reports use a
subset of the event attributes, you can make use of the entire audit attribute set for an
event in creating custom reports.

Table C–14 and Table C–15 describe the audit schema, which is useful when building
custom reports.

Table C–14 The Audit Schema

Table Name Column Name Data Type Nullable Column ID

BASE TABLE IAU_ID NUMBER Yes 1

IAU_ORGID VARCHAR2(255
Bytes)

Yes 2

IAU_COMPONENTID VARCHAR2(255
Bytes)

Yes 3

The Audit Schema

C-32 Oracle Fusion Middleware Application Security Guide

IAU_COMPONENTTYPE VARCHAR2(255
Bytes)

Yes 4

IAU_INSTANCEID VARCHAR2(255
Bytes)

Yes 5

IAU_HOSTINGCLIENTID VARCHAR2(255
Bytes)

Yes 6

IAU_HOSTID VARCHAR2(255
Bytes)

Yes 7

IAU_HOSTNWADDR VARCHAR2(255
Bytes)

Yes 8

IAU_MODULEID VARCHAR2(255
Bytes)

Yes 9

IAU_PROCESSID VARCHAR2(255
Bytes)

Yes 10

IAU_ORACLEHOME VARCHAR2(255
Bytes)

Yes 11

IAU_HOMEINSTANCE VARCHAR2(255
Bytes)

Yes 12

IAU_UPSTREAMCOMPONENTID VARCHAR2(255
Bytes)

Yes 13

IAU_
DOWNSTREAMCOMPONENTID

VARCHAR2(255
Bytes)

Yes 14

IAU_ECID VARCHAR2(255
Bytes)

Yes 15

IAU_RID VARCHAR2(255
Bytes)

Yes 16

IAU_CONTEXTFIELDS VARCHAR2(2000
Bytes)

Yes 17

IAU_SESSIONID VARCHAR2(255
Bytes)

Yes 18

IAU_SECONDARYSESSIONID VARCHAR2(255
Bytes)

Yes 19

IAU_APPLICATIONNAME VARCHAR2(255
Bytes)

Yes 20

IAU_TARGETCOMPONENTTYPE VARCHAR2(255
Bytes)

Yes 21

IAU_EVENTTYPE VARCHAR2(255
Bytes)

Yes 22

IAU_EVENTCATEGORY VARCHAR2(255
Bytes)

Yes 23

IAU_EVENTSTATUS NUMBER Yes 24

IAU_TSTZORIGINATING TIMESTAMP(6) Yes 25

IAU_THREADID VARCHAR2(255
Bytes)

Yes 26

IAU_COMPONENTNAME VARCHAR2(255
Bytes)

Yes 27

IAU_INITIATOR VARCHAR2(255
Bytes)

Yes 28

Table C–14 (Cont.) The Audit Schema

Table Name Column Name Data Type Nullable Column ID

The Audit Schema

Oracle Fusion Middleware Audit Framework Reference C-33

IAU_MESSAGETEXT VARCHAR2(255
Bytes)

Yes 29

IAU_FAILURECODE VARCHAR2(255
Bytes)

Yes 30

IAU_REMOTEIP VARCHAR2(255
Bytes)

Yes 31

IAU_TARGET VARCHAR2(255
Bytes)

Yes 32

IAU_RESOURCE VARCHAR2(255
Bytes)

Yes 33

IAU_ROLES VARCHAR2(255
Bytes)

Yes 34

IAU_AUTHENTICATIONMETHOD VARCHAR2(255
Bytes)

Yes 35

IAU_TRANSACTIONID VARCHAR2(255
Bytes)

Yes 36

IAU_DOMAINNAME VARCHAR2(255
Bytes)

Yes 37

IAU_COMPONENTDATA clob yes 38

DIP IAU_ID NUMBER Yes 1

IAU_TSTZORIGINATING TIMESTAMP(6) Yes 2

IAU_EVENTTYPE VARCHAR2(255
Bytes)

Yes 3

IAU_EVENTCATEGORY VARCHAR2(255
Bytes)

Yes 4

IAU_ASSOCIATEPROFILENAME VARCHAR2(512
Bytes)

Yes 5

IAU_PROFILENAME VARCHAR2(512
Bytes)

Yes 6

IAU_ENTRYDN VARCHAR2(1024
Bytes)

Yes 7

IAU_PROVEVENT VARCHAR2(2048
Bytes)

Yes 8

IAU_JOBNAME VARCHAR2(128
Bytes)

Yes 9

IAU_JOBTYPE VARCHAR2(128
Bytes)

Yes 10

IAU_DISP_
NAME_TL

IAU_LOCALE_STR VARCHAR2(7
Bytes)

1

IAU_DISP_NAME_KEY VARCHAR2(255
Bytes)

2

IAU_COMPONENT_TYPE VARCHAR2(255
Bytes)

3

IAU_DISP_NAME_KEY_TYPE VARCHAR2(255
Bytes)

4

Table C–14 (Cont.) The Audit Schema

Table Name Column Name Data Type Nullable Column ID

The Audit Schema

C-34 Oracle Fusion Middleware Application Security Guide

IAU_DISP_NAME_TRANS VARCHAR2(4000
Bytes)

Yes 5

IAU_LOCALE_
MAP_TL

IAU_LOC_LANG VARCHAR2(2
Bytes)

Yes 1

IAU_LOC_CNTRY VARCHAR2(3
Bytes)

Yes 2

IAU_LOC_STR VARCHAR2(7
Bytes)

Yes 3

OPSS IAU_ID NUMBER Yes 1

IAU_TSTZORIGINATING TIMESTAMP(6) Yes 2

IAU_EVENTTYPE VARCHAR2(255
Bytes)

Yes 3

IAU_EVENTCATEGORY VARCHAR2(255
Bytes)

Yes 4

IAU_CODESOURCE VARCHAR2(1024
Bytes)

Yes 5

IAU_PRINCIPALS VARCHAR2(1024
Bytes)

Yes 6

IAU_INITIATORGUID VARCHAR2(1024
Bytes)

Yes 7

IAU_SUBJECT VARCHAR2(1024
Bytes)

Yes 8

IAU_PERMISSIONACTION VARCHAR2(1024
Bytes)

Yes 9

IAU_PERMISSIONTARGET VARCHAR2(1024
Bytes)

Yes 10

IAU_PERMISSIONCLASS VARCHAR2(1024
Bytes)

Yes 11

IAU_MAPNAME VARCHAR2(1024
Bytes)

Yes 12

IAU_KEY VARCHAR2(1024
Bytes)

Yes 13

IAU_PERMISSIONSCOPE VARCHAR2(1024
Bytes)

Yes 14

IAU_APPLICATIONROLE VARCHAR2(1024
Bytes)

Yes 15

IAU_ENTERPRISEROLES VARCHAR2(1024
Bytes)

Yes 16

IAU_INITIATORDN VARCHAR2(1024
Bytes)

Yes 17

IAU_GUID VARCHAR2(1024
Bytes)

Yes 18

IAU_PERMISSION VARCHAR2(1024
Bytes)

Yes 19

IAU_MODIFIEDATTRIBUTENAME VARCHAR2(1024
Bytes)

Yes 20

Table C–14 (Cont.) The Audit Schema

Table Name Column Name Data Type Nullable Column ID

The Audit Schema

Oracle Fusion Middleware Audit Framework Reference C-35

IAU_MODIFIEDATTRIBUTEVALUE VARCHAR2(2048
Bytes)

Yes 21

IAU_PERMISSIONSETNAME VARCHAR2(1024
Bytes)

Yes 22

IAU_RESOURCEACTIONS VARCHAR2(1024
Bytes)

Yes 23

IAU_RESOURCETYPE VARCHAR2(1024
Bytes)

Yes 24

OHS/OHS
Component

IAU_ID NUMBER Yes 1

IAU_TSTZORIGINATING TIMESTAMP(6) Yes 2

IAU_EVENTTYPE VARCHAR2(255
Bytes)

Yes 3

IAU_EVENTCATEGORY VARCHAR2(255
Bytes)

Yes 4

IAU_REASON CLOB Yes 5

IAU_SSLCONNECTION VARCHAR2(255
Bytes)

Yes 6

IAU_AUTHORIZATIONTYPE VARCHAR2(255
Bytes)

Yes 7

OID/OID
Component

IAU_ID NUMBER Yes 1

IAU_TSTZORIGINATING TIMESTAMP(6) Yes 2

IAU_EVENTTYPE VARCHAR2(255
Bytes)

Yes 3

IAU_EVENTCATEGORY VARCHAR2(255
Bytes)

Yes 4

IAU_CUSTEVENTSTATUSDETAIL VARCHAR2(255
Bytes)

Yes 5

IAU_CUSTEVENTOP VARCHAR2(255
Bytes)

Yes 6

OIF IAU_ID NUMBER Yes 1

IAU_TSTZORIGINATING TIMESTAMP(6) Yes 2

IAU_EVENTTYPE VARCHAR2(255
Bytes)

Yes 3

IAU_EVENTCATEGORY VARCHAR2(255
Bytes)

Yes 4

IAU_REMOTEPROVIDERID VARCHAR2(255
Bytes)

Yes 5

IAU_PROTOCOLVERSION VARCHAR2(255
Bytes)

Yes 6

IAU_NAMEIDQUALIFIER VARCHAR2(255
Bytes)

Yes 7

Table C–14 (Cont.) The Audit Schema

Table Name Column Name Data Type Nullable Column ID

The Audit Schema

C-36 Oracle Fusion Middleware Application Security Guide

IAU_NAMEIDVALUE VARCHAR2(255
Bytes)

Yes 8

IAU_NAMEIDFORMAT VARCHAR2(255
Bytes)

Yes 9

IAU_SESSIONID VARCHAR2(255
Bytes)

Yes 10

IAU_FEDERATIONID VARCHAR2(255
Bytes)

Yes 11

IAU_USERID VARCHAR2(255
Bytes)

Yes 12

IAU_FEDERATIONTYPE VARCHAR2(255
Bytes)

Yes 13

IAU_
AUTHENTICATIONMECHANISM

VARCHAR2(255
Bytes)

Yes 14

IAU_
AUTHENTICATIONENGINEID

VARCHAR2(255
Bytes)

Yes 15

IAU_OLDNAMEIDQUALIFIER VARCHAR2(255
Bytes)

Yes 16

IAU_OLDNAMEIDVALUE VARCHAR2(255
Bytes)

Yes 17

IAU_BINDING VARCHAR2(255
Bytes)

Yes 18

IAU_ROLE VARCHAR2(255
Bytes)

Yes 19

IAU_MESSAGETYPE VARCHAR2(255
Bytes)

Yes 20

IAU_ASSERTIONVERSION VARCHAR2(255
Bytes)

Yes 21

IAU_ISSUEINSTANT VARCHAR2(255
Bytes)

Yes 22

IAU_ISSUER VARCHAR2(255
Bytes)

Yes 23

IAU_ASSERTIONID VARCHAR2(255
Bytes)

Yes 24

IAU_INCOMINGMESSAGESTRING VARCHAR2(3999
Bytes)

Yes 25

IAU_
INCOMINGMESSAGESTRINGCLO
B

CLOB Yes 26

IAU_OUTGOINGMESSAGESTRING VARCHAR2(3999
Bytes)

Yes 27

IAU_
OUTGOINGMESSAGESTRINGCLO
B

CLOB Yes 28

IAU_TYPE VARCHAR2(255
Bytes)

Yes 29

IAU_PROPERTYNAME VARCHAR2(255
Bytes)

Yes 30

Table C–14 (Cont.) The Audit Schema

Table Name Column Name Data Type Nullable Column ID

The Audit Schema

Oracle Fusion Middleware Audit Framework Reference C-37

IAU_PROPERTYTYPE VARCHAR2(255
Bytes)

Yes 31

IAU_PEERPROVIDERID VARCHAR2(255
Bytes)

Yes 32

IAU_PROPERTYCONTEXT VARCHAR2(255
Bytes)

Yes 33

IAU_DESCRIPTION VARCHAR2(255
Bytes)

Yes 34

IAU_OLDVALUE VARCHAR2(255
Bytes)

Yes 35

IAU_NEWVALUE VARCHAR2(255
Bytes)

Yes 36

IAU_PROVIDERTYPE VARCHAR2(255
Bytes)

Yes 37

IAU_COTBEFORE CLOB Yes 38

IAU_COTAFTER CLOB Yes 39

IAU_SERVERCONFIGBEFORE CLOB Yes 40

IAU_SERVERCONFIGAFTER CLOB Yes 41

IAU_DATASTOREBEFORE CLOB Yes 42

IAU_DATASTOREAFTER CLOB Yes 43

IAU_METADATA VARCHAR2(255
Bytes)

Yes 44

IAU_NEWDATASTORETYPE VARCHAR2(255
Bytes)

Yes 45

IAU_DATASTORENAME VARCHAR2(255
Bytes)

Yes 46

OVD/OVD
Component

IAU_ID NUMBER Yes 1

IAU_TSTZORIGINATING TIMESTAMP(6) Yes 2

IAU_EVENTTYPE VARCHAR2(255
Bytes)

Yes 3

IAU_EVENTCATEGORY VARCHAR2(255
Bytes)

Yes 4

IAU_SERVICEOPERATION VARCHAR2(255
Bytes)

Yes 5

OWSM Agent IAU_ID NUMBER Yes 1

IAU_TSTZORIGINATING TIMESTAMP(6) Yes 2

IAU_EVENTTYPE VARCHAR2(255
Bytes)

Yes 3

IAU_EVENTCATEGORY VARCHAR2(255
Bytes)

Yes 4

IAU_APPNAME VARCHAR2(255
Bytes)

Yes 5

Table C–14 (Cont.) The Audit Schema

Table Name Column Name Data Type Nullable Column ID

The Audit Schema

C-38 Oracle Fusion Middleware Application Security Guide

IAU_ASSERTIONNAME VARCHAR2(255
Bytes)

Yes 6

IAU_COMPOSITENAME VARCHAR2(255
Bytes)

Yes 7

IAU_ENDPOINT VARCHAR2(4000
Bytes)

Yes 8

IAU_AGENTMODE VARCHAR2(255
Bytes)

Yes 9

IAU_MODELOBJECTNAME VARCHAR2(255
Bytes)

Yes 10

IAU_OPERATION VARCHAR2(255
Bytes)

Yes 11

IAU_PROCESSINGSTAGE VARCHAR2(255
Bytes)

Yes 12

IAU_VERSION NUMBER Yes 13

IAU_PROTOCOL VARCHAR2(255
Bytes)

Yes 14

OWSM_PM_
EJB

IAU_ID NUMBER Yes 1

IAU_TSTZORIGINATING TIMESTAMP(6) Yes 2

IAU_EVENTTYPE VARCHAR2(255
Bytes)

Yes 3

IAU_EVENTCATEGORY VARCHAR2(255
Bytes)

Yes 4

IAU_VERSION NUMBER Yes 5

IAU_TOVERSION NUMBER Yes 6

ReportsServer/
ReportsServer
Components

IAU_ID NUMBER Yes 1

IAU_TSTZORIGINATING TIMESTAMP(6) Yes 2

IAU_EVENTTYPE VARCHAR2(255
Bytes)

Yes 3

IAU_EVENTCATEGORY VARCHAR2(255
Bytes)

Yes 4

WebCache/
WebCache
Component

IAU_ID NUMBER Yes 1

IAU_TSTZORIGINATING TIMESTAMP(6) Yes 2

IAU_EVENTTYPE VARCHAR2(255
Bytes)

Yes 3

IAU_EVENTCATEGORY VARCHAR2(255
Bytes)

Yes 4

Table C–14 (Cont.) The Audit Schema

Table Name Column Name Data Type Nullable Column ID

The Audit Schema

Oracle Fusion Middleware Audit Framework Reference C-39

WebServices IAU_ID NUMBER Yes 1

IAU_TSTZORIGINATING TIMESTAMP(6) Yes 2

IAU_EVENTTYPE VARCHAR2(255
Bytes)

Yes 3

IAU_EVENTCATEGORY VARCHAR2(255
Bytes)

Yes 4

IAU_PROTOCOL VARCHAR2(255
Bytes)

Yes 5

IAU_ENDPOINT VARCHAR2(4000
Bytes)

Yes 6

IAU_OPERATION VARCHAR2(255
Bytes)

Yes 7

IAU_FAULTURI VARCHAR2(4000
Bytes)

Yes 8

IAU_URI VARCHAR2(4000
Bytes)

Yes 9

IAU_SOURCE VARCHAR2(255
Bytes)

Yes 10

WS_Policy
Attachment

IAU_ID NUMBER Yes 1

IAU_TSTZORIGINATING TIMESTAMP(6) Yes 2

IAU_EVENTTYPE VARCHAR2(255
Bytes)

Yes 3

IAU_EVENTCATEGORY VARCHAR2(255
Bytes)

Yes 4

IAU_PROTOCOL VARCHAR2(255
Bytes)

Yes 5

IAU_ENDPOINT VARCHAR2(4000
Bytes)

Yes 6

IAU_OPERATION VARCHAR2(255
Bytes)

Yes 7

IAU_FAULTURI VARCHAR2(4000
Bytes)

Yes 8

IAU_URI VARCHAR2(4000
Bytes)

Yes 9

IAU_SOURCE VARCHAR2(255
Bytes)

Yes 10

OAM (Oracle
Access
Manager)

IAU_ID NUMBER Yes 1

IAU_TSTZORIGINATING TIMESTAMP(6) Yes 2

IAU_EVENTTYPE VARCHAR2(255) Yes 3

IAU_EVENTCATEGORY VARCHAR2(255) Yes 4

Table C–14 (Cont.) The Audit Schema

Table Name Column Name Data Type Nullable Column ID

The Audit Schema

C-40 Oracle Fusion Middleware Application Security Guide

IAU_
APPLICATIONDOMAINNAME

VARCHAR2(40) Yes 5

IAU_
AUTHENTICATIONSCHEMEID

VARCHAR2(40) Yes 6

 IAU_AGENTID VARCHAR2(40) Yes 7

 IAU_SSOSESSIONID VARCHAR2(100) Yes 8

IAU_ADDITIONALINFO VARCHAR2(1000) Yes 9

IAU_AUTHORIZATIONSCHEME VARCHAR2(40) Yes 10

IAU_USERDN VARCHAR2(255) Yes 11

IAU_RESOURCEID VARCHAR2(40) Yes 12

IAU_AUTHORIZATIONPOLICYID VARCHAR2(40) Yes 13

IAU_AUTHENTICATIONPOLICYID VARCHAR2(255) Yes 14

IAU_USERID VARCHAR2(40) Yes 15

IAU_RESOURCEHOST VARCHAR2(255) Yes 16

IAU_REQUESTID VARCHAR2(255) Yes 17

IAU_POLICYNAME VARCHAR2(40) Yes 18

IAU_SCHEMENAME VARCHAR2(40) Yes 19

IAU_RESOURCEHOSTNAME VARCHAR2(100) Yes 20

 IAU_OLDATTRIBUTES VARCHAR2(1000) Yes 21

IAU_NEWATTRIBUTES VARCHAR2(1000) Yes 22

IAU_SCHMETYPE VARCHAR2(40) Yes 23

 IAU_RESPONSETYPE VARCHAR2(40) Yes 24

IAU_AGENTTYPE VARCHAR2(40) Yes 25

IAU_CONSTRAINTTYPE VARCHAR2(40) Yes 26

IAU_INSTANCENAME VARCHAR2(40) Yes 27

IAU_DATASOURCENAME VARCHAR2(100) Yes 28

IAU_DATASOURCETYPE VARCHAR2(100) Yes 29

 IAU_HOSTIDENTIFIERNAME VARCHAR2(100) Yes 30

IAU_RESOURCEURI VARCHAR2(255) Yes 31

IAU_RESOURCETEMPLATENAME VARCHAR2(100) Yes 32

OAAM (Oracle
Adaptive
Access
Manager)

IAU_ID NUMBER Yes 1

IAU_TSTZORIGINATING TIMESTAMP(6) Yes 2

IAU_EVENTTYPE VARCHAR2(255) Yes 3

 IAU_EVENTCATEGORY VARCHAR2(255) Yes 4

 IAU_ACTIONNOTES VARCHAR2(4000) Yes 5

IAU_CASEACTIONENUM NUMBER(38) Yes 6

IAU_CASEACTIONRESULT NUMBER Yes 7

Table C–14 (Cont.) The Audit Schema

Table Name Column Name Data Type Nullable Column ID

The Audit Schema

Oracle Fusion Middleware Audit Framework Reference C-41

IAU_CASECHALLENGEQUESTION VARCHAR2(4000) Yes 8

IAU_CASECHALLENGERESULT NUMBER(38) Yes 9

 IAU_CASEDISPOSITION NUMBER(38) Yes 10

 IAU_CASEEXPRDURATIONINHRS NUMBER(38) Yes 11

 IAU_CASEID NUMBER Yes 12

 IAU_CASEIDS VARCHAR2(4000) Yes 13

IAU_CASESEVERITY NUMBER(38) Yes 14

 IAU_CASESTATUS NUMBER(38) Yes 15

IAU_CASESUBACTIONENUM NUMBER(38) Yes 16

IAU_DESCRIPTION VARCHAR2(4000) Yes 17

IAU_GROUPID NUMBER Yes 18

IAU_GROUPIDS VARCHAR2(4000) Yes 19

IAU_GROUPNAME VARCHAR2(4000) Yes 20

IAU_GROUPDETAILS VARCHAR2(4000) Yes 21

IAU_GROUPELEMENTID NUMBER Yes 22

IAU_GROUPELEMENTIDS NUMBER Yes 23

 IAU_GROUPELEMENTVALUE VARCHAR2(4000) Yes 24

IAU_GROUPELEMENTSDETAILS VARCHAR2(4000) Yes 25

IAU_KBACATEGORYID NUMBER Yes 26

IAU_KBACATEGORYIDS VARCHAR2(4000) Yes 27

IAU_KBACATEGORYNAME VARCHAR2(4000) Yes 28

IAU_KBACATEGORYDETAILS VARCHAR2(4000) Yes 29

IAU_KBAQUESTIONID NUMBER Yes 30

 IAU_KBAQUESTIONIDS VARCHAR2(4000) Yes 31

IAU_KBAQUESTION VARCHAR2(4000) Yes 32

IAU_KBAQUESTIONTYPE NUMBER(38) Yes 33

IAU_KBAQUESTIONDETAILS VARCHAR2(4000) Yes 34

IAU_KBAVALIDATIONID NUMBER Yes 35

IAU_KBAVALIDATIONIDS VARCHAR2(4000) Yes 36

IAU_KBAVALIDATIONNAME VARCHAR2(4000) Yes 37

IAU_KBAVALIDATIONDETAILS VARCHAR2(4000) Yes 38

 IAU_KBAREGLOGICDETAILS VARCHAR2(4000) Yes 39

IAU_KBAANSWERLOGICDETAILS VARCHAR2(4000) Yes 40

 IAU_LOGINID VARCHAR2(255) Yes 41

 IAU_POLICYDETAILS VARCHAR2(4000) Yes 42

 IAU_POLICYID NUMBER Yes 43

 IAU_POLICYIDS VARCHAR2(4000) Yes 44

IAU_POLICYNAME NUMBER Yes 45

 IAU_POLICYOVERRIDEDETAILS VARCHAR2(4000) Yes 46

Table C–14 (Cont.) The Audit Schema

Table Name Column Name Data Type Nullable Column ID

The Audit Schema

C-42 Oracle Fusion Middleware Application Security Guide

Table C–15 shows additional tables in the audit schema; these tables support the
dynamic metadata model.

IAU_POLICYOVERRIDEID NUMBER Yes 47

IAU_POLICYOVERRIDEIDS VARCHAR2(4000) Yes 48

IAU_POLICYOVERRIDEROWID NUMBER Yes 49

IAU_POLICYRULEMAPID NUMBER Yes 50

IAU_POLICYRULEMAPIDS VARCHAR2(4000) Yes 51

 IAU_POLICYRULEMAPDETAILS VARCHAR2(4000) Yes 52

IAU_RULEID NUMBER Yes 53

IAU_RULECONDITIONID NUMBER Yes 54

IAU_RULECONDITIONIDS VARCHAR2(4000) Yes 55

 IAU_RULENAME VARCHAR2(4000) Yes 56

IAU_RULEDETAILS VARCHAR2(4000) Yes 57

IAU_RULECONDITIONMAPID NUMBER Yes 58

IAU_RULECONDITIONMAPIDS VARCHAR2(4000) Yes 59

IAU_RULEPARAMVALUEDETAILS VARCHAR2(4000) Yes 60

IAU_SOURCEPOLICYID NUMBER Yes 61

 IAU_USERGROUPNAME VARCHAR2(255) Yes 62

IAU_USERID NUMBER Yes 63

IAU_USERIDS VARCHAR2(4000) Yes 64

Table C–15 Additional Audit Schema Tables

Table Name Column Name Data Type

IAU_COMMON IAU_ID NUMBER

IAU_OrgId VARCHAR(255)

IAU_ComponentId VARCHAR(255)

IAU_ComponentType VARCHAR(255)

IAU_MajorVersion VARCHAR(255)

IAU_MinorVersion VARCHAR(255)

IAU_InstanceId VARCHAR(255)

IAU_HostingClientId VARCHAR(255)

IAU_HostId VARCHAR(255)

IAU_HostNwaddr VARCHAR(255)

IAU_ModuleId VARCHAR(255)

IAU_ProcessId VARCHAR(255)

IAU_OracleHome VARCHAR(255)

IAU_HomeInstance VARCHAR(255)

IAU_UpstreamComponentId VARCHAR(255)

Table C–14 (Cont.) The Audit Schema

Table Name Column Name Data Type Nullable Column ID

The Audit Schema

Oracle Fusion Middleware Audit Framework Reference C-43

IAU_DownstreamComponentId VARCHAR(255)

IAU_ECID VARCHAR(255)

IAU_RID VARCHAR(255

IAU_ContextFields VARCHAR(2000)

IAU_SessionId VARCHAR(255)

IAU_SecondarySessionId VARCHAR(255)

IAU_ApplicationName VARCHAR(255)

IAU_TargetComponentType VARCHAR(255)

IAU_EventType VARCHAR(255)

IAU_EventCategory VARCHAR(255)

IAU_EventStatus NUMBER

IAU_TstzOriginating TIMESTAMP

IAU_ThreadId VARCHAR(255)

IAU_ComponentName VARCHAR(255)

IAU_Initiator VARCHAR(255)

IAU_MessageText VARCHAR(2000)

IAU_FailureCode VARCHAR(255)

IAU_RemoteIP VARCHAR(255)

IAU_Target VARCHAR(255)

IAU_Resource VARCHAR(255)

IAU_Roles VARCHAR(255)

IAU_AuthenticationMethod VARCHAR(255)

IAU_TransactionId VARCHAR(255)

IAU_DomainName VARCHAR(255)

IAU_ComponentVersion VARCHAR(255)

IAU_ComponentData CLOB

IAU_CUSTOM IAU_ID NUMBER

IAU_BOOLEAN_001
through
IAU_BOOLEAN_050

NUMBER

IAU_INT_001
through
IAU_INT_050

NUMBER

IAU_LONG_001
through
IAU_LONG_050

NUMBER

IAU_FLOAT_001
through
IAU_FLOAT_050

NUMBER

Table C–15 (Cont.) Additional Audit Schema Tables

Table Name Column Name Data Type

WLST Commands for Auditing

C-44 Oracle Fusion Middleware Application Security Guide

C.4 WLST Commands for Auditing
WLST is the command-line utility for administration of Oracle Fusion Middleware
components and applications. It provides another option for administration in
addition to Oracle Enterprise Manager Fusion Middleware Control.

Use the WLST commands listed in Table C–16 to view and manage audit policies and
the audit store configuration.

IAU_DOUBLE_001
through
IAU_DOUBLE_050

NUMBER

IAU_STRING_001
through
IAU_STRING_100

VARCHAR(2048)

IAU_DATETIME_001
through
IAU_DATETIME_050

TIMESTAMP

IAU_LONGSTRING_001
through
IAU_LONGSTRING_050

CLOB

IAU_BINARY_001
through
IAU_BINARY_050

BLOB

IAU_AuditService IAU_ID NUMBER

IAU_TransactionId VARCHAR(255)

IAU_USERSESSION IAU_ID NUMBER

IAU_AuthenticationMethod VARCHAR(255)

Note: When running audit WLST commands, you must invoke the
WLST script from the Oracle Common home. See "Using Custom
WLST Commands" in the Oracle Fusion Middleware Administrator's
Guide for more information.

See Also: Oracle Fusion Middleware Third-Party Application Server
Guide for details about executing audit commands on third-party
application servers.

Table C–16 WLST Audit Commands

Use this command... To...
Use with
WLST...

getNonJava
EEAuditMBeanName

Display the mBean name for a system component. Online

getAuditPolicy Display audit policy settings. Online

Table C–15 (Cont.) Additional Audit Schema Tables

Table Name Column Name Data Type

WLST Commands for Auditing

Oracle Fusion Middleware Audit Framework Reference C-45

C.4.1 getNonJava EEAuditMBeanName
Online command that displays the mbean name for system components.

The MBean name must be provided when using WLST commands for system
components; since the MBean name can have a complex composition, use this
command to get the name.

C.4.1.1 Description
This command displays the mbean name for system components given the instance
name, component name, component type, and the name of the Oracle WebLogic
Server on which the component's audit mbean is running. The mbean name is a
required parameter to other audit WLST commands when managing a system
component.

C.4.1.2 Syntax
getNonJava EEAuditMBeanName('instance-name', 'component-name', 'component-type')

C.4.1.3 Example
The following interactive command displays the mBean name for an Oracle Internet
Directory component:

wls:/mydomain/serverConfig> getNonJava EEAuditMBeanName(instName='inst1',
compName='oid1', compType='oid')

C.4.2 getAuditPolicy
Online command that displays the audit policy settings.

C.4.2.1 Description
Online command that displays audit policy settings including the audit level, special
users, custom events, maximum log file size, and maximum log directory size. The

setAuditPolicy Update audit policy settings. Online

getAuditRepository Display audit store settings. Online

setAuditRepository Update audit store settings. Online

listAuditEvents List audit events for one or all components. Online

exportAuditConfig Export a component’s audit configuration. Online

importAuditConfig Import a component’s audit configuration. Online

Argument Definition

instName Specifies the name of the application server instance.

compName Specifies the name of the component instance.

compType Specifies the type of component. Valid values are ohs, oid, ovd, and
WebCache.

Table C–16 (Cont.) WLST Audit Commands

Use this command... To...
Use with
WLST...

WLST Commands for Auditing

C-46 Oracle Fusion Middleware Application Security Guide

component mbean name is an optional parameter. If no parameter is provided, the
domain audit policy is displayed.

C.4.2.2 Syntax
getAuditPolicy(['mbeanName', componentType])

C.4.2.3 Example
The following command displays the audit settings for all Java EE components
configured in the WebLogic Server domain:

wls:/mydomain/serverConfig> getAuditPolicy()

The following command displays the audit settings for MBean CSAuditProxyMBean:

wls:/mydomain/serverConfig>
getAuditPolicy(on='oracle.security.audit.test:type=CSAuditMBean,
name=CSAuditProxyMBean')

C.4.3 setAuditPolicy
Online command that updates an audit policy.

C.4.3.1 Description
Online command that configures the audit policy settings. You can set the audit level,
add or remove special users, and add or remove custom events. The component
mbean name is required for system components like Oracle Internet Directory and
Oracle Virtual Directory.

Remember to call save after issuing setAuditPolicy for system components.
Otherwise, the new settings will not take effect.

C.4.3.2 Syntax
setAuditPolicy(['mbeanName'],['filterPreset'],['addSpecialUsers'],
['removeSpecialUsers'],['addCustomEvents'],['removeCustomEvents'],
[componentType], [maxDirSize], [maxFileSize], [andCriteria], [orCriteria],
[componentEventsFile])

Argument Definition

mbeanName Specifies the name of the component audit MBean for system
components.

componentType Requests the audit policy for a specific component type registered in
the audit store. If not specified, the audit policy in jps-config.xml
is returned.

Argument Definition

mbeanName Specifies the name of the component audit MBean for system
components.

filterPreset Specifies the audit level to be changed.

addSpecialUsers Specifies the special users to be added.

removeSpecialUsers Specifies the special users to be removed.

addCustomEvents Specifies the custom events to be added.

removeCustomEvents Specifies the custom events to be removed.

WLST Commands for Auditing

Oracle Fusion Middleware Audit Framework Reference C-47

C.4.3.3 Example
The following interactive command a) sets the audit level to Low, and b) adds users
user2 and user3 while removing user user1 from the policy:

wls:/mydomain/serverConfig> setAuditPolicy
(filterPreset='Low',addSpecialUsers='user2,user3',removeSpecialUsers='user1')

The following interactive command adds login events while removing logout events
from the policy:

wls:/mydomain/serverConfig>
setAuditPolicy(filterPreset='Custom',addCustomEvents='UserLogin',removeCustomEvent
s='UserLogout')

C.4.4 getAuditRepository
Online command that displays audit store settings.

C.4.4.1 Description
Online command that displays audit store settings for Java components and
applications (for system components like Oracle Internet Directory, the configuration
resides in opmn.xml). Also displays database configuration if the data is stored in a
database.

C.4.4.2 Syntax
getAuditRepository

C.4.4.3 Example
The following command displays audit store configuration:

wls:/mydomain/serverConfig> getAuditRepository()

C.4.5 setAuditRepository
Online command that updates audit store settings.

componentType Specifies the component definition type to be updated. If not
specified, the audit configuration defined in jps-config.xml is
modified.

maxDirSize Specifies the maximum size of the log directory.

maxFileSize Specifies the maximum size of the log file.

andCriteria Specifies the and criteria in a custom filter preset definition.

orCriteria Specifies the or criteria in a custom filter preset definition.

componentEventsFile Specifies a component definition file under the 11g Release 1 (11.1.1)
PS5 metadata model. This parameter is required if you wish to
create/update an audit policy in the audit store for an 11g Release 1
(11.1.1) PS5 metadata model component, and the filter preset level is
set to “Custom”.

Argument Definition

WLST Commands for Auditing

C-48 Oracle Fusion Middleware Application Security Guide

C.4.5.1 Description
Online command that sets the audit store settings for Java components and
applications (for system components like Oracle Internet Directory, the store is
configured by editing opmn.xml).

C.4.5.2 Syntax
setAuditRepository(['switchToDB'],['dataSourceName'],['interval'])

C.4.5.3 Example
The following interactive command changes audit store to a database defined by the
data source jdbcAuditDB and sets the audit loader interval to 14 seconds:

wls:/mydomain/serverConfig>
setAuditRepository(switchToDB='true',dataSourceName='jdbcAuditDB',interval='14')

C.4.6 listAuditEvents
Online command that displays the definition of a component's audit events, including
its attributes.

C.4.6.1 Description
This command displays a component’s audit events and attributes. For system
components, pass the component mbean name as a parameter. Java applications and
services like Oracle Platform Security Services (OPSS) do not need the mbean
parameter. Without a component type, all generic attributes applicable to all
components are displayed.

C.4.6.2 Syntax
listAuditEvents(['mbeanName'],['componentType'])

C.4.6.3 Example
The following command displays audit events for an Oracle Internet Directory
instance:

wls:/mydomain/serverConfig>
listAuditEvents(on='oracle.as.management.mbeans.register:

Argument Definition

switchToDB If true, switches the store from file to database.

dataSourceName Specifies the name of the data source.

interval Specifies intervals at which the audit loader moves file records to the
database.

Note: The data source is created using the Oracle WebLogic Server
administration console.

Argument Definition

mbeanName Specifies the name of the component MBean.

componentType Specifies the component type to limit the list to all events of the
component type.

WLST Commands for Auditing

Oracle Fusion Middleware Audit Framework Reference C-49

type=component.auditconfig,name=auditconfig1,instance=oid1,component=oid')

The following command displays audit events for Oracle Identity Federation:

wls:/mydomain/serverConfig> listAuditEvents(componentType='oif')

C.4.7 exportAuditConfig
Online command that exports a component’s audit configuration.

C.4.7.1 Description
This command exports the audit configuration to a file. For system components, pass
the component mbean name as a parameter. Java applications and services like Oracle
Platform Security Services (OPSS) do not need the mbean parameter.

C.4.7.2 Syntax
exportAuditConfig([’mbeanName’],’fileName’, [componentType])

C.4.7.3 Example
The following interactive command exports the audit configuration for a component:

wls:/mydomain/serverConfig>
exportAuditConfig(on='oracle.security.audit.test:type=CSAuditMBean,name=CSAuditPro
xyMBean',fileName='/tmp/auditconfig')

The following interactive command exports the audit configuration for a component;
no mBean is specified:

wls:/mydomain/serverConfig> exportAuditConfig(fileName='/tmp/auditconfig')

C.4.8 importAuditConfig
Online command that imports a component’s audit configuration.

C.4.8.1 Description
This command imports the audit configuration from an external file. For system
components, pass the component mbean name as a parameter. Java applications and
services like Oracle Platform Security Services (OPSS) do not need the mbean
parameter.

See Also: This command is useful in migrating to production
environments. For details, see Section 6.5.3, "Migrating Audit
Policies".

Argument Definition

mbeanName Specifies the name of the system component MBean.

fileName Specifies the path and file name to which the audit configuration
should be exported.

componentType Specifies that only events of the given component be exported to the
file. If not specified, the audit configuration in jps-config.xml is
exported.

See Also: This command is useful in migrating to production
environments. For details, see Section 6.5.3, "Migrating Audit
Policies".

Audit Filter Expression Syntax

C-50 Oracle Fusion Middleware Application Security Guide

Remember to call save after issuing importAuditConfig for system components.
Otherwise, the new settings will not take effect.

C.4.8.2 Syntax
importAuditConfig(['mbeanName'],'fileName', [componentType])

C.4.8.3 Example
The following interactive command imports the audit configuration for a component:

wls:/mydomain/serverConfig>
importAuditConfig(on='oracle.security.audit.test:type=CSAuditMBean,name=CSAuditPro
xyMBean',fileName='/tmp/auditconfig')

The following interactive command imports the audit configuration for a Java EE
application (no mBean is specified):

wls:/mydomain/serverConfig> importAuditConfig(fileName='/tmp/auditconfig')

C.5 Audit Filter Expression Syntax
When you select a custom audit policy, you have the option of specifying a filter
expression along with an event.

For example, you can use the following expression:

Host Id -eq "myhost123"

to enable the audit event for a particular host only.

You enter this expression either through the Fusion Middleware Control Edit Filter
Dialog or through the setAuditPolicy WLST command.

There are some syntax rules you should follow when creating a filter expression.

The expression can either be a Boolean expression or a literal.

<Expr> ::= <BooleanExpression> | <BooleanLiteral>

Argument Definition

mbeanName Specifies the name of the system component MBean.

fileName Specifies the path and file name from which the audit configuration
should be imported.

componentType Specifies that only events of the given component be imported from
the file. If not specified, the audit configuration in jps-config.xml
is imported.

See Also:

■ Section 13.3.1, "Manage Audit Policies for Java Components with
Fusion Middleware Control"

■ Section 13.3.2, "Manage Audit Policies for System Components
with Fusion Middleware Control"

■ Section C.4.3, "setAuditPolicy"

Naming and Logging Format of Audit Files

Oracle Fusion Middleware Audit Framework Reference C-51

A boolean expression can use combinations of RelationalExpression with –and, -or ,
-not and parenthesis. For example, (Host Id -eq "stadl17" -or ").

<BooleanExpression> ::= <RelationalExpression>
 | “(” <BooleanExpression> “)”
 | <BooleanExpression> “-and” <BooleanExpression>
 | <BooleanExpression> “-or” <BooleanExpression>
 | “-not” <BooleanExpression>

A relational expression compares an attribute name (on the left hand side) with a
literal (on the right-hand side). The literal and the operator must be of the correct data
type for the attribute.

<RelationalExpression> ::= <AttributeName> <RelationalOperator> <Literal>

Relational operators are particular to data types:

■ -eq, -ne can be used with all data types

■ -contains, -startswith, -endswith can be only used with strings

■ -contains_case, -startswith_case and -endswith_case are case sensitive versions of
the above three functions

■ -lt, -le, -gt, -ge can be used with numeric and datetime

<RelationalOperator> : = "-eq" | "-ne" | "-lt" | "-le" | "-gt" | "-ge"
 | "-contains" | "-contains_case"
 | "-startswith" | "-startswith_case"
 | "-endswith" | "-endswith_case"

Rules for literals are as follows:

■ Boolean literals are true or false, without quotes

■ Date time literals have to be in double quotes and can be in many different
formats; "June 25, 2006", "06/26/2006 2:00 pm" are all valid

■ String literals have to be quotes, back-slash can be used to escape an embedded
double quote

■ Numeric literals are in their usual format

<Literal> ::= <NumericLiteral> | <BooleanLiteral> | <DateTimeLiteral> |
<StringLiteral>
<BooleanLiteral> ::= "true” | "false”

C.6 Naming and Logging Format of Audit Files
This section explains the rules that are used to maintain audit files.

For Java components (both Java EE and Java SE), the file containing audit records is
named "audit.log".

When that file is full (it reaches the configured maximum audit file size which is
100MB), it is renamed to "audit1.log" and a new "audit.log" is created. If this file too
gets full, the audit.log file is renamed to "audit2.log" and a new audit.log is created.

This continues until the configured maximum audit directory size is reached (default
is 0, which means unlimited size). When the max directory size is reached, the oldest
auditn.log file is deleted.

Naming and Logging Format of Audit Files

C-52 Oracle Fusion Middleware Application Security Guide

If you have configured a database audit store, then the audit loader reads these files
and transfers the records to the database in batches. After reading a complete
audit<n>.log file, it deletes the file.

OPMN-managed components follow the same model, except the file name is slightly
different. It has the process ID embedded in the file name; thus, if the process id is
11925 the current file is called "audit-pid11925.log", and after rotation it will be called
audit-pid11925-1.log.

For applications with audit definitions in the dynamic model, the file name format is
audit_major version number_minor version number.log; for example, audit_1_2.log.

Here is a sample audit.log file:

#Fields:Date Time Initiator EventType EventStatus MessageText HomeInstance ECID
RID ContextFields SessionId TargetComponentType ApplicationName EventCategory
ThreadId InitiatorDN TargetDN FailureCode RemoteIP Target Resource Roles
CodeSource InitiatorGUID Principals PermissionAction PermissionClass mapName key
#Remark Values:ComponentType="JPS"
2008-12-08 10:46:05.492 - "CheckAuthorization" true "Oracle Platform Security
Authorization Check Permission SUCCEEDED." - - - - - - - "Authorization" "48" - -
"true" - - "(oracle.security.jps.service.policystore.PolicyStoreAccessPermission
context=APPLICATION,name=SimpleServlet getApplicationPolicy)" -
"file:/oracle/work/middleware/oracle_common/modules/oracle.jps_
11.1.1/jps-internal.jar" - "[]" - - - -

This file follows the W3C extended logging format, which is a very common log
format that is used by many Web Servers e.g. Apache and IIS:

■ The first line is a "#Fields" line; it specifies all the fields in the rest of the file.

■ The second line is a comment like "#Remark" which has a comment indicating
some common attributes like the ComponentType.

■ All subsequent lines are data lines; they follow the exact format defined in the
"#Fields" line. All attributes are separated by spaces, mussing attributes are
indicated by a dash.

Note: The audit loader never deletes the "current" file, that is,
audit.log; it only deletes archive files audit<n>.log.

D

User and Role API Reference D-1

DUser and Role API Reference

This appendix contains reference information that you will need when developing
applications for LDAP directories based on the User and Role APIs. It contains these
sections:

■ Mapping User Attributes to LDAP Directories

■ Mapping Role Attributes to LDAP Directories

■ Default Configuration Parameters

■ Secure Connections for Microsoft Active Directory

D.1 Mapping User Attributes to LDAP Directories
Table D–1 lists each user attribute in UserProfile.property and its corresponding
attribute in the different directory servers.

See Also: Chapter 25, "Developing with the User and Role API"

Note: IBM Tivoli directory parameters are the same as those
specified for openLDAP.

Microsoft ADAM parameters are the same as those specified for
Microsoft Active Directory.

Table D–1 User Attributes in UserProfile.Property

Attribute

Oracle
Internet
Directory

Oracle
WebLogic
Server
Embedded
LDAP

Microsoft
Active
Directory

Oracle
Directory
Server
Enterprise
Edition

Novell
eDirectory OpenLDAP

GUID orclguid uid objectguid nsuniqueid guid entryuuid

USER_ID username
(see Note
below)

uid uid uid uid uid

DISPLAY_
NAME

displayname displayname displayname displayname displaynam
e

displayname

BUSINESS_
EMAIL

mail mail mail mail mail mail

DESCRIPTI
ON

description description description description description description

EMPLOYE
E_TYPE

employeeTy
pe

employeeTy
pe

employeeType employeeTy
pe

employeeT
ype

employeeTy
pe

Mapping User Attributes to LDAP Directories

D-2 Oracle Fusion Middleware Application Security Guide

DEPARTM
ENT

departmentn
umber

departmentn
umber

departmentnu
mber

departmentn
umber

department
number

departmentn
umber

DATE_OF_
BIRTH

orcldateofbir
th

- - - - -

BUSINESS_
FAX

facsimiletele
phonenumbe
r

facsimiletele
phonenumbe
r

facsimileteleph
onenumber

facsimiletele
phonenumbe
r

facsimiletel
ephonenu
mber

facsimiletele
phonenumbe
r

BUSINESS_
CITY

l l l l l l

BUSINESS_
COUNTRY

c c c c c c

DATE_OF_
HIRE

orclhiredate - - - - -

NAME cn uid cn uid cn cn

PREFERRE
D_
LANGUA
GE

Preferredlan
guage

preferredlan
guage

preferredlangu
age

preferredlan
guage

preferredla
nguage

preferredlan
guage

BUSINESS_
POSTAL_
ADDR

postaladdres
s

postaladdres
s

postaladdress postaladdres
s

postaladdr
ess

postaladdres
s

MIDDLE_
NAME

orclmiddlena
me

- - - - -

ORGANIZ
ATIONAL_
UNIT

ou ou ou ou ou ou

WIRELESS
ACCT
NUMBER

orclwirelessa
ccountnumb
er

- - - - -

BUSINESS_
PO_BOX

postofficebox postofficebox postofficebox postofficebox postofficeb
ox

postofficebox

BUSINESS_
STATE

St st st st st st

HOME_
ADDRESS

Homepostala
ddress

homepostala
ddress

homepostalad
dress

homepostala
ddress

homepostal
address

homepostala
ddress

NAME_
SUFFIX

Generationq
ualifier

generationqu
alifier

generationqual
ifier

generationqu
alifier

generation
qualifier

generationqu
alifier

BUSINESS_
STREET

street street street street street street

INITIALS initials initials initials initials initials initials

USER_
NAME

username
(see Note
below)

uid samaccountna
me

uid uid uid

BUSINESS_
POSTAL_
CODE

postalcode postalcode postalcode postalcode postalcode postalcode

BUSINESS_
PAGER

pager pager pager pager pager pager

Table D–1 (Cont.) User Attributes in UserProfile.Property

Attribute

Oracle
Internet
Directory

Oracle
WebLogic
Server
Embedded
LDAP

Microsoft
Active
Directory

Oracle
Directory
Server
Enterprise
Edition

Novell
eDirectory OpenLDAP

Mapping Role Attributes to LDAP Directories

User and Role API Reference D-3

D.2 Mapping Role Attributes to LDAP Directories
Table D–2 lists each role attribute in UserProfile.property and its corresponding
attribute in different directory servers.

LAST_
NAME

sn sn sn sn sn sn

BUSINESS_
PHONE

telephonenu
mber

telephonenu
mber

telephonenum
ber

telephonenu
mber

telephonen
umber

telephonenu
mber

FIRST_
NAME

givenname givenname givenname givenname givenname givenname

TIME_
ZONE

orcltimezone - - - - -

MAIDEN_
NAME

orclmaidenn
ame

- - - - -

PASSWOR
D

userpassswo
rd

userpassswo
rd

userpasssword userpassswo
rd

userpasssw
ord

userpassswo
rd

DEFAULT_
GROUP

orcldefaultpr
ofilegroup

- - - - -

ORGANIZ
ATION

o o o o o o

HOME_
PHONE

homephone homephone homephone homephone homephon
e

homephone

BUSINESS_
MOBILE

mobile mobile mobile mobile mobile mobile

UI_
ACCESS_
MODE

orcluiaccessi
bilitymode

- - - - -

JPEG_
PHOTO

jpegphoto jpegphoto jpegphoto jpegphoto jpegphoto jpegphoto

MANAGE
R

manager manager manager manager manager manager

TITLE title title title title title title

EMPLOYE
E_
NUMBER

employeenu
mber

employeenu
mber

employeenum
ber

employeenu
mber

employeen
umber

employeenu
mber

LDUser.PA
SSWORD

userpasswor
d

userpasswor
d

userpassword userpasswor
d

userpasswo
rd

userpasswor
d

Note: username* : typically uid, but technically, the attribute
designated by the orclCommonNicknameAttribute in the subscriber's
oraclecontext products common entry.

Table D–1 (Cont.) User Attributes in UserProfile.Property

Attribute

Oracle
Internet
Directory

Oracle
WebLogic
Server
Embedded
LDAP

Microsoft
Active
Directory

Oracle
Directory
Server
Enterprise
Edition

Novell
eDirectory OpenLDAP

Default Configuration Parameters

D-4 Oracle Fusion Middleware Application Security Guide

D.3 Default Configuration Parameters
This section lists parameters for which the APIs can use default configuration values,
and the source of the value in different directory servers.

Table D–3 lists the source for Oracle Internet Directory and Microsoft Active Directory.

Table D–2 Role Attribute Values in LDAP Directories

Role Attribute

Oracle
Internet
Directory

Oracle
WebLogic
Server
Embedded
LDAP

Microsoft
Active
Directory

Oracle
Directory
Server
Enterprise
Edition

Novell
eDirectory OpenLDAP

DISPLAY_
NAME

displayname - displayname displayname displayname displayname

MANAGER - - - - - -

NAME cn cn cn cn cn cn

OWNER owner owner - Owner - owner

GUID orclguid cn objectguid NSuniqueid guid entryuuid

Table D–3 Default Values - Oracle Internet Directory and Microsoft Active Directory

Parameter
Oracle Internet
Directory Active Directory

RT_USER_OBJECT_CLASSES #config {"user" }

RT_USER_MANDATORY_
ATTRS

#schema #schema

RT_USER_CREATE_BASES #config cn=users,<subscriberDN>

RT_USER_SEARCH_BASES #config <subscriberDN>

RT_USER_FILTER_OBJECT_
CLASSES

#config {"user"}

RT_USER_SELECTED_CREATE_
BASE

#config cn=users,<subscriberDN>

RT_GROUP_OBJECT_CLASSES #config {"group" }

RT_GROUP_MANDATORY_
ATTRS

#schema #schema

RT_GROUP_CREATE_BASES #config <subscriberDN>

RT_GROUP_SEARCH_BASES #config <subscriberDN>

RT_GROUP_FILTER_OBJECT_
CLASSES

#config {"group"}

RT_GROUP_MEMBER_ATTRS "uniquemember",
"member"

"member"

RT_GROUP_SELECTED_
CREATE_BASE

#config <subscriberDN>

RT_GROUP_GENERIC_
SEARCH_BASE

<subscriber-DN> <subscriberDN>

RT_SEARCH_TYPE #config #config

ST_SUBSCRIBER_NAME #config NULL

Default Configuration Parameters

User and Role API Reference D-5

Table D–4 lists the source for Oracle Directory Server Enterprise Edition and Novell
eDirectory.

ST_USER_NAME_ATTR #config cn

ST_USER_LOGIN_ATTR #config samaccountname

ST_GROUP_NAME_ATTR #config cn

ST_MAX_SEARCHFILTER_
LENGTH

500 500

ST_BINARY_ATTRIBUTES Choose a Binary Basic
Attribute (BBA)

See note below about
BBAs.

Binary Basic
Attribute (BBA)+
{ "objectguid" ,
"unicodepwd" }

See note below about BBAs.

ST_LOGGER_NAME oracle.idm.userrole oracle.idm.userrole

Notes:

■ The Basic Binary Attributes include: {"photo", "personalsignature",
"audio","jpegphoto", "Java SErializeddata", "thumbnailphoto",
"thumbnaillogo", "userpassword", "usercertificate", "cacertificate",
"authorityrevocationlist", "certificaterevocationlist",
"crosscertificatepair", "x500UniqueIdentifier"}

■ #config is extracted from the meta information present in the
directory

■ #schema is extracted from the schema in the directory

Table D–4 Default Values - Oracle Directory Server Enterprise Edition and Novell
eDirectory

Parameter

Oracle Directory
Server Enterprise
Edition Novell eDirectory

RT_USER_OBJECT_CLASSES {"inetorgperson",
"person",
"organizationalperson" }

{ "person", "inetorgperson",
"organizationalPerson",
"ndsloginproperties" }

RT_USER_MANDATORY_
ATTRS

#schema #schema

RT_USER_CREATE_BASES ou=people,<subscriberD
N>

ou=users,<subscriberDN>

RT_USER_SEARCH_BASES <subscriberDN> <subscriberDN>

RT_USER_FILTER_OBJECT_
CLASSES

{"inetorgperson",
"person",
"organizationalperson" }

{ "person", "inetorgperson",
"organizationalPerson",
"ndsloginproperties" }

RT_USER_SELECTED_CREATE_
BASE

ou=people,<subscriberD
N>

ou=users,<subscriberDN>

RT_GROUP_OBJECT_CLASSES "groupofuniquenames" {"group" }

Table D–3 (Cont.) Default Values - Oracle Internet Directory and Microsoft Active

Parameter
Oracle Internet
Directory Active Directory

Default Configuration Parameters

D-6 Oracle Fusion Middleware Application Security Guide

Table Table D–5 lists the parameters for OpenLDAP and Oracle Virtual Directory.

RT_GROUP_MANDATORY_
ATTRS

#schema #schema

RT_GROUP_CREATE_BASES ou=groups,<subscriberD
N>

ou=groups,<subscriberDN>

RT_GROUP_SEARCH_BASES <subscriberDN> <subscriberDN>

RT_GROUP_FILTER_OBJECT_
CLASSES

{"groupofuniquenames"} {"group"}

RT_GROUP_MEMBER_ATTRS "uniquemember" "member"

RT_GROUP_SELECTED_
CREATE_BASE

ou=groups,<subscriberD
N>

ou=groups,<subscriberDN>

RT_GROUP_GENERIC_
SEARCH_BASE

<subscriber-DN> <subscriberDN>

RT_SEARCH_TYPE #config #config

ST_SUBSCRIBER_NAME NULL NULL

ST_USER_NAME_ATTR uid cn

ST_USER_LOGIN_ATTR uid cn

ST_GROUP_NAME_ATTR cn cn

ST_MAX_SEARCHFILTER_
LENGTH

500 500

ST_BINARY_ATTRIBUTES Choose a Binary Basic
Attribute (BBA)

See note below about
BBAs.

Binary Basic
Attribute (BBA)+
{ "guid"}

See note below about BBAs.

ST_LOGGER_NAME oracle.idm.userrole oracle.idm.userrole

Notes:

■ The Basic Binary Attributes include: {"photo", "personalsignature",
"audio","jpegphoto", "Java SErializeddata", "thumbnailphoto",
"thumbnaillogo", "userpassword", "usercertificate", "cacertificate",
"authorityrevocationlist", "certificaterevocationlist",
"crosscertificatepair", "x500UniqueIdentifier"}

■ #config is extracted from the metainformation present in the
directory

■ #schema is extracted from the schema in the directory

Table D–4 (Cont.) Default Values - Oracle Directory Server Enterprise Edition and
Novell eDirectory

Parameter

Oracle Directory
Server Enterprise
Edition Novell eDirectory

Default Configuration Parameters

User and Role API Reference D-7

Table D–5 Default Values - OpenLDAP and Oracle Virtual Directory

Parameter OpenLDAP Oracle Virtual Directory

RT_USER_OBJECT_CLASSES {"inetorgperson",
"person",
"organizationalperson" }

{"inetorgperson"}

RT_USER_MANDATORY_
ATTRS

#schema #schema

RT_USER_CREATE_BASES ou=people,<subscriberD
N>

<subscriberDN>

RT_USER_SEARCH_BASES <subscriberDN> <subscriberDN>

RT_USER_FILTER_OBJECT_
CLASSES

{"inetorgperson",
"person",
"organizationalperson" }

{"inetorgperson"}

RT_USER_SELECTED_CREATE_
BASE

ou=people,<subscriberD
N>

<subscriberDN>

RT_GROUP_OBJECT_CLASSES "groupofuniquenames" {"groupofuniquenames"}

RT_GROUP_MANDATORY_
ATTRS

#schema #schema

RT_GROUP_CREATE_BASES ou=groups,<subscriberD
N>

<subscriberDN>

RT_GROUP_SEARCH_BASES <subscriberDN> <subscriberDN>

RT_GROUP_FILTER_OBJECT_
CLASSES

"groupofuniquenames" {"groupofuniquenames"}

RT_GROUP_MEMBER_ATTRS "uniquemember" "uniquemember"

RT_GROUP_SELECTED_
CREATE_BASE

ou=groups,<subscriberD
N>

<subscriberDN>

RT_GROUP_GENERIC_
SEARCH_BASE

<subscriber-DN> <subscriberDN>

RT_SEARCH_TYPE #config #config

ST_SUBSCRIBER_NAME NULL #config (namingcontexts)

ST_USER_NAME_ATTR uid cn

ST_USER_LOGIN_ATTR uid cn

ST_GROUP_NAME_ATTR cn cn

ST_MAX_SEARCHFILTER_
LENGTH

500 500

ST_BINARY_ATTRIBUTES Choose a Binary Basic
Attribute (BBA)

See note below about
BBAs.

Binary Basic
Attribute (BBA)+
{ "guid"}

See note below about BBAs.

ST_LOGGER_NAME oracle.idm.userrole oracle.idm.userrole

Default Configuration Parameters

D-8 Oracle Fusion Middleware Application Security Guide

Table D–6 lists the parameters for Oracle WebLogic Server LDAP.

Notes:

■ The Basic Binary Attributes include: {"photo", "personalsignature",
"audio","jpegphoto", "Java SErializeddata", "thumbnailphoto",
"thumbnaillogo", "userpassword", "usercertificate", "cacertificate",
"authorityrevocationlist", "certificaterevocationlist",
"crosscertificatepair", "x500UniqueIdentifier"}

■ #config is extracted from the meta information present in the
directory

■ #schema is extracted from the schema in the directory

Table D–6 Default Values - Oracle WebLogic Server LDAP

Parameter
Oracle WebLogic Server
Embedded LDAP

RT_USER_OBJECT_CLASSES {"inetorgperson", "person",
"organizationalperson",
"wlsUser"}

RT_USER_MANDATORY_
ATTRS

#schema

RT_USER_CREATE_BASES {"ou=people,<subscriberDN>"}

RT_USER_SEARCH_BASES {"ou=people,<subscriberDN>"}

RT_USER_FILTER_OBJECT_
CLASSES

{"inetorgperson", "wlsUser"}

RT_USER_SELECTED_CREATE_
BASE

ou=people,<subscriberDN>

RT_GROUP_OBJECT_CLASSES {"top","groupofuniquenames","gro
upOfURLs"}

RT_GROUP_MANDATORY_
ATTRS

#schema

RT_GROUP_CREATE_BASES {"ou=groups,<subscriberDN>"}

RT_GROUP_SEARCH_BASES {"ou=groups,<subscriberDN>"}

RT_GROUP_FILTER_OBJECT_
CLASSES

{"top","groupofuniquenames","gro
upOfURLs"}

RT_GROUP_MEMBER_ATTRS "uniquemember"

RT_GROUP_SELECTED_
CREATE_BASE

ou=groups,<subscriberDN>

RT_GROUP_GENERIC_
SEARCH_BASE

<subscriberDN>

RT_SEARCH_TYPE #config

ST_SUBSCRIBER_NAME #config (namingcontexts)

ST_USER_NAME_ATTR uid

ST_USER_LOGIN_ATTR uid

ST_GROUP_NAME_ATTR cn

Secure Connections for Microsoft Active Directory

User and Role API Reference D-9

D.4 Secure Connections for Microsoft Active Directory
Active Directory requires connections to be SSL-enabled when setting sensitive
information like passwords. Therefore, operations like creating a user (which set the
password) will not succeed if the connection is not SSL-enabled.

ST_MAX_SEARCHFILTER_
LENGTH

500

ST_BINARY_ATTRIBUTES *(BBA)

See note below about BBAs.

ST_LOGGER_NAME oracle.idm.userrole

Table D–6 (Cont.) Default Values - Oracle WebLogic Server LDAP

Parameter
Oracle WebLogic Server
Embedded LDAP

Secure Connections for Microsoft Active Directory

D-10 Oracle Fusion Middleware Application Security Guide

E

Administration with WLST Scripting and MBean Programming E-1

EAdministration with WLST Scripting and
MBean Programming

This appendix describes advanced administrative tasks carried out with WLST scripts
and MBean programming, in the following sections:

■ Configuring OPSS Service Provider Instances with a WLST Script

■ Configuring OPSS Services with MBeans

■ Access Restrictions

E.1 Configuring OPSS Service Provider Instances with a WLST Script
If your application uses the User and Role API and must access an authenticator user
attribute different from the default attribute (which is cn), then using the WebLogic
Administration Console, you would configure the authenticator to use the desired
user attribute. But for the User and Role API to use an attribute different from the
default, the authenticator must be, in addition, properly initialized.

The procedure below explains how to use a WLST script to change the authenticator
initialization, so that the User and Role API uses the configured user attribute to access
data in the configured authenticator.

For details about WebLogic scripting, see Oracle Fusion Middleware Oracle WebLogic
Scripting Tool.

To add or update custom properties of a service instance, proceed as follows:

1. Create a py script file with the following content:

import sys
connect('userName','userPass','t3://localHost:portNumber')
domainRuntime()

val = None
key = None
si = None
for i in range(len(sys.argv)):
 if sys.argv[i] == "-si":
 si = sys.argv[i+1]
 if sys.argv[i] == "-key":
 key = sys.argv[i+1]
 if sys.argv[i] == "-value":
 val = sys.argv[i+1]

on = ObjectName("com.oracle.jps:type=JpsConfig")
sign = ["java.lang.String","java.lang.String","java.lang.String"]

Configuring OPSS Service Provider Instances with a WLST Script

E-2 Oracle Fusion Middleware Application Security Guide

params = [si,key,val]
mbs.invoke(on, "updateServiceInstanceProperty", params, sign)
mbs.invoke(on, "persist", None, None)

2. In the produced script, replace userName, userPass, localHost, and portNumber by
the appropriate strings to connect to the administration server in the domain you
are interested. Note that the use of connect requires that the server to which you
want to connect be up and running when the script is invoked.

Let’s assume that the script is saved in the file
/tmp/updateServiceInstanceProperty.py.

3. Change to the directory $ORACLE_HOME/common/bin, which should contain the
file wlst.sh:

>cd $ORACLE_HOME/common/bin

4. Run the following command:

>wlst.sh /tmp/updateServiceInstanceProperty.py -si servInstName -key propKey
-value propValue

Where:

■ servInstName is the name of the service instance provider whose properties are
to be modified.

■ propKey identifies the name of the property to insert or modify.

■ propValue is the name of the value to add or update.

Any argument containing a space character must be enclosed with double quotes.

Each invocation of the above command modifies the domain configuration file
$DOMAIN_HOME/config/fmwconfig/jps-config.xml by adding or
updating a property to the passed instance provider. If the passed key matches the
name of an existing property, then that property is updated with the passed value.

5. Restart the Oracle WebLogic server: the changes in configuration are not in effect
until the server has been restarted.

Example of Use
Assume that the domain configuration file contains an authenticator named
idstore.ldap. Then the following invocation:

wlst.sh /tmp/updateServiceInstanceProperty.py -si idstore.ldap -key "myPropName"
-value "myValue"

adds (or updates) the specified property of that instance provider as illustrated in the
following snippet:

<serviceInstance provider="idstore.ldap.provider" name="idstore.ldap">
 ...
 <property name="myPropName" value="myValue"/>
 ...
</serviceInstance>

When the authenticator is initialized with the above configuration, the User and Role
API can use the user attribute mail to access user information in this authenticator.

Configuring OPSS Services with MBeans

Administration with WLST Scripting and MBean Programming E-3

E.2 Configuring OPSS Services with MBeans
Oracle Platform Security Services provides a set of JMX-compliant Java EE Beans that
are used by Oracle Enterprise Manager Fusion Middleware Control and OPSS security
scripts to manage, configure, and monitor Oracle Platform Security Services.

The use of MBeans is recommended in Java EE applications only.

Links to OPSS API javadocs, including the OPSS MBeans API javadoc, are available in
Section H.1, "OPSS API References."

This section addresses the following topics:

■ List of Supported OPSS MBeans

■ Invoking an OPSS MBean

■ Programming with OPSS MBeans

E.2.1 List of Supported OPSS MBeans
Table E–1 lists the supported MBeans, their basic function, and the object name to use
in custom WLST scripts or Java SE programs to perform a task:

E.2.2 Invoking an OPSS MBean
There are two basic ways to invoke an OPSS MBean:

Table E–1 List of OPSS MBeans

MBean Function MBeanServer Connection Name

Jps Configuration Manages domain configuration data, that is
in the file jps-config.xml. This MBean
provides the only way to modify
configuration data.

Update or write operations require server
restart to effect changes.

com.oracle.jps:type=JpsConf
ig

Credential Store Manages credential data, that is, the store
service configured in the default context.

Update or write operations do not require
server restart to effect changes. All changes
are effected immediately. Access is restricted
to administrators only.

com.oracle.jps:type=JpsCred
entialStore

Global Policy Store Manages global policies in the policy store
configured in the default context.

Update or write operations do not require
server restart to effect changes. All changes
are effected immediately.

com.oracle.jps:type=JpsGlob
alPolicyStore

Application Policy Store Manages application policies in the policy
store configured in the default context.

Update or write operations do not require
server restart to effect changes. All changes
are effected immediately.

com.oracle.jps:type=JpsAppl
icationPolicyStore

Administration Policy Store Validates whether a user logged into the
current JMX context belongs to a particular
role. It does not facilitate any configuration
modifications.

com.oracle.jps:type=JpsAdmi
nPolicyStore

Configuring OPSS Services with MBeans

E-4 Oracle Fusion Middleware Application Security Guide

■ To write a script and run it using the Oracle WebLogic scripting tool; for details,
see section Navigating MBeans (WLST Online) in Oracle Fusion Middleware Oracle
WebLogic Scripting Tool.

■ To write a Java program; Section E.2.3, "Programming with OPSS MBeans"
contains a sample program illustrating this approach.

E.2.3 Programming with OPSS MBeans
The following code sample illustrates how to invoke the Jps Configuration MBean
over the WebLogic Server t3 protocol; in this sample, note the following important
points:

■ It assumes that the following JAR files are in the class path:

– $ORACLE_HOME/oracle_common/modules/oracle.jps_
11.1.1/jps-api.jar

– $ORACLE_HOME/oracle_common/modules/oracle.jps_
11.1.1/jps-mbeans.jar

– $ORACLE_HOME/oracle_common/modules/oracle.jmx_
11.1.1/jmxframework.jar

– $ORACLE_HOME/oracle_common/modules/oracle.idm_
11.1.1/identitystore.jar

– $WEBLOGIC_HOME/server/lib/wljmxclient.jar

■ The connection is established by the method init.

■ Any update operation is followed by a call to persist.

import java.io.IOException;
import java.net.MalformedURLException;

Note: An alternative way to invoke an MBean is using the MBean
browser in Fusion Middleware Control. This approach, however,
allows only a limited number of operations and it involves composite
data creation.

To access this browser, login to Fusion Middleware Control and then
proceed as follows:

1. Select the menu item AdminServer > System MBean Browser, in the
appropriate domain, to display the page System MBean Browser.

2. In the pane where the hierarchy is displayed, expand the nodes
Application Defined MBeans, com.oracle.jps, and Domain: myDomain
(where myDomain stands for the name of your domain); this last one has
under it one node per OPSS MBean.

3. After expanding any of those nodes, select an item, that is an MBean, and
user the tabs Attributes, Operations, and Notifications in the right pane
to inspect current attribute values or to invoke methods in the selected
MBean.

For example, the Jps Configuration MBean is found at the following
location in this hierarchy:

Application Defined
MBeans/com.oracle.jps/Domain:myDomain/JpsConfig/JpsConfig

For complete details about this browser, see the Fusion Middleware
Control online help system.

Configuring OPSS Services with MBeans

Administration with WLST Scripting and MBean Programming E-5

import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;

import javax.management.InstanceNotFoundException;
import javax.management.MBeanException;
import javax.management.MBeanServerConnection;
import javax.management.MalformedObjectNameException;
import javax.management.ObjectName;
import javax.management.ReflectionException;
import javax.management.openmbean.CompositeData;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;
import javax.naming.Context;

import oracle.security.jps.mas.mgmt.jmx.credstore.PortableCredential;
import oracle.security.jps.mas.mgmt.jmx.credstore.PortablePasswordCredential;
import oracle.security.jps.mas.mgmt.jmx.policy.PortableApplicationRole;
import oracle.security.jps.mas.mgmt.jmx.policy.PortableCodeSource;
import oracle.security.jps.mas.mgmt.jmx.policy.PortableGrant;
import oracle.security.jps.mas.mgmt.jmx.policy.PortableGrantee;
import oracle.security.jps.mas.mgmt.jmx.policy.PortablePermission;
import oracle.security.jps.mas.mgmt.jmx.policy.PortablePrincipal;
import oracle.security.jps.mas.mgmt.jmx.policy.PortableRoleMember;
import oracle.security.jps.mas.mgmt.jmx.util.JpsJmxConstants;

public class InvokeJpsMbeans {
 private static JMXConnector connector;
 private static MBeanServerConnection wlsMBeanConn;
 private static ObjectName configName;
 private static ObjectName credName;
 private static ObjectName appPolName;
 private static ObjectName gloPolName;
 private static ObjectName adminPolName;

 private final static String STR_NAME =String.class.getName();

 public static void main(String args[]) {
 // Intialize connection and retrieve connection object
 init();

 //Check registration
 if (isRegistered(configName))
 System.out.println("Jps Config MBean is registered");
 if (isRegistered(credName))
 System.out.println("Jps Credential Mbean is registered");
 if (isRegistered(appPolName))
 System.out.println("Jps Application policy Mbean is registered");
 if (isRegistered(gloPolName))
 System.out.println("Jps Global policy Mbean is registered");
 if (isRegistered(adminPolName))
 System.out.println("Jps Admin Policy Mbean is registered");

 //invoke MBeans
 invokeConfigMBeanMethods();
 invokeCredentialMBeanMethods();
 invokeApplicationPolicyMBeanMethods();
 invokeGlobalPolicyMBeanMethods();

Configuring OPSS Services with MBeans

E-6 Oracle Fusion Middleware Application Security Guide

 invokeAdminPolicyMBeanMethhods();
 }

 private static void invokeConfigMBeanMethods() {
 String KEY = "myKey";
 String VALUE = "myValue";
 String strVal;
 try {
 strVal = (String) wlsMBeanConn.invoke(configName, "updateProperty",
 new Object[] { KEY, VALUE },
 new String[] { STR_NAME, STR_NAME });
 wlsMBeanConn.invoke(configName,"persist",null,null);

 strVal = (String) wlsMBeanConn.invoke(configName, "getProperty",
 new Object[] { KEY }, new String[] { STR_NAME });
 System.out.println("Updated the property: " + strVal.equals(strVal));

 strVal = (String) wlsMBeanConn.invoke(configName, "removeProperty",
 new Object[] { KEY }, new String[] { STR_NAME });
 wlsMBeanConn.invoke(configName,"persist",null,null);
 } catch (InstanceNotFoundException e) {
 // auto-generated catch block
 e.printStackTrace();
 } catch (MBeanException e) {
 // auto-generated catch block
 e.printStackTrace();
 } catch (ReflectionException e) {
 // auto-generated catch block
 e.printStackTrace();
 } catch (IOException e) {
 // auto-generated catch block
 e.printStackTrace();
 }
 }

private static void invokeCredentialMBeanMethods() {

 String USER = "jdoe";
 String PASSWORD = "welcome1";
 String ALIAS = "mapName";
 String KEY = "keyValue";

 PortableCredential cred = new PortablePasswordCredential(USER,
PASSWORD.toCharArray());

 try {
 //seed a password credential
 wlsMBeanConn.invoke(credName, "setPortableCredential", new Object[] {
ALIAS, KEY, cred.toCompositeData(null) }, new String[] { STR_NAME, STR_NAME,
CompositeData.class.getName() });
 boolean bContainsMap = (Boolean) wlsMBeanConn.invoke(credName,
"containsMap", new Object[] { ALIAS }, new String[] { STR_NAME });
 System.out.println("Credstore contains map: " + ALIAS + " - "
+bContainsMap);

 boolean bContainsCred = (Boolean) wlsMBeanConn.invoke(credName,
"containsCredential", new Object[] { ALIAS, KEY }, new String[] { STR_NAME, STR_
NAME });
 System.out.println("Contains Credential; " + bContainsCred);

Configuring OPSS Services with MBeans

Administration with WLST Scripting and MBean Programming E-7

 CompositeData cd = (CompositeData) wlsMBeanConn.invoke(credName,
"getPortableCredential", new Object[] { ALIAS, KEY }, new String[] { STR_NAME,
STR_NAME });
 cred = PortableCredential.from(cd);

 PortablePasswordCredential pc = (PortablePasswordCredential) cred;

 System.out.println("User name should be " + USER + " Retrieved - " +
pc.getName());
 System.out.println("Password should be " + PASSWORD + "retrieved - " +
new String(pc.getPassword()));

 //delete entire map
 wlsMBeanConn.invoke(credName, "deleteCredentialMap", new Object[] {ALIAS},
new String[] {STR_NAME});

 } catch (InstanceNotFoundException e) {
 // auto-generated catch block
 e.printStackTrace();
 } catch (MBeanException e) {
 // auto-generated catch block
 e.printStackTrace();
 } catch (ReflectionException e) {
 // auto-generated catch block
 e.printStackTrace();
 } catch (IOException e) {
 // auto-generated catch block
 e.printStackTrace();
 }

 }

private static void invokeApplicationPolicyMBeanMethods() {
 //add grants to approles

 //first create application policy
 String TESTGET_APP_ROLES_MEMBERS = "testgetAppRolesMembers";
 try {
 wlsMBeanConn.invoke(appPolName, "deleteApplicationPolicy", new
Object[] { TESTGET_APP_ROLES_MEMBERS }, new String[] { STR_NAME });
 } catch (Exception e) {
 System.out.println("IGNORE: App " + TESTGET_APP_ROLES_MEMBERS + "
might not exist");
 }
 try {
 wlsMBeanConn.invoke(appPolName, "createApplicationPolicy", new
Object[] { TESTGET_APP_ROLES_MEMBERS }, new String[] { STR_NAME });
 // add remove members to applicaiton roles
 // Create App Role here
 String APP_ROLE_NAME = "ravenclaw_house";
 wlsMBeanConn.invoke(appPolName, "createApplicationRole", new Object[]
{ TESTGET_APP_ROLES_MEMBERS, APP_ROLE_NAME, null, null, null }, new String[] {
STR_NAME, STR_NAME, STR_NAME, STR_NAME, STR_NAME });

 CompositeData cd = (CompositeData) wlsMBeanConn.invoke(appPolName,
"getApplicationRole", new Object[] { TESTGET_APP_ROLES_MEMBERS, APP_ROLE_NAME },
new String[] { STR_NAME, STR_NAME });
 PortableApplicationRole appRole = PortableApplicationRole.from(cd);

 //Add custom principal here

Configuring OPSS Services with MBeans

E-8 Oracle Fusion Middleware Application Security Guide

 PortableRoleMember prm_custom = new
PortableRoleMember("My.Custom.Principal","CustomPrincipal",null,null,null);

 CompositeData[] arrCompData = { prm_custom.toCompositeData(null) };
 cd = (CompositeData) wlsMBeanConn.invoke(appPolName,
"addMembersToApplicationRole", new Object[] { TESTGET_APP_ROLES_MEMBERS,
appRole.toCompositeData(null), arrCompData }, new String[] { STR_NAME,
CompositeData.class.getName(), CompositeData[].class.getName() });

 // Chk if member got added
 CompositeData[] arrCD = (CompositeData[])
wlsMBeanConn.invoke(appPolName, "getMembersForApplicationRole", new Object[] {
TESTGET_APP_ROLES_MEMBERS, appRole.toCompositeData(null) }, new String[] { STR_
NAME, CompositeData.class.getName() });
 PortableRoleMember[] actRM = getRMArrayFromCDArray(arrCD);
 PortableRoleMember[] expRM = { prm_custom};
 chkRoleMemberArrays(actRM, expRM);

 cd = (CompositeData) wlsMBeanConn.invoke(appPolName,
"removeMembersFromApplicationRole", new Object[] { TESTGET_APP_ROLES_MEMBERS,
appRole.toCompositeData(null), arrCompData }, new String[] { STR_NAME,
CompositeData.class.getName(), CompositeData[].class.getName() });

 // Chk if member got removed
 arrCD = (CompositeData[]) wlsMBeanConn.invoke(appPolName,
"getMembersForApplicationRole", new Object[] { TESTGET_APP_ROLES_MEMBERS,
appRole.toCompositeData(null) }, new String[] { STR_NAME,
CompositeData.class.getName() });
 System.out.println("length should be zero :" + arrCD.length);

 // Remove the App Role
 wlsMBeanConn.invoke(appPolName, "removeApplicationRole", new Object[]
{ TESTGET_APP_ROLES_MEMBERS, APP_ROLE_NAME }, new String[] { STR_NAME, STR_NAME
});
 wlsMBeanConn.invoke(appPolName, "deleteApplicationPolicy", new
Object[] { TESTGET_APP_ROLES_MEMBERS }, new String[] { STR_NAME });

 } catch (InstanceNotFoundException e) {
 // auto-generated catch block
 e.printStackTrace();
 } catch (MBeanException e) {
 // auto-generated catch block
 e.printStackTrace();
 } catch (ReflectionException e) {
 // auto-generated catch block
 e.printStackTrace();
 } catch (IOException e) {
 // auto-generated catch block
 e.printStackTrace();
 }
 }

 private static PortableRoleMember[] getRMArrayFromCDArray(CompositeData[]
arrCD) {
 PortableRoleMember[] actRM = new PortableRoleMember[arrCD.length];
 int idx = 0;
 for (CompositeData cdRM : arrCD) {
 actRM[idx++] = PortableRoleMember.from(cdRM);
 }
 return actRM;

Configuring OPSS Services with MBeans

Administration with WLST Scripting and MBean Programming E-9

 }

 private static void chkRoleMemberArrays(PortableRoleMember[] arrExpectedRM,
PortableRoleMember[] arrActRM) {

 List < PortableRoleMember > lstExpRM = new ArrayList < PortableRoleMember
>(Arrays.asList(arrExpectedRM));
 List < PortableRoleMember > lstActRM = new ArrayList < PortableRoleMember
>(Arrays.asList(arrActRM));

 for (PortableRoleMember actRM : lstActRM) {
 for (int idx = 0; idx < lstExpRM.size(); idx++) {
 PortableRoleMember expRM = (PortableRoleMember) lstExpRM.get(idx);
 if (expRM.equals(actRM)) {
 lstExpRM.remove(idx);
 break;
 }
 }
 }
 System.out.println("List should be empty - " + lstExpRM.size());
 }

 private static void invokeAdminPolicyMBeanMethhods() {
 //Connection is established as weblogic user, who by OOTB gets all
permissions
 Boolean bool;
 try {
 bool = (Boolean) wlsMBeanConn.invoke(adminPolName,"checkRole",new
Object[]{"Admin"}, new String[]{STR_NAME});
 System.out.println("Werblogic has Admin role: " + bool);
 bool = (Boolean) wlsMBeanConn.invoke(adminPolName,"checkRole",new
Object[] {"Configurator"}, new String[]{STR_NAME});
 System.out.println("Werblogic has Configurator role: " + bool);
 bool = (Boolean) wlsMBeanConn.invoke(adminPolName,"checkRole", new
Object[]{new String[] {"Operator", "Admin", "Configurator"}},
 new String[]{String[].class.getName()});
 System.out.println("Werblogic has Admin,Operator,Configurator role: "
+ bool);
 } catch (InstanceNotFoundException e) {
 // auto-generated catch block
 e.printStackTrace();
 } catch (MBeanException e) {
 // auto-generated catch block
 e.printStackTrace();
 } catch (ReflectionException e) {
 // auto-generated catch block
 e.printStackTrace();
 } catch (IOException e) {
 // auto-generated catch block
 e.printStackTrace();
 }
 }

 private static void invokeGlobalPolicyMBeanMethods() {
 // lets create a grant in system policy
 PortablePrincipal CUSTOM_JDOE = new
PortablePrincipal("oracle.security.jps.internal.core.principals.CustomXmlUserImpl"
, "jdoe", PortablePrincipal.PrincipalType.CUSTOM);
 PortablePrincipal CUSTOM_APP_ADMINS = new
PortablePrincipal("oracle.security.jps.internal.core.principals.CustomXmlEnterpris

Configuring OPSS Services with MBeans

E-10 Oracle Fusion Middleware Application Security Guide

eRoleImpl", "oc4j-app-administrators", PortablePrincipal.PrincipalType.CUSTOM);
 PortablePrincipal[] arrPrincs = {CUSTOM_JDOE, CUSTOM_APP_ADMINS};
 //code source URL
 String URL = "http://www.oracle.com/as/jps-api.jar";
 PortableCodeSource pcs = new PortableCodeSource(URL);
 PortableGrantee pge = new PortableGrantee(arrPrincs, pcs);
 PortablePermission CSF_PERM = new
PortablePermission("oracle.security.jps.service.credstore.CredentialAccessPermissi
on", "context=SYSTEM,mapName=MY_MAP,keyName=MY_KEY", "read");
 PortablePermission[] arrPerms = {CSF_PERM};
 PortableGrant grnt = new PortableGrant(pge, arrPerms);
 CompositeData[] arrCompData = { grnt.toCompositeData(null) };
 try {
 System.out.println("Creating System Policy grant");
 wlsMBeanConn.invoke(gloPolName, "grantToSystemPolicy", new Object[] {
arrCompData }, new String[] { CompositeData[].class.getName() });
 System.out.println("Deleting the created grant");
 wlsMBeanConn.invoke(gloPolName, "revokeFromSystemPolicy", new Object[]
{ arrCompData }, new String[] { CompositeData[].class.getName() });

 } catch (InstanceNotFoundException e) {
 // auto-generated catch block
 e.printStackTrace();
 } catch (MBeanException e) {
 // auto-generated catch block
 e.printStackTrace();
 } catch (ReflectionException e) {
 // auto-generated catch block
 e.printStackTrace();
 } catch (IOException e) {
 // auto-generated catch block
 e.printStackTrace();
 }
 }

 private static boolean isRegistered(ObjectName name) {
 try {
 return wlsMBeanConn.isRegistered(name);
 } catch (IOException e) {
 // auto-generated catch block
 e.printStackTrace();
 }
 return false;
 }

 private static void init() {
 String protocol = "t3";
 String jndi_root = "/jndi/";
 String wlserver = "myWLServer";
 String host = "myHost.com";
 int port = 7001;
 String adminUsername = "myAdminName";
 String adminPassword = "myAdminPassw";
 JMXServiceURL url;
 try {
 url = new JMXServiceURL(protocol,host,port,jndi_root+wlserver);
 HashMap<String, Object> env = new HashMap<String, Object>();
 env.put(Context.SECURITY_PRINCIPAL, adminUsername);
 env.put(Context.SECURITY_CREDENTIALS, adminPassword);
 env.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,

Access Restrictions

Administration with WLST Scripting and MBean Programming E-11

 "weblogic.management.remote");
 connector = JMXConnectorFactory.connect(url, env);
 wlsMBeanConn = connector.getMBeanServerConnection();

 //create object names
// the next string is set to com.oracle.jps:type=JpsConfig
 configName = new
 ObjectName(JpsJmxConstants.MBEAN_JPS_CONFIG_FUNCTIONAL);
// the next string is set to com.oracle.jps:type=JpsApplicationPolicyStore
 appPolName = new
 ObjectName(JpsJmxConstants.MBEAN_JPS_APPLICATION_POLICY_STORE);
// the next string is set to com.oracle.jps:type=JpsGlobalPolicyStore
 gloPolName = new
 ObjectName(JpsJmxConstants.MBEAN_JPS_GLOBAL_POLICY_STORE);
// the next string is set to com.oracle.jps:type=JpsAdminPolicyStore
 adminPolName = new
 ObjectName(JpsJmxConstants.MBEAN_JPS_ADMIN_POLICY_STORE);
// the next string is set to com.oracle.jps:type=JpsCredentialStore
 credName = new ObjectName(JpsJmxConstants.MBEAN_JPS_CREDENTIAL_STORE);
 } catch (MalformedURLException e) {
 // take proper action
 e.printStackTrace();
 } catch (IOException e) {
 // take proper action
 e.printStackTrace();
 } catch (MalformedObjectNameException e) {
 // auto-generated catch block
 e.printStackTrace();
 }
 }
}

For further details about programmatic configuration of services, see part Part V,
"Developing with Oracle Platform Security Services APIs"

E.3 Access Restrictions
The information in this section is not restricted to OPPS MBeans but applies, more
generally, to Oracle Fusion Middleware MBeans.

The security access to MBeans is based on logical roles rather than on security
permissions. MBeans are annotated using role-based constraints that are enforced at
run time by the JMX Framework.

This section illustrates the use of some annotations, describes what they mean, lists the
particular access restrictions, and explains the mapping of logical roles to Oracle
WebLogic Server enterprise groups.

E.3.1 Annotation Examples
The following code snippet illustrates the use of some enterprise group annotations (in
bold text) in an MBean interface:

@Description(resourceKey = "demo.ScreenCustomizerRuntimeMBean.description",
 resourceBundleBaseName = "demo.runtime.Messages")
@ImmutableInfo("true")
@Since("1.1")
public interface ScreenCustomizerRuntimeMXBean {
 @Description(resourceKey = "demo.ScreenCustomizerRuntimeMBean.Active",
 resourceBundleBaseName = "demo.runtime.Messages")

Access Restrictions

E-12 Oracle Fusion Middleware Application Security Guide

 @AttrributeGetterRequiredGlobalSecurityRole(GlobalSecurityRole.Operator)
 public boolean isActive();
 @AttrributeSetterRequiredGlobalSecurityRole(GlobalSecurityRole.Admin)
 public void setActive(boolean val);

 @Description(resourceKey =
 "demo.ScreenCustomizerRuntimeMBean.ActiveVirtualScreenId",
 resourceBundleBaseName = "demo.runtime.Messages")
 @DefaultValue("0")
 @LegalValues({"0", "2", "4", "6", "8" })
 @RequireRestart(ConfigUptakePolicy.ApplicationRestart)
 @OperationRequiredGlobalSecurityRole(GlobalSecurityRole.Admin)
 public void setActiveVirtualScreenId(int id) throws IllegalArgumentException;
 …
}

In the above code sample, the annotation:

■ @AtrributeGetterRequiredGlobalSecurityRole specifies that a user must
belong to the role Operator to access the get method isActive.

■ @AtrributeSetterRequiredGlobalSecurityRole specifies that a user must
belong to the role Admin to access the set method setActive.

■ @OperationRequiredGlobalSecurityRole specifies that a user must belong
to the role Admin to access the MBean method setActiveVirtualScreenId.

Note that all three annotations above apply just to a specific item in the interface.

The following code snippet illustrates the use of another annotation (in bold text) with
a different scope:

@Description(resourceKey = "demo.ScreenCustomizerRuntimeMBean.description",
 resourceBundleBaseName = "demo.runtime.Messages")
@ImmutableInfo("true")
@Since("1.1")
@MBeanRequiredGlobalSecurityRole(GlobalSecurityRole.Admin)
public interface ScreenCustomizerRuntimeMXBean { … }

In the above code sample, the annotation @MbeanRequiredGlobalSecurityRole
specifies that a user must belong to the role Admin to access any operation or attribute
of the MBean, that is, its scope is the entire MBean. Annotations with method or
attribute scope override annotations that apply to the entire MBean.

The enumeration GlobalSecurityRole defines the set of global, logical roles that
are mapped to actual roles in the environment before performing security checks. This
enumeration includes the value NONE to indicate that any user has read and write
access to the annotated operation or attribute.

For details, see the oracle.jmx.framework Javadoc documentation.

E.3.2 Mapping of Logical Roles to WebLogic Roles
Table E–2 shows the mapping of logical roles to enterprise groups.

Table E–2 Mapping of Logical Roles to WebLogic Groups

Logical Role Default Privileges WebLogic Group

Admin Read and write access to all MBeans Admin

Configurator Read and write access to configuration
MBeans

Admin

Access Restrictions

Administration with WLST Scripting and MBean Programming E-13

For details about WebLogic roles, see sections Users, Groups, And Security Roles and
in Oracle Fusion Middleware Securing Resources Using Roles and Policies for Oracle
WebLogic Server.

E.3.3 Particular Access Restrictions
By default, all write and update operations require that the user be a member of the
Admin or Configurator roles. In addition, operations annotated with the tag
@Impact(value=1) require the user to be a member of the Admin role, and
operations annotated with the tag @Impact(value=0) require the user to be a
member of the Admin or Operator roles.

Table E–3 describes the roles required to access attributes and operations of Fusion
Middleware Control MBeans:

Operator Read access to configuration MBeans; read
and write access to all run time MBeans

Operator

Monitor Read access to all MBeans Monitor

ApplicationAdmin Read and write access to all application
MBeans

Admin

ApplicationConfigurator Read and write access to all application
MBeans

Admin

ApplicationOperator Read access to application configuration
MBeans; read and write access to application
runtime MBeans

Operator

ApplicationMonitor Read access to all application runtime and
configuration MBeans

Monitor

Table E–3 Roles Required per Operation

Operations with
impact value MBean type Require any of the roles

INFO or attribute getter System configuration MBean Monitor, Operator, Configurator,
Admin

INFO or attribute getter Application configuration
MBean

Monitor, Operator, Configurator,
Admin, ApplicationMonitor,
ApplicationOperator,
ApplicationConfigurator,
ApplicationAdmin

ACTION, ACTION_
INFO, UNKNOWN, or
attribute setter

System configuration MBean Admin, Configurator

ACTION, ACTION_
INFO, UNKNOWN, or
attribute setter

Application configuration
MBean

Admin, Configurator,
ApplicationAdmin,
ApplicationConfigurator

INFO or attribute getter System runtime MBean Monitor, Operator, Configurator,
Admin

INFO or attribute getter Application runtime MBean Monitor, Operator, Configurator,
Admin, ApplicationMonitor,
ApplicationOperator,
ApplicationAdmin

Table E–2 (Cont.) Mapping of Logical Roles to WebLogic Groups

Logical Role Default Privileges WebLogic Group

Access Restrictions

E-14 Oracle Fusion Middleware Application Security Guide

ACTION, ACTION_
INFO, UNKNOWN, or
attribute setter

System runtime MBean Admin, Operator

ACTION, ACTION_
INFO, UNKNOWN, or
attribute setter

Application runtime MBean Admin, Operator,
ApplicationAdmin,
ApplicationOperator

Table E–3 (Cont.) Roles Required per Operation

Operations with
impact value MBean type Require any of the roles

F

OPSS System and Configuration Properties F-1

FOPSS System and Configuration Properties

This appendix documents OPSS system properties (set through the switch -D at server
start) and configuration properties (set with elements <property> and
<extendedProperty> in the configuration file jps-config.xml) in the following
sections:

■ OPSS System Properties

■ OPSS Configuration Properties

To manage server properties programmatically, use OPSS MBeans. For details and
example, see Section E.2.3, "Programming with OPSS MBeans."

F.1 OPSS System Properties
A system property that has been introduced or modified is not in effect until the server
is restarted. In order to set a system property the administrator must edit the
setDomainEnv.sh shell script and add the property to the environment variable
EXTRA_JAVA_PROPERTIES in that script.

Table F–1 lists the Java system properties available with OPSS.

Note: All OPSS configuration changes (manual or through
JpsConfiguration MBean) require server restart to take effect.

OPSS data domain changes do not require server restart to take effect.
Data changes include modifying an application policy and creating,
deleting, or updating a credential.

OPSS System Properties

F-2 Oracle Fusion Middleware Application Security Guide

Table F–1 Java System Properties Used by OPSS

Name Description

java.security.debug=access,failure Notifies about a permission failure when the method
JpsAuth.checkPermission is called inside a Subject.doAs block
and the permission check fails.

Note that setting jps.auth.debug or jps.auth.debug.verbose is not
enough to get a failure notification in this case.

Optional.

java.security.policy Specifies the location of the Java security policy file.

jps.authz Enables or disables the delegation of calls to JDK API
AccessController.checkPermission, which reduces runtime and
debugging overhead.

Optional.

Valid values: NULL, SM, ACC, and DEBUG_NULL.

No default value.

jps.auth.debug Controls server logging output. Default value: FALSE. For details,
see Section L.1.2.1, "jps.auth.debug." See also java.security.debug.

Optional.

jps.auth.debug.verbose Controls server logging output. Default value: FALSE. For details,
see Section L.1.2.2, "jps.auth.debug.verbose." See also
java.security.debug.

Optional.

jps.combiner.optimize Enables or disables the caching of a subject’s protection domain.

Optional.

Valid values: TRUE, FALSE.

Default value: FALSE.

jps.combiner.optimize.lazyeval Enables or disables the evaluation of a subject’s protection
domain when a check permission is triggered.

Optional.

Valid values: TRUE, FALSE.

Default value: FALSE.

jps.deployment.handler.disabled Enables or disables the migration of policies and credentials for
applications deployed in a WebLogic Server. Valid only for the
WebLogic Server.

Set to TRUE to disable the migration of application policies and
credentials for all applications deployed in the server regardless
of the particular application settings in the application file
weblogic-application.xml.

Optional.

Valid values: TRUE, FALSE.

Default value: FALSE.

OPSS System Properties

OPSS System and Configuration Properties F-3

jps.policystore.hybrid.mode Enables or disables the hybrid mode.

The hybrid mode is used to facilitate the transition from the Sun
java.security.Policy to the OPSS Java PolicyProvider. When the
hybrid mode is enabled, the OPSS Java Policy Provider reads
from both files, java.policy and system-jazn-data.xml.

Optional.

Valid values: TRUE, FALSE.

Default value: TRUE.

jps.subject.cache.ttl Specifies the number of seconds after which group membership
changes are in effect.

This value must be kept in sych with the value of the WebLogic
authenticator Group Hierarchy Cache. If this last parameter
value is changed, then jps.subject.cache.ttl must be reset
to match the new Group Hierarchy Cache value.

Optional.

Valid values: any positive interger.

Default value: 60000

oracle.security.jps.config Specifies the path to the domain configuration files
jps-config.xml or jps-config-jse.xml. Paths
specifications in those files can be absolute or relative to the
location of the configuration file.

Required.

No default value.

oracle.deployed.app.dir Specifies the path to the directory of a code source URL.

Optional.

No default value.

For an example of use, see <url>.

oracle.deployed.app.ext Specifies the extension of code source URL.

Optional.

No default value.

For an example of use, see <url>.

oracle.security.jps.log.for.approl
e.substring

Logs the name of an application role that contains a specified
substring; if the substring to match is unspecified, it logs all
application role names.

Optional.

No default value.

For an example of use and further details, see Section L.1.2.3,
"Debugging the Authorization Process."

oracle.security.jps.log.for.permeffect Logs a grant that was granted or denied according to a specified
value; if the value is unspecified, it logs all grants (regardless
whether they were granted or denied).

Optional.

No default value.

For an example of use and further details, see Section L.1.2.3,
"Debugging the Authorization Process."

Table F–1 (Cont.) Java System Properties Used by OPSS

Name Description

OPSS Configuration Properties

F-4 Oracle Fusion Middleware Application Security Guide

F.2 OPSS Configuration Properties
This section describes the properties of various instances in the following sections:

■ Policy Store Properties

■ Credential Store Properties

■ LDAP Identity Store Properties

■ Properties Common to All LDAP-Based Instances

■ Anonymous and Authenticated Roles Properties

■ Trust Service Properties

■ Audit Service Properties

■ Keystore Service Properties

F.2.1 Policy Store Properties
The policy store properties are described in the following sections:

■ Policy Store Configuration

■ Runtime Policy Store Configuration

F.2.1.1 Policy Store Configuration
The policy store provider class that can be used with LDAP- or DB-based instances is
the following:

oracle.seurity.jps.internal.policystore.ldap.LdapPolicyStoreProvider

oracle.security.jps.log.for.permclassname Logs the name of the permission class that matches exactly a
specified name; if the name to match is unspecified, it logs all
permission class names.

Optional.

No default value.

For an example of use and further details, see Section L.1.2.3,
"Debugging the Authorization Process."

oracle.security.jps.log.for.permtarget.substring Logs the name of a permission target that contains a specified
substring; if the substring to match is unspecified, it logs all
permission targets.

Optional.

No default value.

For an example of use and further details, see Section L.1.2.3,
"Debugging the Authorization Process."

oracle.security.jps.log.for.enterprise.principaln
ame

Logs the name of the principal (enterprise user or enterprise role)
that matches exactly a specified name; if the name to match is
unspecified, it logs all principal names.

Optional.

No default value.

For an example of use and further details, see Section L.1.2.3,
"Debugging the Authorization Process."

Table F–1 (Cont.) Java System Properties Used by OPSS

Name Description

OPSS Configuration Properties

OPSS System and Configuration Properties F-5

Table F–2 describes the properties of policy store instances. The properties are listed in
three blocks according to the kind of application they can be used in.

Table F–2 Policy Store Properties

Name Description

The following properties are valid in both Java EE and Java SE applications

bootstrap.security.principal.key The key for the password credentials to access the LDAP policy
store, stored in the CSF store.

Valid in Java EE and Java SE applications.

Applies to LDAP and DB stores.

Required.

No default value.

The out-of-the-box value is bootstrap.

bootstrap.security.principal.map The map for the password credentials to access the LDAP policy
store, stored in the CSF store.

Valid in Java EE and Java SE applications.

Applies to LDAP and DB stores.

Required.

Default value: BOOTSTRAP_JPS.

oracle.security.jps.farm.name The RDN format of the domain node in the LDAP policy store.

Valid in Java EE and Java SE applications.

Applies to LDAP and DB stores.

Required.

No default value.

oracle.security.jps.ldap.root.name The RDN format of the root node in the LDAP policy store.

Valid in Java EE and Java SE applications.

Applies to LDAP and DB stores.

Required.

No default value.

ldap.url The URL of the LDAP policy store, with the format
ldap://host:port.

Valid in Java EE and Java SE applications.

Applies only to LDAP stores.

Required.

No default value.

policystore.type The type of the LDAP policy store.

Valid in Java EE and Java SE applications.

Applies to LDAP and DB stores.

Required.

No default value.

Value examples: OID, DB_ORACLE.

OPSS Configuration Properties

F-6 Oracle Fusion Middleware Application Security Guide

oracle.security.jps.policystore.re
sourcetypeenforcementmode

Controls the throwing of exceptions if any of the following checks
fail:

■ Verify that if two resource types share the same permission
class, that permission must be either ResourcePermission
or extend AbstractTypedPermission, and this last
resource type cannot be created.

■ Verify that all permissions have resource types defined, and
that the resource matcher permission class and the
permission being granted match.

If set to Strict, when any of the above checks fail, the system
throws an exception and the operation is aborted.

If set to Lenient, when any of the above checks fail, the system
does not throw any exceptions, the operation continues without
disruption, and any discrepancies encountered are logged in the
log files.

Valid in Java EE and Java SE applications.

Applies to LDAP and DB stores.

Optional.

Default value: Lenient

Valid values: Strict, Lenient.

jps.change.notifier.file.delay Indicates the frequency, in milliseconds, at which the system
checks the domain files system-jazn-data.xml and
cwallet.sso for changes. (milliseconds).

In production environments, it is recommended a frequency of
about 10 min. (600000 milliseconds). In development
environments, it is recommended a frequency of about 3 min.
(180000 milliseconds).

Default value: 1000

The following properties are valid in Java EE applications only

datasource.jndi.name The JNDI name of the JDBC data source instance.

Valid in only Java EE applications.

Applies to only DB stores.

Required.

No default value.

failover.retry.times The number of retry attempts.

Valid in only Java EE applications.

Applies to only DB stores.

Optional.

Default value: 3

failover.retry.interval The number of seconds between retry attempts.

Valid in only Java EE applications.

Applies to only DB stores.

Optional.

Default value: 15

The following properties are valid in Java SE applications only

Table F–2 (Cont.) Policy Store Properties

Name Description

OPSS Configuration Properties

OPSS System and Configuration Properties F-7

Example 1
The following fragment illustrates the configuration of an LDAP-based policy store
instance for a Java EE application:

<serviceInstance provider="ldap.policystore.provider" name="policystore.ldap">
 <property value="OID" name="policystore.type"/>
 <property value="bootstrap" name="bootstrap.security.principal.key"/>

security.principal The clear text name of the principal to use instead of the user
name specified in the bootstrap. Not recommended.

Valid in only Java SE applications.

Applies to LDAP and DB stores.

Optional.

No default value.

security.credential The clear text password for the security principal to use instead of
the password specified in the bootstrap. Not recommended.

Valid in only Java SE applications.

Applies to LDAP and DB stores.

Optional.

No default value.

jdbc.driver The JDBC driver.

Valid in only Java SE applications.

Applies to only DB stores.

Required.

No default value.

Value example: oracle.jdbc.driver.OracleDriver

jdbc.url The URL of the JBDC.

Valid in only Java SE applications.

Applies to only DB stores.

Required.

No default value.

Value example:
jdbc:oracle:thin:@xxx27.com:1345:asi102cn

eclipselink.jdbc.read-connections.
min

The minimum number of connections allowed in the JDBC read
connection pool.

Valid in only Java SE applications.

Applies to only DB stores.

Optional.

Default value: 5

eclipselink.jdbc.read-connections.
max

The maximum number of connections allowed in the JDBC read
connection pool.

Valid in only Java SE applications.

Applies to only DB stores.

Optional.

Default value: 20

Table F–2 (Cont.) Policy Store Properties

Name Description

OPSS Configuration Properties

F-8 Oracle Fusion Middleware Application Security Guide

 <property value="cn=wls-jrfServer" name="oracle.security.jps.farm.name"/>
 <property value="cn=jpsTestNode" name="oracle.security.jps.ldap.root.name"/>
 <property value="ldap://stadk06.us.oracle.com:3060" name="ldap.url"/>
 <property value="STATIC"
name="oracle.security.jps.policystore.rolemember.cache.type"/>
 <property value="FIFO"
name="oracle.security.jps.policystore.rolemember.cache.strategy"/>
 <property value="1000"
name="oracle.security.jps.policystore.rolemember.cache.size"/>
 <property value="true"
name="oracle.security.jps.policystore.policy.lazy.load.enable"/>
 <property value="PERMISSION_FIFO"
name="oracle.security.jps.policystore.policy.cache.strategy"/>
 <property value="1000"
name="oracle.security.jps.policystore.policy.cache.size"/>
 <property value="true"
name="oracle.security.jps.policystore.refresh.enable"/>
 <property value="43200000"
name="oracle.security.jps.policystore.refresh.purge.timeout"/>
 <property value="600000"
name="oracle.security.jps.ldap.policystore.refresh.interval"/>
</serviceInstance>

Example 2
The following fragment illustrates the configuration of an LDAP-based policy store
instance for a Java SE application:

<serviceInstance name="policystore.oid" provider="policy.oid">
 <property value="OID" name="policystore.type"/>
 <property value="bootstrap" name="bootstrap.security.principal.key"/>
 <property name="ldap.url" value="ldap://sttt:3060"/>
 <property name="oracle.security.jps.ldap.root.name" value="cn=jpsNode"/>
 <property name="oracle.security.jps.farm.name" value="cn=domain1"/>
</serviceInstance>

For additional configurations samples for Java SE applications, see Section 23.1.2,
"Configuring LDAP-Based Policy and Credential Stores."

Example 3
The following fragment illustrates the configuration of DB-based stores (including an
instance of a runtime service provider) for a Java EE application:

<jpsConfig>
...
 <propertySets>
 <!-- property set props.db.1 common to all DB services -->

<propertySet name="props.db.1">
 <property name="datasource.jndi.name" value="opssds"/>
 <property value="cn=farm" name="oracle.security.jps.farm.name"/>
 <property value="cn=jpsroot" name="oracle.security.jps.ldap.root.name"/>

<property value="dsrc_lookup_key"
name="bootstrap.security.principal.key"/>

 <property value="credential_map" name="bootstrap.security.principal.map"/>
</propertySet>

</propertySets>

<serviceProviders>
<serviceProvider
class="oracle.security.jps.internal.policystore.ldap.LdapPolicyStoreProvider"

OPSS Configuration Properties

OPSS System and Configuration Properties F-9

type="POLICY_STORE" name="rdbms.policystore.provider" >
 <description>RDBMS based PolicyStore provider</description>
 </serviceProvider>

<serviceProvider type="KEY_STORE" name="keystore.provider"
class="oracle.security.jps.internal.keystore.KeyStoreProvider">

 <description>PKI Based Keystore Provider</description>
 <property name="provider.property.name" value="owsm"/>
 </serviceProvider>

 <serviceProvider name="pdp.service.provider" type="PDP"

class="oracle.security.jps.az.internal.runtime.provider.PDPServiceProvider">
 <description>OPSS Runtime Service provider</description>

</serviceProvider>
</serviceProviders>

<serviceInstances>
<serviceInstance name="policystore.rdbms"

provider="rdbms.policystore.provider">
<property value="DB_ORACLE" name="policystore.type"/>

 <propertySetRef ref = "props.db.1"/>
<property name="session_expiration_sec" value="60"/>

 <property name="failover.retry.times" value="5"/>
</serviceInstance>

 <serviceInstance name="credstore.rdbms" provider="rdbms.credstore.provider">
 <propertySetRef ref = "props.db.1"/>

</serviceInstance>

<serviceInstance name="keystore.rdbms" provider="rdbms.keystore.provider">
 <propertySetRef ref = "props.db.1"/>
 <property name="keystore.provider.type" value="db"/>
 </serviceInstance>

 <serviceInstance name="pdp.service" provider="pdp.service.provider">

<property name="sm_configuration_name" value="permissionSm"/>
<property name="work_folder" value="../../tempdir/permissionSm-work"/>

 <property name="authorization_cache_enabled" value="true"/>
 <property name="role_cache_enabled" value="true"/>
 <property name="session_eviction_capacity" value="500"/>
 <property name="session_eviction_percentage" value="10"/>

<property name="session_expiration_sec" value="60"/>
 <property name="failover.retry.times" value="5"/>
 <property name="failover.retry.interval" value="20"/>
 <property name="oracle.security.jps.policystore.purge.timeout",

value="30000"/>
<propertySetRef ref = "props.db.1"/>

</serviceInstance>
</serviceInstances>

<jpsContexts default="default">

 <jpsContext name="default">
 <serviceInstanceRef ref="pdp.service"/>
 <serviceInstanceRef ref="policystore.rdbms"/>
 <serviceInstanceRef ref="credstore.rdbms"/>
 <serviceInstanceRef ref="keystore.rdbms"/>
 </jpsContext>
</jpsContexts>

...
</jpsConfig>

OPSS Configuration Properties

F-10 Oracle Fusion Middleware Application Security Guide

Example 4
The following fragment illustrates the configuration of a DB-based policy store
instance for a Java SE application:

<serviceInstance name="policystore.rdbms" provider="policy.rdbms">
 <property name="policystore.type" value="DB_ORACLE"/>
 <property name="jdbc.url" value="jdbc:oracle:thin:@sc.us.oracle.com:1722:orcl"/>
 <property name="jdbc.driver" value="oracle.jdbc.driver.OracleDriver"/>
 <property name="bootstrap.security.principal.key" value="bootstrap_
DWgpEJgXwhDIoLYVZ2OWd4R8wOA=" />
 <property name="oracle.security.jps.ldap.root.name" value="cn=jpsTestNode"/>
 <property name="oracle.security.jps.farm.name" value="cn=view_steph.atz"/>
</serviceInstance>

For additional configurations samples for Java SE applications, see Section 23.1.3,
"Configuring DB-Based OPSS Security Stores."

F.2.1.2 Runtime Policy Store Configuration
The runtime policy store provider class that can be used with LDAP- or DB-based
instances is the following:

oracle.seurity.jps.az.internal.runtime.provider.PDPServiceProvider

Table F–3 lists the runtime properties of policy store instances.

Table F–3 Runtime Policy Store Properties

Name Description

oracle.security.jps.policystore.rolemembe
r.cache.type

The type of the role member cache.

Valid in Java EE and Java SE applications.

Applies to LDAP and DB stores.

Optional.

Valid values:

■ STATIC - Cache objects are statically cached and can
be cleaned explicitly only according the applied
cache strategy, such as FIFO. The garbage collector
does not clean a cache of this type.

■ SOFT - The cleaning of a cache of this type relies on
the garbage collector when there is a memory
crunch.

■ WEAK - The behavior of a cache of this type is
similar to a cache of type SOFT, but the garbage
collector cleans it more frequently.

Default value: STATIC.

OPSS Configuration Properties

OPSS System and Configuration Properties F-11

oracle.security.jps.policystore.rolemembe
r.cache.strategy

The type of strategy used in the role member cache.

Valid in Java EE and Java SE applications.

Applies to LDAP and DB stores.

Optional.

Valid values:

■ FIFO - The cache implements the first-in-first-out
strategy.

■ NONE - All entries in the cache grow until a refresh
or reboot occurs; there is no control over the size of
the cache; not recommended but typically efficient
when the policy footprint is very small.

Default value: FIFO.

oracle.security.jps.policystore.rolemembe
r.cache.size

The number of the roles kept in the member cache.

Valid in Java EE and Java SE applications.

Applies to LDAP and DB stores.

Optional.

Default value: 1000.

oracle.security.jps.policystore.policy.la
zy.load.enable

Enables or disables the policy lazy load.

Valid in Java EE and Java SE applications.

Applies to LDAP and DB stores.

Optional.

Valid values: TRUE, FALSE.

Default value: TRUE.

oracle.security.jps.policystore.policy.ca
che.strategy

The type of strategy used in the permission cache.

Valid in Java EE and Java SE applications.

Applies to LDAP and DB stores.

Optional.

Valid values:

■ PERMISSION_FIFO - The cache implements the
first-in-first-out strategy.

■ NONE - All entries in the cache grow until a refresh
or reboot occurs; there is no control over the size of
the cache; not recommended but typically efficient
when the policy footprint is very small.

Default value: PERMISSION_FIFO.

oracle.security.jps.policystore.policy.ca
che.size

The number of permissions kept in the permission cache.

Valid in Java EE and Java SE applications.

Applies to LDAP and DB stores.

Optional.

Default value: 1000.

Table F–3 (Cont.) Runtime Policy Store Properties

Name Description

OPSS Configuration Properties

F-12 Oracle Fusion Middleware Application Security Guide

oracle.security.jps.policystore.refresh.e
nable

Enables or disables the policy store refresh. If this
property is set, then
oracle.security.jps.ldap.cache.enable
cannot be set.

Valid in Java EE and Java SE applications.

Applies to LDAP and DB stores.

Optional.

Valid values: TRUE, FALSE.

Default value: TRUE.

oracle.security.jps.ldap.cache.enable Enables or disables the refresh of the cache. If this
property is set, then
oracle.security.jps.policystore.refresh.en
able cannot be set.

Valid in Java EE and Java SE applications.

Applies to LDAP and DB stores.

Optional.

Valid values: TRUE, FALSE.

Default value: TRUE.

oracle.security.jps.policystore.purge.tim
eout

The time, in milliseconds, after which the policy store
cache is purged.

Valid in Java EE and Java SE applications.

Applies to LDAP and DB stores.

Optional.

Default value: 43200000 (12 hours).

oracle.security.jps.policystore.refresh.i
nterval

The interval, in milliseconds, at which the policy store is
polled for changes.

Valid in Java EE and Java SE applications.

Applies to LDAP and DB stores.

Optional.

Default value: 600000 (10 minutes).

oracle.security.jps.policystore.refresh.p
ermissions.invalidate.threshold

The number of user’s permissions after which the
permission cache is invalidated.

Valid in Java EE and Java SE applications.

Applies to LDAP and DB stores.

Optional.

Default value: 50.

Table F–3 (Cont.) Runtime Policy Store Properties

Name Description

OPSS Configuration Properties

OPSS System and Configuration Properties F-13

oracle.security.jps.policystore.rolemembe
r.cache.warmup.enable

Controls the way the ApplicationRole membership cache
is created. If set to TRUE, the cache is created at server
startup; otherwise, it is created on demand (lazy
loading).

Set to TRUE when the number of users and groups is
significantly higher than the number of application roles;
set to FALSE otherwise, that is, when the number of
application roles is very high.

Valid in Java EE and Java SE applications.

Applies to LDAP and DB stores.

Optional.

Valid values: TRUE, FALSE.

Default value: FALSE.

work_folder The folder for temporary storage.

Valid in Java EE and Java SE applications.

Applies to XML, LDAP, and DB stores.

Optional.

Default value: the system temporary folder.

authorization_cache_enabled Specifies whether the authorization cache should be
enabled.

Valid in Java EE and Java SE applications.

Applies to XML, LDAP, and DB stores.

Optional.

Valid values: TRUE, FALSE.

Default value: FALSE.

session_eviction_percentage The percentage of sessions to drop when the eviction
capacity is reached.

Valid in Java EE and Java SE applications.

Applies to XML, LDAP, and DB stores.

Optional.

Default value: 10

session_eviction_capacity The maximum number of authorization and role
mapping sessions to maintain. When the maximum is
reached, old sessions are dropped and reestablished
when needed.

Valid in Java EE and Java SE applications.

Applies to XML, LDAP, and DB stores.

Optional.

Default value: 500

session_expiration_sec The number of seconds during which session data is
cached.

Valid in Java EE and Java SE applications.

Applies to XML, LDAP, and DB stores.

Optional.

Default value: 60

Table F–3 (Cont.) Runtime Policy Store Properties

Name Description

OPSS Configuration Properties

F-14 Oracle Fusion Middleware Application Security Guide

F.2.2 Credential Store Properties
Table F–4 lists the properties of credential store instances. The properties are listed in
two blocks according to the kind of application they can be used in.

oracle.security.jps.policystore.resourcet
ypeenforcementmode

Controls the throwing of exceptions if any of the
following checks fail:

■ Verify that if two resource types share the same
permission class, that permission must be either
ResourcePermission or extend
AbstractTypedPermission, and this last
resource type cannot be created.

■ Verify that all permissions have resource types
defined, and that the resource matcher permission
class and the permission being granted match.

If set to Strict, when any of the above checks fail, the
system throws an exception and the operation is aborted.

If set to Lenient, when any of the above checks fail, the
system does not throw any exceptions, the operation
continues without disruption, and any discrepancies
encountered are logged in the log files.

Valid in Java EE and Java SE applications.

Applies to LDAP and DB stores.

Optional.

Default value: Lenient

Valid values: Strict, Lenient.

Table F–4 Credential Store Properties

Name Description

The following properties are valid in Java EE applications only

bootstrap.security.principal.key The key for the password credentials to access the
LDAP credential store, stored in the CSF store.

Valid only in Java EE applications.

Applies to LDAP and DB stores.

Required.

No default value.

The out-of-the-box value is bootstrap.

bootstrap.security.principal.map The map for the password credentials to access the
LDAP credential store, stored in the CSF store.

Valid only in Java EE applications.

Applies to LDAP and DB stores.

Required.

Default value: BOOTSTRAP_JPS.

The following properties are valid in both Java EE and Java SE applications

Table F–3 (Cont.) Runtime Policy Store Properties

Name Description

OPSS Configuration Properties

OPSS System and Configuration Properties F-15

The following fragment illustrates the configuration of a credential store in a Java EE
application:

<serviceInstance provider="ldap.credentialstore.provider" name="credstore.ldap">
 <property value="bootstrap" name="bootstrap.security.principal.key"/>
 <property value="cn=wls-jrfServer" name="oracle.security.jps.farm.name"/>
 <property value="cn=jpsTestNode" name="oracle.security.jps.ldap.root.name"/>
 <property value="ldap://stttt.us.oracle.com:3060" name="ldap.url"/>
 <property value="true" name="encrypt"/>
</serviceInstance>

F.2.3 LDAP Identity Store Properties
Table F–5 lists the properties of LDAP-based identity store instances. Extended
properties are explicitly stated. User and Role API properties corresponding to a
property are also stated.

oracle.security.jps.farm.name The RDN format of the domain node in the LDAP
credential store.

Valid in Java EE and Java SE applications.

Applies to LDAP and DB stores.

Required.

No default value.

oracle.security.jps.ldap.root.name The RDN format of the root node in the LDAP policy
store.

Valid in Java EE and Java SE applications.

Applies to LDAP and DB stores.

Required.

No default value.

ldap.url Specifies the URL of the LDAP credential store using
the format ldap://host:port.

Valid in Java EE and Java SE applications.

Applies only to LDAP stores.

Required.

No default value.

encrypt Specifies whether to encrypt credentials.

Valid in Java EE and Java SE applications.

Applies only to file and LDAP stores.

Valid values: true, false.

Optional.

Default value: false.

See Also: Chapter 7, "Configuring the Identity Store Service".

Table F–4 (Cont.) Credential Store Properties

Name Description

OPSS Configuration Properties

F-16 Oracle Fusion Middleware Application Security Guide

Table F–5 LDAP-Based Identity Store Properties

Name Description

idstore.type The type of the identity store.

Valid in Java SE and Java EE applications.

Required

Valid values:

OID - Oracle Internet Directory

OVD - Oracle Virtual Directory

ACTIVE_DIRECTORY - Microsoft Active Directory

IPLANET - Oracle Directory Server Enterprise Edition

EDIRECTORY - Novell eDirectory

OPEN_LDAP - OpenLdap

LIBOVD - Oracle Library OVD

CUSTOM - Any other type

If using a custom authenticator, the service instance configuration must
include one of the following properties:

<property name="idstore.type" value="<your-idstore-type>"
<property name="ADF_IM_FACTORY_CLASS"
value="<your-IDM-FACTOY_CLASS_NAME>"

Corresponding User and Role API property: ADF_IM_FACTORY_
CLASS

security.principal.alias The CSF map name.

Valid in Java SE and Java EE applications.

Required.

No default value.

Value example: myalias.

security.principal.key The CSF key name.

Valid only in Java SE applications.

Required.

No default value.

Value example: mykey.

Corresponding User and Role API property: ADF_IM_SECURITY_
PRINCIPAL

ldap.url The LDAP URL value.

Valid in Java SE and Java EE applications.

Required.

No default value.

Value example: ldap://myServerName.com:389.

Corresponding User and Role API property: ADF_IM_PROVIDER_
URL

OPSS Configuration Properties

OPSS System and Configuration Properties F-17

user.search.bases The user search base for the LDAP server in DN format. Extended
property.

Valid in Java SE and Java EE applications.

Required.

No default value.

Value example: cn=users,dc=us,dc=abc,dc=com

Corresponding User and Role API property: USER_SEARCH_BASES

group.search.bases The group or enterprise search base for the LDAP server in DN format.
Extended property.

Valid in Java SE and Java EE applications.

Required

No default value.

Value example: cn=groups,dc=us,dc=abc,dc=com

Corresponding User and Role API property: ROLE_SEARCH_BASES

idstore.config.provider The idstore provider class.

Valid only in Java EE applications.

Required

The only supported value is:

oracle.security.jps.wls.internal.idstore.WlsLdapIdStoreConfig
Provider

group.create.bases The base DNs used to create groups or enterprise roles. Extended
property.

Valid in Java EE and Java SE applications.

Required to allow writing operations with the User and Role API.
Otherwise, optional.

Value example of a single DN:

<extendedProperty>
 <name>group.create.bases</name>
 <values>
 <value>cn=groups,dc=us,dc=oracle,dc=com</value>
 </values>
</extendedProperty>

Corresponding User and Role API property: ROLE_CREATE_BASES

user.create.bases The base DNs used to create users. Extended property.

Valid in Java EE and Java SE applications.

Required to allow writing operations with the User and Role API.
Otherwise, optional.

Value example of a single DN:

<extendedProperty>
 <name>user.create.bases</name>
 <values>
 <value>cn=users,dc=us,dc=oracle,dc=com</value>
 </values>
</extendedProperty>

Corresponding User and Role API property: USER_CREATE_BASES

Table F–5 (Cont.) LDAP-Based Identity Store Properties

Name Description

OPSS Configuration Properties

F-18 Oracle Fusion Middleware Application Security Guide

group.filter.object.clas
ses

The fully qualified names of object classes used to search enterprise
roles and groups. Extended property.

Valid in Java EE and Java SE applications.

Optional.

Value example: groupOfUniqueNames.

Corresponding User and Role API property: ROLE_FILTER_OBJECT_
CLASSES

group.mandatory.attrs The attributes that must be specified when creating enterprise roles or
groups. Extended property.

Valid in Java EE and Java SE applications.

Optional.

Value example:

<extendedProperty>
 <name>group.mandatory.attrs</name>
 <values>
 <value>cn</value>
 <value>objectClass</value>
 </values>
</extendedProperty>

Corresponding User and Role API property: ROLE_MANDATORY_
ATTRS

group.member.attrs The attribute of a static role that specifies the distinguished names
(DNs) of the members of an enterprise role or group. Extended
property.

Valid in Java EE and Java SE applications.

Optional.

Value example:

<extendedProperty>
 <name>group.member.attrs</name>
 <values>
 <value>uniqueMember</value>
 </values>
</extendedProperty>

Corresponding User and Role API property: ROLE_MEMBER_ATTRS

group.object.classes The fully qualified names of one or more schema object classes used to
represent enterprise roles or groups. Extended property.

Valid in Java EE and Java SE applications.

Optional.

Value example:

<extendedProperty>
 <name>group.object.classes</name>
 <values>
 <value>top</value>
 <value>groupOfUniqueNames</value>
 </values>
</extendedProperty>

Corresponding User and Role API property: ROLE_OBJECT_CLASSES

Table F–5 (Cont.) LDAP-Based Identity Store Properties

Name Description

OPSS Configuration Properties

OPSS System and Configuration Properties F-19

group.selected.create.ba
se

The base DNs for creating enterprise roles or groups.

Valid in Java EE and Java SE applications.

Optional.

Value example: cn=users,dc=us,dc=abc,dc=com (single DN)

Corresponding User and Role API property: ROLE_SELECTED_
CREATEBASE

groupname.attr The attribute that uniquely identifies the name of the enterprise role or
group.

Valid in Java EE and Java SE applications.

Optional.

Value example: cn

Corresponding User and Role API property: ROLE_NAME_ATTR

group.selected.search.ba
se

The base DNs for searching enterprise roles or groups.

Valid in Java EE and Java SE applications.

Optional.

Value example: cn=users,dc=us,dc=abc,dc=com (single DN)

max.search.filter.length The maximum number of characters of the search filter.

Valid in Java EE and Java SE applications.

Optional.

Value: a positive integer.

Corresponding User and Role API property: MAX_SEARCHFILTER_
LENGTH

search.type The type of search to employ when the repository is queried.

Valid in Java EE and Java SE applications.

Optional.

Valid values: SIMPLE, PAGED, or VIRTUAL_LIST_VIEW.

Corresponding User and Role API property: IDENTITY_SEARCH_
TYPE

user.filter.object.class
es

The fully qualified names of object classes used to search users.
Extended property.

Valid in Java EE and Java SE applications.

Optional.

Value example: inetOrgPerson

Corresponding User and Role API property: USER_FILTER_OBJECT_
CLASSES

user.login.attr The login identity of the user.

Valid in Java EE and Java SE applications.

Optional.

Value example:

 <property name="user.login.attr" value="mail"/>

Corresponding User and Role API property: USER_LOGIN_ATTR

Table F–5 (Cont.) LDAP-Based Identity Store Properties

Name Description

OPSS Configuration Properties

F-20 Oracle Fusion Middleware Application Security Guide

user.mandatory.attrs The attributes that must be specified when creating a user. Extended
property.

Valid in Java EE and Java SE applications.

Optional.

Value example:

<extendedProperty>
 <name>user.mandatory.attrs</name>
 <values>
 <value>cn</value>
 <value>objectClass</value>
 <value>sn</value>
 </values>
</extendedProperty>

Corresponding User and Role API property: USER_MANDATORY_
ATTRS

user.object.classes The fully qualified names of the schema classes used to represent users.
Extended property.

Valid in Java EE and Java SE applications.

Optional.

Corresponding User and Role API property: USER_OBJECT_CLASSES

username.attr The LDAP attribute that uniquely identifies the name of the user.

Valid in Java EE and Java SE applications.

Optional.

Corresponding User and Role API property: USER_NAME_ATTR

ldap.host The name of the system hosting the identity store.

Valid in Java EE and Java SE applications.

Optional.

subscriber.name The default realm for the identity store.

Valid in Java EE and Java SE applications.

Optional.

Value example: dc=us,dc=oracle,dc=com.

Corresponding User and Role API property: ADF_IM_SUBSCRIBER_
NAME

virtualize Controls the authenticators where search and modifications are
allowed; if set to TRUE, searching and modifying is available in all
configured authenticators; otherwise, if set to FALSE, searching and
modifying is available in only the first authenticator in the configured
stack.

Set to TRUE if you intend to use the User and Role API to search or
write information in all authenticators.

Valid in Java EE and Java SE applications.

Optional.

Valid values: TRUE or FALSE.

Default value: FALSE.

Value example:

 <property name="virtualize" value="true"/>

Table F–5 (Cont.) LDAP-Based Identity Store Properties

Name Description

OPSS Configuration Properties

OPSS System and Configuration Properties F-21

The following fragment illustrates the configuration of an LDAP-based identity store
for a Java SE application:

<serviceInstance name="idstore.ldap" provider="idstore.ldap.provider">
 <property name="idstore.type" value="OID"/>
 <property name="security.principal.alias" value="MAP_NAME"/>
 <property name="security.principal.key" value="KEY_NAME"/>
 <property name="ldap.url" value="ldap://stadk06:3060"/>
 <extendedProperty>
 <name>user.search.bases</name>
 <values>
 <value>cn=users,dc=us,dc=oracle,dc=com</value>
 </values>
 </extendedProperty>
 <extendedProperty>
 <name>group.search.bases</name>
 <values>
 <value>cn=groups,dc=us,dc=oracle,dc=com</value>
 </values>
 </extendedProperty>
</serviceInstance>

F.2.4 Properties Common to All LDAP-Based Instances
Table F–6 lists generic properties of LDAP-based stores that can be specified in any
service instance.

In the case of an LDAP-based identity store service instance, to ensure that the User
and Role API picks up the connection pool properties when it is using the JNDI
connection factory, the identity store service instance must include the following
property:

<property
name="INITIAL_CONTEXT_FACTORY" value="com.sun.jndi.ldap.LdapCtxFactory"/>

Note: If the authenticator attribute username is changed (because,
for example, of post-provisioning or migrating from a test to a
production environment), then the identity store service parameter
username.attr in the identity store service must also be changed
accordingly. Those two values should be kept equal.

OPSS Configuration Properties

F-22 Oracle Fusion Middleware Application Security Guide

The following fragment illustrates a configuration of several properties:

<jpsConfig ... >
 ...
 <!-- common properties used by all LDAPs -->
 <property name="oracle.security.jps.farm.name" value="cn=OracleFarmContainer"/>

Table F–6 Generic LDAP Properties

Name Description

connection.pool.authentication Specifies the type of LDAP connection that the JNDI
connection pool uses.

Valid in Java EE and Java SE applications.

Optional.

Values: none, simple, and DIGEST-MD5.

Default value: simple.

connection.pool.max.size Specifies the maximum number of connections in the
LDAP connection pool.

Valid in Java EE and Java SE applications.

Optional.

Value example: 30

connection.pool.min.size Specifies the minimum number of connections in the
LDAP connection pool.

Valid in Java EE and Java SE applications.

Optional.

Value example: 5

connection.pool.protocol Specifies the protocol to use for the LDAP
connection.

Valid in Java EE and Java SE applications.

Optional.

Values: plain, ssl.

Default value: plain.

connection.pool.provider.type Specifies the connection pool to use.

Valid in Java EE and Java SE applications.

Optional.

Values: JNDI, IDM.

Default value: JNDI.

connection.pool.timeout Specifies the number of milliseconds that an idle
connection can remain in the pool; after timeout, the
connection is closed and removed from the pool.

Valid in Java EE and Java SE applications.

Optional.

Default value: 300000 (5 minutes)

oracle.security.jps.ldap.max.retry Specifies the maximum number of retry attempts if
there are problems with the LDAP connection.

Valid in Java EE and Java SE applications.

Optional.

Value example: 5

OPSS Configuration Properties

OPSS System and Configuration Properties F-23

 <property name="oracle.security.jps.ldap.root.name"
 value="cn=OracleJpsContainer"/>
 <property name="oracle.security.jps.ldap.max.retry" value="5"/>
 ...
</jpsConfig>

F.2.5 Anonymous and Authenticated Roles Properties
Table F–7 lists the properties that can be used to configure file-, LDAP-, or DB-based
anonymous users, anonymous roles, and authenticated roles.

Table F–7 Anonymous and Authenticated Roles Properties

Name Description

anonymous.role.description Specifies a description of the anonymous role.

Valid in Java EE and Java SE applications.

Optional.

No default value.

anonymous.role.name Specifies the name of the principal in the anonymous
role.

Valid in Java EE and Java SE applications.

Optional.

Default value: anonymous-role

anonymous.role.uniquename Specifies the name of the anonymous role.

Valid in Java EE and Java SE applications.

Optional.

Default value: anonymous-role

anonymous.user.name Specifies the name of the principal in the anonymous
user.

Valid in Java EE and Java SE applications.

Optional.

Default value: anonymous

authenticated.role.description Specifies a description of the authenticated role.

Valid in Java EE and Java SE applications.

Optional.

No default value.

authenticated.role.name Specifies the name of the principal in authenticated
user roles.

Valid in Java EE and Java SE applications.

Optional.

Default value: authenticated-role

authenticated.role.uniquename Specifies the name of the authenticated role.

Valid in Java EE and Java SE applications.

Optional.

Default value: authenticated-role

OPSS Configuration Properties

F-24 Oracle Fusion Middleware Application Security Guide

F.2.6 Trust Service Properties
Table F–8 lists the properties that can be used to configure the trust service.

The following sample illustrates the configuration of a trust service:

<propertySet name="trust.provider.embedded">
 <property name="trust.provider.className"

remove.anonymous.role Specifies whether the anonymous role should be
removed from the subject after a user is authenticated.

Valid in Java EE and Java SE applications.

Optional.

Valid values: TRUE, FALSE.

Default value: FALSE.

Table F–8 Trust Service Properties

Name Description

trust.aliasName Specifies the alias to use to get an X.509 certificate and
private key from the keystore.

Valid in Java EE and Java SE applications.

Optional.

Default: the name of the WLS domain of the WAS cell.

trust.issuerName Specifies the name to be included in the token. It is
used by the destination trust service to pick up and
validate the token.

Valid in Java EE and Java SE applications.

Optional.

Default: the name of the WLS domain of the WAS cell.

trust.csf.map Specifies the map of the credential to access the
keystore.

Valid in Java EE and Java SE applications.

Optional.

Default: the value of the keystore instance property
keystore.csf.map.

trust.csf.keystorePass Specifies the key of the credential to access the private
key (the map is set by trust.csf.map).

Valid in Java EE and Java SE applications.

Optional.

Default: the value of the keystore instance property
keystore.pass.csf.key.

trust.csf.keyPass Specifies the key of the credential to acces the keystore
(the map is set by trust.csf.map).

Valid in Java EE and Java SE applications.

Optional.

Default: the value of the keystore instance property
keystore.sig.csf.key.

Table F–7 (Cont.) Anonymous and Authenticated Roles Properties

Name Description

OPSS Configuration Properties

OPSS System and Configuration Properties F-25

value="oracle.security.jps.internal.trust.provider.embedded.EmbeddedProviderImpl"/
>
 <property name="trust.clockSkew" value="60"/>
 <property name="trust.token.validityPeriod" value="1800"/>
 <property name="trust.token.includeCertificate" value="false"/>
 <property name="trust.aliasName" value="orakey"/>
 <property name="trust.issuerName" value="orakey"/>
 <property name="trust.csf.map " value="my-csf-map"/>
 <property name="trust.csf.keystorePass" value="my-keystore-csf-key"/>
 <property name="trust.csf.keypass" value="my-signing-csf-key"/>
</propertySet>

F.2.7 Audit Service Properties
Table F–9 lists the properties used to configure the audit service:

Table F–9 Audit Service Properties

Property Description Required? Values Default Value

auditstore.type The audit metadata store type yes file, ldap, or db file

audit.filterPreset The level of auditing - None, Low,
Medium, and Custom

no None, Low,
Medium, or All

None

audit.customEvents For Custom, a list of audit events that
should be audited. The events must be
qualified using the component type.
Commas separate events and a
semicolon separates component types.

Example:

JPS:CheckAuthorization,
CreateCredential; OIF:UserLogin

no

audit.specialUsers list of one or more users whose activity
is always audited, even if filterPreset is
None.

Usernames that contain commas must
be escaped properly. For example, when
using Fusion Middleware Control,
specify three users like this - "admin,
fmwadmin,
cn=test\,cn=user\,ou:ST\,L=RS\,c=is\,
"

In WLST, the backslash "\" should also
be escaped. For example:

setAuditPolicy(addSpecialUsers="cn
=orcladmin\\\,cn=com")

For more information, see Section C.4.3,
"setAuditPolicy".

no

audit.maxDirSize Controls the size of the directory where
the audit files will be written. Integer is
in Bytes.

no 102400000

audit.maxFileSize Controls the size of a bus stop file where
audit events are written. Integer is in
Bytes

no 104857600

audit.loader.interval Controls the frequency with which audit
loader uploads to database. Integer is in
Seconds.

no 15 seconds

OPSS Configuration Properties

F-26 Oracle Fusion Middleware Application Security Guide

The following is an example of audit service configuration:

<serviceInstance name="audit" provider="audit.provider"
location="./audit-store.xml">
 <property name="audit.filterPreset" value="None"/>
 <property name="audit.loader.jndi" value="jdbc/AuditDB"/>
 <property name="audit.loader.repositoryType" value="File" />
 <property name="auditstore.type" value="file"/>
 </serviceInstance>

F.2.8 Keystore Service Properties
Table F–10 lists the properties used to configure the Keystore Service:

audit.loader
.repositoryType

Store type for the audit events. If type is
Database (Db), also define
audit.loader.jndi or JDBC property.

yes File, DB File

audit.loader.jndi JNDI name of the data source in
application servers for uploading audit
events into database.

no jdbc/AuditDB

audit.db.principal.map
/
audit.db.principal.key

The map and key for the JDBC user
name and password credential in
bootstrap credential store,when running
in JavaSE, and repositoryType is DB.

no

audit.loader.jdbc.string The JDBC string for JDBC connection
when running in JavaSE, and
repositoryType is DB.

no

audit.logDirectory The base directory for bus-stop files. required
for JavaSE

jse

Table F–10 Keystore Service Properties

Property Description Required? Values Default

keystore.provider.type Keystore repository type Yes file, ldap, db file

keystore.file.path Location of the file keystores.xml
when file provider is configured

Yes, if a
file-based
keystore
provider is
configured.

- ./

ca.key.alias Key alias within "system/castore" of
the third party CA used for Keystore
service instance

No - -

location Location of the keystore; can be
absolute or relative path.

Yes, if
keystore.type is
JKS.No, if
keystore.type is
PKCS11 or
HSM (LunaSA)

Path to
keystore

./default-keysto
re.jks

keystore.type Type of keystore Yes JKS, PKCS11,
Luna

JKS

keystore.csf.map Credential store map name used by
Oracle Web Services Manager.

Yes Credential
store map
name

oracle.wsm.secu
rity

Table F–9 (Cont.) Audit Service Properties

Property Description Required? Values Default Value

OPSS Configuration Properties

OPSS System and Configuration Properties F-27

The following is an example of Keystore Service configuration for a file-based
provider :

 <serviceInstance name="keystore" provider="keystore.provider"
location="./default-keystore.jks">

 <description>Default JPS Keystore Service</description>
 <property name="keystore.provider.type" value="file"/>
 <property name="keystore.file.path" value="./"/>
 <property name="keystore.type" value="JKS"/>
 <property name="keystore.csf.map" value="oracle.wsm.security"/>
 <property name="keystore.pass.csf.key" value="keystore-csf-key"/>
 <property name="keystore.sig.csf.key" value="sign-csf-key"/>
 <property name="keystore.enc.csf.key" value="enc-csf-key"/>
 </serviceInstance>

The following is an example of Keystore Service configuration for an LDAP-based
provider :

<serviceInstance name="keystore" provider="keystore.provider"
location="./default-keystore.jks">

 <description>Default JPS Keystore Service</description>
 <property name="keystore.provider.type" value="ldap"/>
 <property name="keystore.type" value="JKS"/>
 <property name="keystore.csf.map" value="oracle.wsm.security"/>
 <property name="keystore.pass.csf.key" value="keystore-csf-key"/>
 <property name="keystore.sig.csf.key" value="sign-csf-key"/>
 <property name="keystore.enc.csf.key" value="enc-csf-key"/>
<property value="bootstrap" name="bootstrap.security.principal.key"/>
<property value="cn=wls-jrfServer" name="oracle.security.jps.farm.name"/>
<property value="cn=jpsTestNode" name="oracle.security.jps.ldap.root.name"/>
<property value="ldap://stadk06.us.oracle.com:3060" name="ldap.url"/>
</serviceInstance>

The following is an example of Keystore Service configuration for an RDBMS-based
provider :

<propertySet name="props.db.1">
 <property name="datasource.jndi.name" value="opssds"/>
 <property value="cn=farm" name="oracle.security.jps.farm.name"/>
 <property value="cn=jpsroot" name="oracle.security.jps.ldap.root.name"/>
 <property value="dsrc_lookup_key"
 name="bootstrap.security.principal.key"/>
 <property value="credential_map" name="bootstrap.security.principal.map"/>

keystore.pass.csf.key Credential store key that points to
Keystore password.

Yes, for JKS
and PKCS11.
No, for HSM

Credential
store csf key
name

keystore-csf-key

keystore.sig.csf.key Credential store key name that points
to alias and password of signing key
in keystore.For HSM, it is the direct
key alias name rather than the
credential store key name.

Yes Credential
store csf key
name or, for
HSM, the
direct alias

sign-csf-key

keystore.enc.csf.key Credential store key name that points
to alias and password of encryption
key in keystore.For HSM, it is the
direct key alias name rather than the
credential store key name.

Yes Credential
store csf key
name or, for
HSM, the
direct alias

enc-csf-key

Table F–10 (Cont.) Keystore Service Properties

Property Description Required? Values Default

OPSS Configuration Properties

F-28 Oracle Fusion Middleware Application Security Guide

 </propertySet>

…
…
<serviceInstance name="keystore.rdbms" provider="keystore.provider"

location="./default-keystore.jks">
 <propertySetRef ref = "props.db.1"/>
 <property name="keystore.provider.type" value="db"/>
 <property name="keystore.type" value="JKS"/>
 <property name="keystore.csf.map" value="oracle.wsm.security"/>
 <property name="keystore.pass.csf.key" value="keystore-csf-key"/>
 <property name="keystore.sig.csf.key" value="sign-csf-key"/>
 <property name="keystore.enc.csf.key" value="enc-csf-key"/>
</serviceInstance>

G

Upgrading Security Data G-1

GUpgrading Security Data

This appendix describes several procedures to update security data. Specifically, it
describes how to upgrade security data from a major release (10.1.3.x) to a major
release (11.1.1), and how to upgrade data from a minor release (11g OPSS PS1, PS2,
PS3 or PS4) to 11g OPSS PS5, in the following sections:

■ Upgrading with upgradeSecurityStore

■ Upgrading Policies with upgradeOpss

For an overview and details about Identity Management upgrade, see Oracle Fusion
Middleware Upgrade Guide for Oracle Identity Management.

G.1 Upgrading with upgradeSecurityStore
The OPSS script upgradeSecurityStore is used only to upgrade application
security data from a previous major release (such as 10.1.1.3) to more recent one (such
as 11.1.1.1). To upgrade between minor 11g releases, use upgradeOpss as described
in section Upgrading Policies with upgradeOpss.

If the target of the upgrading is an LDAP-based repository, then some setting up
before running the script is required, as described in Section 8.2.2, "Prerequisites to
Using an LDAP-Based Security Store."

The script is offline, that is, it does not require a connection to a running server to
operate, and can be run in interactive mode or in script mode, on WebLogic, and in
interactive mode only, on WebSphere. In interactive mode, you enter the script at a
command-line prompt and view the response immediately after. In script mode, you
write scripts in a text file and run it without requiring input, much like the directives
in a shell script.

For platform-specific requirements to run an OPSS script, see Important Note.

Script and Interactive Modes Syntaxes
The script syntax varies depending on the type of store being upgraded. Optional
arguments are enclosed in square brackets; arguments in script mode syntax are
written in separate lines for clarity of exposition.

If upgrading from 11gR1 to 11gR1 PS1: For details about this
upgrade combination, see section Special Instructions for Oracle
Fusion Middleware 11g Release 1 (11.1.1.1.0) in Oracle Fusion
Middleware Installation Planning Guide.

Upgrading with upgradeSecurityStore

G-2 Oracle Fusion Middleware Application Security Guide

To upgrade 10.1.3.x XML identity data to 11g Release 1 (11.1.1) XML identity data, use
either of the following syntaxes:

updateSecurityStore -type xmlIdStore
 -jpsConfigFile jpsConfigFileLocation
 -srcJaznDataFile srcJazn
 -srcRealm jaznRealm
 [-dst dstJpsContext]

updateSecurityStore(type="xmlIdStore", jpsConfigFile="jpsConfigFileLocation",
srcJaznDataFile="srcJazn", srcRealm="jaznRealm", [dst="dstJpsContext"])

To upgrade a 10.1.3.x XML policy data to 11g Release 1 (11.1.1) XML policy data, use
either of the following syntaxes:

updateSecurityStore -type xmlPolicyStore
 -jpsConfigFile jpsConfigFileLocation
 -srcJaznDataFile srcJazn
 [-dst dstJpsContext]

updateSecurityStore(type="xmlPolicyStore", jpsConfigFile="jpsConfigFileLocation",
srcJaznDataFile="srcJazn", [dst="dstJpsContext"])

To upgrade a 10.1.3.x Oracle Internet DirectoryLDAP-based policy data to 11g Release
1 (11.1.1) XML policy data, use either of the following syntaxes:

updateSecurityStore -type oidPolicyStore
 -jpsConfigFile jpsConfigFileLocation
 -srcJaznConfigFile srcJazn
 [-dst dstJpsContext]

updateSecurityStore(type="oidPolicyStore", jpsConfigFile="jpsConfigFileLocation",
srcJaznConfigFile="srcJazn", [dst="dstJpsContext"])

To upgrade file-based application policies from release 11.1.1.1.0 to release 11.1.1.2.0,
use either of the following syntaxes:

updateSecurityStore -type xmlAppPolicies
 -srcApp applicationStripeName
 -jpsConfigFile jpsConfigFileLocation
 -srcJaznDataFile srcJazn

-dstJaznDataFile dstJazn
-resourceTypeFile resTypeJazn

updateSecurityStore(type="xmlAppPolicies", srcApp="applicationStripeName",
jpsConfigFile="jpsConfigFileLocation", srcJaznDataFile="srcJazn",
dstJaznDataFile="dstJazn", srcJaznDataFile="resTypeJazn")

To upgrade 11.1.1.1.0 application policies to 11.1.1.2.0 format, use either of the
following syntaxes:

updateSecurityStore -type appPolicies
 -srcApp applicationStripeName
 -jpsConfigFile jpsConfigFileLocation

-dst dstContext
[-resourceTypeFile resTypeJazn]

updateSecurityStore(type="appPolicies", srcApp="applicationStripeName",
jpsConfigFile="jpsConfigFileLocation", dst="dstContext" [,
resourceTypeFile="resTypeJazn"])

Upgrading with upgradeSecurityStore

Upgrading Security Data G-3

This upgrade works in-place and involves the creation of specified resource types and
resources corresponding to permissions in the grants.

Once the run completes, the policy store pointed to by the context passed in dst in the
configuration file passed in jpsConfigFile has new resource types and new
resources defined for application passed in srcApp. The resource types are read from
the file specified in resourceTypeFile and resources are created corresponding to
permissions in the application grants.

The meaning of the arguments is as follows:

■ type specifies the kind of security data being upgraded. The only valid values are
xmlIdStore, xmlPolicyStore, oidPolicyStore, xmlCredStore, xmlAppPolicies, and
appPolicies.

■ jpsConfigFile specifies the location of a configuration file jps-config.xml
relative to the directory where the script is run. The target store of the upgrading
is read from the context specified with the argument dst.

In case the type is xmlAppPolicies, the configuration file is not used to point to
neither source nor destination, but to configure the audit service only. Note that
the location must be passed even when the audit service is not specified in the
jps-config.xml file.

■ srcJaznDataFile specifies the location of a 10.1.3.x jazn-data.xml file relative to
the directory where the script is run. This argument is required if the specified
type is xmlIdStore, xmlPolicyStore, or xmlCredStore.

In case the specified type is xmlAppPolicies, it specifies the location of the
application 11.1.1.1.0 jazn-data.xml file, a file that does not include resource type
specifications.

■ srcJaznConfigFile specifies the location of a 10.1.3.x jazn configuration file
relative to the directory where the script is run. This argument is required if the
specified type is oidPolicyStore.

■ users specifies a comma-delimited list of users each formatted as
realmName/userName. This argument is required if the specified type is
xmlCredStore.

■ srcRealm specifies the name of a realm in the file passed to the argument
srcJaznDataFile that identifies the identities to be migrated. This argument is
required if the specified type is xmlIdStore.

■ dst specifies the name of a jpsContext in the file passed to the argument
jpsConfigFile where the destination store is configured. Optional. If
unspecified, it defaults to the default jpsContext.

■ srcApp specifies the application stripe. It should match the application name
present in the files srcJaznDataFile and resourceTypeFile. A stripe with
this name is created in the file dstJaznDataFile.

■ dstJaznDataFile specifies the location of the application 11.1.1.2.0
jazn-data.xml file. This file includes resource type and resource instance
specifications and is the replacement for the original jazn-data.xml specified in
srcJaznDataFile.

■ resourceTypeFile specifies the location of the 11.1.1.2.0 jazn-data.xml file
which includes resource type specifications.

■ dst specifies the destination context that points to the policy store to update.

Upgrading with upgradeSecurityStore

G-4 Oracle Fusion Middleware Application Security Guide

G.1.1 Examples of Use
The following sections contain examples that illustrate the use of the script
upgradeSecurityStore in different scenarios:

■ Example 1 - Upgrading Identities

■ Example 2 - Upgrading to File-Based Policies

■ Example 3 - Upgrading to Oracle Internet Directory LDAP-Based Policies

■ Example 4 - Upgrading File-Based Policies to Use the Resource Catalog

G.1.1.1 Example 1 - Upgrading Identities
The following invocation illustrates the migration of 10.1.3 file-based identities to an
11g Release 1 (11.1.1) file-based identity store:

upgradeSecurityStore -type xmlIdStore
 -jpsConfigFile jps-config-idstore.xml
 -srcJaznDataFile jazn-data.xml
 -srcRealm jazn.com

This use of the script assumes that: (a) the files jps-config-idstore.xml and
jazn-data.xml are located in the directory where the script is run; (b) the default
jpsContext in the file jps-config-idstore.xml references the target identity store;
and (c) the file jazn-data.xml contains a realm named jazn.com.

Here are the relevant excerpts of the two files involved in the use sample above:

<!-- excerpt from file jps-config-idstore.xml -->
<serviceProviders>
 <serviceProvider name="R11idstore"
class="oracle.security.jps.internal.idstore.xml.XmlIdentityStoreProvider"
type="IDENTITY_STORE">
 <description>11g XML-based IdStore</description>
 </serviceProvider>
</serviceProviders>
...
<serviceInstances>
 <serviceInstance name="idstore.xml1" provider="R11idstore"
location="./jazn-data-11.xml">
 <property name="subscriber.name" value="jazn.com"/>
 <property name="jps.xml.idstore.pwd.encoding" value="OBFUSCATE"/>
 </serviceInstance>
</serviceInstances>
...
<jpsContexts default="default">
 <jpsContext name="default">
 <serviceInstanceRef ref="idstore.xml1" />
 </jpsContext>
</jpsContexts>

<!-- excerpt from jazn-data.xml -->
<jazn-realm>
 <realm>
 <name>jazn.com</name>
 <users> ... </users>
 <roles> ... </roles>
 </realm>
</jazn-realm>

Upgrading with upgradeSecurityStore

Upgrading Security Data G-5

Thus, the sample invocation above migrates every user in the element <users>, to the
XML identity store R11idStore.

G.1.1.2 Example 2 - Upgrading to File-Based Policies
The following invocation illustrates the migration of a 10.1.3 file-based policy store to
an 11g Release 1 (11.1.1) policy store:

upgradeSecurityStore -type xmlPolicyStore
 -jpsConfigFile jps-config.xml
 -srcJaznDataFile jazn-data.xml
 -dst destContext

This use of the script assumes that: the files jps-config.xml and jazn-data.xml
are located in the directory where the script is run; and the file jps-config.xml
contains a jpsContext named destContext.

Here are the relevant excerpts of the two files involved in the use sample above:

<!-- excerpt from file jps-config.xml -->
<serviceProviders>
 <serviceProvider type="POLICY_STORE" name="policystore.xml.provider"
class="oracle.security.jps.internal.policystore.xml.XmlPolicyStoreProvider">
 <description>R11 XML-based PolicyStore Provider</description>
 </serviceProvider>
</serviceProviders>
...
<serviceInstances>
 <serviceInstance name="policystore1.xml" provider="policystore.xml.provider">
 <property name="R11PolStore" value="jazn-data1.xml"/>
</serviceInstance>
...
<jpsContexts default="default1">
 <jpsContext name="default1"> ... </jpsContext>
 <jpsContext name="destContext">
 ...
 <serviceInstanceRef ref="policystore1.xml"/>
 </jpsContext>
</jpsContexts>

<!-- excerpt from jazn-data.xml -->
<jazn-realm>
 <realm>
 ...
 <roles> ... </roles>
 </realm>
</jazn-realm>
...
<jazn-policy> ... </jazn-policy>

Thus, the sample invocation above migrates every role in the element <roles> and
every policy in the element <jazn-policy> to the XML policy store R11PolStore.

G.1.1.3 Example 3 - Upgrading to Oracle Internet Directory LDAP-Based Policies
The following invocation illustrates the upgrading of a 10.1.4 Oracle Internet Directory
LDAP-based policy store to an 11g Release 1 (11.1.1) Oracle Internet Directory
LDAP-based policy store:

upgradeSecurityStore -type oidPolicyStore
 -jpsConfigFile jps-config.xml

Upgrading with upgradeSecurityStore

G-6 Oracle Fusion Middleware Application Security Guide

 -srcJaznConfigFile jazn.xml
 -dst destContext

The assumptions about the location of the two XML files involved in this example are
similar to those in Example 2. In addition, it is assumed that (a) the file
jps-config.xml contains the jpsContext destContext that points to the target
Oracle Internet Directory LDAP-based policy store; and (b) the file jazn.xml
describes the location of the Oracle Internet Directory LDAP server from where the
policies are migrated.

Here is the relevant excerpt from the file jazn.xml:

<jazn provider="LDAP" location="ldap://myCompany.com:3843">
 <property name="ldap.user" value="cn=orcladmin"/>
 <property name="ldap.password" value="!welcome1"/>
 <property name="ldap.protocol" value="no-ssl"/>
 <property name="ldap.cache.policy.enable" value="false"/>
 <property name="ldap.initctx" value="com.sun.jndi.ldap.LdapCtxFactory"/>
</jazn>

G.1.1.4 Example 4 - Upgrading File-Based Policies to Use the Resource Catalog
The following invocation upgrades an application 11.1.1.1.0 file-based policy store to
an application 11.1.1.2.0 file-based policy store.

updateSecurityStore -type xmlAppPolicies
 -srcApp PolicyServlet1
 -jpsConfigFile ./folder/jps-config.xml
 -srcJaznDataFile ./11.1.1.1.0/jazn-data.xml

-dstJaznDataFile ./11.1.1.2.0/final-jazn-data.xml
-resourceTypeFile ./resCat/res-jazn-data.xml

The point of this upgrade is that the original 11.1.1.1.0 file does not use resource
catalog elements, but the resulting 11.1.1.2.0 file does use resource type and resource
instance elements.

The script basically takes the original application configuration file, along with another
file specifying resource type elements, and it produces a new application configuration
file that contains policies as in the original file, but modified to use resource catalog
specifications.

The original and the new application configuration files provide identical behavior to
the application.

The above invocation assumes that:

■ The source file ./11.1.1.1.0/jazn-data.xml contains policies for the
application PolicyServlet1.

■ The resource type file ./resCat/res-jazn-data.xml contains resource type
specifications for the application PolicyServlet1.

■ The configuration file ./folder/jps-config.xml is any valid configuration
file that may or may not use an audit service instance. In any case, it must be
specified.

The following samples illustrate the relevant portions of three data files: the input
source jazn-data.xml and resource res-jazn-data.xml, and the output
final-jazn-data.xml.

Input Source File jazn-data.xml
<policy-store>

Upgrading with upgradeSecurityStore

Upgrading Security Data G-7

 <applications>
 <application>
 <name>PolicyServlet1</name>
 <app-roles>
 <app-role>

<name>myAppRole2</name>
 <display-name>application role myAppRole</display-name>
 <members>
 <member>
 <class>
oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>myAppRole</name>
 </member>
 </members>
 </app-role>
 <app-role>
 <name>myAppRole</name>
 <display-name>application role myAppRole</display-name>

<members>
<member>

 <class>
oracle.security.jps.internal.core.principals.JpsXmlEnterpriseRoleImpl</class>

<name>developers</name>
</member>

</members>
</app-role>

 <app-role>
 <name>testrole_DATA</name>
 <display-name>application role test</display-name>
 <members>

<member>
<class>

oracle.security.jps.internal.core.principals.JpsXmlEnterpriseRoleImpl</class>
<name>test-entrole</name>

</member>
</members>

</app-role>
<app-role>
<name>myAppRole_PRIV</name>
<display-name>application role private</display-name>
<description>app role private description</description>
<members>
<member>
<class>

oracle.security.jps.internal.core.principals.JpsXmlEnterpriseRoleImpl</class>
<name>developers</name>

</member>
<member>
<class>

oracle.security.jps.service.policystore.ApplicationRole</class>
<name>myAppRole</name>

</member>
</members>

</app-role>
</app-roles>

 <jazn-policy>
 <grant>

<grantee>
<principals>
<principal>

Upgrading with upgradeSecurityStore

G-8 Oracle Fusion Middleware Application Security Guide

 <class>
oracle.security.jps.service.policystore.ApplicationRole</class>

<name>myAppRole_PRIV</name>
</principal>

</principals>
</grantee>

 <permissions>
<permission>
<class>oracle.security.jps.JpsPermission</class>

 <name>getClassLoader</name>
 </permission>

<permission>
 <class>
oracle.adf.share.security.authorization.RegionPermission</class>

<name>dummyName</name>
 <actions>view,edit</actions>
 </permission>
 </permissions>
 </grant>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>
oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>myAppRole</name>
 </principal>

</principals>
</grantee>

 <permissions>
 <permission>
 <class>java.lang.XYZPermission</class>
 <name>newxyz</name>
 </permission>
 </permissions>
 </grant>
 <grant>
 <grantee>
 <principals>
 <principal>

<class>
oracle.security.jps.internal.core.principals.JpsXmlEnterpriseRoleImpl</class>
 <name>test-entrole</name>
 </principal>

</principals>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.jps.JpsPermission</class>
 <name>newxy</name>
 <actions>view,edit</actions>
 </permission>
 </permissions>
 </grant>
 </jazn-policy>
 </application>
 </applications>
</policy-store>

Upgrading with upgradeSecurityStore

Upgrading Security Data G-9

Input Resource File res-jazn-data.xml
<jazn-data>
<jazn-realm default="jazn.com">
</jazn-realm>

 <policy-store>
 <applications>
 <application>
 <name>PolicyServlet1</name>
 <resource-types>
 <resource-type>
 <name>FileResourceType</name>
 <display-name>File Access</display-name>
 <description>Resource Type Modelling File Access</description>
 <provider-name>provider</provider-name>

<matcher-class>oracle.security.jps.JpsPermission</matcher-class>
 <actions-delimiter>,</actions-delimiter>
 <actions>delete,write,read</actions>
 </resource-type>
 </resource-types>
 <jazn-policy>
 </jazn-policy>
 </application>
 </applications>
</policy-store>

 <jazn-policy>
 </jazn-policy>
</jazn-data>

Output Data File final-jazn-data.xml
<jazn-data>
<jazn-realm>

 </jazn-realm>
 <policy-store>
 <applications>
 <application>
 <name>PolicyServlet1</name>
 <app-roles>
 <app-role>
 <name>myAppRole2</name>
 <display-name>application role myAppRole</display-name>
 <guid>4341CC10EAFB11DE9F7F17D892026AF8</guid>

<class>
oracle.security.jps.service.policystore.ApplicationRole</class>
 <members>

<member>
<class>

oracle.security.jps.service.policystore.ApplicationRole</class>
<name>myAppRole</name>

 <guid>43428F60EAFB11DE9F7F17D892026AF8</guid>
 </member>
 </members>
 </app-role>
 <app-role>
 <name>myAppRole</name>
 <display-name>application role myAppRole</display-name>
 <guid>43428F60EAFB11DE9F7F17D892026AF8</guid>

<class>
oracle.security.jps.service.policystore.ApplicationRole</class>
 <members>

Upgrading with upgradeSecurityStore

G-10 Oracle Fusion Middleware Application Security Guide

 <member>
 <class>weblogic.security.principal.WLSGroupImpl</class>
 <name>developers</name>
 </member>
 </members>
 </app-role>
 <app-role>
 <name>testrole_DATA</name>
 <display-name>application role test role</display-name>
 <guid>4342B670EAFB11DE9F7F17D892026AF8</guid>

<class>
oracle.security.jps.service.policystore.ApplicationRole</class>
 <members>
 <member>
 <class>weblogic.security.principal.WLSGroupImpl</class>
 <name>test-entrole</name>
 </member>
 </members>
 </app-role>
 <app-role>
 <name>myAppRole_PRIV</name>
 <display-name>application role private</display-name>
 <description>app role private description</description>
 <guid>4342B671EAFB11DE9F7F17D892026AF8</guid>

<class>
oracle.security.jps.service.policystore.ApplicationRole</class>
 <members>

<member>
<class>

weblogic.security.principal.WLSGroupImpl</class>
<name>developers</name>

 </member>
 <member>

<class>
oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>myAppRole</name>
 <guid>43428F60EAFB11DE9F7F17D892026AF8</guid>
 </member>
 </members>
 </app-role>
 </app-roles>
 <resource-types>
 <resource-type>
 <name>FileResourceType</name>
 <display-name>File Access</display-name>
 <description>Resource Type Modelling File Access</description>
 <provider-name>provider</provider-name>
 <matcher-class>oracle.security.jps.JpsPermission</matcher-class>
 <actions-delimiter>,</actions-delimiter>
 <actions>delete,write,read</actions>
 </resource-type>
 </resource-types>
 <resources>
 <resource>
 <name>getClassLoader</name>
 <type-name-ref>FileResourceType</type-name-ref>
 </resource>
 <resource>
 <name>newxy</name>
 <type-name-ref>FileResourceType</type-name-ref>

Upgrading with upgradeSecurityStore

Upgrading Security Data G-11

 </resource>
 </resources>
 <jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>

<class>
oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>myAppRole_PRIV</name>
 <guid>4342B671EAFB11DE9F7F17D892026AF8</guid>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.jps.JpsPermission</class>
 <name>getClassLoader</name>
 </permission>
 <permission>

<class>
oracle.adf.share.security.authorization.RegionPermission</class>
 <name>dummyName</name>
 <actions>view,edit</actions>
 </permission>
 </permissions>
 <permission-set-refs>
 </permission-set-refs>

</grant>
<grant>

 <grantee>
 <principals>
 <principal>

<class>
oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>myAppRole</name>
 <guid>43428F60EAFB11DE9F7F17D892026AF8</guid>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>java.lang.XYZPermission</class>
 <name>newxyz</name>
 </permission>
 </permissions>
 <permission-set-refs>
 </permission-set-refs>
 </grant>
 <grant>
 <grantee>
 <principals>
 <principal>

<class>
weblogic.security.principal.WLSGroupImpl</class>
 <name>test-entrole</name>
 </principal>
 </principals>
 </grantee>
 <permissions>

Upgrading Policies with upgradeOpss

G-12 Oracle Fusion Middleware Application Security Guide

 <permission>
 <class>oracle.security.jps.JpsPermission</class>
 <name>newxy</name>
 <actions></actions>
 </permission>
 </permissions>
 <permission-set-refs>
 </permission-set-refs>
 </grant>
 </jazn-policy>
 </application>
 </applications>
</policy-store>

 <jazn-policy>
 </jazn-policy>
</jazn-data>

G.2 Upgrading Policies with upgradeOpss
upgradeOpss is an offline script that updates PS1, PS2, PS3 or PS4 configurations and
stores to a PS5 configuration and store.

The store to be upgraded can be file-, LDAP-, or DB-based and possibly be shared by
several WebLogic domains, and the script upgrades system policies, application
policies, and the file jps-config.xml.

The OPSS binaries and the target policy store must have compatible versions; for
details, see Section L.21, "Incompatible Versions of Binaries and Policy Store."

To upgrade from PS1, PS2, PS3 or PS4 to PS5, proceed as follows:

1. Stop the application server.

2. Install new binaries.

3. In case of upgrading a DB-based store, use Oracle Fusion Middleware Patch Set
Assistant to upgrade the DB schema as follows:

1. Navigate to the OPSS Schema page.

2. Enter data for Connect String, DBA User Name and Password, and Schema
User Name and Password and then click Next.

4. Run upgradeOpss as described in section Command Syntax.

5. Restart the application server.

Note the following points:

■ The offline script upgradeOpss:

Important Notes: upgradeOpss must be run on the system that
hosts the administration server instance so that when the server comes
up, the upgraded data is pushed to all managed servers in the cluster.

Before using it, make sure that you backup the store to be upgraded.
In case of a LDAP store, backup all data under the root node of the
store (which is specified as a property of the store in the configuration
file). In case of an upgrade failure, restore that node entirely. For
details about backing up, see the documentation for your specific
LDAP store.

Upgrading Policies with upgradeOpss

Upgrading Security Data G-13

– Does not change the repository type; that is, if the source policy store is of a
given type, then the target policy store is of the same type.

– Applies to an existing domain, which need not be recreated.

■ If the target store has already been updated to PS5, then running the script
changes nothing.

■ In case of a LDAP-based store, the connection parameters to the source and target
stores are read from the file jps-config.xml or, alternatively, passed as
arguments to the script.

■ In case of a DB-based store, the connection parameters are passed as arguments to
the script.

■ In case the security store to be upgraded is shared by several domains (by the join
operation), then all domains pointing to that store must install new PS5 binaries
before the store is upgraded. Otherwise, the system may throw the exception
PolicyStoreIncompatibleVersionException which indicates that the version of
OPSS security store is later than the version of the OPSS binaries.

G.2.1 Command Syntax
To upgrade a file-, LDAP-, or DB-based store, use the syntax below; note that the
connection arguments are not required in case of a file-based store; are optional in case
of an LDAP-based store; and are required in case of a DB-based store:

upgradeOpss(jpsConfig="<full path to the old version jps config file>",
 jaznData="<full path to the new version OOTB JAZN data file>",

 [auditStore="<full path to the OOTB audit-store.xml file>"],
 [jdbcDriver="<jdbc driver>",
url="<jdbc-ldap url>",
user="<jdbc-ldap user>",
password="<jdbc-ldap password>"],

The meaning of the arguments is as follows:

■ jpsConfig specifies the full path to the location of the PS1, PS2, PS3 or PS4
jps-config.xml configuration file, which the scripts backs up in the same
directory as a file with the suffix .bak appended to the its name; required.

■ jaznData specifies the full path to the location of the PS5 out-of-the-box
system-jazn-data.xml file; required.

■ auditStore specifies the full path to the location of the PS5 out-of-the-box
audit-store.xml file; optional; if unspecified, defaults to the file audit_
store.xml.

■ jdbcDriver specifies the JDBC driver to the store; optional in case of
LDAP-based store; required in case of DB-based store.

■ url specifies the JDBC URL or LDAP URL in the format
driverType:host:port:sid; required in both DB- or LDAP-based store; if not
passed, it is read from the configuration file.

■ user specifies the JDBC user name or LDAP bind name; optional in case of
LDAP-based store; required in case of DB-based store; if not passed, it is read from
the configuration file. In case of LDAP-based store, the user performing the
upgrade must have read and write privileges to the schema, the root node, and all
nodes under cn=OPSS,cn=OracleSchemaVersion; in case of a DB-based store,
perform the upgrade as the OPSS DB schema user.

Upgrading Policies with upgradeOpss

G-14 Oracle Fusion Middleware Application Security Guide

■ password specifies the password of the passed user; that is, the JDBC password,
in case of a DB-based store, or the JDBC bind password, in case of a LDAP-based
store; optional in case of LDAP-based store; required in case of DB-based store; if
not passed, it is read from the configuration file.

H

References H-1

HReferences

This appendix contains references documentation useful to developes.

H.1 OPSS API References
The following Javadoc documents describe the various APIs that OPSS exposes:

OPSS APIs
Oracle Fusion Middleware Java API Reference for Oracle Platform Security Services

OPSS MBean APIs
Oracle Fusion Middleware MBeans Java API Reference for Oracle Platform Security Services

OPSS User and Role APIs
Oracle Fusion Middleware User and Role Java API Reference for Oracle Platform Security
Services

Oracle Security Developer Tools APIs
Oracle Fusion Middleware PKI SDK CMP Java API Reference for Oracle Security Developer
Tools

Oracle Fusion Middleware CMS Java API Reference for Oracle Security Developer Tools

Oracle Fusion Middleware Crypto Java API Reference for Oracle Security Developer Tools

Oracle Fusion Middleware PKI SDK LDAP Java API Reference for Oracle Security Developer
Tools

Oracle Fusion Middleware Liberty 1.1 Java API Reference for Oracle Security Developer Tools

Oracle Fusion Middleware Liberty 1.2 Java API Reference for Oracle Security Developer Tools

Oracle Fusion Middleware S/MIME Java API Reference for Oracle Security Developer Tools

Oracle Fusion Middleware PKI SDK OCSP Java API Reference for Oracle Security Developer
Tools

Oracle Fusion Middleware Security Engine Java API Reference for Oracle Security Developer
Tools

Oracle Fusion Middleware SAML 1.0/1.1 Java API Reference for Oracle Security Developer
Tools

Oracle Fusion Middleware SAML 2.0 Java API Reference for Oracle Security Developer Tools

OPSS API References

H-2 Oracle Fusion Middleware Application Security Guide

Oracle Fusion Middleware PKI SDK TSP Java API Reference for Oracle Security Developer
Tools

Oracle Fusion Middleware Web Services Security Java API Reference for Oracle Security
Developer Tools

Oracle Fusion Middleware XKMS Java API Reference for Oracle Security Developer Tools

Oracle Fusion Middleware XML Security Java API Reference for Oracle Security Developer
Tools

Oracle Fusion Middleware Crypto FIPS Java API Reference for Oracle Security Developer
Tools

Oracle Fusion Middleware JCE Java API Reference for Oracle Security Developer Tools

I

OPSS Scripts I-1

IOPSS Scripts

An OPSS script is either a WLST script, in the context of the Oracle WebLogic Server,
or a WASAdmin script, in the context of the WebSphere Application Server. The
scripts listed in this chapter apply to both platforms: WebLogic Application Server and
WebSphere Application Server.

For OPSS scripts details specific to WebSphere Application Server, see Oracle Fusion
Middleware Third-Party Application Server Guide.

The OPSS security-related scripts are described in the following sections:

■ Policy-Related Scripts

■ Credential-Related Scripts

■ Other Security Scripts

■ Audit Scripts

I.1 Policy-Related Scripts
For details on the following scripts, see Section 9.3, "Managing Application Policies
with OPSS Scripts."

■ listAppStripes

■ createAppRole

■ deleteAppRole

■ grantAppRole

■ revokeAppRole

■ listAppRoles

■ listAppRolesMembers

■ grantPermission

■ revokePermission

■ listPermissions

■ deleteAppPolicies

■ createResourceType

■ getResourceType

■ deleteResourceType

■ createResource

Credential-Related Scripts

I-2 Oracle Fusion Middleware Application Security Guide

■ deleteResource

■ listResources

■ listResourceActions

■ createEntitlement

■ getEntitlement

■ deleteEntitlement

■ addResourceToEntitlement

■ revokeResourceFromEntitlement

■ listEntitlements

■ grantEntitlement

■ revokeEntitlement

■ listEntitlement

■ listResourceTypes

I.2 Credential-Related Scripts
For details on the following scripts, see Section 10.5, "Managing Credentials with OPSS
Scripts."

■ listCred

■ updateCred

■ createCred

■ deleteCred

■ modifyBootStrapCredential

■ addBootStrapCredential

■ exportEncryptionKey

■ importEncryptionKey

■ restoreEncryptionKey

I.3 Other Security Scripts
■ migrateSecurityStore

For details, see Section 8.6.2, "Migrating with the Script migrateSecurityStore."

■ reassociateSecurityStore

For details, see Section 9.3.29, "reassociateSecurityStore."

■ upgradeSecurityStore

For details, see Section G.1, "Upgrading with upgradeSecurityStore."

■ upgradeOpss

For details, see Section G.2, "Upgrading Policies with upgradeOpss."

Audit Scripts

OPSS Scripts I-3

I.4 Audit Scripts
For the description of audit-related scripts, see Section C.4, "WLST Commands for
Auditing."

Audit Scripts

I-4 Oracle Fusion Middleware Application Security Guide

J

Using an OpenLDAP Identity Store J-1

JUsing an OpenLDAP Identity Store

This appendix describes the special set up required in case the identity store uses
OpenLDAP 2.2.

J.1 Using an OpenLDAP Identity Store
To use OpenLDAP 2.2 as an identity store, proceed as follows:

1. Use the WebLogic Server administration console to create a new authenticator
provider. For this new provider:

■ Select OpenLDAPAuthenticator from the list of authenticators.

■ Set the control flag of the OpenLDAPAuthenticator to SUFFICIENT.

■ Set the control flag of the DefaultAuthenticator to SUFFICIENT.

■ Change the order of authenticators to make the OpenLDAPAuthenticator the
first in the list.

■ In the Provider Specific page for the OpenLDAPAuthenticator, enter User Base
DN and Group Base DN, and set the value of the objectclass in the Group
From Name Filter to something other than groupofnames.

2. From the Home directory of the OpenLDAP installation:

■ Open the file slapd.conf for edit.

■ In that file, insert the following line in the "include" section at the top:

include ./schema/inetorgperson.schema

■ Save the file, and restart the OpenLDAP.

The above settings make possible adding the object class inetorgperson to every
new external role you create in the OpenLDAP; this object class is required to map the
external role to an application role.

Using an OpenLDAP Identity Store

J-2 Oracle Fusion Middleware Application Security Guide

K

Adapter Configuration for Identity Virtualization K-1

KAdapter Configuration for Identity
Virtualization

The identity virtualization feature, described in Section 7.3, "Configuring the Identity
Store Service", requires some additional configuration to support a split profile.

This appendix describes how to create and manage the adapters used for split profiles.

■ About Split Profiles

■ Configuring a Split Profile

■ Deleting a Join Rule

■ Deleting a Join Adapter

■ Changing Adapter Visibility

K.1 About Split Profiles
The Identity Virtualization feature enables you to query multiple LDAP directories
through OPSS. For example, you can fetch data from both Oracle Internet Directory
and Microsoft Active Directory in a single query.

The feature supports a "split profile," where an application makes use of attributes for
a single identity that are stored on two different sources; for example, where the
username, password, and employeeID for a single person are stored on Microsoft
Active Directory, and that person's employeeID and business role are stored in Oracle
Internet Directory.

For example, when a WebCenter application needs to obtain attributes for a single
identity from more than one source directory, it uses the split profile to leverage the
join functionality of Identity Virtualization. These joins use a standard join adapter. For
details, see:

■ Understanding Oracle Virtual Directory Adapters in the Oracle Fusion Middleware
Administrator's Guide for Oracle Virtual Directory

■ Understanding the Join View Adapter in the Oracle Fusion Middleware
Administrator's Guide for Oracle Virtual Directory

The adapter configuration is stored in adapters.os_xml, but connection details
such as host, port and credentials of a back-end directory come from OPSS.

Configuring a Split Profile

K-2 Oracle Fusion Middleware Application Security Guide

K.2 Configuring a Split Profile
The same user occurs in both identity stores with some attributes in one store and
other attributes in the other store. A query on the user record requires data from both
stores. The configuration tasks are:

1. Configure the identity store service with the virtualize property to enable
queries against multiple LDAP stores.

For details, see Section 7.3, "Configuring the Identity Store Service."

2. Connect to the Weblogic AdminServer to run WLST commands to configure the
join adapter for the identity stores.

For details about how to bring up the WLST prompt, see "Getting Started Using
Command-Line Tools" in the Oracle Fusion Middleware Administrator's Guide.

3. Create the join adapter in the primary identity store:

createJoinAdapter(adapterName="Join Adapter Name", root="Namespace",
primaryAdapter="Primary adapter Name")

4. Add the join rule to the secondary store(s):

addJoinRule(adapterName="Join Adapter Name", secondary="Secondary Adapter
Name", condition="Join Condition")

5. Run the modifyLDAPAdapter command:

modifyLDAPAdapter(adapterName="AuthenticatorName", attribute="Visible",
value="Internal")

Example
In this example the same user occurs in two stores; the first store is Microsoft Active
Directory and the second store is Oracle Internet Directory. In the example, we assume
that Microsoft Active Directory is the primary store and Oracle Internet Directory is
the secondary store.

Authenticator 1
Authenticator Name: Microsoft Active Directory (AD)
User Base: cn=users,dc=acme,dc=com

Note: If there is more than one secondary identity store, run the
addJoinRule command for each secondary store.

Note: If there is more than one secondary identity store, run the
modifyLDAPAdapter command for each secondary ID store.

Note: When configuring the LDAP connection parameters, the
user.create.bases and group.create.bases must correspond
to the primary adapter's namespace. For details about the parameters,
see Section 7.3.1, "What is Configured?."

Deleting a Join Adapter

Adapter Configuration for Identity Virtualization K-3

Authenticator 2
Authenticator Name: Oracle Internet Directory (OID)
User Base: cn=users,dc=oid,dc=com

The steps to implement the split profile are as follows:

1. Create the join adapter:

createJoinAdapter(adapterName="JoinAdapter1", root="dc=acme,dc=com",
primaryAdapter="AD")
The adapter name shown here is an example; use an appropriate name in actual
usage.

2. Specify the join rule:

addJoinRule(adapterName="JoinAdapter1", secondary="OID", condition="uid=cn")

"uid=cn" is the join condition in the above example which indicates that if uid
value of a user in Oracle Internet Directory (secondary) matches with cn value of
the Microsoft Active Directory user (primary), then the attributes are combined.

The attribute on the left side of the condition is the attribute in the secondary
adapter and the attribute on the right side is the attribute in the primary adapter.

3. Modify the adapters:

modifyLDAPAdapter(adapterName="OID", attribute="Visible", value="Internal")

modifyLDAPAdapter(adapterName="AD", attribute="Visible", value="Internal")

The adapter names used here are the actual name of the authenticators. The
adapter names in all the primary and secondary parameters also refer to the
authenticator name. The join adapter name can be any name you choose.

4. Restart Weblogic Admin and Managed servers.

K.3 Deleting a Join Rule
You use the removeJoinRule command to remove a join rule from a join adapter.

Syntax

removeJoinRule
adapterName ="adapterName"
secondary="Secondary Adapter associated with the JoinRule"

Example
removeJoinRule(adapterName="JoinAdapter1", secondary="OID")

K.4 Deleting a Join Adapter
You use the deleteAdapter command to delete a join adapter.

Syntax

deleteAdapter(adapterName="name")

Changing Adapter Visibility

K-4 Oracle Fusion Middleware Application Security Guide

Example
deleteAdapter(adapterName="JoinAdapter1")

K.5 Changing Adapter Visibility
You use the modifyLDAPAdapter command to change the visibility of the adapters.
For example:

modifyLDAPAdapter(adapterName="AuthenticatorName", attribute="Visible",
value="Yes")

L

Troubleshooting Security in Oracle Fusion Middleware L-1

LTroubleshooting Security in Oracle Fusion
Middleware

This appendix describes common problems that you may encounter when configuring
and using Oracle Enterprise Manager Fusion Middleware security, and explains how
to solve them. It contains the following sections:

■ Diagnosing Security Errors

■ Reassociation Failure

■ Server Fails to Start

■ Failure to Grant or Revoke Permissions - Case Mismatch

■ Failure to Connect to an LDAP Server

■ Failure to Connect to the Embedded LDAP Authenticator

■ User and Role API Failure

■ Failure to Access Data in the Credential Store

■ Failure to Establish an Anonymous SSL Connection

■ Authorization Check Failure

■ User Gets Unexpected Permissions

■ Security Access Control Exception

■ Runtime Permission Check Failure

■ Permission Failure Before Server Starts

■ Policy Migration Failure

■ Characters in Policies

■ Granting Permissions in Java SE Applications

■ Troubleshooting Oracle Business Intelligence Reporting

■ Search Failure when Matching Attribute in Policy Store

■ Search Failure with an Unknown Host Exception

■ Incompatible Versions of Binaries and Policy Store

■ Incompatible Versions of Policy Stores

■ Need Further Help?

Diagnosing Security Errors

L-2 Oracle Fusion Middleware Application Security Guide

L.1 Diagnosing Security Errors
This section the tools available to diagnose and solve a variety of security errors. It
contains the following sections:

■ Log Files and OPSS Loggers

■ System Properties

■ Solving Security Errors

The logging support with Fusion Middleware Control is explicitly stated whenever the
tool can help managing, isolating, or interpreting faults when they occur.

L.1.1 Log Files and OPSS Loggers
This section describes the various log files and OPSS loggers supported by Oracle
WebLogic Server and how to configure, set logger levels, and locate and view log files
with Fusion Middleware Control, in the following sections:

■ Diagnostic Log Files

■ Generic Log Files

■ Authorization Loggers

■ Offline OPSS Scripts Loggers

■ Other OPSS Loggers

■ Audit Loggers

■ Managing Loggers with Fusion Middleware Control

L.1.1.1 Diagnostic Log Files
Each server instance in a domain writes all OPSS-based exceptions raised by its
subsystems and applications to a server log file in the file system of the local host
computer.

By default, this log file is located in the logs directory below the server instance root
directory. The names of these log files have the following format:
ServerName-diagnostic.logxxxxx, where xxxxx denotes an integer between 1 and
99999.

Here are some examples of diagnostic file full names:
DomainName/servers/AdminServer/logs/AdminServer-diagnostic.log00
001 (administration server log),
DomainName/servers/soa/logs/soa-diagnostic.log00013 (managed server
log).

All server instances output security-related errors to diagnostic files. Server-related
security errors, such as exceptions raised by issues with a subject or principal, and
errors that may occur while migrating or reassociating domain security data, get
written in the administration server diagnostic log. Application-related security errors,
such as exceptions raised by application-specific policies or credentials, get written in
the corresponding managed server diagnostic log.

L.1.1.2 Generic Log Files
In addition to diagnostic log files, Oracle WebLogic Server supports other log files for
each server in a domain and for each domain in a topology.

Diagnosing Security Errors

Troubleshooting Security in Oracle Fusion Middleware L-3

By default and similar to diagnostic log files, server log files are located in the logs
directory below the server instance root directory. Domain log files are located in the
logs directory below the administration server root directory. The names of these log
files have the format ServerName.logxxxxx and domain.logxxxxx, where xxxxx
denotes an integer between 1 and 99999.

Here are some examples of server and domain log files full names:
DomainName/servers/AdminServer/logs/AdminServer.log00001,
DomainName/servers/AdminServer/logs/domain1.log00033.

Server and domain logs are files where one should look for generic errors, such as
exception raised by authenticators or other domain service providers.

The domain logs duplicate some messages written to server logs (for servers in the
domain), and they help determine the server where a fault has occurred in a domain
that contains a large number of servers.

For details about particular loggers, see Authorization Loggers and Audit Loggers.

Related Documentation
For information about server log files and domain log files, see section Server Log Files
and Domain Log Files in Oracle Fusion Middleware Configuring Log Files and Filtering Log
Messages for Oracle WebLogic Server.

For information about the Oracle WebLogic Framework, see Oracle Fusion Middleware
Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.

For additional information about logging services, see Oracle Fusion Middleware Using
Logging Services for Application Logging for Oracle WebLogic Server.

For complete details about logging in Oracle Fusion Middleware, see chapter
Managing Log Files and Diagnostic Data in Oracle Fusion Middleware Administrator's
Guide.

L.1.1.3 Authorization Loggers
OPSS provides two loggers that help troubleshooting runtime authorization failures:

■ oracle.security.jps.util.JpsAuth

■ oracle.security.jps.trace.logger

These two loggers, as any other OPSS logger, can be enabled and disabled
dynamically, that is, without having to stop and restart the Oracle WebLogic
Application Server; for details about setting the properties of a logger, see Managing
Loggers with Fusion Middleware Control. The level of the above two loggers must be
set to TRACE:32.

For information about additional loggers, see Other OPSS Loggers.

L.1.1.3.1 oracle.security.jps.util.JpsAuth The logger
oracle.security.jps.util.JpsAuth logs the start and return of the method
checkPermission; the following snippets of a log file illustrate the entry and exit
demarcations to this method in the log file:

Note: The generation of a new log file is determined by its rotation
policy; typically, the rotation is determined by file size, so when a log
file exceeds a specified size, the system generates a new one with a
name whose integer suffix is increased by 1.

Diagnosing Security Errors

L-4 Oracle Fusion Middleware Application Security Guide

[SRC_CLASS: oracle.security.jps.util.JpsAuth] [APP: JeeScenarioApp]
[SRC_METHOD: Entering checkPermission] ENTRY
(oracle.security.jps.ResourcePermission
resourceType=TaskFlowResourceType,resourceName=ResourceNameX read)

[SRC_CLASS: oracle.security.jps.util.JpsAuth] [APP: JeeScenarioApp]
[SRC_METHOD: Exiting checkPermission] RETURN
java.security.AccessControlException: access denied
(oracle.security.jps.ResourcePermission
resourceType=TaskFlowResourceType,resourceName=ResourceNameX read)

The following snippet illustrates a successful authorization log:

[JpsAuth] Check Permission
PolicyContext: [JeeScenarioApp]
Resource/Target: [getSubjectFromDomainCombiner]
Action:[null]
Permission Class: [javax.security.auth.AuthPermission]
 Result: [SUCCEEDED]
 Subject: [null]
 Evaluator: [SM]

The following snippet illustrates an unsuccessful authorization log:

[JpsAuth] Check Permission
PolicyContext: [JeeScenarioApp]
Resource/Target: [resourceType=TaskFlowResourceType,resourceName=ResourceNameX]
Action:[read]
Permission Class: [oracle.security.jps.ResourcePermission]
 Result: [FAILED]
 Evaluator: [ACC]
 Failed

L.1.1.3.2 oracle.security.jps.trace.logger The logger
oracle.security.jps.trace.logger logs information about application roles,
permissions, targets, principals, and granted and denied policies. Since enabling this
logger can lead to a large output, it is recommended that it be used to debug a single
use case only. Specifically, this logger records:

■ The following information about an authorization request: the application roles
granted to an enterprise role, all deny's and grant's, the permission class names,
the permission targets, and the principal names.

■ Member cache updates, such as when a principal is added to a role; keywords:
"Principal:", "Inserted Roles:".

■ Role managing information; keywords: "In App:", "Query Store for Principal:",
"Number of direct app roles:".

■ Calls to the method getPermissions.

L.1.1.4 Offline OPSS Scripts Loggers
When using offline OPSS scripts, such as migrateSecurityStore, OPSS loggers
can be enabled by starting the JVM with the following system property:

-Djava.util.logging.config.file=<path>/logging.properties

where logging.properties is a text file with the required logger properties
enabled; the format of this file is described in the documentation of the class
java.util.logging.LogManager. A sample logging.properties file enabling
OPSS loggers at appropriate levels is the following:

Diagnosing Security Errors

Troubleshooting Security in Oracle Fusion Middleware L-5

#The messages will be written to a file
handlers=java.util.logging.FileHandler

#The default level for all loggers is INFO
.level=INFO

#For common usage - user manager, jps config etc.
oracle.jps.common.level=FINEST

For Migration and Upgrade
oracle.jps.upgrade.level=FINEST
oracle.jps.patching.level=FINEST
oracle.jps.policymgmt.level=FINEST

#Configure file information. %h is the user home directory (user.home)
java.util.logging.FileHandler.pattern = /tmp/opss/opss_upgrade%u.log
java.util.logging.FileHandler.limit = 50000
java.util.logging.FileHandler.count = 1
java.util.logging.FileHandler.formatter = java.util.logging.SimpleFormatter

L.1.1.5 Other OPSS Loggers
In addition to authorization loggers, OPSS provides the following loggers:

oracle.jps.common enables diagnosing issues with the OPSS JpsFilter and the
OPSS JpsInterceptor.

oracle.jps.deployment enables diagnosing issues with OPSS artifacts packed
with the application, when the application is deployed; keyword:"migration".

oracle.jps.openaz enables diagnosing issues with PEP API calls. Setting
oracle.jps.openaz.level to FINEST, logs information about submitted requests
- identity, resource, action, context - and authorization results.

L.1.1.6 Audit Loggers
There are several run-time components in the Fusion Middleware Audit Framework.
This section helps you navigate the diagnostic log files for these components and
explains how to interpret diagnostic messages.

The log files are located at:

DomainName/servers/$SERVER_NAME/logs/$SERVER_NAME-diagnostic.log

Table L–1 lists the various diagnostic log files.

Table L–1 Log Files for Audit Diagnostics

Component Log Location Configuring Loggers

Java EE Components using
Audit APIs

DomainName/servers/$SER
VER_NAME/logs/$SERVER_
NAME-diagnostic.log

 oracle.security.audit.logger
(See instructions below)

OPMN Component Using
Audit APIs

See the Administration Guide
for the component to locate its
log files.

Loggers are based on the
OPMN Components's
Location. Please see the
corresponding component
guide.

Startup Class Audit Loader DomainName/servers/$SER
VER_NAME/logs/$SERVER_
NAME-diagnostic.log

oracle.security.audit.logger
(See instructions following
this table)

Diagnosing Security Errors

L-6 Oracle Fusion Middleware Application Security Guide

L.1.1.6.1 Configuring the Audit Loggers

You can configure oracle.security.audit.logger using Fusion Middleware Control.

oracle.security.audit.logger can take any log level from ERROR to TRACE allowing
control over the amount of information that gets logged.

You can also view these diagnostic files with Fusion Middleware Control.

L.1.1.6.2 Interpreting Audit Diagnostics

The Audit diagnostic messages can be categorized into two types - errors and trace
messages.

All error messages are numbered IAU-XXX. These messages are found in the Error
Message Guide with a proper cause and an action that can be taken to rectify the error.

The trace messages, however, are meant to provide more information about the
running components. Depending on its nature, a message may require some action on
your part.

L.1.1.7 Managing Loggers with Fusion Middleware Control
Fusion Middleware Control provides several pages to manage log information. Using
this tool you can:

■ Configure several attributes of a log file, including the log level and rotation.

■ Search the contents of all log files in a domain and group the results of a query by
message ID or type.

■ Correlate a given error with others by context or time span.

■ Download a portion of a log file or the results of a query in one of several formats.

This section explains briefly how to configure a log file. The other three functions
above are explained, also briefly, in section Section L.1.3, "Solving Security Errors."

OPMN Audit Loader $ORACLE_
INSTANCE/diagnostics/logs
/OPMN/opmn/rmd.out

java.util.logging.config.file
system property can be set to
the file that contains the log
level for OPMN Audit Loader

Config/Proxy Mbeans DomainName/servers/$SER
VER_NAME/logs/$SERVER_
NAME-diagnostic.log

oracle.security.audit.logger
(See instructions below)

Audit Schema Support RCU log location (Default is
$ORACLE_
HOME/rcu/log/)RCU_LOG_
LOCATION can be set to
change this location

RCU log level (Default is
ERROR) RCU_LOG_LEVEL -
[SEVERE; ERROR;
NOTIFICATION; TRACE

See Also: For more information about the following topics, see
chapter 10, Managing Log Files and Diagnostic Data, in Oracle Fusion
Middleware Administrator's Guide:

■ instructions for configuring the loggers

■ details on viewing logs from domain, server, and each application

Table L–1 (Cont.) Log Files for Audit Diagnostics

Component Log Location Configuring Loggers

Diagnosing Security Errors

Troubleshooting Security in Oracle Fusion Middleware L-7

For full details about these topics, see section Managing Log Files and Diagnostic Data,
in the Oracle Fusion Middleware Administrator's Guide.

To configure a log file with Fusion Middleware Control, proceed as follows:

1. Navigate to Server > Logs > Log Configuration, to display the Log Configuration
page for the selected server. This page allows you to configure the log level for
both persistent loggers and active run-time loggers.

2. Click the Log File entry for the desired logger, to display the page showing the
current parameter settings for that file.

3. In this page, select a row and then click the button Edit Configuration, to display
the Edit Log File dialog, where you can set various parameters, including the log
level and the rotation policy; typically, the logger level is set to TRACE:32.

L.1.2 System Properties
To increase the debug output, set one the following system properties to the script that
starts your Oracle WebLogic Server and restart the server:

■ jps.auth.debug

■ jps.auth.debug.verbose

To get debug output during the authorization process, set any of the system properties
described in section Debugging the Authorization Process.

Two other system properties that can be passed at server start and that can help
debugging security issues are the following:

■ -DDebugOPSSPolicyLoading, a flag that monitors the progress and setting of
the OPSS policy provider.

■ -Djava.security.debug=policy, the standard Java security debug flag that
produces print information about policy files as they are parsed, including their
location in the file system, the permissions they grant, and the certificates they use
for signed code.

L.1.2.1 jps.auth.debug
Assume that just this system property is set to true:

-Djps.auth.debug=true

Then, a permission check that fails generates an output with details illustrated in the
following sample:

[JpsAuth] Check Permission
 PolicyContext: [jps-wls-Demo]
 Resource/Target: [app.monitor]

Note: A consequence of setting a high logging output is that many
threads may be reported in a stuck state, specially when file loading
takes place. To avoid this situation, change the time out value that
Oracle WebLogic Server uses to mark a thread as stuck to a higher
value.

A system property cannot be set without restarting the server. In order
to set a system property the administrator must edit the
setDomainEnv.sh shell script and add the property to the
environment variable EXTRA_JAVA_PROPERTIES in that script.

Diagnosing Security Errors

L-8 Oracle Fusion Middleware Application Security Guide

 Action: [read,write]
 Permission Class: [java.util.PropertyPermission]
 Evaluator: [ACC]
 Result: [FAILED]
Failed ProtectionDomain:ClassLoader=weblogic.servlet.jsp.JspClassLoader@fb111c
finder: weblogic.utils.classloaders.CodeGenClassFinder@106bb21 annotation:
CodeSource=file:/C:/MyOracle/domains/base_domain/servers/AdminServer/tmp/_WL_
user/jps-wls-Demo/kebqfo/jsp_servlet/test.class
Principals=total 5 of principals(
 1. weblogic.security.principal.WLSUserImpl "duane"
 2. weblogic.security.principal.WLSGroupImpl "employee"
 3. JpsPrincipal: oracle.security.jps.principals.JpsAuthenticatedRoleImpl
"authenticated-role"
 4. JpsPrincipal: oracle.security.jps.principals.JpsAnonymousRoleImpl
"anonymous-role"
 5. JpsPrincipal: oracle.security.jps.service.policystore.ApplicationRole
"appRoleEmployee")
 Permissions=(
 (java.util.PropertyPermission line.separator read)
 ...
 (oracle.security.jps.service.credstore.CredentialAccessPermission
context=SYSTEM,mapName=default,keyName=* read,write))

A permission check that succeeds generates no output. To disable permission check
messages, set this property to false; by default, it is set to true. Disabling persmission
check messages is not recommended in production environments.

L.1.2.2 jps.auth.debug.verbose
Assume that jps.auth.debug and jps.auth.debug.verbose are both set to true:

-Djps.auth.debug=true
-Djps.auth.debug.verbose=true

Then, a permission check that succeeds generates an output with details illustrated in
the following sample:

[JpsAuth] Check Permission
 PolicyContext: [jps-wls-Demo]
 Resource/Target: [app.monitor]
 Action: [read,write]
 Permission Class: [java.util.PropertyPermission]
 Result: [SUCCEEDED]
 Subject: [total 5 of principals(
 1. weblogic.security.principal.WLSGroupImpl "manager"
 2. weblogic.security.principal.WLSUserImpl "shawn"
 3. JpsPrincipal:
oracle.security.jps.internal.core.principals.JpsAuthenticatedRoleImpl
"authenticated-role" GUID=null DN=null
 4. JpsPrincipal:
oracle.security.jps.internal.core.principals.JpsAnonymousRoleImpl "anonymous-role"
GUID=null DN=null
 5. JpsPrincipal: oracle.security.jps.service.policystore.ApplicationRole
"appRoleManager" GUID=null DN=null)]
 Evaluator: [ACC]

A permission check that fails generates an output with details illustrated in the
following sample:

JpsAuth] Check Permission
 PolicyContext: [jps-wls-Demo]

Diagnosing Security Errors

Troubleshooting Security in Oracle Fusion Middleware L-9

 Resource/Target: [app.monitor]
 Action: [read,write]
 Permission Class: [java.util.PropertyPermission]
 Evaluator: [ACC]
 Result: [FAILED]
 Failed
ProtectionDomain:ClassLoader=weblogic.servlet.jsp.JspClassLoader@1b7682d finder:
weblogic.utils.classloaders.CodeGenClassFinder@7d32cf annotation:
CodeSource=file:/C:/Mydom/domains/domain/servers/AdminServer/jspservlet/test.class
 Principals=total 5 of principals(
 1. weblogic.security.principal.WLSUserImpl "duane"
 2. weblogic.security.principal.WLSGroupImpl "employee"
 3. JpsPrincipal: oracle.security.principals.JpsAuthenticatedRoleImpl
"authenticated-role" GUID=null DN=null
 4. JpsPrincipal: oracle.security.principals.JpsAnonymousRoleImpl "anonymous-role"
GUID=null DN=null
 5. JpsPrincipal: oracle.security.jps.service.policystore.ApplicationRole
"appRoleEmployee" GUID=null DN=null)
 Permissions=(
 (java.util.PropertyPermission line.separator read)
 ...
 (java.lang.RuntimePermission stopThread))
 Call Stack: java.security.AccessControlException: access denied
(java.util.PropertyPermission app.monitor read,write)
 java.security.AccessControlContext.checkPermission(AccessControlContext.java:323)
 ...
 weblogic.work.ExecuteThread.run(ExecuteThread.java:173)
 ProtectionDomains for class stack:
 Class[0]: class oracle.security.jps.util.JpsAuth$Diagnostic$SMSupport
 ProtectionDomain: ClassLoader=sun.misc.Launcher$AppClassLoader@360be0
 CodeSource=file:/C:/MyOracle/jdeveloper/modules/oracle.jps_11.1.1/jps-api.jar
 Principals=total 0 of principals<no principals>
 Permissions=(
 (java.io.FilePermission \C:\MyOracle\jdeveloper\modules\jps-api.jar read)
 ...
)
 Class[1]: class oracle.security.jps.util.JpsAuth$Diagnostic$SMSupport

To disable permission check messages, set both jps.auth.debug and
jps.auth.debug.verbose to false; by default, jps.auth.debug.vebose is set to
false.

L.1.2.3 Debugging the Authorization Process
This section describes the use of several other system properties that help debugging
the authorization process based on several criteria. Specifically, the following system
properties:

oracle.security.jps.log.for.approle.substring
oracle.security.jps.log.for.permeffect
oracle.security.jps.log.for.permclassname
oracle.security.jps.log.for.permtarget.substring
oracle.security.jps.log.for.enterprise.principalname

generate logging messages during the following authorization phases:

■ Phase 1 - The application roles that were granted to an enterprise user or to an
enterprise role during the OPSS Subject computation.

■ Phase 2 - The permission instances that were granted to a grantee.

Diagnosing Security Errors

L-10 Oracle Fusion Middleware Application Security Guide

■ Phase 3 - The outcome of a permission check, that is, whether the grant was
granted or denied.

Each of the above properties and the phases they apply are described next.

oracle.security.jps.log.for.approle.substring - During phases 1, 2, and
3, it logs the name of an application role that contains a specified substring; if the
substring to match is unspecified, it logs all application role names.

oracle.security.jps.log.for.permeffect - During phase 3 and according to
a specified value, it logs a grant that was granted or denied; if the value is unspecified,
it logs all grants (regardless whether they were granted or denied).

oracle.security.jps.log.for.permclassname - During phases 2 and 3, it
logs the name of the permission class that matches exactly a specified name; if the
name to match is unspecified, it logs all permission class names.

oracle.security.jps.log.for.permtarget.substring - During phases 2
and 3, it logs the name of a permission target that contains a specified substring; if the
substring to match is unspecified, it logs all permission targets.

oracle.security.jps.log.for.enterprise.principalname - During
phases 1, 2, and 3, it logs the name of the principal (enterprise user or enterprise role)
that matches exactly a specified name; if the name to match is unspecified, it logs all
principal names.

The following characteristics apply to all of the above system properties:

■ They are optional.

■ They can be set at most once.

■ The matchings (where they apply) are case insensetive

To enable the logging of any of the above system properties, proceed as follows:

1. Set the desired system properties.

2. Stop the JVM.

3. Restart the JVM.

4. Set the logger oracle.security.jps.dbg.logger to TRACE:32. For details
on how to set a logger, see Managing Loggers with Fusion Middleware Control.

5. Run the scenario to be debugged.

6. Examine the log output; to locate the messages output by the settings of any of the
above properties, search the log file for the key word [oracle.security.jps.dbg.logger].

L.1.2.3.1 Examples of Use The following examples illustrate typical settings of the
above system properties.

■ To log all application role names that contain the substring myAppRole, include
the following setting:

-Doracle.security.jps.log.for.approle.substring=myAppRole

■ To log all denied permission checks, include the following setting:

-Doracle.security.jps.log.for.permeffect=deny

■ To log all granted permission checks, include the following setting:

-Doracle.security.jps.log.for.permeffect=grant

Diagnosing Security Errors

Troubleshooting Security in Oracle Fusion Middleware L-11

■ To log all granted or denied permission checks, do not set
oracle.security.jps.log.for.permeffect.

■ To log all permission checks that match exactly the class name
java.util.PropertyPermission, include the following setting:

-Doracle.security.jps.log.for.permclassname=java.util.PropertyPermission

■ To log all target names that contain the substring p.mon, include the following
setting:

-Doracle.security.jps.log.for.permtarget.substring=p.mon

■ To log all authorizations involving the principal name manager, include the
following setting:

-Doracle.security.jps.log.for.enterprise.principalname=manager

■ To log application role names that match a substring or principal names that
match a string, set both
oracle.security.jps.log.for.approle.substring and
oracle.security.jps.log.for.enterprise.principalname as
indicated above.

■ To log all application roles names and all principal names, set neither
oracle.security.jps.log.for.approle.substring nor
oracle.security.jps.log.for.enterprise.principalname.

L.1.3 Solving Security Errors
There is no generic way to resolve errors when they occur. One must search for hints
and frequently follow multiple hypotheses until, hopefully, the source of the error is
isolated and understood. To this end, this section describes how to search and interpret
log information to resolve most common security errors. These topics are addressed in
the following sections:

■ Understanding Sample Log Entries

■ Searching Logs with Fusion Middleware Control

■ Identifying a Message Context with Fusion Middleware Control

■ Generating Error Listing Files with Fusion Middleware Control

L.1.3.1 Understanding Sample Log Entries
Understanding log error output is crucial to isolate and solve an error. Let’s take a
closer look at a diagnostic log file to describe the information you find for an error
logged in such a file. This description is best illustrated with a real-life example.

The following is an excerpt of an error in the file AdminServer-diagnostic.log:

[2009-01-07T09:15:02.393-08:00] [AdminServer] [ERROR] [JPS-00004]
[oracle.jps.admin]
[tid: [ACTIVE].ExecuteThread: '3' for queue: 'weblogic.kernel.Default
(self-tuning)'] [userId: weblogic] [ecid: 0000Hum5kxw7MAn54nU4Ui19PD8S000005,0]
Unable to add principal to the application role. Reason: Principal
"abc.xxx@myComp.com" is already a member of the application role
"BPMWorkflowAdmin"[[
java.security.PrivilegedActionException:
oracle.security.jps.service.policystore.PolicyObjectAlreadyExistsException:
Unable to add principal to the application role. Reason: Principal
"abc.xxx@myComp.com" is already a member of the application role

Diagnosing Security Errors

L-12 Oracle Fusion Middleware Application Security Guide

"BPMWorkflowAdmin"
 at java.security.AccessController.doPrivileged(Native Method)
 at oracle.security.jps.mas.mgmt.jmx.policy.JpsApplicationPolicyStoreImpl.
addRemoveMembersToRole(JpsApplicationPolicyStoreImpl.java:408)
 at oracle.security.jps.mas.mgmt.jmx.policy.JpsApplicationPolicyStoreImpl.
addMembersToApplicationRole(JpsApplicationPolicyStoreImpl.java:385)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
…

The meaning of the fields in the preceding message is as follows:

■ [2009-01-07T09:15:02.393-08:00]

Identifies the date and time when the error was logged.

■ [AdminServer]

Identifies the name of the server where the error occurred.

■ [JPS-00004]

Identifies the error code and hints to the kind of error that occurred. For a
complete list of JPS error codes, see chapter 41 in Oracle Fusion Middleware Error
Messages Reference.

■ [oracle.jps.admin]

Identifies the category of the logger. The subcategories of oracle.jps (such as
admin above) hint to the kind of error that occurred. For the complete list of
categories under oracle.jps, see Subcategories of oracle.jps.

■ [tid: [ACTIVE].ExecuteThread: '3' for queue: 'weblogic.kernel.Default
(self-tuning)']

Identifies the thread where the error occurred.

■ [userId: weblogic]

Identifies the user that performed the operation that generated the error.

■ [ecid: 0000Hum5kxw7MAn54nU4Ui19PD8S000005,0]

Identifies the execution context id. Typically used to correlate and trace sequence
of events. Ecids provide information about the flow across processes, such as, from
a request, to the WebLogic server, to an Oracle Internet Directory server.

■ Unable to add principal to the application role. Reason: Principal
abc.xxx@myComp.com is already a member of the application role
BPMWorkflowAdmin

Identifies the reason why the error was logged.

■ java.security.PrivilegedActionException:
oracle.security.jps.service.policystore.PolicyObjectAlreadyExistsException: Unable
to add principal to the application role. Reason: Principal abc.xxx@myComp.com
is already a member of the application role BPMWorkflowAdmin

Identifies the exception that was raised and the reason for it.

Subcategories of oracle.jps
Here is the list of subcategories under oracle.jps and the kind of errors logged in
the category:

■ common - generic errors.

■ config - configuration errors.

Diagnosing Security Errors

Troubleshooting Security in Oracle Fusion Middleware L-13

■ deployment - deployment errors.

■ authentication - login module errors in Java SE applications only.

■ idmgmt - identity store errors.

■ credstore - credential store errors.

■ authorization - policy store errors at run time.

■ policymgmt - policy store management errors.

■ admin - JMX and WLST errors.

L.1.3.2 Searching Logs with Fusion Middleware Control
To initiate a search in the contents of all log files in a domain, select Domain > Logs >
View Log Messages, to display the Log Messages page.

In this page you have several parameters that you can choose from to specify your
search query; specifically, you can:

■ Choose a time interval in which a message was issue, by selecting the appropriate
Date Range.

■ Display messages with a given severity error, by checking any of the Message
Types boxes.

■ Display messages satisfying further constrains, by choosing an item from the
menu Message and entering a string in the box next to it. For example, you could
query for just messages that contain the string exception in it.

■ Add extra query fields, by clicking the button Add Fields and checking any of the
available choices. For example, you could add the field Host, and then enter the
appropriate query, such as starts with a particular string.

Once these parameters are set, click Search and the result of the query is displayed in
the page. The result of a query can be further redisplayed by message type, message
ID, or simple list of messages, by selecting an item from the menu Show. Moreover,
the result can be automatically refreshed by choosing an item from the menu at the top
right of the page (by default set to Manual Refresh).

To broaden a search to log files beyond a domain, use the button Broaden Target
Scope at the top right of the page.

L.1.3.3 Identifying a Message Context with Fusion Middleware Control
In some situations, it is necessary to know the context in which a message has
occurred. For example, it may be useful to know messages that have preceded or
followed a given error message by, say, 2 minutes.

The tab View Related Messages provides this functionality, and you can use it as
follows:

1. Display the results of a query with Show set to Messages.

2. Select a message within the result table. Note that the tabs View Related Messages
and Export Messages to File become then available. Let's assume, for example,
that the selected message has the time stamp Jan 21, 2009 4:05:00 PM PST.

3. Select Time Interval from the Date Range menu, and enter a Start Date and an
End Date. For example, you could enter Jan 21, 2009 4:02:00 PM, as a start date,
and Jan 21, 2009 4:07:00 PM.

Reassociation Failure

L-14 Oracle Fusion Middleware Application Security Guide

4. Select by Time from the menu View Related Messages, to display the page with
all the messages related to the selected one in the specified time span.

5. In the Related Messages by Time page, you can modify the time window around
the time of the selected message by choosing an item from the menu Scope, at the
right of the page.

L.1.3.4 Generating Error Listing Files with Fusion Middleware Control
In some situations, you may want to download the list of errors displayed into a
separate file to forward it, for example, to a support center, or just to keep it for your
records.

Whenever available, the tab Export Messages allows you to generate a file containing
just the displayed results by choosing an item from the menu. The format of the
generated file can be plain text, XML, or CSV.

The following sample, showing only the first of 29 messages, is an excerpt of a text file
generated this way:

#
#Search Criteria
#Start Time: 2009-01-21T16:34:41.381-08:00
#End Time: 2009-01-21T16:39:41.381-08:00
#Message Types: ERROR, WARNING

#Selected Targets List
#/Farm_base_domain/base_domain/AdminServer:Oracle WebLogic Server
#/Farm_base_domain/base_domain/AdminServer/DMS Application(11.1.1.1.0):Application
Deployment
#/Farm_base_domain/base_domain/AdminServer/em:Application Deployment
#/Farm_base_domain/base_domain/AdminServer/wsil-wls:Application Deployment
#/Farm_base_domain/base_domain/AdminServer/wsm-pm:Application Deployment
#
[2009-01-21T16:34:54.045-08:00] [AdminServer] [WARNING] []
[org.apache.myfaces.trinidad.bean.PropertyKey] [host: stacz39] [nwaddr:
140.87.5.40] [tid: 13] [userId: <anonymous>] [ecid:
0000HvvkgjVE^MT6uBj8EH19TvXj000008,0] [APP: em] [Target: /Farm_base_domain/base_
domain/AdminServer/em] [Target Type: Application Deployment] Unserializable
value:oracle.sysman.core.view.tgtctls.common.DefaultTreeModel@1fcadd2 for
key:UINodePropertyKey[value,17]
…
#
#Number of messages exported: 29
#

L.2 Reassociation Failure
Policy and credential reassociation from an file-based store to an LDAP-based store
may fail for several reasons. This section explains three reasons why this operation
may fail.

Symptom 1- Error Code 32
Reassociation fails and an error like the following is logged in the administration
server diagnostic file serverName.diagnostic.log:

[LDAP: error code 32 - No Such Object]
Authentication to LDAP server ldap://myServer.com:3060 is unsuccessful.

Reassociation Failure

Troubleshooting Security in Oracle Fusion Middleware L-15

Diagnosis 1
The error above identifies a problem with the target node in the LDAP server, namely,
that the node specified does not exist.

It is required that the root node specified in the text box JPS Root DN (of the page Set
Security Provider) be present in the LDAP directory before invoking the reassociation.

Solution 1
Verify that the data you enter in the box JPS Root DN matches the name of a node in
the target LDAP directory, and then rerun the reassociation.

Symptom 2- Error Code 68
Reassociation fails and an error like the following is logged in the administration
server diagnostic file serverName.diagnostic.log:

Authentication to LDAP server ldap://myServer.com:3060 is successful.
Starting to migrate policy store...
Set up security provider reassociation successfully.
Checked and seeded security store schema successfully.
null
[LDAP: error code 68 - Object already
exists]:cn=SystemPolicy,cn=domain1,cn=JPSContext,cn=nb_policy
Error occurred while migrating LDAP based policy store.

Diagnosis 2
The error above indicates that the name specified in the box WebLogic Domain Name
is a descendant (more precisely, a grandchild) of the JPS Root DN node in the target
LDAP directory.

It is required that the domain specified do not be a descendant of the root node.

Solution 2
Verify that the name you enter in the box WebLogic Domain Name does not match
the name of a grandchild of the specified JPS Root DN node, and rerun the
reassociation.

Symptom 3
Reassociation, carried out with Fusion Middleware Control, fails and an error like the
following is logged in the administration server diagnostic file
serverName.diagnostic.log:

[2009-01-21T10:09:24.326-08:00] [AdminServer] [ERROR] [] [oracle.jps.admin] [tid
: [ACTIVE].ExecuteThread: '15' for queue: 'weblogic.kernel.Default (self-tuning)
'] [userId: weblogic] [ecid: 0000HvuOTpe7q2T6uBADUH19Tpyb000006,0] Unable to rem
ove the principal from the application role. Reason: Principal "Managers" is not
a member of the application role "test-role"[[
java.security.PrivilegedActionException: oracle.security.jps.service.policystore
.PolicyObjectNotFoundException: Unable to remove the principal from the applicat
ion role. Reason: Principal "Managers" is not a member of the application role "
test-role"
 at oracle.security.jps.mas.mgmt.jmx.policy.JpsApplicationPolicyStoreImpl
.addRemoveMembersToRole(JpsApplicationPolicyStoreImpl.java:408)...

Diagnosis 3
The error above points to some problem with the application role test-role, which
is, in this case, the root of the problem.

Reassociation Failure

L-16 Oracle Fusion Middleware Application Security Guide

Ensure that when entering data to perform reassociation with Fusion Middleware
Control, you use the button Test LDAP Authentication immediately after you have
completed entering all required values to connect to the target LDAP server. This test
catches any problems with those values before reassociation begins.

Solution 3
In our example, a quick inspection of the file system-jazn-data.xml reveals that the
application test-role is used by an application policy, but it was not defined. Here is an
excerpt of that file illustrating where the required data is missing:

<application>
 <name>myApp</name>
 <app-roles>
 <--! test-role should have been defined here -->
 </app-roles>
 <jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>
oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>test-role</name>
 <guid>66368900E7E511DD9F62F9ADA4233FE2</guid>
 </principal>
 </principals>...

To solve this particular error, (a) fix system-jazn-data.xml by inserting the
definition of the application test-role; (b) revert to file-based domain stores with the
fixed file; and (c) rerun the reassociation.

L.2.1 Missing Policies in Reassociated Policy Store

Symptom
When an file-based policy store is reassociated to use an LDAP-based Oracle Internet
Directory policy store, the reassociation may report that it completed successfully.

At runtime, however, the system does not behave as expected. Codebase policies, that
are supposed to be present in the system policy after migration, are missing.

Diagnosis
At runtime, the server reports a stack trace that resembles the following:

<BEA-000000> <JspServlet: initialization complete>
####<May 4, 2009 8:32:50 AM PDT> <Error> <HTTP> <ap626atg> <WLS_Spaces>
<[ACTIVE] ExecuteThread: '3' for queue: 'weblogic.kernel.Default
(self-tuning)'> <<WLS Kernel>> <> <> <1241451170341> <BEA-101020>
<[ServletContext@20193148[app:webcenter module:/webcenter path:/webcenter
spec-version:2.5]] Servlet failed with Exception
java.security.AccessControlException: access denied
(oracle.security.jps.service.policystore.PolicyStoreAccessPermission
context=APPLICATION,name=webcenter getApplicationPolicy)
 at
java.security.AccessControlContext.checkPermission(AccessControlContext.java:323)
 at
java.security.AccessController.checkPermission(AccessController.java:546)
 at
oracle.security.jps.util.JpsAuth$AuthorizationMechanism$3.checkPermission(JpsAuth.

Reassociation Failure

Troubleshooting Security in Oracle Fusion Middleware L-17

java:348)
 at
oracle.security.jps.util.JpsAuth$Diagnostic.checkPermission(JpsAuth.java:268)
 at
oracle.security.jps.util.JpsAuth$AuthorizationMechanism$6.checkPermission(JpsAuth.
java:372)
 at oracle.security.jps.util.JpsAuth.checkPermission(JpsAuth.java:408)
 at oracle.security.jps.util.JpsAuth.checkPermission(JpsAuth.java:431)
 at
oracle.security.jps.internal.policystore.AbstractPolicyStore.checkPolicyStoreAcces
sPermission(AbstractPolicyStore.java:246)
 at
oracle.security.jps.internal.policystore.ldap.LdapPolicyStore.getApplicationPolicy
(LdapPolicyStore.java:281)
 at
oracle.security.jps.internal.policystore.PolicyUtil.getGrantedAppRoles(PolicyUtil.
java:898)
 at
oracle.security.jps.internal.policystore.PolicyUtil.getJpsAppRoles(PolicyUtil.java
:1354)
 at
oracle.security.jps.wls.JpsWlsSubjectResolver$1.run(JpsWlsSubjectResolver.java:273
)
 at
oracle.security.jps.wls.JpsWlsSubjectResolver$1.run(JpsWlsSubjectResolver.java:270
)
 at java.security.AccessController.doPrivileged(Native Method)

Here the permission:

oracle.security.jps.service.policystore.PolicyStoreAccessPermission
context=APPLICATION,name=webcenter getApplicationPolicy

is granted to a code base, and the authorization is not allowed since it evaluates to
false.

Solution
Check the AdminServer diagnostic logs for messages like these:

AdminServer-diagnostic.log:[2009-05-28T02:27:52.249-07:00] [AdminServer]
[NOTIFICATION] [JPS-00072] [oracle.jps.config] [tid: Thread-39] [ecid:
0000I66Z0KH0fplp4sm3Ui1A7_Rl00002s,1:5001] [arg: 11.1.1.1.0] [arg: 11.1.1.0.0]
Policy schema upgrade not required. Store Schema version 11.1.1.1.0 is compatible
to the seed schema version 11.1.1.0.0
AdminServer-diagnostic.log:[2009-05-28T02:28:58.012-07:00] [AdminServer]
[NOTIFICATION] [JPS-00078] [oracle.jps.config] [tid: Thread-39] [ecid:
0000I66Z0KH0fplp4sm3Ui1A7_Rl00002s,1:5001] [arg: 11.1.1.1.0] [arg: 11.1.1.0.0]
Credential store schema upgrade not required. Store Schema version 11.1.1.1.0 is
compatible to the seed schema version 11.1.1.0.0

A message of this type suggests that the schema was never seeded during the
re-association. If the correct schema is not seeded in the Oracle Internet Directory
server, the system will not work as expected.

To ensure that the schema is seeded during re-association, proceed as follows:

1. Remove the cn=OPSS container under the cn=OracleSchemaVersion container
in the Oracle Internet Directory server.

2. Start with a clean working instance of an OPSS policy store using the file-based
store.

Reassociation Failure

L-18 Oracle Fusion Middleware Application Security Guide

3. Re-associate this file-based store to the Oracle Internet Directory server.

Check the AdminServer diagnostic logs to confirm that the OPSS LDAP schema was
seeded in the LDAP server by looking for this message:

AdminServer-diagnostic.log:[2009-05-29T07:18:18.002-07:00] [AdminServer]
[NOTIFICATION] [JPS-00078] [oracle.jps.config] [tid: Thread-12] [ecid:
0000I61Z0MH0fplp4sm3Ui1A7_Ll00002s,1:5001] [arg: 11.1.1.0.0] Policy schema
version set to 11.1.1.0.0

If re-associating to a Release 11g Oracle Internet Directory server, the schema version
should read: 11.1.1.1.0

If re-associating to a Release 10.1.4.3 Oracle Internet Directory server, the schema
version should read: 11.1.1.0.0

The Policy Store schema version is set in the Oracle Internet Directory server under
this container:

cn=PolicyStore,cn=OPSS,cn=OracleSchemaVersion

Similarly, the Credential Store schema version is set in the Oracle Internet Directory
server under this container:

cn=CredentialStore,cn=OPSS,cn=OracleSchemaVersion

L.2.2 Unsupported Schema
This section explains a reason why reassociation to an LDAP server may fail.

Symptom
Reassociating the security store to an LDAP repository fails and the AdminServer log
reports an error like the following:

[2011-02-09T07:01:13.884-05:00] [AdminServer] [ERROR] [] [oracle.jps.admin] [tid:
[ACTIVE].ExecuteThread: '6' for queue: 'weblogic.kernel.Default (self-tuning)']
[userId: weblogic] [ecid:
41050d66ef2ec40b:-4c1fb689:12e06cc7b6c:-8000-00000000000001e1,0] Schema seeding
failed, check the server type of the given ldap url.[[
oracle.security.jps.JpsException: Error Modifying JPS Schema, Record: dn:
cn=schema
changetype: modify
delete: objectclasses
objectclasses: (2.16.840.1.113894.7.2.2 NAME 'orclContainer' SUP (top) MUS
 T (cn) MAY (orclVersion $ orclServiceType))
-
: [LDAP: error code 32 - No Such Object]:cn=schema

Diagnosis
The error LDAP: error code 32 indicates that the schema of the reassociation
target LDAP repository is not supported, that is, the version of the target LDAP
repository is not one of the OPSS supported LDAP stores.

Solution
Update the target LDAP repository to one of the supported LDAP stores and then try
reassociating again. The version of an LDAP OID store must be 10.1.4.3 or later. For a
list of supported versions, see Section 8.2, "Using an LDAP-Based OPSS Security
Store."

Server Fails to Start

Troubleshooting Security in Oracle Fusion Middleware L-19

L.3 Server Fails to Start
This section explains several reasons why the Oracle WebLogic Server may fail to start
in the following sections:

■ Missing Required LDAP Authenticator

■ Missing Administrator Account

■ Missing Permission

■ Server with NFS-Mounted Domain Directory Fails to Start

L.3.1 Missing Required LDAP Authenticator
This section explains a reason why the Oracle WebLogic Server may fail to start after
modifying the list of authenticators in a domain.

Symptom
After modifying the list of authenticator providers in a domain, the Oracle WebLogic
Server fails to start, and the error messages output include the following:

java.lang.IllegalArgumentException: null KeyStore name

Diagnosis
One cause of this problem is that the list of authenticators in your domain does not
include an LDAP authenticator.

Solution
Since the server cannot start, you must add one LDAP authenticator manually, as
follows:

1. Open the file DOMAIN_NAME/config/config.xml.

2. Edit config.xml and include, within the element <realm>, an LDAP
authenticator, such as the default authenticator illustrated in the following sample:

<realm>
 ...
 <sec:authentication-provider xsi:type="wls:default-authenticatorType">
 </sec:authentication-provider>
 ...
</realm>

3. Restart the server.

Once the server is back up and running, you can modify the list of providers to
include the provider of your choice using the WebLogic Administration Console, but
ensure that at least one of them is an LDAP authenticator provider.

To this end, use the WebLogic Administration Console as follows:

1. Navigate to the page Create a new Authenticator Provider.

2. Enter the authenticator name and select an authenticator type, all of which are
LDAP-based:

■ ActiveDirectoryAuthenticator

Important: An LDAP authenticator is required in this list for any
domain using OPSS.

Server Fails to Start

L-20 Oracle Fusion Middleware Application Security Guide

■ DefaultAuthenticator (this is the one inserted manually in the sample above)

■ LDAPAuthenticator

■ LDAPX509IdentityAsserter

■ OpenLDAPAuthenticator

■ OracleInternetDirectoryAuthenticator

■ OracleVirtualDirectoryAuthenticator

L.3.2 Missing Administrator Account
This section explains a reason why the Oracle WebLogic Server may fail to start.

Symptom
After removing the out-of-box default authenticator and adding, say an Oracle
Internet Directory authenticator, the server fails to start.

Diagnosis
Most likely, you have forgotten to enter an account member of the Administrators
group in your added authenticator. The server requires that such an account be present
in one domain authenticator. This account is always present in the default
authenticator.

Solution
Since the server cannot start, you must add the deleted one LDAP authenticator
manually, as follows:

1. Open the file DOMAIN_NAME/config/config.xml.

2. Edit config.xml and include, within the element <realm>, the default
authenticator, as illustrated in the following sample:

<realm>
 ...
 <sec:authentication-provider xsi:type="wls:default-authenticatorType">
 </sec:authentication-provider>
 ...
</realm>

3. Restart the server.

Once the server is back up and running, proceed as follows:

1. Use the WebLogic Administration Console to create in the Oracle Internet
Directory authenticator an account that is member of the Administrators group.

2. Set the Oracle Internet Directory authenticator flag to SUFFICIENT.

3. Restart the server, which it should start without problems, since it is using the
account in the Administrators group provided in the default authenticator.

4. Reset the Oracle Internet Directory authenticator flag to REQUIRED and remove
the default authenticator. The server should now start using the account in the
Administrators group that you created in the Oracle Internet Directory
authenticator.

Server Fails to Start

Troubleshooting Security in Oracle Fusion Middleware L-21

L.3.3 Missing Permission
This section explains a reason why the Oracle WebLogic Server may fail to start.

Symptom
The server fails to start when it started with security manager is enabled (with the
system property -Djava.security.manager).

Diagnosis
One reason why you may run into this issue is the lack of permission grants to PKI
APIs in oraclepki.jar when the security manager is enabled at server startup.

Solution
Ensure that a grant like the following is present in the file weblogic.policy, or add
it if it is not:

grant codeBase "file:${oracle.home}/modules/oracle.pki_${jrf.version}/*" {
 permission java.security.AllPermission;
};

The above grant is provided by default. Note that when security manager is enabled,
the access to all system resources requires codebase permission grants.

For complete details about using the Java Security Manager to protect WebLogic
resources, see Oracle Fusion Middleware Programming Security for Oracle WebLogic Server.

L.3.4 Server with NFS-Mounted Domain Directory Fails to Start
This section explains a reason why the Oracle WebLogic Server will fail to start.

Symptom
The domain directory ${domain.home}/config/fmwconfig is on an
NFS-mounted partition, and when the server is started an error message like the
following is logged:

JPS-01050: Opening of wallet based credential store failed. Reason
java.io.IOException: PKI-02002: Unable to open the wallet. Check password.

Furthermore, when orapki debugging is turned on and the server is started once
again, the following message is logged:

java.io.IOException: No locks available.

Note: Printing Security Manager is a WebLogic server enhancement
to the Java Security Manager. Use Printing Security Manager to
identify all of the required permissions for a Java application running
under Java Security Manager. Unlike the Java Security Manager,
which identifies needed permissions one at a time, the Printing
Security Manager identifies all the needed permissions without
intervention.

Note: To enable orapki debugging, start the server with the
following property set: -Doracle.pki.debug=true.

Server Fails to Start

L-22 Oracle Fusion Middleware Application Security Guide

Diagnosis
The real cause for the server’s failure to come up is reported in the second error
message above, once orapki has been enabled. Since OPSS requires file locking when
managing security artifacts in file-based stores, that error message indicates that the
file system on which the domain directory is NFS-mounted does not support file
locking.

Solution
Perform either of the following:

■ Upgrade from NFS v3 to NFS v4.

■ Mount the remote file system with the nolock option enabled.

■ Move files in ${domain.home}/config/fmwconfig to a local storage

L.3.5 Other Causes
This section explains several reasons why the Oracle WebLogic Server may fail to start.

Symptom
When attempting to load and set the policy provider, the Oracle WebLogic Server fails
to start and logs an exception similar to the one illustrated in the following snippet:

<Mar 30, 2010 3:15:54 PM EDT> <Error> <Security> <BEA-090892> <The dynamic loading
of the OPSS java security policy provider class
oracle.security.jps.internal.policystore.JavaPolicyProvider failed due to problem
inside OPSS java security policy provider. Exception was thrown when loading or
setting the JPSS policy provider.
...
<Mar 30, 2010 3:15:54 PM EDT> <Critical> <WebLogicServer> <BEA-000386> <Server
subsystem failed. Reason: weblogic.security.SecurityInitializationException: The
dynamic loading of the OPSS java security policy provider class
oracle.security.jps.internal.policystore.JavaPolicyProvider failed due to problem
inside OPSS java security policy provider. Exception was thrown when loading or
setting the JPSS policy provider.
...
weblogic.security.SecurityInitializationException: The dynamic loading of the OPSS
java security policy provider class
oracle.security.jps.internal.policystore.JavaPolicyProvider failed due to problem
inside OPSS java security policy provider. Exception was thrown when loading or
setting the JPSS policy provider.
...

Diagnosis
The server startup includes loading and setting the policy provider as defined in the
configuration file jps-config.xml; if this task is not completed successfully, the
Oracle WebLogic Server fails to start. As illustrated in the sample above, this type of
failure is identified in the server’s log by the string

Exception was thrown when loading or setting the JPSS policy provider.

To determine the root cause of a particular failure server startup, check the server's log
file and inspect the logged stack trace. For details about identifying errors, see
Diagnosing Security Errors.

Here are some reasons why the server fails to start:

1. The path to the configuration file is incorrectly specified.

Server Fails to Start

Troubleshooting Security in Oracle Fusion Middleware L-23

2. The default context is missing in the configuration file.

3. The XML parser is not available.

4. A code source URL is incorrectly specified in a system policy. This situation is
identified by a logged exception that includes the string

java.net.MalformedURLException: unknown protocol.

Solution
A solution for each of the above cases above is explained next.

1. Ensure that the correct path is specified by the system parameter
oracle.security.jps.config:

-Doracle.security.jps.config=<full-path-to-jps-config.xml>

Note that special characters (such as backlashes or white space characters) in the
full path specification must be properly escaped. One way to verify correctness is
to test using the specified full path in a command line.

2. The configuration file must include a default context. For an example of a default
context configuration, see <jpsContext>.

3. Make sure that the XML parser is available in your system and that the XML
parser JAR file is included in the classpath.

4. Typical incorrect and corrected code source URLs are illustrated in the following
two samples.

Sample 1 - Incorrect URL
<grantee>
 <codesource>
 <url>${my.oracle.home}/jlib/webcacheua.jar</url>
 </codesource>
</grantee>

Sample 1 - Corrected URL (in bold)
<grantee>
 <codesource>
 <url>file:/${my.oracle.home}/jlib/webcacheua.jar</url>
 </codesource>
</grantee>

Sample 2 - Incorrect URL
<grantee>
 <codesource>
 <url>c:/myfolder/jlib/webcacheua.jar</url>
 </codesource>
</grantee>

Sample 2 - The corrected URL (in bold) is either one of the following three:
<grantee>
 <codesource>
 <url>file:///c:/myfolder/jlib/webcacheua.jar</url>
 </codesource>
</grantee>

<grantee>
 <codesource>
 <url>file:c:/myfolder/jlib/webcacheua.jar</url>
 </codesource>

Failure to Grant or Revoke Permissions - Case Mismatch

L-24 Oracle Fusion Middleware Application Security Guide

</grantee>

<grantee>
 <codesource>
 <url>file:/c:/myfolder/jlib/webcacheua.jar</url>
 </codesource>
</grantee>

For details about the syntax of URL specifications in a code source (including the
use of system variables), see <url>.

L.4 Failure to Grant or Revoke Permissions - Case Mismatch
This section explains the likely reasons why an enterprise user or role (group) may fail
to be granted or revoked permissions.

Symptom
An enterprise user or group, properly entered in a domain authenticator, is not
granted or revoked the permissions defined by a grant.

Diagnosis
This problem is likely to occur when there is a case mismatch between the stored name
(in a domain authenticator) and the supplied name (either actively entered by a user or
obtained programmatically). For example, this mismatch would occur when the stored
user name is JdOE and the supplied user name is jdoe.

Solution
There are two ways to resolve this issue.

The first solution involves setting the appropriate property in the authenticator being
used in your domain. As long as both strings (the supplied and the stored) contain
identical sequence of characters (irrespective of case), this setting guarantees that the
user name populated in the Subject matches the user name present in a domain
authenticator, even when the corresponding characters differ in case. Thus, when this
setting is in place, the user names JdOE and jdoe match.

To set your domain authenticator property, proceed as follows:

1. Use the Administration Console to navigate to the page where your authenticator
is configured. For example, if you are using the default authenticator, navigate to
the DefaultAuthenticator page by choosing Realms > myrealm > Providers >
DefaultAuthenticator.

2. Choose the tab Provider Specific.

3. Set the property userRetrievedUserNameAsPrincipal to true.

4. Restart the server.

The second solution considers the case where the supplied name is obtained
programmatically, that is, where one must produce a principal from a user name.

To obtained the correct user or group name, either pass the name exactly as it is stored
in the authenticator or use the sequence of calls illustrated in the following code
snippet:

import weblogic.security.principal.WLSGroupImpl;
import weblogic.security.principal.WLSUserImpl;

Failure to Connect to an LDAP Server

Troubleshooting Security in Oracle Fusion Middleware L-25

// Set the context
JpsContextFactory ctxFact = JpsContextFactory.getContextFactory();
ServerContextFactory scf = (ServerContextFactory) ctxFact;
JpsContext ctx = scf.getContext(ServerContextFactory.Scope.SYSTEM);
ctx = ctxFact.getContext();

// Set the identity store
IdentityStore identityStore =
ctx.getServiceInstance(IdentityStoreService.class).getIdmStore();

// In case of a user name, search the user that matches the supplied name
User user = idStore.searchUser(IdentityStore.SEARCH_BY_NAME, suppliedUserName);

// Use the obtained object (user) to obtain the stored user name and create
// the Principal
String storedUserName = user.getName();
Principal userPrincipal = new WLSUserImpl(storedUserName);

// Similarily, in case of a role name, search the role that matches
// the supplied role name
Role role = identityStore.searchRole(IdentityStore.SEARCH_BY_NAME,
suppliedRoleName);

// Use the obtained object (role) to obtain the stored role name and create
// the Principal
String storedRoleName = role.getName();
Principal rolePrincipal = new WLSGroupImpl(storedRoleName);

L.5 Failure to Connect to an LDAP Server
This section explains the likely reasons why a connection to an Oracle Internet
Directory LDAP server can fail. This failure can also happen during reassociation.

Symptom
The migration of data from a source repository to a target LDAP server repository
fails.

Diagnosis
Typically, this kind of problem is due to an incorrect set up of parameters in the target
LDAP server.

For further probing into Oracle WebLogic Server log files, search any of the log files in
the directories DomainName/servers/AdminServer or
DomainName/servers/ManagedServers for the following strings: <Error>,
<Critical>, and <Warning>.

Important: When creating a user or role principal, you must use the
calls:

Principal userPrincipal = new
WLSUserImpl(user.getUserProfile()getName());
Principal rolePrincipal = new
WLSGroupImpl(role.getRoleProfile().getName());

Instead of the calls:

Principal userPrincipal = new WLSUserImpl(user.getName());
Principal rolePrincipal = new WLSGroupImpl(role.getName());

Failure to Connect to the Embedded LDAP Authenticator

L-26 Oracle Fusion Middleware Application Security Guide

For more information about identifying and solving errors, see Section L.1,
"Diagnosing Security Errors."

Solution
Verify that all the target server data provided for the migration is valid. You may
require the assistance of your LDAP server administrator to perform this validation.

L.6 Failure to Connect to the Embedded LDAP Authenticator
This section explains the likely reasons why a connection to the embedded LDAP
authenticator can fail.

Symptom
The connections that client applications use to request queries to the embedded LDAP
authenticator, via the User and Role API, are stored and maintained in a connection
pool. By default, and out-of-the-box, this pool is the JNDI pool, as specified in the file
jps-config.xml.

If the number of current connections in the pool exceeds the maximum allowed by the
LDAP service, client applications will not be able to connect to the service or, even
when they are already connected, receive a “socket closed” exception. The server log
would indicate, in this case, that the number of concurrent connections allowed has
been exceeded.

Diagnosis
To avoid going over the limit, one needs to adjust the maximum number of concurrent
connections allowed by the LDAP service as appropriate to the application's needs.
This threshold needs to be finely tuned up: a too small maximum may not be sufficient
(and cause the exception mentioned above); a too large maximum may risk a denial of
service (DOS) attack. The correct maximum depends on your application and the
particular LDAP service the application uses.

Solution
There are two alternative ways that resolve this issue:

■ Increase the maximum number of concurrent connections allowed by the
authenticator:

– If the authenticator your application is using is the WebLogic Embedded
LDAP authenticator, then edit the file
DomainName/servers/MyServerName/data/ldap/conf/vde.prop, and increase
the value of the property vde.quota.max.conpersubject from the
default 100 to, for example, 200, or any other value.

– Otherwise, if your application is using any other authenticator, consult the
authenticator's documentation to learn how to modify the maximum.

■ Edit the file DomainName/config/fmwconfig/jps-config.xml and remove the
property CONNECTION_POOL_CLASS from the authenticator server instance (by

Note: If you are using Fusion Middleware Control to reassociate to
an LDAP server, ensure that you use the button Test LDAP
Authorization before initiating the operation. Typically, this test
catches incorrect supplied parameters.

User and Role API Failure

Troubleshooting Security in Oracle Fusion Middleware L-27

default, this property has the value
oracle.security.idm.providers.stdldap.JNDIPool.

Note that (a) these settings do not exclude each other, that is, you can carry out both of
them; and (b) in any case, you must restart the server for the changes to take effect.

L.7 User and Role API Failure
This section explains some reasons why you may fail to access data in a domain
authenticator with the User and Role API.

Symptom
The User and Role API fails to access data in a configured authenticator.

Diagnosis 1
The OPSS User and Role API can access data only in the first LDAP authenticator
configured in a domain. At least one such authenticator must be present in a domain.
The API access to that first LDAP authenticator fails if the target user is not present in
that authenticator, even though that user is present in some other domain
authenticator.

Solution 1
Enter the missing user in the first LDAP authenticator, or reorder the list of LDAP
authenticators in your domain.

Diagnosis 2
Let’s assume that the target user on which the API that fails is present in the first
LDAP authenticator configured in your domain.

By default, the User and Role API uses the attribute uid to perform user search in an
LDAP authenticator. If for some reason, a user entered in the LDAP is lacking this
attribute, then the User and Role API fails.

Solution 2
Ensure that all users in the first LDAP authenticator have the attribute uid set.

Failure to Access Data in the Credential Store

L-28 Oracle Fusion Middleware Application Security Guide

L.8 Failure to Access Data in the Credential Store
This section explains a likely reason why an application fails to access data in the
domain’s credential store.

Symptom
An application fails to retrieve credential data from the domain’s credential store, and
an error message (containing lines like the one illustrated below) is logged (text in
between brackets should describe information specific to the particular failure):

07/07/26 18:22:22 [JpsAuth] For permisson (CredentialAccessPermission [target]
[actions]), domain that failed: ProtectionDomain
 cs(file:somePath/aWarFile.war/WEB-INF/classes/), []

Diagnosis
If an application is to access the credential store to perform an operation (such as
retrieving a user password, for example), then its code must be granted the
appropriate permission to perform the secured operation; otherwise, the application
runs into an error like the one described above.

Solution
To grant the permission that an application requires to access the credential store,
include the appropriate CredentialAccessPermission in the application’s
jazn-data.xml; this grant takes effect when the application is deployed or
redeployed.

To include a permission using Fusion Middleware Control, see Section 9.2, "Managing
Policies with Fusion Middleware Control."

To include a permission using an OPSS script, see Section 9.3, "Managing Application
Policies with OPSS Scripts."

The following fragment of the file jazn-data.xml illustrates how to grant all code in
the application myApp permission to read all credentials in the folder myAlias:

<jazn-data>
 <!-- codebase policy -->

Note: If you are developing a Java SE application (and only in this
case) and want the User and Role API to employ an attribute other
than the default one (uid) to search users, say mail for example, then
the properties username.attr and user.login.attr must be
configured in the LDAP provider instance of the identity store (in the
file jps-config-jse.xml) as illustrated in the following code
snippet:

<serviceInstance provider="idstore.ldap.provider"
name="idstore.ldap">
 ...
 <property name="username.attr" value="mail"/>
 <property name="user.login.attr" value="mail"/>
 ...
</serviceInstance>

To add properties to a provider instance with a prescribed script, see
Section E.1, "Configuring OPSS Service Provider Instances with a
WLST Script."

Authorization Check Failure

Troubleshooting Security in Oracle Fusion Middleware L-29

 <jazn-policy>
 <grant>
 <grantee>
 <codesource>
 <!-- This grants applies to all code in the following directory -->
 <url>${domain.home}/tmp/_WL_user/myApp/-</url>
 </codesource>
 </grantee>
 <permissions>
 <permission>

<class>oracle.security.jps.service.credstore.CredentialAccessPermission</class>
<!-- Allow read permission to all credentials under folder MY_MAP -->
 <name>context=SYSTEM,mapName=MY_MAP,keyName=*</name>
 <actions>read</actions>
 </permission>
 </permissions>
 </grant>
 </jazn-policy>
</jazn-data>

L.9 Failure to Establish an Anonymous SSL Connection
This section explains the likely reasons why you are not able to establish an
anonymous SSL connection while reassociating policies and credentials.

Symptom
A step in the reassociation of file-based policies and credentials to an LDAP-base
storage using an Oracle Internet Directory server with Fusion Middleware Control
involves testing the anonymous SSL connection to the LDAP server (specifically with
the button Test LDAP). This test fails.

Diagnosis
Your target LDAP server must be trusted by the Oracle WebLogic Server and the port
number you are using to the LDAP server must be an SSL port.

Solution
Establishing a connection to an LDAP server requires some previous configuration on
the LDAP server. For details, see Section 8.2.2, "Prerequisites to Using an LDAP-Based
Security Store."

In addition, to use an anonymous SSL connection, you must enter a port that has been
set for receiving secure data. If your LDAP server has not been configured with such a
port, the connection fails.

Ensure that the supplied LDAP server port is an SSL port configured to listen in
anonymous SSL mode, and that the supplied server name reachable. Typically, the
setting of this port involves an LDAP server administrator.

L.10 Authorization Check Failure
This section explains a reason why an authorization check has failed.

Symptom
An attempt to authorize a user by your application fails, and the system logs an error
containing a line like the following:

User Gets Unexpected Permissions

L-30 Oracle Fusion Middleware Application Security Guide

Servlet failed with Exception
oracle.adf.controller.security.AuthorizationException:ADFC-0619:
Authorization check failed: '/StartHere.jspx' 'VIEW'.

Diagnosis
One reason that can lead to such an authorization failure is a mismatch between the
run-time policy context and the policy store stripe that you application is using.

On the one hand, the application stripe (or subset of policies in the policy store) that an
application uses is specified in the file web.xml with the parameter
application.name within the filter configuring the JpsFilter (for a servlet) or
the interceptor configuring the JpsInterceptor (for an EJB). For details and
samples, see Application Name (Stripe). If the application stripe is not specified (or left
blank), then the system picks up an application stripe based on the application name.

On the other hand, the run-time policies that your application uses are specified in the
file system-jazn-data.xml with the element <application.name>.

If those two names do not match or if you have not explicitly specified the stripe to
use, then, most likely, your application is accessing the wrong policy stripe and,
therefore, not able to authorized your application users as expected.

Solution
Ensure that you specify explicitly your application stripe, and that stripe is the one
that your application is supposed to use. In most cases, the two names specified in
those two different files (as explained above) match; however, in cases where several
applications share the same policy stripe, they may differ.

L.11 User Gets Unexpected Permissions
This section explains the likely reasons why a user gets permissions other than those
anticipated.

Symptom
A new user or a modified user gets unexpected permissions.

Diagnosis
This issue is likely to come up in cases where a user is added with the name of
previously removed user, or an old user gets its name or uid changed. The common
reason why the user may get more or less permissions than expected is that the policy
store has not been properly updated before a user is removed or a user data is
changed.

Solution
Before deleting a user, revoke all permissions, application roles, and enterprise groups
that had been granted to the user. If you fail to remove all security artifacts referencing
a user to be deleted, they are left dangling and, potentially, inherited if another user
with the same name or uid is created at a later time.

Similar considerations apply to when a user name or uid is changed: all policies
(grants, permissions, roles) referring to the old data must be updated so that they work
as expected with the new data.

Security Access Control Exception

Troubleshooting Security in Oracle Fusion Middleware L-31

L.12 Security Access Control Exception
This section explains a reason why your code may run into a security access control
exception.

Symptom
At run time, your application outputs an error like the following one (only the first
few lines are shown):

<Jan 20, 2009 5:45:33 PM PST> <Error> <HTTP> <BEA-101020>
<[weblogic.servlet.internal.WebAppServletContext@140cf52
- appName: 'Application2',
name: 'Application2.war',
context-path: '/Application2',
spec-version: '2.5']
Servlet failed with
Exceptionjava.lang.RuntimeException:java.security.AccessControlException:access
denied
...

Diagnosis
The above error means that a call in your code does not have sufficient permissions to
execute a secured operation.

Solution
Your code must be granted the appropriate permissions to execute the secured
operation. Depending on the scope of the permission you would like to set, you have
two alternatives.

The first one is to grant permission to all application code in the application’s EAR or
WAR files; in this case, the call to the secured operation can be inserted anywhere in
the application code.

The second one is to grant permission to just a JAR file; in this case, the call to the
secured operation must be inside a privileged block.

Each of these solutions is next illustrated by an application attempting to access the
credential store.

The following fragment of an applicationjazn-data.xml illustrates how to set
permission to read any key within the map MY_MAP in the credential store to any
code within the directory BasicAuth:

<jazn-policy>
 <grant>
 <grantee>
 <codesource>
 <url>file:${domain.home}/servers/_WL_user/BasicAuth/-</url>
 </codesource>
 </grantee>
 <permissions>
 <permission>
 <class>
 oracle.security.jps.service.credstore.CredentialAccessPermission
 </class>
 <name>context=SYSTEM,mapName=MY_MAP,keyName=*</name>
 <actions>read</actions>
 </permission>
 </permissions>
 </grant>

Runtime Permission Check Failure

L-32 Oracle Fusion Middleware Application Security Guide

</jazn-policy>

If the permission is to be granted to the code in a particular EAR or WAR file, the url
specification above would have to be changed to one like the following:

<url>file:${domain.home}/servers/_WL_user/jpsBasicAuth/.../BasicAuth.ear</url>

In both above cases, the call to read the credential store can be placed anywhere in the
application code.

If, however, the permission is to be granted to just the code in a particular JAR file, the
url specification above would have to be changed to one like the following:

<url>file:${domain.home}/servers/_WL_user/jpsBasicAuth/myJars/Foo.jar</url>

In this last case, the code in the file Foo.jar that calls a read operation on the
credential store must be placed in an AccessController.doPrivileged block, as
illustrated in the following code snippet:

import oracle.security.jps.*;
import oracle.security.jps.service.credstore.*;

JpsContextFactory factory = JpsContextFactory.getContextFactory();
JpsContext jpsContext = factory.getContext();
final CredentialStore store =
jpsContext.getServiceInstance(CredentialStore.class);
Credential cred = AccessController.doPrivileged(new
PrivilegedExceptionAction<PasswordCredential>() {
 public PasswordCredential run() throws JpsException {
 return store.getCredential("MY_MAP", "anyKey");
 }
});

PasswordCredential pwdCred = (PasswordCredential)cred;
...

Note that since our sample grant above allows only read permission, none of the set or
reset operations work, even inside a privileged block.

L.13 Runtime Permission Check Failure
This section explains a reason why a permission may fail to pass a permission check.

Symptom
At run time, your application outputs an error like the following one (only the first
few lines are shown):

[JpsAuth] Check Permission
 PolicyContext: [null]
 Resource/Target: [test]
 Action: [null]
 Permission Class: [com.oracle.permission.SimplePermission]
 Evaluator: [ACC]
 Result: [FAILED]
 Failed
ProtectionDomain:ClassLoader=weblogic.utils.classloaders.ChangeAwareClassLoader@14
061a8
finder: weblogic.utils.classloaders.CodeGenClassFinder@2dce7a8
annotation: Application2@Application2.war
CodeSource=file:/scratch/servers/AdminServer/tmp/permission/TestServlet$1.class

Permission Failure Before Server Starts

Troubleshooting Security in Oracle Fusion Middleware L-33

Principals=total 0 of principals<no principals>
Permissions=(
(oracle.security.jps.service.credstore.CredentialAccessPermission
context=SYSTEM,mapName=default,keyName=* read,write)
(java.net.SocketPermission localhost:1024- listen,resolve)
(oracle.security.jps.service.policystore.PolicyStoreAccessPermission
context=APPLICATION,name=* getApplicationPolicy)
(oracle.security.jps.service.policystore.PolicyStoreAccessPermission
context=SYSTEM getConfiguredApplications)
(com.oracle.permission.SimplePermission *)
...
java.security.AccessControlException: access denied
(com.oracle.permission.SimplePermission test)...

Diagnosis
When two or more applications share a permission class, that permission class must be
set in the system class path so the class is loaded just once. Otherwise, only the first
application loading the class passes the permission check; other ones loading the same
class thereafter may fail the permission check and output an error like the one
illustrated above.

Note that even though the permission class is in the permission collection (see bold
text in sample output above), the check fails and the access is denied. This is because,
at that point, the environment contains several instances of a permission class with the
same name.

Solution
Ensure that if two or more applications to be run in the same domain share a
permission class, then include that class in the system class path.

L.14 Permission Failure Before Server Starts
This section describes a reason why a permission check may fail before the server has
completed its starting phase.

Symptom
An authorization check fails before the server has started. The server has completed its
starpup when it outputs the a line like the following:

<WebLogicServer> <BEA-000365> <Server state changed to STARTING>

Diagnosis
A permission check error before the server has changed status to STARTING usually
indicates that the authorization service required to check that permission was not fully
initialized at the time of the request.

Solution
To workaround this issue, proceed as follows:

1. Edit the file weblogic.policy to add the appropriate grant(s).

2. Start the Oracle WebLogic Server with the following two system properties set:

■ java.security.policy set to the location of the weblogic.policy file.

■ jps.policystore.hybrid.mode set to true.

Policy Migration Failure

L-34 Oracle Fusion Middleware Application Security Guide

L.15 Policy Migration Failure
This section describes a reason why the automatic migration of policies at application
deployment may fail. Note that the deployment of an application may succeed even
though the migration of policies failed.

For a failure also related to migration, see Incompatible Versions of Policy Stores.

Symptom
The application is configured to migrate policies automatically at deployment. The
application deployment succeeds, but the diagnostic file corresponding to the server
where it has been deployed outputs a message like the following:

[2009-01-21T13:34:48.144-08:00] [server_soa] [NOTIFICATION] []
[oracle.jps.deployment] [tid: [ACTIVE].ExecuteThread: '2' for queue:
'weblogic.kernel.Default (self-tuning)'] [userId: weblogic]
[ecid: 0000Hvv7U_H7q2T6uBADUH19Tq0B00002I,0] [APP: JpsJdev#V2.0]
Application [JpsJdev#V2.0] is being deployed, start policy migration.

[2009-01-21T13:34:48.770-08:00] [server_soa] [WARNING] []
[oracle.jps.deployment] [tid: [ACTIVE].ExecuteThread: '2' for queue:
'weblogic.kernel.Default (self-tuning)'] [userId: weblogic]
[ecid: 0000Hvv7U_H7q2T6uBADUH19Tq0B00002I,0] [APP: JpsJdev#V2.0]
Exception in application policy migration.[[
oracle.security.jps.JpsException: appplication Role:
test_role not found for the application in the destination policy store
at oracle.utility.destination.apibased.JpsDstPolicy.convertAppPolicyPrincipal
(JpsDstPolicy.java:815)
at oracle.utility.destination.apibased.JpsDstPolicy.clone
(JpsDstPolicy.java:691)...

The above excerpt was extracted from the file server_soa-diagnostic.log, and
the application JpsJdev was deployed to the managed server server_soa. Note
that the key phrase to look for to locate such error is highlighted in the sample above.
In addition, the error describes the artifact that raised the exception, the application
role test_role.

Diagnosis
Something is wrong with the definition of this role in the application file
jazn-data.xml. In fact, a quick look at this file reveals that the role test_role is
referenced in a grantee, as illustrated in the following excerpt:

<grantee>
 <display-name>myPolicy</display-name>
 <principals>
 <principal>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>test_role</name>
 </principal>
 </principals>
</grantee> ...

Note: The reason why the automatic migration can fail, as explained
in this section, can also lead to similar failures when reassociating
domain stores.

Characters in Policies

Troubleshooting Security in Oracle Fusion Middleware L-35

But the name of what is supposed to be the application role named test_role,
however, was inadvertently misspelled to test_rolle:

<application>
 <name>JpsJdev</name>
 <app-roles>
 <app-role>
 <name>test_rolle</name>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <members> ...

Solution
Ensure that all application roles referenced in application policies have been properly
defined in the jazn-data.xml file. If a referenced role name cannot be matched, as in
the samples above, the migration fails.

L.16 Characters in Policies
This section explains several issues related to characters used in policies, in the
following sections:

■ Use of Special Characters in Oracle Internet Directory 10.1.4.3

■ XML Policy Store that Contains Certain Characters

■ Characters in Application Role Names

■ Missing Newline Characters in XML Policy Store

L.16.1 Use of Special Characters in Oracle Internet Directory 10.1.4.3
When the policy store is an LDAP-based Oracle Internet Directory 10.1.4.3 repository,
then using the characters '*', '(', ')', or '\' in the RFC 2252/2253 filter results in error 53
(DSA unwilling to perform). To resolve this error, apply the patch for bug number
7711351 to Oracle Internet Directory 10.1.4.3.

L.16.2 XML Policy Store that Contains Certain Characters
The issue explained in this section is relevant to XML Policy Stores only, that is, it does
not apply to LDAP-based Policy Stores.

The following characters:

 < " & $? * , / \ ` : () ^ ' % + { }

are not recommended as part of an Application Role name when using an file-based
policy store.

If it becomes necessary to use one of those characters to create a role, for example, then
ensure that such characters are escaped in the input to API Policy Store methods like
ApplicationPolicy.searchAppRoles(), so they return correct results.

For example, if you have an application role named "appRole^$" it will need to be
input as ApplicationPolicy.searchAppRoles("appRole\\^\\$") to find the
match in the policy store.

Alternatively, you could use a wild card in the search expression without including
these escaped special characters, and it will also match that application role:

ApplicationPolicy.searchAppRoles("appRole*")

Granting Permissions in Java SE Applications

L-36 Oracle Fusion Middleware Application Security Guide

L.16.3 Characters in Application Role Names
An application role name is a string of printable characters other than white space, that
is, it can contain alpha-numeric characters (ASCII or Unicode) and other printable
characters (such as underscore or square brackets) except for white space. This rule
applies to all three kinds of supported storage: XML, LDAP, and DB.

L.16.4 Missing Newline Characters in XML Policy Store
In an file-based policy store, a new-line character is required between the closing of a
<permission> or <principal> tag and the opening of the following one.

Following are examples of strings illustrating incorrect and correct formats.

Incorrect example fragment of policy store:

<permission>
 <class>java.lang.RuntimePermission</class>
 <name>getClassLoader</name>
 </permission> <permission>
 <class>java.io.FilePermission</class>
 <name>/foo</name>
 <actions>read,write</actions>
 </permission>

Correct example fragment of policy store:

<permission>
 <class>java.lang.RuntimePermission</class>
 <name>getClassLoader</name>
</permission>
<permission>
 <class>java.io.FilePermission</class>
 <name>/foo</name>
 <actions>read,write</actions>
</permission>

L.17 Granting Permissions in Java SE Applications
This section describes the correct way to code a grant in Java SE applications. Even
though the problem described is not an issue in Java EE applications, for maximum
portability, it is recommended that this solution be used in Java EE applications too.

Symptom
The application code includes a fragment like the following, by an application creates
a grant:

Permission p = new FilePermission(resourceName, "write");
PrincipalEntry myPrincipal2 =
InfoFactory.newPrincipalEntry("weblogic.security.principal.WLSGroupImpl",
enterpriseRoleName2);
ap.grant(new Principal[]{myPrincipal2.getPrincipal()}, null, new Permission[]{p});

At runtime, however, the grant is not taking effect as expected.

Diagnosis
A bit of inspection indicates that the policy store repository includes the following
attribute:

Search Failure when Matching Attribute in Policy Store

Troubleshooting Security in Oracle Fusion Middleware L-37

orcljaznjavaclass=oracle.security.jps.internal.policystore.UnresolvedPrincipal+cn=
enterpriseRoleName2

Solution
The lines of code above should be replaced by the following:

Permission p = new FilePermission (resourceName, "write");
PermissionEntry permEntry = InfoFactory.newPermissionEntry(p.getClassName(),
p.getName(), p.getActions());
ap.grant (new PrincipalEntry[] {myPrincipal2}, null, new PermissionEntry[]
{permEntry});

The solution uses the array PrincipalEntry instead of the array Principal and
the array PermissionEntry instead of the array Permission.

L.18 Troubleshooting Oracle Business Intelligence Reporting
This section describes common problems and solutions for Oracle Business
Intelligence when used as a reporting tool for Oracle Fusion Middleware security. It
contains the following topics:

■ Audit Templates for Oracle Business Intelligence Publisher

■ Oracle Business Intelligence Publisher Time Zone

L.18.1 Audit Templates for Oracle Business Intelligence Publisher
To view Oracle Fusion Middleware Audit Framework reports in Oracle Business
Intelligence, you must use the appropriate audit templates.

For details, see Section 14.1.3, "Set Up Oracle Reports in Oracle Business Intelligence
Publisher".

L.18.2 Oracle Business Intelligence Publisher Time Zone
You may see problems with Oracle Fusion Middleware Audit Framework reports if
Oracle Business Intelligence Publisher and the database are installed in sites with
different time zones.

To avoid this issue, ensure that Oracle Business Intelligence Publisher and the
database are installed in the same time zone.

L.19 Search Failure when Matching Attribute in Policy Store
This section describes a reason why cataloging of an attribute is needed.

Symptom
While searching the policy store, an exception similar to the following is encountered:

oracle.security.jps.service.policystore.PolicyStoreOperationNotAllowedException
javax.naming.OperationNotSupportedException:
[LDAP: error code 53 - Function Not Implemented, search filter attribute
orcljpsresourcetypename is not indexed/cataloged];

Note: This same issue applies to the method revoke, which also has
overloaded variants that accept Principal[] or
PrincipalEntry[]

Search Failure when Matching Attribute in Policy Store

L-38 Oracle Fusion Middleware Application Security Guide

remaining name 'cn=Permissions,cn=JAASPolicy,cn=IDCCS, cn=sprint6_policy_
domain,cn=JPSContext,cn=FusionAppsPolicies'

Diagnosis
The error above indicates that the attribute orcljpsresourcetypename must be
cataloged before it is used in a filter to search the policy store.

Solution
An Oracle Internet Directory attribute used in a search filter must be indexed and
cataloged. Indexing and cataloging are optional operations, in general, but required
for OPSS-related attributes. Attribute indexing and cataloging is automatically
performed by the OPSS script reassociateSecurityStore.

For details about managing attribute catalogs and identifying whether an attribute is
indexed, see the following sections in Oracle Fusion Middleware Administrator's Guide for
Oracle Internet Directory:

To catalog attributes manually use the command ldapmodify, as illustrated bellow:

>ldapmodify -h <host> -p <port> -D <bind DN> -w <bind password> -v -f <catalogue
modify ldif file name>

To catalog, for example, the attributes createtimestamp and modifytimestamp
use an LDIF file like the following:

dn: cn=catalogs
changetype: modify
add: orclindexedattribute
orclindexedattribute: modifytimestamp
orclindexedattribute: createtimestamp

The list of Oracle Internet Directory attributes that must be indexed follows:

OrclJpsAllResourcKeyword
OrclJpsAllResourceActionKeyword
OrclJpsEncodedAttributes
OrclJpsExtensionType
OrclJpsResourceConverter
OrclJpsResourceMatchingAlg
OrclJpsResourceMatchingAlgorithm
OrclJpsResourceNameExpression
OrclJpsRoleType
orcOesAppAttributes
orclASInstanceName
orclFarmName
orclJPSObjGUID
orclJavaApplicationEntityRef
orclJpsPolicyDomainName
orclJpsResourceActionsetMembers
orclJpsResourceExpression
orclJpsResourceLocalityRef
orclJpsResourceMatcherJavaclass
orclJpsResourceName
orclJpsResourceTypeActionAttrs
orclJpsResourceTypeActionNames
orclJpsResourceTypeName
orclJpsResourceTypeProviderName
orclJpsResourceTypeResourceAttrs
orclJpsRoleCategory
orclJpsRoleMemberExpression

Search Failure when Matching Attribute in Policy Store

Troubleshooting Security in Oracle Fusion Middleware L-39

orclJpsSuperResourceType
orclOESActCollectionName
orclOESActCollectionRfs
orclOESActionAttributes
orclOESActionConstraint
orclOESAlgorithmJavaClass
orclOESAllResourceType
orclOESAllowAdviceRef
orclOESAllowObligationRef
orclOESAttributeCategory
orclOESAttributeCollectionHandlerFunctionName
orclOESAttributeCollectionHandlerPackageName
orclOESAttributeCollectionHandlerSchemaName
orclOESAttributeCollectionName
orclOESAttributeDataType
orclOESAttributeIssuer
orclOESAttributeNamespace
orclOESAttributeType
orclOESCombinerParameter
orclOESConditionExpression
orclOESDSColumnAttrs
orclOESDSPrimKey
orclOESDataSourceCtrnt
orclOESDataSourceName
orclOESDataSourceType
orclOESDefaultPolSetRef
orclOESDenyAdviceRef
orclOESDenyObligationRef
orclOESDistributionEndTime
orclOESDistributionID
orclOESDistributionIssuer
orclOESDistributionMessage
orclOESDistributionPercentComplete
orclOESDistributionStartTime
orclOESEffect
orclOESEnvAttributes
orclOESEnvConstraint
orclOESExecutionFrequency
orclOESExpression
orclOESFunctionCategory
orclOESFunctionClass
orclOESFunctionParameters
orclOESFunctionReturnType
orclOESIsSensitive
orclOESIsSingleValued
orclOESMatchInfo
orclOESMaxDelegationDepth
orclOESObligationFulfillOn
orclOESPDPAddress
orclOESPDPConfigurationID
orclOESPDPInstanceName
orclOESPDPStatusSuccess
orclOESPIPType
orclOESPolicyCategory
orclOESPolicyCombinerParameter
orclOESPolicyCombiningAlgorithmRef
orclOESPolicyDefaults
orclOESPolicyExtension
orclOESPolicyIssuer
orclOESPolicyRef

Search Failure with an Unknown Host Exception

L-40 Oracle Fusion Middleware Application Security Guide

orclOESPolicyRuleOrder
orclOESPolicyRuleRef
orclOESPolicySetCategory
orclOESPolicySetDefaults
orclOESPolicySetRef
orclOESPolicySetType
orclOESPolicyType
orclOESPolicyVersion
orclOESPresenceRequired
orclOESPrincConstraint
orclOESPrincipalAttributes
orclOESResConstraint
orclOESResTypeCategory
orclOESResourceAttributes
orclOESResourceHirchyType
orclOESResourceNameDelim
orclOESResourceParentName
orclOESRoleMapping
orclOESRuleCombinerParameter
orclOESRuleCombiningAlgorithmRef
orclOESSQLExpression
orclOESSetCombinerParameter
orclOESSetMemberOrder
orclOESTargetExpression
orclOESXMLExpression
orclassignedpermissions
orclassignedroles
orcldistributionversion
orcljazncodebase
orcljaznjavaclass
orcljaznpermissionactions
orcljaznpermissionresourceref
orcljaznpermissionsigner
orcljaznpermissiontarget
orcljaznpermissiontargetexpr
orcljaznprincipal
orcljaznsigner
orcljpsRuleCombiningAlgorithmRef
orcljpsactionsdelim
orcljpsassignee
orclrolescope

L.20 Search Failure with an Unknown Host Exception
When searching for information in an Active Directory environment that is configured
for LDAP referrals, the referrals fail if the host being referred to is in a different
domain than the Active Directory server.

Symptom
When a user requests a resource, at times verification of the user's identity can fail due
to an inability to validate the user's identity in the directory. This error can occur in an
Active Directory environment when the user's browser runs on a non-Windows
computer, or if the user's browser runs on a Windows computer that is not in the
Active Directory server domain.

Diagnosis
This problem can arise due to LDAP referral chasing. An LDAP referral occurs when a
domain controller does not have the section of the directory tree where a requested

Incompatible Versions of Binaries and Policy Store

Troubleshooting Security in Oracle Fusion Middleware L-41

object resides. The domain controller refers the client to another destination so that the
client can conduct a DNS search for another domain controller. If the client is
configured to chase referrals, the search can continue.

For the scenario where the user has a Windows-based computer, an issue can occur
with LDAP referrals if the client's domain controller does not have a trust relationship
with the Active Directory domain controller.

Solution
If you encounter this issue, add the entry for the Active Directory host's address in the
following list:

WINDOWS_HOME_DIRECTORY\system32\drivers\etc\hosts

On Windows XP, the list is located here:

C:\WINDOWS\system32\drivers\etc\host

On a Unix-based system, add this entry to the /etc/hosts file, using the format:

IP_address_of_AD_host AD_host_name

where AD_host_name is the host name specified in the referral, for example:

123.123.123.123 my2003ad.com

L.21 Incompatible Versions of Binaries and Policy Store
This section describes the reason why the server would throw the exception
PolicyStoreIncompatibleVersionException. See also Incompatible Versions
of Policy Stores.

Symptom
An error similar to the following is logged or issued by the server:

Oracle.security.jps.service.policystore. PolicyStoreIncompatibleVersionException
JPS-06100: Policy Store version 11.1.1.5.0 and Oracle Platform Security Services
version 11.1.1.4.0 are not compatible.

Diagnosis
The above exception indicates that the domain OPSS binaries version (11.1.1.4.0) and
the policy store version (11.1.1.5.0) used by that domain have incompatible versions.
The version of the policy store is established during reassociation and that version is
used until the policy store is upgraded to a newer version.

OPSS domain binary versions are backward compatible with policy store versions used
by that domain, but they are not forward compatible. Thus, the error above indicates
that the policy store has version newer that the version of the OPSS binaries. PS3 OPSS
binaries cannot use a newer version of the policy store.

Here are three scenarios where OPSS binaries ends up running into this
incompatibility.

■ Scenario 1

– Domain1 and Domain2 point to the same policy store; Domain1, Domain2,
and that policy store are all three version PS2.

– The binaries in Domain1 are upgraded to PS3.

– The policy store is upgraded to PS3 (using the command upgradeOPSS).

Incompatible Versions of Policy Stores

L-42 Oracle Fusion Middleware Application Security Guide

– When the Domain2 is brought up again, its version and the policy store
version are incompatible.

■ Scenario 2

– Domain1 points to a policy store and both are version PS2.

– An attempt to migrate the policy store to a PS3 policy store fails because the
migration would render a scenario with incompatible versions.

Migration is supported only when the versions of the OPSS binaries and the
policy store are same.

■ Scenario 3

– A PS2 Domain1 attempts to join a PS3 policy store (in some other domain),
using the command reassociateSecurityStore with the join argument.

– The operation fails because the sharing would render a scenario with
incompatible versions.

Reassociation is supported only when the versions of the OPSS binaries and
the policy store are same.

Solution
The solution, common to all three scenarios above, is either one of the following:

■ Update the domain OPSS binaries to match the version of the policy store the
domain is pointing to.

■ Reassociate the domain policy store to a policy store that has version not older
than the version of the domain OPSS binaries.

L.22 Incompatible Versions of Policy Stores
This section describes the reason why, while migrating the OPSS security store, the
exception PolicyStoreIncompatibleVersionException is encountered. See
also Incompatible Versions of Binaries and Policy Store.

The above exception indicates that the version of the source store is higher than the
version of the target store, an invalid combination of versions. Migration proceeds
only if the version of the source is not higher than the version of the target.

The workaround is to upgrade the taget store to a version compatible with the version
of the source store.

L.23 Need Further Help?
You can find more solutions on My Oracle Support (formerly MetaLink) at
http://myoraclesupport.oracle.com. If you do not find a solution to your
problem, log a service request.

Index-1

Index

A
AbstractTypedPermission, 20-14
access control list, 8-14
Access Server

cache, 17-61
AccessGate

configureAccessGate tool, 17-40, 17-71
ACL, 8-14
add.application.roles, 21-4
add.authenticated.role, 21-6
addBootStrapCredential, 10-9
addPrincipalsToAppRole, 20-4
administration tools, 5-1
administrative tasks, 5-5
administrators group, 2-8
Anonymous and Authenticated Roles

Properties, F-23
anonymous role, 2-7, 2-8, 5-2
anonymous role and authentication, 2-8
anonymous SSL, 8-12
anonymous user, 2-1, 2-7, 2-8
anonymous user and role, 21-4
app.context, 8-22
Application Name or Stripe, 21-2
application policy, 2-2
application role, 2-2, 21-4
application role hierarchy, 9-11
application stripe, 21-2, 21-3
application.name, 21-2, 21-3
ApplicationRole class, 2-6
application-specific policies and roles, 3-4
audit data

bus-stop files, 13-8
file management, C-51
migrating, 13-25
reports, 14-1

audit data store
backup and recovery, 13-27
configuring for Java components, 13-5
configuring for system components, 13-6
data purge, 13-27
de-configuring, 13-8
partitioning, 13-25
schema, 13-22
tiered archival, 13-27

Audit Flow, 12-6
audit logs, 13-21
audit policies migration, 6-19
audit policy, 13-11

event filters, 12-8
audit report

example of, 14-8
audit reports

attributes, 14-13
by component, C-29
custom, 14-15
list of standard, 14-11
types of, 14-6
viewing, 14-7

Audit Schema, C-31
audit service, 28-1
audit-aware components, C-1
auditing

event attributes, C-24
events, C-2
filter expression syntax, C-50
for Oracle Fusion Middleware components, 13-11
in Oracle Fusion Middleware, 12-1
Java components, C-1
manual policy management, 13-19
manually configure for Java components, 13-20
manually configure for system

components, 13-20
Oracle Directory Integration Platform, C-2
Oracle HTTP Server, C-8
Oracle Identity Federation, C-11
Oracle Internet Directory, C-9
Oracle Platform Security Services, C-6
Oracle Virtual Directory, C-16
Oracle Web Cache, C-21
Oracle Web Services Manager, C-24
overview, 12-3
OWSM-Agent, C-18
OWSM-PM-EJB, C-19
policy management with Fusion Middleware

Control, 13-11, 13-14
policy management with WLST, 13-17
record storage, 12-8
report filters, 14-4
report setup for Oracle Business Intelligence

Publisher, 14-3

Index-2

report templates, 14-4
Reports Server, C-20
system components, C-2
WLST commands, C-44
WS-Policy Attachment, C-21

Authenticated Role, 21-6
authenticated role, 2-7, 5-2, 21-6
authenticated user, 2-1
Authentication providers, 18-12

DefaultAuthenticator, 16-23, 16-30, 16-36, 17-44,
17-54, 17-62, 18-12

LDAP Authentication, 16-19, 17-41
OAM, 15-4, 15-5
OAM Authenticator, 16-30, 17-54
OAM Identity Asserter, 16-23, 16-36, 17-44, 17-62
OID Authenticator, 16-23, 16-36, 17-44, 17-62,

18-3, 18-12
OSSO Identity Asserter, 18-12
WebLogic, 15-1

authenticator flags, 3-3
Authenticator for OAM, 15-5
Authorization failure, 20-7
authorization failure, 9-2
Auto login, 8-19
autologin.url, 8-22

B
backup, 5-3
basic security tasks, 5-2
bootstrap credentials, 6-6, 23-3
Bulk authorization, 23-5
bulkload, 6-19

C
cache

Access Server, 17-61
refresh frequency, 9-29

cache refresh, 9-28
caching, 9-28
Cascading deletions, 23-5
characters allowed in policies, L-35
characters in security artifacts, 9-2
checkBulkAuthorization, 20-12
checkPermission, 20-7, 20-8, L-3
choosing

the right SSO solution, 15-1
class path, 1-7, 3-5, 8-1, 9-3, 9-11, 21-22, E-4
class permission, 21-21

CredentialAccessPermission, 21-23
JpsPermission, 21-23
PolicyStoreAccessPermission, 21-22

cloning environments, 5-3
commands to administer credentials, 9-8, 10-6
Complex queries, 23-5
Compliance, 12-1
configuration file, 21-25
configuration of multiple authenticators, 3-3
configureAccessGate tool, 17-40, 17-71

configuring
global logout

Oracle Access Manager, 17-10
Identity Assertion

for single sign-on with OAM, 16-16, 17-34
Oracle Web Services Manager, 16-35, 17-59

OAM Authenticator, 17-48
OAM for single-sign on with OAMCfgTool, 17-38
OAM for SSO with OAMCfgTool, 17-38
OSSO, 18-1
providers for Oracle Web Services

Manager, 16-36, 17-62
Single Sign-On in Oracle Fusion

Middleware, 15-1, 16-1, 17-1, 18-1
configuring domains, 5-5
configuring resource permissions, 20-13
configuring WebLogic domains, 5-5
CONNECTION_POOL_CLASS, L-26
createAppRole, 9-9, 9-10
createCred, 10-8
createResourceType, 9-16
creating user accounts, 2-9
credential migration settings, 6-5
credential store, 2-3
Credential Store Types, 3-5
CredentialAccessPermission, 21-23
CredentialMapping permission, 8-23
CSF

J2EE example with LDAP store, 24-13
J2EE example with wallet, 24-11
J2SE example with wallet, 24-8

CSIv2 identity assertion, 3-4
custom authorization providers, 3-4
cwallet.sso, 4-4, 6-3, 21-1, 21-19
cwallet.sso file, 21-10

D
DB-based credential store, 3-5
DB-based policy store, 8-6
DB-based security store, 4-1
DBMS_STATS, 8-8
debugging authorization, L-9
DefaultAuthenticator, 16-23, 16-30, 16-36, 17-44,

17-54, 17-62, 18-12
default.auth.level, 8-23
deleteAppPolicies, 9-15
deleteAppRole, 9-10
deleteResourceType, 9-17
deleting a role, 9-10
deployed application, 5-4
deploying applications, 6-2
deploying JavaEE applications, 6-7
deploying to a test environment, 6-6
deployment tools, 6-2
development mode, 21-20, 21-21
distribute environments, 8-3
DN, 2-10
doAs, 20-11
doAsPrivileged, 20-11

Index-3

Dynamic authentication, 8-19

E
EAR file, 21-9, 21-10
EJB Interceptor, 21-1
ejb-jar.xml, 3-4, 21-1
ejb-jar.xml., 21-9
embedded LDAP, 3-2, 4-2
enable.anonymous, 21-4
enterprise group, 2-1
Enterprise Groups and Users Class, 21-9
enterprise user, 2-1
Enterprise-Level SSO, 15-2
entitlement-based policies, 2-2
Event Source Type, 12-8
Existing OSSO, 15-2
exportAuditConfig, C-49
EXTRA_JAVA_PROPERTIES, F-1, L-7

F
fail over support, 5-5
FAQ, 1-2
file-based policy store, 3-5
file-based security store, 4-1

G
generic credential, 10-1
Generic LDAP Properties, F-21
getAuditPolicy, C-45
getGrantedResources, 20-12
getNonJavaEEAuditMBeanName, C-45
getPermissions, L-4
getResourceType, 9-17, 9-18, 9-19, 9-20, 9-21, 9-22,

9-23, 9-24, 9-25
Global logout, 8-19
grant

permission-based, 2-5
grantAppRole, 9-11
GrantManager class, 20-5
grantPermission, 9-13
group, 2-1
GUID, 2-10

H
Headers

sent by Oracle HTTP Server, 18-4
host name verification, 3-3
hot deployed, 6-10

I
Identity Asserter for Single Sign-on with OAM, 15-5
identity store, 2-3

creating provider, 25-7
provider configuration properties, 25-8
selecting provider, 25-6
WebLogic, 3-2

WebSphere, 3-4
identity store in JavaSE, 22-2
Identity Store Service, 7-1
identity store types, 3-2
identity virtualization, 7-1
idstore.type, F-16
importAuditConfig, C-49
incompatible versions, L-41, L-42
initializing an LDAP authenticator, 3-3
invoking MBeans, E-3
isCallerInRole, 1-6
isUserInRole, 1-6, 20-3

J
JAAS mode, 21-6
Java component, 2-4
javadocs

OPSS APIs, H-1
OPSS MBeans APIs, H-1
OPSS User and Role APIs, H-1

JavaSE application, 23-1
java.security.policy, F-2
jazn-data.xml, 4-4, 6-3, 21-1, 21-9, 21-10
join, 9-27
JpsApplicationLifecycleListener, 21-20
jpsApplicationLifecycleListener, 21-13
jps.apppolicy.idstoreartifact.migration, 21-13
jps.auth.debug, L-7
jps.auth.debug.verbose, L-8
jps-config-jse.xml, 1-7
jps-config.xml, 21-1, A-1
jps-config.xml example, 21-25
jps-config.xml full example, 21-25
jps.credstore.migration, 21-20
jps.deployment.handler.disabled, 8-15, 21-11
JpsFilter, 21-1, 21-9, L-5
JpsInterceptor, 21-1, 21-7, 21-9, L-5
JpsPermission, 21-23
jps.policystore.applicationid, 21-12
jps.policystore.hybrid.mode, F-3
jps.policystore.migration, 21-12
jps.policystore.migration.validate.principal, 21-15
jps.policystore.removal, 21-14

K
Keys and Certificates

managing, 11-1
Keystore Service, 11-1, 27-1

commands, 11-3

L
large volume stores, 6-18
LDAP Credential Store Properties, F-14
LDAP Identity Store Properties, F-15
LDAP Policy Store Properties, F-4
LDAP servers, 4-1
ldapadd, 8-4
LDAP-based policy store, 3-5, 8-2

Index-4

ldapmodify, 8-14
ldapsearch, 8-4
LDIF file, 8-3
ldifwrite, 6-18
listAppRoleMembers, 9-12
listAppRoles, 9-12
listAuditEvents, C-48
listPermissions, 9-15
loggers

oracle.security.jps.trace.logger, L-4
oracle.security.jps.util.JpsAuth, L-3

logical role, 2-2, E-11
login.url.FORM, 8-22
logout.url, 8-22

M
management tools, 4-3
managing

keys and certificates, 4-3
policies and credentials, 4-3

managing credentials, 6-6, 6-7
managing domain authenticators, 5-5
managing identities, 4-3, 6-6
managing policies, 6-6
managing policies and credentials, 4-3
managing system policies, 6-7
managing users and groups, 4-2
Manually Configuring

WebGate Web Server, 16-12
mapping application roles to enterprise groups, 6-7
mapping of application roles, 2-4
mapping roles, 6-11
matcher class, 20-14
Matcher Class for a Resource Type, 20-14
MBean

Administration Policy Store, E-3
annotations, E-11
Application Policy Store, E-3
code sample, E-4
Credential Store, E-3
Global Policy Store, E-3
Jps Configuration, E-3

migrateSecurityStore, 6-9, 6-11, 8-16, 21-24, I-2
DB to DB, 6-15, 6-18
LDAP to LDAP, 6-14, 6-17
XML to LDAP, 6-15, 6-18

migrating credentials example, 6-15
Migrating Identities, 21-24
migrating identities manually, 6-9
migrating large stores, 6-18
migrating other providers, 6-9
migrating policies and credentials at

deployment, 6-10
migrating policies example, 6-11
Migration of credentials, 3-6
Migration of policies, 3-5
mod_osso, 18-5, 18-22
modifyBootStrapCredential, 10-9
modifying a resource type, 9-17

Monitoring, 12-2
multiple-node server domain, 8-3

N
name comparison logic, 2-10

O
OAM

Authentication provider, 15-4, 15-5
parameter, 17-14
Troubleshooting, 17-67

Authenticator, 15-5, 16-30, 17-54
Identity Asserter, 15-5, 16-23, 16-36, 17-44, 17-62

OAM 10g SSO solution, 17-1
OAM 11g SSO solution, 16-1
OAM solution, 8-19
oamauthenticationprovider.war, 16-8, 17-5
oamAuthnProvider.jar, 15-13, 16-8, 17-5
OAMCfgTool, 17-2, 17-6, 17-34, 17-38

about using, 17-15
Create mode parameters, 17-18
host identifiers created, 17-32
Known Issues, 17-33
process overview, 17-17
Validate mode parameters, 17-27

oamcfgtool.jar, 15-13, 17-5
OID Authenticator, 16-23, 16-36, 17-44, 17-62, 18-3,

18-12
OID patches, 8-2
one-way SSL, 8-12
OPSS APIs

User and Role, D-1
OPSS security store, 2-3
OPSS SSO Framework, 8-19
OPSS System Properties, F-1
opss_purge_changelog, 8-8
Oracle Access Manager

Integration with OSSO, 15-3
Oracle ADF security, 5-1
Oracle Business Intelligence Publisher, 14-1

audit report example, 14-8
Oracle Entitlements Server, 5-2, 5-5, 9-1, 9-31
Oracle Fusion Middleware Audit Framework, 12-1,

12-2
architecture, 12-4
concepts, 12-4, 12-7

Oracle Information Lifecycle Management
Assistant, 13-28

Oracle Internet Directory, 4-1
Oracle Internet Directory 10.1.4.3 patch, 4-2
Oracle Internet Directory tuning, 4-2
Oracle JDeveloper 11g, 5-1
Oracle Platform Security Services, 15-1
OracleAS Single Sign-On solution, See Also

OSSO, 18-1
oracle.deployed.app.dir, B-70
oracle.deployed.app.ext, B-70
oracle.security.jps.config, 1-7, A-1

Index-5

oracle.security.jps.jaas.mode, 21-6
oracle.security.jps.log.for.approle.substring, L-9
oracle.security.jps.log.for.enterprise.principalname,

L-9
oracle.security.jps.log.for.permclassname, L-9
oracle.security.jps.log.for.permeffect, L-9
oracle.security.jps.log.for.permtarget.substring, L-9
Oracle-specific applications, 5-1
OSSO

existing implementation, 15-2
Identity Asserter, 18-1, 18-12

new users, 18-4
processing, 18-2
Tips and Troubleshooting, 18-18

solution, 15-1, 18-1
OSSO Identity Asserter, 18-2

P
packaging an J2EE application, 21-10
Packaging Credentials, 21-10
Packaging Policies, 21-10
password credential, 10-1
password validation, 2-9
passwords, 2-9
permission, 20-13
permission class, 20-14
permission classes, 3-5, 8-1, 21-22
permission inheritance, 2-4
permissions to anonymous role, 2-7
permissions to authenticated role, 2-7
PermissionSetManager class, 20-5
policy domain

URL prefixes, 17-50, 17-53, 17-62
policy migration settings, 6-4
Policy Store, 3-4
policy store, 2-3
policy store cache, 9-28
policy store removal, 3-5
PolicyStoreAccessPermission, 21-22
PolicyStoreIncompatibleVersionException, L-41,

L-42
policystore.refresh.interval, 9-28
Post-installation tasks, 5-4
principal, 2-2
principal name comparison, 2-9, 2-10
principal.cache.key, 23-2
PrincipalEqualsCaseInsensitive, 2-10
PrincipalEqualsCompareDnAndGuid, 2-10
Procedure

WebGate
To manually configure a Web server, 16-14

Process overview
OAMCfgTool, 17-17
Oracle Access Manager Authenticator for Web and

non-Web Resources, 15-10
OSSO Identity Asserter, 18-3

production environment, 5-3
props.auth.level, 8-22
props.auth.uri, 8-22

props.auth.url, 8-22

R
RCU, 8-6
reassociateSecurityStore, 9-26, I-2
Reassociation of credentials, 3-6
Reassociation of policies, 3-5
recovery of server files, 5-3
reference integrity, 3-2
referencial integrity, 8-2
remove.anonymous.role, 21-4
Resource Catalog, 20-4
resource permissions, 20-13

managing, 20-14
resource type, 20-13
resource-based policies, 2-2
ResourceManager class, 20-5
ResourcePermission class, 20-12
resourcetypeenforcementmode, F-6, F-14
ResourceTypeManager class, 20-5
revokeAppRole, 9-12
revokePermission, 9-14
role category, 2-11
role hierarchy, 2-4
RoleCategoryManager class, 2-11

S
SAML 1.1 identity assertion, 3-3
SAML 2.0 identity assertion, 3-3
scenarios, 4-4
Security Provider Configuration, 8-10, 8-18
Security Provider for WebLogic SSPI, 15-11
security store, 2-3
security-related commands, 5-5
server restart, 4-3, F-1
service instance update script, E-1
Service Providers, 25-5

introduction, 25-5
understanding, 25-5

Set Security Provider, 8-11
setAuditPolicy, C-46
setAuditRepository, C-47
setDomainEnv shell script, F-1, L-7
setPolicy, 20-7, 20-12
Setting a Node in LDAP server, 8-3
setting up providers

OAM Asserter with Oracle Web Services
Manager, 16-36

OAM Authenticator, 16-30
OAM Identity Assertion, 16-23, 17-44
OSSO Identity Asserter, 18-12

Single Sign-On, 8-19
single sign-on solutions for Fusion Middleware, See

Also SSO, 15-1
split profiles, 7-7
SPNEGO, 3-4
SPNEGO tokens, 3-4
SSL

Index-6

and User/Role APIs, 25-28
anonymous, 8-12
one-way, 8-12

SSL to a DB, 8-9
SSO

enterprise level, 15-2
existing 10g SSO, 15-2
Oracle Access Manager, 15-5
Synchronization Filter, 16-40, 17-65, 18-16

SSO Logout URL, 16-39
SSO service, 8-20
SSO service configuration, 8-20
sso.provider.class, 8-22
storing policies and credentials, 4-2
subject, 2-3, 2-8, 2-9
supported

identity store types, 3-2
synchronizing

user and SSO Sessions, 16-40, 17-65, 18-16
system component, 2-4
system-jazn-data.xml, 21-1

T
Task overview

Configuring the OAM Authenticator, 16-30, 17-48
Deploying and configuring OAM Identity

Assertion for single sign-on includes, 16-16,
17-34

Deploying OSSO Identity Asserter, 18-4
Deploying the Identity Asserter with Oracle Web

Services Manager, 16-35, 17-59
Installing required components for OAM

Authentication Provider, 16-8, 17-4
test environments, 6-5
token.provider.class, 8-23
troubleshooting

search fails against Microsoft Active
Directory, L-40

typical security practices, 5-4

U
Unsupported Methods in PS2, 23-4
updateServiceInstanceProperty, E-2
updating instance with script, E-1
upgradeSecurityStore, G-1
URL

SSO Logout URL, 16-39
User and Role API, D-1

Javadoc, 25-29
programming tips, 25-14

User and Role APIs
and WebLogic authenticators, 25-2
environment setup, 25-5
introduction, 25-1
programming tips, 25-13
summary, 25-2

User and Role SPI
Javadoc, 25-39

UseRetrievedUserNameAsPrincipal, 3-4
user.login.attr, L-28
username.attr, L-28

V
virtualize, 7-3, 7-4, 7-5, F-20
virtualized identity, 7-1

W
WAR file, 21-1
WebLogic

Authentication provider, 15-1, 16-19, 17-41
Authentication providers

Identity Assertion, 16-19, 17-41
J2EE applications, 15-11

WebLogic Administration Console, 4-2
WebLogic Scripting Tool (WLST), 16-20, 17-42
weblogic-application.xml, 21-1
web.xml, 3-4, 21-1, 21-9
WLSGroupImpl, 2-5, 9-11, 9-12, 21-9, 22-12
WLST

createAppRole, 9-9, 9-10
createCred, 10-8
createResourceType, 9-16
deleteAppPolicies, 9-15
deleteAppRole, 9-10
deleteCred, 10-8
deleteResourceType, 9-17
getResourceType, 9-17, 9-18, 9-19, 9-20, 9-21, 9-22,

9-23, 9-24, 9-25
grantAppRole, 9-11
grantPermission, 9-13
listAppRoleMembers, 9-12
listAppRoles, 9-12
listCred, 10-7
listPermissions, 9-15
reassociateSecurityStore, 9-26
revokeAppRole, 9-12
revokePermission, 9-14
updateCred, 10-7

WLSUserImpl, 2-5, 21-9, 22-12

X
X509 identity assertion, 3-3

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documentation
	Conventions

	What’s New in This Guide
	New Features in Release 11gR1 PS5
	New Features in Oracle Identity Management 11gR1 PS1
	New Features in Release 11gR1 PS3
	New Features in Oracle Identity Management 11gR1
	New Features in Release 11gR1 PS2
	New Features in Release 11gR1 PS1
	New Features in Release 11gR1
	Desupported Features from 10.1.3.x
	Links to Upgrade Documentation

	Part I Understanding Security Concepts
	1 Introduction to Oracle Platform Security Services
	1.1 What is Oracle Platform Security Services?
	1.1.1 OPSS Main Features
	1.1.2 Supported Server Platforms

	1.2 OPSS Architecture Overview
	1.2.1 Benefits of Using OPSS

	1.3 Oracle ADF Security Overview
	1.4 OPSS for Administrators
	1.5 OPSS for Developers
	1.5.1 Scenario 1: Enhancing Security in a Java EE Application
	1.5.2 Scenario 2: Securing an Oracle ADF Application
	1.5.3 Scenario 3: Securing a Java SE Application

	2 Understanding Users and Roles
	2.1 Terminology
	2.2 Role Mapping
	2.2.1 Permission Inheritance and the Role Hierarchy

	2.3 The Authenticated Role
	2.4 The Anonymous User and Role
	2.4.1 Anonymous Support and Subject

	2.5 Administrative Users and Roles
	2.6 Managing User Accounts
	2.7 Principal Name Comparison Logic
	2.7.1 How Does Principal Comparison Affect Authorization?
	2.7.2 System Parameters Controlling Principal Name Comparison

	2.8 The Role Category

	3 Understanding Identities, Policies, Credentials, Keys, and Certificates
	3.1 Authentication Basics
	3.1.1 Supported LDAP Identity Store Types
	3.1.2 Oracle WebLogic Authenticators
	3.1.2.1 Using an LDAP Authenticator
	3.1.2.2 Configuring the LDAP Identity Store Service
	3.1.2.3 Additional Authentication Methods

	3.1.3 WebSphere Identity Stores

	3.2 Policy Store Basics
	3.3 Credential Store Basics
	3.4 Keystore Service Basics
	3.4.1 Keystore Repository Types
	3.4.2 Keystore Repository Scope and Reassociation

	4 About Oracle Platform Security Services Scenarios
	4.1 Supported LDAP-, DB-, and File-Based Services
	4.2 Management Tools
	4.3 Packaging Requirements
	4.4 Example Scenarios
	4.5 Other Scenarios

	Part II Basic OPSS Administration
	5 Security Administration
	5.1 Choosing the Administration Tool According to Technology
	5.2 Basic Security Administration Tasks
	5.2.1 Setting Up a Brand New Production Environment

	5.3 Typical Security Practices with Fusion Middleware Control
	5.4 Typical Security Practices with the Administration Console
	5.5 Typical Security Practices with Oracle Entitlements Server
	5.6 Typical Security Practices with OPSS Scripts

	6 Deploying Secure Applications
	6.1 Overview
	6.2 Selecting the Tool for Deployment
	6.2.1 Deploying Java EE and Oracle ADF Applications with Fusion Middleware Control

	6.3 Deploying Oracle ADF Applications to a Test Environment
	6.3.1 Deploying to a Test Environment
	6.3.1.1 Typical Administrative Tasks after Deployment in a Test Environment

	6.4 Deploying Standard Java EE Applications
	6.5 Migrating from a Test to a Production Environment
	6.5.1 Migrating Providers other than Policy and Credential Providers
	6.5.1.1 Migrating Identities Manually

	6.5.2 Migrating Policies and Credentials at Deployment
	6.5.2.1 Migrating Policies Manually
	6.5.2.2 Migrating Credentials Manually
	6.5.2.3 Migrating Large Volume Policy and Credential Stores

	6.5.3 Migrating Audit Policies
	6.5.4 Migrating Keystore Service Keys and Certificates

	Part III Advanced OPSS Administration
	7 Configuring the Identity Store Service
	7.1 Introduction to the Identity Store Service
	7.1.1 About the Identity Store Service
	7.1.2 Service Architecture
	7.1.3 Application Server Support
	7.1.4 Java SE Support

	7.2 Configuring the Identity Store Provider
	7.3 Configuring the Identity Store Service
	7.3.1 What is Configured?
	7.3.1.1 Configuring Multi-LDAP Lookup
	7.3.1.2 Global/Connection Parameters
	7.3.1.3 Back-End/Connection Parameters

	7.3.2 Configuration in WebLogic Server
	7.3.2.1 Configuring the Service for Single LDAP
	7.3.2.2 Configuring the Service for Multiple LDAP using Fusion Middleware Control
	7.3.2.3 Configuring the Service for Multiple LDAP using WLST
	7.3.2.4 Configuring Other Parameters
	7.3.2.5 Restarting Servers
	7.3.2.6 Examples of the Configuration File

	7.3.3 Configuring Split Profiles
	7.3.4 Configuring Custom Authenticators
	7.3.5 Configuration in Other Application Servers
	7.3.5.1 Configuring the Service for Single LDAP
	7.3.5.2 Configuring the Service for Multiple LDAP

	7.3.6 Java SE Environments

	7.4 Querying the Identity Store Programmatically
	7.5 SSL for the Identity Store Service
	7.5.1 Connections from Oracle WebLogic Server to Identity Store
	7.5.2 One-way SSL in a Multi-LDAP Scenario
	7.5.3 Two-way SSL in a Multi-LDAP Scenario
	7.5.4 Connections in a Single-LDAP Scenario

	8 Configuring the OPSS Security Store
	8.1 Introduction to the OPSS Security Store
	8.2 Using an LDAP-Based OPSS Security Store
	8.2.1 Multiple-Node Server Environments
	8.2.2 Prerequisites to Using an LDAP-Based Security Store
	8.2.3 Setting Up a One- Way SSL Connection to the LDAP

	8.3 Using a DB-Based OPSS Security Store
	8.3.1 Prerequisites to Using a DB-Based Security Store
	8.3.1.1 Creating the OPSS Schema in an Oracle Database
	8.3.1.2 Dropping the OPSS Schema in an Oracle Database
	8.3.1.3 Creating a Data Source Instance

	8.3.2 Maintaining a DB-Based Security Store
	8.3.3 Setting Up an SSL Connection to the DB

	8.4 Configuring the OPSS Security Store
	8.5 Reassociating the OPSS Security Store
	8.5.1 Reassociating with Fusion Middleware Control
	8.5.1.1 Securing Access to Oracle Internet Directory Nodes

	8.5.2 Reassociating with the Script reassociateSecurityStore

	8.6 Migrating the OPSS Security Store
	8.6.1 Migrating with Fusion Middleware Control
	8.6.2 Migrating with the Script migrateSecurityStore
	8.6.2.1 Examples of Use

	8.7 Configuring the Identity Provider, Property Sets, and SSO
	8.7.1 Configuring the Identity Store Provider
	8.7.2 Configuring Properties and Property Sets
	8.7.3 Specifying a Single Sign-On Solution
	8.7.3.1 The OPSS SSO Framework
	8.7.3.2 Configuring an SSO Solution with Fusion Middleware Control
	8.7.3.3 OAM Configuration Example

	9 Managing the Policy Store
	9.1 Managing the Policy Store
	9.2 Managing Policies with Fusion Middleware Control
	9.2.1 Managing Application Policies
	9.2.2 Managing Application Roles
	9.2.3 Managing System Policies

	9.3 Managing Application Policies with OPSS Scripts
	9.3.1 listAppStripes
	9.3.2 createAppRole
	9.3.3 deleteAppRole
	9.3.4 grantAppRole
	9.3.5 revokeAppRole
	9.3.6 listAppRoles
	9.3.7 listAppRolesMembers
	9.3.8 grantPermission
	9.3.9 revokePermission
	9.3.10 listPermissions
	9.3.11 deleteAppPolicies
	9.3.12 createResourceType
	9.3.13 getResourceType
	9.3.14 deleteResourceType
	9.3.15 createResource
	9.3.16 deleteResource
	9.3.17 listResources
	9.3.18 listResourceActions
	9.3.19 createEntitlement
	9.3.20 getEntitlement
	9.3.21 deleteEntitlement
	9.3.22 addResourceToEntitlement
	9.3.23 revokeResourceFromEntitlement
	9.3.24 listEntitlements
	9.3.25 grantEntitlement
	9.3.26 revokeEntitlement
	9.3.27 listEntitlement
	9.3.28 listResourceTypes
	9.3.29 reassociateSecurityStore
	9.3.30 Running an Offline Script after Reassociating to a DB-Based Store

	9.4 Caching and Refreshing the Cache
	9.4.1 An Example

	9.5 Granting Policies to Anonymous and Authenticated Roles with WLST Scripts
	9.6 Application Stripe for Versioned Applications in WLST Scripts
	9.7 Managing Application Policies with Oracle Entitlements Server
	9.8 Guidelines to Configure the Policy Store

	10 Managing the Credential Store
	10.1 Credential Types
	10.2 Encrypting Credentials
	10.3 Managing the Credential Store
	10.4 Managing Credentials with Fusion Middleware Control
	10.5 Managing Credentials with OPSS Scripts
	10.5.1 listCred
	10.5.2 updateCred
	10.5.3 createCred
	10.5.4 deleteCred
	10.5.5 modifyBootStrapCredential
	10.5.6 addBootStrapCredential
	10.5.7 exportEncryptionKey
	10.5.8 importEncryptionKey
	10.5.9 restoreEncryptionKey

	11 Managing Keys and Certificates with the Keystore Service
	11.1 About the Keystore Service
	11.1.1 Structure of the Keystore Service
	11.1.2 Types of Keystores
	11.1.3 Domain Trust Store

	11.2 About Keystore Service Commands
	11.3 Getting Help for Keystore Service Commands
	11.4 Keystore Service Command Reference
	11.4.1 changeKeyPassword
	11.4.2 changeKeyStorePassword
	11.4.3 createKeyStore
	11.4.4 deleteKeyStore
	11.4.5 deleteKeyStoreEntry
	11.4.6 exportKeyStore
	11.4.7 exportKeyStoreCertificate
	11.4.8 exportKeyStoreCertificateRequest
	11.4.9 generateKeyPair
	11.4.10 generateSecretKey
	11.4.11 getKeyStoreCertificates
	11.4.12 getKeyStoreSecretKeyProperties
	11.4.13 importKeyStore
	11.4.14 importKeyStoreCertificate
	11.4.15 listExpiringCertificates
	11.4.16 listKeyStoreAliases
	11.4.17 listKeyStores

	12 Introduction to Oracle Fusion Middleware Audit Framework
	12.1 Benefits and Features of the Oracle Fusion Middleware Audit Framework
	12.1.1 Objectives of Auditing
	12.1.2 Today’s Audit Challenges
	12.1.3 Oracle Fusion Middleware Audit Framework in 11g

	12.2 Overview of Audit Features
	12.3 Oracle Fusion Middleware Audit Framework Concepts
	12.3.1 Audit Architecture
	12.3.2 Key Technical Concepts
	12.3.3 Audit Metadata Storage
	12.3.4 Audit Data Storage
	12.3.5 Analytics

	13 Configuring and Managing Auditing
	13.1 Audit Administration Tasks
	13.2 Managing the Audit Data Store
	13.2.1 Create the Audit Schema using RCU
	13.2.2 Set Up Audit Data Sources
	13.2.2.1 Multiple Data Sources

	13.2.3 Configure a Database Audit Data Store for Java Components
	13.2.3.1 View Audit Data Store Configuration
	13.2.3.2 Configure the Audit Data Store
	13.2.3.3 Deconfigure the Audit Data Store

	13.2.4 Configure a Database Audit Data Store for System Components
	13.2.4.1 Deconfigure the Audit Data Store

	13.2.5 Tuning the Bus-stop Files
	13.2.6 Configuring the Stand-alone Audit Loader
	13.2.6.1 Configuring the Environment
	13.2.6.1.1 Property Configuration
	13.2.6.1.2 Password Storage for the Database Schema User

	13.2.6.2 Running the Stand-Alone Audit Loader

	13.3 Managing Audit Policies
	13.3.1 Manage Audit Policies for Java Components with Fusion Middleware Control
	13.3.2 Manage Audit Policies for System Components with Fusion Middleware Control
	13.3.3 Manage Audit Policies with WLST
	13.3.3.1 View Audit Policies with WLST
	13.3.3.2 Update Audit Policies with WLST
	13.3.3.3 Example 1: Configuring an Audit Policy for Users with WLST
	13.3.3.4 Example 2: Configuring an Audit Policy for Events with WLST
	13.3.3.5 Custom Configuration is Retained when the Audit Level Changes

	13.3.4 Manage Audit Policies Manually
	13.3.4.1 Location of Configuration Files for Java Components
	13.3.4.2 Audit Service Configuration Properties in jps-config.xml for Java Components
	13.3.4.3 Switching from Database to File for Java Components
	13.3.4.4 Manually Configuring Audit for System Components

	13.4 Audit Logs
	13.4.1 Location of Audit Logs
	13.4.2 Audit Log Timestamps

	13.5 Advanced Management of Database Store
	13.5.1 Schema Overview
	13.5.2 Table Attributes
	13.5.3 Indexing Scheme
	13.5.4 Backup and Recovery
	13.5.5 Importing and Exporting Data
	13.5.6 Partitioning
	13.5.6.1 Partition Tables
	13.5.6.2 Backup and Recovery of Partitioned Tables
	13.5.6.3 Import, Export, and Data Purge
	13.5.6.4 Tiered Archival

	14 Using Audit Analysis and Reporting
	14.1 Setting up Oracle Business Intelligence Publisher for Audit Reports
	14.1.1 About Oracle Business Intelligence Publisher
	14.1.2 Install Oracle Business Intelligence Publisher
	14.1.3 Set Up Oracle Reports in Oracle Business Intelligence Publisher
	14.1.4 Set Up Audit Report Templates
	14.1.5 Set Up Audit Report Filters
	14.1.6 Configure Scheduler in Oracle Business Intelligence Publisher

	14.2 Organization of Audit Reports
	14.3 View Audit Reports
	14.4 Example of Oracle Business Intelligence Publisher Reports
	14.5 Audit Report Details
	14.5.1 List of Audit Reports in Oracle Business Intelligence Publisher
	14.5.2 Attributes of Audit Reports in Oracle Business Intelligence Publisher

	14.6 Customizing Audit Reports
	14.6.1 Using Advanced Filters on Pre-built Reports
	14.6.2 Creating Custom Reports

	Part IV Single Sign-On Configuration
	15 Introduction to Single Sign-On in Oracle Fusion Middleware
	15.1 Choosing the Right SSO Solution for Your Deployment
	15.2 Introduction: OAM Authentication Provider for WebLogic Server
	15.2.1 About Using the Identity Asserter Function with Oracle Access Manager
	15.2.2 About Using the Authenticator Function with Oracle Access Manager
	15.2.3 Choosing Applications for Oracle Access Manager SSO Scenarios and Solutions
	15.2.3.1 Applications Using Oracle Access Manager for the First TIme
	15.2.3.2 Applications Migrating from Oracle Application Server to Oracle WebLogic Server
	15.2.3.3 Applications Using OAM Security Provider for WebLogic SSPI

	15.2.4 Implementation: Using the Provider with OAM 11g versus OAM 10g
	15.2.5 Requirements for the Provider with Oracle Access Manager

	15.3 Setting Up Debugging in the WebLogic Administration Console

	16 Configuring Single Sign-On with Oracle Access Manager 11g
	16.1 Introduction to Oracle Access Manager 11g SSO
	16.1.1 Previewing Pre-Seeded OAM 11g Policies for Use by the 10g AccessGate

	16.2 Deploying the Oracle Access Manager 11g SSO Solution
	16.2.1 Installing the Authentication Provider with Oracle Access Manager 11g
	16.2.2 Converting Oracle Access Manager Certificates to Java Keystore Format
	16.2.3 Session Token: Provisioning an OAM Agent with Oracle Access Manager 11g
	16.2.3.1 About WebGate Provisioning Methods for Oracle Access Manager 11g
	16.2.3.2 Provisioning a WebGate with Oracle Access Manager 11g

	16.2.4 Configuring Identity Assertion for SSO with Oracle Access Manager 11g
	16.2.4.1 Establishing Trust with Oracle WebLogic Server
	16.2.4.1.1 Setting Up the Application Authentication Method for Identity Asserter for Single Sign-On
	16.2.4.1.2 Confirming mod_weblogic for Oracle Access Manager Identity Asserter
	16.2.4.1.3 Clear Text Header: Establishing Trust between Oracle WebLogic Server and Other Entities

	16.2.4.2 Configuring Providers in the WebLogic Domain
	16.2.4.2.1 About Oracle WebLogic Server Authentication and Identity Assertion Providers
	16.2.4.2.2 About the Oracle WebLogic Scripting Tool (WLST)
	16.2.4.2.3 Configuring Oracle WebLogic Server for a Web Application Using ADF Security, OAM SSO, and OPSS SSO
	16.2.4.2.4 Setting Up Providers for Oracle Access Manager 11g Identity Assertion

	16.2.4.3 Trusted Header Assertion: Configuring Digital Signature Verification
	16.2.4.4 Trusted Header Assertion: Configuring Policies
	16.2.4.5 Testing Oracle Access Manager Identity Assertion for Single Sign-on

	16.2.5 Configuring the Authenticator Function for Oracle Access Manager 11g
	16.2.5.1 Configuring Providers for the Authenticator in a WebLogic Domain
	16.2.5.2 Configuring the Application Authentication Method for the Authenticator
	16.2.5.3 Mapping the Authenticated User to a Group in LDAP
	16.2.5.4 Testing the Oracle Access Manager Authenticator Implementation

	16.2.6 Configuring Identity Assertion for Oracle Web Services Manager and OAM 11g
	16.2.6.1 Configuring Providers in a WebLogic Domain for Oracle Web Services Manager
	16.2.6.2 Testing the Identity Asserter with Oracle Web Services Manager

	16.3 Configuring Centralized Log Out for Oracle Access Manager 11g
	16.3.1 Logout for 11g WebGate and OAM 11g
	16.3.2 Logout for 10g WebGate with Oracle Access Manager 11g

	16.4 Synchronizing the User and SSO Sessions: SSO Synchronization Filter
	16.5 Troubleshooting Tips

	17 Configuring Single Sign-On Using Oracle Access Manager 10g
	17.1 Deploying SSO Solutions with Oracle Access Manager 10g
	17.1.1 Installing and Setting Up Authentication Providers for OAM 10g
	17.1.1.1 About Oracle Access Manager 10g Installation and Setup
	17.1.1.2 Installing Components and Files for Authentication Providers and OAM 10g
	17.1.1.3 Converting Oracle Access Manager Certificates to Java Keystore Format
	17.1.1.4 Creating Resource Types in Oracle Access Manager 10g

	17.1.2 Configuring Global Logout for Oracle Access Manager 10g and 10g WebGates
	17.1.2.1 Recommended Process for Configuring Logout
	17.1.2.1.1 Configuring WebGate for Logout using the Sample Logout File
	17.1.2.1.2 Configuring Applications for Logout

	17.1.2.2 Alternative Process for Configuring Logout

	17.2 Oracle Access Manager Authentication Provider Parameter List
	17.3 Introduction to OAMCfgTool
	17.3.1 OAMCfgTool Process Overview
	17.3.2 OAMCfgTool Parameters and Values
	17.3.2.1 Create Mode Parameters and Values
	17.3.2.1.1 OIM Integration-Related Parameters and Values

	17.3.2.2 Validate Mode Parameters and Values
	17.3.2.3 Delete Mode Parameters and Values

	17.3.3 Sample Policy Domain and AccessGate Profile Created with OAMCfgTool
	17.3.4 Known Issues: JAR Files and OAMCfgTool

	17.4 Configuring OAM Identity Assertion for SSO with Oracle Access Manager 10g
	17.4.1 Establishing Trust with Oracle WebLogic Server
	17.4.1.1 Setting Up the Application Authentication Method for SSO
	17.4.1.2 Confirming mod_weblogic for Oracle Access Manager Identity Asserter
	17.4.1.3 Establishing Trust between Oracle WebLogic Server and Other Entities

	17.4.2 Configuring the Authentication Scheme for the Identity Asserter
	17.4.2.1 Creating an Authentication Scheme, Policy Domain, and a WebGate Profile

	17.4.3 Configuring Providers in the WebLogic Domain
	17.4.3.1 About Oracle WebLogic Server Authentication and Identity Assertion Providers
	17.4.3.2 About the Oracle WebLogic Scripting Tool (WLST)
	17.4.3.2.1 Configuring Oracle WebLogic Server for a Web Application Using ADF Security, OAM SSO, and OPSS SSO

	17.4.3.3 Setting Up Providers for Oracle Access Manager Identity Assertion

	17.4.4 Setting Up the Login Form for the Identity Asserter and OAM 10g
	17.4.5 Testing Identity Assertion for SSO with OAM 10g

	17.5 Configuring the Authenticator for Oracle Access Manager 10g
	17.5.1 Creating an Authentication Scheme for the Authenticator
	17.5.2 Configuring a Policy Domain for the Oracle Access Manager Authenticator
	17.5.2.1 About Creating a Policy Domain
	17.5.2.2 Creating a Policy Domain and Access Policies for the Authenticator

	17.5.3 Configuring Providers for the Authenticator in a WebLogic Domain
	17.5.4 Configuring the Application Authentication Method for the Authenticator
	17.5.5 Mapping the Authenticated User to a Group in LDAP
	17.5.6 Testing the Oracle Access Manager Authenticator Implementation

	17.6 Configuring Identity Assertion for Oracle Web Services Manager and OAM 10g
	17.6.1 Creating an Policy Domain for Use with Oracle Web Services Manager
	17.6.2 Configuring Providers in a WebLogic Domain for Oracle Web Services Manager
	17.6.3 Testing the Identity Asserter with Oracle Web Services Manager

	17.7 Synchronizing the User and SSO Sessions: SSO Synchronization Filter
	17.8 Troubleshooting Tips for OAM Provider Deployments
	17.8.1 About Using IPv6
	17.8.2 Apache Bridge Failure: Timed Out
	17.8.3 Authenticated User with Access Denied
	17.8.4 Browser Back Button Results in Error
	17.8.5 Cannot Reboot After Adding OAM and OID Authenticators
	17.8.6 Client in Cluster with Load-Balanced WebGates
	17.8.7 Error 401: Unable to Access the Application
	17.8.8 Error 403: Unable to Access the Application
	17.8.9 Error 404: Not Found ... Anything Matching the Request URI
	17.8.10 Error Issued with the Action URL in Form Login Page
	17.8.11 Error or Failure on Oracle WebLogic Server Startup
	17.8.12 JAAS Control Flag
	17.8.13 Login Form is Shown Repeatedly Upon Credential Submission: No Error
	17.8.14 Logout and Session Time Out Issues
	17.8.15 Not Found: The requested URL or Resource Was Not Found
	17.8.16 Oracle WebLogic Server Fails to Start
	17.8.17 Oracle ADF Integration and Cert Mode
	17.8.18 About Protected_JSessionId_Policy

	18 Configuring Single Sign-On using OracleAS SSO 10g
	18.1 Deploying the OracleAS 10g Single Sign-On (OSSO) Solution
	18.1.1 Using the OSSO Identity Asserter
	18.1.1.1 Oracle WebLogic Security Framework
	18.1.1.2 OSSO Identity Asserter Processing
	18.1.1.3 Consumption of Headers with OSSO Identity Asserter

	18.1.2 New Users of the OSSO Identity Asserter
	18.1.2.1 Configuring mod_weblogic
	18.1.2.2 Registering Oracle HTTP Server mod_osso with OSSO Server 10.1.4
	18.1.2.3 Configuring mod_osso to Protect Web Resources
	18.1.2.3.1 Configuring mod_osso with Static Directives
	18.1.2.3.2 Protecting URLs and Logout Dynamically (without mod_osso)

	18.1.2.4 Adding Providers to a WebLogic Domain for OSSO
	18.1.2.5 Establishing Trust Between Oracle WebLogic Server and Other Entities
	18.1.2.6 Configuring the Application for the OSSO Identity Asserter

	18.2 Synchronizing the User and SSO Sessions: SSO Synchronization Filter
	18.3 Troubleshooting for an OSSO Identity Asserter Deployment
	18.3.1 SSO-Related Problems
	18.3.2 OSSO Identity Asserter-Related Problems
	18.3.3 URL Rewriting and JSESSIONID
	18.3.4 About mod_osso, OSSO Cookies, and Directives
	18.3.4.1 New OssoHTTPOnly Directive in mod_osso
	18.3.4.2 OssoSecureCookies Directive in mod_osso
	18.3.4.3 Mod_osso Does Not Encode the Return URL
	18.3.4.4 mod_osso: "Page Not found" error After Default Installation

	18.3.5 About Using IPv6

	Part V Developing with Oracle Platform Security Services APIs
	19 Integrating Application Security with OPSS
	19.1 Introduction
	19.2 Security Integration Use Cases
	19.2.1 Authentication
	19.2.1.1 Java EE Application Requiring Authenticated Users
	19.2.1.2 Java EE Application Requiring Programmatic Authentication
	19.2.1.3 Java SE Application Requiring Authentication

	19.2.2 Identities
	19.2.2.1 Application Running in Two Environments
	19.2.2.2 Application Accessing User Profiles in Multiple Stores

	19.2.3 Authorization
	19.2.3.1 Java EE Application Accessible by Specific Roles
	19.2.3.2 ADF Application Requiring Fine-Grained Authorization
	19.2.3.3 Web Application Securing Web Services
	19.2.3.4 Java EE Application Requiring Codebase Permissions
	19.2.3.5 Non-ADF Application Requiring Fine-Grained Authorization

	19.2.4 Credentials
	19.2.4.1 Application Requiring Credentials to Access System

	19.2.5 Audit
	19.2.5.1 Auditing Security-Related Activity
	19.2.5.2 Auditing Business-Related Activity

	19.2.6 Identity Propagation
	19.2.6.1 Propagating the Executing User Identity
	19.2.6.2 Propagating a User Identity
	19.2.6.3 Propagating Identities Across Domains
	19.2.6.4 Propagating Identities over HTTP

	19.2.7 Administration and Management
	19.2.7.1 Application Requiring a Central Store
	19.2.7.2 Application Requiring Custom Management Tool
	19.2.7.3 Application Running in a Multiple Server Environment

	19.2.8 Integration
	19.2.8.1 Application Running in Multiple Domains

	19.3 Some Use Cases Details
	19.3.1 Propagating Identities over HTTP
	19.3.1.1 The OPSS Trust Service
	19.3.1.2 Propagating Identities over the HTTP Protocol
	19.3.1.2.1 Single Domain Scenario
	19.3.1.2.2 Multiple Domain Scenario

	19.3.1.3 Domains Using Both Protocols
	19.3.1.3.1 Single Domain Scenario
	19.3.1.3.2 Multiple Domain Scenario

	19.3.2 A Custom Graphical User Interface
	19.3.2.1 Imports Assumed
	19.3.2.2 Code Sample 1
	19.3.2.3 Code Sample 2
	19.3.2.4 Code Sample 3
	19.3.2.5 Code Sample 4
	19.3.2.6 Code Sample 5
	19.3.2.7 Code Sample 6

	19.4 Appendix - Security Life Cycle of an ADF Application
	19.4.1 Development Phase
	19.4.2 Deployment Phase
	19.4.3 Management Phase
	19.4.4 Summary of Tasks per Participant per Phase

	19.5 Appendix - Code and Configuration Examples
	19.5.1 Code Examples
	19.5.2 Configuration Examples
	19.5.3 Full Code Example of a Java EE Application with Integrated Security

	20 The OPSS Policy Model
	20.1 The Security Policy Model
	20.2 Authorization Overview
	20.2.1 Introduction to Authorization
	20.2.2 The Java EE Authorization Model
	20.2.2.1 Declarative Authorization
	20.2.2.2 Programmatic Authorization
	20.2.2.3 Java EE Code Example

	20.2.3 The JAAS Authorization Model

	20.3 The JAAS/OPSS Authorization Model
	20.3.1 The Resource Catalog
	20.3.2 Managing Policies
	20.3.3 Checking Policies
	20.3.3.1 Using the Method checkPermission
	20.3.3.2 Using the Methods doAs and doAsPrivileged
	20.3.3.3 Using the Method checkBulkAuthorization
	20.3.3.4 Using the Method getGrantedResources

	20.3.4 The Class ResourcePermission

	21 Manually Configuring Java EE Applications to Use OPSS
	21.1 Configuring the Servlet Filter and the EJB Interceptor
	21.1.1 Interceptor Configuration Syntax
	21.1.2 Summary of Filter and Interceptor Parameters
	21.1.3 Configuring the Application Stripe for Application MBeans

	21.2 Choosing the Appropriate Class for Enterprise Groups and Users
	21.3 Packaging a Java EE Application Manually
	21.3.1 Packaging Policies with Application
	21.3.2 Packaging Credentials with Application

	21.4 Configuring Applications to Use OPSS
	21.4.1 Parameters Controlling Policy Migration
	21.4.2 Policy Parameter Configuration According to Behavior
	21.4.2.1 To Skip Migrating All Policies
	21.4.2.2 To Migrate All Policies with Merging
	21.4.2.3 To Migrate All Policies with Overwriting
	21.4.2.4 To Remove (or Prevent the Removal of) Application Policies
	21.4.2.5 To Migrate Policies in a Static Deployment
	21.4.2.6 Recommendations

	21.4.3 Using a Wallet-Based Credential Store
	21.4.4 Parameters Controlling Credential Migration
	21.4.5 Credential Parameter Configuration According to Behavior
	21.4.5.1 To Skip Migrating Credentials
	21.4.5.2 To Migrate Credentials with Merging
	21.4.5.3 To Migrate Credentials with Overwriting

	21.4.6 Supported Permission Classes
	21.4.6.1 Policy Store Permission
	21.4.6.2 Credential Store Permission
	21.4.6.3 Generic Permission

	21.4.7 Specifying Bootstrap Credentials Manually
	21.4.8 Migrating Identities with migrateSecurityStore
	21.4.9 Example of Configuration File jps-config.xml

	22 Authentication for Java SE Applicaitons
	22.1 Links to Authentication Topics for Java EE Applications
	22.2 Authentication for Java SE Applications
	22.2.1 The Identity Store
	22.2.2 Configuring an LDAP Identity Store in Java SE Applications
	22.2.3 Supported Login Modules for Java SE Applications
	22.2.3.1 The Identity Store Login Module
	22.2.3.2 Using the Identity Store Login Module for Authentication
	22.2.3.3 Using the Identity Login Module for Assertion

	22.2.4 Using the OPSS API LoginService in Java SE Applications

	22.3 Configuration Examples

	23 Authorization for Java SE Applications
	23.1 Configuring Policy and Credential Stores in Java SE Applications
	23.1.1 Configuring File-Based Policy and Credential Stores
	23.1.2 Configuring LDAP-Based Policy and Credential Stores
	23.1.3 Configuring DB-Based OPSS Security Stores

	23.2 Unsupported Methods for File-Based Policy Stores

	24 Developing with the Credential Store Framework
	24.1 About the Credential Store Framework API
	24.2 Overview of Application Development with CSF
	24.3 Setting the Java Security Policy Permissions
	24.3.1 Guidelines for Granting Permissions
	24.3.2 Permissions Grant Example 1
	24.3.3 Permissions Grant Example 2

	24.4 Guidelines for the Map Name
	24.5 Configuring the Credential Store
	24.6 Steps for Using the API
	24.6.1 Using the CSF API in a Standalone Environment
	24.6.2 Using the CSF API in Oracle WebLogic Server

	24.7 Examples
	24.7.1 Code for CSF Operations
	24.7.2 Example 1: Java SE Application with Wallet Store
	24.7.3 Example 2: Java EE Application with Wallet Store
	24.7.4 Example 3: Java EE Application with LDAP Store

	24.8 Best Practices

	25 Developing with the User and Role API
	25.1 Introduction to the User and Role API Framework
	25.1.1 User and Role API and the Oracle WebLogic Server Authenticators

	25.2 Summary of Roles and Classes
	25.3 Working with Service Providers
	25.3.1 Understanding Service Providers
	25.3.2 Setting Up the Environment
	25.3.3 Selecting the Provider
	25.3.4 Creating the Provider Instance
	25.3.5 Properties for Provider Configuration
	25.3.5.1 Start-time and Run-time Configuration
	25.3.5.2 ECID Propagation
	25.3.5.3 When to Pass Configuration Values

	25.3.6 Configuring the Provider when Creating a Factory Instance
	25.3.6.1 Oracle Internet Directory Provider
	25.3.6.2 Using Existing Logger Objects
	25.3.6.3 Supplying Constant Values
	25.3.6.4 Configuring Connection Parameters
	25.3.6.5 Configuring a Custom Connection Pool Class

	25.3.7 Configuring the Provider when Creating a Store Instance
	25.3.8 Runtime Configuration
	25.3.9 Programming Considerations
	25.3.9.1 Provider Portability Considerations
	25.3.9.2 Considerations when Using IdentityStore Objects

	25.3.10 Provider Life cycle

	25.4 Searching the Repository
	25.4.1 Searching for a Specific Identity
	25.4.2 Searching for Multiple Identities
	25.4.3 Specifying Search Parameters
	25.4.4 Using Search Filters
	25.4.4.1 Operators in Search Filters
	25.4.4.2 Handling Special Characters when Using Search Filters
	25.4.4.3 Search Filter for Logged-In User
	25.4.4.4 Examples of Using Search Filters

	25.4.5 Searching by GUID

	25.5 User Authentication
	25.6 Creating and Modifying Entries in the Identity Store
	25.6.1 Handling Special Characters when Creating Identities
	25.6.2 Creating an Identity
	25.6.3 Modifying an Identity
	25.6.4 Deleting an Identity

	25.7 Examples of User and Role API Usage
	25.7.1 Example 1: Searching for Users
	25.7.2 Example 2: User Management in an Oracle Internet Directory Store
	25.7.3 Example 3: User Management in a Microsoft Active Directory Store

	25.8 SSL Configuration for LDAP-based User and Role API Providers
	25.8.1 Out-of-the-box Support for SSL
	25.8.1.1 System Properties
	25.8.1.2 SSL configuration

	25.8.2 Customizing SSL Support for the User and Role API
	25.8.2.1 SSL configuration

	25.9 The User and Role API Reference
	25.10 Developing Custom User and Role Providers
	25.10.1 SPI Overview
	25.10.2 Types of User and Role Providers
	25.10.3 Developing a Read-Only Provider
	25.10.3.1 SPI Classes Requiring Extension
	25.10.3.2 oracle.security.idm.spi.AbstractIdentityStoreFactory
	25.10.3.3 oracle.security.idm.spi.AbstractIdentityStore
	25.10.3.4 oracle.security.idm.spi.AbstractRoleManager
	25.10.3.5 oracle.security.idm.spi.AbstractUserManager
	25.10.3.6 oracle.security.idm.spi.AbstractRoleProfile
	25.10.3.7 oracle.security.idm.spi.AbstractUserProfile
	25.10.3.8 oracle.security.idm.spi.AbstractSimpleSearchFilter
	25.10.3.9 oracle.security.idm.spi.AbstractComplexSearchFilter
	25.10.3.10 oracle.security.idm.spi.AbstractSearchResponse

	25.10.4 Developing a Full-Featured Provider
	25.10.5 Development Guidelines
	25.10.6 Testing and Verification
	25.10.7 Example: Implementing an Identity Provider
	25.10.7.1 About the Sample Provider
	25.10.7.2 Overview of Implementation
	25.10.7.3 Configure jps-config.xml to use the Sample Identity Provider
	25.10.7.4 Configure Oracle WebLogic Server

	The User and Role SPI Reference
	oracle.security.idm.spi.AbstractUserProfile
	oracle.security.idm.spi.AbstractUserManager
	oracle.security.idm.spi.AbstractUser
	oracle.security.idm.spi.AbstractSubjectParser
	oracle.security.idm.spi.AbstractStoreConfiguration
	oracle.security.idm.spi. AbstractSimpleSearchFilter
	oracle.security.idm.spi.AbstractSearchResponse
	oracle.security.idm.spi.AbstractRoleProfile
	oracle.security.idm.spi.AbstractRoleManager
	oracle.security.idm.spi.AbstractRole
	oracle.security.idm.spi.AbstractIdentityStoreFactory
	oracle.security.idm.spi.AbstractIdentityStore
	oracle.security.idm.spi.AbstractComplexSearchFilter

	26 Developing with the Identity Directory API
	26.1 About the Identity Directory API
	26.1.1 Feature Overview

	26.2 Summary of Classes
	26.3 Identity Directory Configuration
	26.4 Working with the Identity Directory API
	26.4.1 Getting an Identity Directory API Instance
	26.4.2 Performing CRUD Operations on Users and Groups
	26.4.2.1 User Operations
	26.4.2.2 Group Operations

	26.5 Examples of Identity Directory API
	26.5.1 Initialize and Obtain Identity Directory Handle
	26.5.2 Create a User
	26.5.3 Get a User
	26.5.4 Modify a User
	26.5.5 Simple Search for a User
	26.5.6 Complex Search for Users
	26.5.7 Create a Group
	26.5.8 Get a Group
	26.5.9 Get Group Using a Search Filter
	26.5.10 Delete a Group
	26.5.11 Add a Member to a Group
	26.5.12 Delete a Member from a Group

	26.6 SSL Configuration

	27 Developing with the Keystore Service
	27.1 About the Keystore Service API
	27.2 Overview of Application Development with the Keystore Service
	27.3 Setting the Java Security Policy Permission
	27.3.1 Guidelines for Granting Permissions
	27.3.2 Permissions Grant Example 1
	27.3.3 Permissions Grant Example 2
	27.3.4 Permissions Grant Example 3

	27.4 Configuring the Keystore Service
	27.5 Steps for Using the Keystore Service API
	27.5.1 Using the Keystore Service API in a Standalone Environment
	27.5.2 Using the Keystore Service API in Oracle WebLogic Server

	27.6 Example of Keystore Service API Usage
	27.6.1 Java Program for Keystore Service Operations
	27.6.2 Policy Store Setup
	27.6.3 Configuration File
	27.6.4 About Using the Keystore Service in the Java SE Environment

	27.7 Best Practices

	28 Developing with the Audit Service
	28.1 Application Integration with Audit Flow
	28.2 Audit Metadata Model
	28.2.1 Attribute Groups
	28.2.1.1 Audit Attribute Data Types
	28.2.1.2 Common Attribute Groups
	28.2.1.3 Generic Attribute Groups
	28.2.1.4 Custom Attribute Groups

	28.2.2 Event Categories and Events
	28.2.2.1 System Categories and Events
	28.2.2.2 Component/Application Categories

	28.3 The Audit Metadata Store
	28.4 Integrating the Application with the Audit Framework
	28.5 Create Audit Definition Files
	28.5.1 Understand Mapping and Versioning Rules
	28.5.1.1 Version Numbers
	28.5.1.2 Custom Attribute to Database Column Mappings

	28.6 Register Application with the Registration Service
	28.7 Add Application Code to Log Audit Events
	28.7.1 Audit Client API
	28.7.2 Set System Grants
	28.7.3 Obtain Auditor Instance

	28.8 Integrate with Oracle Business Intelligence Publisher
	28.9 Update and Maintain Audit Definitions

	Part VI Appendices
	A OPSS Configuration File Reference
	A.1 Top- and Second-Level Element Hierarchy
	A.2 Lower-Level Elements
	<description>
	<extendedProperty>
	<extendedPropertySet>
	<extendedPropertySetRef>
	<extendedPropertySets>
	<jpsConfig>
	<jpsContext>
	<jpsContexts>
	<name>
	<property>
	<propertySet>
	<propertySetRef>
	<propertySets>
	<serviceInstance>
	<serviceInstanceRef>
	<serviceInstances>
	<serviceProvider>
	<serviceProviders>
	<value>
	<values>

	B File-Based Identity and Policy Store Reference
	B.1 Hierarchy of Elements in system-jazn-data.xml
	B.2 Elements and Attributes of system-jazn-data.xml
	<actions>
	<actions-delimiter>
	<app-role>
	<app-roles>
	<application>
	<applications>
	<attribute>
	<class>
	<codesource>
	<credentials>
	<description>
	<display-name>
	<extended-attributes>
	<grant>
	<grantee>
	<guid>
	<jazn-data>
	<jazn-policy>
	<jazn-realm>
	<matcher-class>
	<member>
	<member-resource>
	<member-resources>
	<members>
	<name>
	<owner>
	<owners>
	<permission>
	<permissions>
	<permission-set>
	<permission-sets>
	<policy-store>
	<principal>
	<principals>
	<provider-name>
	<realm>
	<resource>
	<resources>
	<resource-name>
	<resource-type>
	<resource-types>
	<role>
	<role-categories>
	<role-category>
	<role-name-ref>
	<roles>
	<type>
	<type-name-ref>
	<uniquename>
	<url>
	<user>
	<users>
	<value>
	<values>

	C Oracle Fusion Middleware Audit Framework Reference
	C.1 Audit Events
	C.1.1 What Components Can be Audited?
	C.1.2 What Events can be Audited?
	C.1.2.1 Oracle Directory Integration Platform Events and their Attributes
	C.1.2.2 Oracle Platform Security Services Events and their Attributes
	C.1.2.3 Oracle HTTP Server Events and their Attributes
	C.1.2.4 Oracle Internet Directory Events and their Attributes
	C.1.2.5 Oracle Identity Federation Events and their Attributes
	C.1.2.6 Oracle Virtual Directory Events and their Attributes
	C.1.2.7 OWSM-Agent Events and their Attributes
	C.1.2.8 OWSM-PM-EJB Events and their Attributes
	C.1.2.9 Reports Server Events and their Attributes
	C.1.2.10 WS-Policy Attachment Events and their Attributes
	C.1.2.11 Oracle Web Cache Events and their Attributes
	C.1.2.12 Oracle Web Services Manager Events and their Attributes

	C.1.3 Event Attribute Descriptions

	C.2 Pre-built Audit Reports
	C.2.1 Common Audit Reports
	C.2.2 Component-Specific Audit Reports

	C.3 The Audit Schema
	C.4 WLST Commands for Auditing
	C.4.1 getNonJava EEAuditMBeanName
	C.4.1.1 Description
	C.4.1.2 Syntax
	C.4.1.3 Example

	C.4.2 getAuditPolicy
	C.4.2.1 Description
	C.4.2.2 Syntax
	C.4.2.3 Example

	C.4.3 setAuditPolicy
	C.4.3.1 Description
	C.4.3.2 Syntax
	C.4.3.3 Example

	C.4.4 getAuditRepository
	C.4.4.1 Description
	C.4.4.2 Syntax
	C.4.4.3 Example

	C.4.5 setAuditRepository
	C.4.5.1 Description
	C.4.5.2 Syntax
	C.4.5.3 Example

	C.4.6 listAuditEvents
	C.4.6.1 Description
	C.4.6.2 Syntax
	C.4.6.3 Example

	C.4.7 exportAuditConfig
	C.4.7.1 Description
	C.4.7.2 Syntax
	C.4.7.3 Example

	C.4.8 importAuditConfig
	C.4.8.1 Description
	C.4.8.2 Syntax
	C.4.8.3 Example

	C.5 Audit Filter Expression Syntax
	C.6 Naming and Logging Format of Audit Files

	D User and Role API Reference
	D.1 Mapping User Attributes to LDAP Directories
	D.2 Mapping Role Attributes to LDAP Directories
	D.3 Default Configuration Parameters
	D.4 Secure Connections for Microsoft Active Directory

	E Administration with WLST Scripting and MBean Programming
	E.1 Configuring OPSS Service Provider Instances with a WLST Script
	E.2 Configuring OPSS Services with MBeans
	E.2.1 List of Supported OPSS MBeans
	E.2.2 Invoking an OPSS MBean
	E.2.3 Programming with OPSS MBeans

	E.3 Access Restrictions
	E.3.1 Annotation Examples
	E.3.2 Mapping of Logical Roles to WebLogic Roles
	E.3.3 Particular Access Restrictions

	F OPSS System and Configuration Properties
	F.1 OPSS System Properties
	F.2 OPSS Configuration Properties
	F.2.1 Policy Store Properties
	F.2.1.1 Policy Store Configuration
	F.2.1.2 Runtime Policy Store Configuration

	F.2.2 Credential Store Properties
	F.2.3 LDAP Identity Store Properties
	F.2.4 Properties Common to All LDAP-Based Instances
	F.2.5 Anonymous and Authenticated Roles Properties
	F.2.6 Trust Service Properties
	F.2.7 Audit Service Properties
	F.2.8 Keystore Service Properties

	G Upgrading Security Data
	G.1 Upgrading with upgradeSecurityStore
	G.1.1 Examples of Use
	G.1.1.1 Example 1 - Upgrading Identities
	G.1.1.2 Example 2 - Upgrading to File-Based Policies
	G.1.1.3 Example 3 - Upgrading to Oracle Internet Directory LDAP-Based Policies
	G.1.1.4 Example 4 - Upgrading File-Based Policies to Use the Resource Catalog

	G.2 Upgrading Policies with upgradeOpss
	G.2.1 Command Syntax

	H References
	H.1 OPSS API References

	I OPSS Scripts
	I.1 Policy-Related Scripts
	I.2 Credential-Related Scripts
	I.3 Other Security Scripts
	I.4 Audit Scripts

	J Using an OpenLDAP Identity Store
	J.1 Using an OpenLDAP Identity Store

	K Adapter Configuration for Identity Virtualization
	K.1 About Split Profiles
	K.2 Configuring a Split Profile
	K.3 Deleting a Join Rule
	K.4 Deleting a Join Adapter
	K.5 Changing Adapter Visibility

	L Troubleshooting Security in Oracle Fusion Middleware
	L.1 Diagnosing Security Errors
	L.1.1 Log Files and OPSS Loggers
	L.1.1.1 Diagnostic Log Files
	L.1.1.2 Generic Log Files
	L.1.1.3 Authorization Loggers
	L.1.1.3.1 oracle.security.jps.util.JpsAuth
	L.1.1.3.2 oracle.security.jps.trace.logger

	L.1.1.4 Offline OPSS Scripts Loggers
	L.1.1.5 Other OPSS Loggers
	L.1.1.6 Audit Loggers
	L.1.1.6.1 Configuring the Audit Loggers
	L.1.1.6.2 Interpreting Audit Diagnostics

	L.1.1.7 Managing Loggers with Fusion Middleware Control

	L.1.2 System Properties
	L.1.2.1 jps.auth.debug
	L.1.2.2 jps.auth.debug.verbose
	L.1.2.3 Debugging the Authorization Process
	L.1.2.3.1 Examples of Use

	L.1.3 Solving Security Errors
	L.1.3.1 Understanding Sample Log Entries
	L.1.3.2 Searching Logs with Fusion Middleware Control
	L.1.3.3 Identifying a Message Context with Fusion Middleware Control
	L.1.3.4 Generating Error Listing Files with Fusion Middleware Control

	L.2 Reassociation Failure
	L.2.1 Missing Policies in Reassociated Policy Store
	L.2.2 Unsupported Schema

	L.3 Server Fails to Start
	L.3.1 Missing Required LDAP Authenticator
	L.3.2 Missing Administrator Account
	L.3.3 Missing Permission
	L.3.4 Server with NFS-Mounted Domain Directory Fails to Start
	L.3.5 Other Causes

	L.4 Failure to Grant or Revoke Permissions - Case Mismatch
	L.5 Failure to Connect to an LDAP Server
	L.6 Failure to Connect to the Embedded LDAP Authenticator
	L.7 User and Role API Failure
	L.8 Failure to Access Data in the Credential Store
	L.9 Failure to Establish an Anonymous SSL Connection
	L.10 Authorization Check Failure
	L.11 User Gets Unexpected Permissions
	L.12 Security Access Control Exception
	L.13 Runtime Permission Check Failure
	L.14 Permission Failure Before Server Starts
	L.15 Policy Migration Failure
	L.16 Characters in Policies
	L.16.1 Use of Special Characters in Oracle Internet Directory 10.1.4.3
	L.16.2 XML Policy Store that Contains Certain Characters
	L.16.3 Characters in Application Role Names
	L.16.4 Missing Newline Characters in XML Policy Store

	L.17 Granting Permissions in Java SE Applications
	L.18 Troubleshooting Oracle Business Intelligence Reporting
	L.18.1 Audit Templates for Oracle Business Intelligence Publisher
	L.18.2 Oracle Business Intelligence Publisher Time Zone

	L.19 Search Failure when Matching Attribute in Policy Store
	L.20 Search Failure with an Unknown Host Exception
	L.21 Incompatible Versions of Binaries and Policy Store
	L.22 Incompatible Versions of Policy Stores
	L.23 Need Further Help?

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

