ORACLE

Oracle® Fusion Middleware

Developer's Guide for Oracle Enterprise Scheduler
11gRelease 1 (11.1.1.6.3)

E24713-05

August 2012

Documentation for developers that describes how to use
Oracle Enterprise Scheduler to develop jobs that execute
Java, PL/SQL, and binary process code to schedule and
offload enterprise application work.

Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduler 11g Release 1 (11.1.1.6.3)
E24713-05

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Primary Author: Steve Traut, Thomas Van Raalte

Contributors: Kirk Bittler, Weifeng Bao, Shelly Butcher, David Craft, Diane Davison, Carlos Fuentes, Charles
Hall, Vaibhav Lole, Solomon Nelson, Shengsong Ni, Rachna Shukla, Steven Traut, Venkat Vengala, Aaron
Weisberg

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Preface ...

Contents

.. XV
What's New in This Guide for Release 11.1.1.6.X ... XVii
1 Introduction to Oracle Enterprise Scheduler
1.1 About Oracle Enterprise Scheduler ... 1-1
1.2 Oracle Enterprise Scheduler Overview for Application Developersc.c.ccccocvueviurnnnen. 1-2
1.2.1 Introduction to Working with Oracle Enterprise Scheduler at Design-Time............. 1-2
1.2.2 Introduction to Working with Oracle Enterprise Scheduler at Runtime 1-3
1.2.3 Oracle Enterprise Scheduler Job Requests.........ccccccocuiiiiiiiiiiiniiiiiiiiiiiciccicccce 1-4
1.2.4 Overview of INtegration SEPSccccceuiuiuiuriciiiciiiieieccree e 1-6
1.3 Fixed-Rate Scheduling with Oracle Enterprise Scheduler.............ccccooooiin 1-6
2 Verifying the Oracle Enterprise Scheduler Installation
2.1 Introduction to Verifying the Oracle Enterprise Scheduler Installation.............ccccoco...... 2-1
2.2 How to Verify the Oracle Enterprise Scheduler Installation Using a Browser.................. 2-1
2.3 How to Programmatically Verify the Oracle Enterprise Scheduler Installation................ 2-2
24 What Happens When You Verify the Oracle Enterprise Scheduler Installation............... 2-3
2.5 What Happens at Runtime: How the Oracle Enterprise Scheduler Installation is Verified....

2-4

3 Using Ant to Generate a Hosting Application

3.1
3.1.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Introduction to Generating a Hosting Application with Ant ..o, 3-1

Prerequisites for Using the Ant Build Files..........ccccocooiiii 3-2
Ant Targets for Creating and Deploying a Hosting Applicationcccccovvvvininininen. 3-2
Creating a Hosting Application and Project Workspace with Antcccooovvriinnen. 3-3
Creating a Java Job as a Shared Library with Ant.........ccccccooiiis 3-5
Packaging a Java Job as a Shared Library with Ant.........ccccccovininnnnii, 3-8
Deploying a Shared Library with Ant ... 3-8
Packaging a Hosting Application with Ant..........cccocoviiin, 3-8
Deploying a Hosting Application with Ant..........ccccocoviiiiiinii, 3-9
Configuring the Generated Ant Targets..........cccccocveiiiiiiiiiiiiiiiiiicceeeees 3-9

4 Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler

Application
4.1 How to Start JDeveloper to Support Building Oracle Enterprise Scheduler Applications......
4-1
4.2 Building a Combined Oracle Enterprise Scheduler Application..........ccccccoeveeiiviiiinnnnns 4-2
4.21 Creating the Application and Projects for EssDemoApp Application 4-3
4211 How to Create the EssDemoApp Application and Host Project.........c.cccccccueueeee 4-3
421.2 How to Create the Client Project.........ccccooviiiiiiiiiiniiiiiccccecccens 4-4
4.2.2 Creating Metadata and an Implementation Class for the EssDemoApp Application.......
4-4
4221 How to Create Metadata for the EssDemoApp Applicationc.cccccoccucccncnnes 4-5
423 Adding Application Code to Submit Job Requestscccccovvviiinnnninnnnnininne, 4-7
4.2.3.1 How to Add Application Code to Submit Job Requests.........ccccoovvrriinirninns 4-7
4.2.4 Setting Oracle Enterprise Scheduler Propertiescccoccvceeciceceiceeeiccccenne 4-9
4.2.4.1 How to Set Oracle Enterprise Scheduler Properties for the Application.......... 4-10
4.2.5 Assembling the EssDemoApp Applicationcccceueiiieiiiicicieiccece 4-10
4251 How to Create the EJB-JAR Deployment Profile for the EssDemoApp............ 4-10
4252 How To Update the WAR Archive Options..........cccccovvviiininiiin 4-11
4.2.5.3 How to Update the EAR Options.........ccceiiiieieiiiicicieccc e 4-12
4.2.6 Deploying and Running the EssDemoApp Applicationc.cccccceecccccciccnnnnnnes 4-12
4.2.6.1 How to Deploy the EssDemoApp Application.........cccoeveiieieiiiiiiiciiicienennnn, 4-12
4.2.6.2 How to Run the EssDemoApp Sample Applicationccooveueiiiicieieinnnen. 4-13
4.2.6.3 How to Purge Jobs in the EssDemoApp Sample Applicationccccceevvvucncee 4-14
4.3 Building Split Submitting and Hosting Applications...........cccooeueviiiiieiniiiciecicicean 4-14
4.3.1 How to Create the Back-End Hosting Application for EssDemoApp...................... 4-15
4311 Creating the Back-End Hosting Application.........ccccccceeeveverivnveninivnnccnrene 4-15
4.3.1.2 Configuring Security for the Back-End Hosting Application..........c.cccccceuruuee. 4-16
4.3.1.3 Defining Metadata for the Back-End Hosting Application..........c.ccccooeueveennenen. 4-16
4314 Creating a Java Implementation Class in the Back-End Hosting Application. 4-18
4.3.1.5 Setting Oracle Enterprise Scheduler Properties..........cccccooeiiiiiiineniieecnnnnn, 4-18
4.3.1.6 Assembling the Back-End Hosting Application for Oracle Enterprise Scheduler......
4-19
4.3.1.6.1 How to Assemble the EJB JAR File for the Back-End Hosting Application.........
4-19
4.3.1.6.2 How to Assemble the MAR and EAR Files for the Back-End Hosting
Application 4-20
4.3.1.7 Deploying the Back-End Hosting Application...........ccccccevuvvviinnnnnncnnncnnns 4-20
43.2 How to Create the Front-End Submitter Application for Oracle Enterprise Scheduler ...
4-21
4.3.2.1 Creating the Front-End Submitter Applicationcccccocevviiiiiiiiinnin 4-21
4322 Creating the SuperWeb Project.........ccccccoeviviviviiiiininiiiiiiniccccccccs 4-21
4.3.2.3 Configuring Security for the Front-End Submitter Application 4-22
4324 Creating the HTTP Servlet for the Front-End Submitter Application............... 4-22
4.3.2.5 Editing the web.xml File for the Front-End Submitter Application 4-37
4.3.2.6 Editing the weblogic-application.xml file for the Front-End Submitter Application.
4-37
4.3.2.7 Editing the adf-config file for the Front-End Submitter Application 4-38

4.3.2.8 Assembling the Front-End Submitter Application for Oracle Enterprise Scheduler .
4-39

4.3.2.8.1 How to Assemble the E]JB JAR File for the Front-End Submitter Application.....
4-39

4.3.2.8.2 How to Assemble the WAR File for the Front-End Submitter Application.........
4-39

4.3.2.8.3 How to Assemble the MAR and EAR Files for the Front-End Hosting
Application 4-40

4.3.2.9 Deploying the Front-End Submitter Application ..o, 4-40

4.3.2.10 Running the Split Applicationcccccvueueiiiiiiiniiiiicrrecrrreee s 4-40

5 Use Case Oracle Enterprise Scheduler Sample Application (Deprecated)

5.1
5.2
5.2.1
5.2.2
5.2.3
5.3
5.3.1
5.3.2

5.3.3
5.4
5.4.1
54.2
5.5
5.5.1
5.5.2
5.6
5.6.1

5.6.2
5.6.3

5.6.4
5.7

5.7.1
5.7.2
5.7.3
5.8

5.8.1
5.8.2
5.9

5.9.1

5.9.1.1
5.9.1.2
5.9.1.3

Introduction to the Oracle Enterprise Scheduler Sample Applicationccccccceveeruencee. 5-1
Creating the Application and Projects for the Sample Applicationccccevruieiinnnnns 5-2
How to Create the EssDemoApp Application ..o 5-2
How to Create a Project in the Sample Applicationccccoeoceiccceciiceccceenenns 5-3
How to Set Project Properties for Oracle Enterprise Scheduler.............cccccocevviiininnnnn. 5-6
Creating a Java Implementation Class for the Sample Application...........ccccovvrriennnnne. 5-7
How to Create a Java Class Using the Executable Interface............cccccococeieiiiccnnes 5-7

What Happens When You Create a Java Class That Implements the Executable
Interface 5-10

What You Need to Know About the Executable Interface...........c.cccoooeieiiiineinne. 5-10
Adding Application Code to Submit Oracle Enterprise Scheduler Job Requests........... 5-10
How to Add Required Libraries to Projectcccooovevviiiiiiiiiiicinn 5-11
How to Create the EssDemo Servlet ..., 5-11
Creating Metadata for Oracle Enterprise Scheduler Sample Application....................... 5-14
How to Create a Job Type for Java ... 5-14
How to Create a Job Definition for Javacoeeererenenieneieeeeeeeseseee et 5-16
Assembling the Oracle Enterprise Scheduler Sample Applicationcccccccceuvueueuennnne. 5-18

How to Assemble the EJB Jar Files for Oracle Enterprise Scheduler Sample Application
5-18
How to Assemble the MAR File for User Metadata..........cccccccevuiiiiiiniiiinnnnicnnne, 5-25

How to Assemble the EAR File for Oracle Enterprise Scheduler Sample Application.....
5-27

Add oracle.ess Library Weblogic Application Descriptor..........cccccoevvieviviiiiiiinennnn, 5-28
Deploying and Running the Oracle Enterprise Scheduler Sample Application 5-29
How to Deploy the EssDemoApp Application.........cccccccccueceiiccicciiccircceeee 5-29
How to Run the Oracle Enterprise Scheduler Sample Applicationcccceueuee. 5-31
How to Purge Jobs in the Oracle Enterprise Scheduler Sample Application 5-32
Troubleshooting the Oracle Enterprise Scheduler Sample Application..........ccccecevuceee. 5-33
How to Create the Oracle Enterprise Scheduler Database Schema 5-34
How to Drop the Oracle Enterprise Scheduler Runtime Schema...........cccccccooeeeeee. 5-34
Using Submitting and Hosting Split Applicationscccccceeuvveiincvvniirrcrceeenes 5-35

How to Create the Back-End Hosting Application for Oracle Enterprise Scheduler-........
5-35
Creating the Back-End Hosting Application..........c.coooeeviiiiicneniccice, 5-36
Configuring Security for the Back-End Hosting Application..........cccccceueueeenee. 5-36
Defining the Deployment Descriptors for the Back-End Hosting Application 5-37

5914 Creating a Java Implementation Class in the Back-End Hosting Application. 5-41

5.9.1.5 Creating Metadata for the Back-End Hosting Application.............ccccccueveeennnn. 5-42
5.9.1.6 Assembling the Back-End Hosting Application for Oracle Enterprise Scheduler......
5-44
5.9.1.6.1 How to Assemble the EJB JAR File for the Back-End Hosting Application.........
5-44
5.9.1.6.2 How to Assemble the MAR and EAR Files for the Back-End Hosting
Application 5-44
5.9.1.7 Deploying the Back-End Hosting Application...........ccccceeueervevvrvnnnnrcnceccnes 5-45
5.9.2 How to Create the Front-End Submitter Application for Oracle Enterprise Scheduler ...
5-45
5.9.21 Creating the Front-End Submitter Applicationccccoeeiriiiniiiiiicee, 5-46
5.9.2.2 Configuring the ejb-jar.xml File for the Front-End Submitter Application 5-46
5.9.2.3 Creating the SuperWeb Project..........cccccovvviiiiiiiiiiii 5-48
5.9.24 Configuring Security for the Front-End Submitter Application 5-48
5.9.2.5 Creating the HTTP Servlet for the Front-End Submitter Application............... 5-49
5.9.2.6 Editing the web.xml File for the Front-End Submitter Application 5-63
5.9.2.7 Editing the weblogic-application.xml file for the Front-End Submitter Application.
5-63
5.9.2.8 Editing the adf-config file for the Front-End Submitter Application 5-65
5.9.2.9 Assembling the Front-End Submitter Application for Oracle Enterprise Scheduler .
5-65
5.9.2.9.1 How to Assemble the E]JB JAR File for the Front-End Submitter Application.....
5-66
5.9.2.9.2 How to Assemble the WAR File for the Front-End Submitter Application.........
5-66
5.9.2.9.3 How to Assemble the MAR and EAR Files for the Front-End Hosting
Application 5-66
5.9.2.10 Deploying the Back-End Hosting Application............ccooeeieiniiiniicciicee, 5-67

6 Using the Metadata Service

6.1 Introduction to Using the Metadata Service............cccccciuieiiiiiiiiiiiiiiciicceccccceas 6-1
6.1.1 Introduction to Metadata Service Namespaces............ccococereemcuiicucememeeeeeeenenenenes 6-2
6.1.2 Introduction to Metadata Service Operationsccccoovveuiiiiiiininiiiiccceeeees 6-2
6.1.3 Introduction to Metadata Service Transactionscccccoveeiiiicciiiccciieennns 6-3
6.2 Accessing the Metadata SEIVICE........cccciuiuiuiiiiiiiiiiiieeecce et 6-3
6.2.1 How to Access the Metadata Service with a Stateless Session EJBccccoccvevenenenne 6-3
6.3 Accessing the Metadata Service with Oracle JDevelopercccccceiiiiiiiiiiiiiiiicinns 6-4
6.4 Querying Metadata Using the Metadata Servicec.cocovvvvrrnninnnnnnrreeeene 6-4
6.4.1 How to Create @ Filter ... 6-4
6.4.2 How to Query Metadata ODbjects.........cccccceuiiiiiiiiiiiiiiiiiciiicccccccccs 6-5

7 Using Parameters and System Properties

71 Introduction to Using Parameters and System Properties ..o, 7-1

711 What You Need to Know About Application Defined Property and System Property
Naming 7-1

712 What You Need to Know About Parameter Conflict Resolution and Parameter

Materialization 7-2

vi

7.1.2.1 What You Need to Know About Job Definition Parameter Materialization........ 7-2

7.1.2.2 What You Need to Know About Job Set Level Parameter Materialization......... 7-3
7.2 Using Parameters with the Metadata Service..........coooiiiiiiiiiiinciiiccccceeeeenns 7-4
7.21 How to Use Parameters and System Properties in Metadata Objectsccccce... 7-5
7.3 Using Parameters with the Runtime Servicecccooiiiiiiii 7-6
7.3.1 How to Use Parameters with the Runtime Service..........ccccoviviiiininiiiicnn, 7-6
7.3.2 How to Use Parameters with a Step ID for Job Set Steps ..., 7-7
7.4 Using System Properties ... 7-8

8 Creating and Using PL/SQL Jobs

8.1 Introduction to Using PL/SQL Stored Procedure Job Definitions............cccccceoeeuiiuiinnninns 8-1
8.2 Creating a PL/SQL Stored Procedure for Oracle Enterprise Scheduler...............ccc.c.c.c..... 8-2
8.2.1 How to Define a PL/SQL Stored Procedure with the Correct Signature.................... 8-2
8.2.2 Handling Runtime Exceptions in an Oracle Enterprise Scheduler PL/SQL Stored
Procedure 8-3
8.2.3 How to Access Job Request Information In PL/SQL Stored Procedures.................... 8-4
8.2.4 What You Need to Know When You Define a PL/SQL Stored Procedure................. 8-4
8.3 Performing Oracle Database Tasks for PL/SQL Stored Procedures............cccccovuviviiininnnnns 8-4
8.3.1 How to Grant PL/SQL Stored Procedure PermiSsions..........cccceeeeeveereeveenreereesreevennnns 8-5
8.3.2 What You Need to Know About Granting PL/SQL Stored Procedure Permissions 8-5
8.4 Creating and Storing Job Definitions for PL/SQL Job Types........cccoviiiiiiiniiiinninns 8-6
8.4.1 How to Create a PL/SQL JOD TYPe.....cooiimiiiiiiiiieicieceicieieieeeeteeeeieeeieee e 8-6
8.4.2 How to Create and Store a Job Definition for PL/SQL Job Type.........cccccevvivvinnnnnnee. 8-7
8.4.3 Using a PL/SQL Stored Procedure with an Oracle Enterprise Scheduler Application.....
8-7

9 Creating and Using Process Jobs

10

9.1 Introduction to Creating Process Job Definitions...........cccocovoiiiieiiiiiiiiiccee 9-1
9.2 Creating and Storing Job Definitions for Process Job TYPeScccccuiiiiicieccccccnenns 9-1
9.2.1 How to Create and Store a Process Job Type.......c.ccccoiiiiiiiiiiiiiiccc 9-2
9.2.2 How to Create and Store a Process Type Job Definition..........ccccooveeviinicniiiciccnnnn. 9-4
9.3 Using a Perl Agent Handler for Process JODS ... 9-5
Defining and Using Schedules

10.1 Introduction to Schedules...........cccooviiiiiiiiiiii s 10-1
10.2 Defining @ RECUITENCEc.cvviiiii e 10-1
10.2.1 How to Define a Recurrence with a Recurrence Fields Helpercccccoenininnnne 10-2
10.2.2 How to Define a Recurrence with an iCalendar RFC 2445 Specification.................. 10-4
10.2.3 What You Need to Know When You Use a Recurrence Fields Helper 10-4
10.2.4 What You Need to Know When You Use an iCalendar Expression..........c....c......... 10-6
10.3 Defining an EXplicit Date..........ccoiiiiiiiiiiiiiiiicccccecceeee s 10-6
10.3.1 How to Define an Explicit Date ..o 10-6
10.3.2 What You Need to Know About Explicit Dates........cc.cccooveiniviieiiniicee 10-6
10.4 Defining and Storing EXCIUSIONScccccoiiiiiiiiiiiicccccecececeeeeeeeeeeeeas 10-7
10.4.1 How to Define an EXCIUSION..........ccoiiuiiiiiiiiiiieiciciccicc s 10-7
10.4.2 How to Create an Exclusions Definitioncccocceeoniiecicnneccnneeccneeeceeens 10-7

vii

11

12

viii

10.5 Defining and Storing Schedules.............c.cooiiiiiiiiiiii 10-8

10.5.1 How to Define and Store a Schedule ..., 10-8
10.5.2 What Happens When You Define and Store a Schedule...........cccccocociiiiiiinnnn. 10-8
10.5.3 What You Need to Know About Handling Time Zones with Schedules................. 10-9
10.6 Identifying Job Requests That Use a Particular Schedule...........ccccceeviviinnnnnnnnnnn 10-9
10.7 Updating and Deleting Schedules.............ccccoioiiiiiiiiiiiiiiicecceeeeeeeeee s 10-9

Using the Oracle Enterprise Scheduler Web Service

11.1 Introduction to the Oracle Enterprise Scheduler Web Service...........cccccccoecuicciccnnnne. 11-1
11.2 Developing and Using ESSWebservice Applications..........ccccoeveiuriieiiiiineeieieneennen, 11-3
11.2.1 How to Develop and Use an ESSWebservice Java EE Application...........ccccccccce..... 11-3
11.2.2 How to Develop and Use an ESSWebservice SOA Application with BPEL............ 11-4
11.2.3 Setting Web Service Addressing Headers for getCompletionStatus() Operation... 11-4
11.24 Limitations for ESSWebservice.........ccccovvniiiniiiiniiiiinis 11-4
11.2.5 ESSWebservice Implementation...........ccoceevveeiiinieninineinrrrcceeeeeeeeeeeeeeeeeeeeees 11-5
11.3 ESSWebservice WSDL Fileccooiiiiiiiiiic s 11-5
11.4 Use Case Using Oracle Enterprise Scheduler ESSWebservice from a BPEL Process..... 11-5
11.5 Creating the ESSWebService Application and a SOA Project........ccccccevveveuvvervvivernenene. 11-5
11.5.1 How to Create the ESSWebService Application and Project ... 11-5
11.6 Creating the ESSWebService Reference...........cccoooiiioiiiiiiiiiiic 11-6
11.6.1 How to Add the ESSWebService Partner Link.........ccccocoveiiiiininiccnen, 11-6
11.7 Adding the BPEL Process to Call the ESSWebService..........ccccoooiiiiiiiiii 11-9
11.7.1 How to Add a BPEL Process to Call the ESSWebService ... 11-9
11.7.2 Copy Types Into BPEL Process SChemaccoovvinirininieiicnincicciccccceeenenes 11-11
11.7.3 How to Invoke the ESSWebService submitRequest Operation...........cccccovvevevnnene. 11-13
11.7.4 Assign Required Input Parameters for Request Submissioncccccoueirennnae. 11-15
11.7.5 Invoke the getCompletionStatus Operationccccccccceueuveeeirrvvnnrnrnerreeeenes 11-21
11.7.6 Assign Input to the getCompletionStatus Operation..........cccoooviiiiiiiiiinnnnns 11-22
11.7.7 Receive the Job Completion Status...........ccooeomrieiiiiciiiiicc 11-25
11.7.8 Return Result to CHENt.......c.coviiiiiiiiic e 11-27
11.8 Using Additional ESSWebService Operationscooceieieiiiieiiiiiceiccceee, 11-30
11.8.1 How to Invoke the ESSWebService submitRecurringRequest Operation 11-31
11.8.2 How to Invoke the ESSWebService setSubmitArgs Operationccccocceicueneee. 11-34
11.8.3 How to Invoke the ESSWebService addPPActions Operationcccccevvevevnnnne. 11-37
11.8.4 How to Invoke the ESSWebService setStepsArgs Operationccccoeeveeeceenene. 11-41
11.9 Securing the Oracle Enterprise Scheduler Web Service...........cccouvveiniiiiniiiiincnne. 11-46
11.9.1 How to Secure the Oracle Enterprise Scheduler Web Servicecccccevvvivinnnne 11-46
11.9.2 What Happens When You Secure the Oracle Enterprise Scheduler Web Service 11-48
11.10 Deploying and Testing the Projectcoooviiiiiiiiiiiccccccceecce e 11-48
11.10.1 How to Test the Web Service ... 11-48

Defining and Using Job Sets

121 Introduction to Defining and Using Job Sets........cccccooiiiiiiiiiiiiiiicc 12-1
12.2 Defining JOD Setscoiiiiiiiiiiicicccccc s 12-2
12.2.1 HOW t0 Define @ JOD Set...c.ucviiiieiieiieiiiiiiieieieete ettt ettt a et sa e eseenens 12-2
12.2.2 How to Define Serial Job Set Steps.......cccoovviiiiiiiiiiiiiiiiiicccc 12-4
12.2.3 How to Define Parallel Job Set Stepscccccciiiiiiiiiiiiiiiiiiicncicncninnes 12-6

13

14

12.2.4 What Happens When You Define a Job Set.........ccooviiiiiiiiiiiiiicc 12-7
12.2.5 What You Need to Know About Serial JOb Sets.......cccooerienrininininieeieeeeeeene 12-7

12.2.6 What You Need to Know About Job Set Application Defined Properties and System
Properties 12-8

12.2.7 What Happens at Runtime for Job Set State Priorities and State Transitions.......... 12-8
12.3 Cross Application JOb Sets.........ccceuiiiiiiiiiiiiiicicc s 12-10
12.3.1 Overview of Cross Application Job Setscccccccvvuririrrnniinrnrrnrreeeeeees 12-11
12.3.2 Requirements for Cross Application Job Sets.........c.cccovvvviniiininiiiins 12-11
12.4 Using Input and Output FOrwardingcccceeoiiiiiiicec, 12-12
12.4.1 Supporting Input and Output Forwarding in Job Setsccccevvvrnnnncnncnncnnes 12-12
Defining and Using a Job Incompatibility

13.1 Introduction to Using a Job Incompatibilitycccoviiiiiiiiiiiiicicccccecenenee 13-1
13.1.1 Job Self Incompatibilitycccovoiiiiiiiiii e 13-2
13.2 Defining Incompatibility with Oracle JDeveloperccccoorriiiiiiniceiiccc 13-2
13.2.1 How to Define a Global Incompatibilitycccccccoeiiiiiiiiiiiicccecccecceee 13-2
13.2.2 How to Define a Domain Incompatibility.........cccoooeieiiiiiiiiii 13-4
13.3 What Happens at Runtime to Handle Job Incompatibilitycccccooeiiiriinn. 13-6
13.3.1 What Happens to Subrequests with an Incompatible Parent Request..................... 13-6
13.3.2 What Happens to the Scope of Request Incompatibilitycccooviiiinininnnnn. 13-6
Using the Runtime Service

14.1 Introduction to the Runtime Service ..o 14-1
14.2 Accessing the Runtime Serviceoooooioiiiiic 14-1
14.2.1 How to Access the Runtime Service and Obtain a Runtime Service Handle........... 14-2
14.3 Submitting Job ReqUESESc.cooimiiiiiiii 14-2
14.3.1 How to Submit a Request to the Runtime Service........ccocooooiiiiiiic 14-3

14.3.2 What You Should Know About Default System Properties When You Submit a
Request 14-3

14.3.3 What You Should Know About Metadata When You Submit a Request 14-4
144 Managing Job ReQUESLS..........cccoiiiiiiiiiiiiiiicccc s 14-4
14.4.1 How to Get Job Request Information with getRequestDetailcccccccceurieucnnnnne 14-4
14.4.2 How to Change Job Request State...........cccoviiiiiiiiii e 14-5
14.4.3 How to Update Job Request Priority and Job Request Parameters...........cccccoeec... 14-6
145 Querying Job ReqUESLS.......ccceiiiiiiiiiiiiiiii s 14-7
14.6 Submitting Ad Hoc Job Requestsccoueviimiiiiiiiii 14-9
14.6.1 How to Create an Ad Hoc Requestcccocuciiiiiiiiiiiiiiiiiiiiicccncaes 14-10
14.6.2 What Happens When You Create an Ad Hoc Request..........ccoeveeiiiicciiincnnne 14-11
14.6.3 What You Need to Know About Ad Hoc Requests...........cccoviiiiniiiiinnniinnnnan, 14-11
14.7 Implementing Pre-Process and Post-Process Handlerscccooviiiiiiiiiinnnnne 14-11
14.7 1 Implementing a Pre-Process Handler............cccoovviininnnnninnnnnccccceecee 14-12
14.7.11 Implementing the PreProcessHandler Interface............ccccovoiieiiiiiiinnnne, 14-12
14.7.2 Implementing a Post-Process Handlercccoooeiiiininiiniiniiiiiccccces 14-12
14.7.2.1 Implementing the PostProcessHandler Interfacecccocoevvvrrnnnnnncncnne. 14-13

15

16

Using Subrequests

15.1 Introduction to Using SUbTeqUEeStS...........ccccvvviiiiiiiiiiiiiiiiis 15-1
15.2 Sample SUDTEQUESL........ocoiiiiiiicccccccc e 15-2
15.3 Creating and Managing SUbrequests...........cccoovieiiiiiieiiiiiiiiiiiccccc 15-3
15.3.1 How to Submit SUbrequests...........cccccceuiiiiiiiiiiiiiiiiiiii 15-3
15.3.2 How to Cancel SUDTeqUESLSccccoiiuiiiiiiiicccccceecececee e 15-3
15.3.3 How to Hold SUbrequestsccoeviiiiiiiiniiiiiciiiccc s 15-4
15.3.4 How to Delete SUDTEQUESLScceuiuiiiiiiiiiiiiiiiiccs 15-4
15.3.5 How to Submit Multiple SUDTEqUESTSccccceuiuiiiiiiiiiiiiiicccccrceerees 15-4
15.3.6 How to Manage Paused Subrequestscccocveiiiiniiiiiiiniiiiccces 15-4
15.3.6.1 Indicating Paused Statuscccoevviiiniiiiiiii 15-4
15.3.6.2 Storing the Paused State for a Parent Request ... 15-4
15.3.7 How Subrequests Are Processed............coooveeeiiiiiniiiiiniiiiiiicicncceceeeeeeeenns 15-5
15.3.8 How to Identify SUbrequestscccoociiiiiiiiiiiiiiiiiiccc 15-6
15.3.9 How to Manage Subrequests and Incompatibilitycccccoevvivvniinnnninnne 15-6
15.4 Creating a Java Procedure that Submits a Subrequestccccoovvin, 15-6
15,5 Creating a PL/SQL Procedure that Submits a Subrequest...........cccooviiiiiiiiiinnnn 15-9

Working with Asynchronous Java Jobs

16.1 Introduction to Working with Asynchronous Java Jobs.........ccccccoviiiiiii 16-1
16.2 Creating an Asynchronous Java JOD........cociinnnnnininirccecccc e 16-1
16.2.1 Implementing the Asynchronous Java Job Asynchronous Interface........................ 16-2
16.2.2 Asynchronous Java Job execute() Method ..., 16-2
16.2.3 Invoking a Remote Job from an Asynchronous Java Job.......ccccccccevveeicciccccnnne. 16-2
16.2.4 Calling Back to Oracle Enterprise Scheduler with Status Updates............ccccccocu.. 16-3
16.2.5 Updating the Asynchronous Java Job.........ccoiiii 16-3
16.2.6 Notifying Oracle Enterprise Scheduler When an Asynchronous Job Completes... 16-3
16.2.6.1 Using the Web Service to Notify When an Asynchronous Job Completes....... 16-4
16.2.6.2 Using EJB to Notify When an Asynchronous Job Completes...............ccco.c....... 16-4
16.2.7 Asynchronous Java Job AsyncCancellable Interface.........ccccccceeuvvvvrnnnnnnnceccnes 16-4

16.2.8 Sample Asynchronous Java Job Invoking a BPEL Process Through Event Delivery
Network 16-5

16.2.8.1 Sample BPEL Process Design Time with Oracle Enterprise Scheduler............. 16-7
16.3 A Use Case Illustrating the Implementation of a BPEL Process as an Asynchronous Job
16-10
16.3.1 Introduction to the Recommended Design Pattern..........ccccooooeiieiiniiiiiinnn. 16-11
16.3.2 Potential APProaches ..o 16-11
16.3.3 Use Case SUMMATYccoiiiiiiiiiiicc s 16-11
16.4 How to Implement BPEL with an Asynchronous Job ... 16-12
16.4.1 Use Case: Add Oracle JDeveloper Libraries.........c.cccccovvvvvinnnnnniniiininne 16-12
16.4.2 Use Case: Create the Asynchronous Job Definition ... 16-13
16.4.3 Use Case: Design the Event Payload Schema and Event Definition Files.............. 16-14
16.4.4 Programmatically Raise a Business Event from the Asynchronous Job Methods 16-15
16.4.5 Design the SOA Composite with Meditator and BPELcccccccovvvinninnne. 16-17
16.4.6 Add Fault Handling and Correlated onMessage Branch for Error and Cancel Job
16-18
16.4.6.1 Create Correlation Set and Define Initiate Activity.........cccocevvinniinnnnnnnne 16-20

17

18

16.4.6.2 Create the onMessage Branch with Use of Correlation Set.............ccccoeueeaie. 16-21

16.4.6.3 Create the Fault Branch ... 16-22
16.4.6.4 Populate the onMessage and Fault Branch...........c.cccccccocviiiiiiiiiiiinnns 16-23
16.4.7 Validating the Deploymentcccoouiiiiiiiiiii e 16-24
16.4.8 Troubleshooting the Use Casecccoouoiiiiieiiiicicccc e 16-26
16.5 Handling Time Outs and Recovery for Asynchronous Jobsccccciiieciiinnnenne. 16-26
16.5.1 Asynchronous Request Time Outs........c.cooiveieiiiiiiiiii e 16-26
16.5.1.1 Setting the TIme Out Value..........cccccovvviiiiiniiiiiiiiie 16-27
16.5.1.2 Discovering the Asynchronous Job Requests that Have Timed Out............... 16-27
16.5.1.3 Completing Asynchronous Requests without a Time Outccocceeeie. 16-27
16.5.1.4 What Happens When an Asynchronous Job Request Times Out..................... 16-27
16.5.2 Handling Asynchronous Jobs Marked for Manual Recovery...........ccccccoevnunnence. 16-28
16.5.3 Using RecoverRequest to Manually Recover a Job Request...........ccccceevvviiiiiniinnn 16-28
16.6 Oracle Enterprise Scheduler Interfaces and Classes..........c.cccoovviiiniiiiiiiciiincnnnn 16-29
Creating Job Request Logs and Output

171 Creating Request LOZS ... 17-1
17.1.1 System Properties ... 17-1
17.1.2 APIs for Handling Request LOGScooeuoiiiiciiiiiiicc 17-2
17.1.3 LOg HEAdET ... e 17-2
17.1.4 Creating Request Logs from a Java JOob ... 17-2
17.1.41 APIs for Java Job LOZZINGccovueieiiiiiiiiirce 17-3
17.1.4.2 EXAMIPLE...oiiiiiiiiiici e 17-3
17.1.5 Creating Request Logs from a PL/SQL JObc.cccccoeuiiiiiiiiiiniiirrccnrernreecne 17-4
17.1.5.1 ESS_JOB Package Support for Creating Logs........ccccoueeruciiiiiicicieiiccic, 17-4
17.1.5.2 PL/SQL Request Logging Example..........ccccoeuiiiiiiiiiiiiiicicce e 17-5
17.1.6 Creating Request Logs from a Process JODb.........ccccccoiiiiiiiiiiicccccccecceees 17-6
17.2 Creating Request OUtPUL........cccooiiiiiiiii s 17-6
17.2.1 Using the Request File Directory.........ocooeuoioiiiiiiiiiiecc 17-6
17.2.1.1 Common Request File Directory Behavior ..o 17-7
17.21.2 Shared Request File Directory Behavior ... 17-7
17.2.1.2.1 Error Handling When a Shared Request File Directory is Used 17-7
17.2.1.3 Local Request File Directory Behaviorc.cccccceeciiiiiiiiciiiiiceccccee 17-7
17.2.1.3.1 Error Handling When a Local Request File Directory is Used.................... 17-8
17.2.2 System Properties ... 17-8
17.2.3 APIs for Handling Request OUtputccccccuiiiiiiiiiiiiiiiiicceccececeeeeceeeees 17-9
17.2.4 Creating Request Output from a Java Job......ccccovviiiiiiiiiccc 17-10
17.2.4.1 APIs for Handling Request Output from a Java Jobcccccovvvininnnnnne 17-10
17.2.4.2 EXQMIPLE....coiiiiiic e 17-13
17.2.5 Creating Request Output from a PL/SQL JObcccooviviiiviiiiiiiicicen, 17-14
17.2.51 PL/SQL Package Support for Creating Output.........cccceueuvuvviviviivnnnnnnencnnes 17-14
17.25.2 PL/SQL Output Creation Examples...........cccocevvrrnnnninnnnrnrneneceeeee 17-16
17.2.6 Creating Request Output from a Process Jobcccccviivinivininiccen, 17-19
Oracle Enterprise Scheduler Security

18.1 Introduction to Oracle Enterprise Scheduler Security.........c.ccoovriiiiiiniiiiiii 18-1

xi

Xii

18.1.1
18.1.2
18.2
18.2.1
18.2.2
18.2.3
18.2.4
18.2.5
18.2.6
18.3
18.4
18.5
18.6
18.6.1
18.6.2
18.6.3

Oracle Enterprise Scheduler Metadata Access Control ..o 18-1

Oracle Enterprise Scheduler Job Execution Securitycccoooriiiiniiiiiiiiine 18-2
Configuring Metadata Security for Oracle Enterprise Scheduler............c.cccccccvuennnnnnn 18-2
How to Enable Application Security with Oracle ADF Security Wizard................. 18-3
How to Define Principals for Security ... 18-3
How to Create Grants with Oracle Enterprise Scheduler Metadata Pages.............. 18-4
How to Create Grants with Oracle ADF Security Wizard..........ccccooovvvninnninn 18-5
About MetadataPermission APISs ... 18-7
What Happens When You Configure Metadata Security..........cccccceveueucervericeennenene. 18-7
Configuring Web Service Security for Oracle Enterprise Scheduler............cccccccoevennen. 18-8
Configuring PL/SQL Job Security for Oracle Enterprise Scheduler............ccccccceuevnnnennn. 18-8
Elevating Privileges for Oracle Enterprise Scheduler Jobscccccccvvvvnnnnninncncnes 18-8
Configuring a Single Policy Stripe in Oracle Enterprise Schedulerccccccevevennenn. 18-8
How to Configure a Single Policy Stripe in Oracle Enterprise Scheduler................ 18-9
What Happens When You Configure a Single Policy Stripeccccocccveecceenee. 18-10
What Happens at RUNEME.........c.ovoiiiiiiii e, 18-10

List of Tables

3-1
3-2
3-3

Ant Targets in the Included Build File.........ccoooiiiie, 3-2
Ant Targets in the Generated Build File...........cccoooiiiiiiiie, 3-3
Information Needed by the Ant Target.........c.ccoooiiiiiiii 3-3
Information Needed by the Ant Target ..o 3-6
Build Properties for Customizing Ant Builds...........coooiiii 3-9
EJB Resources for the Front-End Submitter Applicationccccceeeiiiiiniiiiiiiinns 4-37
EJB Resources for the Front-End Submitter Applicationcccccoeeviiiiniiiiiiiinns 5-63
Filter Comparison OPeratorsccviieiiiiieiiiiniiiiiiineee s 6-4
Parameter Precedence Levels............ccocoviiiiiiiiniiiniiiiiiii 7-2
ParameterInfo Parameter Properties...........c.cooveiiiiiniciiiiiiiiiiicccccccs 7-4
Terminal States for PL/SQL Stored Procedure Resultscccccveeveecieiiecceecie e 8-3
Recurrence Field Helper Patterns. ..., 10-2
Submit Request Web Service Arguments for BPEL Assign Activity Mapping........... 11-15
Submit Recurring Request Web Service Arguments for BPEL Assign Activity Mapping
11-33

Runtime Service Get Request Methodsccccoviiiiiiiiiiiiiiic, 14-5
Runtime Service Job Request State Methods ..o, 14-5
Runtime Service Update Methods...........cccccoevviiiiiiiiiii, 14-7
RuntimeService Methods for Handling Request Logs............coorveiiiiiciiiiici, 17-2
ContentFactory Methods for Creating Request Logsccccooiriiiiiiiiciiiicic, 17-3
RequestLogger Methods for Creating Request Logs ..o, 17-3
ESS_JOB Functions and Procedures for Request Logging...........c.cccooereieiiiiniiiiinnnnnn, 17-5
System Properties for Creating Request Output........ccccocvvuvviviiiiiiiiniiicicn, 17-9
RuntimeService Methods for Handling Request Output..........ccccoovvivininininnn. 17-9
ContentFactory Methods for Java Request Outputccccoovvviviinininnnie, 17-10
RequestOutput Methods for Java Request Output........ccccovvviiviviviiiviviiiniiiicne, 17-10
OutputContentHelper Methods for Java Request Outputcccccvvvivivniviininininnnen, 17-11
CommitSemantics Enum Members to Express Commit Semantics..............cccovvvvnnenee. 17-12
ESS_JOB Procedures and Functions for Request Output..........ccccooevvvviiiiiiinninninnne, 17-14
Sample Permission Grants for Security Using Oracle ADF...............ccooooiiiiiiiiiiinnnnn. 18-7
Grant Actions for Metadata Security ..., 18-7

xiii

Xiv

Audience

Preface

This document describes how to develop jobs and other extensions of Oracle
Enterprise Scheduler.

Oracle Enterprise Scheduler provides the ability to run different job types, including:
Java, PL/SQL, and binary scripts, distributed across the nodes in an Oracle WebLogic
Server cluster. Oracle Enterprise Scheduler runs these jobs securely, with high
availability and scalability, with load balancing and provides monitoring and
management through Oracle Enterprise Manager Fusion Middleware Control.

This document is intended for Oracle applications developers and assumes familiarity
with Java and SQL.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents

For more information, see the following documents in the Oracle 11g Fusion
Middleware documentation set:

» Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework

» Oracle Fusion Middleware Web User Interface Developer’s Guide for Oracle Application
Development Framework

» Oracle Fusion Middleware Developer’s Guide for Oracle SOA Suite
» Oracle Fusion Middleware Application Security Guide

» Oracle Fusion Middleware Administrator’s Guide for Oracle Enterprise Scheduler

XV

The following chapters in this guide describe Oracle Enterprise Scheduler
administrative functions:

- '"Managing Oracle Enterprise Scheduler Service and Jobs"
— "Troubleshooting Oracle Enterprise Scheduler"

- "High Availability for Oracle Enterprise Scheduler"

Conventions

XVi

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

What's New in This Guide for Release

11.1.1.6.x

For Release 11.1.1.6.x, this guide has been updated in several ways. The following
table lists the sections that have been added or changed. If a feature was not available
in the first release of 11.1.1.6.x, the last columns denote which documentation release
contains the update.

For a list of known issues (release notes), see the "Known Issues for Oracle SOA
Products and Oracle AIA Foundation Pack” at
http://www.oracle.com/technetwork/middleware/docs/soa-aiafp-know
nissuesindex-364630.html.

Sections Changes Made 11.1.1.6.0 11.1.1.6.1 11.1.1.6.2 11.1.1.6.3

All Chapters

All Sections Created this book from content X
originally included with Oracle
Fusion Applications.

Chapter 3 Using Ant to

Generate a Hosting

Application

Chapter 3, "Using Ant to Added chapter describe how to X

Generate a Hosting use new Ant targets to generate a

Application” hosting application and
supporting components.

Chapter 4 Using Oracle

JDeveloper to Generate an

Oracle Enterprise Scheduler

Application

Chapter 4, "Using Oracle Added chapter describing how to X

JDeveloper to Generate an use new Oracle JDeveloper user

Oracle Enterprise Scheduler interface create an application.

Application”

Chapter 5 Use Case Oracle

Enterprise Scheduler Sample

Application

Chapter 5, "Use Case Oracle Deprecated content in this chapter. X

Enterprise Scheduler Sample
Application (Deprecated)"

New development should use the

content in Chapter 4, "Using

Oracle JDeveloper to Generate an

Oracle Enterprise Scheduler
Application”

xvii

xviii

1

Introduction to Oracle Enterprise Scheduler

This chapter introduces Oracle Enterprise Scheduler as a service for developing jobs
that offload work such as executing Java, PL/SQL, and binary process code.

= Section 1.1, "About Oracle Enterprise Scheduler"
= Section 1.2, "Oracle Enterprise Scheduler Overview for Application Developers"

= Section 1.3, "Fixed-Rate Scheduling with Oracle Enterprise Scheduler"

1.1 About Oracle Enterprise Scheduler

Enterprise applications require the ability to respond to many real-time transactions
requested by online users or web services. However, they also require the ability to
offload larger transactions to run at a future time or automate the running of
application maintenance work based on a defined schedule.

Oracle Enterprise Scheduler provides the ability to run different job types, including:
Java, PL/SQL, and binary scripts, distributed across the nodes in an Oracle WebLogic
Server cluster. Oracle Enterprise Scheduler runs these jobs securely, with high
availability and scalability, with load balancing and provides monitoring and
management through Fusion Middleware Control.

Oracle Enterprise Scheduler provides scheduling services for the following purposes:
= To distribute job request processing across a grid of application servers,

s Torun Java, PL/SQL and binary process jobs,

= To group job requests into job sets,

= To schedule job requests based on recurrence expressions,

= To administer job requests with Fusion Middleware Control.

Oracle Enterprise Scheduler provides the critical requirements in a service-oriented
environment to automate processes that must recur on a scheduled basis and to defer
heavy processing to specific time windows. Oracle Enterprise Scheduler lets you:

= Support sophisticated scheduling and workload management,
= Automate the running of administrative jobs,
» Schedule the creation and distribution of reports,

» Schedule a future time for a step in a business flow for business process
management.

Oracle Enterprise Scheduler provides features to manage the complete life cycle of a
job definition: development, distribution, scheduling, and monitoring. Using Oracle

Introduction to Oracle Enterprise Scheduler 1-1

Oracle Enterprise Scheduler Overview for Application Developers

JDeveloper, application developers can easily create job requests in their development
environment. Application administrators and other users can specify when and where
they want their job requests to run. Users and administrators can monitor how the job
ran and access the end results of those jobs.

Customers that implement large systems typically have to manage a large number of
diverse machines to handle the workload of their users. Oracle Enterprise Scheduler
provides the ability to control how work is distributed to individual machines or
groups of machines.

1.2 Oracle Enterprise Scheduler Overview for Application Developers

Oracle Enterprise Scheduler is primarily a Java EE application that provides time- and
schedule-based callbacks to other applications to run their jobs. Oracle Enterprise
Scheduler compares with the Calendar application you might use in your phone or the
Oracle Calendar, where you create events and meetings with details about time and
recurrence; the application sends an alarm or notification at the right time for the
particular event. Similarly, Oracle Enterprise Scheduler applications define jobs and
specify when those jobs need to be executed, and Oracle Enterprise Scheduler gives
these applications a callback when that time or when a particular event arrives. This is
a simplified model of how a particular application can interact with an instance of
Oracle Enterprise Scheduler. Oracle Enterprise Scheduler does not execute the jobs
itself, it gives a callback to the application and the application actually executes the job
request. This implies that Oracle Enterprise Scheduler is not aware of the details of the
job request, all the job request details are owned and consumed by the application. An
application that submits requests to run a job is called a client application.

For development purposes, both Oracle Enterprise Scheduler and the Oracle
Enterprise Scheduler client application are deployed on the same Oracle WebLogic
Server. The Fusion Middleware Control can provide an interface for interacting with
Oracle Enterprise Scheduler. Typically, however, you will provide a client application
with which the end user can set up a job request and to specify when the job request is
scheduled to be executed, and eventually gets a callback from Oracle Enterprise
Scheduler when the time or event arrives.

1.2.1 Introduction to Working with Oracle Enterprise Scheduler at Design-Time

At design time an application developer uses Oracle JDeveloper to create a Java EE
application that contains the Oracle Enterprise Scheduler executable class and Oracle
Enterprise Scheduler specific metadata for this executable. The Oracle Enterprise
Scheduler metadata consists of job definitions, including the executable class and
parameters, and schedules. Schedules capture the times when a job request can be sent
for execution. Schedules are defined independent of job requests and get associated
with job requests at runtime when the job request is submitted for execution.

Figure 1-1 shows the design time view of an Oracle Enterprise Scheduler application.

1-2 Web User Interface Developer's Guide for Oracle Application Development Framework

Oracle Enterprise Scheduler Overview for Application Developers

Figure 1-1 Oracle Enterprise Scheduler Design Time Integration

{ Oracle JDeveloper client-app.ear
L D._evelopmg a A class
- client application B. class
Aldob.class
&

Metadata
Store

Metadata _I

| Essjar —» | metadata

In Figure 1-1, although the metadata is written to the MDS store through Oracle
Enterprise Scheduler APIs, the client application owns the metadata and the metadata
does not belong to the Oracle Enterprise Scheduler application. This metadata together
with the job implementation is packaged in an OAR, including the EAR for the
application and the MAR containing the metadata; this is deployed in the runtime
environment.

You can create the following types of metadata at design time.

= Job type: This is a basic definition of what a job would be comprised of and
defines the following:

a. The type of job to be run, such as Java, PL/SQL, binary script, and so on.

b. The Java executable class if the job is of Java type, or the PL/SQL function if
the job is of PL/SQL type, or the script if the job is of Script type.

c. Parameters definitions for the job and their data type, and default values.

= Job definition: A job definition, or job, is the smallest unit of work which gets
performed in context of the client application. It is defined by an underlying job
type and any parameters additional to the ones defined in the job type.

= Job set: A job set is a sequential or parallel set of job steps, where a job step can be
a single job or another job set. A job set and each of its job set steps can have
additional parameters, the value for which will be provided when the job or job
set is submitted as a job request.

= Schedule: A job schedule is a predefined time or a recurrence for a period of time
or indefinite. Schedules are defined independent of jobs but are associated with
one or more jobs at run time when a job request is submitted.

» Incompatibility: An incompatibility lets you specify job definitions and job sets
that cannot run at the same time.

1.2.2 Introduction to Working with Oracle Enterprise Scheduler at Runtime

At run time an application user associates a schedule with the job to be submitted and
provides values for the job parameters. This information is then submitted as a job
request. Once Oracle Enterprise Scheduler receives a job request it determines the right
time to execute the job request, and at that time sends a message to the owning client
application. The client application then executes the job based on the job metadata and
run time values for the parameters.

Introduction to Oracle Enterprise Scheduler 1-3

Oracle Enterprise Scheduler Overview for Application Developers

Figure 1-2 Oracle Enterprise Scheduler Runtime Integration

Oracle Weblogic Server

G 3¢

‘ Oracle Enterprise Scheduler
’ |
; 7
¢ @ i

(s (s

Oracle Enterprise Oracle Enterprise
Scheduler metadata Scheduler Data

fl‘ —~1 ——:-| client application

Figure 1-2 shows the sequence involved with running an application using Oracle
Enterprise Scheduler, and the following steps:

1.

2
3.
4

User submits a request using a client application.
Client application sends the request to Oracle Enterprise Scheduler.
Oracle Enterprise Scheduler reads the metadata for the request.

Oracle Enterprise Scheduler puts the request in a wait queue in Oracle Enterprise
Scheduler data store, along with the metadata.

At the appropriate time, according to the request specifics, Oracle Enterprise
Scheduler sends a message to the client application with all the request parameters
and metadata captured at the time of submission.

Client application performs the jobs and returns a status.

Oracle Enterprise Scheduler updates the history with the job request status.

1.2.3 Oracle Enterprise Scheduler Job Requests

Figure 1-3 shows the important Oracle Enterprise Scheduler components, including
the following:

The scheduler component itself, including the runtime module, request dispatcher
and request processor.

The client application, including the run time EJB and end point
Message-Driven-Bean (MDB) which it calls and the job it requests to execute.

Oracle Metadata Store and the client application metadata.

Oracle Enterprise Scheduler schema, including the wait and ready queues and job
history.

1-4 Web User Interface Developer's Guide for Oracle Application Development Framework

Oracle Enterprise Scheduler Overview for Application Developers

Figure 1-3 Oracle Enterprise Scheduler Runtime Details

Oracle Weblogic Server
client application

¢ ¢

Runtime EJB Oracle Enterprise

(®
§ i1
iu._ = .—I client interface ‘ scheduled job

Scheduler application
Endpoint MDB -—|
@ g
Oracle Enterprise Scheduler
Runtime Request Request
Maodule Dispatchear Processar
f : f

|
Kﬁr 8 6 7
Oracle Metadata
Store
Wait
= Queue

client application
metadata

Oracle Enterprise
Scheduler Schema

As shown in Figure 1-3, a client application is composed and runs as follows:

1.
2.

A user interacts with the client application, submitting a job request.

The client application specifies the two E]Bs and the Endpoint MDB in its
ejb-jar.xml. These beans are then instantiated in the client application context.

The beans in the application context contact the underlying Oracle Enterprise
Scheduler modules. The run time EJB sends the job request to the underlying run
time module in Oracle Enterprise Scheduler.

The run time module accesses the client application metadata from Oracle MDS.

The run time module persists the request along with its metadata and schedule in
the wait queue in the Oracle Enterprise Scheduler schema.

The Oracle Enterprise Scheduler request dispatcher determines the correct time to
run the job request based on its corresponding schedule. At this time, the request
dispatcher moves the request to a ready queue in Oracle Enterprise Scheduler
schema.

The Oracle Enterprise Scheduler request processor continues picking up job
requests to be processed from the ready queue.

The request processor sends a message to the application using the endpoint
MDB.

Oracle Enterprise Scheduler executes the scheduled job.

Introduction to Oracle Enterprise Scheduler 1-5

Fixed-Rate Scheduling with Oracle Enterprise Scheduler

In most cases or at least in the simplified case, this application will be the same as the
application which submitted the request.

1.2.4 Overview of Integration Steps

Once you have installed a basic Oracle WebLogic Server instance, take the following
steps to set up Oracle Enterprise Scheduler.

1. Configure Oracle Enterprise Scheduler.

2. Develop your client application which has your job definitions and other required
metadata.

3. Deploy your client application.

4. Invoke your client application to submit job request, which in turn calls Oracle
Enterprise Scheduler.

5. Invoke your client application to check the status of job request, or other history,
which in turn calls Oracle Enterprise Scheduler. Alternatively, use Fusion
Middleware Control to check the status of a given job request.

1.3 Fixed-Rate Scheduling with Oracle Enterprise Scheduler

Oracle Enterprise Scheduler supports fixed-rate scheduling where instances of a
repeating job requests are executed at a constant rate starting from the initial
scheduled execution time. Each job request runs as near to the absolute time of the
schedule as possible. Oracle Enterprise Scheduler ensures that only one job request in
a repeating request is running at any one time. If a job request runs beyond the
scheduled execution time of the next job request, the next job request becomes late and
is dispatched immediately upon completion of the previous job request.

When a job request is dispatched, the next request is placed in the wait queue. The
execution time for the next job request is the next time in the schedule that is no earlier
than the current time. Oracle Enterprise Scheduler skips time slots that are in the past.

If the desired behavior is to run all instances of the repeating request regardless of
when they are run and regardless of the requested or recurrence end date, the request
must set the system property EXECUTE_PAST.

Oracle Enterprise Scheduler does not support fixed-delay scheduling. Using fixed-delay
scheduling, each request is executed a fixed delay period after the previous request
completes. This means that when one request is late, all subsequent requests will be
late as well. In contrast, fixed-rate scheduling tries to get things back on schedule after
a late request.

1-6 Web User Interface Developer's Guide for Oracle Application Development Framework

2

Verifying the Oracle Enterprise Scheduler

Installation

This chapter describes how to ensure that Oracle Enterprise Scheduler has been
correctly installed.

Section 2.1, "Introduction to Verifying the Oracle Enterprise Scheduler Installation”

Section 2.2, "How to Verify the Oracle Enterprise Scheduler Installation Using a
Browser"

Section 2.3, "How to Programmatically Verify the Oracle Enterprise Scheduler
Installation"

Section 2.4, "What Happens When You Verify the Oracle Enterprise Scheduler
Installation"

Section 2.5, "What Happens at Runtime: How the Oracle Enterprise Scheduler
Installation is Verified"

2.1 Introduction to Verifying the Oracle Enterprise Scheduler Installation

The Oracle Enterprise Scheduler health check enables verifying the Oracle Enterprise
Scheduler installation using a web browser. The health check web page submits a
simple scheduled job so as to verify that Oracle Enterprise Scheduler works as it
should.

2.2 How to Verify the Oracle Enterprise Scheduler Installation Using a

Browser

Access the Java health check servlet in a web browser. Access to the health check page
is available only to users with administrator privileges.

To verify the Oracle Enterprise Scheduler installation:

1.

In a web browser, enter the following URL:

http://<hostName>:<port>/EssHealthCheck/checkHealth.jsp

where hostName is the server to which Oracle Enterprise Scheduler is installed and
port is the port number.

To verify an Oracle Enterprise Scheduler cluster, use the following URL:

http://<hostName>:<port>/EssHealthCheck/diagnoseHealth. jsp

Verifying the Oracle Enterprise Scheduler Installation 2-1

How to Programmatically Verify the Oracle Enterprise Scheduler Installation

The Oracle Enterprise Scheduler Diagnostic Health Check page displays, as shown
in Figure 2-1.

Figure 2—1 Diagnostic Health Check Page
ESS - Diagnostic health check service

Check Health

2. Log in to the diagnostic servlet using an Oracle WebLogic Server administrator
username and password.

3. (Click the Check Health button to verify the installation.

2.3 How to Programmatically Verify the Oracle Enterprise Scheduler
Installation

Programmatically access the health check servlet from your application. Access to the
health check page is available only to users with administrator privileges.

To programmatically verify the Oracle Enterprise Scheduler installation:
1. Access the following URL:

http://<hostName>:<port>/EssHealthCheck/checkHealth
where hostName is the server to which Oracle Enterprise Scheduler is installed and
port is the port number.

2. Use the HTTP response codes to gauge the health of the Oracle Enterprise
Scheduler installation, as shown in Table 2-1.

2-2 Web User Interface Developer's Guide for Oracle Application Development Framework

What Happens When You Verify the Oracle Enterprise Scheduler Installation

Table 2-1 HTTP Response Codes

Response Code

Oracle Enterprise Scheduler Comments
Status Code

200 (0K)

Oracle Enterprise Scheduler is The test job has been submitted and has succeeded
up and running. within the default duration.

202 (ACCEPTED)

Oracle Enterprise Scheduler is The test job has been submitted but has failed to
up and running but a delay in complete within the default duration.
processing has occurred.

A value of 202 (SC_ACCEPTED)
indicates to the client that the
request is being acted upon but
processing is not yet complete.

500 (INTERNAL_SERVER_ The Oracle Enterprise An error has occurred during the submission or
ERROR) Scheduler installation has execution of the job.
errors.

2.4 What Happens When You Verify the Oracle Enterprise Scheduler

Installation

The health check mechanism consists of an ESSHealthcheck servlet that extends
HttpServlet. The metadata and packaging dependencies are the same as that of the
web service approach.

Metadata services are used to retrieve metadata objects such as job type and job
definition. The required metadata files are EssHealthcheckJobType.xml and
EssHealthcheckJobDefinition.xml. These are packaged as ess-app-meta.mar, which
must itself be packaged with the file eas-app.ear. The servlet, archived as
ess-health-check.war, accesses the runtime metadata in order to schedule the job.

Note: Make sure to properly configure the file adf-config.xml so as
to register all metadata with the repository.

Example 2-1 illustrates the structure of the files ess-app. ear, ess-ejb.jar, and
ess-app-meta.mar.

Example 2-1 The Structure of the Health Check Files
ESS-APP.EAR

||
| |_APP-INF/classes/META-INF/ESSWebService.wsdl
|__ess-ejb.jar
|__ess-mbeans.war
| __ess-ws.war
|__ess-ra.rar |
|__ess-health-check.war
| __WEB-INF
|__web.xml
|__weblogic.xml
|__classes/oracle/ess/healthcheck/view/EssHealthcheckServlet.class
|__classes/oracle/ess/healthcheck/view/EssConsoleServlet.class
|__classes/oracle/ess/healthcheck/view/EssClusterHealthcheckServlet.class
|__checkHealth.jsp
|__diagnoseHealth.jsp
|__essVersion.jsp

Verifying the Oracle Enterprise Scheduler Installation 2-3

What Happens at Runtime: How the Oracle Enterprise Scheduler Installation is Verified

ESS-EJB.JAR
Along with the existing set of files,
oracle/ess/healthcheck/core/EssHealthcheckJob.class is added to the ess-ejb.jar.

ESS-APP-META.MAR

oracle/as/ess/essapp/internal /WorkAssignment/ESSInternalWA.xml
oracle/as/ess/essapp/internal/Workshift/ESSInternalWs.xml
oracle/as/ess/essapp/healthcheck/Jobs/EssHealthcheckdJobDefn.xml
oracle/as/ess/essapp/batchdelete/Jobs/BatchDeletedob.xml
oracle/as/ess/essapp/healthcheck/JobType/EssHealthcheckJobType.xml
oracle/as/ess/essapp/batchdelete/JobType/BatchDeleteJobType.xml

The health check servlet schedules a trivial job with Oracle Enterprise Scheduler as
part of an HTTP request. After a few seconds, the servlet calls
RuntimeServiceBean.getRequestState () to check the status of the job and constructs
a response message within the servlet code. The servlet then returns a response
indicating the success or failure of the job.

2.5 What Happens at Runtime: How the Oracle Enterprise Scheduler
Installation is Verified

The servlet waits for the job to either reach a terminal state, or run for 10 seconds,
whichever occurs first.

» If the job reaches a terminal state in less than 10 seconds, the job results in a state
of success.

» If the job's terminal state does not change within 10 seconds, the job results in a
state of success. However, the job is listed as not having been executed. This is
because the system may be overloaded such that executing the job may take some
time.

= If any problems occur when submitting or executing the job, the job results in a
state of failure.

When checking the health of a single node or cluster, the processor specific to the
server where the health check is submitted processes the health check request. This is
achieved through a system property called SYS_requestedProcessor. For more
information about system properties, see the table in the section "Creating or Editing a
Job Set" in the chapter "Managing the Work of Oracle Enterprise Scheduler Jobs" in
Oracle Fusion Middleware Administrator’s Guide for Oracle Enterprise Scheduler.

2-4 Web User Interface Developer's Guide for Oracle Application Development Framework

3

Using Ant to Generate a Hosting Application

This chapter describes how you can use Ant targets from a build.xml file included
with Oracle Enterprise Scheduler to create a hosting application for use with Java jobs.

Using these targets, you can create the application artifacts in an Oracle JDeveloper
workspace, create a template for a Java job implementation, and package and deploy
both the application and the Java job (as a shared library).

Note that the Ant targets described here do not create a client user interface with
which users can interact with the job. To perform client tasks, you can use Fusion
Middleware Control or develop a client user interface with Oracle JDeveloper.

When you have created and deployed your application and shared library, you can
use JDeveloper or Enterprise Manager to associate metadata with the deployed
outputs.

This chapter includes the following sections:

» Section 3.1, "Introduction to Generating a Hosting Application with Ant"

» Section 3.2, "Ant Targets for Creating and Deploying a Hosting Application"

» Section 3.3, "Creating a Hosting Application and Project Workspace with Ant"
» Section 3.4, "Creating a Java Job as a Shared Library with Ant"

= Section 3.5, "Packaging a Java Job as a Shared Library with Ant"

» Section 3.6, "Deploying a Shared Library with Ant"

» Section 3.7, "Packaging a Hosting Application with Ant"

= Section 3.8, "Deploying a Hosting Application with Ant"

= Section 3.9, "Configuring the Generated Ant Targets"

3.1 Introduction to Generating a Hosting Application with Ant

Oracle Enterprise Scheduler includes an Ant build file through which you can
generate the basic artifacts you'll need to get a hosting application running, along with
a Java job you can deploy to be executed by the application.

You use the included Ant build file to generate a hosting application. When you do,
you also generate another Ant build file that contains targets you can use to generate
artifacts for a Java job, as well as to build and deploy the generated components.

When you have created and deployed your application and shared library, you can
use JDeveloper or Enterprise Manager to associate metadata with the deployed
outputs.

Using Ant to Generate a Hosting Application 3-1

Ant Targets for Creating and Deploying a Hosting Application

You can also use a generated build.properties file to customize the work Ant does by
setting values for variables a target uses when it runs.

The steps described in this chapter include the following you can do with Ant.

1. Create a hosting application that can execute jobs. Use the create-user-home in the
included build.xml file.

2. Create a JDeveloper project workspace through which you can edit application
artifacts with the IDE. This is done when you create the hosting application.

3. Create an Ant build file with targets for building and deploying parts of the
application.

4. Create a Java job template to which you can add business logic. Use the
create-new-job-def target in the generated build.xml file.

5. Package the implemented Java job as a shared library. Use the package_essjob_
library target in the generated build.xml file.

6. Deploy the shared library to the hosting application. Use the deploy_essjob_
library target in the generated build.xml file.

7. Package the hosting application. Use the package_hosting_app target in the
generated build.xml file.

8. Deploy the hosting application. Use the deploy_hosting_app target in the
generated build.xml file.

3.1.1 Prerequisites for Using the Ant Build Files

Before you get started with the provided and generated build files, make sure you're
set up with the following prerequisites:

= You must have Ant installed and set up, with the ANT_HOME variable set
properly and the PATH pointing to ant's bin directory.

= You must install and set up Oracle JDeveloper. Your PATH variable must contain
the Oracle JDeveloper bin directory so that the jdev command can be executed
from the command prompt.

3.2 Ant Targets for Creating and Deploying a Hosting Application

Oracle Enterprise Scheduler includes an Ant build file to get you started toward
deploying a hosting application that can execute jobs. However, you're actually using
two build files to finish the job: one that is included with Oracle Enterprise Scheduler
and another that is generated by a target in the included build file. The following
tables list and describe the targets that are included by default in the two files.

By default, the included build.xml file is located in the Oracle Enterprise Scheduler
extensibility_scripts directory. For example, in an Oracle JDeveloper installation, you'll
find them in MW_HOME /jdeveloper/extensibility_scripts/build.xml; with
installations of products that include Oracle Enterprise Scheduler, you'll probably find
them in an ORACLE_HOME/ extensibility_scripts directory.

Table 3-1 Ant Targets in the Included Build File

Ant Target Description
create-user-home Default target to create a user home.
help-create-user-home Help on creating a user home.

3-2 Web User Interface Developer's Guide for Oracle Application Development Framework

Creating a Hosting Application and Project Workspace with Ant

When you run the create-user-home target from the included build.xml file, one of the
target’s actions is to create another build.xml file. That file contains the following
targets that you can use to create, build and deploy artifacts for your application.

Table 3-2 Ant Targets in the Generated Build File

Ant Target Description

build_ears Package the job shared library and the hosting application.
create-new-job-def Create Java job as a shared library.

deploy Package and deploy the job library and hosting application.
deploy_essjob_library Deploy the Java job shared library.

deploy_hosting_app Deploy the hosting application.

deploy_job_logic Package and deploy the job shared library.
package_essjob_library Package the Java job as a shared library.
package_hosting_app Package the hosting application.

3.3 Creating a Hosting Application and Project Workspace with Ant

You can create a hosting application by running the create-user-home Ant target in the
build.xml file included with Oracle Enterprise Scheduler.

After the script completes successfully, you'll have the artifacts for a hosting
application that you can package and deploy. The artifacts will be generated within a
JDeveloper-compatible workspace in the target directory you specified. The created
workspace will have a build.xml that you can use to build, package and deploy the
hosting application and the generated Java job as a shared library.

As the target runs, you'll be prompted to enter details that guide the target’s work.
These details include the environment for which the target’s work is intended (such as
to run with a particular application), the new application’s name and target directory,
and so on.

Before you get started, you should have in hand the following information for which
you’ll be prompted by the Ant target:

Table 3-3 Information Needed by the Ant Target

Input Prompt Description

Which template should be used Possible values are "Fusion" and "Standalone". If you're
developing for use with Oracle Fusion Applications, enter
Fusion here.

If you're not developing for use with Oracle Fusion
Applications, enter "Standalone."

There are significant differences between the Oracle Fusion
Applications and standalone contexts. For example, in the
Oracle Fusion Applications context, the target generates a
slightly different hosting application, as well as a client
application.

Middleware Home directory path The Middleware Home directory that was created when
Oracle Enterprise Scheduler was installed (probably with
another product that embeds it). The locations of
supporting libraries will be found as relative to this
directory.

Hosting application name The name you want the new hosting application to have.

Using Ant to Generate a Hosting Application 3-3

Creating a Hosting Application and Project Workspace with Ant

Table 3-3 (Cont.) Information Needed by the Ant Target

Input Prompt Description

Hosting application JPS stripe ID A stripe is a security construct that defines the subset of
values in the policy store that the application intends to
use. At run time, it determines which set of policies are
applicable for the application. The application name is

often used.
Shared library name for job The name for the shared library into which the generated
business logic Java job source code should be placed.
Empty directory where the The directory where you want the generated files to go.
application will be created This will be the location of the JDeveloper workspace,

where artifacts such as the build.xml file you'll use later
will be created.

To create a hosting application with Ant

1. To get started, open a console window and change directory to where the included
build.xml is located. By default, this is the Oracle Enterprise Scheduler
extensibility_scripts directory. For example, in MW_
HOME/jdeveloper/extensibility_scripts/build.xml.

Run the target with a command such as the following. You can omit the target
name because it is the default target in the build file.

ant

If you want to use the target name, you can do so with the following command.

ant create-user-home

In the following example of Ant console output, note that the prompts begin with
the word "[input]". For each prompt, type the value you want to use, then press
Enter.

After you've entered the information needed, the target creates the directories and
files you requested, copying needed files into your new workspace and setting up
some of the configuration for the new hosting application.

Example 3—-1 Console Output for the create-user-home Target

[extensibility_scripts]$ ant
Buildfile: build.xml
-init:

create-user-home:
[input] Enter which template should be used (source_template) (default=Fusion)
[input] ([Fusion], Standalone)
Standalone
[input] Enter Middleware Home Directory path (fmw_home_dir) (default=) []
/scratch/fmwtools/mw_home
[input] Enter hosting application name (hosting_application_name)
(default=MyAppEss) [MyAppEss]
NewDemoApp
[input] Enter hosting application JPS stripe id (hosting_application_stripe_
id) (default=MyAppEss) [MyAppEss]
NewDemoApp
[input] Enter the shared library name for the job business logic (jobdef_
library_name) (default=MyJobsLibrary) [MyJobsLibrary]

3-4 Web User Interface Developer's Guide for Oracle Application Development Framework

Creating a Java Job as a Shared Library with Ant

NewDemoAppJobsLib

[input] Enter an empty directory where the applications will be created (user_
home)
/scratch/WLServers/Mil_HOME/standalone_apps/NewDemoApp

[echo]
[echo]

[mkdir] Created dir: /scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp
[propertyfile] Creating new property file: /scratch/WLServers/MW_HOME/standalone_
apps/NewDemoApp/template.properties

[copy] Copying 12 files to /scratch/WLServers/MW_HOME/standalone_
apps /NewDemoApp

[copy] Copied 25 empty directories to 8 empty directories under
/scratch/WLServers/Mi_HOME/standalone_apps/NewDemoApp

[copy] Copying 1 file to /scratch/WLServers/MW_HOME/standalone_
apps/NewDemoApp/ant/config

[copy] Copying 1 file to /scratch/WLServers/MW_HOME/standalone_
apps/NewDemoApp

[copy] Copying 15 files to /scratch/WLServers/MW_HOME/standalone_
apps /NewDemoApp

[move] Moving 1 file to /scratch/WLServers/MW_HOME/standalone_
apps/NewDemoApp/Template_Hosting

[echo]

[echo]

[echo] A new workspace has been created at: /scratch/WLServers/MW_
HOME/standalone_apps/NewDemoApp

[echo] This workspace can be opened and modified using JDeveloper

[echo] To deploy the applications, run the following command:

[echo] ant -f /scratch/WLServers/MW_HOME/standalone_
apps/NewDemoApp/ant/build-ess.xml deploy

[echo] To create new jobs from predefined templates, run the following
command :

[echo] ant -f /scratch/WLServers/MW_HOME/standalone_
apps/NewDemoApp/build.xml create-new-job-def

BUILD SUCCESSFUL
Total time: 1 minute 27 seconds

3.4 Creating a Java Job as a Shared Library with Ant

You can create a Java job class template by running the create-new-job-def Ant target
that’s in the build file generated when you created a new hosting application. (For
more information, see Section 3.3, "Creating a Hosting Application and Project
Workspace with Ant" for more information.)

The Java class you create here is a template to which you can add logic that
implements your Java job. A Java job executes Java code. With the Java job
implemented, you can add metadata that comprises some of the specifics for the job.

Note: Currently, you can create only synchronous Java job templates
with this Ant target.

As the target runs, you'll be prompted to enter details that guide the target’s work.
Before you get started, you should have in hand the following information for which
you’ll be prompted by the Ant target:

Using Ant to Generate a Hosting Application 3-5

Creating a Java Job as a Shared Library with Ant

Table 3—4 Information Needed by the Ant Target

Input Prompt Description

Number of job definition template A number corresponding to the type of Java job

to create implementation you're creating. Currently, only
synchronous Java jobs can be created this way, so the only
supported value is "1".

Java package name for job The package name for the Java job you're creating.
definition

Java class name for job definition =~ The class name for the Java job you're creating.

To create a Java job class template with Ant:

1. To get started, in a console window change directory to the directory you specified
as the location to create the application. The build.xml file should be there. Use the
following command to run the target:

ant create-new-job-def

In the following example of Ant console output, you can see where the prompts
occur. After you've entered that information, the target creates the file you
requested, copying needed files into your new workspace and setting up some of
the configuration for the new hosting application.

Example 3-2 Console Output of the create-new-job-def Target

[extensibility scripts]$ ant -f /scratch/WLServers/MW_HOME/standalone_
apps/NewDemoApp/build.xml create-new-job-def

Buildfile: /scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp/build.xml
-init:

create-new-job-def:

[echo] Available Job Definition Templates:

[echo] 1) Simple Synchronous Java Job

[input] Enter number of job definition template to create (job_template_to_
create)
1

[echo] Calling default target on /scratch/miscFiles/ExtnDemo/extensibility_
scripts/Standalone/Template_JobLibrary/simple_synchronous_job/build.xml

-init:

create-job-definition:

[input] Enter Java package name for Job Definition (jobdef_package_name)
(default=oracle.apps.ess.custom) [oracle.apps.ess.custom]
oracle.apps.ess.custom

[input] Enter Java class name for Job Definition (jobdef_class_name)
(default=MySynchronousJavaJob) [MySynchronousJavaJob]

NewDemoHelloWorld

[copy] Copying 1 file to /scratch/WLServers/MW_HOME/standalone_
apps /NewDemoApp/NewDemoApp/EssSharedLibrary/src

[copy] Copying 1 file to /scratch/WLServers/MW_HOME/standalone_
apps /NewDemoApp/NewDemoApp/EssSharedLibrary/src/oracle/apps/ess/custom

BUILD SUCCESSFUL
Total time: 34 seconds

3-6 Web User Interface Developer's Guide for Oracle Application Development Framework

Creating a Java Job as a Shared Library with Ant

2. Having created the class template for the Java job, you can add code that
implements the job’s logic. The template is located in project in the JDeveloper
workspace you created when you created the hosting application in Section 3.3,
"Creating a Hosting Application and Project Workspace with Ant". The file’s
directory path is shown in the Ant console output. You can use the editor you
prefer for editing Java code, such as JDeveloper or a simple text editor.

Open the Java file and add code to implement the execute () method.

Example 3-3 shows what the generated code will look like. You would replace the
simple implementation of the oracle.as.scheduler.Executable interface’s
execute () method with code that does your Java job’s work.

Example 3-3 Oracle Enterprise Scheduler HelloWorld Java Class

package oracle.apps.ess.custom;

import java.io.StringWriter;

import java.security.AccessControlContext;
import java.security.AccessController;
import javax.security.auth.Subject;

import oracle.as.scheduler.RequestParameters;

import oracle.as.scheduler.job.BaseSynchronousJavaJob;
import oracle.as.scheduler.request.ContentType;

import oracle.security.jps.util.SubjectUtil;

public class NewDemoHelloWorld extends BaseSynchronousJdavaJob {

public NewDemoHelloWorld() {
super () ;

protected void execute() throws Exception

{
long requestId = getRequestExecutionContext ().getRequestId();
RequestParameters params = getRequestParameters();
AccessControlContext accContext = AccessController.getContext();
Subject subject = Subject.getSubject (accContext);
String username = SubjectUtil.getUserName (subject);
/*
* Write contents to request log
*/
StringWriter strWriter = new StringWriter();
strilriter.write("Simple ESS Java job execution LOG");
strilriter.write("ESS Job requestID: " + requestId);
strilriter.write("Username: " + username);
writeToRequestLog (requestId, strWriter.toString());

/*

* Write Text contents to request output

*/

striWriter = new StringWriter();

stririter.write("Simple ESS Java job execution Text Out");
stririter.write("ESS Job requestID: " + requestId);
stririter.write("Username: " + username);

writeToRequestOutput (requestId, strilriter.toString(), ContentType.Text);

Using Ant to Generate a Hosting Application 3-7

Packaging a Java Job as a Shared Library with Ant

3.5 Packaging a Java Job as a Shared Library with Ant

You can package a Java job implementation by running the package_essjob_library
Ant target.

Note: The build file containing this target is generated when you
create a new hosting application. (For more information, see
Section 3.3, "Creating a Hosting Application and Project Workspace
with Ant".)

The package_essjob_library target compiles and JARs the job code. The target simply
runs to completion, requiring no user input.

To package a Java job class implementation with Ant:

= Ina console window change directory to the directory you specified as the
location to create the hosting application. Use the following command to run the
target:

ant package_essjob_library

3.6 Deploying a Shared Library with Ant

You can deploy a Java job shared library by running the deploy_essjob_library Ant
target.

Note: The build file containing this target is generated when you
create a new hosting application. (For more information, see
Section 3.3, "Creating a Hosting Application and Project Workspace
with Ant".)

The deploy_essjob_library target deploys the job library. The target simply runs to
completion, requiring no user input.

To deploy a Java job shared library with Ant:

= Ina console window change directory to the directory you specified as the
location to create the hosting application. Use the following command to run the
target:

ant deploy_essjob_library

3.7 Packaging a Hosting Application with Ant

You can package a hosting application by running the package_hosting_app Ant
target.

Note: The build file containing this target is generated when you
create a new hosting application. (For more information, see
Section 3.3, "Creating a Hosting Application and Project Workspace
with Ant".)

The package_hosting_app target packages the hosting app created with the
create-user-home target (for more information, see Section 3.3, "Creating a Hosting

Web User Interface Developer's Guide for Oracle Application Development Framework

Configuring the Generated Ant Targets

Application and Project Workspace with Ant"). The target simply runs to completion,
requiring no user input.

To package a hosting application with Ant:

= Ina console window change directory to the directory you specified as the
location to create the hosting application. Use the following command to run the
target:

ant package_hosting_app

3.8 Deploying a Hosting Application with Ant

You can deploy a hosting application by running the deploy_hosting_app Ant target.

Note: The build file containing this target is generated when you
create a new hosting application. (For more information, see
Section 3.3, "Creating a Hosting Application and Project Workspace
with Ant".)

The deploy_hosting_app target deploys the hosting app created with the
create-user-home target (for more information, see Section 3.3, "Creating a Hosting
Application and Project Workspace with Ant"). This target simply runs to completion,
requiring no user input.

To deploy a hosting application with Ant:

= Ina console window change directory to the directory you specified as the
location to create the hosting application. Use the following command to run the
target:

ant deploy_hosting_app

3.9 Configuring the Generated Ant Targets

The file <user_home>/ant/config/ess-build.properties contains various parameters to
specify information used by the Ant scripts during build, packaging and deployment.
The <user_home> is the directory specified to contain the application workspace in
step 1 above.

Before deployment of archives, the weblogic server based details has to be changed
appropriate to the user's environment.

Use the build properties described in <table> to customize the Ant targets with
configuration values of your own.

Table 3-5 Build Properties for Customizing Ant Builds

Build Property Description

customEss.hostapp.earprofile
customEss.hostapp.jarfile
customEss.hostapp.jarprofile
customEss.hostapp.jprproject
customEss.hostapp.jwsfile

customEss.hostapp.mds.jdbc

Using Ant to Generate a Hosting Application 3-9

Configuring the Generated Ant Targets

3-10

Table 3-5 (Cont.) Build Properties for Customizing Ant Builds

Build Property

Description

customEss.hostapp.mds.partition

customEss.hostapp.name
customEss.hostapp.workspace
customEss.project.dir
customEss.shared.library.name
ess.script.base.dir

fmw.home

jdev.home

oracle.common
weblogic.admin.password
weblogic.admin.user
weblogic.server.host
weblogic.server.port
weblogic.server.ssl.port

weblogic.t3.url

The name to be used for the generated hosting application.

The directory location for the generated JDeveloper project.

The name to be given to the generated shared library.

The WebLogic Server admin password.

The WebLogic Server admin username.

Example 3—-4 Contents of an ess-build.properties File for Configuring Ant Builds

ESS build properties

ess.script.base.dir=${user_home}

fmw.home=$ { fmw_home}

jdev.home=${fmw.home} /jdeveloper
oracle.common=S${fmw.home}/oracle_common

========== ESS JDev project details ===============
customEss.project.dir=${ess.script.base.dir}

customEss.hostapp.workspace=${hosting application_name}
customEss.hostapp.jwsfile=${hosting_application_name}
customEss.hostapp.earprofile=${hosting_application_name}
customEss.hostapp. jprproject=EssSharedLibrary
customEss.hostapp. jarprofile=EssSharedLibrary
customEss.hostapp.jarfile=${jobdef_library_name}

customEss.shared.library.name=${jobdef_library_name}

customEss.hostapp.mds.partition=${hosting_application_name}
customEss.hostapp.mds. jdbc=mds-ESS_MDS_DS
customEss.hostapp.name=${hosting_application_name}

========== [Jeblogic Server details ===============

MW_HOME=${ fmw . home}
ORACLE_HOME=${jdev.home}
MW_ORA_HOME=${jdev.home}

COMMON_COMPONENTS_HOME=${oracle.common}
WEBLOGIC_HOME=${fmw.home}/wlserver 10.3
weblogic.server.host=adc2170657.us.oracle.com
WEBLOGIC_HOME=${fmw.home} /wlserver_10.3

Web User Interface Developer's Guide for Oracle Application Development Framework

Configuring the Generated Ant Targets

weblogic.
weblogic.
weblogic.
weblogic.
weblogic.
weblogic.

server.host=adc2170657.us.oracle.com

server.port=7001

server.ssl.port=7002

admin.user=weblogic

admin.password=welcomel
t3.url=t3://${weblogic.server.host}:${weblogic.server.port}

Using Ant to Generate a Hosting Application 3-11

Configuring the Generated Ant Targets

3-12 Web User Interface Developer's Guide for Oracle Application Development Framework

4

Using Oracle JDeveloper to Generate an
Oracle Enterprise Scheduler Application

This chapter is a tutorial that describes how to create and run an application that uses
Oracle Enterprise Scheduler to run job requests and demonstrates how to work with
Oracle JDeveloper to create an application using Oracle Enterprise Scheduler.

The chapter then shows a variation on the sample application using two split
applications — a job submission application, a submitter, and a job execution
application, a hosting application.

This chapter includes the following sections:

= Section 4.1, "How to Start JDeveloper to Support Building Oracle Enterprise
Scheduler Applications"

= Section 4.2, "Building a Combined Oracle Enterprise Scheduler Application"
= Section 4.3, "Building Split Submitting and Hosting Applications"

4.1 How to Start JDeveloper to Support Building Oracle Enterprise
Scheduler Applications

Some aspects of developing Oracle Enterprise Scheduler applications with Oracle
JDeveloper require that you set the Middleware Home environment variable to the
installation location of Oracle JDeveloper itself. Before you begin using Oracle
JDeveloper to develop Oracle Enterprise Scheduler applications, be sure to set this
variable.

To set an environment for building Oracle Enterprise Scheduler applications:
1. Open a command prompt.

2. Change directory to the installed location of Oracle JDeveloper. For example, on
Windows you might do the following:

>cd c:\Oracle\Middleware\jdeveloper

3. Set MW_HOME to the location of Oracle JDeveloper. For example:

>set MW_HOME=c:\Oracle\Middleware

4. Start Oracle JDeveloper.

>jdeveloper

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 4-1

Building a Combined Oracle Enterprise Scheduler Application

4.2 Building a Combined Oracle Enterprise Scheduler Application

The EssDemoApp sample application you build in this tutorial includes a complete
application that you build with Oracle JDeveloper using Oracle Enterprise Scheduler
APIs.

In this example, you'll create a hosting application and a simple Java job
implementation. Though the example here is simple, its job class implements the
Executable interface from which a more complex Java job might call out to other code
as part of its work.

To create an application that schedules job requests you do the following:

» Create the Java class that specifies the logic you want to schedule and run with
Oracle Enterprise Scheduler.

= Specify Oracle Enterprise Scheduler metadata and the characteristics for job
requests.

= Define the Java application that uses Oracle Enterprise Scheduler APIs to specify
and submit job requests. The application consists of two projects: one for hosting
jobs and another for submitting them.

= Assemble and deploy the Java application that uses Oracle Enterprise Scheduler
APIs.

= Run the Java application that uses Oracle Enterprise Scheduler APIs.

Note: The instructions in this chapter assume that you are using a
new Oracle JDeveloper that you installed without previously saved
projects or other saved Oracle JDeveloper state. If you have previously
used Oracle JDeveloper, some of the instructions may not match the
exact steps shown in this chapter, or you may be able to shorten
procedures or perform the same action in fewer steps. In some cases
Oracle JDeveloper does not show certain dialogs based on your past
use of Oracle JDeveloper.

When you use Oracle Enterprise Scheduler the application metadata is stored with
MDS. To use MDS you need to have access to a database with MDS user and schema
configured.

You will also need a WebLogic Server instance to which Oracle Enterprise Scheduler is
deployed in standalone mode. You should have access to a database with the Oracle
Enterprise Scheduler schema installed.

This section includes the following subsections:

» Section 4.2.1, "Creating the Application and Projects for EssDemoApp
Application”

» Section 4.2.2, "Creating Metadata and an Implementation Class for the
EssDemoApp Application”

= Section 4.2.3, "Adding Application Code to Submit Job Requests"

= Section 4.2.4, "Setting Oracle Enterprise Scheduler Properties"

» Section 4.2.5, "Assembling the EssDemoApp Application"

= Section 4.2.6, "Deploying and Running the EssDemoApp Application”

4-2 Web User Interface Developer's Guide for Oracle Application Development Framework

Building a Combined Oracle Enterprise Scheduler Application

4.2.1 Creating the Application and Projects for EssDemoApp Application

Using Oracle JDeveloper you create an application and projects within the application
that will contain the code and supporting files for the application. To create the sample
application you need to do the following:

s Create an application in Oracle JDeveloper.

» Create projects in Oracle JDeveloper. You will create two projects -- one in which
to develop "Hello World"-style Java job and another in which to develop a client
that submits requests with the job.

4.2.1.1 How to Create the EssDemoApp Application and Host Project

To work with Oracle Enterprise Scheduler, you first create an application in Oracle
JDeveloper. You'll also create a hosting application to support job execution.

To create the EssDemoApp application and hosting project:
1. Start Oracle JDeveloper as described in Section 4.1.

2. In the Select Role dialog, select the Default Role, then click OK.
3. Click the Application menu, then click New.

4. In the Name your application window enter the name and location for the new
application.

a. Inthe Application Name field, enter an application name. For this sample
application, enter EssDemoApp.

b. In the Directory field, accept the default.
c. Enter an application package prefix or accept the default, no prefix.

The prefix, followed by a period, applies to objects created in the initial project
of an application.

d. Inthe Application Template area, select Generic Application.
e. Click Next.

5. In the Name your project window, enter the name for the host project you're
creating and select supporting technologies.

a. In the Project Name field, enter a name for your hosting project. For this
sample application, enter EssHost.

b. On the Project Technologies tab, under Available, double-click ESS Host
Support and ESS Job Support so that they are both listed under Selected on
the right side of the dialog box.

c. Click Next.

6. In the Configure Java settings window, in the Default Package field, enter
oracle.esshost.

Click Next.
7. In the Configure EJB settings window, select the following:
s Under EJB Version, select the Enterprise JavaBeans 3.0 option button.

s Under EJB Version 3.0, select the Generate ejb-jar.xml in this project check
box.

Click Next.

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 4-3

Building a Combined Oracle Enterprise Scheduler Application

In the Configure ESS Host Support settings window, in the Application Id field,
enter EssDemoApp.

Click Finish.

This displays the EssDemoApp Overview page. You can use sections of this page
to get information about aspects of the application you're creating, as well as to
manage its development progress. For now, though, you'll move on to creating
project artifacts to support creating jobs.

4.2.1.2 How to Create the Client Project

In the preceding step, you created a project in which to develop the application to host
your jobs. In this section, you'll use Oracle JDeveloper to create another project in the
EssDemoApp application. This second project will provide support for client
interaction with the hosting application.

To create the client project:

1.
2
3.

ESS Client Support

HTML

JSF

JSP and Servlets
XML

Click the File menu, then click New.
In the New Gallery, under Categories, expand General, then click Projects.
Under Items, click Generic Project, then click OK.

In the Name your project window, enter the name for the client project you're
creating and select supporting technologies.

a. In the Project Name field, enter a name for your client project. For this sample
application, enter EssClient.

b. On the Project Technologies tab, under Available, double-click the following
items so that they are listed under Selected on the right side of the dialog box:

c. Click Next.

In the Configure Java settings window, in the Default Package field, enter
oracle.essclient.

Click Next.

In the Configure EJB settings window, select the following:

= Under EJB Version, select the Enterprise JavaBeans 3.0 option button.
Click Next.

In the Configure ESS Client Support settings window, in the Application Id field,
ensure the EssDemoApp is displayed there.

Click Finish.

4.2.2 Creating Metadata and an Implementation Class for the EssDemoApp Application

For a Java job, which is what you’ll be adding here, an implementation class
implements the logic of your job -- the code that does job’s actual work. The class
implements the oracle.as.scheduler.Executable interface. The interface’s execute
method provides a place where you can add the job’s logic. Though the code in this

4-4 Web User Interface Developer's Guide for Oracle Application Development Framework

Building a Combined Oracle Enterprise Scheduler Application

example is very simple, the execute method can also serve as a starting place for
processing that continues into code to which the Java job has access.

As with other job types, including PL/SQL and process jobs, a Java job’s work is
guided by metadata. This metadata forms a job-specific context that can include Oracle
Enterprise Scheduler-defined system properties, properties you create, and control of
who has access to the metadata. For example, metadata might be a way for you to
collect and pass instance data to downstream code.

To use the EssDemoApp sample application to submit a job request, you need to
create:

= Metadata in the form of a job definition that is the basic unit of work that defines a
job request in Oracle Enterprise Scheduler.

= A Javajob implementation class.

4.2.2.1 How to Create Metadata for the EssDemoApp Application

In this section, you use Oracle JDeveloper to create job definition metadata and a
simple implementation class for a Java job.

To create metadata for the application:
1. In the Application Navigator, select the EssHost project.

2. Press Ctrl-N. This displays the New Gallery.
3. In the New Gallery, select the All Technologies tab.

4, In the Categories area expand Business Tier and select Enterprise Scheduler
Metadata.

5. In the Items area, select Job Definition as shown in Figure 4-1.

Figure 4-1 Adding Job Type Metadata to the Sample Application

& New Galle ry ['5_<|
r all Technologies |/ Current Project Technologies |
i))
Categories: Ttems: [] Shaw &ll Descriptions
- =
: a
ML E; Job Type
- Business Tier. [E3 Job Definition
""" ADF Business Companents Launches Jab Definition Craatian,
----- Business Inteligence
..... Data Controls To enable this option, you must seleck a project, or a file within a project in the
Application Mavigatar,
nterprise Scheduler Metadata @ Job Set
----- Security
..... TopLink/IP4 [, Incompatitility
----- ‘Wb Services E Schedule
=H-Clignk Tier
----- ADF Desktop Integration
----- A0F Swing
----- Extension Development
----- SwinglavwT
[=+-Database Tier
+-Database Files
+--Database Objects

| Help | | OK . | Cancel
_ X,

6. Click OK. This displays the Create Job Definition dialog.

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 4-5

Building a Combined Oracle Enterprise Scheduler Application

7. In the Create Job Definition dialog, specify the following:

a.

In the Name field, enter a name for the job definition. For this example, enter
the name: HelloWorldJobDefinition.

In the Package field, enter a package name. For this example, enter
/oracle/esshost/metadata.

Note that you should use slashes, rather than dots, to delimit names in
metadata package names. A metadata package ending in ".metadata" will not
be visible in Oracle JDeveloper.

In the Job Type field, from the dropdown list select
/oracle/as/ess/core/JavaJobType.

If job types are not listed in the dropdown, ensure that you started Oracle
JDeveloper as described in Section 4.1.

Ensure that the Create Java Class check box and the Synchronous option
button are selected.

By selecting the Create Java Class check box, you're asking that a Java class for
your Java job be created, saving you the trouble of creating one later. Selecting
the Synchronous option specifies that this will be a synchronous Java job.

Under Java Class, specify details for the Java class you're creating. In the Java
Package field, enter its package name -- here, enter oracle.esshost.impl. In
the Class Name field, enter a name for the class -- here, enter HelloWorldImpl
as shown in Figure 4-2

Figure 4-2 Creating a Job Definition with the Job Definition Creation Wizard

® Create Job Definition

Job Definition

A job definition describes a job (basic unit of work) that runs in the scheduler. A job
defintion requires a job type.

[Marne:
Package:
Job Type:
Location:
Create Java Class
Java Class
() synchronous

() Asynchronous

|He||0W0rIdJobDeFinition |

|metadata |

| loracle/as/essfcareJavalobType - |

|,|’C i Developer fmywork/EssDemoapp/EssHost fessmeta/ |

Location:

Java Package: |oracle.esshost.impl | Q

Class Mame:

|C: ' JDeveloperimyworkiEssDemoapplEssHosksre |

|HeIIOWorIdImpI |

[Help

Cancel |

| oKDy | |

Click OK.

This creates the Java class you requested, along with the
HelloWorldJobDefinition.xml file. Oracle JDeveloper displays XML file’s
contents in the Job Definition page.

4-6 Web User Interface Developer's Guide for Oracle Application Development Framework

Building a Combined Oracle Enterprise Scheduler Application

10.
11.

On the Job Definition page, you can edit job definition metadata, including
properties that specify parameters for the job, access to this metadata, and a
resource bundle to use for localization.

In the Job Definition page, in the Description field enter a description for the job
type. For this example enter: Sample Java Job Definition.

Leave the rest of the metadata unchanged.

In the Application Navigator, locate the class you created by expanding the items
in the projects panel to EssHost > Application Sources > oracle.esshost.impl >
HelloWorldImpl java.

Open HelloWorldImpl.java in the source editor.

In the source editor, add simple code to implement the execute method. The
execute method is where execution for a Java job begins. Your HelloWorldImpl
class should look something like Example 4-1.

Example 4-1 HelloWorldimpl with Execute Method Implemented

public class HelloWorldImpl implements Executable, Cancellable

{

public void execute(RequestExecutionContext ctx, RequestParameters params)

throws ExecutionErrorException, ExecutionWarningException,
ExecutionCancelledException, ExecutionPausedException

System.out.println("**** Sample Job Running, Request ID: " +
ctx.getRequestId());
}

public void cancel()

}

12

{
}

. Save and close HelloWorldImpl java.

4.2.3 Adding Application Code to Submit Job Requests

In

an Oracle Enterprise Scheduler application you use the Oracle Enterprise Scheduler

APIs to submit job requests from any component in the application. The EssDemoApp
sample application provides a Java servlet for a servlet-based user interface for
submitting job requests (using Oracle Enterprise Scheduler).

4.2.3.1 How to Add Application Code to Submit Job Requests

In

this section, you'll create a servlet for receiving job submission requests.

To add a servlet to support job request submissions:

1.
2.
3.

In the Application Navigator, select the EssClient project.
Press Ctrl-N. This displays the New Gallery.
In the New Gallery, in the Categories area, expand Web Tier and select Servlets.

In the Items area, select HTTP Servlet as shown in Figure 4-3.

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 4-7

Building a Combined Oracle Enterprise Scheduler Application

Figure 4-3 Adding Job Type Metadata to the Sample Application

& New Galle ry

(nll Technologies rCurrent Project Technologies |

R

Cateqgories:

------ WED SErVICES
lient Tier

----- ADF Desktop Integration
----- ADF Swing

----- Extension Development
----- Siing) AT

atabase Tier

----- Database Files

----- Database Objects

----- Offline Database Objects

[=h-web Tier

Items:

[Z] HTTP Serviet

[] Show All Descriptions

Launches the Create HTTP Servlet wizard, which allows vou to add a

customized HTTP servlet {.java) file bo your project,

To enable this option, you must seleck a project or a file within a project in the

Application Mavigator,
[&] serviet Filter

@ Servlet Listener

X

Ltk

OK .] | Cancel
Lac?

5. Click OK. This displays the Create HTTP Servlet wizard.

6. In the Welcome page, click Next.

7. In the Create HTTP Servlet - Step 1 of 3: Servlet Information page, specify the
following:

a.

In the Class field, enter a name for the servlet class. For this example, enter the
name: EssDemo.

In the Package field, enter a package name. For this example, enter
oracle.essclient.servlet.

In the Generate Content Type field, from the dropdown list ensure the HTML

is selected.

In the Implement Methods area, select the doGet() and doPost() check boxes,

as shown in Figure 4-4.

4-8 Web User Interface Developer's Guide for Oracle Application Development Framework

Building a Combined Oracle Enterprise Scheduler Application

Figure 4-4 Creating a Servlet -- Step 1 of 3

& Create HTTP Servet - Step 1 of 3: Servlet Information @

Create HTTP Servlet - Step 1 of 3: Servlet Information

Enter serviet details

Class: |EssDemo |
Package: |0racle.essclient.servlet |V| | Browse. ..
Generate Conkent Type: |HTML '|

[] Gererate Header Comments
Implement Methods
doGet() doPost() [] service()
[]doPut(y [] doDelete()

Help < Back || Mext[\Q! | Cancel

e. Click Next.

8. In the Create HTTP Servlet - Step 2 of 3: Mapping Information page, specify the
following:

a. In the Name field, enter a name for the servlet. For this example, enter the
name: EssDemo.

b. Inthe URL Pattern field, enter a URL for servlet mapping. For this example,
enter /essdemo/ *.

c. Click Finish.

The supplied EssDemo application includes the completed servlet. You need to
copy the source code into your project. To do this, in Oracle JDeveloper replace the
contents of the servlet with the contents of the file EssDemo.java supplied with the
sample application.

4.2.4 Setting Oracle Enterprise Scheduler Properties

With Oracle Enterprise Scheduler properties, you set values for settings used in the
ejb-jar.xml file associated with the application. These properties include the following;:

= Logical Application Name

Specifies the logical name used to identify this application. Separate from the
application name used when deploying the application to the container, this value
lets you safely hard code the logical application name in source code.

= Application Policy Stripe

Specifies which JPS security stripe (or "security context") should be used to
perform security checks.

= JPS Interceptor Application Name

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 4-9

Building a Combined Oracle Enterprise Scheduler Application

Specifies the application stripe name used at run time to determine which set of
security policies are applicable.

4.2.4.1 How to Set Oracle Enterprise Scheduler Properties for the Application
In this section, you'll set default values for Oracle Enterprise Scheduler properties.

To set values for Oracle Enterprise Scheduler properties:

1. In the Application Navigator, right-click the EssHost project, then click Enterprise
Scheduler Properties.

2. In the Enterprise Scheduler Properties dialog, enter EssDemoapp for all three of the
fields provided: Logical Application Name, Application Policy Stripe, and JPS
Interceptor Application Name.

3. Click OK.

4.2.5 Assembling the EssDemoApp Application

After you create the sample application you use Oracle JDeveloper to assemble the
application.

To assemble the application you do the following:
n Create the EJB JAR files.

» Create the application MAR file.

» Create the application EAR file.

s Update WAR file options.

4.2.5.1 How to Create the EJB-JAR Deployment Profile for the EssDemoApp
The sample application needs to contain the required EJB descriptors. You need to

create the ejb-jar.xml and weblogic-ejb-jar.xml files and include these files with any
Java implementation class that you create.

Oracle Enterprise Scheduler requires an application to assemble and provide an E]B
JAR so that Oracle Enterprise Scheduler can find its entry point in the application
while running job requests on behalf of the application. This EJB jar should have its
required EJB descriptors in ejb-jar.xml and weblogic-ejb-jar, as well as any Java class
implementations that are going to be submitted to Oracle Enterprise Scheduler. The
descriptor files ejb-jar.xml and weblogic-ejb-jar must contain descriptions for the
Oracle Enterprise Scheduler E]Bs and should not be modified.

To create the EJB-JAR deployment profile:

1. In the Application Navigator, in the Projects panel, right-click the EssHost project,
then click Project Properties.

2. In the Project Properties window, in the navigator, click Deployment.

3. Under Deployment Profiles, delete all profiles listed in the window, then click
New.

4. In the Create Deployment Profile dialog, from the Archive Type dropdown, select
EJB JAR file.

5. In the Name field, enter a name for the EJB. For this example, enter ess-ejb.

6. Click OK.

4-10 Web User Interface Developer's Guide for Oracle Application Development Framework

Building a Combined Oracle Enterprise Scheduler Application

10.

11.
12.

13.
14.

In the Edit EJB JAR Deployment Profile Properties dialog, in the navigator on the
left, click General.

In the General window, in the Enterprise Application Name field, enter
EssDemoApp.

In the navigator, expand to File Groups > Project Output > Contributors.
In the Contributors window, select the following check boxes:

= Project Output Directory

= Project Source Path

= Project Additional Classpath

= Project Dependencies

In the navigator, expand to File Groups > Project Output > Filters.

In the Filters window, on the Files tab, ensure that the following folders are
selected:

s META-INF (and its contents)

= oracle (and its contents)

Click OK.

In the Project Properties dialog, click OK.

4.2.5.2 How To Update the WAR Archive Options

In this section, you specify information that Oracle JDeveloper can use to generate a
WAR file.

To update the WAR archive options:

1.

10.

11.

In the Application Navigator, in the Projects panel, right-click the EssClient
project, then click Project Properties.

In the Project Properties window, in the navigator, click Deployment.
In the Deployment window, click New.

In the Create Deployment Profile dialog, from the Archive Type dropdown, select
WAR file.

In the Name field enter WAR_EssDemoApp.
Click OK.

In the Edit WAR Deployment Profile Properties dialog, in the navigator on the left,
click General.

In the General window, select the Specify Java EE Web Context Root option. In
the field beneath the option, enter EssDemo.

In the navigator, expand to File Groups > Web Files > Contributors.
In the Contributors window, select the following check boxes:

» Project Output Directory

s Project HTML Root Directory

= Project Source Path

In the navigator, expand to File Groups > Web Files > Filters.

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 4-11

Building a Combined Oracle Enterprise Scheduler Application

12. In the Filters window, on the Files tab, ensure that the following folders are
selected:

= oracle (and its contents)
s WEB-INF (and its contents)
Click OK.
13. In the Project Properties dialog, click OK.

4.2.5.3 How to Update the EAR Options

In this section, you'll prepare an EAR file that assembles the EssDemoApp sample
application. The EAR archive consists of the following:

= EJBJAR including the Oracle Enterprise Scheduler Java job implementation.
s WAR archive with the EssDemo servlet.

To update the EAR options:
1. Click the Application menu, then click Application Properties.

2. In the Application Properties dialog, in the navigation pane, click Deployment.
3. In the Deployment window, click New.

4. In the Create Deployment Profile dialog, in the Name field, enter EAR_EssDemoApp
as the deployment profile’s name.

Click OK.

5. In the Edit EAR Deployment Profile Properties dialog, in the navigation pane on
the left, click Application Assembly.

6. In the Application Assembly window, under Java EE Modules, ensure that all item
check boxes are selected.

7. Click OK.
8. In the Application Properties dialog, click OK.

4.2.6 Deploying and Running the EssDemoApp Application

After you complete the steps to build and assemble the EssDemoApp application you
need to deploy the application to Oracle WebLogic Server. After you successfully
deploy an application you can run the application. For the EssDemoApp sample
application you use a browser to run the EssDemo servlet to submit job requests to
Oracle Enterprise Scheduler running on Oracle WebLogic Server.

4.2.6.1 How to Deploy the EssDemoApp Application

To deploy the EssDemoApp application you need a properly configured and running
Oracle WebLogic Server, and you need an active metadata server. When you deploy
the application Oracle JDeveloper brings up the Deployment Configuration page.
Select your repository from the dropdown list and Enter a partition name (the
partition name defaults to application name).

To deploy the EssDemoApp application:

1. Check the Run Manager to make sure the Oracle WebLogic Server is up and
running. If the Oracle WebLogic Server is not running, start the server. To start the
server, from the Run menu click Start Server Instance.

4-12 Web User Interface Developer's Guide for Oracle Application Development Framework

Building a Combined Oracle Enterprise Scheduler Application

In the Application Navigator, select the EssDemoApp application.

In the Application Navigator from the Application Menu select Deploy > EAR_
EssDemoApp > to > IntegratedWLSConnection.

Oracle JDeveloper shows the Deployment Configuration page. Select the
appropriate options for your Metadata Repository.

Click Deploy.
Verify the deployment using the Deployment Log.

4.2.6.2 How to Run the EssDemoApp Sample Application

To run the EssDemoApp sample application you access the EssDemo servlet in a
browser.

To access the EssDemo serviet:

1.

Enter the following URL in a browser:
http:/ / host:http-port / context-root / essdemo
For example,

http://myserver.us.oracle.com:7101/EssDemoApp/essdemo

This shows the EssDemo servlet, as shown in Figure 4-5.

Figure 4-5 Running EssDemo Servlet for Oracle Enterprise Scheduler Sample
Application

a » Db

Enterprise Scheduler Service Tutorial

Launch Job

Job: | Job'withParams Messages
Schedule: | Immediately W

Request Status

|req]:D| Description | Scheduled time | State | Action
1 [rob_cssdemo 1 @Immediately [Wed Tan 07 14:05.05 PST 2009 [SUCCEEDED |[_Purge |

Select a job definition from the Job drop-down menu.
Select a value from the Schedule drop-down menu.
Click Submit.

Refresh the browser to see the progress of the job in the Request Status area, as
shown in Figure 4-6.

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 4-13

Building Split Submitting and Hosting Applications

Figure 4-6 Running EssDemo Servlet with Request Status for Submitted Requests

Enterprise Scheduler Service Tutorial

Launch Job

Joh: | JobWithParams v Messages

Schedule: | Immediately v

New request 2 launched using Job_essdemo 1(@Imme diately

Request Status

|req]:D | Description | Scheduled time | State | Action
1 [rob_essdemol @Emme diately [Wed Tan 07 14:05:05 PST 2009 [SUCCEEDED | Purge

2 [Tob_essdernol @Emmediately [Fri Jan 09 14:3147 PST 2009 [WAIT [Ccancer]

4.2.6.3 How to Purge Jobs in the EssDemoApp Sample Application

Using the EssDemoApp sample application and the EssDemo servlet you can remove
completed jobs from the Request Status list.

To remove completed jobs:
1. Click Purge to purge a request.

2. Click Cancel to cancel a request that is either RUNNING or WAITING.

4.3 Building Split Submitting and Hosting Applications

When you build and deploy Oracle Enterprise Scheduler applications, you can use
two split applications -- a job submission application, a submitter, and a job execution
application, a hosting application. Using this design, you need to configure and deploy
each application with options that support such a split configuration. In addition,
some Oracle Enterprise Scheduler deployments use a separate Oracle WebLogic Server
for the hosting and the submitting applications; for this deployment option the
submitting application and the hosting application are deployed to separate Oracle
WebLogic Servers. When the submitter application and the hosting application for
Oracle Enterprise Scheduler run on separate Oracle WebLogic Servers, you need to
configure the Oracle WebLogic Server for the hosting application so that the
submitting application can find the hosting application.

Note: This section creates a new application. If you have created
EssDemoApp with the sections beginning with Section 4.2.1, note that
this section creates a project of the same name. You'll need to choose a
different location for the application or delete the previous application
in order to use the EssDemoApp application name in this section.

To build the sample split applications, you do the following;:

1. Build a back-end hosting application that includes the code to be scheduled and
run.

2. Build a front-end submitter application initiates the job requests.

4-14 Web User Interface Developer's Guide for Oracle Application Development Framework

Building Split Submitting and Hosting Applications

This section includes the following subsections:
s Section 4.3.1, "How to Create the Back-End Hosting Application for EssDemoApp"

= Section 4.3.2, "How to Create the Front-End Submitter Application for Oracle
Enterprise Scheduler"

4.3.1 How to Create the Back-End Hosting Application for EssDemoApp

Using Oracle JDeveloper you create the back-end application. To create the
EssDemoApp back-end sample application you do the following:

s Create a back-end application and project.
= Configure security.
s Define the deployment descriptors.

» Create the Java class that implements the Oracle Enterprise Scheduler executable
interface.

» Create the Oracle Enterprise Scheduler metadata to describe the job
= Assemble the application.

= Deploy the application.

4.3.1.1 Creating the Back-End Hosting Application

To work with Oracle Enterprise Scheduler with a split application you use Oracle
JDeveloper to create the back-end application and project, and to add Oracle
Enterprise Scheduler extensions to the project.

To create the back-end hosting application:
1. From JDeveloper choose File > New from the main menu.

2. In the New Gallery, expand General, select Applications and then Generic
Application, and click OK.

3. In the Name your application page of the Create Generic Application wizard, set
the Application Name field to EssDemoApp.

4. Click Next.

5. In the Name your project window, enter the name for the host project you're
creating and select supporting technologies. This project is where you will create
and save the Oracle Enterprise Scheduler metadata

a. In the Project Name field, enter a name for your hosting project. For this
sample application, enter SuperEss.

b. On the Project Technologies tab, under Available, double-click ESS Host
Support and ESS Job Support so that both are listed under Selected on the
right side of the dialog box.

Click Next.

6. In the Configure Java Settings page, change the default package to
oracle.apss.ess.howto, then click Next.

7. In the Configure EJB Settings page, select Generate ejb-jar.xml in this project and
click Next.

8. In the Configure ESS Host Support settings page, in the Application Id field, enter
EssDemoApp.

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 4-15

Building Split Submitting and Hosting Applications

9. Click Finish.

4.3.1.2 Configuring Security for the Back-End Hosting Application
You need to create a user that is assigned to the EssDempAppRole role.

To configure security for the back-end hosting application:
1. Select Application > Secure > Configure ADF Security from the main menu.

2. In the ADF Security page of the Configure ADF Security wizard, select ADF
Authentication, then click Next.

3. In the Authentication Type page, accept the default values as this application will
not have a web module to secure.

4. Click Finish.

A file named jps-config.xml is generated. You can find this file in the
Application Resources panel by expanding Descriptors, and expanding
META-INF. This file contains a security context or security stripe named after the
application.

5. Select Application > Secure > Users from the main menu.
A file named jazn-data.xml is generated.

6. In the overview editor for the jazn-data.xml file, click the Add icon in the Users
list.

7. Set the name to EssDemoAppUser and set the password to welcomel.
8. Click the Application Roles navigation tab.

9. Click the Add icon in the Roles list and choose Add New Role.

10. Set the name to EssDemoAppRole.

11. Click the Add icon in the Mappings tab and choose Add User.

12. Select EssDemoAppUser and click OK.

4.3.1.3 Defining Metadata for the Back-End Hosting Application

To use the Oracle Enterprise Scheduler split application to submit a job request you
need to create metadata that defines a job request, including the following:

= Ajob type: this specifies an execution type and defines a common set of
parameters for a job request.

= Ajob definition: this is the basic unit of work that defines a job request in Oracle
Enterprise Scheduler.

To create metadata for the back-end hosting application:
1. In the Application Navigator, select the SuperEss project.

2. Press Ctrl-N. This displays the New Gallery.
3. Inthe New Gallery, select the All Technologies tab.

4. In the Categories area expand Business Tier and select Enterprise Scheduler
Metadata.

5. In the Items area, select Job Definition as shown in Figure 4-7.

4-16 Web User Interface Developer's Guide for Oracle Application Development Framework

Building Split Submitting and Hosting Applications

Figure 4-7 Adding Job Type Metadata to the Sample Application

& New Galle ry fz|
r Al Technologies r Current Project Technologies |
| “ Y

Categaties: Items: [] Show &ll Descriptions

T

ML Eﬁ Job Type

H-Business Tier m Job Definition
""" ADF Business Components Launches Job Definition Creation.
----- Business Intelligence
..... Data Contrals To enable this option, you must seleck a project, or a file within a project in the
Application Mavigator,
scheduler Metadata @ Job Sek
----- Security
..... TopLink/IP& E% Incornpatibility
----- Web Services @ schedule
= Client Tier
----- ADF Desktop Integration
----- ADF Swing
----- Extension Development
----- Siing) AW T
[=h-Database Tier
..Datahase Files
> ----- Database Objects

| Help | | O, | Cancel
— 2%

6. Click OK. This displays the Create Job Definition dialog.

7. In the Create Job Definition dialog, specify the following:

a. Inthe Name field, enter a name for the job definition. For this example, enter
the name: HelloWorldJobDef.

b. In the Package field, enter a package name. For this example, enter
oracle/apps/ess/howto/metadata.

c. In the Job Type field, from the dropdown list select
/oracle/as/ess/core/JavaJobType.

If job types are not listed in the dropdown, ensure that you started Oracle
JDeveloper as described in Section 4.1.

d. Ensure that the Create Java Class check box and the Synchronous option
button are selected.

By selecting the Create Java Class check box, you're asking that a Java class for
your Java job be created, saving you the trouble of creating one later. Selecting
the Synchronous option specifies that this will be a synchronous Java job.

e. Under Java Class, specify details for the Java class you're creating. In the Java
Package field, enter its package name -- here, enter oracle.apps.ess.howto.
In the Class Name field, enter a name for the class -- here, enter
HelloWorldJob.

f. Click OK.

This creates the Java class you requested, along with the
HelloWorldJobDefinition.xml file. Oracle JDeveloper displays XML file’s
contents in the Job Definition page.

On the Job Definition page, you can edit job definition metadata, including
properties that specify parameters for the job, access to this metadata, and a
resource bundle to use for localization.

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 4-17

Building Split Submitting and Hosting Applications

8. In the HelloWorldJobDef.xml Job Definition page, in the Description field, enter
HelloWorld Example.

9. In the System Properties section, click the Add button.

10. In the Add System Property dialog, from the Name dropdown, select SYS_
effectiveApplication.

11. In the Initial Value field, enter EssDemoApp.
12. Click OK.
13. In the Access Control section, click the Add button.

14. In the Add Access Control dialog, from the Role dropdown, ensure that
EssDemoAppRole is selected. This is the role that you created during
Section 4.3.1.2.

15. Select the following actions: Read and Execute.

16. Click OK.

4.3.1.4 Creating a Java Implementation Class in the Back-End Hosting Application

To define an application that runs a Java class under control of Oracle Enterprise
Scheduler you need to create the Java class that implements the Oracle Enterprise
Scheduler Executable interface. The Executable interface specifies the contract that
allows you to use Oracle Enterprise Scheduler to invoke a Java class.

To implement the execute method:

1. In the Application Navigator, locate the class you created by expanding the items
in the projects panel to SuperEss > Application Sources > oracle.apps.ess > howto
> HelloWorldJob.java.

2. Open HelloWorldJob.java in the source editor.

3. In the source editor, add the following code to implement the execute method.
The execute method is where execution for a Java job begins. The code inside
your method should look something like Example 4-2.

Example 4-2 HelloWorldJob Execute Method Code

StringBuilder sb = new StringBuilder(1000);
sb.append ("\n==================================") ;
sb.append("\n= EssDemoApp request is now running");
long myRequestId = ctx.getRequestId();
sb.append("\n= Request Id = " + myRequestId);
sb.append("\n= Request Properties:");
for (String paramKey : params.getNames()) {
Object paramValue = params.getValue (paramKey) ;
sb.append ("\n=\t (" + paramKey + ", " + paramValue + ")");
}
sb.append("\n=");
sb.append ("\n==================================") ;
Logger logger = Logger.getLogger ("oracle.apps.ess.howto");
logger.info(sb.toString());

4.3.1.5 Setting Oracle Enterprise Scheduler Properties

With Oracle Enterprise Scheduler properties, you set values for settings used in the
ejb-jar.xml file associated with the application. These properties include the following;:

= Logical Application Name

4-18 Web User Interface Developer's Guide for Oracle Application Development Framework

Building Split Submitting and Hosting Applications

Specifies the logical name used to identify this application. Separate from the
application name used when deploying the application to the container, this value
lets you safely hardcode the logical application name in source code.

= Application Policy Stripe

Specifies which JPS security stripe (or "security context") should be used to
perform security checks.

= JPS Interceptor Application Name

Specifies the application stripe name used at run time to determine which set of
security policies are applicable.

To set values for Oracle Enterprise Scheduler properties:

1. In the Application Navigator, right-click the EssHost project, then click Enterprise
Scheduler Properties.

2. In the Enterprise Scheduler Properties dialog, enter EssDemoapp for all three of the
fields provided: Logical Application Name, Application Policy Stripe, and JPS
Interceptor Application Name.

3. Click OK.

4.3.1.6 Assembling the Back-End Hosting Application for Oracle Enterprise
Scheduler

After you create the back-end sample application you use Oracle JDeveloper to
assemble the application.

To assemble the back-end application you do the following;:
m Create the EJB Java Archive
» Create the application MAR and EAR files

4.3.1.6.1 How to Assemble the EJB JAR File for the Back-End Hosting Application The EJB
Java archive file includes descriptors for the Java job implementations.

To create the EJB-JAR deployment profile:

1. In the Application Navigator, in the Projects panel, right-click the SuperEss
project, then click Project Properties.

2. In the Project Properties window, in the navigator, click Deployment.

3. Under Deployment Profiles, delete all profiles listed in the window, then click
New.

4. In the Create Deployment Profile dialog, from the Archive Type dropdown, select
EJB JAR file.

5. In the Name field, enter a name for the EJB. For this example, enter JAR_
SuperEssEjbJar.

6. Click OK.

7. In the Edit EJB JAR Deployment Profile Properties dialog, in the navigator, expand
to File Groups > Project Output > Contributors.

8. In the Contributors window, select the following check boxes:
» Project Output Directory

= Project Source Path

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 4-19

Building Split Submitting and Hosting Applications

10.

11.
12.

s Project Additional Classpath
= Project Dependencies
In the navigator, expand to File Groups > Project Output > Filters.

In the Filters window, on the Files tab, ensure that the following folders are
selected:

s META-INF (and its contents)

= oracle (and its contents)

Click OK.

In the Project Properties dialog, click OK.

4.3.1.6.2 How to Assemble the MAR and EAR Files for the Back-End Hosting Application In this
section, you'll prepare an EAR file that assembles the EssDemoApp sample
application. The EAR archive consists of the following:

EJB JAR including the Oracle Enterprise Scheduler Java job implementation.
WAR archive with the EssDemo servlet.

To update the EAR options:

1.
2
3.

10.
11.
12.
13.
14.

Click the Application menu, then click Application Properties.
In the Application Properties dialog, in the navigation pane, click Deployment.
Select the default MAR file profile, then click Edit.

In the Edit MAR Deployment Profile Properties dialog, in the navigation pane,
expand to Metadata File Groups > User Metadata > Directories and select
Directories.

In the Directories window, select the oracle.apps.ess.howto check box, then click
OK.

In the Application Properties dialog, on the Deployment window, click New.

In the Create Deployment Profile dialog, from the Archive Type dropdown, select
EAR File.

In the Name field, enter EAR_EssDemoAppEar.
Click OK.

In the Edit EAR Deployment Profile Properties dialog, in the navigation pane,
select General.

In the General window, in the Application Name field, enter EssDemoApp.

In the navigation pane, select Application Assembly.

In the Application Assembly window, ensure that all check boxes are selected.
Click OK.

In the Application Properties dialog, click OK.

4.3.1.7 Deploying the Back-End Hosting Application

After assembling the application, you can deploy it to the server.

4-20 Web User Interface Developer's Guide for Oracle Application Development Framework

Building Split Submitting and Hosting Applications

To deploy the back-end hosting application:
1. From the main menu, choose Application > Deploy > EAR_EssDemoAppEar...

2. Set up and deploy the application to a container.

3. When the Deployment Configuration dialog appears, make a note of the default
values, but do not change them.

4.3.2 How to Create the Front-End Submitter Application for Oracle Enterprise

Scheduler

In an Oracle Enterprise Scheduler split application you use the Oracle Enterprise
Scheduler APIs to submit job requests from a front-end application. The EssDemoAppUI
application provides a Java servlet for a servlet based user interface for submitting job
requests (using Oracle Enterprise Scheduler).

To create the front-end submitter sample application you do the following:
» Create a front-end application and project.

= Configure the ejb-jar.xml file.

n Create the web project

= Configure security.

» Create the HTTP servlet.

= Edit the web.xnl file.

s Edit the weblogic-application.xml file.

s Edit the adf-config file.

= Assemble the application.

= Deploy the application.

4.3.2.1 Creating the Front-End Submitter Application

You use JDeveloper to build the front-end submitter application using similar steps as
you used for the back-end hosting application.

To create the front-end submitter application:

1. Complete the steps in Section 4.3.1.1, "Creating the Back-End Hosting Application”
but this time use ESSDemoAppUTI as the name of the application. When you
configure ESS host support settings, in the Application Id field, be sure to enter
EssDemoApp.

4.3.2.2 Creating the SuperWeb Project

You need to create a web project for the servlet.

To create the SuperWeb project:
1. Right-click the SuperEss project and choose New.

2. Inthe New Gallery, expand General, select Projects and then Generic Project, and
click OK.

3. In the Name your project window, enter the name for the host project you're
creating and select supporting technologies. This project is where you will create
and save the Oracle Enterprise Scheduler metadata

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 4-21

Building Split Submitting and Hosting Applications

a. In the Project Name field, enter a name for your hosting project. For this
sample application, enter Superiieb.

b. On the Project Technologies tab, under Available, double-click ESS Client
Support, JSP and Servlets, and ADF Library Web Application Support so
that both are listed under Selected on the right side of the dialog box.

Click Next.

4. In the Project Java Settings page, change the default package to
oracle.apss.ess.howto and click Finish.

4.3.2.3 Configuring Security for the Front-End Submitter Application

You need to configure security for the application. You do not have to create any users
or roles as the EssDemoAppUI application will simply share the users and roles
created by the EssDemoApp application.

To configure security for the front-end submitter application:
1. Select Application > Secure > Configure ADF Security from the main menu.

2. In the ADF Security page of the Configure ADF Security wizard, select ADF
Authentication.

3. In the Authentication Type page, select SuperWeb.jpr from the Web Project
dropdown list.

4. Select HTTP Basic Authentication.
5. Click Finish.

A file named jps-config.xml is generated. You can find this file in the
Application Resources panel by expanding Descriptors, and expanding
META-INF.

4.3.2.4 Creating the HTTP Servlet for the Front-End Submitter Application

Normally, more complex user interfaces that are built on heavy weight frameworks
such as Oracle Application Development Framework are employed, but for the sake of
simplicity, you use a basic HTTP servlet for the submitter application.

To create the HTTP Servlet for the front-end submitter application:
1. Right-click the SuperEss project and choose New.

2. In the New Gallery, expand Web Tier, select Servlets and then HTTP Servlet, and
click OK.

3. Inthe Web Application page of the Web Application wizard, select Servlet
2.5\JSP 2.1 (Java EE 1.5).

4. In the Create HTTP Servlet - Step 1 of 3: Servlet Information page, enter
EssDemoAppServlet in the Class field.

5. Enter oracle.apps.ess.howto in the Package field and click Next.
6. Click Finish.

7. In the source editor, replace the contents of ESSDemoAppServlet.java with the
code in Example 4-3.

Example 4-3 HTTP Serviet Code for the Front-End Submitter Application

package oracle.apps.ess.howto;

4-22 Web User Interface Developer's Guide for Oracle Application Development Framework

Building Split Submitting and Hosting Applications

import java.io.IOException;
import java.io.PrintWriter;
import java.io.StringWriter;

import java.util.ArrayList;
import java.util.Calendar;
import java.util.Enumeration;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;

import java.util.ListIterator;
import java.util.Map;

import java.util.Set;

import java.util.SortedSet;
import java.util.TreeSet;
import java.util.logging.Level;
import java.util.logging.Logger;
import java.util.regex.Pattern;

import javax.servlet.ServletConfig;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

import oracle.as.scheduler.MetadataObjectId;

import oracle.as.scheduler.MetadataObjectId.MetadataObjectType;
import oracle.as.scheduler.MetadataService;

import oracle.as.scheduler.MetadataService.QueryField;
import oracle.as.scheduler.MetadataServiceHandle;
import oracle.as.scheduler.RequestDetail;

import oracle.as.scheduler.RequestParameters;

import oracle.as.scheduler.RuntimeService;

import oracle.as.scheduler.RuntimeServiceHandle;
import oracle.as.scheduler.State;

import oracle.as.scheduler.core.dndiUtil;

public class EssDemoAppServlet extends HttpServlet {
@SuppressWarnings ("compatibility:4685800289380934682")
private static final long serialVersionUID = 1L;

private static final String CONTENT_TYPE = "text/html; charset=UTF-8";
private static final String MESSAGE_KEY = "Message";
private static final String PATH_SUBMIT = "/submitRequest";
private static final String PATH_ALTER = "/alterRequest";
private static final String MDO_SEP = ";";
private static final String ACTION_CANCEL = "Cancel";
private static final String ESS_UNAVAIL_MSG =
"<p>Enterprise Scheduler Service is currently unavailable. Cause: %s</p>";

private enum PseudoScheduleChoices {
Immediately(0),
InTenSeconds (10),
InTenMinutes (10 * 60);

@SuppressWarnings ("compatibility:-5637079380819677366")
private static final long serialVersionUID = 1L;

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 4-23

Building Split Submitting and Hosting Applications

private int m_seconds;

private PseudoScheduleChoices (int seconds) {
m_seconds = seconds;

public int getSeconds() {
return m_seconds;

public EssDemoAppServlet () throws ServletException {
super () ;

@override
public void init(ServletConfig config) throws ServletException {
super.init (config);

@Ooverride
public void doGet (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

{
response.setContentType (CONTENT_TYPE) ;
HttpSession session = request.getSession(true);
String lastMessage = String.valueOf (session.getAttribute (MESSAGE_KEY));
if ("null".equals(lastMessage)) {
lastMessage = "";
}
try {
RuntimeLists runtimeLists = getRuntimeLists();
MetadatalLists metadatalists = getMetadatalLists();
renderResponse (metadatalists, runtimeLists,
request, response, lastMessage);
} catch (ServletException se) {
throw se;
} catch (Exception e) {
throw new ServletException(e);
}
}
@Ooverride

public void doPost (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException

response.setContentType (CONTENT_TYPE) ;
request.setCharacterEncoding ("UTF-8") ;

HttpSession session = request.getSession(true);
String pathInfo = request.getPathInfo();

4-24 Web User Interface Developer's Guide for Oracle Application Development Framework

Building Split Submitting and Hosting Applications

// Clear the message on every post request
StringBuilder message = new StringBuilder("");

try {
// Select each handler based on the form action
if ("".equals(pathInfo)) {

// No processing
} else if (PATH_SUBMIT.equals(pathInfo)) {
postSubmitRequest (request, message);
} else if (PATH_ALTER.equals(pathInfo)) {
postAlterRequest (request, message);
} else {
message.append (String. format ("<p>No handler for pathInfo=%s</p>",
pathInfo));

}

catch (ServletException se) {
Throwable t = se.getCause();
String cause = (t == null) ? se.toString() : t.toString();
message.append (String.format (ESS_UNAVAIL_MSG, cause));

// Storing the messages in the session allows them to persist
// through the redirect and across refreshes.
session.setAttribute (MESSAGE_KEY, message.toString());

// render the page by redirecting to doGet(); this intentionally

// strips the actions and post data from the request.

response.sendRedirect (request.getContextPath() +
request.getServletPath());

/**
* Handle the job submission form.
* @param request
* @param message
* @throws ServletException
*/
private void postSubmitRequest (HttpServletRequest request,
StringBuilder message)
throws ServletException

String jobDefName = request.getParameter ("job");
String scheduleDefName = request.getParameter ("schedule");

// Various required args for submission
Calendar start = Calendar.getInstance();
start.add(Calendar.SECOND, 2);

// Launch the job based on form contents
if (jobDefName == null || scheduleDefName == null) {
message.append ("Both a job name and a schedule name must be
specified\n");
} else {
PseudoScheduleChoices pseudoSchedule = null;

// See if schedule given is actually a pseudo schedule
try {

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 4-25

Building Split Submitting and Hosting Applications

pseudoSchedule = PseudoScheduleChoices.valueOf (scheduleDefName) ;
} catch (IllegalArgumentException e) {

// The string is not a valid member of the enum

pseudoSchedule = null;

MetadataObjectId scheduleDefId = null;
String scheduleDefNamePart = null;
MetadataObjectId jobDefId = stringToMetadataObjectId(jobDefName) ;

// Don't look up schedules that aren't real

if (pseudoSchedule != null) {
scheduleDefNamePart = scheduleDefName;
start.add(Calendar.SECOND, pseudoSchedule.getSeconds());

} else {
scheduleDefId = stringToMetadataObjectId (scheduleDefName) ;
scheduleDefNamePart = scheduleDefId.getNamePart();

String jobDefNamePart = jobDefId.getNamePart () ;
String requestDesc = jobDefNamePart + "@" + scheduleDefNamePart;

Logger logger = getLogger();
long requestId = submitRequest (pseudoSchedule, requestDesc,
jobDefId, scheduleDefId, start,

logger) ;
// Populate the message block based on results
message.append (String. format ("<p>New request %d launched using
¥s</p>",
requestId, requestDesc));
}
}

private Long submitRequest(final PseudoScheduleChoices pseudoSchedule,
final String requestDesc,
final MetadataObjectId jobDefId,
final MetadataObjectId scheduleDefId,
final Calendar start,
final Logger logger)
throws ServletException

RuntimeServicePayload<Long> myPayload = new RuntimeServicePayload<Long> ()

@override
Long execute (RuntimeService service,
RuntimeServiceHandle handle,
Logger logger)
throws Exception

RequestParameters params = new RequestParameters();
return (null != pseudoSchedule)
? service.submitRequest (handle, requestDesc, jobDefId,
start, params)
: service.submitRequest (handle, requestDesc, jobDefId,
scheduleDefId, null,
start, null, params);

4-26 Web User Interface Developer's Guide for Oracle Application Development Framework

Building Split Submitting and Hosting Applications

/**

*
*
*
*
*
*/

pri

bi
try {

return performOperation(myPayload, logger);
} catch (Exception e) {

throw new ServletException("Error submitting request using job:

jobDefId + " and schedule: " +
scheduleDefId, e);

Handle the "Cancel" and "Purge" actions from the form enclosing
the Request Status table.

@param request

@param message

@throws ServletException

vate void postAlterRequest (HttpServletRequest request,
StringBuilder message)
throws ServletException

String cancelID = null;

* there are a few assumptions going on here...
* the HTTP button being used to transmit the action and
* request is backwards from its normal usage (eg. the name
* should be invariable, and the value variable). Because we
* want to display either "Purge" or "Cancel" on the button, and
* transmit the reqId with it, we are reversing the map entry
* to get the key (which in this case will be the reqgID), and
* match it to the value (Purge or Cancel).
* Assumptions are that there will be only one entry in the map
* per request (one purge or cancel). Also, that the datatypes
* for the key and value willl be those documented for
* ServletRequest (<K,V> = <String, String[]>).
*/
Map requestMap = request.getParameterMap();
Iterator mapIter = requestMap.entrySet().iterator();
while (mapIter.hasNext()) {
Map.Entry entry = (Map.Entry)mapIter.next();
String key = (String)entry.getKey();
String[] values = (String[])entry.getValue();
if (ACTION_CANCEL.equals(values([0])) {
cancelID = key;

if (cancelID != null) {
try {
final String cancelId2 = cancellD;
RuntimeServicePayload<Void> myPayload = new

RuntimeServicePayload<Void> () {

@Override
Void execute(RuntimeService service,
RuntimeServiceHandle handle,
Logger logger)
throws Exception

+

service.cancelRequest (handle, Long.valueOf (cancelId?));

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 4-27

Building Split Submitting and Hosting Applications

return null;
}i

Logger logger = getLogger();
performOperation (myPayload, logger);
message.append
(String. format ("<p>Cancelled request %$s</p>", cancellD));
} catch (Exception e) {
throw new ServletException
("Error canceling or purging request", e);
}
} else {
message.append ("<p>No purge or cancel action specified</p>");

private String metadataObjectIdToString (MetadataObjectId mdoID)
throws ServletException {

String mdoString =
mdoID.getType() .value() + MDO_SEP + mdoID.getPackagePart() +
MDO_SEP + mdoID.getNamePart () ;

return mdoString;

private MetadataObjectId stringToMetadataObjectId(String mdoString)
throws ServletException {
String[] mdoStringParts = mdoString.split(Pattern.quote (MDO_SEP));
if (mdoStringParts.length != 3) {
throw new ServletException(String.format ("Unexpected number of
components %d found " +
"when converting %s to
MetadataObjectID",
mdoStringParts.length,
mdoString)) ;

MetadataObjectType mdType =
MetadataObjectType.getMOType (mdoStringParts([0]);

String mdPackage = mdoStringParts[1];

String mdName = mdoStringParts[2];

MetadataObjectId mdoID =
MetadataObjectId.createMetadataObjectId (mdType, mdPackage, mdName) ;
return mdoID;

* this changes the format used in this class for job definitions to the one
* which will be used in the runtime query.
* @param strMetadataObject
* @return string representing object in runtime store
* @throws ServletException
*/
private String fixMetadataString(String strMetadataObject)
throws ServletException ({
String fslash = "/";
String[] mdoStringParts =

4-28 Web User Interface Developer's Guide for Oracle Application Development Framework

Building Split Submitting and Hosting Applications

strMetadataObject.split (Pattern.quote (MDO_SEP)) ;
if (mdoStringParts.length != 3) {
throw new ServletException(String.format ("Unexpected number of
components %d found " +
"when converting %s to
MetadataObjectID",
mdoStringParts. length,
strMetadataObject)) ;
}
String[] trimStringParts = new String[mdoStringParts.length];
for (int i = 0; 1 < mdoStringParts.length; i++) {
String mdoStringPart = mdoStringParts[i];
trimStringParts[i] = mdoStringPart.replaceAll (fslash, " ").trim();

MetadataObjectType mdType =
MetadataObjectType.getMOType (trimStringParts([0]) ;
String mdPackage = fslash + trimStringParts[l];
String mdName = trimStringParts([2];
MetadataObjectId metadataObjId =
MetadataObjectId.createMetadataObjectId (mdType, mdPackage, mdName) ;
return metadataObjId.toString();

private Set<String> getSetFromMetadataEnum(Enumeration<MetadataObjectId>
enumMetadata)
throws ServletException {
Set<String> stringSet = new HashSet<String>();

while (enumMetadata.hasMoreElements()) {
MetadataObjectId objId = enumMetadata.nextElement () ;
String strNamePart = objId.getNamePart();
stringSet.add(strNamePart) ;

}

return stringSet;

}
//**
//

// HTML Rendering Methods

//

//**

* Rendering code for the page displayed.
* In a real application this would be done using JSP, but this approach
* keeps everything in one file to make the example easier to follow.
* @param response The response object from the main request.
* @param message Text that will appear in the message panel, may contain HTML
* @throws IOException
*/
private void renderResponse (MetadataLists ml,
RuntimeLists rl,
HttpServletRequest request,
HttpServletResponse response,
String message)
throws IOException, ServletException

response.setContentType (CONTENT_TYPE) ;
PrintWriter out = response.getWriter();

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 4-29

Building Split Submitting and Hosting Applications

String urlBase = request.getContextPath() + request.getServletPath();

// Indents maintained for clarity
out.println("<html>");
out.println("<head><title>EssDemo</title></head>");
out.println("<body>");

out.println("<table align=\"center\"><tbody>");

out.println(" <tr><td align=\"center\"><hl>Oracle Enterprise Scheduler
Tutorial</hl></td></tr>");
out.println(" <tr><td align=\"center\"><table cellspacing=6><tr>");

// Job launch form

out.println(" <td align=\"center\">");

out.println(" <h2>Launch Job</h2>");

renderLaunchJobForm(ml, out, urlBase);

out.println(" </td>");

out.println(" <td align=\"center\" bgcolor=\"blue\" width=\"2\"/>");

out.println(" </tr></table></td></tr>");
out.println(" <tr><td bgcolor=\"red\"/></tr>");

// Message panel

out.println(" <tr><td align=\"center\"><h3>Messages</h3></td></tr>");
out.println(" <tr><td>");

out.println(message);

out.println(" </td></tr>");

out.println(" <tr><td bgcolor=\"red\"/></tr>");

// Request status

out.println(" <tr><td align=\"center\">");

out.println(" <form name=\"attrs\" action=\"" + urlBase +
PATH_ALTER + "\" method=\"post\">");

out.println(" <h2>Request Status</h2>");

out.println(" <table border=2><tbody>") ;

out.println(" <th>reqID</th>");

out.println(" <th>Description</th>");

out.println(" <th>Scheduled time</th>");

out.println(" <th>State</th>");

out.println(" <th>Action</th>");

renderStatusTable (out, rl.requestDetails);

out.println(" </tbody></table>");
out.println(" </form>");
out.println(" </td></tr>");
out.println("</tbody></table>");
out.println("</body></html>") ;

out.close();
}
private void renderLaunchJobForm(MetadatalLists ml, PrintWriter out, String
urlBase)
throws ServletException {
out.println(" <form name=\"attrs\" action=\"" + urlBase +
PATH_SUBMIT + "\" method=\"post\">");
out.println(" <table><tbody>") ;

4-30 Web User Interface Developer's Guide for Oracle Application Development Framework

Building Split Submitting and Hosting Applications

out.println(" <tr><td align=\"right\">");
out.println(" Job:");
out.println(" <select name=\"job\">");

renderMetadataChoices (out, ml.jobDefList, false);
renderMetadataChoices (out, ml.jobSetList, false);

out.println(" </select>");

out.println(" </td></tr>");

out.println(" <tr><td align=\"right\">");
out.println(" Schedule:") ;
out.println(" <select name=\"schedule\">");

renderPseudoScheduleChoices (out) ;
renderMetadataChoices (out, ml.schedulelList, false);

out.println(" </select>");
out.println(" </td></tr>");
out.println(" <tr><td align=\"center\">");
out.println(" <input name=\"submit\" value=\"Submit\"
type=\"submit\">");
out.println(" </td></tr>");
out.println(" </tbody></table>");
out.println(" </form>");
}
/’k*

* @param out - printwriter

* @param jobChoices -- metadata to be displayed

* @param bBlankFirst -- blank first (so that this param is not required)
* @throws ServletException

*/

private void renderMetadataChoices (PrintWriter out,
Enumeration<MetadataObjectId> jobChoices,
boolean bBlankFirst)
throws ServletException

if (jobChoices == null)
return;

boolean bFirst = true;
while (jobChoices.hasMoreElements()) {
MetadataObjectId job = jobChoices.nextElement () ;
String strdob = metadataObjectIdToString(job);
String strNamePart = job.getNamePart();
if (strNamePart.compareTo ("BatchPurgedJob") == 0) {
continue;
} else {
if (bFirst && bBlankFirst) {
out.printf("<option value=\"%s\">%s</option>", "", "");
bFirst = false;
}
out.printf ("<option value=\"%s\">%s</option>", strJob,
strNamePart) ;

/**

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 4-31

Building Split Submitting and Hosting Applications

* helper method for rendering choices based on strings, adding an empty
* gtring to the beginning of the list
* @param out
* @param choices
*/
private void renderStringChoices (PrintWriter out, Set<String> choices) {
if (choices == null)
return;

choices.add("");
SortedSet<String> sorted = new TreeSet<String>(choices);
Iterator choicelter = sorted.iterator();
while (choiceIter.hasNext()) {
String choice = (String)choicelter.next();

out.printf ("<option value=\"%s\">%s</option>", choice, choice);

private void renderPseudoScheduleChoices (PrintWriter out) {
for (PseudoScheduleChoices ¢ : PseudoScheduleChoices.values()) {
out.printf ("<option value=\"%$s\">%s</option>", c, c);

private void renderStatusTable
(PrintWriter out, List<RequestDetail> regDetails)

if (regDetails == null) {
return;

for (RequestDetail regDetail : regDetails) {
State state = regDetail.getState();

Calendar scheduledTime = regDetail.getScheduledTime();
String scheduledTimeString = null;

if (scheduledTime == null) {
scheduledTimeString = "null scheduled time";
} else {
scheduledTimeString = String.valueOf (scheduledTime.getTime());

final String actionButton;
if (!state.isTerminal()) {
String action = ACTION_CANCEL;
String reqgId = String.valueOf (regDetail.getRequestId());
actionButton = String.format
("<button type=submit value=%s name=\"%s\">%s</button>",
action, reqId, action);
} else {
actionButton = " ";

out.printf ("<tr><td>%d</td><td>%s</td><td>%s</td><td>%s</td><td>%s</td></tr>\n",
regDetail.getRequestId(), regDetail.getDescription(),
scheduledTimeString, state, actionButton);

4-32 Web User Interface Developer's Guide for Oracle Application Development Framework

Building Split Submitting and Hosting Applications

private MetadataService getMetadataService() throws Exception {
return JndiUtil.getMetadataServiceEJB();

private RuntimeService getRuntimeService() throws Exception {
return JndiUtil.getRuntimeServiceEJB() ;

private abstract class Payload<SERVICE, HANDLE, RETURN> ({
abstract SERVICE getService() throws Exception;
abstract HANDLE getHandle (SERVICE service) throws Exception;
abstract void closeHandle (SERVICE service,
HANDLE handle,
boolean abort)
throws Exception;
abstract RETURN execute (SERVICE service, HANDLE handle, Logger logger)
throws Exception;

private abstract class MetadataServicePayload<T>
extends Payload<MetadataService, MetadataServiceHandle, T>

@Override
MetadataService getService() throws Exception {
return getMetadataService();

@override
MetadataServiceHandle getHandle (MetadataService service)
throws Exception

return service.open();

@Override
void closeHandle (MetadataService service,
MetadataServiceHandle handle,
boolean abort)
throws Exception

service.close(handle, abort);

private abstract class RuntimeServicePayload<T>
extends Payload<RuntimeService, RuntimeServiceHandle, T>

@Override

RuntimeService getService() throws Exception {
return getRuntimeService();

@override
RuntimeServiceHandle getHandle (RuntimeService service)
throws Exception

return service.open();

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 4-33

Building Split Submitting and Hosting Applications

@Override
void closeHandle (RuntimeService service,
RuntimeServiceHandle handle,
boolean abort)
throws Exception

service.close(handle, abort);

private <S, H, R> R performOperation
(Payload<S, H, R> payload, Logger logger)
throws Exception

S service = payload.getService();
H handle = payload.getHandle(service);

Exception origException = null;
try {
return payload.execute(service, handle, logger);
} catch (Exception e2) {
origException = e2;
throw e2;
} finally {
if (null != handle) {
try {
boolean abort = (null != origException);
payload.closeHandle (service, handle, abort);
} catch (Exception e2) {
if (null != origException) {
logger.log(Level .WARNING, "An error occurred while " +
"closing handle, however, a previous failure was " +
"detected. The following error will be logged " +
"but not reported: " + stackTraceToString(e2));

private final String stackTraceToString(Exception e) {
StringWriter sw = new StringWriter();
PrintWriter pw = new PrintWriter (sw);
e.printStackTrace (pw) ;
pw.flush();
pw.close();
return sw.toString();

private Logger getLogger () {
return Logger.getLogger (this.getClass().getName());

private class MetadataLists {
private final Enumeration<MetadataObjectId> jobDefList;
private final Enumeration<MetadataObjectId> jobSetList;
private final Enumeration<MetadataObjectId> scheduleList;
private final Enumeration<MetadataObjectId> jobTypeList;

4-34 Web User Interface Developer's Guide for Oracle Application Development Framework

Building Split Submitting and Hosting Applications

private MetadatalLists (Enumeration<MetadataObjectId> jobDefList,
Enumeration<MetadataObjectId> jobSetList,
Enumeration<MetadataObjectId> scheduleList,
Enumeration<MetadataObjectId> jobTypeList)

this.jobDefList = jobDefList;
this.jobSetList = jobSetList;
this.scheduleList = schedulelist;
this.jobTypeList = jobTypeList;

private class RuntimelLists {
private final List<RequestDetail> requestDetails;
private final Set<String> applicationChoices;
private final Set<String> stateChoices;
private final Set<MetadataObjectId> jobDefMDOChoices;

private RuntimeLists(List<RequestDetail> requestDetails,
Set<String> applicationChoices,
Set<String> stateChoices,
Set<MetadataObjectId> jobDefMDOChoices)

super () ;

this.requestDetails = requestDetails;
this.applicationChoices = applicationChoices;
this.stateChoices = stateChoices;
this.jobDefMDOChoices = jobDefMDOChoices;

/’k*
* Retrieve lists of jobs, schedules, and status for use by the renderer
* @throws ServletException
*/
private MetadatalLists getMetadataLists() throws Exception {
Logger logger = getLogger();

MetadataServicePayload<MetadataLists> myPayload =
new MetadataServicePayload<MetadataLists>()

@override
MetadatalLists execute(MetadataService service,
MetadataServiceHandle handle,
Logger logger)
throws Exception

Enumeration<MetadataObjectId> jobDefs =
service.queryJobDefinitions (handle, null, QueryField.NAME,
true) ;
Enumeration<MetadataObjectId> jobSets =
service.queryJobSets (handle, null, QueryField.NAME, true);
Enumeration<MetadataObjectId> schedules =
service.querySchedules (handle, null, QueryField.NAME, true);
Enumeration<MetadataObjectId> jobTypes =
service.queryJobTypes (handle, null, QueryField.NAME, true);

return new MetadataLists(jobDefs, jobSets, schedules, jobTypes);

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 4-35

Building Split Submitting and Hosting Applications

}i
MetadataLists ml = performOperation(myPayload, logger) ;
return ml;

private RuntimeLists getRuntimeLists() throws Exception {
Logger logger = getLogger();

RuntimeServicePayload<List<RequestDetail>> myPayload2 =
new RuntimeServicePayload<List<RequestDetail>>()

@override
List<RequestDetail> execute(RuntimeService service,
RuntimeServiceHandle handle,
Logger logger)
throws Exception

List<RequestDetail> regDetails =
new ArraylList<RequestDetail>(10);
Enumeration requestIds = service.queryRequests
(handle, null, RuntimeService.QueryField.REQUESTID, true);

while (requestIds.hasMoreElements()) {
Long reqgld = (Long)requestIds.nextElement();
RequestDetail detail = service.getRequestDetail (handle,

reqld) ;
regDetails.add(detail);
}
return regDetails;
}
}i
List<RequestDetail> regDetails = performOperation(myPayload2, logger);
RuntimeLists rl = getRuntimeLists (regDetails);
return rl;
}

private RuntimeLists getRuntimeLists(List<RequestDetail> regDetails) {
Set<String> applicationSet = new HashSet<String>(10);
Set<String> stateSet = new HashSet<String>(10);
Set<MetadataObjectId> jobDefMOSet = new HashSet<MetadataObjectId>(10);

if (regDetails != null) {

ListIterator detaillter = regDetails.listIterator();

while (detailIter.hasNext()) {
RequestDetail detail = (RequestDetail)detaillter.next();
applicationSet.add(detail.getDeployedApplication());
State state = detail.getState();
if (state.isTerminal())

stateSet.add(state.name()) ;

jobDefMOSet .add (detail.getJobDefn()) ;

RuntimeLists rl = new RuntimeLists
(regDetails, applicationSet, stateSet, jobDefMOSet);
return rl;

4-36 Web User Interface Developer's Guide for Oracle Application Development Framework

Building Split Submitting and Hosting Applications

4.3.2.5 Editing the web.xml File for the Front-End Submitter Application

You need to edit the web.xml file to and Oracle Enterprise Scheduler metadata and
runtime EJB references.

To edit the web.xml file for the front-end submitter application:

1. In the Application Navigator, expand SuperWeb, expand Web Content, expand
WEB-INF and double-click web.xml.

2. In the overview editor, click the References navigation tab and expand the EJB
References section.

3. Add two EJB resources with the information shown in Table 4-1.

Table 4-1 EJB Resources for the Front-End Submitter Application

Interface EJB

EJB Name Type Type Local/Remote Interface
ess/metadata Local Session oracle.as.scheduler.MetadataServiceLocal
ess/runtime Local Session oracle.as.scheduler.RuntimeServiceLocal

4. Click the Servlets navigation tab and click the Servlet Mappings tab.

5. Change the /essdemoappservlet URL pattern to /essdemoappservlet/*.

4.3.2.6 Editing the weblogic-application.xml file for the Front-End Submitter
Application

You need to create and edit the weblogic-application.xml file.

To edit the weblogic-application.xml file for the front-end submitter application:
1. In Application Navigator, right-click the SuperEss project and select New.

2. In the New Gallery, expand General, select Deployment Descriptors and then
Weblogic Deployment Descriptor, and click OK.

3. In the Select Descriptor page select weblogic-application.xml.
4. Click Next, click Next again, and click Finish.

5. In the source editor, replace the contents of the weblogic-application.xml file
that you just created with the XML shown in Example 4—4.

Example 4-4 Contents to Copy to weblogic-application.xml for a Front-End Submitter
Application

<?xml version = '1.0' encoding = 'UTF-8'?>
<weblogic-application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemalocation="http://www.bea.com/ns/weblogic/weblogic-application

http://www.bea.com/ns/weblogic/weblogic-application/1.0/weblogic-application.xsd"
xmlns="http://www.bea.com/ns/weblogic/weblogic-application">

<!-- The following application parameter tells JPS which stripe it should
- use to upload the jazn-data.xml policy. If this parameter is not
- specified, it will use the Java EE deployment name plus the version
- number (e.g. EssDemoApp#V2.0).
-=>

<application-param>

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 4-37

Building Split Submitting and Hosting Applications

<param-name>jps.policystore.applicationid</param-name>
<param-value>EssDemoAppUI</param-value>
</application-param>

<!-- This listener allows JPS to configure itself and upload the
- jazn-data.xml policy to the appropriate stripe
-—>

<listener>

<listener-class>oracle.security.jps.wls.listeners.JpsApplicationLifecycleListener<
/listener-class>
</listener>

<!-- This listener allows MDS to configure itself and upload any metadata
- as defined by the MAR profile and adf-config.xml
-—>

<listener>

<listener-class>oracle.mds.lcm.weblogic.WLLifecycleListener</listener-class>
</listener>

<!-- This listener allows Oracle Enterprise Scheduler to configure itself
-—>

<listener>

<listener-class>oracle.as.scheduler.platform.wls.deploy.ESSApplicationLifecyclelLis
tener</listener-class>
</listener>

<!-- This shared library contains all the Oracle Enterprise Scheduler classes
-—>
<library-ref>
<library-name>oracle.ess.client</library-name>
</library-ref>
<library-ref>
<library-name>adf.oracle.domain</library-name>
</library-ref>
</weblogic-application>

4.3.2.7 Editing the adf-config file for the Front-End Submitter Application

You need to edit the adf-config.xml file to tell the application to share the metadata
that was created in the hosting application.

To edit the adf-config.xml file for the front-end submitter application:

1. From the Application Resources panel, expand Descriptors, expand ADF
META-INF, and double-click adf-config.xml.

2. In the source editor, replace the contents of the adf-config.xml file with the XML
shown in Example 4-5.

Example 4-5 Contents to Copy to adf-config.xml for a Front-End Submitter Application

<?xml version="1.0" encoding="UTF-8" ?>
<adf-config xmlns="http://xmlns.oracle.com/adf/config">
<adf-security-child xmlns="http://xmlns.oracle.com/adf/security/config">
<JaasSecurityContext
initialContextFactoryClass="oracle.adf.share.security.JAASInitialContextFactory"

4-38 Web User Interface Developer's Guide for Oracle Application Development Framework

Building Split Submitting and Hosting Applications

jaasProviderClass="oracle.adf.share.security.providers.jps.JpsSecurityContext"
authorizationEnforce="false"
authenticationRequire="true"/>
</adf-security-child>
<adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
<mds-config xmlns="http://xmlns.oracle.com/mds/config" version="11.1.1.000">
<persistence-config>
<metadata-namespaces>
<namespace metadata-store-usage="ess_shared metadata"
path="/oracle/apps/ess/howto" />
</metadata-namespaces>
<metadata-store-usages>
<metadata-store-usage default-cust-store="false" deploy-target="false"
id="ess_shared_metadata"/>
</metadata-store-usages>
</persistence-config>
</mds-config>
</adf-mds-config>
</adf-config>

4.3.2.8 Assembling the Front-End Submitter Application for Oracle Enterprise
Scheduler

After you create the front-end sample application you use Oracle JDeveloper to
assemble the application.

To assemble the back-end application you do the following;:
m Create the EJB Java Archive

» Create the WAR file

» Create the application MAR and EAR files

4.3.2.8.1 How to Assemble the EJB JAR File for the Front-End Submitter Application The E]JB
Java archive file includes descriptors for the Java job implementations.

To assemble the EJB JAR File for the front-end submitter application:
1. In Application Navigator, right-click the SuperEss project and choose New.

2. In the New Gallery, expand General, select Deployment Profiles and then EJB
JAR File, and click OK.

3. In the Create Deployment Profile dialog, set the Deployment Profile Name to
JAR_SuperEssEjbJar.

4. On the Edit EJB JAR Deployment Profile Properties dialog, click OK.
5. On the Project Properties dialog, click OK.

4.3.2.8.2 How to Assemble the WAR File for the Front-End Submitter Application You need to
create a web archive file for the web application.

To assemble the WAR file for the front-end submitter application
1. In Application Navigator, right-click the SuperWeb project and choose New.

2. In the New Gallery, expand General, select Deployment Profiles and then WAR
File, and click OK.

3. In the Create Deployment Profile dialog, set the Deployment Profile Name to
WAR_SuperWebWar.

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 4-39

Building Split Submitting and Hosting Applications

5.
6.

On the Edit WAR Deployment Profile Properties dialog, click the General
navigation tab, select Specify Java EE Web Context Root, and enter ESSDemoApp.

Click OK.
On the Project Properties dialog, click OK.

4.3.2.8.3 How to Assemble the MAR and EAR Files for the Front-End Hosting Application The
sample application needs to contain the MAR profile and the EAR file that assembles
the EssDemoApp back-end application.

To create the MAR and EAR files for the front-end submitter application:

1.
2

N o a &

®

10.

11.
12.

From the main menu, choose Application Menu > Application Properties...

In the Application Properties dialog, click the Deployment navigation tab and
click New.

In the Create Deployment Profile dialog, select MAR File from the Archive Type
dropdown list.

In the Name field, enter MAR_EssDemoAppUIMar and click OK.
Click OK.
In the Deployment page of the Application Properties dialog, click New.

In the Create Deployment Profile dialog, select EAR File from the Archive Type
dropdown list.

In the Name field, enter EAR_EssDemoAppUIEar and click OK.

In the Edit EAR Deployment Profile dialog, click the General navigation tab and
enter EssDemoAppUI in the Application Name field.

Click the Application Assembly navigation tab, then select MAR_ESSDemoAppUIMar
and select JAR_SuperEssEjbJar.

Click OK.
In the Application Properties dialog, click OK.

4.3.2.9 Deploying the Front-End Submitter Application

After assembling the application, you can deploy it to the server.

To deploy the front-end submitter application:

1.
2.
3.

From the main menu, choose Application > Deploy > EAR_EssDemoUIEar...
Set up and deploy the application to a container.

On the Deployment Configuration dialog, there should be two entries in the
Shared Metadata Repositories panel. Find the shared repository mapped to the
/oracle/apps/ess/howto namespace. Change its partition to the partition used
when deploying EssDemoApp. If you used the default value, this should be
EssDemoApp_V2.0.

Click OK.

4.3.2.10 Running the Split Application

4-40 Web User Interface Developer's Guide for Oracle Application Development Framework

Building Split Submitting and Hosting Applications

To run the split application:
1. Enter the following URL in a browser:

http:/ / host:http-port: / ESSDemoAppUI/essdemoappservlet
For example,

http://myserver.us.oracle.com:7101/EssDemoAppUI/essdemoappserviet

2. Login as EssDemoAppUser with the password welcomel.

3. Follow the same steps as in the combined application.

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduler Application 4-41

Building Split Submitting and Hosting Applications

4-42 Web User Interface Developer's Guide for Oracle Application Development Framework

O

Use Case Oracle Enterprise Scheduler
Sample Application (Deprecated)

This chapter describes how to create and run an application that uses Oracle
Enterprise Scheduler to run job requests and demonstrates how to work with Oracle
JDeveloper to create an application using Oracle Enterprise Scheduler.

Note: This chapter includes a tutorial that uses an older release of
Oracle JDeveloper. This content is deprecated. For development with
a current version of Oracle JDeveloper, see Chapter 4, "Using Oracle
JDeveloper to Generate an Oracle Enterprise Scheduler Application".

The chapter then shows a variation on the sample application using two split
applications — a job submission application, a submitter, and a job execution
application, a hosting application.

This chapter includes the following sections:

= Section 5.1, "Introduction to the Oracle Enterprise Scheduler Sample Application"
= Section 5.2, "Creating the Application and Projects for the Sample Application"

= Section 5.3, "Creating a Java Implementation Class for the Sample Application"

= Section 5.4, "Adding Application Code to Submit Oracle Enterprise Scheduler Job
Requests"

= Section 5.5, "Creating Metadata for Oracle Enterprise Scheduler Sample
Application”

= Section 5.6, "Assembling the Oracle Enterprise Scheduler Sample Application"

= Section 5.7, "Deploying and Running the Oracle Enterprise Scheduler Sample
Application”

= Section 5.8, "Troubleshooting the Oracle Enterprise Scheduler Sample Application”
= Section 5.9, "Using Submitting and Hosting Split Applications”

5.1 Introduction to the Oracle Enterprise Scheduler Sample Application

The Oracle Enterprise Scheduler sample application includes a complete application
that you build with Oracle JDeveloper using Oracle Enterprise Scheduler APIs. Oracle
Enterprise Scheduler lets you run different types of job requests, including: Java
classes, PL/SQL procedures, and process type jobs. To create an application that
schedules job requests you need to do the following:

Use Case Oracle Enterprise Scheduler Sample Application (Deprecated) 5-1

Creating the Application and Projects for the Sample Application

» Create the Java classes, PL/SQL procedures, or executable processes that specify
the routine you want to schedule and run with Oracle Enterprise Scheduler.

» Specify Oracle Enterprise Scheduler metadata and the characteristics for job
requests.

= Define the Java application that uses Oracle Enterprise Scheduler APIs to specify
and submit job requests.

= Assemble and deploy the Java application that uses Oracle Enterprise Scheduler
APIs.

= Run the Java application that uses Oracle Enterprise Scheduler APIs.

Note: The instructions in this chapter assume that you are using a
new Oracle JDeveloper that you install without previously saved
projects or other saved Oracle JDeveloper state. If you have previously
used Oracle JDeveloper, some of the instructions may not match the
exact steps shown in this chapter, or you may be able to shorten
procedures or perform the same action in fewer steps. In some cases
Oracle JDeveloper does not show certain dialogs based on your past
use of Oracle JDeveloper.

When you use Oracle Enterprise Scheduler the application Metadata is stored with
MDS. To use MDS you need to have access to a database with MDS user and schema
configured.

5.2 Creating the Application and Projects for the Sample Application

Using Oracle JDeveloper you create an application and the projects within the
application contain the code and support files for the application. To create the sample
application you need to do the following;:

s Create an application in Oracle JDeveloper.
» Create a project in Oracle JDeveloper.

» Create the application code that uses the Oracle Enterprise Scheduler APIs. For the
sample application you create the EssDemo servlet in the EssDemoApp
application.

Note: This chapter includes a tutorial that uses an older release of
Oracle JDeveloper. This content is deprecated. For development with
a current version of Oracle JDeveloper, see Chapter 4, "Using Oracle
JDeveloper to Generate an Oracle Enterprise Scheduler Application".

5.2.1 How to Create the EssDemoApp Application

To work with Oracle Enterprise Scheduler, you first create an application and a project
in Oracle JDeveloper.

To create the EssDemo application:
1. In the Application Navigator, select New Application....

2. In the Name your application window enter the name and location for the new
application.

Web User Interface Developer's Guide for Oracle Application Development Framework

Creating the Application and Projects for the Sample Application

d.

e.

f.

In the Application Name field, enter an application name. For this sample
application, enter EssDemoApp.

In the Directory field, accept the default.
Enter an application package prefix or accept the default, no prefix.

The prefix, followed by a period, applies to objects created in the initial project
of an application.

In the Application Template area, select Fusion Web Application (ADF).
Click Next.
Click Finish.

This displays the File Summary page, as shown in Figure 5-1.

Figure 5-1 Sample Application File Summary Page

File Edit Yiew Search Navigate Build PRun Refactor VYersioning Tools Window Help ADF
GoBa > 90 XEE O O S-hiide- p-F- 14 (68-
{=l Application Navigator 2] [ElEssDemotpp jus] [RRresources &)
&= EssDemoipp » & -| Show Al Projects~ W 5 iS-(é- ()]
 Projects Bl Y- 3 File Summary: Total: 4 () A i b My Catalogs
- = Mo del = IDE Connections
E|--- Jawa Files Getting Started > Mew~= . [| ®MLFiles (i File System
=[] el Content - 3 _ y
-7 WEB-INF Overview The Java Files category contains java classes and IRAED g
- § interfaces i
i L_‘E! adfc-config.ml Jawa Class ML File
faces-config.xml Java Interface
trinidad-config.xml
L‘_'EH bl
-7 Page Flows
[+ Application Resources
[+ Data Contrals
[+ Recently Qpened Files
e Enterprise Javabeans 3.0 30A Components ADF Binding Files Web Services |:|
L ="iewCantrollerjpr - Struct... E] —
Owerview g
Messages - Log E]
- ADE wersion extension: set the ADE active wiew to enable versioning oper‘f
Mezzages Extensions Feedback 1 E]E]

i} Editing & Heap:&1M of 119M, Perm Cen: 103M of 25&M

5.2.2 How to Create a Project in the Sample Application

When you create an application using the Fusion Web Application (ADF) template,
Oracle JDeveloper adds two projects in the application named Model and
ViewController (Oracle ADF is based on the MVC design pattern that includes these
areas). To organize an Oracle Enterprise Scheduler application you add another project
and use this project to add the Oracle Enterprise Scheduler metadata and the Oracle
Enterprise Scheduler implementation for the Java classes that you want to run with
Oracle Enterprise Scheduler.

Use Case Oracle Enterprise Scheduler Sample Application (Deprecated) 5-3

Creating the Application and Projects for the Sample Application

To create a project:

1. From the Application Menu for the EssDemoApp application select New
Project....

2. In the New Gallery, under Categories expand General and select Projects.

3. In the Items area select ADF Model Project, as shown in Figure 5-2.

Figure 5-2 Adding an Empty Project for Sample Application

|§| Hew Gallery

|/AII Technologies |/ Current Project Technologies

Thiz list iz filtered according to the current project's selected technologies.

["“)
Categories: Items: [] Show Al Descriptions

----- Applications =

A . Generic Praject

----- Connections = |

----- Deplayment Descriptors ADF Model Project

----- Deployment Profiles Creates a project that defines a data model for an ADF web applications

..... Diagrams uzing ADF Business Components.

""" External Applications ADF viewController Project

Jawa Application Project
Jawa Project

Project from Existing Source
Praject from WaR File

F Praject Template

S04 Project

| TopLink Project

| Help | Ok J | Cancel

4. Click OK.

5. On the Name Your Project page enter a project name. For example, enter EssDemo
as the project name, as shown in Figure 5-3.

5-4 Web User Interface Developer's Guide for Oracle Application Development Framework

Creating the Application and Projects for the Sample Application

Figure 5-3 Adding the EssDemo Project to the Sample Application

Name your project

|§| Create ADF Model Project - Step 1 of

) Project Name
w Project |awva Settings

Project Mame: |EssDem0

Directory:

| fscratchfjdevlfmywark/EssDemoApp fEssDemo

| Browse. ..

r Project Technologies r Cenerated Components rAssociated Libraries |

Available:

b lhtegration

ADF Faces

ADF Library Web Application Suppo
ADF Page Flow

ADF Swing

ANNOUNCEMENt Service

At

Content Repository

Databasze (Offline)

< J ¥

Selected:

ampaonents

Technology Description:

ADF Business Components isthe business services APl provided by the Oracle ad
Application Development Fram ework (Oracle ADF). ADF Business Components
gowerns interaction between the rest of the application and the data stored in

il

[Dlext > ” Finish H Cancel]

6. Click Finish.

Configure Oracle JDeveloper resource options for project:
1. Inthe Application Navigator, select the EssDemo project.

2. Right-click and from the dropdown list select Project Properties....

3. In the Project Properties window, in the navigator expand Project Source Paths
and select Resources.

4. Select the Included tab and then select the Include Content From Subfolders
check box, as shown in Figure 5-4.

5. Click OK.

Use Case Oracle Enterprise Scheduler Sample Application (Deprecated) 5-5

Creating the Application and Projects for the Sample Application

Figure 5-4 Updating Project Resources for Sample Project

|§| Project Properties - fscratchfjdev1/mywork/Ess Demofpp/Ess Demo/EssDemo.jpr

(68
hS

Project Source Paths: Resources

[} Project Source Paths |: -_’:1 Use Custom Settings
b ADFM Sources

() Use Project Settings

Lo Modelers
Offline Database Resources:
E B /scratchfjdevl/mywark/EssDemoipp,/EssDemo |7add... |

S0A Content
TopLink

(. Web Application
[+ ADF Model

----- ADF Wiew

[Ant

[Business Components

[Compiler Included Excluded

""" Dependencies [¥]Include Content from Subfalders
----- Deployment

----- EJE Module

----- Extension

[Javadoc

----- Java EE Application

----- J5P Tag Libraries

----- J5P Yisual Editor

----- Libraries and Classpath
----- Rezource Bundle

| Remowe |

| Help | | Ok _J | Cancel

5.2.3 How to Set Project Properties for Oracle Enterprise Scheduler

You need to add the Oracle Enterprise Scheduler extensions to the project before you
use the Oracle Enterprise Scheduler APIs.

To allow Oracle JDeveloper to use Oracle Enterprise Scheduler extensions:
1. In Oracle JDeveloper, in the Application Navigator select the EssDemo project.

2. Right-click and from the dropdown list select Project Properties....
3. In the Project Properties navigator, select Libraries and Classpath.
4. Inthe Libraries and Classpath area, click Add Library....
5

In the Add Library dialog, in the Libraries area select Enterprise Scheduler
Extensions.

6. In the Add Library dialog click OK. This adds the appropriate libraries, as shown
in Figure 5-5.

5-6 Web User Interface Developer's Guide for Oracle Application Development Framework

Creating a Java Implementation Class for the Sample Application

Figure 5-5 Adding Oracle Enterprise Scheduler Extensions to Project

[®] Project Properties - fscratchfsched/mywork/EssDemoApp1/EssDemo/EssDemo jp

[\'ﬁ || Libraries and Classpath
F- Project Source Paths () Use Custom Settings
[ADF Model () Use Project Settings
----- ADF Wiew
B Ant lava SE Version:
- Business Components |1-5-U—U? (Defauity | | Change... |
i il
e Domplder . Claszpath Entries:
----- ependencies
_____ Deplayment Export Description | Add Library... |
_____ EIE Module §ll ADF Madel Runtime o el
_____ EthensiDn §l 6C4) Oracle Domains |M|
[Javadoc @l 5C4 Runtime | Remove |
o §l BC4y Security
----- Java EE Application “ BC4) Tester -
----- J5P Tag Libraries g DS Runtime | Vigw |
""" 5P ¥izual Editor @l MDS Rurtime Dependencies
----- Enowdedge Modules “ Oracle JDBC
Libraries and Classpath Ii Enterprise Scheduler Extensions | Mowve Up |
| Help | | Ok | | Cancel

7. Click OK to dismiss the Project Properties dialog.

5.3 Creating a Java Implementation Class for the Sample Application

To define an application that runs a Java class under control of Oracle Enterprise
Scheduler you need to create the Java class that implements the Oracle Enterprise
Scheduler Executable interface. The Executable interface specifies the contract that
allows you to use Oracle Enterprise Scheduler to invoke a Java class.

5.3.1 How to Create a Java Class Using the Executable Interface

A Java class that implements the Executable interface must provide an empty
execute () method.

To create a Java class that implements the executable interface:
1. Inthe Application Navigator, select the EssDemo project.

2. Inthe Overview area, select the Java Class navigation tab as shown in Figure 5-6.

Use Case Oracle Enterprise Scheduler Sample Application (Deprecated) 5-7

5-8

Creating a Java Implementation Class for the Sample Application

Figure 5-6 Add a Java Class to the EssDemo Project

Application Nav igator E] EssDemoApp.j\nrs
EzzDemoipp - | Zhow. All Projects =
7 Projects Q] @) - 3~ File Summary: Total: 4 %)
Maodel Jawa Files Getting Started = New~ . [
WienmController R)
C2 Web Caters s e
5] WEB-INF Java Class ¥ 1 .
[adfc-config.xml Java Interface
@ faces-config.xml
trinidad-config.xml
#-7) Page Flows
Cue Cards | Tutorials | Detailed Help -
Page Flowes Cetting Started Mew+ - [0

select Java Class.

Click OK. This displays the Create

® N o o &

In the Overview area in the Java Files area, select New and from the dropdown list

In the Select a Project dialog, select the EssDemo.jpr project.

Java Class dialog.

In the Create Java Class dialog, in the Name field, enter HelloWorld.
In the Create Java Class window, in the Package field, enter essdemo.

In other fields accept the defaults as shown in Figure 5-7.

Figure 5-7 Adding a Java Implementation Class to the Sample Application

Create Java Class

Enter the details of your new class,

X]

=

Access Modifiers Other Modifiers

ublic

() package protected

Constructors From Superclass
Implement Abstract Methods
[Main Method

Mame: | Hellaborld |
Package: |3 | Ck
Extends: |java.lang.0bject | Ck
Optional Atkributes

Implements: “i' b4

| Help | oK

J |

Cancel

9. C(lick OK.

Web User Interface Developer's Guide for Oracle Application Development Framework

Creating a Java Implementation Class for the Sample Application

10. Replace the generated contents of the HelloWorld. java file with the contents of
the HelloWorld.java supplied with the sample, as shown in Example 5-1. This
code is also shown in Figure 5-8.

Figure 5-8 Java Class That Implements Executable for Sample Application

[®] oracle JDeveloper 11g Development Build - EssDemofpp3 .jws : EssDemo.jpr : !scratchﬂtemp!nw\lmﬂdEssDen‘lo.ﬂppS!EssDenw!srt:!essden‘lo.@l

File Edit View Search Navigate Build PRun Source Refactor Mersioning Tools Window Help

GoEg 90 $EBH Q-0 - % hifda- - A (g8-)
Application Ma... E] @)Star‘t Page |@E55Demoﬁpp3.j\ms @HelloWnrld.ja\ra s BPELProcess1 bpel |.£.%.BPELPr0cessl E]E]E] Ea

[Esspemospps ~|[E - |(@8- 2L R BUREE ABRE i th-(d
TP.E®@Y-E- package essdeno; i

E EszDema s
ED Application Sources =] jmpurt oracle.as.scheduler. RequestParameters; () ar
B essdemo import oracle.as.scheduler.Executahle;

H . import oracle.as.scheduler.ExecutionCancelledException;
HE @ HelloWarld java N X A
D q import oracle.as.scheduler.ExecutionErrorException;
esaurces import aracle.as.scheduler.ExecutionPausedException;
] model import oracle.as.scheduler.ExecutionWarningException;
5] viewCortroller import oracle.as.scheduler.RequestExecutionContext;

Epublic class Hellokorld implements Executable {
< . |'% =] public Helloklorld{d {

I Ap\plication Resources ; h

[+ Data Controls
 Recently Opened Files
@ HelloWorld java

public void execute(RequestExecutionContext ctx,
FeguestParameters params)
throws ExecutionErrorException,
ExecutionWarningException,
ExecutionCancelledException,
= ExecutionPausedException {
Systemn.gud.printin{"**** Sanple lob Running, Reguest ID:
ctx.getRequestId() J;

1 Editing & He:

Example 5-1 shows HelloWorld (), the Java class that implements the interface
oracle.as.scheduler.Executable.

Example 5-1 Oracle Enterprise Scheduler HelloWorld Java Class

package essdemo;

import oracle.as.scheduler.RequestParameters;

import oracle.as.scheduler.Executable;

import oracle.as.scheduler.ExecutionCancelledException;
import oracle.as.scheduler.ExecutionErrorException;
import oracle.as.scheduler.ExecutionPausedException;
import oracle.as.scheduler.ExecutionWarningException;
import oracle.as.scheduler.RequestExecutionContext;

public class HelloWorld implements Executable {
public HelloWorld() {
}

public void execute(RequestExecutionContext ctx, RequestParameters params)
throws ExecutionErrorException,
ExecutionWarningException,
ExecutionCancelledException,
ExecutionPausedException

System.out.println("**** Sample Job Running, Request ID: " +
ctx.getRequestId());

Use Case Oracle Enterprise Scheduler Sample Application (Deprecated) 5-9

Adding Application Code to Submit Oracle Enterprise Scheduler Job Requests

5.3.2 What Happens When You Create a Java Class That Implements the Executable

Interface

You need to create a Java class to use Oracle Enterprise Scheduler. The Oracle
Enterprise Scheduler Executable interface provides a hook for using the Java class
that you supply with Oracle Enterprise Scheduler. A Java class that implements the
Executable interface can be submitted to Oracle Enterprise Scheduler for execution.

5.3.3 What You Need to Know About the Executable Interface

When you create a class that implements the Executable interface you should follow
certain practices to make sure that your code performs correctly. These practices allow
you to handle Oracle Enterprise Scheduler exceptions.

Note: Every time a job request executes, Oracle Enterprise Scheduler
calls the execute () method. All of the business logic associated with a
job request should be implemented through this method. Thus, the
Java implementation should not rely on instance or static member
variables for maintaining state. The Java implementation can use static
variables but their use is not recommended to manage state.

In Example 5-1, note the following:

The routine should throw the ExecutionErrorException to signal to the Oracle
Enterprise Scheduler runtime that an unrecoverable error occurred during
execution. For example, you can wrap your exception generated during execution
with this exception. Upon this exception, Oracle Enterprise Scheduler transitions
the request to the ERROR state.

The routine should throw the ExecutionWarningException when the
implementation detects a failure condition that it needs to communicate to Oracle
Enterprise Scheduler. Upon this exception, Oracle Enterprise Scheduler transitions
the request to the WARNING state.

The routine should throw the ExecutionCancelledException when the
implementation detects a condition for request cancellation that it needs to
communicate to Oracle Enterprise Scheduler. Upon this exception, Oracle
Enterprise Scheduler transitions the request to the CANCELLED state.

The routine should throw the ExecutionPausedException to indicate that the class
implementing the Executable interface should pause for the completion of a
subrequest. Upon this exception, Oracle Enterprise Scheduler transitions the
request to the PAUSED state.

5.4 Adding Application Code to Submit Oracle Enterprise Scheduler Job

Requests

In an Oracle Enterprise Scheduler application you use the Oracle Enterprise Scheduler
APIs to submit job requests from any component in the application. The EssDemoApp
sample application provides a Java servlet for a servlet based user interface for
submitting job requests (using Oracle Enterprise Scheduler).

5-10 Web User Interface Developer's Guide for Oracle Application Development Framework

Adding Application Code to Submit Oracle Enterprise Scheduler Job Requests

5.4.1 How to Add Required Libraries to Project

You need to add the EJB3.0 libraries and the Oracle Enterprise Scheduler extensions to
the ViewController project before you use the Oracle Enterprise Scheduler APIs in a
servlet.

To add Oracle JDeveloper EJB3.0 and Oracle Enterprise Scheduler libraries:

1.

2
3
4
5.
6
7

In the Application Navigator select the ViewController project.

Right-click and from the dropdown list select Project Properties....

In the Project Properties navigator, select Libraries and Classpath.

In the Libraries and Classpath area, click Add Library....

In the Add Library dialog select Enterprise Scheduler Extensions.
In the Add Library dialog also select EJB 3.0.

Click OK. This action adds the libraries as shown in Figure 5-9.

Figure 5-9 Adding Oracle Enterprise Scheduler Extensions to ViewController Project

[®] Project Properties - fscratchfsched/mywork/EssDemoApp1 /view Controllerfview Controller.jpr

- Project Source Paths
- ADF Model

ADF Wiew

- Business Components
-~ Campiler

Dependencies
Deployment
EJE Maodule
Extenziaon

- Javadoc

Java EE Application

J5P Tag Libraries

J5P Visual Editor
Enowdedge Modules
Libraries and Classpath

Libraries and Classpath

() Use Custom Settings

() Use Project Settings

lava SE Version:

HEEEEEREEEEEEEEEE

1.6.0_07 (Defaulty | | Change... |
Classpath Entries:
Export Description Add Library... |

ey 1o L
@l stz

m ADF Page Flow Runtime

@l ADF Controller Runtime

@l ADF Controller Schema

m ADF Faces Runtime 11

@il ADF Common Runtime

@l ADF Web Runtime

gl MDs Runtime

m MDS Runtime Dependencies
@l Commons Beanutils 1.6

m Commaons Logging 1.0.4
@l Commons Collections 3.1
@l ISP Runtime

m Servlet Runtime

il E63.0

m Enterprise Scheduler Extenszions

|
| Add)ARsDirectory... |

Help |

0K | | Cancel

8. Click OK to dismiss the Project Properties dialog.

5.4.2 How to Create the EssDemo Servlet

Using MVC design pattern you create the EssDemo servlet in the ViewController
project.

To create the sample servlet:

1.
2.
3.

In Application Navigator select the ViewController project.

Click the New... icon to open the New Gallery.

In the New Gallery, in the Categories area expand Web Tier and select Servlets.

Use Case Oracle Enterprise Scheduler Sample Application (Deprecated)

5-11

Adding Application Code to Submit Oracle Enterprise Scheduler Job Requests

In the New Gallery, in the Items area select HTTP Servlet.
Click OK. This starts the Create HTTP Servlet Wizard.
On the create HTTP Servlet Page - Welcome, click Next.

N o a &

On the Create HTTP Servlet - Step 1 of 3: Servlet Information page, enter the class
name in the Class field. For this example in the Class field, enter EssDemo.

8. Enter the package name in the Package field. For this example, in the Package
field, enter demo.

9. In the Generate Content Type field, from the dropdown list select HTML.

10. In the Implement Methods area, select the doGet() and doPost() check boxes, as
shown in Figure 5-10.

Figure 5-10 Using the Create HTTP Serviet Wizard to Create the Sample Serviet

|§| Create HTTP Servlet - Step 1 of 3: Servlet Information

Create HTTP Servlet - Step 1 of 3: Servlet Information

Enter zervlet details

Class: |EssDem0 |
Package: |dem0 |V|| Browse...
Generate Cantent Type: |HTML v|

[] Generate Header Comments
Implement Methods
doGetd doPost(y [] service)
[]doPuty [] doDeleted

| Help | « Back " Mext = Cancel

11. Click Next.

12. In the Create HTTP Servlet - Step 2 of 3: Mapping Information dialog, in the Name
field, enter: EssDemo

13. In the Create HTTP Servlet - Step 2 of 3: Mapping Information dialog, in the URL
Pattern field, enter: /essdemo/*, as shown in Figure 5-11.

5-12 Web User Interface Developer's Guide for Oracle Application Development Framework

Adding Application Code to Submit Oracle Enterprise Scheduler Job Requests

Figure 5-11 Using the Create HTTP Serviet Wizard: Step 2 of 3 Dialog

|§| Create HTTP Servlet - Step 2 of 3: Mapping Information

Create HTTP Servlet - Step 2 of 3: Mapping Information

Enter servlet mapping.
‘While this iz not required to create a servlet, it is required to run a servlet.

Specify a name and mapping for the servlet.

Mapping Details

Mame:

URL Pattern: | fessdemo/™ |

’ < Back " ﬁext>J’ Einish]’ Cancel]

14. Click Finish.

15. The supplied EssDemo application includes the completed servlet. You need to
copy the source code into your project. To do this, in Oracle JDeveloper replace the
contents of the servlet with the contents of the file EssDemo . java supplied with the
sample application, as shown in Figure 5-12. The EssDemo . java sample code
includes several hundred lines, so it is not included in this text in an example.

Use Case Oracle Enterprise Scheduler Sample Application (Deprecated) 5-13

Creating Metadata for Oracle Enterprise Scheduler Sample Application

Figure 5-12 Adding the Sample Servlet to the ViewController Project

[®] oracle JDeveloper 11g Development Build - Ess Demofpp.jws : View Controller jpr

1 File Edit Yiew Search Navigate Build Run Refactor Versioning Tools Window Help ADF
IReEa > 90 XEE O -6 K- Alm- > -&- A (-
Application MNavigator |_ E] orld java |E{.§Jobtype_essdemol.xml |E¢§Job_essdemol.xml @EssDemo.java E]E]E] Ea
= — Oy P 2
0[] EssDemanpp - = -] (@8- 2258 R BEEE Akl =S 5-(d
= Projects B & V-3 package deno; 1| | e
£-{E] view Controller i —
! -0 Application Sources | pOrt Ly - Fil
LR demo
o e
» {
ED S GEGER @EJB({description="FReference to RuntimeServiceBean",
& {23 wes-inr _ names="ess/runtine”,
i adfc-config.xml heanInterface=Runtineservicelocal.class,
aces-config.xml heanNane="RuntimeServiceBean"y, 5|
trinidad-config.xml v @EJB(description="Reference to MetadataserwiceBean",
[+ Application Resources name="ess/metadata”,
|+ Data Controls heanInterface=Metadataseryicelocal.class,
| Recently Opened Files heanName="MetadataServiceBean")
1
= J
.= EssDemo java - Structure E]
= ol 51 b e Epublic class EssDemo extends HttpServilet {
r | %3 El ’a rh % i private static final 5tring CONTENT_TY¥PE = "text/shtml; charset:
= il demao ad private static final 5tring MESSAGE_KEY = "Message"; |
w1 Imports =]
5-8 qy EssDemo private static final String PATH SUBMIT = "/subnitRequest";
: % extends HupServiet p!"ivate ;tatic final 3tring PATH_ALTER =\",/a1‘terRequest"; v
E‘ o EssDemaf) . Source E Design}Histor\f §<.] >[|
= g clozeMetadataChecked{Metadatase Feedback— Log E]
= g closeRuntimeChecked{RuntimeSer
= 9y doCet{HttpiervietRequest, Hitpler
= oy doPost{HttpServletRequest, Hitpbe
= g metadataObjectldToString{Metadat
b = g populatelistzd :woid
? I = TP TSP VNP ST
. e : - : el y
Source EDeSIan | E i | Feedback [Wri=

5.5 Creating Metadata for Oracle Enterprise Scheduler Sample
Application

To use the Oracle Enterprise Scheduler sample application to submit a job request you
need to create metadata that defines a job request, including the following:

= Ajob type: this specifies an execution type and defines a common set of
parameters for a job request.

= A job definition: this is the basic unit of work that defines a job request in Oracle
Enterprise Scheduler.

5.5.1 How to Create a Job Type for Java

An Oracle Enterprise Scheduler job type specifies an execution type and defines a
common set of parameters for a job request.

To create a job type:
1. In the Application Navigator, select the EssDemo project.

2. Press Ctrl-N. This displays the New Gallery.
3. Inthe New Gallery, select the All Technologies tab.

4. Inthe New Gallery, in the Categories area expand Business Tier and select
Enterprise Scheduler Metadata.

5-14 Web User Interface Developer's Guide for Oracle Application Development Framework

Creating Metadata for Oracle Enterprise Scheduler Sample Application

5. In the New Gallery, in the Items area select Job Type as shown in Figure 5-13.

Figure 5-13

[®] Hew Gallery

Adding Job Type Metadata to the Sample Application

rAII Technologies r Current Project Technaologies

[=+-Client Tier

(“ \JI
LCategaries: Items: |:| Show All Descriptions
""" Uil [&, Incompatiblity
----- Unit Tests
..... <ML [E} Job Definition
[ZH-Business Tier @ Job Set
----- ADF Business Components
| 0
----- Business Intelligence ® Job Type
..... Business Rules Launches Job Type Creation.

----- Content Repasitory
----- Data Controls

----- SeCurity
----- TopLink/|P&
----- Web Services

----- ADF Mative Maobile

----- ADF Swning

----- Extension Development
..... Swdng/AWT

To enable this option, you must select a project, or a file within a
project inthe Application Mavigator.

cheduler Metadata @ Schedule

Help

I Ok J [Cancel

6. Click OK. This displays the Create Job Type dialog.

7. In the Create Job Type dialog, specify the following:

a. In the Name field, enter a name for the job type. For this example, enter the
name: Jobtype_essdemol.

b. In the Package field, enter a package name. For example, enter mypackage.

c. In the Execution Type field, from the dropdown list select JAVA_TYPE as

shown in Figure 5-14.

Figure 5-14

Creating a Job Type with the Job Type Creation Wizard

|§| Joh Type Creation

Job Type

given type.

A job type describes the commaon characteristics for all the jobs of a

Enter the information to create a joh type.

Mame: |Jobtype_essdem01 |
Package: |mypackage |
Location: |jscratch,fjtemp,fmy\mrk,fEssDemoAppBIEssDemojoracle,fess,f |
Execution Type: [JAVA_TYPE V]

QK J ’ Cancel

Use Case Oracle Enterprise Scheduler Sample Application (Deprecated)

5-15

Creating Metadata for Oracle Enterprise Scheduler Sample Application

10.

d. Click OK. This creates the Jobtype_essdemol .xml file and Oracle JDeveloper
displays the Job Type page.

In the Job Type page, in the Description field enter a description for the job type.
For this example enter: Sample Java Job Type.

In the Class Name field, click the Browse icon.

Click the Hierarchy tab and then navigate to select the appropriate class. For this
sample application, select essdemo.HelloWorld. Click OK.

The Job Type page displays, as shown in Figure 5-15.

Tip: You can add the job class at either the job type level or the job
definition level.

Figure 5-15 Adding Sample Job Type Metadata

Application Mavigator

[+ Application Resources
[+ Data Contrals

EzzDemolpp '_ T @juh Type
~ Projects TigET
J @@ Yv-E Mame: Jobtype_essdemaol
El--- EzzDema o
B[Application Sources EI RIS sample Job Type
| B essdema
L[] Hellowarld java
EB e Execution Type: JAMA_TYPE
D classes Class Mame: essdemo.HelloWarld | Q, []Read Only
20 essmeta
E‘D mypackage = Parameters / '+ b 4
= JobType
b @Jobtype_essdemol.xml Mo Parameters
BB sre .
-] Mo del = E System Properties 7+ R
(G wiewController Mo System Properties

=] [ElEssDemonpp.jws (B Jobtype_essdemoLxmi =

= E= Access Control / EF b4

Mo Access Control

JobType Editor D_

[+ Recently Opened Files
Log

5.5.2 How to Create a Job Definition for Java

To use a Java class with Oracle Enterprise Scheduler you need to create a job
definition. A job definition is the basic unit of work that defines a job request in Oracle
Enterprise Scheduler.

When you create a job definition you specify a name, select a job type, and specify
system properties.

To create a job definition:

1.
2.

In the Application Navigator, select the EssDemo project.
Press Ctrl-N. This displays the New Gallery.

5-16 Web User Interface Developer's Guide for Oracle Application Development Framework

Creating Metadata for Oracle Enterprise Scheduler Sample Application

3. Inthe New Gallery in the Categories area expand Business Tier and select
Enterprise Scheduler Metadata.

4. Inthe New Gallery in the Items area select Job Definition.
5. Click OK. Oracle JDeveloper displays the Create Job Definition dialog.
6. Use the Create Job Definition dialog to specify the following:

a. Enter a name for the job definition or accept the default name. For example,
for the sample application, enter Job_essdemol.

b. In the Package field, enter a package name. For example, enter mypackage.

c. In the JobType field, from the dropdown list select a value. For example for
the sample application select the job type you previously created, Jobtype_
essdemol, as shown in Figure 5-16.

Figure 5-16 Using the Job Definition Creation Dialog

[®] Create Joh Definition

Job Definition
A job definition describes a job (basic unit of wark) that runs in the E

scheduler. A job defintion requires ajob type.

Mame: |Job_essdem01 |

Package: |mypackage |

Job Type: |fmypackagefJobtype_essdem01 v|

Location: | fscratchfsched/ mywork/EssDemofppl/EssDemao |

| Help | | Ok J | Cancel |

d. Click OK. This creates the job definition Job_essdemol.xml and the jobs folder
in mypackage and shows the Job Definition page, as shown in Figure 5-17.

Use Case Oracle Enterprise Scheduler Sample Application (Deprecated) 5-17

Assembling the Oracle Enterprise Scheduler Sample Application

Figure 5-17 Job Definition Page for Sample Application

Application Nav igator [:] ‘| EzzDemofpp. jws |E§J0btype_essdem ol.xml @Job_essdem al.xml E]
. e —
=] EssDemoapp ~|El -||| [Job Definition
~ Projects A=
J E" Eﬁ ? = Mame: Job_essdemol
ERE css Demol e
= Application Saurces escription:
. B essdemo
8] Hellowaorld java
ED Resources Job Type: fmypackage flobtype_gszdemol
D classes Class Mame: eszdemo.HelloWorld | |:| Cwernrite
Bl essmeta
ED mypackage = Parameters 7K
| B+ Jobs
- bo[BJob_essdemal.xml RClanamE ers
= JobType _
. @fjobtype_essdemol.xml i & System Properties Z+ R
. D srC Mo System Properties
[]--- Madel
I:I--- WiewController = &= Access Control / + x
Mo Access Cantrol
[+ Application Resources
[+ Data Contraols
b Recently Opened Files Jobdefinition Editar [l
Log

e. Inthe System Properties field, click the add button and create a system
property called EffectiveApplication. Setits value to that used in
Section 5.6.1, "How to Assemble the EJB Jar Files for Oracle Enterprise
Scheduler Sample Application."

5.6 Assembling the Oracle Enterprise Scheduler Sample Application

After you create the sample application you use Oracle JDeveloper to assemble the
application.

To assemble the application you do the following:
n Create the EJB Jar files

» Create the application MAR File

» Create the application EAR file

= Update WAR File options

5.6.1 How to Assemble the EJB Jar Files for Oracle Enterprise Scheduler Sample
Application

The sample application needs to contain the required EJB descriptors. You need to
create the ejb-jar.xml and weblogic-ejb-jar.xml files and include these files with
any Java implementation class that you create.

Oracle Enterprise Scheduler requires an application to assemble and provide an EJB
JAR so that Oracle Enterprise Scheduler can find its entry point in the application

while running job requests on behalf of the application. This EJB jar should have its
required E]B descriptors in ejb-jar.xml and weblogic-ejb-jar, as well as any Java

5-18 Web User Interface Developer's Guide for Oracle Application Development Framework

Assembling the Oracle Enterprise Scheduler Sample Application

class implementations that are going to be submitted to Oracle Enterprise Scheduler.
The descriptor files ejb-jar.xml and weblogic-ejb-jar must contain descriptions for
the Oracle Enterprise Scheduler E]Bs and should not be modified.

To prepare for the assembly of the sample application, do the following to add the E]JB
jar files:

» Create the ejb-jar.xml file: this provides the description for the Oracle Enterprise
Scheduler EJBs and associated resources. The context of Oracle Enterprise
Scheduler request submission, processing, metadata, and runtime data for an
application is specified as the name of an Oracle Enterprise Scheduler client
application using the deployment name. You can also specify the context using the
applicationName property, as shown in Example 5-4.

» Create the weblogic-ejb-jar.xml file: this provides the Oracle WebLogic Server
specific descriptions for the Oracle Enterprise Scheduler E]Bs and associated
resources.

n Create the EJB JAR archive: this includes descriptors for the Java Job
implementations.

To create the ejb-jar.xml file in the Java implementation project:
1. In Application Navigator select the EssDemo project.

2. Click the New... icon.

3. In the New Gallery, in the navigator expand General and select Deployment
Descriptors.

4. In the New Gallery in the Items area select Java EE Deployment Descriptor.
5. Click OK.

6. In the Select Descriptor page select ejb-jar.xml.

7. Click Next.

8. In the Select Version page select 3.0.

9. Click Finish.

10. This creates ejb-jar.xml file and the META-INF directory in the EssDemo project,
as shown in Figure 5-18.

Figure 5-18 Adding the ejb-jar.xml File to the Sample Application

Application Navigator 2] piws |[Eilobtype_essdemolxml | [Fijob_essdemol.xml [ejb-jar.xml K0
— |

EssDemoipp - - - Iy]
Projects &l W= <?xml wersion = '1.0' encoding = 'UTF-8'%>
5| Ess Pemo <ejb-jar xmins:xsi="http: /A w3, org 2001 HML5chema-instance’

-] Application Sources
-l essdemao

ejb-jar.xml
D Resources
[+~ Maodel

WiewController

Source | Histary [l
11. Replace the entire contents of the ejb-jar.xml file that you just created with a

copy of the ejb-jar.xml supplied with the sample application. This sample
ejb-jar.xml file is shown in Example 5-2.

Use Case Oracle Enterprise Scheduler Sample Application (Deprecated) 5-19

Assembling the Oracle Enterprise Scheduler Sample Application

Example 5-2 EJB Contents to Copy to ejb-jar.xml

<?xml version="1.0" encoding="UTF-8"?>
<ejb-jar xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd"
version="3.0">
<display-name>ESS</display-name>
<enterprise-beans>
<message-driven>
<ejb-name>ESSAppEndpoint</ejb-name>
<ejb-class>oracle.as.scheduler.ejb.EssAppEndpointBean</ejb-class>
</message-driven>

<session>
<description>Async Request Bean</description>
<ejb-name>AsyncRequestBean</ejb-name>
<ejb-class>oracle.as.scheduler.ejb.AsyncRequestBean</ejb-class>
</session>

<session>
<description>Runtime Session Bean</description>
<ejb-name>RuntimeServiceBean</ejb-name>
<ejb-class>oracle.as.scheduler.ejb.RuntimeServiceBean</ejb-class>
</session>

<session>
<description>Metadata Session Bean</description>
<ejb-name>MetadataServiceBean</ejb-name>
<ejb-class>oracle.as.scheduler.ejb.MetadataServiceBean</ejb-class>
</session>
</enterprise-beans>

To create the weblogic-ejb-jar.xml file in the Java implementation project:
1. In Application Navigator select the EssDemo project.

2, Click New... icon.

3. Under Categories expand General and select Deployment Descriptors.

4. In the Items area select Weblogic Deployment Descriptor.

5. Click OK.

6. In the Select Descriptor dialog, select weblogic-ejb-jar.xml.

7. Click Next.

8. Click Next.

9. Click Finish. This creates weblogic-ejb-jar.xml file.

10. Replace the entire contents of the weblogic-ejb-jar.xml file with the sample

weblogic-ejb-jar.xml supplied with the sample application. This file is shown in
Example 5-3.

Example 5-3 EJB Descriptor Contents to Copy to weblogic-ejb-jar.xml File

<?xml version="1.0" encoding="US-ASCII" ?>

<weblogic-ejb-jar xmlns="http://www.bea.com/ns/weblogic/10.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.bea.com/ns/weblogic/10.0

5-20 Web User Interface Developer's Guide for Oracle Application Development Framework

Assembling the Oracle Enterprise Scheduler Sample Application

http://www.bea.com/ns/weblogic/10.0/weblogic-ejb-jar.xsd">

<weblogic-enterprise-bean>
<ejb-name>ESSAppEndpoint</ejb-name>
<message-driven-descriptor>
<resource-adapter-jndi-name>ess/ra</resource-adapter-jndi-name>
</message-driven-descriptor>
<dispatch-policy>ESSRAWM</dispatch-policy>
</weblogic-enterprise-bean>

<run-as-role-assignment>
<role-name>essSystemRole</role-name>
<run-as-principal-name>weblogic</run-as-principal -name>
</run-as-role-assignment>

</weblogic-ejb-jar>

To create the EJB JAR archive:

1.
2.

10.

In Application Navigator select the EssDemo project.

Right-click and from the dropdown list, select Make EssDemo.jpr. In the
Messages Log you should see a successful compilation message, for example:

[3:40:22 PM] Successful compilation: 0 errors, 0 warnings.

In Application Navigator select the EssDemo project.
Select the New... icon.

In the New Gallery, in the Categories area expand General and select
Deployment Profiles.

In the New Gallery, in the Items area select EJB JAR File.
Click OK. This displays the Create Deployment Profile - EJB JAR File dialog.

In the Create Deployment Profile - EJB JAR File dialog, in the Deployment Profile
Name field enter ess-ejb.

Click OK. This displays the Edit EJB JAR Deployment Profile Properties dialog.

In the Edit EJB JAR Deployment Profile Properties dialog, in the Enterprise
Application Name field enter EssDemoApp, as shown in Figure 5-19.

Use Case Oracle Enterprise Scheduler Sample Application (Deprecated) 5-21

Assembling the Oracle Enterprise Scheduler Sample Application

Figure 5-19 EJB JAR Deployment Profile for Sample Application

[#] Edit E.JB JAR Deployment Profile Properties

\u General
B e E|B JAR File:
AR Cpti
J_ prions |:ratch.."sched?,."myu\aurk,."EssDemoApp.."EssDemojdeploy,."ess—ejb.jar|
File Groups
E| Project Output EAR File:
Contributors
Citers |ratch;sched?fmywurkassDemDAppIEssDemDfdeplowess'eib-ear|

- Profile Dependencies
B Platfarm Enterprise Application Mame: |EssDemofpp |

- WebSphere &.x

Deployment Client Maximum Heap Size {in Megabytes):

o |

11. In the EJB JAR Deployment Profile Properties dialog, in the Navigator expand File
Groups and expand Project Output, and select Contributors.

12. In the Contributors area select Project Output Directory and Project
Dependencies as shown in Figure 5-20.

Figure 5-20 Selecting EJB Contributors for the EJB JAR Deployment

[#] Edit E.JB JAR Deployment Profile Properties

) Contributors

Ceneral

AR Opti Project Output Directory
ptions

[] Praject HTML Root Directory
[Project Source Path

[] Praject Additional Classpath
Prafile Dependencies

Flatfarm Project Dependencies

Order of Contributors:

FProject Output Directory Add...
v Froject Dependencies

[Ok I[Cancel]

13. In the EJB JAR Deployment Properties dialog, in the Navigator expand File
Groups and Project Output, and select Filters.

5-22 Web User Interface Developer's Guide for Oracle Application Development Framework

Assembling the Oracle Enterprise Scheduler Sample Application

14. Select the META-INF folder and the essdemo folder as shown in Figure 5-21.

Figure 5-21 EJB JAR Deployment Profile File Groups Filters

[#] Edit E.JB JAR Deployment Frofile Properties

(68
- General

- JAR Options

E| File Groups

=S Praject Output
: ----- Contributors

Ly

Filters

Files Fatterns

This file group includes the project output directory as a contributor. You may
need to compile the project to see all files coming from the output directory.

E|"' 8] Merged Contents of This File Group's Contributors

----- Profile Dependencies
- Platfarm
Lo ebSphere Bx

B[]C3 .data

- m-[]£3 noooooon
5[] £ META-INF
[v] B] ejb-jar.xml

[v] E] weblogic-ejb-jar.xml
W] 3 essdema
[v] B HelloWorld.class
=[] E3 essmeta
B[] £3 mypackage
----- [1[E Essbemo.cdi
----- O @ EzsDemazyxm.cdi
----- [1[E] EssDemozyxr.cdi

Expand All Modes | Collapse All Modes |

| Help | | ok J | Cancel |

15. On the EJB JAR Deployment Profile Properties page, click OK.
16. On the Project Properties page, click OK.

To update WAR archive options:
1. Inthe Application Navigator, select the ViewController project.

Right-click and select Project Properties....
In the Navigator, select Deployment.

2
3
4. In the Deployment page, in the Deployment Profiles area select the WAR File.
5. Click Edit.... This displays the Edit WAR Deployment Profile Properties dialog.
6

In the Edit War Deployment Profile Properties dialog, select General and
configure the General page as follows, as shown in Figure 5-22:

a. Setthe WAR File: path to_mywork
/mywork/EssDemoApp/ViewController/deploy/EssDemoApp_
ViewController_webappl.war

b. Inthe Web Application Context Root area, select Specify Java EE Web
Context Root:

c. In the Specify Java EE Web Context Root: text entry area, enter EssDemoApp.

d. In the Deployment Client Maximum Heap Size (in Megabytes): dropdown
list select Auto

Use Case Oracle Enterprise Scheduler Sample Application (Deprecated) 5-23

Assembling the Oracle Enterprise Scheduler Sample Application

5-24

Figure 5-22 WAR Deployment Configuration Options

[®] Edit WAR Deployment Profile Properties i

(@@)| General
Wi R File:
WA R Cptions
[=}- File Groups
B Web Files Web Application's Context Root:
- Contributors (") Use Project's Java EE Web Context Root
- Filters |EssDemoApp—ViewCDntroller—context—root |
E WEE-INF/classes (3) Specify Java EE Web Context Root:
H - Contributors
K |EssDemoApp |
: - Filters —
E| WEB-INFfIib A Deployment Client Maximum Heap Size {in Megabytes):|Auto v|
- Contributors
- Filters o
----- Profile Dependencies
= Platfarm
[Webiphere 6.x
| Help | | [o].4 J | Cancel

7. In the Edit WAR Deployment Profile Properties dialog, click OK.
Oracle JDeveloper updates the deployment profile.
8. In the Project Properties dialog, click OK.

9. An application either uses the deployment name as the default value for its
application name or you can set the application name using the property
applicationName in the ejb-jar.xml. The default application name is the
deployment name if the applicationName is not specified.

To set the applicationName edit the ejb-jar.xml file to set the value of the
<activation-config-property> named applicationName, as shown in
Example 5-4.

Example 5-4 Setting applicationName in ejb-jar.xml

<enterprise-beans>
<message-driven>
<ejb-name>ESSAppEndpoint</ejb-name>
<ejb-class>oracle.as.scheduler.ejb.EssAppEndpointBean</ejb-class>
<activation-config>
<activation-config-property>
<activation-config-property-name>
applicationName
</activation-config-property-name>
<activation-config-property-value>
MY APPLICATION NAME
</activation-config-property-value>
</activation-config-property>
</activation-config>
</message-driven>
<enterprise-beans>

Web User Interface Developer's Guide for Oracle Application Development Framework

Assembling the Oracle Enterprise Scheduler Sample Application

5.6.2 How to Assemble the MAR File for User Metadata

The sample application needs to contain the required MAR profile.

To create the MAR file:

1.

a & 0N

Open the EssDemoApp application and from the Application Menu select
Application Properties...

In the Application Properties dialog, in the navigator select Deployment.
Select and delete the default deployment profile.
Click New.... This displays the Create Deployment Profile page.

In the Archive Type field, from the dropdown list select MAR File as shown in
Figure 5-23.

Figure 5-23 Create Deployment Profile Page for New MAR

(&8)| Deployment

- Application Content () Use Custom Settings

ployment [g] Create Deployment Profile

-Rezource B
Run Click Ok to create your new deployment profile and immediately open it to see its configur...
LS Policy St | Edit... |
[MaF File -| | Newr.. |
e | Delete |
|metadatal |
Descriptian:
Creates a profile for deploying a metadata MAR file.
loyment
ousky
Help | [o].4 J | Cance|
|| Credentials
Decide whether to migrate the following security objects,
Users and Groups
| Help | | Ok J | Cancel |

10.

In the Create Deployment Profile dialog, in the Name field enter a name, for
example enter essMAR.

In the Create Deployment Profile dialog, click OK.

On the Edit MAR Deployment Profile dialog, in the navigator expand Metadata
File Groups and select User Metadata.

Click Add.... This displays the Add Contributor dialog.

On the Add Contributor dialog click Browse to add the essmeta metadata that
contains the namespace for the Jobs and JobTypes directory, as shown in
Figure 5-24. Note, you select the path that you need to include in the Add
Contributor dialog by double-clicking the essmeta directory.

Use Case Oracle Enterprise Scheduler Sample Application (Deprecated) 5-25

Assembling the Oracle Enterprise Scheduler Sample Application

Figure 5-24 Adding User Metadata to MAR Profile

[¢] Edit MAR Deployment Profile Properties

User Metadata

&

MAR Options
Metadata File Croups

File Group Mame: User Metadata |

irectories

Directory or Archive: |fscratchfsched?l.fmywurkl."EssDemoApprssDemofessmeta || Erowse... |

Help | Ok | | Cancel |

(<]

| Delete |

Help | [o].4 J | Cancel

11.
12.

13.

14.
15.

16.
17.

On the Add Contributor dialog, click OK.

In the navigator expand Metadata File Groups and User Metadata and select
Directories.

Select the mypackage directory. This selects all the appropriate information for
Oracle Enterprise Scheduler application user metadata for the application.

Select the bottom most directory in the tree. This is the directory from which the
namespace is created. For example, when selecting oracle, the namespace is
oracle. When selecting the product directory, the namespace is
oracle/apps/product. For example, to create the namespace
oracle/apps/product/component/ess, click the ess directory.

The folder you select in this dialog determines the top level namespace in
adf-config.xml. For more information, see Section 5.6.3, "How to Assemble the
EAR File for Oracle Enterprise Scheduler Sample Application." This namespace
should be the same as the package defined in job and job type definition. For more
information, see Section 5.5, "Creating Metadata for Oracle Enterprise Scheduler
Sample Application."

Note: If your namespace is too generic, then your Oracle ADF
application might fail. Make sure to use proper package structure and
map only the required namespaces.

On the Edit MAR Deployment Profile Properties page, click OK.

On the Application Properties page, in the navigator expand Run and select
MDS.

Select the MAR profile you just created, essMAR, as shown in Figure 5-25.
Click OK.

5-26 Web User Interface Developer's Guide for Oracle Application Development Framework

Assembling the Oracle Enterprise Scheduler Sample Application

Figure 5-25 Setting Application Properties Run MDS MAR Profile

[®] Application Properties - fscratchfsched7/imywork/EssDemoApp/EssDemofpp.jws

Run: MDS

Application Content (") Use Custom Settings

() Use Application Settings
Resource Bundles

Run MAR Profile: | essMAR =
N DS

WS Policy Store

Change from default only in advanced scenarios

MD% Repository Directory

Thiz directory stores customizations and metadata documents generated at application
runtime

Default Location:

|?fsystem 11.1.1.1.32.53.52/0.mds.dtfadrsfEssDem oAppfessMARImds_adrs_uuritedir|

Dwerride Location:

| | | Browse... |
Directory Content:
-::}::- Preserve customizations across application runs
() Delete customizations before each run
| Help | | o] J | Cancel |

5.6.3 How to Assemble the EAR File for Oracle Enterprise Scheduler Sample

Application

You

need to prepare an EAR file that assembles the sample application. The EAR

archive consists of the following;:

EJB JAR including the Oracle Enterprise Scheduler Java job implementation.
WAR archive with the EssDemo servlet.

To create the EAR file for the application:

1.

2
3
4.
5
6

N

In the Application Navigator, select the EssDemoApp application.
From the Application Menu, select Application Properties....

In the Application Properties Navigator, select Deployment.
Click New... to create a new deployment descriptor.

In the Archive Type dropdown list, select EAR File.

In the Create Deployment Profile dialog in the Name field enter the application
name. For the application, enter EssDemoApp.

Click OK.

In the Edit EAR Deployment Profile Properties dialog, in the navigator select
Application Assembly.

In the Application Assembly page in the Java EE Modules area select the
appropriate check boxes, including the following: essMAR, the WEB module in
the ViewController project and the EJB module, ess-ejb, in the EssDemo project
as shown in Figure 5-26.

Use Case Oracle Enterprise Scheduler Sample Application (Deprecated) 5-27

Assembling the Oracle Enterprise Scheduler Sample Application

Figure 5-26 Setting Application Assembly Options for EAR File

[#] Edit EAR Deployment Profile Properties

I Application Assembly

-~ Ceneral Select the Jawva EE modules that you would like to assemble into your Java EE
pplication Assembly application.
- EAR Options

Java EE Modules:

E| File Groups
E---Application Descriptors H esSMAR
! i Contributors E‘ Modeljpr
- Filters [O EzzDemofpp_Model_adflibEssDemofppl
E} Platform E] WiewContraller jpr
b WehSphere &.x EzzDemofpp_WiewController_nebappl
A B 3] EssDemo jor
|:| EzsDemofpp_EszDemo_adflibEssDemobppl
[: ess-ejb
Fath in EAR:
| Help | QK J | Cancel |

10. Click OK.
11. On the Application Properties page, click OK.

5.6.4 Add oracle.ess Library Weblogic Application Descriptor

You need to update the weblogic-application.xml file to include the oracle.ess
library.

1. In the Application Navigator expand Application Resources.

2. In the navigator expand Descriptors and expand META-INF, as shown in
Figure 5-27.

Figure 5-27 Viewing weblogic-application.xml in Application Resources

= Application Resaurces -
- [Connections

[=EEICe criptors
B[] META-INF

S % weblogic-application.zml
B1-7) ADF META-INF

[+ Data Cantrols
[+ Recently Opened Files

3. Double-click to open the weblogic-application.xml file.

4. Add the following to the weblogic-application.xml file. Example 5-5 shows a
complete weblogic-application.xml file, including this <library-ref> element.

<library-ref>
<library-name>oracle.ess</library-name>
</library-ref>

5-28 Web User Interface Developer's Guide for Oracle Application Development Framework

Deploying and Running the Oracle Enterprise Scheduler Sample Application

Example 5-5 Contents of Sample weblogic-application.xml File with oracle.ess

<?xml version = '1.0' encoding = 'UTF-8'?>
<weblogic-application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemalocation="http://www.bea.com/ns/weblogic/weblogic-application
http://www.bea.com/ns/weblogic/weblogic-application/1.0/weblogic-application.xsd"
xmlns="http://www.bea.com/ns/weblogic/weblogic-application">
<listener>
<listener-class>oracle.mds.lcm.weblogic.WLLifecycleListener</listener-class>
</listener>
<listener>

<listener-class>oracle.adf.share.weblogic.listeners.ADFApplicationLifecycleListene
r</listener-class>
</listener>
<library-ref>
<library-name>adf.oracle.domain</library-name>
<implementation-version>11.1.1.1.0</implementation-version>
</library-ref>

<library-ref>
<library-name>oracle.ess</library-name>

</library-ref>

</weblogic-application>

5.7 Deploying and Running the Oracle Enterprise Scheduler Sample

Application

After you complete the steps to build and assemble the sample application you need to
deploy the application to Oracle WebLogic Server. After you successfully deploy an
application you can run the application. For the sample application you use a browser
to run the EssDemo servlet to submit job requests to Oracle Enterprise Scheduler
running on Oracle WebLogic Server.

5.7.1 How to Deploy the EssDemoApp Application

To deploy the EssDemoApp application you need a properly configured and running
Oracle WebLogic Server, and you need an active metadata server. When you deploy
the application Oracle JDeveloper brings up the Deployment Configuration page.
Select your repository from the dropdown list and Enter a partition name (the
partition name defaults to application name).

To deploy the EssDemoApp application:

1. Check the Run Manager to make sure the Oracle WebLogic Server is up and
running. If the Oracle WebLogic Server is not running, start the server. To start the
server, from the Run menu click Start Server Instance.

2. In the Application Navigator, select the EssDemoApp application.

3. In the Application Navigator from the Application Menu select Deploy >
EssDemoApp > to > IntegratedWLSConnection, as shown in Figure 5-28.

Use Case Oracle Enterprise Scheduler Sample Application (Deprecated) 5-29

Deploying and Running the Oracle Enterprise Scheduler Sample Application

Figure 5-28 Deploying the EssDemoApp Application

[®] Oracle JDeveloper 11g Development Build - EssDemoapp.jws : EssDemo.jp

File Edit VYiew Application Refactor Search Navigate Build Run 0Dl Versioning Tools Window Help ADF

HENER Q-@- 8-k aidda- >--0 A (.88 ~My Connection ‘

|ejb—jar.xm| | df-config.xml %mblogic—applicaﬂon.xml \m\eblogic—ejb—jar.xm\ E]

Mewy Project...
Open Project... u ena-i z chemalocation="http:
Close Application
x Delete Application
Rename Application...
Wersion Application..

WiewContr

@8 Find Application Files
Showe e rviewn .0 ibrary-name:-
57 Filter Application... s .1.1. mplementation-version:

Secure

55 Reforma Crri+AR-L

P
Organize Imports Ctel+Al -0 =

to EARfile

Mew Connection...
Compare With] -

Replace With [

Application Properties...

Populate Setld Metadata
i e
[Runwith PUTF -) 5T
[Runwith PerfTrace :
e o

“may su, , AWM PUIE SNOTTCES <5EFVERs <BEA-UU/bIS= =LRANhel “UETaUIT® 15 hoW (TSTERTAY OR LU, 229, 1as,
=May 20, 2003 9:26:08 AM PDT= =Hotice= =keblLogicServers= =BEA-000331= =Started WeblLogic Admin Serwver "DefaultSer
=May 20, 2009 9:26:08 AM PDT> =Motice= =WeblogicServers= =BEA-DO0365> =Server state changed to RUMNING=

=HMay 20, 2009 9:26:08 AM PDT= =Motice= =WeblogicServers =BEA-000360- =Server started in RUNNING modes

I» Application Res... pefaultServer startup time: 78466 ms.

I+ Data Controls befaultServer started. A

[Recently Opene... o 1l
- || Messages Extensions | Feedback | [Running: DefaultServer |<\ & 2 [

4. Oracle JDeveloper shows the Deployment Configuration page, as shown in
Figure 5-29. Select the appropriate options for your Metadata Repository.

5-30 Web User Interface Developer's Guide for Oracle Application Development Framework

Deploying and Running the Oracle Enterprise Scheduler Sample Application

Figure 5-29 Deployment Configuration Page with Metadata Repository Options

Configure and customize settings for this deployment W
- Metadata Repository
Bepositary Mame: |mds—AppIicationMDSDB v|
Repository Type: DB
Partition Mame: |APMApp |V|
Fath/MDI Info: jdbcfmds/mds-ApplicationMD5SDEDS
- Shared Metadata Repositories
Mamespace Repository Type Partition Path/INDI Info
| Help | Deplaoy | | Cancel

5. Click Deploy.
6. Verify the deployment using the Deployment Log.

5.7.2 How to Run the Oracle Enterprise Scheduler Sample Application

To run the sample application you access the EssDemo servlet in a browser.

To access the EssDemo servlet:
1. Enter the following URL in a browser:

http:/ / host:http-port / context-root / essdemo
For example,

http://myserver.us.oracle.com:7101/EssDemoApp/essdemo

This shows the EssDemo servlet, as shown in Figure 5-30.

Use Case Oracle Enterprise Scheduler Sample Application (Deprecated) 5-31

Deploying and Running the Oracle Enterprise Scheduler Sample Application

Figure 5-30 Running EssDemo Servlet for Oracle Enterprise Scheduler Sample
Application

Enterprise Scheduler Service Tutorial

Launch Job

Job: | JobwithFarams v Messages
Schedule: | Immediately v

Request Status

|req]I)| Description | Scheduled time | State | Action
1 [rob_essdemo 1 @Immediately [Wed Tan 07 14:05:05 PST 2009 [SUCCEEDED |[Purge |

Select a job definition from the Job drop-down menu.
Select a value from the Schedule drop-down menu.

Click Submit.

a k& ® N

Refresh the browser to see the progress of the job in the Request Status area, as
shown in Figure 5-31.

Figure 5-31 Running EssDemo Servlet with Request Status for Submitted Requests

Enterprise Scheduler Service Tutorial

Launch Job

Joh: | JobWithParams Messages

Schedule: | Immediately - Mew request 2 launched using Job_essdemo 1@Immediately

Request Status
|req]:D | Description | Scheduled time | State | Action
1 [Fob_essdemol @Emme diately [Wed Tan 07 14:05:05 PST 2009 [SUCCEEDED | Purge
2 [rob_essdemol @lmmediately [Fri Jan 09 143147 PST 2009 [WAIT [Cancel

5.7.3 How to Purge Jobs in the Oracle Enterprise Scheduler Sample Application

Using the sample application and the EssDemo servlet you can remove completed jobs
from the Request Status list.

5-32 Web User Interface Developer's Guide for Oracle Application Development Framework

Troubleshooting the Oracle Enterprise Scheduler Sample Application

To remove completed jobs:

1.
2.

Click Purge to purge a request.

Click Cancel to cancel a request that is either RUNNING or WAITING.

5.8 Troubleshooting the Oracle Enterprise Scheduler Sample Application

This section covers common problems and solutions for these problems.

1.

Problem: sglplus: Command not found.

Solution: Run the Oracle Database commands in an environment that includes
Oracle Database.

Problem: SP2-0310: unable to open file "createuser_ess_oracle.sql"

Solution: Change to the /rcu/integration/ess/sql directory before running
sqlplus scripts.

Problem:

404 Not Found
Resource /EssDemoApp-ViewController-context-root/essdemo not found on this
server

Solution: This and similar problems can be due to not using a URL that matches
the root URL that you specify when set the context-root on the URL to access the
application. To use a context-root that matches the deployed application, use the
value that you specified.

To check and set the context-root value in the WAR archive:
Select the ViewController project.

a
b. Right-click and from the dropdown list select Project Properties.

o

In the navigator, select Deployment.

e

In the Deployment Profiles area, select essdemoapp and click Edit.

e. Choose the desired context-root, this forms the context-root on the URL to
access the application.

=h

In the General area, select Specify Java EE Web Context Root.

g. For the Java EE Web Context Root: text entry area, enter EssDemoApp.
h. In the WAR Deployment Profile Properties window, click OK.

i. Inthe Project Properties window, click OK.

Problem: Unresolved application library references, defined in
weblogic-application.xml: [Extension-Name: oracle.ess, exact-match:
false]..

Deployment fails with errors. For example:

09:30:59 AM] Building...

[09:31:00 AM] Deploying 2 profiles...

[09:31:01 AM] Wrote Web Application Module to
/scratch/sched7/mywork/EssDemoApp/ViewController/deploy/EssDemoApp_
ViewController_ webappl.war

[09:31:01 AM] removed bundleresolver.jar from APP-INF because it cannot be part
of an EJB deployment[09:31:01 AM] Wrote Enterprise Application Module to
/scratch/sched7/mywork/EssDemoApp/deploy/EssDemoApp_applicationl.ear

[09:31:02 AM] Deploying Application...

Use Case Oracle Enterprise Scheduler Sample Application (Deprecated) 5-33

Troubleshooting the Oracle Enterprise Scheduler Sample Application

[09:31:04 AM] [Deployer:149193]Deployment of application 'EssDemoApp_
applicationl' has failed on 'DefaultServer'

[09:31:04 AM] [Deployer:149034]An exception occurred for task
[Deployer:149026]deploy application EssDemoApp_applicationl on DefaultServer.:
[J2EE:160149]Error while processing library references. Unresolved application
library references, defined in weblogic-application.xml: [Extension-Name:
oracle.ess, exact-match: false]..

[09:31:05 AM] Weblogic Server Exception:

weblogic.management .DeploymentException: [J2EE:160149]Error while processing
library references. Unresolved application library references, defined in
weblogic-application.xml: [Extension-Name: oracle.ess, exact-match: false].
[09:31:05 AM] See server logs or server console for more details.

[09:31:05 AM] weblogic.management.DeploymentException: [J2EE:160149]Error while
processing library references. Unresolved application library references,
defined in weblogic-application.xml: [Extension-Name: oracle.ess, exact-match:
false].

[09:31:05 AM] #### Deployment incomplete. ####

[09:31:05 AM] Deployment Failed

Solution: This deployment error can be seen when the application is correct, but
the Oracle WebLogic Server configuration is not correct. The configuration
includes the step, 3.1.4, "Create WLS domain". This configuration step is required.

5.8.1 How to Create the Oracle Enterprise Scheduler Database Schema

You need to create the Oracle Enterprise Scheduler Oracle Database schema. Oracle
Enterprise Scheduler uses this schema to maintain information about job requests.

Note: In the Oracle Fusion Applications environment, this step is not
required. In this environment the database is installed with the Oracle
Enterprise Scheduler schema pre-configured. Thus, in this
environment you can skip this step.

In order to create the Oracle Enterprise Scheduler database schema, you need to install
Oracle JDeveloper for use with Oracle Enterprise Scheduler. For more information, see
the Oracle Fusion Applications Installation Guide.

5.8.2 How to Drop the Oracle Enterprise Scheduler Runtime Schema

If you have been running with previous version of the Oracle Enterprise Scheduler
runtime schema, or if for any reason you need to drop the schema, you can do this
using the dropschema_ess_oracle.sql script.

Use these steps only to drop the Oracle Enterprise Scheduler runtime schema. These
steps clean up certain database objects and then drop the schema user. Note that
simply dropping the Oracle Enterprise Scheduler schema is not sufficient to correctly
drop and remove an existing schema.

Note: For a first time installation you do not need to perform these
steps. Only use these steps if you need to drop the database schema
due to a previous installation error or to clean up your database after
a previous use of Oracle Enterprise Scheduler.

To drop the database schema:
1. Terminate any container that is using Oracle Enterprise Scheduler schema.

5-34 Web User Interface Developer's Guide for Oracle Application Development Framework

Using Submitting and Hosting Split Applications

2. Change to the ess/sql directory with the following command:

% cd JDEV_install_dir/rcu/integration/ess/sql

3. Do the following, when connected as SYS or as SYSDBA. In the text, ess_schema
represents Oracle Enterprise Scheduler schema being removed:

@dropschema_ess_oracle.sql ess_schema
alter session set current_schema=sys;
drop user ess_schema cascade;

Example in which ess_schema is oraess:

> @dropschema_ess_oracle.sgl oraess

> alter session set current_schema=sys;
> drop user oraess cascade;

> exit

5.9 Using Submitting and Hosting Split Applications

When you build and deploy Oracle Enterprise Scheduler applications, you can use
two split applications — a job submission application, a submitter, and a job execution
application, a hosting application. Using this design you need to configure and deploy
each application with options that support such a split configuration. In addition,
some Oracle Enterprise Scheduler deployments use a separate Oracle WebLogic Server
for the hosting and the submitting applications; for this deployment option the
submitting application and the hosting application are deployed to separate Oracle
WebLogic Servers. When the submitter application and the hosting application for
Oracle Enterprise Scheduler run on separate Oracle WebLogic Servers, you need to
configure the Oracle WebLogic Server for the hosting application so that the
submitting application can find the hosting application.

Note: This chapter includes a tutorial that uses an older release of
Oracle JDeveloper. This content is deprecated. For development with
a current version of Oracle JDeveloper, see Chapter 4, "Using Oracle
JDeveloper to Generate an Oracle Enterprise Scheduler Application".

To build the sample split applications, you do the following;:

1. Build a back-end hosting application that includes the code to be scheduled and
run.

2. Build a front-end submitter application initiates the job requests.

5.9.1 How to Create the Back-End Hosting Application for Oracle Enterprise Scheduler

Using Oracle JDeveloper you create the back-end application. To create the back-end
sample application you do the following;:

» Create a back-end application and project.
= Configure security.
» Define the deployment descriptors.

» Create the Java class that implements the Oracle Enterprise Scheduler executable
interface.

» Create the Oracle Enterprise Scheduler metadata to describe the job

Use Case Oracle Enterprise Scheduler Sample Application (Deprecated) 5-35

Using Submitting and Hosting Split Applications

Assemble the application.
Deploy the application.

5.9.1.1 Creating the Back-End Hosting Application

To work with Oracle Enterprise Scheduler with a split application you use Oracle
JDeveloper to create the back-end application and project, and to add Oracle
Enterprise Scheduler extensions to the project.

To create the back-end hosting application:

1.
2

10.
11.
12.

From JDeveloper choose File > New from the main menu.

In the New Gallery, expand General, select Applications and then Generic
Application, and click OK.

In the Name your application page of the Create Generic Application wizard, set
the Application Name field to EssDemoApp.

In the Name your project page, set the Project Name to SuperEss.

This project is where you will create and save the Oracle Enterprise Scheduler
metadata.

Add the EJB technology to the project.

In the Project Java Settings page, change the default package to
oracle.apss.ess.howto.

In the Configure EJB Settings page, select Generate ejb-jar.xml in this project and
click Finish.

In the Application Navigator, right-click the SuperEss project and select Project
Properties.

In the Project Properties dialog, expand Project Source Paths and click the
Resources navigation tab.

Select Include Content from Subfolders.
Click the Libraries and Classpath navigation tab.
Click Add Library, select Enterprise Scheduler Extensions, and click OK.

5.9.1.2 Configuring Security for the Back-End Hosting Application
You need to create a user that is assigned to the EssDempAppRole role.

To configure security for the back-end hosting application:

1.
2.

Select Application > Secure > Configure ADF Security from the main menu.

In the ADF Security page of the Configure ADF Security wizard, select ADF
Authentication.

In the Authentication Type page, accept the default values as this application will
not have a web module to secure.

Click Finish.

A file named jps-config.xml is generated. You can find this file in the
Application Resources panel by expanding Descriptors, and expanding
META-INF. This file contains a security context or security stripe named after the
application.

5-36 Web User Interface Developer's Guide for Oracle Application Development Framework

Using Submitting and Hosting Split Applications

5. Select Application > Secure > Users from the main menu.
A file named jps-config.xml is generated.

6. In the overview editor for the jps-config.xml file, click the Add icon in the Users
list.

7. Set the name to EssDemoAppUser and set the password to welcomel.
8. (Click the Application Roles navigation tab.

9. Click the Add icon in the Roles list and choose Add New Role.

10. Set the name to EssDemoAppRole.

11. Click the Add icon in the Mappings tab and choose Add User.

12. Select EssDemoAppUser and click OK.

5.9.1.3 Defining the Deployment Descriptors for the Back-End Hosting Application

The sample application needs to contain the required EJB descriptors. You need to
create the ejb-jar.xml and weblogic-ejb-jar.xml files and include these files with
any Java implementation class that you create.

Oracle Enterprise Scheduler requires an application to assemble and provide an E]B
JAR so that Oracle Enterprise Scheduler can find its entry point in the application
while running job requests on behalf of the application. This E]B jar should have its
required E]B descriptors in ejb-jar.xml and weblogic-ejb-jar, as well as any Java
class implementations that are going to be submitted to Oracle Enterprise Scheduler.
The descriptor files ejb-jar.xml and weblogic-ejb-jar must contain descriptions for
the Oracle Enterprise Scheduler EJBs.

The Oracle Enterprise Scheduler back-end application is deployed to Oracle WebLogic
Server. You need to create a deployment profile in Oracle JDeveloper to deploy the
EssDemoApp application.

The EssDemoApp application is a standalone application that contains an Oracle
Enterprise Scheduler Java job and includes the required Oracle Enterprise Scheduler
metadata, an Oracle Enterprise Scheduler message-driven bean (MDB), and the EJB
descriptors for the application. This application does not perform Oracle Enterprise
Scheduler submit APL in this hosting application the submission occurs in the
front-end submitter application. In the hosting application, EssDemoApp, the
weblogic-ejb-jar.xml exposes the EJB remote interface through JNDI (using the E]B
remote interface allows for the job submission to occur in the front-end application).

You also need to create the weblogic-application.xml file to include the oracle.ess
library, to add an Oracle Enterprise Scheduler listener, and to indicate which stripe to
use to upload the jazn-data.xml policy.

To define the deployment descriptors for the back-end hosting application:
1. In the Application Navigator, expand SuperEss, expand Application Sources,
expand META-INF, and double-click ejb-jar.xml.

2. Replace the contents of the file with the XML shown in Example 5-6

Example 5-6 Contents to Copy to ejb-jar.xml for a back-end Hosting Application

<?xml version = '1.0' encoding = 'UTF-8'?>
<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd"

Use Case Oracle Enterprise Scheduler Sample Application (Deprecated) 5-37

Using Submitting and Hosting Split Applications

version="3.0">
<display-name>ESS</display-name>

<enterprise-beans>
<message-driven>
<ejb-name>ESSAppEndpoint</ejb-name>
<ejb-class>oracle.as.scheduler.ejb.EssAppEndpointBean</ejb-class>
<activation-config>
<activation-config-property>
<!-- The "applicationName" property specifies the logical name used
- by Oracle Enterprise Scheduler to identify this application.
- This name is independent of the application name used when
- deploying the application to the container. This decoupling
- allows applications to safely hardcode the logical application
- name in source code without having to worry about the more
- frequently changed deployment name.

- Note: The name given here must also be specified in the
- SYS_effectiveApplication property of each job definition and
- job set of this application.

<activation-config-property-name>applicationName</activation-config-property-name>

<activation-config-property-value>EssDemoApp</activation-config-property-value>
</activation-config-property>
<activation-config-property>
<!-- The "applicationStripe" property specifies which JPS security
- stripe or "security context" Oracle Enterprise Scheduler should
- use to perform security checks.
- The value here must be the same as the "injection-target-name"
- value used by the "oracle.security.jps.ee.ejb.JpsInterceptor"
- interceptor descriptor below.

- Note: When creating jps-config.xml through JDev, it will create
- default security context using the JDev workspace name. In
- order to simplify things, we will use the JDev workspace name
- as our value. Otherwise, you will have to rename the security
- context created by JDev or create your own.
-

<activation-config-property-name>applicationStripe

</activation-config-property-name>

<activation-config-property-value>EssDemoApp

</activation-config-property-value>

</activation-config-property>
</activation-config>
</message-driven>

<!-- The AsyncBean allows asynchronous Java jobs to notify
- Oracle Enterprise Scheduler of its status through Java EE EJB APIs.
- It is recommended to use the WebService callback pattern
- instead of the EJB callbacks wherever possible.
-—>
<session>
<description>Async Request Bean</description>
<ejb-name>AsyncRequestBean</ejb-name>
<ejb-class>oracle.as.scheduler.ejb.AsyncRequestBean</ejb-class>
</session>

5-38 Web User Interface Developer's Guide for Oracle Application Development Framework

Using Submitting and Hosting Split Applications

<!-- The Runtime Service allows users to interact with an Executable.
- Operations include submitting, cancelling, querying, etc.
-—>

<session>

<description>Runtime Session Bean</description>

<ejb-name>RuntimeServiceBean</ejb-name>

<ejb-class>oracle.as.scheduler.ejb.RuntimeServiceBean</ejb-class>
</session>

<!-- The Metadata Service allows user to interact with
- Oracle Enterprise Scheduler, metadata including job definitions,
- job sets, job types, schedules, and so on. Operations include reading,
- writing, querying, copying, deleting, and so on.
-
<session>
<description>Metadata Session Bean</description>
<ejb-name>MetadataServiceBean</ejb-name>
<ejb-class>oracle.as.scheduler.ejb.MetadataServiceBean</ejb-class>
</session>

</enterprise-beans>

<!--
- The JPS interceptor is used by JPS (Java Platform Security) in order to
- perform security checks. The "stripe name" is usually associated with
- the application name but some groups split their security permissions
- between Oracle ADF grants and Oracle Enterprise Scheduler grants, creating
- two stripes.
- For example, the Oracle ADF grants would live in the "MyApp" stripe while
- the Oracle Enterprise Scheduler grants would live in the "MyAppEss".

- Note: For this example, we will use only 1 stripe.

- Note: When creating jps-config.xml through JDev, it will create
- default security context using the JDev workspace name. In
- order to simplify things, we will use the JDev workspace name
- as our value. Otherwise, you will have to rename the security
- context created by JDev or create your own.

-—>

<interceptors>
<interceptor>

<interceptor-class>oracle.security.jps.ee.ejb.JpsInterceptor</interceptor-class>
<env-entry>
<env-entry-name>application.name</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>EssDemoApp</env-entry-value>
<injection-target>

<injection-target-class>oracle.security.jps.ee.ejb.JpsInterceptor</injection-targe
t-class>
<injection-target-name>application_name</injection-target-name>
</injection-target>
</env-entry>
</interceptor>
</interceptors>

</ejb-jar>

3. In Application Navigator, right-click the SuperEss project and select New.

Use Case Oracle Enterprise Scheduler Sample Application (Deprecated) 5-39

Using Submitting and Hosting Split Applications

4. In the New Gallery, expand General, select Deployment Descriptors and then
Weblogic Deployment Descriptor, and click OK.

5. In the Select Descriptor page select weblogic-ejb-jar.xml.
6. Click Next, click Next again, and click Finish.

7. In the source editor, replace the contents of the weblogic-ejb-jar.xml file that you
just created with the XML shown in Example 5-7.

This XML associates the MDB in the ejb-jar.xml file with the Oracle Enterprise
Scheduler Resource Adapter. Without this XML, the application would not know
what to talk to.

Example 5-7 Contents to Copy to weblogic-ejb-jar.xml for a Back-End Hosting
Application

<?xml version = '1.0' encoding = 'UTF-8'?>
<weblogic-ejb-jar xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://www.bea.com/ns/weblogic/weblogic-ejb-jar

http://www.bea.com/ns/weblogic/weblogic-ejb-jar/1.0/weblogic-ejb-jar.xsd"
xmlns="http://www.bea.com/ns/weblogic/weblogic-ejb-jar">

<weblogic-enterprise-bean>
<ejb-name>ESSAppEndpoint</ejb-name>
<message-driven-descriptor>
<resource-adapter-jndi-name>ess/ra</resource-adapter-jndi-name>
</message-driven-descriptor>
<dispatch-policy>ESSRAWM</dispatch-policy>
</weblogic-enterprise-bean>

</weblogic-ejb-jar>

8. In Application Navigator, right-click the SuperEss project and select New.

9. In the New Gallery, expand General, select Deployment Descriptors and then
Weblogic Deployment Descriptor, and click OK.

10. In the Select Descriptor page select weblogic-application.xml.
11. Click Next, click Next again, and click Finish.

12. In the source editor, replace the contents of the weblogic-application.xml file
that you just created with the XML shown in Example 5-8.

Example 5-8 Contents to Copy to weblogic-application.xml for a Back-End Hosting
Application

<?xml version = '1.0' encoding = 'UTF-8'?>
<weblogic-application xmlns:xsi="http://www.w3.o0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://www.bea.com/ns/weblogic/weblogic-application

http://www.bea.com/ns/weblogic/weblogic-application/1.0/weblogic-application.xsd"
xmlns="http://www.bea.com/ns/weblogic/weblogic-application">

<!-- The following application parameter tells JPS which stripe it should
- use to upload the jazn-data.xml policy. If this parameter is not
- specified, it will use the Java EE deployment name plus the version
- number (e.g. EssDemoApp#V2.0).

5-40 Web User Interface Developer's Guide for Oracle Application Development Framework

Using Submitting and Hosting Split Applications

<application-param>
<param-name>jps.policystore.applicationid</param-name>
<param-value>EssDemoApp</param-value>
</application-param>

<!-- This listener allows JPS to configure itself and upload the
- jazn-data.xml policy to the appropriate stripe
—-=>

<listener>

<listener-class>oracle.security.jps.wls.listeners.JpsApplicationLifecycleListener<
/listener-class>
</listener>

<!-- This listener allows MDS to configure itself and upload any metadata
- as defined by the MAR profile and adf-config.xml
-—>

<listener>

<listener-class>oracle.mds.lcm.weblogic.WLLifecycleListener</listener-class>
</listener>

<!-- This listener allows Oracle Enterprise Scheduler to configure itself
-—>

<listener>

<listener-class>oracle.as.scheduler.platform.wls.deploy.ESSApplicationLifecycleLis
tener</listener-class>
</listener>

<!-- This shared library contains all the Oracle Enterprise Scheduler classes
—-=>
<library-ref>
<library-name>oracle.ess</library-name>
</library-ref>
</weblogic-application>

5.9.1.4 Creating a Java Implementation Class in the Back-End Hosting Application

To define an application that runs a Java class under control of Oracle Enterprise
Scheduler you need to create the Java class that implements the Oracle Enterprise
Scheduler Executable interface. The Executable interface specifies the contract that
allows you to use Oracle Enterprise Scheduler to invoke a Java class.

A Java class that implements the Executable interface must provide an empty
execute () method.

To create a Java class that implements the executable Interface:
1. In the Application Navigator, right-click the SuperEss project and choose New.

2. In the New Gallery, expand General, select Java and then Java Class, and click
OK.

3. In the Create Java Class dialog, set the name to HelloWorldJob.
4. Set the package to oracle.apps.ess.howto.

5. Click the Add icon, add the oracle.as.scheduler.Executable interface, and click
OK.

Use Case Oracle Enterprise Scheduler Sample Application (Deprecated) 5-41

Using Submitting and Hosting Split Applications

6. In other fields accept the defaults.
7. Click OK.

8. In the source editor, replace the generated contents of the HelloWorldJob. java file
with the code shown in Example 5-9.

Example 5-9 Oracle Enterprise Scheduler HelloWorldJob Java Class

package oracle.apps.ess.howto;
import java.util.logging.Logger;

import oracle.as.scheduler.Executable;

import oracle.as.scheduler.ExecutionCancelledException;
import oracle.as.scheduler.ExecutionErrorException;
import oracle.as.scheduler.ExecutionPausedException;
import oracle.as.scheduler.ExecutionWarningException;
import oracle.as.scheduler.RequestExecutionContext;
import oracle.as.scheduler.RequestParameters;

public class HelloWorldJob implements Executable {
public HelloWorldJob() {
super () ;

public void execute(RequestExecutionContext requestExecutionContext,
RequestParameters requestParameters)
throws ExecutionErrorException, ExecutionWarningException,
ExecutionCancelledException, ExecutionPausedException

printBanner (requestExecutionContext, requestParameters);

protected void printBanner (RequestExecutionContext requestExecutionContext,
RequestParameters requestParameters)

{
StringBuilder sb = new StringBuilder (1000);
sb.append ("\n==================================") ;
sb.append ("\n= EssDemoApp request is now running");
long myRequestId = requestExecutionContext.getRequestId();
sb.append ("\n= Request Id = " + myRequestId);
sb.append ("\n= Request Properties:");
for (String paramKey : requestParameters.getNames()) {
Object paramValue = requestParameters.getValue (paramKey) ;
sb.append ("\n=\t (" + paramKey + ", " + paramValue + ")");
}
sb.append ("\n=") ;
sb.append ("\n==================================") ;
Logger logger = Logger.getLogger ("oracle.apps.ess.howto");
logger.info(sb.toString());
}

5.9.1.5 Creating Metadata for the Back-End Hosting Application

To use the Oracle Enterprise Scheduler split application to submit a job request you
need to create metadata that defines a job request, including the following:

5-42 Web User Interface Developer's Guide for Oracle Application Development Framework

Using Submitting and Hosting Split Applications

A job type: this specifies an execution type and defines a common set of
parameters for a job request.

A job definition: this is the basic unit of work that defines a job request in Oracle
Enterprise Scheduler.

Note: For Oracle Fusion Applications use cases, use the prepackaged
Oracle Enterprise Scheduler job types instead of creating your own.
For demonstration purposes, you will create your own job type.

To create metadata for the back-end hosting application:

1.
2
3.

© N o

10.
11.
12.

13.
14.
15.

In the Application Navigator, right-click the SuperEss project and choose New.
In the New Gallery, select the All Technologies tab.

Expand Business Tier, select Enterprise Scheduler Metadata and then Job Type,
and click OK.

In the Create Job Type dialog, specify the following:

a. Inthe Name field, enter HelloWorldJobType.

b. In the Package field, enter /oracle/apps/ess/howto/.

c. Select JAVA_TYPE from the Execution Type dropdown list.

d. Click OK. This creates the HelloWorldJobType.xml file and Oracle JDeveloper
displays the file in the editor.

In the editor window, set the description to HelloWorld Example.
Set the class name to oracle.apps.ess.howto.HelloWorldJob.
In the Application Navigator, right-click the SuperEss project and choose New.

Expand Business Tier, select Enterprise Scheduler Metadata and then Job
Definition, and click OK.

In the Create Job Definition dialog, specify the following:
Set the name to HelloWorldJobDef.

a
b. Set the package to /oracle/apps/ess/howto/.

o

Set the job type to /oracle/apps/ess/howto/HelloWorldJobType.

e

Click OK. This creates the HelloWorldJobDef .xml file and Oracle JDeveloper
displays the file in the editor.

In the editor window, set the description to HelloWorld Example.
Click the Add icon in the System Properties section.

In the Add System Property dialog, select SYS_effectiveApplication from the
Name dropdown list.

Set the initial value to EssDemoApp and click OK.
Click the Add icon in the Access Control section.

In the Add Access Control dialog, ensure that EssDemoApp role is selected in the
Role dropdown list.

This is the role that you created in Section 5.9.1.2, "Configuring Security for the
Back-End Hosting Application."

Use Case Oracle Enterprise Scheduler Sample Application (Deprecated) 5-43

Using Submitting and Hosting Split Applications

16. Select Read and select Execute.

17. Click OK.

5.9.1.6 Assembling the Back-End Hosting Application for Oracle Enterprise
Scheduler

After you create the back-end sample application you use Oracle JDeveloper to
assemble the application.

To assemble the back-end application you do the following:
n Create the EJB Java Archive
» Create the application MAR and EAR files

5.9.1.6.1 How to Assemble the EJB JAR File for the Back-End Hosting Application The EJB
Java archive file includes descriptors for the Java job implementations.

To assemble the EJB JAR file for the back-end hosting application:

1. In Application Navigator, right-click the SuperEss project and select Rebuild
SuperEss.jpr.

In the Messages Log you should see a successful compilation message, for
example:

[3:40:22 PM] Successful compilation: 0 errors, 0 warnings.

2. In Application Navigator, right-click the SuperEss project and choose New.

3. In the New Gallery, expand General, select Deployment Profiles and then EJB
JAR File, and click OK.

4. In the Create Deployment Profile dialog, set the Deployment Profile Name to
JAR_SuperEssEjbJar.

5. Optionally, in the Edit EJB JAR Deployment Profile Properties dialog, expand File
Groups, expand Project Output, and select Filters and clear the essmeta check
box.

Clearing this check box prevents the JAR file from being cluttered with
unnecessary XML files and reduces the overall memory footprint.

6. On the EJB JAR Deployment Profile Properties dialog, click OK.
7. On the Project Properties dialog, click OK.
5.9.1.6.2 How to Assemble the MAR and EAR Files for the Back-End Hosting Application The

sample application needs to contain the MAR profile and the EAR file that assembles
the back-end application.

To create the MAR and EAR files for the back-end hosting application:
1. From the main menu, choose Application Menu > Application Properties...

2. In the Application Properties dialog, click the Deployment navigation tab and
click New.

3. In the Create Deployment Profile dialog, select MAR File from the Archive Type
dropdown list.

4. In the Name field, enter MAR_EssDemoAppMar and click OK.

5-44 Web User Interface Developer's Guide for Oracle Application Development Framework

Using Submitting and Hosting Split Applications

10.

11.
12.
13.

14.
15.

16.

17.
18.

In the Edit MAR Deployment Profile dialog, expand Metadata File Groups and
click User Metadata.

Click Add.
In the Add Contributor dialog add the essmeta directory.

For example, if your work space is at /tmp/EssDemoApp, then the directory to add
is /tmp/EssDemoApp/SuperEss/essmeta.

On the Add Contributor dialog, click OK.

In the navigator expand Metadata File Groups and User Metadata and select
Directories.

Expand the directories and select the deepest directory of the package name,
which is the howto directory.

The directory that you select forms the MDS namespace. In order to avoid
conflicts, you must select the most specific namespace.

Click OK.
In the Deployment page of the Application Properties dialog, click New.

In the Create Deployment Profile dialog, select EAR File from the Archive Type
dropdown list.

In the Name field, enter EAR_EssDemoAppEar and click OK.

In the Edit EAR Deployment Profile dialog, click the General navigation tab and
enter EssDemoApp in the Application Name field.

Click the Application Assembly navigation tab, then select MAR_ESSDemoAppMar
and select JAR_SuperEssEjbJar.

Click OK.
In the Application Properties dialog, click OK.

5.9.1.7 Deploying the Back-End Hosting Application

After assembling the application, you can deploy it to the server.

To deploy the back-end hosting application:

1.
2
3.

From the main menu, choose Application > Deploy > EAR_EssDemoAppEar...
Set up and deploy the application to a container.

When the Deployment Configuration dialog appears, make a note of the default
values, but do not change them.

5.9.2 How to Create the Front-End Submitter Application for Oracle Enterprise

Scheduler

In an Oracle Enterprise Scheduler split application you use the Oracle Enterprise
Scheduler APIs to submit job requests from a front-end application. The EssDemoAppUT
application provides a Java servlet for a servlet based user interface for submitting job
requests (using Oracle Enterprise Scheduler).

To create the front-end submitter sample application you do the following:

Create a front-end application and project.

Configure the ejb-jar.xml file.

Use Case Oracle Enterprise Scheduler Sample Application (Deprecated) 5-45

Using Submitting and Hosting Split Applications

n Create the web project

= Configure security.

n Create the HTTP servlet.

» Edit the web.xmnl file.

s Edit the weblogic-application.xml file.
s Edit the adf-config file.

= Assemble the application.

= Deploy the application.

5.9.2.1 Creating the Front-End Submitter Application

You use JDeveloper to build the front-end submitter application using similar steps as
you used for the back-end hosting application.

To create the front-end submitter application:

1. Complete the steps in Section 5.9.1.1, "Creating the Back-End Hosting Application”
but this time use ESSDemoAppUTI as the name of the application.

2. In the Application Navigator, right-click the SuperEss project and choose New.
3. Inthe New Gallery, select General, select Folder, and click OK.

4. Set the folder name to essmeta and click OK.

5.9.2.2 Configuring the ejb-jar.xml File for the Front-End Submitter Application

You need to add entries to the ejb-jar.xml file to enable asynchronous Java jobs to
notify the Oracle Enterprise Scheduler of its status and to enable users to interact with
executable operations, such as submitting operations, and with Oracle Enterprise
Scheduler metadata, such as job definitions. You also need to indicate which stripe to
use.

To define the deployment descriptors for the front-end submitter application:

1. In the Application Navigator, expand SuperEss, expand Application Sources,
expand META-INF, and double-click ejb-jar.xml.

2. Replace the contents of the file with the XML shown in Example 5-10

Example 5-10 Contents to Copy to ejb-jar.xml for a Front-End Submitter Application

<?xml version = '1.0' encoding = 'UTF-8'?>
<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd"
version="3.0">
<display-name>ESS</display-name>

<enterprise-beans>
<!-- Note that the UI application does NOT have a message driven bean.
- This is because the UI application does not run any jobs. The UI
- application does have the other EJBs.

-=>

<!-- The AsyncBean allows asynchronous Java jobs to notify

5-46 Web User Interface Developer's Guide for Oracle Application Development Framework

Using Submitting and Hosting Split Applications

- Oracle Enterprise Scheduler of its status through Java EE EJB APIs.
- It is recommended to instead use the WebService callback pattern

- instead of the EJB callbacks wherever possible.

->

<session>

<

<

description>Async Request Bean</description>
ejb-name>AsyncRequestBean</ejb-name>

<ejb-class>oracle.as.scheduler.ejb.AsyncRequestBean</ejb-class>

</session>
<!-- The Runtime Service allows users to interact with an Executable.
- Operations include submitting, cancelling, querying, etc.
-
<session>
<description>Runtime Session Bean</description>
<ejb-name>RuntimeServiceBean</ejb-name>
<ejb-class>oracle.as.scheduler.ejb.RuntimeServiceBean</ejb-class>
</session>
<!-- The Metadata Service allows users to interact with
- Oracle Enterprise Scheduler, metadata, including job definitions,
- job sets, job types, schedules, and so on.
- Operations include reading, writing, querying, copying, deleting,
- and so on.
-
<gession>
<description>Metadata Session Bean</description>
<ejb-name>MetadataServiceBean</ejb-name>
<ejb-class>oracle.as.scheduler.ejb.MetadataServiceBean</ejb-class>
</session>
</enterprise-beans>
<!--

-=>

<inte

The JPS interceptor is used by JPS (Java Platform Security) in order to
perform security checks. The "stripe name" is usually associated with
the application name but some groups split their security permissions

between Oracle ADF grants and Oracle Enterprise Scheduler grants, thereby

creating two stripes. For example, the Oracle ADF grants would live
in the "MyApp" stripe while the Oracle Enterprise Scheduler
grants would live in the "MyAppEss".

Note: For this example, we will use only 1 stripe.

Note: When creating jps-config.xml through JDev, it will create
default security context using the JDev workspace name. In
order to simplify things, we will use the JDev workspace name
as our value. Otherwise, you will have to rename the security
context created by JDev or create your own.

rceptors>

<interceptor>

<interceptor-class>oracle.security.jps.ee.ejb.JpsInterceptor</interceptor-class>

<

env-entry>
<env-entry-name>application.name</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>EssDemoApp</env-entry-value>
<injection-target>

Use Case Oracle Enterprise Scheduler Sample Application (Deprecated)

5-47

Using Submitting and Hosting Split Applications

<injection-target-class>oracle.security.jps.ee.ejb.JpsInterceptor</injection-targe
t-class>

<injection-target-name>application_name</injection-target-name>
</injection-target>
</env-entry>
</interceptor>

</interceptors>

</ejb-jar>

5.9.2.3 Creating the SuperWeb Project

You need to create a web project for the servlet.

To create the SuperWeb project:

1.
2.

Right-click the SuperEss project and choose New.

In the New Gallery, expand General, select Projects and then Generic Project, and
click OK.

In the Name your application page of the Create Generic Application wizard, set
the Application Name field to Superiieb.

In the Name your project page, set the Project Name to SuperEss.
Add the JSP and Servlets technology to the project.

In the Project Java Settings page, change the default package to
oracle.apss.ess.howto and click Finish.

In the Application Navigator, right-click the SuperWeb project and choose Project
Properties.

Click the Libraries and Classpath navigation tab.

Click Add Library, select ADF Web Runtime and Enterprise Scheduler
Extensions, and click OK.

5.9.2.4 Configuring Security for the Front-End Submitter Application

You need to configure security for the application. You do not have to create any users
or roles as the EssDemoAppUI application will simply share the users and roles
created by the EssDemoApp application.

To configure security for the front-end submitter application:

1.
2.

Select Application > Secure > Configure ADF Security from the main menu.

In the ADF Security page of the Configure ADF Security wizard, select ADF
Authentication.

In the Authentication Type page, select SuperWeb.jpr from the Web Project
dropdown list.

Select HTTP Basic Authentication.
Click Finish.

A file named jps-config.xml is generated. You can find this file in the
Application Resources panel by expanding Descriptors, and expanding
META-INF.

5-48 Web User Interface Developer's Guide for Oracle Application Development Framework

Using Submitting and Hosting Split Applications

5.9.2.5 Creating the HTTP Servlet for the Front-End Submitter Application
Normally, more complex user interfaces that are built on heavy weight frameworks
such as Oracle Application Development Framework are employed, but for the sake of
simplicity, you use a basic HTTP servlet for the submitter application.

To create the HTTP Servlet for the front-end submitter application:

1.
2.

Right-click the SuperEss project and choose New.

In the New Gallery, expand Web Tier, select Servlets and then HTTP Servlet, and
click OK.

In the Web Application page of the Web Application wizard, select Servlet
2.5\JSP 2.1 (Java EE 1.5).

In the Create HTTP Servlet - Step 1 of 3: Servlet Information page, enter
EssDemoAppServlet in the Class field.

Enter oracle.apps.ess.howto in the Package field and click Next.
Click Finish.

In the source editor, replace the contents of ESSDemoAppServletjava with the
code in Example 5-11.

Example 5-11 HTTP Servlet Code for the Front-End Submitter Application

package oracle.apps.ess.howto;

import java.io.IOException;
import java.io.PrintWriter;
import java.io.StringWriter;

import java.util.ArrayList;
import java.util.Calendar;
import java.util.Enumeration;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;

import java.util.ListIterator;
import java.util.Map;

import java.util.Set;

import java.util.SortedSet;
import java.util.TreeSet;
import java.util.logging.Level;
import java.util.logging.Logger;
import java.util.regex.Pattern;

import javax.servlet.ServletConfig;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

import oracle.as.scheduler.MetadataObjectId;

import oracle.as.scheduler.MetadataObjectId.MetadataObjectType;
import oracle.as.scheduler.MetadataService;

import oracle.as.scheduler.MetadataService.QueryField;

import oracle.as.scheduler.MetadataServiceHandle;

import oracle.as.scheduler.RequestDetail;

import oracle.as.scheduler.RequestParameters;

Use Case Oracle Enterprise Scheduler Sample Application (Deprecated) 5-49

Using Submitting and Hosting Split Applications

import oracle.as.scheduler.RuntimeService;
import oracle.as.scheduler.RuntimeServiceHandle;
import oracle.as.scheduler.State;

import oracle.as.scheduler.core.JdndiUtil;

public class EssDemoAppServlet extends HttpServlet {
@SuppressWarnings ("compatibility:4685800289380934682")
private static final long serialVersionUID = 1L;

private static final String CONTENT TYPE = "text/html; charset=UTF-8";
private static final String MESSAGE_KEY = "Message";
private static final String PATH_SUBMIT = "/submitRequest";
private static final String PATH_ALTER = "/alterRequest";
private static final String MDO_SEP = ";";
private static final String ACTION_CANCEL = "Cancel";
private static final String ESS_UNAVAIL_MSG =
"<p>Enterprise Scheduler Service is currently unavailable. Cause: %s</p>";

private enum PseudoScheduleChoices {
Immediately (0),
InTenSeconds (10),
InTenMinutes (10 * 60);

@SuppressWarnings ("compatibility:-5637079380819677366")
private static final long serialVersionUID = 1L;

private int m_seconds;
private PseudoScheduleChoices (int seconds) {

m_seconds = seconds;

public int getSeconds() {
return m_seconds;

public EssDemoAppServlet() throws ServletException {
super () ;

@override
public void init(ServletConfig config) throws ServletException {
super.init (config) ;

@override
public void doGet (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

response.setContentType (CONTENT_TYPE) ;

HttpSession session = request.getSession(true);
String lastMessage = String.valueOf (session.getAttribute (MESSAGE_KEY)) ;

5-50 Web User Interface Developer's Guide for Oracle Application Development Framework

Using Submitting and Hosting Split Applications

if ("null".equals(lastMessage)) {
lastMessage = "";

try {
RuntimelLists runtimeLists = getRuntimeLists();
MetadataLists metadatalists = getMetadataLists();
renderResponse (metadatalists, runtimeLists,

request, response, lastMessage);

} catch (ServletException se) {
throw se;

} catch (Exception e) {
throw new ServletException(e);

@override
public void doPost (HttpServletRequest request,

/**

HttpServletResponse response)
throws ServletException, IOException

response.setContentType (CONTENT_TYPE) ;
request.setCharacterEncoding ("UTF-8") ;

HttpSession session = request.getSession(true);
String pathInfo = request.getPathInfo();

// Clear the message on every post request
StringBuilder message = new StringBuilder("");

try {
// Select each handler based on the form action
if ("".equals(pathInfo)) {

// No processing
} else if (PATH_SUBMIT.equals(pathInfo)) {
postSubmitRequest (request, message);
} else if (PATH_ALTER.equals(pathInfo)) {
postAlterRequest (request, message) ;
} else {
message.append (String. format ("<p>No handler for pathInfo=%s</p>",
pathInfo));

}

catch (ServletException se) {
Throwable t = se.getCause();
String cause = (t == null) ? se.toString() : t.toString();
message.append (String.format (ESS_UNAVAIL_MSG, cause));

// Storing the messages in the session allows them to persist
// through the redirect and across refreshes.
session.setAttribute (MESSAGE_KEY, message.toString());

// render the page by redirecting to doGet(); this intentionally

// strips the actions and post data from the request.

response.sendRedirect (request.getContextPath() +
request.getServletPath());

Use Case Oracle Enterprise Scheduler Sample Application (Deprecated)

5-51

Using Submitting and Hosting Split Applications

* Handle the job submission form.

* @param request

* @param message

* @throws ServletException

*/

private void postSubmitRequest (HttpServletRequest request,
StringBuilder message)

throws ServletException

String jobDefName = request.getParameter ("job");
String scheduleDefName = request.getParameter ("schedule");

// Various required args for submission
Calendar start = Calendar.getInstance();
start.add(Calendar.SECOND, 2);

// Launch the job based on form contents
if (jobDefName == null || scheduleDefName == null) {
message.append ("Both a job name and a schedule name must be
specified\n");
} else {
PseudoScheduleChoices pseudoSchedule = null;

// See if schedule given is actually a pseudo schedule
try {

pseudoSchedule = PseudoScheduleChoices.valueOf (scheduleDefName) ;
} catch (IllegalArgumentException e) {

// The string is not a valid member of the enum

pseudoSchedule = null;

MetadataObjectId scheduleDefId = null;
String scheduleDefNamePart = null;
MetadataObjectId jobDefId = stringToMetadataObjectId(jobDefName) ;

// Don't look up schedules that aren't real

if (pseudoSchedule != null) {
scheduleDefNamePart = scheduleDefName;
start.add(Calendar.SECOND, pseudoSchedule.getSeconds());

} else {
scheduleDefId = stringToMetadataObjectId(scheduleDefName) ;
scheduleDefNamePart = scheduleDefId.getNamePart();

String jobDefNamePart = jobDefId.getNamePart();
String requestDesc = jobDefNamePart + "@" + scheduleDefNamePart;

Logger logger = getLogger();
long requestId = submitRequest (pseudoSchedule, requestDesc,
jobDefId, scheduleDefId, start,
logger) ;

// Populate the message block based on results
message.append (String. format ("<p>New request %d launched using
%s</p>",
requestId, requestDesc));

5-52 Web User Interface Developer's Guide for Oracle Application Development Framework

Using Submitting and Hosting Split Applications

private Long submitRequest (final PseudoScheduleChoices pseudoSchedule,
final String requestDesc,
final MetadataObjectId jobDefId,
final MetadataObjectId scheduleDefId,
final Calendar start,
final Logger logger)
throws ServletException

{
RuntimeServicePayload<Long> myPayload = new RuntimeServicePayload<Long>
@override
Long execute (RuntimeService service,
RuntimeServiceHandle handle,
Logger logger)
throws Exception
{
RequestParameters params = new RequestParameters();
return (null != pseudoSchedule)
? service.submitRequest (handle, requestDesc, jobDefId,
start, params)
service.submitRequest (handle, requestDesc, jobDefId,
scheduleDefId, null,
start, null, params);
}
}i
try {
return performOperation(myPayload, logger);
} catch (Exception e) {
throw new ServletException("Error submitting request using job: " +
jobDefId + " and schedule: " +
scheduleDefId, e);
}
}
/**

* Handle the "Cancel" and "Purge" actions from the form enclosing
* the Request Status table.
* @param request
* @param message
* @throws ServletException
*/
private void postAlterRequest (HttpServletRequest request,
StringBuilder message)
throws ServletException

String cancelID = null;

* there are a few assumptions going on here...

* the HTTP button being used to transmit the action and

* request is backwards from its normal usage (eg. the name

* should be invariable, and the value variable). Because we

* want to display either "Purge" or "Cancel" on the button, and
* transmit the reqgId with it, we are reversing the map entry

* to get the key (which in this case will be the reqID), and

* match it to the value (Purge or Cancel).

* Assumptions are that there will be only one entry in the map
* per request (one purge or cancel). Also, that the datatypes

Use Case Oracle Enterprise Scheduler Sample Application (Deprecated)

()

5-53

Using Submitting and Hosting Split Applications

* for the key and value willl be those documented for
* ServletRequest (<K,V> = <String, String[]>).
*/
Map requestMap = request.getParameterMap() ;
Iterator maplter = requestMap.entrySet().iterator();
while (mapIter.hasNext()) {
Map.Entry entry = (Map.Entry)mapIter.next();
String key = (String)entry.getKey();
String[] values = (String[])entry.getValue();
if (ACTION_CANCEL.equals(values[0])) {
cancelID = key;

if (cancelID != null) {
try {
final String cancelId2 = cancellD;
RuntimeServicePayload<Void> myPayload = new
RuntimeServicePayload<Void> () {

@Override
Void execute (RuntimeService service,
RuntimeServiceHandle handle,
Logger logger)
throws Exception

service.cancelRequest (handle, Long.valueOf (cancelId?2));
return null;

}i

Logger logger = getLogger () ;
performOperation (myPayload, logger);
message.append

(String. format ("<p>Cancelled request %s</p>", cancellD));
} catch (Exception e) {
throw new ServletException
("Error canceling or purging request", e);

}
} else {

message.append ("<p>No purge or cancel action specified</p>");

private String metadataObjectIdToString(MetadataObjectId mdoID)
throws ServletException {

String mdoString =

mdoID.getType() .value() + MDO_SEP + mdoID.getPackagePart() +
MDO_SEP + mdoID.getNamePart () ;

return mdoString;

private MetadataObjectId stringToMetadataObjectId(String mdoString)
throws ServletException {

String[] mdoStringParts = mdoString.split(Pattern.quote (MDO_SEP));
if (mdoStringParts.length != 3) {

throw new ServletException(String.format ("Unexpected number of
components %d found " +

"when converting %s to

5-54 Web User Interface Developer's Guide for Oracle Application Development Framework

Using Submitting and Hosting Split Applications

MetadataObjectID",

/**

*

*

*/

mdoStringParts.length,
mdoString)) ;

MetadataObjectType mdType =
MetadataObjectType.getMOType (mdoStringParts[0]);

String mdPackage = mdoStringParts([1];

String mdName = mdoStringParts[2];

MetadataObjectId mdoID =
MetadataObjectId.createMetadataObjectId (mdType, mdPackage, mdName);
return mdoID;

this changes the format used in this class for job definitions to the one
which will be used in the runtime query.

@param strMetadataObject

@return string representing object in runtime store

@throws ServletException

private String fixMetadataString(String strMetadataObject)

throws ServletException {
String fslash = "/";
String[] mdoStringParts =
strMetadataObject.split (Pattern.quote (MDO_SEP)) ;
if (mdoStringParts.length != 3) {
throw new ServletException(String.format ("Unexpected number of

components %d found " +

"when converting %s to

MetadataObjectID",

mdoStringParts.length,
strMetadataObject)) ;
}
String[] trimStringParts = new String[mdoStringParts.length];
for (int 1 = 0; i < mdoStringParts.length; i++) {
String mdoStringPart = mdoStringParts[i];
trimStringParts[i] = mdoStringPart.replaceAll(fslash, " ").trim();

MetadataObjectType mdType =
MetadataObjectType.getMOType (trimStringParts([0]) ;
String mdPackage = fslash + trimStringParts[1];
String mdName = trimStringParts([2];
MetadataObjectId metadataObjId =
MetadataObjectId.createMetadataObjectId (mdType, mdPackage, mdName);
return metadataObjId.toString();

private Set<String> getSetFromMetadataEnum (Enumeration<MetadataObjectId>
enumMetadata)

throws ServletException {
Set<String> stringSet = new HashSet<String>();

while (enumMetadata.hasMoreElements()) {
MetadataObjectId objId = enumMetadata.nextElement () ;
String strNamePart = objId.getNamePart();
stringSet.add(strNamePart) ;

Use Case Oracle Enterprise Scheduler Sample Application (Deprecated) 5-55

Using Submitting and Hosting Split Applications

return stringSet;

}
//**
//

// HTML Rendering Methods

//

//**

* Rendering code for the page displayed.
* In a real application this would be done using JSP, but this approach
* keeps everything in one file to make the example easier to follow.
* @param response The response object from the main request.
* @param message Text that will appear in the message panel, may contain HTML
* @throws IOException
*/
private void renderResponse (MetadataLists ml,
RuntimeLists rl,
HttpServletRequest request,
HttpServletResponse response,
String message)
throws IOException, ServletException

{

response.setContentType (CONTENT_TYPE) ;

PrintWriter out = response.getWriter();

String urlBase = request.getContextPath() + request.getServletPath();

// Indents maintained for clarity

out.println("<html>");

out.println("<head><title>EssDemo</title></head>");

out.println("<body>");

out.println("<table align=\"center\"><tbody>");

out.println(" <tr><td align=\"center\"><hl>Oracle Enterprise Scheduler
Tutorial</hl></td></tr>");

out.println(" <tr><td align=\"center\"><table cellspacing=6><tr>");

// Job launch form

out.println(" <td align=\"center\">");

out.println(" <h2>Launch Job</h2>");

renderLaunchJobForm(ml, out, urlBase);

out.println(" </td>");

out.println(" <td align=\"center\" bgcolor=\"blue\" width=\"2\"/>");

out.println(" </tr></table></td></tr>");
out.println(" <tr><td bgcolor=\"red\"/></tr>");

// Message panel

out.println(" <tr><td align=\"center\"><h3>Messages</h3></td></tr>");
out.println(" <tr><td>");

out.println(message);

out.println(" </td></tr>");

out.println(" <tr><td bgcolor=\"red\"/></tr>");

// Request status
out.println(" <tr><td align=\"center\">");

5-56 Web User Interface Developer's Guide for Oracle Application Development Framework

Using Submitting and Hosting Split Applications

out.println(" <form name=\"attrs\" action=\"" + urlBase +
PATH_ALTER + "\" method=\"post\">");

out.println(" <h2>Request Status</h2>");

out.println(" <table border=2><tbody>") ;

out.println(" <th>reqID</th>");

out.println(" <th>Description</th>");

out.println(" <th>Scheduled time</th>");

out.println(" <th>State</th>");

out.println(" <th>Action</th>");

renderStatusTable (out, rl.requestDetails);

out.println(" </tbody></table>") ;
out.println(" </form>");
out.println(" </td></tr>");
out.println("</tbody></table>");
out.println("</body></html>");
out.close();

private void renderLaunchJobForm(Metadatalists ml, PrintWriter out, String
urlBase)
throws ServletException {

out.println(" <form name=\"attrs\" action=\"" + urlBase +
PATH_SUBMIT + "\" method=\"post\">");

out.println(" <table><tbody>") ;

out.println(" <tr><td align=\"right\">");

out.println(" Job:");

out.println(" <select name=\"job\">");

renderMetadataChoices (out, ml.jobDefList, false);
renderMetadataChoices (out, ml.jobSetList, false);

out.println(" </select>");

out.println(" </td></tr>");

out.println(" <tr><td align=\"right\">");
out.println(" Schedule:");
out.println(" <select name=\"schedule\">");

renderPseudoScheduleChoices (out) ;
renderMetadataChoices (out, ml.scheduleList, false);

out.println(" </select>");
out.println(" </td></tr>");
out.println(" <tr><td align=\"center\">");
out.println(" <input name=\"submit\" value=\"Submit\"
type=\"submit\">");
out.println(" </td></tr>");
out.println(" </tbody></table>");
out.println(" </form>") ;
}
/**

*

* @param out - printwriter

* @param jobChoices -- metadata to be displayed

* @param bBlankFirst -- blank first (so that this param is not required)
* @throws ServletException

*/

private void renderMetadataChoices (PrintWriter out,

Use Case Oracle Enterprise Scheduler Sample Application (Deprecated)

5-57

Using Submitting and Hosting Split Applications

Enumeration<MetadataObjectId> jobChoices,
boolean bBlankFirst)
throws ServletException

{
if (jobChoices == null)
return;
boolean bFirst = true;
while (jobChoices.hasMoreElements()) {
MetadataObjectId job = jobChoices.nextElement () ;
String strJob = metadataObjectIdToString(job);
String strNamePart = job.getNamePart();
if (strNamePart.compareTo ("BatchPurgeJob") == 0) {
continue;
} else {
if (bFirst && bBlankFirst) {
out.printf ("<option value=\"%s\">%s</option>", "", "");
bFirst = false;
}
out.printf ("<option value=\"%s\">%s</option>", strJob,
strNamePart) ;
}
}
}
/**

* helper method for rendering choices based on strings, adding an empty
* string to the beginning of the list
* @param out
* @param choices
*/
private void renderStringChoices (PrintWriter out, Set<String> choices) {
if (choices == null)
return;

choices.add("");
SortedSet<String> sorted = new TreeSet<String> (choices);
Iterator choicelter = sorted.iterator();
while (choiceIter.hasNext()) {
String choice = (String)choicelter.next();

out.printf ("<option value=\"%s\">%s</option>", choice, choice);

private void renderPseudoScheduleChoices (PrintWriter out) {
for (PseudoScheduleChoices c¢ : PseudoScheduleChoices.values()) {
out.printf ("<option value=\"%s\">%s</option>", c, c);

private void renderStatusTable
(PrintWriter out, List<RequestDetail> regDetails)

if (regDetails == null) {
return;

for (RequestDetail regDetail : regDetails) {
State state = regDetail.getState();

5-58 Web User Interface Developer's Guide for Oracle Application Development Framework

Using Submitting and Hosting Split Applications

Calendar scheduledTime = regDetail.getScheduledTime() ;
String scheduledTimeString = null;

if (scheduledTime == null) {
scheduledTimeString = "null scheduled time";
} else {
scheduledTimeString = String.valueOf (scheduledTime.getTime());

final String actionButton;
if (!state.isTerminal()) {
String action = ACTION_CANCEL;
String reqId = String.valueOf (regDetail.getRequestId());
actionButton = String.format
("<button type=submit value=%s name=\"%s\">%s</button>",
action, regId, action);
} else {
actionButton = " ";

out.printf ("<tr><td>%d</td><td>%s</td><td>%s</td><td>%s</td><td>%s</td></tr>\n",
regDetail.getRequestId(), regDetail.getDescription(),
scheduledTimeString, state, actionButton);

private MetadataService getMetadataService() throws Exception {
return JndiUtil.getMetadataServiceEJB();

private RuntimeService getRuntimeService() throws Exception {
return JndiUtil.getRuntimeServiceEJB() ;

private abstract class Payload<SERVICE, HANDLE, RETURN> ({
abstract SERVICE getService() throws Exception;
abstract HANDLE getHandle (SERVICE service) throws Exception;
abstract void closeHandle (SERVICE service,
HANDLE handle,
boolean abort)
throws Exception;

abstract RETURN execute (SERVICE service, HANDLE handle, Logger logger)
throws Exception;

private abstract class MetadataServicePayload<T>
extends Payload<MetadataService, MetadataServiceHandle, T>

@override
MetadataService getService() throws Exception {
return getMetadataService();

@Override

MetadataServiceHandle getHandle (MetadataService service)
throws Exception

Use Case Oracle Enterprise Scheduler Sample Application (Deprecated) 5-59

Using Submitting and Hosting Split Applications

return service.open();

@Ooverride
void closeHandle (MetadataService service,
MetadataServiceHandle handle,
boolean abort)
throws Exception

service.close(handle, abort);

private abstract class RuntimeServicePayload<T>
extends Payload<RuntimeService, RuntimeServiceHandle, T>

@Override
RuntimeService getService() throws Exception {
return getRuntimeService();

@Ooverride
RuntimeServiceHandle getHandle (RuntimeService service)
throws Exception

return service.open();

@override
void closeHandle (RuntimeService service,
RuntimeServiceHandle handle,
boolean abort)
throws Exception

service.close(handle, abort);

private <S, H, R> R performOperation
(Payload<S, H, R> payload, Logger logger)
throws Exception

S service = payload.getService();
H handle = payload.getHandle(service);

Exception origException = null;
try {

return payload.execute(service, handle, logger);
} catch (Exception e2) {

origException = e2;

throw e2;
} finally {
if (null != handle) {
try {
boolean abort = (null != origException);

payload.closeHandle (service, handle, abort);
} catch (Exception e2) {
if (null != origException) {
logger.log(Level .WARNING, "An error occurred while " +
"closing handle, however, a previous failure was " +

5-60 Web User Interface Developer's Guide for Oracle Application Development Framework

Using Submitting and Hosting Split Applications

"detected. The following error will be logged " +
"but not reported: " + stackTraceToString(e2));

private final String stackTraceToString(Exception e) {

StringWriter sw = new StringWriter();
PrintWriter pw = new PrintWriter (sw);
e.printStackTrace (pw) ;

pw.flush();

pw.close();

return sw.toString();

private Logger getLogger () {

return Logger.getLogger (this.getClass () .getName());

private class MetadataLists {

private final Enumeration<MetadataObjectId> jobDefList;
private final Enumeration<MetadataObjectId> jobSetList;
private final Enumeration<MetadataObjectId> schedulelList;
private final Enumeration<MetadataObjectId> jobTypelList;

private MetadataLists (Enumeration<MetadataObjectId> jobDefList,
Enumeration<MetadataObjectId> jobSetList,
Enumeration<MetadataObjectId> scheduleList,
Enumeration<MetadataObjectId> jobTypeList)

this.jobDefList = jobDefList;
this.jobSetList = jobSetList;
this.scheduleList = scheduleList;
this.jobTypelList = jobTypelList;

private class RuntimeLists {

private final List<RequestDetail> requestDetails;
private final Set<String> applicationChoices;

private final Set<String> stateChoices;

private final Set<MetadataObjectId> jobDefMDOChoices;

private RuntimeLists(List<RequestDetail> requestDetails,
Set<String> applicationChoices,
Set<String> stateChoices,
Set<MetadataObjectId> jobDefMDOChoices)

super () ;

this.requestDetails = requestDetails;
this.applicationChoices = applicationChoices;
this.stateChoices = stateChoices;
this.jobDefMDOChoices = jobDefMDOChoices;

* Retrieve lists of jobs, schedules, and status for use by the renderer

Use Case Oracle Enterprise Scheduler Sample Application (Deprecated)

5-61

Using Submitting and Hosting Split Applications

* @throws ServletException
*/
private MetadatalLists getMetadataLists() throws Exception {
Logger logger = getLogger();

MetadataServicePayload<MetadataLists> myPayload =
new MetadataServicePayload<MetadatalLists> ()

@Override
Metadatalists execute (MetadataService service,
MetadataServiceHandle handle,
Logger logger)
throws Exception

Enumeration<MetadataObjectId> jobDefs =
service.queryJobDefinitions (handle, null, QueryField.NAME,

true) ;
Enumeration<MetadataObjectId> jobSets =
service.queryJobSets (handle, null, QueryField.NAME, true);
Enumeration<MetadataObjectId> schedules =
service.querySchedules (handle, null, QueryField.NAME, true);
Enumeration<MetadataObjectId> jobTypes =
service.queryJobTypes (handle, null, QueryField.NAME, true);
return new MetadataLists(jobDefs, jobSets, schedules, jobTypes);
}
}i
MetadataLists ml = performOperation(myPayload, logger);
return ml;
}

private RuntimeLists getRuntimeLists() throws Exception {
Logger logger = getLogger();

RuntimeServicePayload<List<RequestDetail>> myPayload2 =
new RuntimeServicePayload<List<RequestDetail>>()

@Override
List<RequestDetail> execute(RuntimeService service,
RuntimeServiceHandle handle,
Logger logger)
throws Exception

List<RequestDetail> regDetails =
new ArraylList<RequestDetail>(10);
Enumeration requestIds = service.queryRequests
(handle, null, RuntimeService.QueryField.REQUESTID, true);

while (requestIds.hasMoreElements()) {
Long reqgld = (Long)requestIds.nextElement/();
RequestDetail detail = service.getRequestDetail (handle,
reqld) ;
regDetails.add(detail);

return regDetails;
}i

List<RequestDetail> regDetails = performOperation (myPayload2, logger);
RuntimeLists rl = getRuntimeLists (regDetails);

5-62 Web User Interface Developer's Guide for Oracle Application Development Framework

Using Submitting and Hosting Split Applications

return rl;

}

private RuntimeLists getRuntimeLists (List<RequestDetail> regDetails) {
Set<String> applicationSet = new HashSet<String>(10);
Set<String> stateSet = new HashSet<String>(10);
Set<MetadataObjectId> jobDefMOSet = new HashSet<MetadataObjectId>(10);

if (regDetails != null) {

ListIterator detaillter = regDetails.listIterator();

while (detailIter.hasNext()) {
RequestDetail detail = (RequestDetail)detaillter.next();
applicationSet.add(detail.getDeployedApplication());
State state = detail.getState();
if (state.isTerminal())

stateSet.add(state.name()) ;

jobDefMOSet .add (detail.getJobDefn()) ;

}

RuntimeLists rl = new RuntimelLists
(regqDetails, applicationSet, stateSet, jobDefMOSet);
return rl;

5.9.2.6 Editing the web.xml File for the Front-End Submitter Application

You need to edit the web.xml file to and Oracle Enterprise Scheduler metadata and
runtime EJB references.

To edit the web.xml file for the front-end submitter application:

1. In the Application Navigator, expand SuperWeb, expand Web Content, expand
WEB-INF and double-click web.xml.

2. In the overview editor, click the References navigation tab and expand the EJB
References section.

3. Add two EJB resources with the information shown in Table 5-1.

Table 5-1 EJB Resources for the Front-End Submitter Application

Interface EJB

EJB Name Type Type Local/Remote Interface
ess/metadata Local Session oracle.as.scheduler.MetadataServiceLocal
ess/runtime Local Session oracle.as.scheduler.RuntimeServiceLocal

4. Click the Servlets navigation tab and click the Servlet Mappings tab.

5. Change the /essdemoappservlet URL pattern to /essdemoappservlet/*.

5.9.2.7 Editing the weblogic-application.xml file for the Front-End Submitter
Application

You need to create and edit the weblogic-application.xml file.

To edit the weblogic-application.xml file for the front-end submitter application:
1. In Application Navigator, right-click the SuperEss project and select New.

Use Case Oracle Enterprise Scheduler Sample Application (Deprecated) 5-63

Using Submitting and Hosting Split Applications

2. In the New Gallery, expand General, select Deployment Descriptors and then
Weblogic Deployment Descriptor, and click OK.

3. In the Select Descriptor page select weblogic-application.xml.
4. Click Next, click Next again, and click Finish.

5. In the source editor, replace the contents of the weblogic-application.xml file
that you just created with the XML shown in Example 5-12.

Example 5-12 Contents to Copy to weblogic-application.xml for a Front-End Submitter
Application

<?xml version = '1.0' encoding = 'UTF-8'?>
<weblogic-application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemalocation="http://www.bea.com/ns/weblogic/weblogic-application

http://www.bea.com/ns/weblogic/weblogic-application/1.0/weblogic-application.xsd"
xmlns="http://www.bea.com/ns/weblogic/weblogic-application">

<!-- The following application parameter tells JPS which stripe it should
- use to upload the jazn-data.xml policy. If this parameter is not
- specified, it will use the Java EE deployment name plus the version
- number (e.g. EssDemoApp#V2.0).

<application-param>
<param-name>jps.policystore.applicationid</param-name>
<param-value>EssDemoAppUI</param-value>
</application-param>

<!-- This listener allows JPS to configure itself and upload the
- jazn-data.xml policy to the appropriate stripe
-=>

<listener>

<listener-class>oracle.security.jps.wls.listeners.JpsApplicationLifecycleListener<
/listener-class>
</listener>

<!-- This listener allows MDS to configure itself and upload any metadata
- as defined by the MAR profile and adf-config.xml
-=>

<listener>

<listener-class>oracle.mds.lcm.weblogic.WLLifecycleListener</listener-class>
</listener>

<!-- This listener allows Oracle Enterprise Scheduler to configure itself
-—>

<listener>

<listener-class>oracle.as.scheduler.platform.wls.deploy.ESSApplicationLifecycleLis
tener</listener-class>
</listener>

<!-- This shared library contains all the Oracle Enterprise Scheduler classes
—-=>
<library-ref>
<library-name>oracle.ess.client</library-name>
</library-ref>

5-64 Web User Interface Developer's Guide for Oracle Application Development Framework

Using Submitting and Hosting Split Applications

<library-ref>
<library-name>adf.oracle.domain</library-name>
</library-ref>
</weblogic-application>

5.9.2.8 Editing the adf-config file for the Front-End Submitter Application

You need to edit the adf-config.xml file to tell the application to share the metadata
that was created in the hosting application.

To edit the adf-config.xml file for the front-end submitter application:

1. From the Application Resources panel, expand Descriptors, expand ADF
META-INF, and double-click adf-config.xml.

2. In the source editor, replace the contents of the adf-config.xml file with the XML
shown in Example 5-13.

Example 5-13 Contents to Copy to adf-config.xml for a Front-End Submitter Application

<?xml version="1.0" encoding="UTF-8" ?>
<adf-config xmlns="http://xmlns.oracle.com/adf/config">
<adf-security-child xmlns="http://xmlns.oracle.com/adf/security/config">
<JaasSecurityContext
initialContextFactoryClass="oracle.adf.share.security.JAASInitialContextFactory"

jaasProviderClass="oracle.adf.share.security.providers.jps.JpsSecurityContext"
authorizationEnforce="false"
authenticationRequire="true"/>
</adf-security-child>
<adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
<mds-config xmlns="http://xmlns.oracle.com/mds/config" version="11.1.1.000">
<persistence-config>
<metadata-namespaces>
<namespace metadata-store-usage="ess_shared metadata"
path="/oracle/apps/ess/howto" />
</metadata-namespaces>
<metadata-store-usages>
<metadata-store-usage default-cust-store="false" deploy-target="false"
id="ess_shared _metadata"/>
</metadata-store-usages>
</persistence-config>
</mds-config>
</adf-mds-config>
</adf-config>

5.9.2.9 Assembling the Front-End Submitter Application for Oracle Enterprise
Scheduler

After you create the front-end sample application you use Oracle JDeveloper to
assemble the application.

To assemble the back-end application you do the following:
n Create the EJB Java Archive

s Create the WAR file

» Create the application MAR and EAR files

Use Case Oracle Enterprise Scheduler Sample Application (Deprecated) 5-65

Using Submitting and Hosting Split Applications

5.9.2.9.1 How to Assemble the EJB JAR File for the Front-End Submitter Application The E]JB
Java archive file includes descriptors for the Java job implementations.

To assemble the EJB JAR File for the front-end submitter application:
1. In Application Navigator, right-click the SuperEss project and choose New.

2. In the New Gallery, expand General, select Deployment Profiles and then EJB
JAR File, and click OK.

3. In the Create Deployment Profile dialog, set the Deployment Profile Name to
JAR_SuperEssEjbJar.

4. On the Edit EJB JAR Deployment Profile Properties dialog, click OK.
5. On the Project Properties dialog, click OK.

5.9.2.9.2 How to Assemble the WAR File for the Front-End Submitter Application You need to
create a web archive file for the web application.

To assemble the WAR file for the front-end submitter application
1. In Application Navigator, right-click the SuperWeb project and choose New.

2. In the New Gallery, expand General, select Deployment Profiles and then WAR
File, and click OK.

3. In the Create Deployment Profile dialog, set the Deployment Profile Name to
WAR_SuperWebWar.

4. On the Edit WAR Deployment Profile Properties dialog, click the General
navigation tab, select Specify Java EE Web Context Root, and enter ESSDemoApp.

5. Click OK.
6. On the Project Properties dialog, click OK.
5.9.2.9.3 How to Assemble the MAR and EAR Files for the Front-End Hosting Application The

sample application needs to contain the MAR profile and the EAR file that assembles
the back-end application.

To create the MAR and EAR files for the front-end submitter application:
1. From the main menu, choose Application Menu > Application Properties...

2. In the Application Properties dialog, click the Deployment navigation tab and
click New.

3. In the Create Deployment Profile dialog, select MAR File from the Archive Type
dropdown list.

4. In the Name field, enter MAR_EssDemoAppUIMar and click OK.

5. Click OK.

6. In the Deployment page of the Application Properties dialog, click New.

7. In the Create Deployment Profile dialog, select EAR File from the Archive Type
dropdown list.

8. In the Name field, enter EAR_EssDemoAppUIEar and click OK.

9. In the Edit EAR Deployment Profile dialog, click the General navigation tab and
enter EssDemoAppUI in the Application Name field.

5-66 Web User Interface Developer's Guide for Oracle Application Development Framework

Using Submitting and Hosting Split Applications

10. Click the Application Assembly navigation tab, then select MAR_ESSDemoAppUIMar
and select JAR_SuperEssEjbJar.

11. Click OK.
12. In the Application Properties dialog, click OK.

5.9.2.10 Deploying the Back-End Hosting Application

After assembling the application, you can deploy it to the server.

To deploy the back-end hosting application:
1. From the main menu, choose Application > Deploy > EAR_EssDemoAppEar...

2. Set up and deploy the application to a container.

3. On the Deployment Configuration dialog, there should be two entries in the
Shared Metadata Repositories panel. Find the shared repository mapped to the
/oracle/apps/ess/howto namespace. Change its partition to the partition used
when deploying EssDemoApp. If you used the default value, this should be
EssDemoApp_V2.0.

4. Click OK.

Use Case Oracle Enterprise Scheduler Sample Application (Deprecated) 5-67

Using Submitting and Hosting Split Applications

5-68 Web User Interface Developer's Guide for Oracle Application Development Framework

6

Using the Metadata Service

This chapter describes how to use the Oracle Enterprise Scheduler Metadata Service to
save schedules, job definitions, and other Oracle Enterprise Scheduler metadata to a
repository. You can also use the Metadata Service query methods to list objects stored
in metadata.

This chapter includes the following sections:

» Section 6.1, "Introduction to Using the Metadata Service"

m Section 6.2, "Accessing the Metadata Service"

» Section 6.3, "Accessing the Metadata Service with Oracle JDeveloper"
= Section 6.4, "Querying Metadata Using the Metadata Service"

For information about how to create job definitions, see the following chapters:
Chapter 5, "Use Case Oracle Enterprise Scheduler Sample Application (Deprecated)",
Chapter 8, "Creating and Using PL/SQL Jobs", and Chapter 9, "Creating and Using
Process Jobs".

6.1 Introduction to Using the Metadata Service

Oracle Enterprise Scheduler provides the Metadata Service and exposes it to your
application program as a Stateless Session Enterprise Java Bean (E]B). The Metadata
Service allows you to save application-level metadata objects. The Metadata Service
uses Oracle Metadata Services (MDS) to save metadata objects to a repository (the
repository can be either database based or file based). The Metadata Service allows
you to reuse application-level metadata across multiple job request submissions.

Oracle Enterprise Scheduler metadata objects include the following:

= Application Level Metadata: You use the Metadata Service to store job type, job
definition, job set, and other application-level metadata object definitions for job
requests.

s Default (global) Oracle Enterprise Scheduler Metadata: The global Oracle
Enterprise Scheduler metadata includes administrative objects such as schedules,
workshifts and work assignments. Oracle Enterprise Scheduler provides
MetadataServiceMXBean and the MetadataServiceMXBeanProxy to access and store
default administrative objects

Note: Oracle Enterprise Scheduler Schedule objects are used both in
application-level metadata and in global metadata.

Using the Metadata Service 6-1

Introduction to Using the Metadata Service

Access to application level-metadata objects is exposed only with the MetadataService
interface. The MetadataService is exposed as a stateless session E]JB. External clients
must access the service only through the corresponding EJB. Clients should not
interact with the internal API layer directly. When an application client uses the
metadata service through the stateless session EJB, all the methods in this interface
accept a reference to a MetadataServiceHandle argument, which stores state across
multiple calls, for example when multiple methods are to be called within a user
transaction. The MBeanProxy interface does not require a handler.

In an Oracle Enterprise Scheduler application you do not need to access or manipulate
the MetadataServiceHandle. The application just needs to hold on to the reference
created by the open method and pass it in methods being called. Finally the handle
must explicitly be closed by calling the close method. Only upon calling the close
method will any changes made using a given handle be committed (or aborted).

Metadata object names must be unique within the scope of a given package or
namespace. Within a given package, two metadata objects with the same name and of
the same type cannot be created.

6.1.1 Introduction to Metadata Service Namespaces

Each Oracle WebLogic Server domain generally includes one metadata repository. A
metadata repository is divided into a number of partitions, where each partition is
independent and isolated from the others in the repository.

Each application can choose which partition to use. Two applications can also choose
to share a partition.

Within a partition, you can organize the data in any way. Usually, the data is
organized hierarchically like the file system of an operating system. Where a file
system uses folders or directories, the Metadata Service uses namespaces or package
names which form a unique name used to locate a file.

For all other Oracle Enterprise Scheduler applications, the application name and an
optional package name containing the application-level metadata displays under the
namespace /oracle/apps/ess. For example, the metadata repository for an
application named applicationl can be divided into packages with the names dev,
test, and production.

The metadata repository for this application has the following structure:

/oracle/apps/ess/applicationl/dev/metadata
/oracle/apps/ess/applicationl/test/metadata
/oracle/apps/ess/applicationl/production/metadata

Each Metadata Service method that creates a metadata object takes a required
packageName argument that specifies the package part of the directory structure.

6.1.2 Introduction to Metadata Service Operations

After you access an Oracle Enterprise Scheduler metadata repository you can perform
different types of Metadata Service operations, including;:

= Add, Update, Delete: These operations have transactional characteristics.
= Copy: These operations have transactional characteristics.

= Query: These operations have read-only characteristics and let you list metadata
objects in the metadata repository.

6-2 Web User Interface Developer's Guide for Oracle Application Development Framework

Accessing the Metadata Service

s Get: These operations have either read-only or transactional characteristics,
depending on the value of the forUpdate flag.

6.1.3 Introduction to Metadata Service Transactions

Because clients access the Metadata Service through a Stateless Session E]B, each
method uses a reference to a MetadataServiceHandle argument; this argument stores
state for Metadata Service operations. The Metadata Service open () method begins
each metadata repository user transaction. In an Oracle Enterprise Scheduler
application client you obtain a MetadataServiceHandle reference with the open()
method and you pass the reference to subsequent Metadata Service methods. The
MetadataServiceHandle reference provides a connection to the metadata repository
for the calling application.

In a client application that uses the Metadata Service you must explicitly close a
Metadata Service transaction by calling close (). This ends the transaction and causes
the transaction to be committed or rolled back (undone). The close () not only controls
the transactional behavior within the Metadata Service, but it also allows Oracle
Enterprise Scheduler to release certain resources. Thus, the close() is also required for
Metadata Service read-only query () and get() operations.

Note: The Metadata Service does not support JTA global
transactions, but you can still make Metadata Service calls in the
boundary of your transactions. While you can make Metadata Service
calls in bean/container managed transactions, the calls will not be
part of your transaction.

6.2 Accessing the Metadata Service
There are several ways to access the Metadata Service, including:

» Stateless Session EJB access: Use this type of access with Oracle Enterprise
Scheduler user applications.

= MBean access: This access is intended for use by applications that perform
administrative functions using the oracle.as.scheduler.management APIs.

= MBean proxy access: This access is intended for use by applications that perform
administrative functions using the oracle.as.scheduler.management APIs. Use
the MBean proxy if the administrative client is remote to the Oracle Enterprise
Scheduler.

6.2.1 How to Access the Metadata Service with a Stateless Session EJB

User applications use a Stateless Session EJB to access the Metadata Service for
application level metadata operations. Using JNDI you can lookup the Metadata
Service associated with an Oracle Enterprise Scheduler application.

Example 6-1 shows the JNDI lookup for the Oracle Enterprise Scheduler Metadata
Service that allows you to use application level metadata. Note that the
getMetadataServiceEJB () method looks up the metadata service using the name
"ess/metadata". By convention, Oracle Enterprise Scheduler applications use
"ess/metadata” for the EJB reference to the MetadataServiceBean.

Example 6-1 JNDI Lookup for Stateless Session EJB Access to Metadata Service

// Demonstration on how to lookup metadata service from a Java EE application

Using the Metadata Service 6-3

Accessing the Metadata Service with Oracle JDeveloper

// JNDI lookup on the metadata service EJB
import oracle.as.scheduler.core.JdndiUtil;

MetadataService ms = JndiUtil.getMetadataServiceEJB();

6.3 Accessing the Metadata Service with Oracle JDeveloper

Using Oracle JDeveloper at design time you can create, view, and update application
level metadata objects.

6.4 Querying Metadata Using the Metadata Service

The Metadata Service query methods let you view objects in the metadata repository.
You can query job types with the queryJobTypes () method, query job definitions with
queryJobDefinitions () method, and likewise you can query other metadata objects
using the corresponding MetadataService query method.

Associated with a query you can use a filter to restrict the output to obtain only items
of interest (in a manner similar to using a SQL WHERE clause).

6.4.1 How to Create a Filter

A filter specifies a comparison or a criteria for a query. You create a filter by creating a
comparison that includes a field argument (String), a comparator, and an associated
value (Object). In a filter, you can use the filter methods to combine comparisons to
form filter expressions.

Table 6-1 lists the comparison operators (comparator argument).

Table 6-1 Filter Comparison Operators

Comparison Operator Description

CONTAINS Field contains the specified value

ENDS_WITH Field ends with the specified value

EQUALS Field equals the specified value

GREATER_THAN Field is greater than the specified value
GREATER_THAN_EQUALS Field is greater than or equal to the specified value
LESS_THAN Field is less than the specified value
LESS_THAN_EQUALS Field is less than or equal to the specified value
NOT_CONTAINS Field does not contain the specified value
NOT_EQUALS Field does not equal the specified value
STARTS_WITH Field starts with the specified value

Example 6-2 shows code that creates a new filter.

Example 6-2 Creating a Filter with a Filter Comparator for a Query

Filter filter =
new Filter (MetadataService.QueryField.PACKAGE.fieldName(),
Filter.Comparator.NOT_EQUALS, null);

6-4 Web User Interface Developer's Guide for Oracle Application Development Framework

Querying Metadata Using the Metadata Service

Table 6-2 MetadataService Query Fields

Query Field Description
MetadataService.QueryField.PACKAGE The name of the package.
MetadataService.QueryField.NAME The job definition name.
MetadataService.QueryField.JOBTYPE The job type associated with the job definition.
MetadataService.QueryField.EXECUTIONTYPE The type of job execution, synchronous or
asynchronous.
MetadataService.QueryField.EXECUTIONMODE The mode of job set execution, parallel or serial.
MetadataService.QueryField.FIRSTSTEP The first step in a job set.
MetadataService.QueryField.ACTIVE Indicates whether a work assignment is active.
MetadataService.QueryField.PRODUCT Indicates the name of the product with which
the job is associated.
MetadataService.QueryField.EFFECTIVEAPPLICATION The name of the hosting application wherein
this job should run.

6.4.2 How to Query Metadata Objects

A MetadataService query returns an enumeration list of MetadataObjectIDs of the
form:

java.util.Enumeration<MetadataObjectId>

Example 6-3 shows a sample routine that queries for a list of job types in the metadata.

Example 6-3 Using Metadata Service Query Methods

Enumeration<MetadataObjectId> gryResults
= m_service.queryJobTypes (handle, filter, null, false);

Example 6-3, shows the following important steps for using the queryJobTypes ()
method:

= You need to supply a reference to a metadata repository by obtaining an instance
of MetadataServiceHandle.

= You need to create a filter for the query. The filter contains the fields, comparators,
and values to search for.

= You determine the field to sort by in the query using the orderBy argument, or
you set the orderBy argument to null to indicate that no specific ordering is
applied.

= You set the ascending argument for the query. When ordering is applied setting
the ascending argument to true indicates ascending order or false indicates
descending order for the result list.

Using the Metadata Service 6-5

Querying Metadata Using the Metadata Service

6-6 Web User Interface Developer's Guide for Oracle Application Development Framework

7

Using Parameters and System Properties

This chapter describes how you can define parameters and values in the Oracle
Enterprise Scheduler metadata and runtime services you submit a job request. A given
parameter may represent a value for an Oracle Enterprise Scheduler system property
or a value for an application defined property.

This chapter includes the following sections:

» Section 7.1, "Introduction to Using Parameters and System Properties"
s Section 7.2, "Using Parameters with the Metadata Service"

» Section 7.3, "Using Parameters with the Runtime Service"

= Section 7.4, "Using System Properties"

7.1 Introduction to Using Parameters and System Properties
You can define Oracle Enterprise Scheduler parameters as follows:
» In metadata associated with a job definition, a job type, or a job set.

s In the request parameters when a job request is submitted. A request parameter
can override a parameter specified in metadata or can specify a value for a
parameter not previously defined in the metadata associated with a job request
(subject to certain constraints). You can also add new parameters or update
parameter values (subject to certain constraints) after a job request has been
submitted.

Oracle Enterprise Scheduler system properties are parameters with names that Oracle
Enterprise Scheduler reserves. For some system properties Oracle Enterprise
Scheduler also defines the values or provides a default value if you do not specify a
value. For more information on the Oracle Enterprise Scheduler system properties, see
Section 7.4, "Using System Properties".

7.1.1 What You Need to Know About Application Defined Property and System
Property Naming

Oracle Enterprise Scheduler application defined and system properties are case
sensitive. For example the application defined property name USER_PARA and user_
para represent different parameters in Oracle Enterprise Scheduler.

When you use application defined properties, note that Oracle Enterprise Scheduler
reserves the names starting with "SYS_" (case-insensitive) for Oracle Enterprise
Scheduler-defined system properties. Thus, you should not use application defined
properties with names that start with "SYS_" (case-insensitive).

Using Parameters and System Properties 7-1

Introduction to Using Parameters and System Properties

7.1.2 What You Need to Know About Parameter Conflict Resolution and Parameter
Materialization

When submitting a job request, Oracle Enterprise Scheduler combines parameters
specified in the job metadata with any submission parameters to form the runtime
request parameters. The runtime parameters are saved to the database runtime store
and used for subsequent processing of the request. The metadata parameters are
obtained from the job definition, job type, and if applicable, the job set as they are
defined in the metadata repository at the time of submission. Any subsequent changes
to the metadata is normally not seen or used as the request is processed. Oracle
Enterprise Scheduler resolves parameter conflicts for parameters with the same name
associated with the job metadata or the submit parameters.

A parameter conflict can occur in the following cases:

= A parameter is defined repeatedly with different values. For example if the
SystemProperty.PRIORITY property is set with different values in the job type and
in the job definition associated with a request.

= A parameter is defined repeatedly and at least one definition is specified as
read-only with the ParameterInfo readonly flag set to true.

To resolve conflicts with parameters, Oracle Enterprise Scheduler uses one of the
following conflict resolution models and the parameter value inheritance hierarchy
shown in Table 7-1:

» Last definition wins: used when the same parameter is defined repeatedly with the
readonly flag set to false in all cases. In the last definition wins model, conflicts are
resolved according to the precedence rules where the highest level wins (last
definition). For example a property specified at the job request level wins over the
same property specified at the job definition level.

» First read-only definition wins: used when the same parameter is defined repeatedly
and at least one definition is read-only (the ParameterInfo readonly flag is set to
true.) In the first read-only definition wins model, parameter conflicts are resolved
according to the precedence rules shown in Table 7-1, lowest level wins. For
example a readonly parameter specified at the job type definition level wins over
the same property specified at the job definition level, read-only or not.

Table 7-1 Parameter Precedence Levels

Object Level

JobType 1 - Lowest Level
JobDefinition 2

job set step 3

job set 4

Job request (via 5 - Highest Level

RequestParameters passed to
submitRequest ())

7.1.2.1 What You Need to Know About Job Definition Parameter Materialization

Figure 7-1 illustrates the order of precedence taken by parameters defined in various
components.

7-2 Web User Interface Developer's Guide for Oracle Application Development Framework

Introduction to Using Parameters and System Properties

Figure 7-1 Parameter Precedence

Job definition Job set
request request
JobType JobSet (top-level)
JobDefinition

—

Request parameters

In the case of a job request, the parameters defined by the job type take first
precedence, followed by the parameters defined in the job definition. The parameters
submitted with the job request take final precedence. In the case of a job set request,
the parameters defined in the job set take first precedence, followed by the parameters
defined by the job request run as a child of the job set.

7.1.2.2 What You Need to Know About Job Set Level Parameter Materialization

When the job set step parameters are materialized, if the job set defines any of the
following system properties as read-only, and those properties are defined in the
definition of the topmost job set, that is the job set of the absolute parent, the job set
values will override the values set at the job set step level. This causes every definition,
job definition, or job set definition that runs in the context of a specific job set to run
with the same values.

PRIORITY
REQUEST_EXPIRATION
RETRIES, only if the step definition value is > 0

There is an exception for RETRIES because a value of 0 may mean that the job is not
capable of being restarted. So if a step is defined with RETRIES = 0, it is not
overridden, but if the step has RETRIES > 0, it will be overridden with the job set
value.

Properties for a job set step request are materialized during the processing of a job set
when the step is reached. Properties for a job step request are materialized in the
following order.

1. Job type and job definition (if the step is a job definition) or job set (if the step is a
job set).

2. Job set step.
3. Parent request properties and system properties (parent is step's parent job set).
4. Scoped request properties.

Figure 7-2 illustrates the parameter precedence for job set steps.

Using Parameters and System Properties 7-3

Using Parameters with the Metadata Service

Figure 7-2 Parameter Precedence for Job Set Steps

Job definition Job set
step step
JobType JobSet (for step)
JobDefinition

Voo

| JobSet Step

}

Parent JobSet and
other parameters
from parent request

}

Owverwrite specific
read-only System
Froperties with
values from top-level
JobSat

}

Scoped request
parameters

When job sets include steps that are job sets, this is a nested job set. For a nested job
set, the precedence shown in Table 7-1 applies. When a nested job set is reached,
Oracle Enterprise Scheduler applies the parameters of the parent request and the
parameters of the parent request follow the same precedence. The effect is that
parameters of the parent request, job set and job set step are inherited by nested job
sets.

7.2 Using Parameters with the Metadata Service

Oracle Enterprise Scheduler metadata includes parameters that you can associate with
a metadata object. The parameters can include both application defined properties and
system properties for a given definition (metadata object). An instance of the
ParameterList class declares the parameters for a given job definition, job type or job
set. To set parameters for a given job definition, job type, or job set definition, you can
use a ParameterList object with the setParameters () method for the metadata object
or you can use the constructor and supply a ParameterList. To supply parameter
information in a parameter list, each ParameterList object includes ParameterInfo
objects that represent parameters, such that each parameter is defined with properties
as shown in Table 7-2.

Table 7-2 Parameterinfo Parameter Properties

Parameter Property Description

Name Specifies the parameter name.

Value Specifies the parameter value.

7-4 Web User Interface Developer's Guide for Oracle Application Development Framework

Using Parameters with the Metadata Service

Table 7-2 (Cont.) Parameterinfo Parameter Properties

Parameter Property Description

Readonly This boolean flag can be set for each parameter. This flag indicates
whether the parameter is read-only.

When true, subsequent objects in the parameter precedence hierarchy,
such as request submission parameter, cannot change the parameter
value. Typically a read-only parameter will have a default value that
cannot be changed by subsequent objects.

Note that the value of a read-only parameter can be changed in the
object itself where this parameter is defined. For example if this
parameter is defined in a job type as a read-only parameter, its value can
be changed in the job type definition itself, but a job definition that uses
the job type or a request submission parameter cannot override the
value, subject to the conflict resolution rules specified for parameter
values. For more information, see Section 7.1.2, "What You Need to
Know About Parameter Conflict Resolution and Parameter

Materialization".

Legacy A boolean that specifies that a parameter should be visible when used in
a GUL

DataType Values can only be one of the supported types, including: Boolean,

Integer, Long, String, and DATETIME that represents a date as a
java.util.Calendar object.

You can set parameters at different levels appropriate to parameter precedence rules
for a job request. For example, you can set parameters that apply for a job type, a job
definition, a job set, a job set step, or a request submission parameter. For information
about the precedence rules, see Section 7.1.2, "What You Need to Know About
Parameter Conflict Resolution and Parameter Materialization".

7.2.1 How to Use Parameters and System Properties in Metadata Objects

Example 7-1 shows code that uses a ParameterList to set parameter and system
property values in a metadata object.

Example 7-1 Adding Parameters and System Properties in a Metadata Object

String name = "JobDescription_name";
MetadataObjectId jobtype;

JobDefinition jd = new JobDefinition(name, jobtype);

ParameterList parlist = new ParameterList();
parlist.add(SystemProperty.APPLICATION, "METADATA_UNITTEST_APP", false);
parlist.add(SystemProperty.PRODUCT, "METADATA_UNITTEST_PROD", false);
parlist.add(SystemProperty.CLASS_NAME, "oracle.as.scheduler.myself", false);
parlist.add(SystemProperty.RETRIES, "2", false);
parlist.add(SystemProperty.REQUEST EXPIRATION, "60", false);
parlist.add("MyProp", "Value", false);

parlist.add("MyReadOnlyProp", "readyOnlyValue", true);

jd.setParameters (parlist);

Example 7-1, shows the following important steps for using parameters with a
metadata object:

= You need a reference to a metadata service handle to create the metadata object
where you want to add parameters.

Using Parameters and System Properties 7-5

Using Parameters with the Runtime Service

= You need to use the ParameterList add () method to add parameter information.

= You can use a SystemProperty as the name for a parameter to specify a value for a
system property.

= You can specify an application defined property by using a name that you define
with the parameter information in a ParameterList.

= You need to use a metadata object setParameters () method to apply the
parameters specified in the ParameterList to the metadata object. In this case, use
the job definition setParameters () method.

7.3 Using Parameters with the Runtime Service

You can specify parameters when a job request is submitted by supplying a
RequestParameters object with submitRequest (). A request parameter can override a
parameter specified in metadata or can specify a value for a parameter not previously
defined in the metadata associated with a job request (subject to certain constraints).
You can also use the runtime service setRequestParameter () method to set or modify
request parameters (subject to certain constraints) after the request has been
submitted.

The submitRequest () method will validate each request parameter against its
definition in the metadata, if one exists. Such validations include checking the data
type of the parameter against the data type specified in the metadata, checking the
read-only constraint for the parameter, and so on. If a given request parameter does
not exist in the corresponding metadata, the data type for the parameter is determined
by doing an instanceof on the parameter value. The data type of a request parameter
value must be one of the supported types specified by ParameterInfo.DataType.

If the value of a request parameter is null and the property has not been assigned in
the metadata, it defaults to the STRING data type when calling submitRequest ().
Oracle Enterprise Scheduler assigns a null value to the parameter. As such, a
parameter need not be assigned in the metadata.

The RuntimeService setRequestParameter () method, which is similar to
updateRequestParameter (), allows a previously undefined request parameter to be
set by a job during execution.

7.3.1 How to Use Parameters with the Runtime Service

When you submit a job request you set a parameter in a RequestParameters object.
This parameter may represent an Oracle Enterprise Scheduler system property or an
application defined property. The RequestParameters parameter value may be used to
override a parameter specified in metadata, or to specify the value for a parameter not
previously defined in metadata associated with the job request.

Example 7-2 shows code using a RequestParameters object with the add () method to
set a system property value.

Example 7-2 Using the PRIORITY System Property with Request Parameters

import oracle.as.scheduler.RequestParameters;
import oracle.as.scheduler.MetadataObjectId;
import oracle.as.scheduler.RuntimeService;
import oracle.as.scheduler.RuntimeServiceHandle;
import oracle.as.scheduler.SystemProperty;

RuntimeService runtime;

7-6 Web User Interface Developer's Guide for Oracle Application Development Framework

Using Parameters with the Runtime Service

RuntimeServiceHandle rs_handle;
MetadataObjectId jobSetId;

int startsIn;

long requestID = 0L;

RequestParameters req par = new RequestParameters();
req_par.add(SystemProperty.PRIORITY, new Integer(7));

Calendar start = Calendar.getInstance();
start.add(Calendar.SECOND, startsIn);

requestID =
runtime.submitRequest (rs_handle, "My job set", jobSetId, start, req par);

The example assumes that there is a user-created runtimeServiceHandle named rs_
handle.

7.3.2 How to Use Parameters with a Step ID for Job Set Steps

The RequestParameters object is a container for all the parameters for a request. Some
of the RequestParameters methods take a step ID as an argument. Such methods
allow you to specify parameters for a job set at request submission, where parameters
can be specified for, or scoped to, individual steps associated with a job set request. For
such methods, the step ID argument identifies the step within the job set to which the
given parameter applies. For non-job set requests, the step ID does not apply, but you
can use the parameter as required by your application requirements.

When a step ID is specified in a RequestParameters method such as add (), you need
to specify the step ID using the following format:

idl.id2.id3...

where the fully qualified step ID identifies the unique step, node, in the job set
hierarchy (tree).

Parameters without a step ID in a job set request are treated as global parameters and
they apply to each step of the job set request. The step ID argument for
RequestParameters provides the capability to support shared parameters, where the
parameter can apply to both a job set and either a job definition or a job type.

Oracle Enterprise Scheduler prepends the step ID to the name in the form of
stepId:name to generate the unique identifier, with a colon as a separator.

Example 7-3 shows code using a RequestParameters object with a step ID specified
with the add () method to set a system property value for a step in a job set.

Example 7-3 Using the CLASS_NAME System Property with Job Set Request
Parameters

import oracle.as.scheduler.RequestParameters;
import oracle.as.scheduler.MetadataObjectId;
import oracle.as.scheduler.RuntimeService;
import oracle.as.scheduler.RuntimeServiceHandle;
import oracle.as.scheduler.SystemProperty;

RuntimeService runtime;
RuntimeServiceHandle rs_handle;

Using Parameters and System Properties 7-7

Using System Properties

MetadataObjectId jobSetId;
int startsIn;
long requestID = 0L;

RequestParameters req par = new RequestParameters();

req par.add(SystemProperty.PRIORITY, "stepId-1", new Integer(8));
req _par.add(SystemProperty.PRIORITY, "stepId-2.stepId-1", new Integer(6));

Calendar start = Calendar.getInstance();
start.add(Calendar.SECOND, startsIn);

requestID =
runtime.submitRequest (rs_handle, "My job set", jobSetId, start, req par);

The example assumes that there is a user-created runtimeServiceHandle named rs_
handle.

7.4 Using System Properties

Oracle Enterprise Scheduler represents parameter names that are known to and used
by the system in the SystemProperty class. You can specify system properties as
parameter names in the application metadata and using request parameters when a
request is submitted. Oracle Enterprise Scheduler sets certain system properties when
a request is submitted or at some point in the life cycle of a request.

Table 7-3 lists the available system properties, as defined in

oracle.as.scheduler. SystemProperty. Most system properties are common to all job
types while some system properties are specific to a particular job type, as indicated in
the descriptions in Table 7-3.

When you use parameters, note that Oracle Enterprise Scheduler reserves the
parameter names starting with "SYS_" (case-insensitive) for Oracle Enterprise
Scheduler defined properties.

Table 7-3 System Properties

Name Description

ALLOW_MULT_PENDING Specifies whether multiple pending requests for the same job definition is allowed.
This property has no meaning for a job set step.
Type: BOOLEAN

APPLICATION Specifies the logical name of the Java EE application used for request processing. This

property is automatically set by Oracle Enterprise Scheduler during request
submission.

Type: STRING

ASYNC_REQUEST_TIMEOUT Specifies the time, in minutes, that the processor waits for an asynchronous request

after it has begun execution. Following this period, the request is considered to have
timed out.

Type: LONG

7-8 Web User Interface Developer's Guide for Oracle Application Development Framework

Using System Properties

Table 7-3 (Cont.) System Properties

Name

Description

BIZ_ERROR_EXIT_CODE

CLASS_NAME

CMDLINE

EFFECTIVE_APPLICATION

ENVIRONMENT VARIABLES

EXECUTE_PAST

EXTERNAL_ID

GROUP_NAME

Specifies the process exit code for a process job request that denotes an execution
business error. If this property is not specified, the system treats a process exit code of 4
as an execution business error.

This property is optional for a process job type. It is not used for other job types.
Type: STRING

Specifies the Java executable for a Java job request. This should be the name of a Java
class that implements the oracle.as.scheduler.Executable interface. This property is
required for a Java job type. It is not used for other job types.

Type: STRING

Specifies the command line used to invoke an external program for a Process job
request.

This property is required for a Process job type. It is not used for other job types.
Type: STRING

Specifies the logical name of the Java EE application that will be the effective
application used to process the request. A job definition, job type, or a job set step can
be associated with a different application by defining the EFFECTIVE_APPLICATION
system property. This property can only be specified via metadata and cannot be
specified as a submission parameter.

Type: STRING

Specifies the environment variables to be set for the spawned process of a Process job
request.The property value should be a comma separated list of name value pairs
(name=value) representing the environment variables to be set.

This property is optional for a process job type. It is not used for other job types.
Type: STRING

Specifies whether instances of a repeating request with an execution time in the past
should be generated. Instances are never generated before the requested start time nor
after the requested end time. To cause past instances to be generated, you must set this
property to TRUE and specify the requested start time as the initial time from which
instances should be generated. Note that a null requested start time defaults to the
current time.

Valid values for this property are:

= TRUE: All instances specified by a schedule are generated regardless of the time of
generation.

= FALSE: Instances with a scheduled execution time in the past (that is, before the
time of generation) will not be generated.

If this property is not specified, the system defaults to TRUE.
Type: BOOLEAN

Specifies an identifier for an external portion of an asynchronous Java job. For example,
an asynchronous Java job usually invokes some remote process and then returns
control to Oracle Enterprise Scheduler. This property can be used to identify the remote
process. This property should be set by the job implementation of asynchronous Java
jobs when the identifier is known. It is never set by Oracle Enterprise Scheduler.

Type: STRING

Specifies the name of the Oracle Enterprise Scheduler isolation group to which this
request is bound. This property is automatically set by Oracle Enterprise Scheduler
during request submission.

Type: STRING

Using Parameters and System Properties 7-9

Using System Properties

Table 7-3 (Cont.) System Properties

Name

Description

INPUT_LIST

LISTENER

LOCALE

OUTPUT_LIST

POST_PROCESS

PRE_PROCESS

PRIORITY

PROCEDURE_NAME

PRODUCT

REDIRECTED_OUTPUT_FILE

REPROCESS_DELAY

REQUEST_CATEGORY

Specifies input to a request. The input to a serial job set is forwarded as input to the
first step only. The input to a parallel job set is forwarded as input to all the parallel
steps.

Oracle Enterprise Scheduler imposes no format on the value of this property.

Type: STRING

Specifies the event listener class associated with the request. This should be the name
of a Java class that implements the oracle.as.scheduler.EventListener interface.

Type: STRING

Specifies the locale associated with the request.

Type: STRING

Specifies output from a request.

The output of a serial job set is the OUTPUT_LIST of the last step. The output of a parallel
job set is the concatenation of the OUTPUT_LIST of all the steps, in no guaranteed order,
with oracle.as.scheduler.SystemProperty.OUTPUT_LIST_DELIMITER as a separator.

Type: STRING

Specifies the post-process callout handler class. This should be the name of a Java class
that implements the oracle.as.scheduler.PostProcessHandler interface.

Type: STRING

Specifies the pre-process callout handler class. This should be the name of a Java class
that implements the oracle.as.scheduler.PreProcessHandler interface.

Type: STRING

Specifies the request processing priority. The priority interval is [0..9] with O as the
lowest priority and 9 as the highest.

Default: If this property is not specified, the system default value used is 4.
Type: INTEGER

Specifies the name of the PL/SQL stored procedure to be called for a SQL job request.
The stored procedure should be specified using schema.name format.

The property is required for a SQL job type. It is not used for other job types.
Type: STRING

Specifies the product within the application that submitted the request.
Type: STRING

Specifies the file where standard output and error streams are redirected for a Process
job request. This represents the full path of the log file where the standard output and
error streams are redirected for the spawned process when the request is executed.

This property is optional for a Process job type. It is not used for other job types.
Type: STRING

Specifies the callout handler processing delay time. This represents the time, in
minutes, to delay request processing when a delay is requested by a callback handler.

Default: If this property is not specified, the system default used is 5.
Type: INTEGER

Specifies an application-specific label for a request. The label, defined by an application
or system administrator, allows administrators to group job requests according to their
own specific needs.

Type: STRING

7-10 Web User Interface Developer's Guide for Oracle Application Development Framework

Using System Properties

Table 7-3 (Cont.) System Properties

Name

Description

REQUEST_EXPIRATION

REQUESTED_PROCESSOR

RETRIES

RUNAS_APPLICATIONID

SELECT_STATE

SQL_JOB_CLASS

SUBMITTING_APPLICATION

Specifies the expiration time for a request. This represents the time, in minutes, that a
request will expire after its scheduled execution time. A expiration value of zero (0)
means that the request never expires. If this property is not specified, the system
default value used is 0.

Request expiration only applies to requests that are waiting to run. If a request waits
longer than the specified expiration period, it does not run. After a request starts
running the request expiration no longer applies.

Type: INTEGER

Specifies the request processor node on which the request should be processed. This
allows processor affinity to be specified for a request. If this property is not specified,
the request can run on any available request processor node. In general, this property
should not be specified.

If this property is specified for a request, the request processor's work assignments
oracle.as.scheduler.WorkAssignment (specialization) must allow the execution of
such requests, otherwise the request will never be executed. If the specified node is not
running, the request will remain in READY state and will not be executed until the node
is restarted.

Type: STRING

Specifies the retry limit for a failed request. If request execution fails, the request will
retried up to the number of times specified by this property until the request succeeds.
If retry limit is zero (0), a failed request will not be retried.

Default: If this property is not specified, the system default used is 0.
Type: INTEGER

Specifies the runAs identifier that should be used to execute the request. Normally, a
request runs as the submitting user. However, if this property is set in the metadata of
the job associated with the request, then the request executes under the user identified
by this property. This property can only be specified via metadata and cannot be
specified as a submission parameter.

Type: STRING

Specifies whether the result state of a job set step affects the eventual state of its parent
job set. In order for the state of a job set step to be considered when determining the
state of the job set, the SELECT_STATE must be set to true. If SELECT_STATE is not
specified on a job set step, the state of the step will be included in the determination of
the state of the job set.

Type: BOOLEAN

Specifies an Oracle Enterprise Scheduler job class to be assigned to the Oracle
Enterprise Scheduler job used to execute a SQL job request. This property need not be
specified unless the job used for a job request is associated with a particular Oracle
Database resource consumer group or has affinity to a database service.

If this property is not specified, a default Oracle Enterprise Scheduler job class is used
for the job that executes the SQL request. That job class is associated with the default
resource consumer group. It belongs to the default service, such that it has no service
affinity and, in an Oracle RAC environment, any one of the database instances within
the cluster might run the job. No additional privilege or grant is required for an Oracle
Enterprise Scheduler SQL job request to use that default job class.

This property is optional for a SQL job type. It is not used for other job types.
Type: STRING

Specifies the logical name of the Java EE application for the submitted (absolute parent)
request. This property is automatically set by Oracle Enterprise Scheduler during
request submission.

Type: STRING

Using Parameters and System Properties 7-11

Using System Properties

Table 7-3 (Cont.) System Properties

Name

Description

SUCCESS_EXIT_CODE

USER_FILE_DIR

USER_NAME

WARNING_EXIT_CODE

WORK_DIR_ROOT

Specifies the process exit code for a Process job request that denotes an execution
success. If this property is not specified the system treats a process exit code of 0 as
execution success.

This property is optional for a Process job type. It is not used for other job types.
Type: STRING

Specifies a base directory in the file system where files, such as input and output files,
may be stored for use by the request executable.

Oracle Enterprise Scheduler supports a configuration parameter that specifies a file
directory where requests may store files. At request submission, a USER_FILE_DIR
property is automatically added for the request if the configuration parameter is
currently set and USER_FILE_DIR property was not specified for the request. If the
property is added, it will be initialized to the value of the configuration parameter. The
property will not be added if the configuration parameter is not set at the

time of request submission.

Type: STRING

Specifies the name of the user used to execute the request. Normally this is the
submitting user unless the RUNAS_APPLICATIONID property was set in the job metadata.
This property is automatically set by Oracle Enterprise Scheduler during request
submission.

Type: STRING

Specifies the process exit code for a Process job request that denotes an execution
warning. If this property is not specified, the system treats a process exit code of 3 as
execution warning.

This property is optional for a Process job type. It is not used for other job types.
Type: STRING
Specifies the working directory for the spawned process of a Process job request.
This property is optional for a Process job type. It is not used for other job types.
Type: STRING

7-12 Web User Interface Developer's Guide for Oracle Application Development Framework

8

Creating and Using PL/SQL Jobs

This chapter describes how to create PL/SQL stored procedures for use with Oracle
Enterprise Scheduler, and describes Oracle Database tasks that you need to perform to
use PL/SQL stored procedures with Oracle Enterprise Scheduler.

After you create a PL/SQL procedure and define a job definition, you can use the
Oracle Enterprise Scheduler runtime service to submit a job request for a PL/SQL
procedure.

This chapter includes the following sections:

= Section 8.1, "Introduction to Using PL/SQL Stored Procedure Job Definitions"

» Section 8.2, "Creating a PL/SQL Stored Procedure for Oracle Enterprise Scheduler"
= Section 8.3, "Performing Oracle Database Tasks for PL/SQL Stored Procedures"

= Section 8.4, "Creating and Storing Job Definitions for PL/SQL Job Types"

For information about how to use the Runtime Service, see Chapter 14, "Using the
Runtime Service".

8.1 Introduction to Using PL/SQL Stored Procedure Job Definitions

Oracle Enterprise Scheduler lets you run job requests of different types, including: Java
classes, PL/SQL stored procedures, and process requests that run as a forked process.
To use Oracle Enterprise Scheduler with PL/SQL stored procedures you need to do
the following:

s Create or obtain the PL/SQL stored procedure that you want to use with Oracle
Enterprise Scheduler.

s Load the PL/SQL stored procedure in the Oracle Database and grant the required
permissions and perform other required DBA tasks.

= Use Oracle JDeveloper to create job type and job definition objects and store these
objects with the Oracle Enterprise Scheduler application metadata.

= Use Oracle JDeveloper to create an application with Oracle Enterprise Scheduler
APIs that runs and submits a PL/SQL stored procedure.

Finally, after you create an application that uses the Oracle Enterprise Scheduler APIs
you use Oracle JDeveloper to deploy and run the application.

At runtime, after you submit a job request you can monitor and manage the job
request. For more information, see Chapter 14, "Using the Runtime Service".

Oracle Enterprise Scheduler uses an asynchronous execution model for PL/SQL stored
procedure job requests. This means that Oracle Enterprise Scheduler does not directly

Creating and Using PL/SQL Jobs 8-1

Creating a PL/SQL Stored Procedure for Oracle Enterprise Scheduler

call the PL/SQL stored procedure, but instead uses Oracle Enterprise Scheduler (part
of the Oracle Database). When a PL/SQL stored procedure job request is ready to
execute, Oracle Enterprise Scheduler creates an immediate, run-once Oracle Enterprise
Scheduler job. This Oracle Enterprise Scheduler job is owned by the Oracle Enterprise
Scheduler runtime schema user associated with the container instance that executes
the application that specifies the PL/SQL stored procedure. Finally, when the Oracle
Enterprise Scheduler job runs, the PL/SQL stored procedure is called using dynamic
SQL. After the PL/SQL stored procedure completes, either by a successful return or by
raising an exception, the Oracle Enterprise Scheduler job completes.

8.2 Creating a PL/SQL Stored Procedure for Oracle Enterprise Scheduler

When you want to use a PL/SQL stored procedure with Oracle Enterprise Scheduler,
the PL/SQL procedure must have certain characteristics to work with an Oracle
Enterprise Scheduler application and a DBA must assure that certain Oracle Database
permissions are assigned to the PL/SQL stored procedure.

Creating a PL/SQL stored procedure involves the following steps:

» Define the PL/SQL stored procedure that has the correct signature for use with
Oracle Enterprise Scheduler

s Perform the required DBA tasks to make the PL/SQL stored procedure available
to Oracle Enterprise Scheduler

8.2.1 How to Define a PL/SQL Stored Procedure with the Correct Signature

The PL/SQL stored procedure that you call from Oracle Enterprise Scheduler must
have a specific signature and include specific procedure parameters, as follows:

PROCEDURE my_proc (request_handle IN VARCHAR2) ;
The request_handle parameter is an opaque value representing an execution context
for the Oracle Enterprise Scheduler request being executed.

Example 8-1 shows a sample HELLO_WORLD stored procedure for use with Oracle
Enterprise Scheduler.

Example 8-1 HELLO_WORLD PL/SQL Stored Procedure

create or replace procedure HELLO_WORLD(request_handle in varchar2)

as
v_request_id number := null;
v_prop_name varchar2(500) := null;
v_prop_int integer := null;
begin
-- Get the Oracle Enterprise Scheduler request ID being executed.
begin
v_request_id := ess_runtime.get_request_id(request_handle);
exception

when others then
raise_application_error (-20000,
'Failed to get request id for request handle ' ||
request_handle || '. [' || SQLERRM || '1');
end;

-- Retrieve value of an existing request property.

begin
v_prop_name := 'mytestIntProp';
vV_prop_int := ess_runtime.get_regprop_int (v_request_id, v_prop_name);

8-2 Web User Interface Developer's Guide for Oracle Application Development Framework

Creating a PL/SQL Stored Procedure for Oracle Enterprise Scheduler

exception
when others then
rollback;
raise_application_error (-20001,
'Failed to get request property ' || v_prop_name |
' for Oracle Enterprise Scheduler request ID ' || v_request_id |
"o [' || SQLERRM || '1');
end;

-- Update an existing request property with a new value.
-- This procedure is responsible for commit/rollback of the update operation.

begin
v_prop_name := 'myJobdefProp';
ess_runtime.update_regprop_varchar2 (v_request_id, v_prop_name,
'myUpdatedalue') ;
commit;
exception
when others then
rollback;
raise_application_error (-20002,
'Failed to update request property ' || v_prop_name |
' for Oracle Enterprise Scheduler request ID ' || v_request_id |
". [' || SQLERRM || '1');
end;
end helloworld;

/

8.2.2 Handling Runtime Exceptions in an Oracle Enterprise Scheduler PL/SQL Stored

Procedure

Oracle Enterprise Scheduler uses an asynchronous execution model for PL/SQL stored
procedure job types. Oracle Enterprise Scheduler does not directly call the PL/SQL
stored procedure, but instead uses the Oracle Enterprise Scheduler in the Oracle
Database. When a PL/SQL stored procedure request is ready to execute, Oracle
Enterprise Scheduler creates an immediate, run-once Oracle Enterprise Scheduler job
that is owned by the Oracle Enterprise Scheduler runtime schema user associated with
the container instance executing that executes the application associated with the
PL/SQL stored procedure. The PL/SQL stored procedure is called using dynamic SQL
when the Oracle Enterprise Scheduler job runs. After the PL/SQL stored procedure
completes, either by a successful return or by raising an exception, the Oracle
Enterprise Scheduler job completes.

In the PL/SQL stored procedure, you can handle exceptions and other issues by
raﬁﬁng&iRAISE_APPLICATION_ERRORexcepﬁon.TheRAISE_APPLICATION_ERROR
requires that the error code from the PL/SQL stored procedure range from -20000 to
-20999. The PL/SQL stored procedure can use RAISE_APPLICATION_ERROR if it needs to
raise an exception. RAISE_APPLICATION_ERROR requires that the error code range from
-20000 to -20999.

Table 8-1 indicates the Oracle Enterprise Scheduler state based on the result of the
PL/SQL stored procedure.

Table 8—1 Terminal States for PL/SQL Stored Procedure Results

Final State Description

SUCCEEDED If the PL/SQL stored procedure returns normally, without raising an
exception, the request state transitions to the SUCCEEDED state, bearing any
subsequent errors completing the request.

Creating and Using PL/SQL Jobs 8-3

Performing Oracle Database Tasks for PL/SQL Stored Procedures

Table 8-1 (Cont.) Terminal States for PL/SQL Stored Procedure Results

Final State Description

WARNING If the PL/SQL stored procedure returns with an exception, the request state is
based on the SQL error code of the exception.

The request transitions to the WARNING terminal state if the SQL error code
ranges from -20900 to -20919.

ERROR If the PL/SQL stored procedure returns with an exception, the request state is
based on the SQL error code of the exception.

The request transitions to the ERROR terminal state for any error code outside
the range of -20900 to -20919 (error codes within this range indicate a
WARNING).

Return codes in the range -20920 to -20929 result in an ERROR state with a
BUSINESS error type, where the request is not subject to automatic retries.

8.2.3 How to Access Job Request Information In PL/SQL Stored Procedures

Oracle Enterprise Scheduler provides a PL/SQL package, ESS_RUNTIME to perform
certain operations that you may need when you are working in a PL./SQL stored
procedure. You can use these procedures perform job request operations and to obtain
job request information for an Oracle Enterprise Scheduler runtime schema. For
example, you can use these runtime procedure to submit requests and retrieve and
update request information associated with an Oracle Enterprise Scheduler job
request.

The following sample code shows use of an ESS_RUNTIME procedure:

v_request_id := ess_runtime.get_request_id(request_handle);

This request obtains the request ID associated with a job request.

Certain procedures in the ESS_RUNTIME package require a request handle parameter
and provide information on an executing request (these should only be called from the
PL/SQL stored procedure that is executing the PL/SQL stored procedure request).
You can call some procedures in the ESS_RUNTIME package from outside of the context
of an executing request; these procedures may include a request id parameter.

8.2.4 What You Need to Know When You Define a PL/SQL Stored Procedure

You need to know the following when you create an use a PL/SQL stored procedure
with Oracle Enterprise Scheduler:

s Itis not required that the PL/SQL stored procedure exist when the Oracle
Enterprise Scheduler request is submitted, but the PL/SQL stored procedure must
exist and be callable by the Oracle Enterprise Scheduler runtime schema user
when the request is ready to run.

s The PL/SQL stored procedure must exist on the same database as the Oracle
Enterprise Scheduler Runtime schema.

8.3 Performing Oracle Database Tasks for PL/SQL Stored Procedures

After you create the PL/SQL stored procedure that you want to use with Oracle
Enterprise Scheduler a DBA needs to load the PL/SQL stored procedure in the Oracle
Database and grant the required permissions.

8-4 Web User Interface Developer's Guide for Oracle Application Development Framework

Performing Oracle Database Tasks for PL/SQL Stored Procedures

8.3.1 How to Grant PL/SQL Stored Procedure Permissions

Before the DBA grants permissions, the DBA must determine the Oracle Database and
the Oracle Enterprise Scheduler run time schema that is associated with the deployed
Java EE application that is going to submit the Oracle Enterprise Scheduler PL/SQL
stored procedure request.

Use the following definitions when you grant PL/SQL stored procedure permissions:

ess_schema: specifies the Oracle Enterprise Scheduler runtime schema associated with
the Java EE application.

user_schema: specifies the name of the application user schema.

PROC_NAME: specifies the name of the PL/SQL stored procedure associated with the
Oracle Enterprise Scheduler job request.

To grant Oracle Database permissions:

1. In the Oracle Database grant execute on the ESS_RUNTIME package to the
application user schema. For example:

GRANT EXECUTE ON ess_schema.ess_runtime to user_schema;

2. In the Oracle Database, create a private synonym for the ESS_RUNTIME package.
This is a convenience step that allows the PL/SQL stored procedure to reference
the ESS_RUNTIME as simply ESS_RUNTIME rather than using the full schema_
name.ESS_RUNIME. For example:

create or replace synonym user_schema.ess_runtime for ess_schema.ess_runtime;

3. In the Oracle Database, grant execute on the PL/SQL stored procedure to the
Oracle Enterprise Scheduler runtime schema user.

GRANT EXECUTE ON user_schema.proc_name to ess_schema;

For example, if the Oracle Enterprise Scheduler runtime schema is TEST_ORAESS,
the application user schema is HOWTO, and the PL/SQL procedure is named HELLO_
WORLD, the DBA operations needed would be:

GRANT EXECUTE ON test_oraess.ess_runtime to howto;
create or replace synonym howto.ess_runtime for test_oraess.ess_runtime;
GRANT EXECUTE ON howto.hello_world to test_oraess;

8.3.2 What You Need to Know About Granting PL/SQL Stored Procedure Permissions

The first two steps shown for DBA tasks for granting permissions on the ESS_RUNTIME
package are only required if the ESS_RUNTIME package is referenced by a PL/SQL
procedure. These two steps are not required if the ESS_RUNTIME package is never used
from that application user schema. The third step shown is always required since it
allows Oracle Enterprise Scheduler to call the user defined PL/SQL stored procedure.

All PL/SQL stored procedures in a given application user schema that are used for
Oracle Enterprise Scheduler PL/SQL stored procedure jobs should always be
associated with the same (single) Oracle Enterprise Scheduler Runtime schema. While
this is not technically required, it greatly simplifies the DBA setup and does not
require the PL/SQL stored procedure to explicitly specify the Oracle Enterprise
Scheduler Runtime schema if the procedure references the ESS_RUNTINME.

Creating and Using PL/SQL Jobs 8-5

Creating and Storing Job Definitions for PL/SQL Job Types

8.4 Creating and Storing Job Definitions for PL/SQL Job Types

To use PL/SQL stored procedures with Oracle Enterprise Scheduler you need to locate
the Metadata Service and create a job definition. You create a job definition by
specifying a name and a job type. When you create a job definition you also need to set
certain system properties. You can then store the job definition and other associated
objects using the Metadata Service.

For information about how to use the Metadata Service, see Chapter 6, "Using the
Metadata Service".

You can use Oracle Enterprise Scheduler system properties to specify certain attributes
for the Oracle Enterprise Scheduler job that calls the PL/SQL stored procedure.

These SystemProperty properties apply specifically to SQL job types; PROCEDURE_NANME,
SQL_JOB_CLASS.

The PROCEDURE_NAME system property specifies the name of the PL/SQL stored
procedure to be executed. The stored procedure name should have a schema.name
format. This property must be specified for either the job type or job definition.

The SQL_JOB_CLASS system property specifies an Oracle Enterprise Scheduler job class
to be assigned to the Oracle Enterprise Scheduler job used to execute an SQL job
request. This property does not need to be specified unless the Oracle Enterprise
Scheduler job used for a request should be associated with a particular Oracle
Database resource consumer group or have affinity to a database service.

Oracle Enterprise Scheduler uses an Oracle Enterprise Scheduler job to execute the
PL/SQL stored procedure for a SQL job request. An Oracle Enterprise Scheduler job
class can be associated with the job when that job needs to have affinity to a database
service or is to be associated with an Oracle Database resource consumer group. The
Oracle Enterprise Scheduler job owner must have EXECUTE privilege on the Oracle
Enterprise Scheduler job class in order to successfully create a job using that job class.

If the SQL_JOB_CLASS system property is not specified, a default Oracle Enterprise
Scheduler job class is used for the Oracle Enterprise Scheduler job. The default job
class is associated with the default resource consumer group. It will belong to the
default service, which means it will have no service affinity and, in an Oracle RAC
environment any one of the database instances within the cluster might run the job.
No additional privilege grant is needed for an Oracle Enterprise Scheduler SQL
request to use that default job class.

8.4.1 How to Create a PL/SQL Job Type

An Oracle Enterprise Scheduler JobType object specifies an execution type and defines
a common set of properties for a job request. A job type can be defined and then
shared among one or more job definitions. Oracle Enterprise Scheduler supports three
execution types:

= JAVA_TYPE: for job definitions that are implemented in Java and run in the
container.

= SQL_TYPE: for job definitions that run as PL/SQL stored procedures in a database
server.

= PROCESS_TYPE: for job definitions that are binaries and scripts that run as separate
processes.

When you specify the JobType you can also specify properties that define the
characteristics associated with the JobType. Table 8-2 describes the SystemProperties
that are appropriate for a PL/SQL stored procedure job type.

8-6 Web User Interface Developer's Guide for Oracle Application Development Framework

Creating and Storing Job Definitions for PL/SQL Job Types

Table 8-2 Oracle Enterprise Scheduler System Properties for a PL/SQL Stored Procedure Job Type

System Property

Description

PROCEDURE_NAME

SQL_JOB_CLASS

Specifies the name of the stored procedure to run as part of PL/SQL job execution.

For a SQL_TYPE application, this is a required property.

Specifies an Oracle Enterprise Scheduler job class to be assigned to the Oracle Enterprise

Scheduler job used to execute an SQL job request.
This is an optional property for a SQL_TYPE job type.

When you create and store a PL/SQL job type, you do the following;:

= Use the JobType constructor and supply a String name and a
JobType.ExecutionType.SQL_TYPE argument.

= Set the appropriate properties for the new JobType.

= Obtain the metadata pointer, as shown in Section 6.2, "Accessing the Metadata

Service". Use the Metadata Service addJobType () method to store the JobType in

metadata.

» Use aMetadataObjectId that uniquely identifies metadata objects in the metadata
repository, and, using a unique identifier the MetadataObjectID contains the fully

qualified name for a metadata object.

See Section 8.4.3, "Using a PL/SQL Stored Procedure with an Oracle Enterprise
Scheduler Application" for sample code.

8.4.2 How to Create and Store a Job Definition for PL/SQL Job Type

To use PL/SQL with Oracle Enterprise Scheduler, you need to create and store a job

definition. A job definition is the basic unit of work that defines a job request in Oracle

Enterprise Scheduler. Each job definition belongs to one and only one job type.

Note: Once you create a job definition with a job type, you cannot
change the type or the job definition name. To change the type or the
job definition name, you need to create a new job definition.

Section 8.4.3, "Using a PL/SQL Stored Procedure with an Oracle Enterprise Scheduler
Application" shows how to create a job definition using the job definition constructor

and the job type.

8.4.3 Using a PL/SQL Stored Procedure with an Oracle Enterprise Scheduler

Application

Example 8-2 shows sample code in which job type and job definition application
metadata are created for a SQL job type.

Example 8-2 Oracle Enterprise Scheduler Program Using PL/SQL Stored Procedure

import oracle.as.scheduler.JobType;

import oracle.as.scheduler.JobDefinition;

import oracle.as.scheduler.MetadataService;

import oracle.as.scheduler.MetadataServiceHandle;
import oracle.as.scheduler.MetadataObjectId;
import oracle.as.scheduler.ParameterInfo;

import oracle.as.scheduler.ParameterInfo.DataType;

Creating and Using PL/SQL Jobs

8-7

Creating and Storing Job Definitions for PL/SQL Job Types

import oracle.as.scheduler.ParameterList;

void createDefinition()

{
MetadataService metadata = ...
MetadataServiceHandle mshandle = null;

try

{
ParameterInfo pinfo;
ParameterList plist;

mshandle = metadata.open();

// Define and add a PL/SQL job type for the application metadata.
String jobTypeName = "PLSQLJobDefType";

JobType jobType = null;

MetadataObjectId jobTypeId = null;

jobType = new JobType (jobTypeName, JobType.ExecutionType.SQL_TYPE) ;

plist = new ParameterList();
pinfo = SystemProperty.getSysPropInfo (SystemProperty.PROCEDURE_NAME) ;

plist.add(info.getName (), pinfo.getDataType(), "HOWTO.HELLO_WORLD", false);
pinfo = SystemProperty.getSysPropInfo (SystemProperty.PRODUCT) ;
plist.add(pinfo.getName(), pinfo.getDataType(), "HOW_TO_PROD", false);

jobType.setParameters (plist);
jobTypeId = metadata.addJobType (mshandle, jobType, "HOW_TO_PROD");

// Define and add a job definition for the application metadata.
String jobDefName = "PLSQLJobDef";

JobDefinition jobDef = null;

MetadataObjectId jobDefId = null;

jobDef = new JobDefinition (jobDefName, jobTypeId);
jobDef.setDescription ("Demo PLSQL Job Definition " + jobDefName) ;

plist = new ParameterList();
plist.add("myJobdefProp", DataType.STRING, "myJobdefval", false);
jobDef.setParameters (plist);

jobDefId = metadata.addJobDefinition(mshandle, jobDef, "HOW_TO_PROD");
}
catch (Exception e)

{

}
finally
{
// always close metadata service handle in finally block
if (null != mshandle)
{
metadata.close (mshandle) ;
mshandle = null;

8-8 Web User Interface Developer's Guide for Oracle Application Development Framework

9

Creating and Using Process Jobs

This chapter describes how to use Oracle Enterprise Scheduler to create process jobs,
which run a script or binary command in a forked process.

This chapter includes the following sections:
= Section 9.1, "Introduction to Creating Process Job Definitions"
» Section 9.2, "Creating and Storing Job Definitions for Process Job Types"

For information about how to use the Runtime Service, see Chapter 14, "Using the
Runtime Service".

9.1 Introduction to Creating Process Job Definitions

Oracle Enterprise Scheduler lets you run job requests of different types, including: Java
classes, PL/SQL stored procedures, or process jobs that run as spawned jobs. To use
Oracle Enterprise Scheduler to run process type jobs you need to specify certain
metadata to define the characteristics of the process type job that you want to run. You
may also want to specify properties of the job request, such as the schedule for when it
runs.

Specifying a process type job request with Oracle Enterprise Scheduler is a three step
process:

1. You create or obtain the script or binary command that you want to run with
Oracle Enterprise Scheduler. We do not cover this step because we assume that
you have previously created the script or command for the spawned process.

2. Using the Oracle Enterprise Scheduler APIs in your application, you create job
type and job definition objects and store these objects to the metadata repository.

3. Using the Oracle Enterprise Scheduler APIs you submit a job request. For
information about how to submit a request, see Chapter 14, "Using the Runtime
Service".

After you create an application that uses the Oracle Enterprise Scheduler APIs, you
need to package and deploy the application.

At runtime, after you submit a job request you can monitor and manage the job
request. For more information on monitoring and managing job requests, see
Chapter 14, "Using the Runtime Service".

9.2 Creating and Storing Job Definitions for Process Job Types

To use process type jobs with Oracle Enterprise Scheduler, you need to locate the
Metadata Service and create a job definition. You create a job definition by specifying a

Creating and Using Process Jobs 9-1

Creating and Storing Job Definitions for Process Job Types

name and a job type. When you create a job definition you also need to set certain
system properties. You can store the job definition in the metadata repository using the
Metadata Service.

For information about how to use the Metadata Service, see Chapter 6, "Using the
Metadata Service".

9.2.1 How to Create and Store a Process Job Type

An Oracle Enterprise Scheduler JobType object specifies an execution type and defines
a common set of properties for a job request. A job type can be defined and then
shared among one or more job definitions. Oracle Enterprise Scheduler supports three
execution types:

= JAVA_TYPE: for job definitions that are implemented in Java and run in the
container.

= SQL_TYPE: for job definitions that run as PL/SQL stored procedures in a database
server.

= PROCESS_TYPE: for job definitions that are binaries and scripts that run as separate
processes under the control of the host operating system.

When you specify the JobType you can also specify SystemProperties that define the
characteristics associated with the JobType. Table 9-1 describes the properties that
specify how the request should be processed if the request results in spawning a
process for a process job type.

Table 9-1 System Properties for Process Type Jobs

System Property

Description

BIZ_ERROR_EXIT_CODE Specifies the process exit code for a process job request that denotes an execution

business error. If this property is not specified, the system treats a process exit code
of 4 as an execution business error.

CMDLINE Command line required for invoking an external program.

ENVIRONMENT_VARIABLES A comma-separated list of name/value pairs (name=value) representing the
environment variables to be set for spawned processes.

REDIRECTED_OUTPUT_FILE Specifies the file where standard output and error streams are redirected for a
process job request.

REQUESTED_PROCESSOR The Oracle WebLogic Server node on which a spawned job is executed.

SUCCESS_EXIT_CODE The process exit code for a process job request that denotes a successful execution.
If this property is not specified, the system treats a process exit code of 0 as a
successful completion.

WARNING_EXIT CODE The process exit code for a spawned job that denotes a successful execution. If this

WORK_DIR_ROOT

property is not specified, the system treats a process exit code of 3 as a warning
exit.

The working directory for a spawned process.

For more information about system properties, see Chapter 7, "Using Parameters and
System Properties."

Example 9-1 shows a sample job type definition with a PROCESS_TYPE.

Example 9-1 Creating an Oracle Enterprise Scheduler JobType and Setting JobType
Properties

import oracle.as.scheduler.ConcurrentUpdateException;

9-2 Web User Interface Developer's Guide for Oracle Application Development Framework

Creating and Storing Job Definitions for Process Job Types

import
import
import
import
import
import
import
import
import
import
import

oracle.as.scheduler.JobType;
oracle.as.scheduler.JobDefinition;
oracle.as.scheduler.MetadataService;
oracle.as.scheduler.MetadataServiceHandle;
oracle.as.scheduler.MetadataObjectId;
oracle.as.scheduler.MetadataServiceException;
oracle.as.scheduler.ParameterInfo;
oracle.as.scheduler.ParameterInfo.DataType;
oracle.as.scheduler.ParameterList;
oracle.as.scheduler.SystemProperty;
oracle.as.scheduler.ValidationException;

void createDefinition()
throws MetadataServiceException,ConcurrentUpdateException,

ValidationException

MetadataService metadata =
MetadataServiceHandle mshandle = null;

try
{

ParameterInfo pinfo;
ParameterList plist;

mshandle = metadata.open();

// Define and add a PL/SQL job type for the application metadata.
String jobTypeName = "ProcessJobDefType";

JobType jobType = null;

MetadataObjectId jobTypeId = null;

jobType = new JobType (jobTypeName, JobType.ExecutionType.
PROCESS_TYPE) ;

plist = new ParameterList();
pinfo = SystemProperty.getSysPropInfo (SystemProperty.CMDLINE) ;
plist.add(pinfo.getName (), pinfo.getDataType(), "/bin/myprogram
argl arg2", false);
pinfo = SystemProperty.getSysPropInfo (SystemProperty.
ENVIRONMENT VARIABLES) ;
plist.add(pinfo.getName (), pinfo.getDataType(),
"LD_LIBRARY_PATH=/usr/lib", false);
pinfo = SystemProperty.getSysPropInfo (SystemProperty.PRODUCT) ;
plist.add(pinfo.getName(), pinfo.getDataType(), "HOW_TO_PROD", false);
jobType.setParameters (plist);

jobTypelId = metadata.addJobType (mshandle, jobType, "HOW_TO_PROD");

// Define and add a job definition for the application metadata.
String jobDefName = "ProcessJobDef";

JobDefinition jobDef = null;

MetadataObjectId jobDefId = null;

jobDef = new JobDefinition(jobDefName, jobTypeld);
jobDef.setDescription("Demo Process Type Job Definition " +

jobDefName) ;

plist = new ParameterList();
plist.add("myJobdefProp", DataType.STRING, "myJobdefval", false);

Creating and Using Process Jobs 9-3

Creating and Storing Job Definitions for Process Job Types

pinfo = SystemProperty.getSysPropInfo (SystemProperty.
REDIRECTED_OUTPUT_FILE) ;
plist.add(pinfo.getName (), pinfo.getDataType(), "/tmp/" + jobDefName
+ ".out", false);

jobDef.setParameters (plist) ;

jobDefId = metadata.addJobDefinition(mshandle, jobDef, "HOW_TO_PROD");
}
catch (Exception e)
{
[...]
}
finally

{
// Close metadata service handle in finally block.
if (null != mshandle)
{
metadata.close(mshandle);
mshandle = null;

}

As shown in Example 9-1, when you create and store a process job type, you do the
following:

= Use the JobType constructor and supply a String name and a
JobType.ExecutionType.PROCESS_TYPE argument.

= Obtain the metadata pointer, as shown in Section 6.2, "Accessing the Metadata
Service". Use the Metadata Service addJobType () method to store the JobType in
metadata.

s The MedatdataObjectId, returned by add]JobType(), uniquely identifies metadata
objects in the metadata repository using a unique identifier.

9.2.2 How to Create and Store a Process Type Job Definition

To use process type jobs, you need to create and store a job definition.

Note: Once you create a job definition with a job type, you cannot
change the type or the job definition name. To change the job type or
the job definition name, you need to create a new job definition.

Example 9-1 shows how to create a job definition using the job definition constructor
and the job type. Table 9-1 describes some of the system properties that are associated
with the job definition.

As shown in Example 9-1, when you create and store a job definition you do the
following:

= Use the JobDefinition constructor and supply a String name and a
MetadataObjectID that points to a job type stored in the metadata.

= Set the appropriate properties for the new job definition.

9-4 Web User Interface Developer's Guide for Oracle Application Development Framework

Using a Perl Agent Handler for Process Jobs

s Obtain the metadata pointer, as shown in Section 6.2, "Accessing the Metadata
Service". Then, use the Metadata Service addJobDefinition () method to store the
job definition in the metadata repository and to return a MetadataObjectID.

9.3 Using a Perl Agent Handler for Process Jobs

Oracle Enterprise Scheduler requires a Perl agent to manage individual process jobs.
The Perl agent is responsible for validating, spawning, monitoring and controlling
process job execution, as well as returning the exit status of process jobs to Oracle
Enterprise Scheduler. The Perl agent also monitors Oracle Enterprise Scheduler
availability and handles job cancellation requests. In the event of abnormal job
termination (or job cancellation requests), the Perl agent terminates the spawned
process (along with its children) and exits. It detects the operating system type and
uses appropriate system calls to invoke, manage and terminate process jobs.

The Oracle Enterprise Scheduler Perl agent can generate its log under the /tmp folder.
This must be enabled by setting the Oracle Enterprise Scheduler log level to FINE,
FINER or FINEST and ensuring read and write access to the /tmp folder. One log file is
generated for each process job invocation. The log file lists the process job invocation
log, including a list of environment variables, the command line and redirected output
file specified for the process job, process ID and exit code for the process job or errors
detected while spawning the process.

Oracle Enterprise Scheduler Perl agent requires Oracle Perl version 5.10 or later.

Creating and Using Process Jobs 9-5

Using a Perl Agent Handler for Process Jobs

9-6 Web User Interface Developer's Guide for Oracle Application Development Framework

10

Defining and Using Schedules

This chapter describes how to define schedules that you can associate with a Oracle
Enterprise Scheduler job definition, specifying when a job request runs and including
administrative actions such as workshifts that specify time-based controls for
processing with Oracle Enterprise Scheduler.

This chapter includes the following sections:

s Section 10.1, "Introduction to Schedules"

= Section 10.2, "Defining a Recurrence"

= Section 10.3, "Defining an Explicit Date"

= Section 10.4, "Defining and Storing Exclusions"

= Section 10.5, "Defining and Storing Schedules"

= Section 10.6, "Identifying Job Requests That Use a Particular Schedule"
= Section 10.7, "Updating and Deleting Schedules"

10.1 Introduction to Schedules

Using Oracle Enterprise Scheduler you can create a schedule to determine when a job
request runs or use a schedule for other purposes, such as determining when a work
assignment becomes active. A schedule can contain a list of explicit dates, such as July
14, 2012. A schedule can also include expressions that represent a set of recurring dates
(or times and dates).

Using Oracle Enterprise Scheduler you create a schedule with one or more of the
following:

= Explicit Date: Defines a date for use in a schedule or exclusion.

= Recurrence: Contains an expression that represents a pattern for a recurring date
and time. For example, you can specify a recurrence representing a regular period
such as Mondays at 10:00AM.

s Exclusion: Contains a list of dates to exclude or dates and times to exclude from a
schedule. For example, you can create an exclusion that contains a list of holidays
to exclude from a schedule.

10.2 Defining a Recurrence

A recurrence is an expression that represents a recurring date and time. You specify a
recurrence using an Oracle Enterprise Scheduler Recurrence object. You use a

Defining and Using Schedules 10-1

Defining a Recurrence

Recurrence object when you create a schedule or with an exclusion to specify a list of
dates.

The Recurrence constructor allows you to create a recurrence as follows:
s Using the fields defined in the RecurrenceFields class, such as DAY_OF_MONTH.

= Using a recurrence expression compliant with the iCalendar (RFC 2445)
specification. For information about using iCalendar RFC 2245 expressions see,

http://www.ietf.org/rfc/rfc2445.txt

Note: When you create a recurrence you can only use one of these
two mechanisms for each recurrence instance.

A recurrence can also include the following (these are not required):
= Start date: The starting time and date for the recurrence pattern.
= End date: The ending time and date for the recurrence pattern.

= Count: The count for the recurrence pattern. The count indicates the maximum
number of occurrences the object generates. For example, if you specify a
recurrence representing a regular period such as Mondays at 10:00AM, and a
count of 4, then the recurrence includes only four Mondays.

The start date, end date, and count attributes are valid for either a RecurrenceFields
helper based instance or an iCalendar based instance of a recurrence.

You can validate a recurrence using the recurrence validate () method that checks if
an instance of a Recurrence object represents a well defined and complete recurrence
pattern. A Recurrence instance is considered complete if it has the minimum required
fields that can generate occurrences of dates or dates and times.

10.2.1 How to Define a Recurrence with a Recurrence Fields Helper

You can create a recurrence using a recurrence fields helper. The RecurrenceFields
helper class provides a user-friendly way to specify a recurrence pattern. Table 10-1
shows the recurrence fields helper classes available to specify a recurrence pattern.

Table 10-1 Recurrence Field Helper Patterns

Recurrence Field Description

DAY_OF_MONTH Defines the day of a month

DAY OF WEEK Enumeration of the day of a week

FREQUENCY Defines the repeat frequency of a Recurrence. Choices are:

= DAILY: Indicates every day repetition

= HOURLY: Indicates every hour repetition

= MINUTELY: Indicates every minute repetition
= MONTHLY: Indicates every month repetition

= SECONDLY: Indicates every second repetition
= WEEKLY: Indicates every week repetition

= YEARLY: Indicates every year repetition
MONTH_OF_YEAR Defines the months of the year

TIME_OF_DAY Defines the time of the day

10-2 Web User Interface Developer's Guide for Oracle Application Development Framework

Defining a Recurrence

Table 10-1 (Cont) Recurrence Field Helper Patterns

Recurrence Field Description
WEEK_OF_MONTH Enumerations for the week of a month
YEAR Encapsulate the value of a year

Example 10-1 shows a sample recurrence created using the RecurrenceFields helper
class with a weekly frequency (every Monday at 10:00 a.m.) using no start or end date.

Example 10-1 Defining a Recurrence with Weekly Frequency
Recurrence recurl =

new Recurrence (RecurrenceFields.FREQUENCY.WEEKLY, 1, null, null);
recurl.addDayOfWeek (RecurrenceFields.DAY_OF_WEEK.MONDAY) ;
recurl.setRecurTime (RecurrenceFields.TIME_OF_DAY.valueOf (10, 0, 0));
recurl.validate();

In Example 10-1, note the following:

s The schedule becomes active as specified with the start time supplied at runtime
by Oracle Enterprise Scheduler when a job request that uses the schedule is
submitted.

s The interval parameter 1 specifies that this recurrence generates occurrences every
week. You calculate this value by multiplying the frequency with the interval.

Example 10-2 shows a sample recurrence for every 4 hours with no start or end date.
The recurrence was created using the RecurrenceFields helper class with an hourly
frequency, an interval multiplier of 4, a null start date, and a null end date.

Example 10-2 Defining a Recurrence with Four Hourly Frequency

Recurrence recur?
new Recurrence

(RecurrenceFields.FREQUENCY.HOURLY, 4, null, null);
recur?2.validate(

)i

In Example 10-2, note the following:

» The schedule becomes active as specified with the start time supplied at runtime
by Oracle Enterprise Scheduler when a job request that uses the schedule is
submitted.

= The interval parameter 4 specifies that this recurrence generates occurrences every
4 hours. You calculate this value by multiplying the frequency with the interval.

Example 10-3 shows a sample recurrence created using the RecurrenceFields helper
class and a monthly frequency.

Example 10-3 Defining a Recurrence with Monthly Frequency

Recurrence recur3 =

new Recurrence (RecurrenceFields.FREQUENCY.MONTHLY, 1, null, null);
recur3.addWeekOfMonth (RecurrenceFields.WEEK_OF_MONTH.SECOND) ;
recur3.addDayOfWeek (RecurrenceFields.DAY_OF WEEK.TUESDAY) ;
recur3.setRecurTime (RecurrenceFields.TIME_OF_DAY.valueOf (11, 00, 00));
recur3.validate();

Example 10-3 specifies a recurrence with the following characteristics:

Defining and Using Schedules 10-3

Defining a Recurrence

s Includes an interval parameter with the value 1 specifies that this recurrence
generates occurrences every month.

s Includes a specification for the week of month, indicating the second week.
= Includes a specification for the day of week, Tuesday.
= Includes the specification for the time of day, with the value 11:00.

Example 104 shows a sample recurrence created using the RecurrenceFields helper
class and a monthly frequency specified with a start date and time.

Example 10-4 Defining a Recurrence with Start Date and Time Specified

Calendar cal = Calendar.getInstance();

cal.set(Calendar.YEAR, 2007);

cal.set (Calendar.MONTH, Calendar.JULY);
cal.set(Calendar.DAY_OF MONTH, 1);

cal.set(Calendar.HOUR, 9);

cal.set(Calendar.MINUTE, 0);

cal.set(Calendar.SECOND, 0);

Recurrence recurd = new Recurrence (RecurrenceFields.FREQUENCY.WEEKLY,

recurd.validate();

Example 104 defines a recurrence with the following characteristics:
s The end date is specified as null meaning no end date.

= Using this recurrence, the start date is specified with the Calendar instance cal,
and its value is set with the set () method calls.

10.2.2 How to Define a Recurrence with an iCalendar RFC 2445 Specification

You can specify a recurrence pattern using the Recurrence constructor with a String
containing an iCalendar (RFC 2445) specification.

For information about using iCalendar RFC 2245 expressions see the following link:
http://www.ietf.org/rfc/rfc2445.txt

Example 10-5 shows a sample recurrence created using an iCalendar expression.

Example 10-5 Defining a Recurrence with an iCalendar String Expression

Recurrence recur5 = new Recurrence ("FREQ=YEARLY; INTERVAL=1; BYMONTH=5; BYDAY=2MO; ") ;
recur5.validate() ;

Note: The following are not supported through iCalendar
expressions:

COUNT, UNTIL, BYSETPOS, WKST

You can still directly specify a count on the Recurrence object using
the setCount method.

10.2.3 What You Need to Know When You Use a Recurrence Fields Helper

When you define a recurrence with a RecurrenceFields helper, note the following:

10-4 Web User Interface Developer's Guide for Oracle Application Development Framework

Defining a Recurrence

Providing a frequency with one of the RecurrenceFields.FREQUENCY constants is
always mandatory when you define a recurrence pattern using the

RecurrenceFields helper classes (for more information on frequency, see
Table 10-1).

The frequency interval supplied with the recurrence constructor is an integer that
acts as a multiplier for the supplied frequency. For example if the frequency is
RecurrenceFields.FREQUENCY.HOURLY and the interval is 8, then the combination
represents every 8 hours.

Providing either a start or end date is optional. But if a start or end date is
specified, it is guaranteed that the object will not generate any occurrences before
the start date or after the end date (and if specified, any associated start time or
end time).

In general if both start date and recurrence fields are used, then the recurrence
fields always take precedence. This qualification means the following;:

- If a start date is specified with just the frequency fields from the
RecurrenceFields then the start date defines the occurrences with the
frequency field, starting with the first occurrence on the start date itself. For
example if a start date is specified as 01-MAY-2007:09:00:00 with a
RecurrenceFields.FREQUENCY of WEEKLY without using other recurrence fields,
the occurrences happen once every week starting on 01-MAY-2007:09:00:00
(and including 08-MAY-2007:09:00:00, 15-MAY-2007:09:00:00, and so on).

Thus, providing a start date along with a specification of frequency fields
provides a quick way of defining a recurrence pattern.

— If the start date or end date is specified together with additional recurrence
fields, the recurrence fields take precedence, and the start date or end date
only act as absolute boundary points. For example, with a start date of
01-MAY-2007:09:00:00 and a frequency of WEEKLY if the additional recurrence
field DAY_OF_WEEK is used with a value of WEDNESDAY the occurrence happens
on every Wednesday starting with the first Wednesday that comes after
01-MAY-2007. Because 01-MAY-2007 is a Tuesday, the first occurrence
happens on 02-MAY-2007:09:00:00 and not on 01-MAY-2007:09:00:00.

In this case, with the start date of 01-MAY-2007:09:00:00, if the TIME_OF_DAY is
also specified as 11:00:00, all the occurrences happen at 11:00:00 overriding the
09:00:00 time from the starting date specification.

When just a frequency is supplied and a recurrence does not include either a start
date, start time, or a TIME_OF_DAY field, the occurrences happen based on a
timestamp that Oracle Enterprise Scheduler supplies at runtime (typically this
timestamp is provided during request submission).

For example, when a recurrence indicates a 2 hour recurrence then the time of the
job request submission determines the start time for the occurrences. Thus, in such
cases the occurrences for a job request are each 2 hours apart, but when multiple
job requests are submitted, the start times will be different and are set at the
request submission time for the job requests.

When the start date is not used, recurrence fields can be included such that a
recurrence pattern is completely defined. For example, specifying a MONTH_OF_
YEAR alone does not define a recurrence pattern when a start date is not also
present. Without a start date the number of minimum recurrence fields required to
define a pattern depends upon the value of the frequency used. For example with
frequency of WEEKLY, only DAY_OF_WEEK and TIME_OF_DAY are sufficient to define
which day the weekly occurrences should happen. With a frequency of YEARLY,

Defining and Using Schedules 10-5

Defining an Explicit Date

MONTH_OF_YEAR, DAY_OF_MONTH (or the WEEK_OF_MONTH and DAY_OF_WEEK) and the
TIME_OF_DAY are sufficient to define the recurrence pattern.

= You can supply multiple values for recurrence fields, except for the frequency
field. However, at runtime Oracle Enterprise Scheduler skips invalid combinations
silently. For example with MONTH_OF_YEAR specified as January and ending in June,
and with DAY_OF_MONTH as 30, the recurrence skips an invalid day, that is day 30 for
February.

10.2.4 What You Need to Know When You Use an iCalendar Expression

When you define a recurrence with an iCalendar expression, note the following:

= When the recurrence does not include either a start date or time and the iCalendar
expression does not specify a time of day, the occurrences happen based on a
timestamp that Oracle Enterprise Scheduler supplies at runtime (typically this
timestamp is provided during request submission).

For example a recurrence can indicate a 2 hour recurrence, and the start date and
time of the job request submission determines the exact start time for the
occurrences. Note that in such cases, when the start time is not specified,
occurrences for different job requests can happen at different times, based on the
submission time, but the individual occurrences will be 2 hours apart.

= Providing either a start date with setStartDate() or an end date with
setEndDate () is optional. But if a start or end date is specified, it is guaranteed
that the object will not generate any occurrences before the start date or after the
end date (and if specified, any associated start time or end time).

10.3 Defining an Explicit Date

An explicit date defines a date and time for use in a schedule or an exclusion. You
construct an ExplicitDate using appropriate fields from the RecurrenceFields class.

10.3.1 How to Define an Explicit Date

Example 10-6 shows an explicit date definition.

Example 10-6 Defining an Explicit Date

ExplicitDate date = new ExplicitDate(RecurrenceFields.YEAR.valueOf (2007),
RecurrenceFields.MONTH_OF_YEAR.AUGUST,
RecurrenceFields.DAY_OF_MONTH.valueOf (17));

In Example 10-6 a RecurrenceFields helper defines a date in the constructor and the
value does not include a time of day. You can optionally use setTime to set the time
associated with an explicit date.

10.3.2 What You Need to Know About Explicit Dates

10-6

The ExplicitDate class provides the ability to define a partial date, when compared
with java.util.Calendar where the time part is not specified. Also all other
java.util.Calendar fields such as TimeZone are not defined with an ExplicitDate.
When the time part is not specified in an ExplicitDate, Oracle Enterprise Scheduler
computes the time appropriately. For example, consider a schedule that indicates
every Monday after June 1, 2007, and adds an explicit date for the 17th of August 2007
(a Friday). In this example, the 17th of August 2007 is a partial date since it does not
include a time.

Web User Interface Developer's Guide for Oracle Application Development Framework

Defining and Storing Exclusions

10.4 Defining and Storing Exclusions

Using an Oracle Enterprise Scheduler exclusion you can represent dates that need to
be excluded from a schedule. For example, you can use an exclusion to create a list of
holidays to skip in a schedule.

10.4.1 How to Define an Exclusion

You represent an individual exclusion with an Exclusion object. You can define the
dates to exclude in an exclusion using either an ExplicitDate or with a Recurrence
object.

Example 10-7 shows how to create an Exclusion instance using a recurrence.

Example 10-7 Defining Explicit Dates and an Exclusion

Recurrence recur = new Recurrence (RecurrenceFields.FREQUENCY.YEARLY, 1);
recur.addMonth (RecurrenceFields.MONTH_OF_YEAR.JULY) ;

recur.addDayOfMonth (RecurrenceFields.DAY_OF MONTH.valueOf (4));

Exclusion e = new Exclusion("Independence Day", recur);

Example 10-7 defines an individual exclusion. For information about creating a list of
Exclusions, see Section 10.4.2, "How to Create an Exclusions Definition".

10.4.2 How to Create an Exclusions Definition

To create a list of exclusions and persist the exclusion dates you do the following;:
1. Create a list of exclusions.
2. Define an ExclusionsDefinition object using the list of exclusions.

3. Use the Metadata Service addExclusionDefinition () method to persist the
ExclusionsDefinition.

Finally, when you want to associate an ExclusionsDefinition with a schedule, you
use the schedule addExclusion () method.

Example 10-8 shows how to create an ExclusionDefinition and store the definition
to the metadata repository.

Example 10-8 Creating and Storing a List of Exclusions in an ExlusionDefinition

Collection<Exclusion> exclusions = new ArrayList<Exclusion>();
Exclusion e = new Exclusion("Independence Day", recur);
exclusions.add(e);
ExclusionsDefinition exDefl =
new ExclusionsDefinition("OrclHolidaysl", "Annual Holidays", exclusions);
MetadataObjectId exIdl =
m_service.addExclusionDefinition (handle,
exDefl,
"METADATA_UNITTEST_PROD") ;

Note in Example 10-8 that the ExclusionsDefinition constructor needs three
arguments.

Defining and Using Schedules 10-7

Defining and Storing Schedules

10.5 Defining and Storing Schedules

Using Oracle Enterprise Scheduler you can create a schedule to determine when a job
request runs or use the schedule for other purposes (such as determining when a work
assignment becomes active). A schedule contains a list of explicit dates, such as June
13,2007 or a set of expressions that represent a recurring date or date and time. A
schedule can also specify specific exclusion and inclusion dates.

You create a schedule using the following;:

= Explicit Dates: Define a date for use in a schedule or exclusion. For more
information, see Section 10.3, "Defining an Explicit Date"

= Recurrences: Contain an expression that represents a pattern for a recurring date
and time. For example, you can specify a recurrence representing a regular period
such as Mondays at 10:00AM. For more information, see Section 10.2, "Defining a
Recurrence"

s Exclusions: Contain a list of dates to exclude or dates and times to exclude from a
schedule. For example, you can create an exclusion that contains a list of holidays
to exclude from a schedule. For more information, see Section 10.4, "Defining and
Storing Exclusions”

10.5.1 How to Define and Store a Schedule

To define a schedule:

1. Create a schedule by defining an Oracle Enterprise Scheduler Schedule object and
using the schedule constructor to create a new schedule.

2. Obtain a metadata service reference, m_metadataService, and open a metadata
session in a try block with MetadataServiceHandle.

MetadataObjectId schedulelId = m_service.addScheduleDefinition(handle, sl, "HOW_
TO_PROD") ;

3. Define the date, recurrences and exclusions.
4. Store the schedule using addScheduleDefinition.

5. Close the session with a finally block.

10.5.2 What Happens When You Define and Store a Schedule

Example 10-9 shows a sample schedule definition using a recurrence with the
RecurrenceFields helper class for a weekly schedule, specified to run on Mondays at
10:00AM.

The schedule uses the addInclusionDate () method to add an explicit date to the
occurrences in the schedule, and the addExclusionDate () method to explicitly exclude
the date of May 15 from schedule occurrences.

Example 10-9 Creating a Schedule Recurrence with RecurrenceFields Helpers

Recurrence recur = new Recurrence (RecurrenceFields.FREQUENCY.WEEKLY) ;
recur.addDayOfWeek (RecurrenceFields.DAY_OF_WEEK.MONDAY) ;
recur.setRecurTime (RecurrenceFields.TIME_OF_DAY.valueOf (10, 0, 0));

ExplicitDate julyl0 = new ExplicitDate(RecurrenceFields.YEAR.valueOf (2008),

RecurrenceFields.MONTH_OF_YEAR.JULY
RecurrenceFields.DAY OF_MONTH.valueOf (10));

10-8 Web User Interface Developer's Guide for Oracle Application Development Framework

Updating and Deleting Schedules

ExplicitDate mayl5 = new ExplicitDate(RecurrenceFields.YEAR.valueOf (2008),
RecurrenceFields.MONTH _OF_ YEAR.MAY,
RecurrenceFields.DAY OF_MONTH.valueOf (15));

Schedule schedule = new Schedule("everyMonday", "Weekly Schedule", recur);
schedule.addInclusionDate (julyl0) ;
schedule.addExclusionDate (mayl5) ;

Example 10-10 shows sample code used to store a schedule. The method
addScheduleDefinition() is used to store the schedule within a try block, followed
by a finally block that includes error handling.

Example 10-10 Storing a Schedule

MetadataServiceHandle handle = null;
boolean abort = true;

try
{
handle = m_service.open();
m_service.addScheduleDefinition(handle, schedule, "HOW_TO_PROD");
abort = false;
}
finally

{
if (handle != null)
{

m_service.close (handle, abort);

}

10.5.3 What You Need to Know About Handling Time Zones with Schedules

You can use a java.util.TimeZone object to set the time zone for a schedule. Use the
Schedule setTimeZone () method to set or clear the TimeZone for a Schedule. The
Schedule method getTimeZone () returns a java.util.TimeZone value if the Schedule
object has as TimeZone set.

10.6 Identifying Job Requests That Use a Particular Schedule

You can use Fusion Middleware Control to search for job requests that use a particular
schedule.

For more information about searching for job requests that use a certain schedule, see
the section "Searching for Oracle Enterprise Scheduler Job Requests” in the chapter
"Managing Oracle Enterprise Scheduler Requests" in Oracle Fusion Middleware
Administrator’s Guide for Oracle Enterprise Scheduler.

10.7 Updating and Deleting Schedules
You can use Fusion Middleware Control to edit and delete schedules.

For information about editing and deleting schedules, see the section "Managing
Schedules” in the chapter "Managing Oracle Enterprise Scheduler Requests" in Oracle
Fusion Middleware Administrator’s Guide for Oracle Enterprise Scheduler.

Defining and Using Schedules 10-9

Updating and Deleting Schedules

10-10 Web User Interface Developer's Guide for Oracle Application Development Framework

11

Using the Oracle Enterprise Scheduler Web
Service

This chapter describes how you can use the Oracle Enterprise Scheduler web service
for accessing a subset of the Oracle Enterprise Scheduler runtime functionality.

This chapter includes the following sections:

= Section 11.1, "Introduction to the Oracle Enterprise Scheduler Web Service"
= Section 11.2, "Developing and Using ESSWebservice Applications"

s Section 11.3, "ESSWebservice WSDL File"

= Section 11.4, "Use Case Using Oracle Enterprise Scheduler ESSWebservice from a
BPEL Process"

= Section 11.5, "Creating the ESSWebService Application and a SOA Project”
= Section 11.6, "Creating the ESSWebService Reference"

= Section 11.7, "Adding the BPEL Process to Call the ESSWebService"

= Section 11.8, "Using Additional ESSWebService Operations"

= Section 11.9, "Securing the Oracle Enterprise Scheduler Web Service"

= Section 11.10, "Deploying and Testing the Project”

11.1 Introduction to the Oracle Enterprise Scheduler Web Service

Oracle Enterprise Scheduler provides a rich set of functionality for enterprise level
scheduling. This functionality includes support for the following operations:

s Creating and managing Oracle Enterprise Scheduler metadata
= Submitting and managing Oracle Enterprise Scheduler job requests
s Configuring and managing Oracle Enterprise Scheduler

Client applications can use the Oracle Enterprise Scheduler web service
(ESSWebservice) to access a subset of the Oracle Enterprise Scheduler runtime
functionality. The ESSWebservice is provided primarily to support SOA integration,
for example invoking Oracle Enterprise Scheduler from a BPEL process. However, any
client that needs a web service to interact with Oracle Enterprise Scheduler can use
ESSWebservice. ESSWebservice exposes job scheduling and management functionality
for request submission and request management.

ESSWebservice is deployed within the Oracle Enterprise Scheduler application, where
the application is a Java EE application within the Oracle Enterprise Scheduler runtime

Using the Oracle Enterprise Scheduler Web Service 11-1

Introduction to the Oracle Enterprise Scheduler Web Service

framework. Thus, the ESSWebservice is available on every node where Oracle
Enterprise Scheduler is installed and deployed.

The ESSWebservice is a synchronous web service, such that all the operations invoked
are synchronous operations. Since internally, the job execution model in Oracle
Enterprise Scheduler is asynchronous, the APIs themselves do not need to be
asynchronous. However, Oracle Enterprise Scheduler web service also provides the
capability to retrieve the job completion events asynchronously (in a manner similar to
implementing the Oracle Enterprise Scheduler EventListener contract in the core API
layer).

The ESSWebservice WSDL describes the complete functionality for the
ESSWebservice. Table 11-1 summarizes the operations available with ESSWebservice.

Table 11-1 Summary of Operations Available with ESSWebservice

Operation Communication Type Description

addPPAction Synchronous Adds a post-processing action to a step in a job set request. This method
is called prior to submitting the request. The method provides support
for action previously supported by add_printer, add_notification, add_
layout in concurrent processing. The parameters to these legacy
routines are passed as arguments to addPPAction in the order in which
they were declared in the original routine. For more information, see
Section 11.8, "Using Additional ESSWebService Operations"

addPPActions Synchronous Similar to addPPAction, except that you can package multiple actions in
your request.

cancelRequest Synchronous Cancels the processing of a request that is not in a terminal state.

deleteRequest Synchronous Marks a request in a terminal state for deletion. This does not physically

remove any data, although the request will no longer be accessible by
most methods.

For parent requests, this operation will cascade to all children.

getCompletionStatus Asynchronous Registers for an asynchronous status update when the request
completes. A one-way operation with a separate asynchronous
response.

getRequestDetail Synchronous Gets the runtime details of the specified request.

getRequestState Synchronous Retrieves the current state of the specified request.

holdRequest Synchronous Withholds further processing of a request that is in WAIT or READY state.
For parent requests, this operation will cascade to all eligible child
requests.

releaseRequest Synchronous Releases a request from the HOLD state. For parent requests, this
operation will cascade to all eligible child requests.

setAsyncRequestStatus Synchronous Sets the status of an asynchronous java job.

setNLSOptions Synchronous Sets NLS environment options for a request.

setStepsArgs Synchronous Marshals arguments in the previous concurrent processing style into a

Oracle Enterprise Scheduler properties for a step in a job set request.
This operation is invoked prior to submitting a request. For more
information, see Section 11.8, "Using Additional ESSWebService
Operations".

11-2 Web User Interface Developer's Guide for Oracle Application Development Framework

Developing and Using ESSWebservice Applications

Table 11-1 (Cont.) Summary of Operations Available with ESSWebservice

Operation

Communication Type Description

setSubmitArgs

Synchronous Marshals arguments in the previous concurrent processing style into
Oracle Enterprise Scheduler properties.This operation is invoked prior
to submitting the request. The key of each argument is ARGUMENT_
PREFIX#, where # is the ordinal value of the argument. For example
ARGUMENT_PREFIX1="firstArg" and ARGUMENT_
PREFIX2="secondArg". For more information, see Section 11.8, "Using
Additional ESSWebService Operations".

submitRecurringRequest Synchronous Submits a new recurring job request (a request with a schedule). For

submitRequest

more information, see Section 11.8, "Using Additional ESSWebService
Operations".

Synchronous Submits a new job request. For more information, see Section 11.4, "Use
Case Using Oracle Enterprise Scheduler ESSWebservice from a BPEL
Process"

11.2 Developing and Using ESSWebservice Applications

Oracle Enterprise Scheduler executes a job request, for example a Java type job
request, in the context of the application that submitted the job. Typically, for
development purposes, Oracle Enterprise Scheduler and client applications co-exist
locally on any given node which allows Oracle Enterprise Scheduler to execute the job
in the context of the target application. For the purposes of production, the client
application and Oracle Enterprise Scheduler often reside on different servers.

A Java EE application that uses Oracle Enterprise Scheduler contains all the Oracle
Enterprise Scheduler artifacts including the following:

= Metadata, including a job type, a job definition, a schedule, and any other required
metadata such as a job set.

= Job implementation classes (for Java jobs).

= A Required Oracle Enterprise Scheduler endpoint description (an MDB
description in ejb-jar.xml).

Any clients interacting with Oracle Enterprise Scheduler using ESSWebservice need to
provide such a Java EE application, such that Oracle Enterprise Scheduler can run jobs
in the context of the correct target application. All such web service clients must know
the name of the corresponding Java EE hosting application and should pass it to
Oracle Enterprise Scheduler using the web service call wherever required (where this
is required is defined in the WSDL).

The details for developing this hosting application are described in Chapter 5, "Use
Case Oracle Enterprise Scheduler Sample Application (Deprecated)." Such an
application is a regular Oracle Enterprise Scheduler client application, but the job
request submission and other Oracle Enterprise Scheduler interactions may be
skipped, as these calls are generated through the ESSWebservice.

11.2.1 How to Develop and Use an ESSWebservice Java EE Application

When the Oracle Enterprise Scheduler functionality is accessed using the
ESSWebservice web service, a corresponding hosting Java EE application needs to be
available to Oracle Enterprise Scheduler. Even though clients can interact with Oracle
Enterprise Scheduler remotely using the Oracle Enterprise Scheduler web service, the
associated Java EE application must still be co-located with Oracle Enterprise
Scheduler. This allows Oracle Enterprise Scheduler to execute job requests in the
correct application context. Therefore ESSWebservice clients still need to develop,
package and deploy a corresponding Java EE application that contains all the required

Using the Oracle Enterprise Scheduler Web Service 11-3

Developing and Using ESSWebservice Applications

Oracle Enterprise Scheduler artifacts. For information about developing an Oracle
Enterprise Scheduler application, see Chapter 5, "Use Case Oracle Enterprise
Scheduler Sample Application (Deprecated)."

11.2.2 How to Develop and Use an ESSWebservice SOA Application with BPEL

For SOA clients all the SOA components such as a BPEL processor are deployed as a
SOA composite. A SOA composite is not a Java EE application. The composite is
executed using the SOA fabric runtime framework (within soa-infra).

For SOA components, create a separate Java EE hosting application that acts as the
proxy between the composite and Oracle Enterprise Scheduler. This hosting
application can either be created in a one-to-one association with one Oracle Enterprise
Scheduler application for each composite deployed, or multiple composites can share
a single Java EE hosting application. The Java EE hosting application contains all the
desired Oracle Enterprise Scheduler artifacts.

11.2.3 Setting Web Service Addressing Headers for getCompletionStatus() Operation

As shown in the ESSWebservice WSDL, if clients want to be notified asynchronously
on job completion they can invoke the getCompletionStatus () operation. Upon job
completion, Oracle Enterprise Scheduler will invoke the callback operation
onJobCompletion() following ws-addressing where ESSWebservice captures the
caller's address in the incoming call. Clients should be capable of receiving the
callback at any arbitrary time in future. Such a callback depends entirely upon the time
required to complete the job. This is similar to the Oracle Enterprise Scheduler
functionality for invoking a client's listener (that implements Oracle Enterprise
Scheduler EventListener contract) upon job completion.

When you use getCompletionStatus () clients must include certain required web
service addressing headers (in particular the wsa:MessageID and wsa:ReplyTo
headers). This allows the Oracle Enterprise Scheduler runtime to asynchronously
notify the job completion status be sent to the correct ReplyTo address. When you use
getCompletionStatus () from a BPEL process the SOA runtime automatically adds the
required headers. When using getCompletionStatus () programmatically on the client
side, using the web service proxies, then the web service client must set these
addressing headers.

11.2.4 Limitations for ESSWebservice

ESSWebservice does not support the following Oracle Enterprise Scheduler features:

= Ad hoc Request Submission: ESSWebservice does not support ad hoc job request
submission (ad hoc request submission is available using the EJB APIs). Therefore
any job that is submitted using the ESSWebservice must have its corresponding
definition, including a job type and job definition along with the schedule
definitions created as metadata objects in the associated proxy application. The
web service operation can then refer to such metadata objects using their identifier
arguments as specified in the WSDL.

s Query API: ESSWebservice does not expose the query APIs. Web service clients do
not need to obtain the query information for Oracle Enterprise Scheduler requests.
ESSWebservice web service clients do not provide generic monitoring and
managing functionality that would require the use of query APIs.

11-4 Web User Interface Developer's Guide for Oracle Application Development Framework

Creating the ESSWebService Application and a SOA Project

11.2.5 ESSWebservice Implementation

The Oracle Enterprise Scheduler functionality is exposed as web service using an
interface (SEI) annotated with the JAX-WS annotations. The implementation of this
(SEI) web service invokes the common Oracle Enterprise Scheduler implementation
layer. The ESSWebservice is exposed in Document/Literal / Wrapped mode for
maximum interoperability.

Some of the data types used in ESSWebservice are not suitable to be used in web
se