ORACLE

Oracle® WebLogic Communication Services
Developer’s Guide

11gRelease 1 (11.1.1)

E13807-02

March 2010

Oracle WebLogic Communication Services Developer’s Guide, 11g Release 1 (11.1.1)
E13807-02
Copyright © 2006, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Contents

PUOIACE ... et s et s e e xiii
AN S Lo = VLT RSOPRRRRRRR Xiii
Documentation AcCesSIDIlityccociiiiiiiiiiiiiiiiii e xiii
ReElated DOCUITIEIESeovieieeiecieeeeeeeetee ettt ettt e et e e eteeeaaeeaeeesaseseesssseseeeneseseessesenseensessnseenseeans Xiv
CONMVEIIEIONS ..ooiitveeiieeieeiteeee ettt e e eeet e e e e et ae e e e e saaeeeesessaaaeeeeesaaeaeeeesessasseeseessaaesessesnsssaessessssesseessnssaeeeesons Xiv

Partl Introduction

1 Overview of SIP Servlet Application Development

WRAt 08 @ SIP SEIVIEL?c.ooieiieieieeetee ettt sttt e et e e s e besseesbeessesseessesrsensesssensenseens 1-1
Differences from HTTP ServIets..........c.cooovioriiiiioiiiieeie ettt et ere e reeae e ebe e esveereens 1-2
MUltiple RESPOISEScvviiiiiiciicieieieiee e 1-2
Receiving RESPONSES.......c.cueuiuiiiiiitiiiiiiect s 1-3
ProXy FUNCHONS......cooviiiiiiicciicc e 1-4
MESSAZE BOAY ... 1-5
Servlet REQUESTccvviiiiiiiiiiiiic s 1-5

Servlet RESPOMISEcuviiiiiiiciicc e 1-5
SIPSEIVIELMESSAZE -.....cveviviiiiiicieiiceeee ettt 1-6

Role Of @ SErviet CONLAINETcccecviiiiiieieciecteeet ettt ettt sre e raesveesae e esbesbeesseseessesseesaenseeneas 1-6
Application Managementcccccuiuiiiiiiiiiiiiiiniiiiic s 1-6

SIP MESSAGINE......ocveviveiiiriiiiiieieicicieiseee s 1-8

Utility FUNCHONS ..o 1-10

Part Il Developing and Programming SIP Applications

2 Developing Converged Applications

Overview of Converged Applications.............cccccoiiiiiiiiiiiiiiii s 2-1
Assembling and Packaging a Converged Application ..o, 2-1
Working with SIP and HTTP SeSSiONsccccccoviiiiiiininiiiiiiiiciiccc e 2-2
Modifying the Sip ApplicatioNSeSSION...........ccueieiiirieieiicie e 2-3
SYNCATIONOUS ACCESS ...t 2-4
ASYNCRIONOUS ACCESS......ouiviiiiiicieieictcie ettt 2-4

Using the Converged Application Example............ccccooiiininiiini, 2-5

3

SIP Protocol Programming

Using Compact and Long Header Formats for SIP Messagescccoevvivinininnnninnnnincneenen. 3-1
Overview of Header Format APIs and Configurationc.cccccceveeeeccieeeecceeccceennes 3-1
Summary of Compact Headers...........cccoeviiiiiiiiiiiiiiiii 3-1
Assigning Header Formats with WissSipServletMessageccccoeeuviirieiniinicieiieceeeeen, 3-2
Summary of API and Configuration Behaviorcccccocociiiiiiiiiiiiiicccceccceeenes 3-2

Using Content Indirection in SIP Servlets...........cccooiiiiiniiiniiiii, 3-4
Overview of Content INirection..........cccocvuvvviiiiiiiiiiiii s 3-4
Using the Content Indirection AP ... 3-4
Additional INformationccciiiiiiiiiii s 3-4

Generating SNMP Traps from Application Code............cocooviiiiiiiiiiiie, 3-4
OVEIVIEW .ottt 3-4
Requirement for Accessing SipServletSnmpTrapRuntimeMBeancccocooviviiiinininininnnen. 3-5
Obtaining a Reference to SipServletSnmpTrapRuntimeMBeanccccovvviniinniiininnne. 3-6
Generating an SNMP TTap ..o 3-6

Requirements and Best Practices for SIP Applications

Overview of Developing Distributed Applications for Oracle Communications Converged

APPLCALION SEIVET ...ttt et sttt a et esae e enenee 4-1
Applications Must Not Create Threadsccccooeiiiiiiiiiiiiicas 4-2
Servlets Must Be NoN-BIOCKINGcccccoiiiiiiiiiiiiiii s 4-2
Store all Application Data in the SesSion...........ccoccoiiniiniininiiccceee e 4-2
All Session Data Must Be Serializablecccocoooiiiiiiiic, 4-3
Use setAttribute() to Modify Session Data in “No-Call” Scope...........cccccovieivininiiiinnicennien, 4-3
send() Calls Are Buffered ...t 4-4
Mark SIP Servlets as Distributable ... 4-5
Use SipApplicationSessionActivationListener Sparingly ..., 4-5
Session Expiration Best Practicesccoocviniiniiiiniiiiniiiceeeeeeeeee e 4-5
Observe Best Practices for Java EE Applications ..., 4-5

Composing SIP Applications

Application Composition Model ... 5-1
Using the Default Application Router..............cocooiiiiiiiiiinii e 5-2
Configuring a Custom Application Router...............cccoviiiiniii, 5-3
Session Key-Based Request Targeting ..o 5-3

Securing SIP Servilet Resources

Overview of SIP Servlet Security..........coooiiiiiiiiiiiii s 6-1
Triggering SIP Response COdes ..o 6-2
Specifying the Security Realm ... 6-2
Role Mapping Features ..o 6-2
Using Implicit Role ASSIgNMENt.............ccccoviiiiiiiiiiiiiiiiiii e 6-3
Assigning Roles Using security-role-assignment...............ccccococoiiniiiiiniiines 6-3
Important ReqQUIrements...........cooeiiioiiiiiiiiccc s 6-3
Assigning Roles at Deployment Time...........cccccciiiiiiiiiiiiiiiicceeeeeneenes 6-5
Dynamically Assigning Roles Using the Administrative Console.............cccocovvrerrernnrirenence. 6-5

Assigning run-as Roles ... 6-6

Role Assignment Precedence for SIP Servlet Roles.............ccccccoeiiiiiiiinniiiniiin 6-6
Debugging Security Features.............ccccooiiiiiiiiiiiii e 6-7
weblogic.xml Deployment Descriptor Reference...............cccooooiiiiiiiiiiiiiiiiicccnns 6-7

Enabling Message Logging

OVEIVIEW ..ottt bbbttt bbbt ns 7-1
Enabling Message LOGZINGcccocooiiiiiiiiiiiiii s 7-1

Specifying a Predefined Logging Level ... 7-2

Customizing Log ReCOTdS........ooiuiiiiiiiiiii 7-2
Specifying Content Types for Unencrypted Loggingccccoceviiiiniiiininiinen, 7-4
Example Message Log Configuration and Output ..., 7-4
Configuring Log File Rotation............cccoiiiiiiiiiiiiii s 7-5

Part lll Parlay X Web Services and Multimedia Messaging

8

Parlay X Presence Web Services

INtrOAUCHON ..o s 8-1
Installing the Web Services...........cccoiiiiiiiiiiiiiii s 8-1
Configuring Web Services ..o 8-2
Presence Web Services Interface Descriptions.............cccoociiiiiiiiiiiiiinnicccneccs 8-2
Using the Presence Web Services Interfaces............cccocoovviiiiinininic, 8-3
Interface: PresenceConsumer, Operation: subscribePresence...........c.cococcceccccrccecicccenenas 8-3
Code EXAMPLE......coiiiiiiiiiiiiiiiiiccccc s 8-3
Interface: PresenceConsumer, Operation: getUserPresence............ccccooevoiriiioiiciciciicccieene, 8-4
Code EXAMPLE......ooviiiiiiicicieccce e 8-4
Interface: PresenceNotification, Operation: statusChanged.........cccccoooriiiiiniiiicce, 8-4
Code EXAMPIe.......oouiiiiii e 8-5
Interface: PresenceNotification, Operation: statusEnd...........cccccevviriiiiinnnnnncnrnene. 8-5
Code EXAMPILE......coviiiiiiiiiiiiiiiciciccccc s 8-5
Interface: PresenceNotification, Operation: notifySubscription...........cccccoevveciiinieincnnnn, 8-5
Code EXAMPLE......ooviiiiiiiiiciciricecce e 8-5
Interface: PresenceNotification, Operation: subscriptionEnded..........ccccccovviiiiniiiiinnnnnn, 8-5
Code EXAMPLE......cociiiiiiiiiiiciiiciciicc s 8-5
Interface PresenceSupplier, Operation: publish and Oracle Specific "Unpublish" 8-6
Code EXAMPLe......coiiiiiiiiiiiiiiiicicccc s 8-6
Interface: PresenceSupplier, Operation: getOpenSubscriptionsc.ccoveveeieiicnieiiiiccieieine, 8-7
Code EXAMPLE......ooiiiiciiiiciciecc e 8-7
Interface: PresenceSupplier, Operation: updateSubscriptionAuthorization............cccceveuuee. 8-7
Code EXAMPLE......cocuiiiiiiiiiiiciiicicicc s 8-7
Interface: PresenceSupplier, Operation: getMyWatchers ..., 8-7
Code EXAMPLe......coiiiiiiiiiiiiiicic s 8-7
Interface: PresenceSupplier, Operation: getSubscribed Attributescccccoeiciiiiiiiinnss 8-7
Code EXAMPLE......ooviiiiiiiiciciriece e 8-7
Interface: PresenceSupplier, Operation: blockSubscription..........cccccviiiviiiniiinininiinin, 8-7
Code EXAMPLE......cociiiiiiiiiiiciiiicic s 8-7

OWLCS Parlay X Presence Custom Error Codes..............cocoeuiviiiiniiiiiiiiiiiiiiiiiieeenes 8-7

Buddy List Manager API ... 8-8
Consuming the APL.......c.ccoi e 8-8
Obtaining the BuddyListManagerFactory ... 8-9
Creating a BuddyListManager..........ccccocvvviiiiiiiiiis 8-9
Adding a Buddy to a Buddy List and Retrieving the List ... 8-10
Removing a Buddy from a Buddy List.......c.cccccoeeiiiiiiiiiiiiiccce 8-10
Manipulating your presence rules document............cccceiueuiiiiiiiiiiiiiiniiis 8-10
EXCEPHIONS .. 8-11

9 Parlay X Web Services Multimedia Messaging API

INtrOAUCHON ..o s 9-1
Installing the Web Services..........cccooiiiiiiiiii s 9-1
Configuring Web Services............cccooiiiiiiiiiiii s 9-1
Messaging Web Services Interface Descriptions ..o 9-2
Using the Messaging Web Services Interfacesccccocovvivnininiinine, 9-3
Interface SendMessage, Operation: sSeNdMeSSage...........cccccueviueiiiiiiiiiiiniiiiiii s 9-3
Code EXAMPLE......cooiiiiiiiiiciiececce et 9-3
Interface SendMessage, Operation: getMessageDeliveryStatuscccccovvviiininnnininnnen. 9-4
Code EXAMPIE.......ooiiiiii e 9-4
Interface MessageNotificationManager, Operation: startMessageNotification..............c.c....... 9-4
Code EXAMPILE......coiiiiiiiiiiiiciicicce s 9-4
Interface MessageNotificationManager, Operation: stopMessageNotification....................... 9-5
Code EXAMPLE......ouiiiiiiiiiiicieicece e 9-5
Interface ReceiveMessage, Operation: getReceivedMessages..............cceveveveviiereiireiiiiiiienininnns 9-5
Code EXAMPIe.......oiiiiiii e 9-5
Interface: ReceiveMessage, Operation: getMESSAZE.c.cucueuemeucuiuiuemeueieieieieieieieierereeieeeneenenennes 9-6
Code EXAMPLe......cciiiiiiiiiiiiiiiicicccc s 9-6

Part IV Call Control

10 Third Party Call Service

Overview of Parlay X 2.1 Third Party Call Communication Services............cccccoovvriiininnnes 10-1
HOW Tt WOTKS .ottt 10-1
ALl SEEUP -ttt 10-1

Call DUTAION ..ot 10-2
SUPPOTted NEtWOTKScoviiiiiiiiiciii s 10-2
Configuring Parlay X 2.1 Third Party Call ... 10-2
Configuration Workflow for Parlay X 2.1 Third Party Call/SIPccccooeiiiiiniiiiiiinen, 10-2
Attributes and Operations for Parlay X 2.1 Third Party Callccccccovvvvinnnninninnne. 10-3
Statement of COMPIIATICE.........cooviuiriiiriiiicicee et s 10-4

PartV Using Diameter

11 Using the Diameter Base Protocol API

Diameter Protocol Packages ... 11-1

vi

12

13

14

Overview of the DIiameter APooo ettt e e e e e enaeeseanees 11-1

File Required for Compiling Application Using the Diameter APIccccccoooriiiiiininnnan. 11-3
Working with Diameter Nodes.............ccccooiiiiiiiiiiiiis 11-3
Implementing a Diameter Application..............cccooiiiiiiiiiii 11-4
Working with Diameter SeSSions.............cccccoviviiiiiiiiiiiiii s 11-4
Working with Diameter MeSSages...........cccocceiiniiiiiiiiiiiiiiiic s 11-5

Sending Request MESSAZESocorueieiiuiiiiiieicie ettt 11-5

Sending ANSWET MESSAZESovrurieiiiiieieieiiicieie ettt 11-6

Creating New Command Codes..........cccciuuiiimiiiiiiiiiececeeeeeeeeeeneneeeeaeeeseaeeeeeseseeeneeees 11-6
WOrking With AVPSs..........ccocooiiiiii s 11-6

Creating New AHIiDUtes........o.ovoiiiiii 11-7
Creating Converged Diameter and SIP Applications.............ccccoceviinniiiinniinii, 11-7

Using the Profile Service API
Overview of Profile Service API and Sh Interface Supportccccocovevineiniincinccnccneene 12-1
Enabling the Sh Interface Provider..............ccccocoooiiiiiiiiiiiic 12-2
Overview of the Profile Service API ... 12-2
Creating a Document Selector Key for Application-Managed Profile Data 12-2
Using a Constructed Document Key to Manage Profile Data.............cccoccooiiiiiiiinn. 12-4
Monitoring Profile Data with ProfileListener...............ccccocoovvniiinnininn 12-5
Prerequisites for Listener Implementationsccccovveeirrnninininnnincirreecceeeeeeeeeeeeaes 12-5
Implementing ProfileLiStenercoooiiiiiiiiiii 12-5
Developing Custom Profile Service Providers
Overview of the Profile Service API ... 13-1
Implementing Profile Service API Methods..............ccccoooiiiiiiiiiiiica 13-2
Configuring and Packaging Profile Providers ..., 13-3

Mapping Profile Requests to Profile Providers ..., 13-3

Configuring Profile Providers Using the Administration Consoleccccccceiiiiinnnns 13-4
Using the Diameter Rf Interface API for Offline Charging

Overview of Rf Interface SUPPOTt...........cocoooiiiiiiiiiiiiccee e 14-1
Understanding Offline Charging Events...............cccooiiiiniiine 14-1
Event-Based Charging ... 14-2
Session-Based Charging ... 14-2
Configuring the Rf Application ... 14-3
Using the Offline Charging APL.............ccccccooiiiiiiiic s 14-3
Accessing the Rf APpLCationccccciiiiiiiiiiiiiii s 14-4
Implementing Session-Based Charging ... 14-4
Specifying the Session EXpiration...........cccoeriiiiiiiiiniiicicce 14-5
Sending Asynchronous EVENnts ... 14-5
Implementing Event-Based Charging ... 14-6

Using the Accounting Session State ..., 14-7

vii

15 Using the Diameter Ro Interface API for Online Charging

Overview of Ro Interface SUPPOIt..........cccocoiiiiiiiiiiiic e 15-1
Understanding Credit Authorization Models ... 15-2
Credit Authorization with Unit Determination.........cccoveiiiiiiniiiiicees 15-2
Credit Authorization with Direct Debitingcccoooiiii, 15-2
Determining Units and Ratingc.ccceeociiiiiiiiiiiieciceeeee e senenes 15-2
Configuring the Ro Application.............cocoiiiiiiiiiii e 15-2
Overview of the Online Charging AP ..o 15-3
Accessing the Ro Application ... 15-4
Implementing Session-Based Charging ... 15-4
Handling Re-Auth-Request MeSSages ..ot 15-5
Sending Credit-Control-Request MesSages.............ccccccoiiniiiiniiniiiiiinininceens 15-6
Handling Failures.............ccccoooiiiiiiiiiiiiiiiccccce s 15-6

Part VI Using Oracle User Messaging Service

16

Oracle User Messaging Service

User Messaging Service OVeIVIEW ... 16-1
COMPONENES ...ttt 16-2
ATCRIEECEUTE. ... vt 16-2

17 Sending and Receiving Messages using the User Messaging Service Java

API

viii

Overview of UMS Java APL.......ccooee ettt sttt ettt st s 17-1
Creating a J2EE Application Moduleccooiiiiii e 17-1
Creating a UMS Client Instance.............cccccocooviiiiiniii s 17-2
Creating a MessagingEJBClient Instance Using a Programmatic or Declarative Approach 17-2
API Reference for Class MessagingClientFactoryooceviiiiieiiiciieiccec, 17-2
Sending @ MESSAZE.........c.cciiiiiiiiiiiiic s 17-2
Creating @ MESSAZEc.cvoviuiieiiicicie s 17-3
Creating a Plaintext MESSAZEccvoiiiiiiiiiiiiiiiiceceeee et 17-3

Creating a Multipart/ Alternative Message (with Text/Plain and Text/HTML Parts) 17-3

Creating Delivery Channel-Specific Payloads in a Single Message for Recipients with
Different Delivery Types 17-3

API Reference for Class MessageFactoryccccciiiiiiiiiiiiicciccceccceceeeees 17-4
API Reference for Interface MESSAZE.......cccueueuemiueuiuiuiuiicieieieieieieieieiee et seaeaens 17-4
API Reference for Enum DeliveryTypecccccueviiiieiiiiiiici 17-4
Addressing @ MESSAGE........c.ccuvuiuimiiiiiiiiiiiiiiiiiiee s 17-4
Types Of AdAIESSES.....c.c.cuiiiiiiiiiiiicccc e 17-5
Creating Address ODJEctSoocuiiiiriiiiii s 17-5
Creating a Recipient with a Failover Address..........ccccocooeiiiiiiicc 17-5
API Reference for Class AddressFactory.........c.cccccccceiiiiiicecicceeeeeceeeeeeeeeeeens 17-5
API Reference for Interface Address...........coovvuieiiiiiiiiiiiiiniiicccces 17-5
Retrieving Message StatUus ... 17-6
Synchronous Retrieval of Message Status.........c.cccceueucuiurnieeiiieeicececcecceeeceeeeeeeees 17-6
Asynchronous Notification of Message Status............ccocourviiriiiciiiniccccc 17-6

18

19

Receiving @ MeSSaZe.........cooiuiuiiiiiiiiiiiiiiicicict sttt 17-6

Registering an Access POINt.........cccccuiiiiiiii 17-6
SyNChronous RECEIVINGccceuiuiiiiiiiiiiiiiiiicceccctc e 17-7
Asynchronous RECEIVING ..ot 17-7
Message FAlteringoeruiiiiiiiie e 17-7
Using the UMS EJB Client API to Build a Client Application.............ccccoccooovviiiiiiiniinnnen 17-7
Overview of Development...........cccviiiiiiiiiiiiiiiiiiiiicc s 17-8
Configuring the E-Mail DIiver........cccooiiiiiiicc 17-8
Using JDeveloper 11g to Build the Applicationcccoovvrvenninnininiiiicccccccccecenes 17-9
Opening the Project ... 17-9
Deploying the APPLCation ..o 17-11
Testing the APPLICAtIONc.ceuviiiiiiiiiiiciiiccrrcc e 17-11
Using the UMS EJB Client API to Build a Client Echo Application...............cccccciinnnnne. 17-15
Overview of Development...........co.ooiiiiiiiii 17-15
Configuring the E-Mail DITVeT ..o 17-15
Using JDeveloper 11g to Build the Application ... 17-16
Opening the Project ... 17-16
Deploying the APPLCAtioncccucuviviriiiiiririinrer e 17-20
Testing the ApPlicationcccovvviiiiiiiiiiiiii e 17-20
Creating a New Application Server Connection.............cccooiiiiiiiiiiiiiiiiccnes 17-22
Parlay X Web Services Multimedia Messaging API

Overview of Parlay X Messaging Operations...............ccccccoiiiiiiiiiiiiiiiiceeeeenes 18-1
Send Message Interface..............cccooiiiiiiiiiii 18-2
sendMessage OPeration...........ooccueiiiiiiiiiiicie s 18-2
getMessageDeliveryStatus Operation...........ccocooiiiiiiciicccc e, 18-3
Receive Message Interface.............ccccocoiiiiiiiiiiiiiii s 18-3
getReceivedMessages Operation ...t 18-4
getMessage OPeration ... 18-5
getMessageURIS Operation ... 18-5
Oracle Extension to Parlay X MeSSagingcccccoeiuiiiiiiiiiiiiiiiiicciccee e 18-6
ReceiveMessageManager INterfacecoooeveiiiiiiiiininiccc e, 18-6
startReceiveMessage Operation............cccceoviviiiiiiniiiiiinic e 18-6
stopReceiveMessage Operationcccveueeiiiiiiiiiiiiiiiiieee s 18-7

Parlay X Messaging Client API and Client Proxy Packages.............cccccccoeiiiiiiiiiiiiiinns 18-7
Sample Chat Application with Parlay X APIS.........ccccccocooiiiniiiniiiices 18-8
OVEIVIEW .ottt 18-8
Provided FIleS ...ttt 18-9
Running the Pre-Built Sample........c.cccooiiiiiiiiiiiiiccccee s 18-9
Testing the SAMPLe ..o 18-12
Creating a New Application Server COnNection...........cccccoeeveueieieinecinieiicceieccee e 18-16

User Messaging Preferences

INEFOAUCHON ...t s s 19-1
TEIMINOLOZY ...ttt 19-1
Configuration of Notification Delivery Preferences ..., 19-2

Delivery Preference RUles..........ccoooiiiiiiii 19-2

Data TYPES ..ocvviieiieieiei s 19-3

SYStEM TEIMIS......oeiiiiiiiiiiicc s 19-3
BUSINESS TOIMNS ..ottt s 19-3

RULE ACHONS ... 19-4
How to Manage Messaging Channels................ccccocooviiiiies 19-5
Creating @ Channel ... 19-5
Editing @ Channel.............coi e 19-6
Deleting @ Chanmel...........ccccooiiiiiiiiiceceeee et eeeees 19-7
Setting a Default Channel ... 19-7
Creating Contact Rules using Filters.............cccoooiiiiiiiiiicca 19-7
Creating FIIEETSccoiuiiiiiiicccceeccc et 19-9
Editing @ FIIterc.ooiiii 19-11
Deleting @ FAIter ... 19-11
Configuring Settingsccocoooiiiiiiiiii e 19-11

Part VIl Reference

A Oracle User Messaging Service Applications

Send Message to User Specified Channel ..., A-1
OVEIVIEW .ottt A-1
Provided Files.........cccoiiiiiiiiiiiiiiiiiii s A-2
Installing and Configuring SOA and User Messaging Servicecccccccoeeeueueiercreeueeeencnnnnns A-2
Updating Addresses in Your LDAP User Profile.........c.cccoooiiiiiiii, A-2
Building the Sample...........oo s A-3
Creating a New Application Server CONNECIONcccoviuieiiiimieiiceneieeereeieeneenenenenenenes A-11
Deploying the Project ..o A-13
Configuring User Messaging Preferences ... A-14
Testing the SAMPLEc.c.ciuiii s A-15
Veritying the Execution of Sending the E-mailccooooiiiiii A-16
Send Email with Attachments ... A-16
OVEIVIEW .ottt A-16
Provided Files ... s A-17
Installing and Configuring SOA and User Messaging Serviceccccccoeeueuiiiiiecicicennen. A-17
Updating Addresses in Your LDAP User Profile..........cccccooiiiiiiiiiiiiiicececeenen A-17
Running the Pre-Built Sample...........coooiiiiii A-18
Testing the SAMPLe.........ccciiiiiiii s A-20
Verifying the EXeCULION. ... A-20
Building the Sample...........oooi A-20
Creating a New Application Server ConNection............c.cooceueueiricereiiecreieceeecee e, A-34

B Profile Service Provider Configuration Reference (profile.xml)

Overview of profile.Xml............ccocooiiiiiiiiii e B-1
Graphical Representationcccocovioirioiiiiiniiiniiieeeeeeeer ettt B-1
Editing profile.Xml ..o B-2

Steps for Editing profile. Xml..........cccciiiiiiiiiiiiiiccc s B-2

Example profile.xml File ... B-3
XML Element DeScriptioncccocoveiriiiiiiieiciicee ettt B-3
PTOFIlE-SEIVICE ... s B-3
TNAPPIIIE ottt B-3
INAP-DY i B-3
MAP-DY-PIOFIX c..viviiiiiiiiiiiiiiiiicic s B-3
MAP-DY-TOULET ..ot B-3
PIOVIAET ..ttt B-3

4o 41O OO B-3
PLOVIAET-CLASSoeviiietet ettt B-4

PATAIN oottt B-4

C Developing SIP Servlets Using Eclipse

OVEIVIEW ...ttt ens C-1
SIP Servlet Organizationcoccueiiiiiiicieiiceiec s C-1
Setting Up the Development Environment................ccccocoeiiiiiiiiiiiiiieeeens C-2
Creating @ OWLCS DOMAINcocuiuiiiiiiiiiiiiiiiiicieieeeeieeeeeee s ees C-2
Veritying the Default Eclipse JVM......ccccooiiiiiiii e C-2
Creating a New Eclipse Project ... s C-3
Building and Deploying the Project............cccccooiiiniiiiiiiiiiiiiiecs C-3
Debugging SIP Serviets ... C-4

D Porting Existing Applications to Oracle WebLogic Communication Services

Application Router and Legacy Application Composition.............cccccceiviiiiiiininiiiinicinne, D-1
SipSession and SipApplicationSession Not Serializable...............ccccccoooviiiiiiiiiiiiiin, D-1
SipServletResponse.setCharacterEncoding() API Changecccoviiinninniiinn D-2
Transactional Restrictions for SipServletRequest and SipServletResponse............ccccccoveueneen. D-2
Immutable Parameters for New Parameterable Interface..............ccccocooviiiiiiiiiiiiiin, D-2
Stateless Transaction Proxies Deprecated............c..cccoeoieiriiiniiiniiinicincncccec e D-3
Backward-Compatibility Mode for v1.0 Deployments...............cccccovuriiiiiiiiiiiiiciieeins D-3
Validation Warnings for v1.0 Servlet Deploymentscccococreiniierneiiicceceecc, D-3
Modifying Committed MESSAZES.........cceeuruiuriimiuiiririieieieieieieeieeeeeee e aeeeees D-3
Path Header as System Headerccoouiiiiiiiiic e D-3
SipServletResponse.createPrack() EXCOPtionccovviuiiiiiiniiiiicceece s D-3
Proxy.proxyTo() EXCEPHIONSc.cciiiiiiiiiiiiiiiiii s D-4
Changes to Proxy Branch Timers.........c.cccooiiiiiiiiiiiiici s D-4
Deprecated APIScccooiiiiiiiiiiiiiiicc s D-4
SNMP MIB Changes..........ccoouiiuiiiniiiiiiiicii e D-4
Renamed Diagnostic Monitors and Actions ... D-5
Index

xi

Xii

Audience

Preface

This preface contains the following sections:
= Audience

= Documentation Accessibility

= Related Documents

s Conventions

This guide is intended for developers and programmers who want to use Oracle
WebLogic Communication Services to develop, package, deploy, and test applications.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http: //www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit

xiii

http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Related Documents

For more information, see the following documents in the Oracle WebLogic
Communication Services set:

» Oracle WebLogic Communication Services Administrator’s Guide

» Oracle WebLogic Communication Services Installation Guide

Conventions

Xiv

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Part |

Introduction

This part contains introductory information.
Part I contains the following chapter:

» Chapter 1, "Overview of SIP Servlet Application Development"

1

Overview of SIP Servlet Application
Development

This chapter describes SIP servlet application development in the following sections:
m Section 1.1, "What is a SIP Servlet?"
s Section 1.2, "Differences from HTTP Servlets"

1.1 What is a SIP Servlet?

The SIP Servlet AP is standardized as JSR289 of JCP (Java Community Process).

Note: In this document, the term "SIP Servlet" is used to represent

the API, and "SIP servlet" is used to represent an application created
with the APL

Java Servlets are for building server-side applications, HttpServlets are subclasses of
Servlet and are used to create Web applications. SIP Servlet is defined as the generic
servlet API with SIP-specific functions added.

Figure 1-1 Servlet API and SIP Servlet API

SIP Servlet HTTP Servlet

Generic Servlet

Java 2

SIP Servlets are very similar to HTTP Servlets, and HTTP servlet developers can
quickly adapt to the programming model. The service level defined by both HTTP and
SIP Servlets is very similar, and you can easily design applications that support both
HTTP and SIP. Listing 1 shows an example of a simple SIP servlet.

Example 1-1 SimpleSIPServiet.java

package oracle.example.simple;
import java.io.IOException;

Overview of SIP Servlet Application Development 1-1

Differences from HTTP Servlets

import javax.servlet.*;
import javax.servlet.sip.*;

public class SimpleSIPServlet extends SipServlet ({
protected void doMessage (SipServletRequest req)
throws ServletException, IOException
{
SipServletResponse res = req.createResponse(200);
res.send() ;

}

The above example shows a simple SIP servlet that sends back a 200 OK response to
the SIP MESSAGE request. As you can see from the list, SIP Servlet and HTTP Servlet
have many things in common:

1. Servlets must inherit the base class provided by the APL. HTTP servlets must
inherit HttpServlet, and SIP servlets must inherit SipServlet.

2. Methods doXxx must be overridden and implemented. HTTP servlets have
doGet/doPost methods corresponding to GET/POST methods. Similarly, SIP
servlets have doXxx methods corresponding to the method name (in the above
example, the MESSAGE method). Application developers override and implement
necessary methods.

3. The lifecycle and management method (init, destroy) of SIP Servlet are exactly the
same as HTTP Servlet. Manipulation of sessions and attributes is also the same.

4. Although not shown in the example above, there is a deployment descriptor called
sip.xml for a SIP servlet, which corresponds to web.xml. Application developers
and service managers can edit this file to configure applications using multiple SIP
servlets.

However, there are several differences between SIP and HTTP servlets. A major
difference comes from protocols. The next section describes these differences as well as
features of SIP servlets.

1.2 Differences from HTTP Servlets

This section describes differences between SIP Servlets and HTTP Servlets.

1.2.1 Multiple Responses

You might notice from Example 1-1 that the doMessage method has only one
argument. In HTTP, a transaction consists of a pair of request and response, so
arguments of a doXxx method specify a request (HttpServletRequest) and its response
(HttpServletResponse). An application takes information such as parameters from the
request to execute it, and returns its result in the body of the response.

protected void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

For SIP, more than one response may be returned to a single request.

1-2 Developer's Guide

Differences from HTTP Servlets

Figure 1-2 Example of Request and Response in SIP

Server

INVITE

100 Trying

180 Ringing

F

200 OK

F

The above figure shows an example of a response to the INVITE request. In this
example, the server sends back three responses 100, 180, and 200 to the single INVITE
request. To implement such sequence, in SIP Servlet, only a request is specified in a
doXxx method, and an application generates and returns necessary responses in an
overridden method.

Currently, SIP Servlet defines the following doXxx methods:

protected void doInvite(SipServletRequest req);
protected void doAck(SipServletRequest req);
protected void doOptions (SipServletRequest req);
protected void doBye(SipServletRequest req);
protected void doCancel (SipServletRequest req);
protected void doSubscribe (SipServletRequest req) ;
protected void doNotify(SipServletRequest req);
protected void doMessage (SipServletRequest req);
protected void doInfo(SipServletRequest req);
protected void doPrack (SipServletRequest req);

1.2.2 Receiving Responses

One of the major features of SIP is that roles of a client and server are not fixed. In
HTTP, Web browsers always send HTTP requests and receive HTTP responses: They
never receive HTTP requests and send HTTP responses. In SIP, however, each terminal
needs to have functions of both a client and server.

For example, both of two SIP phones must call to the other and disconnect the call.

Overview of SIP Servlet Application Development 1-3

Differences from HTTP Servlets

Figure 1-3 Relationship between Client and Server in SIP

) INVITE
calling >

100 Trying

180 Ringing

Client
Fy
Server

200 OK

F

ACK

BYE disconnecting

F

Server
Client

200 OK

h

The above example indicates that a calling or disconnecting terminal acts as a client. In
SIP, roles of a client and server can be changed in one dialog. This client function is
called UAC (User Agent Client) and server function is called UAS (User Agent Server),
and the terminal is called UA (User Agent). SIP Servlet defines methods to receive
responses as well as requests.

protected void doProvisionalResponse (SipServletResponse res);

protected void doSuccessResponse (SipServletResponse res);

protected void doRedirectResponse (SipServletResponse res);

protected void doErrorResponse (SipServletResponse res);

These doXxx response methods are not the method name of the request. They are
named by the type of the response as follows:

= doProvisionalResponse—A method invoked on the receipt of a provisional
response (or 1xx response).

= doSuccessResponse—A method invoked on the receipt of a success response.
= doRedirectResponse—A method invoked on the receipt of a redirect response.

s doErrorResponse—A method invoked on the receipt of an error response (or 4xx,
5xx, 6xx responses).

Existence of methods to receive responses indicates that in SIP Servlet requests and
responses are independently transmitted an application in different threads.
Applications must explicitly manage association of SIP messages. An independent
request and response makes the process slightly complicated, but enables you to write
more flexible processes.

Also, SIP Servlet allows applications to explicitly create requests. Using these
functions, SIP servlets can not only wait for requests as a server (UAS), but also send
requests as a client (UAC).

1.2.3 Proxy Functions

Another function that is different from the HTTP protocol is "forking." Forking is a
process of proxying one request to multiple servers simultaneously (or sequentially)

1-4 Developer's Guide

Differences from HTTP Servlets

and used when multiple terminals (operators) are associated with one telephone

number (such as in a call center).

Figure 1-4 Proxy Forking

helpdesk

L

SIP proxy

SIPURI corresponded terminals
helpdesk BOO1, BOOZ BOOS

B0OO1

= B002

- BO03

SIP Servlet provides a utility to proxy SIP requests for applications that have proxy

functions.

1.2.4 Message Body

As the figure below, the structure of SIP messages is the same as HTTP.

Figure 1-5 SIP Message Example

INVITE sip:sipifsip.com 3IF/2.0

Via: SIP/Z.0/UDP 10..0.100:branch=z5hG4bK1234
Max-Forwards: 70

To: <sip:sipllsip.cows

From: <sip:sipZ@sip.cows;tag=123456

Call-ID: 3d45£59alibh54

Cieq: 1 INVITE

Contact: =ip:l10.2.0.100:5060

Content-Type: application/sdp

Content-Length: 100

-

i

Blank Line

]

=0
o=- 5894032 5594032 IN IP4 10.Z2.0.100
5=5DP Media Session

- The rest is omitted.

|]starting Line

Header Field

Separator

Message Body

—

HTTP is basically a protocol to transfer HTML files and images. Contents to be
transferred are stored in the message body. HTTP Servlet defines stream
manipulation-based API to enable sending and receiving massive contents.

1.2.4.1 Serviet Request

ServletInputStream getInputStream()
BufferedReader getReader ()

1.2.4.2 Servlet Response

ServletOutputStream getOutputStream()
PrintWriter getWriter ()

int getBufferSize()

void setBufferSize(int size)

Overview of SIP Servlet Application Development

1-5

Differences from HTTP Servlets

void resetBuffer()
void flushBuffer ()

In SIP, however, only low-volume contents are stored in the message body since SIP is
intended for real-time communication. Therefore, above methods are provided only
for compatibility, and their functions are disabled.

In SIP, contents stored in the body include:

= SDP (Session Description Protocol)—A protocol to define multimedia sessions
used between terminals. This protocol is defined in RFC2373.

= Presence Information—A message that describes presence information defined in
CPIM.

s IM Messages—IM (instant message) body. User-input messages are stored in the
message body.

Since the message body is in a small size, processing it in a streaming way increases
overhead. SIP Servlet re-defines API to manipulate the message body on memory as
follows:

1.2.4.3 SipServletMessage
void setContent (Object content, String contentType)

Object getContent ()
byte[] getRawContent ()

1.2.5 Role of a Servlet Container

The following sections describe major functions provided by OWLCS as a SIP servlet
container:

= Application Management—Describes functions such as application management
by servlet context, lifecycle management of servlets, application initialization by
deployment descriptors.

s SIP Messaging—Describes functions of parsing incoming SIP messages and
delivering to appropriate SIP servlets, sending messages created by SIP servlets to
appropriate UAS, and automatically setting SIP header fields.

s Utility Functions—Describes functions such as sessions, factories, and proxying
that are available in SIP servlets.

1.2.5.1 Application Management

Like HTTP servlet containers, SIP servlet containers manage applications by servlet
context (see Figure 6). Servlet contexts (applications) are normally archived in a WAR
format and deployed in each application server.

Note: The method of deploying in application servers varies
depending on your product. Refer to the documentation of your
application server.

1-6 Developer's Guide

Differences from HTTP Servlets

Figure 1-6 Servlet Container and Serviet Context

HTTP SIP HTTP SIP
Servlet Serviet Servlet Serviet
Servlet context Serviet context
(Application) (Application)

‘ Servlet container ‘

A servlet context for a converged SIP and Web application can include multiple SIP
servlets, HTTP servlets, and JSPs.

OWLCS can deploy applications using the same method as the application server you
use as the platform. However, if you deploy applications including SIP servlets, you
need a SIP specific deployment descriptor (sip.xml) defined by SIP servlets. The table
below shows the file structure of a general converged SIP and Web application.

Table 1-1 File Structure Example of Application

File Description

WEB-INE/ Place your configuration and executable files of your converged SIP
and Web application in the directory. You cannot directly refer to
files in this directory on Web (servlets can do this).

WEB-INF/web.xml The Java EE standard configuration file for the Web application.
WEB-INF/sip.xml The SIP Servlet-defined configuration files for the SIP application.

WEB-INF/classes/ Store compiled class files in the directory. You can store both HTTP
and SIP servlets in this directory.

WEB-INF/lib/ Store class files archived as Jar files in the directory. You can store
both HTTP and SIP servlets in this directory.

*jsp, *.jpg Files comprising the Web application (for example JSP) can be
deployed in the same way as Java EE.

Information specified in the sip.xml file is similar to that in the web.xml except
<servlet-mapping> setting that is different from HTTP servlets. In HTTP you specify a
servlet associated with the file name portion of URL. But SIP has no concept of the file
name. You set filter conditions using URI or the header field of a SIP request. The
following example shows that a SIP servlet called "register" is assigned all REGISTER
methods.

Example 1-2 Filter Condition Example of sip.xml

<servlet-mapping>
<servlet-name>registrar</servlet-name>
<pattern>
<equal>
<var>request.method</var>
<value>REGISTER</value>
</equal>
</pattern>
</servlet-mapping>

Once deployed, lifecycle of the servlet context is maintained by the servlet container.
Although the servlet context is normally started and shutdown when the server is

Overview of SIP Servlet Application Development 1-7

Differences from HTTP Servlets

started and shutdown, the system administrator can explicitly start, stop, and reload
the servlet context.

1.2.5.2 SIP Messaging

SIP messaging functions provided by a SIP servlet container are classified under the
following types:

Parsing received SIP messages.

Delivering parsed messages to the appropriate SIP servlet.
Sending SIP servlet-generated messages to the appropriate UA
Automatically generating a response (such as "100 Trying").

Automatically managing the SIP header field.

All SIP messages that a SIP servlet handles are represented as a SipServletRequest or
SipServletResponse object. A received message is first parsed by the parser and then
translated to one of these objects and sent to the SIP servlet container.

A SIP servlet container receives the following three types of SIP messages, for each of
which you determine a target servlet.

1-8 Developer's Guide

First SIP Request—When the SIP servlet container received a request that does not
belong to any SIP session, it uses filter conditions in the sip.xml file (described in
the previous section) to determine the target SIP servlet. Since the container creates
a new SIP session when the initial request is delivered, any SIP requests received
after that point are considered as subsequent requests.

Note: Filtering should be done carefully. In OWLCS, when the
received SIP message matches multiple SIP servlets, it is delivered
only to any one SIP servlet.

The use of additional criteria such as request parameters can be used
to direct a request to a servlet.

Subsequent SIP Request—When the SIP Servlet container receives a request that
belongs to any SIP session, it delivers the request to a SIP Servlet associated with
that session. Whether the request belongs to a session or not is determined using
dialog ID.

Each time a SIP Servlet processes messages, a lock is established by the container
on the call ID. If a SIP Servlet is currently processing earlier requests for the same
call ID when subsequent requests are received, the SIP Servlet container queues
the subsequent requests. The queued messages are processed only after the Servlet
has finished processing the initial message and has returned control to the SIP
Servlet container.

This concurrency control is guaranteed both in a single containers and in clustered
environments. Application developers can code applications with the
understanding that only one message for any particular call ID gets processed at a
given time.

SIP Response—When the received response is to a request that a SIP servlet
proxied, the response is automatically delivered to the same servlet since its SIP
session had been determined. When a SIP servlet sends its own request, you must
first specify a servlet that receives a response in the SIP session. For example, if the

Differences from HTTP Servlets

SIP servlet sending a request also receives the response, the following handler
setting must be specified in the SIP session.

SipServletRequest req = getSipFactory().createRequest (appSession, ...);
reqg.getSession () .setHandler (getServletName()) ;

Normally, in SIP a "session" means a real-time session by RTP/RTSP. On the other
hand, in HTTP Servlet a "session" refers to a way of relating multiple HTTP
transactions. In this document, session-related terms are defined as follows:

Table 1-2 Session-Related Terminology

Realtime Session A realtime session established by RTP/RTSP.

HTTP Session A session defined by HTTP Servlet. A means of relating multiple
HTTP transactions.

SIP Session A means of implementing the same concept as in HTTP session in

SIP. SIP (RFC3261) has a similar concept of "dialog," but in this
document this is treated as a different term since its lifecycle and
generation conditions are different.

Application Session A means for applications using multiple protocols and dialogs to

associate multiple HTTP sessions and SIP sessions. Also called "AP
session."

OWLCS automatically execute the following response and retransmission processes:

Sending "100 Trying"—When WebLogic Communications Server receives an
INVITE request, it automatically creates and sends "100 Trying."

Response to CANCEL—When WebLogic Communications Server receives a
CANCEL request, it executes the following processes if the request is valid.

1. Sends a 200 response to the CANCEL request.
2. Sends a 487 response to the INVITE request to be cancelled.

3. Invokes a doCancel method on the SIP servlet. This allows the application to
abort the process within the doCancel method, eliminating the need for
explicitly sending back a response.

Sends ACK to an error response to INVITE—When a 4xx, 5xx, or 6xx response is
returned for INVITE that were sent by a SIP servlet, WebLogic Communications
Server automatically creates and sends ACK. This is because ACK is required only
for a SIP sequence, and the SIP servlet does not require it.

When the SIP servlet sends a 4xx, 5xx, or 6xx response to INVITE, it never receives
ACK for the response.

Retransmission process when using UDP—SIP defines that sent messages are
retransmitted when low-trust transport including UDP is used. WebLogic
Communications Server automatically do the retransmission process according to
the specification.

Mostly, applications do not need to explicitly set and see header fields In HTTP Servlet
since HTTP servlet containers automatically manage these fields such as
Content-Length and Content-Type. SIP Servlet also has the same header management
function.

In SIP, however, since important information about message delivery exists in some
fields, these headers are not allowed to change by applications. Headers that can not
be changed by SIP servlets are called "system headers." The table below lists system
headers:

Overview of SIP Servlet Application Development 1-9

Differences from HTTP Servlets

Table 1-3 System Headers

Header Name Description

Call-ID Contains ID information to associate multiple SIP messages as Call.

From, To Contains Information on the sender and receiver of the SIP request
(SIP, URLI, etc.). tag parameters are given by the servlet container.

CSeq Contains sequence numbers and method names.

Via Contains a list of servers the SIP message passed through. This is

used when you want to keep track of the path to send a response to
the request.

Record-Route, Route Used when the proxy server mediates subsequent requests.

Contact Contains network information (such as IP address and port
number) that is used for direct communication between terminals.
For a REGISTER message, 3xx, or 485 response, this is not
considered as the system header and SIP servlets can directly edit
the information.

1.2.5.3 Utility Functions

SIP Servlet defines the following utilities that are available to SIP servlets:
1. SIP Session, Application Session

2. SIP Factory

3. Proxy

1.2.5.3.1 SIP Session, Application Session As stated before, SIP Servlet provides a "SIP
session” whose concept is the same as a HTTP session. In HTTP, multiple transactions
are associated using information like Cookie. In SIP, this association is done with
header information (Call-ID and tag parameters in From and To). Servlet containers
maintain and manage SIP sessions. Messages within the same dialog can refer to the
same SIP session. Also, For a method that does not create a dialog (such as
MESSAGE), messages can be managed as a session if they have the same header
information.

SIP Servlet has a concept of an "application session," which does not exist in HTTP
Servlet. An application session is an object to associate and manage multiple SIP
sessions and HTTP sessions. It is suitable for applications such as B2BUA.

1.25.3.2 SIP Factory A SIP factory (SipFactory) is a factory class to create SIP
Servlet-specific objects necessary for application execution. You can generate the

following objects:

Table 1-4 Objects Generated with SipFactory

Class Name Description
URI, SipURI, Address Can generate address information including SIP URI from String.

SipApplicationSession Creates a new application session. It is invoked when a SIP servlet
starts a new SIP signal process.

SipServletRequest Used when a SIP servlet acts as UAC to create a request. Such
requests can not be sent with Proxy.proxyTo. They must be sent
with SipServletRequest.send.

SipFactory is located in the servlet context attribute under the default name. You can
take this with the following code.

1-10 Developer's Guide

Differences from HTTP Servlets

ServletContext context = getServletContext();
SipFactory factory =

(SipFactory) context.getAttribute("javax.servlet.sip.SipFactory");

1.25.3.3 Proxy Proxy is a utility used by a SIP servlet to proxy a request. In SIP,
proxying has its own sequences including forking. You can specify the following
settings in proxying with Proxy:

Recursive routing (recurse)—When the destination of proxying returns a 3xx
response, the request is proxied to the specified target.

Record-Route setting—Sets a Record-Route header in the specified request.

Parallel/Sequential (parallel)—Determines whether forking is executed in parallel
or sequentially.

stateful—Determines whether proxying is transaction stateful. This parameter is
not relevant because stateless proxy mode is deprecated in JSR289.

Supervising mode—In the event of the state change of proxying (response
receipts), an application reports this.

Overview of SIP Servlet Application Development 1-11

Differences from HTTP Servlets

1-12 Developer's Guide

Part li

Developing and Programming SIP
Applications

This part describes programming guidelines and procedures for SIP applications.

Part II contains the following chapters:

Chapter 2, "Developing Converged Applications”

Chapter 3, "SIP Protocol Programming"

Chapter 4, "Requirements and Best Practices for SIP Applications"
Chapter 5, "Composing SIP Applications"

Chapter 6, "Securing SIP Servlet Resources"

Chapter 7, "Enabling Message Logging"

2

Developing Converged Applications

This chapter describes how to develop converged HTTP and SIP applications with
OWLCS, in the following sections:

= Section 2.1, "Overview of Converged Applications"

= Section 2.2, "Assembling and Packaging a Converged Application"
= Section 2.3, "Working with SIP and HTTP Sessions"

= Section 2.4, "Using the Converged Application Example"

2.1 Overview of Converged Applications

In a converged application, SIP protocol functionality is combined with HTTP or Java EE
components to provide a unified communication service. For example, an online
push-to-talk application might enable a customer to initiate a voice call to ask
questions about products in their shopping cart. The SIP session initiated for the call is
associated with the customer's HTTP session, which enables the employee answering
the call to view customer's shopping cart contents or purchasing history.

You must package converged applications that utilize Java EE components (such as
EJBs) into an application archive (.EAR file). Converged applications that use SIP and
HTTP protocols must be packaged in a single SAR or WAR file containing both a
sip.xml and a web.xml deployment descriptor file.You can optionally package the
SIP and HTTP Servlets of a converged application into separate SAR and WAR
components within a single EAR file.

The HTTP and SIP sessions used in a converged application can be accessed
programmatically through a common application session object. The SIP Servlet API
also helps you associate HT'TP sessions with an application session.

2.2 Assembling and Packaging a Converged Application

The SIP Servlet specification fully describes the requirements and restrictions for
assembling converged applications. The following statements summarize the
information in the SIP Servlet specification:

= Use the standard SIP Servlet directory structure for converged applications.

= Store all SIP Servlet files under the WEB- INF subdirectory; this ensures that the
files are not served up as static files by an HTTP Servlet.

= Include deployment descriptors for both the HTTP and SIP components of your
application. This means that both sip.xml and web.xml descriptors are

Developing Converged Applications 2-1

Working with SIP and HTTP Sessions

required. A weblogic.xml deployment descriptor may also be included to
configure Servlet functionality in the OWLCS container.

s Observe the following restrictions on deployment descriptor elements:

s Thedistributable tag must be present in both sip.xml and web.xml, or
it must be omitted entirely.

s context-param elements are shared for a given converged application. If
you define the same context-param element in sip.xml and in web.xml,
the parameter must have the same value in each definition.

» If either the display-name or icons element is required, the element must
be defined in both sip.xml and web. xml, and it must be configured with the
same value in each location.

2.3 Working with SIP and HTTP Sessions

As shown in Figure 2-1, each converged application deployed to the OWLCS
container has a unique SipApplicationSession, which can contain one or more
SipSession and ConvergedHttpSession objects.

Figure 2—1 Sessions in a Converged Application

SipApplicationSession

SipSession

The API provided by javax.servlet.SipApplicationSession enables you to
iterate through all available sessions in a given SipApplicationSession. It also
provides methods to encode a URL with the unique application session when
developing converged applications.

In prior releases, OWLCS extended the basic SIP Servlet API to provide methods for:
s Creating new HTTP sessions from a SIP Servlet
» Adding and removing HTTP sessions from SipApplicationSession

s Obtaining SipApplicationSession objects using either the call ID or session
1D

= Encoding HTTP URLs with session IDs from within a SIP Servlet

This functionality is now provided directly as part of the SIP Servlet API version 1.1,
and the proprietary API (com.bea.wcp.util.Sessions) is now deprecated.

Table 2-1 lists the SIP Servlet APIs to use in place of now deprecated methods. See the
SIP Servlet v1.1 API JavaDoc for more information.

2-2 Developer's Guide

{DOCROOT}/javadoc/jsr289/index.html

Working with SIP and HTTP Sessions

Table 2-1 Deprecated com.bea.wcp.util. Sessions Methods

Deprecated Method (in

com.bea.wcp.util.Sessions) Replacement Method Description
getApplicationSession javax.servlet.sip.SipSessionsUtil. Obtains the

getApplicationSessionsByCal
1Id

createHttpSession

setApplicationSession

removeApplicationSession

getEncodeURL

getApplicationSession

None.

None.

javax.servlet.sip.ConvergedHttpSe
ssion.

getApplicationSession

None.

javax.servlet.sip.ConvergedHttpSe
ssion.

encodeURL

SipApplicationSession
object with a specified session ID.

Obtains an Iterator of
SipApplicationSession
objects associated with the
specified call ID.

Applications can instead cast an
HttpSession into
ConvergedHttpSession.

Associates an HTTP session with
an existing
SipApplicationSession.

Removes an HTTP session from
an existing
SipApplicationSession.

Encodes an HTTP URL with the
jsessionid of an existing HTTP
session object.

Note:

The com.bea.wcp.util.Sessions APlis provided only

for backward compatibility. Use the SIP Servlet APIs for all new

development. OWLCS does not support converged applications that

mix the com.bea.wecp.util.Sessions APl and JSR 289
convergence APIs.

Specifically, the deprecated
Sessions.getApplicationSessionsByCallId(String

callId) method cannot be used with v1.1 SIP Servlets that use the
session key-based targeting method for associating an initial request
with an existing SipApplicationSession object. See Section 15.11.2 in

the SIP Servlet Specification v1.1
(http://jcp.org/en/jsr/detail?id=289) for more

information about this targeting mechanism.

2.3.1 Modifying the SipApplicationSession

When using a replicated domain, OWLCS automatically provides concurrency control
when a SIP Servlet modifies a SipApplicationSession object. In other words,
when a SIP Servlet modifies the SipApplicationSession object, the SIP container
automatically locks other applications from modifying the object at the same time.

Non-SIP applications, such as HTTP Servlets, must themselves ensure that the
application call state is locked before modifying it. This is also required if a single SIP
Servlet needs to modify other call state objects, such as when a conferencing Servlet
joins multiple calls.

To help application developers manage concurrent access to the application session
object, OWLCS extends the standard SipApplicationSession object with
com.bea.wcp.sip.WlssSipApplicationSession, and adds two interfaces,

Developing Converged Applications 2-3

Working with SIP and HTTP Sessions

com.bea.wcp.sip.WlssAction and com.bea.wcp.sip.WlssAsynchronous
Action, to encapsulate tasks performed to modify the session. When these APIs are
used, the SIP container ensures that all business logic contained within the
WlssAction and WlssAsynchronousAction object is executed on a locked copy of the
associated SipApplicationSession instance. The sections that follow describe
each interface.

2.3.1.1 Synchronous Access

Applications that need to read and update a session attribute in a transactional and
synchronous manner must use the WlssAction API. WissAction obtains an explicit
lock on the session for the duration of the action. Example 2-1, "Example Code using
WissAction API" shows an example of using this AP

Example 2-1 Example Code using WissAction API

final SipApplicationSession appSession = ...;
WlssSipApplicationSession wlssAppSession = (WlssSipApplicationSession) appSession;
wlssAppSession.doAction (new WlssAction() {
public Object run() throws Exception {

// Add all business logic here.

appSession.setAttribute ("counter", latestCounterValue);

sipSession.setAttribute("currentState", latestAppState);

// The SIP container ensures that the run method is invoked

// while the application session is locked.

return null;

I

Because the WlssAction API obtains an exclusive lock on the associated session,
deadlocks can occur if you attempt to modify other application session attributes
within the action.

2.3.1.2 Asynchronous Access

Applications that need to update a different SipApplicationSession while in the
context of a locked SipApplicationSession can perform asynchronous updates using
the WlssAsynchronousAction API. This API reduces contention when multiple
applications might need to update attributes in the same SipApplicationSession at the
same time. Example 2-2, "Example Code using WlssAsynchronousAction API" shows
an example of using this APL

To compile applications using this API, you need to include MIDDLEWARE_
HOME/server/lib/wlss/wlssapi.jar, and MIDDLEWARE_
HOME/server/lib/wlss/sipservlet.jar.

Example 2-2 Example Code using WissAsynchronousAction API

SipApplicationSession sasl = req.getSipApplicationSession(); //
SipApplicationSessionl is already locked by the container
// Obtain another SipApplicationSession to schedule work on it
WlssSipApplicationSession wlssSipAppSession =
SipSessionsUtil.getApplicationSessionById(conferenceAppSessionId) ;
// The work is done on the application session asynchronously
appSession.doAsynchronousAction (new WlssAsynchronousAction() {
Serializable run(SipApplicationSession appSession) {
// Add all business logic here.
int counter = appSession.getAttribute("counter");
++ counter;
appSession.setAttribute ("counter", counter);

2-4 Developer's Guide

Using the Converged Application Example

return null;
}
I

Performing the work on appSession in an asynchronous manner prevents nested
locking and associated deadlock scenarios.

2.4 Using the Converged Application Example

OWLCS includes a sample converged application that uses the
com.bea.wcp.util.Sessions APL All source code, deployment descriptors, and
build files for the example can be installed in OWLCS_HOME\ samples\sipserver\
examples\src\convergence. See the readme . html file in the example directory
for instructions about how to build and run the example.

Developing Converged Applications 2-5

Using the Converged Application Example

2-6 Developer's Guide

3

SIP Protocol Programming

This chapter describes programming SIP applications and contains the following
sections:

» Section 3.1, "Using Compact and Long Header Formats for SIP Messages"
= Section 3.2, "Using Content Indirection in SIP Servlets"

= Section 3.3, "Generating SNMP Traps from Application Code"

3.1 Using Compact and Long Header Formats for SIP Messages

This section describes how to use the OWLCS SipServletMessage interface and
configuration parameters to control SIP message header formats

3.1.1 Overview of Header Format APIs and Configuration

Applications that operate on wireless networks may want to limit the size of SIP
headers to reduce the size of messages and conserve bandwidth. JSR 289 provides the
SipServletMessage.setHeaderForm () method, which enables application
developers to set a long or compact format for the value of a given header.

One feature of the SipServletMessage API provided in JSR 289 is the ability to set
long or compact header formats for the entire SIP message using the setHeaderForm
method.

In addition to SipServletMessage, OWLCS provides a container-wide
configuration parameter that can control SIP header formats for all system-generated
headers. This system-wide parameter can be used along with
SipServletMessage.setHeaderFormand SipServletMessage.setHeader to
further customize header formats.

3.1.2 Summary of Compact Headers

Table 3-1 defines the compact header abbreviations described in the SIP specification
(http://www.ietf.org/rfc/rfc3261.txt). Specifications that introduce
additional headers may also include compact header abbreviations.

Table 3-1 Compact Header Abbreviations

Header Name (Long Compact
Format) Format
Call-ID i

Contact m

SIP Protocol Programming 3-1

Using Compact and Long Header Formats for SIP Messages

Table 3-1 (Cont.) Compact Header Abbreviations

Header Name (Long Compact
Format) Format
Content-Encoding e
Content-Length 1
Content-Type c

From f

Subject s
Supported k

To t

Via v

3.1.3 Assigning Header Formats with WissSipServletMessage

A pair of getter/setter methods, setHeaderForm and getHeaderFoxrm, are used to
assign or retrieve the header formats used in the message. These methods assign or
return a HeaderForm object, which is a simple Enumeration that describes the header
format:

m COMPACT—Forces all headers in the message to use compact format. This behavior
is similar to the container-wide configuration value of "force compact," as
described in use-compact-form in the Configuration Reference Manual.

= LONG—Forces all headers in the message to use long format. This behavior is
similar to the container-wide configuration value of "force long," as described in
use-compact-form in the Configuration Reference Manual.

» DEFAULT—Defers the header format to the container-wide configuration value set
in use-compact-form.

SipServletResponse.setHeaderForm can be used in combination with
SipServletMessage.setHeader and the container-level configuration parameter,
use-compact-form.

3.1.4 Summary of APl and Configuration Behavior

Header formats can be specified at the header, message, and SIP Servlet container
levels. Table 3-1 shows the header format that results when adding a new header with
SipServletMessage.setHeader, given different container configurations and
message-level settings with SipServletMessage.setHeaderForm.

Table 3-2 API Behavior when Adding Headers

SIP Servlet SIPServletMessage SipServletMessage. Resulting
Container Header setHeaderForm Setting setHeader Value Header
Configuration

(use-compact-fo

rm Setting)

COMPACT DEFAULT "Content-Type" "Content-Type"
COMPACT DEFAULT " "

COMPACT COMPACT "Content-Type" "c"

COMPACT COMPACT "c" "c"

COMPACT LONG "Content-Type" "Content-Type"

3-2 Developer's Guide

Using Compact and Long Header Formats for SIP Messages

Table 3-2 (Cont.) API Behavior when Adding Headers

COMPACT

LONG

LONG

LONG

LONG

LONG

LONG
FORCE_COMPACT
FORCE_COMPACT
FORCE_COMPACT
FORCE_COMPACT
FORCE_COMPACT
FORCE_COMPACT
FORCE_LONG
FORCE_LONG
FORCE_LONG
FORCE_LONG
FORCE_LONG
FORCE_LONG

LONG
DEFAULT
DEFAULT
COMPACT
COMPACT
LONG
LONG
DEFAULT
DEFAULT
COMPACT
COMPACT
LONG
LONG
DEFAULT
DEFAULT
COMPACT
COMPACT
LONG
LONG

n.n

C

"Content-Type"

n_n

C

"Content-Type"

n_n

C

"Content-Type"

C

"Content-Type"

n_n

C

"Content-Type"

n_n

C

"Content-Type"

n_n

C

"Content-Type"

n.n

C

"Content-Type"

n_n

C

"Content-Type"

nn

C

"Content-Type"
"Content-Type"

n_n

C

"Content-Type"
"Content-Type"

C

"Content-Type"
"Content-Type"
"Content-Type"
"Content-Type"

"Content-Type"
"Content-Type"

Table 3-1 shows the system header format that results when setting the header format
with WlssSipServletResponse. setUseHeaderForm given different container
configuration values.

Table 3-3 API Behavior for System Headers

SIP Servlet
Container Header
Configuration
(use-compact-fo
rm Setting)

COMPACT
COMPACT
COMPACT

LONG

LONG

LONG
FORCE_COMPACT
FORCE_COMPACT
FORCE_COMPACT
FORCE_LONG
FORCE_LONG

SipServletMessage.
setHeaderForm Setting

DEFAULT
COMPACT
LONG
DEFAULT
COMPACT
LONG
DEFAULT
COMPACT
LONG
DEFAULT
COMPACT

Resulting Contact
Header

m

m
"Contact"

"Contact"

m

"Contact"

m

n_n

m
"Contact"
"Contact"

m

SIP Protocol Programming 3-3

Using Content Indirection in SIP Servlets

Table 3-3 (Cont.) API Behavior for System Headers
FORCE_LONG LONG "Contact"

3.2 Using Content Indirection in SIP Servlets

This section describes how to develop SIP Servlets that work with indirect content
specified in the SIP message body.

3.2.1 Overview of Content Indirection

Data provided by the body of a SIP message can be included either directly in the SIP
message body, or indirectly by specifying an HTTP URL and metadata that describes
the URL content. Indirectly specifying the content of the message body is used
primarily in the following scenarios:

= When the message bodies include large volumes of data. In this case, content
indirection can be used to transfer the data outside of the SIP network (using a
separate connection or protocol).

= For bandwidth-limited applications. In this case, content indirection provides
enough metadata for the application to determine whether or not it must retrieve
the message body (potentially degrading performance or response time).

OWLCS provides a simple API that you can use to work with indirect content
specified in SIP messages.

3.2.2 Using the Content Indirection API

The content indirection API provided by OWLCS helps you quickly determine if a SIP
message uses content indirection, and to easily retrieve all metadata associated with
the indirect content. The basic API consists of a utility class,
com.bea.wcp.sip.util.ContentIndirectionUtil, and an interface for
accessing content metadata, com.bea.wcp.sip.util.

SIP Servlets can use the utility class to identify SIP messages having indirect content,
and to retrieve an ICParsedData object representing the content metadata. The
ICParsedData object has simple "getter" methods that return metadata attributes.

3.2.3 Additional Information

Complete details about content indirection are available in RFC 4483.

See the Oracle Fusion Middleware WebLogic Communication Services API Reference
for additional documentation about the content indirection APL

3.3 Generating SNMP Traps from Application Code

This section describes how to use the OWLCS
SipServletSnmpTrapRuntimeMBean to generate SNMP traps from within a SIP
Servlet.

3.3.1 Overview

OWLCS includes a runtime MBean, SipServletSnmpTrapRuntimeMBean, that
enables applications to easily generate SNMP traps. The OWLCS MIB contains seven
new OIDs that are reserved for traps generated by an application. Each OID

3-4 Developer's Guide

Generating SNMP Traps from Application Code

corresponds to a severity level that the application can assign to a trap, in order from
the least severe to the most severe:

s Info
s Notice

s Warning

s Error
m Critical
s Alert

= Emergency

To generate a trap, an application simply obtains an instance of the
SipServletSnmpTrapRuntimeMBean and then executes a method that corresponds
to the desired trap severity level (sendInfoTrap (), sendWarningTrap (),
sendErrorTrap (), sendNoticeTrap (), sendCriticalTrap(),
sendAlertTrap (), and sendEmergencyTrap ()). Each method takes a single
parameter—the String value of the trap message to generate.

For each SNMP trap generated in this manner, OWLCS also automatically transmits
the Servlet name, application name, and OWLCS instance name associated with the
calling Servlet.

3.3.2 Requirement for Accessing SipServietSnmpTrapRuntimeMBean

In order to obtain a SipServletSnmpTrapRuntimeMBean, the calling SIP Servlet
must be able to perform MBean lookups from the Servlet context. To enable this
functionality, you must assign a OWLCS administrator role-name entry to the
security-role and run-as role elements in the sip.xml deployment descriptor.
Example 3-1 shows a sample sip.xml file with the required role elements
highlighted.

Example 3—1 Sample Role Requirement in sip.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sip-app
PUBLIC "-//Java Community Process//DTD SIP Application 1.0//EN"
"http://www.jcp.org/dtd/sip-app_1_0.dtd">
<sip-app>
<display-name>My SIP Servlet</display-name>
<distributable/>
<servlet>
<servlet-name>myservlet</servlet-name>
<servlet-class>com.mycompany.MyServlet</servlet-class>
<run-as>
<role-name>weblogic</role-name>
</run-as>
</servlet>
<servlet-mapping>
<servlet-name>myservlet</servlet-name>
<pattern>
<equal>
<var>request.method</var>
<value>INVITE</value>
</equal>
</pattern>
</servlet-mapping>

SIP Protocol Programming 3-5

Generating SNMP Traps from Application Code

<security-role>
<role-name>weblogic</role-name>
</security-role>
</sip-app>

3.3.3 Obtaining a Reference to SipServletSnmpTrapRuntimeMBean

Any SIP Servlet that generates SNMP traps must first obtain a reference to the
SipServletSnmpTrapRuntimeMBean. Example 3-2 shows the sample code for a
method to obtain the MBean.

Example 3-2 Sample Method for Accessing SipServietSnmpTrapRuntimelMBean

public SipServletSnmpTrapRuntimeMBean getServletSnmpTrapRuntimeMBean() {
MBeanHome localHomeB = null;
SipServletSnmpTrapRuntimeMBean ssTrapMB = null;

try
{
Context ctx = new InitialContext();
localHomeB = (MBeanHome)ctx.lookup (MBeanHome.LOCAL_JNDI_NAME) ;
ctx.close();
} catch (NamingException ne) {
ne.printStackTrace() ;

Set set = localHomeB.getMBeansByType ("SipServletSnmpTrapRuntime") ;
if (set == null || set.isEmpty()) {
try {
throw new ServletException("Unable to lookup type
'SipServletSnmpTrapRuntime'") ;
} catch (ServletException e) {
e.printStackTrace() ;

}
ssTrapMB = (SipServletSnmpTrapRuntimeMBean) set.iterator().next();
return ssTrapMB;

3.3.4 Generating an SNMP Trap

In combination with the method shown in Example 3-2, Example 3-3 demonstrates
how a SIP Servlet would use the MBean instance to generate an SNMP trap in
response to a SIP INVITE.

Example 3-3 Generating a SNMP Trap
public class MyServlet extends SipServlet {
private SipServletSnmpTrapRuntimeMBean sipServletSnmpTrapMb = null;

public MyServlet () {
}

public void init (ServletConfig sc) throws ServletException {

super.init (sc);
sipServletSnmpTrapMb = getServletSnmpTrapRuntimeMBean () ;

protected void doInvite(SipServletRequest req) throws IOException {
sipServletSnmpTrapMb.sendInfoTrap ("Rx Invite from " + reqg.getRemoteAddr() +

3-6 Developer's Guide

Generating SNMP Traps from Application Code

"with call id" + req.getCallId());
}
}

SIP Protocol Programming 3-7

Generating SNMP Traps from Application Code

3-8 Developer's Guide

4

Requirements and Best Practices for SIP
Applications

This chapter describes requirements and best practices for developing applications for
deployment to OWLCS. It contains the following sections:

= Section 4.1, "Overview of Developing Distributed Applications for Oracle
Communications Converged Application Server"

= Section 4.2, "Applications Must Not Create Threads"

= Section 4.3, "Servlets Must Be Non-Blocking"

= Section 4.4, "Store all Application Data in the Session"

s Section 4.5, "All Session Data Must Be Serializable"

= Section 4.6, "Use setAttribute() to Modify Session Data in “No-Call” Scope"
s Section 4.7, "send() Calls Are Buffered"

m Section 4.8, "Mark SIP Servlets as Distributable"

= Section 4.9, "Use SipApplicationSessionActivationListener Sparingly"

ms Section 4.10, "Session Expiration Best Practices"

= Section 4.11, "Observe Best Practices for Java EE Applications"

4.1 Overview of Developing Distributed Applications for Oracle
Communications Converged Application Server

In a typical production environment, SIP applications are deployed to a cluster of
OWLCS instances that form the engine tier cluster. A separate cluster of servers in the
SIP data tier provides a replicated, in-memory database of the call states for active
calls. In order for applications to function reliably in this environment, you must
observe the programming practices and conventions described in the sections that
follow to ensure that multiple deployed copies of your application perform as
expected in the clustered environment.

If you are porting an application from a previous version of OWLCS, the conventions
and restrictions described below may be new to you, because the 2.0 and 2.1 versions
of WebLogic SIP Server implementations did not support clustering. Thoroughly test
and profile your ported applications to discover problems and ensure adequate
performance in the new environment.

Requirements and Best Practices for SIP Applications 4-1

Applications Must Not Create Threads

4.2 Applications Must Not Create Threads

OWLCS is a multi-threaded application server that carefully manages resource
allocation, concurrency, and thread synchronization for the modules it hosts. To obtain
the greatest advantage from the OWLCS architecture, construct your application
modules according to the SIP Servlet and Java EE API specifications.

Avoid application designs that require creating new threads in server-side modules
such as SIP Servlets:

» The SIP Servlet container automatically locks the associated call state when
invoking the doxxx method of a SIP Servlet. If the doxxx method spawns
additional threads or accesses a different call state before returning control,
deadlock scenarios and lost updates to session data can occur.

= Applications that create their own threads do not scale well. Threads in the JVM
are a limited resource that must be allocated thoughtfully. Your applications may
break or cause poor OWLCS performance when the server load increases.
Problems such as deadlocks and thread starvation may not appear until the
application is under a heavy load.

= Multithreaded modules are complex and difficult to debug. Interactions between
application-generated threads and WebLogic Server threads are especially difficult
to anticipate and analyze.

s TheWlssSipApplicationSession.doAction () method, described in "Use
setAttribute() to Modify Session Data in “No-Call” Scope", does not provide
synchronization for spawned Java threads. Any threads created within
doAction () can execute another doAction () on the same
WlssSipApplicationSession. Similarly, main threads that use doAction ()
to access a different wlssSipApplicationSession can lead to deadlocks,
because the container automatically locks main threads when processing incoming
SIP messages. "Use setAttribute() to Modify Session Data in “No-Call” Scope"
describes a potential deadlock situation.

Caution: If your application must spawn threads, you must guard
against deadlocks and carefully manage concurrent access to session
data. At a minimum, never spawn threads inside the service method
of a SIP Servlet. Instead, maintain a separate thread pool outside of
the service method, and be careful to synchronize access to all session
data.

4.3 Servlets Must Be Non-Blocking

SIP and HTTP Servlets must not block threads in the body of a SIP method because the
call state remains locked while the method is invoked. For example, no Servlet method
must actively wait for data to be retrieved or written before returning control to the
SIP Servlet container.

4.4 Store all Application Data in the Session

If you deploy your application to more than one engine tier server (in a replicated
OWLCS configuration) you must store all application data in the session as session
attributes. In a replicated configuration, engine tier servers maintain no cached
information; all application data must be de-serialized from the session attribute
available in SIP data tier servers.

4-2 Developer's Guide

Use setAttribute() to Modify Session Data in “No-Call” Scope

4.5 All Session Data Must Be Serializable

To support in-memory replication of SIP application call states, you must ensure that
all objects stored in the SIP Servlet session are serializable. Every field in an object
must be serializable or transient in order for the object to be considered serializable. If
the Servlet uses a combination of serializable and non-serializable objects, OWLCS
cannot replicate the session state of the non-serializable objects.

4.6 Use setAttribute() to Modify Session Data in “No-Call” Scope

The SIP Servlet container automatically locks the associated call state when invoking
the doxxx method of a SIP Servlet. However, applications may also attempt to modify
session data in "no-call" scope. No-call scope refers to the context where call state data
is modified outside the scope of a normal doxxx method. For example, data is
modified in no-call scope when an HTTP Servlet attempts to modify SIP session data,
or when a SIP Servlet attempts to modify a call state other than the one that the
container locked before invoking the Servlet.

Applications must always use the SIP Session's setAttribute method to change
attributes in no-call scope. Likewise, use removeAttribute to remove an attribute
from a session object. Each time setAttribute/removeAttribute is used to
update session data, the SIP Servlet container obtains and releases a lock on the
associated call state. (The methods enqueue the object for updating, and return control
immediately.) This ensures that only one application modifies the data at a time, and
also ensures that your changes are replicated across SIP data tier nodes in a cluster.

If you use other set methods to change objects within a session, OWLCS cannot
replicate those changes.

Note that the OWLCS container does not persist changes to a call state attribute that
are made after calling setAttribute. For example, in the following code sample the
setAttribute call immediately modifies the call state, but the subsequent call to
modifyState () does not:

Foo foo = new Foo(..);
appSession.setAttribute("name", foo); // This persists the call state.
foo.modifyState(); // This change is not persisted.

Instead, ensure that your Servlet code modifies the call state attribute value before
calling setAttribute, as in:

Foo foo = new Foo(..);
foo.modifyState();
appSession.setAttribute("name", foo);

Also, keep in mind that the SIP Servlet container obtains a lock to the call state for each
individual setAttribute call. For example, when executing the following code in an
HTTP Servlet, the SIP Servlet container obtains and releases a lock on the call state lock
twice:

appSess.setAttribute("fool", "bar2");
appSess.setAttribute("foo2", "bar2");

This locking behavior ensures that only one thread modifies a call state at any given
time. However, another process could potentially modify the call state between
sequential updates. The following code is not considered thread safe when done
no-call state:

Integer oldValue = appSession.getAttribute("counter");
Integer newValue = incrementCounter (oldvalue);

Requirements and Best Practices for SIP Applications 4-3

send() Calls Are Buffered

appSession.setAttribute("counter", newValue);

To make the above code thread safe, you must enclose it using the
wlssAppSession.doAction method, which ensures that all modifications made to
the call state are performed within a single transaction lock, as in:

wlssAppSession.doAction (new WlssAction() {

public Object run() throws Exception {
Integer oldValue = appSession.getAttribute("counter");
Integer newValue = incrementCounter (oldvValue);
appSession.setAttribute ("counter", newValue);
return null;

}

i

Finally, be careful to avoid deadlock situations when locking call states in a
"doSipMethod" call, such as doInvite (). Keep in mind that the OWLCS container has
already locked the call state when the instructions of a doSipMethod are executed. If
your application code attempts to access the current call state from within such a
method (for example, by accessing a session that is stored within a data structure or
attribute), the lock ordering results in a deadlock.

Example 4-1 shows an example that can result in a deadlock. If the code is executed by
the container for a call associated with callAppSession, the locking order is
reversed and the attempt to obtain the session with
getApplicationSession(callId) causes a deadlock.

Example 4-1 Session Access Resulting in a Deadlock

WlssSipApplicationSession confAppSession = (WlssSipApplicationSession) appSession;
confAppSession.doAction (new WlssAction() {
// confAppSession is locked
public Object run() throws Exception {
String calllds = confAppSession.getAttribute("callIds");
for (each callId in calllds) {
callAppSess = Session.getApplicationSession(callId);
// callAppSession is locked
attributeStr += callAppSess.getAttribute("someattrib");
}
confAppSession.setAttribute("attrib", attributeStr);
}
}

See Section 6.3.1, "Modifying the SipApplicationSession" for more information about
using the com.bea.wcp.sip.WlssAction interface.

4.7 send() Calls Are Buffered

4-4

If your SIP Servlet calls the send () method within a SIP request method such as
doInvite (), doAck(), doNotify (), and so forth, keep in mind that the OWLCS
container buffers all send () calls and transmits them in order after the SIP method
returns. Applications cannot rely on send () calls to be transmitted immediately as
they are called.

Caution: Applications must not wait or sleep after a call to send ()
because the request or response is not transmitted until control returns
to the SIP Servlet container.

Developer's Guide

Observe Best Practices for Java EE Applications

4.8 Mark SIP Servlets as Distributable

If you have designed and programmed your SIP Servlet to be deployed to a cluster
environment, you must include the distributable marker element in the Servlet's
deployment descriptor when deploying the application to a cluster of engine tier
servers. If you omit the distributable element, OWLCS does not deploy the
Servlet to a cluster of engine tier servers. If you mark distributable insip.xml it
must also be marked in the web.xml for a WAR file.

The distributable element is not required, and is ignored if you deploy to a single,
combined-tier (non-replicated) OWLCS instance.

4.9 Use SipApplicationSessionActivationListener Sparingly

The SIP Servlet 1.1 specification introduces
SipApplicationSessionActivationListener, which can provide callbacks to
an application when SIP Sessions are passivated or activated. Keep in mind that
callbacks occur only in a replicated OWLCS deployment. Single-server deployments
use no SIP data tier, so SIP Sessions are never passivated.

Also, keep in mind that in a replicated deployment OWLCS activates and passivates a
SIP Session many times, before and after SIP messages are processed for the session.
(This occurs normally in any replicated deployment, even when RDBMS-based
persistence is not configured.) Because this constant cycle of activation and passivation
results in frequent callbacks, use SipApplicationSessionActivationListener
sparingly in your applications.

4.10 Session Expiration Best Practices

For a JSR289 application, the container is more "intelligent” in removing sessions. For
example, there is no need to explicity call invalidate() on a session or sipappsession.

However, if setExpirs() is used on a session and the application is of a JSR289 type then
that call has no effect unless setInvalidateWhenRead(false) is called on the session.

4.11 Observe Best Practices for Java EE Applications

If you are deploying applications that use other Java EE APIs, observe the basic
clustering guidelines associated with those APIs. For example, if you are deploying
EJBs you must design all methods to be idempotent and make EJB homes clusterable
in the deployment descriptor. See "Clustering Best Practices" for more information.

Requirements and Best Practices for SIP Applications 4-5

Observe Best Practices for Java EE Applications

4-6 Developer's Guide

O

Composing SIP Applications

This chapter describes how to use OWLCS application composition features, in the
following sections:

= Section 5.1, "Application Composition Model"
» Section 5.2, "Using the Default Application Router"
= Section 5.3, "Configuring a Custom Application Router"

» Section 5.4, "Session Key-Based Request Targeting"

Note: The SIP Servlet v1.1 specification
(http://jcp.org/en/jsr/detail?id=289) describes a formal
application selection and composition process, which is fully
implemented in OWLCS. Use the SIP Servlet v1.1 techniques, as
described in this document, for all new development. Application
composition techniques described in earlier versions of OWLCS are
now deprecated.

OWLCS provides backwards compatibility for applications using
version 1.0 composition techniques, provided that:

= you do not configure a custom Application Router, and

= you do not configure Default Application Router properties.

5.1 Application Composition Model

Application composition is the process of "chaining" multiple SIP applications into a
logical path to apply services to a SIP request. The SIP Servlet v1.1 specification
introduces an Application Router (AR) deployment, which performs a key role in
composing SIP applications. The Application Router examines an initial SIP request
and uses custom logic to determine which SIP application must process the request. In
OWLCS, all initial requests are first delivered to the AR, which determines the
application used to process the request.

OWLCS provides a default Application Router, which can be configured using a text
file. However, most installations can develop and deploy a custom Application Router
by implementing the SipApplicationRouter interface. A custom Application
Router enables you to consult data stores when determining which SIP application
must handle a request.

In contrast to the Application Router, which requires knowledge of which SIP
applications are available for processing a message, individual SIP applications remain
independent from one another. An individual application performs a very specific

Composing SIP Applications 5-1

Using the Default Application Router

service for a SIP request, without requiring any knowledge of other applications
deployed on the system. (The Application Router does require knowledge of deployed
applications, and the SipApplicationRouter interface provides for automatic
notification of application deployment and undeployment.)

Individual SIP applications may complete their processing of an initial request by
proxying or relaying the request, or by terminating the request as a User Agent Server
(UAS). If an initial request is proxied or relayed, the SIP container again forwards the
request to the Application Router, which selects the next SIP application to provide a
service for the request. In this way, the AR can chain multiple SIP applications as
needed to process a request. The chaining process is terminated when:

» aselected SIP application acts as a UAS to terminate the chain, or

= there are no more applications to select for that request. (In this case, the request is
sent out.)

When the chain is terminated and the request sent, the SIP container maintains the
established path of applications for processing subsequent requests, and the AR is no
longer consulted.

Figure 5-1 shows the use of an Application Router for applying multiple service to a
SIP request.

Figure 5-1 Composed Application Model

UAC

1. Initial
Reguest

SIP Serviet
Container

2. Proxy

3. Initial Request

YyYy

Application Router
(AR)

appl
(proxy)
app2
(bZbua)

T (app3)
(UAS)

Note that the AR may select remote as well as local applications; the chain of services
need not reside within the same OWLCS container.

5.2 Using the Default Application Router

OWLCS includes a Default Application Router (DAR) having the basic functionality
described in the SIP Servlet Specification v1.1
(http://jcp.org/en/jsr/detail?id=289), Appendix C: Default Application
Router. In summary, the OWLCS DAR implements all methods of the

5-2 Developer's Guide

Session Key-Based Request Targeting

SipApplicationRouter interface, and is configured using the simple Java
properties file described in the v1.1 specification.

Each line of the DAR properties file specifies one or more SIP methods, and is
followed by SIP routing information in comma-delimited format. The DAR initially
reads the properties file on startup, and then reads it each time a SIP application is
deployed or undeployed from the container.

To specify the location of the configuration file used by the DAR, configure the
properties using the Administration Console, as described in "Configuring a Custom
Application Router", or include the following parameter when starting the OWLCS
instance:

-Djavax.servlet.sip.ar.dar.configuration

(To specify a property file, rather than a URI, include the prefix file:///) This Java
parameter is specified at the command line, therefore it can be included in your server
startup script.

See Appendix C in the SIP Servlet Specification v1.1
(http://jcp.org/en/jsr/detail?id=2809) for detailed information about the
format of routing information used by the Default Application Router.

Note that the OWLCS DAR accepts route region strings in addition to "originating,"
"terminating,” and "neutral." Each new string value is treated as an extended route
region. Also, the OWLCS DAR uses the order of properties in the configuration file to
determine the route entry sequence; the state_info value has no effect when
specified in the DAR configuration.

5.3 Configuring a Custom Application Router
By default OWLCS uses its DAR implementation.

If you develop a custom Application Router, you must store the implementation for
the AR in the /approuter subdirectory of the domain home directory. Supporting
libraries for the AR can be stored in a /11ib subdirectory within /approuter. (If you
have multiple implementations of SipApplicationRouter, use the
-Djavax.servlet.sip.ar.spi.SipApplicationRouterProvider option at
startup to specify which one to use.)

Note: In a clustered environment, the custom AR is deployed to all
engine tier instances of the domain; you cannot deploy different AR
implementations within the same domain.

See Section 15 in the SIP Servlet Specification v1.1
(http://jcp.org/en/jsr/detail?id=289) for more information about the
function of the AR. See also the SIP Servlet v1.1 API for information about how to
implement a custom AR.

5.4 Session Key-Based Request Targeting

The SIP Servlet v1.1 specification also provides a mechanism for associating an initial
request with an existing SipApplicationSession object. This mechanism is called
session key-based targeting. Session key-based targeting is used to direct initial
requests having a particular subscriber (request URI) or region, or other feature to an
already-existing SipApplicationSession, rather than generating a new session. To
use this targeting mechanism with an application, you create a method that generates

Composing SIP Applications 5-3

Session Key-Based Request Targeting

a unique key and annotate that method with @SipApplicationKey. When the SIP
container selects that application (for example, as a result of the AR choosing it for an
initial request), it obtains a key using the annotated method, and uses the key and
application name to determine if the SipApplicationSession exists. If one exists,
the container associates the new request with the existing session, rather than
generating a new session.

Note: If you develop a spiral proxy application using this targeting
mechanism, and the application modifies the record-route more than
once, it must generate different keys for the initial request, if
necessary, when processing record-route hops. If it does not, then the
application cannot discriminate record-route hops for subsequent
requests.

See section 15 in the SIP Servlet Specification v1.1
(http://jcp.org/en/jsr/detail?id=289) for more information about using
session key-based targeting.

5-4 Developer's Guide

6

Securing SIP Servlet Resources

The chapter describes how to apply security constraints to SIP Servlet resources when
deploying to OWLCS, in the following sections:

» Section 6.1, "Overview of SIP Servlet Security"

= Section 6.2, "Triggering SIP Response Codes"

= Section 6.3, "Specifying the Security Realm"

= Section 6.4, "Role Mapping Features"

= Section 6.5, "Using Implicit Role Assignment"

= Section 6.6, "Assigning Roles Using security-role-assignment"

= Section 6.7, "Assigning run-as Roles"

= Section 6.8, "Role Assignment Precedence for SIP Servlet Roles"
= Section 6.9, "Debugging Security Features"

= Section 6.10, "weblogic.xml Deployment Descriptor Reference"

6.1 Overview of SIP Servlet Security

The SIP Servlet API specification defines a set of deployment descriptor elements that
can be used for providing declarative and programmatic security for SIP Servlets. The
primary method for declaring security constraints is to define one or more
security-constraint elementsin the sip.xml deployment descriptor. The
security-constraint element defines the actual resources in the SIP Servlet,
defined in resource-collection elements, that are to be protected.
security-constraint also identifies the role names that are authorized to access
the resources. All role names used in the security-constraint are defined
elsewhere in sip.xml in a security-role element.

SIP Servlets can also programmatically refer to a role name within the Servlet code,
and then map the hard-coded role name to an alternate role in the sip.xml
security-role-ref element during deployment. Roles must be defined elsewhere
in a security-role element before they can be mapped to a hard-coded name in the
security-role-ref element.

The SIP Servlet specification also enables Servlets to propagate a security role to a
called Enterprise JavaBean (E]B) using the run-as element. Once again, roles used in
the run-as element must be defined in a separate security-role element in
sip.xml.

Chapter 14 in the SIP Servlet API specification provides more details about the types
of security available to SIP Servlets. SIP Servlet security features are similar to security

Securing SIP Servlet Resources 6-1

Triggering SIP Response Codes

features available with HTTP Servlets; you can find additional information about
HTTP Servlet security by referring to these sections in the Oracle WebLogic
Communication Services documentation:

= Securing Web Applications in Programming WebLogic Security provides an
overview of declarative and programmatic security models for Servlets.

s EJB Security-Related Deployment Descriptors in Securing Enterprise JavaBeans
(EJBs) describes all security-related deployment descriptor elements for E]Bs,
including the run-as element used for propagating roles to called EJBs.

See also the example sip.xml excerpt in Example 6-1, "Declarative Security
Constraints in sip.xml".

6.2 Triggering SIP Response Codes

You can distinguish whether you are a proxy application, or a UAS application, by
configuring the container to trigger the appropriate SIP response code, either a 401 SIP
response code, or a 407 SIP response code. If your application needs to proxy an
invitation, the 407 code is appropriate to use. If your application is a registrar
application, you must use the 401 code.

To configure the container to respond with a 407 SIP response code instead of a 401 SIP
response code, you must add the <proxy-authentication> element to the security
constraint.

6.3 Specifying the Security Realm
You must specify the name of the current security realm in the sip.xml file as follows:

<login-config>
<auth-method>DIGEST</auth-method>
<realm-name>myrealm</realm-name>
</login-config>

6.4 Role Mapping Features

When you deploy a SIP Servlet, security-role definitions that were created for
declarative and programmatic security must be assigned to actual principals and/or
roles available in the Servlet container. OWLCS uses the
security-role-assignment element in weblogic.xml to help you map
security-role definitions to actual principals and roles.
security-role-assignment provides two different ways to map security roles,
depending on how much flexibility you require for changing role assignment at a later
time:

s The security-role-assignment element can define the complete list of
principal names and roles that map to roles defined in sip.xml. This method
defines the role assignment at deployment time, but at the cost of flexibility; to add
or remove principals from the role, you must edit weblogic.xml and redeploy
the SIP Servlet.

s The externally-defined elementin security-role-assignment enables
you to assign principal names and roles to a sip.xml role at any time using the
Administration Console. When using the externally-defined element, you
can add or remove principals and roles to a sip.xml role without having to
redeploy the SIP Servlet.

6-2 Developer's Guide

Assigning Roles Using security-role-assignment

Two additional XML elements can be used for assigning roles to a sip.xml run-as
element: run-as-principal-name and run-as-role-assignment. These role
assignment elements take precedence over security-role-assignment elements
if they are used, as described in "Assigning run-as Roles".

Optionally, you can choose to specify no role mapping elements in weblogic.xml to
use implicit role mapping, as described in "Using Implicit Role Assignment".

The sections that follow describe OWLCS role assignment in more detail.

6.5 Using Implicit Role Assighment

With implicit role assignment, OWLCS assigns a security-role name in sip.xml
to a role of the exact same name, which must be configured in the OWLCS security
realm. To use implicit role mapping, you omit the security-role-assignment
element in weblogic.xml, as well as any run-as-principal-name, and
run-as-role-assignment elements use for mapping run-as roles.

When no role mapping elements are available in weblogic.xml, OWLCS implicitly
maps sip.xml security-role elements to roles having the same name. Note that
implicit role mapping takes place regardless of whether the role name defined in
sip.xml is actually available in the security realm. OWLCS display a warning
message anytime it uses implicit role assignment. For example, if you use the
"everyone" role in sip.xml but you do not explicitly assign the role in
weblogic.xml, the server displays the warning:

<Webapp: ServletContext (id=id,name=application, context-path=/context), the role:
everyone defined in web.xml has not been mapped to principals in
security-role-assignment in weblogic.xml. Will use the rolename itself as the
principal-name.>

You can ignore the warning message if the corresponding role has been defined in the
OWLCS security realm. The message can be disabled by defining an explicit role
mapping in weblogic.xml.

Use implicit role assignment if you want to hard-code your role mapping at
deployment time to a known principal name.

6.6 Assigning Roles Using security-role-assignment

The security-role-assignment element in weblogic.xml enables you to assign
roles either at deployment time or at any time using the Administration Console. The
sections that follow describe each approach.

6.6.1 Important Requirements

If you specify a security-role-assignment element in weblogic.xml, OWLCS
requires that you also define a duplicate security-role element in a web.xml
deployment descriptor. This requirement applies even if you are deploying a pure SIP
Servlet, which would not normally require a web . xm1 deployment descriptor
(generally reserved for HTTP Web Applications).

Securing SIP Servlet Resources 6-3

Assigning Roles Using security-role-assignment

Note: If you specify a security-role-assignment in weblogic.xml but
there is no corresponding security-role element in web.xml, OWLCS
generates the error message:

The security-role-assignment references an invalid security-role:
rolename

The server then implicitly maps the security-role defined in sip.xml to
a role of the same name, as described in "Using Implicit Role
Assignment".

For example, Example 6-1 shows a portion of a sip.xml deployment descriptor that
defines a security constraint with the role, roleadmin. Example 6-2 shows that a
security-role-assignment element has been defined in weblogic.xml to
assign principals and roles to roleadmin. In OWLCS, this Servlet must be deployed
with a web . xm1 deployment descriptor that also defines the roleadmin role, as
shown in Example 6-3.

If the web . xm1 contents were not available, OWLCS would use implicit role
assignment and assume that the roleadmin role was defined in the security realm;
the principals and roles assigned in weblogic.xml would be ignored.

Example 6-1 Declarative Security Constraints in sip.xml

<security-constraint>
<resource-collection>
<resource-name>RegisterRequests</resource-name>
<servlet-name>registrar</servlet-name>
</resource-collection>
<auth-constraint>
<javaee:role-name>roleadmin</javaee:role-name>
</auth-constraint>
</security-constraint>

<security-role>
<javaee:role-name>roleadmin</javaee:role-name>
</security-role>

Example 6-2 Example security-role-assignment in weblogic.xml

<weblogic-web-app>
<security-role-assignment>
<role-name>roleadmin</role-name>
<principal-name>Tanya</principal-name>
<principal-name>Fred</principal-name>
<principal-name>system</principal-name>
</security-role-assignment>
</weblogic-web-app>

Example 6-3 Required security-role Element in web.xml

<!DOCTYPE web-app
PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
<gsecurity-role>
<role-name>roleadmin</role-name>

6-4 Developer's Guide

Assigning Roles Using security-role-assignment

</security-role>
</web-app>

6.6.2 Assigning Roles at Deployment Time

A basic security-role-assignment element definition in weblogic.xml
declares a mapping between a security-role defined in sip.xml and one or more
principals or roles available in the OWLCS security realm. If the security-roleis
used in combination with the run-as element in sip.xml, OWLCS assigns the first
principal or role name specified in the security-role-assignment to the run-as
role.

Example 6-2, "Example security-role-assignment in weblogic.xml" shows an example
security-role-assignment element. This example assigns three users to the
roleadmin role defined in Example 6-1, "Declarative Security Constraints in sip.xml".
To change the role assignment, you must edit the weblogic.xml descriptor and
redeploy the SIP Servlet.

6.6.3 Dynamically Assigning Roles Using the Administrative Console

The externally-defined element can be used in place of the <principal-name>
element to indicate that you want the security roles defined in the role-name
element of sip.xml to use mappings that you assign in the Administration Console.
The externally-defined element gives you the flexibility of not having to specify
a specific security role mapping for each security role at deployment time. Instead, you
can use the Administration Console to specify and modify role assignments at
anytime.

Additionally, because you may elect to use this element for some SIP Servlets and not
others, it is not necessary to select the ignore roles and polices from DD option for the
security realm. (You select this option in the On Future Redeploys: field on the
General tab of the Security->Realms->myrealm control panel on the Administration
Console.) Therefore, within the same security realm, deployment descriptors can be
used to specify and modify security for some applications while the Administration
Console can be used to specify and modify security for others.

Note: When specifying security role names, observe the following
conventions and restrictions:

s The proper syntax for a security role name is as defined for an
Nmtoken in the Extensible Markup Language (XML)
recommendation available on the Web at:
http://www.w3.0org/TR/REC-xml#NT-Nmtoken.

= Do not use blank spaces, commas, hyphens, or any characters in
this comma-separated list: \t, <>, #, |, &, ~,?, (), { }.

= Security role names are case sensitive.

= The Oracle-suggested convention for security role names is that
they be singular.

Example 64 shows an example of using the externally-defined element with the
roleadmin role defined in Example 61, "Declarative Security Constraints in sip.xml".
To assign existing principals and roles to the roleadmin role, the Administrator
would use the OWLCS Administration Console.

Securing SIP Servlet Resources 6-5

Assigning run-as Roles

See the "Users, Groups, and Security Roles" for information about adding and
modifying security roles using the Administration Console.

Example 6-4 Example externally-defined Element in weblogic.xml
<weblogic-web-app>
<security-role-assignment>
<role-name>webuser</role-name>
<externally-defined/>
</security-role-assignment>
</weblogic-web-app>

6.7 Assigning run-as Roles

The security-role-assignment described in "Assigning Roles Using
security-role-assignment" can be also be used to map run-as roles defined in
sip.xml. Note, however, that two additional elements in weblogic.xml take
precedence over the security-role-assignment if they are present:
run-as-principal-name and run-as-role-assignment.

run-as-principal-name specifies an existing principle in the security realm that is
used for all run-as role assignments. When it is defined within the
servlet-descriptor element of weblogic.xml, run-as-principal-name
takes precedence over any other role assignment elements for run-as roles.

run-as-role-assignment specifies an existing role or principal in the security
realm that is used for all run-as role assignments, and is defined within the
weblogic-web-app element.

See "weblogic.xml Deployment Descriptor Reference" for more information about
individual weblogic.xml descriptor elements. See also "Role Assignment
Precedence for SIP Servlet Roles" for a summary of the role mapping precedence for
declarative and programmatic security as well as run-as role mapping.

6.8 Role Assignment Precedence for SIP Servlet Roles

OWLCS provides several ways to map sip.xml roles to actual roles in the SIP
Container during deployment. For declarative and programmatic security defined in
sip.xml, the order of precedence for role assignment is:

1. Ifweblogic.xml assignsa sip.xml roleina security-role-assignment
element, the security-role-assignment is used.

Note: OWLCS also requires a role definition in web.xml in order to
use a security-role-assignment. See "Important Requirements".

2. Ifnosecurity-role-assignment is available (or if the required web.xml role
assignment is missing), implicit role assignment is used.

For run-as role assignment, the order of precedence for role assignment is:

1. Ifweblogic.xml assignsa sip.xml run-as roleina
run-as-principal-name element defined within servlet-descriptor, the
run-as-principal-name assignment is used.

6-6 Developer's Guide

weblogic.xml Deployment Descriptor Reference

Note: OWLCS also requires a role definition in web.xml in order to
assign roles with run-as-principal-name. See "Important
Requirements".

2. Ifweblogic.xml assignsa sip.xml run-asroleina
run-as-role-assignment element, the run-as-role-assignment element
is used.

Note: OWLCS also requires a role definition in web.xml in order to
assign roles with run-as-role-assignment. See "Important
Requirements"

3. Ifweblogic.xml assignsa sip.xml run-as roleina
security-role-assignment element, the security-role-assignment is
used.

Note: OWLCS also requires a role definition in web.xml in order to
use a security-role-assignment. See "Important Requirements".

4. Ifno security-role-assignment is available (or if the required web . xml role
assignment is missing), implicit role assignment is used.

6.9 Debugging Security Features

If you want to debug security features in SIP Servlets that you develop, specify the
-Dweblogic.Debug=wlss.Security startup option when you start OWLCS.
Using this debug option causes OWLCS to display additional security-related
messages in the standard output.

6.10 weblogic.xml Deployment Descriptor Reference

The weblogic.xml DTD contains detailed information about each of the role
mapping elements discussed in this section. See "weblogic.xml Deployment Descriptor
Elements" for more information.

Securing SIP Servlet Resources 6-7

weblogic.xml Deployment Descriptor Reference

6-8 Developer's Guide

7

Enabling Message Logging

This chapter describes how to use message logging features on a development system,
in the following sections:

s Section 7.1, "Overview"

= Section 7.2, "Enabling Message Logging"

= Section 7.3, "Specifying Content Types for Unencrypted Logging"
» Section 7.4, "Example Message Log Configuration and Output"

» Section 7.5, "Configuring Log File Rotation"

7.1 Overview

Message logging records SIP and Diameter messages (both requests and responses)
received by OWLCS. This requires that the logging level be set to at least the INFO
level. You can use the message log in a development environment to check how
external SIP requests and SIP responses are received. By outputting the distinguishable
information of SIP dialogs such as Call-IDs from the application log, and extracting
relevant SIP messages from the message log, you can also check SIP invocations from
HTTP servlets and so forth.

When you enable message logging, OWLCS records log records in the Managed Server
log file associated with each engine tier server instance by default. You can optionally
log the messages in a separate, dedicated log file, as described in "Configuring Log File
Rotation".

7.2 Enabling Message Logging

You enable and configure message logging by adding a message-debug element to
the sipserver.xml configuration file. OWLCS provides two different methods of
configuring the information that is logged:

= Specify a predefined logging level (terse, basic, or full), or

= Identify the exact portions of the SIP message that you want to include in a log
record, in a specified order

The sections that follow describe each method of configuring message logging
functionality using elements in the sipserver.xml file. Note that you can also set
these elements using the Administration Console, in the Configuration->Message
Debug tab of the SipServer console extension node.

Enabling Message Logging 7-1

Enabling Message Logging

7.2.1 Specifying a Predefined Logging Level

The optional level element in message-debug specifies a predefined collection of
information to log for each SIP request and response. The following levels are
supported:

s terse—Logs only the domain setting, logging Servlet name, logging level, and
whether or not the message is an incoming message.

s basic—Logs the terse items plus the SIP message status, reason phrase, the
type of response or request, the SIP method, the From header, and the To header.

s full—Logs the basic items plus all SIP message headers plus the timestamp,
protocol, request URI, request type, response type, content type, and raw content.

Example 7-1 shows a configuration entry that specifies the full logging level.

Example 7-1 Sample Message Logging Level Configuration in sipserver.xml

<message-debug>
<level>full</level>
</message-debug>

7.2.2 Customizing Log Records

OWLCS also enables you to customize the exact content and order of each message log
record. To configure a custom log record, you provide a format element that defines a
log record pattern and one or more tokens to log in each record.

Note: If you specify a format element with a <level>full</level>
level element undefined) in message-debug, OWLCS uses "full"
message debugging and ignores the format entry. The format entry
can be used in combination with either the "terse" or "basic"
message-debug levels.

Table 7-1 describes the nested elements used in the format element.

Table 7-1 Nested format Elements

param-name param-value Description

pattern Specifies the pattern used to format a message log entry.
The format is defined by specifying one or more integers,
bracketed by "{" and "}". Each integer represents a token
defined later in the format definition.

token A string token that identifies a portion of the SIP message
to include in a log record. Table 7-2 provides a list of
available string tokens. You can define multiple token
elements as needed to customize your log records.

Table 7-2 describes the string token values used to specify information in a message
log record:

7-2 Developer's Guide

Enabling Message Logging

Table 7-2 Available Tokens for Message Log Records

Token Description Example or Type

%call_id The Call-ID header. It is blank when 43543543
forwarding.

%content The raw content. Byte array

%content_length
Y%content_type
Ycseq

%date
%from

%from_addr

Y%from_tag
Y%from_uri

Y%headers

%10

%method

Y%omsg
Y%mtype
Y%protocol
Y%reason

Y%req_uri

Y%status

Yotime

Y%timestampmillis

Yoto

Yto_addr
Y%to_tag

Y%to_uri

The content length.

The content type.

The CSeq header. It is blank when forwarding.

The date when the message was received.
("yyyy/MM/dd" format)

The From header (all). It is blank when
forwarding.

The address portion of the From header.

The tag parameter of the From header. It is

blank when forwarding.

The SIP URI part of the From header. It is blank

when forwarding.

A List of message headers stored in a 2-element

array. The first element is the name of the

header, while the second is a list of all values

for the header.

Whether the message is incoming or not.

The name of the SIP method. It records the
method name to invoke when forwarding.

Summary Call ID
The type of receiving.
The protocol used.

The response reason.

The request URI. This token is only available

for the SIP request.
The response status.

The time when the message was received.
("HH:mm:ss" format)

Time stamp in milliseconds.

The To header (all). It is blank when
forwarding.

The address portion of the To header.

The tag parameter of the To header. It is blank

when forwarding.

The SIP URI part of the To header. It is blank

when forwarding.

String value

String value

INVITE 1

2004/05/16
sip:foo@oracle.com;tag=438
943

foo@oracle.com

12345
sip:foo@oracle.com

List of headers

TRUE
INVITE

String value
SIPREQ
UDP

OK

sip:foo@oracle.com

200
18:05:27

9295968296

sip:foo@oracle.com;tag=438
943

foo@oracle.com

12345

sip:foo@oracle.com

See "Example Message Log Configuration and Output” for an example
sipserver.xml file that defines a custom log record using two tokens.

Enabling Message Logging 7-3

Specifying Content Types for Unencrypted Logging

7.3 Specifying Content Types for Unencrypted Logging

By default OWLCS uses String format (UTE-8 encoding) to log the content of SIP
messages having a text or application/sdp Content-Type value. For all other
Content-Type values, OWLCS attempts to log the message content using the character
set specified in the charset parameter of the message, if one is specified. If no
charset parameter is specified, or if the charset value is invalid or unsupported,
OWLCS uses Base-64 encoding to encrypt the message content before logging the
message.

If you want to avoid encrypting the content of messages under these circumstances,
specify a list of String-representable Content-Type values using the string-rep
element in sipserver.xml. The string-rep element can contain one or more
content-type elements to match. If a logged message matches one of the configured
content-type elements, OWLCS logs the content in String format using UTF-8
encoding, regardless of whether or not a charset parameter is included.

Note: You do not need to specify text/* or application/sdp content
types as these are logged in String format by default.

Example 7-2 shows a sample message-debug configuration that logs String content
for three additional Content-Type values, in addition to text/* and application/sdp
content.

Example 7-2 Logging String Content for Additional Content Types

<message-debug>
<level>full</level>
<string-rep>
<content-type>application/msml+xml</content-type>
<content-type>application/media_control+xml</content-type>
<content-type>application/media_control</content-type>
</string-rep>
</message-debug>

7.4 Example Message Log Configuration and Output

Example 7-3 shows a sample message log configuration in sipserver.xml.
Example 7-4, "Sample Message Log Output" shows sample output from the Managed
Server log file.

Example 7-3 Sample Message Log Configuration in sipserver.xml

<message-debug>
<format>
<pattern>{0} {l}</pattern>
<token>%headers</token>
<token>%content</token>
</format>
</message-debug>

Example 7-4 Sample Message Log Output

####<Aug 10, 2005 7:12:08 PM PDT> <Info> <WLSS.Trace> <jiri.bea.com> <myserver>
<ExecuteThread: '11l' for queue: 'sip.transport.Default'> <<WLS Kernel>> <> <BEA-
331802> <SIP Tracer: logger Message: To: sut <sip:invite@10.32.5.230:5060>
<mailto:sip:invite@10.32.5.230:5060>

7-4 Developer's Guide

Configuring Log File Rotation

Content-Length: 136
Contact: user:user@10.32.5.230:5061
CSeq: 1 INVITE
Call-ID: 59.3170.10.32.5.230@Quser.call.id
From: user <sip:user@10.32.5.230:5061> <mailto:sip:user@10.32.5.230:5061> ;tag=59
Via: SIP/2.0/UDP 10.32.5.230:5061
Content-Type: application/sdp
Subject: Performance Test
Max-Forwards: 70
v=0
o=userl 53655765 2353687637 IN IP4 127.0.0.1
g=-
c=IN IP4 127.0.0.1
t=0 0
m=audio 10000 RTP/AVP 0
a=rtpmap:0 PCMU/8000
>
#H###<Aug 10, 2005 7:12:08 PM PDT> <Info> <WLSS.Trace> <jiri.bea.com> <myserver>
<ExecuteThread: 'll' for queue: 'sip.transport.Default'> <<WLS Kernel>> <> <BEA-
331802> <SIP Tracer: logger Message: To: sut <sip:invite@10.32.5.230:5060>
<mailto:sip:invite@10.32.5.230:5060>
Content-Length: 0
CSeqg: 1 INVITE
Call-ID: 59.3170.10.32.5.230@user.call.id
Via: SIP/2.0/UDP 10.32.5.230:5061
From: user <sip:user@10.32.5.230:5061> <mailto:sip:user@10.32.5.230:5061> ;tag=59
Server: Oracle WebLogic Communications Server 10.3.1.0
>

7.5 Configuring Log File Rotation

Message log entries for SIP and Diameter messages are stored in the main OWLCS log
file by default. You can optionally store the messages in a dedicated log file. Using a
separate file makes it easier to locate message logs, and also enables you to use
OWLCS's log rotation features to better manage logged data.

Log rotation is configured using several elements nested within the main
message-debug element in sipserver.xml. As with the other XML elements
described in this section, you can also configure values using the
Configuration->Message Debug tab of the SIP Server Administration Console
extension.

Table 7-3 describes each element. Note that a server restart is necessary in order to
initiate independent logging and log rotation.

Table 7-3 XML Elements for Configuring Log Rotation

Element

Description

logging-enabled Determines whether a separate log file is used to store message

file-min-size

log-filename

debug log messages. By default, this element is set to false and
messages are logged in the general log file.

Configures the minimum size, in kilobytes, after which the server
automatically rotate log messages into another file. This value is
used when the rotation-type element is set to bySize.

Defines the name of the log file for storing messages. By default, the
log files are stored under domain_home/servers/server_
name/logs.

Enabling Message Logging 7-5

Configuring Log File Rotation

Table 7-3 (Cont.) XML Elements for Configuring Log Rotation

Element Description

rotation-type Configures the criterion for moving older log messages to a
different file. This element may have one of the following values:

= bySize—This default setting rotates log messages based on
the specified file-min-size.

s byTime—This setting rotates log messages based on the
specified rotation-time.

= none—Disables log rotation.
number-of-files-limited Specifies whether or not the server places a limit on the total

number of log files stored after a log rotation. By default, this
element is set to false.

file-count Configures the maximum number of log files to keep when
number-of-files-1limited is set to true.

rotate-log-on-startup Determines whether the server must rotate the log file at server
startup time.

log-file-rotation-dir Configures a directory in which to store rotated log files. By default,
rotated log files are stored in the same directory as the active log
file.

rotation-time Configures a start time for log rotation when using the byTime log
rotation criterion.

file-time-span Specifies the interval, in hours, after which the log file is rotated.
This value is used when the rotation-type element is set to
byTime.

date-format-pattern Specifies the pattern to use for rending dates in log file entries. The

value of this element must conform to the
java.text.SimpleDateFormat class.

Example 7-5 shows a sample message-debug configuration using log rotation.

Example 7-5 Sample Log Rotation Configuration

<?xml version='1.0"' encoding='UTF-8'?>
<sip-server xmlns="http://www.bea.com/ns/wlcp/wlss/300"
xmlns:sec="http://www.bea.com/ns/weblogic/90/security"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:wls="http://www.bea.com/ns/weblogic/90/security/wls">
<message-debug>
<logging-enabled>true</logging-enabled>
<file-min-size>500</file-min-size>
<log-filename>sip-messages.log</log-filename>
<rotation-type>byTime</rotation-type>
<number-of-files-limited>true</number-of-files-limited>
<file-count>5</file-count>
<rotate-log-on-startup>false</rotate-log-on-startup>
<log-file-rotation-dir>old_logs</log-file-rotation-dir>
<rotation-time>00:00</rotation-time>
<file-time-span>20</file-time-span>
<date-format-pattern>MMM d, yyyy h:mm a z</date-format-pattern>
</message-debug>
</sip-server>

7-6 Developer's Guide

Part lli

Parlay X Web Services and Multimedia
Messaging

This part describes developing applications using the Parlay X Web Services and
Parlay X Multimedia Messaging APL

Part IV contains the following chapters:
» Chapter 8, "Parlay X Presence Web Services"
» Chapter 9, "Parlay X Web Services Multimedia Messaging API"

8

Parlay X Presence Web Services

This chapter describes support for the Parlay X 2.0 Presence Web services interfaces for
developing applications. The Web service functions as a Presence Network Agent
which can publish, subscribe, and listen for notifications on behalf of the users of the
Web service. This chapter contains the following sections:

m Section 8.1, "Introduction”

= Section 8.2, "Installing the Web Services"

= Section 8.3, "Configuring Web Services"

= Section 8.4, "Presence Web Services Interface Descriptions"

= Section 8.5, "Using the Presence Web Services Interfaces"

= Section 8.6, "OWLCS Parlay X Presence Custom Error Codes"
= Section 8.7, "Buddy List Manager API"

8.1 Introduction

OWLCS provides support for Part 14 of the Parlay X Presence Web Service as defined
in the Open Service Access, Parlay X Presence Web Services, Part 14, Presence ETSI ES 202
391-14 specification. The OWLCS Parlay X Web service maps the Parlay X Web service
to a SIP/IMS network according to the Open Service Access, Mapping of Parlay X
Presence Web Services to Parlay/OSA APIs, Part 14, Presence Mapping, Subpart 2,
Mapping to SIP/IMS Networks, ETSI TR 102 397-14-2 specification.

Note: Due to the synchronous nature of the Web service, to receive a
callback from the Web service the client must implement the Web
service callback interface. For presence, the required interface is the
PresenceNotification interface described in Open Service Access,
Parlay X Presence Web Services, Part 14, Presence ETSI ES 202 391-14.

The HTTP server that hosts the presence Web service is a Presence Network Agent or a
Parlay X to SIP gateway:.

8.2 Installing the Web Services

The Web services are packaged as a standard .ear file and can be deployed the same as
any other Web services through Admin Console. The .ear file contains two .war files
that implement the two interfaces. The Web services use the Oracle SDP Platform,
Client and Presence Commons shared libraries.

Parlay X Presence Web Services 8-1

Configuring Web Services

8.3 Configuring Web Services

The following four mbean attributes are configurable for the Presence Supplier Web
service:

= SIPOutboundProxy: SipURI of the outbound proxy for SIP message. Empty string
means no outbound proxy. For example, sip:127.0.0.1:5060; Ir;transport=tcp.

s PublicXCAPRootUrl: URI where the Presence Server is deployed. This attribute is
used to update the presence rules stored on the XDMS. Example:
http://127.0.0.1:8001/services/

= Expires: Set the time in seconds after which the PUBLISH by a presentity expires.
Default value is 3600 (that is, 1 hour).

m SessionTimeout: Set the time in seconds after which HTTP sessions times out. Data
for all timed out sessions is discarded.

For Presence Consumer, there are three mbean attributes that can be configured.

= SIPOutboundProxy: SipURI of the outbound proxy for SIP message. Empty string
means no outbound proxy. For example, sip:127.0.0.1:5060; Ir;transport=tcp.

= Expires: Set the time in seconds after which the SUBSCRIBE by a watcher expires.
Default value is 3600 (ie. 1 hour).

m SessionTimeout: Set the time in seconds after which HTTP sessions times out. Data
for all timed out sessions is discarded.

8.4 Presence Web Services Interface Descriptions
The presence Web services consist of three interfaces:

» PresenceConsumer: The watchers use these methods to obtain presence data
(Table 8-1).

= PresenceNotification: The presence consumer interface uses the client callback
defined in this interface to send notifications (Table 8-2).

= PresenceSupplier: The presentity uses these methods to publish presence data and
manage access to the data by its watchers (Table 8-3).

Table 8-1 PresenceConsumer Interface

Operation Description
subscribePresence The Web Service sends a SUBSCRIBE to the presence server.
getUserPresence Returns the cached presence status because the status

changes of the presentity are asynchronously sent to the Web
services through a SIP NOTIFY. The Web services actually
have the subscription, not the Web services client.

startPresenceNotification Enables the Web service client from receiving asynchronous
notifications whenever a presentity makes change to its
presence status, or presence rules document.

endPresenceNotification Disables the web service client to receive asynchronous
notifications.

8-2 Developer's Guide

Using the Presence Web Services Interfaces

Table 8-2 PresenceNotification Interface

Operation Description

statusChanged The asynchronous operation is called by the Web Service
when an attribute for which notifications were requested
changes.

statusEnd This method is called when the duration for the notifications

(identified by the correlator) is over. In case of an error or
explicit call to endPresenceNotification, this method is not
called.

notifySubscription This asynchronous method notifies the watcher that the
presentity handled the pending subscription.

subscriptionEnded This asynchronous operation is called by the Web Service to
notify the watcher that the subscription has terminated.

Table 8-3 PresenceSupplier Interface

Operation Description
publish Maps directly to a SIP PUBLISH.
getOpenSubscriptions Called by the presentity (supplier) to check if any watcher

wants to subscribe to its presence data. No SIP message maps
to this method. Returns pending subscriptions currently in
the Web service server.

updateSubscriptionAuthorizati The supplier uses this method to answer any open pending
on subscriptions. An XCAP PUT message is sent to the XDMS
server to update the presence-rule document.

getMyWatchers Retrieves the local list of watchers from the Web service
server.
getSubscribed Attributes Retrieves the local list of subscribed attributes from the Web

service server. Currently, only returns Activity.

blockSubscription Causes the Web service server to end a watcher subscription
by modifying the XCAP document on the XDMS server (that
is, putting the watcher on the block list).

8.5 Using the Presence Web Services Interfaces

This section describes how to use each of the operations in the interfaces, and includes
code examples.

8.5.1 Interface: PresenceConsumer, Operation: subscribePresence

This is the first operation the application must call before using another operation in
this interface. It serves two purposes:

It allows the Web services to associate the current HTTP session with a user.

» It provides a context for all the other operations in this interface by subscribing to
at least one presentity (SUBSCRIBE presence event).

8.5.1.1 Code Example

// Setting the attribute to activity

PresenceAttributeType pa = PresenceAttributeType.ACTIVITY;
List<PresenceAttributeType> pat = new ArrayList<PresenceAttributeType>();
pat.add(pa);

Parlay X Presence Web Services 8-3

Using the Presence Web Services Interfaces

SimpleReference sr =
sr.setCorrelator("");
sr.setInterfaceName("");

sr.setEndpoint ("");

consumer.subscribePresence ("sip.presentity@test.example.com" , pat, "unused",
sr);

new SimpleReference();

8.5.2 Interface: PresenceConsumer, Operation: getUserPresence

Call this operation to retrieve a subscribed presentity presence. If the person is offline,
it returns ActivityNone and the hardstate note is written to
PresenceAttribute.note. If it returns Activity_Other, the description of the
activity is returned in the Othervalue field.

If the Name field is equal to "ServiceAndDeviceNote", OtherValue is a combination
of the service note and the device note. Note that there can be more than one
"ServiceAndDeviceNote" when the presentity is logged into multiple clients.

8.5.2.1 Code Example

PresenceAttributeType pat =
PresenceAttributeType.ACTIVITY;
List<PresenceAttribute> result =
consumer.getUserPresence (presentity, pat);
for (PresenceAttribute pa : result) {
// Check to see if it is an activity type.
if (pa.getTypeAndValue().getUnionElement () =
PresenceAttributeType.ACTIVITY) {
// Get the presence status.
System.out.println ("ACTIVITY: " +
pa.getTypeAndValue () .getActivity () .toString());
// Get the customized presence note.
if (pa.getNote().length() > 0){
System.out.println("Note: " + pa.getNote());

}
// If this is of type OTHER, then we need to extract
// different type of information.
if (pa.getTypeAndValue().getUnionElement () ==
PresenceAttributeType.OTHER) {
// This is "Activity_Other", a custom presence status.
if (pa.getTypeAndValue () .getOther ()
.getName () .compareToIgnoreCase ("ACTIVITY_OTHER") == 0){
System.out.println("Other Activity->" +
pa.getTypeAndValue () .getOther () .getValue() + "\n");
} else {
// Currently, the only other value beside ACTIVITY_OTHER is
// "ServiceAndDeviceNote" which is the service note +
// device note.
System.out.println("Combined Note->" +
pa.getTypeAndValue () .getOther () .getvValue() + "\n");

8.5.3 Interface: PresenceNotification, Operation: statusChanged

This asynchronous operation is called by the Web Service when an attribute for which
notifications were requested changes.

8-4 Developer's Guide

Using the Presence Web Services Interfaces

8.5.3.1 Code Example

public void

statusChanged (String context, String correlator, String uri,
List<PresenceAttribute> presenceAttributes) {
System.out.println("statusChanged Called:-");

System.out.println("Context = " + context);
System.out.println("Correlator = " + correlator);
System.out.println("Presentity = " + uri);

}

8.5.4 Interface: PresenceNotification, Operation: statusEnd

This method is called when the duration for the notifications (identified by the correlator) is
over. In case of an error or explicit call to endPresenceNotification, this method is not called.

8.5.4.1 Code Example

public void statusEnd(String context, String correlator)
System.out.println("statusEnd Called:-");

System.out.println("Context = " + context);
System.out.println("Correlator = " + correlator);
}

8.5.5 Interface: PresenceNotification, Operation: notifySubscription

This asynchronous method notifies the watcher that the presentity handled the pending
subscription.

8.5.5.1 Code Example

public void notifySubscription(String context, String uri,
List<PresencePermission> presencePermissions) {
System.out.println("notifySubscription Called:-");
System.out.println("Context = " + context);
System.out.println("Uri = " + uri);

if (presencePermissions.size() > 0){

for (PresencePermission p:presencePermissions) {
System.out.println("Permission " +
p.getPresenceAttribute() .value()

+ "->" + p.isDecision());

}
}
}

8.5.6 Interface: PresenceNotification, Operation: subscriptionEnded

This asynchronous operation is called by the Web Service to notify the watcher that the
subscription has terminated.

8.5.6.1 Code Example

public void subscriptionEnded(String context, String uri, String reason) {
System.out.println("subscriptionEnded Called:-");

System.out.println("Context = " + context);
System.out.println("Uri = " + uri);
System.out.println("Reason = " + reason);

}

Parlay X Presence Web Services 8-5

Using the Presence Web Services Interfaces

8.5.7 Interface PresenceSupplier, Operation: publish and Oracle Specific "Unpublish"

This is the first operation the application must call before using another operation in
this interface. It serves three purposes:

s It allows the Web services to associate the current HTTP session with a user.
= It publishes the user’s presence status.

= It subscribes to watcher-info so that the Web services can keep track of any
watcher requests.

There are three attributes that are of interest when performing a PUBLISH. These
attributes can be set in a PresenceAttribute structure and passed into the PUBLISH
method.

= Presense status with a customized note: this is the customized note configured in
the My Presence text box in Oracle Communicator. The <note> element is
contained in the <person> element of the Presence Information Data Format
(PIDF) XML file.

= Device note: implicitly inserted by Oracle Communicator, or inserted from a Web
service. The <note> element is contained in the <device> element of the Presence
Information Data Format (PIDF) XML file.

= Service note: configured in the Presence tab in the Oracle Communicator
preferences. The <note> element is contained in the <tuple> element of the
Presence Information Data Format (PIDF) XML file.

8.5.7.1 Code Example

// A simple way to publish the Presence Status

PresenceAttribute pa = new PresenceAttribute();

OtherValue other = new OtherValue();

//Set the name to "DeviceNote" to indicate the value must be used as device note.
other.setName ("DeviceNote") ;

other.setValue("Device Name") ;

//More other values can be defined for ServiceNote etc
CommunicationValue comm = new CommunicationValue();
AttributeTypeAndValue typeValue = new AttributeTypeAndValue();
typeValue.setUnionElement (PresenceAttributeType.ACTIVITY) ;
typeValue.setActivity(activity);

typeValue.setPlace (PlaceValue.PLACE_NONE) ;

typeValue.setPrivacy (PrivacyValue.PRIVACY_NONE) ;

typeValue. setSphere (SphereValue.SPHERE_NONE) ;
typeValue.setCommunication (comm) ;

typeValue.setOther (other) ;

pa.setTypeAndValue (typeValue) ;

String note = "My Note";

pa.setNote (note) ;

XMLGregorianCalendar dateTime = null;

dateTime = DatatypeFactory.newInstance () .newXMLGregorianCalendar (new
GregorianCalendar());

pa.setLastChange (dateTime) ;

List<PresenceAttribute> pat = new ArrayList<PresenceAttribute>();
pat.add(pa);

supplier.publish(pat);

//To UNPUBLISH, set the OtherValue to (Expires, 0)
OtherValue other = new OtherValue();
other.setName ("Expires") ;

other.setValue(0);

8-6 Developer's Guide

OWLCS Parlay X Presence Custom Error Codes

8.5.8 Interface: PresenceSupplier, Operation: getOpenSubscriptions

This operation retrieves a list of new requests to be on your watcher list.

8.5.8.1 Code Example

List<SubscriptionRequest> srList = getOpenSubscriptions();
for (SubscriptionRequest sr :srList) ({
System.out.println(sr.getWatcher () .toString());

}

8.5.9 Interface: PresenceSupplier, Operation: updateSubscriptionAuthorization

This operation allows you to place a watcher on either the block or allow list.

8.5.9.1 Code Example

PresencePermission p = new PresencePermission();

p.setDecision (true) ;

List<PresencePermission> pp = new ArrayList<PresencePermission>();
p.setPresenceAttribute (PresenceAttributeType.ACTIVITY) ;

pp.add(p);
updateSubscriptionAuthorization("sip:allow@test.example.com",pp) ;

8.5.10 Interface: PresenceSupplier, Operation: getMyWatchers

This operation retrieves the list of watchers in your allow list.
8.5.10.1 Code Example
List<String> watchers = getMyWatchers();

for(String watcher: watchers) {
System.out.println(watcher) ;

}

8.5.11 Interface: PresenceSupplier, Operation: getSubscribedAttributes

This operation returns only a single item of PresenceTypeAttribute. Activity. An
exception is thrown if there is no existing subscription.

8.5.11.1 Code Example

List<PresenceAttributeType> pat =
getSubscribedAttributes ("sip:watcher@test.example.com") ;

8.5.12 Interface: PresenceSupplier, Operation: blockSubscription

This operation places a watcher into the block list.

8.5.12.1 Code Example

blockSubscription("sip:block.this.watcher@test.example.com") ;

8.6 OWLCS Parlay X Presence Custom Error Codes

Table 84 and Table 8-5 describe the error codes and their associated error message.

Parlay X Presence Web Services 8-7

Buddy List Manager API

Table 8—4 OWLCS Parlay X Presence Custom Error Codes: PolicyException

Error Code Error Message

POL0001 General Policy Exception. It can be of following types:
SDP20201 Watcher is on the block, polite-block or pending
list.

SDP20202 Subscription is pending.

POL0002 Privacy verification failed for address <address>, request is
refused.
POL0003 Too many addresses specified in message part.

Table 8-5 OWLCS Parlay X Presence Custom Error Codes: ServiceException

Error Code Error Message

SVC0001 General Service Exception. It can be of the following types:
SDP20101 Invalid result from XDMS server.
SDP20102 Invalid HTTP session data.
SDP20103 Invalid uri.
SDP20104 Peer unavaliable.
SDP20105 Unknown host.
SDP20106 Service not avaliable.
SDP20107 Internal error.
SDP20108 User unauthenticated.

SVC0002 Invalid input value for message part.

SVC0003 Invalid input value for message part, valid values are
<values>.

SVC0004 No valid addresses provided in message part.

SVC0005 Correlator <correlator> specified in message part is a
duplicate

SVC0220 No subscription request from watcher <watcher> for

attribute <attribute>.

SVC0221 <watcher> is not a watcher.

8.7 Buddy List Manager API

The Contact Management API (CMAPI) is an API for manipulating resource-lists (also
known as Buddy Lists) and presence-rules documents. Through this high-level API it is
possible to act on behalf of a user to add or remove buddies to the buddy list as well as
allowing or blocking other users (watchers) from seeing the user’s presence
information. The CMAPI is capable of querying and manipulating those resources
stored on the XDMS (XML Document Management Server). The CMAPI consists of a
web service: XML Document Management Client (XDMC) Service and a Java client
stub that is part of the oracle.sdp.client shared library.

8.7.1 Consuming the API

The CMAPI is part of the oracle.sdp.client shared library. Once this library is available,
developers can import the package and use the API:

import oracle.sdp.presence.integration.Buddy;

8-8 Developer's Guide

Buddy List Manager API

import oracle.sdp.presence.integration.BuddyListManager;
import oracle.sdp.presence.integration.BuddyListManagerFactory;
import oracle.sdp.presence.integrationimpl.BuddyListManagerImpl;

8.7.1.1 Obtaining the BuddyListManagerFactory

The BuddyListManagerFactory itself follows the singleton pattern, and there is only
one instance of a factory per XDMS/XDMC combination. That is, when creating a
BuddyListManagerFactory, you must supply the XCAP root URL to the XDMS from
where documents are downloaded, as well as supplying the URL to the XDM Client
Service that is running on the client side; the XDMC Service URL is passed in through
the BindingProvider. ENDPOINT_ADDRESS_PROPERTY property. For each such
combination of XCAP root URL and XDM Client Service endpoint, there can only exist
exactly one BuddyListManagerFactory instance. Therefore it is possible to create
different factories pointing to the different XDMS/XDMC Service combinations.

Example 8—1 Obtaining an instance of the BuddyListManagerFactory

// Create the URI pointing to the XDMS.

URI xcapRoot = new URI("http://localhost:8001/services");

// Location of where the XDM Client webservice is.

String wsUrl = "http://localhost:8001/XdmClientService/services/XdmClient";
String sWsSecurityPolicy = new String[]{"oracle/wssll_saml_token with_message_
protection_client_policy"};

Map<String, Object> params = new HashMap<String,Object>();

params.put (BindingProvider .ENDPOINT ADDRESS_PROPERTY, wsUrl);

params.put (BindingProvider .USERNAME_PROPERTY, "alice");

params.put (ParlayXConstants.POLICIES, sWsSecurityPolicy);

// Obtain the instance to the factory

BuddyListManagerFactory factory = BuddyListManagerFactory.getInstance (xcapRoot,
params) ;

Example 8-1 shows how to obtain a reference to a factory pointing to the XCAP root of
localhost:8001/ services. Every operation performed on this factory is in the
context of this particular XCAP root. Hence, when creating a BuddyListManager for a
particular user, that BuddyListManager's XCAP root is the one of the factory through
which it was created.

8.7.1.2 Creating a BuddyListManager

It is important to realize that a BuddyListManager (BLM) is acting on behalf of a
particular user. Therefore, if a BLM is created for user Alice, all operations performed
on that particular BLM are on behalf of Alice and manipulate her documents.
Example 8-2 shows how to create a BLM for Alice through the factory created in the
previous section.

Example 8-2 Obtaining a BuddyListManager for the user Alice

URI user = new URI("sip:alice@example.com");

Map<String, Object> params = new HashMap<String,Object>();

params.put (XDMClientFactory.PROP_ASSERTED_IDENTITY, assertedId);
BuddyListManager manager = factory.createBuddyListManager (user, params);

Example 8-2 shows how to create a BLM for the user Alice with SIP address of
sip:alice@example.com. If manipulation of the buddy list and presence rules document
of another user is required, then a separate BLM must be created with the appropriate
SIP address.

Parlay X Presence Web Services 8-9

Buddy List Manager API

8.7.1.3 Adding a Buddy to a Buddy List and Retrieving the List

Adding a buddy to a buddy list is done by first creating a buddy, setting the
information needed on that buddy and then using the BLM to add it to the buddy list.
Example 8-3 shows how to use the BLM representing Alice to add Bob as a new buddy
of Alice and then getting the updated list back.

Example 8-3 Adding a New Buddy to the Buddy List of Alice

URI uri = new URI("sip:bob@example.com");
Buddy bob = manager.createBuddy (uri) ;

// Optionally, setting additional information.
manager.setDisplayname ("Bobby") ;

VCard vcard = bob.getVCard() ;
vcard.setCity("San Francisco");
vcard.setCountry ("USA") ;

// very important to set the VCard back on the buddy again
bob.setVCard (vcard) ;

// Update the buddy info using the BLM
manager . updateBuddy (bob) ;

// Getting the updated buddy list

List<Buddy> buddies = manager.getBuddies();

Example 8-3 shows how to create a new Buddy, Bob, and how that buddy is added to
Alice's buddy list by using the BLM representing Alice. To add more information
about the user Bob, such as the address and other information, access Bob's Vcard
information and then set the appropriate properties.

Note: Since the method getVvCard () is actually returning a clone of
the VCard, the method setVvCard () must be called on the buddy
again in order for the information to be updated.

8.7.1.4 Removing a Buddy from a Buddy List

Removing a buddy is very similar to adding a buddy. Use the method removeBuddy
and pass in the buddy that is to be removed. If there are many buddies to remove, use
the removeBuddies method and pass in the list of buddies to remove. Example 8—4
shows how Bob is removed from Alice's buddy list.

Example 8-4 Removing a Buddy

URI uri = new URI("sip:bob@example.com");
Buddy bob = manager.createBuddy (uri) ;
manager . removeBuddy (bob) ;

8.7.1.5 Manipulating your presence rules document

To allow a watcher to view the presence status, use the method

allowWatcher (String watcher) to add the watcher to the allow list. Use
blockWatcher (String watcher) to block someone from viewing your presence
status.

Example 8-5 Allowing or blocking watchers

manager.allowWatcher ("sip:bob@example.com") ;
manager .blockWatcher ("sip:carol@example.com") ;

8-10 Developer's Guide

Buddy List Manager API

8.7.2 Exceptions

BuddyListException is the base exception, and if the program is not set to register
the specific exception, then it can simply catch it.

XDMException is the base exception for all exceptions concerning communication
with the remote XDMS. XDMException signals that an error occurred when
communicating with the XDMS (for example: a connection problem, wrong path to the
XCAP root, or something else).

DocumentConflictException is a subclass to the XDMException; it signals that a
mid-air conflict was detected that could not be resolved. This can occur when multiple
clients access the same document on the XDMS. BuddyListManager attempts to
resolve such a clash, but if it cannot, it throws an exception.

Parlay X Presence Web Services 8-11

Buddy List Manager API

8-12 Developer's Guide

9

Parlay X Web Services Multimedia
Messaging API

This chapter describes support for the Parlay X 2.1 Multimedia Messaging Web
Services interfaces for developing applications. The Web service functions as a
Messaging Agent which can send, receive, and listen to notifies on behalf of the users
of the Web service. This chapter contains the following sections:

s Section 9.1, "Introduction”

= Section 9.2, "Installing the Web Services"

= Section 9.3, "Configuring Web Services"

= Section 9.4, "Messaging Web Services Interface Descriptions"

= Section 9.5, "Using the Messaging Web Services Interfaces"

9.1 Introduction

The following sections describe the semantics of each of the supported operations
along with implementation-specific details for the Parlay X Gateway.

The product support the interfaces defined in the Parlay X 2.1 Multimedia Messaging
Web Services specification.

9.2 Installing the Web Services

The Web services are packaged as a standard .ear file and can be deployed the same as
any other Web services through Admin Console. The .ear file contains three .war files
that implement the three interfaces. The Web services use the Oracle SDP Platform,
Client and Presence Commons shared libraries.

9.3 Configuring Web Services
There are four mbean attributes that are configurable for the Messaging Web service:

1. SIPOutboundProxy - SipURI of the outbound proxy for SIP message. Empty string
means no outbound proxy. Currently, only support IP address. For example,
sip:127.0.0.1:5060; Ir;transport=tcp.

2. SessionTimeout - Set the time in seconds after which HTTP sessions time out. Data
for all timed out sessions is discarded.

3. MessageLifetime - Set the time in seconds after which messages expire from the
message store. Setting this to 0 causes messages to be kept in the store indefinitely

Parlay X Web Services Multimedia Messaging APl 9-1

Messaging Web Services Interface Descriptions

(never expire). Messages stay in the message store for at most MessageLifetime +
MessageScanPeriod seconds. Setting this attribute has immediate effect (for
instance, reducing the value could cause some messages to be immediately
expired if they are older than the lifetime).

MessageScanPeriod - Set the period in seconds for scanning for and deleting
expired messages. Setting this to 0 disables scanning. Setting this attribute has
immediate effect.

9.4 Messaging Web Services Interface Descriptions

The messaging Web services consist of four interfaces:

SendMessage: Use these methods to send messages (Table 9-1).
ReceiveMessage: Use these methods to receive message content (Table 9-2).

MessageNotificationManager: Use these methods to manage which users are
notified when messages are received through the Web service (Table 9-3).

MessageNotification: The client callback defined in this interface is used to send
notifications (Table 9-4).

Table 9-1 SendMessage Interface

Operation Description

sendMessage Sends a SIP MESSAGE to designated user(s). Returns an

outgoing message ID.

getMessageDeliveryStatus Returns a set of delivery statuses for each recipient of an

outgoing message sent through sendMessage.

Table 9-2 ReceiveMessage Interface

Operation Description

getMessage Receives an incoming message.

getMessageURIs Not implemented.

getReceivedMessages Returns a set of incoming messages for a given user.

Table 9-3 MessageNotificationManager Interface

Operation Description

startMessageNotification Starts message notification at a given endpoint for a user.

Notifies endpoint when messages are received for user.

stopMessageNotification Stops message notification at an endpoint for a user.

Table 9-4 MessageNotification Interface

Operation Description

notifyMessageDeliveryReceipt Client callback invoked to notify the user of a message’s final

delivery status.

notifyMessageReception Client callback invoked to notify the client that the user

received a message.

9-2 Developer's Guide

Using the Messaging Web Services Interfaces

9.5 Using the Messaging Web Services Interfaces

This section describes how to use each of the operations in the interfaces, and includes
code examples. The following requirements apply:

An argument of type "StringSipURI" means that the argument is a String but must
be a valid URI with "sip" or "sips" scheme, otherwise a ServiceException gets
thrown. Refer to the Oracle Fusion Middleware WebLogic Communication
Services API Reference for additional documentation on the content indirection
API.

9.5.1 Interface SendMessage, Operation: sendMessage

This operation sends a SIP MESSAGE to designated user(s). Returns an outgoing
message ID.

Table 9-5 Interface: SendMessage, Operation: sendMessage

Argument Type Required Description

addresses List<StringSipURI> yes Destination address(es) for this
message.

senderAddress StringSipURI yes Message sender address.

subject String no Message subject. If there is no plain

text attachment with the request, the
subject is treated as the message

content.
priority MessagePriority no This value is ignored.
charging ChargingInformation no This value is ignored.
receiptRequest SimpleReference no Defines the application endpoint,

interfaceName, and correlator that is
used to notify the application of the
final delivery status of the message.

Return Value rl'ype ’Description

messageldentifier ~ String This identifier is used in a

getMessageDeliveryStatus operation
invocation to get the delivery status
of sent messages.

9.5.1.1 Code Example

Map<String, Object> params = new HashMap<String, Object>();
params.put (BindingProvider.ENDPOINT_ADDRESS_PROPERTY,

"http://webservicehost:7001/sendMessageEndpoint") ;

SendMessageClient sendMsgClient = new SendMessageClient (params) ;
List<String> recipients = new ArrayList<String>();
recipients.add("sip:receiver@example.com") ;

String correlator = UUID.randomUUID().toString();
SimpleReference ref = new SimpleReference();

ref.setCorrelator (correlator) ;

ref.setEndpoint ("http://clienthost:8080/notificationEndpoint") ;
ref.setInterface("MessageNotification");

String msgID = sendMsgClient.sendMessage (recipients,

"sip:sender@example.com", "message content",
MessagePriority.DEFAULT, null, ref);

Parlay X Web Services Multimedia Messaging APl 9-3

Using the Messaging Web Services Interfaces

9.5.2 Interface SendMessage, Operation: getMessageDeliveryStatus

This operation returns a set of delivery statuses for each recipient of an outgoing
message sent via sendMessage. Call this operation with the ID returned by
sendMessage.

Table 9-6 Interface SendMessage, Operation: getMessageDeliveryStatus

Argument Type Required Description
messageldentifier ~ String yes Identifier related to the delivery
status request.
Return Value rl'ype ’Description
status List<DeliveryInformat A list of status of the messages that
ion> were previously sent. Each item

represents a sent message, its
destination address, and its delivery
status.

9.5.2.1 Code Example

String msgID = sendMsgClient.sendMessage(...);

List<DeliveryInformation> infolist =
sendMsgClient.getMessageDeliveryStatus (msgID) ;

for (DeliveryInformation info : infoList) {
System.out.println(“recipient: “ + info.getAddress());
System.out.println(“status: “ + info.getDeliveryStatus());

9.5.3 Interface MessageNotificationManager, Operation: startMessageNotification

This operation starts message notification at a given endpoint for a user. This means
that when messages are received for this user, the client callback
notifyMessageReception is invoked at the given MessageNotification endpoint. This
also means that the web service stores received messages for this user, and the
received messages can be obtained through the ReceiveMessage interface.

Table 9—-7 Interface MessageNotificationManager, Operation: startMessageNotification

Argument Type Required Description

reference SimpleReference yes Defines the application endpoint,
interfaceName, and correlator that is
used to notify the application when a
message is received.

messageServiceAct StringSipURI yes The application is notified when

ivationNumber messages are received for this SIP
address.

criteria String no This value is ignored.

9.5.3.1 Code Example

Map<String, Object> params = new HashMap<String, Object>();
params.put (BindingProvider .ENDPOINT ADDRESS_PROPERTY,
"http://webservicehost:7001/msgNotiMgrEndpoint") ;
MessageNotificationManagerClient msgNotiMgrClient =
new MessageNotificationManagerClient (params) ;
SimpleReference ref = new SimpleReference();
String correlator = UUID.randomUUID().toString()
ref.setCorrelator (correlator) ;

9-4 Developer's Guide

Using the Messaging Web Services Interfaces

ref.setEndpoint ("http://clienthost:8080/notificationEndpoint") ;

ref.setInterface("MessageNotification");

msgNotiMgrClient.startMessageNotification (ref,
"sip:receiver@example.com", "dummy_criteria_ignored");

9.5.4 Interface MessageNotificationManager, Operation: stopMessageNotification

This operation stops message notification at an endpoint for a user. If a user no longer
has notification endpoints, all received messages for that user are no longer stored.

Table 9-8 Interface MessageNotificationManager, Operation: stopMessageNotification

Argument Type Required Description

correlator String yes The correlator associated with an
invocation of the
startMessageNotification operation.

9.5.4.1 Code Example

msgNotiMgrClient.stopMessageNotification(correlator);

9.5.5 Interface ReceiveMessage, Operation: getReceivedMessages

This operation returns a set of incoming messages for a given user. Messages may only
be received after notification has been enabled by invoking the
startMessageNotifcation operation in the MessageNotificationManager interface.

Table 9-9 Interface ReceiveMessage, Operation: getReceivedMessages

Argument Type Required Description

registrationldentifier StringSipURI yes The recipient SIP address for
incoming messages.

priority MessagePriority no This value is ignored.

Return Value 'Type ’Description

references List<MessageReference> A list of messages received for this

user. Each item may either have a
message identifier or message
content, but is not guaranteed to
have both an identifier and
content.

9.5.5.1 Code Example

Map<String, Object> params = new HashMap<String, Object>();
params.put (BindingProvider .ENDPOINT ADDRESS_PROPERTY,
"http://webservicehost:7001/receiveMessageEndpoint") ;
ReceiveMessageClient recvMsgClient = new ReceiveMessageClient (params) ;
List<MessageReference> msgs =
recvMsgClient.getReceivedMessages ("sip:receiver@example.com",
MessagePriority.DEFAULT) ;
for (MessageReference ref : msgs) ({
System.out.println("to: "+ref.getMessageServiceActivationNumber () ;
System.out.println("from: "+ref.getSenderAddress());
System.out.println("subject: "+ref.getSubject());
String id = ref.getMessageIdentifier();
if (id == null || id.isEmpty()) {
System.out.println("message: "+ref.getMessage());
} else {

Parlay X Web Services Multimedia Messaging APl 9-5

Using the Messaging Web Services Interfaces

System.out.println("ID: "+id);

9.5.6 Interface: ReceiveMessage, Operation: getMessage

This operation receives an incoming message as an attachment. Messages may only be
received after notification has been enabled by invoking the startMessageNotifcation
operation in the MessageNotificationManager interface.

Table 9-10 Oracle WebLogic Communication Servicesinterface: ReceivelMessage,
Operation: getMessage

Argument Type Required Description

messageldentifier ~ String yes A string identifying the incoming
message. This string is obtained
either from the
notifyMessageReception callback, or
the getReceivedMessages operation

invocation.
Return Value rl'ype 'Description
n/a n/a After invoking the getMessage

operation, the message content is
stored in an attachment of type
DataHandler.

9.5.6.1 Code Example

List<MessageReference> msgs =
recvMsgClient.getReceivedMessages ("sip:receiver@example.com",
MessagePriority.DEFAULT) ;
for (MessageReference ref : msgs) {
String id = ref.getMessageIdentifier();
String msgContent;
if (id == null || id.isEmpty()) {
msgContent = ref.getMessage();
} else {
System.out.println("ID: " + id);
recvMsgClient.getMessage (id) ;
DataHandler dh = recvMsgClient.getAttachment();
ByteArrayOutputStream baos = new ByteArrayOutputStream() ;
BufferedOutputStream out = new BufferedOutputStream(baos) ;
dh.writeTo (out) ;
out.flush();
msgContent = baos.toString();
}

System.out.println("message: " + msgContent);

9-6 Developer's Guide

Part IV

Call Control

This part describes using call control functionality.
Part V contains the following chapter:

s Chapter 10, "Third Party Call Service"

10

Third Party Call Service

This chapter describes how to perform third party call handling using a multimedia
messaging API, and provides samples applications. It contains the following section:

= Section 10.1, "Overview of Parlay X 2.1 Third Party Call Communication Services"
» Section 10.2, "Configuring Parlay X 2.1 Third Party Call"

= Section 10.3, "Statement of Compliance"

10.1 Overview of Parlay X 2.1 Third Party Call Communication Services

The Third Party Call Parlay X 2.1 communication services implement the Parlay X 2.1
Third Party Call interface, (Standards reference: ETSI ES 202 391-2 V1.2.1 (2006-12),
Open Service Access (OSA); Parlay X Web Services; Part 2: Third Party Call (Parlay X

2)).
Using a Third Party Call Parlay X 2.1 communication service, an application can:

= Set up a call between two parties. For example, an application could set up a call
between an investor and a broker if a particular stock reaches a predetermined
price. Or a computer user could set up a call between himself and someone in the
address book with a mouse click.

= Query for the status of a previously set up call
s Cancel a call it is creating as it is about to be set up

s Terminate an ongoing call it created

10.1.1 How It Works

In the Parlay X 2.1 Third Party Call communication services model, a call has two
distinct stages:

10.1.1.1 Call Setup

There are two parties involved in Third Party Call calls: the A-party (the caller) and the
B-party (the callee). When a call is set up using a Third Party Call communication
service, OWLCS attempts to set up a call leg to the A-party. When the caller goes
off-hook (“answers”), OWLCS attempts to set up a call leg to the B-party. When the
callee goes off-hook, the two call legs are connected using the underlying network.
This ends the call setup-phase.

The application can cancel the call during this phase.

Third Party Call Service 10-1

Configuring Parlay X 2.1 Third Party Call

10.1.1.2 Call Duration

While the call is underway, the audio channel that connects the caller and the callee is
completely managed by the underlying network. During this phase of the call, the

application can only query as to the status of the call. A call can be terminated in two
ways, either using the application-facing interface, or having the caller or callee hang

up.
Requests using a Parlay X 2.1 Third Party Call communication service flow only in one

direction, from the application to the network. Therefore this communication service
supports only application-initiated (or mobile-terminated) functionality.

Note: Third Party Call communication services manage only the
signalling, or controlling, aspect of a call. The media, or audio, channel
is managed by the underlying network. Only parties residing on the
same network can be controlled, unless:

= -The network plug-in connects to a media gateway controller

-One of the participants is connected to a signalling gateway so that, from
a signalling point of view, all parties reside on the same network

10.1.2 Supported Networks

Off the shelf, Parlay X 2.1 Third Party Call communication services can be configured
to support the SIP network protocol.

Note: OWLCS acts as a Back-to-Back User Agent. During the call
duration phase, the actual call is peer-to-peer.

10.2 Configuring Parlay X 2.1 Third Party Call

This section contains a description of the configuration attributes and operations
available for the Parlay X 2.1 Third Party Call.

10.2.1 Configuration Workflow for Parlay X 2.1 Third Party Call/SIP

Follow these configuration steps:

1. Using the Management Console or an MBean browser, select the MBean detailed
in Properties for Parlay X 2.1 Third Party Call/SIP.

2. Configure behavior of the network protocol plug-in instance:
= Attribute: ThirdPartyCallControllerURI
s Attribute: ISCRouteURI
s Attribute: MaximumCallLength
= Attribute: StatusRetentionTime

= Attribute: PAssertedIdentityURI

Note: There are not any management actions.

Table 10-1 lists the properties for Parlay X 2.1 Third Party Call

10-2 Developer's Guide

Configuring Parlay X 2.1 Third Party Call

Table 10-1 Properties for Parlay X 2.1 Third Party Call
Property Description
MBean Domain=oracle.sdp

Supported Address Scheme
Service type

Exposes to the service
communication layer a
JAVA representation of:

Interfaces with the network
nodes using:

Deployment artifacts:

Name=thirdpartycall

InstanceName=ThirdPartyCall
Type=oracle.sdp.thirdpartycall. management. TPCMBean
sip

ThirdPartyCall

Parlay X2.1 Part 2: Third Party Call

SIP: Session Initiation Protocol, RFC 3261

thirdpartycallwswar-11.1.1.war,
thirdpartycallmanagerwar-11.1.1.war,
thirdpartycallutil-11.1.1 jar,
thirdpartycallmanager-11.1.1 jar,
parlayx-11.1.1 jar,

packaged in thirdpartycallear-11.1.1.ear

10.2.2 Attributes and Operations for

Parlay X 2.1 Third Party Call

Table 10-2 contains a list of attributes for configuration and maintenance

Table 10-2 Configuration and Maintenance Attributes

Attribute Scope Unit Format Description

ThirdPartyCall Cluster NA String in Specifies the Controller SIP URI that is

ControllerURI URI format used to establish the third party call. If
this value is set, a call appears to the
callee to come from this URI. By
default, the value is “None”, where no
controller URI is used to establish the
call. In this case, the call appears to the
callee to come from the caller

ISCRouteURI Cluster NA String in Specifies the URI of the IMS service

URI format control route.

MaximumCall Cluster minutes int Specifies for how long time a call is

Duration allowed to be ongoing. If this time
expires, the call is terminated.

StatusRetentionTime Cluster —minutes int Specifies for how long time to retain
status information about the call after
it has been terminated.

PAssertedIdentity Cluster NA String in Specifies the SIP URI used in the

URI URI format P-Asserted-Identity header added by

the Third Party Call service. If left
blank no P-Asserted-Identity header is
added.

Third Party Call Service 10-3

Statement of Compliance

10.3 Statement of Compliance

This section describes the standards compliance for the communication services for
Parlay X 2.1 Third Party call.

The Parlay X 2.1 interface complies to ETSI ES 202 391-2 V1.2.1 Open Service Access
(OSA); Parlay X Web Services; Part 2: Third Party Call (Parlay X 2). For more
information, see the relevant specification at

http:/ /parlay.org/en/specifications/pxws.asp

Table 10-3 Statement of Compliance, Parlay X 2.1 Third Party Call

Compliant
Method Yes/No
Interface: ThirdPartyCall
MakeCall Y
GetCalllnformation Y
EndCall Y
CancelCall Y

The SIP plug-in for Parlay X 2.1 Third Party Call is an integration plug-in that utilizes
the Oracle WebLogic SIP Server to connect to a SIP/IMS network. The plug-in
connects to a SIP servlet executing in WebLogic SIP Server. The SIP Servlet uses the SIP
API provided by the WebLogic SIP server, which in its turn converts the API calls to
SIP messages.

The SIP servlet acts as a Back-to-Back User Agent for all calls.

The SIP servlet uses the WebLogic SIP server, which conforms to REC 3261
(http:/ /www.ietf.org/rfc/rfc3261.txt).

The implementation of the SIP based third party call is in compliance with RFC 3725 -
Best Current Practices for Third Party Call Control (3pcc) in the Session Initiation
Protocol (SIP) Flow I (http:/ /www.ietf.org/rfc/rfc3725.txt).

Table 10-4 Statement of Compliance, SIP for Parlay X 2.1 Third Party Call

Compliant
Message/Response Yes/No Comment

REGISTER - Not used in the context
INVITE
ACK
CANCEL
BYE
OPTIONS

< <Ko=

Not used in the context.

100 Trying

180 Ringing

181 Call Is Being Forwarded
182 Queued

183 Session Progress

200 OK

< KRR R

10-4 Developer's Guide

Statement of Compliance

Table 10-4 (Cont.) Statement of Compliance, SIP for Parlay X 2.1 Third Party Call

Compliant

Message/Response Yes/No Comment

300 Multiple Choices Y UA treated as unreachable.
301 Moved Permanently UA treated as unreachable.
302 Moved Temporarily UA treated as unreachable.
305 Use Proxy UA treated as unreachable.
380 Alternate Service UA treated as unreachable.
400 Bad Request UA treated as unreachable.
401 Unauthorized UA treated as unreachable.
402 Payment Required UA treated as unreachable.
403 Forbidden UA treated as unreachable.
404 Not Found UA treated as unreachable.
405 Method Not Allowed UA treated as unreachable.
406 Not Acceptable UA treated as unreachable.
407 Proxy Authentication Required UA treated as unreachable.
408 Request Timeout Treated as no answer from UA.
410 Gone UA treated as unreachable.

413 Request Entity Too Large
414 Request URI Too Long
415 Unsupported Media Type
416 Unsupported URI Scheme
420 Bad Extension

421 Extension Required

423 Interval Too Brief

480 Temporarily Unavailable
481 Call/Transaction Does Not Exist
482 Loop Detected

483 Too Many Hops

484 Address Incomplete

485 Ambiguous

486 Busy Here

487 Request Terminated

488 Not Acceptable Here

491 Request Pending

493 Undecipherable

500 Server Internal Error

501 Not Implemented

502 Bad Gateway

T T e e S S e e e e e I R T T S = e S e e S S

P

/N

< <K R R =

UA treated as unreachable.
UA treated as unreachable.
UA treated as unreachable.
UA treated as unreachable.
UA treated as unreachable.
UA treated as unreachable.
UA treated as unreachable.
UA treated as unreachable.
UA treated as unreachable.
UA treated as unreachable.
UA treated as unreachable.
UA treated as unreachable.
UA treated as unreachable.
UA treated as busy.

UA treated as unreachable.
UA treated as unreachable.
UA treated as unreachable.
UA treated as unreachable.
UA treated as unreachable.
UA treated as unreachable.

UA treated as unreachable.

Third Party Call Service 10-5

Statement of Compliance

Table 10-4 (Cont.) Statement of Compliance, SIP for Parlay X 2.1 Third Party Call

Compliant

Message/Response Yes/No Comment

503 Service Unavailable Y UA treated as unreachable.
Server Time-out Y UA treated as unreachable.
505 Version Not Supported Y UA treated as unreachable.
513 Message Too Long Y UA treated as unreachable.
600 Busy Everywhere Y UA treated as unreachable.
603 Decline Y UA treated as unreachable.
604 Does Not Exist Anywhere Y UA treated as unreachable.
606 Not Acceptable Y UA treated as unreachable.

10-6 Developer's Guide

Part V

Using Diameter

This part describes developing applications using Diameter. Diameter is a peer-to-peer
protocol that involves delivering attribute-value pairs (AVPs). A Diameter message
includes a header and one or more AVPs. The collection of AVPs in each message is
determined by the type of Diameter application, and the Diameter protocol also allows
for extension by adding new commands and AVPs. Diameter enables multiple peers to
negotiate their capabilities with one another, and defines rules for session handling
and accounting functions.

OWLCS includes an implementation of the base Diameter protocol that supports the
core functionality and accounting features described in RFC 3588
(http://www.ietf.org/rfc/rfc3588. txt). OWLCS uses the base Diameter
functionality to implement multiple Diameter applications, including the Sh, Rf, and
Ro applications described later in this document.

You can also use the base Diameter protocol to implement additional client and
server-side Diameter applications. The base Diameter API provides a simple,
Servlet-like programming model that enables you to combine Diameter functionality
with SIP or HTTP functionality in a converged application.

Part VI contains the following chapters:

» Chapter 11, "Using the Diameter Base Protocol API"

s Chapter 12, "Using the Profile Service API"

= Chapter 13, "Developing Custom Profile Service Providers"

» Chapter 14, "Using the Diameter Rf Interface API for Offline Charging"
» Chapter 15, "Using the Diameter Ro Interface API for Online Charging"

{DOCROOT}/diameter/diametersh.html
{DOCROOT}/diameter/diameterrf.html
{DOCROOT}/diameter/diameterro.html

11

Using the Diameter Base Protocol API

The following chapter provides an overview of using the OWLCS Diameter Base
protocol implementation to create your own Diameter applications, in the following
sections:

Section 11.1, "Diameter Protocol Packages"

Section 11.2, "Overview of the Diameter API"

Section 11.3, "Working with Diameter Nodes"

Section 11.4, "Implementing a Diameter Application"

Section 11.5, "Working with Diameter Sessions"

Section 11.6, "Working with Diameter Messages"

Section 11.7, "Working with AVPs"

Section 11.8, "Creating Converged Diameter and SIP Applications"

11.1 Diameter Protocol Packages

The sections that follow provide an overview of the base Diameter protocol packages,
classes, and programming model used for developing client and server-side Diameter
applications. See also the following sections for information about using the provided
Diameter protocol applications in your SIP Servlets:

Chapter 12, "Using the Profile Service API" describes how to access and manage
subscriber profile data using the Diameter Sh application.

Chapter 14, "Using the Diameter Rf Interface API for Offline Charging" describes
how to issue offline charging requests using the Diameter Rf application.

Chapter 15, "Using the Diameter Ro Interface API for Online Charging" describes
how to perform online charging using the Diameter Ro application.

11.2 Overview of the Diameter API

All classes in the Diameter base protocol API reside in the root
com.bea.wcp.diameter package. Table 11-1 describes the key classes, interfaces,
and exceptions in this package.

Using the Diameter Base Protocol APl 11-1

Overview of the Diameter API

Table 11-1 Key Elements of the Diameter Base Protocol API

Category Element Description

Diameter Node Node A class that represents a Diameter node implementation. A
diameter node can represent a client- or server-based
Diameter application, as well as a Diameter relay agent.

Diameter Application, A class that represents a basic Diameter application.

Applications ClientApplication ClientApplication extends Application for client-specific
features such as specifying destination hosts and realms. All
Diameter applications must extend one of these classes to
return an application identifier. The classes can also be used
directly to create new Diameter sessions.

Applicationld A class that represents the Diameter application ID. This ID
is used by the Diameter protocol for routing messages to the
appropriate application. The ApplicationId corresponds
to one of the Auth-Application-Id, Acct-Application-Id, or
Vendor-Specific-Application-Id AVPs contained in a
Diameter message.

Session A class that represents a Diameter session. Applications that
perform session-based handling must extend this class to
provide application-specific behavior for managing requests
and answering messages.

Message Message, Request, The Message class is a base class used to represent request
Processing Answer and answer message types. Request and Answer extend the
base class.

Command A class that represents a Diameter command code.

RAR, RAA These classes extend the Request and Answer classes to
represent re-authorization messages.

ResultCode A class that represents a Diameter result code, and provides
constant values for the base Diameter protocol result codes.

AVP Handling Attribute A class that provides Diameter attribute information.

Avp, AvpList Classes that represent one or more attribute-value pairs in a
message. AvpList is also used to represent AVPs contained in
a grouped AVP.

Type A class that defines the supported AVP datatypes.

Error Handling DiameterException The base exception class for Diameter exceptions.

MessageException An exception that is raised when an invalid Diameter
message is discovered.

AvpException An exception that is raised when an invalid AVP is

11-2 Developer's Guide

discovered.

Working with Diameter Nodes

Table 11-1 (Cont) Key Elements of the Diameter Base Protocol API

Supporting
Interfaces

Enumerated An enum value that implements this interface can be used as
the value of an AVP of type INTEGER32, INTEGER®64, or
ENUMERATED.

SessionListener An interface that applications can implement to subscribe to

messages delivered to a Diameter session.

MessageFactory An interface that allows applications to override the default
message decoder for received messages, and create new
types of Request and Answer objects.

The default decoding process begins by decoding the
message header from the message bytes using an instance of
MessageFactory. This is done so that an early error
message can be generated if the message header is invalid.
The actual message AVPs are decoded in a separate step by
calling decodeAvps. AVP values are fully decoded and
validated by calling validate, which in turn calls
validateAvp for each partially-decoded AVP in the
message.

In addition to these base Diameter classes, accounting-related classes are stored in the
com.bea.wcp.diameter.accounting package, and credit-control-related classes

are stored in com.bea.wcp.diameter. cc. See Chapter 14, "Using the Diameter Rf

Interface API for Offline Charging", and Chapter 15, "Using the Diameter Ro Interface
API for Online Charging" for more information about classes in these packages.

11.2.1 File Required for Compiling Application Using the Diameter API

The following jar files are part of the Diameter API that we expose. To compile against
this API, access this file from the following locations:

The wlssdiameter. jar file is located at the following location: MIDDLEWARE_
HOME/server/lib/wlss/.

11.3 Working with Diameter Nodes

A diameter node is represented by the com.bea.wcp.diameter.Node class. A
Diameter node may host one or more Diameter applications, as configured in the
diameter.xml file. In order to access a Diameter application, a deployed application
(such as a SIP Servlet) must obtain the diameter Node instance and request the
application. Example 11-1 shows the sample code used to access the Rf application.

Example 11-1 Accessing a Diameter Node and Application

ServletContext sc = getServletConfig().getServletContext();

Node node = sc.getAttribute("com.bea.wcp.diameter.Node");

RfApplication rfApp = (RfApplication) node.getApplication(Charging.RF_APPLICATION_
ID);

Diameter Nodes are generally configured and started as part of a OWLCS instance.
However, for development and testing purposes, you can also run a Diameter node as
a standalone process. To do so:

1. Set the environment for your domain:

cd ~/bea/user_projects/domains/diameter/bin
. /setDomainEnv.sh

2. Locate the diameter.xml configuration file for the Node you want to start:

Using the Diameter Base Protocol APl 11-3

Implementing a Diameter Application

cd ../config/custom

3. Start the Diameter node, specifying the diameter .xml configuration file to use:

java com.bea.wcp.diameter.Node diameter.xml

11.4 Implementing a Diameter Application

All Diameter applications must extend either the base Application class or, for
client applications, the ClientApplication class. The model for creating a Diameter
application is similar to that for implementing Servlets in the following ways:

= Diameter applications override the init () method for initialization tasks.

= Initialization parameters configured for the application in diameter.xml are
made available to the application.

= A session factory is used to generate new application sessions.

Diameter applications must also implement the getId () method to return the proper
application ID. This ID is used to deliver Diameter messages to the correct application.

Applications can optionally implement rcvRequest () or rcvAnswer () as needed.
By default, rcvRequest () answers with UNABLE_TO_COMPLY, and
rcvRequest () drops the Diameter message.

Example 11-2 shows a simple Diameter client application that does not use sessions.

Example 11-2 Simple Diameter Application

public class TestApplication extends ClientApplication {
protected void init() {
log("Test application initialized.");
}
public ApplicationId getId() {
return ApplicationId.BASE_ACCOUNTING;
}
public void rcvRequest (Request req) throws IOException {
log("Got request: " + req.getHopByHopId());
req.createAnswer (ResultCode.SUCCESS) .send () ;
}
}

11.5 Working with Diameter Sessions

Applications that perform session-based handling must extend the base Session class
to provide application-specific behavior for managing requests and answering
messages. If you extend the base Session class, you must implement either
rcvRequest () or rcvAnswer (), and may implement both methods.

The base Application class is used to generate new Session objects. After a session is
created, all session-related messages are delivered directly to the session object. The
OWLCS container automatically generates the session ID and encodes the ID in each
message. Session attributes are supported much in the same fashion as attributes in
SipApplicationSession.

Example 11-3 shows a simple Diameter session implementation.

Example 11-3 Simple Diameter Session

public class TestSession extends Session {

11-4 Developer's Guide

Working with Diameter Messages

public TestSession(TestApplication app) {
super (app) ;

}

public void rcvRequest (Request req) throws IOException {
getApplication().log("rcvReuest: " + req.getHopByHopId());
req.createAnswer (ResultCode.SUCCESS) .send () ;

}

}

To use the sample session class, the TestApplication in Example 11-2 would need
to add a factory method:

public class TestApplication extends Application {
public TestSession createSession() {
return new TestSession(this);

}
}

TestSession could then be used to create new requests as follows:

TestSession session = testApp.createSession();
Request req = session.creatRequest();
req.sent () ;

The answer is delivered directly to the Session object.

11.6 Working with Diameter Messages

The base Message class is used for both Request and Answer message types. A
Message always includes an application ID, and optionally includes a session ID. By
default, messages are handled in the following manner:

1. The message bytes are parsed.
2. The application and session ID values are determined.

3. The message is delivered to a matching session or application using the following
rules:

a. If the Session-Id AVP is present, the associated Session is located and the
session's rcvMessage () method is called.

b. If there is no Session-Id AVP present, or if the session cannot be located, the
Diameter application's rcvMessage () method is called

c. If the application cannot be located, an UNABLE_TO_DELIVER response is
generated.

The message type is determined from the Diameter command code. Certain special
message types, such as RAR, RAA, ACR, ACA, CCR, and CCA, have getter and setter
methods in the Message object for convenience.

11.6.1 Sending Request Messages

Either a Session or Application can originate and receive request messages.
Requests are generated using the createRequest () method. You must supply a
command code for the new request message. For routing purposes, the destination
host or destination realm AVPs are also generally set by the originating session or
application.

Using the Diameter Base Protocol APl 11-5

Working with AVPs

Received answers can be obtained using Request .getAnswer (). After receiving an
answer, you can use getSession () to obtain the relevant session ID and
getResultCode () to determine the result. You can also use

Answer.getRequest () to obtain the original request message.

Requests can be sent asynchronously using the send () method, or synchronously
using the blocking sendAndwWait () method. Answers for requests that were sent
asynchronously are delivered to the originating session or application. You can specify
a request timeout value when sending the message, or can use the global
request-timeout configuration element in diameter.xml. An UNABLE_TO_
DELIVER result code is generated if the timeout value is reached before an answer is
delivered. getResultCode () on the resulting Answer returns the result code.

11.6.2 Sending Answer Messages

New answer messages are generated from the Request object, using

createAnswer (). All generated answers should specify a ResultCode and an
optional Error-Message AVP value. The ResultCode class contains pre-defined result
codes that can be used.

Answers are delivered using the send () method, which is always asynchronous
(non-blocking).

11.6.3 Creating New Command Codes

A Diameter command code determines the message type. For instance, when sending
a request message, you must supply a command code.

The Command class represents pre-defined commands codes for the Diameter base
protocol, and can be used to create new command codes. Command codes share a
common name space based on the code itself.

The define () method enables you to define codes, as in:

static final Command TCA = Command.define (1234, "Test-Request", true, true);

The define () method registers a new Command, or returns a previous command
definition if one was already defined. Commands can be compared using the reference
equality operator (==).

11.7 Working with AVPs

Attribute Value Pair (AVP) is a method of encapsulating information relevant to the
Diameter message. AVPs are used by the Diameter base protocol, the Diameter
application, or a higher-level application that employs Diameter.

The Avp class represents a Diameter attribute-value pair. You can create new AVPs
with an attribute value in the following way:

Avp avp = new Avp(Attribute.ERROR_MESSAGE, "Bad request");
You can also specify the attribute name directly, as in:

Avp avp = new Avp("Error-Message", "Bad request");
The value that you specify must be valid for the specified attribute type.

To create a grouped AVDP, use the AvpList class, as in:

AvpList avps = new AvpList();
avps.add(new Avp ("Event-Timestamp", 1234));
avps.add(new Avp ("Vendor-Id", 1111));

11-6 Developer's Guide

Creating Converged Diameter and SIP Applications

11.7.1 Creating New Attributes

You can create new attributes to extend your Diameter application. The Attribute class
represents an AVP attribute, and includes the AVP code, name, flags, optional vendor
ID, and type of attribute. The class also maintains a registry of defined attributes. All
attributes share a common namespace based on the attribute code and vendor ID.

The define () method enables you to define new attributes, as in:

static final Attribute TEST = Attribute.define(1234, "Test-Attribute", 0,
Attribute.FLAG_MANDATORY, Type.INTEGER32);

Table 11-1 lists the available attribute types and describes how they are mapped to
Java types.

The define () method registers a new attribute, or returns a previous definition if
one was already defined. Attributes can be compared using the reference equality
operator (==).

Table 11-2 Attribute Types

Diameter
Type Type Constant Java Type
Integer32 Type INTEGER32 Integer
Integer64 Type INTEGER64 Long
Float32 Type FLOAT32 Float
OctetString Type.BYTES ByteBuffer
(read-only)
UTF8String Type . STRING String
Address Type. ADDRESS InetAddress
Grouped Type. GROUPED AvplList

11.8 Creating Converged Diameter and SIP Applications

The Diameter API enables you to create converged applications that utilize both SIP
and Diameter functionality. A SIP Servlet can access an available Diameter application
through the Diameter Node, as shown in Example 11-4.

Example 11-4 Accessing the Rf Application from a SIP Servlet

ServletContext sc = getServletConfig().getServletContext();

Node node = (Node) sc.getAttribute("com.bea.wcp.diameter.Node");
RfApplication rfApp = (RfApplication) node.getApplication(Charging.RF_APPLICATION_
ID);

SIP uses Call-id (the SIP-Call-ID header) to identify a particular call session between
two users. OWLCS automatically links a Diameter session to the currently-active call
state by encoding the SIP Call-id into the Diameter session ID. When a Diameter
message is received, the container automatically retrieves the associated call state and
locates the Diameter session. A Diameter session is serializable, so you can store the
session as an attribute in a the SipApplicationSession object, or vice versa.

Converged applications can use the Diameter SessionListener interface to receive
notification when a Diameter message is received by the session. The
SessionListener interface defines a single method, rcvMessage (). Example 11-5
shows an example of how to implement the method.

Using the Diameter Base Protocol APl 11-7

Creating Converged Diameter and SIP Applications

Example 11-5 Implementing SessionListener

Session session = app.createSession();
session.setlListener (new SessionListener() {
public void rcvMessage (Message msg) {
if (msg.isRequest()) System.out.println("Got request!");
}
I

Note: The SessionListener implementation must be serializable
for distributed applications.

11-8 Developer's Guide

12

Using the Profile Service API

The following chapter describes how to use the Diameter Sh profile service and the
Profile Service API, based on the OWLCS Diameter protocol implementation, in your
own applications, and contains the following sections:

» Section 12.1, "Overview of Profile Service API and Sh Interface Support"
= Section 12.2, "Enabling the Sh Interface Provider"
m Section 12.3, "Overview of the Profile Service API"

= Section 12.4, "Creating a Document Selector Key for Application-Managed Profile
Data"

» Section 12.5, "Using a Constructed Document Key to Manage Profile Data"

= Section 12.6, "Monitoring Profile Data with ProfileListener"

12.1 Overview of Profile Service API and Sh Interface Support

The IMS specification defines the Sh profile service as the method of communication
between the Application Server (AS) function and the Home Subscriber Server (HSS),
or between multiple IMS Application Servers. The AS uses the Sh profile service in
two basic ways:

= To query or update a user's data stored on the HSS
= To subscribe to and receive notifications when a user's data changes on the HSS

The user data available to an AS may be defined by a service running on the AS
(repository data), or it may be a subset of the user's IMS profile data hosted on the HSS.
The Sh interface specification, 3GPP TS 29.328, defines the IMS profile data that can be
queried and updated through Sh. All user data accessible through the Sh profile
service is presented as an XML document with the schema defined in 3GPP TS 29.328.

The IMS Sh profile service is implemented as a provider to the base Diameter protocol
support in OWLCS. The provider transparently generates and responds to the
Diameter command codes defined in the Sh application specification. A higher-level
Profile Service API enables SIP Servlets to manage user profile data as an XML
document using XML Document Object Model (DOM). Subscriptions and notifications
for changed profile data are managed by implementing a profile listener interface in a
SIP Servlet.

Using the Profile Service APl 12-1

Enabling the Sh Interface Provider

Figure 12-1 Profile Service API and Sh Provider Implementation

SIP SIP SIP SIP SIP
Serviet Serviet Serviet Serviet Serviet

com.bea.wcp.profile API

5Sh ApplicationProvider

J Custom Custom
Provider Provider

Diameter Base Protocol

OWLCS includes a provider for the Diameter Sh profile service. Providers to support
additional interfaces defined in the IMS specification may be provided in future
releases. Applications using the profile service API are able to use additional providers
as they are made available.

12.2 Enabling the Sh Interface Provider

See "Configuring Diameter Sh Client Nodes and Relay Agents" in Configuring Network
Resources for full instructions on setting up Diameter support.

12.3 Overview of the Profile Service API

OWLCS provides a simple profile service API that SIP Servlets can use to query or
modify subscriber profile data, or to manage subscriptions for receiving notifications
about changed profile data. Using the API, a SIP Servlet explicitly requests user profile
documents through the Sh provider application. The provider returns an XML
document, and the Servlet can then use standard DOM techniques to read or modify
profile data in the local document. Updates to the local document are applied to the
HSS after a "put" operation.

12.4 Creating a Document Selector Key for Application-Managed Profile

Data

The document selector key identifies the XML document to be retrieved by a Diameter
interface, and uses the format protocol://uri/reference_type[/access_
key]. Servlets that manage profile data can explicitly obtain an Sh XML document
from a Profile Service using a document selector key, and then work with the
document using DOM.

The protocol portion of the selector identifies the Diameter interface provider to use
for retrieving the document. Sh XML documents require the sh: // protocol
designation.

With Sh document selectors, the next element, uri, generally corresponds to the
User-Identity or Public-Identity of the user whose profile data is being retrieved. If you
are requesting an Sh data reference of type LocationInformation or UserState, the URI
value can be the User-Identity or MSISDN for the user.

12-2 Developer's Guide

{DOCROOT}/confignetwork/index.html
{DOCROOT}/confignetwork/index.html

Creating a Document Selector Key for Application-Managed Profile Data

Table 12-1 summarizes the possible URI values that can be supplied depending on the
Sh data reference you are requesting. 3GPP TS 29.328 describes the possible data
references and associated reference types in more detail.

Table 12-1 Possible URI Values for Sh Data References

Sh Data

Reference Data Reference Possible URI Value in Document

Number Type Selector

0 RepositoryData User-Identity or Public-Identity

10 IMSPublicldentity

11 IMSUserState

12 S-CSCFName

13 InitialFilterCriteria

14 LocationInformation User-Identity or MSISDN

15 UserState

17 Charging User-Identity or Public-Identity
information

17 MSISDN

The final element of the document selector key, reference_type, specifies the data
reference type being requested. For some data reference requests, only the uri and
reference_type are required. Other Sh requests use an access key, which requires a
third element in the document selector key corresponding to the value of the
Attribute-Value Pair (AVP) defined in the document selector key.

Table 12-1 summarizes the required document selector key elements for each type of
Sh data reference request.

Table 12-2 Summary of Document Selector Elements for Sh Data Reference Requests

Data Reference

Required Document

Type Selector Elements Example Document Selector
RepositoryData sh:/ /uri/reference_ sh:/ /sip:user@oracle.com/RepositoryData/Call
type/Service-Indication Screening/
IMSPublicldentity sh://uri/reference_ sh:/ /sip:user@oracle.com /IMSPublicldentity /Reg
type/[Identity-Set] istered-Identities
where Identity-Set is one of:
= All-Identities
= Registered-Identities
= Implicit-Identities
IMSUserState sh:/ /uri/reference_type sh:/ /sip:user@oracle.com /IMSUserState /
S-CSCFName sh:/ /uri/reference_type sh:/ /sip:user@oracle.com/S-CSCFName/
InitialFilterCriteria sh://uri/reference_ sh:/ /sip:user@oracle.com/InitialFilterCriteria/w
type/Server-Name ww.oracle.com/
LocationInformati sh://uri/reference_ sh:/ /sip:user@oracle.com/LocationInformation/C
on type/(CS-Domain | S-Domain/
PS-Domain)

Using the Profile Service APl 12-3

Using a Constructed Document Key to Manage Profile Data

Table 12-2 (Cont.) Summary of Document Selector Elements for Sh Data Reference Requests

Data Reference

Required Document

Type Selector Elements Example Document Selector
UserState sh:/ /uri/reference_ sh:/ /sip:user@oracle.com /UserState /PS-Domain/
type/(CS-Domain |
PS-Domain)
Charging sh:/ /uri/reference_type sh:/ /sip:user@oracle.com/Charging information/
information
MSISDN sh:/ /uri/reference_type sh:/ /sip:user@oracle.com /MSISDN/

12.5 Using a Constructed Document Key to Manage Profile Data

OWLCS provides a helper class, com.bea.wcp.profile.ProfileService, to help
you easily retrieve a profile data document. The getDocument () method takes a
constructed document key, and returns a read-only org.w3c.dom. Document object.
To modify the document, you make and edit a copy, then send the modified document
and key as arguments to the putDocument () method.

Note: If Diameter Sh client node services are not available on the
OWLCS instance when getDocument() the profile service throws a
"No registered provider for protocol” exception.

OWLCS caches the documents returned from the profile service for the duration of the
service method invocation (for example, when a doRequest () method is invoked). If
the service method requests the same profile document multiple times, the subsequent
requests are served from the cache rather than by re-querying the HSS.

Example 12-1 shows a sample SIP Servlet that obtains and modifies profile data.

Example 12-1 Sample Servlet Using ProfileService to Retrieve and Write User Profile
Data

package demo;
import com.bea.wcp.profile.*;
import javax.servlet.sip.SipServletRequest;
import javax.servlet.sip.SipServlet;
import org.w3c.dom.Document;
import java.io.IOException;
public class MyServlet extends SipServlet {
private ProfileService psvc;
public void init() {
psvc = (ProfileService)
getServletContext () .getAttribute (ProfileService.PROFILE_SERVICE) ;
}
protected void doInvite(SipServletRequest req) throws IOException {
String docSel = "sh://" + reg.getTo() + "/IMSUserState/";
// Obtain and change a profile document.
Document doc = psvc.getDocument (docSel); // Document is read only.
Document docCopy = (Document) doc.cloneNode (true);
// Modify the copy using DOM.
psvc.putDocument (docSel, docCopy); // Apply the changes.

12-4 Developer's Guide

Monitoring Profile Data with ProfileListener

12.6 Monitoring Profile Data with ProfileListener

The IMS Sh interface enables applications to receive automatic notifications when a
subscriber's profile data changes. OWLCS provides an easy-to-use API for managing
profile data subscriptions. A SIP Servlet registers to receive notifications by
implementing the com.bea.wcp.profile.ProfileListener interface, which
consists of a single update method that is automatically invoked when a change
occurs to profile to which the Servlet is subscribed. Notifications are not sent if that
same Servlet modifies the profile information (for example, if a user modifies their
own profile data).

Note: In a replicated environment, Diameter relay nodes always
attempt to push notifications directly to the engine tier server that
subscribed for profile updates. If that engine tier server is unavailable,
another server in the engine tier cluster is chosen to receive the
notification. This model succeeds because session information is
stored in the SIP data tier, rather than the engine tier.

12.6.1 Prerequisites for Listener Implementations

In order to receive a call back for subscribed profile data, a SIP Servlet must do the
following:

s Implement com.bea.wcp.profile.ProfileListener.

» Create one or more subscriptions using the subscribe method in the
com.bea.wcp.profile.ProfileService helper class.

= Register itself as a listener using the 1istener elementin sip.xml.

"Implementing ProfileListener" describes how to implement ProfileListener and
use the susbscribe method. In addition to having a valid listener implementation,
the Servlet must declare itself as a listener in the sip.xml deployment descriptor file.
For example, it must add a 1istener element declaration similar to:

<listener>
<lisener-class>com.mycompany.MyLisenerServlet</listener-class>
</listener>

12.6.2 Implementing ProfileListener

Actual subscriptions are managed using the subscribe method of the
com.bea.wcp.profile.ProfileService helper class. The subscribe method
requires that you supply the current SipApplicationSession and the key for the
profile data document you want to monitor. See "Creating a Document Selector Key
for Application-Managed Profile Data".

Applications can cancel subscriptions by calling
ProfileSubscription.cancel (). Also, pending subscriptions for an application
are automatically cancelled if the application session is terminated.

Example 12-2 shows sample code for a Servlet that implements the
ProfileListener interface

Example 12-2 Sample Serviet Inplementing ProfileListener Interface

package demo;
import com.bea.wcp.profile.*;
import javax.servlet.sip.SipServletRequest;

Using the Profile Service APl 12-5

Monitoring Profile Data with ProfileListener

import javax.servlet.sip.SipServlet;
import org.w3c.dom.Document;
import java.io.IOException;
public class MyServlet extends SipServlet implements ProfileListener ({
private ProfileService psvc;
public void init() {
psvc = (ProfileService)
getServletContext () .getAttribute (ProfileService.PROFILE_SERVICE) ;
}
protected void doInvite(SipServletRequest req) throws IOException {
String docSel = "sh://" + reg.getTo() + "/IMSUserState/";
// Subscribe to profile data.
psvc.subscribe (req.getApplicationSession(), docSel, null);

public void update(ProfileSubscription ps, Document document) {
System.out.println("IMSUserState updated: " + ps.getDocumentSelector());

12-6 Developer's Guide

13

Developing Custom Profile Service Providers

This chapter describes how to use the Profile Service API to develop custom profile
rovider, in the following sections:

s Section 13.1, "Overview of the Profile Service API"
= Section 13.2, "Implementing Profile Service API Methods"
= Section 13.3, "Configuring and Packaging Profile Providers"

= Section 13.4, "Configuring Profile Providers Using the Administration Console"

13.1 Overview of the Profile Service API

OWLCS includes a profile service API, com.bea.wcp.profile.API, that may have
multiple profile service provider implementations. A profile provider performs the
work of accessing XML documents from a data repository using a defined protocol.
Deployed SIP Servlets and other applications need not understand the underlying
protocol or the data repository in which the document is stored; they simply reference
profile data using a custom URL, and OWLCS delegates the request processing to the
correct profile provider.

The provider performs the necessary protocol operations for manipulating the
document. All providers work with documents in XML DOM format, so client code
can work with many different types of profile data in a common way.

Figure 13—-1 Profile Service API and Provider Implementation

SIP SIP SIP SIP SIP
Serviet Serviet Serviet Serviet Serviet

com.bea.wcp.profile API

5Sh ApplicationProvider

J Custom Custom

Provider Frovider
Diameter Base Protocol

Each profile provider implemented using the API may enable the following operations
against profile data:

Developing Custom Profile Service Providers 13-1

Implementing Profile Service APl Methods

s Creating new documents.

= Querying and updating existing documents.

s Deleting documents.

» Managing subscriptions for receiving notifications of profile document changes.

Clients that want to use a profile provider obtain a profile service instance through a
Servlet context attribute. They then construct an appropriate URL and use that URL
with one of the available Profile Service API methods to work with profile data. The
contents of the URL, combined with the configuration of profile providers, determines
the provider implementation that OWLCS to process the client's requests.

The sections that follow describe how to implement the profile service API interfaces
in a custom profile provider.

13.2 Implementing Profile Service APl Methods

A custom profile providers is implemented as a shared Java EE library (typically a
simple JAR file) deployed to the engine tier cluster. The provider JAR file must
include, at minimum, a class that implements
com.bea.wcp.profile.ProfileServiceSpi. This interface inherits methods
from com.bea.wcp.profile.ProfileService and defines new methods that are
called during provider registration and unregistration.

In addition to the provider implementation, you must implement the
com.bea.wcp.profile.ProfileSubscription interface if your provider
supports subscription-based notification of profile data updates. A
ProfileSubscription is returned to the client subscriber when the profile
document is modified.

The Oracle Fusion Middleware WebLogic Communication Services API Reference
describes each method of the profile service API in detail. Also keep in mind the
following notes and best practices when implementing the profile service interfaces:

s The putDocument, getDocument, and deleteDocument methods each have
two distinct method signatures. The basic version of a method passes only the
document selector on which to operate. The alternate method signature also
passes the address of the sender of the request for protocols that require explicit
information about the requestor.

» The subscribe method has multiple method signatures to allow passing the
sender's address, as well as for supporting time-based subscriptions.

= If you do not want to implement a method in
com.bea.wcp.profile.ProfileServiceSpi, include a "no-op" method
implementation that throws the OperationNotSupportedException.

com.bea.wcp.profile.ProfileServiceSpi defines provider methods that are
called during registration and unregistration. Providers can create connections to data
stores or perform any required initializing in the register method. The register
method also supplies a ProviderBean instance, which includes any context
parameters configured in the provider's configuration elements in profile.xml.

Providers must release any backing store connections, and clean up any state that they
maintain, in the unregister method.

13-2 Developer's Guide

{DOCROOT}/javadoc/com/bea/wcp/profile/OperationNotSupportedException.html

Configuring and Packaging Profile Providers

13.3 Configuring and Packaging Profile Providers

Providers must be deployed as a shared Java EE library, because all other deployed
applications must be able to access the implementation.

See "Creating Shared Java EE Libraries and Optional Packages". For most profile
providers, you can simply package the implementation classes in a JAR file. Then
register the library with OWLCS using the instructions in See "Deploying Shared Java
EE Libraries and Dependent Applications".

After installing the provider as a library, you must also identify the provider class as a
provider in a profile.xml file. The name element uniquely identifies a provider
configuration, and the class element identifies the Java class that implements the
profile service API interfaces. One or more context parameters can also be defined for
the provider, which are delivered to the implementation class in the register
method. For example, context parameters might be used to identify backing stores to
use for retrieving profile data.

Example 13-1 shows a sample configuration for a provider that accesses data using
XCAP.

Example 13-1 Provider Mapping in profile.xml

<profile-service xmlns="http://www.bea.com/ns/wlcp/wlss/profile/300"
xmlns:sec="http://www.bea.com/ns/weblogic/90/security"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema=instance"
xmlns:wls="http;//www.bea.com/ns/weblogic/90/security/wls">
<mapping>
<map-by>provider-name</map-by>
</mapping>
<provider>
<name>xcap</name>
<provider-class>com.mycompany.profile.XcapProfileProvider</provider-class>
<param>
<name>server</name>
<value>example.com</name>
</param>

</provider>
</profile-service>

13.3.1 Mapping Profile Requests to Profile Providers

When an application makes a request using the Profile Service API, OWLCS must find
a corresponding provider to process the request. By default, OWLCS maps the prefix
of the requested URL to a provider name element defined in profile.xml. For
example, with the basic configuration shown in Example 13-1, OWLCS would map
Profile Service API requests beginning with xcap: // to the provider class
com.mycompany.profile. XcapProfileProvider.

Alternately, you can define a mapping entry in profile.xml that lists the prefixes
corresponding to each named provider. Example 13-2 shows a mapping with two
alternate prefixes.

Example 13-2 Mapping a Provider to Multiple Prefixes
<mapping>
<map-by>prefix</map-by>
<provider>

Developing Custom Profile Service Providers 13-3

Configuring Profile Providers Using the Administration Console

<provider-name>xcap</provider-name>
<doc-prefix>sip</doc-prefix>
<doc-prefix>subscribe</doc-prefix>
</provider>
<by-prefix>
<mapping>

If the explicit mapping capabilities of profile.xml are insufficient, you can create a
custom mapping class that implements the com.bea.wcp.profile.ProfileRouter
interface, and then identify that class in the map-by-router element. Example 13-3
shows an example configuration.

Example 13-3 Using a Custom Mapping Class

<mapping>
<map-by-router>
<class>com.bea.wcp.profile.ExampleRouter</class>
</map-by-router>
</mapping>

13.4 Configuring Profile Providers Using the Administration Console

You can optionally use the Administration Console to create or modify a
profile.xml file. To do so, you must enable the profile provider console extension in
the config.xml file for your domain.

Example 13-4 Enabling the Profile Service Resource in config.xml

<custom-resource>
<name>ProfileService</name>
<target>AdminServer</target>
<descriptor-file-name>custom/profile.xml</descriptor-file-name>

<resource-class>com.bea.wcp.profile.descriptor.resource.ProfileServiceResource</re
source-class>

<descriptor-bean-class>com.bea.wcp.profile.descriptor.beans.ProfileServiceBean</de
scriptor-bean-class>

</custom-resource>
</domain>

The profile provider extension appears under the SipServer node in the left pane of the
console, and enables you to configure new provider classes and mapping behavior.

13-4 Developer's Guide

{DOCROOT}/javadoc/com/bea/wcp/profile/ProfileRouter.html

14

Using the Diameter Rf Interface API for
Offline Charging

The following chapter describes how to use the Diameter Rf interface API, based on
the OWLCS Diameter protocol implementation, in your own applications, and
contains the following sections:

= Section 14.1, "Overview of Rf Interface Support"

= Section 14.2, "Understanding Offline Charging Events"
= Section 14.3, "Configuring the Rf Application"

= Section 14.4, "Using the Offline Charging API"

14.1 Overview of Rf Interface Support

Offline charging is used for network services that are paid for periodically. For
example, a user may have a subscription for voice calls that is paid monthly. The Rf
protocol allows an IMS Charging Trigger Function (CTF) to issue offline charging
events to a Charging Data Function (CDF). The charging events can either be one-time
events or may be session-based.

OWLCS provides a Diameter Offline Charging Application that can be used by
deployed applications to generate charging events based on the Rf protocol. The
offline charging application uses the base Diameter protocol implementation, and
allows any application deployed on OWLCS to act as CTF to a configured CDE.

For basic information about offline charging, see RFC 3588: Diameter Base Protocol
(http://www.ietf.org/rfc/rfc3588. txt). For more information about the Rf
protocol, see 3GPP TS 32.299
(http://www.3gpp.org/ftp/Specs/html-info/32299.htm).

14.2 Understanding Offline Charging Events

For both event and session based charging, the CTF implements the accounting state
machine described in RFC 3588. The server (CDF) implements the accounting state
machine "SERVER, STATELESS ACCOUNTING" as specified in RFC 3588.

The reporting of offline charging events to the CDF is managed through the Diameter
Accounting Request (ACR) message. Rf supports the ACR event types described in
Table 14-1.

Using the Diameter Rf Interface API for Offline Charging 14-1

Understanding Offline Charging Events

Table 14-1 Rf ACR Event Types

Request Description

START Starts an accounting session.
INTERIM Updates an accounting session.

STOP Stops an accounting session

EVENT Indicates a one-time accounting event.

The START, INTERIM, and STOP event types are used for session-based accounting.
The EVENT type is used for event based accounting, or to indicate a failed attempt to
establish a session.

14.2.1 Event-Based Charging

Event-based charging events are reported through the ACR EVENT message.
Example 14-1 shows the basic message flow.

Example 14-1 Message Flow for Event-Based Charging
WLSS) CDF (Server)

(
|
| --- ACR (EVENT) --> |
| |
| (Process accounting request)
|
|
|

<-- ACA (EVENT) --- |

14.2.2 Session-Based Charging

Session-based charging uses the ACR START, INTERIM, and STOP requests to report
usage to the CDF. During a session, the CTF may report multiple ACR INTERIM
requests depending on the session lifecycle. Example 14-2 shows the basic message
flow

Example 14-2 Message Flow for Session-Based Charging
CTF (WLSS) CDF (Server)

--- ACR (START) ----> ‘

|

|

|

| (Open CDR)
|

| <-- ACA (START) ----- |

|

--- ACR (INTERIM) --> |

|
|
| (Update CDR)
|
|

\
<-- ACA (INTERIM) --- |
| --- ACR (STOP) ----- > |
| |
| (Close CDR)
|

14-2 Developer's Guide

Using the Offline Charging API

| <-- ACA (STOP) ------ |

| |
Here, ACA START is sent a receipt of a service request by OWLCS. ACA INTERIM is
typically sent upon expiration of the All timer. ACA STOP is issued upon request for
service termination by OWLCS.

14.3 Configuring the Rf Application

The Rf APl is packaged as a Diameter application similar to the Sh application used
for managing profile data. The Rf Diameter API can be configured and enabled by
editing the Diameter configuration file located in DOMAIN_
ROOT/config/custom/diameter.xml, or by using the Diameter console extension.
Additionally, configuration of both the CDF realm and host can be specified using the
cdf.realm and cdf host initialization parameters to the Diameter Rf application.

Example 14-3 shows a sample excerpt from diameter.xml that enables Rf with a
CDF realm of "oracle.com" and host "cdf.oracle.com:"

Example 14-3 Sample Rf Application Configuration (diameter.xml)

<application>
<application-id>3</application-id>
<accounting>true</accounting>
<class-name>com.bea.wcp.diameter.charging.RfApplication</class-name>
<param>
<name>cdf.realm</name>
<value>oracle.com</value>
</param>
<param>
<name>cdf.host</name>
<value>cdf.oracle.com</value>
</param>
</application>
Because the RfApplication uses the Diameter base accounting messages, its
Diameter application id is 3 and there is no vendor ID.

14.4 Using the Offline Charging API

OWLCS provides an offline charging API to enable any deployed application to act as
a CTF and issue offline charging events. This API supports both event-based and
session-based charging events.

The classes in package com.bea.wcp.diameter.accounting provide general
support for Diameter accounting messages and sessions. Table 14-2 summarizes the
classes.

Table 14-2 Diameter Accounting Classes

Class Description
ACR An Accounting-Request message.
ACA An Accounting-Answer message.

ClientSession A Client-based accounting session.

RecordType Accounting record type constants.

In addition, classes in package com.bea.wcp.diameter.charging support the Rf
application specifically. Table 14-3 summarizes the classes.

Using the Diameter Rf Interface API for Offline Charging 14-3

Using the Offline Charging API

Table 14-3 Diameter Rf Application Support Classes

Charging Common definitions for 3GPP charging functions

RfApplication Offline charging application

RfSession Offline charging session

The RfApplication class can be used to directly send ACR requests for event-based
charging. The application also has the option of directly modifying the ACR request
before it is sent out. This is necessary in order for an application to add any custom
AVPs to the request.

In particular, an application must set the Service-Information AVP it carries the
service-specific parameters for the CDF. The Service-Information AVP of the ACR
request is used to send the application-specific charging service information from the
CTF (WLSS) to the CDF (Charging Server). This is a grouped AVP whose value
depends on the application and its charging function. The Offline Charging API allows
the application to set this information on the request before it is sent out.

For session-based accounting, the RfApplication class can also be used to create
new accounting sessions for generating session-based charging events. Each
accounting session is represented by an instance of Rf Session, which encapsulates
the accounting state machine for the session.

14.4.1 Accessing the Rf Application

If the Rf application is deployed, then applications deployed on OWLCS can obtain an
instance of the application from the Diameter node (com.bea.wcp.diameter.Node
class). Example 14—4 shows the sample Servlet code used to obtain the Diameter Node
and access the Rf application.

Example 14-4 Accessing the Rf Application

ServletContext sc = getServletConfig().getServletContext();

Node node = sc.getAttribute("com.bea.wcp.diameter.Node");

RfApplication rfApp = (RfApplication) node.getApplication(Charging.RF_APPLICATION_
ID);

Applications can safely use a single instance of REApplication to issue offline
charging requests concurrently, in multiple threads. Each instance of RESession
actually holds the per-session state unique to each call.

14.4.2 Implementing Session-Based Charging

For session-based charging requests, an application first uses the RfApplication to
create an instance of Rf Session. The application can then use the session object to
create one or more charging requests.

The first charging request must be an ACR START request, followed by zero or more
ACR INTERIM requests. The session ends with an ACR STOP request. Upon receipt of
the corresponding ACA STOP message, the RfApplication automatically
terminates the RESession.

Example 14-5 shows the sample code used to start a new session-based accounting
session.

Example 14-5 Starting a Session-Based Account Session

RfSession session = rfApp.createSession();

14-4 Developer's Guide

Using the Offline Charging API

sipRequest.getApplicationSession() .setAttribute("RfSession", session);
ACR acr = session.createACR (RecordType.START) ;
acr.addAvp (Charging.SERVICE_INFORMATION, ...);
ACA aca = acr.sendAndWait (1000);
if (!aca.getResultCode().isSuccess()) {
. error ...

}

In Example 14-5, the RESession is stored as a SIP application session attribute so that
it can be used to send additional accounting requests as the call progresses.
Example 14-6 shows how to send an INTERIM request.

Example 14-6 Sending an INTERIM request

RfSession session = (RfSession)
reqg.getApplicationSession() .getAttribute("RfSession");
ACR acr = session.createACR(RecordType.INTERIM) ;
ACA aca = acr.sendAndWait (1000);
if (!aca.getResultCode().isSuccess()) {
. error ...

}

An application may want to send one or more ACR INTERIM requests while a call is
in progress. The frequency of ACR INTERIM requests is usually based on the
Acct-Interim-Interval AVP value in the ACA START message sent by the CDEF. For this
reason, an application timer must be used to send ACR INTERIM requests at the
requested interval. See 3GPP TS 32.299 for more details about interim requests.

14.4.2.1 Specifying the Session Expiration

The Acct-Interim-Interval (All) timer value is used to indicate the expiration time of an
Rf accounting session. It is specified when ACR START is sent to the CDF to initiate
the accounting session. The CDF responds with its own All value, which must be used
by the CTF to start a timer upon whose expiration an ACR INTERIM message must be
sent. This INTERIM message informs the CDF that the session is still in use.
Otherwise, the CDF terminates the session automatically.

It is the application's responsibility to send ACR INTERIM messages, because these are
used to send updated Service-Information data to the CDF. Oracle recommends
creating a ServletTimer that is set to expire according to the AIl value. When the timer
expires, the application must send an ACR INTERIM message with the updated
service information data.

14.4.2.2 Sending Asynchronous Events

Applications generally use the synchronous sendAndwait () method. However, if
latency is critical, an asynchronous API is provided wherein the application Servlet is
asynchronously notified when an answer message is received from the CDF. To use the
asynchronous API, an application first registers an instance of SessionListener in
order to asynchronously receive messages delivered to the session, as shown in
Example 14-7.

Example 14-7 Registering a SessionListener

RfSession session = rfApp.createSession();
session.setAttribute("SAS", sipReq.getApplicationSession());
session.setListener (this);

Using the Diameter Rf Interface API for Offline Charging 14-5

Using the Offline Charging API

Attributes can be stored in an Rf Session instance similar to the way SIP application
session attributes are stored. In the above example, the associated SIP application was
stored as an RfSession so that it is available to the listener callback.

When a Diameter request or answer message is received from the CDF, the application
Servlet is notified by calling the rcvMessage (Message msg) method. The
associated SIP application session can then be retrieved from the Rf Session if it was
stored as a session attribute, as shown in Example 14-8.

Example 14-8 Retrieving the RfSession after a Notification

public void rcvMessage (Message msg) {
if (msg.getCommand() != Command.ACA) {
if (msg.isRequest()) {
((Request) msg) .createAnswer (ResultCode.UNABLE_TO_COMPLY, "Unexpected
request") .send() ;
}

return;
}
ACA aca = (ACA) msg;
RfSession session = (RfSession) aca.getSession();
SipApplicationSession appSession = (SipApplicationSession)
session.getAttribute("SAS") ;

}

14.4.3 Implementing Event-Based Charging

For an event-based charging request, the charging request is a one-time event and the
session is automatically terminated upon receipt of the corresponding EVENT ACA
message. The sendAndwait (long timeout) method can be used to synchronously
send the EVENT request and block the thread until a response has been received from
the CDF. Example 14-9 shows an example that uses an Rf Session for sending an
event-based charging request.

Example 14-9 Event-Based Charging Using RfSession

RfSession session = rfApp.createSession();
ACR acr = session.createACR (RecordType.EVENT) ;
acr.addAvp (Charging.SERVICE_INFORMATION, ...);
ACA aca = acr.sendAndWait (1000);
if (!aca.getResultCode().isSuccess()) {

. send error response ...

}

For convenience, it is also possible send event-based charging requests using the
RfApplication directly, as shown in Example 14-10.

Example 14-10 Event-Based Charging Using RfApplication

ACR acr = rfApp.createEventACR() ;
acr.addAvp (Charging.SERVICE_INFORMATION, ...);
ACA aca = acr.sendAndWait (1000);

Internally, the RfApplication creates an instance of RESession associated with the
ACR request, so this method is equivalent to creating the session explicitly.

For both session and event based accounting, the RE Session class automatically
handles creating session IDs, as well as updating the Accounting-Record-Number AVP
used to sequence messages within the same accounting session.

14-6 Developer's Guide

Using the Offline Charging API

In the above cases the applications waits for up to 1000 ms to receive an answer from
the CDF. If no answer is received within that time, the Diameter core delivers an
UNABLE_TO_COMPLY error response to the application, and cancels the request. If
no timeout is specified with sendAndwait (), then the default request timeout of 30
seconds is used. This default value can be configured using the Diameter console
extension.

14.4.4 Using the Accounting Session State

The accounting session state for offline charging is serializable, so it can be stored as a
SIP application session attribute. Because the client APIs are synchronous, it is not
necessary to maintain any state for the accounting session once the Servlet has finished
handling the call.

For event-based charging events it is not necessary for the application to maintain any
accounting session state because it is only used internally, and is disposed once the
ACA response has been received.

Using the Diameter Rf Interface API for Offline Charging 14-7

Using the Offline Charging API

14-8 Developer's Guide

15

Using the Diameter Ro Interface API for
Online Charging

The following chapter describes how to use the Diameter Ro interface API, based on
the OWLCS Diameter protocol implementation, in your own applications, and
contains the following sections:

= Section 15.1, "Overview of Ro Interface Support"

= Section 15.2, "Understanding Credit Authorization Models"
= Section 15.3, "Configuring the Ro Application”

= Section 15.4, "Overview of the Online Charging API"

= Section 15.6, "Implementing Session-Based Charging"

= Section 15.7, "Sending Credit-Control-Request Messages"

= Section 15.8, "Handling Failures"

15.1 Overview of Ro Interface Support

Online charging, also known as credit-based charging, is used to charge prepaid
services. A typical example of a prepaid service is a calling card purchased for voice or
video. The Ro protocol allows a Charging Trigger Function (CTF) to issue charging
events to an Online Charging Function (OCF). The charging events can be immediate,
event-based, or session-based.

OWLCS provides a Diameter Online Charging Application that deployed applications
can use to generate charging events based on the Ro protocol. This enables deployed
applications to act as CTF to a configured OCF. The Diameter Online Charging
Application uses the base Diameter protocol that underpins both the Rf and Sh
applications.

The Diameter Online Charging Application is based on IETF RFC 4006: Diameter
Credit Control Application (http://www.ietf.org/rfc/rfcd006.txt).
However, the application supports only a subset of the RFC 4006 required for
compliance with 3GPP TS 32.299: Telecommunication management; Charging
management; Diameter charging applications
(http://www.3gpp.org/ftp/Specs/html-info/32299 .htm). Specifically, the
OWLCS Diameter Online Charging Application provides no direct support for
service-specific Attribute-Value Pairs (AVPs), but the API that is provided is flexible
enough to allow applications to include custom service-specific AVPs in any credit
control request.

Using the Diameter Ro Interface API for Online Charging 15-1

Understanding Credit Authorization Models

15.2 Understanding Credit Authorization Models

RFC 4006 defines two basic types of credit authorization models:
s Credit authorization with unit reservation, and
» Credit authorization with direct debiting.

Credit authorization with unit reservation can be performed with either event-based
or session-based charging events. Credit authorization with direct debiting uses
immediate charging events. In both models, the CTF requests credit authorization
from the OCF prior to delivering services to the end user. In both models

The sections that follow describe each model in more detail.

15.2.1 Credit Authorization with Unit Determination

RFC 4006 defines both Event Charging with Unit Reservation (ECUR) and Session
Charging with Unit Reservation (SCUR). Both charging events are session-based, and
require multiple transactions between the CTF and OCF. ECUR begins with an
interrogation to reserve units before delivering services, followed by an additional
interrogation to report the actual used units to the OCF upon service termination. With
SCUR, it is also possible to include one or more intermediate interrogations for the
CTF in order to report currently-used units, and to reserve additional units if required.
In both cases, the session state is maintained in both the CTF and OCF.

For both ECUR and SCUR, the online charging client implements the "CLIENT,
SESSION BASED" state machine described in RFC 4006.

15.2.2 Credit Authorization with Direct Debiting

For direct debiting, Immediate Event Charging (IEC) is used. With IEC, a single
transaction is created where the OCF deducts a specific amount from the user's
account immediately after completing the credit authorization. After receiving the
authorization, the CTF delivers services. This form of credit authorization is a one-time
event in which no session state is maintained.

With IEC, the online charging client implements the "CLIENT, EVENT BASED" state
machine described in IETF RFC 4006.

15.2.3 Determining Units and Rating

Unit determination refers to calculating the number of non-monetary units (service
units, time, events) that can be assigned prior to delivering services. Unit rating refers
to determining a price based on the non-monetary units calculated by the unit
determination function.

It is possible for either the OCF or the CTF to handle unit determination and unit
rating. The decision lies with the client application, which controls the selection of
AVPs in the credit control request sent to the OCE.

15.3 Configuring the Ro Application

The RoApplication is packaged as a Diameter application similar to the Sh
application used for managing profile data. The Ro Diameter application can be
configured and enabled by editing the Diameter configuration file located in DOMAIN_
ROOT/config/custom/diameter.xml, or by using the Diameter console extension.

15-2 Developer's Guide

Overview of the Online Charging AP

The application init parameter ocs . host specifies the host identity of the OCFE. The
OCF host must also be configured in the peer table as part of the global Diameter
configuration. Alternately, the init parameter ocs . realm can be used to specify more
than one OCF host using realm-based routing. The corresponding realm definition
must also exist in the global Diameter configuration.

Example 15-1 shows a sample excerpt from diameter.xml that enables Ro with an
OCF host name of "myocs.oracle.com.”

Example 15-1 Sample Ro Application Configuration (diameter.xml)

<application>
<application-id>4</application-id>
<class-name>com.bea.wcp.diameter.charging.RoApplication</class-name>
<param>
<name>ocs.host</name>
<value>myocs.oracle.com</value>
</param>
</application>

Because the RoApplication is based on the Diameter Credit Control Application, its
Diameter application id is 4.

15.4 Overview of the Online Charging API

OWLCS provides an online charging API to enable any deployed application to act as
a CTF and issue online charging events to an OCS through the Ro protocol. All online
charging requests use the Diameter Credit-Control-Request (CCR) message. The
CC-Request-Type AVP is used to indicate the type of charging used. In the charging
API, the CC-Request-Type is represented by the RequestType class in package
com.bea.wcp.diameter. cc. Table 15-1 shows the request types associated with
different credit authorization models.

Table 15-1 Credit Control Request Types

Type Description RequestType Field in
com.bea.wcp.diameter.cc.RequestType
IEC Immediate Event Charging EVENT_REQUEST
ECUR Event Charging with Unit INITIAL or TERMINATION_REQUEST
Reservation
SCUR Session Charging with Unit INITIAL, UPDATE, or TERMINATION_
Reservation REQUEST

For ECUR and SCUR, units are reserved prior to service delivery and committed upon
service completion. Units are reserved with INITIAL_REQUEST and committed with
a TERMINATION_REQUEST. For SCUR, units can also be updated with UPDATE_
REQUEST.

The base diameter package, com.bea .wcp .diameter, contains classes to support the
re-authorization requests used in Ro. The com.bea.wcp.diameter . cc package
contains classes to support credit-control applications, including Ro applications.
com.bea.wcp.diameter.charging directly supports the Ro credit-control
application. Table 15-2 summarizes the classes of interest to Ro credit-control.

Using the Diameter Ro Interface API for Online Charging 15-3

Accessing the Ro Application

Table 15-2 Summary of Ro Classes

Class Description Package

Charging Constant definitions com.bea.wcp.diameter.charging

RoApplication Online charging com.bea.wcp.diameter.charging
application

RoSession Online charging session com.bea.wcp.diameter.charging

CCR Credit Control Request com.bea.wcp.diameter.cc

cca Credit Control Answer com.bea.wcp.diameter.cc

ClientSession Credit control client com.bea.wcp.diameter.cc
session

RequestType Credit-control request com.bea.wcp.diameter.cc
type

RAR Re-Auth-Request message com.bea.wcp.diameter

RAA Re-Auth-Answer message com.bea.wcp.diameter

15.5 Accessing the Ro Application

If the Ro application is deployed, then applications deployed on OWLCS can obtain an
instance of the application from the Diameter node (com.bea.wcp.diameter.Node
class). Example 15-2 shows the sample Servlet code used to obtain the Diameter Node
and access the Ro application.

Example 15-2 Accessing the Ro Application
private RoApplication roApp;
void init(ServletConfig conf) {
ServletContext ctx = conf.getServletContext();
Node node = (Node) ctx.getParameter ("com.bea.wcp.diameter.Node");
roApp = node.getApplication(Charging.RO_APPLICATION_ID) ;
}

This code example would make RoApplication available to the Servlet as an
instance variable. The instance of RoApplication is safe for use by multiple
concurrent threads.

15.6 Implementing Session-Based Charging

The RoApplication can be used to create new sessions for session-based credit
authorization. The RoSession class implements the appropriate state machine
depending on the credit control type, either ECUR (Event-Based Charging with Unit
Reservation) or SCUR (Session-based Charging with Unit Reservation). The
RoSession class is also serializable, so it can be stored as a SIP session attribute. This
allows the session to be restored when necessary to terminate the session or update
credit authorization.

The example in Example 15-3 creates a new RoSession for event-based charging,
and sends a CCR request to start the first interrogation. The RoSession instance is
saved so that it can be terminated later, after the service has finished.

Note that the RoSession class automatically handles creating session IDs; the
application is not required to set the session ID.

15-4 Developer's Guide

Implementing Session-Based Charging

Example 15-3 Creating and Using a RoSession

RoSession session = roApp.createSession();

CCR ccr = session.createCCR(RequestType.INITIAL);
CCA cca = ccr.sendAndWait () ;
sipAppSession.setAttribute ("RoSession", session);

15.6.1 Handling Re-Auth-Request Messages

The OCS may initiate credit re-authorization by issuing a Re-Auth-Request (RAR) to
the CTE. The application can register a session listener for handling this type of
request. Upon receiving a RAR, the Diameter subsystem invoke the session listener on
the applications corresponding RoSession object. The application must then respond
to the OCS with an appropriate RAA message and initiate credit re-authorization to
the CTF by sending a CCR with the CC-Request-Type AVP set to the value UPDATE_
REQUEST, as described in section 5.5 of RFC 4006
(http://www.ietf.org/rfc/rfcd006.txt).

A session listener must implement the SessionListener interface and be
serializable, or it must be an instance of SipServlet. A Servlet can register a listener
as follows:

RoSession session = roApp.createSession();
session.addListener (new SessionListener() {
public void rcvMessage (Message msg) {
System.out.println("Got message: id = " msg.getSession().getId());
}
i

Example 154 shows sample rcvMessage () code for processing a Re-Auth-Request.

Example 15-4 Managing a Re-Auth-Request

RoSession session = roApp.createSession();
session.addListener (new SessionListener() {
public void rcvMessage (Message msg) {
Request req = (Request)msg;
if (req.getCommand() != Command.RE_AUTH_REQUEST) return;
RoSession session = (RoSession) req.getSession();
Answer ans = req.createAnswer();
ans.setResultCode (ResultCode.LIMITED_SUCCESS); // Per RFC 4006 5.5
ans.send() ;
CCR ccr = session.createCCR(Ro.UPDATE_REQUEST) ;
. // Set CCR AVPs according to requested credit re-authorization
ccr.send() ;
CCA cca = (CCA) ccr.waltForAnswer();

}

In Example 154, upon receiving the Re-Auth-Request the application sends an RAA
with the result code DIAMETER_LIMITED_SUCCESS to indicate to the OCS that an
additional CCR request is required in order to complete the procedure. The CCR is
then sent to initiate credit re-authorization.

Note: Because the Diameter subsystem locks the call state before
delivering the request to the corresponding RoSession, the call state
remains locked while the handler processes the request.

Using the Diameter Ro Interface API for Online Charging 15-5

Sending Credit-Control-Request Messages

15.7 Sending Credit-Control-Request Messages

The CCR class represents a Diameter Credit-Control-Request message, and can be
used to send credit control requests to the OCF. For both ECUR (Event-Based Charging
with Unit Reservation) and SCUR (Session-Based Charging with Unit Reservation), an
instance of RoSession is used to create new CCR requests. You can also use
RoApplication directly to create CCR messages for IEC (Immediate Event
Charging). Example 15-5 shows an example of how to create and send a CCR.

Example 15-5 Creating and Sending a CCR

CCR ccr = session.createCCR(RequestType.INITIAL);

ccr.setServiceContextId("sample_id");

CCA cca = ccr.sendAndwWait();
Once a CCR request is created, you can set whatever application- or service-specific
AVPs that are required before sending the request using the addAvp () method.
Because some of the same AVPs need to be included in each new request for the
session, it is also possible to set these AVPs on the session itself. Example 15-6 shows a
sample that sets:

= Subscription-Id to identify the user for the session
= Service-Identifier to indicate the service requested, and
= Requested-Service-Unit to specify the units requested.

A custom AVP is also added directly to the CCR request.

Example 15-6 Setting AVPs in the CCR

session.setSubscriptionId(...);
session.setServicelIdentifier(...);

CCR ccr = session.createCCR(RequestType.INITIAL);
ccr.setRequestedServiceUnit(...);

ccr.addAvp (CUSTOM_MESSAGE, "This is a test");
ccr.send() ;

In this case, the same Subscription-Id and Service-Identifier are added to every new
request for the session. The custom AVP "Custom-Message" is added to the message
before it is sent out.

15.8 Handling Failures

Applications can examine the Result-Code AVP in CCA error responses from the OCF
to detect the cause of a failure and take an appropriate action. Locally-generated
errors, such as an unavailable peer or invalid route specification, cause the request
send method to throw an IOException to with a detailed message indicating the
nature of the failure.

Applications can also use the Diameter Timer Tx value for determining when the OCF
fails to respond to a credit authorization request. Timer Tx has a default value of 10
seconds, but can be overridden using the tx. timer init parameter in the
RoApplication configuration. Timer Tx starts when a CCR is sent to the OCEF. The
timer resets after the corresponding CCA is received.

If Tx expires before a corresponding CCA arrives, any call to waitForAnswer
immediately returns null to indicate that the request has timed out. An application can
then take action according to the value of the Credit-Control-Failure-Handling (CCFH)
AVP in the request. See section 5.7, "Failure Procedures" in RFC 4006
(http://www.ietf.org/rfc/rfcd006.txt) for more details.

15-6 Developer's Guide

Handling Failures

Example 15-7 terminates the credit control session if timer Tx expires before receiving
the CCA. If the CCA is received later by the Diameter subsystem, the message is
ignored because the session longer exists.

Example 15-7 Checking for Timer Tx Expiry

CCR ccr = session.createCCR(RequestType.INITIAL);
ccr.setCreditControlFailureHandling (RequestType.TERMINATION) ;

cecr.send() ;
CCA cca = ccr.waitForAnswer () ;
if (cca == null) {

session.terminate();

}

Using the Diameter Ro Interface API for Online Charging 15-7

Handling Failures

15-8 Developer's Guide

Part VI

Using Oracle User Messaging Service

This part describes how to use Oracle User Messaging Service.
This part contains the following chapters:
» Chapter 16, "Oracle User Messaging Service"

s Chapter 17, "Sending and Receiving Messages using the User Messaging Service
Java API"

» Chapter 18, "Parlay X Web Services Multimedia Messaging API"
» Chapter 19, "User Messaging Preferences"

16

Oracle User Messaging Service

This chapter describes Oracle User Messaging Service (UMS).

This chapter includes the following topic:

Section 16.1, "User Messaging Service Overview"

16.1 User Messaging Service Overview

Oracle User Messaging Service enables two-way communication between users and
deployed applications. Key features include:

Support for a variety of messaging channels—Messages can be sent and received
through Email, IM (XMPP), SMS (SMPP), and Voice. Messages can also be
delivered to a user’s SOA /WebCenter Worklist.

Two-way Messaging—In addition to sending messages from applications to users
(referred to as outbound messaging), users can initiate messaging interactions
(inbound messaging). For example, a user can send an email or text message to a
specified address; the message is routed to the appropriate application which can
then respond to the user or invoke another process according to its business logic.

User Messaging Preferences—End users can use a web interface to define
preferences for how and when they receive messaging notifications. Applications
immediately become more flexible; rather than deciding whether to send to a
user’s email address or instant messaging client, the application can simply send
the message to the user, and let UMS route the message according to the user’s
preferences.

Robust Message Delivery—UMS keeps track of delivery status information
provided by messaging gateways, and makes this information available to
applications so that they can respond to a failed delivery. Or, applications can
specify one or more failover addresses for a message in case delivery to the initial
address fails. Using the failover capability of UMS frees application developers
from having to implement complicated retry logic.

Pervasive integration within Fusion Middleware: UMS is integrated with other
Fusion Middleware components providing a single consolidated bi-directional
user messaging service.

- Integration with Oracle BPEL—Oracle JDeveloper includes pre-built BPEL
activities that enable messaging operations. Developers can add messaging
capability to a SOA composite application by dragging and dropping the
desired activity into any workflow.

Oracle User Messaging Service 16-1

User Messaging Service Overview

- Integration with Oracle Human Workflow—UMS enables the Human
Workflow engine to send actionable messages to and receive replies from
users over email.

- Integration with Oracle BAM—Oracle BAM uses UMS to send email alerts in
response to monitoring events.

- Integration with Oracle WebCenter—UMS APIs are available to developers
building applications for Oracle WebCenter Spaces. The APl is a realization of
Parlay X Web Services for Multimedia Messaging, version 2.1, a standard web
service interface for rich messaging.

16.1.1 Components

There are three types of components that make up Oracle User Messaging Service.
These components are standard Java EE applications, making it easy to deploy and
manage them using the standard tools provided with Oracle WebLogic Server.

s UMS Server: The UMS Server orchestrates message flows between applications
and users. The server routes outbound messages from a client application to the
appropriate driver, and routes inbound messages to the correct client application.
The server also maintains a repository of previously sent messages in a persistent
store, and correlates delivery status information with previously sent messages.

s UMS Drivers: UMS Drivers connect UMS to the messaging gateways, adapting
content to the various protocols supported by UMS. Drivers can be deployed or
undeployed independently of one another depending on what messaging
channels are available in a given installation.

= UMS Client applications: UMS client applications implement the business logic of
sending and receiving messages. A UMS client application might be a SOA
application that sends messages as one step of a BPEL workflow, or a WebCenter
Spaces application that can send messages from a web interface.

In addition to the components that make up UMS itself, the other key entities in a
messaging environment are the external gateways required for each messaging
channel. These gateways are not a part of UMS or Oracle WebLogic Server. Since UMS
Drivers support widely-adopted messaging protocols, UMS can be integrated with
existing infrastructures such as a corporate email servers or XMPP (Jabber) servers.
Alternatively, UMS can connect to outside providers of SMS or text-to-speech services
that support SMPP or VoiceXML, respectively.

16.1.2 Architecture

The system architecture of Oracle User Messaging Service is shown in Figure 16-1.

For maximum flexibility, the components of UMS are separate Java EE applications.
This allows them to be deployed and managed independently of one another. For
example, a particular driver can be stopped and reconfigured without affecting
message delivery on all other channels.

Exchanges between UMS client applications and the UMS Server occur as
SOAP/HTTP web service requests for web service clients, or through Remote EJB and
JMS calls for BPEL messaging activities. Exchanges between the UMS Server and UMS
Drivers occur through JMS queues.

Oracle UMS server and drivers are installed alongside SOA or BAM in their respective
WebLogic Server instances. A WebCenter installation includes the necessary libraries
to act as a UMS client application, invoking a server deployed in a SOA instance.

16-2 Developer's Guide

User Messaging Service Overview

Figure 16-1 UMS architecture

WebLogic Server Weh Cenier Instance

“WebLogic Server §OA Instance

SOAEIE (Hend

SOAFHIT

Ranie ETB
A

Tser Messaging Sanrar

Oracle User Messaging Service 16-3

User Messaging Service Overview

16-4 Developer's Guide

17

Sending and Receiving Messages using the

User Messaging Service Java API

This chapter describes how to use the User Messaging Service (UMS) API to develop
applications, and describes how to build two sample applications,
usermessagingsample.ear and usermessagingsample-echo.ear. It contains the
following topics:

Section 17.1, "Overview of UMS Java API"

Section 17.2, "Creating a UMS Client Instance"

Section 17.3, "Sending a Message"

Section 17.4, "Receiving a Message"

Section 17.5, "Using the UMS EJB Client API to Build a Client Application"
Section 17.6, "Using the UMS EJB Client API to Build a Client Echo Application”

Section 17.7, "Creating a New Application Server Connection”

17.1 Overview of UMS Java API

The UMS Java API supports developing applications for E]B clients. It consists of
packages grouped as follows:

Common and Client Packages
- oracle.sdp.messaging

- oracle.sdp.messaging.filter: A MessageFilter is used by an application to
exercise greater control over what messages are delivered to it.

User Preferences Packages
- oracle.sdp.messaging.userprefs

- oracle.sdp.messaging.userprefs.tools

17.1.1 Creating a J2EE Application Module
There are two choices for a J2EE application module that uses the UMS E]B Client API:

EJB Application Module - Stateless Session Bean - This is a backend, core
message-receiving or message-sending application.

Web Application Module - This is for applications that have an HTML or Web
frontend.

Sending and Receiving Messages using the User Messaging Service Java APl 17-1

Creating a UMS Client Instance

Whichever application module is selected uses the UMS Client API to register the
application with the UMS Server and subsequently invoke operations to send or
retrieve messages, status, and register or unregister access points. For a complete list of
operations refer to the Oracle Fusion Middleware User Messaging Service API
Reference.

The samples with source code are available on Oracle Technology Network (OTN).

17.2 Creating a UMS Client Instance

This section describes the requirements for creating a UMS EJB Client. You can create a
MessagingE]BClient instance by using the code in the MessagingClientFactory class.

When creating an application using the UMS EJB Client, the application must be
packaged as an EAR file, and the usermessagingclient-ejb.jar module bundled as an
EJB module.

17.2.1 Creating a MessagingEJBClient Instance Using a Programmatic or Declarative

Approach

Example 17-1 shows code for creating a MessagingEJBClient instance using the
programmatic approach:

Example 17-1 Programmatic Approach to Creating a MessagingEJBClient Instance
ApplicationInfo appInfo = new ApplicationInfo();

appInfo.setApplicationName ("SampleApp") ;

appInfo.setApplicationInstanceName ("SampleAppInstance") ;

MessagingClient mClient =
MessagingClientFactory.createMessagingEJBClient (appInfo) ;

You can also create a MessagingE]BClient instance using a declarative approach. The
declarative approach is normally the preferred approach since it allows you to make
changes at deployment time.

You must specify all the required Application Info properties as environment entries in
your J2EE module's descriptor (ejb-jar.xml, or web.xml).

Example 17-2 shows code for creating a MessagingEJBClient instance using the
declarative approach:

Example 17-2 Declarative Approach to Creating a MessagingEJBClient Instance

MessagingClient mClient = MessagingClientFactory.createMessagingEJBClient();

17.2.2 API Reference for Class MessagingClientFactory

The API reference for class MessagingClientFactory can be accessed from the Oracle
Fusion Middleware User Messaging Service API Reference.

17.3 Sending a Message

You can create a message by using the code in the MessageFactory class and Message
interface of oracle.sdp.messaging.

The types of messages that can be created include plaintext messages, multipart
messages that can consist of text/plain and text/html parts, and messages that include

17-2 Developer's Guide

Sending a Message

the creation of delivery channel (DeliveryType) specific payloads in a single message
for recipients with different delivery types.

17.3.1 Creating a Message

This section describes the various types of messages that can be created.

17.3.1.1 Creating a Plaintext Message
Example 17-3 shows how to create a plaintext message using the UMS Java APL

Example 17-3 Creating a Plaintext Message Using the UMS Java API

Message message = MessageFactory.getInstance().createTextMessage("This is a Plain
Text message.");

Message message = MessageFactory.getInstance().createMessage();
message.setContent ("This is a Plain Text message.", "text/plain");

17.3.1.2 Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML
Parts)

Example 17—4 shows how to create a multipart or alternative message using the
UMS Java APIL

Example 17-4 Creating a Multipart or Alternative Message Using the UMS Java API

Message message = MessageFactory.getInstance().createMessage();
MimeMultipart mp = new MimeMultipart ("alternative");
MimeBodyPart mp_partPlain = new MimeBodyPart () ;
mp_partPlain.setContent ("This is a Plain Text part.", "text/plain");
mp.addBodyPart (mp_partPlain) ;
MimeBodyPart mp_partRich = new MimeBodyPart () ;
mp_partRich
.setContent (

"<html><head></head><body><i>This is an HTML
part.</i></body></html>",

"text/html");
mp.addBodyPart (mp_partRich) ;
message.setContent (mp, "multipart/alternative");

17.3.1.3 Creating Delivery Channel-Specific Payloads in a Single Message for
Recipients with Different Delivery Types

When sending a message to a destination address, there could be multiple channels
involved. Oracle UMS application developers are required to specify the correct
multipart format for each channel.

Example 17-5 shows how to create delivery channel (DeliveryType) specific payloads
in a single message for recipients with different delivery types.

Each top-level part of a multiple payload multipart/alternative message must contain
one or more values of this header. The value of this header must be the name of a valid
delivery type. Refer to the available values for DeliveryType in the enum DeliveryType.

Example 17-5 Creating Delivery Channel-specific Payloads in a Single Message for
Recipients with Different Delivery Types

Message message = MessageFactory.getInstance().createMessage();

// create a top-level multipart/alternative MimeMultipart object.

Sending and Receiving Messages using the User Messaging Service Java APl 17-3

Sending a Message

MimeMultipart mp = new MimeMultipart("alternative");

// create first part for SMS payload content.
MimeBodyPart partl = new MimeBodyPart();
partl.setContent ("Text content for SMS.", "text/plain");

partl.setHeader (Message.HEADER_NS_PAYLOAD_PART DELIVERY_TYPE, "SMS");

// add first part
mp .addBodyPart (partl) ;

// create second part for EMAIL and IM payload content.

MimeBodyPart part2 = new MimeBodyPart () ;

MimeMultipart part2_mp = new MimeMultipart("alternative");

MimeBodyPart part2_mp_partPlain = new MimeBodyPart () ;
part2_mp_partPlain.setContent ("Text content for EMAIL/IM.", "text/plain");
part2_mp.addBodyPart (part2_mp_partPlain);

MimeBodyPart part2_mp_partRich = new MimeBodyPart();
part2_mp_partRich.setContent ("<html><head></head><body><i>" + "HTML content for
EMAIL/IM." +

"</i></body></html>", "text/html");

part2_mp.addBodyPart (part2_mp_partRich) ;

part2.setContent (part2_mp, "multipart/alternative");

part2.addHeader (Message.HEADER_NS_PAYLOAD_PART DELIVERY_TYPE, "EMAIL");
part2.addHeader (Message.HEADER_NS_PAYLOAD_PART DELIVERY_TYPE, "IM");

// add second part
mp .addBodyPart (part2) ;

// set the content of the message
message.setContent (mp, "multipart/alternative");

// set the MultiplePayload flag to true
message.setMultiplePayload (true) ;

17.3.2 API Reference for Class MessageFactory

The API reference for class MessageFactory can be accessed from the Oracle Fusion
Middleware User Messaging Service API Reference.

17.3.3 API Reference for Interface Message

The API reference for interface Message can be accessed from the Oracle Fusion
Middleware User Messaging Service API Reference.

17.3.4 API Reference for Enum DeliveryType

The API reference for enum DeliveryType can be accessed from the Oracle Fusion
Middleware User Messaging Service API Reference.

17.3.5 Addressing a Message

This section describes type of addresses and how to create address objects.

17-4 Developer's Guide

Sending a Message

17.3.5.1 Types of Addresses

There are two types of addresses, device addresses and user addresses. A device address
can be of various types, such as email addresses, instant messaging addresses, and
telephone numbers. User addresses are user IDs in a user repository.

17.3.5.2 Creating Address Objects

You can address senders and recipients of messages by using the class AddressFactory
to create Address objects defined by the Address interface.

17.3.5.2.1 Creating a Single Address Object Example 17-6 shows code for creating a
single Address object:

Example 17-6 Creating a Single Address Object

Address recipient =
AddressFactory.getInstance().createAddress ("Email:john.doe@oracle.com") ;

17.3.5.2.2 Creating Multiple Address Objects in a Batch Example 17-7 shows code for
creating multiple Address objects in a batch:

Example 17-7 Creating Multiple Address Objects in a Batch

String[] recipientsStr = {"Email:john.doe@oracle.com",
"IM:jabber|john.doe@oracle.com"};
Address[] recipients = AddressFactory.getInstance().createAddress(recipientsStr);

17.3.5.2.3 Adding Sender or Recipient Addresses to a Message Example 17-8 shows code
for adding sender or recipient addresses to a message:

Example 17-8 Adding Sender or Recipient Addresses to a Message

Address sender =
AddressFactory.getInstance() .createAddress ("Email:john.doe@oracle.com") ;
Address recipient =

AddressFactory.getInstance().createAddress ("Email:jane.doe@oracle.com") ;
message.addSender (sender) ;

message.addRecipient (recipient) ;

17.3.5.3 Creating a Recipient with a Failover Address

Example 17-9 shows code for creating a recipient with a Failover address:

Example 17-9 Creating a Single Address Object with Failover

String recipientWithFailoverStr = "Email:john.doe@oracle.com,
IM:jabber\john.doe@oracle.com“;

Address recipient =
AddressFactory.getInstance() .createAddress (recipientWithFailoverStr) ;

17.3.5.4 API Reference for Class AddressFactory

The API reference for class AddressFactory can be accessed from the Oracle Fusion
Middleware User Messaging Service API Reference.

17.3.5.5 API Reference for Interface Address

The API reference for interface Address can be accessed from the Oracle Fusion
Middleware User Messaging Service API Reference.

Sending and Receiving Messages using the User Messaging Service Java APl 17-5

Receiving a Message

17.3.6 Retrieving Message Status

You can use Oracle UMS to retrieve message status either synchronously or
asynchronously.

17.3.6.1 Synchronous Retrieval of Message Status

To perform a synchronous retrieval of current status, use the following flow from the
MessagingClient API:

String messageld = messagingClient.send(message);
Status[] statuses = messagingClient.getStatus (messageld);
or,

Status[] statuses = messagingClient.getStatus(messageId, address[]) --- where
address|[] is an array of one or more of the recipients set in the message.

17.3.6.2 Asynchronous Notification of Message Status
To retrieve an asynchronous notification of message status, perform the following:

1. Implement a status listener.

2. Register a status listener (declarative way)

3. Send a message (messagingClient.send(message);)
4

The application automatically gets the status through an onStatus(status) callback
of the status listener.

17.4 Receiving a Message

This section describes how an application receives messages. To receive a message you
must first register an access point. From the application perspective there are two
modes for receiving a message, synchronous and asynchronous.

17.4.1 Registering an Access Point

AccessPoint represents one or more device addresses to receive incoming messages.
An application that wants to receive incoming messages must register one or more
access points that represent the recipient addresses of the messages. The server
matches the recipient address of an incoming message against the set of registered
access points, and routes the incoming message to the application that registered the
matching access point.

You can use AccessPointFactory.createAccessPoint to create an access point and
MessagingClient.registerAccessPoint to register it for receiving messages.

To register an SMS access point for the number 9000:

AccessPoint accessPointSingleAddress =

AccessPointFactory.createAccessPoint (AccessPoint.AccessPointType.SINGLE_ADDRESS,
DeliveryType.SMS, "9000");
messagingClient.registerAccessPoint (accessPointSingleAddress) ;

To register SMS access points in the number range 9000 to 9999:

AccessPoint accessPointRangeAddress =

AccessPointFactory.createAccessPoint (AccessPoint.AccessPointType . NUMBER_RANGE,
DeliveryType.SMS, "9000,9999");
messagingClient.registerAccessPoint (accessPointRangeAddress) ;

17-6 Developer's Guide

Using the UMS EJB Client API to Build a Client Application

17.4.2 Synchronous Receiving

You can use the method MessagingClient.receive to synchronously receive
messages. This is a convenient polling method for light-weight clients that do not want
the configuration overhead associated with receiving messages asynchronously. This
method returns a list of messages that are immediately available in the application
inbound queue.

It performs a non-blocking call, so if no message is currently available, the method
returns null.

Note: A single invocation does not guarantee retrieval of all
available messages. You must poll to ensure receiving all available
messages.

17.4.3 Asynchronous Receiving

Asynchronous receiving involves a number of tasks, including configuring MDBs and
writing a Stateless Session Bean message listener. See the sample application
usermessagingsample-echo for detailed instructions.

17.4.4 Message Filtering

A MessageFilter is used by an application to exercise greater control over what
messages are delivered to it. A MessageFilter contains a matching criterion and an
action. An application can register a series of message filters; they get applied in order
against an incoming (received) message; if the criterion matches the message, the
action is taken. For example, an application can use MessageFilters to implement
desired blacklists, by rejecting all messages from a given sender address.

You can use MessageFilterFactory.createMessageFilter to create a message
filter, and MessagingClient.registerMessageFilter to register it. The filter is
added to the end of the current filter chain for the application. When a message is
received, it is passed through the filter chain in order; if the message matches a filter's
criterion, the filter's action is taken immediately. If no filters match the message, the
default action is to accept the message and deliver it to the application.

For example, to reject a message with the subject "spam":

MessageFilter subjectFilter = MessageFilterFactory.createMessageFilter ("spam",
MessageFilter.FieldType.SUBJECT, null, MessageFilter.Action.REJECT);
messagingClient.registerMessageFilter (subjectFilter);

To reject messages from e-mail address "spammer@foo.com":

MessageFilter senderFilter =
MessageFilterFactory.createBlacklistFilter ("spammer@foo.com") ;
messagingClient.registerMessageFilter (senderFilter) ;

17.5 Using the UMS EJB Client API to Build a Client Application

This section describes how to create an application called usermessagingsample, a Web
client application that uses the UMS EJB Client API for both outbound messaging and
the synchronous retrieval of message status. usermessagingsample also supports
inbound messaging. Once you have deployed and configured usermessagingsample,
you can use it to send a message to an e-mail client.

Sending and Receiving Messages using the User Messaging Service Java APl 17-7

Using the UMS EJB Client API to Build a Client Application

Of the two application modules choices described in Section 17.1.1, "Creating a J2EE
Application Module", this sample focuses on the Web Application Module (WAR),
which defines some HTML forms and servlets. You can examine the code and
corresponding XML files for the Web App module from the provided
usermessagingsample-src.zip source. The servlets uses the UMS EJB Client API to
create an UMS EJB Client instance (which in turn registers the application's info) and
sends messages.

This application, which is packaged as a Enterprise ARchive file (EAR) called
usermessagingsample.ear, has the following structure:

= usermessagingsample.ear
= META-INF
— application.xml -- Descriptor file for all of the application modules.

- weblogic-application.xml -- Descriptor file that contains the import of the
oracle.sdp.messaging shared library.

» usermessagingclient-ejb.jar -- Contains the Message EJB Client deployment

descriptors.
* META-INF
- ejb-jar.xml

- weblogic-ejb-jar.xml
» usermessagingsample-web.ear -- Contains the Web-based front-end and servlets.
* WEB-INF
- web.xml
- weblogic.xml

The pre-built sample application, and the source code (usermessagingsample-src.zip)
are available on OTN.

17.5.1 Overview of Development

The following steps describe the process of building an application capable of
outbound messaging using usermessagingsample.ear as an example:

1. Section 17.5.2, "Configuring the E-Mail Driver"

2, Section 17.5.3, "Using JDeveloper 11g to Build the Application"
3. Section 17.5.4, "Deploying the Application”

4, Section 17.5.5, "Testing the Application"

17.5.2 Configuring the E-Mail Driver

17-8

To enable the Oracle User Messaging Service’s E-Mail Driver to perform outbound
messaging and status retrieval, configure the E-Mail Driver as follows:

= Enter the name of the SMTP mail server as the value for the OutgoingMailServer
property.

Note: This sample application is generic and can support outbound
messaging through other channels when the appropriate messaging
drivers are deployed and configured.

Developer's Guide

Using the UMS EJB Client API to Build a Client Application

17.5.3 Using JDeveloper 11g to Build the Application

This section describes using a Windows-based build of JDeveloper to build, compile,
and deploy usermessagingsample through the following steps:

17.5.3.1 Opening the Project

1. Unzip usermessagingsample-src.zip, to the [JDEV_HOME /communications/
samples/ directory. This directory must be used for the shared library references
to be valid in the project.

Note: If you choose to use a different directory, you must update the
oracle.sdp.messaging library source path to JDEV_HOME/
communications/modules/oracle.sdp.messaging 11.1.1/
sdpmessaging jar.

2. Open usermessagingsample.jws (contained in the .zip file) in Oracle JDeveloper.

Figure 17-1 Oracle JDeveloper Main Window

- Open Application(s) . x

Location: |D fscratch/kkothariforacle/middleware/jdeveloper/communications /samples/user... v| @ EG ﬁ !E i

3 dist
D usermessagingclient-ejb

D usermessagingsample-app
I_:l usermessagingsample-web

@ usermessagingsam ple jws

Eile name: |usermessagingsamp|e.jws |

File type: |App|ication files {*.jws) 'vl

Help Qpen J | Cancel |

In the Oracle JDeveloper main window the project appears.

Sending and Receiving Messages using the User Messaging Service Java APl 17-9

Using the UMS EJB Client API to Build a Client Application

Figure 17-2 Oracle JDeveloper Main Window

Oracle JDeveloper 11g Development Build - usermessagingsample.jws : usermessagingsample-web.jpr

File Edit Yiew Application Refactor Search Navigate Build Run Versioning Tools Window Help

GoEag 90 XEh Q0-©- 5- adde- -3 A6)
Application Mavigator [Z] @Star‘t Page E] [aResou... [Z]
. usermessagingsample - - et &'l{n' ‘\
L | \ /
~ Projects G & V3= |- My Catalogs
@ usermessagingclient-ejb IDE Connecti...
{El usermessagingsample-web 1 E}a Application Ser

a Integratedy
 Application Resources

il 4 Oracle JDeveloper | “9™

=[] Descriptors
£+ META-INF

| i l% application.xml <[)

l% weblogic-application.xm| = =

[T ADF META-IMF - |[E]Deployment - Log (=)

I Data Controls

I+ Recently Opened Files

= usermessagingsample jws - Structure =

k

@SOA Configuration | Deployment | Compiler @@E]

it i Heap : 189M of 258M, Perm Gen : 139M of 256M

3. Verify that the build dependencies for the sample application have been satisfied
by checking that the following library has been added to the Web module.

» Library: oracle.sdp.messaging, Classpath: JDEV_HOME/
communications/modules/oracle.sdp.messaging_11.1.1/
sdpmessaging.jar. This is the Java library used by UMS and applications that
use SDP Messaging to send and receive messages.

1. In the Application Navigator, right click on web module
usermessagingsample-web, and select Project Properties.

2. In the left pane, select Libraries and Classpath.

Figure 17-3 Verifying Libraries

Project Properties - /scratch/kkothari/oracle/middleware/jdeveloper/communications/samples/usermes .3

\'\ﬁ || Libraries and Classpath
[Project Source Paths (") Use Custom Settings
- ADF Model (=) Use Project Settings
-~ ADF View
- Ant lava SE Wersion:
B Business Components |1 6.0_07 (Defaulty ‘ [Change]
Bl Compiler . Classpath Entries:
-~ Dependencies — -
- Deployment EXETH iiSJcSI:nltI;n Add Library...
- EJB Module O ghstiz Add JAR/Directory..
- Extension
Java EE Applicat Wl Java EE 1.5 ARI =
ava pplication e sdD
-]SP Tag Libraries Edit..
rari 1d
-~ Run/Debug/Profile
S04

Technology Scope

o
=

] [Cancel

17-10 Developer's Guide

Using the UMS EJB Client API to Build a Client Application

3. Click OK.

Verify that the usermessagingclient-ejb project exists in the application. This is an
EJB module that packages the messaging client beans used by SDP Messaging
applications. The module allows the application to connect with the UMS server.

Explore the Java files under the usermessagingsample-web project to see how the
messaging client APIs are used to send messages, get statuses, and synchronously
receive messages. The application info that is registered with the UMS Server is
specified programmatically in Sampleltils.java in the project (Example 17-10).

Example 17-10 Application Information

ApplicationInfo appInfo = new ApplicationInfo();
appInfo.setApplicationName (SampleConstants.APP_NAME) ;
appInfo.setApplicationInstanceName (SampleConstants.APP_INSTANCE_NAME) ;
appInfo.setSecurityPrincipal (request.getUserPrincipal () .getName());

17.5.4 Deploying the Application

Perform the following steps to deploy the application:

1.

Create an Application Server Connection by right-clicking the application in the
navigation pane and selecting New. Follow the instructions in Section 17.7,
"Creating a New Application Server Connection".

Deploy the application by selecting the usermessagingsample application,
Deploy, usermessagingsample, to, and SOA_server (Figure 17-4).

Figure 17-4 Deploying the Project

Select Deployment Targets

Deploy to Server Instance(s):

AdminServer

Help | | oK | | Cancel |

Verify that the message "Build Successful" appears in the log.
Verify that the message "Deployment Finished" appears in the deployment log.
You have successfully deployed the application.

Before you can run the sample you must configure any additional drivers in
Oracle User Messaging Service and optionally configure a default device for the
user receiving the message in User Messaging Preferences.

Note: Refer to "Configuring Notifications" in the Oracle Fusion
Middleware SOA Developer’s Guide for more information.

17.5.5 Testing the Application

Once usermessagingsample has been deployed to a running instance of WLS, perform
the following:

Sending and Receiving Messages using the User Messaging Service Java APl 17-11

Using the UMS EJB Client API to Build a Client Application

Launch a Web browser and enter the address of the sample application as follows:
http://<host>:<http-port>/usermessagingsample/. For example, enter
http://localhost:7001/usermessagingsample/ into the browser’s navigation bar.

When prompted, enter login credentials. For example, username weblogic. The
browser page for testing messaging samples appears (Figure 17-5).

Figure 17-5 Testing the Sample Application

B UMS Samples - Mozilla, Firefox

File:

UMS Samples

Edit Yiew History Bookmarks Tools Help

- - @ ﬁ ||:| http:fistapnsS0: 7001 fusermessagingsample/ |‘| [:i'] |'| |‘4\]

* Iessaging Samples
Demonstrates several key Messaging features:

o Zending a multipart message with channel-specific content to multiple recipients.
@ Status reporting for all recipients of a sent message.
o Retrieve and display recetved messages wia polling,

Send sample message

+ Miscellaneous Messaging Features
o Fet supported delivery types - this tool uses the MessagingClient APT to list the delivery types currently

supported by the Messaging Server.

2.

Click Send sample message. The Send Message page appears (Figure 17-6).

17-12 Developer's Guide

Using the UMS EJB Client API to Build a Client Application

Figure 17-6 Addressing the Test Message

UMS Sample: Send Message - Mozilla Firefox

File Edit Yiew History Bookmarks Tools Help

<'j - - @ ﬁ | L1 httpifistapns0: 7001 fusermessagingsamplesample, html | A | [&] "| | 4]
A~

UMS Sample: Send Message

Enter Sender Addrasses (optional): EMAIL: test@oracle.com
[2.q. "IM:=enden@example. com”]

Separate multiple addreszes using comma.

MNote : ¥ you enter sender addmesses they will 3lzo be
megistered a5 Focess points with the UWS. Replies sent
Ay the ecipient to one of thege addmezes will he
muted to thiz application. v this sample, them iz an
option to poll the meeiving guewe to ehiere svok
meoeived wessdges. (This assumes that the wrded ying
Nezzaging Ofver wsed iz cgpahle of 3nd comfigumed
for twio-way messIging.)

Enter Recipient Addreszes: B
[e.g. "IM:recipienti@example.com"] EMAIL: john.doe@oracle.com
Separate multiple addreszes using comma.

Entar a Subject (optionall): hello

Channel specific payoad 1
Selact Delivery Types:

EMAIL

WOICE -
TWO_WAY_PAGER ¥

Content Type: textiplain; charset=UT

Meszage Content: Thi= iz a =mample mes=age.

3. Asan optional step, enter the sender address in the following format:
Email:<sender_address>.
For example, enter Email:sender@oracle.com.

4. Enter one or more recipient addresses. For example, enter
Email:recipient@oracle.com. Enter multiple addresses as a comma-separated list as
follows:

Email:<recipient_address1>, Email:<recipient_address2>.

If you have configured user messaging preferences, you can address the message
simply to "User:<username>". For example, User:weblogic.

5. Asan optional step, enter a subject line or content for the e-mail.

6. Click Send. The Message Status page appears, showing the progress of transaction
("Message received by Messaging engine for processing," in Figure 17-7).

Sending and Receiving Messages using the User Messaging Service Java APl 17-13

Using the UMS EJB Client API to Build a Client Application

Figure 17-7 Message Status

MS Sample: Send Message - Mozilla Firefox

File Edit View History Bookmarks Tools Help
<f'j - - @ ﬁ ||_| http: fistapns0: 7001 fusermessagingsample/samplesend |‘ | [}'] "| | *\]
~

UMS Sample to Send Messages
Sending message:
Sert message with id = fE22d4dd984464dd003be390a2e5afa
Checking Status: Refresh

UMS: Message Status

Status for message id: 1522 d4dd223d4454dd00Sfhe305 a2 e 5 afa

Gateway Status Beporting Failover
Message ID Address Type Status Content Driver Date Status
Recipient #1: EMAIL john doed@oracle com --
" Message received by Messaging Jan 20, 2009
Skt im € el e el 2. e ® engine for proceszing. 2:22:04 P PST il
v

7. Click Refresh to update the status. When the e-mail message has been delivered to
the e-mail server, the Status Content field displays Outbound message delivery to
remote gateway succeeded., as illustrated in Figure 17-8.

Figure 17-8 Checking the Message Status

) UMS Sample: Send Message - Mozilla Firefox

File Edit Wew History Bookmarks Tools Help
<f3 - - @ ﬁ ||:| http://stapns0: 7001 Jusermessagingsamplesamplesend |‘| D] |'| |Lxl
-
UMS Sample to Send Messages
Sending message:
Sert message with id = fE2423335984464dd005fbe33f24 7 1bfa
Checking Status: Refresh
UMS: Message Status
Status for message id: #524a325084464dd00Etbe 39047 1bfa
Status Status .
Gateway Message [D Address Type Conient Reporting D
Recipient #1: EMAIL john doed@oracle.com -
COutbound
message
s ERREs A m e EMAILjehn.doe@oracle.com " dhallzny Farm_base_demain/base_domainftAdminSenerfusermessagingdri
racle.com remote
gateway
succeeded.
w

17-14 Developer's Guide

Using the UMS EJB Client API to Build a Client Echo Application

17.6 Using the UMS EJB Client API to Build a Client Echo Application

This section describes how to create an application called usermessagingsample-echo,
a demo client application that uses the UMS EJB Client API to asynchronously receive
messages from an e-mail address and echo a reply back to the sender.

This application, which is packaged as a Enterprise ARchive file (EAR) called
usermessagingsample-echo.ear, has the following structure:

= usermessagingsample-echo.ear

META-INF
— application.xml -- Descriptor file for all of the application modules.

- weblogic-application.xml -- Descriptor file that contains the import of the
oracle.sdp.messaging shared library.

usermessagingclient-ejb.jar -- Contains the Message EJB Client deployment
descriptors.

* META-INF
- ejb-jar.xml
- weblogic-ejb-jar.xml

usermessagingsample-echo-ejb.jar -- Contains the application session beans
(ClientSenderBean, ClientReceiverBean) that process a received message and
return an echo response.

* META-INF
- ejb-jar.xml
- weblogic-ejb-jar.xml

usermessagingsample-echo-web.war -- Contains the Web-based front-end and
servlets.

* WEB-INF
- web.xml

- weblogic.xml

The pre-built sample application, and the source code
(usermessagingsample-echo-src.zip) are available on OTN.

17.6.1 Overview of Development

The following steps describe the process of building an application capable of
asynchronous inbound and outbound messaging using usermessagingsample-echo.ear as
an example:

1. Section 17.6.2, "Configuring the E-Mail Driver"

Section 17.6.3, "Using JDeveloper 11g to Build the Application”

2
3. Section 17.6.4, "Deploying the Application”
4

Section 17.6.5, "Testing the Application"

17.6.2 Configuring the E-Mail Driver

To enable the Oracle User Messaging Service’s E-Mail Driver to perform inbound and
outbound messaging and status retrieval, configure the E-Mail Driver as follows:

Sending and Receiving Messages using the User Messaging Service Java APl 17-15

Using the UMS EJB Client API to Build a Client Echo Application

= Enter the name of the SMTP mail server as the value for the OutgoingMailServer
property.
= Enter the name of the IMAP4/POP3 mail server as the value for the

IncomingMailServer property. Also, configure the incoming user name and
password.

Note: This sample application is generic and can support inbound
and outbound messaging through other channels when the
appropriate messaging drivers are deployed and configured.

17.6.3 Using JDeveloper 11g to Build the Application

This section describes using a Windows-based build of JDeveloper to build, compile,
and deploy usermessagingsample-echo through the following steps:

17.6.3.1 Opening the Project

1. Unzip usermessagingsample.echo-src.zip, to the JDEV_HOME/communications/
samples/ directory. This directory must be used for the shared library references
to be valid in the project.

Note: If you choose to use a different directory, you must update the
oracle.sdp.messaging library source path to JDEV_HOME/
communications/modules/oracle.sdp.messaging_11.1.1/
sdpmessaging jar.

2. Open usermessagingsample-echo.jws (contained in the .zip file) in Oracle JDeveloper
(Figure 17-9).

Figure 17-9 Opening the Project

> Open Application(s) x

Locatian: |D fscratch/kkothariforacle/middleware fjdeveloperfcommunications/zamplesfuser... v| @ Ea Iﬁ PE'E B

é [usermessagingclient-ejb

r_—l usermessagingsample-echo-app
D usermeszagingsample-echo-gjb
Wark. [usermessagingsample-echo-ueb
B usermessagingsample-echo juis

File name: |usermessagingsample—echo.jws |

File type: |App|ication files (* juvs) v|

| Help | | Qpen _J | Cancel |

In the Oracle JDeveloper main window the project appears (Figure 17-10).

17-16 Developer's Guide

Using the UMS EJB Client API to Build a Client Echo Application

Figure 17-10 Oracle JDeveloper Main Window

Oracle JDeveloper 11g Development Build - usermessagingsample-echo.jws : usermessagingsample- uip 4

File Edit Yiew Application Refactor Search Navigate Build BRun Versioning Tools Window Help

BoEa 90 XBR 0 O S- Aidm- > & AW o)
Applicalion Mavigator 1 E] @Resou... E]
usermesszagingsample-echo VI ﬁ'
= Projects & & YV-E- | [My Catalogs
usermessagingclient-ejb 7 IDE Connecti...

* usermessagingsample-echo-ejb e Application Se
uzermeszagingsample-echo-web

T Application Resources
a Connections
a Descriptors

|+ Data Controls
| Recently Cpened Files

Euserm essagingsample-echo ju..

Mo Structure

/scratch fkl

3. Verify that the build dependencies for the sample application have been satisfied
by checking that the following library has been added to the
usermessagingsample-echo-web and usermessagingsample-echo-ejb modules.

s Library: oracle.sdp.messaging, Classpath: JDEV_HOME/
communications/modules/oracle.sdp.messaging_11.1.1/
sdpmessaging jar. This is the Java library used by UMS and applications that
use SDP Messaging to send and receive messages.

Perform the following steps for each module:

1. In the Application Navigator, right click on the module and select Project
Properties.

2. In the left pane, select Libraries and Classpath (Figure 17-11).

Sending and Receiving Messages using the User Messaging Service Java APl 17-17

Using the UMS EJB Client API to Build a Client Echo Application

Figure 17-11 Verifying Libraries

Project Properties - /scratch/kkothari/oracle/middleware/jdeveloper/communications/samples/usermes

':“ || Libraries and Classpath
[# Project Source Paths "I Use Custom Settings
[+ ADF Model () Use Project Settings
----- ADF View
- Ant lava SEVersion:
[#- Business Components | 1.6.0_07 (Default) | | Change... |
- Compiler . Classpath Entries:
----- Dependencies — =
_____ Deployment Export Escrlptlon |$|
SF1.2 ———————————————
""" EIB Module Ll ! | Addjar/Directary... |
..... Extension O mstLiz | AT AT eSO 4
B Javadoc @l 5P Runtime | RETELE |
il Java EE e

1.
|i oracle.sc |T|
| Share As.. |

| Move Up |

| Help | Ok | | Cancel

3. Click OK.

4. Verify that the usermessagingclient-ejb project exists in the application. This is an
EJB module that packages the messaging client beans used by SDP Messaging
applications. The module allows the application to connect with the UMS server.

5. Explore the Java files under the usermessagingsample-echo-ejb project to see how the
messaging client APIs are used to asynchronously receive messages
(ClientReceiverBean), and send messages (ClientSenderBean).

6. Explore the Java files under the usermessagingsample-echo-web project to see how
the messaging client APIs are used to register and unregister access points.

7. Note that the application info that is registered with the UMS Server is specified
declaratively in the usermessagingclient-ejb project’s ejb-jar.xml. (Example 17-11).

Example 17-11 Application Information

<env-entry>
<env-entry-name>sdpm/ApplicationName</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>UMSEchoApp</env-entry-value>

</env-entry>

<env-entry>
<env-entry-name>sdpm/ApplicationInstanceName</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>UMSEchoAppInstance</env-entry-value>

</env-entry>

<env-entry>
<env-entry-name>sdpm/ReceivingQueuesInfo</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>

<env-entry-value>0raSDPM/QueueConnectionFactory:0raSDPM/Queues/OraSDPMAppDefRcvQl<

/env-entry-value>
</env-entry>

17-18 Developer's Guide

Using the UMS EJB Client API to Build a Client Echo Application

<env-entry>
<env-entry-name>
sdpm/MessageListenerSessionBeanINDIName
</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>
ejb/umsEchoApp/ClientReceiverLocal</env-entry-value>
</env-entry>
<env-entry>
<env-entry-name>

sdpm/MessagelistenerSessionBeanHomeClassName</env-entry-name>

<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>
oracle.sdp.messaging.sample.ejbApp.ClientReceiverHomeLocal
</env-entry-value>
</env-entry>
<env-entry>
<env-entry-name>
sdpm/StatusListenerSessionBeanIJNDIName
</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>

<env-entry-value>ejb/umsEchoApp/ClientReceiverLocal</env-entry-value>
</env-entry>
<env-entry>

<env-entry-name>sdpm/StatusListenerSessionBeanHomeClassName</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>

<env-entry-value>oracle.sdp.messaging.sample.ejbApp.ClientReceiverHomeLocal</env-e

ntry-value>
</env-entry>

8. Note that the ApplicationName ("UMSEchoApp") and ApplicationInstanceName

("UMSEchoApplnstance") are also used in the Message Selector for the
MessageDispatcherBean MDB, which is used for asynchronous receiving of

messages and statuses placed in the application receiving queue (Example 17-12).

Example 17-12 Application Information

<activation-config-property>
<activation-config-property-name>
messageSelector
</activation-config-property-name>
<activation-config-property-value>
appName="'UMSEchoApp' or sessionName='UMSEchoApp-UMSEchoAppInstance'’
</activation-config-property-value>
</activation-config-property>

Note: If you chose a different ApplicationName and
ApplicationInstanceName for your own application, remember to
update this message selector. Asynchronous receiving does not work
otherwise.

Sending and Receiving Messages using the User Messaging Service Java API

17-19

Using the UMS EJB Client API to Build a Client Echo Application

17.6.4 Deploying the Application
Perform the following steps to deploy the application:
1. Create an Application Server Connection by right-clicking the application in the

navigation pane and selecting New. Follow the instructions in Section 17.7,
"Creating a New Application Server Connection."

2. Deploy the application by selecting the usermessagingsample-echo application,
Deploy, usermessagingsample-echo, to, and SOA_server (Figure 17-12).

Figure 17-12 Deploying the Project

Select Deployment Targets

Deploy to Server Instance(s):

3. Verify that the message "Build Successful" appears in the log.
4. Verify that the message "Deployment Finished" appears in the deployment log.
You have successfully deployed the application.

Before you can run the sample you must configure any additional drivers in
Oracle User Messaging Service and optionally configure a default device for the
user receiving the message in User Messaging Preferences.

Note: Refer to "Configuring Notifications" in the Oracle Fusion
Middleware SOA Developer’s Guide for more information.

17.6.5 Testing the Application

Once usermessagingsample-echo has been deployed to a running instance of WLS,
perform the following;:

1. Launch a Web browser and enter the address of the sample application as follows:
http://<host>:<http-port>/usermessagingsample-echo/. For example, enter
http://localhost:7001/usermessagingsample-echo/ into the browser’s navigation bar.

When prompted, enter login credentials. For example, username weblogic. The
browser page for testing messaging samples appears (Figure 17-13).

17-20 Developer's Guide

Using the UMS EJB Client API to Build a Client Echo Application

Figure 17-13 Testing the Sample Application

) UMS Samples - Mozilla Firefox

File Edit Wiew History Bookmarks Tools Help

- - @ Q ||:| hktp: ffstapnS0.us.oracle. corm: 7001/ usermessagingsannple-acha) | '| D‘] |'| |L4\]

UMS Samples

+ Sample for Two Way Messaging
Perform the following steps:

1. Click on "Eegsterfunregster Access Foints".
2. Enter address of access point.
For example, IMmyserver@example. com.
3. Click on Submit.
. Wsing vour client send a message to the access point.
5. The sample application will receive the message and echo it back to you.

=

Register/Unregister Access Points

2. Click Register/Unregister Access Points. The Access Point Registration page
appears (Figure 17-14).

Figure 17-14 Registering an Access Point

) ums Sample App: Access Point Registration - Mozilla Firefox

File Edit View History Bookmarks Tools Help

<f:| - - @ ﬁ ||_| http:,l’,l’staanD‘us.oracle.com:?DDI,l’usermessagingsample-echo,l’ap.htrr| ‘| [3‘] "| |\]

UMS Sample App: Access Point Registration

Two Way Messaging Test requires the following steps:

1. Click on "Eegister/Mnregister Access Points".

2. Enter address of access point, and optionally a keyword.
For example, IMimyserver@example. com.
For Demo - IML<ServerJabberID=>

3. Click on Subtmit.

4. Tsing your I client send a message to your buddy (ServerTabberID). If a keyword was specified, the first token of the
message must match the keyword.

3. The sample application will receive the message and echo it back to you

Use this form to register/unregister access point addresses for this Sample App.

Enter an Address: |EMAIL:mysewer@example.com |
[e.g. "IM:sender@example.com”

or "EMAIL: sender@example.com”]
Enter a keyward (optional): | |

Action: ® Register
O Unregister

Sending and Receiving Messages using the User Messaging Service Java APl 17-21

Creating a New Application Server Connection

3. Enter the access point address in the following format:
EMAIL:<server_address>.
For example, enter EMAIL:myserver@example.com.

4. Select the Action Register and Click Submit. The registration status page appears,
showing "Registered” in Figure 17-15).

Figure 17-15 Access Point Registration Status

) ums Sample: Access Point Registration - Mozilla Firefox

File Edit ‘“ew History Bookmarks Tools Help

<E| - - @ ﬁ ||:| http:ffskapnS0,us,oracle, com: 7001 fusermessagingsample-echof | ‘l [ifl |'| |L\]

UMS Sample: Access Point Registration

Registenng access point:

EMAIL:myserverfexample. com

Registered.

5. Send a message from your messaging client (for e-mail, your e-mail client) to the
address you just registered as an access point in the previous step.

If the UMS messaging driver for that channel is configured correctly, you can
expect to receive an echo message back from the usermessagingsample-echo
application.

17.7 Creating a New Application Server Connection
Perform the following steps to create a new Application Server Connection.

1. Create a new Application Server Connection by right-clicking the project and
selecting New, Connections, and Application Server Connection (Figure 17-16).

17-22 Developer's Guide

Creating a New Application Server Connection

Figure 17-16 New Application Server Connection

IE stbcz15:1 (aime1)

& Applications Actions %@Q}és’ @
=

Oracle JDeveloper 11g Development Build - SendMessageApp.jws : SendMessageProj.jpr
File Edit View Sear| & New Gallery X
E+ ﬁ
DEg 9 [ANl Technalogies | Current Project Technalogies | e
e T P— " -
@ application Navigator This list is filtered according 1o the current project's selected technologies anent.. [£l
SendMessageApp @) -
= Projects 0
= SendMessageProj Categories: Items: [7] Showe All Descriptians
B[50A Content ry lueBriots,
B3 testsuies E-General (@) Application Server Connection (&) b ctivities and Compa..
i ~eApplications Launches the Create Application Server Connection wizard, which e i~
& D #sd i s Buides you in the creation of a new connection o Randalone 04, <farm
| g BPELPrO . ~-Deployment Descriptors BER Weblogic, etc
Dz ' Deployment Prafiles r Wotification
icati H This option is always enabled
b Application Resources i L oProjects P! ry' .) -
haDala,Conicols, - SOR Tier {2 BaM Connection >
hmBecenthuOpenediiles L.Enterprise Scheduler Metadata : EIUICES
[&) BPA Connection
eeService COmponents
ESendMessagePru. i w-Transfarmations n CWS Connection ry Inspector [:]l
Lol tems = &
&) Database Connection PE /(@ 0
@ File System Connection
] SOA-MDS Connection
[Zh Subversion Repositary Connection |
FR inmi Canireme Cannae rian Ad
I
Design | Saurce | History I

ri BPELeditar i Heap: 3 SM, Perm Gen

2. Name the connection “SOA_server” and click Next (Figure 17-17).
3. Select "WebLogic 10.3" as the Connection Type.

Figure 17-17 New Application Server Connection

E stbcz15:1 (aimed)

= Applications Actions %@Qgs’ @ 2 Mon Oct 27, 13:43 Q

7| Oracle JDeveloper 11g Development Build - SendMessageApp.jws : SendMessageProj.jpr | -0OXx
file Edit Miew Search > Create Application Server Connection - Step 1 of 5 xX
208 9 X
= Name & Type
(@ Application Navigator
SendMessageApp
> - Specify a unique name and type for the connection. The name must be a valid Java
= Projects Iy L hame & Tye e v !)
=[] SendMessageProj Authentication BPA Elue Py
B[50A Content T Create connection in: ue Prints
[restsuites s] BPEL A ctivities and Compa
&3 xsa I Application Resources (3) Resource Palette - R ry
xs o] r
2 e 4] [Transform
i & roecess . Caonnection Mame:]
xsl)| User Motification
- SOA_fmanaged_server | J
Application R [
I Application Resources H voice) [
I Data Controls : tion Type: | b3
b Recently Opened Files SEMnECHON TYRe: BPEL Services
eblogic 10.3 - k
*= sendMessagePro ET Property Inspector E]|
B/ (G

Design | Source | Histary

meis] [emen] [once]

[
Zoom:| 100[3] T =N l‘

1 BPEL editor i Hes

4. Enter the authentication information. The typical values are:

Username: weblogic
Password: weblogic

5. On the Connection screen, enter the hostname, port and SSL port for the SOA
admin server, and enter the name of the domain for WLS Domain.

Sending and Receiving Messages using the User Messaging Service Java APl 17-23

Creating a New Application Server Connection

6. Click Next.
7. On the Test screen click Test Connection.
8. Verify that the message “Success!” appears.

The Application Server Connection has been created.

17-24 Developer's Guide

18

Parlay X Web Services Multimedia
Messaging API

This chapter describes the Parlay X Multimedia Messaging Web Service that is
available with Oracle User Messaging Service and how to use the Parlay X Web
Services Multimedia Messaging API to send and receive messages through Oracle
User Messaging Service.

Note: To learn about the architecture and components of Oracle User
Messaging Service, see Oracle Fusion Middleware Getting Started with
Oracle SOA Suite.

This chapter contains the following sections:

= Section 18.1, "Overview of Parlay X Messaging Operations"

= Section 18.2, "Send Message Interface"

= Section 18.3, "Receive Message Interface"

= Section 18.4, "Oracle Extension to Parlay X Messaging"

= Section 18.5, "Parlay X Messaging Client API and Client Proxy Packages"
= Section 18.6, "Sample Chat Application with Parlay X APIs"

Note: Oracle User Messaging Service also ships with a Java client
library that implements the Parlay X APL

18.1 Overview of Parlay X Messaging Operations

The following sections describe the semantics of each of the supported operations
along with implementation-specific details for the Parlay X Gateway. The following
tables, describing input/output message parameters for each operation, are taken
directly from the Parlay X specification.

Oracle User Messaging Service implements a subset of the Parlay X 2.1 Multimedia
Messaging specification. Specifically Oracle User Messaging Service supports the
SendMessage and ReceiveMessage interfaces. The MessageNotification and
MessageNotificationManager interfaces are not supported.

Parlay X Web Services Multimedia Messaging APl 18-1

Send Message Interface

18.2 Send Message Interface

The SendMessage interface allows you to send a message to one or more recipient
addresses by using the sendMessage operation, or get the delivery status for a
previously sent message by using the getMessageDeliveryStatus operation. The
following requirements apply:

= A recipient address must conform to the address format requirements of Oracle
User Messaging Service (in addition to being a valid URI). The general format is
<delivery_type>:<protocol_specific_address>, such as "email:user@domain",
"sms:5551212", or im:user@jabberdomain".

s Certain characters are not allowed in URISs; if it is necessary to include them in an
address they can be encoded or escaped. Refer to the Oracle Fusion Middleware
User Messaging Service API Reference for java.net.URI for details on how to create
a properly encoded URL

= While the WSDL specifies that sender addresses can be any string, Oracle User
Messaging Service requires that they be valid Messaging addresses.

s Oracle User Messaging Service requires that you specify sender addresses on a
per-delivery type basis. So for a sender address to apply to a recipient of a given
delivery type, say EMAIL, the sender address must also have delivery type of
EMAIL. Since this operation allows multiple recipient addresses but only one
sender address, the sender address only applies to the recipients with the same
delivery type.

» Oracle User Messaging Service does not support the MessageNotification
interface, and therefore does not produce delivery receipts, even if a
receiptRequest is specified. In other words, the receiptRequest parameter is
ignored.

18.2.1 sendMessage Operation

Table 18-1 describes message descriptions for the sendMessageRequest input in the
sendMessage operation.

Table 18-1 sendMessage Input Message Descriptions

Part Name Part Type Optional Description

addresses xsd:anyURI[0..unbounded] No Destination address for this
Message.

senderAddress xsd:string Yes Message sender address. This

parameter is not allowed for all
3rd party providers. The Parlay X
server needs to handle this
according to a SLA for the specific
application and its use can
therefore result in a
PolicyException.

subject xsd:string Yes Message subject. If mapped to
SMS this parameter is used as the
senderAddress, even if a separate
senderAddress is provided.

priority MessagePriority Yes Priority of the message. If not
present, the network assigns a
priority based on the operator
policy.Charging to apply to this
message.

18-2 Developer's Guide

Receive Message Interface

Table 18-1 (Cont.) sendMessage Input Message Descriptions

Part Name Part Type Optional Description

charging common: Yes Charging to apply to this message.
ChargingInformation

receiptRequest common:SimpleReference Yes Defines the application endpoint,

interfaceName and correlator that
is used to notify the application
when the message has been
delivered to a terminal or if
delivery is impossible.

Table 18-2 describes sendMessageResponse output messages for the sendMessage
operation.

Table 18-2 sendMessageResponse Output Message Descriptions

Part Name Part Type Optional Description

result xsd:string No This correlation identifier is used
in a getMessageDeliveryStatus
operation invocation to poll for
the delivery status of all sent
messages.

18.2.2 getMessageDeliveryStatus Operation

The getMessageDeliveryStatus operation gets the delivery status for a
previously sent message. The input "requestldentifier” is the "result" value from a
sendMessage operation. This is the same identifier that is referred to as a Message ID
in other Messaging documentation.

Table 18-3 describes the getMessageDeliveryStatusRequest input messages for
the getMessageDeliveryStatus operation.

Table 18-3 getMessageDeliveryStatusRequest Input Message Descriptions

Part Name Part Type Optional Description

registrationldentifier = xsd:string No Identifier related to the delivery
status request.

Table 18—4 describes the getMessageDeliveryStatusResponse output messages for the
getMessageDeliveryStatus operation.

Table 18-4 getMessageDeliveryStatusResponse Output Message Descriptions

Part Name Part Type Optional Description
result DeliveryInformation Yes An array of status of the messages
[0..unbounded] that were previously sent. Each

array element represents a sent
message, its destination address
and its delivery status.

18.3 Receive Message Interface

The ReceiveMessage interface has three operations. The getReceivedMessages
operation polls the server for any messages received since the last invocation of
getReceivedMessages. Note that getReceivedMessages does not necessarily
return any message content; it generally only returns message metadata.

Parlay X Web Services Multimedia Messaging APl 18-3

Receive Message Interface

The other two operations, getMessage and getMessageURIs, are used to retrieve
message content.

18.3.1 getReceivedMessages Operation

This operation polls the server for any received messages. Note the following
requirements:

The registration ID parameter is a string that identifies the endpoint address for
which the application wants to receive messages. See the discussion of the
ReceiveMessageManager interface for more details.

The Parlay X specification says that if the registration ID is not specified, all
messages for this application must be returned. However, the WSDL says that the
registration ID parameter is mandatory. Therefore our implementation treats the
empty string (") as the "not-specified" value. If you call getReceivedMessages with
the empty string as your registration ID, you get all messages for this application.
Therefore the empty string is not an allowed value of registration ID when calling
startReceiveMessages.

According to the Parlay X specification, if the received message content is "pure
ASCII text", then the message content is returned inline within the
MessageReference object, and the messageldentifier (Message ID) element is null.
Our implementation treats any content with Content-Type "text/plain”, and with
encoding "us-ascii" as "pure ASCII text" for the purposes of this operation. As per
the MIME specification, if no encoding is specified, "us-ascii" is assumed, and if no
Content-Type is specified, "text/plain" is assumed.

The priority parameter is currently ignored.

Table 18-5 describes the getReceivedMessagesRequest input messages for the
getReceivedMessages operation.

Table 18-5 getReceivedMessagesRequest Input Message Descriptions

Part Name Part Type Optional Description

registrationldentifier =~ xsd:string No Identifies the off-line provisioning

step that enables the application to
receive notification of Message
reception according to the
specified criteria.

priority MessagePriority Yes The priority of the messages to

poll from the Parlay X gateway.
ALl messages of the specified
priority and higher get retrieved.
If not specified, all messages shall
be returned, that is, the same as
specifying "Low."

Table 18-6 describes the getReceivedMessagesResponse output messages for the
getReceivedMessages operation.

18-4 Developer's Guide

Receive Message Interface

Table 18-6 getReceivedMessagesResponse Output Message Descriptions

Part Name Part Type Optional Description

registrationldentifier ~ xsd:string No Identifies the off-line provisioning
step that enables the application to
receive notification of Message
reception according to the
specified criteria.

priority MessagePriority Yes The priority of the messages to
poll from the Parlay X gateway:.
ALl messages of the specified
priority and higher get retrieved.
If not specified, all messages shall
be returned. This is the same as
specifying Low.

18.3.2 getMessage Operation

The getMessage operation retrieves message content, using a message ID from a
previous invocation of getReceivedMessages. There is no SOAP body in the response
message; the content is returned as a single SOAP attachment.

Table 18-7 describes the getMessageRequest input messages for the getMessage
operation.

Table 18-7 getMessageRequest Input Message Descriptions

Part Name Part Type Optional Description

messageRefldentifier xsd:string No The identity of the message.

There are no getMessageResponse output messages for the getMessage operation.

18.3.3 getMessageURIs Operation

The getMessageURIs retrieves message content as a list of URIs. Note the following
requirements:

s These URIs are HTTP URLs which can be dereferenced to retrieve the content.

» If the inbound message has a Content-Type of "multipart”, then multiple URIs are
returned, one per sub-part. If the Content-Type is not "multipart”, then a single
URI is returned.

» Per the Parlay X specification, if the inbound messages a body text part, defined as
"the message body if it is encoded as ASCII text", it is returned inline within the
MessageURI object. For the purposes of our implementation, we define this
behavior as follows:

— If the message's Content-Type is "text/*" (any text type), and if the charset
parameter is "us-ascii", then the content is returned inline in the MessageURI
object. There is no URI returned since there is no content other than what is
returned inline.

— If the message's Content-Type is "multipart/" (any multipart type), and if the
first body part's Content-Type is "text/" with charset "us-ascii", then that part
is returned inline in the MessageURI object, and there is no URI returned
corresponding to that part.

Parlay X Web Services Multimedia Messaging APl 18-5

Oracle Extension to Parlay X Messaging

— Per the MIME specification, if the charset parameter is omitted, the default
value of "us-ascii" is assumed. If the Content-Type header is not specified for
the message, then a Content-Type of "text/plain" is assumed.

Table 18-8 describes the getMessageURIsRequest input messages for the
getMessageURIs operation.

Table 18-8 getMessageURIsRequest Input Message Descriptions

Part Name Part Type Optional Description
messageRefldentifier xsd:string No The identity of the message to
retrieve.

Table 18-9 describes the getMessageURIsResponse output messages for the
getMessageURIs operation.

Table 18-9 getMessageURIsResponse Output Message Descriptions

Part Name Part Type Optional Description

result MessageURI No Contains the complete message,
consisting of the textual part of
the message, if such exists, and a
list of file references for the
message attachments, if any.

18.4 Oracle Extension to Parlay X Messaging

The Parlay X Messaging specification leaves certain parts of the messaging flow
undefined. The main area that is left undefined is the process for binding a client to an
address for synchronous receiving (through the ReceiveMessage interface).

Oracle User Messaging Service includes an extension interface to Parlay X to support
this process. The extension is implemented as a separate WSDL in an Oracle XML
namespace to indicate that it is not an official part of Parlay X. Clients can choose to
not use this additional interface or use it in some modular way such that their core
messaging logic remains fully compliant with the Parlay X specification.

18.4.1 ReceiveMessageManager Interface

ReceiveMessageManager is the Oracle-specific interface for managing client
registrations for receiving messages. Clients use this interface to start and stop
receiving messages at a particular address. (This is analogous to the concept of
registering /unregistering access points in the Messaging API).

18.4.1.1 startReceiveMessage Operation

Invoking this operation allows a client to bind itself to a given endpoint for the
purpose of receiving messages. Note the following requirements:

= An endpoint consists of an address and an optional "criteria", defined by the
Parlay X specification as the first white space-delimited token of the message
subject or content.

= In addition to the endpoint information, the client also specifies a "registration ID"
when invoking this operation; this ID is just a unique string which can be used
later to refer to this particular binding in the stopReceiveMessage and
getReceivedMessages operations.

18-6 Developer's Guide

Parlay X Messaging Client API and Client Proxy Packages

= If an endpoint is already registered by another client application, or the
registration ID is already being used, a Policy Error results.

s Certain characters are not allowed in URIs; if it is necessary to include them in an
address they can be encoded/escaped. See the Oracle Fusion Middleware User
Messaging Service API Reference for java.net.URI for details on how to create a
properly encoded URI. For example, when registering to receive XMPP messages
you must specify an address such as "IM:jabber | user@example.com", however the
pipe "|" character is not allowed in URIs, and must be escaped before submitting
to the server.

s There is no guarantee that the server can actually receive messages at a given
endpoint address. That depends on the overall configuration of Oracle User
Messaging Service, particularly the Messaging drivers that are deployed in the
system. No error is indicated if a client binds to an address where the server
cannot receive messages.

The startReceiveMessage operation has the following inputs and outputs:
Table 18-10 describes the startReceiveMessageRequest input messages for the

startReceiveMessage operation.

Table 18-10 startReceiveMessageRequest Input Message Descriptions

Part Name Part Type Optional Description
registrationldentifier =~ xsd:string No A registration identifier.
messageService xsd:anyURI No Message Service Activation
ActivationNumber Number.

criteria xsd:string Yes Descriptive string.

There are no startReceiveMessageResponse output messages for the
startReceiveMessage operation.

18.4.1.2 stopReceiveMessage Operation

Invoking this operation removes the previously-established binding between a client
and a receiving endpoint. The client specifies the same registration ID that was
supplied when startReceiveMessage was called in order to identify the endpoint
binding that is being broken. If there is no corresponding registration ID binding
known to the server for this application, a Policy Error results.

Table 18-11 describes the stopReceiveMessageRequest input messages for the
stopReceiveMessage operation.

Table 18-11 stopReceivelMessageRequest Input Message Descriptions

Part Name Part Type Optional Description

registrationldentifier =~ xsd:string No A registration identifier.

There are no stopReceiveMessageResponse output messages for the
stopReceiveMessage operation.

18.5 Parlay X Messaging Client API and Client Proxy Packages

While it is possible to assemble a Parlay X Messaging Client using only the Parlay X
WSDL files and a Web Service assembly tool, we also provide pre-built Web Service
stubs and interfaces for the supported Parlay X Messaging interfaces. Due to difficulty

Parlay X Web Services Multimedia Messaging APl 18-7

Sample Chat Application with Parlay X APIs

in assembling a Web Service with SOAP attachments in the style mandated by Parlay
X, we recommend the use of the provided API rather than starting from WSDL.

For a complete listing of the classes available in the Parlay X Messaging AP]I, see the
Oracle Fusion Middleware User Messaging Service API Reference. The main entry
points for the API are through the following client classes:

= oracle.sdp.parlayx.multimedia_messaging.send.SendMessageClient
s oracle.sdp.parlayx.multimedia_messaging.receive.ReceiveMessageClient

= oracle.sdp.parlayx.multimedia_messaging.extension.receive_manager.
ReceiveMessageManager

Each client class allows a client application to invoke the operations in the
corresponding interface. Additional Web Service parameters such as the remote
gateway URL and any required security credentials, are provided when an instance of
the client class is constructed. See the Oracle Fusion Middleware User Messaging
Service API Reference for more details. The security credentials are propagated to the
server using standard WS-Security headers, as mandated by the Parlay X specification.

The general process for a client application is to create one of the client classes above,
set the necessary configuration items (endpoint, username, password), then invoke
one of the business methods (for example SendMessageClient.sendMessage(), etc). For
examples of how to use this API, see the Messaging samples on Oracle Technology
Network (OTN), and specifically usermessagingsample-parlayx-src.zip.

18.6 Sample Chat Application with Parlay X APls

This chapter describes how to create, deploy and run the sample chat application with
Parlay X APIs provided with Oracle User Messaging Service on OTN.

Note: To learn about the architecture and components of Oracle User
Messaging Service, see Oracle Fusion Middleware Getting Started with
Oracle SOA Suite.

This chapter contains the following sections:

m Section 18.6.1, "Overview"

= Section 18.6.2, "Running the Pre-Built Sample"
» Section 18.6.3, "Testing the Sample"

= Section 18.6.4, "Creating a New Application Server Connection"

18.6.1 Overview

This sample demonstrates how to create a Web-based chat application to send and
receive messages through e-mail, SMS, or IM. The sample uses standards-based Parlay
X Web Service APIs to interact with a User Messaging server. The sample application
includes web service proxy code for each of three Web service interfaces: the
SendMessage and ReceiveMessage services defined by Parlay X, and the
ReceiveMessageManager service which is an Oracle extension to Parlay X. You must
define an Application Server connection in JDeveloper, and deploy and run the
application.

The application is provided as a pre-built Oracle JDeveloper project that includes a
simple web chat interface.

18-8 Developer's Guide

Sample Chat Application with Parlay X APIs

18.6.1.1 Provided Files

The following files are included in the sample application:

= Project — the directory containing the archived Oracle JDeveloper project files.

s Readme.txt.

» Release notes

18.6.2 Running the Pre-Built Sample
Perform the following steps to run and deploy the pre-built sample application:

1. Open the usermessagingsample-parlayx.jws (contained in the .zip file) in Oracle
JDeveloper.

In the Oracle JDeveloper main window the project appears.

Figure 18-1 Oracle JDeveloper Main Window

® Oracle JDeveloper 11g Development Build - usermessagingsample-parlayx.jws : usermessagingsample-parlayx-web.jpr

File Edit View Search Navigate Build Run Refactor Versioning Tools Window Help

foEg HDe YEh 0 -0 5- Hdddw- »-%- (88~)
(&l Application Navigator (9] [BResource Palette]
[usermessagngsample-dariayx - El- @-(@n- @)
= Prajects Bl V-3~ atogs

i My Catalogs
o
=3 Application Sources
[0l oracle.sdp.messaging
[=-+/fl) sample
=1 parlayx
i8] configserviet java
.8 ReceiveManagerserviet jav]
- (@] Receiveserviet.java
------ [&] sendservietjava
=23 Web Content
=[] WEB-INF
Pl weboml
(@] indeschiml
(@] main.himl
i...[gy styleshest.css

~ IDE Cannections
a Application Server

[ElMessages - Log =

Application Resources
b Data Contrals
I+ Recently Opened Files

= Usermessagingsample-parlayx-web.jpr... (=]

Messages Extensions 4=

2. In Oracle JDeveloper, select File > Open..., then navigate to the directory above
and open workspace file "usermessagingsample-parlayx.jws".

This opens the precreated JDeveloper application for the Parlay X sample
application. The application contains one Web module. All of the source code for

the application is in place. You must configure the parameters that are specific to
your installation.

3. Satisfy the build dependencies for the sample application by adding a library to
the Web module.

1. In the Application Navigator, right click on web module
usermessagingsample-parlayx-war, and select Project Properties.

2. In the left pane, select Libraries and Classpath.

Parlay X Web Services Multimedia Messaging APl 18-9

Sample Chat Application with Parlay X APIs

Figure 18-2 Adding a Library

% Project Properties - C:\4_Raj\PARLAY 2\usermessagingsample-parlayx\usermessagingsample-parlayx-... [

(& || Libraries and Classpath
[Project Source Paths () Use Custom Settings
[+ ADF Model (%) Use Project Settings

----- ADF View
- Ant Java SE Version:
[#-- Business Components | 1.6.0_10 {Default) | [Change. ..]
[#-- Compiler

P . Classpath Entries:
----- Dependencies
_____ Deployment Export Dﬂescription Add Library...
J5F 1.2

""" El8 Moduis 0 Add JAR Directary. ..

----- Extension O mmst 1'2_
[Javadoc SSRRUNGTE Remove

Ii Java EE 1.5 API

----- Java EE Application

----- JSP Tag Libraries =
----- J5P Visual Editor

Maove Up

o
s

] [Cancel

3. Click Add Library.

Figure 18-3 Adding a Library

® Add Library

(@ ®
Libraries:

=
23 user
BT Extension

[Mew. ..][Load Dir...]

[Help] I QK I [Cancel]

4. Click New to define a new library.

5. For Library Name, enter "oracle.sdp.client".

18-10 Developer's Guide

Sample Chat Application with Parlay X APIs

Figure 18-4 Defining the Library

® Create Library

Library Name: | oracle.sdp. client |

Location: | Project - |
[Deployed by Default

%2 Source Path:
.12 Doc Path:

| addEntry.. |

| Help | | OK J | Cancel |

6. With "Class Path" selected, select Add Entry.

7. Navigate to <JDeveloper_Base_Directory>/communications/modules/
oracle.sdp.client_11.1.1, and select jar file "sdpclient.jar".

Figure 18-5 Selecting sdpclient.jar

® Select Path Entry

Location: |fﬁ C:\Oracle\MiddlewareIJDEVBETA_5203_NOV 12th\jdeveloper \communicationsmodules\eracle. sdp. client_11. 1. 1sdpdlient.jar v| ﬁ

-3 orade.sdp.dient_11.1.1
é -3 commons-codec-1. 3. jar
-3 commons-httpelient-3. 1.jar
-39 contactmanagement.jar
-39 messagenotification.war
-3 messagenotificationlistener jar
E-33 parlayx.jar
33 presencenotification. war
#-33 presencenotificationlistener jar
£
£
£
£
£
£

Wark

@)

Home

733 presencerules.jar

-3 resourcelist.jar

o3

i-#3 sdpparlayxnotification, zip
-3 wdmc.jar

i-(#3 xdmcwsclient. jar

-] orace. sdp. messaging.ejb_11.1.1
-7 oracle.sdp.messaging_11.1.1
-7 dvt

Directory name: | |

Help Select J | Cancel |

8. Click OK/Accept in all popups to create the library and add it as a
dependency to the sample Web module.

4. Create an Application Server Connection by right-clicking the project in the
navigation pane and selecting New. Follow the instructions in Section 18.6.4,
"Creating a New Application Server Connection".

Parlay X Web Services Multimedia Messaging APl 18-11

Sample Chat Application with Parlay X APIs

5. Deploy the project by selecting the usermessasgingsample-parlayx project,
Deploy, usermessasgingsample-parlayx, to, and SOA_server (Figure 18-6).

Figure 18-6 Deploying the Project

Select Deployment Targets

Deploy to Server Instance(s):

dminServer

| Help | | Ok | | Cancel |

6. Verify that the message "Build Successful" appears in the log.

7. Enter the default revision and click OK.

8. Verify that the message "Deployment Finished" appears in the deployment log.
You have successfully deployed the application.

Before you can run the sample you must configure any additional drivers in
Oracle User Messaging Service and configure a default device for the user
receiving the message in User Messaging Preferences, as described in the
following sections.

Note: Refer to "Configuring Notifications" in the Oracle Fusion
Middleware SOA Developer’s Guide for more information.

18.6.3 Testing the Sample

Perform the following steps to run and test the sample:

1. Open a Web browser.

2. Navigate to the URL of the application as follows, and log in:
http:/ / <host>:<port>/usermessagingsample-parlayx/

The "Messaging Parlay X Sample” Web page appears (Figure 18-7). This page
contains navigation tabs and instructions for the application.

18-12 Developer's Guide

Sample Chat Application with Parlay X APIs

Figure 18-7 Messaging Parlay X Sample Web Page

File

@

User Messaging Parlay X Chat

Configure | Manage | Chat | Help

ser Messaging Parlay X Sample - Mozilla Firefox

Edit View History Bookmarks Tools Help

- - @ {2} | nitps/jstads6.us.orack.com:24784usermessagingsample-parlayx/ [~ »] Q-] 4]

This

O00 DN

sample application allows you to send and receive messages to multiple channels using Parlay X web services. To use it, perform the following steps:

. Click on the "Configure” link above.

_ Update and save correct web service endpoints and security credentials.

. Click on the "Manage" link above.

. Enter an address at which to receive messages, and a unique string to identify this registration and click "Start".

Click on the "Chat" link above.

Use the form to send messages to any recipient address

Refresh the "Received Messages" area to display any newly-received messages

. Click on "Start/Stop Receiving Messages

. To stop receiving messages at a given address, enter the registration ID corresponding to that address (from Step 4), and click "Stop".

Dane

3.

Click Configure and enter the following values (Figure 18-8):

= Specify the Send endpoint. For example,
http:/ /localhost:port/sdpmessaging / parlayx/SendMessageService

= Specify the Receive endpoint. For example,
http:/ /localhost:port/sdpmessaging / parlayx/ReceiveMessageService

» Specify the Receive Manager endpoint. For example,

http:/ /localhost:port/sdpmessaging / parlayx/ReceiveMessageMessageServic
e

= Specify the Username and Password.

= Specify a Policy (required if the User Messaging Service instance has WS
security enabled).

Parlay X Web Services Multimedia Messaging APl 18-13

Sample Chat Application with Parlay X APIs

Figure 18-8 Configuring the Web Service Endpoints and Credentials

Fle Edit View Hstory Bookmarks Took Help

<f‘:| - - @ ﬁ_l‘ ‘|_| http://stack36,us.orade. com: 24784 /usermessagingsample-parlayx/config |'| l}] "l

User Messaging Parlay X Chat

Configure | Manage | Chat | Help

Update Web Senice Endpoints and Credentials:

Send endpoint: ‘http:h’loca\host:ﬂUClvsdpmessag\ng."par\ayx!SendMessageSeMce ‘
Receive endpoint: |http:lf|ocalhost:8ﬂﬂ1!sdpmessagmg.’par\ayx.’Rece\veMessageSeMce |
Receive Manager endpoint: |http:l!lDcalhost:8UU1!sdpmessagmglparlayx}ReceweMessageManagerSeMce
Usemame: test user1
Password: | - \
Policies: | [

Save

Dane

4. Click Save.
5. Click Manage.

6. Enter a Registration ID to specify the registration and address at which to receive

messages (Figure 18-9). You can also use this page to stop receiving messages at

an address.

18-14 Developer's Guide

Sample Chat Application with Parlay X APIs

Figure 18-9 Specifying a Registration ID

) User Messaging Parlay X Sample - Mozilla Firefox

Fle Edit View History Bookmarks Tooks Help

<f‘:| - - @ ﬁ_l‘ |_1 http://stack36,us.orade.com: 24784/usermessagingsample-parlayx/receivemanager |“ D’] "l ‘“\]

User Messaging Parlay X Chat

Configure | Manage | Chat | Help

Register an address at which to receive messages:

Registration ID: ftest_IM | Address: [M-ask@aracle com | Keyword: | |

Stop receiving on a previously registered address:

Registration ID: | |

Done

7. Click Start.
Verify that the message "Registration operation succeeded" appears.
8. Click Chat (Figure 18-10).
9. Enter recipients in the To: field in the format illustrated in Figure 18-10.
10. Enter a message.
11. Click Send.

12. Verify that the message is received.

Parlay X Web Services Multimedia Messaging APl 18-15

Sample Chat Application with Parlay X APIs

Figure 18-10 Running the Sample

) User Messaging Parlay X Sample - Mozilla Firefox

Eile Edit View Higtory Bookmarks Tools Help

@-»-@& £} | [ntipsjjstack6.us.oracke.com:24784jusermessagingsample-pariaysinain. il [=]#] [G-]

User Messaging Parlay X Chat

Configure | Manage | Chat | Help

To:| | Message:

Sent Messages:

[to: IM:paul@oraclecom] this is a test

Received Messages: [Refresh

[from IM-paul@oraclecom, to: IM-ask@oracle.com]
test back

Done

18.6.4 Creating a New Application Server Connection

Perform the following steps to create a new Application Server Connection.

1. Create a new Application Server Connection by right-clicking the project and
selecting New, Connections, and Application Server Connection (Figure 18-11).

Figure 18-11 New Application Server Connection

RE stbcz15:1 (aimel)

& Applications Actions %@Q g S’ @
> Oracle JDeveloper 11g Development Build - SendMessageApp.jws : SendMessageProj.jpi -0Ox
File Edit View Sear{ > New Gallery X
=)
cEg 9e [“AllTechnalogies | Current Project Technologies | e
= -
& application Navigator This list is filtered according 1o the current project's selected technologies. ooent 2] &
SendMessageApp ‘@) h
~ Projects o
=3 SendMessagerroj Categories: Items: [] Showi All Descriptions
B[504 Content | Jreuins
(3 testsuites - General @ Application Server Connection | Rctiwities and Compo.
= ~-Applications Launches the Create Application Server Connection wizard, which e ~
B3 =sd (o s guiddes you in the creation of a new connection to andalone OC4), <farm
[&5 BPELPro) - Deployment Descriptors BEA WebLogic, etc
{23 xsl ..Deployment Profiles I Motification
Thiz option is always enabled. 1
1 Application Resources projeas b y .] »
boData.Controls— =150 Tier (& BAM Connection - I3
I+ Recently Dpened Files | - Enterprise Scheduler Metadata ErVICes
[&, BPA Connection
~-Service Components
= sendMessagePro | L. Transformations B cvs Connection rty Inspector =]
LAl ltems = T
(&) Database Connection r | (88 foo |
(R File System Connection
"H SOA-MDS Connection
[Eh subversion Repositary Connection L
[T 11nni Danictin Cannac tion Ll
T
Design | Source | History I

18-16 Developer's Guide

Sample Chat Application with Parlay X APIs

2.
3.

Name the connection “SOA_server” and click Next (Figure 18-12).
Select "WebLogic 10.3" as the Connection Type.

Figure 18-12 New Application Server Connection

B stbcz15:1 (aimed)

=] Applications Actions %@Qgs’ @
—
=
File Edit Yiew Search
SEG 9 e N
= Name & Type
App\icauon Mavigator
SendMessagespp
- Specify a unique name and type for the connection. The name must be avalid Java
==BIDIZCLS &l)T'\ Name & Type identifier. [5]
= [3] sendMessageProj Authentication BPA Blue Print
-3 s0A Cantert T Create connection in: &S,
B testsuites BPEL Activities and Compo...
5] xed T Application Resources (3) Resource Palette I I~
xs Q r
© L2, bRk 4] [Transform
i D rocessll o Cannection Name:]
xsl Il User Motification F
i SOA_jnanaged_server .
b Application Resources | | H voice d
I Data Controls Canmection Tyme: 53
b_Recently Opened Files = e BPEL Services
eblogic 10.3 - \
*= SendMessagePro. T Property Inspector E]|
b E /(e
Gl (aad (aned
Zoom:| 100[%] 3 =N l‘
1 BPEL editor i Hea

Enter the authentication information. The typical values are:

Username: weblogic
Password: weblogic

On the Connection screen, enter the hostname, port and SSL port for the SOA
admin server, and enter the name of the domain for WLS Domain.

Click Next.
On the Test screen click Test Connection.
Verify that the message “Success!” appears.

The Application Server Connection has been created.

Parlay X Web Services Multimedia Messaging APl 18-17

Sample Chat Application with Parlay X APIs

18-18 Developer's Guide

19

User Messaging Preferences

This chapter describes the User Messaging Preferences that are packaged with Oracle
User Messaging Service. It describes how to work with messaging channels and to
create contact rules using messaging filters.

Note: To learn about the architecture and components of Oracle User
Messaging Service, see Oracle Fusion Middleware Getting Started with
Oracle SOA Suite.

This chapter contains the following sections:

s Section 19.1, "Introduction”

= Section 19.2, "How to Manage Messaging Channels"
m Section 19.3, "Creating Contact Rules using Filters"

= Section 19.4, "Configuring Settings"

19.1 Introduction

User Messaging Preferences allows a user who has access to multiple channels
(delivery types) to control how, when, and where they receive messages. Users define
filters, or delivery preferences, that specify which channel a message must be
delivered to, and under what circumstances. Information about a user's devices and
filters are stored in any database supported for use with Oracle Fusion Middleware.

For an application developer, User Messaging Preferences provide increased flexibility.
Rather than an application needing business logic to decide whether to send an email
or SMS message, the application can just send to the user, and the message gets
delivered according to the user's preferences.

Since preferences are stored in a database, this information is shared across all
instances of User Messaging Preferences in a domain.

The oracle.sdp.messaging.userprefs package contains the User Messaging
Preferences API classes. For more information, refer to the Oracle Fusion Middleware
User Messaging Service API Reference.

19.1.1 Terminology

User Messaging Preferences defines the following terminology:
s Channel: a physical channel, such as a phone, or PDA.

s Channel address: one of the addresses that a channel can communicate with.

User Messaging Preferences 19-1

Introduction

Filters: a set of notification delivery preferences.

System term: a pre-defined business term that cannot be extended by the
administrator.

Business term: a rule term defined and managed by the system administrator
through Enterprise Manager. Business terms can be added, defined, or deleted.

Rule term: a system term or a business term.
Operators: comparison operators equals, does not equal, contains, or does not contain.
Facts: data passed in from the message to be evaluated, such as time sent, or sender.

Rules Engine: the User Messaging Preferences component that processes and
evaluates filters.

Channel: the transport type, for example, e-mail, voice, or SMS.
Comparison: a rule term and the associated comparison operator.

Action: the action to be taken if the specified conditions in a rule are true, such as
Broadcast to All, Failover, or Do not Send to Any Channel.

19.1.2 Configuration of Notification Delivery Preferences

User Messaging Preferences allows configuration of notification delivery preferences
based on the following:

a set of well-defined rule terms (system terms or business terms)

a set of channel and the corresponding addresses supported by Oracle User
Messaging Service

a set of User Messaging Preferences filters that are transparently handled by a
rules engine

One use case for notification delivery preference is for bugs entered into a bug tracking
system. For example, user Alex wants to be notified through SMS and EMAIL channels
for bugs filed against his product with priority = 1 by a customer type = Premium. For
all other bugs with priority > 1, he only wants to be notified by EMAIL. Alex’s
preferences can be stated as follows:

Example 19-1 Notification Delivery Preferences

Rule (1): if (Customer Type = Premium) AND (priority = 1) then notify [Alex] using

SMS and EMAIL.

Rule (2): if (Customer Type = Premium) AND (priority > 1) then notify [Alex] using
EMAIL.

A runtime service, the Oracle Rules Engine, evaluates the filters to process the
notification delivery of user requests.

19.1.3 Delivery Preference Rules

A delivery preference rule consists of rule comparisons and rule actions. A rule
comparison consists of a rule term (a system term or a business term) and the
associated comparison operators. A rule action is the action to be taken if the specified
conditions in a rule are true.

19-2 Developer's Guide

Introduction

19.1.3.1 Data Types

Table 19-2 lists data types supported by User Messaging Preferences. Each system
term and business term must have an associated data type, and each data type has a
set of pre-defined comparison operators. Administrators cannot extend these
operators.

Table 19-1 Data Types Supported by User Messaging Preferences

Comparison

Data Type Operators Supported Values

Date <, >, between, <=,>= Date is accepted as a "java.util.Date" object or
"String" representing the number of
milliseconds since the standard base time
known as "the epoch”, namely January 1, 1970,
00:00:00 GMT (in essence, the value from
java.util.Date.getTime() or
java.util.Calendar.getTime()).

Time ==, |=, between A 4-digit integer to represent time of the day
in HHMM format. First 2-digit is the hour in
24-hour format. Last 2-digit is minutes.

Number (Decimal) <, >, between, <=, >= A java.lang.Double object or a String
representing a floating decimal point number
with double precision.

String ==, =, contains, not Any arbitrary string.

contains

Note: The String data type does not support regular expressions.

The Time data type is only available to System Terms.

19.1.3.2 System Terms

Table 19-2 lists system terms, which are pre-defined business terms. Administrators
cannot extend the system terms.

Table 19-2 System Terms Supported by User Messaging Preferences

System Term Data Type Supported Values

Date Date Date is accepted as a "java.util.Date" object or
"String" representing the number of
milliseconds since the standard base time
known as "the epoch”, namely January 1, 1970,
00:00:00 GMT (in essence, the value from
java.util.Date.getTime() or
java.util.Calendar.getTime()).

Time Time A 4-digit integer to represent time of the day
in HHMM format. First 2-digit is the hour in
24-hour format. Last 2-digit is minutes.

19.1.3.3 Business Terms

Business terms are rule terms defined and managed by the system administrator
through Oracle Application Server 11g Enterprise Manager. For more information on
adding, defining, and deleting business terms, refer to Oracle Fusion Middleware
Administrator’s Guide for Oracle SOA Suite. A business term consists of a key, a data
type, an optional description, and an optional List of Values (LOV).

User Messaging Preferences 19-3

Introduction

Table 19-3 lists the pre-defined business terms supported by User Messaging
Preferences.

Table 19-3 Pre-defined Business Terms for User Messaging Preferences

Business Term Data Type
Organization String

Time Number (Decimal)
Priority String

Application String

Application Type String

Expiration Date Date

From String

To String

Customer Name String

Customer Type String

Status String

Amount Number (Decimal)
Due Date Date

Process Type String

Expense Type String

Total Cost Number (Decimal)
Processing Time Number (Decimal)
Order Type String

Service Request Type String

Group Name String

Source String
Classification String

Duration Number (Decimal)
User String

Role String

19.1.4 Rule Actions

For a given rule, a User Messaging Preferences user can define one of the following
actions:

= Broadcast to All: send a broadcast message to all channels in the broadcast
address list.

= Failover: Send a message serially to channels in the address list until one
successful message is sent. This means performing a send to the next channel
when the current channel returns a failure status. User Messaging Preferences
does not allow a user to specify a channel-specific status code or expiration time.

= Do not send to Any Channel: Do not send a message to any channel.

19-4 Developer's Guide

How to Manage Messaging Channels

Tip: User Messaging Preferences does not provide a filter action that
instructs "do not send to a specified channel." A best practice is to
specify only positive actions, and not negative actions in rules.

» Default address: if no action is defined, a message is sent to a default address, as
defined in the Messaging Channels page in Enterprise Manager.

19.2 How to Manage Messaging Channels

Any channel that a user creates is associated with that user’s system ID. In Oracle User
Messaging Service, channels represent both physical channels, such as mobile phones,

and also e-mail client applications running on desktops, and are configurable on the
The Messaging Channels tab (Figure 19-1).

Figure 19-1 Messaging Channels Tab

ORACLE User Messaging Preferences

Home | Help | Settings | Logout (@]

Messaging Channels SR

My Messaging Channels

Configure channels to receive vour notifications and alerts.

Lagged in as weblogic

Business Mabile

[Business Phone

SMS
WOICE

View Create 47 Edit 3§ Delete 54 Detach
Mame Type Address Default
(=] John Personal Email EMAIL johni@gmail. com
[52] Business Email EMAIL john.doe@oracle, com 7

16505066759
16505061254

o and/for its affiliates. all right:

The Messaging Channels tab enables users to perform the following tasks:

19.2.1 Creating a Channel

To create a channel:

1.

Click Create (Figure 19-2).

Figure 19-2 The Create Icon

2
3
4.
5

Enter a name for the channel in the Name field (Figure 19-3).

Select the channel’s transport type from the Type drop-down menu.

Enter the number or address appropriate to the transport type you selected.

Select the Default checkbox to set the channel as the default channel.

User Messaging Preferences 19-5

How to Manage Messaging Channels

Figure 19-3 Creating a Channel

ORACLE" User Messaging Preferences Home | Help | Settings | Logout ©
| & |
Messaging Channels “SEEEER NI

Logged in as weblogic
My Messaging Channels
Configure channels ko receive vour notifications and alerts,

Wiew v Create g Edit 3§ Delete i Detach
Mame z

[z Johin Personal Email

Add Channel

Defaulk

[z Business Email *Mame | John's Public Emai

L
*Type |EMAIL %
| @ BusinessPhone | * Address

john@msn. com
Default [7]5et as defaulk channel

Do not use this channel for BPEL User Motification or Hurman workFlow;
it is not stored in the idenkity management system and will not work,

oK Cancel

6. Click OK to create the channel. The channel appears on the Channels page. The
Channels page enables you to edit or delete the channel.

19.2.2 Editing a Channel

To edit a channel, select it and click Edit (Figure 19-4). The editing page appears for

the channel, which enables you to add or change the channel properties described in
Section 19.2.1, "Creating a Channel".

Figure 19—-4 Edit a Channel

ORACLE User Messaging Preferences

Home | Help | Settings | Logout &

& |
Messaging Channels “SEEEEER IS Logged in as weblogic

My Messaging Channels

Configure channels ko receive vour notifications and alerts,

Wiew » Create o7 Edit 3§ Delete L Detach
fiame Modify Channel x Default
[52] John Personal Email
[Johr's Public Email Mame | John's Public Email
[52) Business Email * Type] v
Business Mobile * Address | johni@msn, com
Fi Business Phone Default []Set as default channel

Do ot use this channel for BPEL User Motification or Human Workflow;

it is ot stored in the identity management syskem and will not work,

o4 Caniel

Certain channels are based on information retrieved from your user profile in the
identity store, and this address cannot be modified by User Messaging Preferences

(Figure 19-5). The only operation that can be performed on such as channel is to make
it the default.

19-6 Developer's Guide

Creating Contact Rules using Filters

Figure 19-5 Edit a Identity Store-Backed Channel

ORACLE" User Messaging Preferences

Home | Help | Settings | Logout (@]

Messaging Channels “SEEEEEE T

Logged in as weblogic
My Messaging Channels

Configure channels ko receive your notifications and alerts,

View = Create / Edit 3@ Delete % Detach

Iarme [Ture

Larrre: Default
[John Personal Email Maodify Channel

=2 Johm's Public Email

[Business Email

Business Mabile

Address | john.doe@oracle. com

& Business Fhone

This address can be changed only through identity management syskem,
Default Set as default channel

OK | Cancel

19.2.3 Deleting a Channel

To delete a channel, select it and click Delete (Figure 19-6).

Figure 19-6 The Delete Icon
®

19.2.4 Setting a Default Channel

E-Mail is the default for receiving notifications. To set another channel as the default,
select it, click Edit, and then click "Set as default channel." A check mark (Figure 19-7)

appears next to the selected channel, designating it as the default means of receiving
notifications.

Figure 19-7 The Default Icon
o

19.3 Creating Contact Rules using Filters

The Messaging Filters tab (Figure 19-8) enables users to build filters that specify not
only the type of notifications they wish to receive, but also the channel through which
to receive these notifications through a combination of comparison operators (such as
is equal to, is not equal to), business terms that describe the notification type, content or
source, and finally, the notification actions, which send the notifications to all channels,

block channels from receiving notifications, or send notifications to the first available
channel.

User Messaging Preferences 19-7

Creating Contact Rules using Filters

Figure 19-8 Messaging Filters Tab

ORACLE' User Messaging Preferences

Home | Help | Settings | Logout o
.

LB Messaging Filters

Logged in as weblogic
My Messaging Filters
Configure rules ko filker vour notification and alert messages.

View « Create 7 Edic 3§ Delete Ef Detach

Filter Mame Description
John's Filker Receive impartant messages from my boss
Travel Filker Handling messages during my travel

Figure 19-9 illustrates the creation of a filter called "Travel Filter", by a user named
"weblogic", for handling notifications regarding Customers during his travel.
Notifications that match all of the filter conditions are first directed to his "Business
Mobile" channel. If this channel becomes unavailable, Oracle User Messaging Service

transmits the notifications as e-mails since the next available channel selected is
"Business Email".

19-8 Developer's Guide

Creating Contact Rules using Filters

Figure 19-9 Creating a Filter

Home | Help | Settings | Logou: ©
-

ORACLE User Messaging Preferences

GEEEE LA EGEEE Messaging Filkers Logged in as weblogic

Your Reference System wednesday, January 14, 2009 10:30:12 &AM oK Cancel
Tirne: P3T ——
* Filter Mame: | Travel Filer
Description: | Handling messages during my travel
Condition
Makching: | All of the following conditions
Add Filker Condition: | Subject | | Conkains | * | Customer 4'
Atkribute Operator Value Yaluez {if required) Delete
Date Between 08/08/2008 10/28/2008 ®
Subject Contains Customer u
Action
Messaging Option: | Send to the First Awailable Channel v
Add Motification Channel: v
Channel Address Up Daown | Delete
Business Mabile 16505066769 & & ®
[Business Email john.doe@oracle.com {} & 8
04 Caneel

19.3.1 Creating Filters

To create a filter:

1. Click Create (Figure 19-2). The Create Filter page appears (Figure 19-9).
2. Enter a name for the filter in the Filter Name field.

3. Ifneeded, enter a description of the filter in the Description field.

4

Define the filter conditions using the lists and fields of the Condition section as
follows:

a. Select whether notifications must meet all of the conditions or any of the
conditions by selecting either the All of the following conditions or the Any
of the following conditions options.

b. Select the notification’s attributes. These attributes, or business components,
include

= Organization

» Time

m Priority

= Application

= Application Type

= Expiration Date

User Messaging Preferences 19-9

Creating Contact Rules using Filters

s From

n To

» Customer Name
s Customer Type
= Status

= Amount

s Due Date

m Process Type

= Expense Type

» Total Cost

» Processing Time
s Order Type

= Service Request Type
s Group Name

= Source

» Classification

s Duration

s User

= Role

5. Combine the selected condition type with one of the following comparison
operators:

s IsEqual To

s IsNot Equal To

s Contains

s Does Not Contain

If you select the Date attribute, select one of the following comparison operators and
then select the appropriate dates from the calendar application.

s IsEqual

= Is Not Equal

s Is Greater Than

s Is Greater Than or Equal
s IsLess Than

s Is Less Than or Equal

= Between

s Is Weekday

s Is Weekend

6. Add appropriate values describing the attributes or operators.

19-10 Developer's Guide

Configuring Settings

10.

11.

12.

Click Add (Figure 19-6) to add the attribute and the comparison operators to the
table.

Repeat these steps to add more filter conditions. To delete a filter condition, click
Delete (Figure 19-6).

Select one of the following delivery rules:

= Send Messages to all Selected Channels -- Select this option to send messages
to every listed channel.

= Send to the First Available Channel (Failover in the order) -- Select this
option to send messages matching the filter criteria to a preferred channel (set
using the up and down arrows) or to the next available channel.

= Send No Messages -- Select this option to block the receipt of any messages
that meet the filter conditions.

To set the delivery channels, select a channel from the Add Notification Channel list
and then click Add (Figure 19-2). To delete a channel, click Delete (Figure 19-6).

If needed, use the up and down arrows to prioritize channels. If available, the
top-most channel receives messages meeting the filter criteria if you select Send to
the First Available Channel.

Click OK to create the filter. Clicking Cancel discards the filter.

19.3.2 Editing a Filter

To edit a filter, first select it and then click Edit (Figure 19-9). The editing page appears
for the filter, which enables you to add or change the filter properties described in
Section 19.3.1, "Creating Filters".

19.3.3 Deleting a Filter
To delete a filter, first select it and then click Delete (Figure 19-6).

19.4 Configuring Settings

The Settings tab (Figure 19-10), accessed from the upper right area, enables users to set
the following parameters:

Accessibility Mode: select "Standard" or "Screen Reader."

Locale Source: select "From Identity Store" or "From Your Browser."

User Messaging Preferences 19-11

Configuring Settings

Figure 19-10 Configuring Settings

Home | Help | Settings | Logout &
=

ORACLE’ User Messaging Preferences

Logged in as weblogic

saging Channels | Messaging Filters

fccessibility (&) Standard
Mode () Screen Reader

Locale Source () From Identity Store
Fram Your Browser

MOTE: Changes made bo the settings are effective automatically and will be lost upon logging out or closing
the browser,

19-12 Developer's Guide

Part VII

Reference

This part contains reference information.

Part VIII contains the following appendices:

Appendix A, "Oracle User Messaging Service Applications"
Appendix B, "Profile Service Provider Configuration Reference (profile.xml)"
Appendix C, "Developing SIP Servlets Using Eclipse"

Appendix D, "Porting Existing Applications to Oracle WebLogic Communication
Services"

A

Oracle User Messaging Service Applications

This appendix describes how to create your own Oracle User Messaging Service
applications using the procedures and code provided.

This chapter includes the following sections:
» Section A.1, "Send Message to User Specified Channel"
s Section A.2, "Send Email with Attachments"

Note: For more information, and for code samples, refer to Oracle
Technology Network (http:/ /otn.oracle.com).

A.1 Send Message to User Specified Channel

This chapter describes how to build and run the Send Message to User Specified
Channel application provided with Oracle User Messaging Service.

Note: To learn about the architecture and components of Oracle User
Messaging Service, see Oracle Fusion Middleware Getting Started with
Oracle SOA Suite.

This chapter contains the following sections:

s Section A.1.1, "Overview"

= Section A.1.2, "Installing and Configuring SOA and User Messaging Service"
= Section A.1.3, "Building the Sample"

= Section A.1.4, "Creating a New Application Server Connection"

= Section A.1.5, "Deploying the Project”

= Section A.1.6, "Configuring User Messaging Preferences”

» Section A.1.7, "Testing the Sample"

A.1.1 Overview

The "Send Message to User Specified Channel" application demonstrates a BPEL
process that allows a message to be sent to a user through a messaging channel

specified in User Messaging Preferences. After you have configured a device and
messaging channel addresses for each supported channel and the default device,

Oracle User Messaging Service Applications A-1

Send Message to User Specified Channel

Oracle User Messaging Service routes the message to the user based on the preferred
channel setting that you configured.

A.1.1.1 Provided Files

The following files are included in the application:

= SendMessage.pdf — this document.

s Project — the directory containing Oracle JDeveloper project files.
s Readme.txt.

m Release notes

A.1.2 Installing and Configuring SOA and User Messaging Service

The installation of SOA and User Messaging Service has already been performed on
your hosted instance, and the sample users have already been seeded. Perform the
following steps to enable notifications in soa-infra, if not already done:

1. Using Enterprise Manager, go to "soa-infra" > (Menu) > Workflow Notification
Properties, and set Notification Mode to ALL.

2. Configure the User Messaging drivers if required as described in "Configuring
Drivers" in the Oracle Fusion Middleware SOA Administrator’s Guide.

3. Set the email address for user "weblogic" by using the JXplorer LDAP browser.
Refer to "Updating Addresses in Your LDAP User Profile".

4. Restart the server.

A.1.2.1 Updating Addresses in Your LDAP User Profile

Perform the following steps to set the email address for user "weblogic" by using the
JXplorer LDAP browser:

A.1.21.1 Installing Download and install [Xplorer from http://www.jxplorer.org.

A.1.21.2 Connecting 1.Set the embedded LDAP server admin password as follows:
= Login to the WLS Admin Console.
s Click on the domain name link > Security > Embedded LDAP.
= Enter a new "Credential” and "Confirm Credential" (for example, "weblogic").
n Click Save.
2. Connect from JXplorer by specifying the fields in Table A-1:

Table A-1 JXplorer Connection Fields

Field Value

Host WLS AdminServer hostname

Port WLS AdminServer port

Protocol LDAP v3

Security Level User + Password

User DN cn=Admin

Password <password> (for example, weblogic)

A-2 Developer's Guide

Send Message to User Specified Channel

A.1.21.3 Setting User Messaging Device Addresses in LDAP The following example uses
the user "weblogic". You may create and use additional users.

1. Expand the LDAP tree as follows: domain > myrealm > people > weblogic.
2. Click on the user entry.

3. Select the HTML view tab on the right.

4. Enter the desired Email Address and Mobile Phone Number.

5. Click Submit.

A.1.3 Building the Sample

Performing the following procedure of building the sample from scratch allows you to
learn how to add messaging to your SOA Composite Applications, and use User
Messaging Preferences.

1. Open Oracle JDeveloper 11g.

2. Create a new application by selecting File, New, General, Applications, and SOA
Applications. Click OK.

3. Enter the Application Name and click Next (Figure A-1).

Figure A-1 Creating a New Application and Project (1 of 3)

> Create SOA Application - Step 1 of 3 x

Name your application

Application Name:

el Application Name

|SendMessageApp |
Project Mame
/T\ Diirectary:
|,fscratch,faime1,,fjdeueI0perfmywnrkjSendMessageApp || Browwse. . |

Application Package Prefix:

| Help | | Mext = j| Einizh || Cancel

N

4. Enter the name for the project and click Next (Figure A-2).

Oracle User Messaging Service Applications A-3

Send Message to User Specified Channel

Figure A-2 Creating a New Application and Project (2 of 3)

- Create SOA Application - Step 2 of 3 x

Name your project

Project Mame: SendMessageProj
Application Name | | gePraj |
i Project Name Dirgctory:

|.fscrat-:hfaimel,fjdeveloperfmym-orkaendMessageApp|[Browse..]

o Project 504 Settings

(Project Technologies |/ Cenerated Components rAssnciated Libraries |

Selected:

ADF Busin omponents
ADF Desktop Integration
ADF Faces

ADF Library web Application Suppc

ADF Page Flow
£

ADF Swing

Ant

Databasze (Offline)

£ L

Technology Descriptian:

508 iz the Service Criented Architecture to build composite applications.

[< Back " Mext = }’ Finizh l’ Cancel]

5. Select the Composite With BPEL composite template (Figure A-3). Click Finish.

Figure A-3 Creating a New Application and Project (3 of 3)

- Create SOA Applica -Step3of 3 x

Configure SOA settings

Composite Mame:
Application Mame b =

SR SendhleszagePraoj

U Project SOA Settings Composite Template:

Empty Composite

h BPEL

Composite With Buzinezs Rule
Composite With Human Tazk
Composite With Mediator

Composite From Oracle BPA Blueprint

[Einizh i’ Cancel]

A-4 Developer's Guide

Send Message to User Specified Channel

6. In the Create BPEL Process window, enter the BPEL process name as
"SendMessage" (Figure A—4). Click OK.

Figure A-4 Creating the BPEL Process

> Create BPEL Process x

BFEL Frocess .1]

A BPEL process iz a service orchestration, used to describefexecute a business praocess {or ﬁvﬁ
large grained service), which iz implemented as a stateful service.

Mame; |Sendru1essage |

Mamespace: | http:/ fxmlns.oracle.com/SendMessagedpp/SendmMessageProj/BPELProcess1 |

Template: |?=§ Asynhchronous BPEL Process v| @

Service Mame; |bpe|pr0cessl_c|ient |

Expose as a S50AP service

Input: |{http:,.l',."xmIns.oracle.com,."SendMessageApp,.fSendMessagePrUj,."BF‘ELPrucessiI| Ck

Dutput: |{http:,.f,"xmIns.u:urau:le.u:u:um,.fSendMessageAppfSendMessagePru:uj,"BPELPmcessiI| Q&

| Help | | o] 4 || Cancel |

-

7. Verify that "Expose as a SOAP service" is checked. Click OK.
8. You have now created an empty and default BPEL application (Figure A-5).

In the Oracle JDeveloper main window you can view the following components of
the application under the Composite.xml tab.

s The left box is the definition of a Web Service client that is used to initiate an
application.

s The middle box is a BPEL process that creates and formats the message and
calls the messaging service.

Note: You must later create the messaging service resource that is
used to send the message when you create the User Notification BPEL
process (steps 13-19).

Oracle User Messaging Service Applications A-5

Send Message to User Specified Channel

Figure A-5 Empty and Default BPEL Application

Oracle JDeveloper 11g Development Build - SendMessageApp.jws : SendMessageProj.jpr : /scratch/aimel/jdeveloper/mywork/SendMes: [ul.4
File Edit View Search Navigate Build Run Refactor Versioning Tools Window Help
GoEa 90 XEh O-@ - F- hidu-b-&-14 (@8-
{ElApplication Mavigator) [ElsendMessagedppins |off composite.xml & BPELProcess Lbpel = amponent.. (= =
SendMessagempp ~E e Q@ B s) &a gPEL- (3) | [BPEL ~|
7 Projects Bl F-E- , 2) 3]
-5 sendMessagepra) Partner Links = Partner Links
553 50A Coment b BPA Blue Prints
F-E30 testsuites BPEL Activities and Compao...
[xsel = — Activities and Components —
-2 st v & BPEL Process
- g% BPELProcessl.bpel {88 Business Rule
| Application Resources > & Human Task
I Data Contrals
I Recently Opened Files zoom| 1005 ——FE———3 @ [bBPFLSenvices
— Design | Source | Histary A5
S=BPELProcesslbp... Thumbnail = _R =) B Property Inspector =
. BPEL - Log f S s
- # (@
i e BPELProcessl.bpel
v n Glﬁ :& / $€ HPath Type # of Errors
a [BPELProcessT bpel |/ forocess/sequence finvoke Invake 0
- Wariables |
[Message Types |
[3 correlation Sets |
w1 Schemas
[23) Partner Links
-0 B etivity Structure Errors: 0 Warnings: 1 Last Walidated On: 27 Ot 2008 2002553 CMT
[show Detailed Node Information | validation Errors [Log Messages || Search Results [N
Source | BPEL Messages BPEL | Extensions Feedback M=

9. Expand the xsd folder in the Application Navigator and open BPELProcess1.xsd by
double-clicking it (Figure A-6).

Figure A-6 Accessing th

QOracle JDeveloper 11g

e BPELProcess1.xsd File

Development Build - SendMessageApp.jws : SendMessageProj.jpr : /scratch/aimel/jdeveloper/mywork/SendMes: Ful 4

--«D element - process
#-&P element - processResponse

Design | Source | History

Design | Source

[E]BPEL - Log
4 BPELProcess1 hpel

L\;'alidation Errors L Log Messages L Search Results

File Edit View Search Navigate Build Run Refactor Versioning Tools Window Help
GoEd 96 XER O -0 % ARde- b-%- 4 (@-]
Bl application Navigatar) ppiws [ofdcompositexml | ZBPELProcess1bpel [S BPELProcesstxsd (U0 amponent = =
— — I
SendMeszagedpp - - ‘ e ‘S(hemaCDmpunEnlS v‘
 Projects &l FrE Y (5]
= SendMessageProj ‘targetNamespace‘hup Hxmins.oracle. com/SendMessagedpp/SendbessageProj/BF i
L all
-0 S0A Content — i
B2 restsuites [annotation
Er{3 xsd processResponse [any
" & BPELProcessl.xsd anyatribute

3 xs! E¥E artribute
b Application Resources :
bData-Controls [&&] atributeGroup
I Recently Opened Files [§] chaice
= BPELProcess] xsd - Structure = B @rroperty Inspector =
P ER 7 (80
[g, sthema

(0]

BPEL Feedback

Messages Extensions

10. Click on the Source tab (Figure A-7).
11. Perform the following modifications to the inputs of this BPEL application:

In the generated file, SendMessage.xsd, in the xsd folder in the application
navigator under projects, the following element definition is created by default:

<element name="input" type="string"/>

This xsd element defines the input for the BPEL process.

Select the Source tab (Figure A-7), and replace the line above with the following
three lines:

A-6 Developer's Guide

Send Message to User Specified Channel

<element name="to" type=
<element name="subject"
<element name="body" typ

"string"/>
type="string"/>
e="string"/>

Figure A-7 Modifying the Inputs in the BPELProcess1.xsd File

File [Edit View Search Navigate Build Run Source Refactor Versioning JTools Window Help
CGEag 90 ERO0-© 8- :@Jda- b -%- A (d8-
{4 pplication Navigator [2] ppjws |offcompositexm| | BPELProcessLbpel | S BPELProcessixsd (0[] ompaonent = &
SendMessagedpp - - ‘:_“' Gﬁ\‘ L ‘S(hema Components v|
 Projects Bl®TFrE- Lexml version="1.0" encoding="UTF-8"%> & 5]
=] SendMessageProj =l «schema attributeFormbefault="ungualified"
27 504 Content elenentFornDefault="gqualified" Aol
B testsuites Targethanespace="http: //xiins. oracle. con/Sendtessages [annotation
B xsd ¥mIns="http: /A, w3, org,/2001HMLSchena">
& x =l <element name="process"s (21 any
o BPELProcessLxsd =l <complexTypes anyAttribute
L3 xs! El <sequence: . & attribute
I+ Application Resources <element name="input" type="g
[Data Contrals < /SEqUence: [&3 attributeCroup
b Recently Opened Files </complexType: [§] choice
</element>
_— ¥ = <element name="processResponse"s
L =EBPELProcessl.xsd - Structure [;]I =l <complexType: @Pmpeny Inspector [;]:
= El <sequence: = a8 rind |
| bt <element name="result" Type=" o £ (@ ra |
EE"ﬂ schema </sequence:
4P element - process < /complexTypes
4P element - processResponse </element>
[Source
Desian | Sovce | History
[E]erEL - Log\ =
£ BPELProcess1.bpel
L\lahdalion Errors L Log Messages L Search Results ®
Design | Source Messages BPEL |Extensions | Feedback DD
12. Perform a File, Save All.
13. View the expanded process element (Figure A-8).
Figure A-8 Viewing the Expanded Process Element
P juis |D-||:g|:|:|mp|:|site.xml |n':'ﬁ BPEL Process] bpal ,S%EF'ELF'rDcessl.xsd E]E]E]
=
< schema:>

targethlamespace | http: ffsmilns. aracle. com/SendMessagespp fSendmessageProjfBF

process = m

processResponse

Dezign | Source | Hizstory

10
twoe string

subject
e string

hody
e

Wie string

Oracle User Messaging Service Applications A-7

Send Message to User Specified Channel

14.

To enable messaging in this process, drag and drop User Notification from BPEL
Activities and Components located in the Component Palette between the receivelnput
and callbackClient activities.

The User Notification activity appears (Figure A-9).

Figure A-9 User Notification Activity Before Configuring the Inputs

B stbcz15:1 (aime1)

&= Applications Actions %@Qgs !fj _IEI Mon Oct 27, 1335 %
cle JDeveloper 11g Development B
File Edit View Search Navigate Build Run Refactor Versioning Tools Window Help
GoHag 9@ X0h Q-0 F- - &aidda- > -&- A (@-)
ABlApplication Navigator) ppgws |ofdcomposiexml | & BPELPrecessibpel | ShEPELProcessixsd (A0)7) Bf Companent. 7] [=]
[senessagence R s m® (e
 Projects Bl N Y [5]
L2 BPELProcesslxsd | User Notification)
B xsl I EPA Blue Prints
- ﬁga BFELProcessd bpsl | General [Advanced | Sensars BD‘E,I“,'?J\E:W"'ES 20c,COMmAo, v
----- ﬁ BPELProcessl.componentType o
T Transf
i BPELProcessl wsdl o = | g rranstorm
..... ol compositexml v ‘ | EE=N [user notification
I Application Resources K 7 vice) [
b Data Controls < d b3
I+ Recently Opened Files Subject I BPEL Services
YZ BPELProcessil.bp & Thumbnail E]| ‘ | 16 receivelnput - Frope E]‘
- Notification Message: =
N Ior @ .
- @ BitE A
v @n + 7%
&% BPECPFocessLBpel T~
[variables
22 Message Types
23 cCorrelation Sets
-1 Schemas
-7 Partner Links .
- [Activity Structure| all 3 T 5
[] show Detailed Node Information Zwm_ * &
Source | BPEL Design | source | Histary
i BPEL ed

15. Click the XPath Expression Builder icon to the right of the "To:" input box.

16. Modify the expression for the recipient, "to", as follows:

s In the BPEL Variables pane, select Variables, inputVariable, Payload,
clientprocess, and client:to (Figure A-10).

» Click Insert Into Expression.

A-8 Developer's Guide

Send Message to User Specified Channel

Figure A-10 Defining the Recipient ("to") Expression

PE sthez15:1 (aimel)

=) Applications Actions %@iﬁ}g‘@

£l

»|__Oracle JDey|
File [Edit Wiew
=089
(&l Application Navig

. SendMessagedpy

< Projects

i~ g BPELPr|

b Application Resoul
I+ Data Controls
| Recently Opened F

= BPELProcessl.bp

&, E

[variables
[Message Typ
[0 Correlation s
[schemas

[Partner Links|

[[] show Detailed Nox

Source | BPEL

o 027, 1357
B GopessonBuilder =

Expression: @ My D
hpws:getWariahlelbata(' inputyariable', 'payload’, '/\:1went:prucess/cl1ent:tu')|
I A Insert Inta Expression l
BPEL Variables Functions
1 Variables “ | Advanced Functions hd
- Process -
B[variables RN
i E-(x) inputvariable amhemime
i E-[E] payload _
: batchProcess Active
El- €3 clien
atchProcess Completed
[comist
(%) ounpuvarfable create-nodeset-from-delim ited-string
G181 Seane - lseeNorification 1 v ol e i ing v
Content Previews Description

bpwis:getvariableDatal inputiariable','payload’,' felient:process /g

<L { 3

Wariable XPath expression

Help

Ok Cancel

EE)X)

Irints
ities and Compo...

m

ification

ut — Prope E]\

4

Nt}

17. Click the XPath Expression Builder icon to the right of the "subject:" input box.

18. Modify the expression for the subject as follows:

clientprocess, and client:subject (Figure A-11).

Click Insert Into Expression.

Click OK.

Figure A-11 Defining the Subject Expression

WE sthcz15:1 (aimel)

= Applications Actions %@Q

£l

> Oracle JDey|
File Edit
ada 9
Application Navig

SendMessagespy

= Projects

View

le] BreLPr

offf compo|

b Application Resoul
I Data Contrals

I Recently Opened F,

TS BPELProcesslbp

& B

B[] variables
[#-[7] Message Typi
[cCorrelation §|
22 schemas

B2 Partner Links|

[] Shows Detailed Ho

Saurce | BPEL

© Mon Oct 27, 13:37 ¢~

In the BPEL Variables pane, select Variables, InputVariable, Payload,

> Expression Builder x

Expression: @m0
bpws:getWariablebata('inputiariable', 'payload', 'fclient:process/client:subject')
[A Insert Inta Expression]
BPEL Variables Functions
[variables | |advanced Functions -
- Process =
B [Variables appendToList
| E-{x) inputvariable k aulh:rlli(alr:
- [E] payload .
baichFrocess Active
4% client:process
L clientito batchProcess Completed
' [Earizubie] [fi copviis
Loy client:body i e .
() ampmvariable |fu)] create -nodeser -from-detimited-string
L8] Scane - liserNotification 1 ™| Al createpelimi ina M
Content Prewiews Description:

bpuss:getvariableDatadinputvariable’, payload’,'fclient process/

Wariable XPath expression

Help

OF Cance|

IsendMes| _ O X
)

nt... =
I
Q

rints.

ities and Compa...
g

m

ification

ut -~ Prope E]‘

|1 (@

Oracle User Messaging Service Applications

A-9

Send Message to User Specified Channel

19. Click the XPath Expression Builder icon to the right of the "body:" input box.
20. Modify the expression for the body as follows:

s In the BPEL Variables pane, select Variables, InputVariable, Payload,
clientprocess, and client:body (Figure A-12).

n Click Insert Into Expression.

Figure A-12 Defining the Body Expression

RE stbcz15:1 (aime1) =

=] Applications Actions %@Qgs’ l__’fj l:lg Mon Oct 27, 13:38 {~

| Oracle |Dev|> Expression Builder X|sendMes] — O X
File Edit Yiew Expression: w0y D
==Y B g | ca bpws:getvariahlelbatal' inputWariable', 'payload’, ‘/chent:prucess/chent:buuy‘)I)
(ElApplication Navig Int = =
. SendMeszagespy =
= Projects [5)
i3 BPY
E=-Z3 xs1 rints
T ities and Campao..
o gy BPELPH T~
{ﬁh BPELPr [M Insert Into Expression I m
w[@] BPELPH
o compol BPEL Variables Functions ffication L
b Application Resoul [variables | [mdvanced Functions =)
I Data Contrals = - Process = J b3
I_Recently Opened F =37 variables appendToList -
B (x) inputVariable |f)| amhenicate

= BPELProcesslh & L payload |70 batchProcess active 1t - Prope =]
= P 4oy clisntprocess — pe.
& L ged clientto |&| batchProcess Completed 1

o B

. &y clientsubject |m|cothiﬂ
Tam - ¢ [clent body] = - .
% BPELPracessLER (%) outputvariabie [f)] ereate-nodeset-from-delimited-string
22 variables @18 Seane - lserNntificatinn 1 ¥ |[firl createDelimi ina d
Content Preview: Description =

bpws:getvariableDataginputvariable!,)payload!, fclient:process/e| | Variable XPath expression

[Z2 Partrer Links
- Activity Strud]

[[] Shows Detailed Ko

Saurce | BPEL

<5 d ¥

Help oK, Cancel

= Click Apply and then OK to apply the changes (Figure A-13).

A-10 Developer's Guide

Send Message to User Specified Channel

Figure A-13 Confirming the Changes to the Inputs

WE sthcz15:1 (aime)

=] Applications Actions %@ Q g w5

© Mon Qct 27, 1

= Oracle JDeveloper 11g Development Build - SendMessageApp.jws : SendMessageProj.jpr : /scratch/aimel/jdeveloper/mywork/SendMes: lm 4
File Edit View Search Navigate Build Run Refactor Versioning Tools Window Help
GoEa 9@ XUk Q-0 1% atdda- >-%- 4 (@~)
{EBlApplication Navigator) ppiws |ofdcomposite xmi o BPELProcessLbpel | SLEPELProcesslxsd (U0)) B companent..] =
& senamessagenpp M= AR RN M- S] (@) taepeL- (2) | [BPEL -
= Projects B % -l Y (5]
I &, BPELProcessLxsd || User Notification x
S0 sl i BPA Blue Prints
e BPELProcessd.bpel | [“General [“Advanced [Sensers Bﬁﬁ';,ﬁﬂ"’"‘“ SiREETLES -
{ﬁ} BPELProcessl.componentType =
T Transf
; BPELProcessL.wsdl | 1 | B Transiorm
~affd compasite xml e ‘..,s getVariabIEData(‘inpul\/ariahle','pay\Uad','/c\ienl.prucess;‘:I\em1D')%>| BN @ User Notification
b Application Resources B voice) [
1. Data Cortrols <L 3
b Recently Opened Files Subject I+ BPEL Services
— ‘l\fariah\eData('mpul\fariah\e‘,'paylnad‘,'fcl\em pmcess,tc\iem-suhjen')%>| [E]
= BPELProcessLbp. & Thumbnail [;]\ & receiveinput - Frope.. Q\
= Notification Message: L =
- BRI @
. ‘getvariableData(' inputVariable’,'payload, fclient.proces s/ client:body "% [BI |
T @l +/ X
&a BPELProcessLbpel Iy
-0 Variables
[Message Types
[carrelation Sets —
[schemas
[Z2 Partner Links < " 53 l
= [Activity Structure] dll 3 T T 5
[] Show Detailed Node Information Zoom E @
Source | BPEL

The changes to the inputs are saved and the configuration of the User
Notification Activity is complete. You can now see the User Notification
Activity in the BPEL application (Figure A-14). The SOA Composite is
complete.

Figure A-14 User Notification Activity After Configuration of Inputs

WE sthcz15:1 (aime)

& Applications Actions %@Qgs‘

Development B

cle JDeveloper 11g :
File Edit View Search Navigate Build Run Refactor Versioning Tools Window Help

B8 90 XU Q-0 % ABHa- b-&- A (@8-)
{Elnpplication Navigator) ppjws | compositexm | Ju BPELProcess1bpel | 2 rELProcessixsd (U0 [component &

=
SEEIE 20 T T T R I ——)

 Projects Bl & VBl ~a n o
il BPELProcessl.bpel -~ Kr)
S BPELFrocess.componentType o- | b BPABlus Prints
| @] BPELProcess1 msdl i Notificationservi... EP‘E)},ﬁﬁivilies and Compo...

-offd composize.xm! o

o[@] NorificationServicesdl {?}’} |[1_EIJ Transfarm
2 Notificationservice sd = * [0 vser hotification

uEu @

Application R 1
B Anlieation Resources receivelnput [woice . hd
I Data Contrals <[b3
b Recently Opened Files l I BPEL Services
= BPELProcesslbp.. ' Thumbnail Q| ‘3@ 1 B receiveinput - Prope.. Q\
- rocessl_cli. &1 & | / (\

- UserNotification_z 9
T @ W +7/ %

[T Variables Y

[0 Message Types
[Carrelation Sets
[schemas

[Z2 Partner Links

4 g Process

- {Activity Structure] i 3 T >
[show Detailed Node Information zoom:| 100 ’Z|. iV ———"\
Source | BPEL Design | Source | History

i

callbackClient
| d

Jideveloper, 15 MessageProj/BPELProcess1l.bpel 1 BPEL editor § Heap . 840 of 118M, Perm Cen : 122ZM of Z58M

A.1.4 Creating a New Application Server Connection

Perform the following steps to create a new Application Server Connection.

Oracle User Messaging Service Applications A-11

Send Message to User Specified Channel

1. Create a new Application Server Connection by right-clicking the project and
selecting New, Connections, and Application Server Connection (Figure A-15).

Figure A-15 New Application Server Connection

RE stbcz15:1 (aimel)
=] Applications Actions %@Qés’ @ l:l;l Mon Oct 27, 13:42 €*
> Oracle JDeveloper 11g Development Bi SendMessageApp.jws : SendMessageProj.jpi -0Ox
e NewGalep [
cEg 9e [“AllTechnalogies | Current Project Technologies | 4)

policationhavigators This list is filtered according 1o the current project's selected technologies. onent =

=
_ SendMessageapp @) h
~ Projects [5)

SendMeszagePraj Categories: Item s: [Showi All Descriptions
£ s0A Content ~ lue Prints
(3 testsuites - General @ Application Server Connection | kctiwities and Compo.
= i Applications Launches the Create Application Server Cannection wizard, which e ~
B3 =sd L s guiddes you in the creation of a new connection to andalone 0C4], <farm
s & BPELPro| Deployment Descriptars BEA WeblLogic, etc
(sl -Deployment Frofiles r Wotification
icati This option is always enabled. 1
b Application Resources - Frojens b y .] -
I Data Cantrals 504 Tier (& BAM Cannection - I
I+ Recently Dpened Files --Enterprise Scheduler Metadata Ervices
[&, BPA Connection
~Service Components
=
Y= sendMessagePro - Transfarmations B cvs connection ry Inspectar 3]
Lepll tems = I T
m Database Connection r | / — |

(IR File system Connection
& S0A-MDS Connection

[Zh subversion Repositary Connection

22 inn o, d
|l
Design | Source | History [|

2. Name the connection “SOA_server” and click Next (Figure A-16).
3. Select "WebLogic 10.3" as the Connection Type.

Figure A-16 New Application Server Connection

IE stboz15:1 (aime)

& Applications Actions %@Q@ s @ l:lg Mon Oet 27, 13:43 ¢~

-:9-| Oracle JDeveloper 11g Development Build - SendMessageApp.jws : SendMessageProj.jpr | - OX
(LIS E v Seps Sarch > Create Application Server Conne
SEa 9™ X
Name & Type
Application Navigator
SendMessagefpp
B = Specify aunique name and type for the cannection. The name must be avalid Java
= Projects B S Narme & Towe it v ! ©
- [E] sendMessageProj Authentication BRA Blue Print
{0 s0A Content T Create connection in: ue Prints
B restsuites EPEL Activities and Compa...
é 3 xed T Application Resources (3) Resource Palette I I~
%3 [
L@, BRELProcessy) I | Transform
e . Connection Name]
xsl | User Motification
b [s0admanaged_server | '
b Application Resources -W\fmce) le
I Data Cantrols c - 3
ion Type: 8
b Recently Opened Files Lonnection e BPEL Services
wieblogic 10.3 - &
ESendMessager. E T Property Inspectar [:]l
A /(8

[Mext = I[Einizh H Cance|]

Zoom:| 100[%] ¢ 1 l‘
| |

Design | Souree | History

4. Enter the authentication information. The typical values are:

A-12 Developer's Guide

Send Message to User Specified Channel

Username: weblogic
Password: weblogic

5. On the Connection screen, enter the hostname, port and SSL port for the SOA
admin server, and enter the name of the domain for WLS Domain.

6. Click Next.
7. On the Test screen click Test Connection.
8. Verify that the message “Success!” appears.

The Application Server Connection has been created.

A.1.5 Deploying the Project

Perform the following steps to deploy the project:

1. Deploy the project by selecting the SendMessage project, Deploy,
SendMessageProj, to, and SOA_server (Figure A-17).

Figure A-17 Deploying the Project

R stbcz15:1 [a1me1;

File Edit View Search Navigate Build Run Refactor Versioning Tools Window Help

FoE0 90 XBEIO -0 % - aRdde- P-4 (&8-)
(=l Application Navigator) ppiws |ofdcompositenm | JuPELFrocesstbpel - A BPELProcessixsd (U)=) [companent.. [Fo] =

Esemovessazon S A e S [—
R] Q

~ Projecis B8 T B \
=] SendiessagePrad \T)
-7 so& Canten [Hew Ctri-N @ @ b BPA Blue Prints
-3 testsuit Edit Project Source Paths l NotificationSeryi ~ BPEL Activities and Compo.

R o
B3 xsel 8 Delete Project [

- 58] Transtarm
4 BPEL @B Find Project Files > {?9
-0 sl & user notiication

I _Application Resour: Shou Oweniiew

uru @

receivelnput =] vaice : id
I Data Controls @) Make SendMessageProjjpr Cri-F3 <5 3
b Recently Opened Filt 32 Repuiid sendMessageProjpr Alt-F3 I BPEL Services
(S senabessageron o oo i O (&) sETAS ectar =]
. BETASbiz
B pebug Ei.
— UserMaotification_2
5 Rrefarmat Ctri+Al-L slh(zlﬁ-he(aﬁ
Organjze Imports CUHHAL-O (&) stbczl5-managed
Version SendMessageProjjpr {é} i Mew Connection
Compare With > 4 -
Replace With »
callbackClient
Restore from Local History. I .
53
[@] Project Properties ¢
zoom:[100[F] ==——rt——— &,
Design | Source | History
v
< | >

2. Verify that the message "Build Successful" appears in the log.
3. Enter the default revision and click OK.

4. Verify that the message "Deployment Finished" appears in the deployment log
(Figure A-18).

Oracle User Messaging Service Applications A-13

Send Message to User Specified Channel

Figure A-18 Verifying that the Deployment is Successful

Partner Links EhE

[=-{3] SendMessageProj

VG = " ;
.~ tner Links a
&[0 504 Comtent Q > :E;\LBLUE Prints -
[0 testsuites @ :{ﬁ@ o ”"U‘%IVIUES and Compao, =
230 xed NatificationServi =
!] Transform

[=1 ﬂ‘:'} @USET Motification
&a BPELProcesslbpel b \aice

ﬁ BPELProcessl.componemType

urw @

i [@l sPELProcess1wsdl v receivelnput [wai
I Application Resources B sttt ~
I Data Controls < ¥
I BPEL Services

b Recently Opened Files
=l 2 -
= SendMessagePra ' Thumbrail (=] ":‘e”li”-- ~ | B@eropeny Inspector =]

> =
It % (@@ o |
X = % e EIN 4 1
a &
Design | Source | Histary |
[Elpeployment - Log =)
- Deployment started. Oct 27, 2008 1:55:46 FH ~

Target platform is (Weblogic 10.3).
Running dependency analysis...
Building. ..

Deploying profile... X
Wrote SAR Tile to sscratch/aimel/jdevelgher/muanrk (Sendiessagespp/Sendh
Deploying sca_SendMessageProj_revz.0. jal c'le.com:EbOOl
Successfully deployed the archiwe. Response Code : 200

Elapsed time for deployment: 14 seconds

- Deployment finished., ---- Oct 27, 2008 1:56:00 PM

Wl ST EO

F5M of 136N, Perm Gen @ 1235M

Extensions Feedhack

Deployment

1 BPEL editor & Heap

You have successfully deployed the application.

Before you can run the sample you must configure any additional drivers in
Oracle User Messaging Service and configure a default device for the user
receiving the message in User Messaging Preferences, as described in the
following sections.

Note: Refer to "Configuring Notifications" in the Oracle Fusion
Middleware SOA Developer’s Guide for more information.

A.1.6 Configuring User Messaging Preferences

For users to receive the notifications, they must register the devices that they use to
access messages through User Messaging Preferences. Perform the following steps:

1. Log into the User Messaging Preferences application at one of the following URLs:
» Directly at http:/ /<server>:<port>/sdpmessaging /userprefs-ui

s Through the Worklist application’s Preferences > Notification tab at:
http:/ / <server>:<port>/integration/worklistapp

The User Messaging Preferences application appears.

2. Click on the Messaging Channels tab (Figure A-19).

A-14 Developer's Guide

Send Message to User Specified Channel

Figure A-19 Messaging Channels Tab

) Oracle BPM Worklist - Mozilla Firefox

Ele Edt bew Hitory Bookmarks Iook Help

<3 - - @ - E k ‘g ‘D http:ffst.us oracle, com: 8001 fintearationjworkiskapp/f aces/preferences. jspyrwindowMoc ‘Vl l‘»] "‘Guogle ‘\\]

4 Google |1 || ('] Welcome tothe Oracle S0&... || || X, SOA Beta Shiphome - ASD... || |45 Dracle BPM Worklist

ORACLE BPM Worklist

B[eeTa51288 orade Fman !

Preferences

s | Other Rules

Notification

Messaging Channels

My Messaging Channels
Configure channels ko receive your notifications and alerts,

View ~ Create P Edic 3§ Delete i Detach

Certificates

Hame: Delivery Type | Address Diefault
Business Email EMAIL mail@aracle.com 4
Business Mobile SMS 16505555555

E Business Phaone WOICE 16505555555

[Home Phone WOICE 16505555555

Dane

Adblock

You are prompted for login credentials.
3. Inthe Messaging Channels tab, select a channel.

4. Set a channel as the default by expanding the device folder, and then clicking Set
as Default adjacent to the selected channel.

A checkmark appears next to the selected channel, designating it as the default

means of receiving notifications. All messages sent to that user are sent to that
channel.

A.1.7 Testing the Sample

The following steps describe how to perform a test message transmission through
Enterprise Manager.

Perform the following steps to run and test the sample:

1. Open a Web browser window and login to Enterprise Manager for the SOA
domain. For example, http://<host>:<port>/em.

2. In Enterprise Manager, expand the SOA folder in the navigation tree, and click the

deployed SendMessageProj composite application. Click the Test button to launch
the test client page.

3. In the Input Arguments section provide the input values for invoking
SendMessageProj.

Enter the following values:

= to: weblogic (the user)

= subject: notification test (the subject)
= body: the message content

4. Click Test Web Service.

Oracle User Messaging Service Applications A-15

Send Email with Attachments

A.1.7.1 Verifying the Execution of Sending the E-mail

Log in to the Human Workflow Engine. Verify the outgoing notifications and their
statuses from the Notification Manager tab. (Figure A-20).

Figure A-20 Viewing Outgoing Notifications

) /JBETAS_soalsoalserver_soafsoa-infra (Oracle SOA Infra) - Oracle Enterprise Manager (weblogic) - Mozilla Firefox

Fle Edt View History Bookmarks Tools Help

<,§ - - @ - ﬁ k & | L hetpeffitnent tus.oracle.com: 7623jem/facesirepolessihame?_afrLoop=a1865571092007#%z21 | ¥ | [| [Cl+| ‘\]

4 Googls [} Jsoa-infrafservicesid... ¥, 504 Bata5i Shiphom... 7% Oracle BPM Worklist | [} /BETA5_soa/soaf.. (0 | [EZ zZimbra: Inbox
ORACLE Enterprise Manager 11g Fusion Middleware Control
S Farm » [$]50A Infrastructure » | £ Topolagy:

E - S04 Infrastructure Home > Human waorlflow Engine Home
9 B BETAS s0a @ soa-infra (Crade 504 Infra) @

Setup~ Helpw Log Out

Logged in as weblogic | sthcz15, us.oracle. com (Host)
Page Refreshed Oct 27, 2008 Zi13:28 PM PRT
.b Human Workflow Engine (Service Enginz) Related Links =

Dashboard | Statistics | Instances | Fauls | Deployed Components

(@) Cutgeing notficatiens arc sent: to users from Human Workflon and BPEL processes. Incoming notfications are responses ta artionable notifications. This page
< enables you to manage and troubleshoot both types of notifications.

Send Test Matification, ..
ElDutgoing Notifications
FHsearch
Select » View v Resend Resend All Similar Motifications ®

Source ID Source Type Channel Recipient Status

Time
BPEL Email rall@oracle Sent Ock 27, 2008 2:15:21 PM (&
BPEL Email mail@oracle Sent Oct 27, 2008 12:55:17 PM
BPEL SMS 16505555555 %EH’DI’ Oct 27, 2008 12:00:52 PM
BPEL Email mail@oracle Sent Oct 24, 2008 64208 PM —
EPEL Email paulo angulo <paulo Sent Oct 24, 2008 6:35:00 PM
BPEL S 16505762572 Senk Oct 24, 2006 6:32:04 PM 3
EIncoming Notifications
HSearch @
Done Adblock

A.2 Send Email with Attachments

This chapter describes how to build and run the Send Email with Attachments
application provided with Oracle User Messaging Service.

Note: To learn about the architecture and components of Oracle User

Messaging Service, see Oracle Fusion Middleware Getting Started with
Oracle SOA Suite.

This chapter contains the following sections:

s Section A.2.1, "Overview"

= Section A.2.2, "Installing and Configuring SOA and User Messaging Service"
= Section A.2.3, "Running the Pre-Built Sample"

= Section A.2.4, "Testing the Sample"

= Section A.2.5, "Building the Sample"

» Section A.2.6, "Creating a New Application Server Connection"

A.2.1 Overview

The "Send Email With Attachment" application demonstrates a BPEL process that
sends an e-mail with an attached file.

A-16 Developer's Guide

Send Email with Attachments

A BPEL process looks up a user’s e-mail address from the identity store, reads a file
from the file system, creates e-mail content and then sends an email to the
user.Section A.2.5, "Building the Sample" shows you how to add an e-mail with
attachments to your SOA composite application, allowing your applications to be
enabled with messaging.If you want to model the application from scratch, go to the
section titled Building the Sample. Or, you can directly use the pre-built project
provided with this tutorial.

Before you run the pre-built sample or build the application from scratch, you must
install and configure the server as described in Section A.2.2, "Installing and
Configuring SOA and User Messaging Service". By default, soa-infra does not send out
notifications. The following steps describe installing and configuring the e-mail
drivers needed to communicate with the e-mail server.

A.2.1.1 Provided Files

The following files are included in the sample application:

= ns_sendemail.pdf — this document.

s Project — the directory containing Oracle JDeveloper project files.
s Readme.txt.

m Release notes

A.2.2 Installing and Configuring SOA and User Messaging Service

The installation of SOA and User Messaging Service has already been performed on
your hosted instance, and the sample user, "weblogic", has already been created.
Perform the following steps to enable notifications in soa-infra, if not already done:

1. Using Enterprise Manager, go to "soa-infra" > (Menu) > Workflow Notification
Properties, and set Notification Mode to ALL.

2. Configure the User Messaging drivers if required as described in "Configuring
Drivers" in the Oracle Fusion Middleware SOA Administrator’s Guide.

3. Set the email address for user "weblogic" by using the JXplorer LDAP browser.
Refer to "Updating Addresses in Your LDAP User Profile".

4. Restart the server.

A.2.2.1 Updating Addresses in Your LDAP User Profile

Perform the following steps to set the email address for user "weblogic" by using the
JXplorer LDAP browser:

A.2.2.1.1 Installing Download and install [Xplorer from http://www.jxplorer.org.

A2.2.1.2 Connecting 1.Set the embedded LDAP server admin password as follows:
= Login to the WLS Admin Console.
s Click on the domain name link > Security > Embedded LDAP.
= Enter a new "Credential” and "Confirm Credential" (for example, "weblogic").
n Click Save.
2. Connect from JXplorer by specifying the fields in Table A-2:

Oracle User Messaging Service Applications A-17

Send Email with Attachments

Table A-2 JXplorer Connection Fields

Field Value

Host WLS AdminServer hostname

Port WLS AdminServer port

Protocol LDAP v3

Security Level User + Password

User DN cn=Admin

Password <password> (for example, weblogic)

A.2.21.3 Setting User Messaging Device Addresses in LDAP The following example uses
the user "weblogic". You may create and use additional users.

1. Expand the LDAP tree as follows: domain > myrealm > people > weblogic.
2. Click on the user entry.

3. Select the HTML view tab on the right.

4. Enter the desired Email Address and Mobile Phone Number.

5. Click Submit.

A.2.3 Running the Pre-Built Sample

Perform the following steps to run and deploy the pre-built sample application:

1. Open SendEmailWithAttachmentsApp.jws (contained in the .zip file) in Oracle
JDeveloper.

In the Oracle JDeveloper main window you can view the following components of
the sample application under the Composite.xml tab.

Figure A-21 Oracle JDeveloper Main Window

Oracle JDeveloper 11g Development Build - SendEmailWithAttachmentsApp.jws : SendEmailWithAttachmentsProj.jpr

File Edit View Search MNavigate Build Run Refactor Versioning Tools Window Help

GoEg 90 XER Q-Q 5 & He- - (-

i i [£) @stertPage | & hments, bpel {13 ml =) @ component Palette | [GRe. . =]

[sendEmailvithAttachmentsApp ~EH v F XD Composite: i entsProj [soa ~|

7 Prajects [R A= @ 53
0 dasses ~|[senices Components External Refer(

~ Service Components
& BPEL Process
& Business Rule

@[3 testsuites

T cep
- [@] NotificationService, wsdl
i Human Task
i & NotificationService.xsd &

<& Mediator

iy SendEmailvithAttachments,bpel
~ Service Adaokers

i 4 SendEmaitWithAttachments. compone =)
.- [@] sendEmaitenthattachments.wsdl railwith... NetificationSer, || B ADFBC Service
tions: Operations: i AQ Adapter
b Application Resources L [senciMNotificatior | 801828
» Data Controls P sendFmfiotica. || g
b Recently Opened Files Esnd VoicsN il S B Acepter
sendSMSHNotific. A2 Andnhinan Adambnr
sendP age Mot
-~ sendEmailliofific
= composite xml - Structure =l sendNotification. &@Property Inspector =]
sendNotification...” || - = -
2 YONE e 7 (@)
(5 Generated by Oracle SOA Modeler version 1.0 at| Design | Sourze | History |
B 42 composite
|BPEL - L
€% impart H o)
-4 impart | & sendemailithattachments. bpel % W i
& service | wPath Type # of Errors
€ companent || 17 Jprocessjsequencejinvoke Invake 0
|
Errors: 0 Warnings: 1 Last Valdated On: 12 Nov 2008 00:30:24 GMT
| validation Errors [/ [og Messages. || Search Resuits
Seurce | Desian Messages | Extensions | BPEL [OnE]

< \sendEmalwithAttachmentsApp\SendEmailWithAttachmentsProj\composite. xml

A-18 Developer's Guide

Send Email with Attachments

The left box is the definition of a Web Service client that is used to initiate an
application.

The middle box is a BPEL process that creates and formats the message and
calls the messaging service.

The right box is the messaging service resource that is used to send the
message.

2. Create an Application Server Connection by right-clicking the project in the
navigation pane and selecting New. Follow the instructions in Section A.2.6,
"Creating a New Application Server Connection".

3. Deploy the project by selecting the SendEmail project, Deploy, SendEmailProj,
to, and SOA_server (Figure A-22).

Figure A-22 Deploying the Project

& Oracle JDeveloper 11g Development Build - SendEmailWithAttachmentsApp.jws : SendEmailWithAttachmentsProj.jpr

File Edit View Search Navigate Build Run Refactor Versioning Tools Window Help

FoE@ 9@ XEB0 -0 %- Adidea- b-&- (&8)
plication Navigator () (@stertpage | & SendEmaiwithattachments.bpel | offfcomposite.xml (& @ componentpalett= | [jRe.. [
= B E v rmmx® Composite: mentsProj (594 3
= Projects @ 7= e =y
2 i Candras £ External Refer(
=27 S0A Content Dew... ctr-N — Service Components e~
[dasses Edit Project Source Paths. . fa BPEL Process
{1 testsvites & Delete Project 2% Business Rule
- ed @ End Project Fies g cep
% ol 3 | Show Overview & Human Task
i---aff2 composite. xmi
Mediator
-[@] Motficatonservice wed| iy Make SendEmailvithAttachmentsProj.jor criFs 4§ Mediator

—

12 NotificationService xsd
Ja SendEmailwithAttachm

I Application Resources
b Data Controls 8 pebug
b Recently Gpened Files

4 Rebuild SendEmailvithAttachmentsProj jpr Service Adaoters

B Run Project

sendF ax
send\aiceNotif

[reformat

sendPagerholif

g

Organize Imports

sendEmailNotific.

sendNotification @Pruuertv Inspector =
senclatification ..

o] jor
Version SendEmilWithAttachmentsProj.jpr...

Rl | =+ (
Campare Wiith » G o PACHEERE T))
Replace With »
Restore from Local History. .
[@] Project Praperties... S
Path Type # of Errors
¥ Jpracess/sequence/invoke Toke 0

Errors: 0 Warnings: 1 Last Validated On: 12 Nov 2008 00:30:24 GMT

| validation Errors [LogMessages | Search Restits

tes ‘ 00C]

endEmailWithAttachmentsProj.jor

4. Verity that the message "Build Successful" appears in the log.

5. Enter the default revision and click OK.

6. Verify that the message "Deployment Finished" appears in the deployment log.

You have successfully deployed the application.

Before you can run the sample you must configure any additional drivers in
Oracle User Messaging Service and configure a default device for the user
receiving the message in User Messaging Preferences, as described in the
following sections.

Note: Refer to "Configuring Notifications" in the Oracle Fusion
Middleware SOA Developer’s Guide for more information.

Oracle User Messaging Service Applications A-19

Send Email with Attachments

A.2.4 Testing the Sample

The following steps describe how to perform a test message transmission through
Enterprise Manager.

Perform the following steps to run and test the sample:

1. Open a Web browser window and login to Enterprise Manager for the SOA
domain. For example, http://<host>:<port>/em.

2. In Enterprise Manager, expand the SOA folder in the navigation tree, and click the

deployed SendEmailWithAttachmentsProj composite application. Click the Test
button to launch the test client page.

3. In the Input Arguments section provide the input values for invoking
SendEmailWithAttachmentsProj.

Enter the following values:

to: weblogic (the user)

subject: notification test (the subject)

body: the message content

attachmentName: the name of the being attached, including extension.

attachmentMimeType: for example, image/ gif.

To send files such as pdf, doc, gif or jpeg files, the following values can be
used for the attachmentMimeType entry:

file-name.doc — attachmentMimeType: application/msword
file-name.pdf — attachmentMimeType: application/pdf
file-name.jpg — attachmentMimeType: image/jpeg

file-name.gif — attachmentMimeType: image/ gif

attachmentURI: the URI for the attachment
4. Click Test Web Service.

A.2.4.1 Verifying the Execution

Check the weblogic e-mail account to verify it has received an email with attachment.

A.2.5 Building the Sample

Performing the following procedure of building the sample from scratch allows you to

learn how to add messaging to your SOA Composite Applications, and use User
Messaging Preferences.

1. Open Oracle JDeveloper 11g.

2. Create a new application by selecting File, New, Applications, and SOA
Application. Click OK.

3. Enter the Application Name and click Next (Figure A-23).

A-20 Developer's Guide

Send Email with Attachments

Figure A-23 Creating a New Application and Project (1 of 3)

& Create SOA Application - Step 1 of 3

Mame your application

Application Mame:
|SendEmaiI't“.fiﬂ'nAttachmenis.ﬁ.pp |

! Application Name

Directory:

)Tk Project Mame
- |C:'l,JDeveloper'l,m\,rwnrk'l,SendEmaiI't“.fiﬂ'lAttachmems.ﬁ.pp | [Browse... l

Application Package Prefix:

[Mext = i[Einish H Cancel]

4. Enter the name for the project and click Next (Figure A-24).

Figure A-24 Creating a New Application and Project (2 of 3)

® Create SOA Application - Step 2 of 3

Name your project

Project Mame: | SendEmail\VvithAttachmentsProj |

Application Mame

Directory: 2ndEmaiI't'u'iﬂ'nAttachmentsApp'lSendEmail't“:'iﬂ'nAttachmentEPrnj|[Browse...]

j Project Name

‘w Project SOA Settings r Project Technologies r Generated Components r Associated Libraries |

Available: Selected:

ADF Business Compaonents i
ADF Desktop Integration

ADF Faces

ADF Library Web Application Support

ADF Page Flow

ADF Swing
Ant {
Database (Offline)
EJB

HTML

lawa

Technology Description:
SCA is the Service Qriented Architecture to build composite applications.

[< Back " Mext = i[Finish][Cancel l

5. Select the Composite With BPEL composite template (Figure A-25). Click Finish.

Oracle User Messaging Service Applications A-21

Send Email with Attachments

Figure A-25 Creating a New Application and Project (3 of 3)

 Create SOA Application - Step 3 of 3

Configure SOA settings

c ite M :
Application Mame EHpLEES L

ororect Nome | sendEmailvithAttachmentsProj |
Proiect Name

W Project SOA Settings Composite Template:
Empty Composite

C osite With BPEL
Compasite With Business Rule
Compasite With Human Task
Composite With Mediator

Composite From Qracle BPA Blueprint

<] »
(=1 (=)

6. In the Create BPEL Process window, enter the BPEL process name as
"SendEmailWithAttachments" (Figure A-26). Click OK.

Figure A-26 Creating the BPEL Process

% Create BPEL Process

BPEL Process L:[

A BPEL process is & service orchestration, used to describe/fexecute a business process (or large grained ﬁ
service), which is implemented as a stateful service.

Mame: | SendEmailWwithAttachments |

MNamespace: |racle.comfSencIEmaiIWiﬂ1Attau:hmenﬁApp,."5endErnaiIWith.-!\ttau:hrnenEProijendEmaiI\"u'iﬂnAttachmenm |

Template: [ﬁ Asynchronous BPEL Process '] =]

Seryice MName: |sendEmail':\'iﬂnattachmenis_client |

Expose as a SOAP service

Input: |hAttachmen13Ap|:|fSEncIEmaiIWiih.-5.ttau:hmenﬁPru:uijendErnaiI\“.n'i'd'uAttachmenis}prncess| Ck

Qutput:

2n13Ap|:|fSendEmaiIWiihAttau:hmenﬁPru:uj,,"SendErnaiIWith.-!\ttachmenis}prncessResponse| Ck

[OK “ Cancel]

7. Verify that "Expose as a SOAP service" is checked. Click OK.

A-22 Developer's Guide

Send Email with Attachments

8. You have now created an empty and default BPEL application.

In the Oracle JDeveloper main window you can view the following components of
the sample application under the Composite.xml tab.

m The left box is the definition of a Web Service client that is used to initiate an
application.

s The middle box is a BPEL process that creates and formats the message and
calls the messaging service.

Note: You must later create the messaging service resource that is
used to send the message when you create the User Notification BPEL
process (steps 13-19).

9. Expand the xsd folder in the Application Navigator and open
SendEmailWithAttachments.xsd by double-clicking it (Figure A-27).

Figure A-27 Accessing the SendEmailWithAttachments.xsd File

[BEES

Fle fdit eew Search Navigate fuikd

L Application Navigator (A
] SereEmanyAttactmen it dlec
Projects m@7-E-
(] sendemaitwithattachmentsPro)

Goaag 9@ Xam -0

Hun

- slament - procassflasoone

rrors: © Warmings: 1

Redgetor
S-aBda- -4

| s SencEmabiithattachments boe

Versgning Jook ow Help

encoding
Smhetuulr:
efaulea"

s/ hcul Le. com/, 14
029/ 2001 LS chiena™

“sequence>

crlemeal names"Snput™ TypesTaccing” s

</Bequence:
mplexTypes

e="processResponse’>
SplexTypes
S camcquences

<element nase-"Tesult” types“string”/

< /sequences
plexTypes

Duetign | Scurce [rtery | €
| Eren - Loy

s S thatachrnty bl

Path Trpe
foracass saguance invike oke

Messages
=\ ieveloper rpmork SerdEmaliithatindmentidon \BendEmalitha tachmentsProf o BerdEmalitha ichmerts. xid

Extensons | Feedback | 8661

10. Click on the Source tab (Figure A-27).

4
5]
. E

of Errors

(]

Last valdated On: § Nov 2008 00: 16: 16 GMT

il arrbutesowe
4] choce
B compieaTyom
& werant
1] oo
oy moort

Cllpeaperty Insectar

. JEI,E /(W

Heap : 51H of 85, Perm Gen : 197 of 2584

(5]
L33

11. Perform the following modifications to the inputs of this BPEL application:

In the generated file, SendEmailWith Attachments.xsd, in the xsd folder in the
application navigator under projects, the following element definition is created

by default:

<element name="process">

<complexType
<sequence>

>

<element name="input" type="string"/>

</sequence
</complexTyp
</element>

>
e>

Select the Source tab, and replace the lines above with the following:

<element name="process">

Oracle User Messaging Service Applications

A-23

Send Email with Attachments

<complexType>
<sequence>
<element name="to" type="string"/>
<element name="subject" type="string"/>
<element name="body" type="string"/>
<element name="attachmentName" type="string"/>
<element name="attachmentMimeType" type="string"/>
<element name="attachmentURI" type="string"/>
</sequence>
</complexType>
</element>

This xsd element defines the input for the BPEL process.

Figure A-28 Editing Email

r Verugeing ook Window Help

Eeag oe L0an0-0- §- Afide- p-%- 4

Bicokcason Navigator () neami | S sencEmaniithattacmentsosd | Jh
FH SercEmaniithattac etk ~E- W [BB -
P, =@ V-E @
{10 504 Coment =
[0 casses §
=[] teateuter B ¥

H

A SencEmaiiithattacments. componed ! &
g sendensbwthafita,. .
8 SencEmalvathatischmentswed | L) + -
. =N =
b Agphcanon Resoucel L Ensd
» Data Conts
¥ Recently Coened Fies calbackClent
Msenciosbuansc.,. | Theeos <L “ ¥ Bevcperty Ingmeter =]}
zonc[|H] —T—= @, |H + & /(R 4
& % | Cesen [Source [Hstory
P ——r | [t e
b e S—— W
ath Tiee £ el Erves,
[F frocess e rrvoen Frockn)
Berarts 0 Waeringt: 1 et valcatad O Py 008 D0:43:43 GMT.

[4) + =]

. Save the project.

. Select the SendEmailWithAttachments.bpel editor screen.

. Drag and drop Email Activity from BPEL Activities and Components located in

the Component Palette between the receivelnput and callbackClient activities

(Figure A-28).
15.

A-24 Developer's Guide

In the Edit Email window, leave the From account as “Default”.

Send Email with Attachments

Figure A-29 Edit Email Window

& Oracle JDeveloper 11g Development Build - SendEmailWithAttachmentsApp.jws : SendEmailWithAttachmentsProj.jpr : C:\JDeveloper\myworkiSend,

File Edit View Search MNavigate Build Run Refactor Versioning Tools Window Help

Foda 90 XEm Q-9 - &M lde- -4 (8-)

Elapplcation Nsvigstor (] ttesml | S sencEmaittithatiscments xsd | gu SendemailtithAttachments.bp (UV)=) | component Palette | (... =

[SendEmailwithAttachmentsapp - ':' Y R A RS D saBrELr () | [BPEL -

vPr_nJects BE®T-&- ¢ ~Td o
S04 Content ~

| BPA Blue Prints

{3 dasses

£ testauites M Email ® ~ BPEL Activities and Companents
= &) compensate a
o % SendEmaililithAttachments. xsd [EMall [{iSensors’ (&) creste Entity
xd L
off compositesmi From Account: [Defauit | & ema
dh SencEmailithattachments. boel To: [| & B [Empty
ik SendEmaillVithAttachments. componel o
SendEmailwithattachments.wsdl Ce: [| & B @Hnw
<L s e
d : B Flowhl
» Application Resources Bec: [| & B @ o
) Data Controls weyis: | lak BEm v
I Recently Opened Files o I BPEL Services
Subject: | \E
= sendEmailWithAttac. .. Thumbnail = Sody: B "&glProperty Inspector =
i) iy = r
|+ = Al JE Ry] &)
| 7 @ @ +/x% Message bady can be piain text ar HTVL |
ES E\dEma\IWithAttachments.hpa\ o~ [Multipart message et
Wariables
7] Message Types
[Corrslation Sets [ey J[oc [cancel |

[0 5chemas \ J e
[2) Partner Links 10< J >
[fActivity Strocture] Zoom:[100[3] =\
[g5 Process - SendEmailWithAttachmer
------ [Properties

Design | Source | History |

------ [Property Aliases [ElsPeL -Log o
(] Sensor Acticns |l & sendEmaivithattachments.oel A W
- Frrare: N Warninne: 1 | act Validated Mn:] Nose 2NNR NN:42:47 GMT
[] show Detailed Node Information . validation Errors || LogMessages || Search Results |
Source |sPL | T [oG

o \De rm ndEmailWithAttachments. bpel | ! § Heap: 64M of 103, Per,

\SendEmailWithAttachmentsApp\SendEmailWithAttachmes

74 start (el M. [Fm. [T -[Wo. w2y -[MEst. [02v - o. [Ee. =B T &OME A

16. To create the expression for To, select the Expression Builder (the second icon,
Figure A-30) and perform the following steps:

= Select Identity Service Functions from the functions drop down list.
» Select the getUserProperty() function and select Insert into Expression.

s Under BPEL variables select Variables->Process->Variables->inputVariable
->payload-> client:process->client:to.

» Click Insert into Expression.

= Type the string ‘mail’ manually.

» Correct the parenthesis so they are matched.
= Click OK.

This expression (Figure A-30) takes the data from the Web Service and maps it to
the business e-mail of the local SOA user.

Oracle User Messaging Service Applications A-25

Send Email with Attachments

Figure A-30 Expression Builder for the To Path

-3 Expression Builder b_<|
Expression: @ My D
ids:getUserProperty (bpws:getVariahleData'inpuc¥ariable', 'payload','/client:process/clientito'],
'mail')

#\ Insert Into Expression ‘

BPEL Variables

Functions
EF- 177 INPUCYSFIE0Ie ‘ : : :
T E--- payload |Idenhty Service Functions vl
[=-4e» client:process getDefaultRealmName
<k o | getGroupProperty
£ client:subject
< client:body getManager
£y client: attachmenttame getReportees
£y clignt: attachmentMimeType
tSi rtedRealmi

< client: atkachmentURL E] 2t Ul eaimiiames

(%) output¥ariable){{] getUserProperty

[Scope - Email _L A [fl getuserRoles _

Content Preview: Description:

bpws:getvariableData(inputvariable’,'payload',' fdient:process/fdient:to’)| | Variable XPath expression

| Help | oK || Cancel

The expression must appear as follows:

ids:getUserProperty(bpws:getVariableData ('inputVariable',
'payload', '/client:process/client:to'),
'mail')

17. For Subject, select the Expression builder. Select getVariableData from Functions
and click Insert Into Expression.

Figure A-31 shows the Expression Builder for the Subject.

A-26 Developer's Guide

Send Email with Attachments

Figure A-31 Expression Builder for the Subject

2 Expression Builder

Expression:

bpws:getVariableDatal'input¥ariable', 'payload’,'/clientiprocess/oclient: subjece’)l

‘ A Insert Into Expression |

BPEL Variables

&=y client:body

e dlient:attachmenthlame
=y client:attachmentMimeType
L4y dlient:atachmentURI

Functions
=g Froce: -
=23 varlables ‘Advancad Functions |
[=1-(x) input¥ariable appendTolList
{2 [F] pavioad
€% client:process authenticate
£y dlient:to batchProcessActive
&= |client: subject|

batchProcessCompleted

copylist

create-nodeset-from-delimited-string

Content Preview:

Description:

bpws:getyariableDatalinputVariable’, payload', /dient:process /cient:suby

‘ariable ¥Path expression

(]

OK | ‘ Cancel

The expression must appear as follows:

bpws :getVariableData (
'/client:process/
client:subject')

18.
Figure A-32.

"inputVariable',

'payload',

For “Body” select the Expression Builder and set the expression as shown in

Figure A-32 Expression Builder for the Body

& Expression Builder

)

El-- payload
[=1-4#» client:process
£y client:to
ey client:subject
< [ehenit-hody]
£y client:attachmenthame
&=y client:attachmentMimeType
+-4ep client:attachmentURT

Expression: @ Ny D
bpwa:getWariableData('inpucVariable', 'payload’, '/clientiprocess/client:body')
| @\ Insert Into Expression ‘
BPEL Variables Functions
= E‘---SL\Tariables |Advan:ed Functions - |
= (%) input¥ariable

Caontent Preview:

appendTolList

batchProcessActive
batchProcessCompleted

copylist
create-nodeset-from-delimited-string
[fi3] createDeli

itedStrina

Description:

bpws:getYariablelatalinputvariable','payload',' /dient: process /dient:bo

Variable XPath expression

[el |

oK | | Cancel

The expression must appear as follows:

Oracle User Messaging Service Applications A-27

Send Email with Attachments

bpws:getVariableData ('inputVariable', 'payload', '/client:process/client:body')

19. In the Edit Email window (Figure A-33), ensure that the Multipart Message with
attachments box is checked.

When an e-mail has multiple parts, the attachment count includes the body that is
set with the Wizard above. The body specified by the Wizard above is set as the
first body part.

For example, to represent a multipart mail with one (1) attached file, enter “2” as
the number of body parts. When there is one attachment, enter '1' as the number of
body parts.

Figure A-33 Edit Email Window

& Oracle J Developer 11g Development Build - SendEmailWithAttachmentsApp. jws : SendEmailWithAttachmentsProj. jpr : C:\JDeveloperimywork\Send...

File Edit View Search Wavigate Build Run Refactor Versioning Tools Window Help

= p————————4
FoEa 90 xBEm Q-0 - hdiduw- - A (@8-)
& Application Navigator & iteom |2 ithAttachments,xsd i bp (D)) | component Pakette | [jRe. . &
[l SendEmaitvithattachmentsapp ~E | Q- S G (g) saerEL- =8 -
~ Projects R®T-E- ¢ Hir Y
B-23 504 Content ~
-0 classes y » BPA Blue Prints
£ testuites Emai b3 BPEL Actvities and Companents
-2 xsd o &5 compensate i~
2, sendEmailiVithAttachments.xsd | EMail [Sensars (] reate Entity
B From Accaunt: |Default | T I Bew
- offf compasite. sl b ma
iy SendEmal\WithAttachments bpel To: [ible", pavioad, fdient:process/dient:ta), mal) %> | G Bl | |Empty
44 sendEmailithAttachments. companey o
" [@] sendEmaltuithattachments.wsd | o [G Flow
< J b3
d] &gy FlonN
I Appiication Resources Beci [\i}i o
I Data Controls ey | [S kgl v
I Recently Opened Files o I BPEL Services
subject: [utvariable', payload, fclient:process client:subject)% > | B,
= gendEmailwithAttac. .. &1 - Thumbnail = Body: @property Inspector =
" input¥ariable’, payload, fclient:process/clent:body) %| [, = i o
P E @23 /(@ L2
< " 1
TR ® */ X A e T s Wyt T
% SendEmailwithAttachments. bpel ~ Multipart message |2
[variables
[Message Types
[Schemas \ 7, »
[23 Partner Links < | 5
(= [0 etivity Struckure] e -1EIEI B e
i s Process - sendEmailwithAttachmer ¢ — -
3 Properties Design [Source | History |
+ [Property Aliases [EJePeL -Log =]
£ [sensor Actions — o, SendEmsiivithA ttachments. bpel N\ ™
. Frrares N Warninae: 1 | 22t alidatad (' & Ny IR (1024747 EWT
7] Show Detailed Node Information | validation Errors || Lo Messages || SearchResuits. |
= rains | [O0G]

aved nodes(1) § Heap : 74M of 103M, Perm Gen : 111M of 256M

20. Set the attachments:

Each body part has three attributes: MimeType, BodyPartName and ContentBody:.
By default, the wizard generates default names, MIME types and contents for each
of the attachments.

The assignment of these body parts has to be changed to set the correct data by
modifying the copy rules in the assign activity in the notification scope. The copy
rules (specified in the Copy Operation tab) are grouped for each assignment in the
following order (the copy-to constructs are also listed):

MimeType - <to variable="varNotificationReq" part="EmailPayload"

query="/EmailPayload/nsl:Content/nsl:ContentBody/nsl:MultiPart/nsl:BodyPart([2]/
nsl:MimeType" />

Name - <to variable="varNotificationReq" part="EmailPayload"

query="/EmailPayload/nsl:Content/nsl:ContentBody/nsl:MultiPart/nsl:BodyPart([2]/
nsl:BodyPartName" />

Contents - <to variable="varNotificationReq" part="EmailPayload"

A-28 Developer's Guide

Send Email with Attachments

query="/EmailPayload/nsl:Content/nsl:ContentBody/nsl:MultiPart/nsl:BodyPart[2]/
nsl:ContentBody" />

1.

Figure A-34 Expanding the Email Node

Expand the Email Node by selecting the plus sign icon (Figure A-34).

File Edit View Search Navigate Build Run Refactor Versioning Tools Window Help
88 9® XER Q-9 H- Akl »-&- A (98-)
pplication Navigator &) itesml | Zsenc i d [i O @ componentPalette | [GRe... =]
[sencEmaiviithAttachmentsipp ~E |- [- G- W > | eaEREL () ||[EPEL -
* Projects RI® V- E- 200 ~ 75|48 (5]
=-{ 50A Content = Natificationss i
3 dasses 5 otification3ervic. .. b BPA Blue Prints
G testaites e || 7 BPEL Activities and Companents
500 ssd &) compensate i~
& sendEmaiithAttachments. xsd [create Entity
B receivelnput = [
o comparsite. xml mai
-+-[@] MotificationService. wsdl [ey
&=, NotificationService. xsd o
o g SENEMANVIAttachmants.bpal {QJ @ 7
. 2) 4
(s lemaiwithatta. . G Flown
1 Application Resources
I Data Controls El2 ™ v
I Recently Opened Files 1> BPEL Services
endEmailithattac, ., " Thumbnail = | ®@rroperty Inspector =
- B S (@ ¥t
" callbackclient
T an /7%
& SendEmaiwithAttachments. bpel A
0] Variables
[Message Types
[Correlation Sets
[sthemas
[Partrier Links <
- s Process
[ctivicy Structure] .
g Process - Design | Source | History |
{1 Properties [El8PEL - Log
-] Property Alisses 3 || & sercmaivithattachments. bl
P | At Unlirtater On: & How 9005 11:43:43 AMT
[shew Detailed Nade Infarmaten | validation Errors || LogMessages | Search Results |
[e | | Messages [Extersions | Feedback_|5PEL Y

Opened nod

2.

Figure A-35 Email ParamAssign Node

& Oracle JDeveloper 11g Development Build - SendEmailWithAttachmentsApp. jws : SendEmailWithAttachmentsProj.jpr :

+=)

 Heap : 82M of 103M, Perm Gen : 112M of 256M

Double-click the EmailParamAssign node (Figure A-35).

Developer\myworkiSend. ..

File Edit View Search MNavigate

Build Run

EH8 9™ XER Q-0 1 H- hidde-

Refactor Versioning Tools Window Help

B A

[T hments. xsd

application Navigator

(5]

& inwit QoG]

SercEmailithAtiachmentsApn =
 Projects B®T-E-
E-[23 50A content
] dasses
-2 testsuites
&~ xsd
£, sendEmailuithattachments.xsd
Eaxel
a8 composite.xml
- [@] NotificationService.wsd|
&2 NotificationService xsd
b e SendEmaiVithA ttachments. bpe!

2T
I Application Resources
b Data Cantrols

b Recently Opened Files

= sencEmailWithAttac...
-+
TR &

Thumbnail

v
>

8]

SendEmaiWithAttachments.bpel
7] variables

{77 Message Types

[Correlation Sets

{7 Schemas

[Partrer Links

a Process

ety st

a Process -

+/ X

- 63 ErEL (3)

v Ao @ s

~ T

!

e

recetvelnput

|
|

EmalParamsssign

bas @

et

demailwithatta...

dB-

B component Palette
[BPEL

@

b BPA Blue Prints
= BPEL Activities and Components.

@] compensate
@\ Create Entity
5 emai

[Emoty

G Fion

é\g Flow
Bm

b BPEL Services

(&@Re...

EProperty Inspector

PRI

Design | source | History |

-] Froperties
[Property Aliases

<

[[] shaw Detailed Made Information

Source | BPEL

[ElereL - Log
& SendEmail\ithattachments.bpel
Fernwe: 0 Warninne: 1 | nct Vililatard (in- & New 2008 (- 47-23

| valdston Errors || LogMessages | SearchResults |

[ODC]

1l

Vessages | |Extmisons Fesdiad:

B |

Pt

M2y - i

Heap : 78M of 103M, Perm Gen : 112 of 256M

5:03PM

Oracle User Messaging Service Applications

WH &0

A-29

Send Email with Attachments

When making changes in the EmailParamAssign node (for example, editing
the XPath variables), perform a Save All from the File menu after making each
change. This ensures that the changes are reflected in the .bpel file.

To edit the mimeType of the second body part (the first body part is the
contents set in the wizard) select the second body part variable ending with
“MimeType” by double-clicking it (Figure A-36).

Figure A-36 Editing the mimeType of the Second Body Part

& Oracle JDeveloper 11g Development Build - SendEmailWithAttachmentsApp.jws : SendEmailWithAttachmentsProj. jpr : C:\DeveloperimyworkiSend...

Ele Edit View Search MNavigate Build Run Refactor Versigning Tools Window Help

BFoBa 9@ XEB Q-9 8- &hilde- -4 (8-)
{Elapplcation Navigator Olitexm |2 il d [Wi bp (O] | @ alette | [GRe.. ()
Bossmissess — @- @ - B 5 @ # we= o= g
~ Projects E®7P-E- g v ~ T @R
=3 50A Content E . Q
B8 desses | assign % b BPA Blue Prints
510 testsuites BPEL Activities and Components
-0 xsd (TGeneral | Copy Operation | ‘Sensers. | Annotations | &5 compensate o
H &3, SendEmailWithAttachments.xsd =
. Create Enti
i P 7R & D L&} create Entity
2 composite.xml om To BEemai
N““"mﬁ“"se“‘im'ws"‘ string(text/html; charset=UTF-8) varNotificationReq/EmaiPayload/E. .. * [JEmpty
NotificationService. xsd <
i G Expression (x) variable 8 Flow
i gk SendEmaiithAtiachments. bpe! G
o - g Sen " e . ad tring(Notification html?) varhlotificati Q
5 i = 5 5 Flown
b Application Resources [Expression (x) Variable @
b Data Controls iableDatalinputariabl... varMlotifi Sk A
b Recently Opened Files |, Expression b EPEL Services
EmaiPayload/jE...
3 sendEmailWithAttac... +{ Thumbnail =) (. exp Variable XPath
- tring(Notification]. varhotifi 1:Contentjns1 AultiPart/ns 1:BodyPart[2] fns1:MimeType
[, Expression) Variable
T a®m + /X string{message?) varotificationReq/EmalPayload fE... '
& SendEmaivwithattachments. bpel = < " k]
(-] Variables
() Message Types Help Apply 0K Cancel
e . [])
([Schemas v
[Partrer Links < | >
da Process Jscope/sequence/assign zooms| 10| e
=1- [ctivity Structure]
= Pracess- Design | Source | History |
[Properties [ElePEL -Log g
It [0 Property Alisses L Y| e sencEmailiitnattacments.bpel A\ W
- Frrore: 0 Warninns: 1 1 act Valirated Nin: & M NNR (N:49:4) (VT
[1how Detailed Node Information | Validation Errors || Log Messages || Search Results |
Source ELBFEL Messages ctensions [Feedback |BPEL | [ODS]

A-30 Developer's Guide

§ Heap : 83M of 103M, Perm Ger

mE T &0

112M of 256M

v~ [..

fm2v - MHst. S:03PM

Edit the XPath as shown below (Figure A-37):

From: /client:process/client:attachmentMimeType,

To: /EmailPayload/nsl:Content/nsl:ContentBody/nsl:MultiPart/
nsl:BodyPart[2]/nsl:MimeType

Send Email with Attachments

Figure A-37 Editing the XPath for mimeType

From To
Type: [\-‘ariable '] Type: [\-'ariable ']
|11 Variables] Wariables ™
B g Process =g Process
E}D ‘ariables D Variables)
[+-(x) input¥ariable E}-\é5 Scope - Email_2
i =[] pavioad =[] variables
-4 dlient: process = (%) varMotificationReq

o client:to - [F] EmailPayload

£ client:subject [} & EmailPayload

€= client:body -4y ns1iFromAccountiams
= client:attachmentMame e ns1iTo

¢ [client: attachmentMimeType] €y nsl:ReplyTosddress

o3 client: attachmentURI €= nsl:Subject

(x) output¥ariable =14y ns1:Content

Scope - Email_2 4oy nsliMimeType
<»{nst:ContentBady]
=y ns1:ContentEncoding
[#--4p nsliEmaiHeaders

4oy msliCe

-4y ns1iBec

[#-€=3 ns1:MotificationContext
[#- () warMotificationResponse

- {x) NotificationServiceFault¥ariable

[] show Detailed Mode Information [] show Detailed Mode Information

XPath: |/client:p:ucess/client: at.tachmentﬂimeTy}i

5. Save the project.

6. To edit the attachment name for the second attachment, select the second body
part variable ending with “BodyPartName” by double-clicking it
(Figure A-38).

Figure A-38 Editing the Attachment Name for the Second Attachment

& Oracle JDeveloper 11g Developm Build - SendEmailWithAttach . jws = SendEmail WithAttachi j-jpr : Developerimyw

File Edit View Search MNavigate Build Run Refactor Versipning Tools Window Help
FoEg 90 XEm -0 8- L4V Am-b-&-14 (@8-)
(2] ol | S SendEmailithAttact d s il bp (00 | @ component Palette | (GRe... &

T T) = 3
7 Projects [aRE W RS S v ~ T gl (5]
=-{23 oA Content e o N b
3 dasses | Assign lue Prin
3 testsuites B ® 7 BPEL Activities and Components
-0 xsd (7General | Copy Operaten [Sensars | Annetatens | &) compensate o
&% SendEmailwithAttachments. xsd =
i Create Entr
Eae bt @ o
~alff composite xml om To L @Em“
-1] 1 string(text/html; charset=UTF-8) varhiotificationReq/EmaiPayload//E... [|Emty
&% NotificationService.xsd E_ . {x) Variabl ;
o g SENCEMalUithAttachments,bpel Jx Lepression ariabe ., @ Flow
b Ll = 2 s ring(NotificationAttachment Lhtml) varhotificationReq/EmalPayload/fE. ..
. - = : Flon
I Appiication Resources [Gi, Expression (x) variable @
I Data Controls jpws:getVariableData(inputvariabl... varNotificationReq/EmalPayload/fE. .. Bm L
b Recently Opened Files (x) Variable (x) variable b BPEL Services
putyar J {client:proce... varNotificati load/fE... [
= SendEmailWithAttac. . 1 Thumbnail = % Variable EEmaiparamsAssion - Property T...
p houtyarial t: FY- 2V AT
7 =1 Variable XPath
T®e® s ntent/ns 1:ContentBodyns 1:MultiPart ns 1:BodyPart[2] ns1:BodyPar thiame
& endEmailwithattachments.bpel ”~ T
[Variatles
[Message Types
[Carrelation sets \
[Schemas v
£ [Partrer Links < J 3
i g Process Jscope sequence/assign Zoom: e
[Cafactivity Structure] ;
"3 Procass . - Design | Source | History
21 Properties [ElsPEL -Log =]
{ (20 Praperty Aliases . & SendEmailviithAttachments.bpel N W
Frrors: 0 Warninns: 1 1 act Unlidated O & Ky 98 (1103347 GMT
[shaw Detaled Node Infarmatan . validation Errors || Log Messages || Search Results. |
Source Messsges | Extensions | Feedback PEL (0D

7. Edit the XPath as shown below:

From: /client:process/client:attachmentName

Oracle User Messaging Service Applications A-31

Send Email with Attachments

To: /EmailPayload/nsl:Content/nsl:ContentBody/nsl:MultiPart
/nsl:BodyPart[2] /nsl:BodyPartName

Figure A-39 Editing the XPath for BodyPartName

- client:process

£ dlient:to

£ dlient:subject

£ dlient:body

|
£ dient: attachmentMimeType
<+ dient:attachmentURI

-{x) output¥ariable

|5 Scope - Email_2

From To
Type: [\-'ariable VI Type: [\-‘ar\able V]
|1 Wariables _| variables 7~
- e Process Bl dfa Process
B[] variables D Wariables)
£l (x) input¥ariable Scope - Email_2
E- payload EID ‘ariables

=) varMotificationReq
E| EmaiPayload
[=}--€s% EmailPayload
- &op ns1:Framaccountiame
4o nsliTo
» ns1:ReplyToAddress
*» ns1:Subject
ns1iContent
o nsl:MimeType
<>
- ns1:ContentEncoding
¥ ns1:EmaiHeaders
¥ nsliCc
-y nsliBoo
B €<y ns1iMotificationContesxt
[#-{x) varNotificationResponse
() NotificationServiceFault¥ariable -

[] Show Detailed Mode Information

¥Path: |/cllent:process/client:at,t,achmentName |

["] shaw Detailed Mode Information

HPath: Lt,iPax:t,,-’nsJ.:BodyPart,[2],-’nsl:BodyPartName

8. Save the project.

9. To edit the attachment contents of the second attachment, select the second

body part variable ending with “ContentBody” by double-clicking it

(Figure A—40).

Figure A-40 Editing the Attachment Contents of the Second Attachment

cle JDeveloper 11g Development Bui

ithAttachmentsPr

File Edit View Search Navigate Build Run Refactor Versioning Tools

Window Help

FoEd 90 XEBH Q-0 5- & dea- @4 (d8-)
{ElApplication Navigator 2] itexml | £ SendEmailiyi hments.xsd i il bp (D)) B component Palette | [@jRe.)
= : Pag, T — =
[El sendEmaitithattachmentsapp B |- Q- @~ & @ -8 (@) sageEL (D) == |
< Projects B8 T-E- g v ~ = g0 Q
-3 50A Content T .
[classes " | Assign ® P BPA Blue Prints
BB testsuites BPEL Activties and Components
B3 xsd | General | Capy Operation | Sensors | Annotations | &5 compensate I
&2, SendEmailWithAttachments. xsd =1
L Create Entity
e /R &
o composite xml om To Ed @ Email
-1l e string(text/htmi; charset=UTF-8) varhotificationReq/EmailPayload//E... | |Empty
- NotificationService, xsd = P — e
- g SendEmallvithAttachments.bpel (G, Expression . D Q}> Flow,
20 . g tring(NatificatonAttachment Lhtml) varotificationReq) .
k | - Fiowi
b Application Resources [Expression (x) Variable G
I Data Controls Datalinputvariabl.., varNotificationReq/Email fE... HIM E,
I Recently Opened Files (x) Variable (x) Variable » BPEL Services
hputVariable payioadfientiproce... varhotificationReq/EmaiPayioad/fE... |
(& Thumbnail = (x) variable (x) variable "&EmalParamsAssion - Property L... =
hputariable fpayloadjdientproce... varhiotificationReq/EmaiPayload /... = 2l
o - /(@ (X))
: pression
TR /%] \
s SendEmailwithattachments.bpel = Vvariable XPath
E Ui’ varhlotific Emil djns1:Content/ns 1:C: dyins 1:MultiPart/ns 1:BodyPart{Z] s L: ContentBody
Message Types R oK Tarce
[Carrelation Sets ¢ L L = JL ,|
[schemas v
B[Partner Links < " | 5
| E-gh Process Jscope/sequencefassign Zoom: | 100 [f] el Q

Activity Structre .

) EinDe - hmer | 025N [Source | Histary

[Properties [ElBPEL - Log
[0 Property Alisses “| | & sencEmailwithAttachments. bpel

¢ J Ty
Errares M arminne: 1

1 2ct Validatad Ane & Hoy NG N42:43 AT

[] show Detailed Made Information

| validation Errors [Loa Messages || SearehResuls. |

Messages | Extensions | Feedback

A-32 Developer's Guide

PEL

(OS]

Send Email with Attachments

10. Edit the XPath as shown below (Figure A—41):

From: ora:readFile (bpws:getVariableData ('inputVariable', 'payload','/client:
process/client:attachmentURI'))

To:

/EmailPayload/nsl:Content/nsl:ContentBody/nsl:MultiPart/
nsl:BodyPart[2]/nsl:ContentBody

ora:readFile() xpath function is available under “BPEL Xpath Extension
Functions”.

Figure A-41 Editing the XPath from the ContentBody

© Edit Copy Operation

From To

Type: |Expressiun v| Type: |‘v'ariab|e '|

. r Yaraoie:
Expression: E}ﬁ?a Process
ora:readFile (bpws: getVariableDatal [variables

'inputVariable', 'payload','sclient:process
foclient: attachmentlURI '))

+2| Scope - Email _2
[=! [Wariables

[=-(x) varMotificationReq
=[] EmailPayload

B4 EmailPayload
-4 nsliFromAccountManme
ey nsliTo
4o nsl:ReplyTodddress
4o nsl:Subject
[=h-€sp nsl:Content
4=y nsL:MimeType
<
=¥ nsliContentEncoding
[#--4s» nsl:EmailHeaders
&y nsliCe
o nsliBee
-4 ns1:MokificationContext
(%) varMotificationResponse
[-{x) NotificationServiceFaultVariable
[] Show Detailed Mode Information

HPath: ‘ l/EmailPayJ.oad/nsl :Content/msl: Contenth{

| Help | ‘ oK. H Cancel |

11. Click OK in the Edit Copy Operation screen.

Oracle User Messaging Service Applications A-33

Send Email with Attachments

Figure A-42 Copy Operations Tab

@ Oracle JDeveloper 11g Development Build - SendEmailWithAttachmentsApp.jws : SendEmailWithAttachmentsProj.jpr : C:WDeveloper\myworkiSend...

File Edit View Search Navigate Build Run Refactor Versigning Tools Window Help

EoEg 90 XEE Q-9 % AhMle- b-&- A (88~ /
@ pplication Navigator (&) itesaml | B SendEmailisithAttachments.xsd il bp (J(F)=) @ component Palette | ([&iRe... =
[SendEmaitwithAttachmentsApp e Q- - S g sagreL- () | [BPEL |
¥ Projects Gl 8 V- E- E v I Y (5]
&-[23 504 Content E - ~
[classes Al Assign ® I BPA Blue Prints
3 testsuites ~ BPEL Activities and Components
B[%sd [7General | Copy Operation | Sensors | Annotatiens | [compensate ™
gy SendEmaiWithAttachments. xsd =
- Create Entity
= +ZRa e &
ol composite.xml om To (&5 e
- [@] Notificationservice wsdl string(texthtm|; charset=UTF-8) varNotificabonReq/EmaiPayload ... ™ [Jemory
&2 NotificationService. xsd Be () variabh ?
i T, Expression /ariable @Hw
. ettt e i Lo tring(NotificationAttachmentLhtml) varHotificationRea/EmaiPayload//E...
. = . Flowhi
| Appiication Resources [Expression (x) variable @ o
I Data Controls ypws:getvariableDatalinputvariabl... varMotificatonReq/EmailPayload/fE... @[M ke
b Recently Opened Files (x) Variable (x) variable b BPEL Services
noutvariable payioadicientiproce. .. varNotificationRe/EmaiPavioad//E... |
= SendEmailWithAttac.., (& Thumbnail = (x) Variable (x) variable BEmaiParamsassign - Property 1... =
= putyariable/payload)jdient:proce. .. varNotificationReq/EmaiPayload//E. =1 - ¢
, 2 £ M == = i HiAE /(@ 44
7 Expression
Fa SendEmailwichattachments. bpel - < L
[0 variables
[Correlation Sets L)
[0 Schemas ~
[Partrer Links < * J >
el gfy Frocess [scope fsequence/assign zoom:[100[] =—F—= @
[{activity Struckare T :
T, Process - tmes |} Desion [Source [History |
[Properties [ElereL -Log (=)
-] Praperty Alisses 3| | & sendematwihatiachments ol]
Frears: 0 Warminns: 1 | Aat Vnlidated (i & Mo 90 A 43:49 AWT
] Show Detaied Node Information | validation Errors [[Log Messages || Search Results. |
Souee | 8L [Fedbode el]

d nodes(0) |

Heap : 99 of 103M, Perm Gen : 112M of 256M

12. Click OK in the assign activity. Save the project.

The Process Modeling procedure is complete. You can use the information in
this procedure to add notification with attachments to your SOA composite
application.

You can now deploy and run the application as described in Section A.2.3,
"Running the Pre-Built Sample".

A.2.6 Creating a New Application Server Connection

Perform the following steps to create a new Application Server Connection.

1.

A-34 Developer's Guide

Create a new Application Server Connection by right-clicking the project and
selecting New, Connections, and Application Server Connection (Figure A-43).

Send Email with Attachments

Figure A-43 New Application Server Connection

PE stbcz15:1 (aimel)

& Applications Actions %@Q}és‘

[t

File Edit Yiew Sear| > New Gallery X

2@ g 9 [ANl Technalogies | Current Project Technalogies |
pailantlambiulao This list is filtered according 1o the current project's selected technologies anent.. [£l
S : —
= Projects °
=0l SendMessagePro) || Categories: Iems [] show.All Descriptions
B 504 Contem = General o mpeme p - = lue Prints
. D testsuites App ication Server nnection

B Ctivities and Compo..
Leapplications ru

Launches the Create Application Server Connection wizard, which ~
(3 xsa L guides you in the creation of a new connection to andalone OC4), <form
" ga BPELPro ~-Deployment Descriptors BER Weblogic, etc
Dz " Deployment Profiles - Notification E
b Application Resources { rojects This aption is akways enabled. i »
himiaia,CoRLG0LS =} 50A Tier {2 BaM Connection I *
hmBecenthuOpenediiles L.Enterprise Scheduler Metadata EIUICES
[&) BPA Connection
eeService COmponents
ESendMessagePru. P Transformations n CWS Connection ry Inspector [:]l
Allttems &) Database Connection PE /(@ 0

@ File System Connection
] SOA-MDS Connection

[Zh Subversion Repositary Connection

[E) 1IRRI Danicrne Camnartion Ad

Design | Source | History

2. Name the connection “SOA_server” and click Next (Figure A—44).
3. Select "WebLogic 10.3" as the Connection Type.

Figure A-44 New Application Server Connection

E stbcz15:1 (aimed)
Applications Actions %@Q g s

Oracle JDeveloper 11g Development Build - SendMessageApp.jws : SendMessageProj.jpr

>|

File Edit View Search

FeEa 9e Y

=3 Create Application Server Connectit xX

- Step 1 of 5

- Name & Type
Application Navigator
SendMessageApp
= - Specify a unique name and type for the connection. The name must be avalid Java
lwi Name & Type
 Projects &l 0 w identifier. 5]
SendMessagePro) Authentication
B[504 Contem T Create connection in: BP4 Blue Prints
B testsuites © EBPEL Activities and Compo
&3 xsa [Application Resources (3) Resource Palette e ~
x5 ¢ r
A tElprocesst] | {| Transform
= - Caonnection Mame:]
xsl | User Motification
I Application Resources |SOAJ" anaged._server | H voice vl
I Data Contrals I

LConnection Type: . ’

EPEL Services
eblogic 10.3 - k

I Recently Opened Files

= sendMessagePro T

Property Inspector E]|

4 Jr A0 Wl

meis] [emen] [once]

[
Zoom:| 100[3] T =N l‘

Design | Source | History

4. Enter the authentication information. The typical values are:

Username: weblogic
Password: weblogic

5. On the Connection screen, enter the hostname, port and SSL port for the SOA
admin server, and enter the name of the domain for WLS Domain.

Oracle User Messaging Service Applications A-35

Send Email with Attachments

6. Click Next.
7. On the Test screen click Test Connection.
8. Verify that the message “Success!” appears.

The Application Server Connection has been created.

A-36 Developer's Guide

Profile Service Provider Configuration

Reference (profile.xml)

The following chapter provides a complete reference to the profile provider
configuration file, profile.xml, in the following sections:

Section B.1, "Overview of profile.xml"
Section B.2, "Graphical Representation”
Section B.3, "Editing profile.xml"
Section B.4, "XML Schema"

Section B.5, "Example profile.xml File"

Section B.6, "XML Element Description"

B.1 Overview of profile.xml

The profile.xml file configures attributes of a profile service provider, such as:

The name of the provider
The class name of the provider implementation
Optional arguments passed to the provider

Mapping rules for using the provider.

profile.xml is stored in the DOMAIN DIR/config/custom subdirectory where
DOMAIN_DIR is the root directory of the OWLCS domain.

B.2 Graphical Representation

Figure B-1 shows the element hierarchy of the profile.xml file.

Profile Service Provider Configuration Reference (profile.xml) B-1

Editing profile.xml

Figure B-1 Element Hierarchy of profile.xml

map-by

map-by-
router

mapping

map-by-
prefix

profile.xml profile-service

name

provider-
class

provider

name

param

[\

value

B.3 Editing profile.xml

Oracle recommends using the Administration Console profile service extension to
modify profile.xml indirectly, rather than editing the file by hand. Using the
Administration Console ensures that the profile.xml document always contains
valid XML. See Configuring Profile Providers Using the Administration Console in
Developing Applications with OWLCS.

You may need to manually view or edit profile.xml to troubleshoot problem
configurations, repair corrupted files, or to roll out custom profile provider
configurations to a large number of machines when installing or upgrading OWLCS.
When you manually edit profile.xml, you must reboot servers to apply your
changes.

B.3.1 Steps for Editing profile.xml

If you need to modify profile.xml on a production system, follow these steps:

1.

Use a text editor to open the DOMAIN_DIR/config/custom/profile.xml
file, where DOMAIN_DIRis the root directory of the OWLCS domain.

Modify the profile.xml file as necessary. See "XML Element Description" for a
full description of the XML elements.

Save your changes and exit the text editor.
Reboot or start servers to have your changes take effect:

Test the updated system to validate the configuration.

B-2 Developer's Guide

{DOCROOT}/programming/profileapi.html#console

XML Element Description

B.4 XML Schema

The full schema for the profile.xml file is bundled within the
profile-service-descriptor-binding. jar library, installed in the WLSS_
HOME/server/lib/wlss directory.

B.5 Example profile.xml File

See Developing Custom Profile Providers in Developing SIP Applications for sample
listings of profile.xml configuration files.

B.6 XML Element Description

The following sections describe each XML element in profile.xml.

B.6.1 profile-service

The top level profile-service element contains the entire profile service
configuration.

B.6.2 mapping

Specifies how requests for profile data are mapped to profile provider
implementations.

B.6.2.1 map-by

Specifies the technique used for mapping documents to providers:

= router uses a custom router class, specified by map-by-router, to determine
the provider.

» prefix uses the specified map-by-prefix entry to map documents to a
provider.

» provider-name uses the specified name element in the provider entry to map
documents to a provider.

B.6.2.2 map-by-prefix

Specifies the prefix used to map documents to profile providers when mapping by
prefix.

B.6.2.3 map-by-router

Specifies the router class (implementing com.bea.wcp.profile.ProfileRouter)
used to map documents to profile providers with router-based mapping.

B.6.3 provider

Configures the profile provider implementation and startup options.

B.6.3.1 name

Specifies a name for the provider configuration. The name element is also used for
mapping documents to the provider if you specify the provider-name mapping
technique.

Profile Service Provider Configuration Reference (profile.xml) B-3

{DOCROOT}/programming/profileapi.html

XML Element Description

B.6.3.2 provider-class

Specifies the profile provider class (implementing
com.bea.wcp.profile.ProfileServiceSpi).

B.6.3.3 param

Uses the name and value elements to specify optional parameters to the provider
implementation.

B-4 Developer's Guide

C

Developing SIP Servlets Using Eclipse

The following chapter describes how to use Eclipse to develop SIP Servlets for use
with OWLCS, in the following sections:

s Section C.1, "Overview"

» Section C.2, "Setting Up the Development Environment"
= Section C.3, "Building and Deploying the Project"

= Section C.4, "Debugging SIP Servlets"

C.1 Overview

This document provides detailed instructions for using the Eclipse IDE as a tool for
developing and deploying SIP Servlets with OWLCS. The full development
environment requires the following components, which you must obtain and install
before proceeding;:

= OWLCS
» JDK1.6.05

= Eclipse version 3.4 or Eclipse 3.3 Europe. This includes a CVS client and server
(required only for version control).

C.1.1 SIP Serviet Organization

Building a SIP Servlet produces a Web Archive (WAR file or directory) as an end
product. A basic SIP Servlet WAR file contains the subdirectories and contents
described in Figure C-1.

Developing SIP Servlets Using Eclipse C-1

Setting Up the Development Environment

Figure C-1 SIP Serviet WAR Contents

| Project
Directory

{JSP or [HTML
(JSPs and Static Files)

— /WEB-INF

— | web.xml

| sip.xml
llib
{jar Files)
/classes
(Compiled Classes)

ftags

(.tid Files)

C.2 Setting Up the Development Environment

Follow these steps to set up the development environment for a new SIP Servlet
project:

1. Create a new OWLCS Domain.
2. Create a new Eclipse project.

The sections that follow describe each step in detail.

C.2.1 Creating a OWLCS Domain

In order to deploy and test your SIP Servlet, you need access to a OWLCS domain that
you can reconfigure and restart as necessary. Follow the instructions in Oracle WebLogic
Communication Services Installation Guide to create a new domain using the
Configuration Wizard. When generating a new domain:

= Select Development Mode as the startup mode for the new domain.

m Select Sun SDK 1.6.05 as the SDK for the new domain.

C.2.2 Verifying the Default Eclipse JVM

Eclipse 3.4 uses the required version Java 6 (1.6) by default. Follow these steps to
verify the configured JVM:

1. Start Eclipse.
2. Select Window >Preferences.

3. Expand the Java category in the left pane, and select Installed JREs.

C-2 Developer's Guide

Building and Deploying the Project

N o a &

9.

10.

Verify that Java 6 (1.6) is configured. If it is, proceed to step 10.
If not configured correctly, click Add... to add a new JRE.
Enter a name to use for the new JRE in the JRE name field.

Click the Browse... button next to the JRE home directory field. Then navigate to
the MIDDLEWARE_HOME/Jjdk160_05 directory and click OK.

Click OK to add the new JRE.
Select the check box next to the new JRE to make it the default.

Click OK to dismiss the preferences dialog.

C.2.3 Creating a New Eclipse Project

Follow these steps to create a new Eclipse project for your SIP Servlet development,
adding the OWLCS libraries required for building and deploying the application:

1.

2
3
4.
5

10.

Start Eclipse.

Select File > New > Project...

Select Java Project and click Next.

Enter a name for your project in the Project Name field.

In the Location field, select "Create project in workspace" if you have not yet
begun writing the SIP Servlet code. If you already have source code available in
another location, select "Create project at external location" and specify the
directory. Click Next.

Click the Libraries tab and follow these steps to add required JARs to your project:
a. Click Add External JARs...

b. Use the JAR selection dialog to add the MIDDLEWARE_
HOME/server/lib/weblogic.jar file to your project.

c. Repeat the process to add the MIDDLEWARE_HOME/server/lib/wlss/
sipservlet.jar and MIDDLEWARE_
HOME/server/lib/wlss/wlssapi.jar files to your project.

Add any additional JAR files that you may require for your project.

To enable deploying directly from eclipse, change the build folder from /src/build
to /src/WebContent/WEB-INF/ classes. This means that you do not have to
package the application before deploying it.

Click Finish to create the new project. Eclipse displays your new project name in
the Package Explorer.

Right-click on the name of your project and use the New >Folder command to
recreate the directory structure shown in Figure C-1, "SIP Servlet WAR Contents".

C.3 Building and Deploying the Project

The build.xml file that you created compiles your code, packages the WAR, and
copies the WAR file to the /applications subdirectory of your development
domain. OWLCS automatically deploys valid applications located in the
/applications subdirectory.

Developing SIP Servlets Using Eclipse C-3

Debugging SIP Servlets

C.4 Debugging SIP Serviets

In order to debug SIP Servlets, you must enable certain debug options when you start
OWLCS. Follow these steps to add the required debug options to the script used to
start OWLCS, and to attachthe debugger from within Eclipse:

Note: On Linux, debug is enabled by default if you install in
developer mode. However, the port is set to 8453.

1. Use a text editor to open the StartWebLogic. cmd script for your development
domain.

2. Beneath the line that reads:

set JAVA_OPTIONS=

Enter the following line:

set DEBUG_OPTS=-Xdebug -Xrunjdwp:transport=dt_
socket,address=9000, server=y, suspend=n

3. In the last line of the file, add the $DEBUG_OPTS% variable in the place indicated
below:

"%JAVA_HOME%\bin\java" %JAVA_VM% %MEM_ARGS% %JAVA_OPTIONS% %DEBUG_OPTS%
-Dweblogic.Name=%SERVER_NAME% -Dweblogic.management.username=3%WLS_USER%
-Dweblogic.management . password=3%WLS_PW$
-Dweblogic.management . server=%ADMIN_URL%
-Djava.security.policy="$MIDDLEWARE_HOME%\server\lib\weblogic.policy"
weblogic.Server

Save the file and use the script to restart OWLCS.
To attach the debugger from within Eclipse select the Run > Open debug dialog.

Create a new "Remote Java Application".

N o a &

Enter the host and port corresponding to the DEBUG_OPTS.

C-4 Developer's Guide

D

Porting Existing Applications to Oracle
WebLogic Communication Services

This chapter describes guidelines and issues related to porting existing applications
based on SIP Servlet v1.0 specification to Oracle WebLogic Communication Services
and the SIP Servlet v1.1 specification. It contains the following sections:

= Section D.1, "Application Router and Legacy Application Composition"
= Section D.2, "SipSession and SipApplicationSession Not Serializable"
= Section D.3, "SipServletResponse.setCharacterEncoding() API Change"

= Section D.4, "Transactional Restrictions for SipServletRequest and
SipServletResponse"

s Section D.5, "Immutable Parameters for New Parameterable Interface"”
= Section D.6, "Stateless Transaction Proxies Deprecated"

= Section D.7, "Backward-Compatibility Mode for v1.0 Deployments"

m Section D.§, "Deprecated APIs"

= Section D.9, "SNMP MIB Changes"

= Section D.10, "Renamed Diagnostic Monitors and Actions"

D.1 Application Router and Legacy Application Composition

The SIP Servlet v1.1 specification describes a formal application selection and
composition process, which is fully implemented in OWLCS. Use the SIP Servlet v1.1
techniques for all new development. Application composition techniques described in
earlier versions of OWLCS are now deprecated.

OWLCS provides backwards compatibility for applications using version SIP Servlet
1.0 composition techniques, provided that:

= you do not configure a custom Application Router, and

= you do not configure Default Application Router properties.

D.2 SipSession and SipApplicationSession Not Serializable

The SipSession and SipApplicationSession interfaces are no longer
serializable in the SIP Servlet v1.1 specification. OWLCS maintains binary
compatibility for the earlier v1.0 specification, to allow any compiled applications that
treat these interfaces as serializable objects to work. However, you must modify the
source code of such applications before you can recompile them with OWLCS.

Porting Existing Applications to Oracle WebLogic Communication Services D-1

SipServletResponse.setCharacterEncoding() APl Change

Version 1.0 Servlets that stored the SipSession as a serializable info object using the
TimerService.createTimer API can achieve similar functionality by storing the
SipSession ID as the serializable info object. On receiving the timer expiration
callback, applications must use the SipApplicationSession and the serialized ID
object returned by the ServletTimer to find the SipSession within the
SipApplicationSession using the retrieved ID. See the SIP Servlet v1.1 API
JavaDoc for more information.

D.3 SipServietResponse.setCharacterEncoding() APl Change

SipServletResponse.setCharacterEncoding () no longer throws
UnsupportedEncodingException. If you have an application that explicitly
catches UnsupportedEncodingException with this method, the existing, compiled
application can be deployed to OWLCS unchanged. However, the source code must be
modified to not catch the exception before you can recompile.

D.4 Transactional Restrictions for SipServletRequest and
SipServletResponse

SIP Servlet v1.1 acknowledges that SipServletRequest and
SipServletResponse objects always belong to a SIP transaction. The specification
further defines the conditions for committing a message, after which no application
can modify or re-send the message. See 5.2 Implicit Transaction State in the SIP Servlet
Specification v1.1 (http://jcp.org/en/jsr/detail?id=289) for a list of
conditions that commit SIP messages.

As a result of this change, any attempt to modify (set, add, or remove a header) or
send a committed message now results in an I1legalStateException. Ensure that
any existing code checks for the committed status of a message using
SipServletMessage.isCommitted () before modifying or sending a message.

D.5 Immutable Parameters for New Parameterable Interface

SIP Servlet v1.1 introduces a new javax.servlet.sip.Parameterable interface
for accessing, creating, and modifying parameters in various SIP headers. Note that
the system header parameters described in Table D-1 are immutable and cannot be
modified using this new interface.

Table D-1 Immutable System Header Parameters

Header Immutable Parameters

From tag

To tag

Via branch, received, rport, wlsslport, wlssladdr, maddr, ttl

Record-Route All parameters are immutable.

Route For initial requests, the application that pushes the Route header can modify
any of the header's parameters. In all other cases, the parameters of the Route
header are immutable.

Path For Register requests, the application that pushes the Path header can modify
any of the header's parameters.In all other cases, the parameters of the Path
header are immutable.

D-2 Developer's Guide

Backward-Compatibility Mode for v1.0 Deployments

D.6 Stateless Transaction Proxies Deprecated

For applications in OWLCS, the Proxy function is always transactionally stateful, and
setting the Proxy object to stateless has no effect.

The Proxy.setStateful () and Proxy.getStateful () methods are redundant:
Proxy.getStateful () always returns true, and Proxy.setStateful () performs
no operation.

D.7 Backward-Compatibility Mode for v1.0 Deployments

OWLCS automatically detects precompiled, v1.0 deployments and alters the SIP
container behavior to maintain backward compatibility. The sections that follow
describe differences in behavior that occur when deploying v1.0 SIP Servlets to
OWLCS.

D.7.1 Validation Warnings for v1.0 Servlet Deployments

The SIP Servlet v1.1 specification requires more strict validation of Servlet
deployments than the previous specification. In the following cases, v1.0 SIP Servlets
can be successfully deployed to OWLCS, but a warning message gets displayed at
deployment:

» If alistener is declared in the 1istener-class element of a v1.0 deployment
descriptor but the corresponding class does not implement the EventListener
interface, a warning is displayed during deployment. (Version 1.1 SIP Servlets that
declare a listener must implement EventListener, or the application cannot be
deployed).

» If a SIP Servlet is declared in the servlet-class element of a v1.0 deployment
descriptor, but the corresponding class does extend the SipServlet abstract
class, a warning is displayed. (Version 1.1 SIP Servlets must extend SipServlet,
or the application cannot be deployed).

D.7.2 Modifying Committed Messages

The SIP Servlet v1.1 specification now recommends that the SIP container throw an
IllegalStateException if an application attempts to modify a committed
message. To maintain backward compatibility, OWLCS throws the
IllegalStateException only when a version 1.1 SIP Servlet deployment modifies
a committed message.

D.7.3 Path Header as System Header

The SIP Servlet v1.1 specification now defines the Path header as a system header,
which cannot be modified by an application. Version 1.0 SIP Servlets can still modify
the Path header, but a warning message is generated. Version 1.1 SIP Servlets that
attempt to modify the Path header fail with an I1legalArgumentException.

D.7.4 SipServietResponse.createPrack() Exception

In OWLCS, sipServletResponse.createPrack () can throw
Rell00Exception only for version 1.1 SIP Servlets. createPrack () does not
throw the exception for version 1.0 SIP Servlets to maintain backward compatibility.

Porting Existing Applications to Oracle WebLogic Communication Services D-3

Deprecated APIs

D.7.5 Proxy.proxyTo() Exceptions

For version 1.1 SIP Servlets, OWLCS throws an I1legalStateException if a
version 1.1 SIP Servlet specifies a duplicate branch URI with Proxy . proxyTo (uri)

or Proxy .proxyTo (uris).

To maintain backward compatibility, OWLCS ignores the

duplicate URIs (and throws no exception) if a version 1.0 SIP Servlet specifies
duplicate URIs with these methods.

D.7.6 Changes to Proxy Branch Timers

SIP Servlet v1.1 makes several protocol changes that effect the behavior of proxy
branching for both sequential and parallel proxying.

For sequential proxying, the v1.1 specification requires that OWLCS start a branch
timer using the maximum of the sequential-search-timeout value, which is
configured in sip.xml, or SIP protocol Timer C (> 3 minutes). Prior versions of
OWLCS always set sequential branch proxy timeouts using the value of
sequential-search-timeout; this behavior is maintained for v1.0 deployments.

For parallel proxying, the v1.1 specification provides a new proxyTimeout value that
controls proxying. The specification requires that OWLCS reset a branch timer using
the configured proxyTimeout value, rather than using the Timer C value as required
in the SIP Servlet v1.0 specification. The Timer C value is still used for v1.0

deployments.

D.8 Deprecated APIs

Earlier versions of WebLogic SIP Server provided proprietary APIs to support
functionality and RFCs that were not supported in the SIP Servlet v1.0 specification.
The SIP Servlet v1.1 specification adds new RFC support and functionality, making the
proprietary APIs redundant. Table D-2 shows newly-available SIP Servlet v1.1
methods that must be used in place of now-deprecated WebLogic SIP Server methods.
The deprecated methods are still available in this release to provide backward
compatibility for v1.0 applications.

Table D-2 Deprecated APIs

Deprecated Methods (WebLogic SIP Server
Proprietary)

WlssSipServlet.doRefer (),
WlssSipServlet.doUpdate (),
WlssSipServlet.doPrack()

WlssSipServletResponse.createPrack ()

WlssProxy.getAddToPath(),
WlssProxy.setAddToPath ()

WlssSipServletMessage.setHeaderForm(),
WlssSipServletMessage.getHeaderForm/()

com.bea.wcp.util.Sessions

Replacement Method (SIP Servlet v1.1)

SipServlet.doRefer (),
SipServlet.doUpdate (),
SipServlet.doPrack/()

SipServletResponse.createPrack()

Proxy.getAddToPath(),
Proxy.setAddToPath ()

SipServletMessage.setHeaderForm(),
SipServletMessage.getHeaderForm()

See Table 6-1, "Sessions in a Converged
Application”.

D.9 SNMP MIB Changes

Previous versions of the OWLCS SNMP MIB definition did not follow the WebLogic
MIB naming convention. Specifically, the MIB table column name label did not begin
with the table name. OWLCS changes the SNMP MIB definition to prepend labels with

D-4 Developer's Guide

Renamed Diagnostic Monitors and Actions

sipServer in order to comply with the WebLogic naming convention and provide
compatibility with WebLogic tools that generate the metadata file.

For example, in version 3.x the SipServerEntry MIB definition was:

SipServerEntry ::= SEQUENCE {
sipServerIndex DisplayString,
tlTimeoutInterval INTEGER,
t2TimeoutInterval INTEGER,
t4TimeoutInterval INTEGER,

}
In OWLCS, the definition is now:

SipServerEntry ::= SEQUENCE {
sipServerIndex DisplayString,
sipServerTlTimeoutInterval Counter64,
sipServerT2TimeoutInterval INTEGER,
sipServerT4TimeoutInterval INTEGER,

This change in the MIB may cause backwards compatibility issues if an application or
script uses the MIB table column name labels directly. All hard-coded labels, such as
iso.org.dod.internet.private.enterprises.bea.wlss.sipServerTable
.tlTimeoutInterval must be changed to prepend the table name
(iso.org.dod.internet.private.enterprises.bea.wlss.sipServerTabl
e.sipServerTlTimeoutInterval).

Note: Client-side SNMP tools generally load a MIB and issue
commands to retrieve values based on the loaded MIB labels. These
tools are unaffected by the above change.

The complete OWLCS MIB file is installed as $WLSS_
HOME/server/lib/wlss/BEA-WLSS-MIB.asn1.

D.10 Renamed Diagnostic Monitors and Actions

The diagnostic monitors and diagnostic actions provided in OWLCS are now prefixed
with occas/. For example, the SIP Server 3.1 Sip_Servlet_Before_Service
monitor is now named occas/Sip_Servlet_Before_Service. You must update
any existing diagnostic configuration files or applications that reference the
non-prefixed names before they can work with OWLCS.

Porting Existing Applications to Oracle WebLogic Communication Services D-5

Renamed Diagnostic Monitors and Actions

D-6 Developer's Guide

A

access points, 17-6
application composition, 5-1
Application Router, 5-1
configuring a custom, 5-3
assigning roles
at deployment, 6-5
dynamically, 6-5
Attribute Value Pair (AVP), 11-6
AVP, 11-6

Buddy List Manager API, 8-8

exceptions, 8-11
BuddyListManager, 8-9
BuddyListManagerFactory, 8-9
buffer, 4-4

Cc

CDF, 14-1
charging
event-based, 14-2,14-6
offline charging API, 14-3
session-based, 14-2,14-4,15-4
Charging Data Function (CDF), 14-1
Charging Trigger Function (CTF), 14-1,15-1
CMAPI, 8-8
constructed document key, 12-4
Contact Management API (CMAPI), 8-8
content indirection, 3-4
converged applications, 2-1
ConvergedHttpSession object, 2-2
credit authorization models, 15-2
CTF, 14-1,15-1

D

Default Application Router (DAR), 5-2
Diameter
API, overview of, 11-1
Attribute Value Pair (AVP), 11-6
creating converged Diameter and SIP applications
SIP applications

Index

creating converged Diameter and

SIP applications, 11-7
Credit-Control-Request (CCR) message, 15-3,
15-5
implementing applications, 11-4
messages, 11-5
nodes, 11-3
offline charging API, 14-3
protocol packages, 11-1
Rf application, configuring, 14-3
Rf interface, 14-1
Ro interface, 15-1
sessions, 11-4
Sh interface support, 12-1
Diameter applications, 11-1
Diameter Rf interface, 14-1
Diameter Ro application
configuring, 15-2
Diameter Ro interface, 15-1
Diameter Sh interface
monitoring data with ProfileListener, 12-5
Diameter Sh profile service, 12-1
distributed applications, 4-1
document selector key, 12-2

H
headers, 3-1

L

log records
tokens, 7-3

logging, 7-1
enabling message logging, 7-1
example message log configuration and

output, 7-4

identifying parts of SIP messages for logging, 7-1
level, 7-1
log file rotation, 7-5
log records, customizing, 7-2
specifying content types, 7-4

M

message filtering, 17-7

Index-1

MessageFilter, 17-7
MessageFilterFactory, 17-7
messages

receiving, 17-6

rejecting, 17-7
MessagingClientFactory, 17-2
MessagingClient.receive, 17-7
MessagingClient.registerAccessPoint, 17-6
MessagingClient.registerMessageFilter, 17-7

(o)

OCF, 15-1

offline charging API, 14-3

Online Charging API, 15-3

Online Charging Function (OCF), 15-1

Oracle User Messaging Service (UMS)
configuring, 16-1

P

Parlay X
Presence custom error codes, 8-7
Parlay X 2.1 Multimedia Messaging Web
Services, 9-1
Parlay X 2.1 Third Party Call Communication
Services, 10-1
attributes and operations, 10-3
call duration, 10-2
call setup, 10-1
configuring, 10-2
supported networks, 10-2
Parlay X Presence Web Services
custom error codes, 8-7
Parlay X Presence Web services, 8-1
Parlay X Web Services, 8-1
porting, 4-1
Presence Network Agent, 8-1
Presence Web Services interfaces, 8-2
code examples, 8-3
using, 8-3
PresenceConsumer, 8-2
PresenceConsumer interface, 8-2
PresenceNotification, 8-1
PresenceNotification interface, 8-3
PresenceSupplier, 8-2
PresenceSupplier interface, 8-3
Profile Service API, 12-1
PublicXCAPRootUrl, 8-2

R

receiving a message, 17-6
rejecting messages, 17-7
response codes, 6-2

RFC 3261, 10-4

RFC 3725, 10-4

RFC 4006, 15-1,15-2

role mapping, 6-2

Index-2

S

security, 6-1
debugging, 6-7
security realm, 6-2
security-role definitions, 6-2
session expiration, 4-5
session key-based targeting, 5-3
SIP applications
asynchronous access, 2-4
best practices, 4-1
developing distributed applications, 4-1
session data, 4-3
session expiration, 4-5
storing application data in the session, 4-2
synchronous access, 2-4
using setAttribute to modify session data,
SIP messages
using compact and long header formats, 3-1
SIP response codes, 6-2
SIP Servlets
content indirection, in, 3-4
marking as distributable, 4-5
requirement to be non-blocking, 4-2
security, 6-1
specification, 5-2,5-4
SipApplicationRouter interface, 5-1
SipApplicationSession object, 2-2
SIPApplicationSessionActivationListener, 4-5
SIPOutboundProxy, 8-2
SIPServletMessage interface, 3-1
sip.xml, 6-2,6-3,6-4
SNMP traps, 3-4
specification
SIP Servlet, 5-4
synchronous receiving, 17-7

U

4-3

unpublish, 8-6
User Agent Server (UAS), 5-2

X

XDMS, 8-8,8-9

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I Introduction
	1 Overview of SIP Servlet Application Development
	1.1 What is a SIP Servlet?
	1.2 Differences from HTTP Servlets
	1.2.1 Multiple Responses
	1.2.2 Receiving Responses
	1.2.3 Proxy Functions
	1.2.4 Message Body
	1.2.4.1 Servlet Request
	1.2.4.2 Servlet Response
	1.2.4.3 SipServletMessage

	1.2.5 Role of a Servlet Container
	1.2.5.1 Application Management
	1.2.5.2 SIP Messaging
	1.2.5.3 Utility Functions
	1.2.5.3.1 SIP Session, Application Session
	1.2.5.3.2 SIP Factory
	1.2.5.3.3 Proxy

	Part II Developing and Programming SIP Applications
	2 Developing Converged Applications
	2.1 Overview of Converged Applications
	2.2 Assembling and Packaging a Converged Application
	2.3 Working with SIP and HTTP Sessions
	2.3.1 Modifying the SipApplicationSession
	2.3.1.1 Synchronous Access
	2.3.1.2 Asynchronous Access

	2.4 Using the Converged Application Example

	3 SIP Protocol Programming
	3.1 Using Compact and Long Header Formats for SIP Messages
	3.1.1 Overview of Header Format APIs and Configuration
	3.1.2 Summary of Compact Headers
	3.1.3 Assigning Header Formats with WlssSipServletMessage
	3.1.4 Summary of API and Configuration Behavior

	3.2 Using Content Indirection in SIP Servlets
	3.2.1 Overview of Content Indirection
	3.2.2 Using the Content Indirection API
	3.2.3 Additional Information

	3.3 Generating SNMP Traps from Application Code
	3.3.1 Overview
	3.3.2 Requirement for Accessing SipServletSnmpTrapRuntimeMBean
	3.3.3 Obtaining a Reference to SipServletSnmpTrapRuntimeMBean
	3.3.4 Generating an SNMP Trap

	4 Requirements and Best Practices for SIP Applications
	4.1 Overview of Developing Distributed Applications for Oracle Communications Converged Application Server
	4.2 Applications Must Not Create Threads
	4.3 Servlets Must Be Non-Blocking
	4.4 Store all Application Data in the Session
	4.5 All Session Data Must Be Serializable
	4.6 Use setAttribute() to Modify Session Data in “No-Call” Scope
	4.7 send() Calls Are Buffered
	4.8 Mark SIP Servlets as Distributable
	4.9 Use SipApplicationSessionActivationListener Sparingly
	4.10 Session Expiration Best Practices
	4.11 Observe Best Practices for Java EE Applications

	5 Composing SIP Applications
	5.1 Application Composition Model
	5.2 Using the Default Application Router
	5.3 Configuring a Custom Application Router
	5.4 Session Key-Based Request Targeting

	6 Securing SIP Servlet Resources
	6.1 Overview of SIP Servlet Security
	6.2 Triggering SIP Response Codes
	6.3 Specifying the Security Realm
	6.4 Role Mapping Features
	6.5 Using Implicit Role Assignment
	6.6 Assigning Roles Using security-role-assignment
	6.6.1 Important Requirements
	6.6.2 Assigning Roles at Deployment Time
	6.6.3 Dynamically Assigning Roles Using the Administrative Console

	6.7 Assigning run-as Roles
	6.8 Role Assignment Precedence for SIP Servlet Roles
	6.9 Debugging Security Features
	6.10 weblogic.xml Deployment Descriptor Reference

	7 Enabling Message Logging
	7.1 Overview
	7.2 Enabling Message Logging
	7.2.1 Specifying a Predefined Logging Level
	7.2.2 Customizing Log Records

	7.3 Specifying Content Types for Unencrypted Logging
	7.4 Example Message Log Configuration and Output
	7.5 Configuring Log File Rotation

	Part III Parlay X Web Services and Multimedia Messaging
	8 Parlay X Presence Web Services
	8.1 Introduction
	8.2 Installing the Web Services
	8.3 Configuring Web Services
	8.4 Presence Web Services Interface Descriptions
	8.5 Using the Presence Web Services Interfaces
	8.5.1 Interface: PresenceConsumer, Operation: subscribePresence
	8.5.1.1 Code Example

	8.5.2 Interface: PresenceConsumer, Operation: getUserPresence
	8.5.2.1 Code Example

	8.5.3 Interface: PresenceNotification, Operation: statusChanged
	8.5.3.1 Code Example

	8.5.4 Interface: PresenceNotification, Operation: statusEnd
	8.5.4.1 Code Example

	8.5.5 Interface: PresenceNotification, Operation: notifySubscription
	8.5.5.1 Code Example

	8.5.6 Interface: PresenceNotification, Operation: subscriptionEnded
	8.5.6.1 Code Example

	8.5.7 Interface PresenceSupplier, Operation: publish and Oracle Specific "Unpublish"
	8.5.7.1 Code Example

	8.5.8 Interface: PresenceSupplier, Operation: getOpenSubscriptions
	8.5.8.1 Code Example

	8.5.9 Interface: PresenceSupplier, Operation: updateSubscriptionAuthorization
	8.5.9.1 Code Example

	8.5.10 Interface: PresenceSupplier, Operation: getMyWatchers
	8.5.10.1 Code Example

	8.5.11 Interface: PresenceSupplier, Operation: getSubscribedAttributes
	8.5.11.1 Code Example

	8.5.12 Interface: PresenceSupplier, Operation: blockSubscription
	8.5.12.1 Code Example

	8.6 OWLCS Parlay X Presence Custom Error Codes
	8.7 Buddy List Manager API
	8.7.1 Consuming the API
	8.7.1.1 Obtaining the BuddyListManagerFactory
	8.7.1.2 Creating a BuddyListManager
	8.7.1.3 Adding a Buddy to a Buddy List and Retrieving the List
	8.7.1.4 Removing a Buddy from a Buddy List
	8.7.1.5 Manipulating your presence rules document

	8.7.2 Exceptions

	9 Parlay X Web Services Multimedia Messaging API
	9.1 Introduction
	9.2 Installing the Web Services
	9.3 Configuring Web Services
	9.4 Messaging Web Services Interface Descriptions
	9.5 Using the Messaging Web Services Interfaces
	9.5.1 Interface SendMessage, Operation: sendMessage
	9.5.1.1 Code Example

	9.5.2 Interface SendMessage, Operation: getMessageDeliveryStatus
	9.5.2.1 Code Example

	9.5.3 Interface MessageNotificationManager, Operation: startMessageNotification
	9.5.3.1 Code Example

	9.5.4 Interface MessageNotificationManager, Operation: stopMessageNotification
	9.5.4.1 Code Example

	9.5.5 Interface ReceiveMessage, Operation: getReceivedMessages
	9.5.5.1 Code Example

	9.5.6 Interface: ReceiveMessage, Operation: getMessage
	9.5.6.1 Code Example

	Part IV Call Control
	10 Third Party Call Service
	10.1 Overview of Parlay X 2.1 Third Party Call Communication Services
	10.1.1 How It Works
	10.1.1.1 Call Setup
	10.1.1.2 Call Duration

	10.1.2 Supported Networks

	10.2 Configuring Parlay X 2.1 Third Party Call
	10.2.1 Configuration Workflow for Parlay X 2.1 Third Party Call/SIP
	10.2.2 Attributes and Operations for Parlay X 2.1 Third Party Call

	10.3 Statement of Compliance

	Part V Using Diameter
	11 Using the Diameter Base Protocol API
	11.1 Diameter Protocol Packages
	11.2 Overview of the Diameter API
	11.2.1 File Required for Compiling Application Using the Diameter API

	11.3 Working with Diameter Nodes
	11.4 Implementing a Diameter Application
	11.5 Working with Diameter Sessions
	11.6 Working with Diameter Messages
	11.6.1 Sending Request Messages
	11.6.2 Sending Answer Messages
	11.6.3 Creating New Command Codes

	11.7 Working with AVPs
	11.7.1 Creating New Attributes

	11.8 Creating Converged Diameter and SIP Applications

	12 Using the Profile Service API
	12.1 Overview of Profile Service API and Sh Interface Support
	12.2 Enabling the Sh Interface Provider
	12.3 Overview of the Profile Service API
	12.4 Creating a Document Selector Key for Application-Managed Profile Data
	12.5 Using a Constructed Document Key to Manage Profile Data
	12.6 Monitoring Profile Data with ProfileListener
	12.6.1 Prerequisites for Listener Implementations
	12.6.2 Implementing ProfileListener

	13 Developing Custom Profile Service Providers
	13.1 Overview of the Profile Service API
	13.2 Implementing Profile Service API Methods
	13.3 Configuring and Packaging Profile Providers
	13.3.1 Mapping Profile Requests to Profile Providers

	13.4 Configuring Profile Providers Using the Administration Console

	14 Using the Diameter Rf Interface API for Offline Charging
	14.1 Overview of Rf Interface Support
	14.2 Understanding Offline Charging Events
	14.2.1 Event-Based Charging
	14.2.2 Session-Based Charging

	14.3 Configuring the Rf Application
	14.4 Using the Offline Charging API
	14.4.1 Accessing the Rf Application
	14.4.2 Implementing Session-Based Charging
	14.4.2.1 Specifying the Session Expiration
	14.4.2.2 Sending Asynchronous Events

	14.4.3 Implementing Event-Based Charging
	14.4.4 Using the Accounting Session State

	15 Using the Diameter Ro Interface API for Online Charging
	15.1 Overview of Ro Interface Support
	15.2 Understanding Credit Authorization Models
	15.2.1 Credit Authorization with Unit Determination
	15.2.2 Credit Authorization with Direct Debiting
	15.2.3 Determining Units and Rating

	15.3 Configuring the Ro Application
	15.4 Overview of the Online Charging API
	15.5 Accessing the Ro Application
	15.6 Implementing Session-Based Charging
	15.6.1 Handling Re-Auth-Request Messages

	15.7 Sending Credit-Control-Request Messages
	15.8 Handling Failures

	Part VI Using Oracle User Messaging Service
	16 Oracle User Messaging Service
	16.1 User Messaging Service Overview
	16.1.1 Components
	16.1.2 Architecture

	17 Sending and Receiving Messages using the User Messaging Service Java API
	17.1 Overview of UMS Java API
	17.1.1 Creating a J2EE Application Module

	17.2 Creating a UMS Client Instance
	17.2.1 Creating a MessagingEJBClient Instance Using a Programmatic or Declarative Approach
	17.2.2 API Reference for Class MessagingClientFactory

	17.3 Sending a Message
	17.3.1 Creating a Message
	17.3.1.1 Creating a Plaintext Message
	17.3.1.2 Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML Parts)
	17.3.1.3 Creating Delivery Channel-Specific Payloads in a Single Message for Recipients with Different Delivery Types

	17.3.2 API Reference for Class MessageFactory
	17.3.3 API Reference for Interface Message
	17.3.4 API Reference for Enum DeliveryType
	17.3.5 Addressing a Message
	17.3.5.1 Types of Addresses
	17.3.5.2 Creating Address Objects
	17.3.5.2.1 Creating a Single Address Object
	17.3.5.2.2 Creating Multiple Address Objects in a Batch
	17.3.5.2.3 Adding Sender or Recipient Addresses to a Message

	17.3.5.3 Creating a Recipient with a Failover Address
	17.3.5.4 API Reference for Class AddressFactory
	17.3.5.5 API Reference for Interface Address

	17.3.6 Retrieving Message Status
	17.3.6.1 Synchronous Retrieval of Message Status
	17.3.6.2 Asynchronous Notification of Message Status

	17.4 Receiving a Message
	17.4.1 Registering an Access Point
	17.4.2 Synchronous Receiving
	17.4.3 Asynchronous Receiving
	17.4.4 Message Filtering

	17.5 Using the UMS EJB Client API to Build a Client Application
	17.5.1 Overview of Development
	17.5.2 Configuring the E-Mail Driver
	17.5.3 Using JDeveloper 11g to Build the Application
	17.5.3.1 Opening the Project

	17.5.4 Deploying the Application
	17.5.5 Testing the Application

	17.6 Using the UMS EJB Client API to Build a Client Echo Application
	17.6.1 Overview of Development
	17.6.2 Configuring the E-Mail Driver
	17.6.3 Using JDeveloper 11g to Build the Application
	17.6.3.1 Opening the Project

	17.6.4 Deploying the Application
	17.6.5 Testing the Application

	17.7 Creating a New Application Server Connection

	18 Parlay X Web Services Multimedia Messaging API
	18.1 Overview of Parlay X Messaging Operations
	18.2 Send Message Interface
	18.2.1 sendMessage Operation
	18.2.2 getMessageDeliveryStatus Operation

	18.3 Receive Message Interface
	18.3.1 getReceivedMessages Operation
	18.3.2 getMessage Operation
	18.3.3 getMessageURIs Operation

	18.4 Oracle Extension to Parlay X Messaging
	18.4.1 ReceiveMessageManager Interface
	18.4.1.1 startReceiveMessage Operation
	18.4.1.2 stopReceiveMessage Operation

	18.5 Parlay X Messaging Client API and Client Proxy Packages
	18.6 Sample Chat Application with Parlay X APIs
	18.6.1 Overview
	18.6.1.1 Provided Files

	18.6.2 Running the Pre-Built Sample
	18.6.3 Testing the Sample
	18.6.4 Creating a New Application Server Connection

	19 User Messaging Preferences
	19.1 Introduction
	19.1.1 Terminology
	19.1.2 Configuration of Notification Delivery Preferences
	19.1.3 Delivery Preference Rules
	19.1.3.1 Data Types
	19.1.3.2 System Terms
	19.1.3.3 Business Terms

	19.1.4 Rule Actions

	19.2 How to Manage Messaging Channels
	19.2.1 Creating a Channel
	19.2.2 Editing a Channel
	19.2.3 Deleting a Channel
	19.2.4 Setting a Default Channel

	19.3 Creating Contact Rules using Filters
	19.3.1 Creating Filters
	19.3.2 Editing a Filter
	19.3.3 Deleting a Filter

	19.4 Configuring Settings

	Part VII Reference
	A Oracle User Messaging Service Applications
	A.1 Send Message to User Specified Channel
	A.1.1 Overview
	A.1.1.1 Provided Files

	A.1.2 Installing and Configuring SOA and User Messaging Service
	A.1.2.1 Updating Addresses in Your LDAP User Profile
	A.1.2.1.1 Installing
	A.1.2.1.2 Connecting
	A.1.2.1.3 Setting User Messaging Device Addresses in LDAP

	A.1.3 Building the Sample
	A.1.4 Creating a New Application Server Connection
	A.1.5 Deploying the Project
	A.1.6 Configuring User Messaging Preferences
	A.1.7 Testing the Sample
	A.1.7.1 Verifying the Execution of Sending the E-mail

	A.2 Send Email with Attachments
	A.2.1 Overview
	A.2.1.1 Provided Files

	A.2.2 Installing and Configuring SOA and User Messaging Service
	A.2.2.1 Updating Addresses in Your LDAP User Profile
	A.2.2.1.1 Installing
	A.2.2.1.2 Connecting
	A.2.2.1.3 Setting User Messaging Device Addresses in LDAP

	A.2.3 Running the Pre-Built Sample
	A.2.4 Testing the Sample
	A.2.4.1 Verifying the Execution

	A.2.5 Building the Sample
	A.2.6 Creating a New Application Server Connection

	B Profile Service Provider Configuration Reference (profile.xml)
	B.1 Overview of profile.xml
	B.2 Graphical Representation
	B.3 Editing profile.xml
	B.3.1 Steps for Editing profile.xml

	B.4 XML Schema
	B.5 Example profile.xml File
	B.6 XML Element Description
	B.6.1 profile-service
	B.6.2 mapping
	B.6.2.1 map-by
	B.6.2.2 map-by-prefix
	B.6.2.3 map-by-router

	B.6.3 provider
	B.6.3.1 name
	B.6.3.2 provider-class
	B.6.3.3 param

	C Developing SIP Servlets Using Eclipse
	C.1 Overview
	C.1.1 SIP Servlet Organization

	C.2 Setting Up the Development Environment
	C.2.1 Creating a OWLCS Domain
	C.2.2 Verifying the Default Eclipse JVM
	C.2.3 Creating a New Eclipse Project

	C.3 Building and Deploying the Project
	C.4 Debugging SIP Servlets
	D Porting Existing Applications to Oracle WebLogic Communication Services
	D.1 Application Router and Legacy Application Composition
	D.2 SipSession and SipApplicationSession Not Serializable
	D.3 SipServletResponse.setCharacterEncoding() API Change
	D.4 Transactional Restrictions for SipServletRequest and SipServletResponse
	D.5 Immutable Parameters for New Parameterable Interface
	D.6 Stateless Transaction Proxies Deprecated
	D.7 Backward-Compatibility Mode for v1.0 Deployments
	D.7.1 Validation Warnings for v1.0 Servlet Deployments
	D.7.2 Modifying Committed Messages
	D.7.3 Path Header as System Header
	D.7.4 SipServletResponse.createPrack() Exception
	D.7.5 Proxy.proxyTo() Exceptions
	D.7.6 Changes to Proxy Branch Timers

	D.8 Deprecated APIs
	D.9 SNMP MIB Changes
	D.10 Renamed Diagnostic Monitors and Actions

	Index
	A
	B
	C
	D
	H
	L
	M
	O
	P
	R
	S
	U
	X

