Oracle® Fusion Middleware
Enterprise Deployment Guide for Oracle Identity Management
(Oracle Fusion Applications Edition)
11g Release 6 (11.1.6)
E21032-18

March 2013
Documentation for system administrators that describes how to install and configure Oracle Identity Management components in an enterprise deployment for Oracle Fusion Applications.
Contents

Preface ... xix
 Audience ... xix
 Documentation Accessibility ... xix
 Related Documents ... xix
 Conventions .. xx

What's New in This Guide .. xxi
 New and Changed Features for 11g Release 6 (11.1.6) ... xxi

1 Enterprise Deployment Overview

 1.1 About the Enterprise Deployment Guide .. 1-1
 1.2 Enterprise Deployment Terminology .. 1-2
 1.3 Benefits of Oracle Recommendations .. 1-5
 1.3.1 Built-in Security .. 1-5
 1.3.2 High Availability ... 1-6

2 Introduction to the Enterprise Deployment Reference Topologies

 2.1 Overview of Enterprise Deployment Reference Topologies ... 2-1
 2.1.1 Reference Topologies Documented in the Guide ... 2-1
 2.1.1.1 Oracle Access Manager 11g and Oracle Identity Manager 11g for Fusion Applications 2-2
 2.1.1.2 Oracle Identity Federation 11g for Fusion Applications .. 2-5
 2.1.2 About the Directory Tier .. 2-8
 2.1.2.1 High Availability Provisions .. 2-9
 2.1.3 About the Application Tier ... 2-9
 2.1.3.1 Architecture Notes .. 2-10
 2.1.3.2 High Availability Provisions ... 2-11
 2.1.3.3 Security Provisions .. 2-11
 2.1.3.4 About WebLogic Domains ... 2-11
 2.1.4 About the Web Tier .. 2-12
 2.1.4.1 Architecture Notes .. 2-12
 2.1.4.2 High Availability Provisions ... 2-12
 2.1.4.3 Security Provisions .. 2-12
 2.2 Hardware Requirements for an Enterprise Deployment ... 2-12
 2.3 Identifying the Software Components to Install .. 2-13
3 Preparing the Network for an Enterprise Deployment

3.1 Overview of Preparing the Network for an Enterprise Deployment 3-1
3.2 Planning Your Network .. 3-1
3.3 About Virtual Server Names Used by the Topologies ... 3-2
3.3.1 Virtual Host Names .. 3-2
3.3.2 Virtual Server names ... 3-2
3.3.2.1 OIDIDSTORE.mycompany.com ... 3-3
3.3.2.2 POLICYSTORE.mycompany.com ... 3-3
3.3.2.3 IDSTORE.mycompany.com ... 3-3
3.3.2.4 ADMIN.mycompany.com ... 3-4
3.3.2.5 IDMINTERNAL.mycompany.com ... 3-4
3.3.2.6 SSO.mycompany.com .. 3-5
3.4 Configuring the Load Balancers ... 3-5
3.4.1 Load Balancer Requirements ... 3-5
3.4.2 Load Balancer Configuration Procedures ... 3-6
3.4.3 Load Balancer Configuration .. 3-7
3.5 About IP Addresses and Virtual IP Addresses ... 3-9
3.6 About Firewalls and Ports ... 3-11
3.7 Managing Oracle Access Manager Communication Protocol 3-14
3.7.1 Oracle Access Manager Protocols ... 3-14
3.7.2 Overview of Integration Requests ... 3-14
3.7.3 Overview of User Request .. 3-14
3.7.4 About the Unicast Requirement for Communication ... 3-15

4 Preparing Storage for an Enterprise Deployment

4.1 Overview of Preparing the File System for Enterprise Deployment 4-1
4.2 Terminology for Directories and Directory Variables .. 4-1
4.3 About Recommended Locations for the Different Directories 4-2
4.3.1 Shared Storage Recommendations for Binary (Oracle Home) Directories 4-3
4.3.1.1 About the Binary (Middleware Home) Directories 4-3
4.3.1.2 About Sharing a Single Middleware Home Across Multiple Hosts 4-3
4.3.1.3 About Using Redundant Binary (Middleware Home) Directories 4-3
4.3.2 Recommendations for Domain Configuration Files ... 4-4
4.3.2.1 About Oracle WebLogic Server Administration and Managed Server Domain Configuration Files ... 4-4
4.3.2.2 Shared Storage Requirements for Administration and Managed Server Domain Configuration Files ... 4-4
4.3.2.3 Local Storage Requirements for Managed Server Domain Configuration Files 4-5
4.3.3 Shared Storage Recommendations for JMS File Stores and Transaction Logs 4-5
4.3.4 Recommended Directory Locations .. 4-5
4.3.4.1 Shared Storage .. 4-5
4.3.4.2 Local Storage .. 4-6
5 Preparing the Servers for an Enterprise Deployment

5.1 Overview of Preparing the Servers .. 5-1
5.2 Verifying Your Server and Operating System ... 5-1
5.3 Meeting the Minimum Hardware Requirements 5-2
5.4 Meeting Operating System Requirements .. 5-2
5.4.1 Meeting UNIX and Linux Requirements .. 5-2
5.4.1.1 Configure Kernel Parameters ... 5-2
5.4.1.2 Setting the Open File Limit ... 5-3
5.4.1.3 Setting Shell Limits ... 5-3
5.4.1.4 Configuring Local Hosts File ... 5-3
5.4.2 Meeting Windows Requirements ... 5-4
5.5 Enabling Unicode Support ... 5-4
5.6 Enabling Virtual IP Addresses ... 5-4
5.6.1 Virtual IP Addresses to Enable ... 5-4
5.6.2 Enabling Virtual Addresses by Using the Command Line 5-5
5.7 Mounting Shared Storage Onto the Host ... 5-6
5.8 Configuring Users and Groups .. 5-7
5.9 Installing Oracle Software onto a Server with Multiple Network Addresses 5-7

6 Installing the Software for an Enterprise Deployment

6.1 Overview of the Software Installation Process 6-1
6.1.1 Obtaining the Software .. 6-1
6.1.2 Software to Install ... 6-2
6.2 Installing Oracle HTTP Server ... 6-3
6.2.1 Verifying Prerequisites .. 6-3
6.2.2 Running the Installer ... 6-3
6.2.3 Backing Up the Installation ... 6-4
6.3 Installing Oracle Fusion Middleware .. 6-4
6.3.1 Oracle Fusion Middleware Homes .. 6-5
6.3.2 Installing Oracle Fusion Middleware Home 6-6
6.3.3 Installing Oracle WebLogic Server and Creating the Fusion Middleware Home .. 6-6
6.3.3.1 Installing JRockit ... 6-6
6.3.3.2 Installing WebLogic Server Using the Generic Installer 6-6
6.3.4 Installing Oracle Identity Management ... 6-7
6.3.5 Installing the Oracle SOA Suite ... 6-9
6.3.6 Installing Oracle Identity and Access Management 6-10
6.3.7 Applying Patches and Workarounds ... 6-12
6.3.7.1 Patches for Fusion Middleware .. 6-12
6.3.7.2 Provisioning the OIM Login Modules Under the WebLogic Server Library Directory .. 6-12
6.3.7.3 Creating the wlfullclient.jar File ... 6-13
6.3.8 Backing Up the Installation ... 6-13

7 Preparing the Database for an Enterprise Deployment

7.1 Overview of Preparing the Databases for an Identity Management Enterprise Deployment 7-1
9.5.5 Validating the WebLogic Administration Server .. 9-12
9.5.6 Creating a Separate Domain Directory for Managed Servers in the Same Node as the Administration Server .. 9-12
9.5.7 Propagate Changes to Remote Servers .. 9-13
9.5.8 Copy SOA Composites to Managed Server Directory 9-13
9.5.9 Start Node Manager on Remote Hosts ... 9-13
9.5.10 Disabling Host Name Verification for the Oracle WebLogic Administration Server 9-14
9.5.11 Stopping and Starting the WebLogic Administration Server 9-14
9.6 Configuring Oracle HTTP Server for the WebLogic Domain 9-15
9.6.1 Registering Oracle HTTP Server with WebLogic Server 9-15
9.6.2 Setting the Front End URL for the Administration Console 9-15
9.6.3 Enabling WebLogic Plug-in .. 9-16
9.6.4 Validating Access to Domains .. 9-16
9.7 Validating Failover ... 9-17
9.8 Backing Up the WebLogic Domain .. 9-17

10 Extending the Domain to Include Oracle Internet Directory

10.1 Overview of Extending the Domain to Include Oracle Internet Directory 10-1
10.2 Using Oracle Internet Directory in an Enterprise Deployment 10-1
10.3 Prerequisites for Configuring Oracle Identity Directory Instances 10-2
10.4 Configuring the Oracle Internet Directory Instances .. 10-2
10.4.1 Configuring the First Oracle Internet Directory Instance 10-2
10.4.2 Configuring an Additional Oracle Internet Directory Instance 10-5
10.5 Post-Configuration Steps .. 10-7
10.5.1 Registering Oracle Internet Directory with the WebLogic Server Domain (IDMDomain) ... 10-8
10.5.2 Generating a Certificate to be Used by the Identity Management Domain 10-9
10.5.2.1 Prerequisites .. 10-10
10.5.2.2 Generating the Certificate .. 10-10
10.5.3 Configuring Oracle Internet Directory to Accept Server Authentication Mode SSL Connections .. 10-11
10.5.3.1 Prerequisites .. 10-11
10.5.3.2 Configuring Oracle Internet Directory for SSL .. 10-12
10.5.4 Validating SSL Manually .. 10-14
10.5.5 Considering Oracle Internet Directory Password Policies 10-15
10.6 Validating the Oracle Internet Directory Instances ... 10-15
10.7 Tuning Oracle Internet Directory .. 10-15
10.8 Backing up the Oracle Internet Directory Configuration 10-16

11 Preparing Identity and Policy Stores

11.1 Overview of Preparing Identity and Policy Stores .. 11-1
11.2 Backing up the LDAP Directories .. 11-2
11.3 Prerequisites ... 11-2
11.4 Preparing the OPSS Policy Store ... 11-2
11.4.1 Creating Policy Store Users and the Policy Container 11-2
11.4.2 Reassociating the Policy and Credential Store ... 11-4
11.5 Preparing the Identity Store ... 11-6
11.5.1 Overview of Preparing the Identity Store .. 11-6
11.5.2 Creating the Configuration File ... 11-6
11.5.3 Preparing a Directory for Oracle Access Manager and Oracle Identity Manager ... 11-7
11.5.3.1 Configuring Oracle Internet Directory for Use with Oracle Access Manager and Oracle Identity Manager ... 11-8
11.5.3.2 Configuring Active Directory for Use with Oracle Access Manager and Oracle Identity Manager .. 11-9
11.5.4 Creating Users and Groups ... 11-10
11.5.5 Creating Access Control Lists in Non-Oracle Internet Directory Directories .. 11-11
11.6 Backing up the Identity Stores .. 11-12

12 Extending the Domain to Include ODSM
12.1 Overview of Extending the Domain to Include ODSM 12-1
12.2 Prerequisites ... 12-2
12.3 Extending the Oracle WebLogic Domain IDMDomain 12-3
12.4 Expanding the ODSM Cluster .. 12-5
12.5 Provisioning the Managed Servers in the Managed Server Directory 12-6
12.6 Validating the Application Tier Configuration 12-7
12.6.1 Validating Browser Connection to ODSM Site 12-7
12.6.2 Validating ODSM Connections to Oracle Internet Directory 12-7
12.7 Backing Up the ODSM Configuration .. 12-7

13 Configuring Oracle Access Manager 11g
13.1 Overview of Configuring Oracle Access Manager 13-1
13.2 About Domain URLs .. 13-2
13.3 Using Different Directory Configurations .. 13-2
13.4 Prerequisites ... 13-3
13.5 Starting Oracle Access Manager Managed Servers 13-3
13.6 Prerequisites ... 13-3
13.7 Configuring Oracle Access Manager .. 13-3
13.7.1 Setting a Global Passphrase ... 13-3
13.7.2 Configuring Oracle Access Manager by Using the IDM Automation Tool 13-4
13.7.3 Validating the Configuration .. 13-4
13.7.4 Updating Newly-Created Agent .. 13-8
13.7.5 Updating Existing WebGate Agents .. 13-8
13.8 Adding the oamadmin Account to Access System Administrators 13-9
13.9 Creating Oracle Access Manager Policies for WebGate 11g 13-9
13.10 Creating a Single Keystore for Integrating Oracle Access Manager with Other Components ... 13-10
13.11 Updating Oracle Access Manager System Parameters 13-11
13.12 Backing Up the Access Manager Configuration 13-11

14 Extending the Domain to Include Oracle Virtual Directory
14.1 Overview of Extending the Domain to Include Oracle Virtual Directory 14-1
14.2 Prerequisites for Configuring Oracle Virtual Directory Instances 14-1
14.3 Configuring the Oracle Virtual Directory Instances 14-2
16 Extending the Domain to Include Oracle Identity Federation

16.1 Overview of Extending the Domain to Include Oracle Identity Federation ... 16-1
16.2 Prerequisites ... 16-2
16.3 Configuring Oracle Identity Federation on IDMHOST1 ... 16-2
16.4 Run Upgrade Script ... 16-2
16.5 Configuring Oracle Identity Federation on IDMHOST2 ... 16-6
16.6 Provisioning the Managed Servers on the Local Disk ... 16-8
16.7 Validating Oracle Identity Federation ... 16-10
16.8 Configure the Enterprise Manager Agents ... 16-10
16.9 Enabling Oracle Identity Federation Integration with LDAP Servers .. 16-10
16.10 Configuring Oracle Identity Federation to work with the Oracle Web Tier ... 16-12
16.10.1 Prerequisites ... 16-12
16.10.2 Making Oracle Identity Federation aware of the Load Balancer ... 16-12
16.10.3 Configuring Oracle HTTP Servers To Front End the Oracle Identity Federation Managed Servers 16-13
16.11 Validating Oracle Identity Federation ... 16-13
16.12 Integrating Oracle Identity Federation with Oracle Access Manager 11g ... 16-13
16.12.1 Prerequisites ... 16-13
16.12.2 Integrating Oracle Identity Federation with Oracle Access Manager in SP Mode 16-13
16.12.2.1 Configuring the Oracle Access Manager 11g SP Engine .. 16-14
16.12.2.2 Updating the Oracle Identity Federation Authentication Scheme in Oracle Access Manager 16-16
16.12.3 Switching from Local Authentication to Federation SSO .. 16-16
16.13 Backing Up the Application Tier Configuration .. 16-17

17 Setting Up Node Manager for an Enterprise Deployment

17.1 Overview of the Node Manager ... 17-1
17.2 Changing the Location of the Node Manager Log ... 17-2
17.3 Enabling Host Name Verification Certificates for Node Manager ... 17-2
17.3.1 Generating Self-Signed Certificates Using the utils.CertGen Utility ... 17-2
17.3.2 Creating an Identity Keystore Using the utils.ImportPrivateKey Utility .. 17-4
17.3.3 Creating a Trust Keystore Using the Keytool Utility .. 17-4
17.3.4 Configuring Node Manager to Use the Custom Keystores .. 17-5
17.3.5 Using a Common or Shared Storage Installation ... 17-6
17.3.6 Configuring Managed WebLogic Servers to Use the Custom Keystores .. 17-6
17.3.7 Changing the Host Name Verification Setting for the Managed Servers 17-7
17.4 Starting Node Manager .. 17-8

18 Configuring Server Migration for an Enterprise Deployment
18.1 Overview of Server Migration for an Enterprise Deployment .. 18-1
18.2 Setting Up a User and Tablespace for the Server Migration Leasing Table 18-1
18.3 Creating a Multi Data Source Using the Oracle WebLogic Administration Console 18-2
18.4 Editing Node Manager’s Properties File .. 18-4
18.5 Setting Environment and Superuser Privileges for the wlsifconfig.sh Script 18-5
18.6 Configuring Server Migration Targets ... 18-6
18.7 Testing the Server Migration ... 18-7
18.8 Backing Up the Server Migration Configuration ... 18-8

19 Preparing the Environment for Fusion Applications Provisioning
19.1 About Input to the Fusion Applications Provisioning Tool ... 19-1
19.2 Creating a Client Keystore .. 19-1

20 Configuring Single Sign-on for Administration Consoles in an Enterprise Deployment
20.1 Overview of Configuring Single Sign-on for Administration Consoles in an Enterprise Deployment ... 20-1
20.2 Prerequisites .. 20-1
20.3 Assigning Groups and Roles ... 20-2
20.3.1 Assigning WLSAdmins Group to WebLogic Administration Groups 20-2
20.3.2 Perform Bug 13824816 Workaround ... 20-2
20.4 Updating the boot.properties File .. 20-3
20.4.1 Update the Administration Server on IDMHOST1 .. 20-3
20.4.2 Restarting the Servers ... 20-4
20.5 Installing and Configuring WebGate 11g .. 20-4
20.5.1 Prerequisites ... 20-4
20.5.2 Installing Oracle WebGate on WEBHOST1 and WEBHOST2 20-4
20.6 Validating WebGate and the Oracle Access Manager Single Sign-On Setup 20-6
20.7 Backing Up Single Sign-on ... 20-6

21 Managing the Topology for an Enterprise Deployment
21.1 Starting and Stopping Oracle Identity Management Components 21-1
21.1.1 Startup Order ... 21-2
21.1.2 Starting and Stopping Oracle Virtual Directory .. 21-2
21.1.2.1 Starting Oracle Virtual Directory ... 21-2
21.1.2.2 Stopping Oracle Virtual Directory .. 21-2
21.1.3 Starting and Stopping Oracle Internet Directory ... 21-2
21.1.3.1 Starting Oracle Internet Directory .. 21-2
21.1.3.2 Stopping Oracle Internet Directory ... 21-3
21.1.4 Starting, Stopping, and Restarting Oracle Access Manager Managed Servers 21-3
21.1.4.1 Starting an Access Manager Managed Server When None is Running 21-3
21.10.3.4 ODSM Loses Connection and Displays Message that LDAP Server is Down . 21-47
21.10.3.5 ODSM Loses Connection to Instance Using ORAC Database21-47
21.10.3.6 OHS Must Be Configured to Route ODSM Requests to Multiple Oracle WebLogic
Servers ..21-47
21.10.3.7 ODSM is Not Accessible ...21-48
21.10.4 Troubleshooting Oracle Access Manager 11g ..21-49
21.10.4.1 Insufficient Memory Error When Starting wls_oam121-49
21.10.4.2 Fusion Applications Preverify Fails to Validate OAM Admin Users21-49
21.10.4.3 User Reaches the Maximum Allowed Number of Sessions21-50
21.10.4.4 Policies Do Not Get Created When Oracle Access Manager is First Installed. 21-50
21.10.4.5 You Are Not Prompted for Credentials After Accessing a Protected Resource21-50
21.10.4.6 Cannot Log In to OAM Console ...21-51
21.10.4.7 Error When Starting OAM Managed Servers on Windows21-51
21.10.5 Troubleshooting Oracle Identity Manager ..21-52
21.10.5.1 java.io.FileNotFoundException When Running Oracle Identity Manager
Configuration ..21-52
21.10.5.2 ResourceConnectionValidationException When Creating User in Oracle Identity
Manager ...21-52
21.10.6 Troubleshooting Oracle SOA Suite ..21-53
21.10.6.1 Transaction Timeout Error ...21-53
21.10.7 Troubleshooting Oracle Identity Federation ...21-53
21.10.7.1 Cannot Log In to the Oracle Identity Federation Server (Windows)21-53
21.10.7.2 Extending the Domain with Oracle Identity Federation Fails21-54
21.10.7.3 Cannot Change Oracle Identity Federation Parameters by Using Fusion
Middleware Control ...21-54
A.1 Hosts, Virtual Hosts, and Virtual IP Addresses for Identity ManagementA-1
A.2 Directory Mapping ...A-2
A.3 Port Mapping ...A-3
A.4 LDAP Directory Details ..A-4
A.5 Database Details ...A-5
A.6 Web Tier Details ..A-5
A.7 Application Tier Details ..A-6
A.8 User and Group Mapping ..A-6

Index
List of Figures

2–1 Oracle Access Manager 11g and Oracle Identity Manager 11g Topology for Fusion Applications 2-3
2–2 Oracle Identity Federation 11g Topology for Fusion Applications 2-6
2–3 Flow Chart of the Oracle Identity Management Enterprise Deployment Process for Oracle Fusion Applications 2-15
3–1 IPs and VIPs Mapped to Administration Server and Managed Servers 3-10
4–1 Shared Storage ... 4-6
4–2 Local Storage ... 4-7
21–1 Audit Event Flow .. 21-32
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2–1</td>
<td>Typical Hardware Requirements</td>
<td>2-13</td>
</tr>
<tr>
<td>2–2</td>
<td>Software Versions Used</td>
<td>2-13</td>
</tr>
<tr>
<td>2–3</td>
<td>Steps in the Oracle Identity Management Enterprise Deployment Process</td>
<td>2-16</td>
</tr>
<tr>
<td>3–1</td>
<td>Load Balancer Configuration</td>
<td>3-7</td>
</tr>
<tr>
<td>3–2</td>
<td>Virtual Hosts</td>
<td>3-10</td>
</tr>
<tr>
<td>3–3</td>
<td>Ports Used in the Oracle Identity Management Enterprise Deployment topologies</td>
<td>3-11</td>
</tr>
<tr>
<td>4–1</td>
<td>Volumes on Shared Storage</td>
<td>4-5</td>
</tr>
<tr>
<td>4–2</td>
<td>Local Storage Directories</td>
<td>4-6</td>
</tr>
<tr>
<td>5–1</td>
<td>UNIX Kernel Parameters</td>
<td>5-3</td>
</tr>
<tr>
<td>5–2</td>
<td>Virtual Hosts for Domain</td>
<td>5-5</td>
</tr>
<tr>
<td>6–1</td>
<td>Software to be Installed on Different Hosts</td>
<td>6-2</td>
</tr>
<tr>
<td>6–2</td>
<td>Summary of Homes</td>
<td>6-5</td>
</tr>
<tr>
<td>7–1</td>
<td>Mapping between Topologies, Databases and Schemas</td>
<td>7-2</td>
</tr>
<tr>
<td>7–2</td>
<td>Required Patches for Oracle Database 11g (11.1.0.7)</td>
<td>7-3</td>
</tr>
<tr>
<td>7–3</td>
<td>Required Patches for Oracle Database 11g (11.2.0.2.0)</td>
<td>7-4</td>
</tr>
<tr>
<td>7–4</td>
<td>Minimum Initialization Parameters for Oracle RAC Databases</td>
<td>7-4</td>
</tr>
<tr>
<td>7–5</td>
<td>Minimum Initialization Parameters for Oracle RAC Oracle Internet Directory Databases</td>
<td>7-5</td>
</tr>
<tr>
<td>9–1</td>
<td>Steps for Creating a WebLogic Domain</td>
<td>9-2</td>
</tr>
<tr>
<td>9–2</td>
<td>URL Available Prior to Web Tier Integration</td>
<td>9-2</td>
</tr>
<tr>
<td>9–3</td>
<td>URLs Available After Web Tier Integration</td>
<td>9-2</td>
</tr>
<tr>
<td>13–1</td>
<td>OAM URLs Before Web Tier Configuration</td>
<td>13-2</td>
</tr>
<tr>
<td>13–2</td>
<td>OAM URLs After Web Tier Configuration</td>
<td>13-2</td>
</tr>
<tr>
<td>15–1</td>
<td>OIM URLs</td>
<td>15-2</td>
</tr>
<tr>
<td>17–1</td>
<td>Hosts in Each Topology</td>
<td>17-1</td>
</tr>
<tr>
<td>18–1</td>
<td>Files Required for the PATH Environment Variable</td>
<td>18-5</td>
</tr>
<tr>
<td>18–2</td>
<td>Managed Server Migration</td>
<td>18-7</td>
</tr>
<tr>
<td>21–1</td>
<td>Console URLs</td>
<td>21-8</td>
</tr>
<tr>
<td>21–2</td>
<td>Static Artifacts to Back Up in the Identity Management Enterprise Deployment</td>
<td>21-34</td>
</tr>
<tr>
<td>21–3</td>
<td>Run-Time Artifacts to Back Up in the Identity Management Enterprise Deployments</td>
<td>21-35</td>
</tr>
<tr>
<td>A–1</td>
<td>Hosts, Virtual Hosts, and Virtual IP Addresses for topologyName Worksheet Table</td>
<td>A-1</td>
</tr>
<tr>
<td>A–2</td>
<td>Directory Mapping Table</td>
<td>A-2</td>
</tr>
<tr>
<td>A–3</td>
<td>Port Mapping Table</td>
<td>A-3</td>
</tr>
<tr>
<td>A–4</td>
<td>LDAP Directory Details Table</td>
<td>A-4</td>
</tr>
<tr>
<td>A–5</td>
<td>Database Details Table</td>
<td>A-5</td>
</tr>
<tr>
<td>A–6</td>
<td>Web Tier Details Table</td>
<td>A-5</td>
</tr>
<tr>
<td>A–7</td>
<td>Application Tier Details Table</td>
<td>A-6</td>
</tr>
<tr>
<td>A–8</td>
<td>User Mapping Table</td>
<td>A-7</td>
</tr>
<tr>
<td>A–9</td>
<td>Group Mapping Table</td>
<td>A-7</td>
</tr>
</tbody>
</table>
This preface describes the audience, contents and conventions used in the Oracle Fusion Middleware Enterprise Deployment Guide for Oracle Identity Management (Fusion Applications Edition).

Audience

This guide is intended for system administrators who are responsible for installing and configuring Oracle Identity Management enterprise deployments for Oracle Fusion Applications.

Documentation Accessibility

For information about Oracle’s commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

The following manuals in the Oracle Fusion Middleware documentation library provide additional information on the process of installing and configuring the Enterprise Deployment architecture:

- Oracle Fusion Middleware Installation Guide for Oracle Identity Management
- Oracle Fusion Middleware Administrator’s Guide
- Oracle Fusion Middleware Integration Overview for Oracle Identity Management Suite
- Oracle Fusion Middleware Application Security Guide
- Oracle Fusion Middleware Administrator’s Guide for Oracle Identity Navigator
- Oracle Fusion Middleware Repository Creation Utility User’s Guide
- Oracle Fusion Middleware Administrator’s Guide for Oracle Internet Directory
- Oracle Fusion Middleware Administrator’s Guide for Oracle Virtual Directory
Oracle Fusion Middleware Administrator’s Guide for Oracle Directory Integration Platform

Oracle Fusion Middleware Administrator’s Guide for Oracle Access Manager with Oracle Security Token Service

Oracle Fusion Middleware Integration Guide for Oracle Access Manager

Oracle Fusion Middleware Administrator’s Guide for Oracle Adaptive Access Manager

Oracle Fusion Middleware Administrator’s Guide for Oracle Identity Manager

Oracle Fusion Middleware User’s Guide for Oracle Identity Manager

Oracle Fusion Middleware Administrator’s Guide for Oracle Identity Federation

Oracle Database Oracle Clusterware and Oracle Real Application Clusters Installation Guide for Linux

Oracle Database Oracle Clusterware and Oracle Real Application Clusters Installation Guide for Solaris Operating System

Oracle Database Oracle Clusterware and Oracle Real Application Clusters Installation Guide for HP-UX

Oracle Database Oracle Clusterware and Oracle Real Application Clusters Installation Guide for hp Tru64 UNIX

Oracle Database Oracle Clusterware and Oracle Real Application Clusters Installation Guide for AIX Based Systems

Oracle Database Oracle Clusterware and Oracle Real Application Clusters Installation Guide for Microsoft Windows

Oracle Database Backup and Recovery User’s Guide

Oracle Fusion Middleware Integration Overview for Oracle Identity Management Suite

For additional information about Oracle Fusion Applications, consult the following documents in the Oracle Fusion Applications library:

Oracle Fusion Applications Administrator and Implementor Roadmap

Oracle Fusion Applications Administrator’s Guide

Oracle Fusion Applications Customer Relationship Management Enterprise Deployment Guide

Conventions

The following text conventions are used in this document:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.</td>
</tr>
<tr>
<td><code>monospace</code></td>
<td>Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.</td>
</tr>
</tbody>
</table>
What's New in This Guide

The following topics introduce the changes in this guide and provide pointers to additional information.

New and Changed Features for 11g Release 6 (11.1.6)

Oracle Fusion Middleware Enterprise Deployment Guide for Oracle Identity Management (Oracle Fusion Applications Edition) 11g Release 6 (11.1.6) includes the following changes:

- An appendix containing planning worksheets. See Appendix A.
- Reference topologies based on a single domain. There are two topologies, one with and one without Oracle Identity Federation. See Chapter 2.
- A directory structure that has been standardized with Fusion Applications for a more consistent deployment.
- Consolidation of components onto a smaller number of higher power servers, to reduce the number of licences required. See Chapter 4.
- Specific chapters for storage and server preparation. See Chapter 4 and Chapter 5.
- Integration information in component-specific chapters, not in a single integration chapter.
- Consolidation of backup and restore content in the "Managing the Topology" chapter. See Chapter 21.
This chapter provides an overview of the enterprise topology for Oracle Identity Management.

This chapter contains the following sections:

- Section 1.1, "About the Enterprise Deployment Guide"
- Section 1.2, "Enterprise Deployment Terminology"
- Section 1.3, "Benefits of Oracle Recommendations"

Oracle Identity Management presents a comprehensive suite of products for all aspects of identity management. This guide describes reference enterprise topologies for the Oracle Identity Management Infrastructure components of Oracle Fusion Middleware. It also provides detailed instructions and recommendations to create the topologies by following the enterprise deployment guidelines.

Deploying Oracle Identity Management as described in this guide is a prerequisite for deploying Oracle Fusion Applications as described in Oracle Fusion Applications Customer Relationship Management Enterprise Deployment Guide.

1.1 About the Enterprise Deployment Guide

An enterprise deployment is an Oracle best practices blueprint based on proven Oracle high-availability technologies and recommendations for Oracle Fusion Middleware. The high-availability best practices described in this book make up one of several components of high-availability best practices for all Oracle products across the entire technology stack—Oracle Database, Oracle Fusion Middleware, Oracle Applications, Oracle Collaboration Suite, and Oracle Grid Control.

An Oracle Fusion Middleware enterprise deployment:

- Considers various business service level agreements (SLA) to make high-availability best practices as widely applicable as possible
- Leverages database grid servers and storage grid with low-cost storage to provide highly resilient, lower cost infrastructure
- Uses results from extensive performance impact studies for different configurations to ensure that the high-availability architecture is optimally configured to perform and scale to business needs
- Enables control over the length of time to recover from an outage and the amount of acceptable data loss from a natural disaster
- Evolves with each Oracle version and is completely independent of hardware and operating system
For more information on high availability practices, see the Oracle Database High Availability page on Oracle Technology Network at:

Note: The Oracle Fusion Middleware Enterprise Deployment Guide for Oracle Identity Management (Oracle Fusion Applications Edition) focuses on enterprise deployments in Linux environments. However, you can also implement enterprise deployments using UNIX and Windows environments.

1.2 Enterprise Deployment Terminology

This section identifies enterprise deployment terminology used in the guide.

- **Oracle home**: An Oracle home contains installed files necessary to host a specific product. For example, the SOA Oracle home contains a directory that contains binary and library files for Oracle SOA Suite. An Oracle home resides within the directory structure of the Middleware home. Each Oracle home can be associated with multiple Oracle instances or Oracle WebLogic Server domains.

- **Oracle Common home**: This environment variable and related directory path refers to the Oracle home that contains the binary and library files required for the Oracle Enterprise Manager Fusion Middleware Control and Java Required Files (JRF).

- **WebLogic Server home**: A WebLogic Server home contains installed files necessary to host a WebLogic Server. The WebLogic Server home directory is a peer of Oracle home directories and resides within the directory structure of the Middleware home.

- **Middleware home**: A Middleware home consists of the Oracle WebLogic Server home, and, optionally, one or more Oracle homes. A Middleware home can reside on a local file system or on a remote shared disk that is accessible through NFS.

- **Oracle instance**: An Oracle instance contains one or more active middleware system components, for example Oracle Web Cache, Oracle HTTP Server, or Oracle Internet Directory. You determine which components are part of an instance, either at install time or by creating and configuring an instance at a later time. An Oracle instance contains files that can be updated, such as configuration files, log files, temporary files.

- **failover**: When a member of a high availability system fails unexpectedly (unplanned downtime), in order to continue offering services to its consumers, the system undergoes a failover operation. If the system is an active-passive system, the passive member is activated during the failover operation and consumers are directed to it instead of the failed member. The failover process can be performed manually, or it can be automated by setting up hardware cluster services to detect failures and move cluster resources from the failed node to the standby node. If the system is an active-active system, the failover is performed by the load balancer entity serving requests to the active members. If an active member fails, the load balancer detects the failure and automatically redirects requests for the failed member to the surviving active members. See Oracle Fusion Middleware High Availability Guide for information on active-active and active-passive systems.

- **failback**: After a system undergoes a successful failover operation, the original failed member can be repaired over time and be re-introduced into the system as a
standby member. If desired, a failback process can be initiated to activate this member and deactivate the other. This process reverts the system back to its pre-failure configuration.

- **hardware cluster**: A hardware cluster is a collection of computers that provides a single view of network services (for example: an IP address) or application services (for example: databases, Web servers) to clients of these services. Each node in a hardware cluster is a standalone server that runs its own processes. These processes can communicate with one another to form what looks like a single system that cooperatively provides applications, system resources, and data to users.

A hardware cluster achieves high availability and scalability through the use of specialized hardware (cluster interconnect, shared storage) and software (health monitors, resource monitors). (The cluster interconnect is a private link used by the hardware cluster for heartbeat information to detect node death.) Due to the need for specialized hardware and software, hardware clusters are commonly provided by hardware vendors such as Sun, HP, IBM, and Dell. While the number of nodes that can be configured in a hardware cluster is vendor dependent, for the purpose of Oracle Fusion Middleware high availability, only two nodes are required. Hence, this document assumes a two-node hardware cluster for high availability solutions employing a hardware cluster.

- **cluster agent**: The software that runs on a node member of a hardware cluster that coordinates availability and performance operations with other nodes. Clusterware provides resource grouping, monitoring, and the ability to move services. A cluster agent can automate the service failover.

- **clusterware**: A software that manages the operations of the members of a cluster as a system. It allows one to define a set of resources and services to monitor via a heartbeat mechanism between cluster members and to move these resources and services to a different member in the cluster as efficiently and transparently as possible.

- **shared storage**: Shared storage is the storage subsystem that is accessible by all the machines in the enterprise deployment domain. Among other things, the following are located on the shared disk:
 - Middleware Home software
 - AdminServer Domain Home
 - JMS
 - Tlogs (where applicable)

Managed Server homes can also be optionally located in the shared disk. The shared storage can be a Network Attached Storage (NAS), a Storage Area Network (SAN) or any other storage system that multiple nodes can access simultaneously and can read-write.

- **primary node**: The node that is actively running an Oracle Fusion Middleware instance at any given time and has been configured to have a backup/secondary node. If the primary node fails, Oracle Fusion Middleware instance is failed over to the secondary node. This failover can be manual or automated using the Clusterware for Administration Server. For a server migration based scenario, WebLogic Whole Server Migration is used for automated failover.

- **secondary node**: The node that is the backup node for an Oracle Fusion Middleware instance. This is where the active instance fails over when the
primary node is no longer available. See the definition for primary node in this section.

- **network host name**: Network host name is a name assigned to an IP address either through the /etc/hosts file or through DNS resolution. This name is visible in the network that the machine to which it refers to is connected. Often, the network host name and physical host name are identical. However, each machine has only one physical host name but may have multiple network host names. Thus, a machine’s network host name may not always be its physical host name.

- **physical host name**: This guide differentiates between the terms physical host name and network host name. This guide uses physical host name to refer to the "internal name" of the current machine. On Linux, this is the name returned by the hostname command.

 Physical host name is used by Oracle Fusion Middleware to reference the local host. During installation, the installer automatically retrieves the physical host name from the current machine and stores it in the Oracle Fusion Middleware configuration metadata on disk.

- **physical IP**: Physical IP refers to the IP of a machine on the network. In almost all cases, it is normally associated with the physical host name of the machine (see the definition of the physical host name). In contrast to a virtual IP, it is always associated with the same machine when on a network.

- **switchover**: During normal operation, active members of a system may require maintenance or upgrading. A switchover process can be initiated to allow a substitute member to take over the workload performed by the member that requires maintenance or upgrading, which undergoes planned downtime. The switchover operation ensures continued service to consumers of the system.

- **switchback**: When a switchover operation is performed, a member of the system is deactivated for maintenance or upgrading. When the maintenance or upgrading is completed, the system can undergo a switchback operation to activate the upgraded member and bring the system back to the pre-switchover configuration.

- **virtual host name**: Virtual host name is a network addressable host name that maps to one or more physical machines via a load balancer or a hardware cluster. For load balancers, the name “virtual server name” is used interchangeably with virtual host name in this book. A load balancer can hold a virtual host name on behalf of a set of servers, and clients communicate indirectly with the machines using the virtual host name. A virtual host name in a hardware cluster is a network host name assigned to a cluster virtual IP. Because the cluster virtual IP is not permanently attached to any particular node of a cluster, the virtual host name is not permanently attached to any particular node either.

 Note: Whenever the term "virtual host name" is used in this document, it is assumed to be associated with a virtual IP address. In cases where just the IP address is needed or used, it will be explicitly stated.

- **virtual IP**: Also, cluster virtual IP and load balancer virtual IP. Generally, a virtual IP can be assigned to a hardware cluster or load balancer. To present a single system view of a cluster to network clients, a virtual IP serves as an entry point IP address to the group of servers which are members of the cluster. A virtual IP can be assigned to a server load balancer or a hardware cluster.
A hardware cluster uses a cluster virtual IP to present to the outside world the entry point into the cluster (it can also be set up on a standalone machine). The hardware cluster's software manages the movement of this IP address between the two physical nodes of the cluster while clients connect to this IP address without the need to know which physical node this IP address is currently active on. In a typical two-node hardware cluster configuration, each machine has its own physical IP address and physical host name, while there could be several cluster IP addresses. These cluster IP addresses float or migrate between the two nodes. The node with current ownership of a cluster IP address is active for that address.

A load balancer also uses a virtual IP as the entry point to a set of servers. These servers tend to be active at the same time. This virtual IP address is not assigned to any individual server but to the load balancer which acts as a proxy between servers and their clients.

These will be described in more detail in the following chapters.

1.3 Benefits of Oracle Recommendations

The Oracle Fusion Middleware configurations discussed in this guide are designed to ensure security of all transactions, maximize hardware resources, and provide a reliable, standards-compliant system for enterprise computing with a variety of applications. The security and high availability benefits of the Oracle Fusion Middleware configurations are realized through isolation in firewall zones and replication of software components.

This section contains the following topics:

- Section 1.3.1, "Built-in Security"
- Section 1.3.2, "High Availability"

1.3.1 Built-in Security

The Enterprise Deployment architectures are secure because every functional group of software components is isolated in its own DMZ, and all traffic is restricted by protocol and port. The following characteristics ensure security at all needed levels, as well as a high level of standards compliance:

- All external communication received on port 80 (HTTP_PORT) is redirected to port 443 (HTTP_SSL_PORT).
- External communication uses the Secure Socket Layer (SSL) secure Web Protocol. This is terminated at the site’s load balancer.
- Communication from external clients does not go beyond the Load Balancing Router level.
- No direct communication from the Load Balancing Router to the Data Tier DMZ is allowed.
- Components are separated between DMZs on the Web Tier, Application Tier, and the Directory Tier.
- Direct communication across two firewalls at any one time is prohibited.
- If a communication begins in one firewall zone, it must end in the next firewall zone.
- Oracle Internet Directory is isolated in the Directory Tier DMZ.
- Identity Management components are in the Application Tier DMZ.
All communication between components across DMZs is restricted by port and protocol, according to firewall rules.

1.3.2 High Availability

The Enterprise Deployment architectures are highly available because each component or functional group of software components is replicated on a different computer and configured for component-level high availability.
This chapter describes and illustrates the enterprise deployment reference topologies described in this guide and helps you plan your deployment.

The key to a successful Enterprise Deployment is planning and preparation. The road map for installation and configuration in this chapter directs you to the appropriate chapters for the tasks you need to perform. Use this chapter to help you plan your Oracle Identity Management enterprise deployment.

You can use Appendix A, "Worksheets for Identity Management Topology" to help you keep track of information.

This chapter contains the following topics:

- Section 2.1, "Overview of Enterprise Deployment Reference Topologies"
- Section 2.2, "Hardware Requirements for an Enterprise Deployment"
- Section 2.3, "Identifying the Software Components to Install"
- Section 2.4, "Road Map for the Reference Topology Installation and Configuration"

2.1 Overview of Enterprise Deployment Reference Topologies

This section describes diagrams used to illustrate the enterprise deployment possibilities described in this guide. Use this section to plan your enterprise deployment topology.

This section covers these topics:

- Section 2.1.1, "Reference Topologies Documented in the Guide"
- Section 2.1.2, "About the Directory Tier"
- Section 2.1.3, "About the Application Tier"
- Section 2.1.4, "About the Web Tier"

2.1.1 Reference Topologies Documented in the Guide

Oracle Identity Management consists of a number of products, which can be used either individually or collectively. The Enterprise Deployment Guide for Identity Management (Fusion Applications Edition) enables you to build two different enterprise topologies for Fusion Applications.

In the diagrams, active nodes are shown in color, and passive nodes are shown in white.
This section contains the following topologies:

- **Section 2.1.1.1, "Oracle Access Manager 11g and Oracle Identity Manager 11g for Fusion Applications"
- **Section 2.1.1.2, "Oracle Identity Federation 11g for Fusion Applications"

Note: If you do not have powerful enough servers to host all of the Identity Management components as described in the topology diagram, you can distribute the components further among lower specification servers.

2.1.1.1 Oracle Access Manager 11g and Oracle Identity Manager 11g for Fusion Applications

Figure 2–1 is a diagram of the Oracle Access Manager 11g and Oracle Identity Manager 11g topology. This is the topology that the vast majority of customers will use. It enables you to add Identity Management functionality to Oracle Applications deployments. This topology will not service federated requests. If you want to use Oracle Identity Federation as well, then, in addition to this topology, you must also deploy a separate federated topology similar to that shown in Section 2.1.1.2, "Oracle Identity Federation 11g for Fusion Applications.”

See Also: The supported platforms documentation for Oracle Fusion Applications.
Figure 2–1 Oracle Access Manager 11g and Oracle Identity Manager 11g Topology for Fusion Applications
Overview of Enterprise Deployment Reference Topologies

Oracle Fusion Middleware Enterprise Deployment Guide for Oracle Identity Management (Oracle Fusion Applications Edition)
2.1.1.2 Oracle Identity Federation 11g for Fusion Applications

Figure 2–2 is a diagram of the Oracle Identity Federation 11g topology for Fusion Applications. This topology is only relevant to users who are deploying Oracle Identity Federation. An enterprise deployment containing Oracle Identity Federation can only be used for that purpose. That is, it cannot be used to service both federated and non-federated requests.
Figure 2–2 Oracle Identity Federation 11g Topology for Fusion Applications
Overview of Enterprise Deployment Reference Topologies

Introduction to the Enterprise Deployment Reference Topologies

[Diagram of enterprise deployment reference topologies]
2.1.2 About the Directory Tier

The Directory Tier is in the Intranet Zone. The Directory Tier is the deployment tier where all the LDAP services reside. This tier includes products such as Oracle Internet Directory and Oracle Virtual Directory. The Directory Tier is managed by directory administrators providing enterprise LDAP service support.

The Directory Tier is closely tied with the Data Tier. Access to the Data Tier is important for the following reasons:

- Oracle Internet Directory relies on Oracle Database as its back end.
- Oracle Virtual Directory provides virtualization support for other LDAP services or databases or both.

In some cases, the Directory Tier and Data Tier might be managed by the same group of administrators. In many enterprises, however, database administrators own the Data Tier while directory administrators own the Directory Tier.

Typically protected by firewalls, applications above the Directory Tier access LDAP services through a designated LDAP host port. The standard LDAP port is 389 for the non-SSL port and 636 for the SSL port. LDAP services are often used for white pages lookup by clients such as email clients in the intranet. The ports 389 and 636 on the load balancer are typically redirected to the non-privileged ports used by the individual directory instances.

The Directory Tier stores two types of information:

- Identity Information: Information about users and groups
- Oracle Platform Security Services (OPSS): Information about security policies and about configuration.

Although the topology diagrams do not show LDAP directories other than Oracle Internet Directory, you can use Microsoft Active Directory to store identity information. You must always store policy information in Oracle Internet Directory. You may store identity information in Oracle Internet Directory or in another directory.

If you store the Identity details in a directory other than Oracle Internet Directory, you can use Oracle Virtual Directory to present that information.

Oracle Fusion Middleware Integration Overview for Oracle Identity Management Suite describes how to configure Oracle Virtual Directory for two multidirectory scenarios.

- A split profile, or split directory configuration, is one where identity data is stored in multiple directories, possibly in different locations. A split profile is used to store custom attributes required for Fusion Application Deployment. Use this kind of deployment when you do not want to modify the existing Identity Store by extending the schema. In that case, deploy a new Oracle Internet Directory instance to store the extended attributes. Alternatively, you can use the Oracle Internet Directory instance deployed for Policy Store for this purpose.

- Another multidirectory scenario is one where you have distinct user and group populations. In this configuration, Oracle-specific entries and attributes are stored in Oracle Internet Directory. Enterprise-specific entries that might have Fusion Applications-specific attributes are stored in Active Directory.

In both multidirectory scenarios, you use Oracle Virtual Directory to present all the identity data in a single consolidated view that Oracle Identity Management components can interpret.
Although you can use a single Oracle Internet Directory instance for storing both the identity and policy information, in some cases you might need to use two separate Oracle Internet Directory installations, one for the Policy Store and another for Identity Store. For example, this might be necessary due to throughput or enterprise directory requirements. You might also need to use separate Oracle Internet Directory installations if you have a shared Identity Management deployment with multiple Oracle Fusion Applications pods pointing to it.

If you intend to separate your identity and policy information, you must create two separate clusters of highly available Oracle Internet Directory. These Oracle Internet Directory clusters can share the same machines but they should use separate Real Application Clusters databases as their data store.

If you are using Oracle Internet Directory exclusively, you do not need to use Oracle Virtual Directory.

This guide assumes that you are creating two virtual names: one for your Policy Store (POLICYSTORE.mycompany.com) and one for your Identity Store (IDSTORE.mycompany.com). When using a single Oracle Internet Directory for both your identity and policy information, you can either create two virtual host names, both pointing to the same directory, or combine them into a single suitable virtual host name in the load balancer.

If you are using Oracle Internet Directory as your Identity Store, you can configure it to use multimaster replication as described in the Oracle Fusion Middleware High Availability Guide chapter Configuring Identity Management for Maximum High Availability. This enables you to maintain the same naming contexts on multiple directory servers. It can improve performance by providing more servers to handle queries and by bringing the data closer to the client. It improves reliability by eliminating risks associated with a single point of failure.

2.1.2.1 High Availability Provisions

- Oracle Internet Directory Instances are active/active deployments.
- Oracle Virtual Directory Instances are active/active deployments.
- If the Oracle Internet Directory fails on the LDAPHOST, Oracle Process Management and Notification (OPMN) server attempts to restart it.
- If the Oracle Virtual Directory fails on the LDAPHOST, Oracle Process Management and Notification (OPMN) server attempts to restart it.

2.1.3 About the Application Tier

The Application Tier is the tier where Java EE applications are deployed. Products such as Oracle Identity Manager, Oracle Identity Federation, Oracle Directory Services Manager and Oracle Enterprise Manager Fusion Middleware Control are the key Java EE components that can be deployed in this tier. Applications in this tier benefit from the High Availability support of Oracle WebLogic Server.

The Identity Management applications in the Application Tier interact with the Directory Tier as follows:

- They leverage the Directory Tier for enterprise identity information.
- In some cases, they leverage the Directory Tier (and sometimes the database in the Data Tier) for application metadata.
- Oracle Enterprise Manager Fusion Middleware Control and Oracle Directory Services Manager are administration tools that provide administrative
functionalities to the components in the Application Tier as well as the Directory Tier.

- WebLogic Server has built-in web server support. If enabled, the HTTP listener exists in the Application Tier as well. However, for the enterprise deployment shown in Figure 1-1, customers have a separate Web Tier relying on web servers such as Apache or Oracle HTTP Server.

In the Application Tier:

- IDMHOST1 and IDMHOST2 have the WebLogic Server with the Administration Console, Oracle Enterprise Manager Fusion Middleware Control, Oracle Directory Services Manager, Oracle Identity Federation, and Oracle Access Management Server configured. IDMHOST1 and IDMHOST2 run both the WebLogic Server Administration Servers and Managed Servers. Note that the Administration Server is configured to be active-passive, that is, although it is installed on both nodes, only one instance is active at any time. If the active instance goes down, then the passive instance starts up and becomes the active instance.

The Oracle Access Management Server communicates with the Directory Tier to verify user information.

- On the firewall protecting the Application Tier, the HTTP ports, and OAP port are open. The OAP (Oracle Access Protocol) port is for the WebGate module running in Oracle HTTP Server in the Web Tier to communicate with Oracle Access Manager to perform operations such as user authentication.

- In the OAM and OIM topology, IDMHOST1 and IDMHOST2 have Oracle Identity Manager and Oracle SOA installed. Oracle Identity Manager is user provisioning application. Oracle SOA deployed in this topology is exclusively used for providing workflow functionality for Oracle Identity Manager.

2.1.3.1 Architecture Notes

- Oracle Enterprise Manager Fusion Middleware Control is integrated with Oracle Access Manager using the Oracle Platform Security Services (OPSS) agent.

- The Oracle WebLogic Server console, Oracle Enterprise Manager Fusion Middleware Control, and Oracle Access Management console are always bound to the listen address of the Administration Server.

- The WebLogic administration server is a singleton service. It runs on only one node at a time. In the event of failure, it is restarted on a surviving node.

- The WLS_ODS1 Managed Server on IDMHOST1 and WLS_ODS2 Managed Server on IDMHOST2 are in a cluster and the Oracle Directory Services Manager applications are targeted to the cluster.

- The WLS_OAM1 Managed Server on IDMHOST1 and WLS_OAM2 Managed Server on IDMHOST2 are in a cluster and the Oracle Access Manager applications are targeted to the cluster.

- Oracle Directory Services Manager are bound to the listen addresses of the WLS_ODS1 and WLS_ODS2 Managed Servers. By default, the listen address for these Managed Servers is set to IDMHOST1 and IDMHOST2 respectively.

- The WLS_OIM1 Managed Server on IDMHOST1 and WLS_OIM2 Managed Server on IDMHOST2 are in a cluster and the Oracle Identity Manager applications are targeted to the cluster.
■ The WLS_SOA1 Managed Server on IDMHOST1 and WLS_SOA2 Managed Server on IDMHOST2 are in a cluster and the Oracle SOA applications are targeted to the cluster.

■ The WLS_OIF1 Managed Server on IDMHOST1 and WLS_OIF2 Managed Server on IDMHOST2 are in a cluster and the Oracle Identity Federation applications are targeted to the cluster.

2.1.3.2 High Availability Provisions
■ The OAM Servers are active-active deployments.
■ Oracle Access Manager, Oracle Identity Manager, and SOA are active-active deployments; these servers communicate with the Data Tier at run time.
■ The WebLogic Administration Server and Oracle Enterprise Manager deployment is active-passive (where other components are active-active). There is one Administration Server per domain.
■ The Identity Federation Servers are active-active deployments; the Oracle Identity Federation Server may communicate with the Data Tier at run time.
■ The WebLogic Administration Server is a singleton component deployed in an active-passive configuration. If the primary fails or the Administration Server on IDMHOST1 does not start, the Administration Server on the secondary host can be started. If a WebLogic managed server fails, the node manager running on that host attempts to restart it.

2.1.3.3 Security Provisions
Oracle WebLogic Server Console, Oracle Enterprise Manager Fusion Middleware Control console, and Oracle Access Manager Console are only accessible through a virtual host configured on the load balancer, which is only available inside the firewall.

2.1.3.4 About WebLogic Domains
A domain is the basic administration unit for WebLogic Server instances. A domain consists of one or more WebLogic Server instances (and their associated resources) that you manage with a single Administration Server. You can define multiple domains based on different system administrators’ responsibilities, application boundaries, or geographical locations of servers. Conversely, you can use a single domain to centralize all WebLogic Server administration activities.

In the context of Identity Management, it is recommended that you deploy the Identity Management components, plus SOA, in a separate WebLogic Server domain from the one where SOA, WebCenter Portal and other customer applications might be deployed. In a typical enterprise deployment, the administration of identity management components such as LDAP directory, single sign-on solutions, and provisioning solutions is done by a different set of administrators from those who administer the middleware infrastructure and applications. Oracle Identity Manager can be deployed into a separate dedicated domain so that it can be patched independently of other products.

It is technically possible to deploy everything in a single domain in a development or test environment. However, in a production environment, the recommendation to use separate domains creates a logical administrative boundary between the identity management stack and the rest of the middleware and application deployment.
2.1.4 About the Web Tier

The Web Tier is in the DMZ Public Zone. The HTTP Servers are deployed in the Web Tier.

Most of the Identity Management components can function without the Web Tier, but for most enterprise deployments, the Web Tier is desirable. To support enterprise level single sign-on using products such as Oracle Single Sign-On and Oracle Access Manager, the Web Tier is required.

While components such as Oracle Enterprise Manager Fusion Middleware Control and Oracle Directory Services Manager can function without a Web Tier, they can be configured to use a Web Tier, if desired.

In the Web Tier:

- WEBHOST1 and WEBHOST2 have Oracle HTTP Server, WebGate (an Access Manager component), and the mod_wl_ohs plug-in module installed. The mod_wl_ohs plug-in module enables requests to be proxied from Oracle HTTP Server to a WebLogic Server running in the Application Tier.

- WebGate (an Access Manager component) in Oracle HTTP Server uses Oracle Access Protocol (OAP) to communicate with Oracle Access Manager running on IDMHOST1 and IDMHOST2, in the Identity Management DMZ. WebGate and Oracle Access Manager are used to perform operations such as user authentication.

On the firewall protecting the Web Tier, the HTTP ports are 443 (HTTP_SSL_PORT) for HTTPS and 80 (HTTP_PORT) for HTTP. Port 443 is open.

2.1.4.1 Architecture Notes

Oracle HTTP Servers on WEBHOST1 and WEBHOST2 are configured with mod_wl_ohs, and proxy requests for the Oracle Enterprise Manager, and Oracle Directory Services Manager Java EE applications deployed in WebLogic Server on IDMHOST1 and IDMHOST2.

2.1.4.2 High Availability Provisions

If the Oracle HTTP server fails on the WEBHOST, Oracle Process Management and Notification (OPMN) server attempts to restart it.

2.1.4.3 Security Provisions

The Oracle HTTP Servers process requests received using the URLs SSO.mycompany.com and ADMIN.mycompany.com. The name ADMIN.mycompany.com is only resolvable inside the firewall. This prevents access to sensitive resources such as the Oracle WebLogic Server console and Oracle Enterprise Manager Fusion Middleware Control console from the public domain.

2.2 Hardware Requirements for an Enterprise Deployment

The minimum hardware requirements for the Enterprise Deployment on Linux operating systems are listed in Table 2–1. The memory figures represent the memory required to install and run an Oracle Fusion Middleware server; however, for most production sites, you should configure at least 4 GB of physical memory.

For detailed requirements, or for requirements for other platforms, see the Oracle Fusion Middleware System Requirements and Specifications.
These are the typical hardware requirements. For each tier, carefully consider the load, throughput, response time and other requirements to plan the actual capacity required. The number of nodes, CPUs, and memory required can vary for each tier based on the deployment profile. Production requirements may vary depending on applications and the number of users.

The Enterprise Deployment configurations described in this guide use two servers for each tier to provide failover capability; however, this does not presume adequate computing resources for any application or user population. If the system workload increases such that performance is degraded, you can add servers to the configuration by repeating the instructions for the second server (that is, WEBHOST2, IDMHOST2, LDAPHOST2, OIDDBHOST2) to install and configure additional servers where needed.

If you do not have powerful enough servers to host all of the Identity Management components as described in the topology diagram, you can distribute components further among lower specification servers.

Note: Oracle recommends configuring all nodes in the topology identically with respect to operating system levels, patch levels, user accounts, and user groups.

2.3 Identifying the Software Components to Install

Table 2–2, "Software Versions Used" lists the Oracle software you need to obtain before starting the procedures in this guide.

For complete information about downloading Oracle Fusion Middleware software, see Section 6.1.2, "Software to Install" and the Preparing for an Installation chapter in *Oracle Fusion Applications Installation Guide*.

<table>
<thead>
<tr>
<th>Short Name</th>
<th>Product</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>OHS11G</td>
<td>Oracle HTTP Server</td>
<td>11.1.1.6.0</td>
</tr>
<tr>
<td>JRockit</td>
<td>Oracle JRockit</td>
<td>jrockit-jdk1.6.0-29-R28.2.0-4.0.1 or newer</td>
</tr>
</tbody>
</table>
2.4 Road Map for the Reference Topology Installation and Configuration

Before beginning your Oracle Identity Management enterprise deployment, review the flow chart in Figure 2–3, "Flow Chart of the Oracle Identity Management Enterprise Deployment Process for Oracle Fusion Applications". This flow chart illustrates the high-level process for completing the enterprise deployment documented in this guide. Table 2–3 describes the steps in the flow chart and directs you to the appropriate section or chapter for each step.

This section covers the following topics:

- Section 2.4.1, "Flow Chart of the Oracle Identity Management Enterprise Deployment Process for Oracle Fusion Applications"
- Section 2.4.2, "Steps in the Oracle Identity Management Enterprise Deployment Process"

2.4.1 Flow Chart of the Oracle Identity Management Enterprise Deployment Process for Oracle Fusion Applications

Figure 2–3, "Flow Chart of the Oracle Identity Management Enterprise Deployment Process for Oracle Fusion Applications" provides a flow chart of the Oracle Identity Management enterprise deployment process. Review this chart to become familiar with the steps that you must follow, based on the existing environment.

Table 2–2 (Cont.) Software Versions Used

<table>
<thead>
<tr>
<th>Short Name</th>
<th>Product</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WLS</td>
<td>Oracle WebLogic Server</td>
<td>10.3.6.0</td>
</tr>
<tr>
<td>IAM</td>
<td>Oracle Identity and Access Management</td>
<td>11.1.1.5.0</td>
</tr>
<tr>
<td>SOA</td>
<td>Oracle SOA Suite</td>
<td>11.1.1.6.0</td>
</tr>
<tr>
<td>IDM</td>
<td>Oracle Identity Management</td>
<td>11.1.1.6.0</td>
</tr>
<tr>
<td>WebGate 11g</td>
<td></td>
<td>11.1.1.5.0</td>
</tr>
<tr>
<td>RCU</td>
<td>Repository Creation Assistant</td>
<td>11.1.1.6.0</td>
</tr>
</tbody>
</table>
Figure 2–3 Flow Chart of the Oracle Identity Management Enterprise Deployment Process for Oracle Fusion Applications

1. Start
2. Review the Topology Diagrams and Explanations
 - Prepare your Network for Enterprise Deployment
 - Prepare your Storage for Enterprise Deployment
 - Prepare Your Servers for Enterprise Deployment
 - Prepare your Database for Enterprise Deployment
3. Install the Software
 - Configure the Web Tier
4. Create IDMDomain
5. Extend the IDMDomain to Include OID
6. Extend the Domain to Include ODSM
7. Extend the Domain to Include OVD
 - Yes
 - Extend the Domain to Include OVD
 - No
 - Including a non-OID directory?
 - Yes
 - Prepare Non-OID Directory
 - No
8. Prepare Identity Store and Policy Store
9. Set up Node Manager
10. Server Migration Required?
 - Yes
 - Configure Server migration
 - No
11. Prepare the Environment for Fusion Applications Provisioning
12. Configuring Single Sign-on for Administration Consoles in an Enterprise Deployment
13. Done
2.4.2 Steps in the Oracle Identity Management Enterprise Deployment Process

Table 2–3 describes each of the steps in the enterprise deployment process flow chart for Oracle Identity Management, shown in Figure 2–3. The table also provides information on where to obtain more information about each step in the process.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepare your Network for Enterprise Deployment</td>
<td>To prepare your network for an enterprise deployment, understand concepts, such as virtual server names and IPs and virtual IPs, and configure your load balancer by defining virtual host names.</td>
<td>Chapter 3, "Preparing the Network for an Enterprise Deployment"</td>
</tr>
<tr>
<td>Prepare your File System for Enterprise Deployment</td>
<td>To prepare your file system for an enterprise deployment, review the terminology for directories and directory environment variables, and configure shared storage.</td>
<td>Chapter 4, "Preparing Storage for an Enterprise Deployment"</td>
</tr>
<tr>
<td>Prepare your Servers for Enterprise Deployment</td>
<td>To prepare your servers for an enterprise deployment, ensure that your servers meet hardware and software requirements, enable Unicode support and Virtual IP Addresses, mount shared storage, configure users and groups, and, if necessary, install software onto multihomed systems.</td>
<td>Chapter 5, "Preparing the Servers for an Enterprise Deployment"</td>
</tr>
<tr>
<td>Prepare your Database for Enterprise Deployment</td>
<td>To prepare your database for an enterprise deployment, review database requirements, create database services, load the metadata repository, in the Oracle RAC database, configure Identity Management schemas for transactional recovery privileges, and back up the database.</td>
<td>Chapter 7, "Preparing the Database for an Enterprise Deployment"</td>
</tr>
<tr>
<td>Install the Software</td>
<td>Install Oracle HTTP Server, Oracle WebLogic Server, Oracle Fusion Middleware, and apply patchsets to Oracle Fusion Middleware components.</td>
<td>Chapter 6, "Installing the Software for an Enterprise Deployment"</td>
</tr>
<tr>
<td>Configure the Web Tier</td>
<td>Configure the Oracle Web Tier by associating the Oracle Web Tier with the Oracle WebLogic Domain, Configuring Oracle HTTP Server with the load balancer, and configuring virtual host names.</td>
<td>Chapter 8, "Configuring the Web Tier for an Enterprise Deployment"</td>
</tr>
<tr>
<td>Create a Domain</td>
<td>Run the Configuration Wizard to create the domain IDMDomain and include OAM and OIM.</td>
<td>Chapter 9, "Creating the Domain for an Enterprise Deployment"</td>
</tr>
<tr>
<td>Extend the Domain for Oracle Internet Directory</td>
<td>Extend the existing WebLogic domain by running the Configuration Wizard to configure Oracle Internet Directory.</td>
<td>Chapter 10, "Extending the Domain to Include Oracle Internet Directory"</td>
</tr>
</tbody>
</table>
Extend the Domain for Oracle Directory Services Manager

Extend the existing WebLogic domain by running the Configuration Wizard to configure ODSM.

Chapter 12, "Extending the Domain to Include ODSM"

Prepare Identity and Policy Stores

Prepare the Identity and Policy Stores in an Oracle Identity Management enterprise deployment.

Chapter 11, "Preparing Identity and Policy Stores"

Extend the Domain for Oracle Virtual Directory?

Extend the existing WebLogic domain by running the Configuration Wizard to configure Oracle Virtual Directory.

Chapter 14, "Extending the Domain to Include Oracle Virtual Directory"

Configure Oracle Access Manager 11g

Configure Oracle Access Manager 11g

Chapter 13, "Configuring Oracle Access Manager 11g"

Configure Oracle Identity Manager 11g

Configure Oracle Identity Manager 11g

Chapter 15, "Configuring Oracle Identity Manager"

Extend the Domain for Oracle Identity Federation?

Run the Configuration Wizard again and extend the domain to include Oracle Identity Federation.

Chapter 16, "Extending the Domain to Include Oracle Identity Federation"

Set up Node Manager

Set up Node manager by enabling host name verification, starting Node Manager, and configuring WebLogic Servers to use custom keystores.

Chapter 17, "Setting Up Node Manager for an Enterprise Deployment"

Configure Server Migration

Configure server migration for the WLS_OIM1, WLS_SOAI, WLS_OIM2, and WLS_SOAI2 Managed Servers. The WLS_OIM1 and WLS_SOAI Managed Server are configured to restart on IDMHOST2 should a failure occur. The WLS_OIM2 and WLS_SOAI2 Managed Servers are configured to restart on IDMHOST1 should a failure occur.

Chapter 18, "Configuring Server Migration for an Enterprise Deployment"

Integrate Identity Management Components

Integrate Oracle Identity Management components for an enterprise deployment.

Chapter 19, "Preparing the Environment for Fusion Applications Provisioning"

Configure single sign-on for administration Consoles in an Enterprise Deployment

Configure single sign-on (SSO) for administration consoles in an Identity Management Enterprise deployment.

Chapter 20, "Configuring Single Sign-on for Administration Consoles in an Enterprise Deployment"
This chapter describes the prerequisites for the Oracle Identity Management Infrastructure enterprise deployment topologies.

This chapter includes the following topics:

- Section 3.1, "Overview of Preparing the Network for an Enterprise Deployment"
- Section 3.2, "Planning Your Network"
- Section 3.3, "About Virtual Server Names Used by the Topologies"
- Section 3.4, "Configuring the Load Balancers"
- Section 3.5, "About IP Addresses and Virtual IP Addresses"
- Section 3.6, "About Firewalls and Ports"
- Section 3.7, "Managing Oracle Access Manager Communication Protocol"

3.1 Overview of Preparing the Network for an Enterprise Deployment

You must configure several virtual servers and associated ports on the load balancer for different types of network traffic and monitoring. These virtual servers should be configured to the appropriate real hosts and ports for the services running. Also, the load balancer should be configured to monitor the real host and ports for availability so that the traffic to these is stopped as soon as possible when a service is down. This ensures that incoming traffic on a given virtual host is not directed to an unavailable service in the other tiers.

3.2 Planning Your Network

As shown in the deployment topology figures, each deployment is spread across multiple Demilitarized Zones (DMZ). A DMZ is a means of restricting access to components of your infrastructure to those that actually need it. In the examples in this guide, three DMZs are shown.

- The public zone—This is where the outside world gains access to your systems. You place into this zone only those components that the outside world must access, such as the Load Balancers and Web Tiers. If users from the outside world attempts to access any servers or services below this zone, they are prevented from doing so by firewalls.

The public zone is configured so that the servers in this zone can interact with the application servers in the private zone.
3.3 About Virtual Server Names Used by the Topologies

This section contains the following topics:

- Section 3.3.1, “Virtual Host Names”
- Section 3.3.2, “Virtual Server names”

3.3.1 Virtual Host Names

The load balancer is configured with a number of virtual host names, depending on the access required DNS is set up in such a way that these virtual host names are accessible in the areas where they are used. For example:

Public communication is configured using a virtual host which is resolvable both inside and outside of the organization.

Interprocess communication is configured using a virtual host which is only resolvable in the private zone.

3.3.2 Virtual Server names

The Identity Management enterprise topologies use the following virtual server names:

- OIDIDSTORE.mycompany.com
- POLICYSTORE.mycompany.com
- IDSTORE.mycompany.com
- ADMIN.mycompany.com
- IDMINTERNAL.mycompany.com
- SSO.mycompany.com

Some of the virtual server names are used by some topologies and not others. Ensure that the virtual server names are associated with IP addresses and are part of your DNS. The computers on which Oracle Fusion Middleware is running must be able to resolve these virtual server names.

You define the virtual server names on the load balancer using the procedure in Section 3.4, “Configuring the Load Balancers”
The rest of this document assumes that the deployment is one of those shown in Section 2.1.1, “Reference Topologies Documented in the Guide.”

3.3.2.1 OIDIDSTORE.mycompany.com

- This entry is only required if Identity information is stored in an Oracle Internet Directory and Oracle Virtual Directory is being used.

- This virtual server is enabled on LBR2. It acts as the access point for all identity-based LDAP traffic, which is stored in the Oracle Internet Directory servers in the Directory Tier. Traffic to both SSL and non-SSL is configured. The clients access this service using the address OIDIDSTORE.mycompany.com:3131 for SSL and OIDIDSTORE.mycompany.com:3060 for non-SSL.

- This virtual server directs traffic received on port 3060 to each of the Oracle Internet Directory instances on port 3060.

- This virtual server directs traffic received on port 3131 to each of the Oracle Internet Directory instances on port 3131.

- Monitor the heartbeat of the Oracle Internet Directory processes on LDAPHOST1 and LDAPHOST2. If an Oracle Internet Directory process stops on LDAPHOST1 or LDAPHOST2, or if either host LDAPHOST1 or LDAPHOST2 is down, the load balancer must continue to route the LDAP traffic to the surviving computer.

3.3.2.2 POLICYSTORE.mycompany.com

- This virtual server is enabled on LBR2. It acts as the access point for all policy-based LDAP traffic, which is stored in the Oracle Internet Directory servers in the Directory Tier. Traffic to both the SSL and non-SSL is configured. The clients access this service using the address POLICYSTORE.mycompany.com:636 for SSL and POLICYSTORE.mycompany.com:389 for non-SSL.

 Note: Oracle recommends that you configure the same port for SSL connections on the LDAP server and Oracle Internet Directory on the computers on which Oracle Internet Directory is installed. This is a requirement for most Oracle 11g products that use Oracle Internet Directory through the load balancing router.

- This virtual server directs traffic received on port 389 to each of the Oracle Internet Directory instances on port 3060.

- This virtual server directs traffic received on port 636 to each of the Oracle Internet Directory instances on port 3131.

- Monitor the heartbeat of the Oracle Internet Directory processes on LDAPHOST1 and LDAPHOST2. If an Oracle Internet Directory process stops on LDAPHOST1 or LDAPHOST2, or if either host LDAPHOST1 or LDAPHOST2 is down, the load balancer must continue to route the LDAP traffic to the surviving computer.

3.3.2.3 IDSTORE.mycompany.com

- This virtual server is enabled on LBR2. It acts as the access point for all Identity Store LDAP traffic. Traffic to both the SSL and non-SSL is configured. The clients access this service using the address IDSTORE.mycompany.com:636 for SSL and IDSTORE.mycompany.com:389 for non-SSL.
- If your Identity Store is accessed through Oracle Virtual Directory, monitor the heartbeat of the Oracle Virtual Directory processes on LDAPHOST1 and LDAPHOST2. If an Oracle Virtual Directory process stops on LDAPHOST1 or LDAPHOST2, or if either host LDAPHOST1 or LDAPHOST2 is down, the load balancer must continue to route the LDAP traffic to the surviving computer.

- If your Identity Store is in Oracle Internet Directory and is accessed directly, monitor the heartbeat of the Oracle Internet Directory processes on the Oracle Internet Directory Hosts. If an Oracle Internet Directory process stops on one LDAPHOST or one LDAPHOST is down, the load balancer must continue to route the LDAP traffic to the surviving computer.

- If you have an Oracle Internet Directory-only topology, IDSTORE.mycompany.com points to the Oracle Internet Directory in which you are storing your identity data. If you are storing your identity data in a third-party directory or want to front your Oracle Internet Directory Identity Store with Oracle Virtual Directory, then idstore points to Oracle Virtual Directory.

- If your identity store is in Oracle Internet Directory, this virtual server directs traffic received on port 389 (LDAP_LBR_PORT) to each of the Oracle Internet Directory instances on port 3060.

- If your identity store is in Oracle Internet Directory, this virtual server directs traffic received on port 636 (LDAP_LBR_SSL_PORT) to each of the Oracle Internet Directory instances on port 3131.

- If your identity store is in Oracle Virtual Directory, this virtual server directs traffic received on port 389 (LDAP_LBR_PORT) to each of the Oracle Virtual Directory instances on port 6501.

- If your identity store is in Oracle Virtual Directory, this virtual server directs traffic received on port 636 (LDAP_LBR_SSL_PORT) to each of the Oracle Virtual Directory instances on port 7501.

3.3.2.4 ADMIN.mycompany.com

- This virtual server is enabled on LBR1. It acts as the access point for all internal HTTP traffic that gets directed to the administration services. The incoming traffic from clients is non-SSL enabled. Thus, the clients access this service using the address ADMIN.mycompany.com:80 and in turn forward these to ports 7777 (OHS_PORT) on WEBHOST1 and WEBHOST2. The services accessed on this virtual host include the WebLogic Administration Server Console, Oracle Enterprise Manager Fusion Middleware Control, and Oracle Directory Services Manager.

- Create rules in the firewall to block outside traffic from accessing the /console and /em URLs using this virtual host. Only traffic inside the DMZ should be able to access these URLs on the ADMIN.mycompany.com virtual host.

3.3.2.5 IDMINTERNAL.mycompany.com

- This virtual server is enabled on LBR1. The incoming traffic from clients is non-SSL enabled. Thus, the clients access this service using the address IDMINTERNAL.mycompany.com:80 and in turn forward these to port 7777 (OHS_PORT) on WEBHOST1 and WEBHOST2. The SOA Managed servers access this virtual host to callback Oracle Identity Manager web services

- Create rules in the firewall to block outside traffic from accessing this virtual host. Only traffic inside the DMZ should be able to access these URLs on the IDMINTERNAL.mycompany.com virtual host.
3.3.2.6 SSO.mycompany.com

- This is the virtual name which fronts all Identity Management components, including Oracle Identity Federation, Oracle Access Manager, and Oracle Identity Manager.

- This virtual server is enabled on LBR1. It acts as the access point for all HTTP traffic that gets directed to the single sign on services. The incoming traffic from clients is SSL enabled. Thus, the clients access this service using the address SSO.mycompany.com:443 and in turn forward these to ports 7777 (OHS_PORT) on WEBHOST1 and WEBHOST2. All the single sign on enabled protected resources are accessed on this virtual host.

- Configure this virtual server in the load balancer with both port 80 (HTTP_PORT) and port 443 (HTTP_SSL_PORT).

- This virtual host must be configured to preserve the client IP address for a request. In some load balancers, you configure this by enabling the load balancer to insert the original client IP address of a request in an X-Forwarded-For HTTP header.

3.4 Configuring the Load Balancers

Several virtual servers and associated ports must be configured on the load balancer for different types of network traffic and monitoring. These should be configured to the appropriate real hosts and ports for the services running. Also, the load balancer should be configured to monitor the real host and ports for availability so that the traffic to these is stopped as soon as possible when a service is down. This ensures that incoming traffic on a given virtual host is not directed to an unavailable service in the other tiers.

There are two load balancer devices in the recommended topologies. One load balancer is set up for external HTTP traffic and the other load balancer is set up for internal LDAP traffic. A deployment may choose to have a single load balancer device due to a variety of reasons. While this is supported, the deployment should consider the security implications of doing this and if found appropriate, open up the relevant firewall ports to allow traffic across the various DMZs. It is worth noting that in either case, it is highly recommended to deploy a given load balancer device in fault tolerant mode.

This section contains the following topics:

- Section 3.4.1, "Load Balancer Requirements"
- Section 3.4.2, "Load Balancer Configuration Procedures"
- Section 3.4.3, "Load Balancer Configuration"

3.4.1 Load Balancer Requirements

The enterprise topologies use an external load balancer. This external load balancer must have the following features:

- Ability to load-balance traffic to a pool of real servers through a virtual host name: Clients access services using the virtual host name (instead of using actual host names). The load balancer can then load balance requests to the servers in the pool.

- Port translation configuration.

- Monitoring of ports (HTTP and HTTPS).
Configuring the Load Balancers

- **Virtual servers and port configuration:** Ability to configure virtual server names and ports on your external load balancer, and the virtual server names and ports must meet the following requirements:
 - The load balancer should allow configuration of multiple virtual servers. For each virtual server, the load balancer should allow configuration of traffic management on more than one port. For example, for Oracle WebLogic Clusters, the load balancer must be configured with a virtual server and ports for HTTP and HTTPS traffic.
 - The virtual server names must be associated with IP addresses and be part of your DNS. Clients must be able to access the external load balancer through the virtual server names.

- **Ability to detect node failures and immediately stop routing traffic to the failed node.**

- **Resource monitoring / port monitoring / process failure detection:** The load balancer must be able to detect service and node failures (through notification or some other means) and to stop directing non-Oracle Net traffic to the failed node. If your external load balancer has the ability to automatically detect failures, you should use it.

- **Fault tolerant mode:** It is highly recommended that you configure the load balancer to be in fault-tolerant mode.

- **Other:** It is highly recommended that you configure the load balancer virtual server to return immediately to the calling client when the back-end services to which it forwards traffic are unavailable. This is preferred over the client disconnecting on its own after a timeout based on the TCP/IP settings on the client machine.

- **SSL acceleration, which refers to offloading the public-key encryption algorithms involved in SSL transactions to a hardware accelerator.** This feature is recommended, but not required.

- **Ability to terminate SSL requests at the load balancer and forward traffic to the backend real servers using the equivalent non-SSL protocol.** For example, the load balancer must be able to forward HTTPS requests as HTTP. This feature is sometimes called "SSL acceleration." It is required for this Enterprise Deployment.

- **Configuration of the virtual server(s) in the load balancer for the Directory Tier with a high value for the connection timeout for TCP connections.** This value should be more than the maximum expected time over which no traffic is expected between Oracle Access Manager and the Directory Tier.

- **Ability to Preserve the Client IP Addresses:** The Load Balancer must have the capability to insert the original client IP address of a request in an X-Forwarded-For HTTP header to preserve the Client IP Address.

- **Ability to add **WL-Proxy-SSL**: true to the HTTP Request Header.** Some load balancers do this automatically.

3.4.2 Load Balancer Configuration Procedures

The procedures for configuring a load balancer differ, depending on the specific type of load balancer. Refer to the vendor supplied documentation for actual steps. The following steps outline the general configuration flow:

1. **Create a pool of servers.** This pool contains a list of servers and the ports that are included in the load balancing definition. For example, for load balancing between
the web hosts you create a pool of servers which would direct requests to hosts WEBHOST1 and WEBHOST2 on port 7777 (OHS_PORT).

2. Create rules to determine whether or not a given host and service is available and assign it to the pool of servers described in Step 1.

3. Create a Virtual Server on the load balancer. This is the address and port that receives requests used by the application. For example, to load balance Web Tier requests you would create a virtual host for SSO.mycompany.com:80.

4. If your load balancer supports it, specify whether or not the virtual server is available internally, externally or both. Ensure that internal addresses are only resolvable from inside the network.

5. Configure SSL Termination, if applicable, for the virtual server.

6. Assign the Pool of servers created in Step 1 to the virtual server.

7. Tune the time out settings as listed in Table 3–3, "Ports Used in the Oracle Identity Management Enterprise Deployment topologies". This includes time to detect whether a service is down.

3.4.3 Load Balancer Configuration

For an Identity Management deployment, configure your load balancer as shown in Table 3–1.

<table>
<thead>
<tr>
<th>Virtual Host</th>
<th>Server Pool</th>
<th>Protocol</th>
<th>SSL Termination</th>
<th>External</th>
<th>Other Required Configuration/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSO.mycompany.com:80</td>
<td>WEBHOST1.mycompany.com:7777 WEBHOST2.mycompany.com:7777</td>
<td>HTTP</td>
<td>No</td>
<td>Yes</td>
<td>Identity Management requires that the following be added to the HTTP header: Header Name: IS_SSL Header Value: ssl</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HTTPS</td>
<td>Yes</td>
<td>Yes</td>
<td>Identity Management requires that the following be added to the HTTP header: Header Name: IS_SSL Header Value: ssl</td>
</tr>
</tbody>
</table>

Preventing the Network for an Enterprise Deployment 3-7
Table 3–1 (Cont.) Load Balancer Configuration

<table>
<thead>
<tr>
<th>Virtual Host</th>
<th>Server Pool</th>
<th>Protocol</th>
<th>SSL Termination</th>
<th>External</th>
<th>Other Required Configuration/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDMINTERNAL.mycompany.com:80</td>
<td>WEBHOST1/2:7777</td>
<td>HTTP</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>ADMIN.mycompany.com:80</td>
<td>WEBHOST1.mycompany.com:7777 WEBHOST2.mycompany.com:7777</td>
<td>HTTP</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>POLICYSTORE.mycompany.com:389</td>
<td>LDAPHOST1.mycompany.com:3060 LDAPHOST2.mycompany.com:3060</td>
<td>LDAP</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>POLICYSTORE.mycompany.com:389</td>
<td>LDAPHOST1.mycompany.com:3131 LDAPHOST2.mycompany.com:3131</td>
<td>LDAP</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>IDSTORE.mycompany.com:389</td>
<td>LDAPHOST1.mycompany.com:6501 LDAPHOST2.mycompany.com:6501</td>
<td>LDAP</td>
<td>No</td>
<td>No</td>
<td>If you have an Oracle Internet Directory-only topology and are not using Oracle Virtual Directory, the server pool must contain Oracle Internet Directory servers.</td>
</tr>
<tr>
<td>IDSTORE.mycompany.com:636</td>
<td>LDAPHOST1.mycompany.com:7501 LDAPHOST2.mycompany.com:7501</td>
<td>LDAP</td>
<td>No</td>
<td>No</td>
<td>If you have an Oracle Internet Directory-only topology and are not using Oracle Virtual Directory, the server pool must contain Oracle Internet Directory servers.</td>
</tr>
</tbody>
</table>
3.5 About IP Addresses and Virtual IP Addresses

A virtual IP address is an unused IP Address which belongs to the same subnet as the host’s primary IP address. It is assigned to a host manually and Oracle WebLogic Managed servers are configured to listen on this IP Address. In the event of the failure of the node where the IP address is assigned, the IP address is assigned to another node in the same subnet, so that the new node can take responsibility for running the managed servers assigned to it.

The following is a list of the Virtual IP addresses required by Oracle Identity Management:

- **ADMINVHN.mycompany.com**

 In Enterprise deployments the WebLogic Administration Server must be able to continue processing requests after the host it is residing on fails. A virtual IP address should be provisioned in the Application Tier so that it can be bound to a network interface on any host in the Application Tier. The WebLogic Administration Server is configured later to listen on this virtual IP address, as discussed later in this manual. The virtual IP address fails over along with the Administration Server from IDMHOST1 to IDMHOST2, or vice versa.

- **SOAHOSTXVHN.mycompany.com**

 One virtual IP address is required for each SOA managed server. This enables the servers to participate in Server migration.

 Provision a virtual IP address in the Application Tier so that it can be bound to a network interface on any host in the Application Tier.

- **OIMHOSTXVHN.mycompany.com**

Table 3–1 (Cont.) Load Balancer Configuration

<table>
<thead>
<tr>
<th>Virtual Host</th>
<th>Server Pool</th>
<th>Protocol</th>
<th>SSL Termination</th>
<th>External</th>
<th>Other Required Configuration/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>OIDIDSTORE mycompany.com:31</td>
<td>LDAPHOST1.mycompany.com:3060</td>
<td>LDAP</td>
<td>No</td>
<td>No</td>
<td>Only required if Identity Management users are stored in an Oracle Internet Directory and Oracle Virtual Directory is being used.</td>
</tr>
<tr>
<td>OIDIDSTORE mycompany.com:31</td>
<td>LDAPHOST2.mycompany.com:3060</td>
<td>LDAP</td>
<td>No</td>
<td>No</td>
<td>Only required if Identity Management users are stored in an Oracle Internet Directory and Oracle Virtual Directory is being used.</td>
</tr>
</tbody>
</table>

1 For information about configuring IS_SSL, see “About User Defined WebGate Parameters” in Oracle Fusion Middleware Administrator’s Guide for Oracle Access Manager with Oracle Security Token Service.
One virtual IP Address is required for each Oracle Identity Manager managed server. This enables the servers to participate in Server migration.

Provision a virtual IP address in the Application Tier so that it can be bound to a network interface on any host in the Application Tier.

Configure the Administration Server and the managed servers to listen on different virtual IPs and physical IPs as illustrated in Figure 3–1.

Figure 3–1 IPs and VIPs Mapped to Administration Server and Managed Servers

Table 3–2 provides descriptions of the various virtual hosts.

Table 3–2 Virtual Hosts

<table>
<thead>
<tr>
<th>Virtual IP</th>
<th>VIP Maps to...</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIP1</td>
<td>ADMINVHN</td>
<td>ADMINVHN is the virtual host name that is the listen address for the Administration Server and fails over with manual failover of the Administration Server. It is enabled on the node where the Administration Server process is running (IDMHOST1 by default).</td>
</tr>
<tr>
<td>VIP2</td>
<td>SOAHOST1VHN</td>
<td>SOAHOST1VHN is the virtual host name that maps to the listen address for WLS_SOA1 and fails over with server migration of this managed server. It is enabled on the node where WLS_SOA1 process is running (IDMHOST1 by default).</td>
</tr>
<tr>
<td>VIP3</td>
<td>SOAHOST2VHN</td>
<td>SOAHOST2VHN is the virtual host name that maps to the listen address for WLS_SOA2 and fails over with server migration of this managed server. It is enabled on the node where WLS_SOA2 process is running (IDMHOST2 by default).</td>
</tr>
</tbody>
</table>
3.6 About Firewalls and Ports

Many Oracle Fusion Middleware components and services use ports. As an administrator, you must know the port numbers used by these services, and to ensure that the same port number is not used by two services on a host.

Most port numbers are assigned after installation. You can use different port numbers if you want to. The port numbers shown in Table 3–3 are examples that are used throughout this guide for consistency. If you use different port numbers, you must substitute those values for the values in the table wherever they are used.

Table 3–3 lists the ports used in the Oracle Identity Management topologies, including the ports that you must open on the firewalls in the topologies.

Firewall notation:
- FW0 refers to the outermost firewall.
- FW1 refers to the firewall between the Web Tier and the Application Tier.
- FW2 refers to the firewall between the Application Tier and the Directory Tier.

Table 3–3 Ports Used in the Oracle Identity Management Enterprise Deployment topologies

<table>
<thead>
<tr>
<th>Type</th>
<th>Firewall</th>
<th>Port and Port Range</th>
<th>Protocol / Application</th>
<th>Inbound / Outbound</th>
<th>Timeout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Browser request</td>
<td>FW0</td>
<td>80</td>
<td>HTTP / Load balancer</td>
<td>Both</td>
<td>Timeout depends on all HTML content and the type of process model used for Oracle Identity Management.</td>
</tr>
<tr>
<td>Browser request</td>
<td>FW0</td>
<td>443</td>
<td>HTTPS / Load balancer</td>
<td>Both</td>
<td>Timeout depends on all HTML content and the type of process model used for Oracle Identity Management.</td>
</tr>
<tr>
<td>Browser request</td>
<td>FW1</td>
<td>80</td>
<td>HTTP / Load Balancer</td>
<td>Outbound (for intranet clients)</td>
<td>Timeout depends on all HTML content and the type of process model used for IDM.</td>
</tr>
</tbody>
</table>
Table 3-3 (Cont.) Ports Used in the Oracle Identity Management Enterprise Deployment topologies

<table>
<thead>
<tr>
<th>Type</th>
<th>Firewall</th>
<th>Port and Port Range</th>
<th>Protocol / Application</th>
<th>Inbound / Outbound</th>
<th>Timeout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Browser request</td>
<td>FW1</td>
<td>443</td>
<td>HTTPS / Load Balancer</td>
<td>Outbound (for intranet clients)</td>
<td>Timeout depends on all HTML content and the type of process model used for IDM.</td>
</tr>
<tr>
<td>Load balancer to Oracle HTTP Server</td>
<td>n/a</td>
<td>7777</td>
<td>HTTP</td>
<td>n/a</td>
<td>See Section 3.4, "Configuring the Load Balancers."</td>
</tr>
<tr>
<td>OHS registration with Administration Server</td>
<td>FW1</td>
<td>7001</td>
<td>HTTP/t3</td>
<td>Inbound</td>
<td>Set the timeout to a short period (5-10 seconds).</td>
</tr>
<tr>
<td>IDMDomain Oracle WebLogic Administration Server access from Web Tier</td>
<td>FW1</td>
<td>7001</td>
<td>HTTP / Oracle HTTP Server and Administration Server</td>
<td>Inbound</td>
<td>N/A</td>
</tr>
<tr>
<td>Enterprise Manager Agent - Web Tier to Enterprise Manager</td>
<td>FW1</td>
<td>5160</td>
<td>HTTP / Enterprise Manager Agent and Enterprise Manager</td>
<td>Both</td>
<td>N/A</td>
</tr>
<tr>
<td>Oracle HTTP Server to WLS_ODS</td>
<td>FW1</td>
<td>7006</td>
<td>HTTP / Oracle HTTP Server to WebLogic Server</td>
<td>Inbound</td>
<td>Timeout depends on the mod_weblogic parameters used.</td>
</tr>
<tr>
<td>Oracle HTTP Server to WLS_OAM</td>
<td>FW1</td>
<td>14100</td>
<td>HTTP / Oracle HTTP Server to WebLogic Server</td>
<td>Inbound</td>
<td>Timeout depends on the mod_weblogic parameters used.</td>
</tr>
<tr>
<td>Oracle HTTP Server WLS_OIM</td>
<td>FW1</td>
<td>14000</td>
<td>HTTP / Oracle HTTP Server to WebLogic Server</td>
<td>Inbound</td>
<td>Timeout depends on the mod_weblogic parameters used.</td>
</tr>
<tr>
<td>Oracle HTTP Server WLS_SOA</td>
<td>FW1</td>
<td>8001</td>
<td>HTTP / Oracle HTTP Server to WebLogic Server</td>
<td>Both</td>
<td>Timeout depends on the mod_weblogic parameters used.</td>
</tr>
<tr>
<td>Oracle HTTP Server management by Administration Server</td>
<td>FW1</td>
<td>OPNM remote port (6701) and OHS Admin Port (7779)</td>
<td>TCP and HTTP, respectively</td>
<td>Outbound</td>
<td>Set the timeout to a short period, such as 5-10 seconds.</td>
</tr>
<tr>
<td>Oracle Access Manager Server 11g</td>
<td>FW1</td>
<td>5574-5575</td>
<td>OAP</td>
<td>Both</td>
<td>N/A</td>
</tr>
<tr>
<td>Oracle Access Manager Coherence port</td>
<td>FW1</td>
<td>9095</td>
<td>TCMP</td>
<td>Both</td>
<td>N/A</td>
</tr>
<tr>
<td>Oracle Coherence Port</td>
<td>FW1</td>
<td>8000 - 8088</td>
<td>TCMP</td>
<td>Both</td>
<td>N/A</td>
</tr>
<tr>
<td>IDMDomain Oracle WebLogic Administration Server access from Directory Tier</td>
<td>FW2</td>
<td>7001</td>
<td>HTTP / Oracle Internet Directory, Oracle Virtual Directory, and Administration Server</td>
<td>Outbound</td>
<td>N/A</td>
</tr>
<tr>
<td>Enterprise Manager Agent - Directory Tier to Enterprise Manager</td>
<td>FW2</td>
<td>5160</td>
<td>HTTP / Enterprise Manager Agent and Enterprise Manager</td>
<td>Both</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Table 3–3 (Cont.) Ports Used in the Oracle Identity Management Enterprise Deployment topologies

<table>
<thead>
<tr>
<th>Type</th>
<th>Firewall</th>
<th>Port and Port Range</th>
<th>Protocol / Application</th>
<th>Inbound / Outbound</th>
<th>Timeout</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPMN access in Directory Tier</td>
<td>FW2</td>
<td>OPMN remote port</td>
<td>HTTP / Administration Server to OPMN</td>
<td>Inbound</td>
<td>N/A</td>
</tr>
<tr>
<td>Oracle Virtual Directory proxy port</td>
<td>FW2</td>
<td>8899</td>
<td>HTTP / Administration Server to Oracle Virtual Directory</td>
<td>Inbound</td>
<td>N/A</td>
</tr>
<tr>
<td>Database access</td>
<td>FW2</td>
<td>1521</td>
<td>SQL*Net</td>
<td>Both</td>
<td>Timeout depends on all database content and on the type of process used for Oracle Identity Management.</td>
</tr>
<tr>
<td>Oracle Internet Directory access</td>
<td>FW2</td>
<td>3060</td>
<td>LDAP</td>
<td>Inbound</td>
<td>Tune the directory server's parameters based on the load balancer, and not the other way around. Ideally, these connections should be configured not to time out.</td>
</tr>
<tr>
<td>Oracle Internet Directory access</td>
<td>FW2</td>
<td>3131</td>
<td>LDAP SSL</td>
<td>Inbound</td>
<td>Tune the directory server's parameters based on the load balancer, and not the other way around. Ideally, these connections should be configured not to time out.</td>
</tr>
<tr>
<td>Oracle Virtual Directory access</td>
<td>FW2</td>
<td>6501</td>
<td>LDAP</td>
<td>Inbound</td>
<td>Ideally, these connections should be configured not to time out.</td>
</tr>
<tr>
<td>Oracle Virtual Directory access</td>
<td>FW2</td>
<td>7501</td>
<td>LDAP SSL</td>
<td>Inbound</td>
<td>Ideally, these connections should be configured not to time out.</td>
</tr>
<tr>
<td>Oracle Identity Federation</td>
<td>FW2</td>
<td>7499</td>
<td>HTTP</td>
<td>Both</td>
<td>N/A</td>
</tr>
<tr>
<td>Oracle Identity Navigator</td>
<td>FW2</td>
<td>7001</td>
<td>HTTP</td>
<td>Both</td>
<td>N/A</td>
</tr>
<tr>
<td>Load balancer to Oracle HTTP Server</td>
<td>N/A</td>
<td>7777</td>
<td>HTTP</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Session replication within a WebLogic Server cluster</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>By default, this communication uses the same port as the server's listen address.</td>
</tr>
<tr>
<td>Node Manager</td>
<td>N/A</td>
<td>5556</td>
<td>TCP/IP</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
3.7 Managing Oracle Access Manager Communication Protocol

This section discusses Oracle Access Protocol (OAP) and provides an overview of a user request.

3.7.1 Oracle Access Manager Protocols

Oracle Access Protocol (OAP) enables communication between Access System components (for example, OAM Server, WebGate) during user authentication and authorization. This protocol was formerly known as NetPoint Access Protocol (NAP) or COREid Access Protocol.

3.7.2 Overview of Integration Requests

Oracle Access Manager is responsible for creating sessions for users. When Oracle Access Manager is integrated with another Identity Management component, such as Oracle Identity Manager, authentication is delegated to those components.

A typical request flow is as follows:

1. The user tries to access a resource for the first time.
2. WebGate intercepts the request and detects that the user is not authenticated.
3. Oracle Access Manager credential collector is invoked and the user enters a user name and password in response to a prompt. Oracle Access Manager knows that password policy requires the password to be changed at first login, so the user’s browser is redirected to Oracle Identity Manager.
4. The user is prompted to change password and set up challenge questions.
5. At this point, Oracle Identity Manager has authenticated the user using the newly entered password. Oracle Identity Manager creates a TAP request to say that Oracle Access Manager can create a session for the user. That is, the user will not be expected to log in again. This is achieved by adding a token to the user’s browser that Oracle Access Manager can read.

The TAP request to Oracle Access Manager will include such things as:

- Where the Oracle Access Manager servers are located.
- What web gate profile to use.
- WebGate profile password.
- Certificates, if Oracle Access Manager is working in simple or cert mode.

3.7.3 Overview of User Request

The request flow when a user requests access is as follows:

1. The user requests access to a protected resource over HTTP or HTTPS.
2. The WebGate intercepts the request.
3. The WebGate forwards the request to the OAM Server over Oracle Access Protocol to determine if the resource is protected, how, and whether the user is authenticated (if not, there is a challenge).

4. The OAM Server checks the directory server for credentials such as a user ID and password, sends the information back to WebGate over Oracle Access Protocol, and generates an encrypted cookie to authenticate the user.

5. Following authentication, the WebGate prompts the OAM Server over Oracle Access Protocol and the OAM Server looks up the appropriate security policies, compares them to the user’s identity, and determines the user’s level of authorization.
 - If the access policy is valid, the user is allowed to access the desired content and/or applications.
 - If the policy is false, the user is denied access and redirected to another URL determined by the organization’s administrator.

3.7.4 About the Unicast Requirement for Communication

Oracle recommends that the nodes in the topology communicate using unicast communication. Unlike multicast communication, unicast does not require cross-network configuration. Using unicast avoids network errors due to multicast address conflicts.

In unicast messaging mode, the default listening port of the server is used if no channel is configured. Cluster members communicate to the group leader when they need to send a broadcast message which is usually the heartbeat message. When the cluster members detect the failure of a group leader, the next oldest member becomes the group leader. The frequency of communication in unicast mode is similar to the frequency of sending messages on multicast port.

The following considerations apply when using unicast to handle cluster communications:
 - All members of a WebLogic cluster must use the same message type. Mixing multicast and unicast messaging is not allowed.
 - Individual cluster members cannot override the cluster messaging type.
 - The entire cluster must be shut down and restarted to change the message modes from unicast to multicast or from multicast to unicast.
 - JMS topics configured for multicasting can access WebLogic clusters configured for unicast because a JMS topic publishes messages on its own multicast address that is independent of the cluster address. However, the following considerations apply:
 - The router hardware configurations that allow unicast clusters may not allow JMS multicast subscribers to work.
 - JMS multicast subscribers need to be in a network hardware configuration that allows multicast accessibility. (That is, JMS subscribers must be in a multicast-enabled network to access multicast topics.)
This chapter describes how to prepare storage for an Oracle Identity Management enterprise deployment.

The storage model described in this guide was chosen for maximum availability, best isolation of components, symmetry in the configuration, and facilitation of backup and disaster recovery. The rest of the guide uses this directory structure and directory terminology. Other directory layouts are possible and supported.

This chapter contains the following topics:

- Section 4.1, "Overview of Preparing the File System for Enterprise Deployment"
- Section 4.2, "Terminology for Directories and Directory Variables"
- Section 4.3, "About Recommended Locations for the Different Directories"

4.1 Overview of Preparing the File System for Enterprise Deployment

It is important to set up your file system in a way that makes the enterprise deployment easier to understand, configure, and manage. Oracle recommends setting up your files system according to information in this chapter. The terminology defined in this chapter is used in diagrams and procedures throughout the guide.

Use this chapter as a reference to help understand the directory variables used in the installation and configuration procedures. Other directory layouts are possible and supported, but the model adopted in this guide is chosen for maximum availability, providing both the best isolation of components and symmetry in the configuration and facilitating backup and disaster recovery. The rest of the document uses this directory structure and directory terminology.

4.2 Terminology for Directories and Directory Variables

This section describes the directory variables used throughout this guide for configuring the Oracle Identity Management enterprise deployment. You are not required to set these as environment variables. The following directory variables are used to describe the directories installed and configured in the guide:

- **ORACLE_BASE**: This environment variable and related directory path refers to the base directory under which Oracle products are installed. For example:

 u01/oracle
About Recommended Locations for the Different Directories

- **MW_HOME**: This variable and related directory path refers to the location where Oracle Fusion Middleware resides. A MW_HOME has a WL_HOME, an ORACLE_COMMON_HOME and one or more ORACLE_HOMEs. An example of a typical MW_HOME is:

 \[\text{ORACLE_BASE/product/fmw} \]

 There is a different MW_HOME for each domain.

 In this guide, this value might be preceded by a product suite abbreviation, for example: IAM_MW_HOME, OIM_MW_HOME, WEB_MW_HOME. For more information about homes, see Table 6–2, "Summary of Homes".

- **WL_HOME**: This variable and related directory path contains installed files necessary to host a WebLogic Server, for example MW_HOME/wlserver_10.3.

- **ORACLE_HOME**: This variable points to the location where an Oracle Fusion Middleware product, such as Oracle HTTP Server, Oracle SOA Suite, or Oracle Internet Directory is installed and the binaries of that product are being used in a current procedure. For example: IAM_ORACLE_HOME, OIM_ORACLE_HOME, WEB_ORACLE_HOME

- **ORACLE_COMMON_HOME**: This variable and related directory path refers to the location where the Oracle Fusion Middleware Common Java Required Files (JRF) Libraries and Oracle Fusion Middleware Enterprise Manager Libraries are installed. An example is:

 \[\text{MW_HOME/oracle_common} \]

- **Domain directory**: This path refers to the file system location where the Oracle WebLogic domain information (configuration artifacts) is stored. Different WebLogic Servers can use different domain directories even when in the same node as described Section 4.3, "About Recommended Locations for the Different Directories."

- **ORACLE_INSTANCE**: An Oracle instance contains one or more system components, such as Oracle Web Cache, Oracle HTTP Server, or Oracle Internet Directory. An Oracle instance directory contains updatable files, such as configuration files, log files, and temporary files. An example is:

 \[/u02/local/config/instances/web1 \]

- **JAVA_HOME**: This is the location where JRockit is installed.

- **ASERVER_HOME**: This is the primary location of the domain configuration. A typical example is:

 \[/u01/oracle/config/domains/domain_name \]

- **MSERVER_HOME**: This is a copy of the domain configuration used to start and stop managed servers. A typical example is:

 \[/u02/local/oracle/config/domains/domain_name \]

- **WEBGATE_ORACLE_HOME**: This is the location of the WebGate installation.

4.3 About Recommended Locations for the Different Directories

This section contains the following topics:

- Section 4.3.1, "Shared Storage Recommendations for Binary (Oracle Home) Directories"
- Section 4.3.2, "Recommendations for Domain Configuration Files"
- Section 4.3.3, "Shared Storage Recommendations for JMS File Stores and Transaction Logs"
- Section 4.3.4, "Recommended Directory Locations"
4.3.1 Shared Storage Recommendations for Binary (Oracle Home) Directories

The following sections describe guidelines for using shared storage for your Oracle Fusion Middleware Oracle home directories:

- Section 4.3.1.1, "About the Binary (Middleware Home) Directories"
- Section 4.3.1.2, "About Sharing a Single Middleware Home Across Multiple Hosts"
- Section 4.3.1.3, "About Using Redundant Binary (Middleware Home) Directories"

4.3.1.1 About the Binary (Middleware Home) Directories

When you install any Oracle Fusion Middleware product, you install the product binaries into a Middleware home. The binary files installed in the Middleware home are read-only and remain unchanged unless the Middleware home is patched or upgraded to a newer version.

In a typical production environment, the Middleware home files are saved in a separate location from the domain configuration files, which you create using the Oracle Fusion Middleware Configuration Wizard.

The Middleware home for an Oracle Fusion Middleware installation contains the binaries for Oracle WebLogic Server, the Oracle Fusion Middleware infrastructure files, and any Oracle Fusion Middleware product-specific directories.

For more information about the structure and content of an Oracle Fusion Middleware home, see Oracle Fusion Middleware Concepts.

4.3.1.2 About Sharing a Single Middleware Home Across Multiple Hosts

Sharing a Middleware home across different hosts enables you to install the Middleware home in a single location on a shared volume and use the Middleware home for multiple host installations.

When a Middleware home is shared by multiple servers on different hosts, there are some best practices to keep in mind. In particular, be sure that the Oracle Inventory on each host is updated for consistency and for the application of patches.

To update the oracleInventory for a host and attach a Middleware home on shared storage, use the following command:

```
ORACLE_HOME/oui/bin/attachHome.sh
```

For more information about the Oracle inventory, see "Oracle Universal Installer Inventory" in the Oracle Universal Installer Concepts Guide.

4.3.1.3 About Using Redundant Binary (Middleware Home) Directories

For maximum availability, Oracle recommends using redundant binary installations on shared storage.

In this model, you install two identical Middleware homes for your Oracle Fusion Middleware software on two different shared volumes. You then mount one of the Middleware homes to one set of servers, and the other Middleware home to the remaining servers. Each Middleware home has the same mount point, so the Middleware home always has the same path, regardless of which Middleware home the server is using.

Should one Middleware home become corrupted or unavailable, only half your servers are affected. For additional protection, Oracle recommends that you disk mirror these volumes.
If separate volumes are not available on shared storage, Oracle recommends simulating separate volumes using different directories within the same volume and mounting these to the same mount location on the host side. Although this does not guarantee the protection that multiple volumes provide, it does allow protection from user deletions and individual file corruption.

4.3.2 Recommendations for Domain Configuration Files

The following sections describe guidelines for using shared storage for the Oracle WebLogic Server domain configuration files you create when you configure your Oracle Fusion Middleware products in an enterprise deployment:

- **Section 4.3.2.1, "About Oracle WebLogic Server Administration and Managed Server Domain Configuration Files"
- **Section 4.3.2.2, "Shared Storage Requirements for Administration and Managed Server Domain Configuration Files"
- **Section 4.3.2.3, "Local Storage Requirements for Managed Server Domain Configuration Files"

4.3.2.1 About Oracle WebLogic Server Administration and Managed Server Domain Configuration Files

When you configure an Oracle Fusion Middleware product, you create or extend an Oracle WebLogic Server domain. Each Oracle WebLogic Server domain consists of a single Administration Server and one or more managed servers.

For more information about Oracle WebLogic Server domains, see *Oracle Fusion Middleware Understanding Domain Configuration for Oracle WebLogic Server*.

In an enterprise deployment, it is important to understand that the managed servers in a domain can be configured for active-active high availability. However, the Administration server cannot. The Administration Server is a singleton service. That is, it can be active on only one host at any given time.

Oracle recommends creating two copies of the domain configuration files:

- One copy for the Administration Server configuration files
- One copy for the Managed Server configuration files

4.3.2.2 Shared Storage Requirements for Administration and Managed Server Domain Configuration Files

Administration Server configuration files must reside on Shared Storage. This allows the administration server to be started on a different host should the primary host become unavailable. The directory where the administration server files is located is known as the `ASERVER_HOME` directory. This directory is located on shared storage and mounted exclusively to the host that is running the Administration Server. In the event of the failure of that host, you can mount the directory on a different host and start the administration server on that host.

Managed Server configuration Files should reside on local storage to prevent performance issues associated with contention. The directory where the managed server configuration files are located is known as the `MSERVER_HOME` directory. It is highly recommended that managed server domain configuration files be placed onto local storage.

If you must use shared storage, it is recommended that you create a storage partition for each node and mount that storage exclusively to that node.
The configuration steps provided for this enterprise deployment topology assume that a local domain directory for each node is used for each managed server.

4.3.2.3 Local Storage Requirements for Managed Server Domain Configuration Files
If you must use shared storage, it is recommended that you create a storage partition for each node and mount that storage exclusively to that node.

The configuration steps provided for this enterprise deployment topology assume that a local domain directory for each node is used for each managed server.

4.3.3 Shared Storage Recommendations for JMS File Stores and Transaction Logs
JMS file stores and JTA transaction logs must be placed on shared storage in order to ensure that they are available from multiple hosts for recovery in the case of a server failure or migration.

For more information about saving JMS and JTA information in a file store, see "Using the WebLogic Persistent Store" in *Oracle Fusion Middleware Configuring Server Environments for Oracle WebLogic Server*.

4.3.4 Recommended Directory Locations
This section describes the recommended use of shared and local storage.

This section includes the following topics:
- Section 4.3.4.1, "Shared Storage"
- Section 4.3.4.2, "Local Storage"

4.3.4.1 Shared Storage
In an Enterprise Deployment, it is recommended that the volumes shown in Table 4–1 be created on shared Storage. You can mount shared storage either exclusively or shared.

When scaling out or scaling up, you can use the shared MW_HOME for additional servers of the same type without performing more software installations.

<table>
<thead>
<tr>
<th>Tier</th>
<th>Volume</th>
<th>Mount Point</th>
<th>Mounted on Hosts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Tier</td>
<td>VOL1/Oracle</td>
<td>/u01/oracle</td>
<td>IDMHOST1</td>
</tr>
<tr>
<td>IDM</td>
<td>IDM</td>
<td>IDMHOST2</td>
<td></td>
</tr>
</tbody>
</table>
4.3.4.2 Local Storage

In an Enterprise Deployment it is recommended that the following directories be created on local storage:

<table>
<thead>
<tr>
<th>Tier</th>
<th>Environment Variable</th>
<th>Directory</th>
<th>Hosts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Tier</td>
<td>WEB_MW_HOME</td>
<td>/u02/local/oracle/products/web</td>
<td>WEBHOST1 WEBHOST2</td>
</tr>
<tr>
<td>Web Tier</td>
<td>WEB_ORACLE_INSTANCE</td>
<td>/u02/local/oracle/ohsn</td>
<td>WEBHOST1 WEBHOST2</td>
</tr>
<tr>
<td>Directory Tier</td>
<td>OID_ORACLE_INSTANCE</td>
<td>/u02/local/oracle/config/instances/oidn</td>
<td>LDAPHOST1 LDAPHOST2</td>
</tr>
<tr>
<td>Directory Tier</td>
<td>OVD_ORACLE_INSTANCE</td>
<td>/u02/local/oracle/config/instances/ovdn</td>
<td>LDAPHOST1 LDAPHOST2</td>
</tr>
<tr>
<td>Directory Tier</td>
<td>DIR_MW_HOME</td>
<td>/u02/local/products/directory</td>
<td>LDAPHOST1 LDAPHOST2</td>
</tr>
<tr>
<td>Application Tier</td>
<td>MSERVER_HOME</td>
<td>/u02/local/oracle/config/domains/IDMDomain</td>
<td>IDMHOST1 IDMHOST2</td>
</tr>
</tbody>
</table>
While it is recommended that you put `WEB_ORACLE_INSTANCE` directories onto local storage, you can use shared storage. If you use shared storage, you must ensure that the HTTP lock file is placed on discrete locations.
This chapter describes how to prepare the servers for an enterprise deployment. It contains the following sections:

- Section 5.1, "Overview of Preparing the Servers."
- Section 5.2, "Verifying Your Server and Operating System."
- Section 5.3, "Meeting the Minimum Hardware Requirements."
- Section 5.4, "Meeting Operating System Requirements."
- Section 5.5, "Enabling Unicode Support."
- Section 5.6, "Enabling Virtual IP Addresses."
- Section 5.7, "Mounting Shared Storage Onto the Host."
- Section 5.8, "Configuring Users and Groups."
- Section 5.9, "Installing Oracle Software onto a Server with Multiple Network Addresses."

5.1 Overview of Preparing the Servers

Before you deploy Oracle Fusion Middleware on new hardware, you must set up the servers you plan to use so that the Oracle Software can work in an optimum fashion. Specifically, you must ensure that:

- The servers are running a certified operating system with the required software patches installed.
- You have configured the UNIX Kernel correctly.
- You have created Users and Groups to own the Oracle software.

The settings described in this chapter are only a guide. After using your Oracle software, you should use operating system utilities to tune the configuration to ensure that you are maximizing the potential of your servers.

5.2 Verifying Your Server and Operating System

Ensure that the server and operating system that you plan to use is a certified combination for the products you plan to use. Refer to Oracle Certification Matrix for details.
5.3 Meeting the Minimum Hardware Requirements

In order to use a server in an Oracle Enterprise Deployment you must verify that it meets the minimum specification described in Section 2.2, "Hardware Requirements for an Enterprise Deployment." If you plan to use a different deployment architecture, for example, one with more or fewer components deployed on a different number of boxes, you must check Oracle Fusion Middleware System Requirements and Specifications to ensure that you have the minimum specification to support the products you plan to deploy on these servers.

If you are deploying to a virtual server environment, such as Oracle Exalogic, ensure that each of the virtual servers meets the minimum requirements.

Ensure that you have sufficient local disk and shared storage is configured as described in Chapter 4, "Preparing Storage for an Enterprise Deployment."

Allow sufficient swap and temporary space. Specifically:

- **Swap Space**—The system must have at least 500MB.
- **Temporary Space**—There must be a minimum of 500MB of free space in `/tmp`.

5.4 Meeting Operating System Requirements

Before starting your operating provisioning you must perform the following tasks:

1. Install a certified operating system.
2. Install all necessary patches and packages as listed in *Oracle Fusion Applications Installation Guide*.
3. If Installing onto Windows, ensure that you have installed the Microsoft Loopback Adapter.

5.4.1 Meeting UNIX and Linux Requirements

This section includes the following topics:

- Section 5.4.1.1, "Configure Kernel Parameters."
- Section 5.4.1.2, "Setting the Open File Limit."
- Section 5.4.1.3, "Setting Shell Limits."
- Section 5.4.1.4, "Configuring Local Hosts File."

5.4.1.1 Configure Kernel Parameters

The kernel parameter and shell limit values shown below are recommended values only. For production database systems, Oracle recommends that you tune these values to optimize the performance of the system. See your operating system documentation for more information about tuning kernel parameters.

Kernel parameters must be set to a minimum of those below on all nodes in the cluster.

The values in the following table are the current Linux recommendations. For more information, refer to *Oracle Fusion Middleware System Requirements and Specifications*.

If you are deploying a database onto the host, you might need to modify additional kernel parameters. Refer to the 11g Release 2 *Oracle Grid Infrastructure Installation Guide* for your platform.
To set these parameters:

1. Log in as root and add or amend the entries in the file /etc/sysctl.conf.
2. Save the file.
3. Activate the changes by issuing the command:

 /sbin/systctl -p

5.4.1.2 Setting the Open File Limit

On all UNIX operating systems, the minimum Open File Limit should be 4096.

Note: The following examples are for Linux operating systems. Consult your operating system documentation to determine the commands to be used on your system.

You can see how many files are open with the following command:

```
/usr/sbin/lsof | wc -l
```

To check your open file limits, use the commands below.

C shell:

```
limit descriptors
```

Bash:

```
ulimit -n
```

5.4.1.3 Setting Shell Limits

To change the shell limits, login as root and edit the /etc/security/limits.conf file.

Add the following lines:

```
* soft  nofile  4096
* hard  nofile  65536
* soft  nproc   2047
* hard  nproc   16384
```

After editing the file, reboot the machine.

See the *Oracle Fusion Middleware System Requirements and Specifications* for the latest suggested value.

5.4.1.4 Configuring Local Hosts File

Before you begin the installation of the Oracle software, ensure that your local hosts file is formatted like this:
5.4.2 Meeting Windows Requirements

In order to perform an Oracle Identity Management installation on a Microsoft Windows Vista or newer operating system, you must have Windows Administrator privileges.

Even when you log in as a user with Administrator privileges, Windows does not grant you the administrative role by default. In order to access the Oracle home files and folders, you must run commands as Administrator explicitly.

To run commands as Administrator, use either of the following methods:

- Find the Command Prompt icon (for example, from the Start menu or from the Desktop), right-click the icon, and select Run as Administrator. Then you can run the executables, such as the WebLogic Server installer, from the command line.

- Start Windows Explorer, find the executable you want to run (for example, rcu.bat for RCU, config.bat for the Configuration Wizard, or setup.exe for the installer), right-click the executable, and select Run as Administrator.

5.5 Enabling Unicode Support

Your operating system configuration can influence the behavior of characters supported by Oracle Fusion Middleware products.

On UNIX operating systems, Oracle highly recommends that you enable Unicode support by setting the LANG and LC_ALL environment variables to a locale with the UTF-8 character set. This enables the operating system to process any character in Unicode. Oracle SOA Suite technologies, for example, are based on Unicode.

If the operating system is configured to use a non-UTF-8 encoding, Oracle SOA Suite components may function in an unexpected way. For example, a non-ASCII file name might make the file inaccessible and cause an error. Oracle does not support problems caused by operating system constraints.

5.6 Enabling Virtual IP Addresses

The enterprise deployment requires that certain hosts, such as those running the WebLogic Administration Server or SOA managed servers, use virtual IP addresses. You must enable the appropriate IP address on each server.

Section 3.5, "About IP Addresses and Virtual IP Addresses," describes the mapping of IP Addresses to servers.

5.6.1 Virtual IP Addresses to Enable

Virtual IP Addresses are required for failover of the WebLogic Administration Server, regardless of whether other Oracle Fusion Middleware components are installed later or not.

You associate the Administration Server with a virtual IP address. This allows the Administration Server to be started on a different host if the primary host fails.

Check that the virtual host is enabled as follows:
Enabling Virtual IP Addresses

5.6.2 Enabling Virtual Addresses by Using the Command Line

To enable a virtual IP address on a Linux or Windows host, perform the corresponding steps in this section. For other operating systems, refer to your manufacturer documentation.

Linux

To enable the virtual IP address, run the following commands as root:

```
/sbin/ifconfig interface:0 index IPAddress netmask
/sbin/arping -q -U -c 3 -I interface IPAddress
```

where `interface` is `eth0`, `eth1`, and so forth, and `index` is `0`, `1`, `2`, and so forth.

For example:

```
/sbin/ifconfig eth0:1 100.200.140.206 netmask 255.255.255.0
```

Enable your network to register the new location of the virtual IP address:

```
/sbin/arping -q -U -c 3 -I eth0 100.200.140.206
```

Validate that the address is available by pinging it from another node, for example:

```
/bin/ping 100.200.140.206
```

Windows

To enable the virtual IP address, run the following command:

```
netsh interface ip add address interface IP_Address netmask
```

where `IP_Address` is the virtual IP address and the `netmask` is the associated netmask.

In the following example, the IP address is enabled on the interface `Local Area Connection`.

```
netsh interface ip add address "Local Area connection" 100.200.140.206 255.255.255.0
```
5.7 Mounting Shared Storage Onto the Host

The shared storage configured in Chapter 4, "Preparing Storage for an Enterprise Deployment," must be available on the hosts that use it. Mount the shared storage to all servers that require access to it. For more information, see Chapter 4.3.4.1, "Shared Storage."

Each host must have appropriate privileges set within the NAS or SAN so that it can write to the shared storage.

Follow the best practices of your organization for mounting shared storage. This section provides an example of how to do this on UNIX or Linux using NFS storage.

You must create and mount shared storage locations so that IDMHOST1 and IDMHOST2 can see the same location for binary installation in two separate volumes.

You use the following command to mount shared storage from a NAS storage device to a Linux host. If you are using a different type of storage device or operating system, refer to your manufacturer documentation for information about how to do this.

```
From IDMHOST1:
mount -t nfs nasfiler:VOL1/OracleIDM /u01/oracle
```

```
From IDMHOST2:
mount -t nfs nasfiler:VOL1/OracleIDM /u01/oracle
```

Validating the Shared Storage Configuration

Ensure that you can read and write files to the newly mounted directories by creating a test file in the shared storage location you just configured.

For example:
```
$ cd newly mounted directory
$ touch testfile
```

Verify that the owner and permissions are correct:
```
$ ls -l testfile
```

Then remove the file:
```
$ rm testfile
```
5.8 Configuring Users and Groups

Groups
You must create the following groups on each node.
- oinstall
- dba

Users
You must create the following users on each node.
- oracle—The group that owns the Oracle software. You may use a different name.
 The primary group for this account must be oinstall. The account must also be in the dba group.
- nobody—An unprivileged user.

Notes:
- The group oinstall must have write privileges to all the file systems on shared and local storage that are used by the Oracle software.
- Each group must have the same Group ID on every node.
- Each user must have the same User ID on every node.

5.9 Installing Oracle Software onto a Server with Multiple Network Addresses

You can install Oracle Identity Management components on a multihomed system. A multihomed system has with multiple IP addresses. Typically, each IP address is associated with a different network card on the system. Each IP address is associated with a host name. You can create aliases for each host name.

The Installer retrieves the fully qualified domain name from the first entry in /etc/hosts file on UNIX, or the %SYSTEMROOT%\system32\drivers\etc\hosts file on Windows. For example, if your file looks like the following sample file, the Installer retrieves MYHOST1.mycompany.com for configuration:

127.0.0.1 localhost.localdomain localhost
10.222.333.444 myhost1.mycompany.com myhost1
20.222.333.444 devhost2.mycompany.com devhost2

Note: The shared storage can be a NAS or SAN device. The following illustrates an example of creating storage for a NAS device from IDMHOST1. The options may differ depending on the specific storage device.

```
mount -t nfs -o rw,bg,hard,nointr,tcp,vers=3,timeo=300,rsize=32768,
wsize=32768 nasfiler:VOLL/OracleIDM /u01/oracle
```

Contact your storage vendor and machine administrator for the correct options for your environment.
6

Installing the Software for an Enterprise Deployment

This chapter describes the software installations required for an Oracle Identity Management enterprise deployment.

This chapter contains the following topics:

- Section 6.1, "Overview of the Software Installation Process"
- Section 6.2, "Installing Oracle HTTP Server"
- Section 6.3, "Installing Oracle Fusion Middleware"

6.1 Overview of the Software Installation Process

The installation is divided in two sections. In the first one, the WebTier required installations are addressed. In the second, the required Oracle Fusion Middleware components are installed. Later chapters describe the configuration steps to create the Oracle Identity Management topology.

See Also: The Oracle Fusion Middleware 11g Release 1 Download, Installation, and Configuration Readme for this release, at:
http://docs.oracle.com/cd/E23104_01/download_readme.htm

6.1.1 Obtaining the Software

Oracle groups its software releases by product area. A Product Media Pack refers to those groupings. Each media pack may also include a zipped file containing electronic documentation files or "Quick Install" files, which facilitate the initial installation of the software.

Note: For installations of Oracle Fusion Applications, you must have available the complete set of software contained in the product media pack. You cannot install from individual pieces. Therefore, if you need to install from media that is no longer available on Oracle Software Delivery Cloud, contact My Oracle Support to obtain the complete media pack.

Once you have completed the software licensing agreements, you can obtain the Oracle Fusion Applications software using one of these two methods:
■ **Oracle Software Delivery Cloud Portal**: Provides you with a readme document that helps you to determine which media you need to fulfill the license you have purchased. You download only the media you need. This is the default delivery method.

■ **Oracle Store**: Provides a complete set of the software in DVD format. You use only the DVDs covered by your software licensing agreement.

Using either method, you can obtain the Oracle Fusion Applications Provisioning repository and gain access to the Oracle Fusion Applications documentation library.

After you download the archive file, extract the archive file into a directory of your choice on the machine where you are performing the installation.

For more information, see the Preparing for an Installation chapter in *Oracle Fusion Applications Installation Guide*.

6.1.2 Software to Install

Different topologies use different servers and require different software to be installed. Table 6-1, "Software to be Installed on Different Hosts", shows, for each topology, which software should be installed into each host. The subsequent sections explain how to do this. Also see Table 2-2, "Software Versions Used".

Where two different pieces of Oracle binary software are installed onto the same host (for example OIM11g and SOA11g), this software is installed in the same Middleware home location, but in different Oracle homes.

All software uses the same Middleware home location.

Notes:

- When using shared storage, ensure that users and groups used in the installation have the same ID on all hosts that use the storage. If you fail to do this, some hosts might not be able to see or execute some all the files.

- Some products, such as Oracle Internet Directory and Oracle Virtual Directory, require you to run a script that sets the permissions of some files to root.

<table>
<thead>
<tr>
<th>Hosts</th>
<th>OHS 11g</th>
<th>JRockit</th>
<th>WLS</th>
<th>IAM</th>
<th>SOA</th>
<th>IDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEBHOST1</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEBHOST2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDMHOST1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>IDMHOST2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LDAPHOST1</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDAPHOST2</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Oracle Identity Management products are bundled as two product sets: Oracle Identity Management and Oracle Identity and Access Management. (See Table 2-2, "Software Versions Used"). The relevant Identity Management software is installed into separate Oracle homes.
6.2 Installing Oracle HTTP Server

This section explains how to install Oracle HTTP Server on WEBHOST1 and WEBHOST2.

This section contains the following topics:

■ Section 6.2.1, "Verifying Prerequisites"
■ Section 6.2.2, "Running the Installer"
■ Section 6.2.3, "Backing Up the Installation"

6.2.1 Verifying Prerequisites

Prior to installing the Oracle HTTP server, check that your machines meet the following requirements:

1. Check that the inventory directory is correct and that you have write permissions for that directory. If the /etc/oraInst.loc file does not exist, you can skip this step.

 The following is an example of oraInst.loc file contents:

   ```
   inventory_loc=/u02/oracle/oraInventory
   inst_group=oinstall
   ```

2. Ensure that the system, patch, kernel, and other requirements are met as specified in Oracle Fusion Middleware Installation Guide for Oracle Web Tier.

3. On Linux platforms, if the /etc/oraInst.loc file exists, check that its contents are correct, as described in Section 6.2.1, "Verifying Prerequisites"

6.2.2 Running the Installer

As described in Section 4.3, "About Recommended Locations for the Different Directories," you install the Oracle HTTP Server onto a local disk. You can install it on shared storage, but if you do that, you must allow access from the Web Tier DMZ to your shared disk array, which is undesirable. If you decide to install onto shared disk then please see the Release Notes for further configuration information.

Before starting the install, ensure that the following environment variables are not set on Linux platforms.

■ LD_ASSUME_KERNEL
■ ORACLE_INSTANCE

To start Oracle Universal Installer on Linux, change directory to Disk 1 of the installation media and issue the command

```
./runInstaller
```

To start Oracle Universal Installer on Windows, navigate to Disk 1 of the installation media in Windows Explorer and double-click setup.exe.

On the Specify Inventory Directory screen, do the following:

■ Enter HOME/oraInventory, where HOME is the home directory of the user performing the installation (this is the recommended location).
■ Enter the OS group for the user performing the installation.
■ Click Next.
Follow the instructions on screen to execute `createCentralInventory.sh` as root.

Click OK.

Proceed as follows:

1. On the Specify Oracle Inventory Directory screen, enter `HOME/oraInventory`, where `HOME` is the home directory of the user performing the installation. (This is the recommended location).

 Enter the OS group for the user performing the installation.

 Click Next.

2. On the Welcome screen, click Next.

3. On the Install Software Updates screen, choose whether to skip updates, check with Oracle Support for updates or search for updates locally.

 Click Next.

4. On the Select Installation Type screen, select Install Software –> Do Not Configure

 Click Next.

5. On the Prerequisite Checks screen, click Next.

6. On the Specify Installation Location screen, specify the following values:

 - **Fusion Middleware Home Location (Installation Location):** `WEB_MW_HOME`

 For example: `/u02/local/oracle/products/web`

 - **Oracle Home Location Directory:** `web`

7. On the Specify Security Updates screen, choose whether to receive security updates from Oracle support.

 Click Next.

8. On the Installation Summary screen, review the selections to ensure that they are correct (if they are not, click Back to modify selections on previous screens), and click Install.

6.2.3 Backing Up the Installation

Back up the Web Tier binaries now, as described in Section 21.6.3, “Performing Backups During Installation and Configuration.”

6.3 Installing Oracle Fusion Middleware

This section describes how to install Oracle Fusion Middleware.

You must install the required binaries to create the Middleware home (`MW_HOME`), the Oracle WebLogic Server home (`WL_HOME`), the Oracle homes for Oracle Identity Management (`IDN_ORACLE_HOME`), the Oracle SOA Suite (`SOA_ORACLE_HOME`) and Oracle Identity and Access Management (`IAM_ORACLE_HOME`). A summary of these homes is provided in Table 6-2, ”Summary of Homes”.

Oracle strongly recommends that you read the release notes for any additional installation and deployment considerations prior to starting the setup process.

This section contains the following topics:
Section 6.3.1, "Oracle Fusion Middleware Homes"

Section 6.3.2, "Installing Oracle Fusion Middleware Home"

Section 6.3.3, "Installing Oracle WebLogic Server and Creating the Fusion Middleware Home"

Section 6.3.4, "Installing Oracle Identity Management"

Section 6.3.5, "Installing the Oracle SOA Suite"

Section 6.3.6, "Installing Oracle Identity and Access Management"

Section 6.3.7, "Applying Patches and Workarounds"

Section 6.3.8, "Backing Up the Installation"

Note: Oracle Identity Management products are bundled as two product sets: Oracle Identity Management and Oracle Identity and Access Management.

6.3.1 Oracle Fusion Middleware Homes

<table>
<thead>
<tr>
<th>Home Name</th>
<th>Home Description</th>
<th>Products Installed</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW_HOME</td>
<td>Consists of the Oracle WebLogic Server home and, optionally, one or more Oracle homes.</td>
<td></td>
</tr>
<tr>
<td>WL_HOME</td>
<td>This is the root directory in which Oracle WebLogic Server is installed. The WL_HOME directory is a peer of Oracle home directory and resides within the MW_HOME.</td>
<td>Oracle WebLogic Server</td>
</tr>
<tr>
<td>IDM_ORACLE_HOME</td>
<td>Contains the binary and library files for Oracle Identity Management and is located in: MW_HOME/idm</td>
<td>Oracle Internet Directory, Oracle Virtual Directory, Oracle Directory Services Manager, Oracle Identity Federation</td>
</tr>
<tr>
<td>IAM_ORACLE_HOME</td>
<td>Contains the binary and library files required for Oracle Identity and Access Management and is located in MW_HOME/iam.</td>
<td>Oracle Access Manager, Oracle Identity Management</td>
</tr>
<tr>
<td>WEB_ORACLE_HOME</td>
<td>Contains the binary and library files required for OHS and is located in MW_HOME/web.</td>
<td>Oracle WebLogic Server</td>
</tr>
<tr>
<td>SOA_ORACLE_HOME</td>
<td>Contains the binary and library files required for the Oracle SOA Suite. Required only when creating topologies with OIM and is located in MW_HOME/soa.</td>
<td>Oracle SOA Suite</td>
</tr>
<tr>
<td>ORACLE_COMMON_HOME</td>
<td>Contains the generic Oracle home files. This Oracle home is created automatically by any product installation and is located in MW_HOME/oracle_common.</td>
<td>Generic commands</td>
</tr>
</tbody>
</table>

For a list of directory variables used in this guide, see Section 4.2, "Terminology for Directories and Directory Variables."
6.3.2 Installing Oracle Fusion Middleware Home

As described in Section 4.3, "About Recommended Locations for the Different Directories," you install Oracle Fusion Middleware software in at least two storage locations for redundancy.

You must install the following components of Oracle Fusion Middleware to create a Middleware home (MW_HOME):

1. Oracle WebLogic Server: Section 6.3.3, "Installing Oracle WebLogic Server and Creating the Fusion Middleware Home"

2. One or more of the Oracle Fusion Middleware components
 a. Section 6.3.4, "Installing Oracle Identity Management"
 b. Section 6.3.6, "Installing Oracle Identity and Access Management"
 c. Section 6.3.5, "Installing the Oracle SOA Suite"

3. Oracle Fusion Middleware for Identity Management

6.3.3 Installing Oracle WebLogic Server and Creating the Fusion Middleware Home

This section describes how to obtain and install Oracle WebLogic Server.

6.3.3.1 Installing JRockit

1. Download the version of JRockit for your platform from:

2. Add execute permissions to JRockit. For example:
 chmod +x jrockit-1.6.0_29-R28.2.0-4.0.1-linux-x64.bin

3. Start the JRockit installer by issuing the command:
 ./jrockit-version.bin
 For example:
 ./jrockit-1.6.0_29-R28.2.0-4.0.1-linux-x64.bin

4. On the Welcome Screen, click Next.

5. On the Choose Product Installation Directories screen, enter the Product Installation Directory, which is inside your Middleware Home.

6. On the Optional Components Screen, click Next.

7. On the Installation Complete screen, click on the Installation Complete screen - Click Done.

6.3.3.2 Installing WebLogic Server Using the Generic Installer

1. Download the Oracle WebLogic Server Generic Installer from:
 http://edelivery.oracle.com

2. Add JRockit to your path. For example, on Linux, issue the command:
 export PATH=$MW_HOME/jrockit-jdk1.6.0_29-R28.2.0-4.0.1/bin:$PATH

3. Check the version of java by issuing the command:
Installing Oracle Fusion Middleware

java -version

Ensure that the 64-bit version is displayed if you are using a 64-bit operating system.

4. Start the WebLogic installer using the appropriate command:

 64-Bit Operating System

 java -d64 -jar wls1036_generic.jar

 32-Bit Operating System

 java -jar wls1036_generic.jar

5. On the Welcome screen, click **Next**.

6. On the Choose Middleware Home screen, select: **Create a New Middleware Home**

 For the Middleware Home directory enter the path to `IAM_MW_HOME`, for example:

 `/u01/oracle/products/access`

 Click **Next**.

7. A warning is displayed, informing you that the directory is not empty and asking if you want to proceed.

 Click **Yes**.

8. On the Register for Security Updates screen, enter your My Oracle Support username and password so that you can be notified of security updates.

 Click **Next**.

9. On the Choose Install Type screen, select **Typical**.

10. On the JDK Selection screen, select the JRockit JDK that you installed earlier. It should be listed by default.

11. On the Choose Product Installation Directories screen, accept the following:

 - **Middleware Home Directory**: `IAM_MW_HOME`

 - **Product Installation Directories for WebLogic Server**: `IAM_MW_HOME/wlserver_10.3`

 - **Oracle Coherence**: `IAM_MW_HOME/wlserver_10.3/coherence_3.6`

 Click **Next**.

12. On the Installation Summary screen, click **Next** to start the install process

13. On the Installation complete screen, deselect **Run Quickstart**.

14. Click **Done** to exit the WebLogic Server Installer.

6.3.4 Installing Oracle Identity Management

Perform these steps to install Oracle Identity Management on the hosts identified in Table 6–1, "Software to be Installed on Different Hosts".
Oracle Identity Management consists of:

- Oracle Internet Directory
- Oracle Virtual Directory
- Oracle Directory Services Manager (ODSM)
- Oracle Identity Federation

Note: Because the installation is performed on shared storage, the two MW_HOME installations are accessible and used by the remaining servers in that tier of the topology.

When provisioning the software on the local hard disk of the machine, ensure you complete the steps on all the hosts in the tier.

Ensure that the system, patch, kernel and other requirements are met. These are listed in the Oracle Fusion Middleware Installation Guide for Oracle Identity Management in the Oracle Fusion Middleware documentation library for the platform and version you are using.

To start the Oracle Fusion Middleware 11g Oracle Identity Management Installer, change directory to Disk 1 of the installation media and enter the command:

```
./runInstaller
```

Then proceed as follows:

1. On the Specify Inventory Directory screen, enter values for the Oracle Inventory Directory and the Operating System Group Name. For example:

 - **Specify the Inventory Directory**: `/u02/oracle/oraInventory`
 - **Operating System Group Name**: `oinstall`

 A dialog box appears with the following message:

 Certain actions need to be performed with root privileges before the install can continue. Please execute the script
 `/u02/oracle/oraInventory/createCentralInventory.sh` now from another window
 and then press "Ok" to continue the install. If you do not have the root privileges and wish to continue the install select the "Continue installation with local inventory" option.

 Log in as root and run:

 `/u02/oracle/oraInventory/createCentralInventory.sh`

 This sets the required permissions for the Oracle Inventory Directory and then brings up the Welcome screen.

Note: The Oracle Inventory screen is not shown if an Oracle product was previously installed on the host. If the Oracle Inventory screen is not displayed for this installation, ensure that the following are true:

1. The `/etc/oraInst.loc` file exists.
2. The Inventory directory listed is valid.
3. The user performing the installation has write permissions for the Inventory directory.
2. On the Welcome screen, click Next.

3. On the **Install Software Updates** screen, choose whether to register with Oracle Support for updates or search for updates locally.
 Click Next.

4. On the Select Installation Type screen, select **Install Software - Do Not Configure**, and then click Next.

5. On the Prerequisite Checks screen, verify that the checks complete successfully, then click Next.

6. On the Specify Installation Location screen, enter the following values:
 - **Oracle Middleware Home**: Select the previously installed Middleware home from the list for MW_HOME, for example: DIR_MW_HOME
 - **Oracle Home Directory**: Enter idm as the Oracle home directory name.
 Click Next.

7. On the Installation Summary screen, click **Install - Do Not Configure**.

8. On the Installation Progress screen, on Linux systems, a dialog box appears that prompts you to run the oracleRoot.sh script. Open a window and run the oracleRoot.sh script, as the root user.

6.3.5 Installing the Oracle SOA Suite

Perform these steps to install the Oracle SOA Suite.

Ensure that the system, patch, kernel and other requirements are met. These are listed in the *Oracle Fusion Middleware Installation Guide for Oracle SOA Suite* in the Oracle Fusion Middleware documentation library for the platform and version you are using.

To start the Oracle Fusion Middleware 11g SOA Suite Installer, change directory to Disk 1 of the installation media and enter the appropriate command.

On Linux systems the command is:

```
./runInstaller
```

On Windows, the command is:

```
ssetup.exe
```

When the installer prompts you for a JRE/JDK location, enter the Oracle SDK location created in the Oracle WebLogic Server installation, for example:

```
IAM_MW_HOME/jrockit_version
```

Then perform these installation steps:

1. On the Specify Inventory Directory screen, enter values for the Oracle Inventory Directory and the Operating System Group Name. For example:
 - **Specify the Inventory Directory**: /u02/oracle/oraInventory
 - **Operating System Group Name**: oinstall

 A dialog box appears with the following message:

   ```
   Certain actions need to be performed with root privileges before the install can continue. Please execute the script
   ```
6.10 Installing Oracle Fusion Middleware

```
/u02/oracle/oraInventory/createCentralInventory.sh now from another window and then press "Ok" to continue the install. If you do not have the root privileges and wish to continue the install select the "Continue installation with local inventory" option.
```

Log in as root and run:
```
/u02/oracle/oraInventory/createCentralInventory.sh
```

This sets the required permissions for the Oracle Inventory Directory and then brings up the Welcome screen.

```
Note: The Oracle Inventory screen is not shown if an Oracle product was previously installed on the host. If the Oracle Inventory screen is not displayed for this installation, check the following:
1. The /etc/oraInst.loc file exists.
2. The Inventory directory listed is valid.
3. The user performing the installation has write permissions for the Inventory directory.
```

2. On the Welcome screen, click Next.

3. On the Install Software Updates screen, choose whether to register with Oracle Support for updates or search for updates locally.

 Click Next.

4. On the Prerequisite Checks screen, verify that the checks complete successfully, and then click Next.

5. On the Specify Installation Location screen, enter the following values:
   ```
   ■ Oracle Middleware Home: Select a previously installed Middleware Home from the drop-down list. For example: IAM_MW_HOME
   ■ Oracle Home Directory: Enter SOA as the Oracle home directory name.
   ```

 Note: You must use the same Oracle home directory name for Oracle SOA Suite on all hosts.

6. Click Next.

7. On the Application Server screen, choose your Application Server, for example: Web Logic Server.

 Click Next.

8. On the Installation Summary screen, click Install.

6.3.6 Installing Oracle Identity and Access Management

Oracle Identity and Access Management consists of the following products:

- Oracle Access Manager 11g
- Oracle Identity Manager
Perform the steps in this section to install Oracle Identity and Access Management on the hosts identified in Table 2-2, "Software Versions Used".

Ensure that the system, patch, kernel and other requirements are met. These are listed in the Oracle Fusion Middleware Installation Guide for Oracle Identity Management in the Oracle Fusion Middleware documentation library for the platform and version you are using.

To start the Oracle Fusion Middleware 11g Installer for Oracle Identity and Access Management, change directory to Disk 1 of the installation media and enter the command:

```
./runInstaller
```

When the installer prompts you for a JRE/JDK location, enter the Oracle SDK location created in the Oracle WebLogic Server installation, for example:

```
IAM_MW_HOME/jrockit_version
```

Then perform these installation steps:

1. On the Specify Inventory Directory screen, enter values for the Oracle Inventory Directory and the Operating System Group Name. For example:
 - **Specify the Inventory Directory**: /u02/oracle/oraInventory
 - **Operating System Group Name**: oinstall

 A dialog box appears with the following message:

 Certain actions need to be performed with root privileges before the install can continue. Please execute the script
 `/u02/oracle/oraInventory/createCentralInventory.sh` now from another window and then press "Ok" to continue the install. If you do not have the root privileges and wish to continue the install select the "Continue installation with local inventory" option.

 Log in as root and run:

 `/u02/oracle/oraInventory/createCentralInventory.sh`

 This sets the required permissions for the Oracle Inventory Directory and then brings up the Welcome screen.

 Note: The Oracle Inventory screen is not shown if an Oracle product was previously installed on the host. If the Oracle Inventory screen is not displayed for this installation, check the following:

 1. The `/etc/oraInst.loc` file exists.
 2. The Inventory directory listed is valid.
 3. The user performing the installation has write permissions for the Inventory directory.

2. On the Welcome screen click **Next**.

3. On the Install Software Updates screen, choose whether to register with Oracle Support for updates or to search for updates locally.

4. On the Prerequisite Checks screen, verify that the checks complete successfully, then click **Next**.

5. On the Specify Installation Location screen, enter the following values:
Installing Oracle Fusion Middleware

- **Oracle Middleware Home**: Select a previously installed Middleware Home from the drop-down list. For example: `IAM_MW_HOME`.
- **Oracle Home Directory**: Enter `iam` as the Oracle home directory name. Click Next.

6. On the Installation Summary screen, click **Install**.
7. On the Installation Progress screen, click **Next**.
8. On the Installation Complete screen, click **Finish**.

6.3.7 Applying Patches and Workarounds

You must apply the following patches and workarounds to your environment. Patches are available for download from http://support.oracle.com. You can find instructions for deploying each patch in the enclosed `README.html` file.

For a complete list of patches, see *Oracle Fusion Applications Installation Guide*.

This section contains the following topics:

- **Section 6.3.7.1, "Patches for Fusion Middleware"
- **Section 6.3.7.2, "Provisioning the OIM Login Modules Under the WebLogic Server Library Directory"
- **Section 6.3.7.3, "Creating the wlfullclient.jar File"

6.3.7.1 Patches for Fusion Middleware

Oracle Fusion Applications Installation Guide for this version of Oracle Fusion Applications contains the list of Oracle Fusion Middleware patches to apply. You must apply the patches to ensure that your software operates as expected.

6.3.7.2 Provisioning the OIM Login Modules Under the WebLogic Server Library Directory

Due to issues with versions of the configuration wizard, some environmental variables are not added to the `ASERVER_HOME/bin/setDomainenv.sh` script. This causes certain install sequences to fail. This section is a temporary workaround for that problem. The steps in this section must be performed on all the hosts in Application Tier (IDMHOST1 and IDMHOST2).

Apply the following steps across all the WebLogic Server homes in the domain.

1. Copy the `OIMAuthenticator.jar`, `oimmbean.jar`, `oimsigmbean.jar` and `oimsignaturembean.jar` files located under the `IAM_ORACLE_HOME/server/loginmodule/wls` directory to the `IAM_MW_HOME/wlserver_10.3/server/lib/mbeantypes` directory.

   ```bash
   cp $IAM_ORACLE_HOME/server/loginmodule/wls/* $IAM_MW_HOME/wlserver_10.3/server/lib/mbeantypes
   ```


   ```bash
   cd $IAM_HOME/wlserver_10.3/server/lib/mbeantypes
   ```

3. Change the permissions on these files to 750 by using the `chmod` command.

   ```bash
   chmod 750 *
   ```
6.3.7.3 Creating the wlfullclient.jar File

Oracle Identity Manager uses the wlfullclient.jar library for certain operations. Oracle does not ship this library, so you must create this library manually. Oracle recommends creating this library under the MW_HOME/wlserver_10.3/server/lib directory on all the machines in the Application Tier of your environment. You do not need to create this library on Directory Tier machines such as LDAPHOST1 and LDAPHOST2.

Follow these steps to create the wlfullclient.jar file:

1. Navigate to the IAM_MW_HOME/wlserver_10.3/server/lib directory
2. Set your JAVA_HOME environment variable and ensure that the JAVA_HOME/bin directory is in your path.
3. Create the wlfullclient.jar file by running:
 java -jar wljarbuilder.jar

6.3.8 Backing Up the Installation

Back up everything listed in Table 21–2, "Static Artifacts to Back Up in the Identity Management Enterprise Deployment".
Preparing the Database for an Enterprise Deployment

This chapter describes how to install and configure the Identity Management database repositories.

This chapter contains the following topics:

- Section 7.1, "Overview of Preparing the Databases for an Identity Management Enterprise Deployment"
- Section 7.2, "Verifying the Database Requirements for an Enterprise Deployment"
- Section 7.3, "Installing the Database for an Enterprise Deployment"
- Section 7.4, "Creating Database Services"
- Section 7.5, "Loading the Identity Management Schemas in the Oracle RAC Database by Using RCU"
- Section 7.6, "Backing up the Database"

7.1 Overview of Preparing the Databases for an Identity Management Enterprise Deployment

The Identity Management components in the enterprise deployment use database repositories. This chapter describes how to perform the following steps:

- Verify the database requirements as described in Section 7.2, "Verifying the Database Requirements for an Enterprise Deployment."
- Install and configure the Oracle database repositories. See the installation guides listed in the "Related Documents" section of the Preface and Section 7.3, "Installing the Database for an Enterprise Deployment."
- Create database services, as described in Section 7.4, "Creating Database Services."
- Create the required Oracle schemas in the database using the Repository Creation Utility (RCU). See Section 7.5, "Loading the Identity Management Schemas in the Oracle RAC Database by Using RCU."

7.2 Verifying the Database Requirements for an Enterprise Deployment

Before loading the metadata repository into your databases, check that they meet the requirements described in these subsections:

- Section 7.2.1, "Databases Required"
7.2.1 Databases Required

For Oracle Identity management, a number of separate databases are recommended. Table 7–1 provides a summary of these databases. Which database or databases you use depends on the topology that you are implementing.

The Oracle Metadata Services (MDS) Repository is a particular type of repository that contains metadata for some Oracle Fusion Middleware components. It can also include custom Java EE applications developed by your organization.

Table 7–1 Mapping between Topologies, Databases and Schemas

<table>
<thead>
<tr>
<th>Topology Type</th>
<th>Database Names</th>
<th>Database Hosts</th>
<th>Service Names</th>
<th>Schemas in Database</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Access Manager 11g and Oracle Identity Manager 11g (OAM11g/OIM11g)</td>
<td>OIDDB</td>
<td>OIDDBHOST1, OIDDBHOST2</td>
<td>OIDEDG.mycompany.com</td>
<td>ODS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDMDB</td>
<td>IDMDBHOST1, IDMDBHOST2</td>
<td>OAMEDG.mycompany.com</td>
<td>OAM, IAU, ORASDPM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OIMEDG.mycompany.com</td>
<td>MDS, OIM, SOAINFRA</td>
<td></td>
</tr>
<tr>
<td>Oracle Identity Federation 11g (OIF11g/OAM11g)</td>
<td>IDMDB</td>
<td>IDMDBHOST1, IDMDBHOST2</td>
<td>OAMEDG.mycompany.com</td>
<td>OAM, IAU, ORASDPM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OIMEDG.mycompany.com</td>
<td>MDS, OIM, SOAINFRA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OIFEDG.mycompany.com</td>
<td>OIF</td>
<td></td>
</tr>
<tr>
<td>OIDDB</td>
<td>OIDDBHOST1, OIDDBHOST2</td>
<td>OIDEDG.mycompany.com</td>
<td>ODS</td>
<td></td>
</tr>
</tbody>
</table>

1 The SOA and Oracle Identity Manager components share the MDS repository.

Notes: Two databases are recommended for Oracle Internet Directory and Oracle Access Manager/Oracle Identity Manager because they are likely to have different configuration requirements. If desired, they can be combined into a single database.

If you are using Oracle Internet Directory to store both your identity and policy information, and separating this information across two Oracle Internet Directory instances, then two databases are required for the ODS schema.

The following sections apply to all the databases listed in Table 7–1.
7.2.2 Database Host Requirements

The database used to store the metadata repository should be highly available in its own right, for maximum availability Oracle recommends the use of an Oracle Real Application Clusters (RAC) database.

Ideally the database should use Oracle Automatic Storage Management (ASM) for the storage of data, however this is not necessary. If using ASM, then ASM should be installed into its own Oracle home and have two disk groups:
- One for the Database Files
- One for the Flash Recovery Area

If you are using Oracle ASM, best practice is to also use Oracle Managed Files.

7.2.3 Database Versions Supported

To check if your database is certified or to see all certified databases, refer to the "Certified Databases" section in the Certification Document:

To determine the version of your installed Oracle Database, execute the following query at the SQL prompt:

```
select version from sys.product_component_version where product like 'Oracle%';
```

7.2.4 Patching the Oracle Database

Patches are required for some versions of Oracle Database.

7.2.4.1 Patch Requirements for Oracle Database 11g (11.1.0.7)

Table 7–2 lists patches required for Oracle Identity Manager configurations that use Oracle Database 11g (11.1.0.7). Before you configure Oracle Identity Manager 11g, be sure to apply the patches to your Oracle Database 11g (11.1.0.7) database.

<table>
<thead>
<tr>
<th>Platform</th>
<th>Patch Number and Description on My Oracle Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux</td>
<td>7614692: BULK FEATURE WITH ‘SAVE EXCEPTIONS’ DOES NOT WORK IN ORACLE 11G</td>
</tr>
<tr>
<td></td>
<td>7000281: DIFFERENCE IN FORALL STATEMENT BEHAVIOR IN 11G</td>
</tr>
<tr>
<td></td>
<td>8327137: WRONG RESULTS WITH INLINE VIEW AND AGGREGATION FUNCTION</td>
</tr>
<tr>
<td></td>
<td>8617824: MERGE LABEL REQUEST ON TOP OF 11.1.0.7 FOR BUGS 7628358 7598314</td>
</tr>
</tbody>
</table>

7.2.4.2 Patch Requirements for Oracle Database 11g (11.2.0.2.0)

If you are using Oracle Database 11g (11.2.0.2.0), make sure that you download and install the appropriate version (based on the platform) for the RDBMS Patch Number 10259620. This is a prerequisite for installing the Oracle Identity Manager schemas.
Table 7–3 lists the patches required for Oracle Identity Manager configurations that use Oracle Database 11g Release 2 (11.2.0.2.0). Make sure that you download and install the following patches before creating Oracle Identity Manager schemas.

Table 7–3 Required Patches for Oracle Database 11g (11.2.0.2.0)

<table>
<thead>
<tr>
<th>Platform</th>
<th>Patch Number and Description on My Oracle Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux x86 (32-bit)</td>
<td>RDBMS Interim Patch#10259620.</td>
</tr>
<tr>
<td>Linux x86 (64-bit)</td>
<td></td>
</tr>
</tbody>
</table>

If this patch is not applied, then problems might occur in user and role search and manager lookup. In addition, search results might return empty result.

Note:
- Apply this patch in ONLINE mode. Refer to the readme.txt file bundled with the patch for the steps to be followed.
- In some environments, the RDBMS Interim Patch has been unable to resolve the issue, but the published workaround works. Refer to the metalink note “Wrong Results on 11.2.0.2 with Function-Based Index and OR Expansion due to fix for Bug:8352378 [Metalink Note ID 1264550.1]” for the workaround. This note can be followed to set the parameters accordingly with the only exception that they need to be altered at the Database Instance level by using `ALTER SYSTEM SET <param>=<value> scope=<memory> or <both>`.

7.2.5 About Initialization Parameters

The databases must have the following minimum initialization parameters defined:

Table 7–4 Minimum Initialization Parameters for Oracle RAC Databases

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>aq_tm_processes</td>
<td>1</td>
</tr>
<tr>
<td>dml_locks</td>
<td>200</td>
</tr>
<tr>
<td>job_queue_processes</td>
<td>10</td>
</tr>
<tr>
<td>open_cursors</td>
<td>800<sup>1</sup></td>
</tr>
<tr>
<td>session_max_open_files</td>
<td>50</td>
</tr>
<tr>
<td>sessions</td>
<td>500</td>
</tr>
<tr>
<td>processes</td>
<td>500</td>
</tr>
<tr>
<td>sga_target</td>
<td>512M</td>
</tr>
<tr>
<td>pga_aggregate_target</td>
<td>100M</td>
</tr>
<tr>
<td>sga_max_size</td>
<td>4G</td>
</tr>
<tr>
<td>session_cached_cursors</td>
<td>500</td>
</tr>
</tbody>
</table>

¹ OAM requires a minimum of 800 open cursors in the database. When OIM and OAM are available, the number of open cursors should be 1500.
If the database is being used for Oracle Internet Directory, it must have the following minimum initialization parameters defined:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><aq_tm_processes></td>
<td>1</td>
</tr>
<tr>
<td><dml_locks></td>
<td>200</td>
</tr>
<tr>
<td><job_queue_processes></td>
<td>10</td>
</tr>
<tr>
<td><open_cursors></td>
<td>800</td>
</tr>
<tr>
<td><session_max_open_files></td>
<td>50</td>
</tr>
<tr>
<td><sessions></td>
<td>500</td>
</tr>
<tr>
<td><processes></td>
<td>2500</td>
</tr>
<tr>
<td><sga_target></td>
<td>4G</td>
</tr>
<tr>
<td><pga_aggregate_target></td>
<td>2G</td>
</tr>
<tr>
<td><sga_max_size></td>
<td>4G</td>
</tr>
<tr>
<td><session_cached_cursors></td>
<td>500</td>
</tr>
<tr>
<td><_b_tree_bitmap_plans></td>
<td>FALSE</td>
</tr>
</tbody>
</table>

Note: For guidelines on setting up optimum parameters for the Database, see *Oracle Fusion Applications Performance and Tuning Guide*.

7.3 Installing the Database for an Enterprise Deployment

Install and configure the database repository as follows.

Oracle Clusterware
- For 10g Release 2 (10.2), see the *Oracle Database Oracle Clusterware and Oracle Real Application Clusters Installation Guide* for your platform, listed in "Related Documents".
- For 11g Release 1 (11.1), see *Oracle Clusterware Installation Guide*.

Automatic Storage Management
- For 10g Release 2 (10.2), see *Oracle Database Oracle Clusterware and Oracle Real Application Clusters Installation Guide* for your platform, listed in "Related Documents".
- For 11g Release 1 (11.1), see *Oracle Clusterware Installation Guide*.
- When you run the installer, select the Configure Automatic Storage Management option in the Select Configuration screen to create a separate Automatic Storage Management home.
Oracle Real Application Clusters

- For 10g Release 2 (10.2), see Oracle Database Oracle Clusterware and Oracle Real Application Clusters Installation Guide for your platform, listed in "Related Documents".
- For 11g Release 1 (11.1), see Oracle Real Application Clusters Installation Guide.

Oracle Real Application Clusters Database

Create a Real Applications Clusters Database with the following characteristics:

- Database must be in archive log mode to facilitate backup and recovery.
- Optionally, enable the Flashback database.
- Create UNDO tablespace of sufficient size to handle any rollback requirements during the Oracle Identity Manager reconciliation process.
- Database is created with ALT32UTF8 character set.

7.4 Creating Database Services

This section describes how to configure the database for Oracle Fusion Middleware 11g metadata. It contains the following topics:

- Section 7.4.1, "Why Create Database Services?"
- Section 7.4.2, "Creating Database Services for 10.x and 11.1.x Databases"
- Section 7.4.3, "Creating Database Services for 11.2.x Databases"
- Section 7.4.4, "Database Tuning"

7.4.1 Why Create Database Services?

In an Oracle Grid Database, it is recommended that you create a service for each application. Although this is not a requirement, doing so provides the following benefits:

1. You can target applications to specific database instances.
2. You can move applications between instances.
3. As demand increases or decreases, you can change the number of instances an application can use.

7.4.2 Creating Database Services for 10.x and 11.1.x Databases

For complete instructions on creating database services, see the chapter on Workload Management in the Oracle Database Oracle Clusterware and Oracle Real Application Clusters Administration and Deployment Guide. Oracle recommends that a specific database service be used for a product suite, even when product suites share the same database. It is also recommended that the database service used is different than the default database service.

Use the CREATE_SERVICE subprogram to create the database services for the components in your topology. The lists of services to be created are listed in Section 7–1, "Mapping between Topologies, Databases and Schemas."

1. Log on to SQL*Plus as the sysdba user by typing:

   ```
   sqlplus "sys/password as sysdba"
   ```
Creating Database Services

Preparing the Data Base for an Enterprise Deployment

Then run the following command to create a service called OAMEDG.mycompany.com for Oracle Access Manager:

```sql
EXECUTE DBMS_SERVICE.CREATE_SERVICE
(SERVICE_NAME => 'OAMEDG.mycompany.com',
NETWORK_NAME => 'OAMEDG.mycompany.com');
```

2. Add the service to the database and assign it to the instances using srvct1:

```bash
srvctl add service -d idmdb -s OAMEDG.mycompany.com -r idmdb1,iddb2
```

3. Start the service using srvct1:

```bash
srvctl start service -d idmdb -s OAMEDG.mycompany.com
```

When creating a service in the database for Oracle Internet Directory, ensure that the service is enabled for high-availability notifications and configured with the proper server-side Transparent Application Failover (TAF) settings. Use the DBMS_SERVICE package to create the service to enable high availability notification to be sent through Advanced Queuing (AQ) by setting the AQ_HA_NOTIFICATIONS attribute to TRUE and configure server-side Transparent Application Failover (TAF) settings, as follows:

1. Use the CREATE_SERVICE subprogram to both create the database service and enable high-availability notification and configure server-side Transparent Application Failover (TAF) settings.

 Log on to SQL*Plus as the sysdba user by typing:

   ```bash
   sqlplus "sys/password as sysdba"
   ```

 Then execute this command:

   ```sql
   EXECUTE
   DBMS_SERVICE.CREATE_SERVICE(
   SERVICE_NAME => 'OIDEDG.mycompany.com',
   NETWORK_NAME => 'OIDEDG.mycompany.com',
   AQ_HA_NOTIFICATIONS => TRUE,
   FAILOVER_METHOD => DBMS_SERVICE.FAILOVER_METHOD_BASIC,
   FAILOVER_TYPE => DBMS_SERVICE.FAILOVER_TYPE_SELECT,
   FAILOVER_RETRIES => 5, FAILOVER_DELAY => 5);
   ```

 Note: The EXECUTE DBMS_SERVICE command shown must be entered on a single line to execute properly.

 For more information about the DBMS_SERVICE package, see the Oracle Database PL/SQL Packages and Types Reference.

2. Add the service to the database and assign it to the instances using srvct1:

```bash
csrvtl add service -d oiddb -s OIDEDG.mycompany.com -r oiddb1,oiddb2
```

3. Start the service using srvct1:

```bash
csrvtl start service -d oiddb -s OIDEDG.mycompany.com
```

Note: For more information about the SRVCTL command, see the Oracle Real Application Clusters Administration and Deployment Guide.
7.4.3 Creating Database Services for 11.2.x Databases

Use `srvctl` to create the database services for the components in your topology. The lists of services to be created are listed in Table 7–1, "Mapping between Topologies, Databases and Schemas".

1. Create service using the command `srvctl add service`, as follows:

   ```
   srvctl add service -d oiddb -s OIDEVG.mycompany.com -r idmdb1,idmdb2 -q TRUE -m BASIC -e SELECT -w 5 -z 5
   ```

 The meanings of the command-line arguments are as follows:

<table>
<thead>
<tr>
<th>Option</th>
<th>Argument</th>
</tr>
</thead>
<tbody>
<tr>
<td>-d</td>
<td>Unique name for the database</td>
</tr>
<tr>
<td>-s</td>
<td>Service name</td>
</tr>
<tr>
<td>-r</td>
<td>Comma separated list of preferred instances</td>
</tr>
<tr>
<td>-q</td>
<td>AQ HA notifications (TRUE or FALSE)</td>
</tr>
<tr>
<td>-e</td>
<td>Failover type (NONE, SESSION, or SELECT)</td>
</tr>
<tr>
<td>-m</td>
<td>Failover method (NONE or BASIC)</td>
</tr>
<tr>
<td>-w</td>
<td>Failover delay (integer)</td>
</tr>
<tr>
<td>-z</td>
<td>Failover retries (integer)</td>
</tr>
</tbody>
</table>

 Note: Transparent Application Failover (TAF) settings are only required when creating a service for Oracle Internet Directory.

2. Start the Service using `srvctl start service`

   ```
   srvctl start service -d oiddb -s OIDEVG.mycompany.com
   ```

3. Validate the service started by using `srvctl status service`, as follows:

   ```
   srvctl status service -d oiddb -s OIDEVG.mycompany.com
   ```

 Service OIDEVG.mycompany.com is running on instance(s) idmdb1,idmdb2

4. Validate that the service was created correctly by using `srvctl config service`:

   ```
   srvctl config service -d oiddb -s OIDEVG.mycompany.com
   ```

 Service name: OIDEVG.mycompany.com
 Service is enabled
 Server pool: OIDD_B_OIDEVG.mycompany.com
 Cardinality: 2
 Disconnect: false
 Service role: PRIMARY
 Management policy: AUTOMATIC
 DTP transaction: false
 AQ HA notifications: true
 Failover type: SELECT
 Failover method: BASIC
 TAF failover retries: 5
 TAF failover delay: 5
 Connection Load Balancing Goal: LONG
 Runtime Load Balancing Goal: NONE
 TAF policy specification: NONE
Prepare the database for an Enterprise Deployment

Edition:
Preferred instances: idmdb1, idmdb2
Available instances:

Note: For more information about the SRVCTL command, see the Oracle Real Application Clusters Administration and Deployment Guide.

7.4.4 Database Tuning

The database parameters defined in Section 7.3, "Installing the Database for an Enterprise Deployment" are only a guide. You might need to perform additional tuning after the system is in use. For more information, see Database Performance Tuning Guide.

Refresh the database statistics after you initially load the database, and on an ongoing basis. To do that, issue the following SQL*Plus command:

```sql
exec DBMS_STATS.GATHER_SCHEMA_STATS(OWNNAME=> '<OIM_SCHEMA>', ESTIMATE_PERCENT=>DBMS_STATS.AUTO_SAMPLE_SIZE, DEGREE=>8, OPTIONS=>'GATHER AUTO', NO_INVALIDATE=>FALSE);
```

7.5 Loading the Identity Management Schemas in the Oracle RAC Database by Using RCU

You run RCU to create the collection of schemas used by Identity Management and Management Services.

1. **Start RCU by issuing this command:**
   ```bash
   RCU_HOME/bin/rcu &
   ```

2. **On the Welcome screen, click Next.**

3. **On the Create Repository screen, select the Create operation to load component schemas into a database. Then click Next.**

4. **On the Database Connection Details screen, provide the information required to connect to an existing database. For example:**
 - **Database Type:** Oracle Database
 - **Host Name:** Enter one of the Oracle RAC nodes. Specify the Virtual IP name. For example: OIDDBHOST1-VIP.mycompany.com.
 - **Port:** The port number for the database listener (DB_LSNR_PORT). For example: 1521
 - **Service Name:** The service name of the database. For example OIDEDG.mycompany.com.
 - **Username:** sys
 - **Password:** The sys user password
 - **Role:** SYSDBA

 Click Next.

5. **On the Check Prerequisites screen, click OK after the prerequisites have been validated.**
6. On the Select Components screen, provide the following values:

 Create a New Prefix: Enter a prefix to be added to the database schemas. Note that all schemas except for the ODS schema are required to have a prefix. For example, enter `EDG`.

 Components: Select the schemas shown in the following table:

<table>
<thead>
<tr>
<th>Product</th>
<th>RCU Option</th>
<th>Service Name</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Internet Directory</td>
<td>Identity Management–Oracle Internet Directory</td>
<td>OIDEDG.mycompany.com</td>
<td></td>
</tr>
<tr>
<td>Oracle Access Manager</td>
<td>Identity Management–Oracle Access Manager</td>
<td>OAMEDG.mycompany.com</td>
<td>Audit Services will also be selected.</td>
</tr>
<tr>
<td>Oracle Identity Manager</td>
<td>Identity Management–Oracle Identity Manager</td>
<td>OAMEDG.mycompany.com</td>
<td>Metadata Services, SOA infrastructure, and User Messaging will also be selected.</td>
</tr>
<tr>
<td>Oracle Identity Federation</td>
<td>Identity Management–Oracle Identity Federation</td>
<td>OIFEDG.mycompany.com</td>
<td></td>
</tr>
</tbody>
</table>

Click **Next**.

Notes: If your topology requires more than one database, the following important considerations apply:

- Be sure to install the correct schemas in the correct database.
- You might have to run the RCU more than once to create all the schemas for a given topology.
- **Table 7–1** in this chapter provides the recommended mapping between the schemas and their corresponding databases. Refer to this table to ensure that the correct details are entered in this screen.

7. On the Check Prerequisites screen, click **OK** after the prerequisites have been validated.

8. On the Schema Passwords screen, enter the passwords for the schemas. You can choose to use either the same password for all the schemas or different passwords for each of the schemas. Oracle recommends choosing different passwords for different schema's to enhance security

 Click **Next**.

9. On the Map Tablespaces screen, accept the defaults and click **Next**.

10. On the confirmation screen, click **OK** to allow the creation of the tablespaces.

11. On the Creating tablespaces screen, click **OK** to acknowledge creation of the tablespaces.

12. On the Summary screen, the summary and verify that the details provided are accurate. Click **Create** to start the schema creation process.

13. On the Completion summary screen, verify that the schemas were created.
Click Close to exit.

7.6 Backing up the Database

After you have prepared your database, back it up as described in Section 21.6.3.3, "Backing Up the Database."
Backing up the Database
8 Configuring the Web Tier for an Enterprise Deployment

This chapter describes how to configure the Oracle Web Tier for an Oracle Identity Management enterprise deployment.

This chapter includes the following topics:
- Section 8.1, "Overview of Configuring the Web Tier"
- Section 8.2, "Configuring the Web Tier"
- Section 8.3, "Post-Configuration Tasks"
- Section 8.4, "Restarting the Oracle HTTP Servers"
- Section 8.5, "Validating the Configuration"
- Section 8.6, "Backing up the Web Tier Configuration"

8.1 Overview of Configuring the Web Tier

This chapter describes how to associate the Oracle Web Tier with the WebLogic Server domain. Once the Web Tier is associated with the WebLogic Server, you can monitor it using the Oracle Fusion Middleware Console.

You then configure the load balancer to route all HTTP requests to WEBHOST1 and WEBHOST2.

The last section describes how to define the Oracle HTTP Server directives to route requests to the load balancer virtual hosts you defined in Chapter 3, "Preparing the Network for an Enterprise Deployment."

8.2 Configuring the Web Tier

This section contains the following topics:
- Section 8.2.1, "Prerequisites for Configuring the Web Tier"
- Section 8.2.2, "Running the Configuration Wizard to Configure the HTTP Server"
- Section 8.2.3, "Validating the Configuration"

8.2.1 Prerequisites for Configuring the Web Tier

Before configuring the Oracle Web Tier software, you must install it on WEBHOST1 and WEBHOST2, as described in Section 6.2, "Installing Oracle HTTP
Server.” Run the Configuration Wizard to define the instance home, the instance name, and the Oracle HTTP Server component name.

- Ensure that port 7777 (OHS_PORT) is not in use. Because Oracle HTTP Server is installed by default on port 7777, you must ensure that port 7777 is not used by any other service on the nodes. To check if this port is in use, run the following command before installing Oracle HTTP Server. You must free the port if it is in use.

 netstat -an | grep 7777

- Create a file containing the ports used by Oracle HTTP Server. On Disk1 of the installation media, locate the file stage/Response/staticports.ini. Copy it to a file called ohs_ports.ini. Delete all entries in ohs_ports.ini except for OHS_PORT and OPMN Local Port. Change the values of those ports to 7777 and 6700, respectively.

 Note: If the port names in the file are slightly different from OHS PORT and OPMN Local Port, use the names in the file.

8.2.2 Running the Configuration Wizard to Configure the HTTP Server

The steps for configuring the Oracle Web Tier are the same for WEBHOST1 and WEBHOST2.

Perform these steps to configure the Oracle Web Tier:

1. Change the directory to the location of the Oracle Fusion Middleware Configuration Wizard:

 cd WEB_ORACLE_HOME/bin

2. Start the Configuration Wizard:

 ./config.sh

Enter the following information into the configuration wizard:

1. On the Welcome screen, click Next.

 Ensure that Associate Selected Components with WebLogic Domain is selected.

 Ensure Oracle Web Cache is NOT selected.

 Click Next.

3. On the Specify WebLogic Domain Screen, enter

 - Domain Host Name: ADMINVHN.mycompany.com
 - Domain Port No: 7001, where 7001 is WLS_ADMIN_PORT in Section A.3.
 - User Name: Weblogic Administrator User (For example: weblogic)
 - Password: Password for the Weblogic Administrator User account

 Click Next.

4. On the Specify Component Details screen, specify the following values:

 Enter the following values for WEBHOSTn, where n is 1 or 2:
- **Instance Home Location:** `WEB_ORACLE_INSTANCE`
 (`/u02/local/oracle/config/instances/ohsn`, for example,
 `/u02/local/oracle/config/instances/ohs1`)

- **Instance Name:** `webn`
- **OHS Component Name:** `webn`
 Click Next.

5. On the Configure Ports screen, you use the `ohs_ports.ini` file you created in
 Section 8.2.1, "Prerequisites for Configuring the Web Tier" to specify the ports to be
 used. This enables you to bypass automatic port configuration.
 a. Select **Specify Ports using a Configuration File**.
 b. In the file name field specify `ohs_ports.ini`.
 c. Click **Save**, then click **Next**.

6. On the Specify Security Updates screen, specify these values:
 - **Email Address**: The email address for your My Oracle Support account.
 - **Oracle Support Password**: The password for your My Oracle Support account.
 Select: I wish to receive security updates via My Oracle Support.
 Click **Next**.

7. On the Installation Summary screen, review the selections to ensure that they are
 correct. If they are not, click **Back** to modify selections on previous screens.
 Click **Configure**.
 On the Configuration screen, the wizard launches multiple configuration
 assistants. This process can be lengthy. When it completes, click **Next**.
 On the Installation Complete screen, click **Finish** to confirm your choice to exit.

8.2.3 Validating the Configuration

Once the installation is completed check that the it is possible to access the Oracle HTTP Server through the following URLs.

http://WEBHOST1.mycompany.com:7777/
http://WEBHOST2.mycompany.com:7777/
https://SSO.mycompany.com/
http://IDMINTERNAL.mycompany.com

8.3 Post-Configuration Tasks

This section contains the following topics:
- Section 8.3.1, "Configuring Oracle HTTP Server to Run as Software Owner"
- Section 8.3.2, "Update Oracle HTTP Server Runtime Parameters"
- Section 8.3.3, "Create Virtual Hosts to Support Identity Management"
8.3.1 Configuring Oracle HTTP Server to Run as Software Owner

By default, the Oracle HTTP server runs as the user `nobody`. In the Identity Management installation, the Oracle HTTP server should run as the Software owner and group.

To cause it to run as the appropriate user and group, edit the file `httpd.conf`, which is located in `WEB_ORACLE_INSTANCE/config/OHS/component_name`.

Find the section in `httpd.conf` where `User` is defined.

Change this section to read:

```plaintext
User User_who_installed_the_software
Group Group_under_which_the_HTTP_server_runs
```

Group is typically the default user group, for example: `oinstall`.

For example:

```plaintext
<IfModule !mpm_winnt_module>
  # If you wish httpd to run as a different user or group, you must run
  # httpd as root initially and it will switch.
  
  # User/Group: The name (or #number) of the user/group to run httpd as.
  # On SCO (ODT 3) use 'User nouser' and 'Group nogroup'.
  # On HPUX you may not be able to use shared memory as nobody, and the
  # suggested workaround is to create a user www and use that user.
  # NOTE that some kernels refuse to setgid(Group) or semctl(IPC_SET)
  # when the value of (unsigned)Group is above 60000;
  # don't use Group #-1 on these systems!
  
  User oracle
  Group oinstall
</IfModule>
```

8.3.2 Update Oracle HTTP Server Runtime Parameters

By default, the Oracle HTTP Server contains parameter values that are suitable for most applications. These values, however, must be adjusted in IDM Deployments.

Proceed as follows:

Edit the file `httpd.conf`, which is located in:

```plaintext
WEB_ORACLE_INSTANCE/config/OHS/component_name
```

Find the entry that looks like this:

```plaintext
<IfModule mpm_worker_module>
```

Update the values in this section as follows:

```plaintext
<IfModule mpm_worker_module>
  ServerLimit 20
  StartServers 2
  MaxClients 1000
  MinSpareThreads 200
  MaxSpareThreads 800
  ThreadsPerChild 50
  MaxRequestsPerChild 10000
  AcceptMutex fcntl
```
Save the file.

8.3.3 Create Virtual Hosts to Support Identity Management

In order for Oracle HTTP server to service Oracle Identity Management, you must create a number of files to add support for virtual hosts. Each of the files in the following sections creates a virtual host definition and declares a number of URLs which can be accessed from within it. By enclosing the location directives inside the virtual host these locations will only be available when invoked using the virtual host name. For example, you will be able to access the WebLogic console by using the URL `http://ADMIN.mycompany.com/console` but not by using the URL `https://SSO.mycompany.com/console`.

The following sections show sample configuration files for a complete Identity Management deployment. If you are only doing a partial deployment only include those entries applicable to components you are deploying. If you extend your domain at a later date with extra components then you must update the files below with the entries required to support the components you are using.

8.3.3.1 Enable Virtual Host Support

Before creating virtual host directives, you must enable the Oracle HTTP Server to listen for virtual hosts on the default OHS listen port.

To do this, on each web host, edit the file `httpd.conf`, which is located in the directory: `WEB_ORACLE_INSTANCE/config/OHS/component_name`

Locate the line that looks like this:

```
#NameVirtualHost *:80
```

Add the following entry to the file, using 7777 or whatever your `OHS_PORT` value is, and save the file.

```
NameVirtualHost *:7777
```

8.3.3.2 Create Virtual Host Definitions

Create the following files on each web host in the directory: `WEB_ORACLE_INSTANCE/config/OHS/component_name/moduleconf`.

Notes:

- Values such as `ADMIN.mycompany:80` and `you@youraddress` that are noted in this document serve as examples only. Enter values based on the actual environment.
- If you are not using a virtual host for your Administration Server host (single instance), replace `ADMINVHN.mycompany.com` with `IDMHOST1.mycompany.com`.

8.3.3.2.1 Create Virtual Host for ADMIN.mycompany.com

Create a file called `admin_vh.conf`. This will contain a list of locations which are supported by clients accessing the domain using `ADMIN.mycompany.com`.
8.3.3.2 Create Virtual Hosts for SSO.mycompany.com

Create a file called sso_vh.conf. This will contain a list of locations which are supported by clients accessing the domain using SSO.mycompany.com. These are the main entry points for external users.
<VirtualHost *:7777>
 ServerName https://SSO.mycompany.com:443
 RewriteEngine On
 RewriteOptions inherit
 UseCanonicalName On
 ServerAdmin you@your.address

 ##
 ## Entries Required by Oracle Access Manager
 ##

 # OAM
 <Location /oam>
 SetHandler weblogic-handler
 WLProxySSL ON
 WLProxySSLPassThrough ON
 WebLogicCluster IDMHOST1.mycompany.com:14100,IDMHOST2.mycompany.com:14100
 </Location>

 ##
 ## Entries Required by Fusion Applications
 ##

 # FAAuthScheme
 <Location /fusion_apps>
 SetHandler weblogic-handler
 WLProxySSL ON
 WLProxySSLPassThrough ON
 WebLogicCluster IDMHOST1.mycompany.com:14100,IDMHOST2.mycompany.com:14100
 </Location>

 ##
 ## Entries Required by Oracle Identity Manager
 ##

 # oim admin console(idmshell based)
 <Location /admin>
 SetHandler weblogic-handler
 WLProxySSL ON
 WLProxySSLPassThrough ON
 WLCookieName oimjsessionid
 WebLogicCluster
 OIMHOST1VHN.mycompany.com:14000,OIMHOST2VHN.mycompany.com:14000
 WLLogFile '${ORACLE_INSTANCE}/diagnostics/logs/OHS/oim_component.log'
 </Location>

 # oim self and advanced admin webapp consoles(canonic webapp)

 <Location /oim>
 SetHandler weblogic-handler
 WLProxySSL ON
 WLProxySSLPassThrough ON
 WLCookieName oimjsessionid
 WebLogicCluster
 OIMHOST1VHN.mycompany.com:14000,OIMHOST2VHN.mycompany.com:14000
 WLLogFile '${ORACLE_INSTANCE}/diagnostics/logs/OHS/oim_component.log'
 </Location>
xlWebApp - Legacy 9.x webapp (struts based)

```
<Location /xlWebApp>
    SetHandler weblogic-handler
    WLProxySSL ON
    WLProxySSLPassThrough ON
    WLCookieName oimjsessionid
    WebLogicCluster
    OIMHOST1VHN.mycompany.com:14000,OIMHOST2VHN.mycompany.com:14000
    WLogFile '${ORACLE_INSTANCE}/diagnostics/logs/OHS/oim_component.log'
</Location>
```

Nexaweb WebApp - used for workflow designer and IM

```
<Location /Nexaweb>
    SetHandler weblogic-handler
    WLProxySSL ON
    WLProxySSLPassThrough ON
    WLCookieName oimjsessionid
    WebLogicCluster
    OIMHOST1VHN.mycompany.com:14000,OIMHOST2VHN.mycompany.com:14000
    WLogFile '${ORACLE_INSTANCE}/diagnostics/logs/OHS/oim_component.log'
</Location>
```

used for FA Callback service.

```
<Location /callbackResponseService>
    SetHandler weblogic-handler
    WLProxySSL ON
    WLProxySSLPassThrough ON
    WLCookieName oimjsessionid
    WebLogicCluster
    OIMHOST1VHN.mycompany.com:14000,OIMHOST2VHN.mycompany.com:14000
    WLogFile '${ORACLE_INSTANCE}/diagnostics/logs/OHS/oim_component.log'
</Location>
```

spml xsd profile

```
<Location /spml-xsd>
    SetHandler weblogic-handler
    WLProxySSL ON
    WLProxySSLPassThrough ON
    WLCookieName oimjsessionid
    WebLogicCluster
    OIMHOST1VHN.mycompany.com:14000,OIMHOST2VHN.mycompany.com:14000
    WLogFile '${ORACLE_INSTANCE}/diagnostics/logs/OHS/oim_component.log'
</Location>
```

role-sod profile

```
<Location /role-sod>
    SetHandler weblogic-handler
    WLCookieName oimjsessionid
    WebLogicCluster
    OIMHOST1VHN.mycompany.com:14000,OIMHOST2VHN.mycompany.com:14000
    WLogFile '${ORACLE_INSTANCE}/diagnostics/logs/OHS/oim_component.log'
</Location>
```

```
<Location /HTTPClnt>
    SetHandler weblogic-handler
    WLProxySSL ON
    WLProxySSLPassThrough ON
    WLCookieName oimjsessionid
    WebLogicCluster
    OIMHOST1VHN.mycompany.com:14000,OIMHOST2VHN.mycompany.com:14000
</Location>
```
8.3.3.2.3 Create Virtual Host for IDMINTERNAL.mycompany.com Create a file called idminternal_vh.conf. This will contain a list of locations which are supported by clients accessing the domain using IDMINTERNAL.mycompany.com. These entries are used by internal callbacks.

<VirtualHost *:7777>
 ServerName http://IDMINTERNAL.mycompany.com:80
 RewriteEngine On
 RewriteOptions inherit
 UseCanonicalName On
 ServerAdmin you@your.address
</VirtualHost>

Entries Required by Oracle Identity Manager

xlWebApp - Legacy 9.x webapp (struts based)
WebLogicCluster
OIMHOST1VHN.mycompany.com:14000,OIMHOST2VHN.mycompany.com:14000
WLLogFile "${ORACLE_INSTANCE}/diagnostics/logs/OHS/oim_component.log"
</Location>

Nexaweb WebApp - used for workflow designer and DM
<Location /Nexaweb>
SetHandler weblogic-handler
WLCookieName oimjsessionid
WebLogicCluster
OIMHOST1VHN.mycompany.com:14000,OIMHOST2VHN.mycompany.com:14000
WLLogFile "${ORACLE_INSTANCE}/diagnostics/logs/OHS/oim_component.log"
</Location>

used for PA Callback service.
<Location /callbackResponseService>
SetHandler weblogic-handler
WLCookieName oimjsessionid
WebLogicCluster
OIMHOST1VHN.mycompany.com:14000,OIMHOST2VHN.mycompany.com:14000
WLLogFile "${ORACLE_INSTANCE}/diagnostics/logs/OHS/oim_component.log"
</Location>

spml xsd profile
<Location /spml-xsd>
SetHandler weblogic-handler
WLCookieName oimjsessionid
WebLogicCluster
OIMHOST1VHN.mycompany.com:14000,OIMHOST2VHN.mycompany.com:14000
WLLogFile "${ORACLE_INSTANCE}/diagnostics/logs/OHS/oim_component.log"
</Location>

role-sod profile
<Location /role-sod>
SetHandler weblogic-handler
WLCookieName oimjsessionid
WebLogicCluster
OIMHOST1VHN.mycompany.com:14000,OIMHOST2VHN.mycompany.com:14000
WLLogFile "${ORACLE_INSTANCE}/diagnostics/logs/OHS/oim_component.log"
</Location>

<Location /HTTPClnt>
SetHandler weblogic-handler
WLCookieName oimjsessionid
WebLogicCluster
OIMHOST1VHN.mycompany.com:14000,OIMHOST2VHN.mycompany.com:14000
WLLogFile "${ORACLE_INSTANCE}/diagnostics/logs/OHS/oim_component.log"
</Location>

SOA Infrastructure
<Location /soa-infra>
SetHandler weblogic-handler
WLCookieName oimjsessionid
WebLogicCluster SOAHOST1VHN:8001,SOAHOST2VHN:8001
WLLogFile "${ORACLE_INSTANCE}/diagnostics/logs/OHS/oim_component.log"
</Location>

UMS Email Support
<Location /ucs>
8.4 Restarting the Oracle HTTP Servers

Restart the Oracle HTTP Server, as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components."

8.5 Validating the Configuration

After the installation is completed, check that you can access the Oracle HTTP Server home page using the following URLs:

http://WEBHOST1.mycompany.com:7777/
http://WEBHOST2.mycompany.com:7777/
http://ADMIN.mycompany.com/
https://SSO.mycompany.com/

8.6 Backing up the Web Tier Configuration

Back up the Web Tier, as described in Section 21.6.3, "Performing Backups During Installation and Configuration."
Creating the Domain for an Enterprise Deployment

This chapter describes how to create a domain using the Configuration Wizard, Oracle WebLogic Server Administration Console and Oracle Enterprise Manager Fusion Middleware Control. The topology you are creating dictates the number of domains you need to create. Once the initial domain has been created, it can be extended with other products as described later on in this book.

Note: Oracle strongly recommends that you read the release notes for any additional installation and deployment considerations prior to starting the setup process.

This chapter contains the following sections.

- Section 9.1, "Overview of Creating a Domain"
- Section 9.2, "About Console URLs and Domains"
- Section 9.3, "Synchronize System Clocks"
- Section 9.4, "Running the Configuration Wizard to Create a Domain with Oracle Access Manager, Oracle SOA Suite, and Oracle Identity Manager"
- Section 9.5, "Post-Configuration and Verification Tasks"
- Section 9.6, "Configuring Oracle HTTP Server for the WebLogic Domain"
- Section 9.7, "Validating Failover"
- Section 9.8, "Backing Up the WebLogic Domain"

9.1 Overview of Creating a Domain

Table 9–1 lists the steps for creating a WebLogic domain, including post-configuration tasks.
About Console URLs and Domains

Once this domain is created and configured you can extend the domain to include other Identity Management components, as described in the next chapters.

9.2 About Console URLs and Domains

The component URLs related to the domain and the user names used to access them, are listed in the following two tables. Table 9–2 lists the URLs available prior to Web Tier integration. Table 9–3 lists the URLs available after Web Tier integration.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a WebLogic Domain</td>
<td>Run the Configuration Wizard to create WebLogic domain.</td>
<td>Section 9.4, "Running the Configuration Wizard to Create a Domain with Oracle Access Manager, Oracle SOA Suite, and Oracle Identity Manager"</td>
</tr>
<tr>
<td>Post-Configuration and Verification Tasks</td>
<td>Follow the instructions for post-configuration and validation tasks.</td>
<td>Section 9.5, "Post-Configuration and Verification Tasks"</td>
</tr>
<tr>
<td>Configure the Oracle HTTP Server</td>
<td>Configure the Oracle HTTP Server with the WebLogic domain and validate the configuration.</td>
<td>Section 9.6, "Configuring Oracle HTTP Server for the WebLogic Domain"</td>
</tr>
<tr>
<td>Back Up the Domain</td>
<td>Back up the newly configured WebLogic domain.</td>
<td>Section 9.8, "Backing Up the WebLogic Domain"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 9–1 Steps for Creating a WebLogic Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Create a WebLogic Domain</td>
</tr>
<tr>
<td>Post-Configuration and Verification Tasks</td>
</tr>
<tr>
<td>Configure the Oracle HTTP Server with the WebLogic domain</td>
</tr>
<tr>
<td>Back Up the Domain</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 9–2 URL Available Prior to Web Tier Integration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component</td>
</tr>
<tr>
<td>WebLogic Console</td>
</tr>
<tr>
<td>Fusion Middleware Control</td>
</tr>
</tbody>
</table>

1 where 7001 is WLS_ADMIN_PORT, as described in Section A.3.

After you have completed the tasks in Section 9.6, "Configuring Oracle HTTP Server for the WebLogic Domain," the URLs listed in Table 9–3 will be available.

<table>
<thead>
<tr>
<th>Table 9–3 URLs Available After Web Tier Integration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component</td>
</tr>
<tr>
<td>WebLogic Console</td>
</tr>
<tr>
<td>Fusion Middleware Control</td>
</tr>
</tbody>
</table>

9.3 Synchronize System Clocks

Oracle SOA uses Quartz to maintain its jobs and schedules in the database. Synchronize the system clocks for the SOA WebLogic cluster to enable proper functioning of jobs, adapters, and Oracle B2B.
9.4 Running the Configuration Wizard to Create a Domain with Oracle Access Manager, Oracle SOA Suite, and Oracle Identity Manager

Run the Configuration Wizard from the Oracle common home directory to create a domain containing the Administration Server and managed servers. This domain supports Oracle Identity Manager and Oracle Access Manager. Later, you will extend the domain to contain other components.

You run the Configuration Wizard on IDMHOST1 to create the IDMDomain.

To create IDMDomain, proceed as follows:

1. Ensure that the database where you installed the repository is running. For Oracle RAC databases, all instances should be running, so that the validation check later in the procedure is more reliable.

2. Change directory to the location of the Configuration Wizard. This is within the Oracle Common Home directory (created in Chapter 6, "Installing the Software for an Enterprise Deployment").

 cd IAM_MW_HOME/oracle_common/common/bin

3. Start the Oracle Fusion Middleware Configuration Wizard

 On Linux, type:

 ./config.sh

 On Windows, type:

 config.cmd

4. On the Welcome screen, select Create a New WebLogic Domain, and click Next.

5. On the Select Domain Source screen, do the following:

 - Select Generate a domain configured automatically to support the following products.
 - Select the following products:
 - Oracle Identity Manager 11.1.1.3.0 [iam]
 - Oracle SOA Suite - 11.1.1.0 [soa]
 - Oracle Enterprise Manager [oracle_common]
 - Oracle Access Manager with Database Policy Store - 11.1.1.3.0 [iam]
 - Oracle WSM Policy Manager - 11.1.1.0 [oracle_common]
 - Oracle JRF [oracle_common] (This should be selected automatically.)

 Click Next.

6. On the Specify Domain Name and Location screen, enter the domain name, IDMDomain.

 Ensure that the domain directory matches the directory and shared storage mount point recommended in Section 4.3, "About Recommended Locations for the Different Directories."

 Enter

 /u01/oracle/config/domains

 for the domain directory and
for the application directory. The application directory should be in shared storage.

7. Click Next.

8. On the Configure Administrator Username and Password screen, enter the username (default is weblogic) and password to be used for the domain's administrator. For example:
 - Name: weblogic
 - User Password: password for weblogic user
 - Confirm User Password: password for weblogic user
 - Description: This user is the default administrator.
 Click Next.

9. On the Configure Server Start Mode and JDK screen, do the following:
 - For WebLogic Domain Startup Mode, select Production Mode.
 - For JDK Selection, select JRockit SDK
 Click Next.

10. On the Configure JDBC Component Schemas screen, select all the data sources listed on the page.
 - SOA Infrastructure
 - User Messaging Service
 - OIM MDS Schema
 - OWSM MDS Schema
 - SOA MDS Schema
 - OAM Infrastructure
 - OIM Schema

 Under RAC configuration for component schemas, select Convert to RAC multi data source.

 Click Next.

11. On the Configure RAC Multi Data Source Component Schema page, select each of the schemas for your components, one by one. (Do not select schemas listed for previously configured components.) After you select a schema, enter its information into the appropriate fields, based on the following table:

<table>
<thead>
<tr>
<th>Schema Name</th>
<th>Service Name</th>
<th>Host Names</th>
<th>Instance Names</th>
<th>Port</th>
<th>Schema Owner</th>
<th>Password</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOA Infrastructure</td>
<td>OIMEDG.mycompany.com</td>
<td>IDMDBHOST1-VI P.mycompany.com</td>
<td>oimedg1</td>
<td>1521</td>
<td>EDG_SOAINFR</td>
<td>password</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IDMDBHOST2-VI P.mycompany.com</td>
<td>oimedg2</td>
<td>1521</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
If you are using Oracle Database 11.2, replace the *vip* address and port with the 11.2 SCAN address and port.

Click Next.

12. On the Test JDBC Component Schema screen, the Configuration Wizard attempts to validate the data sources. If the data source validation succeeds, click Next. If it fails, click Previous, correct the problem, and try again.

Click Next.

13. On the Select Optional Configuration screen, select the following:

- **Administration Server**
- **JMS Distributed Destination** (required only on the domain that has OIM)
- **Managed Servers, Clusters and Machines**
- **JMS File Store** (required only on the domain that has OIM)

Click Next.

14. On the Configure the Administration Server screen, enter the following values:

- **Name**: AdminServer
Running the Configuration Wizard to Create a Domain with Oracle Access Manager, Oracle SOA Suite, and Oracle Identity Management (Oracle Fusion Applications Edition)

- **Listen Address**: ADMINVHN.mycompany.com.
- **Listen Port**: 7001 *(WLS_ADMIN_PORT)*
- **SSL listen port**: N/A
- **SSL enabled**: unchecked

Click **Next**.

15. On the JMS Destination screen, ensure that all the JMS system resources listed on the screen are uniform distributed destinations. If they are not, select **UDD** from the drop down box. Ensure that the entries look like this:

<table>
<thead>
<tr>
<th>JMS System Resource</th>
<th>Uniform/Weighted Distributed Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMSJMSSystemResource</td>
<td>UDD</td>
</tr>
<tr>
<td>BPMJMSModule</td>
<td>UDD</td>
</tr>
<tr>
<td>SOAJMSModule</td>
<td>UDD</td>
</tr>
<tr>
<td>OIMJMSModule</td>
<td>UDD</td>
</tr>
</tbody>
</table>

Click **Next**.

An Override Warning box with the following message is displayed:

CFGFWK-40915: At least one JMS system resource has been selected for conversion to a Uniform Distributed Destination (UDD). This conversion will take place only if the JMS System resource is assigned to a cluster

Click **OK** on the Override Warning box.

16. The next screen is the Configure Managed Servers screen.

If you are creating IDMDomain for a single domain topology, when you first enter the Configure Managed Servers screen, three managed servers called oam_server1, oim_server1 and soa_server1 are created automatically. Rename oam_server to WLS_OAM1, soa_server1 to WLS_SOA1, and oim_server1 to WLS_OIM1 and update their attributes as shown in the following table.

Then, add three new managed servers called WLS_OAM2, WLS_OIM2 and WLS_SOA2 with the following attributes.

<table>
<thead>
<tr>
<th>Name</th>
<th>Listen Address</th>
<th>Listen Port</th>
<th>Port Variable<sup>1</sup></th>
<th>SSL Listen Port</th>
<th>SSL Enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>WLS_OAM1</td>
<td>IDMHOST1</td>
<td>14100</td>
<td>OAM_PORT</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>WLS_OAM2</td>
<td>IDMHOST2</td>
<td>14100</td>
<td>OAM_PORT</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>WLS_SOA1</td>
<td>SOAHOST1VHN</td>
<td>8001</td>
<td>SOA_PORT</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>WLS_SOA2</td>
<td>SOAHOST2VHN</td>
<td>8001</td>
<td>SOA_PORT</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>WLS_OIM1</td>
<td>OIMHOST1VHN</td>
<td>14000</td>
<td>OIM_PORT</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>WLS_OIM2</td>
<td>OIMHOST2VHN</td>
<td>14000</td>
<td>OIM_PORT</td>
<td>N/A</td>
<td>No</td>
</tr>
</tbody>
</table>

¹Port variables are listed in Section A.3

Leave all the other fields at the default settings.
17. The next screen is the Configure Clusters screen.

Create clusters by clicking Add. The clusters you create depend on the topology, as shown in the following table:

<table>
<thead>
<tr>
<th>Name</th>
<th>Cluster Messaging Mode</th>
<th>Multicast Address</th>
<th>Multicast Port</th>
<th>Cluster Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>oam_cluster</td>
<td>unicast</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>oim_cluster</td>
<td>unicast</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>soa_cluster</td>
<td>unicast</td>
<td>n/a</td>
<td>n/a</td>
<td>SOAHOST1VHN:8001,SOAHOST2VHN:8001</td>
</tr>
</tbody>
</table>

\[1\] Where 8001 is the SOA_PORT from Section A.3.

Note: Do not change the configuration of the clusters that were configured as a part of previous deployments.

18. On the Assign Servers to Clusters screen, associate the managed servers with the cluster. Click the cluster name in the right pane. Click the managed server under Servers, then click the arrow to assign it to the cluster.

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>oam_cluster</td>
<td>WLS_OAM1</td>
</tr>
<tr>
<td></td>
<td>WLS_OAM2</td>
</tr>
<tr>
<td>oim_cluster</td>
<td>WLS_OIM1</td>
</tr>
<tr>
<td></td>
<td>WLS_OIM2</td>
</tr>
<tr>
<td>soa_cluster</td>
<td>WLS_SOA1</td>
</tr>
<tr>
<td></td>
<td>WLS_SOA2</td>
</tr>
</tbody>
</table>

Click Next.

Note: Do not make any changes to clusters that already have entries defined.

19. On the Configure Machines screen, click the Unix Machine tab (Machines tab on Windows) and then click Add to add the following machine. The machine name does not need to be a valid host name or listen address, it is just a unique identifier of a node manager location.

Then create a machine for each host in the topology.

Notes:

- Do not change the configuration of the managed servers that were configured as a part of previous deployments.
- Do not delete the default managed servers that are created. Rename them as described.
Running the Configuration Wizard to Create a Domain with Oracle Access Manager, Oracle SOA Suite, and Oracle Identity Management (Oracle Fusion Applications Edition)

- **Name**: Name of the host. Best practice is to use the DNS name.
- **Node Manager Listen Address**: DNS name of the machine.
- **Node Manager Port**: Port for Node Manager

Provide the information shown in the following table.

<table>
<thead>
<tr>
<th>Name</th>
<th>Node Manager Listen Address</th>
<th>Node Manager Listen Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDMHOST1</td>
<td>IDMHOST1</td>
<td>5556</td>
</tr>
<tr>
<td>IDMHOST2</td>
<td>IDMHOST2</td>
<td>5556</td>
</tr>
<tr>
<td>ADMINHOST</td>
<td>LOCALHOST</td>
<td>5556</td>
</tr>
</tbody>
</table>

Leave the default values for all other fields.
Delete the default local machine entry under the **Machines** tab.

Click Next.

20. Click Next.

21. On the Assign Servers to Machines screen, assign servers to machines as shown in the table:

<table>
<thead>
<tr>
<th>Machine</th>
<th>Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADMINHOST</td>
<td>AdminServer</td>
</tr>
<tr>
<td>IDMHOST1</td>
<td>WLS_OAM1, WLS_OIM1, WLS_SOA1</td>
</tr>
<tr>
<td>IDMHOST2</td>
<td>WLS_OAM2, WLS_OIM2, WLS_SOA2</td>
</tr>
</tbody>
</table>

Click Next to continue.

22. On the Configure JMS File Stores screen, update the directory locations for the JMS file stores. Provide the following information.

<table>
<thead>
<tr>
<th>Name</th>
<th>Directory</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMSJMSFileStore_auto_1</td>
<td>/ASERVER_HOME/jms/UMSJMSFileStore_auto_1</td>
</tr>
<tr>
<td>UMSJMSFileStore_auto_2</td>
<td>/ASERVER_HOME/jms/UMSJMSFileStore_auto_2</td>
</tr>
<tr>
<td>BPMJMSServer_auto_1</td>
<td>/ASERVER_HOME/jms/BPMJMSServer_auto_1</td>
</tr>
<tr>
<td>BPMJMSServer_auto_2</td>
<td>/ASERVER_HOME/jms/BPMJMSServer_auto_2</td>
</tr>
<tr>
<td>SOAJMSFileStore_auto_1</td>
<td>/ASERVER_HOME/jms/SOAJMSFileStore_auto_1</td>
</tr>
<tr>
<td>SOAJMSFileStore_auto_2</td>
<td>/ASERVER_HOME/jms/SOAJMSFileStore_auto_2</td>
</tr>
<tr>
<td>OIMJMSFileStore_auto_1</td>
<td>/ASERVER_HOME/jms/OIMJMSFileStore_auto_1</td>
</tr>
<tr>
<td>OIMJMSFileStore_auto_2</td>
<td>/ASERVER_HOME/jms/OIMJMSFileStore_auto_2</td>
</tr>
</tbody>
</table>

Click Next.
23. On the Configuration Summary screen, validate that your choices are correct, then click Create.

24. On the Create Domain screen, click Done.

9.5 Post-Configuration and Verification Tasks

After configuring the domain with the configuration Wizard, follow these instructions for post-configuration and verification.

This section includes the following topics:

- Section 9.5.1, "Creating boot.properties for the WebLogic Administration Server on IDMHOST1"
- Section 9.5.2, "Starting Node Manager"
- Section 9.5.3, "Removing IDM Domain Agent on IDMHOST1"
- Section 9.5.4, "Updating the Node Manager Credentials"
- Section 9.5.5, "Validating the WebLogic Administration Server"
- Section 9.5.6, "Creating a Separate Domain Directory for Managed Servers in the Same Node as the Administration Server"
- Section 9.5.7, "Propagate Changes to Remote Servers"
- Section 9.5.9, "Start Node Manager on Remote Hosts"
- Section 9.5.10, "Disabling Host Name Verification for the Oracle WebLogic Administration Server"
- Section 9.5.11, "Stopping and Starting the WebLogic Administration Server"

9.5.1 Creating boot.properties for the WebLogic Administration Server on IDMHOST1

Create a boot.properties file for the Administration Server on IDMHOST1. If the file already exists, edit it. The boot.properties file enables the Administration Server to start without prompting you for the administrator username and password.

For the Administration Server:

1. Create the following directory structure.

 mkdir -p ASERVER_HOME/servers/AdminServer/security
2. In a text editor, create a file called boot.properties in the last directory created in the previous step, and enter the username and password in the file. For example:

```
username=weblogic
password=password for weblogic user
```

3. Save the file and close the editor.

Note: The username and password entries in the file are not encrypted until you start the Administration Server, as described in Section 9.5.4, "Updating the Node Manager Credentials." For security reasons, minimize the time the entries in the file are left unencrypted. After you edit the file, start the server as soon as possible so that the entries are encrypted.

9.5.2 Starting Node Manager

Perform these steps to start Node Manager on the administration host:

1. Run the `startNodeManager.sh` script located under the `WL_HOME/server/bin/` directory.

2. Run the `setNMProps.sh` script to set the `StartScriptEnabled` property to true:

   ```
   cd \WL_HOME/oracle_common/common/bin
   ./setNMProps.sh
   ```

 Note: You must use the `StartScriptEnabled` property to avoid class loading failures and other problems.

3. Stop the Node Manager by killing the Node Manager process, or stop the service in Windows.

4. Start Node Manager for the Administration Server as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components."

9.5.3 Removing IDM Domain Agent on IDMHOST1

By default, the IDMDomain Agent provides single sign-on capability for administration consoles. In enterprise deployments, WebGate handles single sign-on, so you must remove the IDMDomain agent. Remove the IDMDomain Agent as follows:

Log in to the WebLogic console at the URL listed in Table 9–2.

Then:

1. Select **Security Realms** from the **Domain Structure** Menu
2. Click **myrealm**.
3. Click the **Providers** tab.
4. Click **Lock and Edit** from the **Change Center**.
5. In the list of authentication providers, select **IAMSuiteAgent**.
6. Click **Delete**.
7. Click **Yes** to confirm the deletion.

8. Click **Activate Changes** from the Change Center.

9. Restart WebLogic Administration Server, as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components."

9.5.4 Updating the Node Manager Credentials

You start the Administration server by using WLST and connecting to Node Manager. The first start of the Administration Server with Node Manager, however, requires that you change the default username and password that the Configuration Wizard sets for Node Manager. Therefore you must use the start script for the Administration Server for the first start. Follow these steps to start the Administration Server using Node Manager.

Steps 1-4 are required for the first start operation, but subsequent starts require only Step 4.

1. Start the Administration Server using the start script in the domain directory.

   ```
   cd ASERVER_HOME/bin
   ./startWebLogic.sh
   ```

2. Use the Administration Console to update the Node Manager credentials on IDMDomain.
 a. In a browser, go to the listen address for the domain. For example:

      ```
      http://ADMINVHN.mycompany.com:7001/console where 7001 is WLS_ADMIN_PORT, as described in Section A.3.
      ```
 b. Log in as the administrator.
 c. Click **Lock and Edit**.
 d. Click **IDMDomain**.
 e. Select **Security** tab then **General** tab.
 f. Expand **Advanced Options**.
 g. Enter a new username for Node Manager or make a note of the existing one and update the Node Manager password.
 h. Click **Save**.
 i. Click **Activate Changes**.

 Update the Node Manager credentials on the domain.

3. Stop the WebLogic Administration Server by issuing the command

   ```
   stopWebLogic.sh located under the ASERVER_HOME/bin directory.
   ```

4. Start WLST and connect to the Node Manager with `nmconnect` and the credentials you just updated. Then start the WebLogic Administration Server using `nmStart`.

   ```
   cd ORACLE_COMMON_HOME/common/bin
   ./wlst.sh
   ```

 On Windows, the command is:

 `wlst.cmd`

 Once in the WLST shell, execute the following commands:
nmConnect('Admin_User', 'Admin_Password', 'ADMINHOST1', 'NMGR_PORT', 'IDMDomain', 'ASERVER_HOME')
nmStart('AdminServer')

where NMGR_PORT is your value in Section A.3, domain_name is the name of the domain and Admin_user and Admin_Password are the Node Manager username and password you entered in Step 2. For example:

nmConnect('weblogic', 'password', 'OAMHOST1', '5556', 'IDMDomain', '/u01/oracle/config/domains/IDMDomain')
nmStart('AdminServer')

9.5.5 Validating the WebLogic Administration Server

Perform these steps to ensure that the Administration Server is properly configured:

1. In a browser, go to the Oracle WebLogic Server Administration Console at the URL listed in Table 9–2, for example:

 http://ADMINVHN.mycompany.com:7001/console

2. Log in as the WebLogic administrator, for example: weblogic.

3. Check that you can access Oracle Enterprise Manager Fusion Middleware Control at http://ADMINVHN.mycompany.com:7001/em.

4. Log in to Oracle Enterprise Manager Fusion Middleware Control as the WebLogic administrator, for example: weblogic.

9.5.6 Creating a Separate Domain Directory for Managed Servers in the Same Node as the Administration Server

Use the pack and unpack commands to separate the domain directory used by the Administration Server from the domain directory used by the managed server in IDMHOST1, as recommended in Chapter 4, "Preparing Storage for an Enterprise Deployment."

Before running the unpack script, be sure the following directory exists as explained in Chapter 4.3, "About Recommended Locations for the Different Directories."

MSERVER_HOME

To create a separate domain directory on IDMHOST1:

1. Run the pack command to create a template pack as follows:

 cd ORACLE_COMMON_HOME/common/bin

 ./pack.sh -managed=true -domain=ASERVER_HOME -template=domaintemplate.jar
 -template_name=domain_template

2. Run the unpack command to unpack the template in the managed server domain directory as follows:

 cd ORACLE_COMMON_HOME/common/bin

 ./unpack.sh -domain=MSERVER_HOME
 -template=domaintemplate.jar -app_dir=MSERVER_HOME/applications
9.5.7 Propagate Changes to Remote Servers

Before you can start managed servers on remote hosts, you must first perform an unpack on those servers. Proceed as follows.

Using the file domaintemplate.jar created in Section 9.5.6, "Creating a Separate Domain Directory for Managed Servers in the Same Node as the Administration Server,” perform an unpack on the host IDMHOST2 by using the following commands:

```bash
cd ORACLE_COMMON_HOME/common/bin
./unpack.sh -domain=MSERVER_HOME -template=domaintemplate.jar -app_dir=MSERVER_HOME/applications
```

9.5.8 Copy SOA Composites to Managed Server Directory

When SOA first starts, it automatically deploys a number of applications that are located in the DOMAIN_HOME/soa directory. Performing `pack` and `unpack` does not populate this directory, so you must create it manually.

Copy the `soa` directory from ASERVER_HOME/soa to MSERVER_HOME on IDMHOST1 and IDMHOST2.

For example:

```bash
scp -rp ASERVER_HOME/soa user@IDMHOST1:MSERVER_HOME/soa
```

9.5.9 Start Node Manager on Remote Hosts

Perform this step on the host IDMHOST2.

If the Node Manager is not already started, perform the following steps to start it:

Start the Node Manager to create the nodemanager.properties file by using the `startNodemanager.sh` script located under the MW_HOME/wlserverserver_10.3/server/bin directory.

Before you can start the Managed Servers by using the console, node manager requires that you set the property `StartScriptEnabled` to true. You set it by running the `setNMProps.sh` script located under the MW_HOME/oracle_common/common/bin directory, as follows.

```bash
cd ORACLE_COMMON_HOME/common/bin
./setNMProps.sh
```

Stop and Start the Node Manager as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components” so that the properties take effect.
9.5.10 Disabling Host Name Verification for the Oracle WebLogic Administration Server

This step is required if you have not set up the appropriate certificates to authenticate the different nodes with the Administration Server. (See Chapter 17, "Setting Up Node Manager for an Enterprise Deployment.") If you have not configured the server certificates, you will receive errors when managing the different WebLogic Servers. To avoid these errors, disable host name verification while setting up and validating the topology, and enable it again once the EDG topology configuration is complete as described in Chapter 17, "Setting Up Node Manager for an Enterprise Deployment."

Perform these steps to disable host name verification:

1. Go to the Oracle WebLogic Server Administration Console at the URL listed in Table 9–2.
2. Log in as the user weblogic, using the password you specified during the installation.
3. Click Lock and Edit.
4. Expand the Environment node in the Domain Structure window.
5. Click Servers. The Summary of Servers page appears.
6. Select AdminServer(admin) in the Name column of the table. The Settings page for AdminServer(admin) appears.
7. Click the SSL tab.
8. Click Advanced.
9. Set Hostname Verification to None.
10. Click Save.
11. Click Activate Changes.

9.5.11 Stopping and Starting the WebLogic Administration Server

1. Stop the Administration Server as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components"
2. Start WLST and connect to the Node Manager with nmconnect and the credentials set previously described. Then start the Administration Server using nmStart.

 cd ORACLE_COMMON_HOME/common/bin
 ./wlst.sh

 Once in the WLST shell, execute the following commands:

 IDMDomain

 nmConnect('Admin_User','Admin_Password','IDMHOST1','5556','IDMDomain','/u01/oracle/config/domains/IDMDomain')
 nmStart('AdminServer')

 where Admin_user and Admin_Password are the Node Manager username and password you entered in Step 2 of Section 9.5.4, "Updating the Node Manager Credentials."
9.6 Configuring Oracle HTTP Server for the WebLogic Domain

This section describes tasks for configuring Oracle HTTP Server for the WebLogic Domain, and for verifying the configuration.

This section includes the following topics:

- Section 9.6.1, "Registering Oracle HTTP Server with WebLogic Server"
- Section 9.6.2, "Setting the Front End URL for the Administration Console"
- Section 9.6.3, "Enabling WebLogic Plug-in"
- Section 9.6.4, "Validating Access to Domains"

9.6.1 Registering Oracle HTTP Server with WebLogic Server

For Oracle Enterprise Manager Fusion Middleware Control to be able to manage and monitor the Oracle HTTP server, you must register the Oracle HTTP server with IDMDomain. To do this, you must register Oracle HTTP Server with WebLogic Server using the following command:

```
cd WEB_ORACLE_INSTANCE/bin
./opmnctl registerinstance -adminHost ADMINVHN.mycompany.com \
-adminPort 7001 -adminUsername weblogic
```

You must also run this command from WEBHOST2 for ohs2.

9.6.2 Setting the Front End URL for the Administration Console

Oracle WebLogic Server Administration Console tracks changes that are made to ports, channels and security using the console. When changes made through the console are activated, the console validates its current listen address, port and protocol. If the listen address, port and protocol are still valid, the console redirects the HTTP request, replacing the host and port information with the Administration Server's listen address and port. When the Administration Console is accessed using a load balancer, you must change the Administration Server's front end URL so that the user's browser is redirected to the appropriate load balancer address. To make this change, perform the following steps:

1. Log in to Oracle WebLogic Server Administration Console at the URL listed in Table 9–2, for example:

 http://ADMINVHN.mycompany.com:7001/console

2. Click **Lock and Edit**.

3. Expand the **Environment** node in the Domain Structure window.

4. Click **Servers** to open the Summary of Servers page.

5. Select **Admin Server** in the Names column of the table. The Settings page for AdminServer(admin) appears.

6. Click the **Protocols** tab.

Note: Admin_user and Admin_Password are only used to authenticate connections between Node Manager and clients. They are independent from the server administration ID and password and are stored in the ASERVER_HOME/config/nodemanager/nm_password.properties file.
7. Click the HTTP tab.

8. Set the **Front End Host** field to your load balancer address, `ADMIN.mycompany.com` for IDMDomain.

9. Set **FrontEnd HTTP Port** to 80 (`HTTP_PORT`)

10. Save and activate the changes.

To eliminate redirections, best practice is to disable the Administration console’s **Follow changes** feature. To do this, log in to the administration console and click **Preferences**->**Shared Preferences**. Deselect **Follow Configuration Changes** and click **Save**.

9.6.3 Enabling WebLogic Plug-in

In Enterprise deployments, Oracle WebLogic Server is fronted by Oracle HTTP servers. The HTTP servers are, in turn, fronted by a load balancer, which performs SSL translation. In order for internal loopback URLs to be generated with the `https` prefix, Oracle WebLogic Server must be informed that it receives requests through the Oracle HTTP Server WebLogic plug-in.

The plug-in can be set at either the domain, cluster, or Managed Server level. Because all requests to Oracle WebLogic Server are through the Oracle OHS plug-in, set it at the domain level.

To do this perform the following steps:

1. Log in to the Oracle WebLogic Server Administration Console at the URL listed in Table 9–2.

2. Click **Lock and Edit**.

3. Click IDMDomain in the Domain Structure Menu.

4. Click the **Configuration** tab.

5. Click the **Web Applications** sub tab.

6. Select **WebLogic Plugin Enabled**.

7. Click **Save** and **Activate the Changes**.

8. Restart WebLogic Administration Server, as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components."

9.6.4 Validating Access to Domains

Verify that the server status is reported as **Running** in the Administration Console. If the server is shown as **Starting** or **Resuming**, wait for the server status to change to **Started**. If another status is reported (such as **Admin** or **Failed**), check the server output log files for errors. See Section 21.10, "Troubleshooting" for possible causes.

Validate Administration Console and Oracle Enterprise Manager Fusion Middleware Control through Oracle HTTP Server using the console URL: `http://ADMINVHN.mycompany.com:7001/console` and the **em** URL: `http://ADMINVHN.mycompany.com:7001/em`

where `7001` is `WLS_ADMIN_PORT` in Section A.3.

For information on configuring system access through the load balancer, see Section 3.4, "Configuring the Load Balancers."
9.7 Validating Failover

Test failover of the Administration Server to IDMHOST2 and then fail back to IDMHOST1, as described in Section 21.9, "Manually Failing Over the WebLogic Administration Server."

9.8 Backing Up the WebLogic Domain

Back up the Database, WebLogic Domain, and Web Tier, as described in Section 21.6.3, "Performing Backups During Installation and Configuration."
10 Extending the Domain to Include Oracle Internet Directory

This chapter describes how to extend the domain with Oracle Internet Directory (OID) in the enterprise deployment.

This chapter includes the following topics:

■ Section 10.1, "Overview of Extending the Domain to Include Oracle Internet Directory"
■ Section 10.2, "Using Oracle Internet Directory in an Enterprise Deployment"
■ Section 10.3, "Prerequisites for Configuring Oracle Identity Directory Instances"
■ Section 10.4, "Configuring the Oracle Internet Directory Instances"
■ Section 10.5, "Post-Configuration Steps"
■ Section 10.6, "Validating the Oracle Internet Directory Instances"
■ Section 10.7, "Tuning Oracle Internet Directory"
■ Section 10.8, "Backing up the Oracle Internet Directory Configuration"

10.1 Overview of Extending the Domain to Include Oracle Internet Directory

In this chapter, you perform the following tasks:

■ Configure two instances of Oracle Internet Directory by using the Oracle Identity Management 11g Configuration Wizard
■ Register the instances with the WebLogic Server Domain (IDMDomain).
■ Validate the instances
■ Tune Oracle Internet Directory

10.2 Using Oracle Internet Directory in an Enterprise Deployment

You use the Identity Store for storing information about users and groups. You use Policy Store for storing information about security policies and for configuration information. Although you can use a single Oracle Internet Directory instance for storing both the identity and policy information, it is recommended that you use two directory stores.

If you intend to separate your identity and policy information, you must create two highly available instances of Oracle Internet Directory. These instances can coexist on
the same nodes or can exist on separate nodes. The data, however, must be stored in two separate databases. If policy information must reside in Oracle Internet Directory, you can place identity information into a different directory, such as Active Directory.

The procedure for installing and configuring the two instances of Oracle Internet Directory is the same. You must, however, point IDSTORE.mycompany.com at one of the instances and POLICYSTORE.mycompany.com at the other.

10.3 Prerequisites for Configuring Oracle Identity Directory Instances

Before configuring the Oracle Internet Directory instances on LDAPHOST1 and LDAPHOST2, ensure that the following tasks have been performed:

1. Synchronize the time on the individual Oracle Internet Directory nodes using Greenwich Mean Time so that there is a discrepancy of no more than 250 seconds between them.

 Note: If OID Monitor detects a time discrepancy of more than 250 seconds between the two nodes, the OID Monitor on the node that is behind stops all servers on its node. To correct this problem, synchronize the time on the node that is behind in time. The OID Monitor automatically detects the change in the system time and starts the Oracle Internet Directory servers on its node.

2. Install and upgrade the software on LDAPHOST1 and LDAPHOST2 as described in Section 6.3.4, "Installing Oracle Identity Management."

3. If you plan on provisioning the Oracle Internet Directory instances on shared storage, ensure that the appropriate shared storage volumes are mounted on LDAPHOST1 and LDAPHOST2 as described in Section 4.3, "About Recommended Locations for the Different Directories."

4. Ensure that the load balancer is configured.

 Note: Disable the load balancer configuration while configuring Oracle Internet Directory to ensure that Oracle Internet Directory accounts are not locked during configuration.

10.4 Configuring the Oracle Internet Directory Instances

Follow these steps to configure the Oracle Internet Directory components, LDAPHOST1 and LDAPHOST2 on the Directory Tier with Oracle Internet Directory. The procedures for the installations are very similar, but the selections in the configuration options screen differ.

This section contains the following topics:

- Section 10.4.1, "Configuring the First Oracle Internet Directory Instance"
- Section 10.4.2, "Configuring an Additional Oracle Internet Directory Instance"

10.4.1 Configuring the First Oracle Internet Directory Instance

1. Ensure that ports 3060 and 3131 are not in use by any service on the computer by issuing these commands for the operating system you are using. If a port is not in use, no output is returned from the command.
Configuring the Oracle Internet Directory Instances

On Linux:

```
netstat -an | grep "3060"
netstat -an | grep "3131"
```

If the ports are in use (that is, if the command returns output identifying either port), you must free the port.

On Linux:

Remove the entries for ports 3060 and 3131 in the `/etc/services` file and restart the services, or restart the computer.

2. Create a file containing the ports used by Oracle Internet Directory. On Disk1 of the installation media, locate the file `stage/Response/staticports.ini`. Copy it to a file called `oid_ports.ini`. Delete all entries in `oid_ports.ini` except for Non-SSL Port for Oracle Internet Directory and SSL Port for Oracle Internet Directory. Change the values of those ports to 3060 and 3131, respectively.

 Note: If the port names in the file are slightly different from those listed in this step, use the names in the file.

3. Start the Oracle Identity Management 11g Configuration Wizard by running `IDM_ORACLE_HOME/bin/config.sh` on Linux or `IDM_ORACLE_HOME\bin\config.bat` on Windows.

4. On the Welcome screen, click **Next**.

5. On the Select Domain screen, select **Configure without a Domain**. Click **Next**.

6. On the Specify Installation Location screen, specify the following values:
 - Oracle Instance Location: `OID_ORACLE_INSTANCE`
 - Oracle Instance Name: `oid1`
 Click **Next**.

7. On the Specify Email for Security Updates screen, specify these values:
 - Email Address: Provide the email address for your My Oracle Support account.
 - Oracle Support Password: Provide the password for your My Oracle Support account.
 - Check the check box next to the **I wish to receive security updates via My Oracle Support** field.
 Click **Next**.

8. On the Configure Components screen, select **Oracle Internet Directory**, deselect all the other components, and then click **Next**.

9. On the Configure Ports screen, you use the `oid_ports.ini` file you created in Step 2 to specify the ports to be used. This enables you to bypass automatic port configuration.

 a. Select **Specify Ports using a Configuration File**.

 b. In the file name field specify `oid_ports.ini`.

Extending the Domain to Include Oracle Internet Directory 10-3
c. Click Save, then click Next.

10. On the Specify Schema Database screen, select Use Existing Schema and specify the following values:

 - Connect String:
 OIDDBHOST1-VIP.mycompany.com:1521:idmdb1^OIDDBHOST2-VIP.mycompany.com:1521:idmdb2@OIDEDG.mycompany.com

Notes:

- The Oracle RAC database connect string information must be provided in the format:

 host1:port1:instance1^host2:port2:instance2@servicename

- During this installation, it is not required for all the Oracle RAC instances to be up. If one Oracle RAC instance is up, the installation can proceed. It is required that the information provided is complete and accurate. Specifically, the correct host, port, and instance name must be provided for each Oracle RAC instance, and the service name provided must be configured for all the specified Oracle RAC instances. Any incorrect information entered in the Oracle RAC database connect string has to be corrected manually after the installation.

- If you are using Oracle Database 11.2, replace the vip addresses and port with the 11.2 SCAN address and port.

11. On the Configure OID screen, specify the following information:

 - Realm: The realm where you want your company information stored, for example: dc=mycompany,dc=com
 - Administrator Password: Password for cn=orcladmin

12. On the Installation Summary screen, review the selections to ensure that they are correct. If they are not, click Back to modify selections on previous screens. When they are correct, click Configure.

13. On the Configuration screen, multiple configuration assistants are launched in succession. This process can be lengthy. Wait for the configuration process to finish.

14. On the Installation Complete screen, click Finish to confirm your choice to exit.

15. To validate the installation of the Oracle Internet Directory instance on LDAPHOST1, issue these commands:

   ```
   ldapbind -h LDAPHOST1.mycompany.com -p 3060 -D 'cn=orcladmin' -q
   ldapbind -h LDAPHOST1.mycompany.com -p 3131-D 'cn=orcladmin' -q -U 1
   ```
10.4.2 Configuring an Additional Oracle Internet Directory Instance

The schema database must be running before you perform this task. Follow these steps to install Oracle Internet Directory on LDAPHOST2:

1. Ensure that ports 3060 and 3131 are not in use by any service on the computer by issuing these commands for the operating system you are using. If a port is not in use, no output is returned from the command.

 On Linux:
   ```shell
   netstat -an | grep "3060"
   netstat -an | grep "3131"
   ```

 If the ports are in use (that is, if the command returns output identifying either port), you must free them.

 On Linux:
 Remove the entries for ports 3060 and 3131 in the `/etc/services` file and restart the services, as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components," or restart the computer.

2. Start the Oracle Identity Management 11g Configuration Wizard by running `IDM_ORACLE_HOME/bin/config.sh`.

3. On the Welcome screen, click Next.

4. On the Select Domain screen, select Configure without a Domain.

 Click Next.

5. On the Specify Installation Location screen, specify the following values:

 Oracle Instance Location: `OID_ORACLE_INSTANCE`
 Oracle Instance Name: `oid2`

 Click Next.

6. On the Specify Email for Security Updates screen, specify these values:

 - Email Address: Provide the email address for your My Oracle Support account.

It is recommended that you tune Oracle Internet Directory at this point. See the Oracle Internet Directory chapter in the Oracle Fusion Middleware Performance and Tuning Guide.
Configuring the Oracle Internet Directory Instances

- **Oracle Support Password:** Provide the password for your My Oracle Support account.
- **Check the check box next to the I wish to receive security updates via My Oracle Support field.**

Click **Next**.

7. On the Configure Components screen, select Oracle Internet Directory, deselect all the other components, and click **Next**.

8. On the Configure Ports screen, you use the `oid_ports.ini` file you created in Section 10.4.1, "Configuring the First Oracle Internet Directory Instance" to specify the ports to be used. This enables you to bypass automatic port configuration.
 a. Select **Specify Ports using a Configuration File**.
 b. In the file name field specify `oid_ports.ini`.
 c. Click **Save**, then click **Next**.

9. On the Specify Schema Database screen, select **Use Existing Schema** and specify the following values:
 - **Connect String:**

 `OIDDBHOST1-VIP.mycompany.com:1521:idmdb1^OIDDBHOST2-VIP.mycompany.com:1521:idmdb2@OIDEDG.mycompany.com`

Notes:

- The Oracle RAC database connect string information must be provided in the format:

 \textit{host1:port1:instance1}@\textit{host2:port2:instance2@servicename}

- During this installation, it is not required that all the Oracle RAC instances to be up. If one Oracle RAC instance is up, the installation can proceed.

- You must provide complete and accurate information. Specifically, you must provide the correct host, port, and instance name for each Oracle RAC instance, and the service name you provide must be configured for all the specified Oracle RAC instances.

 Any incorrect information entered in the Oracle RAC database connect string must be corrected manually after the installation.

- **User Name:** ODS
- **Password:** ****** (enter the password)

Click **Next**.

10. The ODS Schema in use message appears. The ODS schema chosen is already being used by the existing Oracle Internet Directory instance. Therefore, the new Oracle Internet Directory instance being configured would reuse the same schema.

Choose **Yes** to continue.

A popup window with this message appears:
Please ensure that the system time on this Identity Management Node is in sync with the time on other Identity management Nodes that are part of the Oracle Application Server Cluster (Identity Management) configuration. Failure to ensure this may result in unwanted instance failovers, inconsistent operational attributes in directory entries and potential inconsistent behavior of password state policies.

Ensure that the system time between IDMHOST1 and IDMHOST2 is synchronized.

Click OK to continue.

11. On the Specify OID Admin Password screen, specify the Oracle Internet Directory administration password.

Note: If you see a message saying that OID is not running, verify that the orcladmin account has not become locked and try again. Do not continue until this message is no longer displayed.

Click Next.

12. On the Installation Summary screen, review the selections to ensure that they are correct. If they are not, click Back to modify selections on previous screens. When they are correct, click Configure.

13. On the Configuration screen, multiple configuration assistants are launched in succession. This process can be lengthy. Wait for the configuration process to finish.

14. On the Installation Complete screen, click Finish to confirm your choice to exit.

15. To validate the installation of the Oracle Internet Directory instance on LDAPHOST2, issue these commands:

```
ldapbind -h LDAPHOST2.mycompany.com -p 3060 -D 'cn=orcladmin' -q
ldapbind -h LDAPHOST2.mycompany.com -p 3131 -D 'cn=orcladmin' -q -U 1
```

Note: Ensure that the following environment variables are set before using ldapbind:

- **ORACLE_HOME**
- **ORACLE_INSTANCE**
- **PATH** - The following directory locations should be in your PATH:

```
IDM_ORACLE_HOME/bin
IDM_ORACLE_HOME/ldap/bin
IDM_ORACLE_HOME/ldap/admin
```

10.5 Post-Configuration Steps

Follow the steps in this section to complete the configuration of the Oracle Internet Directory instances.

This section contains the following topics:
Post-Configuration Steps

- Section 10.5.1, "Registering Oracle Internet Directory with the WebLogic Server Domain (IDMDomain)"
- Section 10.5.2, "Generating a Certificate to be Used by the Identity Management Domain"
- Section 10.5.3, "Configuring Oracle Internet Directory to Accept Server Authentication Mode SSL Connections"
- Section 10.5.4, "Validating SSL Manually"
- Section 10.5.5, "Considering Oracle Internet Directory Password Policies"

10.5.1 Registering Oracle Internet Directory with the WebLogic Server Domain (IDMDomain)

All the Oracle Fusion Middleware components deployed in this enterprise deployment are managed by using Oracle Enterprise Manager Fusion Middleware Control. To manage the Oracle Internet Directory component with this tool, you must register the component and the Oracle Fusion Middleware instance that contains it with an Oracle WebLogic Server domain. A component can be registered either at install time or post-install. A previously un-registered component can be registered with a WebLogic domain by using the opmnctl registerinstance command.

To register the Oracle Internet Directory instances installed on LDAPHOST1 and LDAPHOST2, follow these steps for each instance:

1. On LDAPHOST1 and LDAPHOST2:
 Set ORACLE_HOME to IDM_ORACLE_HOME.
 Set ORACLE_INSTANCE to OID_ORACLE_INSTANCE.

2. Execute the opmnctl registerinstance command on both LDAPHOST1 and LDAPHOST2:

 OID_ORACLE_INSTANCE/bin/opmnctl registerinstance -adminHost WLSHostName -adminPort WLSPort -adminUsername adminUserName

 For example, on LDAPHOST1 and LDAPHOST2:

 OID_ORACLE_INSTANCE/bin/opmnctl registerinstance -adminHost ADMINVHN.mycompany.com -adminPort 7001 -adminUsername weblogic

 The command requires login to WebLogic Administration Server (ADMINVHN.mycompany.com)

 Username: weblogic
 Password: ********

 Note: For additional details on registering Oracle Internet Directory components with a WebLogic Server domain, see the "Registering an Oracle Instance or Component with the WebLogic Server" section in Oracle Fusion Middleware Administrator’s Guide for Oracle Internet Directory.

3. On both LDAPHOST1 and LDAPHOST2, update the Enterprise Manager Repository URL using the emctl utility with the switchOMS flag. This will enable the local emagent to communicate with the WebLogic Administration
Post-Configuration Steps

Extending the Domain to Include Oracle Internet Directory

10.5.2 Generating a Certificate to be Used by the Identity Management Domain

Perform this task after you have registered Oracle Internet Directory with Oracle WebLogic Server.

External domains communicate with the Identity Management domain using SSL Server Authentication Only Mode. To enable the Identity Management domain to support this SSL mode, you must generate a certificate and store it in the Policy Store. This adds an extra layer of security, ensuring that only those domains with access to the security certificate can communicate with the domain. The domain level certificate is generated once per domain.

Server using the virtual IP address. The `emctl` utility is located under the `OID_ORACLE_INSTANCE/EMAGENT/EMAGENT/bin` directory.

Syntax:

```
./emctl switchOMS ReposURL
```

For Example:

```
./emctl switchOMS http://ADMINVHN:7001/em/upload
```

Output:

```
./emctl switchOMS http://ADMINVHN.mycompany.com:7001/em/upload
Oracle Enterprise Manager 10g Release 5 Grid Control 10.2.0.5.0.  
Copyright (c) 1996, 2009 Oracle Corporation. All rights reserved.  
SwitchOMS succeeded.
```

4. Force the agent to reload its configuration by issuing the command:

```
./emctl reload
```

5. Check that the agent is using the correct Upload URL using the command:

```
./emctl status agent
```

6. Validate that the agents on LDAPHOST1 and LDAPHOST2 are configured properly to monitor their respective targets. Follow these steps to complete this task:

 - Use a web browser to access Oracle Enterprise Manager Fusion Middleware Control at:

 `http://ADMINVHN.mycompany.com:7001/em`

 Log in as the weblogic user.

 - From the Domain Home Page navigate to the Agent-Monitored Targets page using the menu under Farm -> Agent-Monitored Targets.

 - Update the WebLogic monitoring user name and the WebLogic monitoring password.

 - Enter `weblogic` as the WebLogic monitoring user name and the password for the `weblogic` user as the WebLogic monitoring password.

 - Click OK to save your changes.
10.5.2.1 Prerequisites

Note: Using the following approach for SSL configuration requires an LDAP server to be available as a central repository and also available as a demoCA. If you are deploying separate instances for Identity Store and Policy Store, you can use the Policy Store Oracle Internet Directory as the store for the SSL repository.

Prior to running this command ensure that:

- Oracle Identity Management is installed on IDMHOST1.
- Oracle Identity and Access Management is installed on IDMHOST1.
- If you are using Windows, you have installed a UNIX emulation package such as Cygwin in order to run the scripts contained in this section. See http://www.cygwin.com.

Note: When using Cygwin, ensure that you use the "/" character in path names when exporting a variable. For example:

```bash
export ORACLE_HOME=c:/oracle/idm
```

10.5.2.2 Generating the Certificate

To generate a certificate for the IDMDomain execute the following commands on IDMHOST1.

1. Set `ORACLE_HOME` to `IDM_ORACLE_HOME`.
 Set `JAVA_HOME` to `JAVA_HOME`.

2. Generate the certificate using the `SSLGenCA` command which is located in `ORACLE_COMMON_HOME/bin`.
 For example:
   ```bash
cd ORACLE_COMMON_HOME/bin
./SSLGenCA.sh
```

3. When the command executes supply the following information:

 - **LDAP host Name:** POLICYSSTORE.mycompany.com.
 - **LDAP Port:** 389 (`LDAP_POLICY_LBR_PORT` in Section A.3)
 - **Admin User:** `cn=orcladmin`
 - **password:** `admin_password`
 - **LDAP sslDomain where your CA will be stored:** IDMDomain
 - **Password to protect your CA wallet:** `wallet_password`
 - **Confirmed password for your CA wallet:** `wallet_password`

 Note: It is recommended that you use the Policy Store directory, not the Identity Store.
Sample output:

SSL Certificate Authority Generation Script: Release 11.1.1.4.0 - Production
Copyright (c) 2010 Oracle. All rights reserved.

**
*********** This tool will generate a self-signed CA wallet ***********
*********** and store it in a central LDAP directory ***********
*********** for IDM and FA SSL set up and provisioning ***********
**

>>>Enter the LDAP hostname [SLC00XX.mycompany.com]: POLICYSTORE.mycompany.com
>>>Enter the LDAP port [389]: 389
>>>Enter the admin user [cn=orcladmin]
>>>Enter password for cn=orcladmin:
>>>Enter the LDAP sslDomain where your CA will be stored [idm]: IDMDomain
>>>Enter a password to protect your CA wallet:
>>>Enter confirmed password for your CA wallet:

Generate a new CA Wallet...
Create SSL Domains Container for cn=IDMDomain,cn=sslDomains...
Storing the newly generated CA to the LDAP...
Set up ACL to protect the CA wallet...
>>>The newly generated CA is stored in LDAP entry
cn=demoCA,cn=IDMDomain,cn=sslDomains successfully.

This script performs the following tasks:

- Creates a Demo Signing CA wallet for use in the domain.
- Extracts the public Demo CA Certificate from the CA wallet.
- Uploads the wallet and the certificate to LDAP and stores them in the entry:
cn=demoCA,Deployment_SSL_Domain
- Creates an access group in LDAP:
cn=SSLDomains,cn=IDMDomain,cn=demoCA and grants that group
administrative privileges to the parent container. All other entities are denied
access. Add users to the group to give access. The Demo CA Certificate is now
available for download by an anonymous or authenticated user.
- The Demo CA Wallet password is stored locally in an obfuscated wallet for future
use. Its path is: ORACLE_HOME/credCA/castore

As administrator, you must secure this wallet so that only SSL administrators can
read it.

The best place to locate the Certificate is in the Policy Store.

10.5.3 Configuring Oracle Internet Directory to Accept Server Authentication Mode SSL Connections

If you plan to enable SSL Server Authentication Only Mode for your domain and have
created a domain level SSL certificate as described in Section 10.5.2, "Generating a
Certificate to be Used by the Identity Management Domain," you must perform the
following to ensure that your Oracle Internet Directory instances are capable of
accepting requests using this mode. You must configure each Oracle Internet Directory
instance independently.

10.5.3.1 Prerequisites

Prior to running this command ensure that:
Post-Configuration Steps

- Oracle Internet Directory is installed.
- Oracle Identity Management is installed on IDMHOST1
- Site certificate has been generated as described in Section 10.5.2, "Generating a Certificate to be Used by the Identity Management Domain."
- If you are using Windows, you have installed a UNIX emulation package such as Cygwin in order to run the scripts contained in this section. See http://www.cygwin.com.

10.5.3.2 Configuring Oracle Internet Directory for SSL

To enable Oracle Internet Directory to communicate using SSL Server Authentication Mode, perform the following steps on LDAPHOST1 and LDAPHOST2:

Note: When you perform this operation, only the Oracle Internet Directory instance you are working on should be running.

1. Set the ORACLE_HOME, ORACLE_INSTANCE and JAVA_HOME variables. For example, on LDAPHOST1:
 - Set ORACLE_HOME to IDM_ORACLE_HOME.
 - Set ORACLE_INSTANCE to OID_ORACLE_INSTANCE.
 - Set JAVA_HOME to DIR_MW_HOME/jrockit_version.
 - Set the PATH variable to include JAVA_HOME.

2. To enable SSL Server Authentication use the tool SSLServerConfig which is located in:

 `ORACLE_COMMON_HOME/bin`

 For example

 `$ORACLE_COMMON_HOME/bin/SSLServerConfig.sh -component oid`

3. When prompted, enter the following information:
 - LDAP Hostname: Central LDAP host, for example: POLICYSTORE.mycompany.com
 - LDAP port: LDAP_POLICY_LBR_PORT, for example: 389
 - Admin user DN: cn=orcladmin
 - Password: administrator_password
 - sslDomain for the CA: IDMDomain Oracle recommends that the SSLDomain name be the same as the Weblogic domain name to make reference easier.
 - Password to protect your SSL wallet/keystore: password_for_local_keystore
 - Enter confirmed password for your SSL wallet/keystore: password_for_local_keystore
 - Password for the CA wallet: certificate_password. This is the one created in Section 10.5.2, "Generating a Certificate to be Used by the Identity Management Domain."
 - Country Name 2 letter code: Two letter country code, such as US
State or Province Name: State or province, for example: California
Locality Name: Enter the name of your city, for example: RedwoodCity
Organization Name: Company name, for example: mycompany
Organizational Unit Name: Leave at the default
Common Name: Name of this host, for example: LDAPHOST1.mycompany.com
OID component name: Name of your Oracle Instance, for example: oid1. If you need to determine what your OID component name is, execute the command:

`/bin/opmnctl status`

WebLogic admin host: Host running the WebLogic Administration Server, for example: ADMINVHN.mycompany.com
WebLogic admin port: `WLS_ADMIN_PORT`, for example: 7001
WebLogic admin user: Name of your WebLogic administration user, for example: weblogic
WebLogic password: password.
AS instance name: Name of the Oracle instance you entered in Section 10.4.1, "Configuring the First Oracle Internet Directory Instance" and Section 10.4.2, "Configuring an Additional Oracle Internet Directory Instance," Step 7, for example: oid1.
SSL wallet name for OID component [oid_wallet1]: Accept the default
Do you want to restart your OID component: Yes
Do you want to test your SSL setup? Yes
SSL Port of your OID Server: 3131

Sample output:

Server SSL Automation Script: Release 11.1.1.4.0 - Production
Copyright (c) 2010 Oracle. All rights reserved.

Downloading the CA wallet from the central LDAP location...

Enter the LDAP Hostname [SLC00DRA.mycompany.com]: POLICYSTORE.mycompany.com
Enter the LDAP port [3060]: 3060
Enter an admin user DN [cn=orcladmin]
Enter password for cn=orcladmin:
Enter the sslDomain for the CA [idm]: IDMDomain
Enter a password to protect your SSL wallet/keystore:
Enter confirmed password for your SSL wallet/keystore:
Enter password for the CA wallet:
Searching the LDAP for the CA usercertificate ...
Importing the CA certificate into trust stores...
Searching the LDAP for the CA userpkcs12 ...

Invoking OID SSL Server Configuration Script...
Enter attribute values for your certificate DN
Enter attribute values for your certificate DN

Country Name 2 letter code [US]:
State or Province Name [California]:
Locality Name (eg, city) []: Redwood
Organization Name (eg, company) [mycompany]:
Organizational Unit Name (eg, section) [oid-20110524015634]:
>>Common Name (eg, hostName.domainName.com) [SLC00XXX.mycompany.com]:
The subject DN is
cn=SLC00DRA.mycompany.com,ou=oid-20110524015634,l=Redwood,st=California,c=US

Creating an Oracle SSL Wallet for oid instance...
/u01/oracle/products/access/idm/../oracle_common/bin

>>>Enter your OID component name: [oid1]

>>>Enter the weblogic admin server host [SLC00XXX.mycompany.com] ADMINVHN

>>>Enter the weblogic admin port: [7001]

>>>Enter the weblogic admin user: [weblogic]

>>>Enter weblogic password:

>>>Enter your AS instance name: [asinst_1] oid1

>>>Enter an SSL wallet name for OID component [oid_wallet1]

Checking the existence of oid_wallet1 in the OID server...

Configuring the newly generated Oracle Wallet with your OID component...

Do you want to restart your OID component?[y/n]y

Do you want to test your SSL set up?[y/n]y

>>>Please enter your OID ssl port:[3131] 3131

Please enter the OID host name:[SLC00DRA.mycompany.com] LDAPHOST1.mycompany.com

>>>Invoking IDM_ORACLE_HOME/bin/ldapbind -h LDAPHOST1.mycompany.com -p 3131-U 2 -D

cn=orcladmin ...

Bind successful

Your oid1 SSL server has been set up successfully

Confirm that the script has been successful.

Repeat all the steps in this section, Section 10.5.3, "Configuring Oracle Internet Directory to Accept Server Authentication Mode SSL Connections," for each Oracle Internet Directory instance.

10.5.4 Validating SSL Manually

You can manually verify that the SSL connection has been set up correctly by generating a wallet and then using that wallet to access Oracle Internet Directory. Proceed as follows:

Execute the command

`. /SSLClientConfig.sh -component cacert`

providing the following inputs:

- **LDAP host name**: Name of the Oracle Internet Directory server containing the Domain Certificate
- **LDAP port**: Port used to access Oracle Internet Directory (LDAP_DIR_PORT), for example: 3060
- **LDAP User**: Oracle Internet Directory admin user, for example: cn=orcladmin
- **Password**: Oracle Internet Directory admin user password
- **SSL Domain for CA**: This is the value you entered in Section 10.5.2.2, "Generating the Certificate," for example, IDMDomain.
- **Password for truststore**: This is the password you want to assign to your wallet.

When the command executes, it generates wallets in the directory `IDM_ORACLE_HOME/rootCA/keystores/common`
Now that you have a wallet, you can test that authentication is working by executing the command:

```
ldapbind -h LDAPHOST1.mycompany.com -p 3131 -U 2 -D cn=orcladmin -q -W "file:IDM_ORACLE_HOME/rootCA/keystores/common" -Q
```

You will be prompted for your Oracle Internet Directory password and for the wallet password. If the bind is successful, the SSL connection has been set up correctly.

10.5.5 Considering Oracle Internet Directory Password Policies

By default, Oracle Internet Directory passwords expire in 120 days. Users who do not reset their passwords before expiration can no longer authenticate to Oracle Internet Directory. This includes administrative users, such as oamLDAP and oamadmin. Your Identity Management environment cannot work properly unless these users can authenticate. See Oracle Fusion Middleware Administrator’s Guide for Oracle Internet Directory for information about changing Oracle Internet Directory password policies.

10.6 Validating the Oracle Internet Directory Instances

To validate the Oracle Internet Directory instances, ensure that you can connect to each Oracle Internet Directory instance and the load balancing router using these commands:

```
Note: Ensure that the following environment variables are set before using ldapbind:

- ORACLE_HOME (set to IDM_ORACLE_HOME)
- OID_ORACLE_INSTANCE
- PATH - The following directory locations should be in your PATH:
  ORACLE_HOME/bin
  ORACLE_HOME/ldap/bin
  ORACLE_HOME/ldap/admin
```

```
ldapbind -h LDAPHOST1.mycompany.com -p 3060 -D "cn=orcladmin" -q
ldapbind -h LDAPHOST1.mycompany.com -p 3131 -D "cn=orcladmin" -q -U 1
ldapbind -h LDAPHOST2.mycompany.com -p 3060 -D "cn=orcladmin" -q
ldapbind -h LDAPHOST2.mycompany.com -p 3131 -D "cn=orcladmin" -q -U 1
ldapbind -h OIDIDSTORE.mycompany.com -p 389 -D "cn=orcladmin" -q
ldapbind -h OIDIDSTORE.mycompany.com -p 636 -D "cn=orcladmin" -q -U 1
```

Note: The -q option prompts the user for a password. LDAP tools have been modified to disable the options -w password and -P password when the environment variable LDAP_PASSWORD_PROMPTONLY is set to TRUE or 1. Use this feature whenever possible.

10.7 Tuning Oracle Internet Directory

After you deploy Oracle Internet Directory, you must tune it. For general information about tuning Oracle Internet Directory, see the "Oracle Internet Directory Performance
Backing up the Oracle Internet Directory Configuration

Tuning” chapter in Oracle Fusion Middleware Performance and Tuning Guide. For details about modifying the values of specific Oracle Internet Directory attributes, see the "Managing Configuration Attributes” chapter in Oracle Fusion Middleware Administrator’s Guide for Oracle Internet Directory.

In particular, set the following values when deploying Oracle Identity Management for Fusion Applications:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>orclskiprefinsql</td>
<td>1</td>
</tr>
<tr>
<td>orclmaxcc</td>
<td>4</td>
</tr>
<tr>
<td>orclserverprocs</td>
<td>4</td>
</tr>
<tr>
<td>orclmatchdnnenabled</td>
<td>0</td>
</tr>
<tr>
<td>orclmaxldapconns</td>
<td>4096</td>
</tr>
</tbody>
</table>

10.8 Backing up the Oracle Internet Directory Configuration

Back up Oracle Internet Directory and the WebLogic Domain, as described in Section 21.6.3, "Performing Backups During Installation and Configuration."
Preparing Identity and Policy Stores

This chapter describes how to prepare the Identity and Policy Stores in an Oracle Identity Management enterprise deployment. It contains the following sections:

- Section 11.1, "Overview of Preparing Identity and Policy Stores"
- Section 11.2, "Backing up the LDAP Directories"
- Section 11.3, "Prerequisites"
- Section 11.4, "Preparing the OPSS Policy Store"
- Section 11.5, "Preparing the Identity Store"
- Section 11.6, "Backing up the Identity Stores"

Before you can use the Policy Store, you must prepare it. This involves creating a JPS Root context, and users and groups required to access the Policy Store, in the Policy Store directory. It also reassociates the domain's internal Policy Store to use the external LDAP Policy Store.

11.1 Overview of Preparing Identity and Policy Stores

Oracle Platform Security Services uses the Policy Store to hold policy information common to all of the applications in the deployment.

Preparing the Policy Store consists of the following steps:

1. Creating a JPS Root container in Oracle Internet Directory
2. Creating users with permissions to access the policy store
3. Informing the domain to use the centralized policy store rather than the default, file-based store.

The policy store can be in the same Oracle Internet Directory as identity information or in a separate, dedicated Oracle Internet Directory. The choice is up to the user. If you store identity information in a third party directory accessed through Oracle Virtual Directory, the policy store must still be in Oracle Internet Directory.

Preparing the Identity Store involves extending the schema of the directory to support Oracle Access Manager and Oracle Identity Manager, then seeding the Identity Store with system users that will be used when building the Identity Management topology.
11.2 Backing up the LDAP Directories

The procedures described in this chapter change the configuration of the LDAP directories that host the Identity and Policy Stores. Before performing any of these tasks, back up your Oracle Internet Directory instances, Oracle Internet Directory database, and any third party directories used for identity information, as described in Section 21.6.3, "Performing Backups During Installation and Configuration."

11.3 Prerequisites

Before proceeding, ensure that the following statements are true:

- Oracle Identity Management 11g is installed on IDMHOST1, as described in Chapter 6, "Installing the Software for an Enterprise Deployment."
- Oracle Internet Directory is installed and configured (if required) as described in Chapter 10, "Extending the Domain to Include Oracle Internet Directory."
- Non-Oracle Internet Directory directories are installed and available (if required).

11.4 Preparing the OPSS Policy Store

This section describes how to prepare the Oracle Platform Security Services Policy Store.

It contains the following topics:

- Section 11.4.1, "Creating Policy Store Users and the Policy Container"
- Section 11.4.2, "Reassociating the Policy and Credential Store"

11.4.1 Creating Policy Store Users and the Policy Container

Perform the following tasks on IDMHOST1:

1. Set the environment variables: MW_HOME, JAVA_HOME, and ORACLE_HOME.
 - Set ORACLE_HOME to IAM_ORACLE_HOME
 - Set MW_HOME to IAM_MW_HOME
 - Set JAVA_HOME to IAM_MW_HOME/jrockit-version.

2. Create a properties file, called policystore.props with the following contents:

 POLICYSTORE_HOST: POLICYSTORE.mycompany.com
 POLICYSTORE_PORT: 389
 POLICYSTORE_BINDDN: cn=orcladmin
 POLICYSTORE_READONLYUSER: PolicyROUser
 POLICYSTORE_READWRITEUSER: PolicyRWUser
 POLICYSTORE_SEARCHBASE: dc=mycompany,dc=com
 POLICYSTORE_CONTAINER: cn=idm_jpsroot

 Where:
 - POLICYSTORE_HOST and POLICYSTORE_PORT are, respectively, the host and port of your Policy Store directory.
 - POLICYSTORE_BINDDN Is an administrative user in the Policy Store directory.
POLICYSTORE_READONLYUSER and POLICYSTORE_READWRITEUSER are the names of Users you want to create in the Policy Store with Read Only and Read/Write privileges.

POLICYSTORE_SEARCHBASE is the location in the directory where Users and Groups are stored.

POLICYSTORE_CONTAINER is the name of the container used for OPSS policy information.

After creating the group, the tool adds the readonlyuser as a member of the OrclPolicyAndCredentialReadPrivilegeGroup and readwriteuser as a member of OrclPolicyAndCredentialWritePrivilegeGroup.

3. Configure the Policy Store using the command idmConfigTool which is located at:

IAM_ORACLE_HOME/idmtools/bin

Note: When you run the idmConfigTool, it creates or appends to the file idmDomainConfig.param. This file is generated in the same directory that the idmConfigTool is run from. To ensure that each time the tool is run, the same file is appended to, always run the idmConfigTool from the directory:

IAM_ORACLE_HOME/idmtools/bin

The syntax of the command on Linux is:

idmConfigTool.sh -configPolicyStore input_file=configfile

The syntax on Windows is:

idmConfigTool.bat -configPolicyStore input_file=configfile

For example:

idmConfigTool.sh -configPolicyStore input_file=policystore.props

When the command runs you are prompted to enter the password of the account you are connecting to the Policy Store with. You are also asked to specify the passwords you want to assign to the accounts:

- POLICYSTORE_READONLYUSER
- POLICYSTORE_READWRITEUSER

Sample command output:

Enter Policy Store Bind DN password:

*** Creation of PolicyROUser ***
Apr 5, 2011 4:23:49 AM oracle.ldap.util.LDIFLoader loadOneLdifFile
INFO: -> LOADING:
IAM_ORACLE_HOME/idmtools/templates/oid/policystore_user.ldif
Enter User Password for PolicyROUser:
Confirm User Password for PolicyROUser:

*** Creation of PolicyRWUser ***
Apr 5, 2011 4:23:58 AM oracle.ldap.util.LDIFLoader loadOneLdifFile
INFO: -> LOADING:
IAM_ORACLE_HOME/idmtools/templates/oid/policystore_user.ldif
Enter User Password for PolicyRWUser:
Confirm User Password for PolicyRWUser:
Preparing the OPSS Policy Store

The tool has completed its operation. Details have been logged to /home/oracle/idmtools/automation.log

Note: While running this command, you might see the following error message:

WARNING: Error in adding in-memory OID search filters.
You may safely ignore this error.

4. Check log file for any errors or warnings and correct them. The file with the name automation.log is created in the directory from where you run the tool.

See Also: Oracle Fusion Middleware Integration Overview for Oracle Identity Management Suite for more information about the idmConfigTool command.

11.4.2 Reassociating the Policy and Credential Store

To reassociate the policy and credential store with Oracle Internet Directory, use the WLST reassociateSecurityStore command. Follow these steps:

1. From IDMHOST1, start the WLST shell from the ORACLE_COMMON_HOME/common/bin directory. For example, on Linux systems, you would type:

 ./wlst.sh

 On Windows you would type:

 ./wlst.cmd

2. Connect to the WebLogic Administration Server using the following wlst connect command:

 connect("AdminUser","AdminUserPassword","t3://hostname:port")
For example:

```
connect("weblogic","admin_password","t3://ADMINVHN.mycompany.com:7001")
```

3. Run the `reassociateSecurityStore` command as follows:

Syntax:

```
reassociateSecurityStore(domain="domain_name",admin="cn=orcladmin",
password="orclPassword",ldapurl="ldap://LDAPHOST:LDAPPORT",servertype="OID",
jpsroot="cn=jpsRootContainer")
```

Note: The `admin` value is the DN of the LDAP administrator, that is, the user that has administrative level privileges to the Oracle Internet Directory instance that is used as the Policy Store.

For example:

```
reassociateSecurityStore(domain="IDMDomain",admin="cn=orcladmin",
password="password",ldapurl="ldap://POLICYSTORE.mycompany.com:389",servertype="OID",
jpsroot="cn=idm_jpsroot")
```

The output for the command is as follows:

Location changed to domainRuntime tree. This is a read-only tree with DomainMBean as the root.
For more help, use help(domainRuntime)

Starting policy store reassociation.
The store and ServiceConfigurator setup done.
Schema is seeded into the store
Data is migrated to the store. Check logs for any failures or warnings during migration.
Data in the store after migration has been tested to be available
Update of in-memory jps configuration is done
Policy store reassociation done.
Starting credential store reassociation
The store and ServiceConfigurator setup done.
Schema is seeded into the store
Data is migrated to the store. Check logs for any failures or warnings during migration.
Data in the store after migration has been tested to be available
Update of in-memory jps configuration is done
Audit store reassociation done
Starting audit store reassociation
The store and ServiceConfigurator setup done.
Schema is seeded into the store
Data is migrated to the store. Check logs for any failures or warnings during migration.
Data in the store after migration has been tested to be available
Update of in-memory jps configuration is done
Audit store reassociation done
Jps Configuration has been changed. Please restart the application server.

4. Restart the WebLogic Administration Server, as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components," after the command completes successfully.
11.5 Preparing the Identity Store

This section describes how to prepare the Identity Store. It contains the following topics:

- Section 11.5.1, "Overview of Preparing the Identity Store"
- Section 11.5.2, "Creating the Configuration File"
- Section 11.5.3, "Preparing a Directory for Oracle Access Manager and Oracle Identity Manager"
- Section 11.5.4, "Creating Users and Groups"
- Section 11.5.5, "Creating Access Control Lists in Non-Oracle Internet Directory Directories"

11.5.1 Overview of Preparing the Identity Store

Before you can use a directory to support Oracle Access Manager and Oracle Identity Manager, you must extend the directory to include Object classes required by these applications.

In addition to extending the directory schema, you must create a number of users. These users are used later on in the guide for such things as:

- Accessing the directory using a dedicated user.
- Accessing Oracle Access Manager, Oracle Identity Manager and WebLogic after these products have off loaded authentication to an external directory.

11.5.2 Creating the Configuration File

Create a property file, idstore.props, to use when preparing the Identity Store. The file will have the following structure:

Oracle Internet Directory Example

```properties
# Common
IDSTORE_HOST: LDAPHOST1.mycompany.com
IDSTORE_PORT: 3060
IDSTORE_BINDDN: cn=orcladmin
IDSTORE_GROUPSEARCHBASE: cn=Groups,dc=mycompany,dc=com
IDSTORE_SEARCHBASE: dc=mycompany,dc=com
IDSTORE_USERNAMEATTRIBUTE: cn
IDSTORE_LOGINATTRIBUTE: uid
IDSTORE_USERSEARCHBASE: cn=Users, dc=mycompany,dc=com
POLICYSTORE_SHARES_IDSTORE: true
# OAM
IDSTORE_OAMADMINUSER:oamadmin
IDSTORE_OAMSOFTWAREUSER:oamLDAP
OAML1G_IDSTORE_ROLE_SECURITY_ADMIN:OAMAdministrators
# OAM and OIM
IDSTORE_SYSTEMIDBASE: cn=systemids,dc=mycompany,dc=com
# OIM
IDSTORE_OIMADMINGROUP: OIMAdministrators
IDSTORE_OIMADMINUSER: oimLDAP
# Required due to bug
IDSTORE_OAAMADMINUSER : oamadmin
# Fusion Applications
IDSTORE_READONLYUSER: IDROUser
IDSTORE_READWRITEUSER: IDRWUser
```
IDSTORE_SUPERUSER: weblogic_fa
Weblogic
IDSTORE_WLSADMINUSER : weblogic_idm

Where:

- **IDSTORE_BINDDN** is an administrative user in the Identity Store Directory.
- **IDSTORE_GROUPSEARCHBASE** is the location in the directory where Groups are stored.
- **IDSTORE_HOST** and **IDSTORE_PORT** are, respectively, the host and port of your Identity Store directory. Specify the back end directory here, rather than OVD. In the case of OID, specify one of the Oracle Internet Directory instances, for example:
 OID: LDAPHOST1 and 3060
- **IDSTORE_LOGINATTRIBUTE** is the LDAP attribute which contains the users Login name.
- **IDSTORE_OAMADMINUSER** is the name of the user you want to create as your Oracle Access Manager Administrator.
- **IDSTORE_OAMSOFTWAREUSER** is a user that gets created in LDAP that is used when Oracle Access Manager is running to connect to the LDAP server.
- **IDSTORE_OIMADMINGROUP** is the name of the group you want to create to hold your Oracle Identity Manager administrative users.
- **IDSTORE_OIMADMINUSER** is the user that Oracle Identity Manager uses to connect to the Identity store.
- **IDSTORE_READONLYUSER** is the name of a user you want to create which has Read Only permissions on your Identity Store.
- **IDSTORE_READWRITEUSER** is the name of a user you want to create which has Read/Write permissions on your Identity Store.
- **IDSTORE_SUPERUSER** is the name of the administration user you want to use to log in to the WebLogic Administration Console in the Oracle Fusion Applications domain.
- **IDSTORE_SEARCHBASE** is the location in the directory where Users and Groups are stored.
- **IDSTORE_SYSTEMIDBASE** is the location of a container in the directory where users can be placed when you do not want them in the main user container. This happens rarely but one example is the Oracle Identity Manager reconciliation user which is also used for the bind DN user in Oracle Virtual Directory adapters.
- **IDSTORE_USERSEARCHBASE** is the location in the directory where Users are stored.
- **OAM11G_IDSTORE_ROLE_SECURITY_ADMIN** is the name of the group which is used to allow access to the OAM console.
- **POLICYSTORE_SHARES_IDSTORE** is set to true for IDM 11g.
- **IDSTORE_OAAMADMINUSER** is required because of a bug in idmConfigTool.

11.5.3 Preparing a Directory for Oracle Access Manager and Oracle Identity Manager

This section explains how to deploy Identity Management components to support Active Directory and Oracle Internet Directory as the identity store.
It contains the following topics:

- Section 11.5.3.1, "Configuring Oracle Internet Directory for Use with Oracle Access Manager and Oracle Identity Manager"
- Section 11.5.3.2, "Configuring Active Directory for Use with Oracle Access Manager and Oracle Identity Manager"

11.5.3.1 Configuring Oracle Internet Directory for Use with Oracle Access Manager and Oracle Identity Manager

Pre-configuring the Identity Store extends the schema in Oracle Internet Directory. To do this, perform the following tasks on IDMHOST1:

1. Set `MW_HOME` to `IAM_MW_HOME`.

 Set `JAVA_HOME` to `JAVA_HOME`.

 Set `ORACLE_HOME` to `IAM_ORACLE_HOME`.

2. Configure the Identity Store by using the command `idmConfigTool`, which is located at:

 `IAM_ORACLE_HOME/idmtools/bin`

 Note: When you run the `idmConfigTool`, it creates or appends to the file `idmDomainConfig.param`. This file is generated in the same directory that the `idmConfigTool` is run from. To ensure that each time the tool is run, the same file is appended to, always run the `idmConfigTool` from the directory:

 `IAM_ORACLE_HOME/idmtools/bin`

 The syntax of the command on Linux is:

 `idmConfigTool.sh -preConfigIDStore input_file=configfile`

 The syntax on Windows is:

 `idmConfigTool.bat -preConfigIDStore input_file=configfile`

 For example:

 `idmConfigTool.sh -preConfigIDStore input_file=idstore.props`

 When the command runs, you are prompted to enter the password of the account you are connecting to the Identity Store with. This command might take some time to complete.

 Sample command output:

 Enter ID Store Bind DN password:

 May 25, 2011 2:37:18 PM oracle.ldap.util.LDIFLoader loadOneLdifFile
 INFO: -> LOADING: IAM_ORACLE_HOME/idmtools/templates/oid/idm_idstore_groups_template.ldif

 May 25, 2011 2:37:18 PM oracle.ldap.util.LDIFLoader loadOneLdifFile
 INFO: -> LOADING: IAM_ORACLE_HOME/idmtools/templates/oid/idm_idstore_groups_acl_template.ldif

 May 25, 2011 2:37:18 PM oracle.ldap.util.LDIFLoader loadOneLdifFile
 INFO: -> LOADING: IAM_ORACLE_HOME/idmtools/templates/oid/systemid_pwdpolicy.ldif
INFO: -> LOADING: IAM_ORACLE_HOME/idmtools/templates/oid/idstore_tuning.ldif
May 25, 2011 2:37:18 PM oracle.ldap.util.LDIFLoader loadOneLdifFile
May 25, 2011 2:37:19 PM oracle.ldap.util.LDIFLoader loadOneLdifFile
INFO: -> LOADING: IAM_ORACLE_HOME/oam/server/oim-intg/schema/OID_oblix_pwd_schema_add.ldif
May 25, 2011 2:37:19 PM oracle.ldap.util.LDIFLoader loadOneLdifFile
INFO: -> LOADING: IAM_ORACLE_HOME/oam/server/oim-intg/schema/OID_oim_pwd_schema_add.ldif
May 25, 2011 2:37:19 PM oracle.ldap.util.LDIFLoader loadOneLdifFile
INFO: -> LOADING: IAM_ORACLE_HOME/oam/server/oim-intg/schema/OID_oblix_schema_add.ldif
May 25, 2011 2:37:19 PM oracle.ldap.util.LDIFLoader loadOneLdifFile
INFO: -> LOADING: IAM_ORACLE_HOME/oam/server/oim-intg/schema/OID_oblix_schema_index_add.ldif
May 25, 2011 2:37:34 PM oracle.ldap.util.LDIFLoader loadOneLdifFile
INFO: -> LOADING: IAM_ORACLE_HOME/oam/server/oim-intg/schema/OID_oblix_schema_index_add.ldif
May 25, 2011 2:37:34 PM oracle.ldap.util.LDIFLoader loadOneLdifFile
The tool has completed its operation. Details have been logged to automation.log

3. Check the log file for any errors or warnings and correct them. The file with the name automation.log is created in the directory from where you run the tool.

Note: In addition to creating users, idmConfigTool creates the following groups:

- orclFAUserReadPrivilegeGroup
- orclFAUserWritePrivilegeGroup
- orclFAUserWritePrefsPrivilegeGroup
- orclFAGroupReadPrivilegeGroup
- orclFAGroupWritePrivilegeGroup

See Also: Oracle Fusion Middleware Integration Overview for Oracle Identity Management Suite for more information about the idmConfigTool command.

11.5.3.2 Configuring Active Directory for Use with Oracle Access Manager and Oracle Identity Manager

This section describes how to configure Active Directory. Extend the schema in Active Directory as follows.

Note: The order in which you perform the steps is critical!

1. Locate the following files:

 - \$HOME/oam/server/oim-intg.ldif/ad/schema/ADUserSchema.ldif
 - \$HOME/oam/server/oim-intg.ldif/ad/schema/AD_oam_pwd_schema_add.ldif

2. In both these files, replace the domain-dn with the appropriate domain-dn value

3. Use ldapadd from the command line to load the two LDIF files, as follows.

   ```
   ldapadd -h activedirectoryhostname -p activedirectoryportnumber -D AD_
   ```
Preparing the Identity Store

```
administrator -q -c -f file
```

where AD_administrator is a user which has schema extension privileges to the directory

For example:

```
ldapadd -h "ACTIVEDIRECTORYHOST.mycompany.com" -p 389 -D adminuser -q -c -f
ADUserSchema.ldif
ldapadd -h "ACTIVEDIRECTORYHOST.mycompany.com" -p 389 -D adminuser -q -c -f AD_oam_pwd_schema_add.ldif
```

Note: After the -D you can specify either a DN or user@domain.com.

4. Then go to:

`IAM_MW_HOME/oracle_common/modules/oracle.ovd_11.1.1/oimtemplates`

Run the following command to extend Active Directory schema:

```
sh extendadschema.sh -h AD_host -p AD_port -D 'administrator@mydomain.com' -AD "dc=mydomain,dc=com" -OAM true
```

The command is `extendadschema`. Excluding Users from OIM Reconciliation bat on Windows.

11.5.4 Creating Users and Groups

Configure the Identity Store by using the command `idmConfigTool`, which is located at:

`IAM_ORACLE_HOME/idmtools/bin`

Note: When you run the `idmConfigTool`, it creates or appends to the file `idmDomainConfig.param`. This file is generated in the same directory in which the `idmConfigTool` is run. To ensure that the same file is appended to every time you run the tool, always run the `idmConfigTool` from the directory:

`IAM_ORACLE_HOME/idmtools/bin`

The syntax of the command on Linux is:

```
idmConfigTool.sh -prepareIDStore mode=all input_file=configfile
```

The syntax on Windows is:

```
idmConfigTool.bat -prepareIDStore mode=all input_file=configfile
```

For example:

```
idmConfigTool.sh -prepareIDStore mode=all input_file=idstore.props
```

When the command runs, it prompts you to enter the password of the account you are connecting to and passwords for the accounts that are being created.
Preparing Identity and Policy Stores

11.5.5 Creating Access Control Lists in Non-Oracle Internet Directory Directories

In the preceding sections, you seeded the Identity Store with users and artifacts for the Oracle components. If your Identity Store is hosted in a non-Oracle Internet Directory directory, such as Microsoft Active Directory, you must set up the access control lists (ACLs) to provide appropriate privileges to the entities you created. This section lists the artifacts created and the privileges required for the artifacts.

- Users and groups. ACLs to the users and groups container are provided in Oracle Internet Directory. Set them manually for other directories. The Oracle Identity Manager/Oracle Access Manager integration and Fusion Applications require the following artifacts to be created in the Identity store.
 - Group with read privileges to the users container (orclFAUserReadPrivilegeGroup). Configure the local directory ACLs so that this group has privileges to read all the attributes of the users in the Identity Store.
 - Group with read/write privileges to the users container (orclFAUserWritePrivilegeGroup)
 - Group with read privileges to the groups container (orclFAGroupReadPrivilegeGroup)
 - Group with read privileges to the groups container (orclFAGroupWritePrivilegeGroup)
 - Group with write privileges to a partial set of attributes (orclFAUserWritePrefsPrivilegeGroup)

- The user specified by the IDSTORE_READONLYUSER parameter. When you run the preconfigIDstore command, this user is assigned to the groups orclFAUserReadPrivilegeGroup, orclFAWritePrefsPrivilegeGroup, and orclFAGroupReadPrivilegeGroup. The user also needs compare privileges to the userpassword attribute of the user entry.

- The user specified by the IDSTORE_READWRITEUSER parameter. It is assigned to the groups orclFAUserWritePrivilegeGroup and orclFAGroupWritePrivilegeGroup.

- SystemIds. The System ID container is created for storing all the system identifiers. If there is another container in which the users are to be created, that is specified as part of the admin.
Oracle Access Manager Admin User. This user is added to the OAM Administrator group, which provides permission for the administration of the Oracle Access Manager Console. No LDAP schema level privileges are required, since this is just an application user.

Oracle Access Manager Software User. This user is added to the groups where the user gets read privileges to the container. This is also provided with schema admin privileges.

Oracle Identity Manager user oimLDAP under System ID container. Password policies are set accordingly in the container. The passwords for the users in the System ID container must be set up so that they do not expire.

Oracle Identity Manager administration group. The Oracle Identity Manager user is added as its member. The Oracle Identity Manager admin group is given complete read/write privileges to all the user and group entities in the directory.

WebLogic Administrator. This is the administrator of the IDM domain for Oracle Virtual Directory

WebLogic Administrator Group. The WebLogic administrator is added as a member. This is the administrator group of the IDM domain for Oracle Virtual Directory.

Reserve container. Permissions are provided to the Oracle Identity Manager admin group to perform read/write operations.

11.6 Backing up the Identity Stores

Back up your Oracle Internet Directory instances, Oracle Internet Directory database, and any third party directories used for identity information, as described in Section 21.6.3, "Performing Backups During Installation and Configuration."
This chapter describes how to extend the Identity Management domain to include Oracle Directory Services Manager.

This chapter includes the following topics:

- Section 12.1, "Overview of Extending the Domain to Include ODSM"
- Section 12.2, "Prerequisites"
- Section 12.3, "Extending the Oracle WebLogic Domain IDMDomain"
- Section 12.4, "Expanding the ODSM Cluster"
- Section 12.5, "Provisioning the Managed Servers in the Managed Server Directory"
- Section 12.6, "Validating the Application Tier Configuration"
- Section 12.7, "Backing Up the ODSM Configuration"

12.1 Overview of Extending the Domain to Include ODSM

The Application Tier consists of multiple computers hosting the Oracle Directory Services Manager and Oracle Access Manager instances. In the complete configuration, requests are balanced among the instances on the Application Tier computers to create a high-performing, fault tolerant application environment.

Oracle Directory Services Manager is a unified graphical user interface (GUI) for managing instances of Oracle Internet Directory and Oracle Virtual Directory. Oracle Directory Services Manager enables you to configure the structure of the directory, define objects in the directory, add and configure users, groups, and other entries.

This chapter describes how to install and configure Oracle Directory Services Manager (ODSM).

12.2 Prerequisites

- Ensure that the system, patch, kernel and other requirements are met. These are listed in the Oracle Fusion Middleware Installation Guide for Oracle Identity Management manual in the Oracle Fusion Middleware documentation library for the platform and version you are using.

- If you plan on provisioning the Instance Home or the Managed Server domain directory on shared storage, ensure that the appropriate shared storage volumes are mounted on IDMHOST1 as described in Section 4.3, "About Recommended Locations for the Different Directories.”
12.3 Extending the Oracle WebLogic Domain IDMDomain

Follow these steps to install and configure Oracle Directory Services Manager in the domain IDMDomain:

1. Create a file containing the ports used by ODSM. On Disk1 of the installation media, locate the file stage/Response/staticports.ini. Copy it to a file called odsm_ports.ini. Delete all entries in odsm_ports.ini except for ODSM Server Port No. Change the values of ODSM Server Port No. to 7006 (ODSM_PORT in Section A.3).

 Note: If the port name in the file is slightly different from those listed in this step, use the name in the file.

2. Start the Oracle Identity Management 11g Configuration Wizard by running the config.sh script located under the IDM_ORACLE_HOME/bin directory on IDMHOST1. For example:

 `IDM_ORACLE_HOME/bin/config.sh`

3. On the Welcome screen, click Next.

4. On the Select Domain screen, select Extend Existing Domain and enter the domain details:
 - **Hostname:** ADMINVHN.mycompany.com
 - **Port:** 7001 (WLS_ADMIN_PORT)
 - **User Name:** weblogic
 - **User Password:** user password
 Click Next.

5. A dialog box with the following message appears:

 The selected domain is not a valid Identity Management domain or the installer cannot determine if it is a valid domain. If you created the domain using the Identity Management installer, you can ignore this message and continue. If you did not create the domain using the Identity Management installer, refer to the Identity Management documentation for information on how to verify the domain is valid.

 Click Yes to continue.
This is a benign warning that you can ignore.

6. On the Specify Installation Location screen, specify the following values (the values for the Oracle Middleware Home Location and the Oracle Home Directory fields are prefilled. The values default to the Middleware home and Oracle home previously installed on IDMHOST1:

- Oracle Middleware Home Location: IAM_MW_HOME
- Oracle Home Directory: idm
- WebLogic Server Directory: IAM_MW_HOME/wlserver_10.3
- Oracle Instance Location: ODS_ORACLE_INSTANCE
- Oracle Instance Name: ODS_ORACLE_INSTANCE

Click Next.

7. On the Specify Email for Security Updates screen, specify these values:

- Email Address: Provide the email address for your My Oracle Support account.
- Oracle Support Password: Provide the password for your My Oracle Support account.
- Check the check box next to the I wish to receive security updates via My Oracle Support field.

Click Next.

Deselect all the other components.

Select the Clustered check box.

Click Next.

9. On the Configure Ports screen, you use the odsm_ports.ini file you created in Step 1 to specify the ports to be used. This enables you to bypass automatic port configuration.

a. Select Specify Ports using a Configuration File.

b. In the file name field specify odsm_ports.ini.

c. Click Save, then click Next.

10. On the Installation Summary screen, review the selections to ensure that they are correct (if they are not, click Back to modify selections on previous screens), and click Configure.

11. On the Configuration Progress screen, multiple configuration assistants are launched in succession; this process can be lengthy. Wait until it completes.

12. On the Installation Complete screen, click Finish to confirm your choice to exit.

12.4 Expanding the ODSM Cluster

Follow these steps to extend the WebLogic Server domain and install and configure Oracle Directory Service Manager on IDMHOST2:

1. Ensure that the system, patch, kernel and other requirements are met. These are listed in the Oracle Fusion Middleware Installation Guide for Oracle Identity
Expanding the_ODSM_Cluster

Management manual in the Oracle Fusion Middleware documentation library for
the platform and version you are using.

2. If you plan on provisioning the Instance Home or the Managed Server domain
directory on shared storage, ensure that the appropriate shared storage volumes
are mounted on IDMHOST2 as described in Section 4.3, "About Recommended
Locations for the Different Directories."

3. Ensure that port number 7006 (ODSM_PORT) is not in use by any service on the
computer by issuing this command for the operating system you are using. If a
port is not in use, no output is returned from the command.

On Linux:
netstat -an | grep "7006"

If the port is in use (if the command returns output identifying the port), you must
free it.

On Linux:
Remove the entries for port 7006 (ODSM_PORT) in the /etc/services file if the
port is in use by a service and restart the services, as described in Section 21.1,
"Starting and Stopping Oracle Identity Management Components," or restart the
computer.

4. Start the Oracle Identity Management 11g Configuration Wizard by running the
config.sh script located under the IDM_ORACLE_HOME/bin directory on
IDMHOST2. For example: IDM_ORACLE_HOME/bin

5. On the Welcome screen, click Next.

6. On the Select Domain screen, select the Expand Cluster option and specify these
values:
- Hostname: ADMINVHN.mycompany.com
- Port: 7001 (WLS_ADMIN_PORT)
- UserName: weblogic
- User Password: password for the webLogic user

Click Next.

7. A dialog box with the following message appears:
The selected domain is not a valid Identity Management domain or the installer
cannot determine if it is a valid domain. If you created the domain using the
Identity Management installer, you can ignore this message and continue. If you
did not create the domain using the Identity Management installer, refer to the
Identity Management documentation for information on how to verify the domain
is valid.

Click YES to continue.

This is a benign warning that you can safely ignore.

8. On the Specify Installation Location screen, specify the following values. The
values for the Oracle Middleware Home Location and the Oracle Home
Directory fields are prefilled. The values default to the Middleware home and
Oracle home previously installed on IDMHOST1:
- Oracle Middleware Home Location: IAM_MW_HOME
- Oracle Home Directory: idm
Provisioning the Managed Servers in the Managed Server Directory

- **WebLogic Server Directory**: IAM_MW_HOME/wlservr_10.3
- **Oracle Instance Location**: ODS_ORACLE_INSTANCE
- **Oracle Instance Name**: ODS_ORACLE_INSTANCE

Click Next.

9. On the Email for Security Updates screen, specify these values:
 - **Email Address**: Provide the email address for your My Oracle Support account.
 - **Oracle Support Password**: Provide the password for your My Oracle Support account.
 - Check the check box next to the **I wish to receive security updates via My Oracle Support** field.

Click Next.

10. On the Configure Components screen, de-select all the products and then click Next.

11. On the Configure Ports screen, you use the odsm_ports.ini file you created in Section 12.3, "Extending the Oracle WebLogic Domain IDMDomain" to specify the ports to be used. This enables you to bypass automatic port configuration.
 a. Select **Specify Ports using a Configuration File**.
 b. In the file name field specify odsm_ports.ini.
 c. Click **Save**, then click **Next**.

12. On the Installation Summary screen, review the selections to ensure that they are correct (if they are not, click **Back** to modify selections on previous screens), and click **Configure**.

13. On the Configuration Progress screen, multiple configuration assistants are launched in succession; this process can be lengthy. Wait until it completes.

14. On the Installation Complete screen, click **Finish** to confirm your choice to exit.

12.5 Provisioning the Managed Servers in the Managed Server Directory

This section provides the steps to provision the Managed Server on the local disk. Proceed as follows:

1. Stop the ODS instances on both IDMHOST1 and IDMHOST2. Follow the steps in Section 21.1, "Starting and Stopping Oracle Identity Management Components".

2. On IDMHOST1, pack the Managed Server domain using the `pack` command located under the ORACLE_COMMON_HOME/common/bin directory. Make sure to pass **-managed=true** flag to pack the Managed Server. Type:

   ```bash
   ORACLE_COMMON_HOME/common/bin/pack.sh -managed=true -domain=path_to_adminServer_domain -template=templateName.jar -template_name=templateName
   ```

 For example

   ```bash
   ORACLE_COMMON_HOME/common/bin/pack.sh -managed=true -domain=ASERVER_HOME -template=managedServer.jar -template_name=ManagedServer_Template
   ```
3. Unpack the Managed Server to the managed server directory on IDMHOST1 using the `unpack` command located under the `ORACLE_COMMON_HOME/common/bin` directory.

```
ORACLE_COMMON_HOME/common/bin/unpack.sh -domain=path_to_domain_on_localdisk -template=templateName.jar -app_dir=path_to_appdir_on_localdisk -overwrite_domain=true
```

For example:

```
ORACLE_COMMON_HOME/common/bin/unpack.sh -domain=MSERVER_HOME -template=managedServer.jar -app_dir=MSERVER_HOME/applications -overwrite_domain=true
```

4. Copy the Managed Server template directory from IDMHOST1 to IDMHOST2.

5. Unpack the Managed Server to the managed server directory on IDMHOST2 using the `unpack` command located under the `ORACLE_COMMON_HOME/common/bin` directory.

```
ORACLE_COMMON_HOME/common/bin/unpack.sh -domain=path_to_domain_on_localdisk -template=templateName.jar -app_dir=path_to_appdir_on_localdisk
```

For example:

```
ORACLE_COMMON_HOME/common/bin/unpack.sh -domain=MSERVER_HOME -template=managedServer.jar -app_dir=MSERVER_HOME/applications
```

6. Delete the `ASERVER_HOME/servers/wls_ods1` directory on IDMHOST1 and the `ASERVER_HOME/servers/wls_ods2` directory on IDMHOST2.

These directories are created by the Oracle Universal Installer when the domain is originally configured and are no longer required after the provisioning the Managed Server to the managed server directory.

7. Start the managed servers `wls_ods1` and `wls_ods2` as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components."

12.6 Validating the Application Tier Configuration

Validate the Application Tier configuration as follows:

12.6.1 Validating Browser Connection to ODSM Site

Follow these steps to validate that you can connect the Oracle Directory Services Manager site in a browser:

1. In a web browser, verify that you can connect to Oracle Directory Services Manager (ODSM) at:

   ```
   http://HOSTNAME.mycompany.com:port/odsm
   ```

 For example, on IDMHOST1, enter this URL, where 7006 is `ODSM_PORT` in Section A.3:

   ```
   http://IDMHOST1.mycompany.com:7006/odsm
   ```

 and on IDMHOST2, enter this URL:

   ```
   http://IDMHOST2.mycompany.com:7006/odsm
   ```
2. In a web browser, verify that you can access ODSM through the load balancer address:
 http://ADMIN.mycompany.com/odsm

12.6.2 Validating ODSM Connections to Oracle Internet Directory

Validate that Oracle Directory Services Manager can create connections to Oracle Internet Directory.

Create a connection to the Oracle Internet Directory on each ODSM instance separately. Even though ODSM is clustered, the connection details are local to each node. Proceed as follows:

1. Launch Oracle Directory Services Manager from IDMHOST1:
 http://IDMHOST1.mycompany.com:7006/odsm

2. Create a connection to the Oracle Internet Directory virtual host by providing the following information in ODSM:
 - Server: OIDSTORE.mycompany.com
 - Port: 636 (LDAP_LBR_SSL_PORT)
 - Enable the SSL option
 - User: cn=orcladmin
 - Password: ldap-password

3. Launch Oracle Directory Services Manager from IDMHOST2.
 Follow Step b to create a connection to Oracle Internet Directory from IDMHOST2
 http://IDMHOST2.mycompany.com:7006/odsm

4. Create a connection to the Oracle Internet Directory virtual host by providing the corresponding information in ODSM

Note: Accept the certificate when prompted.

12.7 Backing Up the ODSM Configuration

Back up the Web Tier and the WebLogic Domain, as described in Section 21.6.3, "Performing Backups During Installation and Configuration."
13 Configuring Oracle Access Manager 11g

This chapter describes how to configure Oracle Access Manager 11.1.1 in the Oracle Identity Management enterprise deployment.

This chapter includes the following topics:

- Section 13.1, "Overview of Configuring Oracle Access Manager"
- Section 13.2, "About Domain URLs"
- Section 13.3, "Using Different Directory Configurations"
- Section 13.4, "Prerequisites"
- Section 13.5, "Starting Oracle Access Manager Managed Servers"
- Section 13.6, "Prerequisites"
- Section 13.7, "Configuring Oracle Access Manager"
- Section 13.8, "Adding the oamadmin Account to Access System Administrators"
- Section 13.9, "Creating Oracle Access Manager Policies for WebGate 11g"
- Section 13.10, "Creating a Single Keystore for Integrating Oracle Access Manager with Other Components"
- Section 13.11, "Updating Oracle Access Manager System Parameters"
- Section 13.12, "Backing Up the Access Manager Configuration"

13.1 Overview of Configuring Oracle Access Manager

Oracle Access Manager enables your users to seamlessly gain access to web applications and other IT resources across your enterprise. It provides a centralized and automated single sign-on (SSO) solution, which includes an extensible set of authentication methods and the ability to define workflows around them. It also contains an authorization engine, which grants or denies access to particular resources based on properties of the user requesting access as well as based on the environment from which the request is made. Comprehensive policy management, auditing, and integration with other components of your IT infrastructure enrich this core functionality.

Oracle Access Manager consists of several components, including OAM Server, Oracle Access Manager Console, and WebGates. The OAM Server includes all the components necessary to restrict access to enterprise resources. The Oracle Access Manager Console is the administrative console to Oracle Access Manager. WebGates are web server agents that act as the actual enforcement points for Oracle Access Manager. Follow the instructions in this chapter and Chapter 20, "Configuring Single
13.2 About Domain URLs

Before you complete this chapter, the following URL is available:

<table>
<thead>
<tr>
<th>Component</th>
<th>URLs</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAM Console</td>
<td>http://OAMADMINVHN.mycompany.com:7001/oamconsole</td>
</tr>
</tbody>
</table>

1 where 7001 is WLS_ADMIN_PORT in Section A.3.

After you complete this chapter, the following URL will be available:

<table>
<thead>
<tr>
<th>Component</th>
<th>URLs</th>
<th>User</th>
<th>SSO User</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAM Console</td>
<td>http://OAMADMIN.mycompany.com/oamconsole</td>
<td>weblogic</td>
<td>oamadmin</td>
</tr>
</tbody>
</table>

13.3 Using Different Directory Configurations

The enterprise deployment described in this guide shows Oracle Access Manager using Oracle Internet Directory as the only LDAP repository. Oracle Access Manager uses a single LDAP for policy and configuration data. It is possible to configure another LDAP as the Identity Store where users, organizations and groups reside. For example, an Oracle Access Manager instance may use Oracle Internet Directory as its policy and configuration store and point to an instance of Microsoft Active Directory for users and groups.

In addition, the Identity Stores can potentially be front-ended by Oracle Virtual Directory to virtualize the data sources.

To learn more about the different types of directory configuration for Oracle Access Manager, consult the 11g Oracle Access Manager documentation at Oracle Technology Network. Customers considering these variations should adjust their Directory Tier and Oracle Access Manager deployment accordingly.

13.4 Prerequisites

Before you configure Oracle Access Manager, ensure that the following tasks have been performed on IDMHOST1 and IDMHOST2:

1. Install Oracle WebLogic Server, Oracle Identity Management, and Oracle Identity and Access Management as described in Chapter 6, "Installing the Software for an Enterprise Deployment."

2. Install the Identity Store, as described in Chapter 10, "Extending the Domain to Include Oracle Internet Directory" or "Configuring an Identity Store with Multiple Directories" in Oracle Fusion Middleware Integration Overview for Oracle Identity Management Suite.

3. Prepare the Identity and Policy Stores as described in Chapter 11, "Preparing Identity and Policy Stores."
4. Install Oracle Virtual Directory, if required, as described in Chapter 14, "Extending the Domain to Include Oracle Virtual Directory."

13.5 Starting Oracle Access Manager Managed Servers

Start the managed servers WLS_OAM1 and WLS_OAM2 by following the procedure in Section 21.1, "Starting and Stopping Oracle Identity Management Components."

13.6 Prerequisites

Before proceeding, ensure that the following tasks have been performed:

1. Configure Oracle Web Tier on WEBHOST1 and WEBHOST2 as described in Chapter 8, "Configuring the Web Tier for an Enterprise Deployment."
2. Configure the load balancer as described in Section 3.3, "About Virtual Server Names Used by the Topologies."
3. Configure Oracle Access Manager on IDMHOST1 and IDMHOST2 as described in Section 13.11, "Updating Oracle Access Manager System Parameters" and Section 13.5, "Starting Oracle Access Manager Managed Servers."

13.7 Configuring Oracle Access Manager

This section contains the following topics:

- Section 13.7.1, "Setting a Global Passphrase"
- Section 13.7.2, "Configuring Oracle Access Manager by Using the IDM Automation Tool"
- Section 13.7.3, "Validating the Configuration"
- Section 13.7.4, "Updating Newly-Created Agent"
- Section 13.7.5, "Updating Existing WebGate Agents"

13.7.1 Setting a Global Passphrase

By default, Oracle Access Manager is configured to use the Open security model. If you plan to change this mode using `idmConfigTool`, you must set a global passphrase. Although you need not set the global passphrase and the web gate access password to be the same, it is recommended that you do. You do this by performing the following steps.

1. Log in to the OAM console at `http://ADMIN.mycompany.com/oamconsole` as the WebLogic administration user.
2. Click the System Configuration tab.
3. Click Access Manager Settings located in the Access Manager Settings section.
4. Select Open from the Actions menu. The access manager settings are displayed.
5. If you plan to use Simple security mode for OAM servers, supply a global passphrase.
6. Click Apply.
13.7.2 Configuring Oracle Access Manager by Using the IDM Automation Tool

Now that the initial installation is done and the security model set, the following tasks must be performed:

- Oracle Access Manager must be configured to use an external LDAP Directory (IDSTORE.mycompany.com).
- Oracle Access Manager WebGate Agent must be created.
- You perform these tasks by using idmConfigTool.

Perform the following tasks on IDMHOST1:

1. Set ORACLE_HOME to IAM_ORACLE_HOME
 Set MW_HOME to IAM_MW_HOME.
 Set JAVA_HOME to JAVA_HOME.

2. Create a properties file called config_oam1.props with the following contents:

 WLHOST: ADMINVHN.mycompany.com
 WLSPORT: 7001
 WLSADMIN: weblogic
 WLSPASSWD: weblogic password
 IDSTORE_HOST: IDSTORE.mycompany.com
 IDSTORE_PORT: 389
 IDSTORE_DIRECTORYTYPE:OVD
 IDSTORE_BINDDN: cn=orcladmin
 IDSTORE_USERNAMEATTRIBUTE: cn
 IDSTORE_LOGINATTRIBUTE: uid
 IDSTORE_USERSSEARCHBASE: cn=Users,dc=mycompany,dc=com
 IDSTORE_SEARCHBASE: dc=mycompany,dc=com
 IDSTORE_GROUPSEARCHBASE: cn=Groups,dc=mycompany,dc=com
 IDSTORE_OAMSOFTWAREUSER: oamLDAP
 IDSTORE_OAMADMINUSER: oamadmin
 PRIMARY_OAM_SERVERS: IDMHOST1.mycompany.com:5575,IDMHOST2.mycompany.com:5575
 WEBGATE_TYPE: ohsWebgate11g
 ACCESS_GATE_ID: Webgate_IDM
 OAM11G_IDM_DOMAIN_OHS_HOST:SSO.mycompany.com
 OAM11G_IDM_DOMAIN_OHS_PORT:443
 OAM11G_IDM_DOMAIN_OHS_PROTOCOL:https
 OAM11G_WG_DENY_ON_NOT_PROTECTED: false
 OAM_TRANSFER_MODE: simple
 OAM11G_OAM_SERVER_TRANSFER_MODE:simple
 OAM11G_IDM_DOMAIN_LOGOUT_URLS:/console/jsp/common/logout.jsp,/em/targetauth/emaslogout.jsp
 OAM11G_OIM_WEBGATE_PASSWD: webgate password
 COOKIE_DOMAIN: .mycompany.com
 OAM11G_IDSTORE_ROLE_SECURITY_ADMIN: OAMAdministrators
 OAM11G_SSO_ONLY_FLAG: true
 OAM11G_OIM_INTEGRATION_REQ: true
 OAM11G_IMPERSONATION_FLAG: true
 OAM11G_SERVER_LBR_HOST:SSO.mycompany.com
 OAM11G_SERVER_LBR_PORT:443
 OAM11G_SERVER_LBR_PROTOCOL:https
 COOKIE_EXPIRY_INTERVAL: 120
 OAM11G_OIM_OHS_URL:https://SSO.mycompany.com:443/
 OAM11G_SERVER_LOGIN_ATTRIBUTE: uid

Where:
- **WLSHOST** is the host of your administration server, created in Chapter 9, "Creating the Domain for an Enterprise Deployment." This is *ADMINVHN* in Section A.1.

- **WLSPORT** is the port of your administration server, *WLS_ADMIN_PORT* in Section A.3, created in Chapter 9, "Creating the Domain for an Enterprise Deployment."

- **WLSADMIN** and **WLSPASSWD** are, respectively, the WebLogic administrative user and password you use to log in to the WebLogic console.

- **IDSTORE_HOST** and **IDSTORE_PORT** are the host and port of the Identity Store directory when accessed through the load balancer. These are *LDAP_LBR_HOST* and *LDAP_LBR_PORT* in the Section A.3 worksheet.

- **IDSTORE_BINDDN** is an administrative user in the Identity Store directory.

- **IDSTORE_USERSEARCHBASE** is the container under which Oracle Access Manager searches for the users.

- **IDSTORE_GROUPSEARCHBASE** is the location in the directory where Groups are stored.

- **IDSTORE_SEARCHBASE** is the location in the directory where Users and Groups are stored.

- **IDSTORE_OAMSOFTWAREUSER** is the name of the user you created in Section 11.5, "Preparing the Identity Store" to be used to interact with LDAP.

- **IDSTORE_OAMADMINUSER** is the name of the user you created in Section 11.5, "Preparing the Identity Store" to access your OAM Console.

- **PRIMARY_OAM_SERVERS** is a comma separated list of your OAM Servers and the proxy ports they use.

Note: To determine the proxy ports your OAM Servers use:

1. Log in to the OAM console at: http://ADMIN.mycompany.com/oamconsole
2. Click the **System Configuration** tab.
3. Expand **Server Instances** under the Common Configuration section
4. Click an Oracle Access Manager server, such as **WLS_OAM1**, and click **Open**.
5. Proxy port is the one shown as **Port**.

- **ACCESS_GATE_ID** is the name you want to assign to the WebGate.

- **OAM11G_OIM_WEBGATE_PASSWD** is the password you will assign to the WebGate after OIM has been configured

- **OAM11G_IDM_DOMAIN_OHS_HOST** is the name of the load balancer which is in front of the OHS’s.

- **OAM11G_IDM_DOMAIN_OHS_PORT** is the port that the load balancer listens on (*HTTP_SSL_PORT*).

- **OAM11G_IDM_DOMAIN_OHS_PROTOCOL** is the protocol to use when directing requests at the load balancer.
- OAM11G_OAM_SERVER_TRANSFER_MODE is the security model that the Oracle Access Manager servers function in, as defined in Section 13.7.1, "Setting a Global Passphrase."

- OAM11G_IMPERSIONATION_FLAG is set to True if you are using Oracle Fusion Applications.

- OAM11G_IDM_DOMAIN_LOGOUT_URLS is set to the various logout URLs.

- OAM11G_SSO_ONLY_FLAG configures Oracle Access Manager as authentication only mode or normal mode, which supports authentication and authorization. This is set to true for Fusion Applications.

If OAM11G_SSO_ONLY_FLAG is true, the OAM Server operates in authentication only mode, where all authorizations return true by default without any policy validations. In this mode, the server does not have the overhead of authorization handling. This is recommended for applications which do not depend on authorization policies and need only the authentication feature of the OAM Server.

If the value is false, the server runs in default mode, where each authentication is followed by one or more authorization requests to the OAM Server. WebGate allows the access to the requested resources or not, based on the responses from the OAM Server.

- OAM11G_SERVER_LBR_HOST is the name of the load balancer fronting your site. This and the following two parameters are used to construct your login URL.

- OAM11G_SERVER_LBR_PORT is the port that the load balancer is listening on (HTTP_SSL_PORT).

- OAM11G_SERVER_LBR_PROTOCOL is the URL prefix to use.

- COOKIE_DOMAIN is the domain in which the WebGate functions.

- WEBGATE_TYPE is the type of WebGate agent you want to create. In this release, the value is ohsWebgate11g.

- OAM11G_IDSTORE_NAME is the name of the Identity Store. If you already have an Identity Store in place which is different from the default created by this tool, set this parameter to the name of that Identity Store.

- OAM11G_OIM_OHS_URL is the URL that will be used to access OIM when accessing through the load balancer, after OIM is configured.

- OAM11G_SERVER_LOGIN_ATTRIBUTE: Setting this to uid ensures that when users log in their username is validated against the uid attribute in LDAP.

3. Configure Oracle Access Manager using the command idmConfigTool which is located at:

IAM_ORACLE_HOME/idmtools/bin

Note: When you run the idmConfigTool, it creates or appends to the file idmDomainConfig.param. This file is generated in the same directory that the idmConfigTool is run from. To ensure that each time the tool is run, the same file is appended to, always run the idmConfigTool from the directory:

IAM_ORACLE_HOME/idmtools/bin
The syntax of the command on Linux is:
```
idmConfigTool.sh -configOAM input_file=configfile
```

The syntax on Windows is:
```
idmConfigTool.bat -configOAM input_file=configfile
```

For example:
```
idmConfigTool.sh -configOAM input_file=config_oam1.props
```

When the command runs you are prompted to enter the password of the account you are connecting to the Identity Store with. You are also asked to specify the passwords you want to assign to these accounts:

- IDSTORE_PWD_OAMSOFTWAREUSER
- IDSTORE_PWD_OAMADMINUSER

4. Check the log file for any errors or warnings and correct them. A file named automation.log is created in the directory where you run the tool.

5. Restart WebLogic Administration Server as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components."

Note: After you run idmConfigTool, several files are created that you need for subsequent tasks. Keep these in a safe location.

Two WebGate profiles are created: Webgate_IDM, which is a 10g profile, and Webgate_IDM_11g, which is an 11g profile. Webgate_IDM is used for intercomponent communication and Webgate_IDM_11g is used by 11g Webgates.

The following files exist in the directory $ASERVER_HOME/output/Webgate_IDM_11g. You need these when you install the WebGate software.

- cwallet.sso
- ObAccessClient.xml
- password.xml

Additionally, you need the files aaa_cert.pem and aaa_key.pem, which are located in the directory $ASERVER_HOME/output/Webgate_IDM.

13.7.3 Validating the Configuration

To Validate that this has completed correctly.

1. Access the OAM console at: http://ADMIN.mycompany.com/oamconsole
2. Log in as the Oracle Access Manager administration user you created in Section 11.5, "Preparing the Identity Store."
3. Click the System Configuration tab
5. Click the open folder icon, then click Search.
6. You should see the WebGate agents Webgate_IDM and Webgate_IDM_11g, which you created in Section 13.7.2, "Configuring Oracle Access Manager by Using the IDM Automation Tool."

13.7.4 Updating Newly-Created Agent

After generating the initial configuration, you must edit the configuration and add advanced configuration entries.

1. Select System Configuration Tab
2. Select Access Manager Settings - SSO Agents - OAM Agent from the directory tree. Double-click or select the open folder icon.
3. On the displayed search page click Search to perform an empty search.
4. Click the Agent Webgate_IDM.
5. Select Open from the Actions menu.
6. Set Max Number of Connections to 4 for all of the OAM Servers listed in the primary servers list.
7. Click Apply.
8. Repeat Steps 4 through 7 for the WebGate agent Webgate_IDM_11g.
9. Click Policy Configuration tab.
10. Double Click IAMSuiteAgent under Host Identifiers.
11. Click + in the operations box.
12. Enter the following information:
 - Host Name: ADMIN.mycompany.com
 - Port: 80 (HTTP_PORT)
13. Click Apply.

13.7.5 Updating Existing WebGate Agents

If you have changed the OAM security model using the idmConfigTool you must change the security model used by any existing Webgates to reflect this change.

To do this, perform the following steps:

1. Log in to the Oracle Access ManagerConsole as the Oracle Access Manager administration user you created in Section 11.5, "Preparing the Identity Store," at: http://ADMIN.mycompany.com/oamconsole
2. Click the System Configuration tab.
3. Expand Access Manager Settings - SSO Agents.
4. Click OAM Agents and select Open from the Actions menu.
5. In the Search window, click Search.
6. Click each Agent that was not created by idmConfigTool in Section 13.7.2, "Configuring Oracle Access Manager by Using the IDM Automation Tool", for example: IAMSuiteAgent.
7. Set the Security value to the new security model.
 Click Apply.
8. Restart the managed servers WLS_OAM1 and WLS_OAM2 as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components."

13.8 Adding the oamadmin Account to Access System Administrators

The oamadmin user is assigned to the Oracle Access Manager Administrators group, which is in turn assigned to the Access System Administrators group. Fusion Applications, however, requires the oamadmin user to be explicitly added to that role. To do this perform the following steps:

1. Log in to the oamconsole at: http://ADMIN.mycompany.com/oamconsole
2. Click the System Configuration tab.
3. Expand Data Sources - User Identity Stores.
4. Click OIMIDStore.
5. Click Open.
6. Click the + symbol next to Access System Administrators.
7. Type oamadmin in the search box and click Search.
8. Click the returned oamadmin row, then click Add Selected.
9. Click Apply.

13.9 Creating Oracle Access Manager Policies for WebGate 11g

In order to allow WebGate 11g to display the credential collector, you must add /oam to the list of public policies.

Proceed as follows:

1. Log in to the OAM console at: http://ADMIN.mycompany.com/oamconsole
2. Select the Policy Configuration tab.
3. Expand Application Domains - IAM Suite
4. Click Resources.
5. Click Open.
6. Click New resource.
7. Provide the following values:
 - Type: HTTP
 - Description: OAM Credential Collector
 - Host Identifier: IAMSuiteAgent
 - Resource URL: /oam
 - Protection Level: Unprotected
 - Authentication Policy: Public Policy
8. Click Apply.
13.10 Creating a Single Keystore for Integrating Oracle Access Manager with Other Components

When you configure Oracle Access Manager to work using the simple transport protocol, all traffic to Oracle Access Manager is encrypted. When you integrate Oracle Access Manager with other components, such as Oracle Identity Manager, you must enable the product being integrated to understand this encryption. You do this by using a keystore.

When you change Oracle Access Manager to use the simple protocol, keystores are created automatically in the directory `ASERVER_HOME/output/webgate-ssl`. This directory contains the following files:

- `ooamclient-keystore.jks`—contains the private key.
- `ooamclient-truststore.jks`—contains the Oracle Access Manager simple mode CA certificate

These files are accessed using the Global Passphrase defined at the time of enabling Oracle Access Manager in simple mode.

Some products require configuring with both of the files above and some products, such as Oracle Identity Manager require a single consolidated keystore.

To create a keystore suitable for use by Oracle Identity Manager, perform the following steps.

1. Change directory to `ASERVER_HOME/output/webgate-ssl`, for example:
   ```
   cd ASERVER_HOME/output/webgate-ssl
   ```

2. Copy the file `oamclient-keystore.jks` to `ssoKeystore.jks`, for example
   ```
   cp oamclient-keystore.jks ssoKeystore.jks
   ```

3. Import the trust store into the new keystore `ssoKeystore.jks` using the command:
   ```
   keytool -importcert -file IAM_ORACLE_HOME/oam/server/config/cacert.der -trustcacerts -keystore PathName_to_keystore -storetype JKS
   ```
 On Windows, type:
   ```
   keytool -import -file IAM_ORACLE_HOME\oam\server\config\cacert.der -trustcacerts -keystore PathName_to_keystore -storetype JKS
   ```

 Enter the keystore password when prompted. For example:
   ```
   keytool -importcert -file IAM_ORACLE_HOME/oam/server/config/cacert.der -trustcacerts -keystore ssoKeystore.jks -storetype JKS
   ```

Note: The files `ssoKeystore.jks` and `oamclient-truststore.jks` are required when you integrate Oracle Access Manager running in Simple mode with Oracle Identity Manager. When you integrate these components, you are asked to copy these files to the `ASERVER_HOME/config/fmwconfig` directory. If you subsequently extend the domain on machines where these files have been placed using `pack/unpack`, you must recopy `ssoKeystore.jks` and `oamclient-truststore.jks` after unpacking.
13.11 Updating Oracle Access Manager System Parameters

Update `ASERVER_HOME/config/fmwconfig/oam-config.xml` in the administration server domain home.

Set the parameters Timeout, Expiry, and MaxSessionsPerUser as follows:

1. Log in to the OAM console at `http://ADMIN.mycompany.com/oamconsole` as the WebLogic administration user.
2. Select the System Configuration tab.
3. Click Common Settings under the Common Configuration entry.
4. Click Open.
5. Set the following values:
 - Idle Timeout (minutes): 120
 - Session Lifetime: 120
 - Maximum Number of Sessions per user: 200
6. Click Apply.

13.12 Backing Up the Access Manager Configuration

Back up the database, the WebLogic domain, and the LDAP directories, as described in Section 21.6.3, "Performing Backups During Installation and Configuration."
This chapter describes how to extend the Identity Management domain to include Oracle Virtual Directory (OVD).

This chapter includes the following topics:

- Section 14.1, "Overview of Extending the Domain to Include Oracle Virtual Directory"
- Section 14.2, "Prerequisites for Configuring Oracle Virtual Directory Instances"
- Section 14.3, "Configuring the Oracle Virtual Directory Instances"
- Section 14.4, "Post-Configuration Steps"
- Section 14.5, "Disable Oracle Virtual Directory LDAP Listeners NIO"
- Section 14.6, "Validating the Oracle Virtual Directory Instances"
- Section 14.7, "Creating ODSM Connections to Oracle Virtual Directory"
- Section 14.8, "Creating Adapters in Oracle Virtual Directory"
- Section 14.9, "Backing Up the Oracle Virtual Directory Configuration"

14.1 Overview of Extending the Domain to Include Oracle Virtual Directory

Use of Oracle Virtual Directory is strongly recommended for all Identity Store deployments. This includes cases where your Identity Store uses multiple directories or a single directory (including Oracle Internet Directory).

Follow the steps in this chapter to configure the Oracle Virtual Directory components, LDAPHOST1 and LDAPHOST2 on the Directory Tier with Oracle Virtual Directory. The procedures for the installations are very similar, but the selections in the configuration options screen differ.

14.2 Prerequisites for Configuring Oracle Virtual Directory Instances

Before configuring the Oracle Virtual Directory instances on LDAPHOST1 and LDAPHOST2, ensure that the following tasks have been performed:

1. Install and upgrade the software on LDAPHOST1 and LDAPHOST2 as described in Chapter 6, "Installing the Software for an Enterprise Deployment."
2. If you plan on provisioning the Oracle Virtual Directory instances on shared storage, ensure that the appropriate shared storage volumes are mounted on LDAPHOST1 and LDAPHOST2 as described in Section 4.3, "About Recommended Locations for the Different Directories."

3. Ensure that the load balancer is configured as describe in Section 3.3, "About Virtual Server Names Used by the Topologies."

14.3 Configuring the Oracle Virtual Directory Instances

This section contains the following topics:

- Section 14.3.1, "Configuring the First Oracle Virtual Directory Instance"
- Section 14.3.2, "Configuring an Additional Oracle Virtual Directory"

14.3.1 Configuring the First Oracle Virtual Directory Instance

1. Ensure that ports 6501 and 7501 (OVD_PORT and OVD_SSL_PORT in Section A.3) are not in use by any service on the computer by issuing these commands for the operating system you are using. If a port is not in use, no output is returned from the command.

 On Linux:
   ```bash
   netstat -an | grep "6501"
   netstat -an | grep "7501"
   ```

 If the ports are in use (that is, if the command returns output identifying either port), you must free the port.

 On Linux:
   ```bash
   Remove the entries for ports 6501 and 7501 in the /etc/services file and restart the services, as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components," or restart the computer.
   ```

2. Create a file containing the ports used by Oracle Virtual Directory. On Disk1 of the installation media, locate the file stage/Response/staticports.ini. Copy it to a file called ovd_ports.ini. Delete all entries in ovd_ports.ini except for Non-SSL Port for Oracle Virtual Directory and SSL Port for Oracle Virtual Directory. Change the values of those ports to 6501 and 7501, respectively.

 Note: If the port names in the file are slightly different from those listed in this step, use the names in the file.

3. Start the Oracle Identity Management 11g Configuration Wizard by running `IDM_ORACLE_HOME/bin/config.sh`.

4. On the Welcome screen, click **Next**.

5. On the Select Domain screen, select **Configure without a Domain**. Click **Next**.

6. On the Specify Installation Location screen, specify the following values:
 - Oracle Instance Location: OVD_ORACLE_INSTANCE
 - Oracle Instance Name: ovd1

Click Next.

7. On the Specify Email for Security Updates screen, specify these values:
 - Email Address: Provide the email address for your My Oracle Support account.
 - Oracle Support Password: Provide the password for your My Oracle Support account.
 - Check the check box next to the I wish to receive security updates via My Oracle Support field.

Click Next.

8. On the Configure Components screen, select Oracle Virtual Directory, deselect all the other components, and then click Next.

9. On the Configure Ports screen, you use the ovd_ports.ini file you created in Step 2 to specify the ports to be used. This enables you to bypass automatic port configuration.
 a. Select Specify Ports using a Configuration File.
 b. In the file name field specify ovd_ports.ini.
 c. Click Save, then click Next.

10. On the Specify Virtual Directory screen: In the Client Listeners section, enter:
 - LDAP v3 Name Space: dc=mycompany,dc=com
 In the OVD Administrator section, enter:
 - Administrator User Name: cn=orcladmin
 - Password: administrator_password
 - Confirm Password: administrator_password
 Select Configure the Administrative Server in secure mode.

Click Next.

11. On the Installation Summary screen, review the selections to ensure that they are correct. If they are not, click Back to modify selections on previous screens. When they are correct, click Configure.

12. On the Configuration screen, multiple configuration assistants are launched in succession. This process can be lengthy. Wait for the configuration process to finish.

Click Next.

13. On the Installation Complete screen, click Finish to confirm your choice to exit.

14. To validate the installation of the Oracle Virtual Directory instance on LDAPHOST1, issue these commands:

    ```
    ldapbind -h LDAPHOST1.mycompany.com -p 6501 -D "cn=orcladmin" -q
    ldapbind -h LDAPHOST1.mycompany.com -p 7501 -D "cn=orcladmin" -q -U 1
    ```
14.3.2 Configuring an Additional Oracle Virtual Directory

The schema database must be running before you perform this task. Follow these steps to install Oracle Virtual Directory on LDAPHOST2:

1. Ensure that ports 6501 and 7501 (OVD_PORT and OVD_SSL_PORT in Section A.3) are not in use by any service on the computer by issuing these commands for the operating system you are using. If a port is not in use, no output is returned from the command.

 On Linux:
 netstat -an | grep "6501"
 netstat -an | grep "7501"

 If the ports are in use (that is, if the command returns output identifying either port), you must free the port.

 On Linux:
 Remove the entries for ports 6501 and 7501 in the /etc/services file and restart the services, as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components," or restart the computer.

2. Start the Oracle Identity Management 11g Configuration Wizard by running IDM_ORACLE_HOME/bin/config.sh.

3. On the Welcome screen, click Next.

4. On the Select Domain screen, select Configure without a Domain.

 Click Next.

5. On the Specify Installation Location screen, specify the following values:

 Oracle Instance Location: OVD_ORACLE_INSTANCE

 Oracle Instance Name: ovd2

 Click Next.

6. On the Specify Email for Security Updates screen, specify these values:

 - **Email Address**: Provide the email address for your My Oracle Support account.

 - **Oracle Support Password**: Provide the password for your My Oracle Support account.

 - Check the check box next to the I wish to receive security updates via My Oracle Support field.

Note: Ensure that the following environment variables are set before using ldapbind:

- Set ORACLE_HOME to IDM_ORACLE_HOME.
- Set ORACLE_INSTANCE to OVD_ORACLE_INSTANCE.
- PATH - The following directory locations should be in your PATH:
 - IDM_ORACLE_HOME/bin
 - IDM_ORACLE_HOME/ldap/bin
 - IDM_ORACLE_HOME/ldap/admin
Click Next.

7. On the Configure Components screen, select Oracle Virtual Directory, deselect all the other components, and click Next.

8. On the Configure Ports screen, you use the ovd_ports.ini file you created in Section 14.3.1, "Configuring the First Oracle Virtual Directory Instance" to specify the ports to be used. This enables you to bypass automatic port configuration.
 a. Select Specify Ports using a Configuration File.
 b. In the file name field specify ovd_ports.ini.
 c. Click Save, then click Next.

9. On the Specify Virtual Directory screen: In the Client Listeners section, enter:
 ■ LDAP v3 Name Space: dc=mycompany,dc=com
 In the OVD Administrator section, enter:
 ■ Administrator User Name: cn=orcladmin
 ■ Password: administrator_password
 ■ Confirm Password: administrator_password
 Select Configure the Administrative Server in secure mode.
 Click Next.

10. On the Installation Summary screen, review the selections to ensure that they are correct. If they are not, click Back to modify selections on previous screens. When they are correct, click Configure.

11. On the Configuration screen, multiple configuration assistants are launched in succession. This process can be lengthy. Wait for the configuration process to finish.
 Click Next.

12. On the Installation Complete screen, click Finish to confirm your choice to exit.

13. To validate the installation of the Oracle Virtual Directory instance on LDAPHOST2, issue these commands:

```
ldapbind -h LDAPHOST2.mycompany.com -p 6501 -D 'cn=orcladmin' -q
ldapbind -h LDAPHOST2.mycompany.com -p 7501 -D 'cn=orcladmin' -q -U 1
```

Note: Ensure that the following environment variables are set before using ldapbind:

- Set ORACLE_HOME to IDM_ORACLE_HOME.
- Set ORACLE_INSTANCE to OVD_ORACLE_INSTANCE.
- PATH - The following directory locations should be in your PATH:

  ```
  IDM_ORACLE_HOME/bin
  IDM_ORACLE_HOME/ldap/bin
  IDM_ORACLE_HOME/ldap/admin
  ```

14.4 Post-Configuration Steps

This section contains the following topics:
14.4.1 Registering Oracle Virtual Directory with the Oracle WebLogic Server Domain (IDMDomain)

All the Oracle Fusion Middleware components deployed in this enterprise deployment are managed by using Oracle Enterprise Manager Fusion Middleware Control. To manage the Oracle Virtual Directory component with this tool, you must register the component and the Oracle Fusion Middleware instance that contains it with an Oracle WebLogic Server domain. A component can be registered either at install time or post-install. A previously un-registered component can be registered with a WebLogic domain by using the `opmnctl registerinstance` command.

To register the Oracle Virtual Directory instances, follow these steps on LDAPHOST1 and LDAPHOST2 for each instance:

1. Set the `ORACLE_HOME` to `IDM_ORACLE_HOME`.
2. On LDAPHOST1 and LDAPHOST2, set `ORACLE_INSTANCE` to `OVD_ORACLE_INSTANCE1`.
3. Execute the `opmnctl registerinstance` command:

   ```bash
   OVD_ORACLE_INSTANCE/bin/opmnctl registerinstance -adminHost WLSHostName -adminPort WLSPort -adminUsername adminUserName
   ```

 For example:

   ```bash
   OVD_ORACLE_INSTANCE/bin/opmnctl registerinstance \ 
   -adminHost ADMINVHN.mycompany.com -adminPort 7001 -adminUsername weblogic
   ```

 The command requires login to WebLogic Administration Server.

 Username: weblogic
 Password: password

 Note: For additional details on registering Oracle Virtual Directory components with a WebLogic Server domain, see the "Registering an Oracle Instance Using OPMNCTL" section in Oracle Fusion Middleware Administrator’s Guide for Oracle Virtual Directory.

4. In order to manage Oracle Virtual Directory by using Oracle Enterprise Manager Fusion Middleware Control, you must update the Enterprise Manager Repository URL to point to the virtual IP address associated with the WebLogic Administration Server. Do this using the `emctl` utility with the `switchOMS` flag. This will enable the local emagent to communicate with the WebLogic Administration Server using the virtual IP address. The `emctl` utility is located under the `OVD_ORACLE_INSTANCE/EMAGENT/EMAGENT/bin` directory.

 Syntax:

   ```bash
   ./emctl switchOMS ReposURL
   ```

 For Example:
Post-Configuration Steps

Extending the Domain to Include Oracle Virtual Directory

14.4.2 Configuring Oracle Virtual Directory to Accept Server Authentication Only Mode SSL Connections

Configure Oracle Virtual Directory as follows.

14.4.2.1 Prerequisites
Prior to running this command ensure that:

- Oracle Identity Management is installed
- Oracle Identity and Access Management is installed.
- Site certificate has been generated as described in Section 10.5.2, "Generating a Certificate to be Used by the Identity Management Domain."
- If you are using Windows, you have installed a UNIX emulation package such as Cygwin in order to run the scripts contained in this section. See http://www.cygwin.com.

14.4.2.2 Configuring Oracle Virtual Directory for SSL
Before configuring Oracle Virtual Directory for SSL, set the ORACLE_HOME, ORACLE_INSTANCE and JAVA_HOME variables. For example, on LDAPHOST1, set ORACLE_HOME to IDM_ORACLE_HOME, set ORACLE_INSTANCE to OVD_ORACLE_INSTANCE, set JAVA_HOME to JAVA_HOME, and add JAVA_HOME to your PATH variable.
Start the SSL Configuration tool by issuing the command `SSLServerConfig` command which is located in the directory `ORACLE_COMMON_HOME/bin` directory.

For example:

```
ORACLE_COMMON_HOME/bin/SSLServerConfig.sh -component ovd
```

When prompted, enter the following information:

- **LDAP Hostname**: Central LDAP host, for example: `POLICYSTORE.mycompany.com`

Note: It is recommended that you use the Policy Store directory, not the Identity Store.

- **LDAP port**: LDAP port, for example: `389 (LDAP_DIR_PORT)`
- **Admin user DN**: `cn=orcladmin`
- **Password**: `administrator_password`
- **sslDomain for the CA**: `IDMDomain`
- **Password to protect your SSL wallet/keystore**: `password_for_local_keystore`
- **Enter confirmed password for your SSL wallet/keystore**: `password_for_local_keystore`
- **Password for the CA wallet**: `certificate_password`. This is the one created in Section 10.5.2, "Generating a Certificate to be Used by the Identity Management Domain."
- **Country Name 2 letter code**: Two letter country code, such as `US`
- **State or Province Name**: State or province, for example: `California`
- **Locality Name**: Enter the name of your city, for example: `RedwoodCity`
- **Organization Name**: Company name, for example: `mycompany`
- **Organizational Unit Name**: Leave at the default
- **Common Name**: Name of this host, for example: `LDAPHOST1.mycompany.com`
- **OVD Instance Name**: for example, `ovd1`. If you need to determine what your OVD component name is, execute the command:

```
ORACLE_INSTANCE/bin/opmnctl status
```

- **Oracle instance name**: Name of your Oracle instance, for example: `ovd1`
- **WebLogic admin host**: Host running the WebLogic Administration Server, for example: `ADMINVHN.mycompany.com`
- **WebLogic admin port**: WebLogic Administration Server port, for example: `7001 (WLS_ADMIN_PORT)`
- **WebLogic admin user**: Name of your WebLogic administration user, for example: `weblogic`
- **WebLogic password**: `password`.
- **SSL wallet name for OVD component [ovdks1.jks]**: Accept the default
When asked if you want to restart your Oracle Virtual Directory component, enter **Yes**.

When asked if you would like to test your OVD SSL connection, enter **Yes**. Ensure that the test is a success.

Repeat for each Oracle Virtual Directory instance in the configuration, running the command on the appropriate LDAPHOST.

14.5 Disable Oracle Virtual Directory LDAP Listeners NIO

Before you can bind to the LDAP ports on Oracle Virtual Directory you must disable NIO. To do this, perform the following steps on each of the Oracle Virtual Directory instances:

1. Stop Oracle Virtual Directory by typing:

   ```
   OVD_ORACLE_INSTANCE/bin/opmnctl stopproc ias-component=ovd1
   ```

2. Edit the file:

   ```
   OVD_ORACLE_INSTANCE/config/OVD/component/listeners.os_xml
   ```

 Change the file in two places, as follows (where port 7501 is **OVD_SSL_PORT** and 6501 is **OVD_PORT** in Section A.3):

 - Locate the section for LDAP SSL listener, which looks like this:

     ```
     <ldap version="20" id="LDAP SSL Endpoint">
     <port>7501</port>
     <host>0.0.0.0</host>
     .......... 
     .......... 
     <ssl enabled="true">
     <protocols>SSLv3,TLSv1,SSLv2Hello</protocols>
     .......... 
     .......... 
     <tcpNoDelay>true</tcpNoDelay>
     <readTimeout>180000</readTimeout>
     </socketOptions>
     </ldap>
     ```

 Modify this section so that it looks like this:

     ```
     <ldap version="20" id="LDAP SSL Endpoint">
     <port>7501</port>
     <host>0.0.0.0</host>
     .......... 
     .......... 
     <ssl enabled="true">
     <protocols>SSLv3,TLSv1,SSLv2Hello</protocols>
     .......... 
     .......... 
     <tcpNoDelay>true</tcpNoDelay>
     <readTimeout>180000</readTimeout>
     </socketOptions>
     <useNIO>false</useNIO>
     </ldap>
     ```

 - Locate the section for LDAP non-SSL listener, which looks like this:

     ```
     <ldap version="20" id="LDAP Endpoint">
     <port>6501</port>
     ```
<host>0.0.0.0</host>
........
........
<ssl enabled="false">
........
........
<tcpNoDelay>true</tcpNoDelay>
<readTimeout>180000</readTimeout>
</socketOptions>
</ldap>

Modify this section so that it looks like this:

<ldap version="20" id="LDAP Endpoint">
<port>6501</port>
<host>0.0.0.0</host>
........
........
<ssl enabled="false">
........
........
<tcpNoDelay>true</tcpNoDelay>
<readTimeout>180000</readTimeout>
</socketOptions>
<useNIO>false</useNIO>
</ldap>

3. Save the file.
4. Restart Oracle Virtual Directory using the command:

 OVD_ORACLE_INSTANCE/bin/opmnctl startproc ias-component=ovd1

5. Repeat for each Oracle Virtual Directory instance.

14.6 Validating the Oracle Virtual Directory Instances

To validate the Oracle Virtual Directory instances, ensure that you can connect to each Oracle Virtual Directory instance and the load balancing router using these ldapbind commands.

Follow the steps in Section 14.4.2.2, "Configuring Oracle Virtual Directory for SSL" before running the ldapbind command with the SSL port.

```
ldapbind -h LDAPHOST1.mycompany.com -p 6501 -D "cn=orcladmin" -q
ldapbind -h LDAPHOST2.mycompany.com -p 6501 -D "cn=orcladmin" -q
ldapbind -h IDSTORE.mycompany.com -p 389 -D "cn=orcladmin" -q
ldapbind -h LDAPHOST1.mycompany.com -p 7501 -D "cn=orcladmin" -q -U 1
ldapbind -h LDAPHOST2.mycompany.com -p 7501 -D "cn=orcladmin" -q -U 1
```

14.7 Creating ODSM Connections to Oracle Virtual Directory

Before you can manage Oracle Virtual Directory you must create connections from ODSM to each of your Oracle Virtual Directory instances. To do this, proceed as follows:

1. Access ODSM through the load balancer at:

 http://ADMIN.mycompany.com/odsm
2. Follow these steps to create connections to Oracle Virtual Directory:

To create connections to Oracle Virtual Directory, follow these steps. Create connections to each Oracle Virtual Directory node separately. Using the Oracle Virtual Directory load balancer virtual host from ODSM is not supported:

a. Create a direct connection to Oracle Virtual Directory on LDAPHOST1 providing the following information in ODSM:

 Host: LDAPHOST1.mycompany.com
 Port: 8899 (The Oracle Virtual Directory proxy port, OVD_ADMIN_PORT in Section A.3)
 Enable the SSL option.
 User: cn=orcladmin
 Password: password_to_connect_to_OVD

b. Create a direct connection to Oracle Virtual Directory on LDAPHOST2 providing the following information in ODSM:

 Host: LDAPHOST2.mycompany.com
 Port: 8899 (The Oracle Virtual Directory proxy port)
 Enable the SSL option.
 User: cn=orcladmin
 Password: password_to_connect_to_OVD

14.8 Creating Adapters in Oracle Virtual Directory

Oracle Virtual Directory communicates with other directories through adapters. The procedure is slightly different, depending on the directory you are connecting to. The following sections show how to create and validate adapters for supported directories:

- Section 14.8.1, "Ensuring the Change Log Generation is Enabled in Oracle Internet Directory"
- Section 14.8.2, "Creating Oracle Virtual Directory Adapters for Oracle Internet Directory and Active Directory"
- Section 14.8.3, "Validating the Oracle Virtual Directory Adapters"

14.8.1 Ensuring the Change Log Generation is Enabled in Oracle Internet Directory

Before you create a change log adapter in Oracle Virtual Directory, you must ensure that the back end Oracle Internet Directory servers have changelog generation enabled.

To test whether a directory server has changelog generation enabled, type:

```
ldapsearch -h directory_host -p ldap_port -D bind_dn -q -b '' -s base 'objectclass=*' lastchangenumber
```

For example:

```
ldapsearch -h LDAPHOST1 -p 3060 -D "cn=orcladmin" -q -b '' -s base 'objectclass=*' lastchangenumber
```
If the command output includes `lastchangenumber` with a value, changelog generation is enabled. If changelog generation is not enabled, enable it as described in the "Enabling and Disabling Changelog Generation by Using the Command Line" section of Oracle Fusion Middleware Administrator’s Guide for Oracle Internet Directory.

14.8.2 Creating Oracle Virtual Directory Adapters for Oracle Internet Directory and Active Directory

You can use `idmConfgTool` to create the Oracle Virtual Directory User and Changelog adapters for Oracle Internet Directory and Active Directory. Oracle Identity Manager requires adapters. It is highly recommended, though not mandatory, that you use Oracle Virtual Directory to connect to Oracle Internet Directory.

To do this, perform the following tasks on IDMHOST1:

1. Set the environment variable `ORACLE_HOME` to `IAM_ORACLE_HOME`.
2. Create a properties file for the adapter you are configuring called `ovd1.props`. The contents of this file depends on whether you are configuring the Oracle Internet Directory adapter or the Active Directory Adapter.

 - **Oracle Internet Directory** adapter properties file:
 - `ovd.host`:LDAPHOST1.mycompany.com
 - `ovd.port`:8899
 - `ovd.binddn`:cn=orcladmin
 - `ovd.password`:ovdpassword
 - `ovd.oamenabled`:true
 - `ovd.ssl`:true
 - `ldap1.type`:OID
 - `ldap1.host`:OIDIDSTORE.mycompany.com
 - `ldap1.port`:3060
 - `ldap1.binddn`:cn=oimLDAP,cn=systemids,dc=mycompany,dc=com
 - `ldap1.password`:oidpassword
 - `ldap1.ssl`:false
 - `ldap1.base`:dc=mycompany,dc=com
 - `ldap1.ovd.base`:dc=mycompany,dc=com
 - `usecase.type`: single

 - **Active Directory** adapter properties file:
 - `ovd.host`:LDAPHOST1.mycompany.com
 - `ovd.port`:8899
 - `ovd.binddn`:cn=orcladmin
 - `ovd.password`:ovdpassword
 - `ovd.oamenabled`:true
 - `ovd.ssl`:true
 - `ldap1.type`:AD
 - `ldap1.host`:ADIDSTORE.mycompany.com
 - `ldap1.port`:636
 - `ldap1.binddn`:cn=adminuser
 - `ldap1.password`:adpassword
 - `ldap1.ssl`:true
 - `ldap1.base`:dc=mycompany,dc=com
 - `ldap1.ovd.base`:dc=mycompany,dc=com
 - `usecase.type`: single

The following list describes the parameters used in the properties file.

- `ovd.host` is the host name of a server running Oracle Virtual Directory.
Creating Adapters in Oracle Virtual Directory

- **ovd.port** is the https port used to access Oracle Virtual Directory (OVD.ADMIN_PORT) in Section A.3.
- **ovd.binddn** is the user DN you use to connect to Oracle Virtual Directory.
- **ovd.password** is the password for the DN you use to connect to Oracle Virtual Directory.
- **ovd.oamenabled** is always true in Fusion Applications deployments.
- **ovd.ssl** is set to true, as you are using an https port.
- **ldap1.type** is set to OID for the Oracle Internet Directory back end directory or set to AD for the Active Directory back end directory.
- **ldap1.host** is the host on which back end directory is located. Use the load balancer name.
- **ldap1.port** is the port used to communicate with the back end directory (LDAP_DIR_PORT in Section A.3).
- **ldap1.binddn** is the bind DN of the oimLDAP user.
- **ldap1.password** is the password of the oimLDAP user.
- **ldap1.ssl** is set to true if you are using the back end's SSL connection, and otherwise set to false. This should always be set to true when an adapter is being created for AD.
- **ldap1.base** is the base location in the directory tree.
- **ldap1.ovd.base** is the mapped location in Oracle Virtual Directory.
- **usecase.type** is set to Single when using a single directory type.

3. Configure the adapter by using the idmConfigTool command, which is located at:

```
IAM_ORACLE_HOME/idmtools/bin
```

Note: When you run the idmConfigTool, it creates or appends to the file idmDomainConfig.param. This file is generated in the same directory that the idmConfigTool is run from. To ensure that each time the tool is run, the same file is appended to, always run the idmConfigTool from the directory:

```
IAM_ORACLE_HOME/idmtools/bin
```

The syntax of the command on Linux is:
```
idmConfigTool.sh -configOVD input_file=configfile [log_file=logfile]
```

The syntax on Windows is:
```
idmConfigTool.bat -configOVD input_file=configfile [log_file=logfile]
```

For example:
```
idmConfigTool.sh -configOVD input_file=ovd1.props
```

The command requires no input. The output looks like this:

The tool has completed its operation. Details have been logged to logfile
Run this command for each Oracle Virtual Directory instance in your topology, with the appropriate value for `ovd.host` in the property file.

14.8.3 Validating the Oracle Virtual Directory Adapters

Perform the following tasks by using ODSM:

1. Access ODSM through the load balancer at:
 `http://ADMIN.mycompany.com/odsm`

2. Connect to Oracle Virtual Directory.

3. Go the Data Browser tab.

4. Expand Client View so that you can see each of your user adapter root DN’s listed.

5. Expand the user adapter root DN, if there are objects already in the back end LDAP server, you should see those objects here.

6. ODSM doesn’t support changelog query, so you cannot expand the `cn=changelog` subtree.

Perform the following tasks by using the command-line:

- Validate the user adapters by typing:
  ```bash
  ldapsearch -h directory_host -p ldap_port -D "cn=orcladmin" -q -b <user_search_base> -s sub "objectclass/inetorgperson" dn
  ```
 For example:
  ```bash
  ldapsearch -h LDAPHOST1.mycompany.com -p 6501 -D "cn=orcladmin" -q -b "cn=Users,dc=mycompany,dc=com" -s sub "objectclass/inetorgperson" dn
  ```

 Supply the password when prompted.

 You should see the user entries that already exist in the back end LDAP server.

- Validate changelog adapters by typing:
  ```bash
  ldapsearch -h directory_host -p ldap_port -D "cn=orcladmin" -q -b "cn=changelog" -s one "changenumber>=0"
  ```
 For example:
  ```bash
  ldapsearch -h LDAPHOST1 -p 6501 -D "cn=orcladmin" -q -b "cn=changelog" -s one "changenumber>=0"
  ```

 The command returns logs of data, such as creation of all the users. It returns without error if the changelog adapters are valid.

- Validate lastchangenumber query by typing:
  ```bash
  ldapsearch -h directory_host -p ldap_port -D "cn=orcladmin" -q -b "cn=changelog" -s base 'objectclass=*' lastchangenumber
  ```
 For example:
  ```bash
  ldapsearch -h LDAPHOST1 -p 6501 -D "cn=orcladmin" -q -b "cn=changelog" -s base 'objectclass=*' lastchangenumber
  ```

 The command returns the latest change number generated in the back end LDAP server.
14.9 Backing Up the Oracle Virtual Directory Configuration

Back up Oracle Virtual Directory and the WebLogic Domain, as described in Section 21.6.3, "Performing Backups During Installation and Configuration."
Configuring Oracle Identity Manager

This chapter describes how to configure Oracle Identity Manager for use in the Oracle Identity Management Enterprise Deployment Topology.

This chapter contains the following topics:

- Section 15.1, "Overview of Configuring Oracle Identity Manager"
- Section 15.2, "About Domain URLs"
- Section 15.3, "Prerequisites"
- Section 15.4, "Synchronize System Clocks"
- Section 15.5, "Configuring Oracle Identity Manager"
- Section 15.6, "Configuring Oracle Coherence for Deploying Composites"
- Section 15.7, "Post-Installation Steps on IDMHOST1"
- Section 15.8, "Post-Installation Steps on IDMHOST2"
- Section 15.9, "Modifying the Oracle Identity Manager Properties to Support Active Directory"
- Section 15.10, "Configuring Oracle Identity Manager to Reconcile from ID Store"
- Section 15.11, "Configuring Oracle Identity Manager to Work with the Oracle Web Tier"
- Section 15.12, "Configuring a Default Persistence Store for Transaction Recovery"
- Section 15.13, "Configuring an IT Resource Instance for Email"
- Section 15.14, "Excluding Users from Oracle Identity Manager Reconciliation."
- Section 15.15, "Enabling Oracle Identity Manager to Connect to SOA Using the Administrative Users Provisioned in LDAP"
- Section 15.16, "Updating the Username Generation Policy for Active Directory"
- Section 15.17, "Tuning Oracle Platform Security"
- Section 15.18, "Integrating Oracle Identity Manager and Oracle Access Manager 11g."
- Section 15.19, "Backing Up Oracle Identity Manager"

15.1 Overview of Configuring Oracle Identity Manager

Oracle Identity Manager is a user provisioning and administration solution that automates the process of adding, updating, and deleting user accounts from
applications and directories. It also improves regulatory compliance by providing granular reports that attest to who has access to what. Oracle Identity Manager is available as a standalone product or as part of Oracle Identity Management.

Automating user identity provisioning can reduce Information Technology (IT) administration costs and improve security. Provisioning also plays an important role in regulatory compliance. Key features of Oracle Identity Manager include password management, workflow and policy management, identity reconciliation, reporting and auditing, and extensibility through adapters.

Oracle Identity Manager provides the following key functionalities:

- User Administration
- Workflow and Policy
- Password Management
- Audit and Compliance Management
- Integration Solutions
- User Provisioning
- Organization and Role Management

For details about Oracle Identity Manager, see the Oracle Fusion Middleware Administrator’s Guide for Oracle Identity Manager.

15.2 About Domain URLs

After you complete this chapter, the following URL will be available:

Table 15–1 OIM URLs

<table>
<thead>
<tr>
<th>Component</th>
<th>URLs</th>
<th>SSO User</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-service</td>
<td>https://SSO.mycompany</td>
<td>xelsysadm</td>
</tr>
<tr>
<td>Console</td>
<td>y.com/oim</td>
<td></td>
</tr>
</tbody>
</table>

15.3 Prerequisites

Before extending the domain with Oracle Identity Manager, ensure that the following tasks have been performed:

1. Ensure that the virtual IP addresses for the Oracle Identity Manager and SOA managed servers have been provisioned. See Section 3.5, "About IP Addresses and Virtual IP Addresses" for details.

2. Install and upgrade the following software as described in Chapter 6, "Installing the Software for an Enterprise Deployment."

 - WebLogic Server
 - Oracle Identity Management
 - Oracle SOA Suite
 - Oracle Identity and Access Management

3. Ensure that you have created the wfullclient.jar file, as described in Section 6.3.7.3, "Creating the wfullclient.jar File."

4. Ensure the Identity Store is installed and configured, as described in Chapter 10.
5. Provision the Oracle Identity Management users as described in Section 11.5, "Preparing the Identity Store."

6. Stop all the managed servers running in your domain, as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components," before extending the domain with Oracle Identity Manager.

Note: Oracle SOA deployed along with Oracle Identity Manager is used exclusively for Oracle Identity Manager work flow. It cannot be used for other purposes.

15.4 Synchronize System Clocks

Oracle SOA uses Quartz to maintain its jobs and schedules in the database. Synchronize the system clocks for the SOA WebLogic cluster to enable proper functioning of jobs, adapters, and Oracle B2B.

15.5 Configuring Oracle Identity Manager

You must configure the Oracle Identity Manager server instance before you can start the Oracle Identity Manager and SOA Managed Servers. This is performed on IDMHOST1. The Oracle Identity Management Configuration Wizard loads the Oracle Identity Manager metadata into the database and configures the instance.

Before proceeding, ensure that the following are true:

- The Administration Server is up and running.
- The environment variables `DOMAIN_HOME` and `WL_HOME` are not set in the current shell.

The Oracle Identity Management Configuration Wizard is located under the Identity Management Oracle home. To start the Configuration Wizard, type:

```
IAM_ORACLE_HOME/bin/config.sh
```

Proceed as follows:

1. On the Welcome screen, click Next
2. On the Components to Configure screen, Select OIM Server.

Note: Oracle Identity Manager Remote Manager is optional in Fusion Applications implementations

Click Next.

3. On the Database screen, provide the following values:

 - **Connect String:** The connect string for the Oracle Identity Manager database:

 `IDMDB1-VIP.mycompany.com:1521:OIMEDG1^IDMDB2-VIP.mycompany.com:1521:OIMEDG2@OIMEDG.mycompany.com`

 Where `1521` is the `DB_LSNR_PORT` port from Section A.3.

 If you are using Oracle Database 11.2, replace the `vip` address and port with the 11.2 SCAN address and port.
 - **OIM Schema User Name:** `edg_oim`
- **OIM Schema password**: password
- **MDS Schema User Name**: edg_mds
- **MDS Schema Password**: password

Click Next.

4. On the WebLogic Administration Server screen, provide the following details for the WebLogic Administration Server:

- **URL**: The URL to connect to the WebLogic Administration Server. For example:
 `t3://ADMINVHN.mycompany.com:7001`, where Port 7001 is _WLS_ADMIN_PORT
- **UserName**: weblogic.
- **Password**: Password for the weblogic user

Click Next.

5. On the OIM Server screen, provide the following values:

- **OIM Administrator Password**: Password for the Oracle Identity Manager Administrator. This is the password for the xelsysadm user. The password must contain an uppercase letter and a number. Best practice is to use the same password that you assigned to the user xelsysadm in Section 11.5, "Preparing the Identity Store."
- **Confirm Password**: Confirm the password.
- **OIM HTTP URL**: Proxy URL for the Oracle Identity Manager Server. This is the URL for the Hardware load balancer that is front ending the OHS servers for Oracle Identity Manager. For example:
 `http://IDMINTERNAL.mycompany.com:80`
- **Key Store Password**: Key store password. The password must have an uppercase letter and a number.

Click Next.

6. On the BI Publisher screen, provide the following values:

- **Configure BI Publisher**: Select if you want to Configure Oracle Identity Manager with Oracle BI Publisher. This is Optional and depends on your requirements.
- **BI Publisher URL**: The URL of BI Publisher, if you selected it.
- **Enable LDAP Sync**: Selected.

Notes: BI Publisher is not a part of the IDMDomain. The steps to configure the BI Publisher are not covered in this Enterprise Deployment Guide.

Click Next.

7. On the LDAP Server Screen, the information you enter is dependent on your implementation. Provide the following details:

- **Directory Server Type**:
 - OID, if your Identity Store is in Oracle Internet Directory.
– OVD if you access your Identity Store through Oracle Virtual Directory.

- **Directory Server ID**: A name for your Oracle Internet Directory server. For example: `IdStore`. This is only required if the directory type is OID.
- **Server URL**: The LDAP server URL. For example: `ldap://IDSTORE.mycompany.com:389`
- **Server User**: The user name for connecting to the LDAP Server. For example: `cn=oimLDAP,cn=systemids,dc=mycompany,dc=com`
- **Server Password**: The password for connecting to the LDAP Server.
- **Server Search DN**: The Search DN, if you are accessing your IDStore using Oracle Virtual Directory Server. For example: `dc=mycompany,dc=com`.

Click Next.

8. On the LDAP Server Continued screen, provide the following LDAP server details:

- **LDAP Role Container**: The DN for the Role Container. This is the container where the Oracle Identity Manager roles are stored. For example: `cn=Groups,dc=mycompany,dc=com`.
- **LDAP User Container**: The DN for the User Container. This is the container where the Oracle Identity Manager users are stored. For example: `cn=Users,dc=mycompany,dc=com`.
- **User Reservation Container**: The DN for the User Reservation Container. For example: `cn=Reserve,dc=mycompany,dc=com`.

Click Next.

Click **Configure** to configure the Oracle Identity Manager instance.

10. On the Configuration Progress screen, once the configuration completes successfully, click **Next**.

11. On the Configuration Complete screen, view the details of the Oracle Identity Manager Instance configured.

Click **Finish** to exit the Configuration Wizard.

12. Restart WebLogic Administration Server, as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components."

15.6 Configuring Oracle Coherence for Deploying Composites

Although deploying composites uses multicast communication by default, Oracle recommends using unicast communication in SOA enterprise deployments. Use unicast if you disable multicast communication for security reasons.

Unicast communication does not enable nodes to discover other cluster members in this way. Consequently, you must specify the nodes that belong to the cluster. You do not need to specify all of the nodes of a cluster, however. You need only specify enough nodes so that a new node added to the cluster can discover one of the existing nodes. As a result, when a new node has joined the cluster, it is able to discover all of the other nodes in the cluster. Additionally, in configurations such as SOA enterprise deployments where multiple IPs are available in the same system, you must configure Oracle Coherence to use a specific host name to create the Oracle Coherence cluster.
15.6.1 Enabling Communication for Deployment Using Unicast Communication

Specify the nodes using the `tangosol.coherence.wka<n>` system property, where `<n>` is a number between 1 and 9. You can specify up to 9 nodes. Start the numbering at 1. This numbering must be sequential and must not contain gaps. In addition, specify the host name used by Oracle Coherence to create a cluster through the `tangosol.coherence.localhost` system property. This local host name should be the virtual host name used by the SOA server as the listener addresses (SOAHOST1VHN and SOAHOST2VHN). Set this property by adding the `-Dtangosol.coherence.localhost` parameters to the Arguments field of the Oracle WebLogic Server Administration Console’s Server Start tab.

Tip: To guarantee high availability during deployments of SOA composites, specify enough nodes so that at least one of them is running at any given time.

Note: An incorrect configuration of the Oracle Coherence framework used for deployment may prevent the SOA system from starting. The deployment framework must be properly customized for the network environment on which the SOA system runs. Oracle recommends the configuration described in this section.

Note: SOAHOST1VHN is the virtual host name that maps to the virtual IP where WLS_SOA1 listening (in SOAHOST1). SOAHOST2VHN is the virtual host name that maps to the virtual IP where WLS_SOA2 is listening (in SOAHOST2).

15.6.2 Specifying the Host Name Used by Oracle Coherence

Use the Administration Console to specify a host name used by Oracle Coherence.

To add the host name used by Oracle Coherence:

1. Log into the Oracle WebLogic Server Administration Console.
2. In the Domain Structure window, expand the Environment node.
3. Click Servers. The Summary of Servers page appears.
4. Click the name of the server (WLS_SOA1 or WLS_SOA2, which are represented as hyperlinks) in Name column of the table. The settings page for the selected server appears.
5. Click Lock & Edit.
6. Click the Server Start tab.
7. Enter the following for WLS_SOA1 and WLS_SOA2 into the Arguments field.

 For WLS_SOA1, enter the following:

 `-Dtangosol.coherence.wka1=SOAHOST1VHN`
 `-Dtangosol.coherence.wka2=SOAHOST2VHN`
 `-Dtangosol.coherence.localhost=SOAHOST1VHN`

 For WLS_SOA2, enter the following:

 `-Dtangosol.coherence.wka1=SOAHOST1VHN`
 `-Dtangosol.coherence.wka2=SOAHOST2VHN`

-Dtangosol.coherence.localhost=SOAHOST2VHN

Note: There should be no breaks in lines between the different `-D` parameters. Do not copy or paste the text to your Administration Console’s arguments text field. It may result in HTML tags being inserted in the Java arguments. The text should not contain other text characters than those included the example above.

Note: The Coherence cluster used for deployment uses port 8088 by default. This port can be changed by specifying a different port (for example, 8089) with the `-Dtangosol.coherence.wka1.port` and `-Dtangosol.coherence.localport` startup parameters. For example:

WLS_SOA1 (enter the following into the Arguments field on a single line, without a carriage return):
-`-Dtangosol.coherence.wka1=SOAHOST1VHN`
-`-Dtangosol.coherence.wka2=SOAHOST2VHN`
-`-Dtangosol.coherence.localhost=SOAHOST1VHN`
-`-Dtangosol.coherence.localport=8089`
-`-Dtangosol.coherence.wka1.port=8089`
-`-Dtangosol.coherence.wka2.port=8089`

WLS_SOA2 (enter the following into the Arguments field on a single line, without a carriage return):
-`-Dtangosol.coherence.wka1=SOAHOST1VHN`
-`-Dtangosol.coherence.wka2=SOAHOST2VHN`
-`-Dtangosol.coherence.localhost=SOAHOST2VHN`
-`-Dtangosol.coherence.localport=8089`
-`-Dtangosol.coherence.wka1.port=8089`
-`-Dtangosol.coherence.wka2.port=8089`

For more information about Coherence Clusters see the *Oracle Coherence Developer’s Guide*.

8. Click **Save** and **Activate Changes**.

Note: You must ensure that these variables are passed to the managed server correctly. (They should be reflected in the server’s output log.) Failure of the Oracle Coherence framework can prevent the soa-infra application from starting.

Note: The multicast and unicast addresses are different from the ones used by the WebLogic Server cluster for cluster communication. SOA guarantees that composites are deployed to members of a single WebLogic Server cluster even though the communication protocol for the two entities (the WebLogic Server cluster and the groups to which composites are deployed) are different.
15.7 Post-Installation Steps on IDMHOST1

This section describes post-installation steps.
This section contains the following topics:

- Section 15.7.1, "Starting the WLS_OIM1 and WLS_SOA1 Managed Servers"
- Section 15.7.2, "Validating Oracle Identity Manager Instance on IDMHOST1"

15.7.1 Starting the WLS_OIM1 and WLS_SOA1 Managed Servers

Follow this sequence of steps to start the WLS_OIM1 and WLS_SOA1 Managed Servers:

1. Stop the WebLogic Administration Server on IDMHOST1 by using the WebLogic Administration Console as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components."

2. Start the Administration Server on IDMHOST1 using the Node Manager, as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components."

3. Validate that the Administration Server started up successfully by bringing up the Oracle WebLogic Administration Console.

4. Restart the Node Manager as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components" so that the properties take effect.

5. Start the WLS_SOA1 Managed Server, using the WebLogic Administration Console as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components."

6. Start the WLS_OIM1 Managed Server using the WebLogic Administration Console as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components."

15.7.2 Validating Oracle Identity Manager Instance on IDMHOST1

Validate the Oracle Identity Manager Server Instance by bringing up the Oracle Identity Manager Console in a web browser at:

http://OIMHOST1VHN.mycompany.com:14000/oim

Log in using the xelsysadm username and password.

Note: When you log in for the first time, you are prompted to setup Challenge Questions. Please do so before proceeding further.

Validate Oracle SOA Suite using the URL:

http://SOAHOST1VHN.mycompany.com:8001/soa-infra

Log in as the weblogic user.

15.8 Post-Installation Steps on IDMHOST2

It describes the post-installation steps on IDMHOST2.

This section contains the following topics:
■ Section 15.8.1, "Starting the WLS_OIM2 and WLS_SOA2 Managed Servers"
■ Section 15.8.2, "Validating Oracle Identity Manager Instance on IDMHOST2"

15.8.1 Starting the WLS_OIM2 and WLS_SOA2 Managed Servers
Follow this sequence of steps to start the WLS_OIM2 Managed Server:
1. Start the WLS_SOA2 Managed Server, using the WebLogic Administration Console as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components."
2. Start the WLS_OIM2 Managed Server using the WebLogic Administration Console as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components."

15.8.2 Validating Oracle Identity Manager Instance on IDMHOST2
Validate the Oracle Identity Manager Server Instance by bringing up the Oracle Identity Manager Console in a web browser at:
http://OIMHOST2VHN.mycompany.com:14000/oim/
Log in using the xelsysadm username and password
Validate SOA at:
http://SOAHOST2VHN.mycompany.com:8001/soa-infra
Log in as the weblogic user.

15.9 Modifying the Oracle Identity Manager Properties to Support Active Directory
When first installed, Oracle Identity Manager has a set of default system properties for its operation.
If your Identity Store is in Active Directory, you must change the System property XL.DefaultUserNamePolicyImpl to oracle.iam.identity.usermgmt.impl.plugins.FirstNameLastNamePolicyForAD or oracle.iam.identity.usermgmt.impl.plugins.LastNameFirstNamePolicyForAD.
To learn how to do this, see the Administering System Properties chapter of Oracle Fusion Middleware Administrator’s Guide for Oracle Identity Manager.

15.10 Configuring Oracle Identity Manager to Reconcile from ID Store
In the current release, the LDAPConfigPostSetup script enables all the LDAPSync-related incremental Reconciliation Scheduler jobs, which are disabled by default. The LDAP configuration post-setup script is located under the IAM_ORACLE_HOME/server/ldap_config_util directory. Run the Script on IDMHOST1, as follows:
1. Edit the ldapconfig.props file located under the IAM_ORACLE_HOME/server/ldap_config_util directory and provide the following values:
Save the file.

3. Set the \texttt{JAVA_HOME} and \texttt{WL_HOME} environment variables.

4. Run \texttt{LDAPConfigPostSetup.sh}, specifying the path name of the directory containing the \texttt{ldapconfig.props} file on the command line. The script prompts for the Oracle Identity Manager admin password. For example:

\begin{verbatim}
./LDAPConfigPostSetup.sh IAM_ORACLE_HOME/server/ldap_config_util
[Enter OIM admin password:]
\end{verbatim}

15.11 Configuring Oracle Identity Manager to Work with the Oracle Web Tier

This section describes how to configure Oracle Identity Manager to work with the Oracle Web Tier.

This section contains the following topics:

- Section 15.11.1, "Prerequisites"

Note: usercontainerName, rolecontainerName, and reservationcontainerName are not used in this step.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OIMAdminUser</td>
<td>xelsysadm</td>
<td>Oracle Identity Manager system administrator</td>
</tr>
<tr>
<td>OIMProviderURL</td>
<td>t3://OIMHOST1VHN.mycompany.com:14000,OIMHOST2VHN.mycompany.com:14000</td>
<td>List of Oracle Identity Manager managed servers.</td>
</tr>
<tr>
<td>OIDURL</td>
<td>Specify the URL for the Oracle Internet Directory instance, for example: ldap://IDSTORE.mycompany.com:389</td>
<td>Identity Store URL.</td>
</tr>
<tr>
<td>OIDAdminUsername</td>
<td>cn=oimLDAP,dc=mycompany,dc=com</td>
<td>Name of user used to connect to Identity Store. This user should not be located in cn=Users,dc=mycompany,dc=com.</td>
</tr>
<tr>
<td>OIDSearchBase</td>
<td>dc=mycompany,dc=com</td>
<td>Root location in Identity Store where Users and Groups are located.</td>
</tr>
<tr>
<td>UserContainerName</td>
<td>cn=Users</td>
<td>cn of User location within Search base.</td>
</tr>
<tr>
<td>RoleContainerName</td>
<td>cn=Groups</td>
<td>cn of Groups location within Search base.</td>
</tr>
<tr>
<td>ReservationContainerName</td>
<td>cn=Reserve</td>
<td>cn of Reserve location within Search base.</td>
</tr>
</tbody>
</table>

1 \textit{Where 14000 is the OIM_PORT from Section A.3.}

2 If you are using Oracle Internet Directory, Oracle Virtual Directory, or Active Directory, specify the appropriate URL.
15.11 Prerequisites

Before configuring Oracle Identity Manager to work with the Oracle Web Tier, ensure that the following tasks have been performed:

1. Install Oracle Web Tier on WEBHOST1 and WEBHOST2.
2. Configure the load balancer with a virtual host name (SSO.mycompany.com) pointing to the web servers on WEBHOST1 and WEBHOST2.
3. Configure the load balancer with a virtual host name (IDMINTERNAL.mycompany.com) pointing to the web servers on WEBHOST1 and WEBHOST2.

15.11.2 Changing Host Assertion in WebLogic

Because the Oracle HTTP Server acts as a proxy for WebLogic, by default certain CGI environment variables are not passed through to WebLogic. These include the host and port. You must tell WebLogic that it is using a virtual site name and port so that it can generate internal URLs appropriately.

To do this, log in to the WebLogic administration console at: http://ADMIN.mycompany.com/console

Proceed as follows:

1. Select Clusters from the home page or, alternatively, select Environment -> Clusters from the Domain structure menu.
2. Click Lock and Edit in the Change Center Window to enable editing.
3. Click the Cluster Name (soa_cluster).
4. In the Configuration tab, select the HTTP subtab.
 Enter:
 - Frontend Host: IDMINTERNAL.mycompany.com
 - Frontend HTTP Port: 80 (HTTP_PORT)
5. Click Save.
6. Click Activate Changes in the Change Center window to enable editing.
7. Restart WLS_SOA1 and WLS_SOA2 as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components."

15.11.3 Validating Oracle Identity Manager Instance from the WebTier

Validate the Oracle Identity Manager Server Instance by bringing up the Oracle Identity Manager Console in a web browser at:

https://SSO.mycompany.com:443/oim

Log in using the xelsysadm username and password.
15.11.4 Validating SOA Instance from the WebTier

Validate SOA by accessing the URL:

http://IDMINTERNAL.mycompany.com:80/soa-infra

and logging in as the WebLogic administration user.

15.12 Configuring a Default Persistence Store for Transaction Recovery

The WLS_OIM and WLS_SOA Managed Servers have a transaction log that stores information about committed transactions that are coordinated by the server that might not have been completed. The WebLogic Server uses this transaction log for recovery from system crashes or network failures. To leverage the migration capability of the Transaction Recovery Service for the servers within a cluster, store the transaction log in a location accessible to a server and its backup servers.

Perform these steps to set the location for the default persistence stores for the Oracle Identity Manager and SOA Servers:

1. Create the following directory on the shared storage:

 ASERVER_HOME/tlogs

2. Log in to the Oracle WebLogic Server Administration Console.
3. Click Lock and Edit.
4. In the Domain Structure window, expand the Environment node and then click the Servers node.

 The Summary of Servers page is displayed.
5. Click the name of either the Oracle Identity Manager or the SOA server (represented as a hyperlink) in the Name column of the table.
6. The Settings page for the selected server is displayed, and defaults to the Configuration tab.
7. Open the Services sub tab.
8. Under the Default Store section of the page, provide the path to the default persistent store on shared storage. The directory structure of the path is as follows:

 - For Oracle Identity Manager Servers: ASERVER_HOME/tlogs
 - For SOA Servers: ASERVER_HOME/tlogs

 Note: To enable migration of the Transaction Recovery Service, specify a location on a persistent storage solution that is available to other servers in the cluster. All the servers that are a part of the cluster must be able to access this directory.

9. Repeat these steps, selecting the other SOA server on the Summary of Servers page.
10. Click Save and Activate.
11. Restart the Oracle Identity Manager and SOA Managed Servers, as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components," to make the changes take effect.

15.13 Configuring an IT Resource Instance for Email

This section describes how to configure email notification. This is mandatory for Fusion Applications. The following steps assume that an email server has been set up and that Oracle Identity Management can use it to send the email notifications.

1. Log in to Oracle Identity Manager Advanced Administration as system administrator.

2. Navigate to Configuration -> Create IT Resource.

3. Enter Email Server for IT Resource Name. Select Mail Server for IT Resource Type. Do not select anything for the Remote Manager field. Click Continue.

4. On the Step 2: Specify IT Resource Parameter Values page, provide the following values for the fields:
 - Authentication: False
 - Server Name: Email server name, for example: MAIL.mycompany.com
 - User Login: leave blank
 - User Password: leave blank
 Click Continue.

6. On the Step 4: Verify IT Resource Details page, check all the values you entered to verify that they are correct. Click Continue.

7. On the Step 5: IT Resource Connection Result page, Oracle Identity Manager checks whether it can connect to the email server provided. If the connection is successful, click Create.

9. Restart the Oracle Identity Manager server, as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components," for the changes to take effect.

15.14 Excluding Users from Oracle Identity Manager Reconciliation

By default Oracle Identity Management reconciles all users that are located in the LDAP container cn=Users. Once reconciled, these users are subject to the usual password ageing policies defined in Oracle Identity Manager. This is not desirable for system accounts. It is recommended that you exclude the following accounts from this reconciliation:

- xelsysadm
- oimLDAP
- oamLDAP

Additionally, you might want to exclude:
- IDROUser
Excluding Users from Oracle Identity Manager Reconciliation

- IDRUSER
- PolicyROUser
- PolicyRWUser

To exclude these users from reconciliation and discard failed reconciliation events, perform the following steps, using ODSM and the OIM Console:

15.14.1 Adding the orclAppIDUser Object Class to the User by Using ODSM

1. Log in to ODSM at:
 http://ADMIN.mycompany.com/odsm
2. Connect to one of the LDAP instances that hosts the user to be excluded.
3. Select Data Browser.
4. Enter the user name in the query box and execute the search.
5. Click on the user to bring up the Edit window.
6. Click Attributes.
7. Click + in the Object Classes box to add a new class.
8. Enter orclAppIDUser in the search box and execute the search.
9. Click on the attribute orclAppIDUser and click OK.
10. Click Apply.

Repeat Steps 1-10 for each user to be excluded.

15.14.2 Closing Failed Reconciliation Events by Using the OIM Console

This step is required to clear out failed reconciliation events. Failed reconciliation events are repeatedly retried, which puts an unnecessary load on the system.

1. Log in to the OIM Console as the xelsysadm user at:
 https://sso.mycompany.com:443/oim
2. Click Advanced.
3. From Event Management, select Search Reconciliation Events.
4. Click Advanced Search.
5. In the Current Status field, select Equals. In the Search box, select Creation Failed from the list.
6. Click Search.
7. Select each of the events.
8. From the Actions menu, select Close Event.
9. In the Confirmation window enter a justification, such as Close Failed Reconciliation Events.
10. Click Closed.
11. Click OK to acknowledge the confirmation message.
Enabling Oracle Identity Manager to Connect to SOA Using the Administrative Users Provisioned in LDAP

Oracle Identity Manager connects to SOA as SOA administrator, with the username weblogic by default. As mentioned in the previous sections, a new administrator user is provisioned in the central LDAP store to manage Identity Management Weblogic Domain.

Perform the following postinstallation steps to enable Oracle Identity Manager to work with the Oracle WebLogic Server administrator user provisioned in the central LDAP store. This enables Oracle Identity Manager to connect to SOA without any problem:

1. Log in to Enterprise Manager at: `http://ADMIN.mycompany.com/em`
2. Select `Farm_IDMDomain` ➔ `Identity and Access` ➔ `OIM` ➔ `oim(11.1.1.3.0)`.
3. Select `System MBean Browser` from the menu or right click to select it.
4. Select `Application defined Mbeans` ➔ `oracle.iam` ➔ `Server: wls_oim1` ➔ `Application: oim` ➔ `XML Config` ➔ `Config` ➔ `XMLConfig.SOACfg` ➔ `SOACfg`
5. Change the `username` attribute to the Oracle WebLogic Server administrator username provisioned in Section 11.5, "Preparing the Identity Store," for example: `weblogic_idm`.
 Change `SOA Config RMI URL` to:
 `cluster:t3://soa_cluster`
6. Click `Apply`.
7. Select `Weblogic Domain` ➔ `IDMDomain` from the Navigator.
8. Select `Security` ➔ `Credentials` from the down menu.
9. Expand the key `oim`.
10. Click `SOAAdminPassword`.
11. Click `Edit`.
12. Change the username to `weblogic_idm` and set the password to the accounts password.
13. Click `OK`.
14. Run the reconciliation process to enable the Oracle WebLogic Server administrator, `weblogic_idm`, to be visible in the OIM Console. Follow these steps:
 a. Log in to Oracle Identity Manager at:
 `https://SSO.mycompany.com:443/oim` as the user `xelsysadm`.
 b. If prompted, set up challenge questions. This happens on your first login to Oracle Identity Manager.
 c. Click `Advanced`.
 d. Click the `System Management` tab.
 e. Click the arrow for the `Search Scheduled Jobs` to list all the schedulers.
 f. Select `LDAP User Create and Update Full Reconciliation`.
 g. Click `Run Now` to run the job.
h. Go to the Administration page and perform a search to verify that the user is visible in the Oracle Identity Manager console.

15. Select **Administration**.

16. Click **Advanced Search --> Roles**

17. Search for the Administrators role.

18. Click the **Administrators** Role.

19. Click **Open**.

20. Click the **Members** tab.

21. Click **Assign**.

22. Type `weblogic_idm` in the Search box and Click `->`.

23. Select `weblogic_idm` from the list of available users.

24. Click `>` to move to **Selected Users**.

25. Click **Save**.

26. Restart Oracle Identity Manager managed server.

15.16 Updating the Username Generation Policy for Active Directory

If your back end directory is Active Directory, you must update Oracle Identity Manager so that it only allows user names with a maximum of 20 characters. This is a limitation of Active Directory. Update the username generation policy from `DefaultComboPolicy` to `FirstNameLastNamePolicyForAD` as follows.

1. Log in to the OIM Console at the URL listed in Section 15.2, "About Domain URLs."

2. Click **Advanced** on the top of the right pane.

3. Click **Search System properties**.

4. On the navigation bar in the left pane, search on **Username Generation**.

5. Click **Default Policy for Username Generation**.

6. In the **Value** field, update the entry from `oracle.iam.identity.usermgmt.impl.plugins.DefaultComboPolicy` to `oracle.iam.identity.usermgmt.impl.plugins.FirstNameLastNamePolicyForAD`.

7. Click **Save**.

15.17 Tuning Oracle Platform Security

In order for Oracle Platform Security to work optimally, add tuning parameters to managed servers when they start. In particular, provide these values to the following managed servers:

- Admin Server
- WLS_OAM1
- WLS_OAM2
- WLS_OIM1
To add these values to the server start parameters perform the following steps.

1. Log in to the weblogic console using at:
 http://ADMIN.mycompany.com/console
2. Click Lock and Edit.
4. Click Servers to open the Summary of Servers Page.
5. Click on a server to show the server properties page.
6. Click the Server Start tab.
7. Add the following values to the Arguments field:
 -Djps.subject.cache.key=5
 -Djps.subject.cache.ttl=600000.
8. Click Save.
9. Repeat for each of the managed servers.
10. Click Activate Changes.

For information about tuning OPSS, see the "Oracle Fusion Middleware Security Performance Tuning" chapter in the Oracle Fusion Middleware Performance and Tuning Guide.

15.18 Integrating Oracle Identity Manager and Oracle Access Manager 11g

This section describes how to integrate Oracle Identity Manager and Oracle Access Manager

This section contains the following topics:

- Section 15.18.1, "Copying OAM Keystore Files to IDMHOST1 and IDMHOST2"
- Section 15.18.2, "Updating Existing LDAP Users with Required Object Classes"
- Section 15.18.3, "Integrating Oracle Access Manager 11g with Oracle Identity Manager 11g"
- Section 15.18.4, "Managing the Password of the xelsysadm User"
- Section 15.18.5, "Validating Integration"

15.18.1 Copying OAM Keystore Files to IDMHOST1 and IDMHOST2

If you are using Oracle Access Manager with the Simple Security Transport model, you must copy the OAM keystore files, which were generated in Section 13.10, "Creating a Single Keystore for Integrating Oracle Access Manager with Other Components," to IDMHOST1 and IDMHOST2. Copy the keystore files ssokeystore.jks and oamclient-truststore.jks to the directory MSERVER_HOME/config/fmwconfig on IDMHOST1 and IDMHOST2.

15.18.2 Updating Existing LDAP Users with Required Object Classes

You must update existing LDAP users with the object classes OblixPersonPwdPolicy, OIMPersonPwdPolicy, and OblixOrgPerson.
1. Set `ORACLE_HOME` to `IAM_ORACLE_HOME`
 Set `MW_HOME` to `IAM_MW_HOME`.
 Set `JAVA_HOME` to `JAVA_HOME`.

2. On IDMHOST1, create a properties file for the integration called `user.props`, with the following contents:

   ```
   IDSTORE_HOST: IDSTORE.mycompany.com
   IDSTORE_PORT: 389
   IDSTORE_ADMIN_USER: cn=orcladmin
   IDSTORE_DIRECTORYTYPE: OVD
   IDSTORE_USERSEARCHBASE: cn=Users,dc=mycompany,dc=com
   IDSTORE_GROUPSEARCHBASE: cn=Groups,dc=mycompany,dc=com
   PASSWORD_EXPIRY_PERIOD: 7300
   IDSTORE_LOGINATTRIBUTE: uid
   ```

 Where:
 - `IDSTORE_HOST` is the name of LDAP server. For example:
 `IDSTORE.mycompany.com`
 - `IDSTORE_PORT` is the port of the LDAP server (`LDAP_LBR_PORT` in Section A.3).
 - `IDSTORE_ADMIN_USER` is the bind DN of an administrative user. For example:
 `cn=orcladmin` or `cn=oudadmin`
 - `IDSTORE_DIRECTORYTYPE` is the type of directory, valid values are OID and OVD.
 - `IDSTORE_USERSEARCHBASE` is the location of users in the directory. For example:
 `cn=Users,dc=mycompany,dc=com`
 - `IDSTORE_GROUPSEARCHBASE` is the location of groups in the directory. For example:
 `cn=Groups,dc=mycompany,dc=com`
 - `IDSTORE_LOGINATTRIBUTE` this is the directory login attribute name. For example:
 `uid`.
 - `PASSWORD_EXPIRY_PERIOD` is the password expiry period.

3. Upgrade existing LDAP, using the command `idmConfigTool`, which is located at: `IAM_ORACLE_HOME/idmtools/bin`
The syntax of the command is:

```
idmConfigTool.sh -upgradeLDAPUsersForSSO input_file=configfile
```
on Linux and

```
idmConfigTool.bat -upgradeLDAPUsersForSSO input_file=configfile
```
on Windows.

For example:

```
idmConfigTool.sh -upgradeLDAPUsersForSSO input_file=user.props
```

When prompted, enter the password of the user you are using to connect to your Identity Store.

Sample output:

```
Enter LDAP admin user password:
********** Upgrading LDAP Users With OAM ObjectClasses **********
Completed loading user inputs for - LDAP connection info
Completed loading user inputs for - LDAP Upgrade
Upgrading ldap users at - cn=Users,dc=us,dc=oracle,dc=com
Parsing - cn=readOnlyUser,cn=Users,dc=us,dc=oracle,dc=com
objectclass OIMPersonPwdPolicy not present in cn=readOnlyUser,cn=Users,dc=us,dc=oracle,dc=com. Seeding it
objectclass OblixOrgPerson not present in cn=readOnlyUser,cn=Users,dc=us,dc=oracle,dc=com. Seeding it
objectclass OblixPersonPwdPolicy not present in cn=readOnlyUser,cn=Users,dc=us,dc=oracle,dc=com. Seeding it
obpasswordexpirydate added in cn=readOnlyUser,cn=Users,dc=us,dc=oracle,dc=com
Parsing - cn=readWriteUser,cn=Users,dc=us,dc=oracle,dc=com
objectclass OIMPersonPwdPolicy not present in cn=readWriteUser,cn=Users,dc=us,dc=oracle,dc=com. Seeding it
objectclass OblixOrgPerson not present in cn=readWriteUser,cn=Users,dc=us,dc=oracle,dc=com. Seeding it
objectclass OblixPersonPwdPolicy not present in cn=readWriteUser,cn=Users,dc=us,dc=oracle,dc=com. Seeding it
```

Note: When you run the idmConfigTool, it creates or appends to the file idmDomainConfig.param. This file is generated in the same directory that the idmConfigTool is run from. To ensure that each time the tool is run, the same file is appended to, always run the idmConfigTool from the directory:

```
IAM_ORACLE_HOME/idmtools/bin
```

```
Integrating Oracle Identity Manager and Oracle Access Manager 11g

15-20
Oracle Fusion Middleware Enterprise Deployment Guide for Oracle Identity Management (Oracle Fusion Applications Edition)

```
cn=readWriteUser,cn=Users,dc=us,dc=oracle,dc=com. Seeding it

obpasswordexpirydate added in cn=readWriteUser,cn=Users,dc=us,dc=oracle,dc=com

Parsing - cn=weblogic,cn=Users,dc=us,dc=oracle,dc=com

objectclass OIMPersonPwdPolicy not present in
 cn=weblogic,cn=Users,dc=us,dc=oracle,dc=com. Seeding it

objectclass OblixOrgPerson not present in
 cn=weblogic,cn=Users,dc=us,dc=oracle,dc=com. Seeding it

objectclass OblixPersonPwdPolicy not present in
 cn=weblogic,cn=Users,dc=us,dc=oracle,dc=com. Seeding it

obpasswordexpirydate added in cn=weblogic,cn=Users,dc=us,dc=oracle,dc=com

Parsing - cn=oamMasterAdminUser,cn=Users,dc=us,dc=oracle,dc=com

objectclass OIMPersonPwdPolicy not present in
 cn=oamMasterAdminUser,cn=Users,dc=us,dc=oracle,dc=com. Seeding it

objectclass OblixPersonPwdPolicy not present in
 cn=oamMasterAdminUser,cn=Users,dc=us,dc=oracle,dc=com. Seeding it

obpasswordexpirydate added in
 cn=oamMasterAdminUser,cn=Users,dc=us,dc=oracle,dc=com

Parsing - cn=oamSoftwareUser,cn=Users,dc=us,dc=oracle,dc=com

objectclass OIMPersonPwdPolicy not present in
 cn=oamSoftwareUser,cn=Users,dc=us,dc=oracle,dc=com. Seeding it

objectclass OblixOrgPerson not present in
 cn=oamSoftwareUser,cn=Users,dc=us,dc=oracle,dc=com. Seeding it

objectclass OblixPersonPwdPolicy not present in
 cn=oamSoftwareUser,cn=Users,dc=us,dc=oracle,dc=com. Seeding it

obpasswordexpirydate added in
 cn=oamSoftwareUser,cn=Users,dc=us,dc=oracle,dc=com

Parsing - cn=PolStoreROUser,cn=Users,dc=us,dc=oracle,dc=com

objectclass OIMPersonPwdPolicy not present in
 cn=PolStoreROUser,cn=Users,dc=us,dc=oracle,dc=com. Seeding it

objectclass OblixOrgPerson not present in
 cn=PolStoreROUser,cn=Users,dc=us,dc=oracle,dc=com. Seeding it

objectclass OblixPersonPwdPolicy not present in
 cn=PolStoreROUser,cn=Users,dc=us,dc=oracle,dc=com. Seeding it

obpasswordexpirydate added in
 cn=PolStoreROUser,cn=Users,dc=us,dc=oracle,dc=com

Parsing - cn=PolStoreRWUser,cn=Users,dc=us,dc=oracle,dc=com

objectclass OIMPersonPwdPolicy not present in
```
Integrating Oracle Identity Manager and Oracle Access Manager 11g

Configuring Oracle Identity Manager

15-21

...cn=PolStoreRWUser,cn=Users,dc=us,dc=oracle,dc=com. Seeding it
objectclass OblixOrgPerson not present in
... Seeding it
objectclass OblixPersonPwdPolicy not present in
... Seeding it
obpasswordexpirydate added in cn=PolStoreRWUser,cn=Users,dc=us,dc=oracle,dc=com
Parsing - cn=PUBLIC, cn=Users, dc=us,dc=oracle,dc=com
objectclass OIMPersonPwdPolicy not present in cn=PUBLIC, cn=Users,
... Seeding it
objectclass OblixOrgPerson not present in cn=PUBLIC, cn=Users,
... Seeding it
obpasswordexpirydate added in cn=PUBLIC, cn=Users, dc=us,dc=oracle,dc=com
Parsing - cn=orcladmin, cn=Users, dc=us,dc=oracle,dc=com
objectclass OIMPersonPwdPolicy not present in cn=orcladmin, cn=Users,
... Seeding it
Parsing - cn=xelsysadm, cn=Users,dc=us,dc=oracle,dc=com
Parsing - cn=xelsysadmin, cn=Users,dc=us,dc=oracle,dc=com
Finished parsing LDAP
LDAP Users Upgraded.

********* ********* *********

See Also: Oracle Fusion Middleware Integration Overview for Oracle Identity Management Suite for more information about the idmConfigTool command.

15.18.3 Integrating Oracle Access Manager 11g with Oracle Identity Manager 11g

Integrating Oracle Identity Manager with Oracle Access Manager using a WebGate profile employs an Oracle Access Manager Trusted Authentication Protocol (TAP) scheme. This is different from previous releases which used Network Assertion Protocol (NAP).

To integrate Oracle Access Manager 11g with Oracle Identity Manager, perform the following steps on IDMHOST1:

1. Set `MW_HOME` to `IAM_MW_HOME`.
   Set `JAVA_HOME` to `JAVA_HOME`.
   Set `ORACLE_HOME` to `IAM_ORACLE_HOME`
2. Create a properties file for the integration called oimitg.props, with the following contents.

```properties
LOGINURI: /${app.context}/adfAuthentication
LOGOUTURI: /oamssologin/logout.html
AUTOLOGINIENTATION: None
ACCESS_SERVER_HOST: IDMHOST1.mycompany.com
ACCESS_SERVER_PORT: 5575
ACCESS_GATE_ID: Webgate_IDM
COOKIE_DOMAIN: .mycompany.com
COOKIE_EXPIRY_INTERVAL: 120
OAM_TRANSFER_MODE: simple
WEBGATE_TYPE: ohsWebgate11g
SSO_ENABLED_FLAG: true
IDSTORE_PORT: 389
IDSTORE_HOST: IDSTORE.mycompany.com
IDSTORE_DIRECTORYTYPE: OID or OVD
IDSTORE_ADMIN_USER: cn=oamLDAP,cn=Users,dc=mycompany,dc=com
IDSTORE_USERSEARCHBASE: cn=Users,dc=mycompany,dc=com
IDSTORE_GROUPSEARCHBASE: cn=Groups,dc=mycompany,dc=com
MDS_DB_URL: jdbc:oracle:thin:@(DESCRIPTION=(LOAD_BALANCE=on)(FAILOVER=on)(ADDRESS_LIST=(ADDRESS=(protocol=tcp)(host=OIDDBHOST1-VIP.mycompany.com)(port=1521))(ADDRESS=(protocol=tcp)(host=OIDDBHOST2-VIP.mycompany.com)(port=1521)))(CONNECT_DATA=(SERVER=DEDICATED)(SERVICE_NAME=OIDEDG.mycompany.com)))
MDS_DB_SCHEMA_USERNAME: edg_mds
WLS_HOST: ADMINVHN.mycompany.com
WLS_PORT: 7001
WLS_ADMIN: weblogic
DOMAIN_NAME: IDMDomain
OIM_MANAGED_SERVER_NAME: WLS_OIM1
DOMAIN_LOCATION: ASERVER_HOME
IDSTORE_LOGINATTRIBUTE: uid
```

where:

- **ACCESS_SERVER_PORT** is the Access Server Proxy port. This is **OAM_PROXY_PORT** in Section A.3.
- **OAM_TRANSFER_MODE** is set to **simple** if your access manager servers are configured to accept requests using the simple mode. Otherwise set **OAM_TRANSFER_MODE** to open.
- **SSO_ENABLED_FLAG** always set to **true**.
- **WEBGATE_TYPE** is the type of WebGate agent you want to create. Valid values are **ohsWebgate11g** and **ohsWebgate10**.
- **IDSTORE_HOST** is the load balancer virtual host fronting your Identity store (**LDAP_LBR_HOST**).
- **IDSTORE_PORT** is the load balancer virtual port fronting your Identity store (**LDAP_LBR_PORT**).
- **IDSTORE_DIRECTORYTYPE** is set to **OVD** if you are using Oracle Virtual Directory server to connect to either a non-OID directory or Oracle Internet Directory. Set it to **OID** if your Identity Store is in Oracle Internet Directory and to **OUD** if you are connecting to Oracle Unified Directory.
- **IDSTORE_USERSEARCHBASE** is the location in the directory where Users are Stored.
Integrating Oracle Identity Manager and Oracle Access Manager 11g

Configuring Oracle Identity Manager

- **IDSTORE_GROUPSEARCHBASE** is the location in the directory where Groups are Stored.
- **IDSTORE_LOGINATTRIBUTE** is the LDAP attribute which contains the users Login name.
- **MDS_DB_URL** contains the JDBC connection information for your database in the form: jdbc:oracle:thin:@(DESCRIPTION=(LOAD_BALANCE=on)(FAILOVER=on)(ADDRESS_LIST=(ADDRESS=(protocol=tcp)(host=IDMDBHOST1-VIP.mycompany.com)(port=1521)) (ADDRESS=(protocol=tcp)(host=IDMDBHOST2-VIP.mycompany.com)(port=1521))) (CONNECT_DATA=(SERVER=DEDICATED)(SERVICE_NAME=OIDEDG.mycompany.com))) where 1521 is the **DB_LSNR_PORT** in Section A.3.
- **MDS_DB_SCHEMA_USERNAME** is the name of the schema in the Identity Management Database that holds MDS data. See Section 7.5, "Loading the Identity Management Schemas in the Oracle RAC Database by Using RCU."
- **OIM_MANAGED_SERVER_NAME** is the name of one of the OIM Managed Servers. It does not matter which one you use.
- **WLSHOST (ADMINVHN)** is the host of your administration server, **WLS_ADMIN_HOST** in Section A.3. This is the virtual name.
- **WLSPORT** is the port of your administration server, **WLS_ADMIN_PORT** in Section A.3.
- **WLSADMIN** is the WebLogic administrative user you use to log in to the WebLogic console.
- **DOMAIN_NAME** is the name of the domain that hosts Oracle Identity Manager.
- **DOMAIN_LOCATION** is the path to the domain on disk, that is, **ASERVER_HOME**.

3. Integrate Oracle Access Manager with Oracle Identity Manager using the command **idmConfigTool**, which is located at:

```
IAM_ORACLE_HOME/idmtools/bin
```

Note: When you run the **idmConfigTool**, it creates or appends to the file **IdmDomainConfig.param**. This file is generated in the same directory that the **idmConfigTool** is run from. To ensure that each time the tool is run, the same file is appended to, always run the **idmConfigTool** from the directory:

```
IAM_ORACLE_HOME/idmtools/bin
```

The syntax of the command is

**idmConfigTool.sh** -configOIM input_file=configfile

on Linux and

**idmConfigTool.bat** -configOIM input_file=configfile

on Windows.

For example:
IAM_ORACLE_HOME/idmtools/bin/idmConfigTool.sh -configOIM input_file=oimitg.props

When the script runs you are prompted for the following information:

- Access Gate Password
- SSO Keystore Password
- Global Passphrase
- Idstore Admin Password
- MDS Database schema password
- Admin Server User Password

Sample output:

Enter sso access gate password :
Enter sso keystore jks password :
Enter sso global passphrase :
Enter mds db schema password :
Enter idstore admin password :
Enter admin server user password :

********* Seeding OAM Passwds in OIM *********

Completed loading user inputs for - CSF Config

Completed loading user inputs for - Dogwood Admin WLS

Connecting to t3://OAMADMINVHN.mycompany.com:7001

Connection to domain runtime mbean server established

Seeding credential :SSOAccessKey

Seeding credential :SSOGlobalPP

Seeding credential :SSOKeystoreKey

********* ********* *********

********* Activating OAM Notifications *********

Completed loading user inputs for - MDS DB Config

Apr 3, 2012 11:56:09 PM oracle.mds
NOTIFICATION: PManager instance is created without multitenancy support as JVM flag "oracle.multitenant.enabled" is not set to enable multitenancy support.
Initialized MDS resources

Apr 3, 2012 11:56:09 PM oracle.mds
NOTIFICATION: PManager instance is created without multitenancy support as JVM flag "oracle.multitenant.enabled" is not set to enable multitenancy support.
Apr 3, 2012 11:56:10 PM oracle.mds
Integrating Oracle Identity Manager and Oracle Access Manager 11g

Configuring Oracle Identity Manager

********* ********* *********

********* Seeding OAM Config in OIM *********

Completed loading user inputs for - OAM Access Config

Validated input values

Initialized MDS resources

********* ********* *********

********* Configuring Authenticators in OIM WLS *********
Completed loading user inputs for - LDAP connection info

Connecting to t3://ADMINVHN.mycompany.com:7001

Connection to domain runtime mbean server established

Starting edit session

Edit session started

Connected to security realm.

Validating provider configuration

Validated desired authentication providers

Created OAMIDAssertioner successfully

OAMIDAssertioner is already configured to support 11g webgate

Created OIMSignatureAuthenticator successfully

Created OVDAuthenticator successfully

Setting attributes for OVDAuthenticator

All attributes set. Configured in OVDAuthenticator

LDAP details configured in OVDAuthenticator

Control flags for authenticators set sucessfully

Reordering of authenticators done sucessfully

Saving the transaction

Transaction saved

Activating the changes

Changes Activated. Edit session ended.

Connection closed sucessfully

********** ********** **********

The tool has completed its operation. Details have been logged to automation.log

4. Check the log file for errors and correct them if necessary.

5. Restart the Administration Servers as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components."

15.18.4 Managing the Password of the xelsysadm User

After you integrate Oracle Identity Manager with Oracle Access Manager, two xelsysadm accounts exist. One is the internal account created by Oracle Identity
Manager. The other is the account you created in the Identity Store in Section 11.5, "Preparing the Identity Store."

The xelsysadm account located in the LDAP store is the one used to access the OIM console. If you want to change the password of this account, change it in LDAP. You can use ODSM to do this. Do not change it through the OIM console.

15.18.5 Validating Integration

To validate integration, you must assign Identity Management administrators to WebLogic security groups and install WebGate as described in Chapter 20, "Configuring Single Sign-on for Administration Consoles in an Enterprise Deployment."

To validate that the wiring of Oracle Access Manager 11g with Oracle Identity Manager 11g was successful, attempt to log in to the Oracle Identity Manager Self Service Console, as follows:

1. Using a browser, navigate to:
   
   https://SSO.mycompany.com/oim

   This redirects you to the OAM11g single sign-on page.

2. Log in using the xelsysadm user account created in Section 11.5, "Preparing the Identity Store."

3. If you see the OIM Self Service Console Page, the integration was successful.

You can perform additional validation as follows:

1. Log in to the OIM Console as the xelsysadmin user.

2. Create a new user.

3. Log out as the xelsysadmin user.

4. Log in as the new user you just created. As the new user, you are redirected to the Password Management page.

5. Enter the credentials and click Submit. If integration has been performed correctly, you arrive at the page you are trying to access.

15.19 Backing Up Oracle Identity Manager

Back up the database, the WebLogic domain, and the LDAP directories, as described in Section 21.6.3, "Performing Backups During Installation and Configuration."
This chapter describes how to extend the Identity Management domain to include Oracle Identity Federation in an enterprise deployment.

Installing Oracle Identity Federation is optional. You should only perform the steps in this chapter if you intend to use Oracle Identity Federation. This chapter sets up Oracle Identity Federation in Service Provider (SP) mode. Note that the steps in this chapter are complete only with respect to configuring Oracle Identity and Access Management.

You must fully configure your Identity Provider before you switch on Federation in Section 16.12.3, "Switching from Local Authentication to Federation SSO." The steps to configure your Identity Provider are outside the scope of this document.

This chapter contains the following topics:

- Section 16.1, "Overview of Extending the Domain to Include Oracle Identity Federation"
- Section 16.2, "Prerequisites"
- Section 16.3, "Configuring Oracle Identity Federation on IDMHOST1"
- Section 16.5, "Configuring Oracle Identity Federation on IDMHOST2"
- Section 16.6, "Provisioning the Managed Servers on the Local Disk"
- Section 16.7, "Validating Oracle Identity Federation"
- Section 16.8, "Configure the Enterprise Manager Agents"
- Section 16.9, "Enabling Oracle Identity Federation Integration with LDAP Servers"
- Section 16.10, "Configuring Oracle Identity Federation to work with the Oracle Web Tier"
- Section 16.11, "Validating Oracle Identity Federation"
- Section 16.12, "Integrating Oracle Identity Federation with Oracle Access Manager 11g"
- Section 16.13, "Backing Up the Application Tier Configuration"

16.1 Overview of Extending the Domain to Include Oracle Identity Federation

Oracle Identity Federation is a self-contained, standalone federation server that enables single sign-on and authentication in a multiple-domain identity network and
supports the broadest set of federation standards. This enables users to federate in heterogeneous environments and business associations, whether they have implemented other Oracle Identity Management products in their solution set or not.

16.2 Prerequisites

Before proceeding with Oracle Identity Federation configuration, ensure that you have done the following.

1. Install and upgrade the software on IDMHOST1 and IDMHOST2 as described in Section 6.3.3, "Installing Oracle WebLogic Server and Creating the Fusion Middleware Home" and Section 6.3.4, "Installing Oracle Identity Management."

2. Run the Repository Creation Utility (RCU) to create and configure the collection of schemas used by Oracle Identity Federation as described in Chapter 7, "Preparing the Database for an Enterprise Deployment."

3. Create the Identity Management domain as described in Chapter 9, "Creating the Domain for an Enterprise Deployment."

4. Install and configure Oracle Internet Directory as described in Chapter 10, "Extending the Domain to Include Oracle Internet Directory." Oracle Fusion Middleware Administrator’s Guide for Oracle Internet Directory is used as the User Store and the Federation Store.

5. Install and configure Oracle HTTP Server on WEBHOST1 and WEBHOST2 as described in Chapter 8, "Configuring the Web Tier for an Enterprise Deployment."

6. Associate the Identity Management domain created with an External LDAP Store as described in Section 11.4.2, "Reassociating the Policy and Credential Store." This is required because Oracle Identity Federation is being extended on a node where the Administration Server is not running.

16.3 Configuring Oracle Identity Federation on IDMHOST1

Ensure that the system, patch, kernel and other requirements are met. These are listed in the Oracle Fusion Middleware Installation Guide for Oracle Identity Management manual in the Oracle Fusion Middleware documentation library for the platform and version you are using.

If you plan on provisioning the Instance Home or the Managed Server domain directory on shared storage, ensure that the appropriate shared storage volumes are mounted on IDMHOST1 as described in Section 4.3, "About Recommended Locations for the Different Directories."

On UNIX:

1. Ensure that port 7499 (OIF_PORT in Section A.3) is not in use by any service on the computer by issuing these commands for the operating system you are using. If a port is not in use, no output is returned from the command.

   On UNIX:
   ```bash
 netstat -an | grep "7499"
   ```
   If the port is in use (if the command returns output identifying the port), you must free it.

   On UNIX:
Remove the entries for port 7499 in the /etc/services file and restart the services, as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components," or restart the computer.

2. Create a file containing the ports used by Oracle Internet Directory. On Disk1 of the installation media, locate the file stage/Response/staticports.ini. Copy it to a file called oif_ports.ini. Delete all entries in oif_ports.ini except for Oracle Identity Federation Server Port. Change the value of that port to 7499.

**Note:** If the port name in the file is slightly different from those listed in this step, use the name in the file.

3. Start the Oracle Identity Management 11g Configuration Wizard located under the IDM_ORACLE_HOME/bin directory as follows:

   On UNIX, issue this command:
   ```
 ./config.sh
   ```

   On Windows, double-click config.exe

4. On the Welcome screen, click Next.

5. On the Select Domain screen, select Extend Existing Domain and specify these values:
   - HostName: ADMINVHN.mycompany.com
   - Port: 7001 (WLS_ADMIN_PORT)
   - UserName: weblogic
   - User Password: weblogic_user_password

   Click Next.

6. A dialog box with the following message appears:

   The selected domain is not a valid Identity Management domain or the installer cannot determine if it is a valid domain. If you created the domain using the Identity Management installer, you can ignore this message and continue. If you did not create the domain using the Identity Management installer, refer to the Identity Management documentation for information on how to verify the domain is valid.

   This is a benign warning that you can ignore.

   Click Yes to continue.

7. On the Specify Installation Location screen, specify the following values:
   - **Oracle Middleware Home Location**: OIF_MW_HOME
     This value is prefilled and cannot be updated.
   - **Oracle Home Directory**: idm
     This value is prefilled and cannot be updated
   - **WebLogic Server Directory**: OIF_MW_HOME/wlserver_10.3
   - **Oracle Instance Location**: OIF_ORACLE_INSTANCE
   - **Instance Name**: oif1
Click Next.

8. On the Specify Security Updates screen (if shown), specify the values shown in this example:
   - **Email Address**: Provide the email address for your My Oracle Support account.
   - **Oracle Support Password**: Provide the password for your My Oracle Support account.
   - Select **I wish to receive security updates via My Oracle Support**.

Click Next.

9. On the Configure Components screen, de-select all the components except Oracle Identity Federation components. Select only Oracle Identity Federation from the Oracle Identity Federation components. Do not select Oracle HTTP Server. Select **Clustered**.

Click Next.

10. On the Configure Ports screen, you use the `oif_ports.ini` file you created in Step 2 to specify the ports to be used. This enables you to bypass automatic port configuration.
    a. Select **Specify Ports using a Configuration File**.
    b. In the file name field specify `oif_ports.ini`.
    c. Click **Save**, then click **Next**.

11. On the Specify OIF Details screen, specify these values:
    - **PKCS12 Password**: `password`
    - **Confirm Password**: Confirm the password
    - **Server Id**: `WLS_OIF1`

Click Next.

12. On the Select OIF Advanced Flow Attributes screen, specify these values:
    - **Authentication Type**: LDAP
    - **User Store**: LDAP
    - **Federation Store**: RDBMS
    - **User Session Store**: RDBMS (default selection, which cannot be changed for a cluster)
    - **Message Store**: RDBMS (default selection, which cannot be changed for a cluster)
    - **Configuration Store**: RDBMS (default selection, which cannot be changed for a cluster)

---

**Note:** When you choose RDBMS for the session, message, and configuration data stores during an Advanced installation, the installer creates one data source for all three data stores. If you want to have separate databases for each of these stores, you must configure this after the installation by using the OUI Config Wizard.

---
13. On the Authentication LDAP Details screen, specify the following values:
   - **LDAP Type**: Select **Oracle Internet Directory** if you have an Oracle Internet Directory only topology without Oracle Virtual Directory. Otherwise select Oracle Virtual Directory.
   - **LDAP URL**: The LDAP URL to connect to your LDAP store in the format: `ldaps://LDAP_LBR_HOST:LDAP_LBR_SSL_PORT`. For example: `ldaps://IDSTORE.mycompany.com:636`
   - **LDAP Bind DN**: `cn=orcladmin`
   - **LDAP Password**: `orcladmin_password`
   - **User Credential ID Attribute**: `uid`
   - **User Unique ID Attribute**: `uid`
   - **Person Object Class**: `inetOrgPerson`
   - **Base DN**: `dc=mycompany,dc=com`

   Click Next.

14. On the LDAP Attributes for User Data Store screen, specify the following values:
   - **LDAP Type**: Select **Oracle Internet Directory** if you have an Oracle Internet Directory only topology without Oracle Virtual Directory. Otherwise select Oracle Virtual Directory.
   - **LDAP URL**: The LDAP URL to connect to your LDAP store in the format: `ldaps://LDAP_LBR_HOST:LDAP_LBR_SSL_PORT`. For example: `ldaps://IDSTORE.mycompany.com:636`
   - **LDAP Bind DN**: `cn=orcladmin`
   - **LDAP Password**: `orcladmin_password`
   - **User Description Attribute**: `uid`
   - **User ID Attribute**: `uid`
   - **Person Object Class**: `inetOrgPerson`
   - **Base DN**: `dc=mycompany,dc=com`

   Click Next.

15. On the Specify Federation Store Database Details screen, specify the following values.
   - **Host Name**: The connect string to your database. For example:
     
     `IDMDBHOST1-VIP.mycompany.com:1521:idmdb1^IDMDBHOST2-VIP.mycompany.com:1521:idmdb2@OIFEDG.mycompany.com`
### Notes:

- The Oracle RAC database connect string information must be provided in the format:

  \[host1:port1:instance1^host2:port2:instance2@serviceName\]

- During this installation, it is not required for all the Oracle RAC instances to be up. If one Oracle RAC instance is up, the installation can proceed.

- It is required that the information provided is complete and accurate. Specifically, the correct host, port, and instance name must be provided for each Oracle RAC instance, and the service name provided must be configured for all the specified Oracle RAC instances.

  Any incorrect information entered in the Oracle RAC database connect string has to be corrected manually after the installation.

- If you are using Oracle Database 11.2, replace the `vip` address and port with the 11.2 SCAN address and port.

- **UserName**: The username for the OIF Schema. For example: `edg_oif`

- **Password**: `oif_user_password`

  Click **Next**.

16. On the Transient Store Database Details screen, specify the values shown in this example:

- **Host Name**: The connect string to your database. For example:

  \[IDMDBHOST1-VIP.mycompany.com:1521:idmdb1^IDMDBHOST2-VIP.mycompany.com:1521:idmdb2@OIFEDG.mycompany.com\]

- **UserName**: The username for the OIF Schema. For example: `edg_oif`

- **Password**: `oif_user_password`

  Click **Next**.

17. On the Installation Summary screen, review the selections to ensure that they are correct. If they are not correct, click **Back** to modify selections on previous screens. Then click **Configure**.

18. On the Configuration Progress screen, view the progress of the configuration.

19. On the Configuration Complete screen, click **Finish** to confirm your choice to exit.

### 16.4 Run Upgrade Script

Run the `oif-upgrade-11.1.1.2.0-11.1.1.6.0.py` script as described in "Updating Configuration Properties in Oracle Identity Federation" in Oracle Fusion Middleware Patching Guide.

---

**Notes:**

- The Oracle RAC database connect string information must be provided in the format:

  \[host1:port1:instance1^host2:port2:instance2@serviceName\]

- During this installation, it is not required for all the Oracle RAC instances to be up. If one Oracle RAC instance is up, the installation can proceed.

- It is required that the information provided is complete and accurate. Specifically, the correct host, port, and instance name must be provided for each Oracle RAC instance, and the service name provided must be configured for all the specified Oracle RAC instances.

  Any incorrect information entered in the Oracle RAC database connect string has to be corrected manually after the installation.

- If you are using Oracle Database 11.2, replace the `vip` address and port with the 11.2 SCAN address and port.

- **UserName**: The username for the OIF Schema. For example: `edg_oif`

- **Password**: `oif_user_password`

  Click **Next**.

16. On the Transient Store Database Details screen, specify the values shown in this example:

- **Host Name**: The connect string to your database. For example:

  \[IDMDBHOST1-VIP.mycompany.com:1521:idmdb1^IDMDBHOST2-VIP.mycompany.com:1521:idmdb2@OIFEDG.mycompany.com\]

- **UserName**: The username for the OIF Schema. For example: `edg_oif`

- **Password**: `oif_user_password`

  Click **Next**.

17. On the Installation Summary screen, review the selections to ensure that they are correct. If they are not correct, click **Back** to modify selections on previous screens. Then click **Configure**.

18. On the Configuration Progress screen, view the progress of the configuration.

19. On the Configuration Complete screen, click **Finish** to confirm your choice to exit.
16.5 Configuring Oracle Identity Federation on IDMHOST2

1. Ensure that the system, patch, kernel and other requirements are met. These are listed in the Oracle Fusion Middleware Installation Guide for Oracle Identity Management in the Oracle Fusion Middleware documentation library for the platform and version you are using.

2. If you plan to provision the Instance Home or the Managed Server domain directory on shared storage, ensure that the appropriate shared storage volumes are mounted on IDMHOST1 as described in Section 4.3, "About Recommended Locations for the Different Directories."

3. Ensure that port 7499 (OIF_PORT in Section A.3) is not in use by any service on the computer by issuing these commands for the operating system you are using. If a port is not in use, no output is returned from the command.
   
   On UNIX:
   ```
 netstat -an | grep "7499"
   ```
   
   If the port is in use (if the command returns output identifying the port), you must free it.
   
   On UNIX:
   Remove the entries for port 7499 in the /etc/services file and restart the services, as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components," or restart the computer.

4. Start the Oracle Identity Management 11g Configuration Wizard located under the IDM_ORACLE_HOME/bin directory as follows:
   
   On UNIX, issue this command:
   ```bash
 .config.sh
   ```
   
   On Windows, double-click config.exe

5. On the Welcome screen, click Next.

6. On the Select Domain screen, select the Expand Cluster option and specify these values:
   
   - **HostName**: ADMINVHN.mycompany.com
   - **Port**: 7001
   - **UserName**: weblogic
   - **User Password**: weblogic_user_password

   Click Next.

7. A dialog box with the following message appears:

   The selected domain is not a valid Identity Management domain or the installer cannot determine if it is a valid domain. If you created the domain using the Identity Management installer, you can ignore this message and continue. If you did not create the domain using the Identity Management installer, refer to the Identity Management documentation for information on how to verify the domain is valid.

   This is a benign warning that you can ignore.
   
   Click Yes to continue.
8. On the Specify Installation Location screen, specify the following values:
   - **Oracle Middleware Home Location**: `OIF_MW_HOME` (This value is prefilled and cannot be updated.)
   - **Oracle Home Directory**: `idm` (This value is prefilled and cannot be updated.)
   - **WebLogic Server Directory**: `OIF_MW_HOME/wlsserver_10.3`
   - **Oracle Instance Location**: `OIF_ORACLE_INSTANCE`
   - **Instance Name**: `oif2`

   Click Next.

9. On the Specify Security Updates screen (if shown), specify the values shown in this example:
   - **Email Address**: Provide the email address for your My Oracle Support account.
   - **Oracle Support Password**: Provide the password for your My Oracle Support account.
   - Select I wish to receive security updates via My Oracle Support.

   Click Next.

10. On the Configure Components screen, de-select all the components except Oracle Identity Federation components. Select only Oracle Identity Federation from the Oracle Identity Federation components. Do not select Oracle HTTP Server.

    Click Next.

11. On the Configure Ports screen, you use the `oif_ports.ini` file you created in Section 16.3, "Configuring Oracle Identity Federation on IDMHOST1" to specify the ports to be used. This enables you to bypass automatic port configuration.

    a. Select Specify Ports using a Configuration File.
    b. In the file name field specify `oif_ports.ini`.
    c. Click Save, then click Next.

12. On the Installation Summary screen, review the selections to ensure that they are correct. If they are not correct, click Back to modify selections on previous screens. Then click Configure.

13. On the Configuration Progress screen, view the progress of the configuration.

14. On the Installation Complete screen, click Finish to confirm your choice to exit.

### 16.6 Provisioning the Managed Servers on the Local Disk

Due to certain limitations, the Oracle Configuration Wizard creates the domain configuration under the Identity Management Oracle home. In this deployment guide, the Oracle home is on shared disk and it is a best practice recommendation to separate the domain configuration from the Oracle home. This section provides the steps to separate the domain. Proceed as follows:

1. From IDMHOST1, copy the applications directory under the `ASERVER_HOME/config/fmwconfig/servers/wls_oif1` directory to the `ASERVER_HOME/config/fmwconfig/servers/wls_oif2` directory.

   ```bash
 cp -rp ASERVER_HOME/config/fmwconfig/servers/wls_oif1/applications
 user@IDMHOST1:ASERVER_HOME/config/fmwconfig/servers/wls_oif2
   ```
2. On IDMHOST1, pack the Managed Server domain using the pack command located under the `ORACLE_COMMON_HOME/common/bin` directory. Make sure to pass the `-managed=true` flag to pack the Managed Server. Type:

```
ORACLE_COMMON_HOME/common/bin/pack.sh -managed=true \
 -domain=path_to_adminServer_domain -template=templateName.jar \
 -template_name=templateName
```

For example

```
ORACLE_COMMON_HOME/common/bin/pack.sh -managed=true \
 -domain=ASERVER_HOME\n -template=managedServer.jar \
 -template_name=ManagedServer_Template
```

3. Copy the Managed Server template directory from IDMHOST1 to IDMHOST2. For Example:

```
scp -rp /templates user@IDMHOST2:/templates
```

4. Unpack the Managed Server to the local disk on IDMHOST1 using the unpack command located under the `ORACLE_COMMON_HOME/common/bin` directory.

```
ORACLE_COMMON_HOME/common/bin/unpack.sh -domain=path_to_domain_on_localdisk \
 -template=templateName.jar -app_dir=path_to_appdir_on_localdisk \
 -overwrite_domain=true
```

For example:

```
ORACLE_COMMON_HOME/common/bin/unpack.sh \n -domain=MSERVER_HOME \n -template=managedServer.jar \n -app_dir=MSERVER_HOME/applications \n -overwrite_domain=true
```

5. Unpack the Managed Server to the local disk on IDMHOST2 using the unpack command located under the `ORACLE_COMMON_HOME/bin` directory.

```
ORACLE_COMMON_HOME/common/bin/unpack.sh -domain=path_to_domain_on_localdisk \
 -template=templateName.jar -app_dir=path_to_appdir_on_localdisk \
 -overwrite_domain=true
```

For example:

```
ORACLE_COMMON_HOME/common/bin/unpack.sh \n -domain=MSERVER_HOME \n -template=managedServer.jar \n -app_dir=MSERVER_HOME/applications \n -overwrite_domain=true
```

6. Restart the Administration server by following the steps in Section 21.1, "Starting and Stopping Oracle Identity Management Components.”

7. Validate that the Administration Server started up successfully by opening a browser accessing the Administration Console at `http://ADMINVHN.mycompany.com:7001/console`.

Also validate Enterprise Manager by opening a browser and accessing Oracle Enterprise Manager Fusion Middleware Control at `http://ADMINVHN.mycompany.com:7001/em`.  

---

**Provisioning the Managed Servers on the Local Disk**

**Extending the Domain to Include Oracle Identity Federation**

16-9
8. Restart the Managed Servers WLS_OIF1 and WLS_OIF2 as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components."

16.7 Validating Oracle Identity Federation

Validate the configuration of Oracle Identity Federation on IDMHOST1 and IDMHOST2 by accessing the SP metadata on each host.

On IDMHOST1, access the SP metadata by going to:
http://IDMHOST1.mycompany.com:7499/fed/sp/metadata

On IDMHOST2, access the SP metadata by going to:
http://IDMHOST2.mycompany.com:7499/fed/sp/metadata

16.8 Configure the Enterprise Manager Agents

All the Oracle Fusion Middleware components deployed in this enterprise deployment are managed by using Oracle Enterprise Manager Fusion Middleware Control. To manage Oracle Identity Federation with this tool, you must configure the EM agents with the correct monitoring credentials. Update the credentials for the EM agents associated with IDMHOST1 and IDMHOST2. Follow these steps to complete this task:

1. Use a web browser to access Oracle Enterprise Manager Fusion Middleware Control at http://ADMINVHN.mycompany.com:7001/em. Log in as the WebLogic user.

2. From the Domain Home Page, navigate to the Agent-Monitored Targets page using the menu under Farm -> Agent-Monitored Targets.
   - Click the Configure link for the Target Type Identity Federation Server to go to the Configure Target Page.
   - On the Configure Target Page, click Change Agent and choose the correct agent for the host.
   - Update the WebLogic monitoring user name and the WebLogic monitoring password. Enter weblogic as the WebLogic monitoring user name and the password for the weblogic user as the WebLogic monitoring password.
   - Click OK to save your changes.

16.9 Enabling Oracle Identity Federation Integration with LDAP Servers

By default, Oracle Identity Federation is not configured to be integrated with LDAP Servers deployed in a high availability configuration. To integrate Oracle Identity Federation with highly available LDAP Servers to serve as user data store, federation data store, or authentication engine, you must configure Oracle Identity Federation based on the LDAP server's function.

Proceed as follows to integrate Oracle Identity Federation with an LDAP Server deployed in a high availability configuration

1. On IDMHOST1, set environment variables as follows:
   
   Set DOMAIN_HOME to MSERVER_HOME.
   
   Set IDM_ORACLE_HOME to DIR_ORACLE_HOME.
2. Set Oracle Identity Federation-specific environment variables by executing the `setOIFEnv.sh` script. This script is located under the `IDM_ORACLE_HOME/fed/scripts` directory.

   For example:
   
   ```
 cd $IDM_ORACLE_HOME/fed/scripts
 . setOIFEnv.sh
   ```

3. On IDMHOST1, run the `WLST` script located under the `ORACLE_COMMON_HOME/bin` directory.

   ```
 cd $ORACLE_COMMON_HOME/common/bin
 ./wlst.sh
   ```

4. Connect to one of the Oracle Identity Federation Managed Servers:

   ```
 connect()
   ```

   Enter the username and password to connect to the Oracle Identity Federation Managed Servers. This is the same as the WebLogic Administration user name and password.

   Enter the URL to connect to the Oracle Identity Federation Managed Server:

   ```
 t3://IDMHOST1.mycompany.com:7499
   ```

5. Then enter the following properties, as needed:

   - To integrate the user data store with a highly available LDAP Server, set the `userldaphaenabled` boolean property from the `datastore` group to `true`:

     ```
 setConfigProperty('datastore','userldaphaenabled', 'true', 'boolean')
     ```

     Update was successful for: `userldaphaenabled`

   - Validate the user data store is integrated with a highly available LDAP store by running:

     ```
 getConfigProperty('datastore', 'userldaphaenabled')
     ```

     Value(s) for property: `true`

     **The userldaphaenabled property must return `true`**.

   - To integrate the LDAP authentication engine with a highly available LDAP Server, set the `ldaphaenabled` boolean property from the `authnengines` group to `true`:

     ```
 setConfigProperty('authnengines','ldaphaenabled', 'true', 'boolean')
     ```

     Update was successful for: `ldaphaenabled`

   - Validate the LDAP authentication engine is integrated with a highly available LDAP store by running:

     ```
 getConfigProperty('authnengines','ldaphaenabled')
     ```

     Value(s) for property: `true`

     **The ldaphaenabled property for the authnengines group must return true.**
16.10 Configuring Oracle Identity Federation to work with the Oracle Web Tier

This section describes how to configure Oracle Access Manager to work with the Oracle Web Tier.

This section contains the following topics:

- Section 16.10.1, "Prerequisites"
- Section 16.10.2, "Making Oracle Identity Federation aware of the Load Balancer"
- Section 16.10.3, "Configuring Oracle HTTP Servers To Front End the Oracle Identity Federation Managed Servers"

16.10.1 Prerequisites

Before proceeding, ensure that the following tasks have been performed:

1. Oracle Web Tier has been installed on WEBHOST1 and WEBHOST2.
2. Oracle Access Manager has been installed and configured on IDMHOST1 and IDMHOST2.
3. The load balancer has been configured with a virtual host name (sso.mycompany.com) pointing to the web servers on WEBHOST1 and WEBHOST2.
4. The load balancer has been configured with a virtual host name (ADMIN.mycompany.com) pointing to web servers WEBHOST1 and WEBHOST2.

16.10.2 Making Oracle Identity Federation aware of the Load Balancer

To configure the Oracle Identity Federation application to use the load balancer VIP, follow these steps:

1. Log in to the Oracle Enterprise Manager Fusion Middleware Control console using the credentials of the Administrative user (for example: weblogic).
2. Navigate to an OIF node in Oracle Enterprise Manager Fusion Middleware Control. The OIF nodes are under Identity and Access in the navigation tree.
3. From the OIF menu, select Administration, and then Server Properties.
   - Change the host name to SSO.mycompany.com and the port to 443 (HTTP_SSL_PORT).
   - Select SSL Enabled.
   - Click Apply.
4. From the OIF menu in Oracle Enterprise Manager Fusion Middleware Control, select Administration, and then Service Provider.

Note: On IDMHOST1, delete the following directories:

- ASERVER_HOME/config/fmwconfig/servers/wls_oif1/applications
- ASERVER_HOME/config/fmwconfig/servers/wls_oif2/applications
Change the URL to:
https://SSO.mycompany.com:443/fed/sp
Click Apply.

16.10.3 Configuring Oracle HTTP Servers To Front End the Oracle Identity Federation Managed Servers
If you are adding OIF to an existing domain, include OIF in the Web Tier configuration as described in Section 8.3.3, "Create Virtual Hosts to Support Identity Management."

16.11 Validating Oracle Identity Federation
If the configuration is correct, you can access the following URL from a web browser:
https://SSO.mycompany.com/fed/sp/metadata
You should see metadata.

16.12 Integrating Oracle Identity Federation with Oracle Access Manager 11g
In Service Provider (SP) mode, Oracle Access Manager delegates user authentication to Oracle Identity Federation, which uses the Federation Oracle Single Sign-On protocol with a remote Identity Provider. Once the Federation Oracle Single Sign-On flow is performed, Oracle Identity Federation will create a local session and then propagates the authentication state to Oracle Access Manager, which maintains the session information.

This section provides the steps to integrate OIF with OAM11g in authentication mode and SP mode.

This section contains the following topics:
- Section 16.12.1, "Prerequisites."
- Section 16.12.2, "Integrating Oracle Identity Federation with Oracle Access Manager in SP Mode."
- Section 16.12.3, "Switching from Local Authentication to Federation SSO."

16.12.1 Prerequisites
Before starting this integration, ensure that the following tasks have been performed:
- Install and configure Oracle Access Manager as described in Chapter 13, "Configuring Oracle Access Manager 11g."
- Install and configure Oracle HTTP Server as described in Section 6.2, "Installing Oracle HTTP Server."
- Install and configure WebGate as described in Section 20.5, "Installing and Configuring WebGate 11g."

16.12.2 Integrating Oracle Identity Federation with Oracle Access Manager in SP Mode
This section covers the following topics:
Section 16.12.2.1, "Configuring the Oracle Access Manager 11g SP Engine."

Section 16.12.2.2, "Updating the Oracle Identity Federation Authentication Scheme in Oracle Access Manager."

16.12.2.1 Configuring the Oracle Access Manager 11g SP Engine

In SP mode, Oracle Identity Federation uses federation protocols to authenticate a user, and then requests the authentication module to create an authenticated session at Oracle Access Manager. Oracle Access Manager 11g SP engine is used for this purpose. The engine also provides logout integration. To configure the SP engine, run the setupOIFOAMConfig script from IDMHOST1.

To perform the integration proceed as follows:

1. **On IDMHOST1:**
   - Set DOMAIN_HOME to ASERVER_HOME.
   - Set IDM_ORACLE_HOME to IDM_ORACLE_HOME.
   - Set the environment by running the setOIFEnv.sh script in the current shell.
     - The script resides at IDM_ORACLE_HOME/fed/scripts.
     - For example:
       ```bash
cd $IDM_ORACLE_HOME/fed/scripts
. setOIFEnv.sh
```

2. **Edit the file setupOIFOAMIntegration.py, which is located in: IDM_ORACLE_HOME/fed/scripts/oam**
   - Locate the line:
     ```python
 setConfigProperty("spengines","oam11guniqueuserid","cn","string")
     ```
   - Change the line to read:
     ```python
 setConfigProperty("spengines","oam11guniqueuserid","uid","string")
     ```
   - Save the file.

3. **Change Directory to IDM_ORACLE_HOME/fed/scripts/oam.**

4. **Execute the setupOIFOAMConfig script providing the following input parameters:**
   - **oifHost:** Hostname of one of the OIF managed servers
   - **oifPort:** Port number of OIF Managed server
   - **oifAdminHost:** Hostname of WebLogic Admin server
   - **oifAdminPort:** Port number of WebLogic Admin server
   - **oamAdminHost:** Hostname of WebLogic Admin Server
   - **oamAdminPort:** Port number of WebLogic Admin server
   - **agentType:** The agent type used, for example, webgate11g

   **For Linux, the syntax is:**
   ```bash
 oifHost=myhost oifPort=portnum oamAdminHost=myhost2 oamAdminPort=portnum2 agentType=webgate11g ./setupOIFOAMConfig.sh
   ```

   **For Windows, the syntax is:**
   ```bash
 setupOIFOAMConfig.cmd "oifHost=myhost" "oifPort=portnum" "oamAdminHost=myhost2"
   ```
Integrating Oracle Identity Federation with Oracle Access Manager 11g

Extending the Domain to Include Oracle Identity Federation

For example:

```
oIFHost=IDMHOST1 oIFAdminHost=ADMINVHN oamAdminHost=ADMINVHN oIFPort=7499
oIFAdminPort=7001 oamAdminPort=7001 agentType=webgate11g ./setupOIFOAMConfig.sh
```

The script prompts you for the username and password you use to connect to the WebLogic Administration Server, for example, weblogic_idm.

Sample Output:

```
Initializing WebLogic Scripting Tool (WLST) ...
Welcome to WebLogic Server Administration Scripting Shell

Type help() for help on available commands

OIF admin user : weblogic_idm
*OIF admin password:********
OAM admin user : oamadmin
*OAM admin password:********
Connecting to t3://ADMINVHN:7001 with userid weblogic ...
Successfully connected to Admin Server 'AdminServer' that belongs to domain 'IDMDomain'.

Warning: An insecure protocol was used to connect to the server. To ensure on-the-wire security, the SSL port or Admin port should be used instead.

Location changed to domainRuntime tree. This is a read-only tree with DomainMBean as the root.
For more help, use help(domainRuntime)

Already in Domain Runtime Tree

Disconnected from weblogic server: AdminServer
Connecting to t3://ADMINVHN:7001 with userid weblogic ...
Successfully connected to Admin Server 'AdminServer' that belongs to domain 'IDMDomain'.

Warning: An insecure protocol was used to connect to the server. To ensure on-the-wire security, the SSL port or Admin port should be used instead.

Disconnected from weblogic server: AdminServer
Connecting to t3://IDMHOST1:7499 with userid weblogic ...
Successfully connected to managed Server 'wls_oif1' that belongs to domain 'IDMDomain'.

Warning: An insecure protocol was used to connect to the server. To ensure on-the-wire security, the SSL port or Admin port should be used instead.

Disconnected from weblogic server: wls_oif1
Connecting to t3://ADMINVHN:7001 with userid weblogic ...
Successfully connected to Admin Server 'AdminServer' that belongs to domain 'IDMDomain'.

Warning: An insecure protocol was used to connect to the
server. To ensure on-the-wire security, the SSL port or Admin port should be used instead.

Disconnected from weblogic server: AdminServer
Connecting to t3://ADMINVHN:7001 with userid weblogic ... Successfully connected to Admin Server 'AdminServer' that belongs to domain 'IDMDomain'.

Warning: An insecure protocol was used to connect to the server. To ensure on-the-wire security, the SSL port or Admin port should be used instead.

Registration Successful
Disconnected from weblogic server: AdminServer

5. Restart Managed servers WLS_OIF1 and WLS_OIF2 as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components."

16.12.2.2 Updating the Oracle Identity Federation Authentication Scheme in Oracle Access Manager

Oracle Access Manager ships with an Oracle Identity Federation Authentication Scheme. This scheme needs to be updated before it can be used. To update the scheme, log in to the OAM console as the OAM administration user at: http://ADMIN.mycompany.com/oamconsole

Then perform the following steps:

1. Click the Policy Configuration tab.
2. Expand Authentication Schemes under the Shared Components tree.
3. Select OIFScheme from under the Authentication Schemes and then select Open from the menu.
4. On the Authentication Schemes page, provide the following information
 - **Challenge URL**: https://SSO.mycompany.com:443/fed/user/spoam11g
 - **Context Type**: Select external from the list.

Accept the defaults for all other values

5. Click Apply to update the OIFScheme.

16.12.3 Switching from Local Authentication to Federation SSO

Note: Before you perform this operation, Oracle Identity Federation must already be configured for Federation SSO with a Federation IdP, and that IdP must be set as the Default SSO IdP in the OIF Administration Console Service Provider section.

To switch the authentication of the Oracle Access Manager security domain from local authentication to Federation SSO, proceed as follows:

1. Log in to the OAM console as the OAM administration user.
3. Change Challenge Method from FORM to DAP.
4. Set the Authentication Module to DAP.

5. Change Challenge URL from /pages/login.jsp to:
 https://SSO.mycompany.com:443/fed/user/spoam11g

6. Change Context Type from customWar to external.

7. Set the Challenge Parameters field to TAPPartnerId=OIFDAPPartner.

8. Click Apply.

After you perform these steps, accessing a Fusion Applications resource protected by
the FAAuthScheme triggers the Federation SSO flow and redirects the user to the IdP
for authentication. An example of such a Fusion Applications resource might be:

16.13 Backing Up the Application Tier Configuration

Back up the WebLogic Domain, Database, Web Tier, and LDAP directories, as
described in Section 21.6.3, "Performing Backups During Installation and
Configuration."
17

Setting Up Node Manager for an Enterprise Deployment

This chapter describes how to configure Node Manager in accordance with Oracle best practice recommendations.

This chapter contains the following sections:

- Section 17.1, "Overview of the Node Manager"
- Section 17.2, "Changing the Location of the Node Manager Log"
- Section 17.3, "Enabling Host Name Verification Certificates for Node Manager"
- Section 17.4, "Starting Node Manager"

17.1 Overview of the Node Manager

Node Manager enables you to start and stop the Administration Server and the Managed Servers.

Process

The procedures described in this chapter must be performed for various components of the enterprise deployment topologies outlined in Section 2.1.1, "Reference Topologies Documented in the Guide." The topologies and hosts are shown in Table 17–1.

Table 17–1 Hosts in Each Topology

<table>
<thead>
<tr>
<th>Topology</th>
<th>Hosts</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAM11g/OIM11g</td>
<td>IDMHOST1</td>
</tr>
<tr>
<td></td>
<td>IDMHOST2</td>
</tr>
<tr>
<td>OIF11g</td>
<td>IDMHOST1</td>
</tr>
<tr>
<td></td>
<td>IDMHOST2</td>
</tr>
</tbody>
</table>

Note that the procedures in this chapter must be performed multiple times for each VIP-and-IP pair using the information provided in the component-specific chapters.

Recommendations

Oracle provides two main recommendations for Node Manager configuration in enterprise deployment topologies:

1. Oracle recommends placing the Node Manager log file in a location different from the default one (which is inside the Middleware Home where Node Manager
Changing the Location of the Node Manager Log

resides). See Section 17.2, "Changing the Location of the Node Manager Log" for further details.

2. Oracle also recommends using host name verification for the communication between Node Manager and the servers in the domain. This requires the use of certificates for the different addresses used in the domain. This chapter explains the steps for configuring certificates in the hosts for host name verification. See Section 17.3, "Enabling Host Name Verification Certificates for Node Manager" for further details.

Note: The passwords used in this guide are used only as examples. Use secure passwords in a production environment. For example, use passwords that consist of random sequences of both uppercase and lowercase characters as well as numbers.

17.2 Changing the Location of the Node Manager Log

Edit the Node Manager properties file located at `WL_HOME/common/nodemanager/nodemanager.properties`. Add the new location for the log file using the following line:

```
LogFile=/u01/oracle/config/logs/config/nodemanager.log
```

Oracle best practice is to use a location outside the `MW_HOME` directory and inside the administration directory.

Restart Node Manager, as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components," for the change to take effect.

17.3 Enabling Host Name Verification Certificates for Node Manager

This section describes how to set up host name verification certificates for communication between Node Manager and the Administration Server. It consists of the following steps:

- Section 17.3.1, "Generating Self-Signed Certificates Using the utils.CertGen Utility"
- Section 17.3.2, "Creating an Identity Keystore Using the utils.ImportPrivateKey Utility"
- Section 17.3.3, "Creating a Trust Keystore Using the Keytool Utility"
- Section 17.3.4, "Configuring Node Manager to Use the Custom Keystores"
- Section 17.3.5, "Using a Common or Shared Storage Installation"
- Section 17.3.6, "Configuring Managed WebLogic Servers to Use the Custom Keystores"
- Section 17.3.7, "Changing the Host Name Verification Setting for the Managed Servers"

17.3.1 Generating Self-Signed Certificates Using the utils.CertGen Utility

The certificates added in this chapter (as an example) address a configuration where Node Manager listens on a physical host name (`HOST.mycompany.com`) and a WebLogic Managed Server listens on a virtual host name (`VIP.mycompany.com`). Whenever a server is using a virtual host name, it is implied that the server can be migrated from one node to another. Consequently, the directory where keystores and
Enabling Host Name Verification Certificates for Node Manager

Setting Up Node Manager for an Enterprise Deployment

trust keystores are maintained ideally must reside on a shared storage that is accessible from the failover. If additional host names are used in the same or different nodes, the steps in this example must be extended to:

1. Add the required host names to the certificate stores (if they are different from HOST.mycompany.com and VIP.mycompany.com).

2. Change the identity and trust store location information for Node Manager (if the additional host names are used by Node Manager) or for the servers (if the additional host names are used by Managed Servers).

Follow these steps to create self-signed certificates on HOST. These certificates should be created using the network name or alias. For information on using trust CA certificates instead, see "Configuring Identity and Trust" in Oracle Fusion Middleware Securing Oracle WebLogic Server. The following examples configure certificates for HOST.mycompany.com and VIP.mycompany.com; that is, it is assumed that both a physical host name (HOST) and a virtual host name (VIP) are used in HOST. It is also assumed that HOST.mycompany.com is the address used by Node Manager and VIP.mycompany.com is the address used by a Managed Server or the Administration Server. This is the common situation for nodes hosting an Administration Server and a Fusion Middleware component, or for nodes where two Managed Servers coexist with one server listening on the physical host name and one server using a virtual host name (which is the case for servers that use migration servers).

1. Set up your environment by running the WL_HOME/server/bin/setWLSEnv.sh script. In the Bourne shell, run the following commands:

 cd $WL_HOME/server/bin
 ./setWLSEnv.sh

 Verify that the CLASSPATH environment variable is set:

 echo $CLASSPATH

2. Create a user-defined directory for the certificates. For example, create a directory called 'certs' under the ASERVER_HOME directory. Note that certificates can be shared across WebLogic domains.

 cd ASERVER_HOME
mkdir certs

 Note: The directory where keystores and trust keystores are maintained must be on shared storage that is accessible from all nodes so that when the servers fail over (manually or with server migration), the appropriate certificates can be accessed from the failover node. Oracle recommends using central or shared stores for the certificates used for different purposes (like SSL set up for HTTP invocations, for example).

3. Change directory to the directory that you just created:

 cd certs

4. Run the utils.CertGen tool from the user-defined directory to create the certificates for both HOST. mycompany.com and VIP. mycompany.com.

 Syntax (all on a single line):

 java utils.CertGen Key_Passphrase Cert_File_Name Key_File_Name
 [export | domestic] [Host_Name]
Enabling Host Name Verification Certificates for Node Manager

Examples:

java utils.CertGen Key_Passphrase IDMHOST1.mycompany.com_cert
IDMHOST1.mycompany.com_key domestic IDMHOST1.mycompany.com

java utils.CertGen Key_Passphrase IDMHOST2.mycompany.com_cert
IDMHOST2.mycompany.com_key domestic IDMHOST2.mycompany.com

Also create a certificate for the Admin Server virtual host.

java utils.CertGen Key_Passphrase ADMINVHN.mycompany.com_cert
ADMINVHN.mycompany.com_key domestic ADMINVHN.mycompany.com

17.3.2 Creating an Identity Keystore Using the utils.ImportPrivateKey Utility

Follow these steps to create an identity keystore on IDMHOST1:

1. Create a new identity keystore called appIdentityKeyStore using the
 utils.ImportPrivateKey utility. Create this keystore under the same
directory as the certificates (that is, ASERVER_HOME/certs).

 Note: The Identity Store is created (if none exists) when you import a
certificate and the corresponding key into the Identity Store using the
utils.ImportPrivateKey utility.

2. Import the certificate and private key for IDMHOST1.mycompany.com,
 IDMHOST2.mycompany.com into the Identity Store. Ensure that you use a
different alias for each of the certificate/key pairs imported.

 Syntax (all on a single line):

   ```java
   java utils.ImportPrivateKey Keystore_File Keystore_Password
   Certificate_Alias_to_Use Private_Key_Passphrase
   Certificate_File Private_Key_File
   [Keystore_Type]
   ```

 Examples:

   ```java
   java utils.ImportPrivateKey appIdentityKeyStore.jks Key_Passphrase
   appIdentityIDMHOST1 Key_Passphrase ASERVER_HOME/certs/IDMHOST1.mycompany.com_cert.pem ASERVER_HOME/certs/IDMHOST1.mycompany.com_key.pem
   
   java utils.ImportPrivateKey appIdentityKeyStore.jks Key_Passphrase
   appIdentityIDMHOST2 Key_Passphrase ASERVER_HOME/certs/IDMHOST2.mycompany.com_cert.pem ASERVER_HOME/certs/IDMHOST2.mycompany.com_key.pem
   ```

   ```java
   ```

 17.3.3 Creating a Trust Keystore Using the Keytool Utility

 Follow these steps to create the trust keystore on each host, for example IDMHOST1
 and IDMHOST2:
1. Copy the standard Java keystore to create the new trust keystore since it already contains most of the root CA certificates needed. Oracle does not recommend modifying the standard Java trust keystore directly. Copy the standard Java keystore CA certificates located under the \texttt{WL_HOME/server/lib} directory to the same directory as the certificates. For example:

 cp \texttt{WL_HOME/server/lib/cacerts} \texttt{ASERVER_HOME/keystores/appTrustKeyStoreIDMHOST1.jks}

2. The default password for the standard Java keystore is \texttt{changeit}. Oracle recommends always changing the default password. Use the \texttt{keytool} utility to do this. The syntax is:

 keytool -storepasswd -new \texttt{New_Password} -keystore \texttt{Trust_Keystore} -storepass \texttt{Original_Password}

 For example:

 keytool -storepasswd -new \texttt{Key_Passphrase} -keystore \texttt{appTrustKeyStoreIDMHOST1.jks} -storepass \texttt{changeit}

3. The CA certificate \texttt{CertGenCA.der} is used to sign all certificates generated by the \texttt{utils.CertGen} tool. It is located in the \texttt{WL_HOME/server/lib} directory. This CA certificate must be imported into the \texttt{appTrustKeyStore} using the \texttt{keytool} utility. The syntax is:

 keytool -import -v -noprompt -trustcacerts -alias \texttt{Alias_Name} -file \texttt{CA_File_Location} -keystore \texttt{Keystore_Location} -storepass \texttt{Keystore_Password}

 For example:

 keytool -import -v -noprompt -trustcacerts -alias \texttt{clientCACert} -file \texttt{WL_HOME/server/lib/CertGenCA.der} -keystore \texttt{appTrustKeyStoreIDMHOST1.jks} -storepass \texttt{Key_Passphrase}

17.3.4 Configuring Node Manager to Use the Custom Keystores

To configure Node Manager to use the custom keystores, add the following lines to the end of the \texttt{nodemanager.properties} file located in the \texttt{WL_HOME/common/nodemanager} directory:

- \texttt{KeyStores=CustomIdentityAndCustomTrust}
- \texttt{CustomIdentityKeyStoreFileName=Identity_Keystore}
- \texttt{CustomIdentityKeyStorePassPhrase=Identity_Keystore_Password}
- \texttt{CustomIdentityAlias=Identity_Keystore_Alias}
- \texttt{CustomIdentityPrivateKeyPassPhrase=Private_Key_Used_When_Creating_Certificate}

For example:

- \texttt{KeyStores=CustomIdentityAndCustomTrust}
- \texttt{CustomIdentityKeyStoreFileName=ASERVER_HOME/keystores/appIdentityKeyStore.jks}
- \texttt{CustomIdentityKeyStorePassPhrase=Key_Passphrase}
- \texttt{CustomIdentityAlias=appIdentityIDMHOST1}
- \texttt{CustomIdentityPrivateKeyPassPhrase=Key_Passphrase}

The passphrase entries in the \texttt{nodemanager.properties} file get encrypted when you start Node Manager as described in \texttt{Section 21.1, "Starting and Stopping Oracle Identity Management Components."} For security reasons, minimize the time the entries in the \texttt{nodemanager.properties} file are left unencrypted. After you edit the file, start Node Manager as soon as possible so that the entries get encrypted.
17.3.5 Using a Common or Shared Storage Installation

When using a common or shared storage installation for MW_HOME, Node Manager is started from different nodes using the same base configuration (nodemanager.properties). Add the certificate for all the nodes that share the binaries to the appIdentityKeyStore.jks identity store by creating the certificate for the new node and import it to appIdentityKeyStore.jks, as described in Section 17.3.1, "Generating Self-Signed Certificates Using the utils.CertGen Utility." Once the certificates are available in the store, each node manager must point to a different identity alias to send the correct certificate to the Administration Server.

To set different environment variables before starting Node Manager in the different nodes, change to the \wl_home\server\bin directory and set JAVA_OPTIONS to -DCustomIdentityAlias=appIdentityIDMHOSTn, where n is 1 or 2, as appropriate.

Note: Make sure to specify the custom identity alias specifically assigned to each host, for example appIdentity1 for ...HOST1 and appIdentity2 for ...HOST2.

17.3.6 Configuring Managed WebLogic Servers to Use the Custom Keystores

Follow these steps to configure the identity and trust keystores for WLS_SERVER:

1. Log in to Oracle WebLogic Server Administration Console at: http://ADMIN.mycompany.com/oamconsole
2. Click Lock and Edit.
3. Expand the Environment node in the Domain Structure window.
4. Click Servers. The Summary of Servers page is displayed.
5. Click the name of the server for which you want to configure the identity and trust keystores (WLS_SERVER). The settings page for the selected server is displayed.
6. Select Configuration, then Keystores.
7. In the Keystores field, select the **Custom Identity and Custom Trust** method for storing and managing private keys/digital certificate pairs and trusted CA certificates.
8. In the Identity section, define attributes for the identity keystore:
 - **Custom Identity Keystore:** The fully qualified path to the identity keystore: \ASERVER_HOME\certs\appIdentityKeyStore.jks
 - **Custom Identity Keystore Type:** Leave blank; it defaults to JKS.
 - **Custom Identity Keystore Passphrase:** The password (Keystore_Password) you provided in Section 17.3.3, "Creating a Trust Keystore Using the Keytool Utility." This attribute is optional or required depending on the type of keystore. All keystores require the passphrase to write to the keystore. However, some keystores do not require the passphrase to read from the keystore. WebLogic Server only reads from the keystore, so whether you define this property depends on the requirements of the keystore.
9. In the Trust section, define properties for the trust keystore:
 - **Custom Trust Keystore:** The fully qualified path to the trust keystore: \ASERVER_HOME\certs\appTrustKeyStoreIDMHOST1.jks
- **Custom Trust Keystore Type**: Leave blank; it defaults to JKS.
- **Custom Trust Keystore Passphrase**: The password you provided as *New Password* in Section 17.3.3, "Creating a Trust Keystore Using the Keytool Utility." This attribute is optional or required depending on the type of keystore. All keystores require the passphrase to write to the keystore. However, some keystores do not require the passphrase to read from the keystore. WebLogic Server only reads from the keystore, so whether you define this property depends on the requirements of the keystore.

10. Click **Save**.
11. Click **Activate Changes** in the Administration Console’s Change Center to make the changes take effect.
12. Select **Configuration**, then **SSL**.
13. Click **Lock and Edit**.
14. In the **Private Key Alias** field, enter the alias you used for the host name the Managed Server listens on, for example:
 - For wls_ods1, use `appIdentityIDMHOST1`.
 - For wls_ods2 use `appIdentityIDMHOST2`.
 - For ADMINSERVER use `appIdentityADMVHN`.

 In the **Private Key Passphrase** and the **Confirm Private Key Passphrase** fields, enter the password for the keystore that you created in Section 17.3.2, "Creating an Identity Keystore Using the utils.ImportPrivateKey Utility."

15. Click **Save**.
16. Click **Activate Changes** in the Administration Console’s Change Center to make the changes take effect.
17. Restart the server for which the changes have been applied, as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components."

17.3.7 Changing the Host Name Verification Setting for the Managed Servers

Once the previous steps have been performed, set host name verification for the affected Managed Servers to **Bea Hostname Verifier**. To do this, perform the following steps:

1. Log in to Oracle WebLogic Server Administration Console.
2. Select **Lock and Edit** from the change center.
3. Expand the **Environment** node in the Domain Structure window.
4. Click **Servers**. The Summary of Servers page is displayed.
5. Select the Managed Server in the Names column of the table. The settings page for the server is displayed.
6. Open the **SSL** tab.
7. Expand the **Advanced** section of the page.
8. Set host name verification to **Bea Hostname Verifier**.
9. Click **Save**.
10. Click **Activate Changes**.
17.4 Starting Node Manager

Notes:

- If you have not configured and started Node Manager for the first time yet, run the setNMProps.sh script as specified in section Section 9.5.2, "Starting Node Manager." This enables the use of the start script that is required for Identity Management Components.

- Verify that Node Manager is using the appropriate stores and alias from the Node Manager output. You should see the following when Node Manager starts:

 <Loading identity key store:
 FileName=ASERVER_HOME/certs/appIdentityKeyStore.jks,
 Type=jks, PassPhraseUsed=true>

 Host name verification works if you apply a test configuration change to the servers and it succeeds without Node Manager reporting any SSL errors.

Run the following commands to start Node Manager.

```
cd WL_HOME/server/bin
./startNodeManager.sh
```
Configuring server migration allows SOA- and OIM-managed servers to be migrated from one host to another, so that if a node hosting one of the servers fails, the service can continue on another node. This chapter describes how to configure server migration for an Identity Management enterprise deployment.

This chapter contains the following steps:

- Section 18.1, "Overview of Server Migration for an Enterprise Deployment"
- Section 18.2, "Setting Up a User and Tablespace for the Server Migration Leasing Table"
- Section 18.3, "Creating a Multi Data Source Using the Oracle WebLogic Administration Console"
- Section 18.4, "Editing Node Manager’s Properties File"
- Section 18.5, "Setting Environment and Superuser Privileges for the wlsifconfig.sh Script"
- Section 18.6, "Configuring Server Migration Targets"
- Section 18.7, "Testing the Server Migration"
- Section 18.8, "Backing Up the Server Migration Configuration"

18.1 Overview of Server Migration for an Enterprise Deployment

Configure server migration for the WLS_OIM1, WLS_SOA1, WLS_OIM2, and WLS_SOA2 Managed Servers. The WLS_OIM1 and WLS_SOA1 Managed Server are configured to restart on IDMHOST2 should a failure occur. The WLS_OIM2 and WLS_SOA2 Managed Servers are configured to restart on IDMHOST1 should a failure occur. The WLS_OIM1, WLS_SOA1, WLS_OIM2 and WLS_SOA2 servers listen on specific floating IPs that are failed over by WebLogic Server Migration.

Perform the steps in the following sections configure server migration for the WLS_OIM1, WLS_SOA1, WLS_OIM2, and WLS_SOA2 Managed Servers.

18.2 Setting Up a User and Tablespace for the Server Migration Leasing Table

In this section, you set up a user and tablespace for the server migration leasing table:
18.3 Creating a Multi Data Source Using the Oracle WebLogic Administration Console

The second step is to create a multi data source for the leasing table from the Oracle WebLogic Server Administration Console. You create a data source to each of the Oracle RAC database instances during the process of setting up the multi data source, both for these data sources and the global leasing multi data source. When you create a data source:

- Ensure that this is a non-XA data source.
- The names of the multi data sources are in the format of `MultiDS-rac0`, `MultiDS-rac1`, and so on.
- Use Oracle's Driver (Thin) Version 9.0.1, 9.2.0, 10, 11.
- Data sources do not require support for global transactions. Therefore, do not use any type of distributed transaction emulation/participation algorithm for the data source (do not choose the `Supports Global Transactions` option, or the `Logging Last Resource`, `Emulate Two-Phase Commit`, or `One-Phase Commit` options of the `Supports Global Transactions` option), and specify a service name for your database.
- Target these data sources to the oim_cluster and the soa_cluster.
Ensure the data source's connection pool initial capacity is set to 0 (zero). To do this, select Services, JDBC, and then Datasources. In the Datasources screen, click the Datasource Name, then click the Connection Pool tab, and enter 0 (zero) in the Initial Capacity field.

Creating a Multi Data Source
Perform these steps to create a multi data source:

1. From Domain Structure window in the Oracle WebLogic Server Administration Console, expand the Services node. The Summary of JDBC Data Source page appears.
2. Click Data Sources. The Summary of JDBC Multi Data Source page is displayed.
3. Click Lock and Edit.
4. Click New Multi Data Source. The Create a New JDBC Multi Data Source page is displayed.
5. Enter leasing as the name.
6. Enter jdbc/leasing as the JNDI name.
7. Select Failover as algorithm (default).
8. Click Next.
9. Select oim_cluster and soa_cluster as the targets.
10. Click Next.
11. Select non-XA driver (the default).
12. Click Next.
13. Click Create New Data Source.
14. Enter leasing-rac0 as the name. Enter jdbc/leasing-rac0 as the JNDI name. Enter oracle as the database type. For the driver type, select Oracle Driver (Thin) for Oracle RAC Service-Instance connections, Versions:10 and later.

Note: When creating the multi data sources for the leasing table, enter names in the format of MultiDS-rac0, MultiDS-rac1, and so on.

15. Click Next.
17. Deselect Supports Global Transactions.
18. Click Next.
19. Enter the service name, database name, host port, and password for your leasing schema.
20. Click Next.
21. Click Test Configuration and verify that the connection works.
22. Click Next.
23. Target the data source to oim_cluster and SOA cluster.
24. Click Finish.

25. Select the data source you just created, for example leasing-rac0, and add it to the right screen.

26. Click Create a New Data Source for the second instance of your Oracle RAC database, target it to the oim_cluster and soa_cluster, repeating the steps for the second instance of your Oracle RAC database.

27. Add the second data source to your multi data source.

28. Click Activate Changes.

18.4 Editing Node Manager's Properties File

In this section, you edit Node Manager's properties file. This must be done for the Node Managers on the nodes where the servers are running, IDMHOST1 and IDMHOST2.

The `nodemanager.properties` file is located in the following directory:

```
WL_HOME/common/nodemanager
```

Add the following properties to enable server migration to work properly:

- **Interface:**

  ```
  Interface=eth0
  ```

 This property specifies the interface name for the floating IP (for example, eth0).

 Note: Do not specify the sub-interface, such as eth0:1 or eth0:2. This interface is to be used without :0 or :1. Node Manager's scripts traverse the different :X-enabled IPs to determine which to add or remove. For example, the valid values in Linux environments are eth0, eth1, eth2, eth3, ethn, depending on the number of interfaces configured.

- **NetMask:**

  ```
  NetMask=255.255.248.0
  ```

 This property specifies the net mask for the interface for the floating IP. The net mask should the same as the net mask on the interface.

- **UseMACBroadcast:**

  ```
  UseMACBroadcast=true
  ```

 This property specifies whether to use a node's MAC address when sending ARP packets, that is, whether to use the -b flag in the `arping` command.

Verify in Node Manager's output (shell where Node Manager is started) that these properties are being used, or problems may arise during migration. You should see something like this in Node Manager's output:

```
StateCheckInterval=500
eth0=*,NetMask=255.255.248.0
UseMACBroadcast=true
```
1. If not done already, set the StartScriptEnabled property in the nodemanager.properties file to true. This is required to enable Node Manager to start the managed servers.

2. Start Node Manager on IDMHOST1 and IDMHOST2 by running the startNodeManager.sh script, which is located in the WL_HOME/server/bin directory.

 Note: When running Node Manager from a shared storage installation, multiple nodes are started using the same nodemanager.properties file. However, each node may require different NetMask or Interface properties. In this case, specify individual parameters on a per-node basis using environment variables. For example, to use a different interface (eth3) in HOSTn, use the Interface environment variable by setting JAVA_OPTIONS to: -DInterface=eth3

 Then start Node Manager.

18.5 Setting Environment and Superuser Privileges for the wlsifconfig.sh Script

This section is not required on Windows. On Linux, you set environment and superuser privileges for the wlsifconfig.sh script:

Ensure that your PATH environment variable includes the files listed in Table 18–1.

<table>
<thead>
<tr>
<th>File</th>
<th>Located in this directory</th>
</tr>
</thead>
<tbody>
<tr>
<td>wlsifconfig.sh</td>
<td>MSERVER_HOME/bin/server_migration</td>
</tr>
<tr>
<td>wlscontrol.sh</td>
<td>WL_HOME/common/bin</td>
</tr>
<tr>
<td>nodemanager.domains</td>
<td>WL_HOME/common/nodemanager</td>
</tr>
</tbody>
</table>

Grant sudo privilege to the WebLogic user (oracle) with no password restriction, and grant execute privilege on the /sbin/ifconfig and /sbin/arping binaries.

For security reasons, sudo should be restricted to the subset of commands required to run the wlsifconfig.sh script. For example, perform the following steps to set the environment and superuser privileges for the wlsifconfig.sh script.

 Note: Ask the system administrator for the appropriate sudo and system rights to perform this step.

Grant sudo privilege to the WebLogic user oracle with no password restriction, and grant execute privilege on the /sbin/ifconfig and /sbin/arping binaries.
18.6 Configuring Server Migration Targets

In this section, you configure server migration targets. Configuring Cluster Migration sets the `DataSourceForAutomaticMigration` property to `true`.

To configure migration in a cluster:

1. Log in to the Oracle WebLogic Server Administration Console at:
 `http://ADMIN.mycompany.com/console`
2. In the Domain Structure window, expand `Environment` and select `Clusters`. The Summary of Clusters page is displayed.
3. Click the cluster for which you want to configure migration (`oim_cluster`) in the `Name` column of the table.
4. Click the `Migration` tab.
5. Click `Lock and Edit`.
6. In the `Available` field, select the machine to which to allow migration and click the right arrow. In this case, select `IDMHOST1` and `IDMHOST2`.
7. Select the data source to be used for automatic migration. In this case, select the leasing data source.
8. Click `Save`.
9. Click `Activate Changes`.
10. Repeat steps 2 through 9 for the SOA cluster.
11. Set the candidate machines for server migration. You must perform this task for all of the Managed Servers as follows:
 a. Click `Lock and Edit`.
 b. In the Domain Structure window of the Oracle WebLogic Server Administration Console, expand `Environment` and select `Servers`.
 c. Select the server for which you want to configure migration.
 d. Click the `Migration` tab.
 e. In the `Available` field, located in the Migration Configuration section, select the machines to which to allow migration and click the right arrow. For `WLS_OIM1`, select `IDMHOST2`. For `WLS_OIM2`, select `IDMHOST1`.
 f. Select `Automatic Server Migration Enabled` and click `Save`.
 This enables Node Manager to start a failed server on the target node automatically.
 g. Click `Activate Changes`.

Make sure the script is executable by the WebLogic user ('oracle'). The following is an example of an entry inside `/etc/sudoers` granting sudo execution privilege for `oracle` and also over `ifconfig` and `arping`.

To grant sudo privilege to the WebLogic user ('oracle') with no password restriction, and grant execute privilege on the `/sbin/ifconfig` and `/sbin/arping` binaries:

```
Defaults:oracle !requiretty
oracle ALL=NOPASSWD: /sbin/ifconfig,/sbin/arping
```
h. Repeat the previous steps for the WLS_SOA1 and WLS_SOA2 Managed Servers.

i. Restart WebLogic Administration Server, Node Managers, and the servers for which server migration has been configured, as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components."

Tip: Click Customize this table in the Summary of Servers page and move Current Machine from the Available window to the Chosen window to view the machine on which the server is running. This is different from the configuration if the server is migrated automatically.

18.7 Testing the Server Migration

In this section, you test the server migration. Perform these steps to verify that server migration is working properly:

To test from IDMHOST1:

1. Stop the WLS_OIM1 Managed Server. To do this, run this command:
   ```
   kill -9 pid
   ```
 where `pid` specifies the process ID of the Managed Server. You can identify the pid in the node by running this command:
   ```
   ps -ef | grep WLS_OIM1
   ```

2. Watch the Node Manager console. You should see a message indicating that WLS_OIM1’s floating IP has been disabled.

3. Wait for Node Manager to try a second restart of WLS_OIM1. It waits for a fence period of 30 seconds before trying this restart.

4. Once Node Manager restarts the server, stop it again. Node Manager should now log a message indicating that the server will not be restarted again locally.

To test from IDMHOST2:

1. Watch the local Node Manager console. After 30 seconds since the last try to restart WLS_OIM1 on IDMHOST1, Node Manager on IDMHOST2 should prompt that the floating IP for WLS_OIM1 is being brought up and that the server is being restarted in this node.

2. Access the OIM Console using the Virtual Host Name, for example: OIMVH1. Follow the previous steps to test server migration for the WLS_OIM2, WLS_SOA1, and WLS_SOA2 Managed Servers.

Table 18–2 shows the Managed Servers and the hosts they migrate to in case of a failure.

<table>
<thead>
<tr>
<th>Managed Server</th>
<th>Migrated From</th>
<th>Migrated To</th>
</tr>
</thead>
<tbody>
<tr>
<td>WLS_OIM1</td>
<td>IDMHOST1</td>
<td>IDMHOST2</td>
</tr>
<tr>
<td>WLS_OIM2</td>
<td>IDMHOST2</td>
<td>IDMHOST1</td>
</tr>
<tr>
<td>WLS_SOA1</td>
<td>IDMHOST1</td>
<td>IDMHOST2</td>
</tr>
<tr>
<td>WLS_SOA2</td>
<td>IDMHOST2</td>
<td>IDMHOST1</td>
</tr>
</tbody>
</table>
Verification From the Administration Console
Migration can also be verified in the Administration Console:

1. Log in to the Administration Console.
2. Click Domain on the left console.
3. Click the Monitoring tab and then the Migration sub tab.

The Migration Status table provides information on the status of the migration.

Note: After a server is migrated, to fail it back to its original node/machine, stop the Managed Server from the Oracle WebLogic Administration Console and then start it again. The appropriate Node Manager starts the Managed Server on the machine to which it was originally assigned.

18.8 Backing Up the Server Migration Configuration
Back up the database and the WebLogic domain, as described in Section 21.6.3, "Performing Backups During Installation and Configuration."
Preparation the Environment for Fusion Applications Provisioning

This chapter describes how to prepare the environment for Fusion Applications provisioning.

This chapter contains the following sections:

- Section 19.1, "About Input to the Fusion Applications Provisioning Tool"
- Section 19.2, "Creating a Client Keystore"

19.1 About Input to the Fusion Applications Provisioning Tool

In earlier chapters, you were instructed to always run `idmConfigTool` from the same directory so that the tool would create or append to the file `idmDomainConfig.param` in that directory. The file `idmDomainConfig.param` in `IAM_ORACLE_HOME/idmtools/bin` now contains all the parameters required for Fusion Applications provisioning. Use that file as input to the Fusion Applications provisioning tool.

19.2 Creating a Client Keystore

To enable Fusion Applications to communicate with the Identity Management domain using SSL Server Authentication Mode, you must generate a client certificate and provide it to the Fusion Applications Provisioning process. You must provide a keystore containing the Trust point used by the Identity Management domain to the Fusion Applications.

Note:

If you are using Windows, you must install a UNIX emulation package such as Cygwin in order to run the scripts contained in this section. See http://www.cygwin.com.

When using Cygwin, ensure that you use the "/" character in path names when exporting a variable. For example:

```bash
export ORACLE_HOME=c:/oracle/idm
```

To generate a keystore containing a client certificate, perform the following steps on `LDAPHOST1`:

1. Set the `ORACLE_HOME` to `IDM_ORACLE_HOME`.
Creating a Client Keystore

Set JAVA_HOME to JAVA_HOME.
Ensure that JAVA_HOME is in your PATH variable.

2. To generate the certificate, use the tool ./SSLClientConfig.sh, which is located in: ORACLE_COMMON_HOME/bin

For example

./SSLClientConfig.sh -component cacert

As the command runs, enter the following values when prompted:

- LDAP Host Name: POLICYSTORE.mycompany.com
- LDAP Port: 389
- LDAP User: cn=orcladmin
- Password: Password_for_cn=orcladmin
- SSL Domain: IDMDomain
- Keystore Password: Enter a password to protect the keystore
- Confirm Password: Reenter the password.

The following is typical output from the command:

./SSLClientConfig.sh -component cacert
SSL Automation Script: Release 11.1.1.4.0 - Production
Copyright (c) 2010 Oracle. All rights reserved.
Downloading the CA certificate from a central LDAP location
Creating a common trust store in JKS and Oracle Wallet formats ...
Configuring SSL clients with the common trust store...
Make sure that your LDAP server is currently up and running.
Downloading the CA certificate from the LDAP server...
>>>Enter the LDAP hostname [LDAPHOST1.mycompany.com]: POLICYSTORE.mycompany.com
>>>Enter the LDAP port: [3060]? 389
>>>Enter your LDAP user [cn=orcladmin]:
>>>Enter password for cn=orcladmin:
>>>Enter the sslDomain for the CA [idm]: IDMDomain
>>>Searching the LDAP for the CA usercertifcate ...
Importing the CA certificate into trust stores...
>>>The common trust store in JKS format is located at
/u01/oracle/products/access/idm/rootCA/keystores/tmp/trust.jks
>>>The common trust store in Oracle wallet format is located at
/u01/oracle/products/access/idm/rootCA/keystores/tmp/ewallet.p12
Generate trust store for the CA cert at cn=IDMDomain,cn=sslDomains
>>>Enter a password to protect your truststore:
>>>Enter confirmed password for your truststore:

Create directory /u01/oracle/products/access/idm/rootCA/keystores/common
Importing the CA certificate into trust stores...
>>>The common trust store in JKS format is located at
/u01/oracle/products/access/idm/rootCA/keystores/common/trust.jks
>>>The common trust store in Oracle wallet format is located at
/u01/oracle/products/access/idm/rootCA/keystores/common/ewallet.p12

This creates a file called trust.jks which must be provided to the Fusion Applications Provisioning process. After creating this certificate, you must delete the private key within this key. Use the following command:

keytool -delete -keystore trust.jks -alias testkey -storepass store_password
Oracle Fusion Applications provisioning uses this file to validate that the Identity Management installation is set up appropriately before provisioning takes place. In addition to this certificate, the keystore must also contain the certificate used by the load balancer for SSO.mycompany.com.

Before you start this procedure, obtain a copy of the certificate by using your browser. First access https://SSO.mycompany.com:443, then follow the instructions to download the certificate to a file. (Each browser does this differently.)

After you have obtained the certificate, load it into the keystore using the following command:

```
keytool -import -v -noprompt -trustcacerts -alias "OIM" -file loadbalancer.cer -keystore DIR_ORACLE_HOME/rootCA/keystores/common/trust.jks
```

where `loadbalancer.cer` is the name of the file where the load balancers SSL certificate is stored. Once created, the keystore should be moved to the domain keystore location for consistency. This is `ASERVER_HOME/keystores`.
20

Configuring Single Sign-on for Administration Consoles in an Enterprise Deployment

This chapter describes how to configure single sign-on (SSO) for administration consoles in an Identity Management Enterprise deployment.

This chapter includes the following topics:

- Section 20.1, "Overview of Configuring Single Sign-on for Administration Consoles in an Enterprise Deployment"
- Section 20.2, "Prerequisites"
- Section 20.3, "Assigning Groups and Roles"
- Section 20.4, "Updating the boot.properties File"
- Section 20.5, "Installing and Configuring WebGate 11g"
- Section 20.6, "Validating WebGate and the Oracle Access Manager Single Sign-On Setup"
- Section 20.7, "Backing Up Single Sign-on"

20.1 Overview of Configuring Single Sign-on for Administration Consoles in an Enterprise Deployment

You assign WebLogic Administration groups, update boot.properties, and restart the servers. Then you install and configure WebGate and validate the setup. After WebGate is installed and configured, the Oracle HTTP Server intercepts requests for the consoles and forwards them to Oracle Access Manager for validation.

The administration consoles referred to in the chapter title are:

- Oracle Enterprise Manager Fusion Middleware Control
- Oracle WebLogic Server Administration Console
- Oracle Access Manager Console
- Oracle Identity Manager Console

20.2 Prerequisites

Before you attempt to integrate administration consoles with single sign-on, ensure that the following tasks have been performed in the IDMDomain:
Assigning Groups and Roles

1. Configuring Oracle HTTP Server, as described in Chapter 8, "Configuring the Web Tier for an Enterprise Deployment."
2. Configuring Oracle Access Manager, as described in Chapter 13, "Configuring Oracle Access Manager 11g."
3. Provisioning Weblogic Administrators in LDAP as described in Section 11.5, "Preparing the Identity Store."

20.3 Assigning Groups and Roles

In an enterprise, it is typical to have a centralized Identity Management domain where all users, groups and roles are provisioned and multiple application domains (such as a SOA domain and WebCenter Portal domain). The application domains are configured to authenticate using the central Identity Management domain.

20.3.1 Assigning WLSAdmins Group to WebLogic Administration Groups

In Section 11.5, "Preparing the Identity Store" you created a user called weblogic_idm and assigned it to the group WLSAdmins. To be able to manage WebLogic using this account you must add the WLSAdmins group to the list of Weblogic Administration groups. This section describes how to add the WLSAdmins Group to the list of WebLogic Administrators.

Perform these tasks on IDMDomain.

1. Log in to the WebLogic Administration Server Console at:
 http://ADMIN.mycompany.com/console
2. In the left pane of the console, click Security Realms.
4. On the Settings page for myrealm, click the Roles & Policies tab.
5. On the Realm Roles page, expand the Global Roles entry under the Roles table. This brings up the entry for Roles. Click the Roles link to go to the Global Roles page.
6. On the Global Roles page, click the Admin role to go to the Edit Global Role page:
 a. On the Edit Global Roles page, under the Role Conditions table, click the Add Conditions button.
 b. On the Choose a Predicate page, select Group from the list for predicates and click Next.
 c. On the Edit Arguments Page, Specify IDM Administrators in the Group Argument field and click Add.
7. Click Finish to return to the Edit Global Rule page.
8. The Role Conditions table now shows the IDM Administrators Group as an entry.
9. Click Save to finish adding the Admin role to the IDM Administrators Group.
10. Validate that the changes were successful by bringing up the WebLogic Administration Server Console using a web browser. Log in using the credentials for the weblogic_idm user.

20.3.2 Perform Bug 13824816 Workaround

Perform the following workaround for Bug 13824816:
1. Log in to the WebLogic Administration Server Console at:
 http://ADMIN.mycompany.com/oamconsole
2. In the left pane of the console, click **Security Realms**.
3. On the Summary of Security Realms page, click **myrealm** under the Realms table.
4. On the Settings page for myrealm, click the **Roles & Policies** tab.
5. On the Realm Roles page, expand the **Global Roles** entry under the Roles table. This brings up the entry for Roles.
6. Click the **Roles** link to go to the Global Roles page.
7. On the Global Roles page, click the **Admin** role to go to the Edit Global Role page:
8. On the Edit Global Roles page, under the Role Conditions table, click **Add Conditions**.
9. On the Choose a Predicate page, select **Group** from the predicates list and click **Next**.
10. On the Edit Arguments Page, specify **OAMAdministrators** in the **Group Argument** field and click **Add**.
11. Click **Finish** to return to the Edit Global Rule page.
 The Role Conditions table now shows the **OAMAdministrators** Group as an entry.
12. Click **Save** to finish adding the Admin role to the **OAMAdministrators** Group.

20.4 Updating the boot.properties File

Update the **boot.properties** file for the Administration Server and the managed servers with the WebLogic **admin** user created in Oracle Internet Directory.

This section contains the following topics:

- **Section 20.4.1, "Update the Administration Server on IDMHOST1"
- **Section 20.4.2, "Restarting the Servers"

20.4.1 Update the Administration Server on IDMHOST1

1. On IDMHOST1, go the directory:

   ```
   ASERVER_HOME/servers/serverName/security
   ```

 For example:

    ```
    cd ASERVER_HOME/servers/AdminServer/security
    ```

2. Rename the existing **boot.properties** file.

3. Use a text editor to create a file called **boot.properties** under the security directory. Enter the following lines in the file:

   ```
   username=adminUser
   password=adminUserPassword
   ```

 For example:

    ```
    username=weblogic_idm
    password=Password for weblogic_idm user
    ```
20.4.2 Restarting the Servers

Restart the WebLogic Administration server and all managed servers, as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components."

20.5 Installing and Configuring WebGate 11g

This section describes how to install and configure WebGate.

This section contains the following topics:

- Section 20.5.1, "Prerequisites"
- Section 20.5.2, "Installing Oracle WebGate on WEBHOST1 and WEBHOST2"

20.5.1 Prerequisites

Ensure that the following tasks have been performed before installing the Oracle Web Gate:

1. Install and configure the Oracle Web Tier as described in Chapter 8.
2. Ensure Oracle Access Manager has been configured as described in Chapter 13.

20.5.2 Installing Oracle WebGate on WEBHOST1 and WEBHOST2

Before starting the installer ensure that Java is installed on your machine.

1. Start the WebGate installer by issuing the command:
   ```
   ./runInstaller
   ```
 You are asked to specify the location of the Java Development Kit for example:
   ```
   WEB_MW_HOME/jrockit_version
   ```
2. On the Welcome screen, click Next.
3. On the Prerequisites screen, after all the checks have successfully completed, click Next.
4. On the Installation Location Screen, enter the following information:
 - **Oracle Middleware Home**: `WEB_MW_HOME`
 - **Oracle Home Directory**: `webgate`
 Click Next.
5. On the installation summary screen, click Install.
6. Click Next.
7. Click Finish.

Deploy WebGate to Oracle HTTP, as follows:

Note: When you start the Administration Server, the username and password entries in the file get encrypted.

For security reasons, minimize the time the entries in the file are left unencrypted. After you edit the file, you should start the server as soon as possible so that the entries get encrypted.
1. Execute the command `deployWebGate` which is located in:

 `WEBGATE_ORACLE_HOME/webgate/ohs/tools/deployWebGate`

 The command takes the following arguments:
 Oracle HTTP Instance configuration Directory
 WebGate Home Directory

 For example:

 `./deployWebGateInstance.sh -w WEB_ORACLE_INSTANCE/config/OHS/component_name -oh WEBGATE_ORACLE_HOME`

2. Set the library path and change directory.

 On Linux systems, set the library path to include the `WEB_ORACLE_HOME/lib` directory, for example:

 `export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:WEB_ORACLE_HOME/lib`

 On Windows, set the `WEBGATE_ORACLE_HOME\webgate\ohs\lib` location and the `WEB_ORACLE_HOME\bin` location in the `PATH` environment variable. Add a semicolon (`;`) followed by this path at the end of the entry for the `PATH` environment variable.

 Change directory:

 On Linux, change directory to: `WEBGATE_ORACLE_HOME/webgate/ohs/tools/setup/InstallTools`

 On Windows, change directory to: `WEBGATE_ORACLE_HOME\webgate\ohs\tools\EditHttpConf`

3. Run the following command to copy the file `apache_webgate.template` from the WebGate home directory to the WebGate instance location (renamed to `webgate.conf`) and update the `httpd.conf` file to add one line to include the name of `webgate.conf`.

 On Linux, type:

 `./EditHttpConf -w WEB_ORACLE_INSTANCE/config/OHS/component_name -oh WEBGATE_ORACLE_HOME`

 On Windows, type:

 `EditHttpConf.exe -w WEB_ORACLE_INSTANCE\config\OHS\component_name -oh WEBGATE_ORACLE_HOME`

4. Copy the files `ObAccessClient.xml`, `cwallet.sso`, and `password.xml`, which were generated when you created the agent from the directory `ASERVER_HOME/output/Webgate_IDM_11g` on `IDMHOST1`, to the directory: `WEB_ORACLE_INSTANCE/config/OHS/component/webgate/config`

5. The files `aaa_key.pem` and `aaa_cert.pem` were generated when you created the agent from the directory `ASERVER_HOME/output/Webgate_IDM_11g` Name on `IDMHOST1`. Copy the files `aaa_key.pem` and `aaa_cert.pem` to the WebGate instance directory: `WEB_ORACLE_INSTANCE/config/OHS/component/webgate/config/simple`

6. Restart the Oracle HTTP Server as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components."
20.6 Validating WebGate and the Oracle Access Manager Single Sign-On Setup

To validate that WebGate is functioning correctly, open a web browser and go the OAM console at: http://ADMIN.mycompany.com/oamconsole

You now see the Oracle Access Manager Login page displayed. Enter your OAM administrator user name (for example, oamadmin) and password and click Login. Then you see the Oracle Access Manager console displayed.

To validate the single sign-on setup, open a web browser and go the WebLogic Administration Console at http://ADMIN.mycompany.com/oamconsole and to Oracle Enterprise Manager Fusion Middleware Control at: http://ADMIN.mycompany.com/em

The Oracle Access Manager Single Sign-On page displays. Provide the credentials for the weblogic_idm user to log in.

20.7 Backing Up Single Sign-on

Back up the Web Tier and WebLogic Domain, as described in Section 21.6.3, "Performing Backups During Installation and Configuration."
21
Managing the Topology for an Enterprise Deployment

This chapter describes some operations that you can perform after you have set up the Identity Management topology. These operations include monitoring, scaling, backing up your topology, and troubleshooting.

This chapter includes the following topics:

- Section 21.1, "Starting and Stopping Oracle Identity Management Components"
- Section 21.2, "About Identity Management Console URLs"
- Section 21.3, "Monitoring Enterprise Deployments"
- Section 21.4, "Scaling Enterprise Deployments"
- Section 21.5, "Auditing Identity Management"
- Section 21.6, "Performing Backups and Recoveries"
- Section 21.7, "Patching Enterprise Deployments"
- Section 21.8, "Preventing Timeouts for SQL"
- Section 21.9, "Manually Failing Over the WebLogic Administration Server"
- Section 21.10, "Troubleshooting"

21.1 Starting and Stopping Oracle Identity Management Components

This section describes how to start, stop and restart the various components of the Oracle Enterprise Deployment for Identity Management.

This section contains the following topics:

- Section 21.1.1, "Startup Order"
- Section 21.1.2, "Starting and Stopping Oracle Virtual Directory"
- Section 21.1.3, "Starting and Stopping Oracle Internet Directory"
- Section 21.1.4, "Starting, Stopping, and Restarting Oracle Access Manager Managed Servers"
- Section 21.1.5, "Starting and Stopping Oracle Identity Federation Managed Servers"
- Section 21.1.6, "Starting, Stopping, and Restarting WebLogic Administration Server"
- Section 21.1.7, "Starting, Stopping, and Restarting Oracle HTTP Server"
21.1.1 Startup Order

When starting up your entire infrastructure, start the components in the following order, (ignoring those not in your topology):

1. Database(s)
2. Database Listener(s)
3. Oracle Internet Directory
4. Oracle Virtual Directory
5. Node Manager
6. Oracle Access Manager Server(s)
7. WebLogic Administration Server
8. Oracle HTTP Server(s)
9. SOA Server(s)
10. Oracle Identity Manager Server(s)

21.1.2 Starting and Stopping Oracle Virtual Directory

Start and stop Oracle Virtual Directory as follows.

21.1.2.1 Starting Oracle Virtual Directory

Start system components such as Oracle Virtual Directory by typing:

```
ORACLE_INSTANCE/bin/opmnctl startall
```

You can verify that the system components have started by executing:

```
ORACLE_INSTANCE/bin/opmnctl status -l
```

21.1.2.2 Stopping Oracle Virtual Directory

Stop system components such as Oracle Virtual Directory by executing the following command:

```
ORACLE_INSTANCE/bin/opmnctl stopall
```

21.1.3 Starting and Stopping Oracle Internet Directory

Start and stop Oracle Internet Directory as follows.

21.1.3.1 Starting Oracle Internet Directory

Start system components such as Oracle Internet Directory by typing

```
ORACLE_INSTANCE/bin/opmnctl startall
```

You can verify that the system components have started by executing:

```
ORACLE_INSTANCE/bin/opmnctl status -l
```
21.1.3.2 Stopping Oracle Internet Directory
Stop system components such as Oracle Internet Directory by executing the following command:

```
ORACLE_INSTANCE/bin/opmnctl stopall
```

21.1.4 Starting, Stopping, and Restarting Oracle Access Manager Managed Servers
Start and stop Oracle Access Manager Managed Servers as follows:

21.1.4.1 Starting an Access Manager Managed Server When None is Running
Normally, you start Access Manager managed servers by using the WebLogic console. After you have enabled Single Sign-On for the administration consoles, however, you must have at least one Access Manager Server running in order to access a console. If no Access Manager server is running, the only way you can start one is from the command line.

To start WLS_OAM1 manually, use the command:

```
MSERVER_HOME/bin/startManagedWeblogic.sh WLS_OAM1 t3://ADMINVHN:7001
```

where 7001 is `WLS_ADMIN_PORT` in Section A.3.

21.1.4.2 Starting an Oracle Access Manager Managed Server When Another is Running
To start an Oracle Access Manager Managed Server when you already have another one running, log in to the WebLogic console at:

```
http://ADMIN.mycompany.com/oamconsole
```

Then proceed as follows:

1. Select Environment - Servers from the Domain Structure menu.
2. Click the Control tab.
3. Select OAM Servers (WLS_OAM1 and/or WLS_OAM2).
4. Click the Start button.
5. Click Yes when asked to confirm that you want to start the server(s).

Note: After you have enabled single sign-on for the administration consoles, ensure that at least one Oracle Access Manager Server is running to enable console access.

If you have used the Oracle WebLogic console to shut down all of the Oracle Access Manager Managed Servers, then restart one of those Managed Servers manually before using the console again.

To start WLS_OAM1 manually, use the command:

```
MSERVER_HOME/bin/startManagedWeblogic.sh WLS_OAM1 t3://ADMINVHN:7001
```

21.1.4.3 Stopping Oracle Access Manager Managed Servers
To stop the Oracle Access Manager Managed Server(s), log in to the WebLogic console at:

```
http://ADMIN.mycompany.com/oamconsole
```
Then proceed as follows:

1. Select Environment - Servers from the Domain Structure menu.
2. Click the Control tab.
3. Select OAM Servers (WLS_OAM1 and/or WLS_OAM2).
4. Click the Shutdown button and select Force Shutdown now.
5. Click Yes when asked to confirm that you want to shut down the server(s).

21.1.4.4 Restarting Oracle Access Manager Managed Servers

Restart the server by following the Stop and Start procedures in the previous sections.

21.1.5 Starting and Stopping Oracle Identity Federation Managed Servers

Start and stop Oracle Identity Federation Managed Servers as follows:

21.1.5.1 Starting Oracle Identity Federation

To start the Oracle Identity Federation Managed Server(s), log in to the WebLogic console at: http://ADMIN.mycompany.com/oamconsole

Then proceed as follows:

1. Select Environment - Servers from the Domain Structure menu.
2. Click the Control tab.
3. Select OIF Servers (WLS_OIF1 and/or WLS_OIF2).
4. Click Start.
5. Click Yes when asked to confirm that you want to start the server(s).

21.1.5.2 Stopping Oracle Identity Federation

To stop the Oracle Identity Federation Managed Server(s), log in to the WebLogic console at: http://ADMIN.mycompany.com/oamconsole

Then proceed as follows:

1. Select Environment - Servers from the Domain Structure menu.
2. Click the Control tab.
3. Select OIF Servers (WLS_OIF1 and/or WLS_OIF2).
4. Click Shutdown and select Force Shutdown now.
5. Click Yes when asked to confirm that you want to shut down the server(s).

21.1.5.3 Restarting Oracle Identity Federation

Restart the server by following the previous Stop and Start procedures.

21.1.5.4 Starting the EMAgent

Start the EMAgent by executing the following command:

```
ORACLE_INSTANCE/bin/opmnctl startall
```

You can verify that the instance started successfully by executing:
Starting and Stopping Oracle Identity Management Components

Managing the Topology for an Enterprise Deployment

21.1.5.5 Stopping the Oracle Identity Federation Instances and EMAgent
Stop the Oracle Identity Federation Instance and EMAgent by executing the following command:

```
OIF_ORACLE_INSTANCE/bin/opmnctl stopall
```

21.1.6 Starting, Stopping, and Restarting WebLogic Administration Server
Start and stop the WebLogic Administration Server as described in the following sections.

Note: Admin_user and Admin_Password are only used to authenticate connections between Node Manager and clients. They are independent from the server administration ID and password and are stored in the ASERVER_HOME/config/nodemanager/nm_password.properties file.

21.1.6.1 Starting WebLogic Administration Server
The recommended way to start the Administration server is to use WLST and connect to Node Manager:

```bash
cd ORACLE_COMMON_HOME/common/bin
./wlst.sh
```

Once in WLST shell, execute

```bash
nmConnect('Admin_User','Admin_Password','ADMINHOST1','5556', 'IDMDomain','ASERVER_HOME')
nmStart('AdminServer')
```

Alternatively, you can start the Administration server by using the command:

```
DOMAIN_HOME/bin/startWeblogic.sh
```

21.1.6.2 Stopping WebLogic Administration Server
To stop the Administration Server, log in to the WebLogic console at:

```
http://ADMIN.mycompany.com/oamconsole
```

Then proceed as follows:

1. Select Environment - Servers from the Domain Structure menu.
2. Click the Control tab.
3. Select AdminServer(admin).
4. Click Shutdown and select Force Shutdown now.
5. Click Yes when asked to confirm that you want to shut down the Administration Server.

21.1.6.3 Restarting WebLogic Administration Server
Restart the server by following the Stop and Start procedures in the previous sections.
21.1.7 Starting, Stopping, and Restarting Oracle HTTP Server
Prior to starting/stopping the Oracle HTTP server:
- Set ORACLE_INSTANCE to WEB_ORACLE_INSTANCE.
- Set ORACLE_HOME to WEB_ORACLE_HOME.
- Ensure that the ORACLE_HOME/opmn/bin appears in the PATH.

21.1.7.1 Starting Oracle HTTP Server
Start the Oracle Web Tier by issuing the command:
```
opmnctl startall
```

21.1.7.2 Stopping Oracle HTTP Server
Stop the Web Tier by issuing the command
```
opmnctl stopall
```
to stop the entire Web Tier or
```
opmnctl stoproc process-type=OHS
```
to stop Oracle HTTP Server only.

21.1.7.3 Restarting Oracle HTTP Server
You can restart the Web Tier by issuing a Stop followed by a Start as described in the previous sections.
To restart the Oracle HTTP server only, use the following command.
```
opmnctl restartproc process-type=OHS
```

21.1.8 Starting and Stopping Node Manager
Start and stop the Node Manager as follows:

21.1.8.1 Starting Node Manager
If the Node Manager being started is the one that controls the Administration Server (IDMHOST1 or IDMHOST2), then prior to starting the Node Manager, set JAVA_OPTIONS to -DDomainRegistrationEnabled=true and issue the commands:
```
cd IAM_MW_HOME/wlserver_10.3/server/bin
./startNodeManager.sh
```

21.1.8.2 Stopping Node Manager
To stop Node Manager, kill the process started in the previous section.

21.1.8.3 Starting Node Manager for an Administration Server
Set the environment variable JAVA_OPTIONS to -DDomainRegistrationEnabled=true and issue the commands:
```
cd IAM_MW_HOME/wlserver_10.3/server/bin
./startNodeManager.sh
```
21.1.9 Starting, Stopping, and Restarting Oracle Identity Manager

Start and stop Oracle Identity Manager and Oracle SOA Suite servers as follows:

21.1.9.1 Starting Oracle Identity Manager
To start the Oracle Identity Manager Managed Server(s), log in to the WebLogic console at: http://ADMIN.mycompany.com/oamconsole

Then proceed as follows:
1. Select Environment - Servers from the Domain Structure menu.
2. Click the Control tab.
3. Select SOA Servers (WLS_SOA1 and/or WLS_SOA2).
4. Click the Start button.
5. Click Yes when asked to confirm that you want to start the server(s).
6. After WLS_SOA1 and/or WLS_SOA2 have started, select WLS_OIM1 and/or WLS_OIM2.
7. Click Start.
8. Click Yes when asked to confirm that you want to start the server(s).

21.1.9.2 Stopping Oracle Identity Manager
To stop the Oracle Identity Manager Managed Server(s), log in to the WebLogic console at: http://ADMIN.mycompany.com/oamconsole

Then proceed as follows:
1. Select Environment - Servers from the Domain Structure menu.
2. Click the Control tab.
3. Select OIM Servers (WLS_OIM1 and/or WLS_OIM2) and (WLS_SOA1 and/or WLS_SOA2).
4. Click the Shutdown button and select Force Shutdown now.
5. Click Yes when asked to confirm that you want to shutdown the server(s).

21.1.9.3 Restarting Oracle Identity Manager
Restart the server by following the Stop and Start procedures in the previous sections.

Note: It is important to set -DDomainRegistrationEnabled=true whenever you start a Node Manager that manages the Administration Server.

Note: You can start the Oracle Identity Manager and Oracle SOA Suite servers independently of each other. There is no dependency in their start order. However, the SOA server must be up and running for all of the Oracle Identity Manager functionality to be available.
21.2 About Identity Management Console URLs

Table 21–1 lists the administration consoles used in this guide and their URLs.

<table>
<thead>
<tr>
<th>Domain</th>
<th>Console</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDMDomain</td>
<td>WebLogic Administration Console</td>
<td>http://ADMIN.mycompany.com/console</td>
</tr>
<tr>
<td>IDMDomain</td>
<td>Enterprise Manager FMW Control</td>
<td>http://ADMIN.mycompany.com/em</td>
</tr>
<tr>
<td>IDMDomain</td>
<td>OAM Console</td>
<td>http://ADMIN.mycompany.com/oamconsole</td>
</tr>
<tr>
<td>IDMDomain</td>
<td>ODSM</td>
<td>http://ADMIN.mycompany.com/odsm</td>
</tr>
</tbody>
</table>

21.3 Monitoring Enterprise Deployments

This section provides information about monitoring the Identity Management enterprise deployment described in this manual.

This section contains the following topics:

- Section 21.3.1, "Monitoring Oracle Internet Directory"
- Section 21.3.2, "Oracle Internet Directory Component Names Assigned by Oracle Identity Manager Installer"
- Section 21.3.3, "Monitoring Oracle Virtual Directory"
- Section 21.3.4, "Monitoring WebLogic Managed Servers"

21.3.1 Monitoring Oracle Internet Directory

You can use the Oracle Enterprise Manager Fusion Middleware Control to monitor Oracle Internet Directory, as follows:

1. On the Farm home page for an Identity Management domain, view the Fusion Middleware pie chart. This chart shows the status of Oracle Fusion Middleware components. Green sections of the chart indicate components that are up and running properly, and red sections indicate components that are down.

2. The Identity and Access section below the chart includes the name of each individual Oracle Internet Directory instance (for example: oid1, oid2), its status, host name, and CPU usage percentage. A green arrow in the Status column indicates that the instance is up and running properly, and a red arrow indicates the instance is down. Click the name of an individual Oracle Internet Directory instance to view the home page for that instance.

3. The home page for an instance displays metrics for the instance such as performance, load, security, response, CPU utilization %, and memory utilization %.

21.3.2 Oracle Internet Directory Component Names Assigned by Oracle Identity Manager Installer

When you perform an Oracle Internet Directory installation using Oracle Identity Management 11g Installer, the default component name that the installer assigns to the Oracle Internet Directory instance is oid1. You cannot change this component name.
The instance specific configuration entry for this Oracle Internet Directory instance is `cn=oid1, cn=osdldapd, cn=subconfigsubentry`.

If you perform a second Oracle Internet Directory installation on another computer and that Oracle Internet Directory instance uses the same database as the first instance, the installer detects the previously installed Oracle Internet Directory instance on the other computer using the same Oracle database, so it gives the second Oracle Internet Directory instance a component name of `oid2`.

The instance specific configuration entry for the second Oracle Internet Directory instance is `cn=oid2, cn=osdldapd, cn=subconfigsubentry`. A change of properties in the entry `cn=oid2, cn=osdldapd, cn=subconfigsubentry` does not affect the first instance (oid1).

If a third Oracle Internet Directory installation is performed on another computer and that instance uses the same database as the first two instances, the installer gives the third Oracle Internet Directory instance a component name of `oid3`, and so on for additional instances on different hosts that use the same database.

Note that the shared configuration for all Oracle Internet Directory instances is `cn=dsaconfig, cn=configsets, cn=oracle internet directory`. A change in this entry affects all the instances of Oracle Internet Directory.

This naming scheme helps alleviate confusion when you view your domain using Oracle Enterprise Manager by giving different component names to your Oracle Internet Directory instances.

21.3.3 Monitoring Oracle Virtual Directory

You can use the Oracle Enterprise Manager Fusion Middleware Control to monitor Oracle Virtual Directory, as follows:

1. On the Farm home page for an Identity Management domain, view the Fusion Middleware pie chart. This chart shows the status of Oracle Fusion Middleware components. Green sections of the chart indicate components that are up and running properly, and red sections indicate components that are down.

2. The Identity and Access section below the chart includes the name of each instance of the Oracle Virtual Directory application (for example, ovd1, ovd2), its status, and host name. A green arrow in the Status column indicates that the Oracle Virtual Directory instance is up and running properly, and a red arrow indicates the instance is down. Click the name of an individual Oracle Virtual Directory instance to view the home page for that instance.

3. The home page for an instance displays metrics and configurations for the instance such as:
 - Oracle Virtual Directory status - A green arrow next to the Oracle Virtual Directory instance name at the top of the page indicates that the instance is up and running properly and a red arrow indicates that the instance is down.
 - Current Load - This indicates the current work load of this Oracle Virtual Directory instance. It includes three metrics: Open Connections, Distinct Connected Users, and Distinct Connected IP Addresses.
 - Average Response Time Metric - This displays the average time (in milliseconds) to complete an LDAP search request.
 - Operations Metric - This displays the average number of LDAP search requests finished per millisecond.
- Listeners - This table lists the listeners configured for this Oracle Virtual Directory instance to provide services to clients.

- Adapters - This table lists existing adapters configured with the Oracle Virtual Directory instance. Oracle Virtual Directory uses adapters to connect to different underlying data repositories.

- Resource Usage - On the right hand side of the page, the CPU and memory utilization metrics are displayed to indicate the system resources consumed by the Oracle Virtual Directory instance.

21.3.4 Monitoring WebLogic Managed Servers

You can use Oracle Enterprise Manager Fusion Middleware Control to monitor Managed Servers and other Fusion Middleware components, such as Oracle Access Manager, Oracle Identity Manager, Oracle Identity Federation, and SOA. For more information, see the administrator guides listed in the Preface under "Related Documents" on page xix.

21.4 Scaling Enterprise Deployments

The reference enterprise topology discussed in this manual is highly scalable. It can be scaled up and or scaled out. When the topology is scaled up, a new server instance is added to a node already running one or more server instances. When the topology is scaled out, new servers are added to new nodes.

This section contains the following topics:

- Section 21.4.1, "Scaling Up the Topology"
- Section 21.4.2, "Scaling Out the Topology"

21.4.1 Scaling Up the Topology

The Oracle Identity Management topology described in the guide has three tiers: the Directory Tier, Application Tier and Web Tier. The components in all the three tiers can be scaled up by adding a new server instance to a node that already has one or more server instances running.

The procedures described in this section show you how to create a new managed server or directory instance. If you add a new managed server, after adding the managed server you must update your Oracle HTTP Server configuration files (on all nodes) and add the new server to the existing WebLogic cluster directives.

For example if you add a new Oracle Access Manager server, you must update `sso_vh.conf` under `WEB_ORACLE_INSTANCE/config/OHS/componentname/moduleconf` to include the new managed server.

Update `sso_vh.conf` as follows:

```xml
<Location /oam>
  SetHandler weblogic-handler
  WebLogicCluster
  IDMHOST1.mycompany.com:14100, IDMHOST2.mycompany.com:14100, IDMHOST3.mycompany.com:14100
</Location>
```
Once you have updated `sso_vh.conf`, restart the Oracle HTTP server(s) as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components." Oracle recommends that you do this sequentially to prevent loss of service.

This section contains the following topics:

- Section 21.4.1.1, "Scaling Up the Directory Tier"
- Section 21.4.1.2, "Scaling Up the Application Tier"
- Section 21.4.1.3, "Scaling Up the Web Tier"

21.4.1.1 Scaling Up the Directory Tier

The Directory Tier consists of the two Oracle Internet Directory nodes (LDAPHOST1 and LDAPHOST2), each running an Oracle Internet Directory instance and the two Oracle Virtual Directory nodes (LDAPHOST1 and LDAPHOST2), each running an Oracle Virtual Directory instance. The Oracle Internet Directory or Oracle Virtual Directory instances can be scaled up on one or both the nodes.

21.4.1.1.1 Scaling Up Oracle Internet Directory

The Directory Tier has two Oracle Internet Directory nodes (LDAPHOST1 and LDAPHOST2), each running an Oracle Internet Directory instance. The existing Oracle Identity Management binaries on either node can be used for creating the new Oracle Internet Directory instance.

To add a new Oracle Internet Directory instance to either Oracle Internet Directory node, follow the steps in Section 10.4.2, "Configuring an Additional Oracle Internet Directory Instance" with the following variations:

1. In step 2 and step 4, choose ports other than 389 and 636 since these ports are being used by the existing Oracle Internet Directory instance on the node.

2. Follow the steps in Section 10.5.1, "Registering Oracle Internet Directory with the WebLogic Server Domain (IDMDomain)" to register the new Oracle Internet Directory instance with the WebLogic domain. Use the location for the new Oracle Internet Directory instance as the value for ORACLE_INSTANCE.

3. Configure SSL server-authentication mode for the new instance as described in Section 10.5.3, "Configuring Oracle Internet Directory to Accept Server Authentication Mode SSL Connections."

4. Reconfigure the load balancer with the host and port information of the new Oracle Internet Directory instance.

5. Register the new Oracle HTTP Server instance as described in Section 10.5.1, "Registering Oracle Internet Directory with the WebLogic Server Domain (IDMDomain)."

21.4.1.1.2 Scaling Up Oracle Virtual Directory

The Directory Tier has two nodes (LDAPHOST1 and LDAPHOST2), each running an Oracle Virtual Directory instance. The existing Oracle Identity Management binaries on either node can be used for creating the new Oracle Virtual Directory instance.

To add a new Oracle Virtual Directory instance to either Oracle Virtual Directory node, follow the steps in Section 14.3.2, "Configuring an Additional Oracle Virtual Directory" with the following variations:

1. In step 2 and step 4, choose ports other than 6501 and 7501 since these ports are being used by the existing Oracle Virtual Directory instance on the node.
2. Follow the steps in these sections to register the new Oracle Virtual Directory instance with the WebLogic domain. Use the location for the new Oracle Virtual Directory instance as the value for \textit{ORACLE_INSTANCE}.

 - Section 14.4, "Post-Configuration Steps"
 - Section 14.6, "Validating the Oracle Virtual Directory Instances"
 - Section 14.7, "Creating ODSM Connections to Oracle Virtual Directory"
 - Section 14.8, "Creating Adapters in Oracle Virtual Directory"

3. Reconfigure the load balancer with the host and port information of the new Oracle Virtual Directory instance.

21.4.1.2 Scaling Up the Application Tier

The Application Tier consists of several nodes in pairs, depending on the products installed. These application servers run WebLogic Managed servers.

Some of the procedures described in this section show you how to create a new WebLogic managed server. If you add a new managed server to your topology, after adding the managed server you must update your Oracle HTTP Server configuration files (on all nodes) and add the new server to the existing WebLogic cluster directives.

For example if you add a new Oracle Access Manager server, you must update \texttt{sso_vh.conf} to include the new managed server.

Update \texttt{sso_vh.conf} under \texttt{WEB_ORACLE_INSTANCE/config/OHS/componentname/moduleconf} as follows:

```
<Location /oam>
  SetHandler weblogic-handler
  WebLogicCluster
  IDMHOST1.mycompany.com:14100,IDMHOST2.mycompany.com:14100,IDMHOST3.mycompany.com:14100
</Location>
```

Once you have updated \texttt{sso_vh.conf}, restart the Oracle HTTP server(s) as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components.” Oracle recommends that you do this sequentially to prevent loss of service.

21.4.1.2.1 Scaling Up ODSM

The Application Tier already has a node (IDMHOST2) running a Managed Server configured with Oracle Directory Services Manager components. The node contains a WebLogic Server home and an Oracle Fusion Middleware Identity Management Home on the local disk.

The existing installations (WebLogic Server home, Oracle Fusion Middleware home, and domain directories) can be used for creating a new Managed Server for the Oracle Directory Services Manager component.

1. Follow the steps in Section 12.4, "Expanding the ODSM Cluster.”
2. Be sure to choose a port other than 7499, which is already in use.
3. Reconfigure the Oracle HTTP Server module with the new Managed Server. Follow the instructions in Chapter 8, "Configuring the Web Tier for an Enterprise Deployment” to complete this task.

21.4.1.2.2 Scaling Up Oracle Access Manager 11g

Scale up Oracle Access Manager as follows:
Log in to the Oracle WebLogic Server Administration Console at:
http://ADMIN.mycompany.com/oamconsole

1. From the Domain Structure window of the Oracle WebLogic Server Administration Console, expand the Environment node and then Servers. The Summary of Servers page appears.

2. Click Lock & Edit from the Change Center menu.

3. Select an existing server on the host you want to extend, for example: WLS_OAM1.

4. Click Clone.

5. Enter the following information:
 - Server Name: A new name for the server, for example: WLS_OAM3.
 - Server Listen Address: The name of the host on which the Managed Server runs.
 - Server Listen Port: The port the new Managed Server uses. This port must be unique within the host.

6. Click OK.

7. Click the newly created server WLS_OAM3.

8. Click Save.

9. Disable host name verification for the new Managed Server. Before starting and verifying the WLS_OAM3 Managed Server, you must disable host name verification. You can re-enable it after you have configured server certificates for the communication between the Oracle WebLogic Administration Server and the Node Manager in IDMHOSTn.

 If the source server from which the new one was cloned had already disabled host name verification, these steps are not required, as the host name verification settings were propagated to the cloned server. To disable host name verification:
 a. In Oracle Enterprise Manager Fusion Middleware Control, select Oracle WebLogic Server Administration Console.
 b. Expand the Environment node in the Domain Structure window.
 c. Click Servers. The Summary of Servers page appears.
 d. Select WLS_OAM3 in the Names column of the table. The Settings page for server appears.
 e. Click the SSL tab.
 f. Click Advanced.
 g. Set Hostname Verification to None.
 h. Click Save.

10. Click Activate configuration from the Change Center menu.

Register the new Managed Server with Oracle Access Manager. You now must configure the new Managed Server now as an Oracle Access Manager server. You do this from the Oracle OAM console. Proceed as follows:

1. Log in to the OAM console at http://ADMIN.mycompany.com/oamconsole as the oamadmin user.

2. Click the System Configuration tab.
3. Click **Server Instances**.

4. Select **Create** from the Actions menu.

5. Enter the following information:
 - **Server Name**: WLS_OAM3
 - **Host**: Host that the server runs on
 - **Port**: Listen port that was assigned when the Managed Server was created
 - **OAM Proxy Port**: Port you want the Oracle Access Manager proxy to run on. This is unique for the host
 - **Proxy Server ID**: AccessServerConfigProxy
 - **Mode**: Set to **Open** or **Simple**, depending on the mode your existing Oracle Access Manager servers are operating in.

6. Click **Coherence** tab.
 - Set **Local Port** to a unique value on the host.

7. Click **Apply**.

8. Restart the WebLogic Administration Server as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components."

Add the newly created Oracle Access Manager server to all WebGate Profiles that might be using it, such as **Webgate_IDM** and **IAMSuiteAgent**

For example, to add the Oracle Access Manager server to **Webgate_IDM**, access the OAM console at: `http://ADMIN.mycompany.com/oamconsole`

Then proceed as follows:

1. Log in as the Oracle Access Manager Admin User you created in Section 11.5, "Preparing the Identity Store."

2. Click the **System Configuration** tab.

3. Expand **Access Manager Settings** - **SSO Agents** - **OAM Agents**.

4. Click the open folder icon, then click **Search**.
 - You should see the WebGate agent **Webgate_IDM**.

5. Click the agent **Webgate_IDM**.

6. Select **Edit** from the Actions menu.

7. Click **+** in the **Primary Server** list (or the **Secondary Server** list if this is a secondary server).

8. Select the newly created managed server from the **Server** list.

9. Set **Maximum Number of Connections** to 4.

10. Click **Apply**.

Repeat Steps 5 through 10 for **IAMSuiteAgent** and all other WebGates that might be in use.

Update the Web Tier. Once the new Managed Server has been created and started, the Web Tier starts to direct requests to it. Best practice, however, is to inform the web server that the new Managed Server has been created.
You do this by updating the file `sso_vh.conf` on each of the Web Tiers. This file resides in the directory: `WEB_ORACLE_INSTANCE/config/OHS/component_name/moduleconf`.

Add the new server to the `WebLogicCluster` directive in the file, for example, change:

```xml
<Location /oam>
    SetHandler weblogic-handler
    WebLogicCluster IDMHOST1.mycompany.com:14100,IDMHOST2.mycompany.com:14100
</Location>

<Location /fusion_apps>
    SetHandler weblogic-handler
    WebLogicCluster IDMHOST1.mycompany.com:14100,IDMHOST2.mycompany.com:14100
</Location>
```

to:

```xml
<Location /oam>
    SetHandler weblogic-handler
</Location>

<Location /fusion_apps>
    SetHandler weblogic-handler
</Location>
```

Save the file and restart the Oracle HTTP server, as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components."

You can now start the new Managed Server, as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components."

21.4.1.2.3 Scaling Up Oracle Identity Manager (Adding Managed Servers to Existing Nodes) In this case, you already have a node that runs a Managed Server configured with Oracle SOA Suite and Oracle Identity Manager components. The node contains a Middleware home, a SOA Oracle home, an Oracle Identity Manager Oracle home, and a domain directory for existing Managed Servers.

You can use the existing installations (the Middleware home, and domain directories) for creating new WLS_OIM and WLS_SOA servers. There is no need to install the Oracle Identity and Access Management or Oracle SOA Suite binaries in a new location, or to run pack and unpack.

Follow these steps for scaling up the topology:

1. Log in to the Administration Console at:
 `http://ADMIN.mycompany.com/oamconsole`

 Clone either the `WLS_OIM1` or the `WLS_SOAI` into a new Managed Server. The source Managed Server to clone should be one that already exists on the node where you want to run the new Managed Server.

 To clone a Managed Server:
 a. Select **Environment** -> **Servers** from the Administration Console.
b. From the Change Center menu, click **Lock and Edit**.

c. Select the Managed Server that you want to clone (for example, **WLS_OIM1** or **WLS_SOA1**).

d. Select **Clone**.

Name the new Managed Server **WLS_OIMn** or **WLS_SOAn**, where **n** is a number to identify the new Managed Server.

The rest of the steps assume that you are adding a new server to IDMHOST1, which is already running WLS_SOA1 and WLS_OIM1.

2. For the listen address, assign the host name or IP address to use for this new Managed Server. If you are planning to use server migration as recommended for this server, this should be the VIP (also called a floating IP) to enable it to move to another node. The VIP should be different from the one used by the Managed Server that is already running.

3. Create JMS Servers for SOA, Oracle Identity Manager, UMS, and BPM on the new Managed Server. You do this as follows:

 a. Log in to the WebLogic Administration Server and navigate to **Services -> Messaging -> JMS Servers**.

 b. Click **New**.

 c. Enter a value for **Name**, such as **BPMJMSServer_auto_3**.

 d. Click **Create New File Store**.

 e. Select **FileStore** from the list

 f. Click **Next**.

 g. Enter a value for **Name**, such as **BPMJMSFileStore_33**

 h. Enter the following values:

 - **Target**: The new server you are creating.
 - **Directory**: `ASERVER_HOME/jms/BPMJMSFileStore_3`

 i. Click **OK**.

 j. When you are returned to the JMS Server screen, select the newly created file store from the list.

 k. Click **Next**.

 l. On the next screen set the **Target** to the server you are creating.

 m. Click **Finish**.

Create the following JMS Queues depending on the managed server you are creating:

<table>
<thead>
<tr>
<th>Server</th>
<th>JMS Server Name</th>
<th>File Store Name</th>
<th>Directory</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>wls_soa</td>
<td>SOAJMSServer_auto_n</td>
<td>SOAJMSFileStore_n</td>
<td><code>ASERVER_HOME/jms/SOAJMSFileStore_n</code></td>
<td>wls_soan</td>
</tr>
</tbody>
</table>
4. Add the newly created JMS Queues to the existing JMS Modules by performing the following steps:
 a. Log in to the WebLogic Administration Console
 b. Navigate to Services -> Messaging -> JMS Modules
 c. Click a JMSModule, such as SOAJMSModule
 d. Click the Sub Deployments tab.
 e. Click the listed sub deployment.

 Note: This subdeployment module name is a random name in the form of JMSServerNameXXXXX resulting from the Configuration Wizard JMS configuration.

 f. Assign the newly created JMS server, for example DOAJMSServer_auto_n.
 g. Click Save.

 Perform this for each of the JMS modules listed in the following table:

<table>
<thead>
<tr>
<th>JMS Module</th>
<th>JMS Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPMJMSModule</td>
<td>BPMJMSServer_auto_n</td>
</tr>
<tr>
<td>JRFWSAsyncJmsModule</td>
<td>JRFWSAsyncJmsServer_auto_n</td>
</tr>
<tr>
<td>OIMJMSModule</td>
<td>OIMJMSServer_auto_n</td>
</tr>
<tr>
<td>SOAJMSModule</td>
<td>SOAJMSServer_auto_n</td>
</tr>
<tr>
<td>UMSJMSSystemResource</td>
<td>UMSJMSServe_auto_n</td>
</tr>
</tbody>
</table>

5. Configure Oracle Coherence, as described in Section 15.6, "Configuring Oracle Coherence for Deploying Composites."

6. Configure TX persistent store for the new server. This should be a location visible from other nodes as indicated in the recommendations about shared storage.

 From the Administration Console, select the Server_name > Services tab. Under Default Store, in Directory, enter the path to the folder where you want the default persistent store to store its data files.

7. Disable host name verification for the new Managed Server. Before starting and verifying the WLS_SOAN Managed Server, you must disable host name verification. You can re-enable it after you have configured server certificates for
the communication between the Oracle WebLogic Administration Server and the Node Manager in IDMHOSTn. If the source server from which the new one has been cloned had already disabled host name verification, these steps are not required (the host name verification settings is propagated to the cloned server).

To disable host name verification:

a. In the Oracle Enterprise Manager Console, select **Oracle WebLogic Server Administration Console**.

b. Expand the **Environment** node in the Domain Structure window.

c. Click **Servers**. The Summary of Servers page appears.

d. Select **WLS_SOAn** in the Names column of the table. The Settings page for the server appears.

e. Click the **SSL** tab.

f. Click **Advanced**.

gh. Set **Hostname Verification** to **None**.

i. Click **Save**.

8. Repeat Steps 6a through 6h to disable host name verification for the **WLS_OIMn** Managed Servers. In Step d, select **WLS_OIMn** in the Names column of the table.

9. Click **Activate Changes** from the Change Center menu.

10. Update the SOA host and port using Oracle Enterprise Manager Fusion Middleware Control. Follow these steps:

a. Open a browser and go to Oracle Enterprise Manager Fusion Middleware Control at: http://ADMIN.mycompany.com/em

b. Log in to Oracle Enterprise Manager Fusion Middleware Control using the Admin user credentials.

c. Navigate to **Identity and Access**, and then **oim**.

d. Right-click **oim** and navigate to **System MBean Browser**.

e. Under **Application Defined MBeans**, navigate to **oracle.iam, Application:oim, XMLConfig, Config, XMLConfig.SOACfg**, and then **SOACfg**.

f. Update the value for the **Rmiurl** attribute with the host and port of the new SOA server. Click **Apply** to save the changes.

g. The **Rmiurl** attribute is used for accessing SOA EJBs deployed on SOA Managed Servers. This is the application server URL. The following is an example value for this attribute:

 cluster:t3://soa_cluster

11. Restart the WebLogic Administration Server as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components."

12. Start and test the new Managed Server from the Administration Console.

a. Shut down the existing Managed Servers in the cluster.
b. Ensure that the newly created Managed Server, WLS_SOAn, is up.

c. Access the application on the newly created Managed Server (http://vip:port/soa-infra). The application should be functional.

13. Configure the newly created managed server for server migration. Follow the steps in Section 18.6, "Configuring Server Migration Targets" to configure server migration.

14. Test server migration for this new server. Follow these steps from the node where you added the new server:

 a. Stop the WLS_SOAn Managed Server.
 To do this, run:

      ```
      kill -9 pid
      ```

 on the process ID (PID) of the Managed Server. You can identify the PID of the node using

      ```
      ps -ef | grep WLS_SOAn
      ```

 b. Watch the Node Manager Console. You should see a message indicating that the floating IP address for WLS_SOAn has been disabled.
 c. Wait for the Node Manager to try a second restart of WLS_SOAn. Node Manager waits for a fence period of 30 seconds before trying this restart.
 d. Once Node Manager restarts the server, stop it again. Now Node Manager should log a message indicating that the server will not be restarted again locally.

21.4.1.2.4 Scaling Up Oracle Identity Federation

The Application Tier already has a node (IDMHOST2) running a Managed Server configured with Oracle Identity Federation. The node contains a WebLogic Server home and an Oracle Fusion Middleware Identity Management home on the local disk.

The existing installations (WebLogic Server home, Oracle Fusion Middleware home, and domain directories) can be used for creating a new Managed Server for Oracle Identity Federation.

1. Follow the steps in Section 16.5, "Configuring Oracle Identity Federation on IDMHOST2" to scale up the topology for Oracle Identity Federation.
2. Be sure to choose a port other than 7499, which is already in use.
3. Follow the steps in Section 16.6, "Provisioning the Managed Servers on the Local Disk" to provision the new Oracle Identity Federation managed server on the local disk.
4. Reconfigure the Oracle HTTP Server module with the new Managed Server. Follow the instructions in Chapter 8, "Configuring the Web Tier for an Enterprise Deployment," to complete this task.

21.4.1.3 Scaling Up the Web Tier

The Web Tier already has a node running an instance of the Oracle HTTP Server. The existing Oracle HTTP Server binaries can be used for creating the new Oracle HTTP Server instance. To scale up the Oracle HTTP Server, follow the steps in Chapter 8, "Configuring the Web Tier for an Enterprise Deployment."
1. Use the Oracle Fusion Middleware 11g Web Tier Utilities Configuration Wizard to scale up the topology, as described in Chapter 8, "Configuring the Web Tier for an Enterprise Deployment."

2. Copy all files created in ORACLE_INSTANCE/config/OHS/component/moduleconf from the existing Web Tier configuration to the new one.

3. Register the new Oracle HTTP Server instance, as described in Section 9.6.1, "Registering Oracle HTTP Server with WebLogic Server."

4. Reconfigure the load balancer with the host and port information of the new Oracle HTTP Server instance.

21.4.2 Scaling Out the Topology

In scaling out a topology, new servers are added to new nodes. The components in all three tiers of the Oracle Identity Management topology described in this manual can be scaled out by adding a new server instance to a new node.

This section contains the following topics:

- Section 21.4.2.1, "Scaling Out the Directory Tier"
- Section 21.4.2.2, "Scaling Out the Application Tier"
- Section 21.4.2.3, "Scaling Out the Web Tier"

21.4.2.1 Scaling Out the Directory Tier

The Directory Tier consists of the two Oracle Internet Directory nodes (LDAPHOST1 and LDAPHOST2), each running an Oracle Internet Directory instance and the two Oracle Virtual Directory nodes (LDAPHOST1 and LDAPHOST2), each running an Oracle Virtual Directory instance. The Oracle Internet Directory or Oracle Virtual Directory instances can be scaled out by adding new nodes to the Directory Tier.

21.4.2.1.1 Scaling Out Oracle Internet Directory

The Directory Tier has two Oracle Internet Directory nodes (LDAPHOST1 and LDAPHOST2), each running an Oracle Internet Directory instance. The Oracle Internet Directory instances can be scaled out by adding a new node to the existing Oracle Internet Directory cluster. To scale out Oracle Internet Directory instances, follow these steps:

1. Follow the steps in Section 10.4.2, "Configuring an Additional Oracle Internet Directory Instance" to add a new node running Oracle Internet Directory.

2. Follow the steps in Section 10.5.1, "Registering Oracle Internet Directory with the WebLogic Server Domain (IDMDomain)" to register the new Oracle Internet Directory instance with the WebLogic domain.

3. Configure SSL server authentication mode for the new instance, as described in Section 10.5.3, "Configuring Oracle Internet Directory to Accept Server Authentication Mode SSL Connections."

4. Reconfigure the load balancer with the host and port information of the new Oracle Internet Directory instance.

21.4.2.1.2 Scaling Out Oracle Virtual Directory

The Directory Tier has two nodes (LDAPHOST1 and LDAPHOST2), each running an Oracle Virtual Directory instance. Oracle Virtual Directory can be scaled out by adding a new node configured to run Oracle Virtual Directory to the Directory Tier. To scale out Oracle Virtual Directory instances, follow these steps:
1. Follow the steps in Section 14.3.2, "Configuring an Additional Oracle Virtual Directory" to add a new node running Oracle Virtual Directory.

2. Follow the steps in these sections to register the new Oracle Virtual Directory instance with the WebLogic domain.
 - Section 14.4, "Post-Configuration Steps"
 - Section 14.6, "Validating the Oracle Virtual Directory Instances"
 - Section 14.7, "Creating ODSM Connections to Oracle Virtual Directory"
 - Section 14.8, "Creating Adapters in Oracle Virtual Directory"

3. Reconfigure the load balancer with the host and port information of the new Oracle Virtual Directory instance.

21.4.2.2 Scaling Out the Application Tier

The Application Tier has two nodes (IDMHOST1 and IDMHOST2) running Managed Servers for Oracle Access Manager, Oracle Identity Federation, Oracle Directory Services Manager, and Oracle Identity Manager.

Some of the procedures described in this section show you how to create a new WebLogic managed server. If you add a new managed server to your topology, after adding the managed server you must update your Oracle HTTP Server configuration files (on all nodes) and add the new server to the existing WebLogic cluster directives.

For example if you add a new Oracle Access Manager server, you must update `sso_vh.conf` to include the new managed server.

Update `sso_vh.conf` as follows:

```
<Location /oam>
    SetHandler weblogic-handler
</Location>
```

Once you have updated `sso_vh.conf`, restart the Oracle HTTP server(s) as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components." Oracle recommends that you do this sequentially to prevent loss of service.

21.4.2.2.1 Scaling Out Oracle Identity Federation The Application Tier has two nodes (IDMHOST1 and IDMHOST2) running a Managed Server configured with Oracle Identity Federation. The Oracle Identity Federation instances can be scaled out by adding a new node with a Managed Server to the existing cluster.

Use the existing installations in shared storage for creating the new Managed Servers. You do not need to install WebLogic Server or Identity Management binaries in a new location but you do need to run pack and unpack to bootstrap the domain configuration in the new node.

To scale out the Oracle Identity Federation instances, follow these steps:

1. Follow the steps in these sections to scale out the Oracle Identity Federation instances in the topology.
 - Section 16.5, "Configuring Oracle Identity Federation on IDMHOST2"
 - Section 16.6, "Provisioning the Managed Servers on the Local Disk"
 - Section 16.7, "Validating Oracle Identity Federation"
Section 16.8, "Configure the Enterprise Manager Agents"

2. Follow the steps in Section 16.10, "Configuring Oracle Identity Federation to work with the Oracle Web Tier" to add the newly added Managed Server host name and port to the list WebLogicCluster parameter.

21.4.2.2 Scaling Out ODSM The Application Tier has two nodes (IDMHOST1 and IDMHOST2) running a Managed Server configured with Oracle Directory Services Manager. The Oracle Directory Services Manager instances can be scaled out by adding a new node with a Managed Server to the existing cluster.

Use the existing installations in shared storage for creating the new Managed Servers. You do not need to install WebLogic Server or Identity Management binaries in a new location but you do need to run pack and unpack to bootstrap the domain configuration in the new node.

To scale out ODSM instances, follow these steps:

1. Follow the steps in Section 12.4, "Expanding the ODSM Cluster" to scale out Oracle Directory Services Manager instances in the topology.

2. Reconfigure the Oracle HTTP Server module with the new Managed Server. See the ODSM entries in the file admin_vh.conf in Section 8.3.3.2.1, "Create Virtual Host for ADMIN.mycompany.com."

Add the newly added Managed Server host name and port to the list WebLogicCluster Parameter.

21.4.2.3 Scaling Out Oracle Access Manager 11g Scale out is very similar to scale up but first requires the software to be installed on the new node.

Use the existing installations in shared storage for creating the new Managed Servers. You do not need to install WebLogic Server or Identity Management binaries in a new location but you do need to run pack and unpack to bootstrap the domain configuration in the new node.

Note: If you are using shared storage, allow the new host access to that shared storage area.

1. On the new node, mount the existing Middleware home, which should include the SOA installation and the domain directory, and ensure that the new node has access to this directory, just like the rest of the nodes in the domain.

2. To update the Middleware home list, create (or edit, if another WebLogic installation exists in the node) the IAM_MW_HOME/bea/beahomelist file and add IAM_MW_HOME to it.

3. Log in to the Oracle WebLogic Server Administration Console at:
 http://ADMIN.mycompany.com/oamconsole

4. From the Domain Structure window of the Oracle WebLogic Server Administration Console, expand the Environment node and then Servers. The Summary of Servers page appears.

5. Click Lock & Edit from the Change Center menu.

6. Select an existing server on the host you want to extend, for example: WLS_OAM1.

7. Click Clone.
8. Enter the following information:

- **Server Name**: A new name for the server, for example: WLS_OAM3.
- **Server Listen Address**: The name of the host on which the Managed Server runs.
- **Server Listen Port**: The port the new Managed Server uses. This port must be unique within the host.

9. Click OK.

10. Click the newly created server WLS_OAM3.

11. Set the SSL listen port. This should be unique on the host that the Managed Server runs on.

12. Click Save.

13. Disable host name verification for the new Managed Server. Before starting and verifying the WLS_OAM3 Managed Server, you must disable host name verification. You can re-enable it after you have configured server certificates for the communication between the Oracle WebLogic Administration Server and the Node Manager in IDMHOSTn.

 If the source server from which the new one was cloned had already disabled host name verification, these steps are not required, as the host name verification settings was propagated to the cloned server. To disable host name verification, proceed as follows:

 a. In Oracle Enterprise Manager Fusion Middleware Control, select Oracle WebLogic Server Administration Console.

 b. Expand the **Environment** node in the Domain Structure pane.

 c. Click **Servers**. The Summary of Servers page appears.

 d. Select WLS_OAM3 in the Names column of the table. The Settings page for server appears.

 e. Click the **SSL** tab.

 f. Click **Advanced**.

 g. Set **Hostname Verification** to **None**.

 h. Click **Save**.

14. Click **Activate Configuration** from the Change Center menu.

15. Restart the WebLogic Administration Server as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components."

16. Pack the domain on IDMHOST1 using the command:

   ```sh
   pack.sh -domain=ASERVER_HOME -template =/templates/managedServer.jar -template_name="OAM Domain" -managed=true
   ``

   The `pack.sh` script is located in `ORACLE_COMMON_HOME/common/bin`.

17. Unpack the domain on the new host using the command:

   ```sh
 unpack.sh -domain=MSERVER_HOME -template=/templates/managedServer.jar -app_dir=MSERVER_HOME/applications
 ``

 The `unpack.sh` script is located in `ORACLE_COMMON_HOME/common/bin`.

a. Start and stop Node Manager as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components."

b. Run the script `setNMProps.sh`, which is located in `ORACLE_COMMON_HOME/common/bin`, to update the node manager properties file, for example:
   ```sh
cd ORACLE_COMMON_HOME/common/bin
./setNMProps.sh
```

c. Start Node Manager once again as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components."

Register the new Managed Server with Oracle Access Manager. The new Managed Server now must be configured as an Oracle Access Manager server. You do this from the Oracle OAM console, as follows:

1. Log in to the OAM console as the `oamadmin` user at:
   ```http://ADMIN.mycompany.com/oamconsole```
2. Click the System Configuration tab.
3. Click Server Instances.
4. Select Create from the Actions menu.
5. Enter the following information:
   - **Server Name**: WLS_OAM3
   - **Host**: Host that the server is running on, IDMHOST3.
   - **Port**: Listen port that was assigned when the Managed Server was created.
   - **OAM Proxy Port**: Port you want the Oracle Access Manager proxy to run on. This is unique for the host.
   - **Proxy Server ID**: AccessServerConfigProxy
   - **Mode**: Set to Open or Simple, depending on the mode your existing Oracle Access Manager servers are operating in.
6. Click Apply.

Add the newly created Oracle Access Manager server to all WebGate profiles that might be using it, such as `Webgate_IDM` and `IAMSuiteAgent`.

For example, to add the Oracle Access Manager server to `Webgate_IDM`, access the OAM console at: `http://ADMIN.mycompany.com/oamconsole`

Then proceed as follows:
1. Log in as the Oracle Access Manager admin user you created in Section 11.5, "Preparing the Identity Store."
2. Click the System Configuration tab.
4. Click the open folder icon, then click Search.
   You should see the WebGate agent `Webgate_IDM`.
5. Click the agent `Webgate_IDM`.
6. Select Edit from the Actions menu.
7. Click + in the Primary Server list (or the secondary server list if this is a secondary server).
8. Select the newly created managed server from the Server list.


10. Click Apply

Repeat Steps 5 through 10 for IAMSuiteAgent and other WebGates that are in use.

Update the Web Tier. Now that the new Managed Server has been created and started, the Web Tier starts to direct requests to it. Best practice, however, is to inform the web server that the new Managed Server has been created.

You do this by updating the file sso_vh.conf on each of the Web Tiers. This file resides in the directory: WEB_ORACLE_INSTANCE/config/OHS/component_name/moduleconf.

Add the new server to the WebLogicCluster directive in the file, for example, change:

```
<Location /oam>
 SetHandler weblogic-handler
 WebLogicCluster IDMHOST1.mycompany.com:14100,IDMHOST2.mycompany.com:14100
</Location>
```

```
<Location /fusion_apps>
 SetHandler weblogic-handler
 WebLogicCluster IDMHOST1.mycompany.com:14100,IDMHOST2.mycompany.com:14100
</Location>
```

to:

```
<Location /oam>
 SetHandler weblogic-handler
</Location>
```

```
<Location /fusion_apps>
 SetHandler weblogic-handler
</Location>
```

21.4.2.2.4 Scaling Out Oracle Identity Manager (Adding Managed Servers to New Nodes) When you scale out the topology, you add new Managed Servers configured with OIM and SOA to new nodes.

Before performing the steps in this section, check that you meet these requirements:

- There must be existing nodes running Managed Servers configured with OIM and SOA within the topology.
- The new node can access the existing home directories for WebLogic Server, OIM, and SOA.

Use the existing installations in shared storage for creating a new WLS_SOA or WLS_OIM Managed Server. You do not need to install WebLogic Server, OIM, or SOA binaries in a new location but you do need to run pack and unpack to bootstrap the domain configuration in the new node.
Follow these steps for scaling out the topology:

1. On the new node, mount the existing Middleware home, which should include the Oracle Fusion Middleware installation and the domain directory, and ensure that the new node has access to this directory, just like the rest of the nodes in the domain.

2. To attach IAM_HOME in shared storage to the local Oracle Inventory, execute the following command:
   
   ```
 cd IAM_ORACLE_HOME/oui/bin
 ./attachHome.sh -jreLoc JAVA_HOME
   ```

3. To update the Middleware home list, create (or edit, if another WebLogic installation exists in the node) the IAM_MW_HOME/bea/beahomelist file and add IAM_MW_HOME/oui/bin to it.

4. Log in to the Oracle WebLogic Administration Console at:
   
   ```
 http://ADMIN.mycompany.com/oamconsole
   ```

5. Create a new machine for the new node to be used, and add the machine to the domain.

6. Update the machine's Node Manager's address to map the IP address of the node that is being used for scale out.

7. Use the Oracle WebLogic Server Administration Console to clone the managed servers WLS_OIN and WLS_SOA1 into new Managed Servers. Name them WLS_SOA\(n\) and WLS_OIM\(n\), respectively, where \(n\) is a number.

8. Assign the host names or IP addresses to the listen addresses of the new Managed Servers.

9. If you are planning to use server migration for this server (which Oracle recommends) this should be the VIP address (also called a floating IP address) for
the server. This VIP address should be different from the one used for the existing Managed Server.

10. Create JMS Servers for SOA, Oracle Identity Manager, UMS, and BPM on the new Managed Server. You do this as follows:
   a. Log in to the WebLogic Administration Server and navigate to Services -> Messaging -> JMS Servers.
   b. Click New.
   c. Enter a value for Name, such as BPMJMServer_auto_3.
   d. Click Create New File Store.
   e. Select FileStore from the list
   f. Click Next.
   g. Enter a value for Name, such as BPMJMSFileStore_3
   h. Enter the following values:
      Target: The new server you are creating.
      Directory: ASERVER_HOME/jms/BPMJMSFileStore_3
   i. Click OK.
   j. When you are returned to the JMS Server screen, select the newly created file store from the list.
   k. Click Next.
   l. On the next screen set the Target to the server you are creating.
   m. Click Finish.

Create the following JMS Queues depending on the managed server you are creating:

<table>
<thead>
<tr>
<th>Server</th>
<th>JMS Server Name</th>
<th>File Store Name</th>
<th>Directory</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>wls_soa</td>
<td>BPMJMServer_auto_n</td>
<td>BPMJMSFileStore_n</td>
<td>ASERVER_HOME/jms/BPMJMSFileStore_n</td>
<td>wls_soa</td>
</tr>
<tr>
<td>wls_soa</td>
<td>SOAJMServer_auto_n</td>
<td>SOAJMSFileStore_n</td>
<td>ASERVER_HOME/jms/SOAJMSFileStore_n</td>
<td>wls_soa</td>
</tr>
<tr>
<td>wls_soa</td>
<td>UMSJMServer_auto_n</td>
<td>UMSJMSFileStore_n</td>
<td>ASERVER_HOME/jms/UMSJMSFileStore_n</td>
<td>wls_soa</td>
</tr>
<tr>
<td>wls_oim</td>
<td>OIMJMServer_auto_n</td>
<td>OIMJMSFileStore_n</td>
<td>ASERVER_HOME/jms/OIMJMSFileStore_n</td>
<td>wls_oim</td>
</tr>
<tr>
<td>wls_oim</td>
<td>JRFWSAsyncJmsServer_auto_n</td>
<td>JRFWSAsyncJmsServerJMSFileStore_n</td>
<td>ASERVER_HOME/jms/JRFWSAsyncJmsServerJMSFileStore_n</td>
<td>wls_oim</td>
</tr>
</tbody>
</table>

11. Add the newly created JMS Queues to the existing JMS Modules by performing the following steps:
   a. Log in to the WebLogic Administration Console
b. Navigate to Services -> Messaging -> JMS Modules

c. Click a JMS Module, such as SOAJMSModule

d. Click the Sub Deployments tab.

e. Click the listed sub deployment.

**Note:** This subdeployment module name is a random name in the form of JMSModuleNameXXXX resulting from the Configuration Wizard JMS configuration.

f. Assign the newly created JMS server, for example DOAJMSServer_auto

g. Click Save.

Perform this for each of the JMS modules listed in the following table:

<table>
<thead>
<tr>
<th>JMS Module</th>
<th>JMS Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPMJMSModule</td>
<td>BPMJMServer_auto_n</td>
</tr>
<tr>
<td>JRFWSAsyncJmsModule</td>
<td>JRFWSAsyncJmServer_auto_n</td>
</tr>
<tr>
<td>OIMJMSModule</td>
<td>OIMJMServer_auto_n</td>
</tr>
<tr>
<td>SOAJMSModule</td>
<td>SOAJMSServer_auto_n</td>
</tr>
<tr>
<td>UMSJMSSystemResource</td>
<td>UMSJMSServe_auto_n</td>
</tr>
</tbody>
</table>

12. Click **Activate Configuration** from the Change Center menu.

13. Run the `pack` command on IDMHOST1 to create a template pack. Proceed as follows:

```
 cd ORACLE_COMMON_HOME/common/bin
 ./pack.sh -managed=true -domain=ASERVER_HOME -template=/templates/oim_domain.jar -template_name="OIM Domain"
```

Run the `scp` command on IDMHOST1 to copy the template file created to IDMHOSTN. For example:

```
 scp /templates/oim_domain.jar IDMHOSTN:/templates/oim_domain.jar
```

Run the `unpack` command on IDMHOSTN to unpack the template in the Managed Server domain directory as follows:

```
 cd ORACLE_COMMON_HOME/oracle_common/bin
 ./unpack.sh -domain=MSERVER_HOME -template=/templates/oim_domain.jar -app_dir=MSERVER_HOME/applications
```

14. Configure Oracle Coherence, as described in Section 15.6, "Configuring Oracle Coherence for Deploying Composites."

15. Update the SOA host and port using Oracle Enterprise Manager Fusion Middleware Control. Follow these steps:

   a. Open a browser and go to Oracle Enterprise Manager Fusion Middleware Control at: http://ADMIN.mycompany.com/oamconsole

   b. Log in to Oracle Enterprise Manager Fusion Middleware Control using the admin user credentials.
c. Navigate to Identity and Access, and then oim.

d. Right-click oim and navigate to System MBean Browser.

e. Under Application Defined MBeans, navigate to oracle.iam, Application:oim, XMLConfig, Config, XMLConfig.SOAConfig, and then SOAConfig.

f. Update the value for the Rmiurl attribute with the host and port of the new SOA server. Click Apply to save the changes.

g. The Rmiurl attribute is used for accessing SOA EJBs deployed on SOA Managed Servers. This is the application server URL. The following is an example value for this attribute:

\texttt{cluster:t3://soa\_cluster}

16. Configure TX persistent store for the new server. This should be a location visible from other nodes as indicated in the recommendations about shared storage.

From the Administration Console, select Server name > Services tab. Under Default Store, in Directory, enter the path to the folder where you want the default persistent store to store its data files.

17. Disable host name verification for the new Managed Server. Before starting and verifying the WLS_SOA\textsubscript{n} and WLS_OIM\textsubscript{n} Managed Server, you must disable host name verification. You can re-enable it after you have configured server certificates for the communication between the Oracle WebLogic Administration Server and the Node Manager in IDMHOST\textsubscript{n}. If the source server from which the new one has been cloned had already disabled host name verification, these steps are not required (the host name verification setting is propagated to the cloned server).

To disable host name verification for WLS_SOA\textsubscript{n}:

\begin{enumerate}
  \item Expand the Environment node in the Domain Structure window.
  \item In the Oracle Enterprise Manager Console, select Oracle WebLogic Server Administration Console.
  \item Click Servers. The Summary of Servers page appears.
  \item Select WLS_SOA\textsubscript{n} in the Names column of the table.
    The Settings page for server appears.
  \item Click the SSL tab.
  \item Click Advanced.
  \item Set Hostname Verification to None.
  \item Click Save.
\end{enumerate}

To disable host name verification for WLS_OIM\textsubscript{n}, repeat the same steps, but select WLS_OIM\textsubscript{n} in the Names column in Step d.

18. Click Activate Configuration from the Change Center menu.

\textbf{Note:} At least one of the Oracle Identity Manager Managed Servers must be running for when these steps are executed.
19. Start the Node Manager on the new node. To start the Node Manager, use the installation in shared storage from the existing nodes, and start Node Manager by passing the host name of the new node as a parameter as follows:

\[WL\_HOME/server/bin/startNodeManager new\_node\_ip\]

20. Start and test the new Managed Server from the Oracle WebLogic Server Administration Console:
   a. Shut down all the existing Managed Servers in the cluster.
   b. Ensure that the newly created Managed Servers, WLS_SOA\_n and WLS_SOA\_n, are running.
   c. Access the applications on the newly created Managed Servers (http://vip:port/soa-infra and http://vip:port/oim). The applications should be functional.

21. Configure server migration for the new Managed Server.

---

**Note:** Since this new node is using an existing shared storage installation, the node is already using a Node Manager and an environment configured for server migration that includes netmask, interface, wlsifconfig script superuser privileges. The floating IP addresses for the new Managed Servers are already present in the new node.

---

Configure server migration following these steps:

a. Log in to the Administration Console.

b. In the left pane, expand Environment and select Servers.

c. Select the server (represented as hyperlink) for which you want to configure migration from the Names column of the table. The Setting page for that server appears.

d. Click the Migration tab.

e. In the Available field, in the Migration Configuration section, select the machines to which to enable migration and click the right arrow.

---

**Note:** Specify the least-loaded machine as the migration target for the new server. The required capacity planning must be completed so that this node has enough available resources to sustain an additional Managed Server.

---

f. Select the Automatic Server Migration Enabled option. This enables the Node Manager to start a failed server on the target node automatically.

 g. Click Save.

h. Restart the Administration Server, Managed Servers, and Node Manager.

i. Test server migration for the new servers WLS_SOA\_n and WLS_OIM\_n, as follows.

1. Determine the PID of the WLS_SOA\_n Managed Server by typing

\[ps -ef | grep WLS\_SOAn\]
2. From the node where you added the new server, abruptly stop the WLS_SOAn Managed Server by typing:

   kill -9 pid

3. Watch the Node Manager Console. You should see a message indicating that floating IP address for WLS_SOA1 has been disabled.

4. Wait for the Node Manager to try a second restart of WLS_SOAn. Node Manager waits for a fence period of 30 seconds before trying this restart.

5. Once Node Manager restarts the server, stop it again. Now Node Manager should log a message indicating that the server will not be restarted again locally.

6. Repeat Steps 1-5 for WLS_OIMn.

21.4.2.3 Scaling Out the Web Tier

The Web Tier has two nodes each running an instance of the Oracle HTTP Server. The Oracle HTTP Server components can be scaled out by adding a new node configured to run Oracle HTTP Server to the Web Tier. To scale out Oracle HTTP Server, proceed as follows:

1. Follow the steps in Section 6.2, "Installing Oracle HTTP Server." Alternatively, on the new node, mount the existing Middleware home, if you are using shared storage.

2. Follow the steps in Chapter 8, "Configuring the Web Tier for an Enterprise Deployment."

3. Copy all files created in $WEB_ORACLE_INSTANCE/config/OHS/component/moduleconf from the existing Web Tier configuration to the new one.

4. If you have enabled Single Sign-on in the topology, you must update the WebTier configuration for Single Sign-on as described in Section 20.5, "Installing and Configuring WebGate 11g."

5. Register the new Oracle HTTP Server instance as described in Section 9.6.1, "Registering Oracle HTTP Server with WebLogic Server."

6. Reconfigure the load balancer with the host and port information of the new Oracle HTTP Server instance.

21.5 Auditing Identity Management

Oracle Fusion Middleware Audit Framework is a new service in Oracle Fusion Middleware 11g, designed to provide a centralized audit framework for the middleware family of products. The framework provides audit service for platform components such as Oracle Platform Security Services (OPSS) and Oracle Web Services. It also provides a framework for JavaEE applications, starting with Oracle's own JavaEE components. JavaEE applications are able to create application-specific audit events. For non-JavaEE Oracle components in the middleware such as C or JavaSE components, the audit framework also provides an end-to-end structure similar to that for JavaEE applications.

Figure 21–1 is a high-level architectural diagram of the Oracle Fusion Middleware Audit Framework. For more information, see Oracle Fusion Middleware Application Security Guide.
The Oracle Fusion Middleware Audit Framework consists of the following key components:

- **Audit APIs**
  These are APIs provided by the audit framework for any audit-aware components integrating with the Oracle Fusion Middleware Audit Framework. During runtime, applications may call these APIs where appropriate to audit the necessary information about a particular event happening in the application code. The interface enables applications to specify event details such as username and other attributes needed to provide the context of the event being audited.

- **Audit Events and Configuration**
  The Oracle Fusion Middleware Audit Framework provides a set of generic events for convenient mapping to application audit events. Some of these include common events such as authentication. The framework also enables applications to define application-specific events.

  These event definitions and configurations are implemented as part of the audit service in Oracle Platform Security Services. Configurations can be updated through Enterprise Manager (UI) and WLST (command-line tool).

- **The Audit Bus-stop**
  Bus-stops are local files containing audit data before they are pushed to the audit repository. In the event where no database repository is configured, these bus-stop files can be used as a file-based audit repository. The bus-stop files are simple text files that can be queried easily to look up specific audit events. When a DB-based repository is in place, the bus-stop acts as an intermediary between the component and the audit repository. The local files are periodically uploaded to the audit repository based on a configurable time interval.

- **Audit Loader**
  As the name implies, audit loader loads the files from the audit bus-stop into the audit repository. In the case of platform and JavaEE application audit, the audit
loader is started as part of the JavaEE container start-up. In the case of system components, the audit loader is a periodically spawned process.

- **Audit Repository**

  Audit Repository contains a pre-defined Oracle Fusion Middleware Audit Framework schema, created by Repository Creation Utility (RCU). Once configured, all the audit loaders are aware of the repository and upload data to it periodically. The audit data in the audit repository is expected to be cumulative and grow over time. Ideally, this should not be an operational database used by any other applications - rather, it should be a standalone RDBMS used for audit purposes only. In a highly available configuration, Oracle recommends that you use an Oracle Real Application Clusters (Oracle RAC) database as the audit data store.

- **Oracle Business Intelligence Publisher**

  The data in the audit repository is exposed through pre-defined reports in Oracle Business Intelligence Publisher. The reports enable users to drill down the audit data based on various criteria. For example:
  
  - Username
  - Time Range
  - Application Type
  - Execution Context Identifier (ECID)

  For more introductory information for the Oracle Fusion Middleware Audit Framework, see the "Introduction to Oracle Fusion Middleware Audit Framework" chapter in the *Oracle Fusion Middleware Application Security Guide*.

  For information on how to configure the repository for Oracle Fusion Middleware Audit Framework, see the "Configuring and Managing Auditing" chapter in the *Oracle Fusion Middleware Application Security Guide*.

  The EDG topology does not include Oracle Fusion Middleware Audit Framework configuration. The ability to generate audit data to the bus-stop files and the configuration of the audit loader are available once the products are installed. The main consideration is the audit database repository where the audit data is stored. Because of the volume and the historical nature of the audit data, it is strongly recommended that customers use a separate database from the operational store or stores being used for other middleware components.

### 21.6 Performing Backups and Recoveries

You can use the UNIX `tar` command for most backups. Typical usage is:

```
tar -cvpf BACKUP_LOCATION/backup_file.tar directories
```

You can use the UNIX `tar` command for recovery. Typical usage is:

```
tar -xvf BACKUP_LOCATION/backup_file.tar
```

For database backup and recovery, you can use the database utility RMAN. See the *Oracle Database Backup and Recovery Reference* for more information on using this command.

This section contains the following topics:

- **Section 21.6.1, 'Performing Baseline Backups'**
21.6.1 Performing Baseline Backups

Perform baseline backups when building a system and when applying patches that update static artifacts, such as the Oracle binaries.

After performing a baseline backup, also perform a runtime backup.

| Table 21–2 Static Artifacts to Back Up in the Identity Management Enterprise Deployment |
|---------------------------------|-----------------|-----------------|-----------------|
| Type                            | Host            | Location                     | Tier             |
| Oracle Home (database)          | Oracle RAC database hosts: | User Defined | Directory Tier |
|                                 | OIDDDBHOST1     |                               |
|                                 | OIDDDBHOST2     |                               |
| Oracle Identity and Access      | IDMHOST1        | Middleware Home: **IAM_MW_HOME** | Application Tier |
| Management Binaries             | IDMHOST2        |                               |
| Oracle Identity Management      | IDMHOST1        | Middleware Home: **IDM_MW_HOME** | Application Tier |
| Binaries                        | IDMHOST2        |                               |
| Web Tier Binaries               | WEBHOST1        | Middleware Oracle home, **WEB_ORACLE_HOME** | Web Tier |
|                                 | WEBHOST2        |                               |
| Install-Related Files           | Each host       | OralInventory:               | Not applicable. |
|                                 |                 | **ORACLE_BASE/orainventory** |
|                                 |                 | **/etc/oratab,** | **/etc/oraInst.loc** |
|                                 |                 | **user_home/bea/beahomelist** (on hosts where WebLogic Server is installed) |
|                                 |                 | **Windows registry:** | **(HKEY_LOCAL_MACHINE/Oracle)** |

**Note:** It is also recommended that you back up your load balancer configuration. Refer to your vendor documentation on how to do this.

For more information on backup and recovery of Oracle Fusion Middleware components, see Oracle Fusion Middleware Administrator’s Guide.

21.6.2 Performing Runtime Backups

Perform runtime backups on an ongoing basis. These backups contain information on items that can change frequently, such as data in the database, domain configuration information, and identity information in LDAP directories.
Performing Backups and Recoveries

Managing the Topology for an Enterprise Deployment

21.6.3 Performing Backups During Installation and Configuration

It is an Oracle best practices recommendation to create a backup after successfully completing the installation and configuration of each tier, or at another logical point. Create a backup after verifying that the installation so far is successful. This is a quick backup for the express purpose of immediate restoration in case of problems in later steps. The backup destination is the local disk. You can discard this backup when the enterprise deployment setup is complete. After the enterprise deployment setup is complete, you can initiate the regular deployment-specific Backup and Recovery process.

For more details, see the Oracle Fusion Middleware Administrator’s Guide.

For information on database backups, refer to the Oracle Database Backup and Recovery User’s Guide.

This section contains the following topics:
- Section 21.6.3.1, "Backing Up Middleware Home"
- Section 21.6.3.2, "Backing Up LDAP Directories"
- Section 21.6.3.3, "Backing Up the Database"
- Section 21.6.3.4, "Backing Up the WebLogic Domain"
- Section 21.6.3.5, "Backing Up the Web Tier"

21.6.3.1 Backing Up Middleware Home

Back up the Middleware homes whenever you create a new one or add components to it. The Middleware homes used in this guide are Oracle Identity Management and Oracle Identity and Access Management, as listed in Table 21–2.

### Table 21–3 Run-Time Artifacts to Back Up in the Identity Management Enterprise Deployments

<table>
<thead>
<tr>
<th>Type</th>
<th>Host</th>
<th>Location</th>
<th>Tier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain Home</td>
<td>IDMHOST1</td>
<td>Admin Server and Shared Files: <em>ASERVER_HOME</em> Managed Servers: <em>MSERVER_HOME</em></td>
<td>Application Tier</td>
</tr>
<tr>
<td></td>
<td>IDMHOST2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application Artifacts (ear and war files)</td>
<td>IDMHOST1</td>
<td>Look at all the deployments, including Directory Services Manager, through the WebLogic Server Administration Console to identify all the application artifacts.</td>
<td>Application Tier</td>
</tr>
<tr>
<td></td>
<td>IDMHOST2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OID Instance Home</td>
<td>LDAPHOST1</td>
<td><em>OID_ORACLE_INSTANCE</em></td>
<td>Directory Tier</td>
</tr>
<tr>
<td></td>
<td>LDAPHOST2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OVD Instance Home</td>
<td>LDAPHOST1</td>
<td><em>OVD_ORACLE_INSTANCE</em></td>
<td>Directory Tier</td>
</tr>
<tr>
<td></td>
<td>LDAPHOST2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oracle HTTP Server</td>
<td>WEBHOST1</td>
<td><em>WEB_ORACLE_INSTANCE</em></td>
<td>Web Tier</td>
</tr>
<tr>
<td></td>
<td>WEBHOST2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oracle RAC Databases</td>
<td>OIDDBHOST1</td>
<td>User defined</td>
<td>Directory Tier</td>
</tr>
<tr>
<td></td>
<td>OIDDBHOST2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OAM</td>
<td>OAMHOST1</td>
<td>All the configurations are within the respective home directories described in this table. There are no instance homes.</td>
<td>Application Tier</td>
</tr>
<tr>
<td></td>
<td>OAMHOST2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For more details, see the Oracle Fusion Middleware Administrator’s Guide.
21.6.3.2 Backing Up LDAP Directories

Whenever you perform an action which updates the data in LDAP, back up the
directory contents.

This section contains the following topics:
- Section 21.6.3.2.1, ”Backing up Oracle Internet Directory”
- Section 21.6.3.2.2, ”Backing up Oracle Virtual Directory”
- Section 21.6.3.2.3, ”Backing Up Third-Party Directories”

21.6.3.2.1 Backing up Oracle Internet Directory

To back up an Oracle Internet Directory instance:

1. Shut down the instance using opmnctl located under the OID_ORACLE_
   INSTANCE/bin directory:
   
   OID_ORACLE_INSTANCE/bin/opmnctl stopall

2. Back up the Database hosting the Oracle Internet Directory data and the Oracle
   Internet Directory instance home on each host.

3. Start up the instance using opmnctl located under the OID_ORACLE_
   INSTANCE/bin directory:
   
   OID_ORACLE_INSTANCE/bin/opmnctl startall

21.6.3.2.2 Backing up Oracle Virtual Directory

To back up an Oracle Virtual Directory instance:

1. Shut down the instance using opmnctl located under the OVD_ORACLE_
   INSTANCE/bin directory:
   
   OVD_ORACLE_INSTANCE/bin/opmnctl stopall

2. Back up the Oracle Virtual Directory Instance home on each LDAP host.

3. Start up the instance using opmnctl located under the OVD_ORACLE_
   INSTANCE/bin directory:
   
   OVD_ORACLE_INSTANCE/bin/opmnctl startall

21.6.3.2.3 Backing Up Third-Party Directories

Refer to your operating system vendor’s
documentation for information about backing up directories.

21.6.3.3 Backing Up the Database

Whenever you create add a component to the configuration, back up the IDMDB
database. Perform this backup after creating domains or adding components such as
Access Manager, Oracle Identity Manager or Oracle Identity Navigator.

21.6.3.4 Backing Up the WebLogic Domain

To back up the WebLogic domain, perform these steps:

1. Shut down the WebLogic administration server and any managed servers running
   in the domain as described in Section 21.1, ”Starting and Stopping Oracle Identity
   Management Components.”

2. Back up the ASERVER_HOME directory from shared storage.
3. Back up the `MSERVER_HOME` directory from each host.
4. Restart the WebLogic Administration Server and managed servers.

**21.6.3.5 Backing Up the Web Tier**
To back up the Web Tier, perform these steps:

1. Shut down the Oracle HTTP Server as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components."
2. Back up the Oracle HTTP Server.
3. Start the Oracle HTTP Server as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components."

**21.7 Patching Enterprise Deployments**
This section describes how to apply an Oracle Fusion Middleware patch file and how to patch Oracle Identity Management components with minimal down time.

This section contains the following topics:

- Section 21.7.1, "Patching an Oracle Fusion Middleware Source File"
- Section 21.7.2, "Patching Identity and Access Management in a Single Domain Topology"
- Section 21.7.3, "Patching Identity Management Components"

**21.7.1 Patching an Oracle Fusion Middleware Source File**
For information on patching an Oracle Fusion Middleware source file, see the *Oracle Fusion Middleware Administrator's Guide*.

**21.7.2 Patching Identity and Access Management in a Single Domain Topology**
Apply patches as follows:

- **IDMDomain MW_HOME**
  - Common patches
  - Oracle Access Manager Patches
  - Oracle Identity Manager Patches
  - ODSM Patches
  - IDM Tool Patches

**21.7.3 Patching Identity Management Components**
To patch Oracle Identity Management components with minimal down time, it is recommended that you follow these guidelines:

1. Route the LDAP traffic from LDAPHOST1 to LDAPHOST2.
2. Bring down the Oracle Internet Directory or Oracle Virtual Directory server on the host on which you are applying the patch (LDAPHOST1).
3. Apply the Oracle Internet Directory patch or Oracle Virtual Directory patch on the host.
4. Start the Oracle Internet Directory or Oracle Virtual Directory server on the host.
5. Test the patch.
6. Route the traffic to LDAPHOST1 again.
7. Verify the applications are working properly.
8. Route the LDAP traffic on LDAPHOST2 to LDAPHOST1.
9. Bring down the Oracle Internet Directory or Oracle Virtual Directory server on the host on which you are applying the patch (LDAPHOST2).
10. Apply the Oracle Internet Directory patch or Oracle Virtual Directory patch on the host.
11. Start the Oracle Internet Directory or Oracle Virtual Directory server on the host.
12. Test the patch.
13. Route the traffic to both hosts on which the patch has been applied (LDAPHOST1 and LDAPHOST2).

21.8 Preventing Timeouts for SQL

Most of the production deployment involves firewalls. Because database connections are made across firewalls, Oracle recommends that the firewall be configured so that the database connection is not timed out. For Oracle Real Application Clusters (Oracle RAC), the database connections are made on Oracle RAC VIPs and the database listener port. You must configure the firewall so it does not time out these connections. If such a configuration is not possible, set the S Q L N E T . E X P I R E _ T I M E = n parameter in the ORACLE_HOME/network/admin/sqlnet.ora file on the database server, where n is the time in minutes. Set this value to less than the known value of the timeout for the network device (that is, a firewall). For Oracle RAC, set this parameter in all of the Oracle home directories.

21.9 Manually Failing Over the WebLogic Administration Server

This section discusses how to fail over the Administration Server to IDMHOST2 and how to fail it back to IDMHOST1.

This section contains the following topics:

- Section 21.9.1, "Failing over the Administration Server to IDMHOST2"
- Section 21.9.2, "Starting the Administration Server on IDMHOST2"
- Section 21.9.3, "Validating Access to IDMHOST2 Through Oracle HTTP Server"
- Section 21.9.4, "Failing the Administration Server Back to IDMHOST1"

21.9.1 Failing over the Administration Server to IDMHOST2

If a node fails, you can fail over the Administration Server to another node. This section describes how to fail over the Administration Server from IDMHOST1 to IDMHOST2.

Assumptions:

- The Administration Server is configured to listen on ADMINVHN.mycompany.com, and not on ANY address. See step 10 in Section 9.4, "Running the Configuration Wizard to Create a Domain with Oracle Access Manager, Oracle SOA Suite, and Oracle Identity Manager."
Manually Failing Over the WebLogic Administration Server

- The Administration Server is failed over from IDMHOST1 to IDMHOST2, and the two nodes have these IP addresses:
  - IDMHOST1: 100.200.140.165
  - IDMHOST2: 100.200.140.205
  - ADMINVIP: 100.200.140.206

  This is the Virtual IP address where the Administration Server is running, assigned to `interface:index` (for example, eth1:2), available in IDMHOST1 and IDMHOST2.

- The domain directory where the Administration Server is running in IDMHOST1 is on a shared storage and is mounted also from IDMHOST2.

  **Note:** NM in IDMHOST2 does not control the domain at this point, since unpack/nmEnroll has not been run yet on IDMHOST2. But for the purpose of AdminServer failover and control of the AdminServer itself, Node Manager is fully functional.

- Oracle WebLogic Server and Oracle Fusion Middleware Components have been installed in IDMHOST2 as described in previous chapters. That is, the same path for `IDM_ORACLE_HOME` and `MW_HOME` that exists in IDMHOST1 is available in IDMHOST2.

The following procedure shows how to fail over the Administration Server to a different node, IDMHOST2.

**Linux**

1. Stop the Administration Server as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components."

2. Migrate the IP address to the second node.
   a. Run the following command as root on IDMHOST1 (where `x:y` is the current interface used by ADMINVHN.mycompany.com):

      ```sh
 /sbin/ifconfig x:y down
      ```

      For example:

      ```sh
 /sbin/ifconfig eth0:1 down
      ```

   b. Run the following command on IDMHOST2:

      ```sh
 /sbin/ifconfig interface:index IP_Address netmask netmask
      ```

      For example:

      ```sh
 /sbin/ifconfig eth0:1 10.0.0.1 netmask 255.255.255.0
      ```

      **Note:** Ensure that the netmask and interface to be used match the available network configuration in IDMHOST2.

3. Update routing tables by using `arping`, for example:

   ```sh
 /sbin/arping -q -U -c 3 -I eth0 10.0.0.1
   ```
Windows
1. Stop the Administration Server as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components."

2. Migrate the IP address to the second node.
   a. Run the following command as root on IDMHOST1
      ```shell
 netsh interface ip delete address interface netmask
      ```
      In the following example, the IP address is disabled on the interface Local Area Connection:
      ```shell
 netsh interface ip delete address "Local Area connection" 100.200.140.206
      ```
   b. Run the following command on IDMHOST2:
      ```shell
 netsh interface ip add address interface IP_Address netmask
      ```
      In the following example, the IP address is enabled on the interface Local Area Connection:
      ```shell
 netsh interface ip add address "Local Area connection" 100.200.140.206 255.255.255.0
      ```

21.9.2 Starting the Administration Server on IDMHOST2

Perform the following steps to start Node Manager on IDMHOST2.

1. On IDMHOST1, unmount the Administration Server domain directory. For example:
   ```bash
 umount /u01/oracle
   ```

2. On IDMHOST2, mount the Administration Server domain directory. For example:
   ```bash
 mount /u01/oracle
   ```

3. Start Node Manager by using the following commands:
   ```bash
 cd WL_HOME/server/bin
 ./startNodeManager.sh
   ```

4. Stop the Node Manager by killing the Node Manager process, or stop the service in Windows.

   Note: Starting and stopping Node Manager at this point is only necessary the first time you run Node Manager. Starting and stopping it creates a property file from a predefined template. The next step adds properties to that property file.

5. Run the setNMProps.sh script to set the StartScriptEnabled property to true before starting Node Manager:
   ```bash
 cd ORACLE_COMMON_HOME/common/bin
 ./setNMProps.sh
   ```
6. Start the Node Manager as described in Section 21.1.8.3, "Starting Node Manager for an Administration Server."

7. Start the Administration Server on IDMHOST2.
   
   cd ORACLE_COMMON_HOME/common/bin
   ./wlst.sh
   
   Once in the WLST shell, execute the following commands:
   
   nmConnect('Admin_User', 'Admin_Password', 'IDMHOST2', '5556', 'IDMDomain', '/u1/oracle/config/domains/IDMDomain')
   nmStart('AdminServer')

8. Test that you can access the Administration Server on IDMHOST2 as follows:
   
   a. Ensure that you can access the Oracle WebLogic Server Administration Console at:
      
   
   b. Check that you can access and verify the status of components in the Oracle Enterprise Manager at:
      

21.9.3 Validating Access to IDMHOST2 Through Oracle HTTP Server

Perform the same steps as in Section 9.6.4, "Validating Access to Domains." This is to check that you can access the Administration Server when it is running on IDMHOST2.

21.9.4 Failing the Administration Server Back to IDMHOST1

This step checks that you can fail back the Administration Server, that is, stop it on IDMHOST2 and run it on IDMHOST1. To do this, migrate ADMINVHN back to IDMHOST1 node as described in the following steps.

1. Ensure that the Administration Server is not running. If it is, stop it from the WebLogic console, or by running the command stopWeblogic.sh from ASERVER_HOME/bin.

2. On IDMHOST2, unmount the Administration server domain directory. For example:
   
   umount /u01/oracle

3. On IDMHOST1, mount the Administration server domain directory. For example:
   
   mount /u01/oracle

4. Disable the ADMINVHN.mycompany.com virtual IP address on IDMHOST2 and run the following command as root on IDMHOST2:
   
   /sbin/ifconfig x:y down
   
   where x:y is the current interface used by ADMINVHN.mycompany.com.

5. Run the following command on IDMHOST1:

---

**Note:** You must use the StartScriptEnabled property to avoid class loading failures and other problems.
6. Update routing tables by using arping. Run the following command from IDMHOST1.

```bash
/sbin/arping -q -U -c 3 -I interface 100.200.140.206
```

7. If Node Manager is not already started on IDMHOST1, start it, as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components."

8. Start the Administration Server again on IDMHOST1.

```bash
cd ORACLE_COMMON_HOME/common/bin
./wlst.sh
```

Once in the WLST shell, execute

```bash
nmConnect('Admin_User','Admin_Password', 'IDMHOST1','5556',
 'IDMDomain', '/u01/oracle/config/domains/IDMDomain'

nmStart('AdminServer')
```

9. Test that you can access the Oracle WebLogic Server Administration Console at:

```bash
http://ADMINVHN.mycompany.com:7001/console
```

where 7001 is **WLS_ADMIN_PORT** in Section A.3.

10. Check that you can access and verify the status of components in the Oracle Enterprise Manager at:

```bash
http://ADMINVHN.mycompany.com:7001/em
```

### 21.10 Troubleshooting

This section describes how to troubleshoot common issues that can arise with the Identity Management enterprise deployment described in this manual.

This section contains the following topics:

- Section 21.10.1, "Troubleshooting Oracle Internet Directory"
- Section 21.10.2, "Troubleshooting Oracle Virtual Directory"
- Section 21.10.3, "Troubleshooting Oracle Directory Services Manager"
- Section 21.10.4, "Troubleshooting Oracle Access Manager 11g"
- Section 21.10.5, "Troubleshooting Oracle Identity Manager"
- Section 21.10.6, "Troubleshooting Oracle SOA Suite"
- Section 21.10.7, "Troubleshooting Oracle Identity Federation"

#### 21.10.1 Troubleshooting Oracle Internet Directory

This section describes some common problems that can arise with Oracle Internet Directory and the actions you can take to resolve the problem. It contains the following topics:

---

**Note:** Ensure that the netmask and interface to be used match the available network configuration in IDMHOST1

---
Section 21.10.1.1, "Oracle Internet Directory Server is Not Responsive."

Section 21.10.1.2, "SSO/LDAP Application Connection Times Out"

Section 21.10.1.3, "LDAP Application Receives LDAP Error 53 (DSA Unwilling to Perform)"

Section 21.10.1.4, "TNSNAMES.ORA, TAF Configuration, and Related Issues"

21.10.1.1 Oracle Internet Directory Server is Not Responsive.

Problem
The Oracle Internet Directory server is not responsive. When the load balancing router is configured to send an ICMP message to the LDAP SSL port for monitoring, the Oracle Internet Directory server starting SSL negotiation sometimes hangs, and thus it is required that the load balancing router not use ICMP messages for monitoring the LDAP SSL port.

Solution
Use an alternative such as TCP or the LDAP protocol itself. Also, monitoring the LDAP non-SSL port is sufficient to detect LDAP availability.

21.10.1.2 SSO/LDAP Application Connection Times Out

Problem
The SSO/LDAP Application connection is lost to Oracle Internet Directory server

Solution
Verify the load balancing router timeout and SSO/Application timeout configuration parameter. The SSO/LDAP application timeout value should be less than LBR IDLE time out.

21.10.1.3 LDAP Application Receives LDAP Error 53 (DSA Unwilling to Perform)

Problem
The LDAP application is receiving LDAP Error 53 (DSA Unwilling to Perform). When one of the database nodes goes down during the middle of the LDAP transaction, the Oracle Internet Directory server sends error 53 to the LDAP client

Solution
To see why the Oracle Internet Directory database node went down, see the Oracle Internet Directory logs in this location:

ORACLE_INSTANCE/diagnostics/logs/OID/oidldapd01s*.log

21.10.1.4 TNSNAMES.ORA, TAF Configuration, and Related Issues

Problem
Issues involving TNSNAMES.ORA, TAF configuration, and related issues.

Solution
See the Oracle Database High Availability Overview manual.
21.10.2 Troubleshooting Oracle Virtual Directory

This section describes some common problems that can arise with Oracle Virtual Directory and the actions you can take to resolve the problem. It contains the following topics:

- **Section 21.10.2.1, "Command Not Found Error When Running SSLServerConfig.sh"
- **Section 21.10.2.2, "Oracle Virtual Directory is Not Responsive"
- **Section 21.10.2.3, "SSO/LDAP Application Connection Times Out"
- **Section 21.10.2.4, "TNSNAMES.ORA, TAF Configuration, and Related Issues"
- **Section 21.10.2.5, "SSLServerConfig.sh Fails with Error"

### 21.10.2.1 Command Not Found Error When Running SSLServerConfig.sh

**Problem**
You get a *command not found* error when you run **SSLServerConfig.sh**, for example:

```bash
./SSLServerConfig.sh: line 169: 20110520125611: command not found
```

**Solution**
Edit the file **orapki.bat** (on Windows) or **orapki.sh** (on Linux) and remove any blank lines at the end of the file. Save the file and run **SSLServerConfig.sh** again.

### 21.10.2.2 Oracle Virtual Directory is Not Responsive

**Problem**
Oracle Virtual Directory is not responsive. When the load balancing router is configured to send an ICMP message to the LDAP SSL port for monitoring, the Oracle Virtual Directory server starting SSL negotiation sometimes hangs, and thus it is required that the load balancing router not use ICMP messages for monitoring the LDAP SSL port.

**Solution**
Use an alternative such as TCP or the LDAP protocol itself.
Also, monitoring the LDAP non-SSL port is sufficient to detect LDAP availability.

### 21.10.2.3 SSO/LDAP Application Connection Times Out

**Problem**
The SSO/LDAP Application connection is lost to the Oracle Virtual Directory server.

**Solution**
Verify the load balancing router timeout and SSO/Application timeout configuration parameter. The SSO/LDAP application timeout value should be less than LBR IDLE time out.
21.10.2.4 TNSNAMES.ORA, TAF Configuration, and Related Issues

Problem
Issues involving TNSNAMES.ORA, TAF configuration, and related issues.

Solution
See the Oracle Database High Availability Overview manual.

21.10.2.5 SSLServerConfig.sh Fails with Error

Problem
When you run SSLServerConfig.sh for component OVD, sometime it fails with an error similar to this:

>>>Enter password for weblogic:
>>>Enter your keystore name [ovdks1.jks]: 
Checking the existence of ovdks1.jks in the OVD...

>>>Failed to configure your SSL server wallet
>>>Please check /scratch/aime1/edgfa/idm//rootCA/keystores/ovd/ks_check.log for more information

In the log file, you see an error message like this:

Problem invoking WLST - Traceback (innermost last):
File '/scratch/aime1/edgfa/idm/rootCA/keystores/ovd/ovdssl-check.py', line 8, in ?
File '<iostream>', line 182, in cd
File '<iostream>', line 1848, in raiseWLSTException
WLSTException: Error occured while performing cd : Attribute oracle.as.ovd:type=component.listenersconfig.sslconfig,name=LDAP SSL Endpoint,instance=ovd1,component=ovd1 not found. Use ls(a) to view the attributes

Solution
The problem is intermittent. To work around the issue, re-run the script.

21.10.3 Troubleshooting Oracle Directory Services Manager

This section describes some common problems that can arise with Oracle Directory Services Manager and the actions you can take to resolve the problem. It contains the following topics:

- Section 21.10.3.1, "ODSM Browser Window and Session Issues"
- Section 21.10.3.2, "ODSM Does not Open When Invoked from Fusion Middleware Control"
- Section 21.10.3.3, "ODSM Failover is Not Transparent"
- Section 21.10.3.4, "ODSM Loses Connection and Displays Message that LDAP Server is Down"
- Section 21.10.3.5, "ODSM Loses Connection to Instance Using ORAC Database"
- Section 21.10.3.6, "OHS Must Be Configured to Route ODSM Requests to Multiple Oracle WebLogic Servers"
- Section 21.10.3.7, "ODSM is Not Accessible"
21.10.3.1 ODSM Browser Window and Session Issues

After you have logged into Oracle Directory Services Manager, you can connect to multiple directory instances from the same browser window.

Avoid using multiple windows of the same browser program to connect to different directories at the same time. Doing so can cause a Target unreachable error.

You can log in to the same Oracle Directory Services Manager instance from different browser programs, such as Internet Explorer and Firefox, and connect each to a different directory instance.

If you change the browser language setting, you must update the session to use the new setting. To update the session, either disconnect the current server connection, refresh the browser page (either reenter the Oracle Directory Services Manager URL in the URL field and press enter or press F5) and reconnect to the same server, or quit and restart the browser.

21.10.3.2 ODSM Does not Open When Invoked from Fusion Middleware Control

Problem
Oracle Directory Services Manager does not open after you attempt to invoke it from Oracle Enterprise Manager Fusion Middleware Control by selecting one of the options from the Directory Services Manager entry in the Oracle Virtual Directory menu in the Oracle Virtual Directory target or the Oracle Internet Directory menu in the Oracle Internet Directory target.

Solution
This is probably an installation problem. See the Oracle Fusion Middleware Installation Guide for Oracle Identity Management.

21.10.3.3 ODSM Failover is Not Transparent

Problem
When you perform an Oracle Directory Services Manager failover using Oracle HTTP Server, the failover is not transparent. You see this behavior when you perform the following steps:

1. Oracle Directory Services Manager is deployed in a High Availability active-active configuration using Oracle HTTP Server.
2. Display an Oracle Directory Services Manager page using the Oracle HTTP Server name and port number.
3. Make a connection to an Oracle Internet Directory or Oracle Virtual Directory server.
4. Work with the Oracle Internet Directory or Oracle Virtual Directory server using the current Oracle Directory Services Manager Oracle HTTP Server host and port.
5. Shut down one Managed Server at a time using the WebLogic Server Administration Console.
6. Go back to the Oracle Directory Services Manager page and port, and the connection which was established earlier with Oracle Internet Directory or Oracle Virtual Directory. When you do, a message is displayed advising you to re-establish a new connection to the Oracle Directory Services Manager page.
Solution
If you encounter this problem, perform the following steps:

1. In your web browser, exit the current Oracle Directory Services Manager page.
2. Launch a new web browser page and specify the same Oracle Directory Services Manager Oracle HTTP Server name and port.
3. Re-establish a new connection to the Oracle Internet Directory or Oracle Virtual Directory server you were working with earlier.

21.10.3.4 ODSM Loses Connection and Displays Message that LDAP Server is Down

Problem
Oracle Directory Services Manager temporarily loses its connection to Oracle Internet Directory and displays the message LDAP Server is down.

Solution
In a High Availability configuration where Oracle Directory Services Manager is connected to Oracle Internet Directory through a load balancer, Oracle Directory Services Manager reports that the server is down during failover from one instance of Oracle Internet Directory to another. In other configurations, this message might indicate that Oracle Internet Directory has been shut down and restarted. In either case, the connection is reestablished in less than a minute, and you are able to continue without logging in again.

21.10.3.5 ODSM Loses Connection to Instance Using ORAC Database

Problem
Oracle Directory Services Manager temporarily loses its connection to an Oracle Internet Directory or Oracle Virtual Directory instance that is using an Oracle RAC Database. Oracle Directory Services Manager might display the message LDAP error code 53 - Function not implemented.

Solution
This error can occur during failover of the Oracle Database that the Oracle Internet Directory or Oracle Virtual Directory instance is using. The connection is reestablished in less than a minute, and you are able to continue without logging in again.

21.10.3.6 OHS Must Be Configured to Route ODSM Requests to Multiple Oracle WebLogic Servers

Problem
You must perform the following steps to configure Oracle HTTP Server to route Oracle Directory Services Manager requests to multiple Oracle WebLogic Servers in a clustered Oracle WebLogic Server environment.

Solution
Perform these steps:

1. Create a backup copy of the Oracle HTTP Server’s admin.conf file, which is located in ORACLE_INSTANCE/config. The backup copy provides a source to revert to if you encounter problems after performing this procedure.
2. Add the following text to the end of the Oracle HTTP Server’s admin.conf file and replace the variable placeholder values with the host names and Managed Server port numbers specific to your environment. Be sure to use the <Location /odsm/ > as the first line in the entry. Using <Location /odsm/faces > or <Location /odsm/faces/odsm.jspx > can distort the appearance of the Oracle Directory Services Manager interface.

```
<Location /odsm/>
 SetHandler weblogic-handler
 WebLogicCluster host-name_1:managed-server-port, host-name_2:managed_server_port
</Location>
```

3. Restart the Oracle HTTP Server, as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components," to activate the configuration change.

---

**21.10.3.7 ODSM is Not Accessible**

**Problem**

Attempting to access Oracle Directory Services Manager using a web browser fails.

**Solution**

- Verify the Oracle Virtual Directory server is running. The Oracle Virtual Directory server must be running to connect to it from Oracle Directory Services Manager.

- Verify you entered the correct credentials in the Server, Port, User Name and Password fields. You can execute an ldapbind command against the target Oracle Virtual Directory server to verify the server, user name, and password credentials.

- Verify you are using a supported browser. Oracle Directory Services Manager supports the following browsers:
  - Internet Explorer 7
  - Firefox 2.0.0.2 and 3.0
  - Safari 3.1.2 (desktop)
  - Google Chrome 0.2.149.30

---

*Note:* While Oracle Directory Services Manager supports all of the preceding browsers, only Internet Explorer 7 and Firefox 2.0.0.2 are certified.
21.10.4 Troubleshooting Oracle Access Manager 11g

This section describes some common problems that can arise with Oracle Access Manager and the actions you can take to resolve the problem. It contains the following topics:

- Section 21.10.4.1, "Insufficient Memory Error When Starting wls_oam1"
- Section 21.10.4.2, "Fusion Applications Preverify Fails to Validate OAM Admin Users"
- Section 21.10.4.3, "User Reaches the Maximum Allowed Number of Sessions"
- Section 21.10.4.4, "Policies Do Not Get Created When Oracle Access Manager is First Installed"
- Section 21.10.4.5, "You Are Not Prompted for Credentials After Accessing a Protected Resource"
- Section 21.10.4.6, "Cannot Log In to OAM Console"
- Section 21.10.4.7, "Error When Starting OAM Managed Servers on Windows"

21.10.4.1 Insufficient Memory Error When Starting wls_oam1

**Problem**

Attempts to start wls_oam1 fail with the error:

```
There is insufficient native memory for the Java Runtime Environment to continue.
This error occurs because the operating system has run out of virtual memory or virtual memory swap space. This might be due to some process consuming large amounts of virtual memory. This also could be due to a limit set on the virtual memory that can be allocated.
```

**Solution**

Verify that sufficient system resources are available, then try again to start the process.

21.10.4.2 Fusion Applications Preverify Fails to Validate OAM Admin Users

**Problem**

The Fusion Applications preverify step, described in the task "Run the pre-verify phase" in Oracle Fusion Applications Customer Relationship Management Enterprise Deployment Guide, fails to validate OAM Admin users. In the OAM diagnostic file, you see an error similar to this:

```
Caused by: oracle.security.idm.OperationFailureException
@ oracle.security.am.common.jndi.ldap.PoolingException [Root exception is @ oracle.ucp.UniversalConnectionPoolException: Invalid life cycle state. Check @ the status of the Universal Connection Pool]
```

**Solution**

1. Shut down the administration server and all managed servers in the domain, as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components."

2. Delete the files with names of the form:

```
/tmp/UCP*
```
3. Restart the administration server and managed servers.

21.10.4.3 User Reaches the Maximum Allowed Number of Sessions

Problem
The Oracle Access Manager server displays an error message similar to this:

The user has already reached the maximum allowed number of sessions. Please close
one of the existing sessions before trying to login again.

Solution
If users log in multiple times without logging out, they might overshoot the maximum
number of configured sessions. You can modify the maximum number of configured
sessions by using the OAM Administration Console.

To modify the configuration by using the OAM Administration Console, proceed as
follows:

1. Go to System Configuration -> Common Settings -> Session
2. Increase the value in the Maximum Number of Sessions per User field to cover
   all concurrent login sessions expected for any user. The range of values for this
   field is from 1 to any number.

21.10.4.4 Policies Do Not Get Created When Oracle Access Manager is First
Installed

Problem
The Administration Server takes a long time to start after configuring Oracle Access
Manager.

Solution
Tune the OAM database. When the Administration server first starts after configuring
Oracle Access Manager, it creates a number of default policies in the database. If the
database is distant or in need of tuning, this can take a significant amount of time.

Resources
Authentication Policies
   Protected Higher Level Policy
   Protected Lower Level Policy
   Public1 Policy
Authorization Policies
   Authorization Policies

If you do not see these items, the initial population has failed. Check the
Administration Server log file for details.

21.10.4.5 You Are Not Prompted for Credentials After Accessing a Protected
Resource

Problem
When you access a protected resource, Oracle Access Manager should prompt you for
your user name and password. For example, after creating a simple HTML page and
adding it as a resource, you should see credential entry screen.
Solution

If you do not see the credential entry screen, perform the following steps:

1. Verify that Host Aliases for IDMDomain have been set. You should have aliases for IDMDomain:80, IDMDomain:Null, ADMIN.mycompany.com:80, and SSO.mycompany.com:443, where Port 80 is HTTP_PORT and Port 443 is HTTP_SSL_PORT.

2. Verify that WebGate is installed.

3. Verify that OBAccessClient.xml was copied from ASERVER_HOME/output to the WebGate Lib directory and that OHS was restarted.

4. When OBAccessClient.xml was first created, the file was not formatted. When the OHS is restarted, reexamine the file to ensure that it is now formatted. OHS gets a new version of the file from Oracle Access Manager when it first starts.

5. Shut down the Oracle Access Manager servers and try to access the protected resource. You should see an error saying Oracle Access Manager servers are not available. If you do not see this error, re-install WebGate.

### 21.10.4.6 Cannot Log In to OAM Console

**Problem**

You cannot log in to the OAM Console. The Administration Server diagnostic log might contain an error message similar to this:

Caused by: oracle.security.idm.OperationFailureException:
oracle.security.am.common.jndi.ldap.PoolingException [Root exception is oracle.ucp.UniversalConnectionPoolException:
Invalid life cycle state.
Check the status of the Universal Connection Pool]
at oracle.security.idm.providers.stdldap.UCPool.acquireConnection(UCPool.java:112)

**Solution**

Remove the /tmp/UCP* files and restart the Administration Server.

### 21.10.4.7 Error When Starting OAM Managed Servers on Windows

**Problem**

On Windows, when you start the OAM managed servers, you see an error similar to this:

Caused by: java.net.SocketException: Address family not supported by protocol family: bind

**Solution**

Edit setDomainEnv.cmd, which is located in MSERVER_HOME/bin and add the following parameters to the environment variable EXTRA_JAVA_PROPERTIES:

-DuseIPv6Address=false -Djava.net.preferIPv6Addresses=false

Restart the Administration Server and all Managed Servers that are running.
21.10.5 Troubleshooting Oracle Identity Manager

This section describes some common problems that can arise with Oracle Identity Manager and the actions you can take to resolve the problem. It contains the following topics:

- Section 21.10.5.1, "java.io.FileNotFoundException When Running Oracle Identity Manager Configuration"
- Section 21.10.5.2, "ResourceConnectionValidationxception When Creating User in Oracle Identity Manager"

21.10.5.1 java.io.FileNotFoundException When Running Oracle Identity Manager Configuration

**Problem**

When you run Oracle Identity Manager configuration, the error `java.io.FileNotFoundException: soaconfigplan.xml (Permission denied)` may appear and Oracle Identity Manager configuration might fail.

**Solution**

To workaround this issue:

1. Delete the file `/tmp/oconfigplan.xml`.
2. Start the configuration again (`/OH/bin/config.sh`).

21.10.5.2 ResourceConnectionValidationxception When Creating User in Oracle Identity Manager

**Problem**

If you are creating a user in Oracle Identity Manager (by logging into Oracle Identity Manager, clicking the Administration tab, clicking the Create User link, entering the required information in the fields, and clicking Save) in an active-active Oracle Identity Manager configuration, and the Oracle Identity Manager server that is handling the request fails, you may see a "ResourceConnectionValidationxception" in the Oracle Identity Manager log file, similar to:

```
[2010-06-14T15:48:738-07:00] [oim_server2] [ERROR] [] [XELLERATE.SERVER] [tid: [ACTIVE].ExecuteThread: '0' for queue: 'weblogic.kernel.Default (self-tuning)'] [userId: xelsysadm] [ecid: 004YGJGmYrtEkJV6u3M6UH00073A0005EI,0:1] [APP: oim#11.1.1.3.0] [dcid: 12eb0f9c6e8796f4:-785b18b3:12938857792:-7fffd-0000000000000037] [URI: /admin/faces/pages/Admin.jspx] Class/Method: PooledResourceConnection/heartbeat encounter some problems: Operation timed out[]
com.oracle.oim.gcp.exceptions.ResourceConnectionValidationxception: Operation timed out
 at oracle.iam.ldapsync.impl.repository.LDAPConnection.heartbeat(LDAPConnection.java:162)
 at com.oracle.oim.gcp.ucp.PooledResourceConnection.heartbeat(PooledResourceConnection.java:52)
```

**Solution**
Despite this exception, the user is created correctly.

### 21.10.6 Troubleshooting Oracle SOA Suite

This section describes some common problems that can arise with Oracle SOA Suite and the actions you can take to resolve the problem. It contains the following topics:

#### 21.10.6.1 Transaction Timeout Error

**Problem:** The following transaction timeout error appears in the log:

```
Internal Exception: java.sql.SQLException: Unexpected exception while enlisting XAConnection java.sql.SQLException: XA error: XAResource.XAER_NOTA start() failed on resource 'SOADataSource_soaedg_domain': XAER_NOTA : The XID is not valid
```

**Solution:** Check your transaction timeout settings, and be sure that the JTA transaction time out is less than the DataSource XA Transaction Timeout, which is less than the `distributed_lock_timeout` (at the database).

With the out of the box configuration, the SOA data sources do not set XA timeout to any value. The `Set XA Transaction Timeout` configuration parameter is unchecked in the WebLogic Server Administration Console. In this case, the data sources use the domain level JTA timeout which is set to 30. Also, the default `distributed_lock_timeout` value for the database is 60. As a result, the SOA configuration works correctly for any system where transactions are expected to have lower life expectancy than such values. Adjust these values according to the transaction times your specific operations are expected to take.

### 21.10.7 Troubleshooting Oracle Identity Federation

This section describes some common problems that can arise with Oracle Identity Federation and the actions you can take to resolve the problem. It contains the following topics:

- **Section 21.10.7.1, "Cannot Log In to the Oracle Identity Federation Server (Windows)"
- **Section 21.10.7.2, "Extending the Domain with Oracle Identity Federation Fails"
- **Section 21.10.7.3, "Cannot Change Oracle Identity Federation Parameters by Using Fusion Middleware Control"

#### 21.10.7.1 Cannot Log In to the Oracle Identity Federation Server (Windows)

**Problem**
On a Windows system, you cannot log in to the Oracle Identity Federation server even though it is running.

**Solution**
Make sure that the Oracle Identity Federation server is using IPv4, if everything else is using IPv4).

To verify this, look in the file `ASERVER_HOME/bin/setDomainEnv.cmd` on IDMHOST1 and IDMHOST2.
Locate the line `EXTRA_JAVA_PROPERTIES` and add the following to the entry if it is not already present:

```
-Djava.net.preferIPv6Addresses
-DuseIPv6Address=false
-Djava.net.preferIPv6Addresses=false
```

Save the file and restart the Oracle Identity Federation servers as described in Section 21.1, "Starting and Stopping Oracle Identity Management Components."

### 21.10.7.2 Extending the Domain with Oracle Identity Federation Fails

**Problem**
Extending the domain with Oracle Identity Federation fails when Oracle Identity Manager is installed at the Create Managed Server step.

**Solution**
Copy the file `setDomainEnv.sh` from `ASERVER_HOME/bin` on IDMHOST1 to OIFHOST1.

Retry the operation.

### 21.10.7.3 Cannot Change Oracle Identity Federation Parameters by Using Fusion Middleware Control

**Problem**
You cannot change Oracle Identity Federation parameters by using Oracle Enterprise Manager Fusion Middleware Control. You see the message:

```
Configuration settings are unavailable because OIF is down
```

even though Oracle Identity Federation is up and running.

**Solution**
Here are the common causes and resolutions:

1. Oracle Identity Federation is up but the EM agent is down.
   
   a. Check the EM agent status by running:
      
      ```bash
 ORACLE_INSTANCE/EMAGENT/EMAGENT/bin/emctl status agent
      ```
      
   b. Start the EM agent, if it is down, by running:
      
      ```bash
 ORACLE_INSTANCE/bin/opmnctl startproc ias-component=EMAGENT
      ```
      
   c. Log in to Fusion Middleware Control again.

2. Oracle Identity Federation and EM agent are up, but the OIF home page and configuration pages in Fusion Middleware Control still show: **OIF is down**.
   
   a. Check if the EM agent points to the correct Fusion Middleware Control by running:
      
      ```bash
 ORACLE_INSTANCE/EMAGENT/EMAGENT/bin/emctl status agent
      ```
      
      Verify that the host and port for property Repository URL are the same as the Fusion Middleware Control’s host and port.
b. If the host and port are mismatched, change the Repository URL in EM agent to the correct Fusion Middleware Control by running:

```
ORACLE_INSTANCE/EMAGENT/EMAGENT/bin/emctl switchOMS
http(s)://Host:Port/em/upload'
```

c. Log in to Fusion Middleware Control again.

3. If the issue still exists, once logged in to Fusion Middleware Control, navigate to Farm->Agent-Monitored Targets (Top Left corner of the page) and click the Configure icon of the row that refers to Oracle Identity Federation. On the next page, ensure that all the information is correct and complete. Click OK to confirm.

Check that the WebLogic user name and password are present.
Check the host value. It might have been specified with an IPv6 address format.

4. If the issue still exists, restart the EM agent.

   a. Stop the EM agent by running:

```
INST_HOME/bin/opmnctl stopproc ias-component=EMAGENT
```

   b. Start the EM agent by running:

```
INST_HOME/bin/opmnctl startproc ias-component=EMAGENT
```

   c. Log in to Oracle Enterprise Manager Fusion Middleware Control again.
This appendix contains worksheets to help you keep track of machine names, IP addresses, directories, and other important data.

We recommend that you open the PDF version if this Guide in a PDF reader and print out this appendix. Update these worksheet as you set up your enterprise deployment.

This chapter contains the following worksheets:

- Section A.1, "Hosts, Virtual Hosts, and Virtual IP Addresses for Identity Management"
- Section A.2, "Directory Mapping"
- Section A.3, "Port Mapping"
- Section A.4, "LDAP Directory Details"
- Section A.5, "Database Details"
- Section A.6, "Web Tier Details"
- Section A.7, "Application Tier Details"
- Section A.8, "User and Group Mapping"

### A.1 Hosts, Virtual Hosts, and Virtual IP Addresses for Identity Management

Use this worksheet to record information about hosts and IP addresses.

<table>
<thead>
<tr>
<th>Documented Alias</th>
<th>Type</th>
<th>Your Host Name</th>
<th>IP Address</th>
<th>Operating System and Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEBHOST1</td>
<td>Host</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEBHOST2</td>
<td>Host</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDMHOST1</td>
<td>Host</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDMHOST2</td>
<td>Host</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDMDBHOST1</td>
<td>Database Host</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDMDBHOST2</td>
<td>Database Host</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OIMADMINVHN</td>
<td>Virtual Host</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A.2 Directory Mapping

Use this worksheet to keep track of directories.

Table A–2 Directory Mapping Table

<table>
<thead>
<tr>
<th>Documented Variable</th>
<th>Sample Directory Path</th>
<th>Your Directory Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAM_MW_HOME</td>
<td>/u01/oracle/products/access</td>
<td></td>
</tr>
<tr>
<td>DIR_MW_HOME</td>
<td>/u02/local/oracle/products/directory</td>
<td></td>
</tr>
<tr>
<td>IAM_ORACLE_HOME</td>
<td>/u01/oracle/products/access/iam</td>
<td></td>
</tr>
<tr>
<td>WEB_MW_HOME</td>
<td>/u02/local/oracle/products/web</td>
<td></td>
</tr>
<tr>
<td>SOA_ORACLE_HOME</td>
<td>/u01/oracle/products/access/soa</td>
<td></td>
</tr>
<tr>
<td>OID_ORACLE_HOME</td>
<td>/u01/oracle/products/access/oid</td>
<td></td>
</tr>
<tr>
<td>OVD_ORACLE_HOME</td>
<td>/u01/oracle/products/access/ovd</td>
<td></td>
</tr>
<tr>
<td>WEB_ORACLE_HOME</td>
<td>/u02/local/oracle/products/web</td>
<td></td>
</tr>
</tbody>
</table>
A.3 Port Mapping

Use this worksheet to keep track of ports.

Table A–3 Port Mapping Table

<table>
<thead>
<tr>
<th>Documented Variable</th>
<th>Documented Port</th>
<th>Description</th>
<th>Your Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP_SSL_PORT</td>
<td>443</td>
<td>SSL Port for accessing the site externally</td>
<td></td>
</tr>
<tr>
<td>HTTP_PORT</td>
<td>80</td>
<td>Non SSL Port used for accessing admin functions internally</td>
<td></td>
</tr>
<tr>
<td>LDAP_LBR_PORT</td>
<td>389</td>
<td>LDAP Access Port on Load Balancer</td>
<td></td>
</tr>
<tr>
<td>LDAP_LBR_SSL_PORT</td>
<td>636</td>
<td>LDAPS Access Port on Load Balancer</td>
<td></td>
</tr>
<tr>
<td>LDAP_POLICY_LBR_PORT</td>
<td>389</td>
<td>LDAP Policy Store Port on Load Balancer</td>
<td></td>
</tr>
<tr>
<td>LDAP_POLICY_LBR_SSL_PORT</td>
<td>389</td>
<td>LDAPS Policy Store Port on Load Balancer</td>
<td></td>
</tr>
<tr>
<td>LDAP_DIR_PORT</td>
<td>3060</td>
<td>OID Access Port</td>
<td></td>
</tr>
<tr>
<td>LDAP_DIR_SSL_PORT</td>
<td>3131</td>
<td>OID SSL Access port</td>
<td></td>
</tr>
<tr>
<td>OVD_PORT</td>
<td>6501</td>
<td>OVD Access Port</td>
<td></td>
</tr>
<tr>
<td>OVD_SSL_PORT</td>
<td>7501</td>
<td>OVD SSL Access Port</td>
<td></td>
</tr>
<tr>
<td>OVD_ADMIN_PORT</td>
<td>8899</td>
<td>OVD Proxy Port</td>
<td></td>
</tr>
<tr>
<td>OHS_PORT</td>
<td>7777</td>
<td>Oracle HTTP Server Listen Port</td>
<td></td>
</tr>
<tr>
<td>OAM_PROXY_PORT</td>
<td>5575</td>
<td>OAM Listen Port</td>
<td></td>
</tr>
</tbody>
</table>
A.4 LDAP Directory Details

Use this worksheet to keep track of LDAP information.

Table A–4 LDAP Directory Details Table

<table>
<thead>
<tr>
<th>Description</th>
<th>Documented Value</th>
<th>Customer Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDAP Directory Hosts</td>
<td>IDMHOST1</td>
<td>IDMHOST2</td>
</tr>
<tr>
<td>LDAP Directory SSL Port</td>
<td>1636</td>
<td></td>
</tr>
<tr>
<td>LDAP Directory Non SSL Port</td>
<td>1389</td>
<td></td>
</tr>
<tr>
<td>LDAP Administration Port</td>
<td>4444</td>
<td></td>
</tr>
<tr>
<td>Backend Directory Type</td>
<td>OUD</td>
<td></td>
</tr>
<tr>
<td>LDAP Virtual host</td>
<td>IDSTORE.mycompany.com</td>
<td></td>
</tr>
<tr>
<td>LDAP Load Balanced SSL Port</td>
<td>636</td>
<td></td>
</tr>
<tr>
<td>LDAP Load Balanced Non-SSL Port</td>
<td>389</td>
<td></td>
</tr>
<tr>
<td>LDAP Administration User</td>
<td>cn=oudadmin</td>
<td></td>
</tr>
<tr>
<td>OUD_ORACLE_INSTANCE</td>
<td>/u02/local/oracle/config/instances/oud1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>/u02/local/oracle/config/instances/oud2</td>
<td></td>
</tr>
<tr>
<td>LDAP Directory Tree</td>
<td>dc=mycompany, dc=com</td>
<td></td>
</tr>
<tr>
<td>LDAP Group Search Base</td>
<td>cn=groups, dc=mycompany, dc=com</td>
<td></td>
</tr>
<tr>
<td>LDAP User Search Base</td>
<td>cn=Users, dc=mycompany, dc=com</td>
<td></td>
</tr>
<tr>
<td>LDAP Reserve Location</td>
<td>cn=Reservation, dc=mycompany, dc=com</td>
<td></td>
</tr>
</tbody>
</table>
### A.5 Database Details

Use this worksheet to keep track of database information.

<table>
<thead>
<tr>
<th>Description</th>
<th>Documented Value</th>
<th>Customer Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDAP System ID Location</td>
<td><code>cn=systemids,dc=mycompany,dc=com</code></td>
<td></td>
</tr>
<tr>
<td>Database Hosts</td>
<td>IDMDBHOST1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IDMDBHOST2</td>
<td></td>
</tr>
<tr>
<td>Scan Address Name</td>
<td>DB-SCAN.mycompany.com</td>
<td></td>
</tr>
<tr>
<td>Database Name</td>
<td>IDMDB.mycompany.com</td>
<td></td>
</tr>
<tr>
<td>Database Service Names defined</td>
<td>OAMEDG.mycompany.com</td>
<td>OIMEDG.mycompany.com</td>
</tr>
<tr>
<td></td>
<td>OSESEDG.mycompany.com</td>
<td></td>
</tr>
<tr>
<td>System Account Name and Password</td>
<td>system/xxxxx</td>
<td></td>
</tr>
<tr>
<td>RCU Schema Prefix</td>
<td>EDG</td>
<td></td>
</tr>
<tr>
<td>ONS Port</td>
<td>6200</td>
<td></td>
</tr>
<tr>
<td>Listener Port</td>
<td>1521</td>
<td></td>
</tr>
</tbody>
</table>

### A.6 Web Tier Details

Use this worksheet to keep track of Web Tier information.

<table>
<thead>
<tr>
<th>Description</th>
<th>Documented Value</th>
<th>Customer Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Tier Hosts</td>
<td>WEBHOST1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WEBHOST2</td>
<td></td>
</tr>
<tr>
<td>Oracle HTTP Server Listen Port</td>
<td>7777</td>
<td></td>
</tr>
<tr>
<td>WEB_ORACLE_HOME</td>
<td><code>/u02/local/oracle/products/web/web</code></td>
<td></td>
</tr>
<tr>
<td>WEBGATE_ORACLE_HOME</td>
<td><code>/u02/local/oracle/products/web/webgate</code></td>
<td></td>
</tr>
<tr>
<td>WEB_ORACLE_INSTANCE</td>
<td><code>/u02/local/oracle/config/instances/web1</code></td>
<td><code>/u02/local/oracle/config/instances/web2</code></td>
</tr>
</tbody>
</table>
A.7 Application Tier Details

Use this worksheet to keep track of Application Tier information.

**Table A–7 Application Tier Details Table**

<table>
<thead>
<tr>
<th>Description</th>
<th>Documented Value</th>
<th>Customer Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host (Virtual Hosts)</td>
<td>ADMINVHN (IDMHOST1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OIMADMINVHN (IDMHOST1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OIMHOST1VHN (IDMHOST1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOAHOST1VHN (IDMHOST1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OIMHOST2VHN (IDMHOST2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OIMADMINVHN (IDMHOST2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OIMHOST2VHN (IDMHOST2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOAHOST2VHN (IDMHOST2)</td>
<td></td>
</tr>
<tr>
<td><strong>ASERVER_HOME</strong></td>
<td>/u01/oracle/config/domains/IDMDomain</td>
<td></td>
</tr>
<tr>
<td><strong>NSERVER_HOME</strong></td>
<td>/u02/local/oracle/config/domains/IDMDomain</td>
<td></td>
</tr>
<tr>
<td>Components Installed</td>
<td>OAM Console, OES Console, OIN, OAM, OIM</td>
<td></td>
</tr>
<tr>
<td>OAM Managed Server Names</td>
<td>WLS_OAM1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WLS_OAM2</td>
<td></td>
</tr>
<tr>
<td>OIM Managed Server Names</td>
<td>WLS_OIM1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WLS_OIM2</td>
<td></td>
</tr>
<tr>
<td>OAM Managed Server Port</td>
<td>14100</td>
<td></td>
</tr>
<tr>
<td>OIM Managed Server Port</td>
<td>14000</td>
<td></td>
</tr>
</tbody>
</table>

A.8 User and Group Mapping

Use this worksheet to keep track of administrative accounts.
### Table A–8  User Mapping Table

<table>
<thead>
<tr>
<th>configTool Parameter</th>
<th>Documented Value</th>
<th>Customer Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDSTORE_OAMADMINUSER</td>
<td>oamadmin</td>
<td></td>
</tr>
<tr>
<td>IDSTORE_OAMSOFTWAREUSER</td>
<td>oamlLDAP</td>
<td></td>
</tr>
<tr>
<td>IDSTORE_OIDADMINUSER</td>
<td>oimLDAP</td>
<td></td>
</tr>
<tr>
<td>IDSTORE_WLSADMINUSER</td>
<td>weblogic_idm</td>
<td></td>
</tr>
</tbody>
</table>

### Table A–9  Group Mapping Table

<table>
<thead>
<tr>
<th>configTool Parameter</th>
<th>Documented Value</th>
<th>Customer Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAM11G_IDSTORE_ROLE_SECURITY_ADMIN</td>
<td>OAMAdministrators</td>
<td></td>
</tr>
<tr>
<td>IDSTORE_OIDADMINGROUP</td>
<td>OIMAdministrators</td>
<td></td>
</tr>
<tr>
<td>IDSTORE_WLSADMINGROUP</td>
<td>WLSAdmins</td>
<td></td>
</tr>
</tbody>
</table>
Access Manager
See Oracle Access Manager
Access Server
defined, 13-1
Active Directory
configuring for Oracle Access Manager and Oracle Identity Manager, 11-9
adapters
Oracle Virtual Directory, 14-11
administration server, 9-12
application tier, 2-9
   scaling out, 21-21
   scaling up, 21-12
Audit Framework
introduction, 21-31
auditing Identity Management, 21-31

backup
   after setting up Oracle HTTP Server, 6-4
   and recovery, 21-33
   LDAP directories, 11-2
   of static artifacts, 21-34
   WebLogic domain, 9-17
boot.properties file
   creating, 9-9
   updating on IDMHOST1 and IDMHOST2, 20-3

certificate
   generating for Identity Management Domain, 10-9
   host name verification, 17-2
   self-signed, 17-2
cluster agent, 1-3
clusters, 1-3
clusterware, 1-3
Coherence, see ‘Oracle Coherence’ component
   patching, 21-37
configuration
   Oracle Coherence, 15-5

Configuration Wizard
   creating domain with, 9-3
   configuring
custom keystores for Node Manager, 17-5
database for Oracle Fusion Middleware metadata, 7-6
database repository, 7-1
firewall, 3-11
Node Manager, 17-1
Oracle Internet Directory instances Oracle Internet Directory
   configuring instances, 10-2
   ports for load balancer, 3-5
targets for server migration, 18-6
   virtual server names on load balancer, 3-5
Configuring Oracle Access Manager with Web Tier, 15-10
creating Fusion Middleware home, 6-6
credential store
   reassociating with Oracle Internet Directory, 11-4
custom keystores, 17-5, 17-6

data source, 18-2
database
   adding a service, 7-7
   CREATE_SERVICE subprogram, 7-7
   creating services, 7-6
   Oracle Real Application Clusters, 7-3
   required, 7-2
   starting a service, 7-7
   versions, 7-3
directory structure
   recommendations, 4-2
terminology, 4-1
directory tier, 2-8
   scaling out, 21-20
   scaling up, 21-11
disabling host name verification, 9-14
DNS, virtual server names and, 3-2
DOMAIN directory
   defined, 4-2
domain directory, 9-12
enabling WebLogic plug-in, 9-16
enterprise architecture, 2-10
enterprise deployment
  hardware requirements, 2-12
  high availability, 1-6
  port assignment, 3-11
  ports used, 3-11
  scaling, 21-10
  scaling out, 21-20
  scaling up, 21-10
  security, 1-5
enterprise topologies, 2-1
environment privileges, 18-5
etc/services file, 12-2
failback, 1-2
failover, 1-2
firewall
  configuring, 3-11
Fusion Middleware components
  installing, 6-5
Fusion Middleware home
  installing, 6-6
generating self-signed certificates, 17-2
grid servers, 1-1
hardware cluster, 2-13
high availability, 2-11, 15-6
high availability practices, Oracle site, 1-2
host name
  network, 1-4
  physical, 1-4
  virtual, 1-4
host name verification
  certificate for Node Manager, 17-2
  disabling, 9-14
  managed servers, 17-7
HTTP server
  installing, 6-3
  registering with WebLogic Server, 9-15
identity keystore, 17-4
Identity Management components
  stopping and starting, 21-1
identity store
  preparing, 11-6
  usage, 10-1
idmhost-vip.mycompany.com
  virtual IP address for WebLogic Administration Server, 3-9
installation
  Fusion Middleware home, 6-6
  Oracle WebLogic Server, 6-6
installing
  Fusion Middleware components, 6-5
  Fusion Middleware home, 6-6
  HTTP server, 6-3
  Oracle Fusion Middleware, 6-4
  Oracle HTTP Server, 6-3
  Oracle Identity and Access Management, 6-10
  Oracle Identity Management, 6-7
  software, 6-1
IPs, 3-10
keystores
  custom, 17-5, 17-6
  identity, 17-4
  trust, 17-4
Keytool utility, 17-4
LDAP configuration post-setup script, 15-9
LDAP directories
  backing up, 11-2
  leasing table for server migration, 18-1
  leasing.ddl script, 18-2
  required features, 3-5
load balancer
  configuring ports, 3-5
  configuring virtual server names, 3-5
  required features, 3-5
log file for Node Manager, 17-1, 17-2
managed servers, 9-12
  custom keystores, 17-6
  host name verification, 17-7
  provisioning, 12-5
mapping of IPs and VIPs, 3-10
Middleware home, 1-2
monitoring
  Oracle Internet Directory, 21-8
  Oracle Virtual Directory, 21-9
multi data source, 18-2
MW_HOME
  defined, 4-2
network host name, 1-4
Node Manager, 17-2
  custom keystores, 17-5
  described, 17-1
  host name verification certificate, 17-2
  identity keystore, 17-4
log file, 17-1, 17-2
properties file, 18-4
setup, 17-1
trust keystore, 17-4
Node Manager properties file, 17-2
nodes
primary, 1-3
secondary, 1-3
non-OID directories
creating access control lists, 11-11

ODSM
see Oracle Directory Services manager
Oracle Access Manager
and Oracle Identity Manager topology, 2-2
defined, 13-1
extending directory schema, 11-8
Oracle Access Protocol (OAP), 3-14
Oracle Identity Protocol (OIP), 3-14
overview of user access requests, 3-14
testing server migration, 18-7
troubleshooting, 21-49
Oracle Access Manager 11g, 13-1
integrating with Oracle Identity Manager, 15-17
Oracle Access Protocol (OAP), 3-14
Oracle BI EE
upgrade roadmap table, 2-16
Oracle Coherence, 15-5
Oracle Directory Integration Platform
configuring the first instance, 12-2
configuring the second instance, 12-3
installing the first instance, 12-2
installing the second instance, 12-3
Oracle Directory Services Manager
configuring the first instance, 12-2
configuring the second instance, 12-3
creating connections to Oracle Virtual Directory, 14-10
installing the first instance, 12-2
installing the second instance, 12-3
scaling out, 21-22
scaling up, 21-12
troubleshooting, 21-45
validating, 12-6
Oracle Enterprise Manager
monitoring Oracle Internet Directory, 21-8
monitoring Oracle Virtual Directory, 21-9
Oracle Fusion Middleware
enterprise deployment functions, 1-1
installing, 6-4
Oracle Fusion Middleware (FMW)
creating FMW home, 6-6
installing Oracle WebLogic Server, 6-6
Oracle home, 1-2
Oracle HTTP Server
installing, 6-3
Oracle HTTP Server (OHS)
backing up, 6-4
Oracle Identity and Access Management
installing, 6-10
Oracle Identity Federation
configuring, 16-2
described, 16-1
topology, 2-5
troubleshooting, 21-53
Oracle Identity Management
installing, 6-7
Oracle Identity Manager
creating a multi data source, 18-3
defined, 15-1
integrating with Oracle Access Manager 11g, 15-17
troubleshooting, 21-52
verifying server migration, 18-8
Oracle Identity Protocol (OIP), 3-14
Oracle instance, 1-2
Oracle Internet Directory
backing up, 10-16
component names assigned by installer, 21-8
monitoring, 21-8
scaling out, 21-20
scaling up, 21-11
troubleshooting, 21-42
Oracle Real Application Clusters database, 7-3
Oracle Virtual Directory
backing up, 14-15
configuring SSL Server Authentication Mode, 14-7
creating adapters, 14-11
creating Oracle Directory Services Manager connections to, 14-10
monitoring, 21-9
scaling out, 21-20
scaling up, 21-11
troubleshooting, 21-44
Oracle WebLogic Administration Server
See WebLogic Administration Server
Oracle WebLogic Server (WLS)
installation, 6-6
Oracle WebLogic Server Clusters
See WebLogic Server Clusters
Oracle WebLogic Server domain
See WebLogic Server domain
Oracle WebLogic Server home
See WebLogic Server home
ORACLE_BASE
defined, 4-1
ORACLE_HOME
defined, 4-2
ORACLE_INSTANCE
defined, 4-2

Patching
of a component, 21-37
of a source file, 21-37
of an enterprise deployment, 21-37
performance, enterprise deployment and, 1-1
persistence store, 15-12
physical host name, 1-4
physical IP, 1-4
Policy Store
  preparing, 11-2
  policy store
    reassociating with Oracle Internet Directory, 11-4
port
  freeing, 12-2
  port assignment, 3-11
ports
  configuring for load balancer, 3-5
  used in enterprise deployment, 3-11
primary node, 1-3
properties file of Node Manager, 18-4
provisioning managed servers, 12-5

R

RCU
  creating Identity Management schemas, 7-9
reference topology, 2-1
registering Oracle Internet Directory with WebLogic Server domain, 10-8
registering Oracle Virtual Directory with WebLogic Server domain, 14-6

S

scaling
  of enterprise deployments, 21-10
scaling out
  application tier, 21-21
directory tier, 21-20
enterprise deployment, 21-20
  Oracle Directory Services Manager, 21-22
Oracle Internet Directory, 21-20
Oracle Virtual Directory, 21-20
web tier, 21-31
scaling up
  application tier, 21-12
directory tier, 21-11
enterprise deployment, 21-10
  Oracle Directory Services Manager, 21-12
Oracle Internet Directory, 21-11
Oracle Virtual Directory, 21-11
web tier, 21-19
scripts
  leasing.ddl, 18-2
wlisifconfig.sh, 18-5
secondary node, 1-3
security, 2-11
self-signed certificate, 17-2
server migration
  configuring targets, 18-6
  creating a multi data source, 18-2
  editing Node Manager’s properties file, 18-4
  leasing table, 18-1
  multi data source, 18-2
  setting environment and superuser privileges, 18-5
  setting up user and tablespace, 18-1
testing, 18-7
service
  assigning to an instance, 7-7
  service level agreements, 1-1
setting up Node Manager, 17-1
shared storage, 1-3
Single Sign-On
  validating for Oracle Access Manager, 20-6
Single Sign-on
  configuring for administration consoles, 20-1
SOAHOST
  creating Fusion Middleware home, 6-6
  installing Oracle WebLogic Server, 6-6
SOAHOST1VHn virtual hosts, 15-6
software
  Oracle WebLogic Server, 6-6
  software installation, 6-1
  summary, 6-2
source file
  patching, 21-37
SSL
  configuring ports for LDAP and Oracle Internet Directory, 3-3
server authentication mode, 10-11, 14-7
starting
  Identity Management components, 21-1
stopping
  Identity Management components, 21-1
  superuser privileges, 18-5
switchback, 1-4
switchover, 1-4

tablespace for server migration, 18-1
TAF settings, 7-7
targets for server migration, 18-6
terminology
  directory structure, 4-1
  DOMAIN directory, 4-2
  MW_HOME, 4-2
  ORACLE_BASE, 4-1
  ORACLE_HOME, 4-2
  ORACLE_INSTANCE, 4-2
  WL_HOME, 4-2
timeouts for SQL*Net connections
  preventing, 21-38
topology
  enterprise, 2-1
  reference, 2-1
Transparent Application Failover settings, 7-7
troubleshooting
  Oracle Access Manager, 21-49
  Oracle Directory Services Manager, 21-45
  Oracle Identity Federation, 21-53
  Oracle Identity Manager, 21-52
Oracle Internet Directory, 21-42
Oracle Virtual Directory, 21-44
trust keystore, 17-4

U
unicast communication, 15-5
utils.CertGen utility, 17-2
utils.ImportPrivateKey utility, 17-4

V
validating
   Oracle Access Manager Single Sign-On, 20-6
validation
   server migration, 18-7
VIPs, 3-10
virtual host name, 1-4
virtual IP, 1-4
virtual IP address, 3-9
   associating weblogic Administration Server, 5-4
   configuring for WebLogic Administration Server, 3-9
virtual IPs (VIPs), 3-10

W
web tier, 2-12
   scaling out, 21-31
   scaling up, 21-19
WebGate
   configuring, 20-4
   defined, 13-1
   installing, 20-4
WebLogic
   backing up domain, 9-17
   enabling plug-in, 9-16
WebLogic Administration Server
   associating with virtual IP address, 5-4
   configuring virtual IP address for, 3-9
   failing over, 21-38
   front end URL, 9-15
WebLogic Server domain
   considerations, 2-11
   registering Oracle Internet Directory, 10-8
   registering Oracle Virtual Directory, 14-6
WebLogic Server home, 1-2
WL_HOME
   defined, 4-2
wlsifconfig.sh script, 18-5