

Oracle® Fusion Middleware
Fusion Developer's Guide for Oracle Application Development
Framework (Oracle Fusion Applications Edition)

11g Release 1 (11.1.1.6.4)

E28164-03

January 2013

Documentation for Oracle Application Development
Framework (Oracle ADF) developers that describes how to
develop and deploy web-based applications using ADF
Business Components, ADF task flows, and ADF Faces.

Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework
(Oracle Fusion Applications Edition) 11g Release 1 (11.1.1.6.4)

E28164-03

Copyright © 2008, 2013, Oracle and/or its affiliates. All rights reserved.

Primary Authors: Ralph Gordon (Lead), Walter Egan, Peter Jew, Kathryn Munn, Landon Ott, and Robin
Whitmore

Contributors: Steve Muench, Lynn Munsinger

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... xlvii

Audience... xlvii
Documentation Accessibility ... xlvii
Related Documents ... xlvii
Conventions .. xlviii

What's New in This Guide for Release 11.1.1.6.4 ... xlix

Part I Getting Started with Fusion Web Applications

1 Introduction to Building Fusion Web Applications with Oracle ADF

1.1 Introduction to Oracle ADF .. 1-1
1.2 Oracle ADF Architecture .. 1-2
1.2.1 ADF Business Components .. 1-3
1.2.2 ADF Model Layer .. 1-4
1.2.3 ADF Controller .. 1-5
1.2.4 ADF Faces Rich Client ... 1-5
1.3 Developing with Oracle ADF .. 1-6
1.3.1 Creating an Application Workspace .. 1-7
1.3.2 Modeling with Database Object Definitions .. 1-10
1.3.3 Creating Use Cases .. 1-12
1.3.4 Designing Application Control and Navigation Using ADF Task Flows 1-13
1.3.5 Identifying Shared Resources .. 1-14
1.3.6 Creating a Data Model to Access Data with ADF Business Components 1-15
1.3.6.1 Creating a Layer of Business Domain Objects for Tables 1-15
1.3.6.2 Building the Business Services .. 1-16
1.3.6.3 Testing and Debugging Business Services with the Business Component Browser .

1-18
1.3.7 Implementing the User Interface with JSF ... 1-18
1.3.8 Data Binding with ADF Model Layer .. 1-20
1.3.9 Validation and Error Handling .. 1-23
1.3.10 Adding Security ... 1-24

iv

1.3.11 Testing and Debugging the Web Client Application ... 1-24
1.3.12 Refactoring Application Artifacts .. 1-25
1.3.13 Deploying a Fusion Web Application .. 1-25
1.3.14 Integrating a Fusion Web Application ... 1-25
1.4 Working Productively in Teams .. 1-25
1.4.1 Enforcing Standards .. 1-27
1.4.2 Using a Source Control System .. 1-27
1.5 Learning Oracle ADF ... 1-29
1.6 Generation of Complete Web Tier Using Oracle JHeadstart .. 1-29

2 Introduction to the ADF Sample Application

2.1 Introduction to the Oracle Fusion Order Demo ... 2-1
2.2 Setting Up the Fusion Order Demo Application .. 2-2
2.2.1 How to Download the Application Resources ... 2-2
2.2.2 How to Install the Fusion Order Demo Schema .. 2-3
2.2.3 Overview of the Fusion Order Demo Schema ... 2-4
2.2.3.1 Translation Support in the Fusion Order Demo Schema 2-5
2.2.3.2 Lookup Tables in the Fusion Order Demo Schema ... 2-6
2.3 Running the Fusion Order Demo Application StoreFront Module 2-8
2.4 Running the Fusion Order Demo Standalone Applications ... 2-10
2.4.1 How to Run the Standalone Applications ... 2-11
2.4.2 Standalone Applications in the DevGuideExamples Application Workspace 2-13
2.4.3 Standalone Applications in the AdvancedExamples Application Workspace 2-15
2.4.4 Standalone Applications in the AdvancedEntityExamples Application Workspace 2-17
2.4.5 Standalone Applications in the AdvancedViewObjectExamples Application

Workspace ... 2-19
2.5 Taking a Look at the Fusion Order Demo Application .. 2-21
2.5.1 Anonymous Browsing ... 2-22
2.5.1.1 Viewing Product Details ... 2-24
2.5.1.2 Browsing the Product Catalog .. 2-26
2.5.1.3 Searching for Products .. 2-28
2.5.2 The Login Process .. 2-31
2.5.3 The Ordering Process .. 2-32
2.5.4 The Customer Registration Process ... 2-37

Part II Building Your Business Services

3 Getting Started with ADF Business Components

3.1 Introduction to ADF Business Components ... 3-1
3.1.1 ADF Business Components Features ... 3-2
3.1.2 ADF Business Components Core Objects .. 3-3
3.2 Comparison to Familiar 4GL Tools .. 3-3
3.2.1 Familiar Concepts for Oracle Forms Developers ... 3-3
3.2.1.1 Similarities Between the Application Module and a "Headless" Form Module .. 3-4
3.2.1.2 Similarities Between the Entity Object and a Forms Record Manager 3-5
3.2.1.3 Similarities Between the View Object and a Data Block 3-5
3.2.2 Familiar Concepts for PeopleTools Developers ... 3-5

v

3.2.2.1 Similarities Between the Application Module and a "Headless" Component 3-5
3.2.2.2 Similarities Between the Entity Object and a Record Definition 3-6
3.2.2.3 Similarities Between the View Object and a Row Set .. 3-6
3.2.3 Familiar Concepts for Siebel Tools Developers .. 3-6
3.2.3.1 Similarities Between the entity Object and a Table Object 3-7
3.2.3.2 Similarities Between the View Object and a Business Component 3-7
3.2.3.3 Similarities Between the Application Module and a Business Object 3-7
3.2.4 Familiar Functionality for ADO.NET Developers .. 3-7
3.2.4.1 Similarities Between the Application Module and a Data Set 3-7
3.2.4.2 Similarities Between the Entity Object and a Data Adapter 3-8
3.2.4.3 Similarities Between the View Object and a Data Table 3-8
3.3 Overview of Design Time Facilities .. 3-8
3.3.1 Choosing a Connection, SQL Flavor, and Type Map ... 3-8
3.3.2 Creating New Components Using Wizards ... 3-9
3.3.3 Creating New Components Using the Context Menu ... 3-10
3.3.4 Editing Components Using the Component Overview Editor 3-10
3.3.5 Visualizing, Creating, and Editing Components Using UML Diagrams 3-11
3.3.6 Testing Application Modules Using the Business Component Browser 3-11
3.3.7 Refactoring Components ... 3-11
3.4 Overview of the UI-Aware Data Model ... 3-11
3.4.1 A More Generic Business Service Solution .. 3-11
3.4.2 Typical Scenarios for a UI-Aware Data Model ... 3-12
3.4.3 UI-Aware Data Model Support for Custom Code ... 3-13
3.5 Overview of the Implementation Architecture ... 3-13
3.5.1 Standard Java and XML ... 3-13
3.5.2 Application Server or Database Independence .. 3-14
3.5.3 Java EE Design Pattern Support ... 3-14
3.5.4 Source Code Organization ... 3-14
3.5.5 Package Naming Conventions ... 3-15
3.5.6 Metadata with Optional Custom Java Code .. 3-16
3.5.6.1 Example of an XML-Only Component .. 3-17
3.5.6.2 Example of a Component with Custom Java Class ... 3-17
3.5.7 Basic Data Types .. 3-18
3.5.8 Generic Versus Strongly-Typed APIs .. 3-19
3.5.9 Custom Interface Support for Client-Accessible Components 3-20
3.5.9.1 Framework Client Interfaces for Components .. 3-20
3.5.9.2 Custom Client Interfaces for Components .. 3-20
3.6 Overview of Groovy Support ... 3-21
3.6.1 Referencing Business Components Objects in Groovy Expressions 3-22
3.6.2 Referencing Custom Business Components Methods and Attributes in Groovy

Expressions .. 3-23
3.6.2.1 Referencing Members of the Same Business Component 3-23
3.6.2.2 Referencing Members of Other Business Components 3-24
3.6.3 Manipulating Business Component Attribute Values in Groovy Expressions 3-24

4 Creating a Business Domain Layer Using Entity Objects

4.1 Introduction to Entity Objects .. 4-1

vi

4.2 Creating Entity Objects and Associations ... 4-2
4.2.1 How to Create Multiple Entity Objects and Associations from Existing Tables 4-2
4.2.2 How to Create Single Entity Objects Using the Create Entity Wizard 4-4
4.2.3 What Happens When You Create Entity Objects and Associations from Existing

Tables ... 4-5
4.2.3.1 What Happens When Tables Have Foreign Key Relationships 4-5
4.2.3.2 What Happens When a Table Has No Primary Key ... 4-6
4.2.4 What Happens When You Create an Entity Object for a Synonym or View 4-6
4.2.5 How to Edit an Existing Entity Object or Association ... 4-6
4.2.6 How to Create Database Tables from Entity Objects ... 4-7
4.2.7 How to Synchronize an Entity with Changes to Its Database Table 4-7
4.2.7.1 Removing an Attribute Associated with a Dropped Column 4-7
4.2.7.2 Addressing a Data Type Change in the Underlying Table 4-8
4.2.8 How to Store Data Pertaining to a Specific Point in Time .. 4-8
4.2.9 What Happens When You Create Effective Dated Entity Objects 4-9
4.2.10 What You May Need to Know About Creating Entities from Tables 4-10
4.3 Creating and Configuring Associations ... 4-10
4.3.1 How to Create an Association ... 4-11
4.3.2 What Happens When You Create an Association .. 4-13
4.3.3 How to Change Entity Association Accessor Names ... 4-13
4.3.4 How to Rename and Move Associations to a Different Package 4-13
4.3.5 What You May Need to Know About Using a Custom View Object in an Association ..

4-14
4.3.6 What You May Need to Know About Composition Associations 4-15
4.4 Creating an Entity Diagram for Your Business Layer .. 4-16
4.4.1 How to Create an Entity Diagram ... 4-16
4.4.2 What Happens When You Create an Entity Diagram ... 4-17
4.4.3 What You May Need to Know About the XML Component Descriptors 4-18
4.4.4 What You May Need to Know About Changing the Names of Components 4-18
4.5 Defining Property Sets ... 4-18
4.5.1 How to Define a Property Set .. 4-19
4.5.2 How to Apply a Property Set .. 4-20
4.6 Defining Attribute Control Hints for Entity Objects .. 4-20
4.6.1 How to Add Attribute Control Hints .. 4-20
4.6.2 What Happens When You Add Attribute Control Hints ... 4-21
4.6.3 How to Define Formatters and Masks ... 4-21
4.7 Working with Resource Bundles .. 4-23
4.7.1 How to Set Message Bundle Options ... 4-24
4.7.2 How to Use Multiple Resource Bundles .. 4-25
4.7.3 How to Internationalize the Date Format .. 4-25
4.8 Defining Business Logic Groups .. 4-26
4.8.1 How to Create a Business Logic Group ... 4-26
4.8.2 How to Create a Business Logic Unit ... 4-27
4.8.3 How to Add Logic to a Business Logic Unit .. 4-28
4.8.4 How to Override Attributes in a Business Logic Unit ... 4-28
4.8.5 What Happens When You Create a Business Logic Group 4-28
4.8.6 What Happens at Runtime: Invoking a Business Logic Group 4-29
4.9 Configuring Runtime Behavior Declaratively .. 4-30

vii

4.9.1 How to Configure Declarative Runtime Behavior ... 4-30
4.9.2 What Happens When You Configure Declarative Runtime Behavior 4-31
4.10 Setting Attribute Properties .. 4-31
4.10.1 How to Set Database and Java Data Types for an Entity Object Attribute 4-31
4.10.2 How to Indicate Data Type Length, Precision, and Scale ... 4-33
4.10.3 How to Control the Updatability of an Attribute ... 4-33
4.10.4 How to Make an Attribute Mandatory .. 4-33
4.10.5 How to Define the Primary Key for the Entity ... 4-33
4.10.6 How to Define a Static Default Value .. 4-34
4.10.7 How to Define a Default Value Using a Groovy Expression 4-34
4.10.8 What Happens When You Create a Default Value Using a Groovy expression 4-34
4.10.9 How to Synchronize with Trigger-Assigned Values .. 4-35
4.10.10 How to Get Trigger-Assigned Primary Key Values from a Database Sequence 4-35
4.10.11 How to Protect Against Losing Simultaneously Updated Data 4-36
4.10.12 How to Track Created and Modified Dates Using the History Column 4-37
4.10.13 How to Configure Composition Behavior ... 4-37
4.10.13.1 Orphan-Row Protection for New Composed Entities 4-38
4.10.13.2 Ordering of Changes Saved to the Database ... 4-38
4.10.13.3 Cascade Update of Composed Details from Refresh-On-Insert Primary Keys .. 4-38
4.10.13.4 Cascade Delete Support ... 4-38
4.10.13.5 Cascade Update of Foreign Key Attributes When Primary Key Changes 4-39
4.10.13.6 Locking of Composite Parent Entities ... 4-39
4.10.13.7 Updating of Composing Parent History Attributes ... 4-39
4.10.14 How to Set the Discriminator Attribute for Entity Object Inheritance Hierarchies .. 4-39
4.10.15 How to Define Alternate Key Values ... 4-39
4.10.16 What Happens When You Define Alternate Key Values ... 4-40
4.10.17 What You May Need to Know About Alternate Key Values 4-40
4.11 Creating Business Events ... 4-40
4.11.1 Introducing Event Definitions ... 4-41
4.11.2 Introducing Event Points ... 4-41
4.11.3 What You May Need to Know About Event Points ... 4-41
4.11.4 How to Create a Business Event .. 4-41
4.11.5 What Happens When You Create a Business Event .. 4-42
4.11.6 What You May Need to Know About Payload Size ... 4-44
4.11.7 How to Publish a Business Event ... 4-44
4.11.8 How to Subscribe to Business Events ... 4-44
4.12 Working Programmatically with Entity Objects and Associations 4-45
4.12.1 How to Find an Entity Object by Primary Key .. 4-46
4.12.2 How to Access an Associated Entity Using the Accessor Attribute 4-47
4.12.3 How to Update or Remove an Existing Entity Row ... 4-48
4.12.4 How to Create a New Entity Row .. 4-48
4.12.5 Assigning the Primary Key Value Using an Oracle Sequence 4-50
4.13 Generating Custom Java Classes for an Entity Object .. 4-51
4.13.1 How to Generate Custom Classes .. 4-51
4.13.2 What Happens When You Generate Custom Classes .. 4-51
4.13.3 What Happens When You Generate Entity Attribute Accessors 4-52
4.13.4 How to Navigate to Custom Java Files .. 4-53

viii

4.13.5 What You May Need to Know About Custom Java Classes 4-53
4.13.5.1 About the Framework Base Classes for an Entity Object 4-53
4.13.5.2 You Can Safely Add Code to the Custom Component File 4-54
4.13.5.3 Configuring Default Java Generation Preferences .. 4-54
4.13.5.4 Attribute Indexes and InvokeAccessor Generated Code 4-54
4.13.6 Programmatic Example for Comparison Using Custom Entity Classes 4-55
4.14 Adding Transient and Calculated Attributes to an Entity Object 4-58
4.14.1 How to Add a Transient Attribute ... 4-59
4.14.2 What Happens When You Add a Transient Attribute ... 4-59
4.14.3 How to Base a Transient Attribute On a Groovy Expression 4-60
4.14.4 What Happens When You Base a Transient Attribute on Groovy Expression 4-62
4.14.5 How to Add Java Code in the Entity Class to Perform Calculation 4-62

5 Defining SQL Queries Using View Objects

5.1 Introduction to View Objects ... 5-1
5.1.1 Overview of View Object Concepts ... 5-2
5.1.2 Runtime Features Unique to Entity-Based View Objects ... 5-3
5.2 Populating View Object Rows from a Single Database Table .. 5-4
5.2.1 How to Create an Entity-Based View Object ... 5-5
5.2.1.1 Creating an Entity-Based View Object from a Single Table 5-5
5.2.1.2 Creating a View Object with All the Attributes of an Entity Object 5-8
5.2.2 What Happens When You Create an Entity-Based View Object 5-9
5.2.3 How to Create an Expert Mode, Read-Only View Object .. 5-10
5.2.4 What Happens When You Create a Read-Only View Object 5-13
5.2.5 How to Edit a View Object .. 5-14
5.2.5.1 Overriding the Inherit Properties from Underlying Entity Object Attributes ... 5-14
5.2.5.2 Controlling the Length, Precision, and Scale of View Object Attributes 5-15
5.2.5.3 Converting a Read-Only View Object to Allow Attribute Updates 5-16
5.2.5.4 Customizing View Object Attribute Display in the Overview Editor 5-17
5.2.5.5 Modifying the Order of Attributes in the View Object Source File 5-18
5.2.6 How to Show View Objects in a Business Components Diagram 5-19
5.3 Populating View Object Rows with Static Data ... 5-19
5.3.1 How to Create Static View Objects with Data You Enter ... 5-20
5.3.2 How to Create Static View Objects with Data You Import 5-21
5.3.3 What Happens When You Create a Static List View Object 5-22
5.3.4 Editing Static List View Objects ... 5-23
5.3.5 What You May Need to Know About Static List View Objects 5-24
5.4 Limiting View Object Rows Using Effective Date Ranges .. 5-24
5.4.1 How to Create an Date-Effective View Object ... 5-24
5.4.2 How to Create New View Rows Using Date-Effective View Objects 5-25
5.4.3 How to Update Date-Effective View Rows .. 5-25
5.4.4 How to Delete Date-Effective View Rows ... 5-26
5.4.5 What Happens When You Create a Date-Effective View Object 5-26
5.4.6 What You May Need to Know About Date-Effective View Objects and View Links

5-28
5.5 Working with Multiple Tables in Join Query Results .. 5-28
5.5.1 How to Create Joins for Entity-Based View Objects .. 5-28

ix

5.5.2 How to Select Additional Attributes from Reference Entity Usages 5-32
5.5.3 How to Remove Unnecessary Key Attributes from Reference Entity Usages 5-33
5.5.4 How to Hide the Primary Key Attributes from Reference Entity Usages 5-33
5.5.5 How to Modify a Default Join Clause to Be an Outer Join When Appropriate 5-33
5.5.6 What Happens When You Reference Entities in a View Object 5-35
5.5.7 How to Create Joins for Read-Only View Objects .. 5-36
5.5.8 How to Test the Join View ... 5-37
5.5.9 How to Use the Query Builder with Read-Only View Objects 5-37
5.5.10 What You May Need to Know About Join View Objects ... 5-38
5.6 Working with Multiple Tables in a Master-Detail Hierarchy ... 5-38
5.6.1 How to Create a Master-Detail Hierarchy for Read-Only View Objects 5-39
5.6.2 How to Create a Master-Detail Hierarchy for Entity-Based View Objects 5-41
5.6.3 What Happens When You Create Master-Detail Hierarchies Using View Links 5-42
5.6.4 How to Enable Active Master-Detail Coordination in the Data Model 5-43
5.6.5 How to Test Master-Detail Coordination ... 5-45
5.6.6 How to Access the Detail Collection Using the View Link Accessor 5-45
5.6.6.1 Accessing Attributes of Row by Name ... 5-45
5.6.6.2 Programmatically Accessing a Detail Collection Using the View Link Accessor

5-46
5.7 Working with a Single Table in a Recursive Master-Detail Hierarchy 5-46
5.7.1 How to Create a Recursive Master-Detail Hierarchy for an Entity-Based View Object ..

5-47
5.7.2 What Happens When You Create a Recursive Master-Detail Hierarchy 5-51
5.8 Working with View Objects in Declarative SQL Mode .. 5-52
5.8.1 How to Create SQL-Independent View Objects with Declarative SQL Mode 5-53
5.8.2 How to Filter Declarative SQL-Based View Objects When Table Joins Apply 5-56
5.8.3 How to Filter Master-Detail Related View Objects with Declarative SQL Mode 5-58
5.8.4 How to Force Attribute Queries for Declarative SQL Mode View Objects 5-59
5.8.5 What Happens When You Create a View Object in Declarative SQL Mode 5-60
5.8.6 What Happens at Runtime: When a Declarative SQL Mode Query is Generated 5-62
5.8.7 What You May Need to Know About Overriding Declarative SQL Mode Defaults 5-62
5.8.8 What You May Need to Know About Working Programmatically with Declarative

SQL Mode View Objects .. 5-63
5.9 Working with View Objects in Expert Mode .. 5-63
5.9.1 How to Customize SQL Statements in Expert Mode ... 5-64
5.9.2 How to Name Attributes in Expert Mode .. 5-64
5.9.3 What Happens When You Enable Expert Mode .. 5-64
5.9.4 What You May Need to Know About Expert Mode .. 5-65
5.9.4.1 Expert Mode Provides Limited Attribute Mapping Assistance 5-65
5.9.4.2 Expert Mode Drops Custom Edits ... 5-66
5.9.4.3 Expert Mode Ignores Changes to SQL Expressions ... 5-66
5.9.4.4 Expert Mode Returns Error for SQL Calculations that Change Entity Attributes

5-67
5.9.4.5 Expert Mode Retains Formatting of SQL Statement .. 5-68
5.9.4.6 Expert Mode Wraps Queries as Inline Views .. 5-68
5.9.4.7 Limitation of Inline View Wrapping at Runtime ... 5-69
5.9.4.8 Expert Mode Changes May Affect Dependent Objects 5-69
5.10 Working with Bind Variables ... 5-70

x

5.10.1 How to Add Bind Variables to a View Object Definition .. 5-70
5.10.2 How to Reference the Current User in a Named Bind Variable Using Groovy 5-72
5.10.3 What Happens When You Add Named Bind Variables .. 5-73
5.10.4 How to Test Named Bind Variables .. 5-73
5.10.5 How to Add a WHERE Clause with Named Bind Variables at Runtime 5-74
5.10.6 How to Set Existing Bind Variable Values at Runtime .. 5-76
5.10.7 What Happens at Runtime: When a Read-Only View Object WHERE Clause is Set

5-77
5.10.8 What You May Need to Know About Named Bind Variables 5-78
5.10.8.1 An Error Related to Clearing Bind Variables .. 5-78
5.10.8.2 Errors Related to Naming Bind Variables ... 5-79
5.10.8.3 Default Value of NULL for Bind Variables ... 5-79
5.11 Working with Named View Criteria .. 5-79
5.11.1 How to Create Named View Criteria Declaratively .. 5-80
5.11.2 What Happens When You Create a Named View Criteria 5-85
5.11.3 What You May Need to Know About Bind Variable Options 5-87
5.11.4 What You May Need to Know About Nested Expressions 5-87
5.11.5 How to Set User Interface Hints on View Criteria ... 5-87
5.11.6 How to Test View Criteria Using the Business Component Browser 5-90
5.11.7 How to Create View Criteria Programmatically .. 5-92
5.11.8 What Happens at Runtime: When the View Criteria Is Applied to a View Object .. 5-93
5.11.9 What You May Need to Know About the View Criteria API 5-94
5.11.9.1 Referencing Attribute Names in View Criteria ... 5-94
5.11.9.2 Referencing Bind Variables in View Criteria ... 5-94
5.11.9.3 Altering Compound Search Conditions Using Multiple View Criteria 5-95
5.11.9.4 Searching for a Row Whose Attribute Value Is NULL Value 5-96
5.11.9.5 Searching for Rows Whose Attribute Value Matches a Value in a List 5-96
5.11.9.6 Searching Case-Insensitively ... 5-96
5.11.9.7 Clearing View Criteria in Effect .. 5-96
5.11.10 What You May Need to Know About Query-by-Example Criteria 5-96
5.12 Working with List of Values (LOV) in View Object Attributes 5-97
5.12.1 How to Define a Single LOV-Enabled View Object Attribute 5-99
5.12.2 How to Define Cascading Lists for LOV-Enabled View Object Attributes 5-100
5.12.2.1 Creating a Data Source View Object to Control the Cascading List 5-101
5.12.2.2 Creating a View Accessor to Filter the Cascading List 5-102
5.12.3 How to Specify Multiple LOVs for an LOV-Enabled View Object Attribute 5-103
5.12.4 How to Set User Interface Hints on a View Object LOV-Enabled Attribute 5-105
5.12.5 How to Handle Date Conversion for List Type UI Components 5-109
5.12.6 How to Automatically Refresh the View Object of the View Accessor 5-110
5.12.7 How to Test LOV-Enabled Attributes Using the Business Component Browser ... 5-111
5.12.8 What Happens When You Define an LOV for a View Object Attribute 5-112
5.12.9 What Happens at Runtime: When an LOV Queries the List Data Source 5-114
5.12.10 What You May Need to Know About Lists ... 5-114
5.12.10.1 Inheritance of AttributeDef Properties from Parent View Object Attributes ... 5-115
5.12.10.2 Using Validators to Validate Attribute Values .. 5-115
5.12.10.3 LOV Limitation When Exposing Application Module as EJB Session Bean 5-115
5.13 Defining Control Hints for View Objects ... 5-115
5.13.1 How to Add Attribute-Specific Control Hints ... 5-115

xi

5.13.2 How to Add View Object Control Hints .. 5-116
5.13.3 How to Access Control Hints Using EL Expressions ... 5-117
5.13.4 What Happens When You Add Control Hints .. 5-117
5.13.5 What You May Need to Know About Resource Bundles 5-118
5.14 Adding Calculated and Transient Attributes to a View Object 5-119
5.14.1 How to Add a SQL-Calculated Attribute ... 5-119
5.14.2 What Happens When You Add a SQL-Calculated Attribute 5-120
5.14.3 How to Add a Transient Attribute ... 5-121
5.14.4 How to Add a Validation Rule to a Transient Attribute .. 5-123
5.14.5 What Happens When You Add a Transient Attribute ... 5-124
5.14.6 Adding Java Code in the View Row Class to Perform Calculation 5-124
5.14.7 What You May Need to Know About Transient Attributes 5-125

6 Working with View Object Query Results

6.1 Introduction to View Object Runtime Behavior ... 6-1
6.2 Creating an Application Module to Test View Instances ... 6-1
6.2.1 How to Create the Application Module with Individual View Object Instances 6-2
6.2.2 How to Create the Application Module with Master-Detail View Object Instances .. 6-2
6.3 Testing View Object Instances Using the Business Component Browser 6-5
6.3.1 How to Run the Business Component Browser ... 6-5
6.3.2 How to Test Entity-Based View Objects Interactively .. 6-7
6.3.3 How to Update the Business Component Browser to Display Project Changes 6-9
6.3.4 What Happens When You Use the Business Component Browser 6-9
6.3.5 How to Simulate End-User Interaction in the Business Component Browser 6-10
6.3.5.1 Testing Master-Detail Coordination .. 6-12
6.3.5.2 Testing UI Control Hints ... 6-12
6.3.5.3 Testing Business Domain Layer Validation ... 6-12
6.3.5.4 Testing Alternate Language Message Bundles and Control Hints 6-12
6.3.5.5 Testing View Objects That Reference Entity Usages .. 6-13
6.3.5.6 Testing Row Creation and Default Value Generation 6-13
6.3.5.7 Testing That New Detail Rows Have Correct Foreign Keys 6-13
6.3.6 How to Test Multiuser Scenarios in the Business Component Browser 6-13
6.3.7 How to Customize Configuration Options Before Running the Browser 6-14
6.3.8 How to Enable ADF Business Components Debug Diagnostics 6-14
6.3.9 What Happens at Runtime: When View Objects and Entity Objects Cooperate 6-15
6.3.9.1 What Happens When a View Object Executes Its Query 6-16
6.3.9.2 What Happens When a View Row Attribute Is Modified 6-17
6.3.9.3 What Happens When a Foreign Key Attribute is Changed 6-18
6.3.9.4 What Happens When a Transaction is Committed ... 6-19
6.3.9.5 What Happens When a View Object Requeries Data .. 6-20
6.3.10 What You May Need to Know About Optimizing View Object Runtime Performance .

6-22
6.4 Testing View Object Instances Programmatically .. 6-24
6.4.1 ViewObject Interface Methods for Working with the View Object’s Default RowSet

6-24
6.4.1.1 The Role of the Key Object in a View Row or Entity Row 6-25
6.4.1.2 The Role of the Entity Cache in the Transaction .. 6-26

xii

6.4.2 How to Create a Command-Line Java Test Client ... 6-27
6.4.2.1 Generating a Test Client with Skeleton Code .. 6-27
6.4.2.2 Modifying the Skeleton Code to Create the Test Client 6-28
6.4.3 What Happens When You Run a Test Client Program .. 6-30
6.4.4 What You May Need to Know About Running a Test Client 6-30
6.4.5 How to Count the Number of Rows in a Row Set ... 6-31
6.4.6 How to Access a Detail Collection Using the View Link Accessor 6-31
6.4.7 How to Iterate Over a Master-Detail-Detail Hierarchy .. 6-33
6.4.8 How to Find a Row and Update a Foreign Key Value ... 6-35
6.4.9 How to Create a New Row for a View Object Instance ... 6-36
6.4.10 How to Retrieve the Row Key Identifying a Row .. 6-37

7 Defining Validation and Business Rules Declaratively

7.1 Introduction to Declarative Validation ... 7-1
7.1.1 When to Use Business-Layer Validation or Model-Layer Validation 7-2
7.2 Understanding the Validation Cycle .. 7-2
7.2.1 Types of Entity Object Validation Rules .. 7-2
7.2.1.1 Attribute-Level Validation Rules .. 7-3
7.2.1.2 Entity-Level Validation Rules ... 7-3
7.2.2 Understanding Commit Processing and Validation .. 7-3
7.2.3 Understanding the Impact of Composition on Validation Order 7-4
7.2.4 Avoiding Infinite Validation Cycles .. 7-4
7.2.5 What Happens When Validations Fail ... 7-4
7.2.6 Understanding Entity Objects Row States ... 7-5
7.2.7 Understanding Bundled Exception Mode ... 7-6
7.3 Adding Validation Rules to Entity Objects and Attributes .. 7-6
7.3.1 How to Add a Validation Rule to an Entity or Attribute ... 7-6
7.3.2 How to View and Edit a Validation Rule On an Entity or Attribute 7-7
7.3.3 What Happens When You Add a Validation Rule .. 7-7
7.3.4 What You May Need to Know About Entity and Attribute Validation Rules 7-8
7.4 Using the Built-in Declarative Validation Rules ... 7-8
7.4.1 How to Ensure That Key Values Are Unique .. 7-9
7.4.2 What Happens When You Use a Unique Key Validator .. 7-10
7.4.3 How to Validate Based on a Comparison .. 7-10
7.4.4 What Happens When You Validate Based on a Comparison 7-12
7.4.5 How to Validate Using a List of Values ... 7-12
7.4.6 What Happens When You Validate Using a List of Values 7-14
7.4.7 What You May Need to Know About the List Validator ... 7-14
7.4.8 How to Make Sure a Value Falls Within a Certain Range 7-15
7.4.9 What Happens When You Use a Range Validator ... 7-15
7.4.10 How to Validate Against a Number of Bytes or Characters 7-16
7.4.11 What Happens When You Validate Against a Number of Bytes or Characters 7-16
7.4.12 How to Validate Using a Regular Expression .. 7-17
7.4.13 What Happens When You Validate Using a Regular Expression 7-18
7.4.14 How to Use the Average, Count, or Sum to Validate a Collection 7-18
7.4.15 What Happens When You Use Collection Validation ... 7-19
7.4.16 How to Determine Whether a Key Exists .. 7-19

xiii

7.4.17 What Happens When You Use a Key Exists Validator .. 7-21
7.4.18 What You May Need to Know About Declarative Validators and View Accessors 7-21
7.5 Using Groovy Expressions For Validation and Business Rules 7-22
7.5.1 How to Reference Entity Object Methods in Groovy Validation Expressions 7-22
7.5.2 How to Validate Using a True/False Expression ... 7-24
7.5.3 What Happens When You Add a Groovy Expression ... 7-25
7.6 Triggering Validation Execution .. 7-26
7.6.1 How to Specify Which Attributes Fire Validation ... 7-26
7.6.2 What Happens When You Constrain Validation Execution with Triggering Attributes

7-28
7.6.3 How to Set Preconditions for Validation ... 7-28
7.6.4 How to Set Transaction-Level Validation .. 7-28
7.6.5 What You May Need to Know About the Order of Validation Execution 7-29
7.7 Creating Validation Error Messages ... 7-29
7.7.1 How to Create Validation Error Messages ... 7-29
7.7.2 How to Localize Validation Messages ... 7-30
7.7.3 How to Conditionally Raise Error Messages Using Groovy 7-30
7.7.4 How to Embed a Groovy Expression in an Error Message 7-30
7.8 Setting the Severity Level for Validation Exceptions .. 7-32
7.9 Bulk Validation in SQL ... 7-32

8 Implementing Validation and Business Rules Programmatically

8.1 Introduction to Programmatic Business Rules ... 8-1
8.2 Using Method Validators ... 8-2
8.2.1 How to Create an Attribute-Level Method Validator .. 8-3
8.2.2 What Happens When You Create an Attribute-Level Method Validator 8-4
8.2.3 How to Create an Entity-Level Method Validator ... 8-5
8.2.4 What Happens When You Create an Entity-Level Method Validator 8-6
8.2.5 What You May Need to Know About Translating Validation Rule Error Messages . 8-6
8.3 Assigning Programmatically Derived Attribute Values ... 8-7
8.3.1 How to Provide Default Values for New Rows at Create Time 8-7
8.3.1.1 Choosing Between create() and initDefaultExpressionAttributes() Methods 8-7
8.3.1.2 Eagerly Defaulting an Attribute Value from a Database Sequence 8-7
8.3.2 How to Assign Derived Values Before Saving ... 8-8
8.3.3 How to Assign Derived Values When an Attribute Value Is Set 8-9
8.4 Undoing Pending Changes to an Entity Using the Refresh Method 8-9
8.4.1 How to Control What Happens to New Rows During a Refresh 8-10
8.4.2 How to Cascade Refresh to Composed Children Entity Rows 8-10
8.5 Using View Objects for Validation ... 8-10
8.5.1 How to Use View Accessors for Validation Against View Objects 8-10
8.5.2 How to Validate Conditions Related to All Entities of a Given Type 8-11
8.5.3 What You May Need to Know About Row Set Access with View Accessors 8-12
8.6 Accessing Related Entity Rows Using Association Accessors .. 8-12
8.6.1 How to Access Related Entity Rows .. 8-12
8.6.2 How to Access Related Entity Row Sets .. 8-13
8.7 Referencing Information About the Authenticated User .. 8-14
8.8 Accessing Original Attribute Values .. 8-14

xiv

8.9 Storing Information About the Current User Session .. 8-14
8.9.1 How to Store Information About the Current User Session 8-14
8.9.2 How to Use Groovy to Access Information About the Current User Session 8-16
8.10 Accessing the Current Date and Time .. 8-16
8.11 Sending Notifications Upon a Successful Commit ... 8-16
8.12 Conditionally Preventing an Entity Row from Being Removed 8-16
8.13 Determining Conditional Updatability for Attributes .. 8-17

9 Implementing Business Services with Application Modules

9.1 Introduction to Application Modules ... 9-1
9.2 Creating and Modifying an Application Module ... 9-3
9.2.1 How to Create an Application Module .. 9-3
9.2.2 What Happens When You Create an Application Module .. 9-4
9.2.3 How to Add a View Object to an Application Module .. 9-5
9.2.3.1 Adding a View Object Instance to an Existing Application Module 9-5
9.2.3.2 Adding Master-Detail View Object Instances to an Application Module 9-6
9.2.3.3 Customizing a View Object Instance that You Add to an Application Module .. 9-9
9.2.4 What Happens When You Add a View Object to an Application Module 9-10
9.2.5 How to Edit an Existing Application Module .. 9-11
9.2.6 How to Change the Data Control Name Before You Begin Building Pages 9-11
9.2.7 What You May Need to Know About Application Module Granularity 9-12
9.2.8 What You May Need to Know About View Object Components and View Object

Instances .. 9-12
9.3 Configuring Your Application Module Database Connection 9-13
9.3.1 How to Use a JDBC URL Connection Type ... 9-13
9.3.2 How to Use a JDBC Data Source Connection Type ... 9-14
9.3.3 What Happens When You Create an Application Module Database Connection ... 9-15
9.3.4 How to Change Your Application Module's Runtime Configuration 9-16
9.3.5 How to Change the Database Connection for Your Project 9-17
9.4 Defining Nested Application Modules .. 9-17
9.4.1 How to Define a Nested Application Module ... 9-18
9.4.2 What You May Need to Know About Root Application Modules Versus Nested

Application Module Usages .. 9-19
9.5 Creating an Application Module Diagram for Your Business Service 9-19
9.5.1 How to Create an Application Module Diagram ... 9-19
9.5.2 What Happens When You Create an Application Module Diagram 9-20
9.5.3 How to Use the Diagram to Edit the Application Module 9-20
9.5.4 How to Control Diagram Display Options .. 9-21
9.5.5 How to Filtering Method Names Displayed in the Diagram 9-22
9.5.6 How to Show Related Objects and Implementation Files in the Diagram 9-22
9.5.7 How to Publish the Application Module Diagram .. 9-23
9.5.8 How to Test the Application Module from the Diagram ... 9-23
9.6 Supporting Multipage Units of Work .. 9-23
9.6.1 How to Simulate State Management in the Business Component Browser 9-24
9.6.2 What Happens When the Application Uses Application Module Pooling and State

Management .. 9-24
9.7 Customizing an Application Module with Service Methods ... 9-25

xv

9.7.1 How to Generate a Custom Class for an Application Module 9-26
9.7.2 What Happens When You Generate a Custom Class for an Application Module ... 9-27
9.7.3 What You May Need to Know About Default Code Generation 9-27
9.7.4 How to Add a Custom Service Method to an Application Module 9-28
9.7.5 How to Test the Custom Application Module Using a Static Main Method 9-29
9.7.6 What You May Need to Know About Programmatic Row Set Iteration 9-31
9.8 Customizing Application Module Message Strings ... 9-32
9.8.1 How to Add a Resource Bundle to an Application Module 9-32
9.8.2 What Happens When You Add a Resource Bundle to an Application Module 9-34
9.9 Publishing Custom Service Methods to UI Clients ... 9-34
9.9.1 How to Publish a Custom Method on the Application Module’s Client Interface ... 9-34
9.9.2 What Happens When You Publish Custom Service Methods 9-35
9.9.3 How to Generate Client Interfaces for View Objects and View Rows 9-36
9.9.4 How to Test Custom Service Methods Using the Business Component Browser 9-37
9.9.5 What You May Need to Know About Method Signatures on the Client Interface .. 9-38
9.9.6 What You May Need to Know About Passing Information from the Data Model .. 9-39
9.10 Working Programmatically with an Application Module's Client Interface 9-39
9.10.1 How to Work Programmatically with an Application Module's Client Interface 9-39
9.10.2 What Happens When You Work with an Application Module's Client Interface 9-41
9.10.3 How to Access an Application Module Client Interface in a Fusion Web Application ...

9-41
9.11 Overriding Built-in Framework Methods ... 9-43
9.11.1 How to Override a Built-in Framework Method ... 9-44
9.11.2 What Happens When You Override a Built-in Framework Method 9-45
9.11.3 How to Override prepareSession() to Set Up an Application Module for a New User

Session ... 9-45

10 Sharing Application Module View Instances

10.1 Introduction to Shared Application Modules ... 10-1
10.2 Sharing an Application Module Instance ... 10-1
10.2.1 How to Create a Shared Application Module Instance .. 10-3
10.2.2 What Happens When You Define a Shared Application Module 10-3
10.2.3 What You May Need to Know About Design Time Scope of the Shared Application

Module ... 10-5
10.2.4 What You May Need to Know About the Design Time Scope of View Instances of the

Shared Application Module ... 10-5
10.2.5 What You May Need to Know About Managing the Number of Shared Query

Collections ... 10-6
10.2.6 What You May Need to Know About Shared Application Modules and Connection

Pooling ... 10-6
10.3 Defining a Base View Object for Use with Lookup Tables ... 10-7
10.3.1 How to Create a Base View Object Definition for a Lookup Table 10-7
10.3.2 What Happens When You Create a Base View Object ... 10-9
10.3.3 How to Define the WHERE Clause of the Lookup View Object Using View Criteria

10-11
10.3.4 What Happens When You Create a View Criteria with the Editor 10-13
10.3.5 What Happens at Runtime: When a View Instance Accesses Lookup Data 10-14
10.4 Accessing View Instances of the Shared Service .. 10-14

xvi

10.4.1 How to Create a View Accessor for an Entity Object or View Object 10-15
10.4.2 How to Validate Against a View Accessor .. 10-17
10.4.3 What Happens When You Validate Against a View Accessor 10-18
10.4.4 How to Create an LOV Based on a Lookup Table ... 10-19
10.4.5 What Happens When You Define an LOV for a View Object Attribute 10-21
10.4.6 How to Automatically Refresh the View Object of the View Accessor 10-22
10.4.7 What Happens at Runtime: When the Attribute Displays the List of Values 10-22
10.4.8 What You May Need to Know About Displaying List of Values From a Lookup Table

10-22
10.4.9 What You May Need to Know About Inheritance of AttributeDef Properties 10-23
10.4.10 What You May Need to Know About Using Validators .. 10-23
10.5 Testing View Object Instances in a Shared Application Module 10-23
10.5.1 How to Test the Base View Object Using the Business Component Browser 10-23
10.5.2 How to Test LOV-Enabled Attributes Using the Business Component Browser ... 10-25
10.5.3 What Happens When You Use the Business Component Browser 10-25
10.5.4 What Happens at Runtime: When Another Service Accesses the Shared Application

Module Cache .. 10-26

11 Integrating Service-Enabled Application Modules

11.1 Introduction to Service-Enabled Application Modules .. 11-1
11.2 Publishing Service-Enabled Application Modules ... 11-2
11.2.1 How to Enable the Application Module Service Interface 11-3
11.2.2 What Happens When You Create an Application Module Service Interface 11-7
11.2.2.1 Remote Common Interface .. 11-9
11.2.2.2 Remote Service Schema File .. 11-10
11.2.2.3 Remote Service Definition File .. 11-10
11.2.2.4 Remote Server Class .. 11-11
11.2.2.5 connections.xml ... 11-12
11.2.3 What You May Need to Know About Method Signatures on the Service Interface

11-13
11.2.4 How to Service-Enable Individual View Objects ... 11-14
11.2.5 How to Customize the SDO Properties of Service-Enabled View Objects 11-15
11.2.5.1 Excluding Individual SDO Properties in a Generated SDO Component 11-15
11.2.5.2 Associating Related SDO Properties Using Complex Data Types 11-16
11.2.6 How to Support Nested Processing in Service-Enabled Master-Detail View Objects

11-18
11.2.7 What Happens When You Create SDO Classes ... 11-19
11.2.7.1 Service Data Object Interface ... 11-19
11.2.7.2 Service Data Object Class .. 11-19
11.2.7.3 Service Data Object Schema File .. 11-20
11.2.7.4 Service Data Object Result Class and Interface ... 11-20
11.2.8 How to Expose a Declarative Find Operation Filtered By a Required Bind Variable

11-21
11.2.9 How to Expose a Custom Find Method Filtered By a Required Bind Variable 11-21
11.2.10 How to Generate Asynchronous Web Service Methods .. 11-22
11.2.11 What Happens When You Generate Asynchronous Service Methods 11-23
11.2.12 What Happens at Runtime: When the Asynchronous Call Is Made 11-25
11.2.13 How to Set Preferences for Generating the Service Interface 11-25

xvii

11.2.14 How to Secure the Web Service for SOAP Clients ... 11-26
11.2.14.1 Enabling Authentication for SOAP Clients ... 11-26
11.2.14.2 Enabling Authorization for SOAP Clients ... 11-28
11.2.15 How to Secure the Web Service for RMI Clients .. 11-29
11.2.15.1 Enabling Authentication for RMI Clients .. 11-29
11.2.15.2 Enabling Authorization for RMI Clients ... 11-32
11.2.16 How to Grant Test Users Access to the Service .. 11-34
11.2.17 How to Enable Support for Binary Attachments for SOAP Clients 11-36
11.2.18 How to Test the Web Service Using Integrated WebLogic Server 11-37
11.2.19 How to Prevent Custom Service Methods from Timing Out 11-38
11.2.20 How to Deploy Web Services to Oracle WebLogic Server 11-40
11.3 Accessing Remote Data Over the Service-Enabled Application Module 11-43
11.3.1 How to Use Service-Enabled Entity Objects and View Objects 11-44
11.3.1.1 Creating Entity Objects Backed by SDO Services .. 11-44
11.3.1.2 Using Complex Data Types with Service-Backed Entity Object Attributes 11-46
11.3.1.3 Creating View Objects Backed by SDO Services ... 11-48
11.3.2 What Happens When You Create Service-Backed Business Components 11-48
11.3.3 How to Update the Data Model for Service-Backed Business Components 11-49
11.3.4 How to Configure the Service-Backed Business Components Runtime 11-52
11.3.4.1 Adding the SDO Client Library to the Classpath .. 11-52
11.3.4.2 Registering the ADF Business Components Service in the Consuming

Application’s connections.xml for the EJB RMI Protocol 11-53
11.3.4.3 Registering the ADF Business Components Service in the Consuming

Application’s connections.xml for the SOAP Protocol 11-56
11.3.4.4 Registering the ADF Business Components Service in the Consuming

Application’s connections.xml for Fabric SDO Binding 11-59
11.3.5 How to Test the Service-Backed Components in the Business Component Browser

11-59
11.3.6 How to Invoke Operations of the Service-Backed Components in the Consuming

Application .. 11-60
11.3.7 What Happens at Runtime: When the Application Accesses the Published Application

Module ... 11-61
11.3.8 What You May Need to Know About Service-Backed Entity Objects and View Objects

11-61

12 Using ADF Model in a Fusion Web Application

12.1 Introduction to ADF Data Binding ... 12-1
12.2 Exposing Application Modules with ADF Data Controls .. 12-3
12.2.1 How an Application Module Data Control Appears in the Data Controls Panel 12-4
12.2.1.1 How the Data Model and Service Methods Appear in the Data Controls Panel 12-5
12.2.1.2 How Transaction Control Operations Appear in the Data Controls Panel 12-6
12.2.1.3 How View Objects Appear in the Data Controls Panel 12-7
12.2.1.4 How Nested Application Modules Appear in the Data Controls Panel 12-9
12.2.2 How to Open the Data Controls Panel ... 12-10
12.2.3 How to Refresh the Data Controls Panel ... 12-10
12.2.4 Packaging a Data Control for Use in Another Project .. 12-11
12.3 Using the Data Controls Panel ... 12-11
12.3.1 How to Use the Data Controls Panel ... 12-14

xviii

12.3.2 What Happens When You Use the Data Controls Panel 12-15
12.3.3 What Happens at Runtime: How the Binding Context Works 12-17
12.4 Working with the DataBindings.cpx File .. 12-18
12.4.1 How JDeveloper Creates a DataBindings.cpx File ... 12-18
12.4.2 What Happens When JDeveloper Creates a DataBindings.cpx File 12-18
12.5 Configuring the ADF Binding Filter ... 12-20
12.5.1 How JDeveloper Configures the ADF Binding Filter .. 12-21
12.5.2 What Happens When JDeveloper Configures an ADF Binding Filter 12-21
12.5.3 What Happens at Runtime: How the ADF Binding Filter Works 12-21
12.6 Working with Page Definition Files ... 12-22
12.6.1 How JDeveloper Creates a Page Definition File .. 12-22
12.6.2 What Happens When JDeveloper Creates a Page Definition File 12-23
12.6.2.1 Bindings Binding Objects .. 12-26
12.6.2.2 Executable Binding Objects ... 12-28
12.7 Creating ADF Data Binding EL Expressions .. 12-30
12.7.1 How to Create an ADF Data Binding EL Expression ... 12-31
12.7.1.1 Opening the Expression Builder from the Property Inspector 12-31
12.7.1.2 Using the Expression Builder .. 12-32
12.7.2 What You May Need to Know About ADF Binding Properties 12-33
12.8 Using Simple UI First Development ... 12-33
12.8.1 How to Apply ADF Model Data Binding to Existing UI Components 12-35
12.8.2 What Happens When You Apply ADF Model Data Binding to UI Components .. 12-36

13 Integrating Web Services Into a Fusion Web Application

13.1 Introduction to Web Services in Fusion Web Applications .. 13-1
13.2 Calling a Web Service from an Application Module .. 13-2
13.2.1 How to Call an External Service Programmatically ... 13-2
13.2.1.1 Creating a Web Service Proxy Class to Programmatically Access the Service .. 13-3
13.2.1.2 Calling the Web Service Proxy Template to Invoke the Service 13-3
13.2.1.3 Calling a Web Service Method Using the Proxy Class in an Application Module ...

13-4
13.2.2 How to Create a New Web Service Connection ... 13-4
13.2.3 What Happens When You Create the Web Service Proxy 13-5
13.2.4 What Happens at Runtime: When You Call a Web Service Using a Web Service Proxy

Class .. 13-6
13.2.5 What You May Need to Know About Web Service Proxies 13-6
13.2.5.1 Using a Try-Catch Block to Handle Web Service Exceptions 13-6
13.2.5.2 Separating Application Module and Web Services Transactions 13-7
13.2.5.3 Setting Browser Proxy Information ... 13-7
13.2.5.4 Invoking Application Modules with a Web Service Proxy Class 13-7
13.3 Creating Web Service Data Controls .. 13-7
13.3.1 How to Create a Web Service Data Control ... 13-8
13.3.2 How to Include a Header Parameter for a Web Service Data Control 13-8
13.3.3 How to Adjust the Endpoint for a Web Service Data Control 13-9
13.3.4 How to Refresh a Web Service Data Control ... 13-9
13.3.5 What You May Need to Know About Web Service Data Controls 13-9
13.4 Securing Web Service Data Controls .. 13-11

xix

13.4.1 WS-Security Specification .. 13-12
13.4.2 Using Key Stores .. 13-12
13.4.3 How to Define Web Service Data Control Security .. 13-13

Part III Creating ADF Task Flows

14 Getting Started with ADF Task Flows

14.1 Introduction to ADF Task Flows .. 14-1
14.1.1 Task Flow Advantages ... 14-2
14.1.2 Task Flow Types .. 14-2
14.1.2.1 Unbounded Task Flows ... 14-3
14.1.2.2 Bounded Task Flows ... 14-4
14.1.3 Control Flows .. 14-7
14.2 Creating a Task Flow .. 14-9
14.2.1 How to Create a Task Flow .. 14-9
14.2.2 What Happens When You Create a Task Flow .. 14-12
14.2.3 What You May Need to Know About the Default Activity in an ADF Bounded Task

Flow ... 14-13
14.2.4 What You May Need to Know About Memory Scope for Task Flows 14-13
14.2.5 What Happens at Runtime: Using ADF Task Flows .. 14-16
14.3 Adding Activities to a Task Flow ... 14-16
14.3.1 How to Add Additional Activities to an ADF Task Flow 14-17
14.3.2 What Happens When You Add an Activity to an ADF Task Flow 14-18
14.3.3 How to Add Control Flows .. 14-18
14.3.4 How to Add a Wildcard Control Flow Rule ... 14-21
14.3.5 What Happens When You Create a Control Flow Rule ... 14-21
14.3.6 What Happens at Runtime: Evaluating Control Flow Rules 14-22
14.4 Testing ADF Task Flows .. 14-23
14.4.1 How to Run a Bounded Task Flow That Contains Pages 14-23
14.4.2 How to Run a Bounded Task Flow That Uses Page Fragments 14-23
14.4.3 How to Run a Bounded Task Flow That Has Parameters 14-24
14.4.4 How to Run a JSF Page ... 14-24
14.4.5 How to Run an ADF Unbounded Task Flow ... 14-25
14.4.6 How to Set a Run Configuration for a Project .. 14-25
14.5 Refactoring to Create New ADF Task Flows and Templates 14-26
14.5.1 How to Create an ADF Bounded Task Flow from Selected Activities 14-26
14.5.2 How to Create a Task Flow from JSF Pages ... 14-27
14.5.3 How to Convert ADF Bounded Task Flows .. 14-27
14.6 What You Should Know About Task Flow Constraints ... 14-28

15 Working with Task Flow Activities

15.1 Introduction to Activity Types ... 15-1
15.2 Using View Activities ... 15-3
15.2.1 Adding a View Activity .. 15-4
15.2.2 Transitioning Between View Activities .. 15-5
15.2.2.1 How to Transition to a View Activity .. 15-5

xx

15.2.2.2 What Happens When You Transition Between Activities 15-6
15.2.3 Bookmarking View Activities .. 15-6
15.2.3.1 How to Create a Bookmarkable View Activity ... 15-8
15.2.3.2 How to Specify HTTP Redirect .. 15-8
15.2.3.3 What Happens When You Designate a View as Bookmarkable 15-9
15.3 Using URL View Activities .. 15-9
15.3.1 How to Add a URL View Activity to a Task Flow ... 15-10
15.3.2 Constructing a URL for Use Within a Portlet .. 15-11
15.4 Using Router Activities .. 15-11
15.5 Using Method Call Activities ... 15-13
15.5.1 How to Add a Method Call Activity .. 15-15
15.5.2 How to Specify Method Parameters and Return Values .. 15-17
15.5.3 What Happens When You Add a Method Call Activity .. 15-18
15.6 Using Task Flow Call Activities ... 15-19
15.6.1 How to Call a Bounded Task Flow Using a Task Flow Call Activity 15-19
15.6.2 What Happens When You Call a Bounded Task Flow Using a Task Flow Call Activity

15-21
15.6.3 How to Specify Input Parameters on a Task Flow Call Activity 15-21
15.6.4 How to Call a Bounded Task Flow Using a URL ... 15-22
15.6.5 What Happens When You Configure a Bounded Task Flow to be Invoked by a URL ...

15-23
15.6.6 What You May Need to Know About Calling a Bounded Task Flow Using a URL

15-24
15.6.7 How to Specify Before and After Listeners .. 15-25
15.6.8 What Happens When You Add a Task Flow Call Activity 15-26
15.6.9 What Happens at Runtime When a Task Flow Call Activity Invokes a Task Flow

15-27
15.7 Using Task Flow Return Activities .. 15-28
15.8 Using Save Point Restore Activities ... 15-30
15.9 Using Parent Action Activities ... 15-30
15.10 Using Task Flow Activities with Page Definition Files .. 15-31
15.10.1 How to Associate a Page Definition File with a Task Flow Activity 15-32
15.10.2 What Happens When You Associate a Page Definition File with a Task Flow Activity .

15-32

16 Using Parameters in Task Flows

16.1 Introduction to Parameters in Task Flows .. 16-1
16.2 Passing Parameters to a View Activity ... 16-1
16.3 How to Pass Parameters to an ADF Bounded Task Flow ... 16-2
16.4 Specifying Return Values .. 16-5
16.5 Specifying EL Binding Expressions .. 16-7

17 Using Task Flows as Regions

17.1 Introduction to Using Task Flows in ADF Regions .. 17-1
17.1.1 Benefits of Executing a Task Flow in an ADF Region .. 17-2
17.1.2 Task Flows and ADF Region Use Cases and Examples ... 17-2
17.1.3 Additional Functionality for Task Flows that Render in ADF Regions 17-4

xxi

17.1.3.1 Page Fragments and ADF Regions .. 17-4
17.1.3.2 View Ports and ADF Regions .. 17-5
17.1.3.3 Security and ADF Regions ... 17-5
17.1.3.4 Parent Page Determines the Capabilities of an ADF Region 17-5
17.2 Creating an ADF Region .. 17-6
17.2.1 How to Create an ADF Region .. 17-6
17.2.2 What Happens When You Create an ADF Region .. 17-7
17.3 Specifying Parameters for an ADF Region ... 17-8
17.3.1 How to Specify Parameters for an ADF Region ... 17-9
17.3.2 What Happens When You Specify Parameters for an ADF Region 17-10
17.4 Specifying Parameters for ADF Regions Using Parameter Maps 17-10
17.4.1 How to Create a Parameter Map to Specify Input Parameters for an ADF Region 17-10
17.4.2 What Happens When You Create a Parameter Map to Specify Input Parameters . 17-11
17.5 Refreshing an ADF Region ... 17-12
17.5.1 How to Configure the Refresh of an ADF Region .. 17-13
17.5.2 What You May Need to Know About Refreshing an ADF Region 17-14
17.6 Configuring Activation of an ADF Region ... 17-15
17.6.1 How to Configure Activation of an ADF Region ... 17-16
17.6.2 What Happens When You Configure Activation of an ADF Region 17-17
17.7 Navigating Outside an ADF Region’s Task Flow ... 17-18
17.7.1 How to Trigger Navigation Outside of an ADF Region’s Task Flow 17-18
17.7.2 What Happens When You Configure Navigation Outside a Task Flow 17-19
17.8 Creating ADF Dynamic Regions .. 17-20
17.8.1 How to Create an ADF Dynamic Region ... 17-21
17.8.2 What Happens When You Create an ADF Dynamic Region 17-22
17.9 Adding Additional Task Flows to an ADF Dynamic Region 17-23
17.9.1 How to Create an ADF Dynamic Region Link ... 17-24
17.9.2 What Happens When You Create an ADF Dynamic Region 17-25

18 Creating Complex Task Flows

18.1 Introduction to Complex Task Flows ... 18-1
18.2 Using Initializers and Finalizers ... 18-1
18.3 Sharing Data Controls Between Task Flows ... 18-2
18.3.1 How to Share a Data Control Between Task Flows .. 18-3
18.3.2 What Happens When You Share a Data Control Between Task Flows 18-3
18.4 Managing Transactions ... 18-4
18.4.1 How to Enable Transactions in a Bounded Task Flow .. 18-5
18.4.2 What Happens When You Specify Transaction Options ... 18-6
18.4.3 What You May Need to Know About Sharing Data Controls and Managing

Transactions ... 18-7
18.5 Reentering a Bounded Task Flow .. 18-7
18.5.1 How to Set Reentry Behavior .. 18-8
18.5.2 How to Set Outcome-Dependent Options ... 18-8
18.5.3 What You Should Know About Managed Bean Values Upon Task Flow Reentry . 18-9
18.6 Executing a Bounded Task Flow Directly From a JSF Page .. 18-9
18.7 Handling Exceptions in Task Flows ... 18-10
18.7.1 How to Designate an Activity as an Exception Handler 18-11

xxii

18.7.2 What Happens When You Designate an Activity as an Exception Handler 18-11
18.7.3 How to Designate Custom Code as an Exception Handler 18-11
18.7.4 What Happens When You Designate Custom Code as an Exception Handler 18-13
18.7.5 What You May Need to Know About Handling Exceptions During Transactions

18-13
18.7.6 What You May Need to Know About Handling Validation Errors 18-13
18.8 Configuring Your Application to Use Save Points ... 18-14
18.8.1 How to Configure Your Fusion Web Application to Use Save Points 18-14
18.8.2 What Happens When You Configure a Fusion Web Application to Use Save Points

18-14
18.8.3 What You May Need to Know About the Database Table for Save Points 18-15
18.9 Using Save Points in Task Flows .. 18-15
18.9.1 How to Add a Save Point to a Task Flow .. 18-17
18.9.2 What Happens When You Add Save Points to a Task Flow 18-18
18.9.3 How to Restore a Save Point .. 18-18
18.9.4 What Happens When You Restore a Save Point .. 18-18
18.9.5 How to Use the Save Point Restore Finalizer .. 18-18
18.9.6 What Happens When a Task Flow Invokes a Save Point Restore Finalizer 18-19
18.9.7 How to Enable Implicit Save Points ... 18-19
18.9.8 What You May Need to Know About Enabling Implicit Save Points 18-20
18.9.9 What You May Need to Know About the Time-to-Live Period for a Save Point .. 18-20
18.10 Creating a Train ... 18-21
18.10.1 Bounded Task Flows as Trains ... 18-22
18.10.2 Train Sequences .. 18-24
18.10.3 How to Create a Train ... 18-25
18.10.4 What You May Need to Know About Grouping Activities 18-26
18.10.5 What You May Need to Know About Grouping Activities in Child Task Flows .. 18-28
18.10.6 What You May Need To Know About Using Child Trains 18-29
18.10.7 What You May Need to Know About Branching ... 18-29
18.11 Running Multiple Task Flows ... 18-30
18.11.1 Understanding How the ViewPortInstance Works in ADF Regions 18-31
18.12 Creating a Task Flow Template ... 18-31
18.12.1 How to Copy and Reference a Task Flow Template ... 18-32
18.12.2 How to Create a Task Flow Template from Another Task Flow 18-34
18.12.3 How to Use a Task Flow Template ... 18-34
18.12.4 How to Create a Task Flow Template .. 18-35
18.12.5 What Happens When You Create a Task Flow Template 18-35
18.12.6 What You May Need to Know About Task Flow Templates That Use Bindings .. 18-36
18.13 Creating a Page Hierarchy ... 18-36
18.13.1 How to Create a Page Hierarchy ... 18-37
18.13.1.1 How to Create an XMLMenuModel Metadata File ... 18-39
18.13.1.2 How to Create a Submenu with a Hierarchy of Group and Child Nodes 18-40
18.13.1.3 How to Attach a Menu Hierarchy to Another Menu Hierarchy 18-41
18.13.2 What Happens When You Create a Page Hierarchy .. 18-41
18.14 Using BPEL with Task Flows ... 18-43
18.14.1 How to Invoke a BPEL Process from a Task Flow ... 18-43
18.14.2 How to Call a Bounded Task Flow from BPEL ... 18-43

xxiii

19 Using Dialogs in Your Application

19.1 Introduction to Using Dialogs in Your Application ... 19-1
19.2 Running a Bounded Task Flow in a Modal Dialog ... 19-1
19.2.1 How to Run a Bounded Task Flow in a Modal Dialog ... 19-2
19.2.2 How to Return a Value From a Modal Dialog ... 19-2
19.2.3 What You May Need to Know About Running a Bounded Task Flow in a Modal

Dialog .. 19-3
19.3 Using the ADF Faces Dialog Framework ... 19-4
19.3.1 How to Define a JSF Navigation Rule for Opening a Dialog 19-7
19.3.2 How to Create the JSF Page That Opens a Dialog ... 19-8
19.3.3 How to Create the Dialog Page and Return a Dialog Value 19-9
19.3.4 What Happens at Runtime: Raising the Return Event from the Dialog 19-11
19.3.5 How to Pass a Value into a Dialog ... 19-11
19.3.6 What Happens at Runtime: Handling the LaunchEvent 19-12
19.3.7 How to Handle the Return Value .. 19-12
19.3.8 What Happens at Runtime: Handling the ReturnEvent on the Launching Component .

19-13

Part IV Creating a Databound Web User Interface

20 Getting Started with Your Web Interface

20.1 Introduction to Developing a Web Application with ADF Faces 20-1
20.2 Using Page Templates .. 20-1
20.2.1 How to Use ADF Data Binding in ADF Page Templates ... 20-3
20.2.2 What Happens When You Use ADF Model Layer Bindings on a Page Template ... 20-5
20.2.3 How to Add a Databound Page Template to a Page Dynamically 20-6
20.2.4 What Happens at Runtime: How Pages Use Templates .. 20-7
20.3 Creating a Web Page .. 20-7
20.4 Using a Managed Bean in a Fusion Web Application .. 20-8
20.4.1 How to Use a Managed Bean to Store Information .. 20-11
20.4.2 What Happens When You Create a Managed Bean ... 20-12
20.4.3 How to Set Managed Bean Memory Scopes in a Server-Cluster Environment 20-13

21 Understanding the Fusion Page Lifecycle

21.1 Introduction to the Fusion Page Lifecycle .. 21-1
21.2 The JSF and ADF Page Lifecycles ... 21-3
21.2.1 What You May Need to Know About Using the Refresh Property Correctly 21-7
21.2.2 What You May Need to Know About Task Flows and the Lifecycle 21-9
21.3 Object Scope Lifecycles ... 21-10
21.3.1 What You May Need to Know About Object Scopes and Task Flows 21-12
21.4 Customizing the ADF Page Lifecycle .. 21-13
21.4.1 How to Create a Custom Phase Listener .. 21-13
21.4.2 How to Register a Listener Globally .. 21-14
21.4.3 What You May Need to Know About Listener Order ... 21-14
21.4.4 How to Register a Lifecycle Listener for a Single Page .. 21-15

xxiv

21.4.5 What You May Need to Know About Extending RegionController for Page Fragments
21-16

22 Creating a Basic Databound Page

22.1 Introduction to Creating a Basic Databound Page ... 22-1
22.2 Using Attributes to Create Text Fields ... 22-2
22.2.1 How to Create a Text Field ... 22-2
22.2.2 What Happens When You Create a Text Field ... 22-4
22.2.2.1 Creating and Using Iterator Bindings ... 22-4
22.2.2.2 Creating and Using Value Bindings .. 22-5
22.2.2.3 Using EL Expressions to Bind UI Components .. 22-5
22.3 Creating a Basic Form .. 22-7
22.3.1 How to Create a Form ... 22-7
22.3.2 What Happens When You Create a Form ... 22-8
22.4 Incorporating Range Navigation into Forms .. 22-9
22.4.1 How to Insert Navigation Controls into a Form .. 22-10
22.4.2 What Happens When You Create Command Buttons ... 22-10
22.4.2.1 Action Bindings for Built-in Navigation Operations 22-11
22.4.2.2 Iterator RangeSize Attribute .. 22-11
22.4.2.3 EL Expressions Used to Bind to Navigation Operations 22-12
22.4.3 What You May Need to Know About Automatic Partial Page Rendering 22-14
22.4.4 What Happens at Runtime: How Action Events and Action Listeners Work 22-14
22.4.5 What You May Need to Know About the Browser Back Button and Navigating

Through Records ... 22-15
22.5 Creating a Form to Edit an Existing Record ... 22-15
22.5.1 How to Create Edit Forms .. 22-16
22.5.2 What Happens When You Use Built-in Operations to Change Data 22-17
22.6 Creating an Input Form .. 22-19
22.6.1 How to Create an Input Form Using a Task Flow ... 22-19
22.6.2 What Happens When You Create an Input Form Using a Task Flow 22-20
22.6.3 What Happens at Runtime: CreateInsert Action from the Method Activity 22-21
22.6.4 What You May Need to Know About Displaying Sequence Numbers 22-22
22.7 Using a Dynamic Form to Determine Data to Display at Runtime 22-22
22.7.1 How to Use Dynamic Forms .. 22-23
22.7.2 What Happens When You Use Dynamic Components ... 22-24
22.7.3 What Happens at Runtime: How Attribute Values Are Dynamically Determined 22-24
22.8 Modifying the UI Components and Bindings on a Form ... 22-25
22.8.1 How to Modify the UI Components and Bindings .. 22-25
22.8.2 What Happens When You Modify Attributes and Bindings 22-26

23 Creating ADF Databound Tables

23.1 Introduction to Adding Tables ... 23-1
23.2 Creating a Basic Table .. 23-2
23.2.1 How to Create a Basic Table .. 23-2
23.2.2 What Happens When You Create a Table ... 23-4
23.2.2.1 Iterator and Value Bindings for Tables .. 23-4
23.2.2.2 Code on the JSF Page for an ADF Faces Table ... 23-5

xxv

23.2.3 What You May Need to Know About Setting the Current Row in a Table 23-8
23.3 Creating an Editable Table ... 23-9
23.3.1 How to Create an Editable Table ... 23-11
23.3.2 What Happens When You Create an Editable Table ... 23-12
23.4 Creating an Input Table .. 23-13
23.4.1 How to Create an Input Table .. 23-13
23.4.2 What Happens When You Create an Input Table .. 23-13
23.4.3 What Happens at Runtime: How CreateInsert and Partial Page Refresh Work 23-15
23.4.4 What You May Need to Know About Creating a Row and Sorting Columns 23-15
23.4.5 What You May Need to Know About Create and CreateInsert 23-15
23.5 Providing Multiselect Capabilities ... 23-16
23.5.1 How to Add Multiselect Capabilities ... 23-17
23.5.2 What Happens at Runtime: How an Operation Executes Against Multiple Rows 23-19
23.6 Modifying the Attributes Displayed in the Table ... 23-19
23.6.1 How to Modify the Displayed Attributes ... 23-19
23.6.2 How to Change the Binding for a Table ... 23-20
23.6.3 What Happens When You Modify Bindings or Displayed Attributes 23-20

24 Displaying Master-Detail Data

24.1 Introduction to Displaying Master-Detail Data .. 24-1
24.2 Identifying Master-Detail Objects on the Data Controls Panel 24-3
24.3 Using Tables and Forms to Display Master-Detail Objects .. 24-5
24.3.1 How to Display Master-Detail Objects in Tables and Forms 24-6
24.3.2 What Happens When You Create Master-Detail Tables and Forms 24-7
24.3.2.1 Code Generated in the JSF Page .. 24-7
24.3.2.2 Binding Objects Defined in the Page Definition File ... 24-8
24.3.3 What Happens at Runtime: ADF Iterator for Master-Detail Tables and Forms 24-9
24.3.4 What You May Need to Know About Displaying Master-Detail Widgets on Separate

Pages .. 24-10
24.4 Using Trees to Display Master-Detail Objects .. 24-10
24.4.1 How to Display Master-Detail Objects in Trees ... 24-11
24.4.2 What Happens When You Create an ADF Databound Tree 24-14
24.4.2.1 Code Generated in the JSF Page .. 24-14
24.4.2.2 Binding Objects Defined in the Page Definition File 24-15
24.4.3 What Happens at Runtime: Displaying an ADF Databound Tree 24-16
24.5 Using Tree Tables to Display Master-Detail Objects .. 24-16
24.5.1 How to Display Master-Detail Objects in Tree Tables ... 24-17
24.5.2 What Happens When You Create a Databound Tree Table 24-17
24.5.2.1 Code Generated in the JSF Page .. 24-17
24.5.2.2 Binding Objects Defined in the Page Definition File 24-18
24.5.3 What Happens at Runtime: Events .. 24-18
24.5.4 Using the TargetIterator Property ... 24-19
24.6 Using Selection Events with Trees and Tables ... 24-20
24.6.1 How to Use Selection Events with Trees and Tables .. 24-20
24.6.2 What Happens at Runtime: RowKeySet Objects and SelectionEvent Events 24-21

xxvi

25 Creating Databound Selection Lists and Shuttles

25.1 Introduction to Selection Lists and Shuttles ... 25-1
25.2 Creating List of Values (LOV) .. 25-2
25.2.1 How to Create an LOV .. 25-6
25.2.2 What Happens When You Create an LOV .. 25-7
25.3 Creating a Selection List ... 25-8
25.3.1 How to Create a Single Selection List .. 25-9
25.3.2 How to Create a Model-Driven List ... 25-10
25.3.3 How to Create a Selection List Containing Fixed Values 25-11
25.3.4 How to Create a Selection List Containing Dynamically Generated Values 25-12
25.3.5 What Happens When You Create a Model-Driven Selection List 25-13
25.3.6 What Happens When You Create a Fixed Selection List 25-14
25.3.7 What You May Need to Know About Values in a Selection List 25-15
25.3.8 What Happens When You Create a Dynamic Selection List 25-15
25.4 Creating a List with Navigation List Binding ... 25-16
25.5 Creating a Databound Shuttle .. 25-17

26 Creating Databound ADF Data Visualization Components

26.1 Introduction to Creating ADF Data Visualization Components 26-1
26.2 Creating Databound Graphs .. 26-3
26.2.1 How to Create a Graph .. 26-6
26.2.2 What Happens When You Use the Data Controls Panel to Create a Graph 26-9
26.2.3 What You May Need to Know About Using a Graph’s Row Selection Listener for

Master-Detail Processing ... 26-9
26.2.4 How to Create a Databound Sparkchart .. 26-10
26.3 Creating Databound Gauges .. 26-12
26.3.1 How to Create a Databound Dial Gauge ... 26-13
26.3.2 What Happens When You Create a Dial Gauge from a Data Control 26-16
26.3.3 How to Create a Databound Status Meter Gauge Set .. 26-17
26.3.4 What Happens When You Create a Status Meter Gauge from a Data Control 26-19
26.4 Creating Databound Pivot Tables .. 26-20
26.4.1 How to Create a Pivot Table .. 26-21
26.4.2 What Happens When You Use the Data Controls Panel to Create a Pivot Table .. 26-32
26.4.2.1 Bindings for Pivot Tables .. 26-32
26.4.2.2 Code on the JSF Page for a Pivot Table and Pivot Filter Bar 26-33
26.4.3 What You May Need to Know About Aggregating Attributes in the Pivot Table . 26-34
26.4.3.1 Default Aggregation of Duplicate Data Rows ... 26-34
26.4.3.2 Custom Aggregation of Duplicate Rows ... 26-34
26.4.4 What You May Need to Know About Specifying an Initial Sort for a Pivot Table 26-35
26.5 Creating Databound Geographic Maps .. 26-36
26.5.1 How to Create a Geographic Map with a Point Theme ... 26-37
26.5.2 How to Create Point Style Items for a Point Theme ... 26-40
26.5.3 What Happens When You Create a Geographic Map with a Point Theme 26-42
26.5.3.1 Binding XML for a Point Theme .. 26-42
26.5.3.2 XML Code on the JSF Page for a Geographic Map and Point Theme 26-42
26.5.4 What You May Need to Know About Adding Custom Point Style Items to a Map Point

Theme .. 26-43

xxvii

26.5.5 How to Add a Databound Color Theme to a Geographic Map 26-44
26.5.6 What Happens When You Add a Color Theme to a Geographic Map 26-46
26.5.6.1 Binding XML for a Color Theme ... 26-46
26.5.6.2 XML Code on the JSF Page for a Color Theme ... 26-46
26.5.7 What You May Need to Know About Customizing Colors in a Map Color Theme

26-47
26.5.8 How to Add a Databound Pie Graph Theme to a Geographic Map 26-47
26.5.9 What Happens When You Add a Pie Graph Theme to a Geographic Map 26-49
26.5.9.1 Binding XML for a Pie Graph Theme .. 26-49
26.5.9.2 Code on the JSF Page for a Pie Graph Theme ... 26-49
26.6 Creating Databound Gantt Charts .. 26-49
26.6.1 How to Create a Databound Project Gantt Chart ... 26-50
26.6.2 What Happens When You Create a Project Gantt Chart from a Data Control 26-53
26.6.3 What You May Need to Know About Summary Tasks in a Project Gantt Chart ... 26-55
26.6.4 What You May Need to Know About Percent Complete in a Project Gantt Chart 26-55
26.6.5 What You May Need to Know About Variance in a Project Gantt Chart 26-56
26.6.6 How to Create a Databound Resource Utilization Gantt Chart 26-56
26.6.7 What Happens When You Create a Resource Utilization Gantt Chart 26-58
26.6.8 How to Create a Databound Scheduling Gantt Chart .. 26-60
26.6.9 What Happens When You Create a Scheduling Gantt Chart 26-63
26.7 Creating Databound Hierarchy Viewers .. 26-64
26.7.1 How to Create a Databound Hierarchy Viewer ... 26-66
26.7.2 What Happens When You Create a Databound Hierarchy Viewer 26-68
26.7.3 How to Create a Databound Search in a Hierarchy Viewer 26-70

27 Creating ADF Databound Search Forms

27.1 Introduction to Creating Search Forms .. 27-1
27.1.1 Query Search Forms ... 27-2
27.1.2 Quick Query Search Forms .. 27-8
27.1.3 Named Bind Variables in Query Search Forms ... 27-9
27.1.4 Filtered Table and Query-by-Example Searches .. 27-10
27.1.5 Implicit and Named View Criteria ... 27-11
27.1.6 List of Values (LOV) Input Fields .. 27-12
27.2 Creating Query Search Forms .. 27-13
27.2.1 How to Create a Query Search Form with a Results Table or Tree Table 27-13
27.2.2 How to Create a Query Search Form and Add a Results Component Later 27-14
27.2.3 How to Persist Saved Searches into MDS .. 27-15
27.2.4 How to Set Default Search Binding Behavior .. 27-15
27.2.5 What You May Need to Know About Dependent Criterion 27-17
27.2.6 What Happens When You Create a Query Form ... 27-17
27.2.7 What Happens at Runtime: Search Forms ... 27-19
27.3 Setting Up Search Form Properties ... 27-19
27.3.1 How to Set Search Form Properties on the View Criteria 27-19
27.3.2 How to Set Search Form Properties on the Query Component 27-20
27.3.3 How to Set Timezone Control Hint for Timestamp Attribute 27-21
27.3.4 How to Create Custom Operators or Remove Standard Operators 27-22
27.4 Creating Quick Query Search Forms .. 27-24

xxviii

27.4.1 How to Create a Quick Query Search Form with a Results Table or Tree Table 27-25
27.4.2 How to Create a Quick Query Search Form and Add a Results Component Later 27-25
27.4.3 How to Set the Quick Query Layout Format ... 27-26
27.4.4 What Happens When You Create a Quick Query Search Form 27-26
27.4.5 What Happens at Runtime: Quick Query .. 27-26
27.5 Creating Standalone Filtered Search Tables from Named View Criteria 27-27

28 Creating More Complex Pages

28.1 Introduction to More Complex Pages .. 28-1
28.2 Creating Command Components to Execute Methods ... 28-2
28.2.1 How to Create a Command Component Bound to a Custom Method 28-2
28.2.2 What Happens When You Create Command Components Using a Method 28-3
28.2.2.1 Defining Method Action Binding .. 28-3
28.2.2.2 Using Parameters in a Method .. 28-3
28.2.2.3 Adding ADF Faces Component Code to JSF Page .. 28-4
28.2.2.4 Using EL Expressions to Bind to Methods .. 28-4
28.2.2.5 Using the Return Value from a Method Call ... 28-4
28.2.3 What Happens at Runtime: Command Button Method Bindings 28-5
28.3 Setting Parameter Values Using a Command Component ... 28-5
28.3.1 How to Set Parameters Using setPropertyListener Within a Command Component

28-6
28.3.2 What Happens When You Set Parameters ... 28-6
28.3.3 What Happens at Runtime: setPropertyListener for a Command Component 28-7
28.4 Overriding Declarative Methods .. 28-7
28.4.1 How to Override a Declarative Method .. 28-7
28.4.2 What Happens When You Override a Declarative Method 28-10
28.5 Using the ADF Faces Calendar Component ... 28-11
28.5.1 How to Use the ADF Faces Calendar ... 28-13
28.5.2 What Happens When You Create a Calendar .. 28-15
28.5.3 What Happens at Runtime: How the Calendar Binding Works 28-17
28.6 Using the ADF Faces Carousel Component ... 28-17
28.6.1 How to Create a Databound Carousel Component ... 28-18
28.6.2 What Happens When You Create a Carousel .. 28-21
28.7 Creating Contextual Events .. 28-21
28.7.1 How to Create Contextual Events Declaratively ... 28-25
28.7.1.1 Creating Contextual Events in the Publisher ... 28-25
28.7.1.2 Subscribing to and Consuming Events .. 28-27
28.7.2 How to Create Contextual Events Manually .. 28-28
28.7.3 How to Create Contextual Event Using Managed Beans 28-30
28.7.4 How to Create a Contextual Event from JavaScript ... 28-32
28.7.5 How to Manually Create the Event Map ... 28-32
28.7.6 How to Register a Custom Event Dispatcher ... 28-33
28.7.7 What Happens When You Create Contextual Events .. 28-33
28.7.8 How to Control Contextual Events Dispatch ... 28-34
28.7.9 What Happens at Runtime: Contextual Events ... 28-35
28.8 Adding ADF Model Layer Validation .. 28-35
28.8.1 How to Add Validation ... 28-36

xxix

28.8.2 What Happens at Runtime: Model Validation Rules ... 28-36
28.9 Displaying Error Messages ... 28-36
28.10 Customizing Error Handling .. 28-38
28.10.1 How to Customize the Detail Portion of a Message ... 28-39
28.10.2 How to Write an Error Handler to Deal with Multiple Threads 28-41

29 Designing a Page Using Placeholder Data Controls

29.1 Introduction to Placeholder Data Controls ... 29-1
29.2 Creating Placeholder Data Controls ... 29-2
29.2.1 How to Create a Placeholder Data Control .. 29-2
29.2.2 What Happens When You Create a Placeholder Data Control 29-3
29.3 Creating Placeholder Data Types ... 29-4
29.3.1 How to Create a Placeholder Data Type .. 29-5
29.3.2 What Happens When You Create a Placeholder Data Type 29-8
29.3.3 How to Configure a Placeholder Data Type Attribute to Be an LOV 29-9
29.3.3.1 Configuring an Attribute to Be a Fixed LOV ... 29-9
29.3.3.2 Configuring an Attribute to Be a Dynamic LOV ... 29-10
29.3.4 How to Create Master-Detail Data Types .. 29-11
29.3.5 What Happens When You Create a Master-Detail Data Type 29-13
29.3.6 How to Add Sample Data .. 29-13
29.3.6.1 Adding Sample Data Manually ... 29-14
29.3.6.2 Importing Sample Data ... 29-15
29.3.7 What Happens When You Add Sample Data .. 29-15
29.4 Using Placeholder Data Controls ... 29-16
29.4.1 Limitations of Placeholder Data Controls .. 29-16
29.4.2 Creating Layout ... 29-16
29.4.3 Creating a Search Form .. 29-17
29.4.4 Binding Components ... 29-17
29.4.5 Rebinding Components ... 29-17
29.4.6 Packaging Placeholder Data Controls to ADF Library JARs 29-17

Part V Completing Your Application

30 Enabling ADF Security in a Fusion Web Application

30.1 Introduction to ADF Security ... 30-1
30.1.1 Integration of ADF Security and Java Security .. 30-3
30.1.2 Summary of ADF Security ... 30-4
30.2 ADF Security Process Overview ... 30-6
30.3 Enabling ADF Security ... 30-9
30.3.1 How to Enable ADF Security ... 30-9
30.3.2 What Happens When You Enable ADF Security ... 30-13
30.3.3 What Happens When You Generate a Default Form-Based Login Page 30-17
30.3.4 What You May Need to Know About the Configure ADF Security Wizard 30-18
30.3.5 What You May Need to Know About ADF Authentication 30-18
30.3.6 What You May Need to Know About the Built-In test-all Role 30-18
30.3.7 What You May Need to Know About the valid-users Role 30-19

xxx

30.4 Creating Application Roles .. 30-19
30.4.1 How to Create Application Roles .. 30-20
30.4.2 What Happens When You Create Application Roles .. 30-20
30.4.3 What You May Need to Know About Enterprise Roles and Application Roles 30-21
30.5 Defining ADF Security Policies .. 30-21
30.5.1 How to Make an ADF Resource Public ... 30-22
30.5.2 What Happens When You Make an ADF Resource Public 30-24
30.5.3 What Happens at Runtime: How the Built-in Roles Are Used 30-25
30.5.4 How to Define Policies for ADF Bounded Task Flows .. 30-26
30.5.5 How to Define Policies for Web Pages That Reference a Page Definition 30-29
30.5.6 What Happens When You Define the Security Policy ... 30-33
30.5.7 What Happens at Runtime: How ADF Security Policies Are Enforced 30-34
30.5.8 What You May Need to Know About Defining Policies for Pages with No ADF

Bindings ... 30-35
30.5.9 How to Use Regular Expressions to Define Policies on Groups of Resources 30-35
30.5.10 How to Define Policies for Data ... 30-37
30.5.10.1 Defining Permission Maps on ADF Entity Objects ... 30-37
30.5.10.2 Granting Permissions on ADF Entity Objects ... 30-39
30.6 Creating Test Users .. 30-40
30.6.1 How to Create Test Users in JDeveloper .. 30-40
30.6.2 What Happens When You Create Test Users .. 30-42
30.6.3 How to Associate Test Users with Application Roles .. 30-43
30.6.4 What Happens When You Configure Application Roles 30-44
30.7 Creating a Login Page .. 30-44
30.7.1 How to Create a Login Link Component and Add it to a Public Web Page for Explicit

Authentication ... 30-45
30.7.2 How to Create a Login Page Specifically for Explicit Authentication 30-47
30.7.2.1 Creating Login Code for the Backing Bean ... 30-47
30.7.2.2 Creating an ADF Faces-Based Login Page Specifically for Explicit Authentication .

30-52
30.7.2.3 Ensuring That the Login Page Is Public .. 30-55
30.7.3 How to Ensure That the Custom Login Page’s Resources Are Accessible for Explicit

Authentication ... 30-55
30.7.4 How to Create a Public Welcome Page .. 30-56
30.7.4.1 Ensuring That the Welcome Page Is Public ... 30-56
30.7.4.2 Adding Login and Logout Links ... 30-56
30.7.4.3 Hiding Links to Secured Pages .. 30-57
30.7.5 How to Redirect a User After Authentication .. 30-57
30.7.6 How to Trigger a Custom Login Page Specifically for Implicit Authentication 30-59
30.7.7 What You May Need to Know About ADF Servlet Logout and Browser Caching 30-60
30.7.8 What You May Need to Know About IBM WebSphere Application Server 30-60
30.8 Testing Security in JDeveloper ... 30-61
30.8.1 How to Configure, Deploy, and Run a Secure Application in JDeveloper 30-61
30.8.2 What Happens When You Configure Security Deployment Options 30-62
30.8.3 How to Use the Built-In test-all Application Role .. 30-63
30.8.4 What Happens at Runtime: How ADF Security Handles Authentication 30-64
30.8.5 What Happens at Runtime: How ADF Security Handles Authorization 30-66
30.9 Preparing the Secure Application for Deployment .. 30-68

xxxi

30.9.1 How to Remove the test-all Role from the Application Policy Store 30-69
30.9.2 How to Remove Test Users from the Application Identity Store 30-70
30.10 Disabling ADF Security .. 30-71
30.10.1 How to Disable ADF Security .. 30-71
30.10.2 What Happens When You Disable ADF Security .. 30-72
30.11 Advanced Topics and Best Practices .. 30-72
30.11.1 Using Expression Language (EL) with ADF Security .. 30-72
30.11.1.1 How to Evaluate Policies Using EL ... 30-73
30.11.1.2 What Happens When You Use the Expression Builder Dialog 30-77
30.11.1.3 What You May Need to Know About Delayed Evaluation of EL 30-77
30.11.2 How to Evaluate Policies Using Custom JAAS Permissions and EL 30-78
30.11.3 Getting Information from the ADF Security Context ... 30-81
30.11.3.1 How to Determine Whether Security Is Enabled ... 30-81
30.11.3.2 How to Determine Whether the User Is Authenticated 30-81
30.11.3.3 How to Determine the Current User Name, Enterprise Name, or Enterprise ID

30-82
30.11.3.4 How to Determine Membership of a Java EE Security Role 30-83
30.11.3.5 How to Determine Permission Using Java .. 30-83
30.11.4 Best Practices for Working with ADF Security .. 30-84

31 Testing and Debugging ADF Components

31.1 Introduction to ADF Debugging .. 31-1
31.2 Correcting Simple Oracle ADF Compilation Errors ... 31-2
31.3 Correcting Simple Oracle ADF Runtime Errors ... 31-4
31.4 Validating ADF Controller Metadata ... 31-6
31.5 Using the ADF Logger .. 31-6
31.5.1 How to Turn On Diagnostic Logging .. 31-7
31.5.2 How to Create an Oracle ADF Debugging Configuration 31-7
31.5.3 How to Set ADF Logging Levels .. 31-7
31.5.4 How to Use the Log Analyzer to View Log Messages ... 31-10
31.5.4.1 Viewing Diagnostic Messages in the Log Analyzer ... 31-11
31.5.4.2 Using the Log Analyzer to Analyze the ADF Request 31-13
31.5.4.3 Sorting Diagnostic Messages By ADF Events .. 31-17
31.5.5 What You May Need to Know About the Logging.xml File 31-20
31.5.6 What You May Need to Know About ADF Logging and Oracle WebLogic Server

31-21
31.6 Using the Business Component Browser for Testing and Debugging 31-22
31.6.1 How to Run in Debug Mode and Test with the Business Component Browser 31-22
31.6.2 How to Run the Business Component Browser and Test with a Specific Configuration

31-23
31.6.3 What Happens When You Run the Business Component Browser in Debug Mode

31-23
31.6.4 How to Verify Runtime Artifacts in the Business Component Browser 31-23
31.6.5 How to Refresh the Business Component Browser with Application Changes 31-24
31.7 Using the ADF Declarative Debugger .. 31-24
31.7.1 Using ADF Source Code with the Debugger ... 31-26
31.7.2 How to Set Up the ADF Source User Library .. 31-26

xxxii

31.7.3 How to Add the ADF Source Library to a Project .. 31-27
31.7.4 How to Use the EL Expression Evaluator .. 31-27
31.7.5 How to View and Export Stack Trace Information .. 31-29
31.8 Setting ADF Declarative Breakpoints ... 31-29
31.8.1 How to Set and Use Task Flow Activity Breakpoints .. 31-36
31.8.2 How to Set and Use Page Definition Executable Breakpoints 31-37
31.8.3 How to Set and Use Page Definition Action Binding Breakpoints 31-39
31.8.4 How to Set and Use Page Definition Attribute Value Binding Breakpoints 31-40
31.8.5 How to Set and Use ADF Lifecycle Phase Breakpoints .. 31-41
31.8.6 How to Use the ADF Structure Window ... 31-43
31.8.7 How to Use the ADF Data Window .. 31-46
31.8.8 What Happens When You Set an ADF Declarative Breakpoint 31-57
31.9 Setting Java Code Breakpoints ... 31-57
31.9.1 How to Set Java Breakpoints on Classes and Methods .. 31-57
31.9.2 How to Optimize Use of the Source Editor .. 31-58
31.9.3 How to Set Breakpoints and Debug Using ADF Source Code 31-59
31.9.4 How to Use Debug Libraries for Symbolic Debugging .. 31-59
31.9.5 How to Use Different Kinds of Java Code Breakpoints ... 31-61
31.9.6 How to Edit Breakpoints for Improved Control .. 31-62
31.9.7 How to Filter Your View of Class Members .. 31-63
31.9.8 How to Use Common Oracle ADF Breakpoints .. 31-63
31.10 Regression Testing with JUnit .. 31-64
31.10.1 How to Obtain the JUnit Extension ... 31-65
31.10.2 How to Create a JUnit Test Case .. 31-66
31.10.3 How to Create a JUnit Test Fixture .. 31-68
31.10.4 How to Create a JUnit Test Suite ... 31-68
31.10.5 How to Create a Business Components Test Suite ... 31-69
31.10.6 How to a Create Business Components Test Fixture ... 31-71
31.10.7 How to Run a JUnit Test Suite as Part of an Ant Build Script 31-72

32 Refactoring a Fusion Web Application

32.1 Introduction to Refactoring a Fusion Web Application ... 32-1
32.2 Renaming Files ... 32-1
32.3 Moving JSF Pages .. 32-2
32.4 Refactoring pagedef.xml Bindings Objects .. 32-2
32.5 Refactoring ADF Business Components .. 32-3
32.6 Refactoring ADF Business Component Object Attributes .. 32-3
32.7 Refactoring Named Elements ... 32-4
32.8 Refactoring ADF Task Flows .. 32-5
32.9 Refactoring the DataBindings.cpx File ... 32-5
32.10 Refactoring Across Abstraction Layers ... 32-6
32.11 Refactoring Limitations ... 32-6
32.12 Refactoring the .jpx Project File .. 32-7

33 Reusing Application Components

33.1 Introduction to Reusable Components ... 33-1
33.1.1 Creating Reusable Components ... 33-3

xxxiii

33.1.1.1 Naming Conventions .. 33-3
33.1.1.2 The Naming Process for the ADF Library JAR Deployment Profile 33-5
33.1.1.3 Keeping the Relevant Project ... 33-6
33.1.1.4 Selecting the Relevant Technology Scope .. 33-6
33.1.1.5 Selecting Paths and Folders ... 33-6
33.1.1.6 Including Connections Within Reusable Components 33-6
33.1.2 Using the Resource Palette ... 33-7
33.1.3 Extension Libraries .. 33-8
33.2 Packaging a Reusable ADF Component into an ADF Library 33-12
33.2.1 How to Package a Component into an ADF Library JAR 33-12
33.2.2 What Happens When You Package a Project to an ADF Library JAR 33-17
33.2.2.1 Application Modules ... 33-17
33.2.2.2 Data Controls .. 33-18
33.2.2.3 Task Flows ... 33-18
33.2.2.4 Page Templates .. 33-18
33.2.2.5 Declarative Components ... 33-18
33.2.3 How to Place and Access JDeveloper JAR Files ... 33-18
33.3 Adding ADF Library Components into Projects .. 33-19
33.3.1 How to Add an ADF Library JAR into a Project using the Resource Palette 33-19
33.3.2 How to Add an ADF Library JAR into a Project Manually 33-21
33.3.3 What Happens When You Add an ADF Library JAR to a Project 33-22
33.3.4 What You May Need to Know About Using ADF Library Components 33-24
33.3.4.1 Using Data Controls .. 33-25
33.3.4.2 Using Application Modules .. 33-25
33.3.4.3 Using Business Components ... 33-25
33.3.4.4 Using Task Flows .. 33-26
33.3.4.5 Using Page Templates ... 33-26
33.3.4.6 Using Declarative Components ... 33-27
33.3.5 What You May Need to Know About Differentiating ADF Library Components . 33-27
33.3.6 What Happens at Runtime: Adding ADF Libraries .. 33-27
33.4 Removing an ADF Library JAR from a Project ... 33-28
33.4.1 How to Remove an ADF Library JAR from a Project Using the Resource Palette . 33-28
33.4.2 How to Remove an ADF Library JAR from a Project Manually 33-28

34 Customizing Applications with MDS

34.1 Introduction to Customization and MDS ... 34-1
34.1.1 Customizations and Layers .. 34-2
34.1.2 Static and Dynamic Customization Content .. 34-3
34.2 Developing a Customizable Application .. 34-4
34.2.1 How to Create Customization Classes ... 34-4
34.2.1.1 Customization Classes ... 34-4
34.2.1.2 Implementing the getValue() Method in Your Customization Class 34-6
34.2.1.3 Creating a Customization Class .. 34-8
34.2.2 What You May Need to Know About Customization Classes 34-9
34.2.3 How to Consume Customization Classes .. 34-10
34.2.3.1 Making Customization Classes Available to JDeveloper 34-10
34.2.3.2 Consuming Customization Classes from an Extension Project 34-11

xxxiv

34.2.4 How to Enable Seeded Customizations for View Projects 34-11
34.2.5 How to Enable Seeded Customizations in Existing Pages 34-12
34.2.6 How to Enable Customizations in Resource Bundles .. 34-13
34.2.7 How to Configure the adf-config.xml file ... 34-13
34.2.8 What Happens When You Create a Customizable Application 34-14
34.2.9 What You May Need to Know About Customizable Objects and Applications ... 34-15
34.3 Customizing an Application .. 34-15
34.3.1 Introducing the Customization Developer Role .. 34-15
34.3.2 How to Switch to the Customization Developer Role in JDeveloper 34-16
34.3.3 Introducing the Tip Layer .. 34-16
34.3.4 How to Configure Customization Layers .. 34-17
34.3.4.1 Configuring Layer Values Globally ... 34-18
34.3.4.2 Configuring Workspace-Level Layer Values from the adf-config Editor 34-18
34.3.4.3 Configuring Workspace-Level Layer Values from the Customization Context

Window ... 34-19
34.3.5 How to Customize Metadata in JDeveloper .. 34-20
34.3.6 How to Fix Incongruencies Between the Tip Layer and Base Metadata 34-21
34.3.7 What Happens When You Customize an Application .. 34-22
34.3.8 How to Customize Business Logic using Groovy Triggers 34-22
34.3.9 How to Customize ADF Library Artifacts in JDeveloper 34-23
34.3.9.1 Specifying a Location for ADF Library Customizations 34-24
34.3.9.2 Viewing ADF Library Runtime Customizations from Exported JARs 34-24
34.3.10 What Happens When You Customize ADF Library Artifacts 34-25
34.3.11 How to Package and Deploy Customized Applications .. 34-26
34.3.11.1 Implicitly Creating a MAR .. 34-26
34.3.11.2 Explicitly Creating a MAR .. 34-27
34.3.12 What Happens at Runtime in a Customized Application 34-28
34.3.13 What You May Need to Know About Customized Applications 34-28
34.3.13.1 Customization and Integrated Source Control .. 34-28
34.3.13.2 Editing Resource Bundles in Customized Applications 34-28
34.4 Extended Metadata Properties ... 34-29
34.4.1 How to Edit Extended Metadata Properties .. 34-30
34.4.2 How to Enable Customization for Design Time at Runtime 34-30
34.5 Enabling Runtime Modification of Customization Configuration 34-32

35 Allowing User Customizations at Runtime

35.1 Introduction to Allowing User Customizations ... 35-1
35.2 Enabling Runtime User Customizations for a Fusion Web Application 35-6
35.2.1 How to Enable User Customizations ... 35-6
35.2.2 What Happens When You Enable User Customizations ... 35-7
35.3 Configuring User Customizations .. 35-8
35.3.1 How to Configure Change Persistence .. 35-9
35.3.2 What Happens When You Configure Change Persistence 35-10
35.4 Controlling User Customizations in Individual JSF Pages ... 35-10
35.4.1 How to Implement User Customizations on a JSF Page .. 35-11
35.4.2 What Happens at Runtime: How Changes Are Persisted and Restored 35-12

xxxv

35.4.3 What You May Need to Know About Using Change Persistence on Templates,
Regions, and Declarative Components .. 35-12

35.5 Implementing Custom User Customizations ... 35-13
35.5.1 Change Persistence Framework API .. 35-14
35.5.2 How to Create Code for Custom User Customizations ... 35-15
35.6 Creating Implicit Change Persistence in Custom Components 35-19
35.6.1 How to Set Implicit Change Persistence For Attribute Values that Use Events 35-19
35.6.2 How to Set Implicit Change Persistence For Other Attribute Values 35-20

36 Deploying Fusion Web Applications

36.1 Introduction to Deploying Fusion Web Applications ... 36-1
36.1.1 Developing Applications with Integrated WebLogic Server 36-3
36.1.2 Developing Applications to Deploy to Standalone Application Servers 36-3
36.2 Running an ADF Application in Integrated WebLogic Server 36-5
36.2.1 How to Run an Application in Integrated WebLogic Server 36-6
36.2.2 How to Run an Application with Metadata in Integrated WebLogic Server 36-6
36.3 Preparing the Application .. 36-8
36.3.1 How to Create a Connection to the Target Application Server 36-9
36.3.2 How to Create Deployment Profiles .. 36-11
36.3.2.1 Adding Customization Classes into a JAR .. 36-12
36.3.2.2 Creating a WAR Deployment Profile .. 36-13
36.3.2.3 Creating a MAR Deployment Profile .. 36-14
36.3.2.4 Creating an Application-Level EAR Deployment Profile 36-17
36.3.2.5 Delivering Customization Classes as a Shared Library 36-18
36.3.2.6 Viewing and Changing Deployment Profile Properties 36-19
36.3.3 How to Create and Edit Deployment Descriptors ... 36-19
36.3.3.1 Creating Deployment Descriptors ... 36-20
36.3.3.2 Viewing or Modifying Deployment Descriptor Properties 36-21
36.3.3.3 Configuring the application.xml File for Application Server Compatibility ... 36-21
36.3.3.4 Configuring the web.xml File for Application Server Compatibility 36-22
36.3.3.5 Enabling the Application for Real User Experience Insight and End User

Monitoring .. 36-22
36.3.4 How to Deploy Applications with ADF Security Enabled 36-24
36.3.4.1 Applications That Will Run Using Oracle Single Sign-On (SSO) 36-24
36.3.4.2 Configuring Security for WebLogic Server .. 36-25
36.3.4.3 Configuring Security for WebSphere Server ... 36-26
36.3.5 How to Replicate Memory Scopes in a Clustered Environment 36-27
36.3.6 How to Enable the Application for ADF MBeans .. 36-27
36.3.7 What You May Need to Know About JDBC Data Source for Oracle WebLogic Server ..

36-29
36.4 Deploying the Application ... 36-30
36.4.1 How to Deploy to the Application Server from JDeveloper 36-33
36.4.2 How to Create an EAR File for Deployment .. 36-35
36.4.3 What You May Need to Know About EAR Files and Packaging 36-36
36.4.4 How to Deploy the Application Using Scripts and Ant ... 36-36
36.4.5 How to Deploy New Customizations Applied to ADF LIbrary 36-36
36.4.5.1 Exporting Customization to a Deployed Application 36-37

xxxvi

36.4.5.2 Deploying Customizations to a JAR .. 36-37
36.4.6 What You May Need to Know About ADF Libraries ... 36-38
36.4.7 What You May Need to Know About JDeveloper Runtime Libraries 36-38
36.5 Postdeployment Configuration .. 36-38
36.5.1 How to Migrate an Application ... 36-38
36.5.2 How to Configure the Application Using ADF MBeans .. 36-39
36.6 Testing the Application and Verifying Deployment .. 36-39

Part VI Advanced Topics

37 Advanced Business Components Techniques

37.1 Globally Extending ADF Business Components Functionality 37-1
37.1.1 How To Create a Framework Extension Class ... 37-1
37.1.2 What Happens When You Create a Framework Extension Class 37-3
37.1.3 How to Base an ADF Component on a Framework Extension Class 37-3
37.1.4 How to Define Framework Extension Classes for All New Components 37-5
37.1.5 How to Define Framework Extension Classes for All New Projects 37-6
37.1.6 What Happens When You Base a Component on a Framework Extension Class ... 37-6
37.1.6.1 XML-Only Components .. 37-6
37.1.6.2 Components with Custom Java Classes .. 37-7
37.1.7 What You May Need to Know About Updating the Extends Clause in Custom

Component Java Files .. 37-8
37.2 Creating a Layer of Framework Extensions ... 37-8
37.2.1 How to Create Your Layer of Framework Extension Layer Classes 37-9
37.2.2 How to Package Your Framework Extension Layer in a JAR File 37-10
37.2.3 How to Create a Library Definition for Your Framework Extension JAR File 37-10
37.3 Customizing Framework Behavior with Extension Classes ... 37-11
37.3.1 How to Access Runtime Metadata For View Objects and Entity Objects 37-11
37.3.2 How to Implement Generic Functionality Using Runtime Metadata 37-12
37.3.3 How to Implement Generic Functionality Driven by Custom Properties 37-13
37.3.4 How to Configure Design Time Custom Property Names 37-14
37.3.5 What You May Need to Know About the Kinds of Attributes 37-14
37.3.6 What You May Need to Know About Custom Properties 37-14
37.4 Creating Generic Extension Interfaces ... 37-14
37.5 Invoking Stored Procedures and Functions ... 37-17
37.5.1 How to Invoke Stored Procedures with No Arguments .. 37-17
37.5.2 How to Invoke Stored Procedure with Only IN Arguments 37-17
37.5.3 How to Invoke Stored Function with Only IN Arguments 37-19
37.5.4 How to Call Other Types of Stored Procedures ... 37-20
37.6 Accessing the Current Database Transaction ... 37-22
37.7 Working with Libraries of Reusable Business Components ... 37-22
37.7.1 How To Create a Reusable Library of Business Components 37-22
37.7.2 How To Import a Package of Reusable Components from a Library 37-24
37.7.3 How to Remove an Imported Package from a Project ... 37-25
37.7.4 What Happens When You Import a Package of Reusable Components from a Library .

37-25
37.7.5 What You May Need to Know About Imported Projects 37-25

xxxvii

37.8 Customizing Business Components Error Messages .. 37-26
37.8.1 How to Customize Base ADF Business Components Error Messages 37-26
37.8.2 What Happens When You Customize Base ADF Business Components Error

Messages .. 37-28
37.8.3 How to Display Customize Error Messages as Nested Exceptions 37-28
37.8.4 How to Customize Error Messages for Database Constraint Violations 37-30
37.8.5 How to Implement a Custom Constraint Error Handling Routine 37-30
37.8.5.1 Creating a Custom Database Transaction Framework Extension Class 37-30
37.8.5.2 Configuring an Application Module to Use a Custom Database Transaction Class .

37-31
37.9 Creating Extended Components Using Inheritance ... 37-32
37.9.1 How To Create a Component That Extends Another .. 37-33
37.9.2 How To Extend a Component After Creation .. 37-33
37.9.3 What Happens When You Create a Component That Extends Another 37-33
37.9.3.1 Understanding an Extended Component's XML Descriptor 37-33
37.9.3.2 Understanding Java Code Generation for an Extended Component 37-34
37.9.4 What You May Need to Know ... 37-34
37.9.4.1 You Can Use Parent Classes and Interfaces to Work with Extended Components ..

37-34
37.9.4.2 Class Extends is Disabled for Extended Components 37-36
37.9.4.3 Interesting Aspects You Can Extend for Key Component Types 37-37
37.9.4.4 Extended Components Have Attribute Indices Relative to Parent 37-37
37.10 Substituting Extended Components in a Delivered Application 37-37
37.10.1 How To Substitute an Extended Component ... 37-38
37.10.2 What Happens When You Substitute .. 37-39
37.10.3 How to Enable the Substituted Components in the Base Application 37-40

38 Advanced Entity Object Techniques

38.1 Creating Custom, Validated Data Types Using Domains .. 38-1
38.1.1 How to Create a Domain ... 38-2
38.1.2 What Happens When You Create a Domain .. 38-2
38.1.3 What You May Need to Know About Domains ... 38-3
38.1.3.1 Using Domains for Entity and View Object Attributes 38-3
38.1.3.2 Validate Method Should Throw DataCreationException If Sanity Checks Fail . 38-3
38.1.3.3 String Domains Aggregate a String Value ... 38-4
38.1.3.4 Other Domains Extend Existing Domain Type ... 38-4
38.1.3.5 Simple Domains Are Immutable Java Classes ... 38-5
38.1.3.6 Creating Domains for Oracle Object Types When Useful 38-5
38.1.3.7 Quickly Navigating to the Domain Class .. 38-6
38.1.3.8 Domains Get Packaged in the Common JAR .. 38-6
38.1.3.9 Entity and View Object Attributes Inherit Custom Domain Properties 38-6
38.1.3.10 Domain Settings Cannot Be Less Restrictive at Entity or View Level 38-7
38.2 Updating a Deleted Flag Instead of Deleting Rows .. 38-7
38.2.1 How to Update a Deleted Flag When a Row Is Removed .. 38-7
38.2.2 Forcing an Update DML Operation Instead of a Delete ... 38-7
38.3 Using Update Batching .. 38-8
38.4 Advanced Entity Association Techniques .. 38-9

xxxviii

38.4.1 Modifying Association SQL Clause to Implement Complex Associations 38-9
38.4.2 Exposing View Link Accessor Attributes at the Entity Level 38-10
38.4.3 Optimizing Entity Accessor Access by Retaining the Row Set 38-10
38.5 Basing an Entity Object on a PL/SQL Package API ... 38-11
38.5.1 How to Create an Entity Object Based on a View .. 38-12
38.5.2 What Happens When You Create an Entity Object Based on a View 38-12
38.5.3 Centralizing Details for PL/SQL-Based Entities into a Base Class 38-13
38.5.4 Implementing the Stored Procedure Calls for DML Operations 38-14
38.5.5 Adding Select and Lock Handling ... 38-15
38.5.5.1 Updating PLSQLEntityImpl Base Class to Handle Lock and Select 38-15
38.5.5.2 Implementing Lock and Select for the Product Entity 38-16
38.5.5.3 Refreshing the Entity Object After RowInconsistentException 38-19
38.6 Basing an Entity Object on a Join View or Remote DBLink .. 38-19
38.7 Using Inheritance in Your Business Domain Layer .. 38-20
38.7.1 Understanding When Inheritance Can Be Useful .. 38-20
38.7.2 How to Create Entity Objects in an Inheritance Hierarchy 38-21
38.7.2.1 Start by Identifying the Discriminator Column and Distinct Values 38-21
38.7.2.2 Identify the Subset of Attributes Relevant to Each Kind of Entity 38-22
38.7.2.3 Creating the Base Entity Object in an Inheritance Hierarchy 38-22
38.7.2.4 Creating a Subtype Entity Object in an Inheritance Hierarchy 38-23
38.7.3 How to Add Methods to Entity Objects in an Inheritance Hierarchy 38-24
38.7.3.1 Adding Methods Common to All Entity Objects in the Hierarchy 38-24
38.7.3.2 Overriding Common Methods in a Subtype Entity ... 38-24
38.7.3.3 Adding Methods Specific to a Subtype Entity ... 38-25
38.7.4 What You May Need to Know About Using Inheritance 38-25
38.7.4.1 Sometimes You Need to Introduce a New Base Entity 38-25
38.7.4.2 Finding Subtype Entities by Primary Key ... 38-25
38.7.4.3 You Can Create View Objects with Polymorphic Entity Usages 38-26
38.8 Controlling Entity Posting Order to Avoid Constraint Violations 38-26
38.8.1 Understanding the Default Post Processing Order .. 38-26
38.8.2 How Compositions Change the Default Processing Ordering 38-26
38.8.3 Overriding postChanges() to Control Post Order .. 38-26
38.8.3.1 Observing the Post Ordering Problem First Hand .. 38-26
38.8.3.2 Forcing the Supplier to Post Before the Product .. 38-28
38.8.3.3 Understanding Associations Based on DBSequence-Valued Primary Keys 38-30
38.8.3.4 Refreshing References to DBSequence-Assigned Foreign Keys 38-30
38.9 Implementing Custom Validation Rules .. 38-31
38.9.1 How to Create a Custom Validation Rule .. 38-31
38.9.2 Adding a Design Time Bean Customizer for Your Rule .. 38-33
38.9.3 Registering and Using a Custom Rule in JDeveloper .. 38-34
38.10 Creating New History Types ... 38-34
38.10.1 How to Create New History Types .. 38-35
38.10.2 How to Remove a History Type .. 38-36

39 Advanced View Object Techniques

39.1 Advanced View Object Concepts and Features .. 39-1
39.1.1 Limiting the View Object Max Fetch Size to Fetch the First n Rows 39-1

xxxix

39.1.2 Maintaining New Row Consistency in View Objects Based on the Same Entity 39-2
39.1.2.1 What Happens at Runtime When View Link Consistency is Enabled 39-3
39.1.2.2 How to Change the Default View Link Consistency Setting 39-3
39.1.2.3 How to Use a RowMatch to Qualify Which New, Unposted Rows Get Added to a

Row Set .. 39-4
39.1.2.4 What You May Need to Know About the Dynamic WHERE Clause and View Link

Consistency ... 39-5
39.1.3 Understanding View Link Accessors Versus Data Model View Link Instances 39-5
39.1.3.1 Enabling a Dynamic Detail Row Set with Active Master-Detail Coordination . 39-5
39.1.3.2 Accessing a Stable Detail Row Set Using View Link Accessor Attributes 39-6
39.1.3.3 Accessor Attributes Create Distinct Row Sets Based on an Internal View Object

39-6
39.1.4 Presenting and Scrolling Data a Page at a Time Using the Range 39-7
39.1.5 Efficiently Scrolling Through Large Result Sets Using Range Paging 39-8
39.1.5.1 Understanding How to Oracle Supports "TOP-N" Queries 39-9
39.1.5.2 How to Enable Range Paging for a View Object ... 39-10
39.1.5.3 What Happens When You Enable Range Paging .. 39-11
39.1.5.4 What Happens When View Rows are Cached When Using Range Paging 39-12
39.1.5.5 How to Scroll to a Given Page Number Using Range Paging 39-12
39.1.5.6 Estimating the Number of Pages in the Row Set Using Range Paging 39-12
39.1.5.7 Understanding the Tradeoffs of Using a Range Paging Mode 39-12
39.1.6 Setting Up a Data Model with Multiple Masters ... 39-13
39.1.7 Understanding When You Can Use Partial Keys with findByKey() 39-14
39.1.8 Creating Dynamic Attributes to Store UI State .. 39-15
39.1.9 Working with Multiple Row Sets and Row Set Iterators 39-15
39.1.10 Optimizing View Link Accessor Access By Retaining the Row Set 39-16
39.2 Tuning Your View Objects for Best Performance ... 39-17
39.2.1 Use Bind Variables for Parameterized Queries .. 39-17
39.2.1.1 Use Bind Variables to Avoid Re-parsing of Queries .. 39-17
39.2.1.2 Use Bind Variables to Prevent SQL-Injection Attacks 39-18
39.2.2 Consider Using Entity-Based View Objects for Read-Only Data 39-18
39.2.3 Use SQL Tracing to Identify Ill-Performing Queries .. 39-20
39.2.4 Consider the Appropriate Tuning Settings for Every View Object 39-21
39.2.4.1 Set the Database Retrieval Options Appropriately .. 39-22
39.2.4.2 Consider Whether Fetching One Row at a Time is Appropriate 39-22
39.2.4.3 Specify a Query Optimizer Hint if Necessary ... 39-22
39.2.5 Creating View Objects at Design Time .. 39-23
39.2.6 Use Forward Only Mode to Avoid Caching View Rows 39-23
39.3 Generating Custom Java Classes for a View Object .. 39-24
39.3.1 How To Generate Custom Classes ... 39-24
39.3.1.1 Generating Bind Variable Accessors .. 39-25
39.3.1.2 Generating View Row Attribute Accessors ... 39-25
39.3.1.3 Exposing View Row Accessors to Clients .. 39-26
39.3.1.4 Configuring Default Java Generation Preferences ... 39-27
39.3.2 What Happens When You Generate Custom Classes .. 39-27
39.3.2.1 Seeing and Navigating to Custom Java Files ... 39-28
39.3.3 What You May Need to Know About Custom Classes .. 39-28

xl

39.3.3.1 About the Framework Base Classes for a View Object 39-28
39.3.3.2 You Can Safely Add Code to the Custom Component File 39-28
39.3.3.3 Attribute Indexes and InvokeAccessor Generated Code 39-29
39.4 Working Programmatically with Multiple Named View Criteria 39-30
39.4.1 Applying One or More Named View Criteria ... 39-31
39.4.2 Removing All Applied Named View Criteria .. 39-32
39.4.3 Using the Named Criteria at Runtime ... 39-32
39.5 Performing In-Memory Sorting and Filtering of Row Sets ... 39-33
39.5.1 Understanding the View Object's SQL Mode .. 39-34
39.5.2 Sorting View Object Rows In Memory .. 39-34
39.5.2.1 Combining setSortBy and setQueryMode for In-Memory Sorting 39-35
39.5.2.2 Extensibility Points for In-Memory Sorting ... 39-36
39.5.3 Performing In-Memory Filtering with View Criteria ... 39-37
39.5.4 Performing In-Memory Filtering with RowMatch ... 39-39
39.5.4.1 Applying a RowMatch to a View Object ... 39-40
39.5.4.2 Using RowMatch to Test an Individual Row .. 39-41
39.5.4.3 How a RowMatch Affects Rows Fetched from the Database 39-41
39.6 Using View Objects to Work with Multiple Row Types ... 39-42
39.6.1 Working with Polymorphic Entity Usages .. 39-42
39.6.2 How To Create a View Object with a Polymorphic Entity Usage 39-42
39.6.3 What Happens When You Create a View Object with a Polymorphic Entity Usage

39-46
39.6.4 What You May Need to Know About Entity Usages ... 39-46
39.6.4.1 Your Query Must Limit Rows to Expected Entity Subtypes 39-47
39.6.4.2 Exposing Selected Entity Methods in View Rows Using Delegation 39-47
39.6.4.3 Creating New Rows With the Desired Entity Subtype 39-48
39.6.5 Working with Polymorphic View Rows .. 39-49
39.6.6 How to Create a View Object with Polymorphic View Rows 39-50
39.6.7 What You May Need to Know About Polymorphic View Rows 39-51
39.6.7.1 Selecting Subtype-Specific Attributes in Extended View Objects 39-51
39.6.7.2 Delegating to Subtype-Specific Methods After Overriding the Entity Usage . 39-52
39.6.7.3 Working with Different View Row Interface Types in Client Code 39-52
39.6.7.4 View Row Polymorphism and Polymorphic Entity Usage are Orthogonal 39-53
39.7 Reading and Writing XML ... 39-54
39.7.1 How to Produce XML for Queried Data .. 39-54
39.7.2 What Happens When You Produce XML .. 39-55
39.7.3 What You May Need to Know About Reading and Writing XML 39-57
39.7.3.1 Controlling XML Element Names ... 39-57
39.7.3.2 Controlling Element Suppression for Null-Valued Attributes 39-58
39.7.3.3 Printing or Searching the Generated XML Using XPath 39-58
39.7.3.4 Using the Attribute Map For Fine Control Over Generated XML 39-58
39.7.3.5 Use the Attribute Map Approach with Bi-Directional View Links 39-60
39.7.3.6 Transforming Generated XML Using an XSLT Stylesheet 39-60
39.7.3.7 Generating XML for a Single Row ... 39-62
39.7.4 How to Consume XML Documents to Apply Changes ... 39-62
39.7.5 What Happens When You Consume XML Documents ... 39-62
39.7.5.1 How ViewObject.readXML() Processes an XML Document 39-62
39.7.5.2 Using readXML() to Processes XML for a Single Row 39-62

xli

39.8 Using Programmatic View Objects for Alternative Data Sources 39-66
39.8.1 How to Create a Read-Only Programmatic View Object 39-66
39.8.2 How to Create an Entity-Based Programmatic View Object 39-67
39.8.3 Key Framework Methods to Override for Programmatic View Objects 39-67
39.8.4 How to Create a View Object on a REF CURSOR .. 39-68
39.8.4.1 The Overridden create() Method ... 39-69
39.8.4.2 The Overridden executeQueryForCollection() Method 39-69
39.8.4.3 The Overridden createRowFromResultSet() Method 39-69
39.8.4.4 The Overridden hasNextForCollectionMethod() .. 39-70
39.8.4.5 The Overridden releaseUserDataForCollection() Method 39-71
39.8.4.6 The Overridden getQueryHitCount() Method .. 39-71
39.9 Creating a View Object with Multiple Updatable Entities ... 39-72
39.10 Programmatically Creating View Definitions and View Objects 39-74
39.11 Declaratively Preventing Insert, Update, and Delete ... 39-75

40 Application State Management

40.1 Understanding Why State Management is Necessary .. 40-1
40.1.1 Examples of Multi-Step Tasks .. 40-1
40.1.2 Stateless HTTP Protocol Complicates Stateful Applications 40-2
40.1.3 How Cookies Are Used to Track a User Session .. 40-2
40.1.4 Performance and Reliability Impact of Using HttpSession 40-3
40.2 Introduction to Fusion Web Application State Management .. 40-5
40.2.1 Basic Architecture of the Save for Later Facility ... 40-5
40.2.2 Basic Architecture of the Application Module State Management Facility 40-5
40.2.2.1 Understanding When Passivation and Activation Occurs 40-6
40.2.2.2 How Passivation Changes When Optional Failover Mode is Enabled 40-8
40.2.2.3 About State Management Release Levels .. 40-9
40.3 Using Save For Later ... 40-11
40.4 Setting the Application Module Release Level at Runtime .. 40-11
40.4.1 How to Set Unmanaged Level ... 40-11
40.4.2 How to Set Reserved Level .. 40-12
40.4.3 How to Set Managed Level .. 40-12
40.4.4 How to Set Release Level in a JSF Backing Bean .. 40-12
40.4.5 How to Set Release Level in an ADF PagePhaseListener 40-12
40.4.6 How to Set Release Level in an ADF PageController ... 40-13
40.4.7 How to Set Release Level in an Custom ADF PageLifecycle 40-14
40.5 What Model State Is Saved and When It Is Cleaned Up ... 40-14
40.5.1 State Information Saved During Passivation ... 40-15
40.5.2 Where the Model State Is Saved ... 40-15
40.5.2.1 How Database-Backed Passivation Works .. 40-15
40.5.2.2 Controlling the Schema Where the State Management Table Resides 40-16
40.5.2.3 Configuring the Type of Passivation Store .. 40-16
40.5.3 Cleaning Up the Model State ... 40-17
40.5.3.1 Previous Snapshot Removed When Next One Taken 40-17
40.5.3.2 Passivation Snapshot Removed on Unmanaged Release 40-17
40.5.3.3 Passivation Snapshot Retained in Failover Mode .. 40-18
40.5.4 Cleaning Up Temporary Storage Tables .. 40-18

xlii

40.6 Timing Out the HttpSession ... 40-19
40.6.1 How to Configure the Implicit Timeout Due to User Inactivity 40-19
40.6.2 How to Code an Explicit HttpSession Timeout ... 40-19
40.7 Managing Custom User-Specific Information .. 40-20
40.7.1 How to Passivate Custom User-Specific Information .. 40-20
40.7.2 What Happens When You Passivate Custom Information 40-21
40.7.3 What You May Need to Know About Activating Custom Information 40-22
40.8 Managing the State of View Objects ... 40-22
40.8.1 How to Manage the State of View Objects ... 40-22
40.8.2 What You May Need to Know About Passivating View Objects 40-22
40.8.3 How to Manage the State of Transient View Objects and Attributes 40-22
40.8.4 What You May Need to Know About Passivating Transient View Objects 40-23
40.8.5 How to Use Transient View Objects to Store Session-level Global Variables 40-23
40.9 Using State Management for Middle-Tier Savepoints .. 40-24
40.9.1 How to Use State Management for Savepoints .. 40-25
40.10 Testing to Ensure Your Application Module is Activation-Safe 40-25
40.10.1 Understanding the jbo.ampool.doampooling Configuration Parameter 40-25
40.10.2 Disabling Application Module Pooling to Test Activation 40-25
40.11 Keeping Pending Changes in the Middle Tier ... 40-26
40.11.1 How to Set Applications to Use Optimistic Locking ... 40-27
40.11.2 How to Avoid Clashes Using the postChanges() Method 40-28
40.11.3 How to Use the Reserved Level For Pending Database States 40-28

41 Tuning Application Module Pools and Connection Pools

41.1 Introduction to Application Module Pooling ... 41-1
41.1.1 Types of Pools Created When Running the Fusion Web Application 41-2
41.1.1.1 Application Module Pools ... 41-2
41.1.1.2 Database Connection Pools ... 41-2
41.1.2 Understanding Application Module and Connection Pools 41-3
41.1.2.1 Single Oracle WebLogic Server Domain, Single Oracle WebLogic Server Instance,

Single JVM ... 41-3
41.1.2.2 Multiple Oracle WebLogic Server Domains, Multiple Oracle WebLogic Server

Instance, Multiple JVMs .. 41-3
41.2 Setting Pool Configuration Parameters .. 41-4
41.2.1 How to Set Configuration Properties Declaratively ... 41-5
41.2.2 What Happens When You Set Configuration Properties Declaratively 41-5
41.2.3 How to Set Configuration Properties as System Parameters 41-6
41.2.4 How to Programmatically Set Configuration Properties ... 41-7
41.2.5 What You May Need to Know About Configuration Property Scopes 41-8
41.2.6 What You May Need to Know About How Database and Application Module Pools

Cooperate .. 41-9
41.2.7 What You May Need to Know About Application Module Pool Parameters 41-11
41.2.7.1 Pool Behavior Parameters ... 41-11
41.2.7.2 Pool Sizing Parameters .. 41-14
41.2.7.3 Pool Cleanup Parameters .. 41-15
41.2.8 What You May Need to Know About Data Source Configuration 41-17
41.2.9 What You May Need to Know About Database Connection Pool Parameters 41-18

xliii

41.3 Initializing Database State and Pooling Considerations ... 41-20
41.3.1 How to Set Database State Per User ... 41-20
41.3.2 What You May Need to Know About Database User State and

jbo.doconnectionpooling = true ... 41-21

42 Using the Active Data Service

42.1 Introduction to the Active Data Service .. 42-1
42.1.1 Limitations of the Active Data Service Framework ... 42-2
42.1.2 Active Data Service Framework ... 42-2
42.1.3 Data Transport Modes ... 42-4
42.2 Configuring the Active Data Service .. 42-5
42.2.1 How to Configure the Active Data Service .. 42-6
42.2.2 What You May Need to Know About Transport Modes ... 42-7
42.3 Configuring Components to Use the Active Data Service .. 42-9
42.3.1 How to Configure Components to Use the Active Data Service Without the Active

Data Proxy ... 42-10
42.3.2 How to Configure Components to Use the Active Data Service with the Active Data

Proxy .. 42-10
42.3.3 What You May Need to Know About Displaying Active Data in ADF Trees 42-11
42.3.4 What Happens at Runtime: How Components Render When Bound to Active Data

42-11
42.3.5 What You May Need to Know About ADS and Google Chrome 42-11
42.4 Using the Active Data Proxy .. 42-12
42.4.1 What You May Need to Know About Read Consistency 42-17
42.5 Using the Active Data with a Scalar Model .. 42-17

Part VII Appendices

A Oracle ADF XML Files

A.1 Introduction to the ADF Metadata Files ...A-1
A.2 ADF File Overview Diagram ..A-2
A.2.1 Oracle ADF Data Control Files ..A-2
A.2.2 Oracle ADF Data Binding Files ..A-3
A.2.3 Web Configuration Files ..A-3
A.3 ADF File Syntax Diagram ...A-4
A.4 adfm.xml ..A-5
A.5 modelProjectName.jpx ..A-6
A.6 bc4j.xcfg ..A-8
A.7 DataBindings.cpx ...A-9
A.7.1 DataBindings.cpx Syntax ...A-9
A.7.2 DataBindings.cpx Sample ..A-11
A.8 pageNamePageDef.xml ...A-12
A.8.1 PageDef.xml Syntax ...A-12
A.9 adfc-config.xml ...A-23
A.10 task-flow-definition.xml ...A-24
A.11 adf-config.xml ..A-24
A.12 adf-settings.xml ..A-27

xliv

A.13 web.xml ..A-27
A.14 logging.xml ..A-28

B Oracle ADF Binding Properties

C Oracle ADF Permission Grants

D ADF Equivalents of Common Oracle Forms Triggers

D.1 Validation and Defaulting (Business Logic) ...D-1
D.2 Query Processing ...D-2
D.3 Database Connection ..D-3
D.4 Transaction "Post" Processing (Record Cache) ...D-3
D.5 Error Handling ...D-4

E Most Commonly Used ADF Business Components Methods

E.1 Most Commonly Used Methods in the Client Tier ...E-1
E.1.1 ApplicationModule Interface ...E-1
E.1.2 Transaction Interface ...E-3
E.1.3 ViewObject Interface ..E-3
E.1.4 RowSet Interface ..E-5
E.1.5 RowSetIterator Interface ..E-6
E.1.6 Row Interface ...E-7
E.1.7 StructureDef Interface ..E-8
E.1.8 AttributeDef Interface ..E-8
E.1.9 AttributeHints Interface ...E-9
E.2 Most Commonly Used Methods in the Business Service Tier ..E-10
E.2.1 Controlling Custom Java Files for Your Components ...E-10
E.2.2 ApplicationModuleImpl Class ...E-11
E.2.2.1 Methods You Typically Call on ApplicationModuleImplE-11
E.2.2.2 Methods You Typically Write in Your Custom ApplicationModuleImpl Subclass ..

E-11
E.2.2.3 Methods You Typically Override in Your Custom ApplicationModuleImpl

Subclass ...E-12
E.2.3 DBTransactionImpl2 Class ..E-13
E.2.3.1 Methods You Typically Call on DBTransaction ..E-13
E.2.3.2 Methods You Typically Override in Your Custom DBTransactionImpl2 Subclass ..

E-14
E.2.4 EntityImpl Class ..E-15
E.2.4.1 Methods You Typically Call on EntityImpl ...E-15
E.2.4.2 Methods You Typically Write in Your Custom EntityImpl SubclassE-16
E.2.4.3 Methods You Typically Override in Your Custom EntityImpl SubclassE-16
E.2.5 EntityDefImpl Class ...E-17
E.2.5.1 Methods You Typically Call on EntityDefImpl ...E-18
E.2.5.2 Methods You Typically Write in Your Custom EntityDefImpl ClassE-18
E.2.5.3 Methods You Typically Override in Your Custom EntityDefImplE-19
E.2.6 ViewObjectImpl Class ...E-19
E.2.6.1 Methods You Typically Call on ViewObjectImpl ..E-19

xlv

E.2.6.2 Methods You Typically Write in Your Custom ViewObjectImpl SubclassE-20
E.2.6.3 Methods You Typically Override in Your Custom ViewObjectImpl Subclass ..E-21
E.2.7 ViewRowImpl Class ..E-22
E.2.7.1 Methods You Typically Call on ViewRowImpl ...E-22
E.2.7.2 Methods You Typically Write in Your Custom ViewRowImpl ClassE-23
E.2.7.3 Methods You Typically Override in Your Custom ViewRowImpl SubclassE-23
E.2.8 Setting Up Your Own Layer of Framework Base Classes ..E-24

F ADF Business Components Java EE Design Pattern Catalog

G Performing Common Oracle Forms Tasks in Oracle ADF

G.1 Performing Tasks Related to Data ... G-1
G.1.1 How to Retrieve Lookup Display Values for Foreign Keys G-1
G.1.2 How to Get the Sysdate from the Database .. G-2
G.1.3 How to Implement an Isolation Mode That Is Not Read Consistent G-2
G.1.4 How to Implement Calculated Fields ... G-2
G.1.5 How to Implement Mirrored Items ... G-3
G.1.6 How to Use Database Columns of Type CLOB or BLOB .. G-3
G.2 Performing Tasks Related to the User Interface .. G-3
G.2.1 How to Lay Out a Page ... G-3
G.2.2 How to Stack Canvases ... G-4
G.2.3 How to Implement a Master-Detail Screen ... G-4
G.2.4 How to Implement an Enter Query Screen ... G-4
G.2.5 How to Implement an Updatable Multi-Record Table ... G-4
G.2.6 How to Create a Popup List of Values .. G-4
G.2.7 How to Implement a Dropdown List as a List of Values .. G-5
G.2.8 How to Implement a Dropdown List with Values from Another Table G-5
G.2.9 How to Implement Immediate Locking .. G-5
G.2.10 How to Throw an Error When a Record Is Locked ... G-6

H Data Controls in Oracle ADF Fusion Web Applications

H.1 Introduction to Data Controls ... H-1
H.2 Data Control Feature Implementation Comparison .. H-2
H.3 Data Control Objects ... H-3

Glossary

xlvi

xlvii

Preface

Welcome to the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework (Oracle Fusion Applications Edition).

Audience
This document is intended for enterprise developers who need to create and deploy
database-centric Java EE applications with a service-oriented architecture using the
Oracle Application Development Framework (Oracle ADF). This guide explains how
to build Fusion web applications using ADF Business Components, ADF Controller,
ADF Faces, and JavaServer Faces.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
For more information, see the following documents:

Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework (Oracle Fusion Applications Edition)

Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle Application
Development Framework

Oracle Fusion Middleware Mobile Browser Developer's Guide for Oracle Application
Development Framework

Oracle Fusion Middleware Performance and Tuning Guide

Oracle Fusion Middleware High Availability Guide

Oracle Fusion Middleware Administrator’s Guide for Oracle Application Development
Framework

xlviii

Oracle Fusion Middleware Java EE Developer’s Guide for Oracle Application Development

Oracle JDeveloper 11g Online Help

Oracle JDeveloper 11g Release Notes, included with your JDeveloper 11g installation, and
on Oracle Technology Network

Oracle Fusion Middleware Java API Reference for Oracle ADF Model

Oracle Fusion Middleware Java API Reference for Oracle ADF Controller

Oracle Fusion Middleware Java API Reference for Oracle ADF Lifecycle

Oracle Fusion Middleware Java API Reference for Oracle ADF Faces

Oracle Fusion Middleware JavaScript API Reference for Oracle ADF Faces

Oracle Fusion Middleware Java API Reference for Oracle ADF Data Visualization
Components

Oracle Fusion Middleware Java API Reference for Oracle ADF Share

Oracle Fusion Middleware Java API Reference for Oracle ADF Business Components Browser

Oracle Fusion Middleware Java API Reference for Oracle Generic Domains

Oracle Fusion Middleware interMedia Domains Java API Reference for Oracle ADF Business
Components

Oracle Fusion Middleware Java API Reference for Oracle Metadata Service (MDS)

Oracle Fusion Middleware Tag Reference for Oracle ADF Faces

Oracle Fusion Middleware Tag Reference for Oracle ADF Faces Skin Selectors

Oracle Fusion Middleware Data Visualization Tools Tag Reference for Oracle ADF Faces

Oracle Fusion Middleware Data Visualization Tools Tag Reference for Oracle ADF Skin
Selectors

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements (for example,
menus and menu items, buttons, tabs, dialog controls), including
options that you select.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates language and syntax elements, directory and
file names, URLs, text that appears on the screen, or text that you enter.

xlix

What's New in This Guide for Release
11.1.1.6.4

For Release 11.1.1.6.4, this guide has been updated in several ways. The following
table lists the sections that have been added or changed.

For changes made to Oracle JDeveloper and Oracle Application Development
Framework (Oracle ADF) for this release, see the New Features page on the Oracle
Technology Network at
http://www.oracle.com/technetwork/developer-tools/jdev/documenta
tion/index.html.

Sections Changes Made

Chapter 11, "Integrating Service-Enabled
Application Modules"

Section 11.2.3, "What You May Need to Know
About Method Signatures on the Service Interface"

Section revised to note that the ADF Business Components
service interface does not support the Java Map collection as
a return type for a collection of objects.

Chapter 30, "Enabling ADF Security in a Fusion
Web Application"

Section 30.7, "Creating a Login Page" Section revised to clarify how the procedure to create a login
page programmatically uses Oracle WebLogic
Server-specific API for Basic authentication.
Consequently, there is no need to configure the
web.xml file for the ADF authentication servlet to
redirect to a landing page upon login.

Chapter 41, "Tuning Application Module Pools
and Connection Pools"

Section 41.1.2, "Understanding Application Module
and Connection Pools"

Section revised to clarify the relationship between
application module pools and Oracle WebLogic Server
domains.

l

Part I
Part I Getting Started with Fusion Web

Applications

Part I contains the following chapters:

■ Chapter 1, "Introduction to Building Fusion Web Applications with Oracle ADF"

■ Chapter 2, "Introduction to the ADF Sample Application"

1

Introduction to Building Fusion Web Applications with Oracle ADF 1-1

1Introduction to Building Fusion Web
Applications with Oracle ADF

This chapter describes the architecture and key functionality of Oracle Application
Development Framework (Oracle ADF) when used to build a Fusion web application
that uses ADF Business Components, ADF Model, ADF Controller, and ADF Faces
rich client, along with high-level development practices.

This chapter includes the following sections:

■ Section 1.1, "Introduction to Oracle ADF"

■ Section 1.2, "Oracle ADF Architecture"

■ Section 1.3, "Developing with Oracle ADF"

■ Section 1.4, "Working Productively in Teams"

■ Section 1.5, "Learning Oracle ADF"

■ Section 1.6, "Generation of Complete Web Tier Using Oracle JHeadstart"

1.1 Introduction to Oracle ADF
The Oracle Application Development Framework (Oracle ADF) is an end-to-end
application framework that builds on Java Platform, Enterprise Edition (Java EE)
standards and open-source technologies. You can use Oracle ADF to implement
enterprise solutions that search, display, create, modify, and validate data using web,
wireless, desktop, or web services interfaces. Because of its declarative nature, Oracle
ADF simplifies and accelerates development by allowing users to focus on the logic of
application creation rather than coding details. Used in tandem, Oracle JDeveloper 11g
and Oracle ADF give you an environment that covers the full development lifecycle
from design to deployment, with drag-and-drop data binding, visual UI design, and
team development features built in.

You can download and view the Fusion Order demo application, which helps to
illustrate the concepts and procedures in this guide (and other Fusion Middleware
developer guides). The StoreFront module of this application is built using the Fusion
web application technology stack, which includes ADF Business Components, ADF
Model, ADF Controller, and JavaServer Faces pages with ADF Faces rich client
components. Screenshots and code samples from this module are used throughout this
guide to provide you with real-world examples of using the Oracle ADF technologies
in an application that uses the Fusion web technology stack. For more information
about downloading and using the StoreFront module of the Fusion Order Demo
application, see Chapter 2, "Introduction to the ADF Sample Application."

Oracle ADF Architecture

1-2 Fusion Developer's Guide for Oracle Application Development Framework

1.2 Oracle ADF Architecture
In line with community best practices, applications you build using the Fusion web
technology stack achieve a clean separation of business logic, page navigation, and
user interface by adhering to a model-view-controller architecture. As shown in
Figure 1–1, in an MVC architecture:

■ The model layer represents the data values related to the current page

■ The view layer contains the UI pages used to view or modify that data

■ The controller layer processes user input and determines page navigation

■ The business service layer handles data access and encapsulates business logic

Figure 1–1 MVC Architecture Cleanly Separates UI, Business Logic and Page Navigation

Figure 1–2 illustrates where each ADF module fits in the Fusion web application
architecture. The core module in the framework is ADF Model, a data binding facility.
The ADF Model layer enables a unified approach to bind any user interface to any
business service, without the need to write code. The other modules that make up a
Fusion web application technology stack are:

■ ADF Business Components, which simplifies building business services.

■ ADF Faces rich client, which offers a rich library of AJAX-enabled UI components
for web applications built with JavaServer Faces (JSF).

■ ADF Controller, which integrates JSF with ADF Model. The ADF Controller
extends the standard JSF controller by providing additional functionality, such as
reusable task flows that pass control not only between JSF pages, but also between
other activities, for instance method calls or other task flows.

Oracle ADF Architecture

Introduction to Building Fusion Web Applications with Oracle ADF 1-3

Figure 1–2 Simple Oracle ADF Architecture

1.2.1 ADF Business Components
When building service-oriented Java EE applications, you implement your core
business logic as one or more business services. These backend services provide clients
with a way to query, insert, update, and delete business data as required while
enforcing appropriate business rules. ADF Business Components are prebuilt
application objects that accelerate the job of delivering and maintaining
high-performance, richly functional, database-centric services. They provide you with
a ready-to-use implementation of Java EE design patterns and best practices.

As illustrated in Figure 1–3, Oracle ADF provides the following key components to
simplify building database-centric business services:

■ Entity object

An entity object represents a row in a database table and simplifies modifying its
data by handling all data manipulation language (DML) operations for you. It can
encapsulate business logic to ensure that your business rules are consistently
enforced. You associate an entity object with others to reflect relationships in the
underlying database schema to create a layer of business domain objects to reuse
in multiple applications.

■ View object

A view object represents a SQL query and simplifies working with its results. You
use the SQL language to join, filter, sort, and aggregate data into the shape
required by the end-user task being represented in the user interface. This includes

Note: In addition to ADF Faces, Oracle ADF also supports using the
Swing, JSP, and standard JSF view technologies. For more information
about these technologies, refer to the JDeveloper online help. Oracle
ADF also provides support for using Microsoft Excel as a view layer
for your application. For more information, see the Oracle Fusion
Middleware Desktop Integration Developer's Guide for Oracle Application
Development Framework

Oracle ADF Architecture

1-4 Fusion Developer's Guide for Oracle Application Development Framework

the ability to link a view object with other entity objects to create master-detail
hierarchies of any complexity. When end users modify data in the user interface,
your view objects collaborate with entity objects to consistently validate and save
the changes.

■ Application module

An application module is the transactional component that UI clients use to work
with application data. It defines an updateable data model along with top-level
procedures and functions (called service methods) related to a logical unit of work
related to an end-user task.

Figure 1–3 ADF Business Components Simplify Data Access and Validation

1.2.2 ADF Model Layer
The ADF Model layer abstracts the business service implementation, providing a
single programming interface for different types of services. Data controls provide this
interface by using standard metadata interfaces to describe the service’s operations
and data collections, including information about the properties, methods, and types
involved. In JDeveloper, the functionality and attributes exposed by a business service
are indicated by icons in the Data Controls panel. You can drag and drop onto a page
to create UI components. JDeveloper automatically creates the bindings from the page
and the UI components to the services. At runtime, the ADF Model layer reads the

Tip: If you have previously worked with Oracle Forms, note that this
combined functionality is the same set of data-centric features
provided by the form, data blocks, record manager, and form-level
procedures or functions. The key difference in Oracle ADF is that the
user interface is cleanly separated from data access and validation
functionality. For more information, see Appendix G, "Performing
Common Oracle Forms Tasks in Oracle ADF."

Oracle ADF Architecture

Introduction to Building Fusion Web Applications with Oracle ADF 1-5

information describing your data controls and data bindings from appropriate XML
files and implements the two-way connection between your user interface and your
business service.

Oracle ADF provides out-of-the-box data control implementations for the most
common business service technologies. Using JDeveloper and Oracle ADF together
provides you with a drag-and-drop data binding experience as you build your user
interfaces. Along with support for ADF application modules, ADF Model also
provides support for the following service technologies:

■ Enterprise JavaBeans (EJB) session beans and JPA entities

■ JavaBeans

■ Web services

■ XML

■ CSV files

1.2.3 ADF Controller
In the controller layer, where handling page flow of your web applications is a key
concern, ADF Controller provides an enhanced navigation and state management
model on top of JSF. JDeveloper allows you to declaratively create task flows where
you can pass application control between different types of activities, such as pages,
methods on managed beans, case statements, or calls to other task flows.

These task flows can be reused, and can also be nested, both within themselves and
within pages. Task flows nested in pages become regions that contain their own set of
navigatable pages, allowing users to view a number of different pages and
functionality without leaving the main page.

1.2.4 ADF Faces Rich Client
ADF Faces rich client (ADF Faces for short), is a set of standard JSF components that
include built-in AJAX functionality. AJAX is a combination of asynchronous
JavaScript, dynamic HTML (DHTML), XML, and XmlHttpRequest communication
channels. This combination allows requests to be made to the server without fully
rerendering the page. While AJAX allows rich client-like applications to use standard
internet technologies, JSF provides server-side control, which reduces the dependency
on an abundance of JavaScript often found in typical AJAX applications.

ADF Faces provides over 100 rich components, including hierarchical data tables, tree
menus, in-page dialogs, accordions, dividers, and sortable tables. ADF Faces also
provides ADF Data Visualization components, which are Flash- and SVG-enabled
components capable of rendering dynamic charts, graphs, gauges, and other graphics
that can provide a real-time view of underlying data. Each component also supports
customization and skinning, along with internationalization and accessibility.

To achieve these front-end capabilities, ADF Faces components use a rendering kit
that handles displaying the component and also provides the JavaScript objects
needed for the rich functionality. This built-in support enables you to build rich
applications without needing extensive knowledge of the individual technologies on
the front or back end.

ADF Faces can also be used in an application that uses the Facelets library. Facelets is a
JSF-centric XML view definition technology that provides an alternative to using the
JSP engine. For more information about ADF Faces, including the architecture and

Developing with Oracle ADF

1-6 Fusion Developer's Guide for Oracle Application Development Framework

detailed information about each of the components, see the Oracle Fusion Middleware
Web User Interface Developer's Guide for Oracle Application Development Framework.

Along with ADF Faces, Oracle ADF also supports the following view technologies:

■ Apache MyFaces Trinidad: This is the open source code donation from Oracle to
the Apache Software Foundation. ADF Faces components are based on these
Trinidad components.

■ Java Swing and ADF Swing: ADF Swing is the development environment for
building Java Swing applications that use the ADF Model layer.

■ ADF Mobile: This is a framework that extends Oracle ADF to support mobile
users, allowing the development of mobile browser-based or on-device
applications that run on mobile devices.

■ Microsoft Excel: You can create spreadsheets that are bound to data using the
same binding principals as do other view technologies. For more information, see
the Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle
Application Development Framework.

1.3 Developing with Oracle ADF
Oracle ADF emphasizes the use of the declarative programming paradigm throughout
the development process to allow users to focus on the logic of application creation
without having to get into implementation details. Using JDeveloper 11g with Oracle
ADF, you benefit from a high-productivity environment that automatically manages
your application’s declarative metadata for data access, validation, page control and
navigation, user interface design, and data binding.

At a high level, the development process for a Fusion web application usually involves
the following:

■ Creating an application workspace: Using a wizard, JDeveloper automatically
adds the libraries and configuration needed for the technologies you select, and
structures your application into projects with packages and directories.

■ Modeling the database objects: You can create an offline replica of any database,
and use JDeveloper editors and diagrammers to edit definitions and update
schemas.

■ Creating use cases: Using the UML modeler, you can create use cases for your
application.

■ Designing application control and navigation: You use diagrammers to visually
determine the flow of application control and navigation. JDeveloper creates the
underlying XML for you.

■ Identifying shared resources: You use a resource library that allows you to view
and use imported libraries by simply dragging and dropping them into your
application.

■ Creating business components to access data: From your database tables, you
create entity objects using wizards or dialogs. From those entity objects, you create
the view objects used by the pages in your application. You can implement
validation rules and other types of business logic using editors.

■ Implementing the user interface with JSF: JDeveloper’s Data Controls panel
contains a representation of the view objects for your application. Creating a user
interface is as simple as dragging an object onto a page and selecting the UI
component you want to display the underlying data. For UI components that are

Developing with Oracle ADF

Introduction to Building Fusion Web Applications with Oracle ADF 1-7

not databound, you use the Component Palette to drag and drop components.
JDeveloper creates all the page code for you.

■ Binding UI components to data using the ADF Model layer: When you drag an
object from the Data Controls panel, JDeveloper automatically creates the bindings
between the page and the data model.

■ Incorporating validation and error handling: Once your application is created you
use editors to add additional validation and to define error handling.

■ Securing the application: You use editors to create roles and populate these with
test users. You then use a flat file editor to define security policies for these roles
and assign them to specific resources in your application.

■ Testing and debugging: JDeveloper includes an integrated application server that
allows you to fully test your application without needing to package it up and
deploy it. JDeveloper also includes the ADF Declarative Debugger, a tool that
allows you to set breakpoints and examine the data.

■ Deploying the application: You use wizards and editors to create and edit
deployment descriptors, JAR files, and application server connections.

1.3.1 Creating an Application Workspace
The first step in building a new application is to assign it a name and to specify the
directory where its source files will be saved. When you create an application using
the application templates provided by JDeveloper, it organizes your workspace into
projects and creates and organizes many of the configuration files required by the type
of application you are creating.

One of these templates is the Fusion Web Application (ADF) template, which provides
the correctly configured set of projects you need to create a web application that uses
ADF Faces for the view, ADF Page Flow for the controller, and ADF Business
Components for business services. When you create an application workspace using
this template, JDeveloper automatically creates the JSF and ADF configuration files
needed for the application.

One part of the application overview is the Fusion Web Application Quick Start
Checklist. This checklist provides you with the basic steps for creating a Fusion web
application. Included are links to pertinent documentation, prerequisites, and the
ability to keep track of status for each step in the checklist, as shown in Figure 1–4.

Developing with Oracle ADF

1-8 Fusion Developer's Guide for Oracle Application Development Framework

Figure 1–4 Fusion Web Application Quick Start Checklist

JDeveloper also creates a project named Model that will contain all the source files
related to the business services in your application, and a project named
ViewController that will contain all the source files for your ADF Faces view layer,
including files for the controller.

JDeveloper adds the following libraries to the data model project:

■ ADF Model Runtime

■ BC4J Oracle Domains

■ BC4J Runtime

■ BC4J Security

■ BC4J Tester

■ MDS Runtime

■ MDS Runtime Dependencies

■ Oracle JDBC

JDeveloper also adds the following libraries to the view project:

■ JSP Runtime

■ JSF 1.2

■ JSTL 1.2

■ ADF Page Flow Runtime

■ ADF Controller Runtime

■ ADF Controller Schema

■ ADF Faces Runtime 11

■ ADF Common Runtime

■ ADF Web Runtime

Developing with Oracle ADF

Introduction to Building Fusion Web Applications with Oracle ADF 1-9

■ MDS Runtime

■ MDS Runtime Dependencies

■ Commons Beautils 1.6

■ Commons Logging 1.0.4

■ Commons Collections 3.1

■ ADF DVT Faces Runtime

■ ADF DVT Faces Databinding Runtime

Once you add a JSF page, JDeveloper adds the Oracle JEWT library.

Once the projects are created for you, you can rename them as you need. You can then
use JDeveloper to create additional projects, and add the packages and files needed for
your application.

 Figure 1–5 shows the different projects, packages, directories, and files for the
StoreFrontModule application, as displayed in the Application Navigator.

Figure 1–5 StoreFrontModule Application Projects, Packages, and Directories

For more information, see "Managing Applications and Projects" in the "JDeveloper
Basics" section of the JDeveloper online help.

When you work with your files, you use mostly the editor window, the Structure
window, and the Property Inspector, as shown in Figure 1–6. The editor window
allows you to view many of your files in a WYSIWYG environment, or you can view a

Note: If you plan to reuse artifacts in your application (for example,
task flows), then you should follow the naming guidelines presented
in Chapter 33, "Reusing Application Components" in order to prevent
naming conflicts.

Tip: You can edit the default values used in application templates, as
well as create your own templates. To do so, choose Application >
Manage Templates.

Developing with Oracle ADF

1-10 Fusion Developer's Guide for Oracle Application Development Framework

file in an overview editor where you can declaratively make changes, or you can view
the source code for the file. The Structure window shows the structure of the currently
selected file. You can select objects in this window and then edit the properties for the
selection in the Property Inspector.

Figure 1–6 The JDeveloper Workspace

1.3.2 Modeling with Database Object Definitions
In JDeveloper, after you create your application workspace, you can copy database
objects from a database schema to an offline database or project where they become
available as offline database objects, saved as .xml files. You can then create and edit
database object definitions within a project using the same editors that you use to
create and edit database objects on live database connections. You can also compare
your offline database objects with other offline or live database schemas and generate
SQL statements (including CREATE, REPLACE, and ALTER).

For example, you can drag a table from a database connection that your application
defines onto a database diagram and JDeveloper will give you the choice to model the
database object live or offline (to create the .xml file representation of the object).
Modeling database definitions, such as tables and foreign keys, visually captures the
essential information about a schema. You can use the diagram to drag and drop
columns and keys to duplicate, move, and create foreign key relationships. Working in
offline mode, whenever you model a node on a diagram, JDeveloper creates the
underlying offline object and lists it in the Application Navigator. Working with a live
schema, JDeveloper updates the live database object as you amend the diagram. You
can create multiple diagrams from the same offline database objects and spread your
offline database across multiple projects.

Using a database diagram like the one shown in Figure 1–7 you can visualize the
following:

■ Tables and their columns

Developing with Oracle ADF

Introduction to Building Fusion Web Applications with Oracle ADF 1-11

■ Foreign key relationships between tables

■ Views

■ Offline sequences and synonyms

In addition to using the diagram directly to create and edit database objects, you can
work with specific database object editors. After you have finished working with the
offline database objects, you can generate new and updated database definitions to
online database schemas.

When you work with the database diagram you can customize the diagram to change
the layout, change how objects are represented and grouped, add diagram annotations
to specify dependencies or links (such as URLs), and change visual properties, such as
color and font of diagram elements.

Figure 1–7 Database Diagram for Payments Grouping

Specifically, the following customizations were made to the database diagram shown
in Figure 1–7:

■ DISCOUNT_TRANSLATIONS element show the table with constraints not
displayed.

Developing with Oracle ADF

1-12 Fusion Developer's Guide for Oracle Application Development Framework

■ DISCOUNTS_BASE element shows the table with some column definitions hidden
(such as CREATED_BY, CREATION_DATE, and LASTUPDATED_BY) plus the
diagram element has been sized to fit within the overall diagram (thus truncating
some of the detail).

■ DISCOUNT_TRANSLATIONS_SEQ element shows a sequence displayed in compact
view in contrast to DISCOUNTS_SEQ which shows the sequence properties.

■ COUPON_USAGES and ELIGIBLE_DISCOUNTS elements use different colors both
in compact view and each identifies their database schema (FODOffline).

■ DISCOUNTS element is a view displayed. The element identifies the tables that
comprise the view in compact mode and the JOIN type (INNER JOIN). It also
identifies the usage relationships on tables with a dotted line.

■ DISCOUNTS_BASE and DISCOUNT_TRANSLATIONS elements show a foreign key
relationship.

■ DISCOUNT_SEQ element uses an annotation (dashed arrow) to represent the
dependency with DISCOUNTS_BASE table.

■ Payments Grouping element uses HTML link annotations (for example,
Customer Memberships) to display other diagrams from the project.

■ Payments Grouping element nests elements with group shapes (Click to
Access).

For more information about modeling database definitions with database diagrams,
see "Creating, Editing, and Dropping Database Objects" in the "Designing Databases"
section of the JDeveloper online help.

1.3.3 Creating Use Cases
After creating an application workspace, you may decide to begin the development
process by doing use case modeling to capture and communicate end-user
requirements for the application to be built. Figure 1–8 shows a simple diagram
created using the UML modeler in JDeveloper. The diagram represents an end user
viewing a list of his orders and then drilling down to view the details of an order.
Using diagram annotations, you can capture particular requirements about what end
users might need to see on the screens that will implement the use case. For example,
in this use case, it is noted that the user will select order details for each order listed.

Figure 1–8 Use Case Diagram for Viewing Order History

Developing with Oracle ADF

Introduction to Building Fusion Web Applications with Oracle ADF 1-13

For more information about creating use case diagrams, see "Modeling With
Diagrams" in the "Designing and Developing Applications" section of the JDeveloper
online help.

1.3.4 Designing Application Control and Navigation Using ADF Task Flows
By modeling the use cases, you begin to understand the kinds of user interface pages
that will be required to implement end-user requirements. At this point, you can begin
to design the flow of your application. In a Fusion web application, you use ADF task
flows instead of standard JSF navigation flows. Task flows provide a more modular
and transaction-aware approach to navigation and application control. Like standard
JSF navigation flows, task flows contain mostly viewable pages. However, instead of
describing navigation between pages, task flows facilitate transitions between
activities. Aside from navigation, task flows can also have nonvisual activities that can
be chained together to affect the page flow and application behavior. For example,
these nonvisual activities can call methods on managed beans, evaluate an EL
expression, or call another task flow. This facilitates reuse, as business logic can be
invoked independently of the page being displayed.

Figure 1–9 shows the checkout-task-flow task flow from the StoreFront module of
the Fusion Order Demo application. In this task flow, order and orderSummary are
view activities that represent pages, while reconcileShoppingCart is a method
call activity. When the user enters this flow, the reconcileShoppingCart activity is
invoked (because it is the entry point for the flow, as denoted by the green circle) and
the corresponding method is called. From there, the flow continues to the order page.
From the order page, control can be passed to the orderSummary page, or to the
continueShopping return activity that is the exit point of the flow and passes
control back to the home page.

Figure 1–9 Task Flow in the StoreFrontModule Application

The ADF Controller provides a mechanism to define navigation using control flow
rules. The control flow rule information, along with other information regarding the
flow, is saved in a configuration file. Figure 1–10 shows the Structure window for the
checkout-task-flow task flow. This window shows each of the items configured in

Developing with Oracle ADF

1-14 Fusion Developer's Guide for Oracle Application Development Framework

the flow, such as the control flow rules. The Property Inspector (by default, located at
the bottom right) allows you to set values for the different elements in the flow.

Figure 1–10 Task Flow Elements in the Structure Window and Property Inspector

Aside from pages, task flows can also coordinate page fragments. Page fragments are
JSF JSP documents that are rendered as content in other JSF pages. You can create page
fragments and the control between them in a bounded task flow as you would create
pages, and then insert the entire task flow into another page as a region. Because it is
simply another task flow, the region can independently execute methods, evaluate
expressions, and display content, while the remaining content on the containing page
remains the same. For example, before registering a new user, the application needs to
determine what kind of user needs to be created. All the logic to do this is handled in
the user-registration-task-flow task flow, which is used as a region in the
registerUser page.

Regions also facilitate reuse. You can create a task flow as a region, determine the
pieces of information required by a task and the pieces of information it might return,
define those as parameters and return values of the region, then drop the region on
any page in an application. Depending on the value of the parameter, a different view
can display.

The chapters contained in Part III, "Creating ADF Task Flows" contain information
about using task flows. For general information about task flows and creating them,
see Chapter 14, "Getting Started with ADF Task Flows." For information about task
flow activities, see Chapter 15, "Working with Task Flow Activities." If you need to
pass parameters into or out of task flows, see Chapter 16, "Using Parameters in Task
Flows." For more information about regions, see Chapter 17, "Using Task Flows as
Regions." For information about advanced functionality that task flows can provide,
such as transactional capabilities and creating mandatory sequences of pages (known
as trains), see Chapter 18, "Creating Complex Task Flows." For information about using
task flows to create dialogs, see Chapter 19, "Using Dialogs in Your Application."

1.3.5 Identifying Shared Resources
You may find that some aspects of your application can be reused throughout the
application. For example, you may need the functionality of creating an address to
appear both when a user registers and when a user creates an order. Or you may find
throughout the development process that certain components of your application
should be shared throughout the application. You can declaratively create ADF
libraries that allow you to package artifacts and reuse them throughout the
application. For example, you might create a task flow for the process of creating an
address. You can then save this task flow and package it as a library. The library can

Developing with Oracle ADF

Introduction to Building Fusion Web Applications with Oracle ADF 1-15

be sent to other developers who can add it to their a resource catalog, from which they
can drag and drop it onto any page where it’s needed. Figure 1–11 shows the Resource
Palette in JDeveloper.

Figure 1–11 Resource Palette in JDeveloper

 When designing the application, be sure to note all the tasks that can possibly become
candidates for reuse. Chapter 33, "Reusing Application Components" provides more
information about the ADF artifacts that can be packaged and reused as an ADF
library, along with procedures both for creating and using the libraries.

1.3.6 Creating a Data Model to Access Data with ADF Business Components
Typically, when you implement business logic as ADF Business Components, you do
the following:

■ Create entity objects to represent tables that you expect your application to
perform a transaction against (if no transaction is to be performed, an entity object
is not needed). Add validation and business rules as needed.

■ Create view objects that work with the entity objects to query and update the
database. These view objects will be used to make the data available for display at
your view layer.

■ Create the application module that the UI layer of your application will use. This
application module contains view object instances in its data model along with
any custom methods that users will interact with through the application’s web
pages.

■ If needed, publish your services as web services for remote invocation.

The chapters contained in Part II, "Building Your Business Services" provide
information on creating each of these artifacts. The chapters in Part VI, "Advanced
Topics" provide additional information, such as extending business objects, tuning,
and state management.

1.3.6.1 Creating a Layer of Business Domain Objects for Tables
Once you have an understanding of the data that will be presented and manipulated
in your application, if you haven’t already done so, you can build your database (for
more information, see the "Designing Databases" topic in the "Designing and
Developing Applications" section of the JDeveloper online help). Once the database
tables are in place, you can create a set of entity objects that represents them and
simplifies modifying the data they contain. When you use entity objects to encapsulate
data access and validation related to the tables, any pages you build today or in the
future that work with these tables are consistently validated. As you work, JDeveloper
automatically configures your project to reference any necessary Oracle ADF runtime
libraries your application will need at runtime.

Developing with Oracle ADF

1-16 Fusion Developer's Guide for Oracle Application Development Framework

For example, the StoreFrontService project of the StoreFrontModule
application contains the business services needed by the application. Figure 1–12
shows two of the entity objects that represent the database tables in that application.

Figure 1–12 Business Components Diagram Showing Entity Objects and Related Tables

To create the business layer, you first create the entity objects based on your database
tables. Any relationships between the tables will be reflected as associations between
the corresponding entity objects. Alternatively, you can first create the entity objects,
and the associations, and then create database tables from those objects.

Once the entity objects are created, you can define control and attribute hints that
simplify the display of the entities in the UI, and you can also add behaviors to the
objects. For more information, see Chapter 4, "Creating a Business Domain Layer
Using Entity Objects."

1.3.6.2 Building the Business Services
Once the reusable layer of business objects is created, you can implement the
application module. An application module provides a data-model and service
methods with which a UI client can work.

The application module's data model is composed of instances of the view object
components you create that encapsulate the necessary queries. View objects can join,
project, filter, sort, and aggregate data into the shape required by the end-user task
being represented in the user interface. When the end user needs to update the data,
your view objects reference entity objects in your reusable business domain layer.
View objects are reusable and can be used in multiple application modules.

When you want the data to display in a consistent manner across all view pages that
access that data, you can configure metadata on the view object to determine display
properties. The metadata allows you to set display properties in one place and then
change them as needed, so that you make the change only in one place instead of on
all pages that display the data. Conversely, you can also have the query controlled by

Developing with Oracle ADF

Introduction to Building Fusion Web Applications with Oracle ADF 1-17

the data the page requires. All display functionality is handled by the page. For more
information, see Chapter 5, "Defining SQL Queries Using View Objects."

For example, the StoreFrontService project contains the
oracle.fodemo.storefront.store.queries package, which contains many of
the queries needed by the StoreFrontModule application, as shown in Figure 1–13.

Figure 1–13 View Objects in the StoreFrontModule Application

Additionally, you may find that you need to expose functionality to external
applications. You can do this by exposing this functionality through a service interface.
For example, the StoreServiceAM application module is exposed as a web service.
This web service exposes the CustomerInfo and OrderInfo view instances, as
shown in Figure 1–14. For more information, see Chapter 11, "Integrating
Service-Enabled Application Modules."

Developing with Oracle ADF

1-18 Fusion Developer's Guide for Oracle Application Development Framework

Figure 1–14 StoreFrontModule Application in the Fusion Order Demo Application

1.3.6.3 Testing and Debugging Business Services with the Business Component
Browser
While you develop your application, you can iteratively test your business services
using the Business Component Browser. The browser allows you to test the queries,
business logic, and validation of your business services without having to use or create
a user interface or other client to test your services. Using the browser allows you to
test out the latest queries or business rules you've added, and can save you time when
you’re trying to diagnose problems. For more information about developing and
testing application modules, see Chapter 9, "Implementing Business Services with
Application Modules."

The browser also interacts with the ADF Declarative Debugger to allow debug your
business services. You can set breakpoints on any custom methods you create. For
more information, see Section 31.6, "Using the Business Component Browser for
Testing and Debugging."

1.3.7 Implementing the User Interface with JSF
From the page flows you created during the planning stages, you can double-click the
page icons to create the actual JSP files. When you create a JSP for an ADF Faces
application, you can choose to create an XML-based JSP document (which uses the
extension *.jspx) rather than a *.jsp file.

Developing with Oracle ADF

Introduction to Building Fusion Web Applications with Oracle ADF 1-19

If you want to use Facelets instead of JSP in your application, you can instead create
XHTML files. Facelets is a JSF-centric XML view definition technology that provides
an alternative to using the JSP engine.

ADF Faces provides a number of components that you can use to define the overall
layout of the page. JDeveloper contains predefined quick start layouts that use these
components to provide you with an efficient way to correctly determine the layout of
your pages. You can choose from one-, two-, or three-column layouts, and then
determine how you want the columns to behave. You can also choose to apply themes
to the layouts, which adds color to some of the components for you. For more
information see the "Using Quick Layouts" section of the Oracle Fusion Middleware Web
User Interface Developer's Guide for Oracle Application Development Framework.

Oracle ADF also allows you to create and use your own page templates. When
creating templates, a developer can determine the layout of the page (either using one
of the quick layout templates or creating the layout manually), provide static content
that must appear on all pages, and create placeholder attributes that can be replaced
with valid values for each page. Each time the template is changed, for example if the
layout changes, any page that uses the template will reflect the update.

Most pages in the StoreFrontModule application use the StoreFrontTemplate
template, which provides an area for branding and navigation, a main content area
divided into three panes, and a footer area. If the template designer decides to switch
the location of the branding and the navigation, all pages that use the template will
automatically reflect that change at runtime.

The chapters in Part IV, "Creating a Databound Web User Interface" provide
information on creating different types of UI functionality, from basic forms to more
complex search capabilities.

Best Practice: Using an XML-based document has the following
advantages:

■ Simplifies treating your page as a well-formed tree of UI
component tags.

■ Discourages you from mixing Java code and component tags.

■ Allows you to easily parse the page to create documentation or
audit reports.

Tip: While Facelet pages can use any well formed XML file,
including .jspx, when you create a Facelet page in JDeveloper, it is
created as an XHTML file.

Best Practice: Use Facelets to take advantage of the following:

■ The Facelets layer was created specifically for JSF, which results in
reduced overhead and improved performance during tag
compilation and execution.

■ Facelets is considered the primary view definition technology in
JSF 2.0.

■ Some future performance enhancements will only be available
with Facelets

Developing with Oracle ADF

1-20 Fusion Developer's Guide for Oracle Application Development Framework

1.3.8 Data Binding with ADF Model Layer
In JSF, you use a simple expression language (called EL) to bind to the information you
want to present and/or modify (for more information, see
http://java.sun.com/products/jsp/reference/techart/unifiedEL.htm
l). Example expressions look like #{userInfoBean.principalName} to reference
a particular user's name, or #{userInfoBean.principalName eq ’SKING’} to
evaluate whether a user’s name is SKING or not. At runtime, a generic expression
evaluator returns the String and boolean value of these respective expressions,
automating access to the individual objects and their properties without requiring
code.

At runtime, the value of certain JSF UI components is determined by the value
attribute. While a component can have static text as its value, typically the value
attribute will contain a binding that is an EL expression that the runtime infrastructure
evaluates to determine what data to display. For example, an outputText
component that displays the name of the currently logged-in user might have its
value attribute set to the expression #{userInfoBean.principalName}. Since
any attribute of a component can be assigned a value using an EL expression, it's easy
to build dynamic, data-driven user interfaces. For example, you could hide a
component when a user is not logged in by using a boolean-valued expression like
#{userInfoBean.prinicpalName !=null} in the UI component's rendered
attribute. If there is no principal name in the current instantiation of the
userInfoBean, the rendered attribute evaluates to false and the component
disappears from the page.

In a typical JSF application, you would create objects like the userInfoBean object as
a managed bean. The JSF runtime manages instantiating these beans on demand when
any EL expression references them for the first time. However, in an application that
uses the ADF Model layer, instead of binding the UI component attributes to
properties or methods on managed beans, JDeveloper automatically binds the UI
component attributes to the ADF Model layer, which uses XML configuration files that
drive generic data binding features. It implements concepts that enable decoupling the
user interface technology from the business service implementation: data controls and
declarative bindings.

Data controls use XML configuration files to describe a service. At design time, visual
tools like JDeveloper can leverage that metadata to allow you to declaratively bind UI
components to any data control operation or data collection, creating bindings. For
example, Figure 1–15 shows the StoreServiceAMDataControl data control as it
appears in the Data Controls panel of JDeveloper.

http://java.sun.com/products/jsp/reference/techart/unifiedEL.html
http://java.sun.com/products/jsp/reference/techart/unifiedEL.html
http://java.sun.com/products/jsp/reference/techart/unifiedEL.html

Developing with Oracle ADF

Introduction to Building Fusion Web Applications with Oracle ADF 1-21

Figure 1–15 StoreFrontServiceAMDataControl

Note that the collections that display in the panel represent the set of rows returned by
the query in each view object instance contained in the StoreServiceAM application
module. For example, the OrderPaymentOptions data collection in the Data
Controls panel represents the OrderPaymentOptions view object instance in the
StoreServiceAM’s data model. The OrderBillingAddress data collection
appears as a child, reflecting the master-detail relationship set up while building the
business service. The attributes available in each row of the respective data collections
appear as child nodes. The data collection level Operations node contains the built-in
operations that the ADF Model layer supports on data collections, such as previous,
next, first, last, and so on.

Using the Data Controls panel, you can drag and drop a data collection onto a page in
the visual editor, and JDeveloper creates the necessary bindings for you. Figure 1–16
shows the CustomerRegistration collection from the
StoreServiceAMDataControl data control being dragged from the Data Controls
panel, and dropped as a form onto a JSF page.

Note: If you create other kinds of data controls for working with
web services, XML data retrieved from a URL, JavaBeans, or EJBs,
these would also appear in the Data Controls panel with an
appropriate display. When you create one of these data controls in a
project, JDeveloper creates metadata files that contain configuration
information. These additional files do not need to be explicitly created
when you are working with Oracle ADF application modules, because
application modules are already metadata-driven components, and so
contain all the information necessary to be exposed automatically as
data controls.

Developing with Oracle ADF

1-22 Fusion Developer's Guide for Oracle Application Development Framework

Figure 1–16 Declaratively Creating a Form Using the Data Controls Panel

The first time you drop a databound component from the Data Controls panel on a
page, JDeveloper creates an associated page definition file. This XML file describes the
group of bindings supporting the UI components on a page. The ADF Model uses this
file at runtime to instantiate the page’s bindings. These bindings are held in a
request-scoped map called the binding container. Each time you add components to the
page using the Data Controls panel, JDeveloper adds appropriate binding entries into
this page definition file. Additionally, as you perform drag-and-drop data binding
operations, JDeveloper creates the required tags representing the JSF UI components
on the JSF page. For more information about using the Data Controls panel, see
Chapter 12, "Using ADF Model in a Fusion Web Application."

Figure 1–17 illustrates the architecture of a JSF application when you leverage ADF
Model for declarative data binding. By combining ADF Model with JSF, you avoid
having to write a lot of the typical managed bean code that would be required for
real-world applications.

Note: You can use dynamic UI components that create the bindings
at runtime instead of design time. To use dynamic components, you
set control hints on your view objects that determine how the data is
to be displayed each time the view object is accessed by a page. This
ensures that data is displayed consistently across pages, and also
allows you to change in a single location, how the data is displayed
instead of having to update each individual page. For more
information, see Section 22.7, "Using a Dynamic Form to Determine
Data to Display at Runtime."

Developing with Oracle ADF

Introduction to Building Fusion Web Applications with Oracle ADF 1-23

Figure 1–17 Architecture of a JSF Application Using ADF Model Data Binding

Aside from forms and tables that display or update data, you can also create search
forms, and databound charts and graphs. For more information about using data
controls to create different types of pages, see the chapters contained in Part IV,
"Creating a Databound Web User Interface". For more information about the Data
Controls panel and how to use it to create any UI data bound component, see
Chapter 12, "Using ADF Model in a Fusion Web Application."

1.3.9 Validation and Error Handling
You can add validation to your business objects declaratively using the overview
editors for entity and view objects. Figure 1–18 shows the Business Rules tab of the
overview editor for the AddressEO entity object.

Developing with Oracle ADF

1-24 Fusion Developer's Guide for Oracle Application Development Framework

Figure 1–18 Setting Validation in the Overview Editor

Along with providing the validation rules, you also set the error messages to display
when validation fails. To supplement this declarative validation, you can also use
Groovy-scripted expressions. For more information about creating validation at the
service level, see Chapter 7, "Defining Validation and Business Rules Declaratively."

Additionally, ADF Faces input components have built-in validation capabilities. You
set one or more validators on a component either by setting the required attribute or
by using the prebuilt ADF Faces validators. You can also create your own custom
validators to suit your business needs. For more information, see the "Validating and
Converting Input" chapter of the Oracle Fusion Middleware Web User Interface
Developer's Guide for Oracle Application Development Framework.

You can create a custom error handler to report errors that occur during execution of
an ADF application. Once you create the error handler, you only need to register the
handler in one of the application’s configuration files. For more information, see
Section 28.10, "Customizing Error Handling."

1.3.10 Adding Security
Oracle ADF provides a security implementation that is based on Java Authentication
and Authorization Service (JAAS). JAAS is a standard security Application
Programming Interface (API) that is added to the Java language through the Java
Community Process. It enables applications to authenticate users and enforce
authorization. The Oracle ADF implementation of JAAS is permission-based. You
define these permissions and then grant them on application roles that you associate
with users of the application. For more information about securing your application,
see Chapter 30, "Enabling ADF Security in a Fusion Web Application."

1.3.11 Testing and Debugging the Web Client Application
Testing an Oracle ADF web application is similar to testing and debugging any other
Java EE application. Most errors result from simple and easy-to-fix problems in the
declarative information that the application defines or in the EL expressions that

Working Productively in Teams

Introduction to Building Fusion Web Applications with Oracle ADF 1-25

access the runtime objects of the page’s Oracle ADF binding container. In many cases,
examination of the declarative files and EL expressions resolve most problems.

For errors not caused by the declarative files or EL expressions, JDeveloper includes
the ADF Logger, which captures runtime trace messages from the ADF Model layer
API. The trace includes runtime messages that may help you to quickly identify the
origin of an application error. You can also search the log output for specific errors.
JDeveloper also includes the ADF Declarative Debugger, a tool that allows you to set
breakpoints. When a breakpoint is reached, the execution of the application is paused
and you can examine the data that the Oracle ADF binding container has to work
with, and compare it to what you expect the data to be. Chapter 31, "Testing and
Debugging ADF Components" contains useful information and tips on how to
successfully debug a Fusion web application.

For testing purposes, JDeveloper provides integration with JUnit. You use a wizard to
generate regression test cases. For more information, see Section 31.10, "Regression
Testing with JUnit."

1.3.12 Refactoring Application Artifacts
Using JDeveloper, you can easily rename or move the different components in your
application. For example, you may find that you need to change the name of your
view objects after you have already created them. JDeveloper allows you to easily do
this and then propagates the change to all affected metadata XML files. For more
information, see Chapter 32, "Refactoring a Fusion Web Application."

1.3.13 Deploying a Fusion Web Application
You can deploy a Fusion web application to either the integrated WebLogic server
within JDeveloper or to a standalone instance. For more information about
deployment, see Chapter 36, "Deploying Fusion Web Applications."

1.3.14 Integrating a Fusion Web Application
You can integrate your Fusion web application with any existing or new applications
using service-oriented architecture (SOA) principals provided by Oracle SOA Suite.
Oracle SOA Suite includes declarative development tools that allow you to easily
integrate multiple applications using services, events, business rules, business process
flows, and other SOA technologies.

You can build your Fusion web application so that it can easily integrate with other
applications. You can publish your application modules as services.You can also create
events that can be used for example, to initiate business processes. For more
information, see Chapter 11, "Integrating Service-Enabled Application Modules." Your
application modules can also call other web services directly. For more information,
see Section 13.2, "Calling a Web Service from an Application Module." You can also
integrate your application using task flows. For example, a task flow can be used to
initiate a business process flow. For more information, see Section 18.14, "Using BPEL
with Task Flows."

For more information about Oracle SOA Suite, see Oracle Fusion Middleware Developer's
Guide for Oracle SOA Suite.

1.4 Working Productively in Teams
Often, applications are built in a team development environment. While a team-based
development process follows the development cycle outlined in Section 1.3,

Working Productively in Teams

1-26 Fusion Developer's Guide for Oracle Application Development Framework

"Developing with Oracle ADF,"many times developers are creating the different parts
of the application simultaneously. Working productively means team members divide
the work, understand how to enforce standards, and manage source files with a source
control system, in order to ensure efficient application development.

Before beginning development on any large application, a design phase is typically
required to assess use cases, plan task flows and screens, and identify resources that
can be shared.

The following list shows how the work for a typical Fusion web application might be
broken up once an initial design is in place:

■ Infrastructure

A DBA creates Ant scripts (or other script files) for building and deploying the
finished application. SQL scripts are developed to create the database schema
used by the application.

■ Entity objects

In a large development environment, a separate development group builds all
entity objects for the application. Because the rest of the application depends on
these objects, entity objects should be one of the first steps completed in
development of the application.

Once the entity objects are finished, they can be shared with other teams using
Oracle ADF libraries (see Section 33.2, "Packaging a Reusable ADF Component
into an ADF Library" for more information). The other teams then access the
objects by adding to them to a catalog in the Resource Palette. In your own
application development process, you may choose not to divide the work this
way. In many applications, entity objects and view objects might be developed by
the same team (or even one person) and would be stored within one project.

■ View objects

After the entity objects are created and provided either in a library or within the
project itself, view objects can be created as needed to display data (in the case of
building the UI) or supply service data objects (when data is needed by other
applications in a SOA infrastructure).

When building the Fusion Order Demo application, each developer of a particular
page or service was in charge of creating the view objects for that page or service.
This was needed because of the tight integration between the view object and its
use by a page in the Fusion Order demo; the team who built the UI also built the
corresponding view objects.

During development, you may find that two or more view objects are providing
the same functionality. In some cases, these view objects can be easily combined
by altering the query in one of the objects so that it meets the needs of each
developer's page or service.

Once the view objects are in place, you can create the application module, data
controls, and add any needed custom methods. The process of creating view
objects, reviewing for redundancy, and then adding them to the application
module can be an iterative one.

■ User interface (UI) creation

With a UI design in place, the view objects in place and the data controls created,
the UI can be built either by the team that created the view objects (as described in
the previous bullet point) or by a separate team. You can also develop using a
UI-first strategy, which would allow UI designers to create pages before the data

Working Productively in Teams

Introduction to Building Fusion Web Applications with Oracle ADF 1-27

controls are in place. Oracle ADF provides placeholder data controls that UI
designers can use early in the development cycle. For more information, see
Chapter 29, "Designing a Page Using Placeholder Data Controls."

1.4.1 Enforcing Standards
Because numerous individuals divided into separate teams will be developing the
application, you should enforce a number of standards before development begins to
ensure that all components of the application will work together efficiently. The
following are areas within an application where it is important to have
standardization in place when working in a team environment:

■ Code layout style

So that more than one person can work efficiently in the code, it helps to follow
specific code styles. JDeveloper allows you to choose how the built-in code editor
behaves. While many of the settings affect how the user interacts with the code
editor (such as display settings), others affect how the code is formatted. For
example, you can select a code style that determines things like the placement of
opening brackets and the size of indents. You can also import any existing code
styles you may have, or you can create your own and export them for use by the
team. For more information, see "Setting Preferences for the Source Editor" in the
"JDeveloper Basics" section of the JDeveloper online help.

■ Package naming conventions

You should determine not only how packages should be named, but also the
granularity of how many and what kinds of objects will go into each package. For
example, all managed beans in the StoreFront module are in the view.managed
package. All beans that contain helper-type methods accessed by other beans are
in util packages (one for Oracle ADF and one for JSF). All property files are in
the common package.

■ Pages

You can create templates to be used by all developers working on the UI, as
described in Section 1.3.7, "Implementing the User Interface with JSF." This not
only ensures that all pages will have the same look and feel, but also allows you to
make a change in the template and have the change appear on all pages that use it.
For more information, see Section 20.2, "Using Page Templates."

Aside from using templates, you should also devise a naming standard for pages.
For example, you may want to have names reflect where the page is used in the
application. To achieve this goal, you can create subdirectories to provide a further
layer of organization.

■ Connection names: Unlike most JDeveloper and Oracle ADF objects that are
created only once per project and by definition have the same name regardless of
who sees or uses them, database connection names might be created by individual
team members, even though they map to the same connection details. Naming
discrepancies may cause unnecessary conflicts. Team members should agree in
advance on common, case-sensitive connection names that should be used by
every member of the team.

1.4.2 Using a Source Control System
When working in a team environment, you will need to use a source control system.
By default, Oracle JDeveloper provides integrated support for both the CVS and
Subversion source control systems, though others may be available through

Working Productively in Teams

1-28 Fusion Developer's Guide for Oracle Application Development Framework

extensions. You can also create an extension that allows you to work with another
system in JDeveloper. For information about using these systems within JDeveloper,
see the "Using Versioning" topic in the "Designing and Developing Applications"
section of the JDeveloper online help.

Following are suggestions for using source control with a Fusion web application:

■ Checking out files

Using JDeveloper, you can create a connection to the source control server and use
the source control window to check out the source. When you work locally in the
files, the pending changes window notifies you of any changed files. You can
create a script using Apache Ant (which is integrated into JDeveloper). You can
then use the script to build all application workspaces locally. This can ensure that
the source files compile before you check the changed files into the source control
repository. To find out how to use Apache Ant to create scripts, see "Building With
Apache Ant" in the "Designing and Developing Applications" section of the
JDeveloper online help.

■ Automating builds

Consider running a continuous integration tool. Once files are checked into the
source server, the tool can be used to recognize either that files have changed or to
check for changed files at determined intervals. At that point, the tool can run an
Ant script on the server that copies the full source (note that this should be a copy,
and not a checkout), compiles those files, and if the compilation is successful,
creates a zip file for consumers (not developers) of the application to use. The
script should then clean up the source directory. Running a continuous integration
tool will improve confidence in the quality of the code in the repository, encourage
developers to update more often, and lead to smaller updates and fewer conflicts.
Examples of continuous integration tools include Apache Gump and Cruise
Control.

■ Updating and committing files

When working with Subversion, updates and commits should be done at the
Working Copy level, not on individual files. If you attempt to commit and update
an individual file, there is a chance you will miss a supporting metadata file and
thereby corrupt the committed copy of the application.

■ Resolving merge conflicts

When you add or remove business components in a JDeveloper ADF Business
Components project, JDeveloper reflects it in the project file (.jpr). When you
create (or refactor) a component into a new package, JDeveloper reflects that in the
project file and in the ADF Business Components project file (.jpx). Although the
XML format of these project control files has been optimized to reduce occurrences
of merge conflicts, merge conflicts may still arise and you will need to resolve
them using JDeveloper’s Resolve Conflicts option on the context menu of each
affected file.

After resolving merge conflicts in any ADF Business Components XML
component descriptor files, the project file (.jpr) for an ADF Business
Components project, or the corresponding business components project file
(.jpx), close and reopen the project to ensure that you’re working with latest
version of the component definitions. To do this, select the project in the
Application Navigator, choose File > Close from the JDeveloper main menu, and
then expand the project again in the Application Navigator.

Generation of Complete Web Tier Using Oracle JHeadstart

Introduction to Building Fusion Web Applications with Oracle ADF 1-29

1.5 Learning Oracle ADF
In addition to this developers guide, Oracle also offers the following resources to help
you learn how you can best use Oracle ADF in your applications:

■ Cue Cards in JDeveloper: JDeveloper cue cards provide step-by-step support for
the application development process using Oracle ADF. They are designed to be
used either with the included examples and a sample schema, or with your own
data. Cue cards also include topics that provide more detailed background
information, viewlets that demonstrate how to complete the steps in the card, and
code samples. Cue cards provide a fast, easy way to become familiar with the
basic features of Oracle ADF, and to work through a simple end-to-end task.

■ Tutorials on Oracle Technology Network: These short tutorials allow you to gain
valuable hands-on experience, and then use the lessons as the foundation for your
own implementation.

■ Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework: Provides detailed information, procedures, and practices
for using the ADF Faces components and architecture.

1.6 Generation of Complete Web Tier Using Oracle JHeadstart
As you’ll learn throughout the rest of this guide, Oracle JDeveloper 11g and Oracle
ADF give you a productive, visual environment for building richly functional,
database-centric Java EE applications with a maximally declarative development
experience. However, if you are used to working with tools like Oracle Designer that
offer complete user interface generation based on a higher-level application structure
definition, you may be looking for a similar facility for your Java EE development. If
so, then the Oracle JHeadstart 11g application generator may be of interest to you. It is
an additional extension for JDeveloper that uses Oracle ADF’s built-in features to offer
complete web-tier generation for your application modules. Starting with the data
model you’ve designed for your ADF business service, you use the integrated editors
that JHeadstart adds to the JDeveloper environment to iteratively refine a higher-level
application structure definition. These editors controls the functionality and
organization of the view objects’ information in your generated web user interface. By
checking boxes and choosing various options from dropdown lists, you describe a
logical hierarchy of pages that can include multiple styles of search regions, list of
values (LOVs) with validation, shuttle controls, nested tables, and other features.
These declarative choices use terminology familiar to Oracle Forms and Designer
users, further simplifying web development. Based on the application structure
definition, you generate a complete web application that automatically implements the
best practices described in this guide, easily leveraging the most sophisticated features
that Oracle ADF and JSF have to offer.

Whenever you run the JHeadstart application generator, rather than generating code, it
creates (or regenerates) all of the declarative view and controller layer artifacts of your
Oracle ADF-based web application. These artifacts use the ADF Model layer and work
with your ADF application module as their business service. The generated files are
the same kinds you produce when using JDeveloper’s built-in visual editors. The key
difference is that JHeadstart creates them in bulk, based on a higher-level definition
that you can iteratively refine until the generated pages match your end users’
requirements as closely as possible. The generated files include:

■ JSF Pages with databound ADF Faces UI components

■ ADF Model page definition XML files describing each page’s data bindings

■ JSF navigation rules to handle page flow

http://www.oracle.com/technology/obe/obe11jdev/11/index.html

Generation of Complete Web Tier Using Oracle JHeadstart

1-30 Fusion Developer's Guide for Oracle Application Development Framework

■ Resource files containing localizable UI strings

Once you’ve generated a maximal amount of your application's web user interface,
you can spend your time using JDeveloper's productive environment to tailor the
results or to concentrate your effort on additional showcase pages that need special
attention. Once you’ve modified a generated page, you can adjust a setting to avoid
regenerating that page on subsequent runs of the application generator. Of course,
since both the generated pages and your custom designed ones leverage the same
ADF Faces UI components, all of your pages automatically inherit a consistent look
and feel. For more information on how to get a fully functional trial of JHeadstart for
evaluation, including details on pricing, support, and additional services, see the
JHeadstart page on the Oracle Technology Network at
http://www.oracle.com/technetwork/developer-tools/jheadstart/
overview/index.html.

http://www.oracle.com/technology/products/jheadstart/index.html
http://www.oracle.com/technology/products/jheadstart/index.html
http://www.oracle.com/technology/products/jheadstart/index.html

2

Introduction to the ADF Sample Application 2-1

2Introduction to the ADF Sample Application

This chapter describes how to run the StoreFront module of the Fusion Order Demo
(FOD) application created as a sample to demonstrate the use of the Fusion web
application technology stack to create transaction-based web applications as required
for a web shopping storefront. Details about the schema and features that implement
the Fusion Order Demo application are also provided. The demonstration application
is used as an example throughout this guide to illustrate points and provide code
samples.

Before examining the individual components and their source code in depth, you may
find it helpful to install and become familiar with the functionality of the Fusion Order
Demo application.

This chapter includes the following sections:

■ Section 2.1, "Introduction to the Oracle Fusion Order Demo"

■ Section 2.2, "Setting Up the Fusion Order Demo Application"

■ Section 2.3, "Running the Fusion Order Demo Application StoreFront Module"

■ Section 2.4, "Running the Fusion Order Demo Standalone Applications"

■ Section 2.5, "Taking a Look at the Fusion Order Demo Application"

2.1 Introduction to the Oracle Fusion Order Demo
In this sample application, electronic devices are sold through a storefront-type web
application. Customers can visit the web site, register, and place orders for the
products. In order to register customers and fulfill orders, currently only a single
application is in place. In a future release, several applications, will cooperate. For a
detailed description of how the application works at runtime, see Section 2.5, "Taking a
Look at the Fusion Order Demo Application."

In order to view and run the demo, you need to install Oracle JDeveloper 11g. You
then need to download the application for this demonstration. Instructions to
complete these tasks appear in this chapter. For complete details, see Section 2.2,
"Setting Up the Fusion Order Demo Application."

Once the application is installed and running, you can view the code using Oracle
JDeveloper. You can view the application at runtime by logging in as an existing
customer and placing an order.

Setting Up the Fusion Order Demo Application

2-2 Fusion Developer's Guide for Oracle Application Development Framework

2.2 Setting Up the Fusion Order Demo Application
The Fusion Order Demo application runs using an Oracle database and Oracle
JDeveloper 11g. The platforms supported are the same as those supported by
JDeveloper.

To prepare the environment and run the Fusion Order Demo application, you must:

1. Install Oracle JDeveloper 11g and meet the installation prerequisites. The Fusion
Order Demo application requires an existing Oracle database. For details, see
Section 2.2.1, "How to Download the Application Resources."

2. Install the Fusion Order Demo application from the Oracle Technology Network.
For details, see Section 2.2.2, "How to Install the Fusion Order Demo Schema."

3. Install Mozilla FireFox, version 2.0 or higher, or Internet Explorer, version 7.0 or
higher.

4. Run the application on a monitor that supports a screen resolution of 1024 X 768 or
higher. For details, see Section 2.3, "Running the Fusion Order Demo Application
StoreFront Module."

2.2.1 How to Download the Application Resources
The Fusion Order Demo application requires an existing Oracle database. You run the
Fusion Order Demo application using Oracle JDeveloper 11g.

Do the following before installing the Fusion Order Demo application:

■ Install Oracle JDeveloper. You need Oracle JDeveloper 11g Studio Edition to view
the application’s projects and run the application using the JDeveloper integrated
server. You can download Oracle JDeveloper from:

http://www.oracle.com/technetwork/developer-tools/jdev/overview/ind
ex.html

■ Download the Fusion Order Demo application ZIP file (FusionOrderDemo_
R1PSx.zip). You can download the ZIP file from:

http://www.oracle.com/technetwork/developer-tools/jdev/learnmore/fo
d1111-407812.html

■ Install an Oracle database. The Fusion Order Demo application requires a
database for its data.

The SQL scripts were written for an Oracle database, so you will need some
version of an Oracle RDBMS, such as 11g, or XE. The scripts will not install into
Oracle Lite. If you wish to use Oracle Lite or some other database, then you will
need to modify the database scripts accordingly. You can download an Oracle
database from:

http://www.oracle.com/technetwork/index.html

Specifically, the small footprint of the Oracle Express Edition (XE) is ideally suited
for setting up the database on your local machine. You can download it from:

Note: Ensure that you download and install 11g and that it is the
Studio Edition, not the Java Edition. You can verify these details in
Oracle JDeveloper from the Help > About menu option.

http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/learnmore/fod1111-407812.html
http://www.oracle.com/technetwork/developer-tools/jdev/learnmore/fod1111-407812.html
http://www.oracle.com/technetwork/index.html

Setting Up the Fusion Order Demo Application

Introduction to the ADF Sample Application 2-3

http://www.oracle.com/technetwork/database/express-edition/overview
/index.html

2.2.2 How to Install the Fusion Order Demo Schema
You can download the Fusion Order Demo application from the Oracle Technology
Network (OTN) web site.

To download the demo and install the FOD schema to your database:
1. Navigate to

http://www.oracle.com/technetwork/developer-tools/jdev/learnm
ore/fod1111-407812.html and download the ZIP file to a local directory.

2. Start Oracle JDeveloper 11g and from the main menu choose File > Open.

3. In the Open dialog, browse to the location where you extracted the ZIP file to in
Step 1 and select Infrastructure.jws from the infrastructure directory. Click Open.

4. In the Application Navigator, expand MasterBuildScript and then Resources, and
double-click build.properties.

5. In the editor, modify the properties shown in Table 2–1 for your environment.

6. From the JDeveloper main menu, choose File > Save All.

7. In the Application Navigator, under the Resources node, right-click build.xml
and choose Run Ant Target > buildAll.

8. In the Enter Property dialog, enter the password for the database system user and
click Continue.

Once you enter the password, the Ant build script creates the FOD users and
populates the tables in the FOD schema. In the Apache Ant - Log window, you
will see a series of SQL scripts and finally:

buildAll:

Table 2–1 Properties Required to Install the Fusion Order Demo Application

Property Description

jdeveloper.home The root directory where you have Oracle JDeveloper 11g
installed. For example:

 C:/JDeveloper/11/jdeveloper

jdbc.urlBase The base JDBC URL for your database in the format
jdbc:oracle:thin:@<yourhostname>. For example:

jdbc:oracle:thin:@localhost

jdbc.port The port for your database. For example:

1521

jdbc.sid The SID of your database. For example:

ORCL or XE

db.adminUser The administrative user for your database. For example:

system

db.demoUser.tablespace The table space name where FOD users will be installed. For
example:

USERS

http://www.oracle.com/technetwork/database/express-edition/overview/index.html
http://www.oracle.com/technetwork/database/express-edition/overview/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/learnmore/fod1111-407812.html
http://www.oracle.com/technetwork/developer-tools/jdev/learnmore/fod1111-407812.html

Setting Up the Fusion Order Demo Application

2-4 Fusion Developer's Guide for Oracle Application Development Framework

BUILD SUCCESSFUL
Total time: nn minutes nn seconds

For more information on the demo schema and scripts, see the README.txt file in
the MasterBuildScript project.

2.2.3 Overview of the Fusion Order Demo Schema
Figure 2–1 shows a simplified representation of the schema for the Fusion Order Demo
application. The blue shapes in the diagram represent the four core tables. The other
tables and views are shown as yellow shapes that sometimes represent several tables
to help simplify the diagram. Some of the tables use sequences, but only those used by
the core tables are shown.

Figure 2–1 Schema Diagram for the Fusion Order Demo Application

The core tables represented by the blue diagram elements include:

■ PERSONS: This table stores all the users who interact with the system, including
customers, staff, and suppliers. The first and last name, email address, and person
type code of each user is stored. A user is uniquely identified by an ID. Other IDs
provide foreign keys to tables with address information and, in the case of
customer’s, membership information.

■ ORDERS: This table represents activity by specific customers. When an order is
created, the date of the order, the total amount of the order, the ID of the customer

Setting Up the Fusion Order Demo Application

Introduction to the ADF Sample Application 2-5

who created it, and the status of the order are all recorded. After the order is
fulfilled, the order status and order shipped date are updated. All orders are
uniquely identified by a sequence-assigned ID.

■ ORDER_ITEMS: For each order, there may be many order items recorded. The unit
price and quantity of each order item are recorded. The order line item and its
order ID uniquely identify each order item.

■ PRODUCTS_BASE: This table stores all of the products available in the store. For
each product, the name and cost are recorded. All products are uniquely identified
by a sequence-assigned ID. The image of the product and its description are stored
in separate tables, which each reference the product ID. The columns
ATTRIBUTEx are reserved for future use with descriptive flexfields (commonly
required by Oracle E-Business Suite schema).

The sequences that the core tables use include:

■ PERSON_SEQ: Populates the ID for for each new person.

■ ORDER_SEQ: Populates the ID for each new order.

■ ORDERS_ITEMS_SEQ: Populates the ID for each new order item.

■ PRODUCTS_SEQ: Populates the ID for each product.

The PL/SQL package USER_CONTEXT_PKG contains a procedure set_app_user_
lang() used to illustrate a simple example of how to set per-user database state from
inside an application module.

Note the SHIPPING_OPTIONS view is reserved for future use and is not currently
used in the Fusion Order Demo.

To support tracking of change history in the Fusion Order Demo, every table contains
the history column CREATED_BY, CREATION_DATE, LAST_UPDATED_BY, LAST_
UPDATED_DATE, and OBJECT_VERSION_ID, as shown in Figure 2–2.

Figure 2–2 History Columns for Tables in FOD Schema

2.2.3.1 Translation Support in the Fusion Order Demo Schema
To support localization of the Fusion Order Demo, the AVAILABLE_LANGUAGES table
lists all available languages. In this table, only one row will have the DEFAULT_FLAG
set to Y corresponding to the current user’s language.

Translations exist for the following base tables: PRODUCTS_BASE (PRODUCT_
TRANSLATIONS), PRODUCT_CATEGORIES_BASE (CATEGORY_TRANSLATIONS),
SHIPPING_OPTIONS_BASE (SHIPPING_OPTION_TRANSLATIONS),

Setting Up the Fusion Order Demo Application

2-6 Fusion Developer's Guide for Oracle Application Development Framework

MEMBERSHIPS_BASE (MEMBERSHIP_TRANSLATIONS) and DISCOUNTS_BASE
(DISCOUNT_TRANSLATIONS).

Taking the Shipping Options group, as shown in Figure 2–3: SHIPPING_OPTION_
TRANSLATIONS is fully populated so that each product has one row for each
language. The column LANGUAGE holds the translation language identifier. The entry
itself may not yet be translated, in which case the SOURCE_LANGUAGE column holds
the language that the entry is currently in. When a value has been translated, SOURCE_
LANGUAGE and LANGUAGE will hold the same value. The PL/SQL package USER_
CONTEXT_PKG creates the custom USERENV(’CLIENT_INFO’) variable that specifies
the runtime locale used to pull the correct translations from SHIPPING_OPTION_
TRANSLATIONS into the SHIPPING_OPTIONS view along with the SHIPPING_
OPTIONS_BASE table data. Each order has one set of Shipping Options associated
with it.

Figure 2–3 Shipping Options Grouping for the Fusion Order Demo Schema

2.2.3.2 Lookup Tables in the Fusion Order Demo Schema
The code lookup table LOOKUP_CODES table contains codes that are used throughout
the Fusion Order Demo application. For example, the PERSONS table contains the
columns person_type_code, marital_status_code, and gender. These codes
have corresponding rows in the LOOKUP_CODES table, discriminating on the lookup_
type column. Foreign keys are not defined for these rows, but instead are enforced in
the user interface by populating user interface components with LOOKUP_CODES
values for a particular lookup type. For example, when creating a new registration
(also known as a person) in the user interface, the values that can be used for the

Setting Up the Fusion Order Demo Application

Introduction to the ADF Sample Application 2-7

person_type_code are populated in a dropdown list from the lookup_code
values with lookup_type=person_type_code.

The LOOKUP_CODES table also supports the localization of the user interface. The table
uses a combined key of code and language (obtained from runtime locale or
preference) to determine the code’s meaning. Each code has an entry for each
supported language, as described in Section 2.2.3.1, "Translation Support in the Fusion
Order Demo Schema."

Using addresses as an example, as shown in Figure 2–4: PERSONS uses an intersection
ADDRESS_USAGES to accommodate multiple address information. In addition
ADDRESS_USAGES uses LOOKUP_CODES to store both OWNER_TYPE_CODE and
USAGE_TYPE_CODE information, returning the MEANING (see table extract in
Figure 2–5). ADDRESSES directly accesses COUNTRY_CODES to look up and use the
COUNTRY_NAME associated with the COUNTRY_ID stored in ADDRESSES. The
PERSONS table also directly stores PRIMARY_ADDRESS_ID by a direct lookup to
ADDRESSES.

Figure 2–4 LOOKUP_CODES Usage in the Fusion Order Demo Schema

The correct translation is applied by using the LANGUAGE columns in both LOOKUP_
CODES and COUNTRY_CODES with the runtime locale/preference.

Figure 2–5 LOOKUP_CODES Sample Data in the Fusion Order Demo Schema

The lookup table DEMO_OPTIONS defines the various options within the Fusion Order
Demo application that are switched on. It also caches general configuration
information such as email addresses and phone numbers to use as overrides in this

Running the Fusion Order Demo Application StoreFront Module

2-8 Fusion Developer's Guide for Oracle Application Development Framework

demonstration scenario (for example, where email addresses are fictitious). This table
is reserved for future use.

2.3 Running the Fusion Order Demo Application StoreFront Module
The Fusion Order Demo application consists of a web user interface and a business
components layer. Specifically, the following projects are part of the Fusion Order
Demo application:

■ StoreFrontService: Provides access to the storefront data and provides
transaction support to update data for customer information and orders.

■ StoreFrontUI: Provides web pages that the customer uses to browse the
storefront, place orders, register on the site, view order information, and update
the user profile.

You run the StoreFront module of the Fusion Order Demo application in JDeveloper
by running the home.jspx page in the StoreFrontUI project. The StoreFrontUI
project uses JavaServer Faces (JSF) as the view technology, and relies on the ADF
Model layer to interact with ADF Business Components in the StoreFrontService
project. To learn more about the Fusion Order Demo application and to understand its
implementation details, see Section 2.5, "Taking a Look at the Fusion Order Demo
Application."

A second module of the Fusion Order Demo application is available to process the
orders that you place using the StoreFront module. For example, the WebLogic Fusion
Order Demo module uses various internal and external applications, including a
customer service application, a credit validation system, and both an internal vendor
and external vendor. These composite services are the subject of another developer’s
guide and are not addressed in the Oracle Fusion Middleware Fusion Developer's Guide
for Oracle Application Development Framework. For details about the WebLogic Fusion
Order Demo module used to demonstrate the capabilities of Oracle SOA Suite, see the
Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

You cannot run the WebLogic Fusion Order Demo module in JDeveloper. When you
want to integrate the storefront portion with the composite services portion of the
application, you must deploy the Fusion Order Demo application to a SOA-enabled
Oracle WebLogic Server. Instructions to deploy any SOA web application to Oracle
WebLogic Server, are addressed in the Fusion Order Demo home page on OTN at this
link
http://www.oracle.com/technetwork/developer-tools/jdev/index-095
536.html.

The easiest way to run the Fusion Order Demo application is to open only the
StoreFront module in JDeveloper and run the home.jspx page in the StoreFrontUI
project.

To run the StoreFront module of the Fusion Order Demo application:
1. Open the application in Oracle JDeveloper:

a. From the JDeveloper main menu, choose File > Open.

b. Navigate to the location where you extracted the demo ZIP file to and select
the StoreFrontModule.jws application workspace from the
StoreFrontModule directory. Click Open.

Figure 2–6 shows the Application Navigator after you open the file for the
application workspace. For a description of each of the projects in the

http://www.oracle.com/technetwork/developer-tools/jdev/index-095536.html
http://www.oracle.com/technetwork/developer-tools/jdev/index-095536.html

Running the Fusion Order Demo Application StoreFront Module

Introduction to the ADF Sample Application 2-9

workspace, see Section 2.5, "Taking a Look at the Fusion Order Demo
Application."

Figure 2–6 The Fusion Order Demo Projects in Oracle JDeveloper

2. In the Application Navigator, click the Application Resources accordion title to
expand the panel.

3. In the Application Resources panel, expand the Connections and Database nodes.

4. Right-click FOD connection and choose Properties.

5. In the Edit Database Connection dialog, modify the connection information shown
in Table 2–2 for your environment.

Do not modify the user name and password fod/fusion. These must remain
unchanged. Click OK.

6. In the Application Navigator, right-click StoreFrontService and choose Rebuild.

7. In the Application Navigator, right-click StoreFrontUI and choose Run.

The Configure Default Domain dialog displays the first time you run the
application and start a new domain in Integrated WebLogic Server. Use the dialog
to define an administrator password for the new domain. Passwords you enter can
be eight characters or more and must have a numeric character.

The home.jspx page within the StoreFrontUI project is the default run target.
When you run the default target, JDeveloper will launch the browser and display
the Fusion Order Demo application home page.

Once the home page appears, you can browse the web site as an anonymous user, or
you can choose to log in and place orders (may require registering as a customer first).
Because the Fusion Order Demo application implements ADF Security to manage
access to Oracle Application Development Framework (Oracle ADF) resources, only

Table 2–2 Connection Properties Required to Run the Fusion Order Demo Application

Property Description

Host Name The host name for your database. For example:

 localhost

JDBC Port The port for your database. For example:

1521

SID The SID of your database. For example:

ORCL or XE

Running the Fusion Order Demo Standalone Applications

2-10 Fusion Developer's Guide for Oracle Application Development Framework

the authenticated user will be able to view orders in their cart. Table 2–3 shows the
users who are authorized as members of the fod-users role to log into the Fusion
Order Demo application.

2.4 Running the Fusion Order Demo Standalone Applications
The Fusion Order Demo application includes a set of sample applications that allow
you to investigate Oracle ADF functionality that does not appear in the StoreFront
module. Collectively, these sample applications are referred to as standalone
applications. The standalone sample applications appear in five application
workspaces, each consisting of several projects, located in the StandaloneExamples
directory where you extracted the demo ZIP file.

In general, almost all of the standalone applications demonstrate concepts of ADF
Business Components and data model projects. References to these standalone
applications appear throughout the chapters contained in Part II, "Building Your
Business Services" and Part VI, "Advanced Topics" of this developer’s guide. As you
read sections this guide, you may want to run the corresponding standalone
application to investigate the concepts further. For a brief description of each

Note: The Fusion Order Demo application ships with predefined
user data. The schema for the application defines different types of
users including customer, supplier, and staff types. All users are
members of the fod-users role and are authorized to log in.
However, only ngreenbe is the user type CUST (customer). When
you log in as any other user, you will need to register as a customer
before you can place an order. These additional users were created to
support roles in other modules of the Fusion Order Demo application.

Table 2–3 Supplied Users in the Fusion Order Demo Application

Username Password
Application
Role Notes

ngreenbe welcome1 fod-users Can add items to cart, check out, and view
order information. This is the only user
who is preregistered as a customer in the
StoreFront module of Fusion Order
Demo.

sking welcome1 fod-users,
fod-admin

Can add items to cart, but must register as
a customer to check out and view order
information. This user also has
administration privileges (fod-admin) in
the MasterPriceList module of Fusion
Order Demo.

ahunold welcome1 fod-users,
fod-manager

Can add items to cart, but must register as
a customer to check out and view order
information. This user also has read-only
privileges (fod-manager) in the
MasterPriceList module of Fusion Order
Demo.

pbrown /
fdaviet

welcome1 fod-users Can add items to cart, but must register as
a customer to check out and view order
information. These users may be added to
to other roles in a future version of Fusion
Order Demo.

Running the Fusion Order Demo Standalone Applications

Introduction to the ADF Sample Application 2-11

application workspace and links to the documentation, refer to the tables in
Section 2.4.2 through Section 2.4.5.

2.4.1 How to Run the Standalone Applications
How you use JDeveloper to run a standalone application depends on the individual
application. Some applications are set up to use the interactive testing tool JDeveloper
provides for the ADF Business Components data model project (this tool is known as
the Business Component Browser). Other applications provide Java test clients (with
file names like TestClientXxx.java) that use the ADF Business Components API
to execute queries and display results. In the case of the Business Component Browser,
you work entirely in the tool, which essentially provides a convenient user interface
for interacting with business components. In the case of the Java clients, the program
files output their results and print statements to the JDeveloper Log window.

Familiarize yourself with the following general procedures about how to run the
standalone applications. The first procedure describes how to run an application with
its provided test client. The second describes how to launch the Business Component
Browser on the data model project’s ADF application module. Then read Section 2.4.2
through Section 2.4.5 for more details about the individual standalone applications.

Before you begin:
■ In the Database Navigator, modify the connection information for the FOD

database connection so it has the connection information for your environment, as
described in Section 2.3, "Running the Fusion Order Demo Application StoreFront
Module."

■ Some of the standalone applications work with a modified version of the FOD
schema. For standalone applications that require schema changes, the
application’s project will contain a SQL script that you must run within
JDeveloper.

Once you are through investigating a standalone application, you can use the
script to back out the schema changes.

To run a standalone application from its provided test client:
1. Open the application in Oracle JDeveloper:

a. From the JDeveloper main menu, choose File > Open.

b. Navigate to the location where you extracted the demo ZIP file to, open the
StandaloneExamples directory, then open the desired standalone application
directory and select the application workspace (.jws) from the folder. Click
Open.

2. In the Application Navigator, expand the project folder and locate the test client
(.java) file. In some cases, the test client is added to a package located in the
Application Sources folder. In other cases, the Resources folder contains the test
client.

For example, Figure 2–7 shows the expanded ApplicationModules project with
the Java file node TestClientCustomInterface.java selected.

Running the Fusion Order Demo Standalone Applications

2-12 Fusion Developer's Guide for Oracle Application Development Framework

Figure 2–7 Test Client Selected in Application Navigator

3. Right-click the test client and choose Run.

For the names and location of the test clients provided with the standalone
applications, see the tables in Section 2.4.2 through Section 2.4.5.

The Configure Default Domain dialog displays the first time you run the
application and start a new domain in Integrated WebLogic Server. Use the dialog
to define an administrator password for the new domain. Passwords you enter can
be eight characters or more and must have a numeric character.

4. Examine the JDeveloper Log window for the test client’s output.

Refer to the referenced documentation for details about the expected results.

When the standalone application does not provide a test client to programmatically
exercise the ADF Business Components API, you will use the interactive testing tool,
known as the Business Components Browser.

To run a standalone application in the Business Component Browser:
1. Open the application in Oracle JDeveloper:

a. From the JDeveloper main menu, choose File > Open.

b. Navigate to the location where you extracted the demo ZIP file to, open the
StandaloneExamples directory, then open the desired standalone application
directory and select the application workspace (.jws) from the folder. Click
Open.

2. In the Application Navigator, expand the project folder and locate the application
module in a package in the Application Sources folder.

For example, Figure 2–8 shows the expanded ConditionalDelete project with the
application module AppModule selected and a tooltip for the node displayed.

Figure 2–8 Application Module Node Selected in Application Navigator

Running the Fusion Order Demo Standalone Applications

Introduction to the ADF Sample Application 2-13

3. Right-click the application module node and choose Run.

For the names of the runnable application modules, see the tables in Section 2.4.2
through Section 2.4.5.

The Configure Default Domain dialog displays the first time you run the
application and start a new domain in Integrated WebLogic Server. Use the dialog
to define an administrator password for the new domain. Passwords you enter can
be eight characters or more and must have a numeric character.

4. Use the Business Component Browser to interact with the view instances of the
standalone application.

Refer to the referenced documentation for details about the application. For details
about using the Browser to interact with the data model, see Section 6.3, "Testing
View Object Instances Using the Business Component Browser."

2.4.2 Standalone Applications in the DevGuideExamples Application Workspace
Two of the standalone applications in the application workspace DevGuideExamples
use programmatic test clients to demonstrate concepts related to the ADF Business
Components framework. The third application demonstrates framework functionality
when you run the application in the Business Component Browser.

Figure 2–9 shows the Application Navigator after you open the DevGuideExamples
application workspace.

Figure 2–9 Runnable Applications in the DevGuideExamples Application Workspace

Note that the test clients for the DevGuideExamples standalone applications provide
a good starting point for understanding how to exercise methods of the ADF Business
Components API. They also make good samples for test clients that you may want to
create to test business component queries in a data model project. For background on
working with test clients, see Section 6.4, "Testing View Object Instances
Programmatically."

Running the Fusion Order Demo Standalone Applications

2-14 Fusion Developer's Guide for Oracle Application Development Framework

Table 2–4 describes the standalone applications in the DevGuideExamples
application workspace. Examples from these applications appear throughout the
chapters contained in Part II, "Building Your Business Services" of this guide.

Note: The ADF Business Components API is available when you
need to generate custom classes to augment the default runtime
behavior of the business components. For background about the ADF
Business Components framework, see Section 3.5, "Overview of the
Implementation Architecture."

Table 2–4 Standalone Applications in the DevGuideExamples Application Workspace

Project Name Runnable Class or Project Target Documentation

ApplicationModule Run TestClientCustomInterface.java in
the devguide.examples.client
package in the Application Sources
folder.

Exercises custom methods of
StoreFrontService application module’s
client interface and prints to the
JDeveloper Log window to indicate the
results.

For details about the test client, see
Section 9.10.1, "How to Work
Programmatically with an Application
Module's Client Interface."

For details about the methods of the
client interface, see the examples in
Section 4.12, "Working
Programmatically with Entity Objects
and Associations."

ConditionalDelete Launch the Business Component
Browser on AppModule in the
Application Sources folder.

Overrides a method in the generated
entity class that conditionally prevents
deletion of entity rows. In the Business
Component Browser, click Delete the
Current Row and observe the exception
statement. Then, click Insert a New Row
and delete the new row.

For a description of overriding the
remove() method that you generate in
the entity implementation class file, see
Section 8.12, "Conditionally Preventing
an Entity Row from Being Removed."

Running the Fusion Order Demo Standalone Applications

Introduction to the ADF Sample Application 2-15

2.4.3 Standalone Applications in the AdvancedExamples Application Workspace
The standalone applications assembled in the application workspace
AdvancedExamples demonstrate advanced concepts that apply to the entire ADF
Business Components framework.

Figure 2–10 shows the Application Navigator after you open the AdvancedExamples
application workspace.

QueryingDataWithView
Objects

Run TestClient.java in the Resources
folder.

Programmatically iterates over the
PersonList view instance using
methods of the Business Components
API RowIterator interface and prints
to the JDeveloper Log window.

For details about iterating over a
collection, see Section 6.4.5, "How to
Count the Number of Rows in a Row
Set."

For details about how to create test
clients, see Section 6.4, "Testing View
Object Instances Programmatically."

Run TestClient2.java in the Resources
folder.

Programmatically iterates over the
PersonList view instance, accesses the
detail collection
OrdersToShipToCustomers using a
view link accessor attribute, and prints to
the JDeveloper Log window.

For details about iterating over a detail
collection, see Section 5.6.6, "How to
Access the Detail Collection Using the
View Link Accessor."

For more details about the test client,
see Section 6.4.6, "How to Access a
Detail Collection Using the View Link
Accessor."

Run TestClient3.java in the Resources
folder.

Programmatically iterates over the
PersonList view instance using a
strongly-typed PersonsRow interface
and prints to the JDeveloper Log
window.

For details about iterating over a
collection using the view row accessor
attribute, see Section 39.3.1.3, "Exposing
View Row Accessors to Clients."

Run TestClientBindVars.java in the
Resources folder.

Programmatically sets the WHERE clause
for the PersonList view instance using
bind variables to filter the collection and
prints to the JDeveloper Log window.

For details about setting bind variables,
see Section 5.10.6, "How to Set Existing
Bind Variable Values at Runtime."

For more details about the test client,
see Section 5.10.5, "How to Add a
WHERE Clause with Named Bind
Variables at Runtime."

Run TestClientViewCriteria.java in the
Resources folder.

Programmatically sets a view criteria for
the PersonList view instance to filter
the collection and prints to the
JDeveloper Log window.

For details about the ADF Business
Component’s view criteria API, see
Section 5.11.9, "What You May Need to
Know About the View Criteria API."

For more details about the test client,
see Section 5.11.7, "How to Create View
Criteria Programmatically."

Table 2–4 (Cont.) Standalone Applications in the DevGuideExamples Application Workspace

Project Name Runnable Class or Project Target Documentation

Running the Fusion Order Demo Standalone Applications

2-16 Fusion Developer's Guide for Oracle Application Development Framework

Figure 2–10 Runnable Applications in the AdvancedExamples Application Workspace

Table 2–5 describes the standalone applications in the AdvancedExamples
application workspace. Examples from this application workspace are described in
Chapter 37, "Advanced Business Components Techniques."

Table 2–5 Standalone Applications in the AdvancedExamples Application Workspace

Project Name Runnable Class or Project Target Documentation

BaseProject Run TestClient.java in the Application
Sources folder.

For details about how to extend
business components to create a
customized versions of the original, see
Section 37.9, "Creating Extended
Components Using Inheritance."

CustomizedErrorMessages Run the
addProductsTableConstraint.sq
l scripts in the Application Sources
folder against the FOD connection to set
up the additional database objects
required for the project.

Launch the Business Component
Browser on ProductModule in the
Application Sources folder.

For details about how to provide an
alternative message string for the
builtin error codes in a custom message
bundle, see Section 37.8, "Customizing
Business Components Error Messages."

ExtendAndSubstitute Not runnable.

Programmatically iterates over the
PersonList view instance using
methods of the Business Components
API RowIterator interface and prints
to the JDeveloper Log window.

For details about how to substitute
business components, see Section 37.10,
"Substituting Extended Components in
a Delivered Application."

Running the Fusion Order Demo Standalone Applications

Introduction to the ADF Sample Application 2-17

2.4.4 Standalone Applications in the AdvancedEntityExamples Application Workspace
The standalone applications assembled in the application workspace
AdvancedEntityExamples demonstrate advanced concepts that apply to ADF
Business Components entity objects.

Figure 2–11 shows the Application Navigator after you open the
AdvancedEntityExamples application workspace.

FrameworkExtensions Not runnable.

Provides template class files that you
can use to modify your own generated
ADF Business Components classes.

For details about framework
extensions, see Section 37.2, "Creating a
Layer of Framework Extensions."

ProgrammaticallySet
Properties

Run TestClient.java in the Application
Sources folder.

For details about how to communicate
custom declarative information about
business components to the generic
code in framework extension classes,
see Section 37.3, "Customizing
Framework Behavior with Extension
Classes."

StoredProcedure
Invocation

Run the ExampleSQLPackage.sql
scripts in the Application Sources
folder against the FOD connection to set
up the additional database objects
required for the project.

Run TestClient.java in the Application
Sources folder.

For details about how to code custom
Java classes for business components
that invoke database stored procedures
and functions, see Section 37.5,
"Invoking Stored Procedures and
Functions."

Table 2–5 (Cont.) Standalone Applications in the AdvancedExamples Application Workspace

Project Name Runnable Class or Project Target Documentation

Running the Fusion Order Demo Standalone Applications

2-18 Fusion Developer's Guide for Oracle Application Development Framework

Figure 2–11 Runnable Applications in the AdvancedEntityExamples Application
Workspace

Table 2–6 describes the standalone applications in the AdvancedEntityExamples
application workspace. Examples from this application workspace are described in
Chapter 38, "Advanced Entity Object Techniques."

Running the Fusion Order Demo Standalone Applications

Introduction to the ADF Sample Application 2-19

2.4.5 Standalone Applications in the AdvancedViewObjectExamples Application
Workspace

The standalone applications assembled in the application workspace
AdvancedViewObjectExamples demonstrate advanced concepts that apply to ADF
Business Components view objects.

Figure 2–12 shows the Application Navigator after you open the
AdvancedViewObjectExamples application workspace.

Table 2–6 Standalone Applications in the AdvancedEntityExamples Application Workspace

Project Name Runnable Class or Project Target Documentation

ControllingPostingOrder Launch the Business Component
Browser on ProductsModule in the
Application Sources folder.

For details about controlling the
posting order resulting from DML
operations to save changes to a
number of related entity objects, see
Section 38.8, "Controlling Entity
Posting Order to Avoid Constraint
Violations."

EntityWrappingPLSQLPackage Run the CreateProductsXXX.sql
scripts in the Application Sources
folder against the FOD connection to
set up the additional database objects
required for the project.

Launch the Business Component
Browser on ProductsModule in the
Application Sources folder.

For details about overriding the
default DML processing event for an
entity object to invoke methods in a
PL/SQL API PL/SQL package that
encapsulates insert, update, and
delete access to an underlying table,
see Section 38.5, "Basing an Entity
Object on a PL/SQL Package API."

InheritanceAndPolymorphic
Queries

Run the AlterPersonsTable.sql
script in the Application Sources
folder against the FOD connection to
set up the additional database objects
required for the project.

Run TestEntityPolymorphism.java
in the Resources folder. Also, run
TestViewRowPolymorphism.java in
the Resources folder.

For details about creating an entity
object inheritance hierarchy, see
Section 38.7, "Using Inheritance in
Your Business Domain Layer."

SimpleDomains Run the CreateObjectType.sql
script in the Application Sources
folder against the FOD connection to
set up the additional database objects
required for the project.

Launch the Business Component
Browser on PersonModule in the
Application Sources folder.

For details about creating custom
data types, see Section 38.1, "Creating
Custom, Validated Data Types Using
Domains."

Running the Fusion Order Demo Standalone Applications

2-20 Fusion Developer's Guide for Oracle Application Development Framework

Figure 2–12 Runnable Applications in the AdvancedViewObjectExamples Application
Workspace

Table 2–4 describes the standalone applications in the
AdvancedViewObjectExamples application workspace. Examples from this
application workspace are described in Chapter 39, "Advanced View Object
Techniques."

Table 2–7 Standalone Applications in the AdvancedViewObjectExamples Application Workspace

Project Name Runnable Class or Project Target Documentation

DeclarativeBlock
Operations

Launch the Business Component
Browser on AppModule in the
Application Sources folder.

For details about how to use custom
metadata properties to control insert,
update, or delete on a view object, see
Section 39.11, "Declaratively Preventing
Insert, Update, and Delete."

InMemoryOperations Launch the Business Component
Browser on AppModule in the
Application Sources folder.

Illustrates using the in-memory sorting
and filtering functionality from the client
side using methods on the interfaces in
the oracle.jbo package.

For details about how to use view
objects to perform in-memory searches
and sorting to avoid unnecessary trips
to the database, see Section 39.5,
"Performing In-Memory Sorting and
Filtering of Row Sets."

MultipleMasters Launch the Business Component
Browser on AppModule in the
Application Sources folder.

For details about creating a view object
with multiple updatable entities to
support creating new rows, see
Section 39.9, "Creating a View Object
with Multiple Updatable Entities."

Taking a Look at the Fusion Order Demo Application

Introduction to the ADF Sample Application 2-21

2.5 Taking a Look at the Fusion Order Demo Application
Once you have opened the projects in Oracle JDeveloper, you can then begin to review
the artifacts within each project. The development environment for the Fusion Order
Demo application is divided into two projects: the StoreFrontService project and
the StoreFrontUI project.

The StoreFrontService project contains the classes that allow the product data to
be displayed in the web application. Figure 2–13 shows the StoreFrontService
project and its associated directories.

Figure 2–13 The StoreFrontService Project

MultipleViewCriterias Run
TestClientMultipleViewCriteria.java in
the Application Sources folder.

For details about how to
programmatically filter query results,
see Section 39.4, "Working
Programmatically with Multiple
Named View Criteria."

ReadingAndWritingXML Run TestClientReadXML.java in the
Resources folder. Then run
TestClientWriteXML.java in the
Resources folder.

For details about how to produce XML
from queried data, see Section 39.7,
"Reading and Writing XML."

ViewObjectOnRefCursor Run the
CreateRefCursorPackage.sql
scripts in the Application Sources folder
against the FOD connection to set up the
additional database objects required for
the project,

Launch the Business Component
Browser on OrdersModule in the
Application Sources folder.

For details about how to use PL/SQL
to open a cursor to iterate through the
results of a query, see Section 39.8.4,
"How to Create a View Object on a REF
CURSOR."

Table 2–7 (Cont.) Standalone Applications in the AdvancedViewObjectExamples Application Workspace

Project Name Runnable Class or Project Target Documentation

Taking a Look at the Fusion Order Demo Application

2-22 Fusion Developer's Guide for Oracle Application Development Framework

The StoreFrontService project contains the following directories:

■ Application Sources: Contains the files used to access the product data.
Included are the metadata files used by Oracle Application Development
Framework (Oracle ADF) to bind the data to the view.

■ META-INF: Contains a file used in deployment.

The StoreFrontUI project contains the files for the web interface, including the
backing beans, deployment files, and JSPX files. Figure 2–14 shows the
StoreFrontUI project and its associated directories.

Figure 2–14 The StoreFrontUI Project

The StoreFrontUI project contains the following directories:

■ Application Sources: Contains the code used by the web client, including the
managed and backing beans, property files used for internationalization, and the
metadata used by Oracle ADF to display bound data.

■ Web Content: Contains the web files, including the JSP files, images, skin files,
deployment descriptors, and libraries.

2.5.1 Anonymous Browsing
You start the Fusion Order Demo application by running the home.jspx page in the
StoreFrontUI project. For details about running the application using the default
target, home.jspx page, see Section 2.3, "Running the Fusion Order Demo
Application StoreFront Module."

When you enter the storefront site, the site is available for anonymous browsing. You
can use this page to browse the catalog of products without logging into an account.

Taking a Look at the Fusion Order Demo Application

Introduction to the ADF Sample Application 2-23

The initial view shows the featured products that the site wishes to promote and gives
you access to the full catalog of items. Products are presented as images along with the
name of the product. Page regions divide the product catalog area from other features
that the site offers.

Figure 2–15 shows the home page.

Figure 2–15 Home Page with Multiple Regions

Where to Find Implementation Details
Following are the sections of the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework that describe how to create a databound web
page:

■ Providing the structure for the web page

The home page separates features of the site into regions that are implemented
using a combination of ADF Faces templates and JavaServer Faces (JSF) page
fragments. ADF Faces templates and the fragments allow you to add ADF
databound components. For information about the steps you perform before
adding databound user interface components to a web page, see Section 20.1,
"Introduction to Developing a Web Application with ADF Faces."

■ Displaying information on a web page

To support data binding, the featured items on the tabbed region of the home page
use EL (Expression Language) expressions to reference ADF data control usages in
the declarative ADF page definition file. The page definition file, which
JDeveloper creates for you when you work with the Data Controls panel to drag
and drop databound ADF Faces components, is unique to each web page or page
fragment. The ADF data control usages enable queries to the database and
ultimately work with the JSF runtime to render the databound ADF Faces

Taking a Look at the Fusion Order Demo Application

2-24 Fusion Developer's Guide for Oracle Application Development Framework

components, such as the ADF Faces image component used to display images
from the PRODUCT_IMAGES table. For information about creating a databound
web page that references the ADF page definition file, see Section 22.1,
"Introduction to Creating a Basic Databound Page."

■ Managing entry points to the application

The home page is supported by an ADF unbounded task flow. In general, the
Fusion web application relies on this ADF Controller feature to define entry points
to the application. The unbounded task flow for the entire home page and its page
fragments describes view activities for displaying the home page, displaying the
orders page, displaying the register user page, and it defines a task flow reference
to manage the checkout process. JDeveloper helps you to create the task flow with
visual design elements that you drag and drop from the Component Palette. When
you create an unbounded task flow, the elements allow you to identify how to
pass control from one activity in the application to the next. Because a view
activity must be associated with a web page or page fragment, JDeveloper allows
you also to create the files for the web page or fragment directly from the task flow
diagram. The process of creating a task flow adds declarative definitions to an
ADF task flow configuration file. The resulting diagram lets you work with a
visual control flow map of the pages and referenced task flows for your
application. For more information about specifying the entry points to the
application using an ADF unbounded task flows, see Section 14.1, "Introduction to
ADF Task Flows."

2.5.1.1 Viewing Product Details
To view detailed product information, you can click the product name link for any
product in the home page. The product information is laid out with collapsing nodes
organized by categories.

Figure 2–16 shows the detail dialog that you can view for a product.

Taking a Look at the Fusion Order Demo Application

Introduction to the ADF Sample Application 2-25

Figure 2–16 Home Page - Product Details Popup

You can also select the Statistics subtab on the home page to view a graphical
representation of the number of orders that customers have placed for the featured
items. To present the information so that quantities are easily compared, the graph
sorts the products by the number of items ordered, in descending order.

Figure 2–17 shows the bar graph used to display the featured products’ current order
details.

Taking a Look at the Fusion Order Demo Application

2-26 Fusion Developer's Guide for Oracle Application Development Framework

Figure 2–17 Home Page - Statistics for Featured Items

Where to Find Implementation Details
Following are the sections of the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework that describe how to develop the
components used to support browsing product details:

■ Triggering an action to display data

To display data from the data model, user interface components in the web page
are bound to ADF Model layer binding objects using JSF Expression Language
(EL) expressions. For example, when the user clicks on a link to display an
informational dialog, the JSF runtime evaluates the EL expression for the dialog’s
UI component and pulls the value from the ADF Model layer. At design time,
when you work with the Data Controls panel to drag an attribute for an item of a
data collection into you web page, and then choose an ADF Faces component to
display the value, JDeveloper creates all the necessary JSF tag and binding code
needed to display and update the associated data. For more information about the
Data Controls panel and the declarative binding experience, see Section 12.1,
"Introduction to ADF Data Binding."

■ Displaying data in graphical format

JDeveloper allows you to create databound components declaratively for your JSF
pages, meaning you can design most aspects of your pages without needing to
look at the code. By dragging and dropping items from the Data Controls panel,
JDeveloper declaratively binds ADF Faces UI components and ADF Data
Visualization graph components to attributes on a data control using an ADF
binding. For more information, see Section 26.1, "Introduction to Creating ADF
Data Visualization Components."

2.5.1.2 Browsing the Product Catalog
To begin browsing, click the Start Shopping tab in the home page. This action changes
the region of the page used to display details about featured products to a region that
displays a product categories tree. You can collapse and expand the branch nodes of
the tree to view the various product categories that make up the product catalog. The

Taking a Look at the Fusion Order Demo Application

Introduction to the ADF Sample Application 2-27

tree displays the product categories in alphabetical order, by category names. When
you want to view all the products in a particular category, click its category node in
the tree (for example, click Electronics, Media, or Office). The site refreshes the
product information region to display the list of products organized as they appear in
the database with an image and an accompanying description.

Figure 2–18 shows the home page with all the products in the Electronics category
displayed.

Figure 2–18 Home Page - Product Categories View

Where to Find Implementation Details
Following are the sections of the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework that describe how to use tables and forms to
display master-detail related objects:

■ Dragging and dropping master and detail components

You can create pages that display master-detail data using the Data Controls
panel. The Data Controls panel displays master-detail related objects in a
hierarchy that mirrors the one you defined in the ADF application module data
model, where the detail objects are children of the master objects. All you have to
do is drop the collections on the page and choose the type of component you want
to use. For example, in the Fusion Order Demo application, the page home.jspx
displays the master list of product categories in an af:tree component and
displays the detail list of products in an af:table component. For more
information about the data model, see Section 3.4, "Overview of the UI-Aware
Data Model." For more information about various types of pages that display
master-detail related data, see Section 24.1, "Introduction to Displaying
Master-Detail Data."

■ Sorting data that displays in tables

When you create an ADF Faces table component you bind the table to the
complete collection or to a range of data objects from the collection. The specific
components that display the data in the columns are then bound to the attributes
of the collection. The iterator binding handles displaying the correct data for each

Taking a Look at the Fusion Order Demo Application

2-28 Fusion Developer's Guide for Oracle Application Development Framework

object, while the table component handles displaying each object in a row. You can
set the Sort property for any column when you want the iterator to perform an
order-by query to determine the order. You can also specify an ORDER BY clause
for the query that the view object in the data model project defines. For more
information about binding table components to a collection, see Section 23.1,
"Introduction to Adding Tables." For more information about creating queries that
sort data in the data model, see Section 5.2, "Populating View Object Rows from a
Single Database Table."

2.5.1.3 Searching for Products
To search the product catalog, you have several choices. You can begin either by
clicking the disclosure icon (a + symbol) on the Search tab on the panel accordion or
by clicking the Search for Deals tab in the main region. When you click either of these,
the home page displays both regions at once to allow you to enter a search criteria and
view the search results. You use the Search tab on the accordion panel to perform a
simple keyword search against the attributes common to all products, such as product
names or product descriptions. When you select the attribute to search on from the
dropdown list, the panel renders a search field using an appropriate input component
to accept the search criteria. For example, in the case of the default searchable attribute
ProductId, where a numeric value is expected, the search field uses a spinbox (the
ADF Faces component inputNumberSpinBox) to return the product ID.

Figure 2–19 shows the home page with the search results returned for the product with
an ID equal to 7.

Figure 2–19 Home Page - Search View

As an alternative to entering a simple search, you can use the advanced search feature
to define and save search criteria based on any combination of searchable fields that
you select for the product. Click the Advanced link to open the Advanced Search
dialog. Developer-defined saved searches like Find Products By Name appear in the
Saved Search dropdown list.

Figure 2–20 shows the Advanced Search dialog with a single search criteria, Name,
that the Find Products By Name saved search defines.

Taking a Look at the Fusion Order Demo Application

Introduction to the ADF Sample Application 2-29

Figure 2–20 Home Page - Advanced Search Dialog

In addition to the developer-defined saved searches available in the Advanced Search
dialog, the end user can create saved searches that will persist for the duration of their
session. Enter the product search criteria in the Advanced Search dialog, then click the
Save button to open the Create Saved Search dialog.

Figure 2–21 shows the Create Saved Search dialog that you use to specify how you
want to save the search criteria you entered in the Advanced Search dialog. You can
name the search, for example, Treo product name search, so that it will display in the
Saved Search dropdown list of the Advanced Search dialog.

Figure 2–21 Home Page - Advanced Search Dialog - Saved Searches Option

You can also manage your saved searches by selecting the Personalize function in the
Saved Search dropdown list of the Advanced Search dialog.

Figure 2–22 shows the Personalize Saved Search dialog for the Find Products By
Name search, with Show in Search List enabled so that it will appear in the Saved
Search dropdown list. Note that because this search is not a user-defined saved search,
the personalization options appear disabled.

Taking a Look at the Fusion Order Demo Application

2-30 Fusion Developer's Guide for Oracle Application Development Framework

Figure 2–22 Home Page - Advanced Search Dialog - Personalization Option

Where to Find Implementation Details
Following are the sections of the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework that describe how to define queries and
create query search forms:

■ Defining the query for the search form to display

A query is associated with an ADF Business Components view object that you
create for the data model project to define a particular query against the database.
In particular, a query component is the visual representation of the view criteria
defined on that view object. If there are multiple view criteria defined, each of the
view criteria can be selected from the Saved Search dropdown list. These saved
searches are created at design time by the developer. For example, in the Fusion
Order Demo application, the ProductsVO view object defines two view criteria.
When the query associated with that view object is run, both view criteria are
available for selection. For more information, see Section 27.1, "Introduction to
Creating Search Forms."

■ Creating a quick search form

A quick query search form has one search criteria field with a dropdown list of the
available searchable attributes from the associated data collection. By default, the
searchable attributes are all the attributes in the associated view object. You can
exclude attributes by setting the attribute’s Display control hint to Hide in the
view object. The user can search against the selected attribute or search against all
the displayed attributes. The search criteria field type will automatically match the
type of its corresponding attribute type. For more information, see Section 27.1.2,
"Quick Query Search Forms."

■ Creating a search form

You create a query search form by dropping a named view criteria item from the
Data Controls panel onto a page. You have a choice of dropping only a search
panel, dropping a search panel with a results table, or dropping a search panel
with a tree table. For more information, see Section 27.2, "Creating Query Search
Forms."

■ Displaying the results of a query search

Taking a Look at the Fusion Order Demo Application

Introduction to the ADF Sample Application 2-31

Normally, you would drop a query search panel with the results table or tree
table. JDeveloper will automatically wire up the results table or tree table with the
query panel. If you drop a query panel by itself and want a separate results
component, you can set the query component's resultComponentId attribute to
the relative expression of the results component. For example, in the Fusion Order
Demo application, the page home.jspx displays an af:table with the ID
searchT and the results ID of the advanced search dialog is assigned this ID. For
more information, see Section 27.2.2, "How to Create a Query Search Form and
Add a Results Component Later."

2.5.2 The Login Process
Until you attempt to access secure resources in the storefront site, you are free to
browse the product catalog and update the shopping cart as an anonymous user.
However, when you click the My Orders or Checkout links that appear at the top of
the home page, you will be challenged by the web container running the site to supply
login credentials. The site requires that you enter a valid user name and password
before it completes your request to display the linked page.

Figure 2–23 shows the login page fragment that displays before you can view order
details or purchase items from the store. For demonstration purposes, log in as a
customer by entering ngreenbe and welcome1 for the Username and Password,
respectively.

Figure 2–23 Login Region

When you click the Log In button, the web container will compare your entries with
the credential information stored in its identity store. If the web container is able to
authenticate you (because you have entered the user name and password for a
registered user), then the web container redirects to the web page specified by your
link selection; otherwise, the site prompts you to create an account or to continue
browsing as an unauthenticated user.

Where to Find Implementation Details
Following are the sections of the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework that describe how to secure Oracle ADF
resources so that users are required to log in to access those resources:

Note: The Fusion Order Demo application supports the new
customer registration process, but that user is not added to the
security implementation. Thus, you must use a predefined customer’s
user name and password to log in, as shown in Table 2–3.

Taking a Look at the Fusion Order Demo Application

2-32 Fusion Developer's Guide for Oracle Application Development Framework

■ Enabling fine-grained security to secure Oracle ADF resources

ADF Security is a framework that provides a security implementation that is based
on Java Authentication and Authorization Service (JAAS). The Oracle ADF
implementation of JAAS is role-based. In JDeveloper, you define these roles and
then make permission grants based on these roles to enable fine-grained security
for Oracle ADF resources. JDeveloper supports declaratively defining the policy
store for an ADF bounded task flow or individual web pages associated with their
ADF page definition. For information about securing Oracle ADF resources, see
Section 30.5, "Defining ADF Security Policies."

■ Triggering dynamic user authentication

When you use ADF Security, authentication is triggered automatically if the user
is not yet authenticated and tries to access a page that is not granted to the
anonymous-role role. After successfully logging in, another check will be done
to verify if the authenticated user has view access to the requested page. For more
information, see Section 30.3.5, "What You May Need to Know About ADF
Authentication."

■ Performing permission checking within the web page

At runtime, the security policy you define for ADF resources is enforced using
standard JAAS permission authorization to determine the user’s access rights. If
your application requires it, you can use Expression Language (EL) to perform
runtime permission checks within the web page to hide components that should
not be visible to the user. For example, in the Fusion Order Demo application, the
page myOrders.jpx uses an expression with the value
userGrantedPermission to test the user’s authorization privileges before
displaying their account number. For more information, see Section 30.11.1, "Using
Expression Language (EL) with ADF Security."

2.5.3 The Ordering Process
You begin the order process by browsing the product catalog. When you click Add
next to a product, the site updates the shopping cart region to display the item.

Figure 2–24 shows the cart summary with a single item added. The summary shows a
subtotal for the items that appear in the cart.

Taking a Look at the Fusion Order Demo Application

Introduction to the ADF Sample Application 2-33

Figure 2–24 Home Page - Shopping Cart Summary

When you are satisfied with the items in the cart, you can complete the order by
clicking the Checkout link at the top of the home page. To check out and complete the
order, you must become an authenticated user, as described in Section 2.5.2, "The
Login Process."

After you log in, the site displays the checkout page with order details, such as the
name and address of the user you registered as. The order is identified by an Order
Information number that is generated at runtime and assigned to the order. An Order
Summary region displays the order items that comprise the new order. This region is
similar to the cart summary on the home page, except that it adds the cost of shipping
and deducts any discounts that apply to the order to calculate the total purchase
amount.

Figure 2–25 shows the checkout page with an order comprising four order items.

Taking a Look at the Fusion Order Demo Application

2-34 Fusion Developer's Guide for Oracle Application Development Framework

Figure 2–25 Checkout Page - Order Details Form

You can use the checkout page to customize details of the order information. For
example, click the Edit icon next to the Payment Option Code field to display and edit
payment funding information for the order.

Figure 2–26 shows the detail dialog for the Payment Option Code field.

Figure 2–26 Checkout Page - Payment Option Detail Dialog

Taking a Look at the Fusion Order Demo Application

Introduction to the ADF Sample Application 2-35

Many of the fields of the payment options dialog offer user interface hints that guide
you to enter specific information.

Figure 2–27 shows an example of a date entry (06-FEB-2009 10:47:21) that the format
mask (dd-MMM-yyyy hh:mm:ss) defines for the Expiration Date field.

Figure 2–27 Checkout Page - Payment Options Detail Dialog - Date Format Mask

The Card Type field displays a dropdown that allows you to select from a valid list of
credit card types.

Figure 2–28 displays the list of values for the Card Type field.

Figure 2–28 Checkout Page - Payment Options Detail Dialog - List of Values (LOV)
Choice List

If you close the payment options dialog and click the Submit Order button in the
checkout page, the purchase order is created and sent into a process flow.

After you place an order using the StoreFront module, a second module of the Fusion
Order Demo application is available to process the order. For details about the
WebLogic Fusion Order Demo module used to demonstrate the capabilities of Oracle

Taking a Look at the Fusion Order Demo Application

2-36 Fusion Developer's Guide for Oracle Application Development Framework

SOA Suite, see Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite. For
information about running this portion of the Fusion Order Demo application, see
Section 2.3, "Running the Fusion Order Demo Application StoreFront Module."

Where to Find Implementation Details
Following are the sections of the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework that describe how to develop forms like the
ones used in the order checkout process:

■ Creating a databound edit form

When you want to create a basic form that collects values from the user, instead of
having to drop individual attributes, JDeveloper allows you to drop all attributes
for an object at once as an input form. You can create forms that display values,
forms that allow users to edit values, and forms that collect values. For example, in
the Fusion Order Demo application, the checkout page orderSummary.jspx
displays one form to display user information and another form to collect
shipping information for the user’s order. For more information, see Section 22.6,
"Creating an Input Form."

■ Defining format masks for input forms

Format masks help ensure the user supplies attribute values in the required
format. To facilitate this task, ADF Business Components provides declarative
support known as control hints for attributes in the data model project. For
example, in the Fusion Order Demo application, the attribute for the
CustomerPaymentOptionVO view object used to assign the user’s credit card
expiration date is configured with a format mask hint and enforced in the
Payment Options page fragment paymentOptionsDetails.jsff. For
information on defining format masks for input form components, see
Section 5.13, "Defining Control Hints for View Objects."

■ Defining a list of values for selection lists

Input forms displayed in the user interface can utilize databound ADF Faces
selection components to display a list of values (LOV) for individual attributes of
the data collection. To facilitate this common design task, ADF Business
Components provides declarative support to specify the LOV usage for attributes
in the data model project. For example, in the Fusion Order Demo application, the
three af:selectOneChoice components displayed in the Payment Options
page fragment paymentOptionsDetails.jsff are bound to LOV-enabled
attributes configured for the CustomerPaymentOptionVO view object. For more
information about configuring attributes for LOV usage, see Section 5.12,
"Working with List of Values (LOV) in View Object Attributes."

■ Keeping track of transient session information

When you create a data model project that maps attributes to columns in an
underlying table, your ADF view objects can include transient attributes that
display calculated values (for example, using Java or Groovy expressions) or that
are value holders. For example, in the Fusion Order Demo application, the order
summary page orderSummary.jspx displays the value of the InvoiceTotal
attribute calculated by the expression defined on the OrderVO view object. For
more information about defining transient attributes in the data model project, see
Section 4.14, "Adding Transient and Calculated Attributes to an Entity Object."

Taking a Look at the Fusion Order Demo Application

Introduction to the ADF Sample Application 2-37

2.5.4 The Customer Registration Process
The site requires that you become an authenticated user before you can display the
checkout page. To make it possible for new customers complete the order process, the
site needs to provide a way to guide users through customer registration. To begin,
click the registration link on the home page and then click Register as a customer.

Customer registration progresses in steps, with one screen dedicated to each step. To
represent the progression of these steps, the registration page displays a series of train
stops labelled Basic Information, Address, Payment Options, and Review. To
navigate the customer registration process, you can click certain train stops or you can
click the Next button.

Figure 2–29 shows the first screen in the customer registration process. The Basic
Information stop of the train is enabled and selected to identify it as the current stop.
Notice that the next train stop icon, Address, is enabled but not highlighted, while the
Payment options and Review train stop icons appear disabled and grayed out.
Together, these train stops signify that you must complete the activity in a sequential
flow.

Figure 2–29 Customer Registration Page - Basic Information Form

Before you enter any information into the Basic Information form, click the Address
train stop. The page displays an error dialog to inform you that specific fields require a
value before you can progress to the next step.

Figure 2–30 shows the error dialog with messages stating that the Basic Information
form requires a user name and an email address.

Taking a Look at the Fusion Order Demo Application

2-38 Fusion Developer's Guide for Oracle Application Development Framework

Figure 2–30 Customer Registration Page - Basic Information Form with Validation Error
Popup

Click OK to dismiss the error dialog. Then enter a user name and email address. Be
sure to confirm the email address in the form.

Again, click Next to progress to the next task. This time, the site should display the
Address screen with icon buttons that you can select to create a new address record in
the database (or, in the case of an existing customer, to update an existing address
record).

Figure 2–31 shows the Address screen with one column for Address Label and no row
information. Because you are entering information as a new customer, no address
record currently exists, so no rows are available to display below these columns.

Figure 2–31 Customer Registration Page - Address Input Task

Click New. The registration page changes to display an address input form and the
current train stop remains on Address.

Figure 2–32 shows the empty address input form.

Figure 2–32 Customer Registration Page - Address Input Form

Taking a Look at the Fusion Order Demo Application

Introduction to the ADF Sample Application 2-39

For the fields with an asterisk symbol (*), enter the address information specified. The
asterisk symbol indicates that the value is required. Note that you must also select a
country from the dropdown list since this information is required by the database.
Then click Save & Return to create the new address record in the database.

Figure 2–33 shows the Address screen with the row information for the new address
record.

Figure 2–33 Customer Registration Page - Address Record Complete

This concludes the tour of the Fusion Order Demo application.

Where to Find Implementation Details
Following are the sections of the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework that describe how to use complex
components like the ADF Faces Train component used in the registration process:

■ Grouping activities using a bounded task flow

Every Fusion web application contains an unbounded task flow, which contains
the entry points to the application. The application can then calls bounded task
flows from activities within the unbounded task flow. For example, in the Fusion
Order Demo application, the bounded task flow checkout-task-flow controls
the flow of the checkout process and calls another bounded task flow
customer-registration-task-flow to control the flow of the registration
process. For information about the bounded task flow, see Section 14.1,
"Introduction to ADF Task Flows."

■ Displaying a progression of related activities using a train component that you
associate with a bounded task flow

You configure train stops based on activities that you select in an ADF bounded
task flow and then you add the af:train component to your JSF pages. For
example, in the Fusion Order Demo application, the bounded task flow
customer-registration-task-flow defines four train stops for the page
fragments basicInformation.jsff, defineAddresses.jsff,
paymentOptions.jsff, and reviewCustomerInfo.jsff. The page
register.jspx displays the fragments and each page fragment displays the
train component bound to the activities that define the four stops. For information
about the bounded task flow and how you can use it to define train stops, see
Section 18.10.3, "How to Create a Train."

■ Requiring values to complete an input form

The input form displays attributes of a data collection that you drop from the Data
Controls panel. You can set the required property of individual components in
the form to control whether an attribute value is mandatory. For details about how
to customize the required property, see Section 22.2, "Using Attributes to Create
Text Fields." Alternatively, you can set a display control hint property directly on
the attribute where it is defined by an ADF Business Components entity object.
The entity object is a data model component that represents a row from a specific

Taking a Look at the Fusion Order Demo Application

2-40 Fusion Developer's Guide for Oracle Application Development Framework

table in the database and that simplifies modifying its associated attributes. For
details about using control hints to make an attribute mandatory, see Section 4.10,
"Setting Attribute Properties."

Part II
Part II Building Your Business Services

Part II contains the following chapters:

■ Chapter 3, "Getting Started with ADF Business Components"

■ Chapter 4, "Creating a Business Domain Layer Using Entity Objects"

■ Chapter 5, "Defining SQL Queries Using View Objects"

■ Chapter 6, "Working with View Object Query Results"

■ Chapter 7, "Defining Validation and Business Rules Declaratively"

■ Chapter 8, "Implementing Validation and Business Rules Programmatically"

■ Chapter 9, "Implementing Business Services with Application Modules"

■ Chapter 10, "Sharing Application Module View Instances"

■ Chapter 11, "Integrating Service-Enabled Application Modules"

■ Chapter 12, "Using ADF Model in a Fusion Web Application"

■ Chapter 13, "Integrating Web Services Into a Fusion Web Application"

3

Getting Started with ADF Business Components 3-1

3Getting Started with ADF Business
Components

This chapter describes key features that you can use when you begin to work with the
ADF Business Components layer of Oracle Application Development Framework
(Oracle ADF). It also describes the implementation architecture of ADF Business
Components and describes support for the Groovy scripting language with entity
objects and view objects.

This chapter includes the following sections:

■ Section 3.1, "Introduction to ADF Business Components"

■ Section 3.2, "Comparison to Familiar 4GL Tools"

■ Section 3.3, "Overview of Design Time Facilities"

■ Section 3.4, "Overview of the UI-Aware Data Model"

■ Section 3.5, "Overview of the Implementation Architecture"

■ Section 3.6, "Overview of Groovy Support"

3.1 Introduction to ADF Business Components
ADF Business Components and JDeveloper simplify the development, delivery, and
customization of business applications for the Java EE platform. With ADF Business
Components, developers aren’t required to write the application infrastructure code
required by the typical Java EE application to:

■ Connect to the database

■ Retrieve data

■ Lock database records

■ Manage transactions

ADF Business Components addresses these tasks through its library of reusable
software components and through the supporting design time facilities in JDeveloper.
Most importantly, developers save time using ADF Business Components since the
JDeveloper design time makes typical development tasks entirely declarative. In
particular, JDeveloper supports declarative development with ADF Business
Components to:

■ Author and test business logic in components which automatically integrate with
databases

Introduction to ADF Business Components

3-2 Fusion Developer's Guide for Oracle Application Development Framework

■ Reuse business logic through multiple SQL-based views of data, supporting
different application tasks

■ Access and update the views from browser, desktop, mobile, and web service
clients

■ Customize application functionality in layers without requiring modification of
the delivered application

The goal of ADF Business Components is to make the business services developer
more productive.

3.1.1 ADF Business Components Features
ADF Business Components provides a foundation of Java classes that allow your
business-tier application components to leverage the functionality provided in the
following areas:

Simplifying Data Access
■ Design a data model for client displays, including only necessary data

■ Include master-detail hierarchies of any complexity as part of the data model

■ Implement end-user Query-by-Example data filtering without code

■ Automatically coordinate data model changes with business domain object layer

■ Automatically validate and save any changes to the database

Enforcing Business Domain Validation and Business Logic
■ Declaratively enforce required fields, primary key uniqueness, data

precision-scale, and foreign key references

■ Easily capture and enforce both simple and complex business rules,
programmatically or declaratively, with multilevel validation support

■ Navigate relationships between business domain objects and enforce constraints
related to compound components

Supporting Sophisticated UIs with Multipage Units of Work
■ Automatically reflect changes made by business service application logic in the

user interface

■ Retrieve reference information from related tables, and automatically maintain the
information when the user changes foreign-key values

■ Simplify multistep web-based business transactions with automatic web-tier state
management

■ Handle images, video, sound, and documents without having to use code

■ Synchronize pending data changes across multiple views of data

■ Consistently apply prompts, tooltips, format masks, and error messages in any
application

■ Define custom metadata for any business components to support metadata-driven
user interface or application functionality

■ Add dynamic attributes at runtime to simplify per-row state management

Implementing High-Performance Service-Oriented Architecture
■ Support highly functional web service interfaces for business integration without

writing code

Comparison to Familiar 4GL Tools

Getting Started with ADF Business Components 3-3

■ Enforce best-practice interface-based programming style

■ Simplify application security with automatic JAAS integration and audit
maintenance

■ "Write once, run anywhere": use the same business service as plain Java class or
web service

Streamlining Application Customization
■ Extend component functionality after delivery without modifying source code

■ Globally substitute delivered components with extended ones without modifying
the application

■ Deliver application upgrades without losing or having to reapply downstream
customizations manually

3.1.2 ADF Business Components Core Objects
ADF Business Components implements the business service through the following set
of cooperating components:

■ Entity object

An entity object represents a row in a database table and simplifies modifying its
data by handling all data manipulation language (DML) operations for you. It can
encapsulate business logic for the row to ensure that your business rules are
consistently enforced. You associate an entity object with others to reflect
relationships in the underlying database schema to create a layer of business
domain objects to reuse in multiple applications.

■ View object

A view object represents a SQL query. You use the full power of the familiar SQL
language to join, filter, sort, and aggregate data into exactly the shape required by
the end-user task. This includes the ability to link a view object with others to
create master-detail hierarchies of any complexity. When end users modify data in
the user interface, your view objects collaborate with entity objects to consistently
validate and save the changes.

■ Application module

An application module is the transactional component that UI clients use to work
with application data. It defines an updatable data model and top-level
procedures and functions (called service methods) related to a logical unit of work
related to an end-user task.

While the base components handle all the common cases through built-in behavior,
customization is always possible and the default behavior provided by the base
components can be easily overridden or augmented.

3.2 Comparison to Familiar 4GL Tools
ADF Business Components provides components that implement functionality similar
to that offered by enterprise 4GL tools. Several key components in ADF Business
Components map to concepts that you may be familiar with in other 4GL tools.

3.2.1 Familiar Concepts for Oracle Forms Developers
ADF Business Components implements all of the data-centric aspects of the familiar
Oracle Forms runtime functionality, but in a way that is independent of the user

Comparison to Familiar 4GL Tools

3-4 Fusion Developer's Guide for Oracle Application Development Framework

interface. In Oracle Forms, each form contains both visual objects (like canvases,
windows, alerts, and LOVs), as well as nonvisual objects (like data blocks, relations,
and record groups). Individual data block items have both visual properties like
Foreground Color and Bevel, as well as nonvisual properties like Data Type and
Maximum Length. Even the different event-handling triggers that Forms defines fall
into visual and nonvisual categories. For example, it's clear that triggers like
WHEN-BUTTON-PRESSED and WHEN-MOUSE-CLICKED are visual in nature, relating to
the front-end UI, while triggers like WHEN-VALIDATE-ITEM and ON-INSERT are
more related to the backend data processing. While merging visual and nonvisual
aspects definitely simplifies the learning curve, the flip side is that it can complicate
reuse. With a cleaner separation of UI-related and data-related elements, it would be
easier to redesign the user interface without disturbing backend business logic and
easier to repurpose back-end business logic in multiple different forms.

In order to imagine this separation of UI and data, consider reducing a form as you
know it to only its nonvisual, data-related aspects. This reduces the form to a container
of data blocks, relations, and record groups. This container would continue to provide
a database connection for the data blocks to share and would be responsible for
coordinating transaction commits or rollbacks. Of course, you could still use the
nonvisual validation and transactional triggers to augment or change the default
data-processing behavior as well. This nonvisual object you are considering is a kind
of a "smart data model" or a generic application module, with data and business logic,
but no user interface elements. The goal of separating this application module from
anything visual is to allow any kind of user interface you need in the future to use it as
a data service.

Focus a moment on the role the data blocks would play in this application module.
They would query rows of data from the database using SQL, coordinate
master/detail relationships with other data blocks, validate user data entry with
WHEN-VALIDATE-RECORD and WHEN-VALIDATE-ITEM triggers, and communicate
valid user changes back to the database with INSERT, UPDATE, and DELETE
statements when you commit the data service's transaction.

Experience tells you that you need to filter, join, order, and group data for your
end-users in a variety of ways to suit the many different tasks. On the other hand, the
validation rules that you apply to your business domain data remain basically the
same over time. Given these observations, it would be genuinely useful to write
business entity validation exactly once, and leverage it consistently anywhere that data
is manipulated by users in your applications.

Enabling this flexibility requires further "factoring" of your data block functionality.
You need one kind of "SQL query" object to represent each of the many different views
of data your application requires, and you need another kind of "business entity"
object to enforce business rules and communicate changes to your base table in a
consistent way. By splitting things like this, you can have multiple "view objects" with
specific SQL queries that present the same business data yet each working with the
same underlying "entity object."

Oracle ADF addresses the UI/data split by providing ready-to-use Java components
that implement typical Forms functionality. Responsibilities between the querying and
entity-related functions are cleanly separated, resulting in better reuse.

3.2.1.1 Similarities Between the Application Module and a "Headless" Form Module
The application module component is the "data portion" of the form. The application
module is a smart data service containing a data model of master-detail-related
queries that your client interface needs to work with. It also provides a transaction and
database connection used by the components it contains. It can contain form-level

Comparison to Familiar 4GL Tools

Getting Started with ADF Business Components 3-5

procedures and functions, referred to as service methods, that are encapsulated within
the service implementation. You can decide which of these procedures and functions
should be private and which ones should be public.

3.2.1.2 Similarities Between the Entity Object and a Forms Record Manager
The entity object component implements the "validation and database changes"
portion of the data block functionality. In the Forms runtime, this duty is performed
by the record manager. The record manager is responsible for keeping track of which
of the rows in the data block have changed, for firing the block-level and item-level
validation triggers when appropriate, and for coordinating the saving of changes to
the database. This is exactly what an entity object does for you. The entity object is a
component that represents your business domain entity through an underlying
database table. The entity object gives you a single place to encapsulate business logic
related to validation, defaulting, and database modification behavior for that business
object.

3.2.1.3 Similarities Between the View Object and a Data Block
The ViewObject component performs the "data retrieval" portion of the data block
functionality. Each view object encapsulates a SQL query, and at runtime each one
manages its own query result set. If you connect two or more view objects in
master-detail relationships, that coordination is handled automatically. While defining
a view object, you can link any of its query columns to underlying entity objects. By
capturing this information, the view object and entity object can cooperate
automatically for you at runtime to enforce your domain business logic, regardless of
the "shape" of the business data required by the user’s task.

3.2.2 Familiar Concepts for PeopleTools Developers
If you have developed solutions in the past with PeopleTools, you are familiar with
the PeopleTools component structure. ADF Business Components implement the data
access functionality you are familiar with from PeopleTools.

3.2.2.1 Similarities Between the Application Module and a "Headless" Component
Oracle ADF adheres to an MVC pattern and separates the model from the view. Pages,
which you are familiar with in the PeopleTools Component, are defined in the view
layer, using standard technologies like JSF and ADF Faces components for web-based
applications or Swing for desktop-fidelity client displays.

The ADF application module defines the data structure, just like the PeopleTools
Component Buffer does. By defining master-detail relationships between ADF query
components that produce row sets of data, you ensure that any application module
that works with the data can reuse the natural hierarchy as required, similar to the
scroll levels in the Component Buffer.

Similar to the Component Interface you are familiar with, the application module is a
service object that provides access to standard methods, as well as additional
developer-defined business logic. In order to present a "headless" data service for a
particular user interface, the Component Interface restricts a number of PeopleTools
functions that are related to UI interaction. The application module is similar to the
Component Interface in that it provides a "headless" data service, but in contrast it
does not do this by wrapping a restricted view of an existing user interface. Instead,
the application module is designed to deal exclusively with business logic and data
access. Rather than building a Component Interface on top of the component, with
ADF Business Components you first build the application module service that is

Comparison to Familiar 4GL Tools

3-6 Fusion Developer's Guide for Oracle Application Development Framework

independent of user interface, and then build one or more pages on top of this service
to accomplish some end-user task in your application.

The application module is associated with a transaction object in the same way that the
PeopleTools Component Buffer is. The application module also provides a database
connection for the components it contains. Any logic you associate today with the
transaction as Component PeopleCode, in ADF Business Components you would
define as logic on the application module.

Logic associated with records in the transaction, that today you write as Component
Record PeopleCode or Component Record Field PeopleCode, should probably not be
defined on the application module. ADF Business Components has view objects that
allow for better re-use when the same record appears in different components.

In summary, PeopleTools uses the component for the container concept, whereas ADF
Business Components uses the application module. That is where the similarity ends.
Do not assume that all of your component code will migrate to an application module.
First, understand the concept of the view object, which is the layer between the entity
object and the application module. Then, decide which of your component code is
suitable for an application module and which is suitable for view objects.

3.2.2.2 Similarities Between the Entity Object and a Record Definition
The entity object is the mapping to the underlying data structure, just like the
PeopleTools Record Definition maps to the underlying table or view. You'll often
create one entity object for each of the tables that you need to manipulate your
application.

Similar to how you declare a set of valid values for fields like "Customer Status" using
PeopleTools' translate values, in ADF Business Components you can add declarative
validations to the individual attributes of an entity object. Any logic you associate with
the record that applies throughout your applications, which today you write as Record
PeopleCode or Record Field PeopleCode, can be defined in ADF Business
Components on the entity object.

3.2.2.3 Similarities Between the View Object and a Row Set
Just like a PeopleTools row set, a view object can be populated by a SQL query. Unlike
a row set, a view object definition can contain business logic.

Any logic which you would find in Component Record PeopleCode is a likely
candidate to define on the view object. Component Record PeopleCode is directly tied
to the component, but a view object can be associated with different application
modules. Whereas you can use the same record definition in many PeopleTools
components, Oracle ADF allows you to reuse the business logic across multiple
applications.

The view object queries data in exactly the "shape" that is useful for the current
application. Many view objects can be built on top of the same entity object.

You can define relationships between view objects to create master-detail structures,
just as you find them in the scroll levels in the PeopleTools component.

3.2.3 Familiar Concepts for Siebel Tools Developers
If you have developed solutions in the past with Siebel Tools version 7.0 or earlier, you
will find that ADF Business Components implements all of the familiar data access
functionality you are familiar with, with numerous enhancements.

Comparison to Familiar 4GL Tools

Getting Started with ADF Business Components 3-7

3.2.3.1 Similarities Between the entity Object and a Table Object
Like the Siebel Table object, the ADF entity object describes the physical characteristics
of a single table, including column names and physical data types. Both objects contain
sufficient information to generate the DDL (data definition language) statements to
create the physical tables in the database. In ADF Business Components you define
associations between entity objects to reflect the foreign keys present in the underlying
tables. These associations allow view object queries used by user interface pages to
automatically join business information. ADF Business Components handles list of
values (LOV) objects that you reference from data columns through a combination of
declarative entity-level validation rules and view object attribute-level LOV
definitions. You can also encapsulate other declarative or programmatic business logic
with these entity object "table" handlers that is automatically reused in any view of the
data you create.

3.2.3.2 Similarities Between the View Object and a Business Component
Like the Siebel Business Component, the ADF view object describes a logical mapping
on top of the underlying physical table representation. Both the Siebel Business
Component and the ADF view object allow you to provide logical field names, data,
and calculated fields that match the needs of the user interface. As with the Siebel
Business Component, with the ADF view object you can define view objects that join
information from various underlying tables. The related ADF view link is similar to
the Siebel Link object and allows you to define master-detail relationships. In ADF
Business Components, your view object definitions can exploit the full power of the
SQL language to shape the data as required by the user interface.

3.2.3.3 Similarities Between the Application Module and a Business Object
The Siebel Business Object lets you define a collection of business components. The
ADF application module performs a similar task, allowing you to create a collection of
master-detail view objects that act as a "data model" for a set of related user interface
pages. In addition, the application module provides a transaction and database
connection context for this group of data views. You can make multiple requests to
objects obtained from the application module and these participate in the same
transaction.

3.2.4 Familiar Functionality for ADO.NET Developers
If you have developed solutions in the past with Visual Studio 2003 or 2005, you are
familiar with using the ADO.NET framework for data access. ADF Business
Components implements all of the data access functionality you are familiar with from
ADO.NET, with numerous enhancements.

3.2.4.1 Similarities Between the Application Module and a Data Set
The application module component plays the same role as the ADO.NET data set. It is
a strongly typed service component that represents a collection of row sets called view
object instances, which are similar to ADO.NET data tables. An application module
exposes a service interface that surfaces the rows of data in a developer-configurable
set of its view instances as an SDO-compatible service (accessible as a web service, or
as an SCA composite). The application module works with a related transaction object
to provide the context for the SQL queries that the view objects execute. The
application module also provides the context for modifications saved to the database
by the entity objects, which play the role of the ADO.NET data adapter.

Overview of Design Time Facilities

3-8 Fusion Developer's Guide for Oracle Application Development Framework

3.2.4.2 Similarities Between the Entity Object and a Data Adapter
The entity object component is like a strongly-typed ADO.NET data adapter. It
represents the rows in a particular table and handles the find-by-primary-key, insert,
update, delete, and lock operations for those rows. In ADF Business Components, you
don't have to specify these statements yourself, but you can override them if you need
to. The entity object encapsulates validation or other business logic related to
attributes or entire rows in the underlying table. This validation is enforced when data
is modified and saved by the end user using any view object query that references the
underlying entity object. One difference in ADF Business Components is that the
arbitrary, flexible querying is performed by SQL statements at the view object instance
level, but the view objects and entity objects coordinate automatically at runtime.

3.2.4.3 Similarities Between the View Object and a Data Table
The view object component encapsulates a SQL query and manages the set of resulting
rows. It can be related to an underlying entity object to automatically coordinate
validation and saving of modifications made by the user to those rows. This
cooperation between a view object's queried data and an entity object’s encapsulated
business logic offers all of the benefits of the data table with the clean encapsulation of
business logic into a layer of business domain objects. Like ADO.NET data tables, you
can easily work with a view object's data as XML or have a view object read XML data
to automatically insert, update, or delete rows based on the information it contains.

3.3 Overview of Design Time Facilities
JDeveloper includes comprehensive design time support for ADF Business
Components. Collectively, these facilities let you create, edit, diagram, test, and
refactor the business components.

3.3.1 Choosing a Connection, SQL Flavor, and Type Map
The first time you create a component, you'll see the Initialize Business Components
Project dialog shown in Figure 3–1. You use this dialog to select a design time
application resource connection to use while working on your business components in
this data model project or to create a new application resource connection by copying
an existing IDE-level connection.

Overview of Design Time Facilities

Getting Started with ADF Business Components 3-9

Figure 3–1 Initialize Business Components Project Dialog

Since this dialog appears before you create your first business component, you also
use it to globally control the SQL flavor that the view objects will use to formulate SQL
statements. Although the default for an Oracle database connection is always the
Oracle SQL flavor, other SQL flavors you can choose include OLite (for the Oracle Lite
database), SQLServer for a Microsoft SQLServer database, DB2 for an IBM DB2
database, and SQL92 for any other supported SQL92- compliant database. Note that
you cannot use the Project Properties dialog to change the SQL flavor after you've
initialized a data model project, but you can you can override the SQL flavor in the
overview editor for the adf-config.xml file. Specifying the database type in the
adf-config.xml file supports generating SQL statements during runtime which can
require the actual database type. You can locate the file in the Application Resources
pane by expanding the Descriptors-ADF META-INF folder.

The dialog also lets you determine which set of data types that you want the data
model project to use. If JDeveloper detects you are using an Oracle database driver, it
defaults the Type Map setting to the Oracle type map and will use the optimized
types in the oracle.jbo.domain package. You can change this setting to globally
use only the basic Java data types. Note that you cannot change the type map after
you've initialized a data model project.

3.3.2 Creating New Components Using Wizards
In the New Gallery in the ADF Business Components category, JDeveloper offers a
wizard to create each kind of business component. Each wizard allows you to specify
the component name for the new component and to select the package into which
you'd like to organize the component. If the package does not yet exist, the new
component becomes the first component in that new package.

Note: If you plan to have your application run against both Oracle
and non-Oracle databases, you should select the SQL92 SQL flavor
when you begin building your application, not later. While this
sacrifices some of the Oracle-specific optimizations that are inherent in
using the Oracle SQL flavor, it makes the application portable to both
Oracle and non-Oracle databases.

Overview of Design Time Facilities

3-10 Fusion Developer's Guide for Oracle Application Development Framework

The wizard presents a series of panels that capture the necessary information to create
the component type. When you click Finish, JDeveloper creates the new component
by saving its XML component definition file. If you have set your Java generation
options to generate classes by default, JDeveloper also creates the initial custom Java
class files.

3.3.3 Creating New Components Using the Context Menu
Once a package exists in the Application Navigator, you can quickly create additional
business components of any type in the package by selecting it in the Application
Navigator and using one of the options on the context menu shown in Figure 3–2.

Figure 3–2 Context Menu Options on a Package to Create Any Kind of Business
Component

3.3.4 Editing Components Using the Component Overview Editor
Once a component exists, you can edit it using the respective overview editor that you
access either by double-clicking the component in the Application Navigator or by
selecting it and choosing the Edit option from the context menu. The overview editor
presents the same editing options that you see in the wizard but it may arrange them
differently. The overview editor allows you to change any aspect of the component.
When you click OK, JDeveloper updates the components XML component definition
file and, if necessary, any of its related custom Java files. Because the overview editor
is a JDeveloper editor window, rather than a modal dialog, you can open and view the
overview editor for as many components as you require.

Overview of the UI-Aware Data Model

Getting Started with ADF Business Components 3-11

3.3.5 Visualizing, Creating, and Editing Components Using UML Diagrams
JDeveloper offers extensive UML diagramming support for ADF Business
Components. You can drop components that you've already created onto a business
components diagram to visualize them. You can also use the diagram to create and
modify components. The diagrams are kept in sync with changes you make in the
editors.

To create a new business components diagram, use the Business Components
Diagram item in the ADF Business Components category of the JDeveloper New
Gallery. This category is part of the Business Tier choices.

3.3.6 Testing Application Modules Using the Business Component Browser
Once you have created an application module component, you can test it interactively
using the built-in Business Component Browser. To launch the Business Component
Browser, select the application module in the Application Navigator or in the business
components diagram and choose either Run or Debug from the context menu.

The Business Component Browser presents the view object instances in the application
module's data model and allows you to interact with them using a dynamically
generated user interface. The tool also provides a list of the application module’s client
interface methods that you can test interactively by double-clicking the application
module node. This tool is invaluable for testing or debugging your business service
both before and after you create the web page view layer.

3.3.7 Refactoring Components
At any time, you can select a component in the Application Navigator and choose
Refactor > Rename from the context menu to rename the component. The Structure
window also provides a Rename context menu option for details of components, such
as view object attributes or view instances of the application module data model, that
do not display in the Application Navigator. You can also select one or more
components in the navigator by using Ctrl + click and then choosing Refactor > Move
from the context menu to move the selected components to a new package. References
to the old component names or packages in the current data model project are
adjusted automatically.

3.4 Overview of the UI-Aware Data Model
One of the key simplifying benefits of using ADF Business Components for your
business service implementation is the application module's support for a "UI-aware
data model" of row sets. The data model defines the business objects specific to your
application, while the row sets of each business object contain the data. In the UI
portion of the application, the UI components interact with these business objects to
perform retrieve, create, edit, and delete operations. When you use ADF Business
Components in combination with the ADF Model layer and ADF Faces UI
components, the data model is "UI aware" because your UI components will
automatically update to reflect any changes to the row sets of these business objects

Thus, the UI-aware data model represents a solution that works across application
technology layers to ensure that the UI and data model remain synchronized.

3.4.1 A More Generic Business Service Solution
Using a typical Java EE business service implementation makes the client developer
responsible for:

Overview of the UI-Aware Data Model

3-12 Fusion Developer's Guide for Oracle Application Development Framework

■ Invoking service methods to return data to present

■ Tracking what data the client has created, deleted, or modified

■ Passing the changes back to one or more different service methods to validate and
save them

Retrieving, creating, editing, deleting, and saving is a typical sequence of tasks
performed during application development. As a result, the ADF application module
represents a smarter, more generic solution. Using the application module for your
business service, you simply bind client UI components like fields, tables, and trees to
the active view object instances in the application module’s data model. Your UI
components in JSP or JSF pages for the web or mobile devices (as well as
desktop-fidelity UIs comprising windows and panels that use Swing) automatically
update to reflect any changes to the rows in the view object row sets of the data model.
This active data notification also extends to custom business service methods that
happen to produce changes to the data model.

Under the covers, the application module component implements a set of generic
service methods that allow users to leverage its UI-aware data model in a
service-oriented architecture (SOA). Both web service and UI clients can easily access
an application module’s data model using simple APIs. These APIs enable you to
search for and modify any information that the application module makes available.

When you build UIs that take advantage of the ADF Model layer for declarative data
binding, you generally won’t need to write client-side code. Because the data model is
UI-aware, your UI components will be bound declaratively to view objects in the data
model and to custom business service methods.

3.4.2 Typical Scenarios for a UI-Aware Data Model
Without a UI-aware data model, you would need to write more code in the client to
handle the straightforward, everyday CRUD-style operations. In addition, to keep
pages up to date, you would need to manage "refresh flags" that clue the controller
layer in to requesting a "repull" of data from the business service to reflect data that
might have been modified. When using an ADF application module to implement
your business service, you can focus on the business logic at hand, instead of the
plumbing to make your business work as your end users expect.

Consider the following three simple, concrete examples of the UI-aware data model:

■ New data appears in relevant displays without requerying

A customer logs into the Fusion Order Demo application and displays a list of
items in their shopping cart. Then if the customer visits some product pages and
creates a new order item, when they return back to display their shopping cart, the
new item appears in their list without requiring the application to requery the
database.

■ Changes caused by business domain logic automatically reflected

A back office application causes an update to the order status. Business logic
encapsulated in the Orders entity object in the business domain layer contains a
simple rule that updates the last update date whenever the order status attribute is
changed. The user interface updates to automatically reflect the last update date
that was changed by the logic in the business domain layer.

■ Invocation of a business service method requeries data and sets current rows

In a tree display, the user clicks on a specific node in a tree. This action
declaratively invokes a business service method on your application module that

Overview of the Implementation Architecture

Getting Started with ADF Business Components 3-13

requeries master-detail information and sets the current rows to an appropriate
row in the row set. The display updates to reflect the new master-detail data and
current row displayed.

3.4.3 UI-Aware Data Model Support for Custom Code
Because the application module supports the UI-aware data model, your client user
interface will remain up to date. This means you will not need to write code in the
client that is related to setting up or manipulating the data model.

Another typical type of client-side code you no longer have to write using ADF
Business Components is code that coordinates detail data collections when a row in
the master changes. By linking the view objects, you can have the coordination
performed automatically for you.

However, when you do need to write custom code, encapsulate that code inside
custom methods of your application module component. For example, whenever the
programmatic code that manipulates view objects is a logical aspect of implementing
your complete business service functionality, you should encapsulate the details by
writing a custom method in your application module's Java class. This includes, but is
not limited to, code that:

■ Configures view object properties to query the correct data to display

■ Iterates over view object rows to return an aggregate calculation

■ Performs any kind of multistep procedural logic with one or more view objects

By centralizing these implementation details in your application module, you gain the
following benefits:

■ You make the intent of your code more clear to clients.

■ You allow multiple client pages to easily call the same code if needed.

■ You simplify regression-testing of your complete business service functionality.

■ You keep the option open to improve your implementation without affecting
clients.

■ You enable declarative invocation of logical business functionality in your pages.

3.5 Overview of the Implementation Architecture
Before you begin implementing specific ADF business components, it is a good idea to
have some familiarity with the Oracle ADF business services layer’s design and
implementation.

3.5.1 Standard Java and XML
As is the case with all Oracle ADF technologies, ADF Business Components is
implemented in Java. The working, tested components in the framework provide
generic, metadata-driven functionality from a rich layer of robust code. ADF Business
Components follows the Java EE community best practice of using cleanly separated
XML files to store metadata that you define to configure each component's runtime
behavior.

Since ADF Business Components is often used for business critical applications, it's
important to understand that the full source for Oracle ADF, including the ADF
Business Components layer, is available to supported customers through Oracle
Worldwide Support. The full source code for Oracle ADF can be an important tool to

Overview of the Implementation Architecture

3-14 Fusion Developer's Guide for Oracle Application Development Framework

assist you in diagnosing problems, as described in Section 31.7, "Using the ADF
Declarative Debugger." Working with the full source code for Oracle ADF also helps
you understand how to correctly extend the base framework functionality to suit your
needs, as described in Section 37.3, "Customizing Framework Behavior with Extension
Classes."

3.5.2 Application Server or Database Independence
Applications built using ADF Business Components can run on any Java-capable
application server, including any Java EE-compliant application server. Because
business components are implemented using plain Java classes and XML files, you can
use them in any runtime environment where a Java Virtual Machine is present. This
means that services built using ADF Business Components are easy to use both inside
a Java EE server — known as the "container" of your application at runtime — and
outside.

Customers routinely use application modules in such diverse configurations as
command-line batch programs, web services, custom servlets, JSP pages, and
desktop-fidelity clients built using Swing.

You can also build applications that work with non-Oracle databases, as described in
Section 3.3.1, "Choosing a Connection, SQL Flavor, and Type Map." However,
applications that target Oracle databases will find numerous optimizations built into
ADF Business Components.

3.5.3 Java EE Design Pattern Support
The ADF Business Components layer implements all of the popular Java EE design
patterns that you would normally need to understand, implement, and debug yourself
to create a real-world enterprise Java EE application. If it is important to you to
cross-reference the names of these design patterns from the Java EE specifications with
their ADF Business Components counterparts, you can refer to Appendix F, "ADF
Business Components Java EE Design Pattern Catalog."

3.5.4 Source Code Organization
Since ADF Business Components is implemented in Java, its classes and interfaces are
organized into packages. Java packages are identified by dot-separated names that
developers use to arrange code into a hierarchical naming structure.

The classes and interfaces that comprise the source code provided by ADF Business
Components reside in the oracle.jbo package and numerous subpackages.
However, in day to day work with ADF Business Components, you'll work typically
with classes and interfaces in these two key packages:

■ The oracle.jbo package, which contains all of the interfaces that are designed
for the business service client to work with

■ The oracle.jbo.server package, which contains the classes that implement
these interfaces

Figure 3–3 shows a concrete example of the application module component. The client
interface for the application module is the ApplicationModule interface in the

Note: The term client here refers to any code in the model, view, or
controller layers that accesses the application module component as a
business service.

Overview of the Implementation Architecture

Getting Started with ADF Business Components 3-15

oracle.jbo package. This interface defines the names and signatures of methods
that clients can use while working with the application module, but it does not include
any specifics about the implementation of that functionality. The class that implements
the base functionality of the application module component resides in the
oracle.jbo.server package and is named ApplicationModuleImpl.

Figure 3–3 ADF Business Components Separate Interface and Implementation

3.5.5 Package Naming Conventions
Since ADF Business Components is implemented in Java, the components of your
application (including their classes, interfaces, and metadata files) will also be
organized into packages.

To ensure that your components won't clash with reusable components from other
organizations, choose package names that begin with your organization's name or web
domain name. So, for example, the Apache organization chose org.apache.tomcat
for a package name related to its Tomcat web server, while Oracle picked
oracle.xml.parser as a package name for its XML parser. Components you create
for your own applications might reside in packages with names like
com.yourcompany.yourapp and subpackages of these.

As a specific example, the ADF Business Components that make up the main business
service for the Fusion Order Demo application are organized into the
oracle.fodemo.storefront package and its subpackages. As shown in
Figure 3–4, these components reside in the StoreFrontService project in the
StoreFrontModule application, and are organized broadly as follows:

■ oracle.fodemo.storefront.account.queries contains the view objects
used in the customer registration process

■ oracle.fodemo.storefront.client contains test client .java files

■ oracle.fodemo.storefront.entities contains the entity objects

■ oracle.fodemo.storefront.lookups contains static data view objects and
the LookupServiceAM shared application module

■ oracle.fodemo.storefront.store.queries contains the view objects used
to manage the storefront

■ oracle.fodemo.storefront.store.service contains the
StoreServiceAM application module

Overview of the Implementation Architecture

3-16 Fusion Developer's Guide for Oracle Application Development Framework

Figure 3–4 Organization of ADF Business Components in the Fusion Order Demo
Application

In your own applications, you can choose any package organization that you believe
best. In particular, keep in mind that you are not constrained to organize components
of the same type into a single package.

Because JDeveloper supports component refactoring, you can easily rename
components or move them to a different package at any time. This flexibility allows
you to easily incorporate inevitable changes into the application as your application
evolves.

There is no optimal number of components in a package. However, with experience,
you'll realize that the best structure for your team falls somewhere between the two
extremes of placing all components in a single package and placing each component in
its own, separate package.

One thing to consider is that the package in ADF Business Components is the unit of
granularity that JDeveloper supports for reuse in other data model projects. So, you
might factor this consideration into how you choose to organize components. For
more information, see Section 37.7, "Working with Libraries of Reusable Business
Components."

3.5.6 Metadata with Optional Custom Java Code
Each kind of component in ADF Business Components comes with built-in runtime
functionality that you control through declarative settings. These settings are stored in
an XML component definition file with the same name as the component that it
represents. When you need to write custom code for a component, for example to
augment the component’s behavior, you can enable an optional custom Java class for
the component in question. Figure 3–5 shows how the Application Navigator displays
the XML component definition and optional custom Java class for an application
module.

Overview of the Implementation Architecture

Getting Started with ADF Business Components 3-17

Figure 3–5 Application Navigator Displays Component XML File and Optional Class
Files

3.5.6.1 Example of an XML-Only Component
Figure 3–6 illustrates the XML component definition file for an application-specific
component like an application module named YourService that you create in a
package named com.yourcompany.yourapp. The corresponding XML component
definition resides in a ./com/yourcompany/yourapp subdirectory of the data
model project's source path root directory. That XML file records the name of the Java
class it should use at runtime to provide the application module implementation. In
this case, the XML records the name of the base
oracle.jbo.server.ApplicationModuleImpl class provided by Oracle ADF.

Figure 3–6 XML Component Definition File for an Application Module

When used without customization, your component is completely defined by its XML
component definition and it will be fully functional without custom Java code or even
a Java class file for the component. If you have no need to extend the built-in
functionality of a component in ADF Business Components, and no need to write any
custom code to handle its built-in events, you can use the component in this XML-only
fashion.

3.5.6.2 Example of a Component with Custom Java Class
When you need to add custom code to extend the base functionality of a component or
to handle events, you can enable a custom Java class for any of the key types of ADF
Business Components you create. You enable the generation of custom classes for a
component on the Java page of its respective overview editor in JDeveloper. When you
enable this option, JDeveloper creates a Java source file for a custom class related to
the component whose name follows a configurable naming standard. This class,
whose name is recorded in the component's XML component definition, provides a
place where you can write the custom Java code required by that component. Once
you’ve enabled a custom Java class for a component, you can navigate to it using a

Overview of the Implementation Architecture

3-18 Fusion Developer's Guide for Oracle Application Development Framework

corresponding Go To componentName Class option in the component’s Application
Navigator context menu.

Figure 3–7 illustrates what occurs when you enable a custom Java class for the
YourService application module. A YourServiceImpl.java source code file is
created in the same source path directory as your component's XML component
definition file. The YourServiceImpl.xml file is updated to reflect the fact that at
runtime the component should use the
com.yourcompany.yourapp.YourServiceImpl class instead of the base
ApplicationModuleImpl class.

Figure 3–7 Component with Custom Java Class

3.5.7 Basic Data Types
The Java language provides a number of built-in data types for working with strings,
dates, numbers, and other data. When working with ADF Business Components, you
can use these types, but by default you'll use an optimized set of types in the
oracle.jbo.domain and oracle.ord.im packages. These types, shown in
Table 3–1, allow data accessed from the Oracle database to remain in its native,
internal format. You will achieve better performance using the optimized data types
provided by ADF Business Components by avoiding costly type conversions when
they are not necessary. To work with string-based data, by default ADF Business
Components uses the regular java.lang.String type.

Note: The examples in this guide use default settings for generated
names of custom component classes and interfaces. If you want to
change these defaults for your own applications, use the Business
Components: Class Naming page of the JDeveloper Preferences
dialog. Changes you make only affect newly created components.

Table 3–1 Basic Data Types in the oracle.jbo.domain and oracle.ord.im Packages

Data Type Package Represents

Number oracle.jbo.domain Any numerical data

Date oracle.jbo.domain Date with optional time

DBSequence oracle.jbo.domain Sequential integer assigned by a database trigger

RowID oracle.jbo.domain Oracle database ROWID

Overview of the Implementation Architecture

Getting Started with ADF Business Components 3-19

3.5.8 Generic Versus Strongly-Typed APIs
When working with application modules, view objects, and entity objects, you can
choose to use a set of generic APIs or you can have JDeveloper generate code into a
custom Java class to enable a strongly-typed API for that component. For example,

Timestamp oracle.jbo.domain Timestamp value

TimestampTZ oracle.jbo.domain Timestamp value with time zone information

TimestampLTZ oracle.jbo.domain Timestamp value with local time zone information retrieved from
JavaVM or from the ADF Context when configured in the
application’s adf-config.xml with an EL expression:

<user-time-zone-config xmlns=
"http://xmlns.oracle.com/adf/use
rtimezone/config">
 <user-timezone expression=
"EL exp" />
</user-time-zone-config>

The EL expression will be evaluated to determine the time zone of
the current user; otherwise, the value defaults to the time zone of
the JavaVM.

BFileDomain oracle.jbo.domain Binary File (BFILE) object

BlobDomain oracle.jbo.domain Binary Large Object (BLOB)

ClobDomain oracle.jbo.domain Character Large Object (CLOB)

OrdImageDomain oracle.ord.im Oracle Intermedia Image (ORDIMAGE)

OrdAudioDomain oracle.ord.im Oracle Intermedia Audio (ORDAUDIO)

OrdVideoDomain oracle.ord.im Oracle Intermedia Video (ORDVIDEO)

OrdDocDomain oracle.ord.im Oracle Intermedia Document (ORDDOC)

Struct oracle.jbo.domain User-defined object type

Array oracle.jbo.domain User-defined collection type (e.g. VARRAY)

Note: The oracle.jbo.domain.Number class has the same class
name as the built-in java.lang.Number type. Since the Java
compiler implicitly imports java.lang.* into every class, you need
to explicitly import the oracle.jbo.domain.Number class into any
class that references it. Typically, JDeveloper will follow this practice
for you, but when you begin to write more custom code of your own,
you'll learn to recognize compiler or runtime errors related to
"Number is an abstract class" as indicating that you are inadvertently
using java.lang.Number instead of
oracle.jbo.domain.Number. Adding the:

import oracle.jbo.domain.Number;

line at the top of your class, after the package line, prevents these
kinds of errors.

Table 3–1 (Cont.) Basic Data Types in the oracle.jbo.domain and oracle.ord.im Packages

Data Type Package Represents

Overview of the Implementation Architecture

3-20 Fusion Developer's Guide for Oracle Application Development Framework

when working with an view object, if you wanted to access the value of an attribute in
any row of its result, the generic API would look like this:

Row row = ordersVO.getCurrentRow();
Date shippedDate = (Date)row.getAttribute("OrderShippedDate");

Notice that using the generic APIs, you pass string names for parameters to the
accessor, and you have to cast the return type to the expected type, as with Date
shown in the example.

Alternatively, when you enable the strongly typed style of working you can write code
like this:

OrdersRow row = (OrdersRow)ordersVO.getCurrentRow();
Date shippedDate = row.getOrderShippedDate();

In this case, you work with generated method names whose return type is known at
compile time, instead of passing string names and having to cast the results. Typically,
it is necessary to use strongly typed accessors when you need to invoke the methods
from the business logic code without sacrificing compile-time safety. This can also be
useful when you are writing custom validation logic in setter methods, although in
this case, you may want to consider using Groovy expressions instead of generating
entity and view row implementation classes for Business Components. Subsequent
chapters explain how to enable this strongly typed style of working by generating Java
classes for business logic that you choose to implement using Java.

3.5.9 Custom Interface Support for Client-Accessible Components
Only these components of the business service as visible to the client:

■ Application module, representing the service itself

■ View objects, representing the query components

■ View rows, representing each row in a given query component's results

The entity objects in the business service implementation is intentionally not designed
to be referenced directly by clients. Instead, clients work with the data queried by view
objects as part of an application module's data model. Behind the scenes, the view
object cooperates automatically with entity objects in the business domain layer to
coordinate validating and saving data that the user changes. For more information
about this runtime interaction, see Section 6.3.9, "What Happens at Runtime: When
View Objects and Entity Objects Cooperate."

3.5.9.1 Framework Client Interfaces for Components
The Java interfaces of the oracle.jbo package provide a client-accessible API for
your business service. This package intentionally does not contain an Entity
interface, or any methods that would allow clients to directly work with entity objects.
Instead, client code works with interfaces like:

■ ApplicationModule, to work with the application module

■ ViewObject, to work with the view objects

■ Row, to work with the view rows

3.5.9.2 Custom Client Interfaces for Components
When you begin adding custom code to your ADF Business Components that you
want clients to be able to call, you can "publish" that functionality to clients for any
client-visible component. For each of your components that publishes at least one

Overview of Groovy Support

Getting Started with ADF Business Components 3-21

custom method to clients on its client interface, JDeveloper automatically maintains
the related Java interface file. So, assuming you were working with an application
module like StoreServiceAM in the Fusion Order Demo application, you could have
custom interfaces like:

■ Custom application module interface

StoreServiceAM extends ApplicationModule

■ Custom view object interface

OrderItemsInfo extends ViewObject

■ Custom view row interface

OrderItemsInfoRowClient extends Row

Client code can then cast one of the generic client interfaces to the more specific one
that includes the selected set of client-accessible methods you've selected for your
particular component.

3.6 Overview of Groovy Support
Groovy is a scripting language with Java-like syntax for the Java platform. The Groovy
scripting language simplifies the authoring of code by employing dot-separated
notation, yet still supporting syntax to manipulate collections, Strings, and JavaBeans.
Groovy language expressions in ADF Business Components differs from the Java code
that you might use in a Business Components custom Java class because Groovy
expressions are executed at runtime, while the strongly typed language of Java is
executed at compile-time. Additionally, because Groovy expressions are dynamically
compiled, they are stored in the XML definition files of the business components
where you use it.

ADF Business Components supports the use of the Groovy scripting language in
places where access to entity object and view object attributes is useful, including
attribute validators (for entity objects), attribute default values (for either entity objects
or view objects), transient attribute value calculations (for either entity objects or view
objects), bind variable default values (in view object query statements and view
criteria filters), and placeholders for error messages (in entity object validation rules).
Additionally, ADF Business Components provides a limited set of built-in keywords
that can be used in Groovy expressions.

Specifically, the ADF Business Components framework provides support for the use
of Groovy to perform the following tasks:

■ Define a Script Expression validator or Compare validator (see Section 7.5, "Using
Groovy Expressions For Validation and Business Rules")

■ Define error message tokens for handling validation failure (see Section 7.7.4,
"How to Embed a Groovy Expression in an Error Message")

■ Handle conditional execution of validators (see Section 7.7.3, "How to
Conditionally Raise Error Messages Using Groovy")

■ Set the default value of a bind variable in the view object query statement (see
Section 5.10, "Working with Bind Variables")

■ Set the default value of a bind variable that specifies a criteria item in the view
criteria statement (see Section 5.11, "Working with Named View Criteria").

Overview of Groovy Support

3-22 Fusion Developer's Guide for Oracle Application Development Framework

■ Define the default value for an entity object attribute (see Section 4.10.6, "How to
Define a Static Default Value")

■ Calculate the value of a transient attribute of an entity object or view object (see
Section 4.14, "Adding Transient and Calculated Attributes to an Entity Object" and
Section 5.14, "Adding Calculated and Transient Attributes to a View Object")

For more information about the Groovy language, refer to the following web site:

■ http://groovy.codehaus.org/

3.6.1 Referencing Business Components Objects in Groovy Expressions
There is one top-level object named adf that allows you access to objects that the
framework makes available to the Groovy script. The accessible Oracle ADF objects
consist of the following:

■ adf.context - to reference the ADFContext object

■ adf.object - to reference the object on which the expression is being applied
(which can also be referenced using the keyword object, without the adf
prefix). Other accessible member names come from the context in which the
Groovy script is applied.

■ Entity object attributes: The context is an instance of the entity implementation
class. Through this object you can reference custom methods of the custom
entity implementation class, any methods defined by the base implementation
class as specified by the JavaDoc for EntityImpl, and you can reference the
attributes of the entity instance.

■ Entity object script validation rules: The context is the validator object
(JboValidatorContext) merged with the entity on which the validator is
applied. For details about keywords that you can use in this context, see
Section 3.6.2.1, "Referencing Members of the Same Business Component."

■ View object attributes: The context is an instance of the view row
implementation class. Through this object, you can reference custom methods
of the custom view row implementation class, any methods defined by the
base implementation class as specified by the JavaDoc for ViewRowImpl, and
you can reference the attributes of the view row instance as defined by the
query row set.

■ Bind variable in view objects: The context is the variable object itself not the
view row. You can reference the structureDef property to access other
information as well as the viewObject property to access the view object in
which the bind variable participates. However, access to view object attributes
is not supported.

■ Bind variable in view accessors: The context is the current view row. The view
accessor with bind variable is used to create a cascading List of Value (LOV).
The view accessor can derive Groovy-driven values from the current view row
in the view accessor view object used to formulate the list of valid choices.

■ Transient attributes: The context is the current entity or view row. You can
reference attributes by name in the entity or view row in which the attribute
appears, as well as public methods on that entity or view row. To access
methods on the current object, you must use the object keyword to reference
the current object (for example, object.methodName()). The object
keyword is equivalent to the this keyword in Java. Without it, in transient
expressions, the method will be assumed to exist on the dynamically compiled
Groovy script object itself.

Overview of Groovy Support

Getting Started with ADF Business Components 3-23

■ adf.error - in validation rules, to access the error handler that allows the
validation expression to generate exceptions or warnings

■ adf.userSession - returns a reference to the ADF Business Components user
session (which you can use to reference values in the userData hashmap that is
part of the session)

You can also reference the current date (time truncated) or current date and time using
the following expressions:

■ adf.currentDate

■ adf.currentDateTime

3.6.2 Referencing Custom Business Components Methods and Attributes in Groovy
Expressions

Groovy script language simplifies the authoring of code that you might write to access
methods and attributes of your entity object and view objects.

3.6.2.1 Referencing Members of the Same Business Component
The simplest example of referencing business component members, including
methods and attributes that the entity object and view object define, is to reference
attributes that exist in the same entity object or view object as the attribute that you
apply the expression.

For example, you could define a Groovy expression to calculate the value of a
transient attribute AnnualSalary on an entity object with an attribute Sal that
specifies the employee’s monthly salary:

Sal * 12

Or, with Groovy you can write a simple validation rule to compare the attributes of a
single view object using syntax like:

PromotionDate > HireDate

Using Java, this same comparison would look like:

((Date)getAttribute("PromotionDate")).compareTo((Date)getAttribute("HireDate")) > 0

Note that the current object is passed in to the script as the this object, so you can
reference an attribute in the current object by simply using the attribute name. For
example, in an attribute-level or entity-level Script Expression validator, to refer to an
attribute named "HireDate", the script can simply reference HireDate.

Similar to referencing attributes, when you define custom methods in an entity
implementation class, you can invoke those methods as part of your expression. For
example, to define an attribute default value:

adf.object.getDefaultSalaryForGrade()

A method reference requires the prefix adf.object which allows you to reference
the same entity that defines the attribute on which the expression is applied. This same
prefix also allows you to reference the methods of the base class of the entity
implementation class (EntityImpl.java) that your custom implementation class
extends.

Note that when you want to reference the method of an entity implementation class in
a validation rule, you use the source prefix:

Overview of Groovy Support

3-24 Fusion Developer's Guide for Oracle Application Development Framework

source.getDefaultSalaryForGrade()

Use of the source prefix is necessary in validators because the object keyword
implies the validation rule object instead of the entity object (where the method is
defined).

To allow you to reference members of the validator object (JboValidatorContext),
you can use these keywords in your validation rule expression:

■ newValue: in an attribute-level validator, to access the attribute value being set

■ oldValue: in an attribute-level validator, to access the current value of the
attribute being set

For example, you might use the following expression to specify a dynamic validation
rule check of the salary for a salesman.

if (Job == "SALESMAN")
{
return newValue < source.getMaxSalaryForGrade(Job)
}
else
return true

3.6.2.2 Referencing Members of Other Business Components
You can also reference the methods and attributes that entity objects and view objects
defines in the expressions you apply to a different entity object attribute or validation
rule. This is accomplished by referencing the accessor in the entity association.

For example, if you define an entity with a master-detail association for Dept and Emp,
by default the accessor for the entity association will be named Dept and Emp, to
identity the source and destination data source. Using that accessor in a Groovy
expression to set the default value for a new employee’s salary based on the location of
their department:

adf.object.getDefaultSalaryForGrade(Dept.Loc)

This expression does not reference the entity even though it has the same name (Dept)
as the accessor for the association. Instead, assuming a master-detail relationship
between departments and employees, referencing the accessor allows the Groovy
expression for the employee entity object to walk back to the master department entity
and pass in the value of Loc from that master.

3.6.3 Manipulating Business Component Attribute Values in Groovy Expressions
You can use the following built-in aggregate functions on Oracle Business
Components RowSet objects:

■ rowSetAttr.sum(GroovyExpr)

■ rowSetAttr.count(GroovyExpr)

■ rowSetAttr.avg(GroovyExpr)

■ rowSetAttr.min(GroovyExpr)

■ rowSetAttr.max(GroovyExpr)

These aggregate functions accept a string-value argument that is interpreted as a
Groovy expression that is evaluated in the context of each row in the row set as the
aggregate is being computed. The Groovy expression must return a numeric value (or
number domain).

Overview of Groovy Support

Getting Started with ADF Business Components 3-25

For example, in a Dept entity object you could add a transient attribute that displays
the sum of all employee salaries that is calculated by this expression:

EmployeesInDept.sum("Sal")

To reference the employees of a specific department, the expression supplies the name
of the master-detail association’s accessor for the destination Emp entity. In this case,
the accessor is EmployeesInDept and salary is interpreted for each record of the Emp
entity object.

Or, assume that you want the calculation of the salary total for specific departments to
include each employee’s benefits package, which varies with job role:

EmployeesInDept.sum("Sal + adf.object.getBenefitsValue(Job)")

Overview of Groovy Support

3-26 Fusion Developer's Guide for Oracle Application Development Framework

4

Creating a Business Domain Layer Using Entity Objects 4-1

4Creating a Business Domain Layer Using
Entity Objects

This chapter describes how to use ADF entity objects to create a reusable business
layer of Java objects that describe the business domain in an Oracle Application
Development Framework (Oracle ADF) application.

This chapter includes the following sections:

■ Section 4.1, "Introduction to Entity Objects"

■ Section 4.2, "Creating Entity Objects and Associations"

■ Section 4.3, "Creating and Configuring Associations"

■ Section 4.4, "Creating an Entity Diagram for Your Business Layer"

■ Section 4.5, "Defining Property Sets"

■ Section 4.6, "Defining Attribute Control Hints for Entity Objects"

■ Section 4.7, "Working with Resource Bundles"

■ Section 4.8, "Defining Business Logic Groups"

■ Section 4.9, "Configuring Runtime Behavior Declaratively"

■ Section 4.10, "Setting Attribute Properties"

■ Section 4.11, "Creating Business Events"

■ Section 4.12, "Working Programmatically with Entity Objects and Associations"

■ Section 4.13, "Generating Custom Java Classes for an Entity Object"

■ Section 4.14, "Adding Transient and Calculated Attributes to an Entity Object"

4.1 Introduction to Entity Objects
An entity object is the ADF Business Components component that represents a row in
the specified data source and simplifies modifying its associated attributes.
Importantly, it allows you to encapsulate domain business logic to ensure that your
business policies and rules are consistently validated.

Entity objects support numerous declarative business logic features to enforce the
validity of your data. You will typically complement declarative validation with
additional custom application logic and business rules to cleanly encapsulate a
maximum amount of domain business logic into each entity object. Your associated set
of entity objects forms a reusable business domain layer that you can exploit in
multiple applications.

Creating Entity Objects and Associations

4-2 Fusion Developer's Guide for Oracle Application Development Framework

The key concepts of entity objects are the following:

■ You define an entity object by specifying the database table whose rows it will
represent.

■ You can create associations to reflect relationships between entity objects.

■ At runtime, entity rows are managed by a related entity definition object.

■ Each entity row is identified by a related row key.

■ You retrieve and modify entity rows in the context of an application module that
provides the database transaction.

4.2 Creating Entity Objects and Associations
If you already have a database schema to work from, the simplest way to create entity
objects and associations is to reverse-engineer them from existing tables. When
needed, you can also create an entity object from scratch, and then generate a table for
it later.

4.2.1 How to Create Multiple Entity Objects and Associations from Existing Tables
To create one or more entity objects, use the Business Components from Tables
wizard, which is available from the New Gallery.

To create one or more entity objects and associations from existing tables:
1. In the Application Navigator, right-click the project in which you want to create

the entity objects and choose New.

2. In the New Gallery, expand Business Tier, select ADF Business Components and
then Business Components from Tables, and click OK.

If this is the first component you're creating in the project, the Initialize Business
Components Project dialog appears to allow you to select a database connection.

3. In the Initialize Business Components Project dialog, select the database
connection or choose New to create a connection. Click OK.

4. On the Entity Objects page, do the following to create the entity objects:

■ Enter the package name in which all of the entity objects will be created.

■ Select the tables from the Available list for which you want to create entity
objects.

If the Auto-Query checkbox is selected, then the list of available tables appears
immediately. In the Name Filter field, you can optionally enter a full or partial
table name to filter the available tables list in real time. As an alternative to the
auto-query feature, click the Query button to retrieve the list based on an
optional table name filter. When no name filter is entered, JDeveloper retrieves
all table objects for the chosen schema.

■ Click Filter Types if you want to see only a subset of the database objects
available. You can filter out tables, views, or synonyms.

Once you have selected a table from the Available list, the proposed entity object
name for that table appears in the Selected list with the related table name in
parenthesis.

■ Select an entity object name in the Selected list and use the Entity Name field
to change the default entity object name.

Creating Entity Objects and Associations

Creating a Business Domain Layer Using Entity Objects 4-3

Figure 4–1 Create Business Components from Tables Wizard, Entity Objects Page

5. When you are satisfied with the selected table objects and their corresponding
entity object names, click Finish.

The Application Navigator displays the entity objects in the package you specified.

Best Practice: Since each entity object instance represents a single
row in a particular table, name the entity objects with a singular noun
(like Address, Order, and Person), instead of their plural counterparts.
Figure 4–1 shows what the wizard page looks like after selecting the
ADDRESSES table in the FOD schema, setting a package name of
oracle.fodemo.storefront.entities, and renaming the entity
object in the singular.

Best Practice: After you create associations, move all of your
associations to a separate package so that you can view and manage
them separately from the entity objects. In Figure 4–2, the associations
have been moved to a subpackage (associations) and do not
appear in the entities package in the Application Navigator. For
more information, see Section 4.3.4, "How to Rename and Move
Associations to a Different Package."

Creating Entity Objects and Associations

4-4 Fusion Developer's Guide for Oracle Application Development Framework

Figure 4–2 New Entity Objects in Application Navigator

4.2.2 How to Create Single Entity Objects Using the Create Entity Wizard
To create a single entity object, you can use the Create Entity Object wizard, which is
available in the New Gallery.

To create a single entity object and association:
1. In the Application Navigator, right-click the project in which you want to create

the entity object and choose New.

2. In the New Gallery, expand Business Tier, select ADF Business Components and
then Entity Object, and click OK.

If this is the first component you're creating in the project, the Initialize Business
Components Project dialog appears to allow you to select a database connection.

3. In the Initialize Business Components Project dialog, select the database
connection or choose New to create a connection. Click OK.

4. On the Name page, do the following to create the entity object:

■ Enter the package name in which the entity object will be created.

■ Click Browse (next to the Schema Object field) to select the table for which
you want to create the entity object.

Or, if you plan to create the table later, you can enter a name of a table that
does not exist.

5. If you manually entered a table name in the Schema Objects field, you will need
to define each attribute on the Attributes page of the wizard. Click Next.

You can create the table manually or generate it, as described in Section 4.2.6,
"How to Create Database Tables from Entity Objects."

6. When you are satisfied with the table object and its corresponding entity object
name, click Finish.

Creating Entity Objects and Associations

Creating a Business Domain Layer Using Entity Objects 4-5

4.2.3 What Happens When You Create Entity Objects and Associations from Existing
Tables

When you create an entity object from an existing table, first JDeveloper interrogates
the data dictionary to infer the following information:

■ The Java-friendly entity attribute names from the names of the table's columns (for
example, USER_ID -> UserId)

■ The SQL and Java data types of each attribute based on those of the underlying
column

■ The length and precision of each attribute

■ The primary and unique key attributes

■ The mandatory flag on attributes, based on NOT NULL constraints

■ The relationships between the new entity object and other entities based on
foreign key constraints

JDeveloper then creates the XML component definition file that represents its
declarative settings and saves it in the directory that corresponds to the name of its
package. For example, when an entity named Order appears in the
genericbcmodel.entities package, JDeveloper will create the XML file
genericbcmodel/entities/Order.xml under the project's source path. This
XML file contains the name of the table, the names and data types of each entity
attribute, and the column name for each attribute.

You can inspect the XML description for the entity object by opening the object in the
overview editor and clicking the Source tab.

4.2.3.1 What Happens When Tables Have Foreign Key Relationships
In addition to the entity objects, the wizard also generates named association
components that capture information about the relationships between entity objects.
For example, the database diagram in Figure 4–3 shows that JDeveloper derives
default association names like OrderItemsProductsFkAssoc by converting the
foreign key constraint names to a Java-friendly name and adding the Assoc suffix. For
each association created, JDeveloper creates an appropriate XML component
definition file and saves it in the directory that corresponds to the name of its package.

By default the associations reverse-engineered from foreign keys are created in the
same package as the entities. For example, for the association
OrderItemsProductsFkAssoc with entities in the
fodemo.storefront.entities package, JDeveloper creates the association XML
file named
./fodemo/storefront/entities/OrderItemsProductsFkAssoc.xml.

Note: Since an entity object represents a database row, it seems
natural to call it an entity row. Alternatively, since at runtime the entity
row is an instance of a Java object that encapsulates business logic for
that database row, the more object-oriented term entity instance is also
appropriate. Therefore, these two terms are interchangeable.

Note: If your IDE-level Business Components Java generation
preferences so indicate, the wizard may also create an optional custom
entity object class (for example, OrderImpl.java).

Creating Entity Objects and Associations

4-6 Fusion Developer's Guide for Oracle Application Development Framework

Figure 4–3 ORDER_ITEMS and PRODUCTS_BASE Tables Related by Foreign Key

4.2.3.2 What Happens When a Table Has No Primary Key
If a table has no primary key constraint, then JDeveloper cannot infer the primary key
for the entity object. Since every entity object must have at least one attribute marked
as a primary key, the wizard will create an attribute named RowID and use the
database ROWID value as the primary key for the entity. If appropriate, you can edit
the entity object later to mark a different attribute as a primary key and remove the
RowID attribute. When you use the Create Entity Object wizard and you have not set
any other attribute as primary key, you will be prompted to use RowID as the primary
key.

4.2.4 What Happens When You Create an Entity Object for a Synonym or View
When you create an entity object using the Business Components from Tables wizard
or the Create Entity Object wizard, the object can represent an underlying table,
synonym, or view. The framework can infer the primary key and related associations
for a table or synonym by inspecting database primary and foreign key constraints in
the data dictionary.

However, when your selected schema object is a database view, then neither the
primary key nor associations can be inferred since database views do not have
database constraints. In this case, if you use the Business Components from Tables
wizard, the primary key defaults to RowID. If you use the Create Entity Object wizard,
you'll need to specify the primary key manually by marking at least one of its
attributes as a primary key. For more information, see Section 4.2.3.2, "What Happens
When a Table Has No Primary Key."

When your selected schema object is a synonym, there are two possible outcomes. If
the synonym is a synonym for a table, then the wizard and editor behave as if you had
specified a table. If instead the synonym refers to a database view, then they behave as
if you had specified a view.

4.2.5 How to Edit an Existing Entity Object or Association
After you've created a new entity object or association, you can edit any of its settings
in the overview editor. To launch the editor, choose Open from the context menu for
the entity object or association in the Application Navigator or double-click the object.
By clicking the different tabs of the editor, you can adjust the settings that define the
object and govern its runtime behavior.

Creating Entity Objects and Associations

Creating a Business Domain Layer Using Entity Objects 4-7

4.2.6 How to Create Database Tables from Entity Objects
To create database tables based on entity objects, right-click the package in the
Application Navigator that contains the entity objects and choose Create Database
Objects from the context menu. A dialog appears to let you select the entities whose
tables you'd like to create. This tool can be used to generate a table for an entity object
you created from scratch, or to drop and re-create an existing table.

In the overview editor for an association, the Use Database Key Constraints checkbox
on the Association Properties page controls whether the related foreign key constraint
will be generated when creating the tables for entity objects. Selecting this option does
not have any runtime implications.

4.2.7 How to Synchronize an Entity with Changes to Its Database Table
Inevitably you (or your DBA) might alter a table for which you've already created an
entity object. Your existing entity will not be disturbed by the presence of additional
attributes in its underlying table; however, if you want to access the new column in the
table in your Java EE application, you'll need to synchronize the entity object with the
database table.

For example, suppose you had done the following at the SQL*Plus command prompt
to add a new SECURITY_QUESTION column to the PERSONS table:

ALTER TABLE PERSONS ADD (security_question VARCHAR2(60));

Then you can use the synchronization feature to add the new column as an attribute
on the entity object.

To synchronize an entity with changes to its database table:
1. In the Application Navigator, right-click the desired entity object and choose

Synchronize with Database.

The Synchronize with Database dialog shows the list of the actions that can be
taken to synchronize the business logic tier with the database.

2. Select the action you want to take:

■ Select one or more actions from the list, and click Synchronize to synchronize
the selected items.

■ Click Synchronize All to perform all actions in the list.

■ Click Write to File to save the action list to a text file. This feature helps you
keep track of the changes you make.

3. When finished, click OK to close the dialog.

4.2.7.1 Removing an Attribute Associated with a Dropped Column
The synchronize feature does not handle dropped columns. When a column is
dropped from the underlying database after an entity object has been created, you can

Caution: This feature does not generate a DDL script to run later. It
performs its operations directly against the database and will drop
existing tables. A dialog appears to confirm that you want to do this
before proceeding. For entities based on existing tables, use with
caution.

Creating Entity Objects and Associations

4-8 Fusion Developer's Guide for Oracle Application Development Framework

delete the corresponding attribute from the entity object. If the attribute is used in
other parts of your application, you must remove those usages as well.

To remove an entity attribute:
1. In the Application Navigator, double-click the entity.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, right-click the attribute, and choose Delete Safely.

If there are other usages, the Delete Attributes dialog displays the message
"Usages were found."

4. If usages were found, click View Usages.

The Log window shows all usages of the attribute.

5. Work through the list in the Log window to delete all usages of the entity
attribute.

4.2.7.2 Addressing a Data Type Change in the Underlying Table
The synchronize feature does not handle changed data types. For a data type change
in the underlying table (for example, precision increased), you must locate all usages
of the attribute and manually make changes, as necessary.

To locate all usages of an entity attribute:
1. In the Application Navigator, double-click the entity.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, right-click the attribute and choose Find Usages.

If there are other usages, they are displayed in the Log window.

4.2.8 How to Store Data Pertaining to a Specific Point in Time
Effective dated tables are used to provide a view into the data set pertaining to a
specific point in time. Effective dated tables are widely used in applications like HRMS
and Payroll to answer queries like:

■ What was the tax rate for an employee on August 31st, 2005?

■ What are the employee's benefits as of October 2004?

In either case, the employee’s data may have changed to a different value since then.

The primary difference between the effective dated entity type and the dated entity
type is that the dated entity does not cause row splits during update and delete.

Note: Take caution when using effective dating on a both ends of a
master-detail relationship. Because child objects can raise events on
parent objects, and effective dated entity objects cause row splits
during update and delete operations, it is possible for the child object
to raise an event on the wrong parent object if both the parent and
child are updated during the same transaction. Do not configure a
business event to be raised on an effective dated parent from an
effective dated child. For more information about business events, see
Section 4.11, "Creating Business Events."

Creating Entity Objects and Associations

Creating a Business Domain Layer Using Entity Objects 4-9

When you create an effective dated entity object, you identify the entity as effective
dated and specify the attributes of the entity that represent the start and end dates. The
start date and end date attributes must be of the Date type.

Additionally, you can specify an attribute that represents the sequence for the effective
dated entity and an attribute that represents a flag for the sequence. These attributes
allow for tracking of multiple changes in a single day.

To create an effective dated entity object
1. In the Application Navigator, double-click the entity on which you want enable

effective dating.

2. In the Property Inspector, expand the Type category.

If necessary, choose Property Inspector from the View menu to display the
Property Inspector.

If the Type category is not displayed in the Property Inspector, click the General
tab in the overview editor to set the proper focus.

3. From the context menu for the Effective Date Type property, choose Edit.

To display the context menu, click the down arrow next to the property field.

4. In the Edit Property dialog, specify the following settings:

■ For Effective Date Type, select EffectiveDated.

■ For Start Date Attribute, select the attribute that corresponds to the start date.

■ For End Date Attribute, select the attribute that corresponds to the end date.

5. You can optionally specify attributes that allow for tracking of multiple changes in
a single day.

■ For Effective Date Sequence, select the attribute that stores the sequence of
changes.

■ For Effective Date Sequence Flag, select the attribute that stores a flag
indicating the most recent change in the sequence.

Without specifying the Effective Date Sequence and Effective Date Sequence
Flag attributes, the default granularity of effective dating is one day. For this
reason, multiple changes in a single day are not allowed. An attempt to update the
entity a second time in a single day will result in an exception being thrown. After
these two attributes are specified, the framework inserts and updates their values
as necessary to track multiple changes in a single day.

6. Click OK.

4.2.9 What Happens When You Create Effective Dated Entity Objects
When you create an effective dated entity object, JDeveloper creates a transient
attribute called SysEffectiveDate to store the effective date for the row. Typically
the Insert, Update, and Delete operations modify the transient attribute while the ADF

Note: You can also identify the start and end date attributes using
the Property Inspector for the appropriate attributes. To do so, select
the appropriate attribute in the overview editor and set the
IsEffectiveStartDate or IsEffectiveEndDate property to true in the
Property Inspector.

Creating and Configuring Associations

4-10 Fusion Developer's Guide for Oracle Application Development Framework

Business Components framework decides the appropriate values for the effective start
date and the effective end date.

Example 4–1 show some sample XML entries that are generated when you create an
effective dated entity. For more information about working with effective dated
objects, see Section 5.4, "Limiting View Object Rows Using Effective Date Ranges."

Example 4–1 XML Entries for Effective Dated Entities

// In the effective dated entity
<Entity
 ...
 EffectiveDateType="EffectiveDated">

// In the attribute identified as the start date
 <Attribute
 ...
 IsEffectiveStartDate="true">

// In the attribute identified as the end date
 <Attribute
 ...
 IsEffectiveEndDate="true">

// The SysEffectiveDate transient attribute
 <Attribute
 Name="SysEffectiveDate"
 IsQueriable="false"
 IsPersistent="false"
 ColumnName="$none$"
 Type="oracle.jbo.domain.Date"
 ColumnType="$none$"
 SQLType="DATE"/>

4.2.10 What You May Need to Know About Creating Entities from Tables
The Business Components from Tables wizard makes it easy to quickly generate many
business components at the same time. In practice, this does not mean that you should
use it to immediately create entity objects for every table in your database schema just
because it is possible to do so. If your application requires all of the tables, then that
strategy might be appropriate. But because you can use the wizard whenever needed,
you should create the entity objects for the tables that you know will be involved in
the application.

Section 9.4, "Defining Nested Application Modules," describes a use case-driven
design approach for your business services that can assist you in understanding which
entity objects are required to support your application's business logic needs. You can
always add more entity objects later as necessary.

4.3 Creating and Configuring Associations
If your database tables have no foreign key constraints defined, JDeveloper won't be
able to infer the associations between the entity objects that you create. Since several
ADF Business Components runtime features depend on the presence of entity
associations, create them manually if the foreign key constraints don’t exist.

Creating and Configuring Associations

Creating a Business Domain Layer Using Entity Objects 4-11

4.3.1 How to Create an Association
To create an association, use the Create New Association wizard, which is available in
the New Gallery.

To create an association:
1. In the Application Navigator, right-click the project in which you want to create

the association and choose New.

2. In the New Gallery, expand Business Tier, select ADF Business Components and
then Association, and click OK.

3. On the Name page, do the following to create the association:

■ Enter the package name in which the association will be created.

■ Enter the name of the association component.

■ Click Next.

4. On the Entity Objects page, select the source and destination entity attributes:

■ Select a source attribute from one of the entity objects that is involved in the
association to act as the master.

■ Select a corresponding destination attribute from the other entity object
involved in the association.

For example, Figure 4–4 shows the selected OrderId attribute from the OrderEO
entity object as the source entity attribute. Because the OrderItemEO rows
contain an order ID that relates them to a specific OrderEO row, you would select
this OrderId foreign key attribute in the OrderItemEO entity object as the
destination attribute.

Figure 4–4 Create Association Wizard, Attribute Pairs That Relate Two Entity Objects
Defined

5. Click Add to add the matching attribute pair to the table of source and destination
attribute pairs below.

Creating and Configuring Associations

4-12 Fusion Developer's Guide for Oracle Application Development Framework

By default, the Bound checkbox is selected for both the source and destination
attribute. This checkbox allows you to specify whether or not the value will be
bound into the association SQL statement that is created internally when
navigating from source entity to target entity or from target entity to source entity
(depending on which side you select).

Typically, you would deselect the checkbox for an attribute in the relationship that
is a transient entity attribute whose value is a constant and therefore should not
participate in the association SQL statement to retrieve the entity.

6. If the association requires multiple attribute pairs to define it, you can repeat the
preceding steps to add additional source/target attribute pairs.

7. Finally, ensure that the Cardinality dropdown correctly reflects the cardinality of
the association. The default is a one-to-many relationship. Click Next.

For example, since the relationship between a OrderEO row and its related
OrderItemEO rows is one-to-many, you can leave the default setting.

8. On the Association SQL page, you can preview the association SQL predicate that
will be used at runtime to access the related destination entity objects for a given
instance of the source entity object.

9. On the Association Properties page, disable the Expose Accessor checkbox on
either the Source or the Destination entity object when you want to create an
association that represents a one-way relationship. The default, bidirectional
navigation is more convenient for writing business validation logic, so in practice,
you typically leave these default checkbox settings.

For example, Figure 4–5 shows an association that represents a bidirectional
relationship, permitting either entity object to access the related entity row(s) on
the other side when needed. In this example, this means that if you are working
with an instance of an OrderEO entity object, you can easily access the collection
of its related OrderItemEO rows. With any instance of a OrderItemEO entity
object, you can also easily access the Order to which it belongs.

Figure 4–5 Association Properties Control Runtime Behavior

Creating and Configuring Associations

Creating a Business Domain Layer Using Entity Objects 4-13

10. When you are satisfied with the association definition, click Finish.

4.3.2 What Happens When You Create an Association
When you create an association, JDeveloper creates an appropriate XML component
definition file and saves it in the directory that corresponds to the name of its package.
For example, if you created an association named OrderItemsOrdersFkAssoc in
the oracle.fodemo.storefront.entities.associations subpackage, then
the association XML file would be created in the
./oracle/fodemo/storefront/entities/associations directory with the
name OrderItemsOrdersFkAssoc.xml. At runtime, the entity object uses the
association information to automate working with related sets of entities.

4.3.3 How to Change Entity Association Accessor Names
You should consider the default settings for the accessor names on the Association
Properties page and decide whether changing the names to something more intuitive
is appropriate. The default settings define the names of the accessor attributes you will
use at runtime to programmatically access the entities on the other side of the
relationship. By default, the accessor names will be the names of the entity object on
the other side. Since the accessor names on an entity must be unique among entity
object attributes and other accessors, if one entity is related to another entity in multiple
ways, then the default accessor names are modified with a numeric suffix to make the
name unique.

In an existing association, you can rename the accessor using the Association
Properties dialog.

To rename the entity accessor in an association:
1. In the Application Navigator, double-click the association.

2. In the overview editor, click the Relationships navigation tab.

3. On the Relationships page, expand the Accessors category and click the Edit icon.

The Association Properties dialog displays the current settings for the association’s
accessors.

4. Modify the name as necessary, and click OK to apply your changes and close the
dialog.

4.3.4 How to Rename and Move Associations to a Different Package
Since associations are a component that you typically configure at the outset of your
project and don't change frequently thereafter, you might want to move the
associations to a different package so that your entity objects are easier to see. Both
renaming components and moving them to a different package is straightforward
using JDeveloper's refactoring functionality.

To move a set of business components to a different package:
1. In the Application Navigator, select the components you want to move.

2. Right-click one of the selected components, and choose Refactor > Move.

3. In the Move Business Components dialog, enter the name of the package to move
the component(s) to, or click Browse to navigate to and select the package.

4. Click OK to apply your changes and close the dialog.

Creating and Configuring Associations

4-14 Fusion Developer's Guide for Oracle Application Development Framework

To rename a component:
1. In the Application Navigator, right-click the component you want to rename, and

choose Refactor > Rename.

2. In the Rename dialog, enter the new name for the component and click OK.

When you refactor ADF Business Components, JDeveloper moves the XML and Java
files related to the components, and updates any other components that might
reference them.

Figure 4–6 shows what the Application Navigator would look like after renaming all
of the associations and moving them to the
oracle.fodemo.storefront.associations subpackage. While you can refactor
the associations into any package name you choose, picking a subpackage keeps them
logically related to the entities, and allows you to collapse the package of associations
to better manage which files display in the Application Navigator.

Figure 4–6 Application Navigator After Association Refactoring

4.3.5 What You May Need to Know About Using a Custom View Object in an
Association

You can associate a custom view object with the source end or destination end (or
both) of an entity association.

When you traverse entity associations in your code, if the entities are not already in
the cache, then the ADF Business Components framework performs a query to bring
the entity (or entities) into the cache. By default, the query performed to bring an
entity into the cache is the find-by-primary-key query that selects values for all
persistent entity attributes from the underlying table. If the application performs a lot
of programmatic entity association traversal, you could find that retrieving all of the
attributes might be heavy-handed for your use cases.

Entity associations support the ability to associate a custom, entity-based view object
with the source entity or destination entity in the association, or both. The primary
entity usage of the entity-based view object you supply must match the entity type of
the association end for which you use it.

Using a custom view object can be useful because the custom view object's query can
include fewer columns and it can include an ORDER BY clause. This allows you to

Creating and Configuring Associations

Creating a Business Domain Layer Using Entity Objects 4-15

control how much data is retrieved when an entity is brought into the cache due to
association traversal, as well as the order in which any collections of related entities
will appear.

For more information about creating a custom view object, see Section 39.8.2, "How to
Create an Entity-Based Programmatic View Object."

4.3.6 What You May Need to Know About Composition Associations
An association represents a relationship between entities, such as Person referenced
by an Order or an OrderItem contained in an Order. When you create associations,
it is useful to know about the kinds of relationships you can represent, and the various
options.

Associations between entity objects can represent two styles of relationships
depending on whether the source entity:

■ References the destination entity

■ Contains the destination entity as a logical, nested part

Figure 4–7 depicts an application business layer that represents both styles of
relationships. For example, an OrderEO entry references a PersonEO. This
relationship represents the first kind of association, reflecting that a PersonEO or an
OrderEO entity object can exist independent from each other. In addition, the removal
of an Order does not imply the cascade removal of the Person to which it was
referring.

In contrast, the relationship between OrderEO and its collection of related
OrderItemEO details is stronger than a simple reference. The OrderItemEO entries
comprise a logical part of the overall OrderEO. In other words, an OrderEO is
composed of OrderItemEO entries. It does not make sense for an OrderItemEO
entity row to exist independently from an OrderEO, and when an OrderEO is
removed — assuming the removal is allowed — all of its composed parts should be
removed as well. This kind of logical containership represents the second kind of
association, called a composition. The UML diagram in Figure 4–7 illustrates the
stronger composition relationship using the solid diamond shape on the side of the
association which composes the other side of the association.

Figure 4–7 OrderEO Composed of OrderItemEO Entries and References Both PersonEO
and AddressEO

The Business Components from Tables Wizard creates composition associations by
default for any foreign keys that have the ON DELETE CASCADE option. You can use
the Create Association wizard or the overview editor for the association to indicate
that an association is a composition association. Select the Composition Association
checkbox on either the Association Properties page of the Create Association wizard or
the Relationships page of the overview editor.

Creating an Entity Diagram for Your Business Layer

4-16 Fusion Developer's Guide for Oracle Application Development Framework

An entity object offers additional runtime behavior in the presence of a composition.
For the settings that control the behavior, see Section 4.10.13, "How to Configure
Composition Behavior."

4.4 Creating an Entity Diagram for Your Business Layer
Since your layer of business domain objects represents a key reusable asset for your
team, it is often convenient to visualize the business domain layer using a UML model.
JDeveloper supports easily creating a diagram for your business domain layer that
you and your colleagues can use for reference.

The UML diagram of business components is not just a static picture that reflects the
point in time when you dropped the entity objects onto the diagram. Rather, it is a
UML-based rendering of the current component definitions, that will always reflect
the current state of affairs. What's more, the UML diagram is both a visualization aid
and a visual navigation and editing tool. To open the overview editor for any entity
object in a diagram, right-click the desired object and choose Properties from the
context menu or double-click the desired object. You can also perform some entity
object editing tasks directly on the diagram, like renaming entities and entity
attributes, and adding or removing attributes.

4.4.1 How to Create an Entity Diagram
To create a diagram of your entity objects, you can use the Create Business
Components Diagram dialog, which is available in the New Gallery.

To create an entity diagram that models existing entity objects:
1. In the Application Navigator, right-click the project in which you want to create

the entity diagram and choose New.

2. In the New Gallery, expand Business Tier, select ADF Business Components and
then Business Components Diagram, and click OK.

3. In the dialog, do the following to create the diagram:

■ Enter a name for the diagram, for example Business Domain Objects.

■ Enter the package name in which the diagram will be created. For example,
you might create it in a subpackage like myproject.model.design.

4. Click OK.

5. To add existing entity objects to the diagram, select them in the Application
Navigator and drop them onto the diagram surface.

After you have created the diagram you can use the Property Inspector to adjust visual
properties of the diagram. For example you can:

■ Hide or show the package name

■ Change the font

■ Toggle the grid and page breaks on or off

■ Display association names that may otherwise be ambiguous

Note: A composition association cannot be based on a transient
attribute.

Creating an Entity Diagram for Your Business Layer

Creating a Business Domain Layer Using Entity Objects 4-17

You can also create an image of the diagram in PNG, JPG, SVG, or compressed SVG
format, by choosing Publish Diagram from the context menu on the diagram surface.

Figure 4–8 shows a sample diagram that models various entity objects from the
business domain layer.

Figure 4–8 UML Diagram of Business Domain Layer

4.4.2 What Happens When You Create an Entity Diagram
When you create a business components diagram, JDeveloper creates an XML file
*.oxd_bc4j representing the diagram in a subdirectory of the project's model path
that matches the package name in which the diagram resides.

By default, the Application Navigator unifies the display of the project contents paths
so that ADF components and Java files in the source path appear in the same package
tree as the UML model artifacts in the project model path. However, as shown in
Figure 4–9, using the Navigator Display Options toolbar button on the Application
Navigator, you can see the distinct project content path root directories when you
prefer.

Defining Property Sets

4-18 Fusion Developer's Guide for Oracle Application Development Framework

Figure 4–9 Toggling the Display of Separate Content Path Directories

4.4.3 What You May Need to Know About the XML Component Descriptors
When you include a business component like an entity object to a UML diagram,
JDeveloper adds extra metadata to a <Data> section of the component’s XML
component descriptor as shown in Example 4–2. This additional information is used at
design time only.

Example 4–2 Additional UML Metadata Added to an Entity Object XML Descriptor

<Entity Name="OrderEO" ... >
 <Data>
 <Property Name ="COMPLETE_LIBRARY" Value ="FALSE" />
 <Property Name ="ID"
 Value ="ff16fca0-0109-1000-80f2-8d9081ce706f::::EntityObject" />
 <Property Name ="IS_ABSTRACT" Value ="FALSE" />
 <Property Name ="IS_ACTIVE" Value ="FALSE" />
 <Property Name ="IS_LEAF" Value ="FALSE" />
 <Property Name ="IS_ROOT" Value ="FALSE" />
 <Property Name ="VISIBILITY" Value ="PUBLIC" />
 </Data>
 :
</Entity>

4.4.4 What You May Need to Know About Changing the Names of Components
On an entity diagram, the names of entity objects, attributes, and associations can be
changed for clarity. Changing names on a diagram does not affect the underlying data
names. The name change persists for the diagram only. The new name may contain
spaces and mixed case for readability. To change the actual entity object names,
attribute names, or association names, open the entity object or association in the
overview editor.

4.5 Defining Property Sets
A property set is a named collection of properties, where a property is defined as a
name/value pair. Property sets are a convenience mechanism to group properties and
then reference them from other ADF Business Components objects. Properties defined

Defining Property Sets

Creating a Business Domain Layer Using Entity Objects 4-19

in a property set can be configured to be translatable, in which case the translations are
stored in a message bundle file owned by the property set.

Property sets can be used for a variety of functions, such as control hints and error
messages. A property set may contain control hints and other custom properties, and
you can associate them with multiple attributes of different objects.

Property sets can be used with entity objects and their attributes, view objects and
their attributes, and application modules.

4.5.1 How to Define a Property Set
To define a property set, you create a new property set using a dialog and then specify
properties using the Property Inspector.

To define a property set:
1. In the Application Navigator, right-click the project where you want to create the

property set, and choose New.

2. In the New Gallery, expand Business Tier, select ADF Business Components and
then Property Set, and click OK.

Figure 4–10 Property Set in New Gallery

Note: Take care when defining property sets that contain
translatable content. Be sure not to "overload" common terms in
different contexts. For example, the term "Name" might be applied to
both an object and a person in one language, but then translated into
two different terms in a target language. Even though a term in
several contexts might be the same in the source language, a separate
distinguishable term should be used for each context.

Defining Attribute Control Hints for Entity Objects

4-20 Fusion Developer's Guide for Oracle Application Development Framework

3. In the Create Property Set dialog, enter the name and location of the property set
and click OK.

4. From the View menu, choose Property Inspector.

5. In the Property Inspector, define the properties for the property set.

4.5.2 How to Apply a Property Set
After you have created the property set, you can apply the property set to an entity
object or attribute, and use the defined properties (or override them, if necessary).

To apply a property set to an entity object or view object:
1. In the Application Navigator, double-click the desired object (entity object or view

object).

2. In the overview editor, click the General navigation tab, and then click the Edit
icon next to the Property Set line.

3. Select the appropriate property set, and click OK.

To apply a property set to an attribute:
1. In the Application Navigator, double-click the desired object (entity object or view

object).

2. In the overview editor, click the Attributes navigation tab, and double-click the
attribute you want to edit.

3. In the Edit Attribute dialog, click the first node to view the general properties of
the attribute.

For view objects, it is the View Attribute node. For entity objects, it is the Entity
Attribute node.

4. In the Property Set dropdown list, select the appropriate property set, and click
OK.

4.6 Defining Attribute Control Hints for Entity Objects
If you are familiar with previous versions of ADF business components, you may have
used control hints. Control hints allow you to define label text, tooltip, and format
mask hints for entity object attributes. The UI hints you define on your business
domain layer are inherited by any entity-based view objects as well. You can also set
additional control hints on view objects and application modules in a similar manner.

4.6.1 How to Add Attribute Control Hints
To add attribute control hints to an entity object, use the overview editor.

To add attribute control hints to an entity object:
1. In the Application Navigator, double-click the desired entity object.

2. In the overview editor, click the Attributes navigation tab, and double-click the
attribute you want to edit.

3. In the Edit Attribute dialog, click the Control Hints node to view the attribute’s
control hints.

4. Specify control hints as necessary, and then click OK.

Defining Attribute Control Hints for Entity Objects

Creating a Business Domain Layer Using Entity Objects 4-21

For example, Figure 4–11 shows control hints defined for the attribute
ExpireDate of the PaymentOptionEO entity object. The defined hints include
the following:

■ Format Type to Simple Date

■ Format mask of yyyy-MM-dd

Figure 4–11 Edit Attribute Dialog, Control Hints Node

4.6.2 What Happens When You Add Attribute Control Hints
When you define attribute control hints for an entity object, JDeveloper creates a
resource bundle file in which to store them. The hints that you define can be used by
generated forms and tables in associated view clients. The type of file and its
granularity are determined by Resource Bundle options in the Project Properties
dialog. For more information, see Section 4.7, "Working with Resource Bundles."

4.6.3 How to Define Formatters and Masks
When you set the Format Type control hint (in the Edit Attribute dialog) for an
attribute (for example, to Simple Date), you can also specify a format mask for the
attribute to customize how the UI displays the value. If the mask you want to use is
not listed in the Format dropdown list, you can simply type it into the field.

Not all formatters require format masks. Specifying a format mask is only needed if
that formatter type requires it. For example, the date formatter requires a format mask,

Note: Java defines a standard set of format masks for numbers and
dates that are different from those used by the Oracle database's SQL
and PL/SQL languages. For reference, see the Javadoc for the
java.text.DecimalFormat and
java.text.SimpleDateFormat classes.

Defining Attribute Control Hints for Entity Objects

4-22 Fusion Developer's Guide for Oracle Application Development Framework

but the currency formatter does not. In fact the currency formatter does not support
format mask at all.

The mask elements that you can use are defined by the associated Java format class.
For information about the mask elements for the Simple Date format type, see the
Javadoc for java.text.SimpleDateFormat. For information about the mask
elements for the Number format type, see the Javadoc for
java.text.DecimalFormat.

If you have a format mask that you will continue to use on multiple occasions, you can
add it to the formatinfo.xml file, so that it is available from the Format dropdown
list in the Edit Attribute dialog. The entries in this file define the format masks and
formatter classes for a domain class. Example 4–3 shows the format definitions for the
java.util.Date domain.

Example 4–3 Format Definitions for java.util.Date in formatinfo.xml

<?xml version="1.0"?>
<FORMATTERS>
. . .
 <DOMAIN CLASS="java.util.Date">
 <FORMATTER name="Simple Date" class="oracle.jbo.format.DefaultDateFormatter">
 <FORMAT text="yyyy-MM-dd" />
 <FORMAT text="EEE, MMM d, ''yy" />
 <FORMAT text="dd-MM-yy" />
 <FORMAT text="dd-MMM-yyyy" />
 <FORMAT text="dd/MMM/yyyy" />
 </FORMATTER>
 </DOMAIN>
. . .
</FORMATTERS>

The definition of the format mask belongs to a formatter and a domain class, and
includes the text specification of the mask as it appears in the Edit Attribute dialog.
When you specify the Format Type (FORMATTER name) for an attribute of a given
type (DOMAIN CLASS), the masks (FORMAT text) appear in the Format dropdown
list.

To map a formatter to a domain for use with control hints, you can either amend one
of the default formatters provided in the oracle.jbo.format package, or create a
new formatter class by extending the oracle.jbo.format.Formatter class. The
default formatters provided with JDeveloper aggregate the formatters provided in the
java.text package.

It is not necessary to create new domain to map a formatter. You can use an existing
domain when the business components project contains a domain of the same data
type as the formatter.

To define a new format mask:
1. Open the formatinfo.xml file in a text editor.

2. Find the domain class and formatter name for which you want to add a format
mask.

Note: You can find the formatinfo.xmlfile in the BC4J
subdirectory of the JDeveloper system directory (for example,
C:\Documents and Settings\username\Application
Data\JDeveloper\system##\o.BC4J\formatinfo.xml).

Working with Resource Bundles

Creating a Business Domain Layer Using Entity Objects 4-23

3. Insert a new FORMAT entry within the FORMATTER element.

After defining a format mask, you can select the new format mask from the Format
dropdown list in the Edit Attribute dialog.

4.7 Working with Resource Bundles
When you define translatable strings (such as validator error messages, or attribute
control hints for an entity object or view object), by default JDeveloper creates a
project-level resource bundle file in which to store them. For example, when you
define control hints for an entity object in the StoreFront project, JDeveloper creates
the message bundle file named StoreFrontBundle.xxx for the package. The hints
that you define can be used by generated forms and tables in associated view clients.

The resource bundle option that JDeveloper uses is determined by an option on the
Resource Bundle page of the Project Properties dialog. By default JDeveloper sets the
option to Properties Bundle, which produces a .properties file. For more
information on this and other resource bundle options, see Section 4.7.1, "How to Set
Message Bundle Options."

You can inspect the message bundle file for the entity object by selecting the object in
the Application Navigator and looking in the corresponding Sources node in the
Structure window. The Structure window shows the implementation files for the
component you select in the Application Navigator.

Example 4–4 shows a sample message bundle file where the control hint information
appears. The first entry in each String array is a message key; the second entry is the
locale-specific String value corresponding to that key.

Example 4–4 Project Message Bundle Stores Locale-Sensitive Control Hints

AddressUsageEO_OwnerTypeCode_Error_0=Invalid OwnerTypeCode.
AddressUsageEO_UsageTypeCode_Error_0=Invalid UsageTypeCode.
OwnerTypeCode_CONTROLTYPE=105
PaymentOptionEO_RoutingIdentifier_Error_0=Please enter a valid routing identifier.
PaymentOptionsEO_PaymentTypeCode_Error_0=Invalid PaymentTypeCode.
PaymentTypeCode_CONTROLTYPE=105
PaymentOption_AccountNumber=Please enter a valid Account Number
MinPrice_FMT_FORMATTER=oracle.jbo.format.DefaultCurrencyFormatter
CostPrice_FMT_FORMATTER=oracle.jbo.format.DefaultCurrencyFormatter
UnitPrice_FMT_FORMATTER=oracle.jbo.format.DefaultCurrencyFormatter
OrderEO_GiftMessage=Please supply a message shorter than 200 characters
OrderEO=Please supply a gift message
DiscountBaseEO_DiscountAmount=Discount must be between 0 and 40%

oracle.fodemo.storefront.entities.PaymentOptionEO.ExpireDate_FMT_FORMAT=mm/yy
#Date range validation for ValidFrom and ValidTo dates
PaymentOptionEO_invalidDateRange_Error_0=Date range is invalid. {0} must be
greater than {1}.
PaymentOptionEO_DateRange_Error_0=Invalid date range.{0} should be greater than
{1}.

Note: If you create a new domain for the format mask, the XML
definition of the formatter must include a DOMAIN CLASS (which can
be a new or existing one), the FORMATTER (which includes the name
and class), and the list of FORMAT definitions the formatter class
specifies.

Working with Resource Bundles

4-24 Fusion Developer's Guide for Oracle Application Development Framework

oracle.fodemo.storefront.entities.PaymentOptionEO.ValidFromDate_LABEL=Valid From
Date
oracle.fodemo.storefront.entities.PaymentOptionEO.ValidToDate_LABEL=Valid To Date
OrderItemsVO_ImageId_Rule_0=ImageId not found
oracle.fodemo.storefront.store.queries.AddressesVO.Address1_LABEL=Address
oracle.fodemo.storefront.store.queries.AddressesVO.PostalCode_LABEL=Post Code or
ZIP
. . .

4.7.1 How to Set Message Bundle Options
The resource bundle option JDeveloper uses to save control hints and other
translatable strings is determined by an option on the Resource Bundle page of the
Project Properties dialog. By default JDeveloper sets the option to Properties Bundle
which produces a .properties file.

To set resource bundle options for your project
1. In the Application Navigator, right-click the project and choose Project Properties.

2. Click Resource Bundle.

3. Select whether to use project or custom settings.

If you select Use Custom Settings, the settings apply only to your work with the
current project. They are preserved between sessions, but are not recorded with
the project and cannot be shared with other users. If you select Use Project
Settings, your choices are recorded with the project and can be shared with others
who use the project.

4. Specify your preference with the following options by selecting or deselecting the
option:

■ Automatically Synchronize Bundle

■ Warn About Hard-coded Translatable Strings

■ Always Prompt for Description

For more information on these options, click Help to see the online help.

5. Select your choice of resource bundle granularity.

■ One Bundle Per Project (default)

■ One Bundle Per File

■ Multiple Shared Bundles (not available for ADF Business Components)

6. Select the type of file to use.

■ List Resource Bundle

The ListResourceBundle class manages resources in a name/value array.
Each ListResourceBundle class is contained within a Java class file. You can
store any locale-specific object in a ListResourceBundle class.

■ Properties Bundle (default)

A text file containing translatable text in name/value pairs. Property files (like
the one shown in Example 4–4) can contain values only for String objects. If
you need to store other types of objects, you must use a ListResourceBundle
instead.

■ Xliff Resource Bundle

Working with Resource Bundles

Creating a Business Domain Layer Using Entity Objects 4-25

The XML Localization Interchange File Format (XLIFF) is an XML-based
format for exchanging localization data.

7. Click OK to apply your settings and close the dialog.

4.7.2 How to Use Multiple Resource Bundles
When you define translatable strings (for example, for attribute control hints), the
Select Text Resource dialog allows you to enter a new string or select one that is
already defined in the default resource bundle for the object. You can also use a
different resource bundle if necessary. This is helpful when you use a common
resource bundle that is shared between projects.

To use strings in a nondefault resource bundle:
1. In the Select Text Resource dialog, select the bundle you want to use from the

Resource Bundle dropdown list.

If the desired resource bundle is not included in the Resource Bundle dropdown
list, click the Browse icon to locate and select the resource bundle you want to use.

The dialog displays the strings that are currently defined in the selected resource
bundle.

2. Select an existing string and click Select, or enter a new string and click Save and
Select.

If you entered a new string it is written to the selected resource bundle.

4.7.3 How to Internationalize the Date Format
Internationalizing the model layer of an application built using ADF Business
Components entails producing translated versions of each component message bundle
file. For example, the Italian version of the OrdersImplMsgBundle message bundle
would be a class named OrdersImplMsgBundle_it and a more specific Swiss
Italian version would have the name OrdersImplMsgBundle_it_ch. These classes
typically extend the base message bundle class, and contain entries for the message
keys that need to be localized, together with their localized translation.

Example 4–5 shows the Italian version of an entity object message bundle. Notice that
in the Italian translation, the format masks for RequestDate and AssignedDate
have been changed to dd/MM/yyyy HH:mm. This ensures that an Italian user will see a
date value like May 3rd, 2006, as 03/05/2006 15:55, instead of 05/03/2006
15:55, which the format mask in the default message bundle would produce. Notice
the overridden getContents() method. It returns an array of messages with the
more specific translated strings merged together with those that are not overridden
from the superclass bundle. At runtime, the appropriate message bundles are used
automatically, based on the current user's locale settings.

Example 4–5 Localized Entity Object Component Message Bundle for Italian

package devguide.model.entities.common;
import oracle.jbo.common.JboResourceBundle;
public class ServiceRequestImplMsgBundle_it

extends ServiceRequestImplMsgBundle {
static final Object[][] sMessageStrings = {
{ "AssignedDate_FMT_FORMAT", "dd/MM/yyyy HH:mm" },
{ "AssignedDate_LABEL", "Assegnato il" },
{ "AssignedTo_LABEL", "Assegnato a" },
{ "CreatedBy_LABEL", "Aperto da" },

Defining Business Logic Groups

4-26 Fusion Developer's Guide for Oracle Application Development Framework

{ "ProblemDescription_LABEL", "Problema" },
{ "RequestDate_FMT_FORMAT", "dd/MM/yyyy HH:mm" },
{ "RequestDate_LABEL", "Aperto il" },
{ "RequestDate_TOOLTIP", "La data in cui il ticket è stato aperto" },
{ "Status_LABEL", "Stato" },
{ "SvrId_LABEL", "Ticket" }

};
 public Object[][] getContents() {
 return super.getMergedArray(sMessageStrings, super.getContents());
 }
}

4.8 Defining Business Logic Groups
Business logic groups allow you to encapsulate a set of related control hints, default
values, and validation logic. A business logic group is maintained separate from the
base entity in its own file, and can be enabled dynamically based on context values of
the current row.

This is useful, for example, for an HR application that defines many locale-specific
validations (like national identifier or tax law checks) that are maintained by a
dedicated team for each locale. The business logic group eases maintenance by storing
these validations in separate files, and optimizes performance by loading them only
when they are needed.

Each business logic group contains a set of business logic units. Each unit identifies the
set of business logic that is loaded for the entity, based on the value of the attribute
associated with the business logic group.

For example, you can define a business logic group for an Employee entity object,
specifying the EmpRegion attribute as the discriminator. Then define a business logic
unit for each region, one that specifies a range validator for the employee’s salary.
When the application loads a row from the Employee entity, the appropriate
validator for the EmpSalary attribute is loaded (based on the value of the EmpRegion
attribute).

In another example, from the StoreFront module of the Fusion Order Demo
application, the PersonEO entity object has a business logic group called
PersonTypeCodeGroup that uses PersonTypeCode as the discriminator attribute.
Because this attribute has three valid values (CUST, STAFF, and SUPP), there are three
corresponding business logic units.

In this scenario, each business logic unit contains new or modified business logic that
pertains only to that person type:

■ The CUST business logic unit contains logic that pertains to customers. For
example, it contains a validator that checks for a phone number because all
customers must have a phone number.

■ The STAFF business logic unit contains logic that pertains to staff members. For
example, it contains a validator that constrains the credit limit.

■ The SUPP business logic unit contains logic that pertains to suppliers. For
example, it contains a validator that makes sure the
ContactByAffiliatesFlag attribute is set to N, because suppliers cannot be
contacted by affiliates.

4.8.1 How to Create a Business Logic Group
You create the business logic group for an entity object from the overview editor.

Defining Business Logic Groups

Creating a Business Domain Layer Using Entity Objects 4-27

To create a business logic group:
1. In the Application Navigator, double-click the entity for which you want to create

a business logic group.

2. In the overview editor, click the General navigation tab.

3. On the General page, expand the Business Logic Groups section, and click the
Add icon.

4. In the creation dialog, select the appropriate group discriminator attribute and
specify a name for the group.

5. Click OK.

The new business logic group is added to the table in the overview editor. After you
have created the group, you can add business logic units to it.

4.8.2 How to Create a Business Logic Unit
You can create a business logic unit from the New Gallery, or directly from the context
menu of the entity that contains the business logic group.

To create a business logic unit:
1. In the Application Navigator, right-click the entity that contains the business logic

group and choose New Entity Business Logic Unit from the context menu.

2. In the Create Business Logic Unit dialog, specify the name of the base entity and
select the appropriate business logic group.

3. Enter a name for the business logic unit.

The name of each business logic unit must reflect a valid value of the group
discriminator attribute with which this business logic unit will be associated. For
example, if the group discriminator attribute is PersonTypeCode, the name of
the business logic unit associated with the PersonTypeCode value of STAFF
must be STAFF.

4. Specify the package for the business logic unit.

5. Click OK.

JDeveloper creates the business logic unit and opens it in the overview editor. The
name displayed for the business logic unit in the Application Navigator contains the
name of the entity object and business logic group in the format EntityName_
BusLogicGroupName_BusLogicUnitName. For example, when you create a
business logic unit with the name CUST in the PersonTypeCodeGroup business logic
group of the PersonEO entity object, the displayed name of the business logic unit is
PersonEO_PersonTypeCodeGroup_CUST.

Tip: To enhance the readability of your code, you can name the
group to reflect the discriminator. For example, if the group
discriminator attribute is PersonTypeCode, you can name the
business logic group PersonTypeCodeGroup.

Note: The package for the business logic unit does not need to be the
same as the package for the base entity or the business logic group.
This allows you to develop and deliver business logic units separately
from the core application.

Defining Business Logic Groups

4-28 Fusion Developer's Guide for Oracle Application Development Framework

After you have created the unit, you can redefine the business logic for it.

4.8.3 How to Add Logic to a Business Logic Unit
After you have created a business logic unit, you can open it in the overview editor
and add business logic (such as adding an entity-level validator) just as you would in
the base entity.

To add an entity validator to a business logic unit:
1. In the Application Navigator, double-click the business logic unit.

2. In the overview editor, click the Business Rules navigation tab.

3. On the Business Rules page, select the Entity Validators folder and click the Add
icon.

4. Define your validation rule, and click OK.

For example, the PersonEO entity object in the StoreFront module of the Fusion Order
Demo application has a business logic unit called PersonEO_
PersonTypeCodeGroup_CUST. This business logic unit has an entity validator that
checks for the presence of a phone number to ensure that all persons who are
customers have a phone number.

4.8.4 How to Override Attributes in a Business Logic Unit
When you view the Attributes page for the business logic unit (in the overview editor),
you can see that the Extends column in the attributes table shows that the attributes
are "extended" in the business logic unit. Extended attributes are editable only in the
base entity, not in the business logic unit. To implement changes in the business logic
unit rather than the base entity, you must define attributes as overridden in the
business logic unit before you edit them.

To override attributes in a business logic unit:
1. In the Application Navigator, double-click the business logic unit.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, select the desired attribute and click the Override button.

After you make an attribute overridden, you can edit the attribute as you normally
would by double-clicking the attribute to open it in the Edit Attribute dialog. You will
notice that in an overridden attribute, you are limited to making modifications to only
control hints, validators, and default values.

4.8.5 What Happens When You Create a Business Logic Group
When you create a business logic group, JDeveloper adds a reference to the group in
the base entity’s XML file. Example 4–6 shows the code added to the base entity’s XML
file for the business logic group.

Example 4–6 XML Code in the Base Entity for a Business Logic Group

<BusLogicGroup
 Name="PersonTypeCodeGroup"
 DiscrAttrName="PersonTypeCode"/>

When you create a business logic unit, JDeveloper generates an XML file similar to
that of an entity object. Example 4–7 shows XML code for a business logic unit.

Defining Business Logic Groups

Creating a Business Domain Layer Using Entity Objects 4-29

Example 4–7 XML Code for a Business Logic Unit

<Entity
 xmlns="http://xmlns.oracle.com/bc4j"
 Name="PersonEO_PersonTypeCodeGroup_CUST"
 Version="11.1.1.54.6"
 Extends="oracle.fodemo.storefront.entities.PersonEO"
 DBObjectType="table"
 DBObjectName="PERSONS"
 BindingStyle="OracleName"
 UseGlueCode="false"
 BusLogicGroupName="PersonTypeCodeGroup"
 BusLogicUnitName="CUST"
 xmlns:validation="http://xmlns.oracle.com/adfm/validation">
 <DesignTime>
 <Attr Name="_codeGenFlag2" Value="Access"/>
 <AttrArray Name="_publishEvents"/>
 </DesignTime>
 <validation:ExpressionValidationBean
 Name="PersonEO_PersonTypeCodeGroup_CUST_Rule_0"
 OperandType="EXPR"
 Inverse="false">
 <validation:MsgIds>
 <validation:Item
 Value="CUST_PHONE_REQUIRED"/>
 </validation:MsgIds>
 <validation:TransientExpression>
 <![CDATA[if (PhoneNumber == null && MobilePhoneNumber == null)
 return false;
 else return true;]]>
 </validation:TransientExpression>
 </validation:ExpressionValidationBean>
 <ResourceBundle>
 <PropertiesBundle
 PropertiesFile="oracle.fodemo.storefront.entities.common.PersonEO_
PersonTypeCodeGroup_CUSTMsgBundle"/>
 </ResourceBundle>
</Entity>

4.8.6 What Happens at Runtime: Invoking a Business Logic Group
When a row is loaded in the application at runtime, the entity object decides which
business logic units to apply to it.

The base entity maintains a list of business logic groups. Each group references the
value of an attribute on the entity, and this value determines which business logic unit
to load for that group. This evaluation is performed for each row that is loaded.

If the logic for determining which business logic unit to load is more complex than just
a simple attribute value, you can create a transient attribute on the entity object, and
use a Groovy expression to determine the value of the transient attribute.

Note: The package for the business logic unit does not need to be the
same as the package for the base entity or the business logic group.
This allows you to develop and deliver business logic units separately
from the core application.

Configuring Runtime Behavior Declaratively

4-30 Fusion Developer's Guide for Oracle Application Development Framework

4.9 Configuring Runtime Behavior Declaratively
Entity objects offer numerous declarative features to simplify implementing typical
enterprise business applications. Depending on the task, sometimes the declarative
facilities alone may satisfy your needs. The declarative runtime features that describe
the basic persistence features of an entity object are covered in this section, while
declarative validation and business rules are covered in Chapter 7, "Defining
Validation and Business Rules Declaratively."

Also, it is important to note as you develop your application that the business logic
you implement, either programmatically or declaratively, should not assume that the
attributes of an entity object or view row will be set in a particular order. This will
cause problems if the end user enters values for the attributes in an order other than
the assumed one.

4.9.1 How to Configure Declarative Runtime Behavior
To configure the declarative runtime behavior of an entity object, use the overview
editor.

To configure the declarative runtime behavior of an entity object:
1. In the Application Navigator, double-click an entity object.

2. In the overview editor, click the General navigation tab to view the name and
package of the entity object, and configure aspects of the object at the entity level,
such as its associated schema, alternative keys, custom properties, and security.

■ The Alternate Keys section allows you to select entity object attributes
mapped to the database that can serve as an alternative primary key. For
information on alternative keys, see Section 4.10.15, "How to Define Alternate
Key Values."

■ The Tuning section allows you to set options to make database operations
more efficient when you create, modify, or delete multiple entities of the same
type in a single transaction. For more information, see Section 38.3, "Using
Update Batching."

■ The Custom Properties section allows you to define custom metadata that you
can access at runtime on the entity.

■ The Security section allows you to define role-based updatability permissions
for the entity. For more information, see Chapter 30, "Enabling ADF Security
in a Fusion Web Application."

■ The Business Logic Groups section allows you to add and edit business logic
groups. For more information, see Section 4.8, "Defining Business Logic
Groups."

Note: It is possible to go beyond the declarative behavior to
implement more complex business logic or validation rules for your
business domain layer when needed. In Chapter 8, "Implementing
Validation and Business Rules Programmatically," you'll see some of
the most typical ways that you extend entity objects with custom
code.

Setting Attribute Properties

Creating a Business Domain Layer Using Entity Objects 4-31

3. Click the Attributes navigation tab to create or delete attributes that represent the
data relevant to an entity object, and configure aspects of the attribute, such as
validation rules, custom properties, and security.

Select an attribute and click the Edit icon to access the properties of the attribute.
For information on how to set these properties, see Section 4.10, "Setting Attribute
Properties."

4. Click the Business Rules navigation tab to define declarative validators for the
entity object and its attributes. For more information, see Chapter 7, "Defining
Validation and Business Rules Declaratively."

5. Click the Java navigation tab to select the classes you generate for custom Java
implementation. You can use the Java classes for such things as defining
programmatic business rules, as in Chapter 8, "Implementing Validation and
Business Rules Programmatically."

6. Click the Business Events navigation tab to define events that your entity object
can use to notify others of interesting changes in its state, optionally including
some or all of the entity object's attributes in the delivered event. For more
information about business events, see Section 4.11, "Creating Business Events."

7. Click the View Accessors navigation tab to create and manage view accessors. For
more information, see Section 10.4.1, "How to Create a View Accessor for an Entity
Object or View Object."

4.9.2 What Happens When You Configure Declarative Runtime Behavior
The declarative settings that describe and control an entity object's runtime behavior
are stored in its XML component definition file. When you use the overview editor to
modify settings of your entity, JDeveloper updates the component's XML definition
file and optional custom Java files.

4.10 Setting Attribute Properties
The declarative framework helps you set attribute properties easily. In all cases, you
set these properties in the Edit Attribute dialog, which you can access from the
Attributes page of the overview editor.

4.10.1 How to Set Database and Java Data Types for an Entity Object Attribute
The Persistent property controls whether the attribute value corresponds to a
column in the underlying table, or whether it is just a transient value. If the attribute is
persistent, the Database Column area lets you change the name of the underlying
column that corresponds to the attribute and indicate its column type with precision
and scale information (e.g. VARCHAR2(40) or NUMBER(4,2)). Based on this
information, at runtime the entity object enforces the maximum length and
precision/scale of the attribute value, and throws an exception if a value does not
meet the requirements.

Tip: If your entity has a long list of attribute names, there's a quick
way to find the one you're looking for. In the Structure window with
the Attributes node expanded, you can begin to type the letters of the
attribute name and JDeveloper performs an incremental search to take
you to its name in the tree.

Setting Attribute Properties

4-32 Fusion Developer's Guide for Oracle Application Development Framework

Both the Business Components from Tables wizard and the Create Entity Object
wizard infer the Java type of each entity object attribute from the SQL type of the
database column type of the column to which it is related.

The Attribute Type field (in the Edit Attribute dialog) allows you to change the Java
type of the entity attribute to any type you might need. The Database Column Type
field reflects the SQL type of the underlying database column to which the attribute is
mapped. The value of the Database Column Name field controls the column to which
the attribute is mapped.

Your entity object can handle tables with various column types, as listed in Table 4–1.
With the exception of the java.lang.String class, the default Java attribute types
are all in the oracle.jbo.domain and oracle.ord.im packages and support
efficiently working with Oracle database data of the corresponding type. The
dropdown list for the Attribute Type field includes a number of other common Java
types that are also supported.

Note: The project’s Type Map setting also plays a role in
determining the Java data type. You specify the Type Map setting
when you initialize your business components project, before any
business components are created. For more information, see
Section 3.3.1, "Choosing a Connection, SQL Flavor, and Type Map."

Table 4–1 Default Entity Object Attribute Type Mappings

Oracle Column Type Entity Column Type Entity Java Type

NVARCHAR2(n),
VARCHAR2(n), NCHAR
VARYING(n), VARCHAR(n)

VARCHAR2 java.lang.String

NUMBER NUMBER oracle.jbo.domain.Number

DATE DATE oracle.jbo.domain.Date

TIMESTAMP(n),
TIMESTAMP(n) WITH TIME
ZONE, TIMESTAMP(n) WITH
LOCAL TIME ZONE

TIMESTAMP java.sql.Timestamp

LONG LONG java.lang.String

RAW(n) RAW oracle.jbo.domain.Raw

LONG RAW LONG RAW oracle.jbo.domain.Raw

ROWID ROWID oracle.jbo.domain.RowID

NCHAR, CHAR CHAR oracle.jbo.domain.Char

CLOB CLOB oracle.jbo.domain.ClobDomain

NCLOB NCLOB oracle.jbo.domain.NClobDomain

BLOB BLOB oracle.jbo.domain.BlobDomain

BFILE BFILE oracle.jbo.domain.BFileDomain

ORDSYS.ORDIMAGE ORDSYS.ORDIMAGE oracle.ord.im.OrdImageDomain

ORDSYS.ORDVIDEO ORDSYS.ORDVIDEO oracle.ord.im.OrdVideoDomain

ORDSYS.ORDAUDIO ORDSYS.ORDAUDIO oracle.ord.im.OrdAudioDomain

ORDSYS.ORDDOC ORDSYS.ORDDOC oracle.ord.im.OrdDocDomain

Setting Attribute Properties

Creating a Business Domain Layer Using Entity Objects 4-33

4.10.2 How to Indicate Data Type Length, Precision, and Scale
When working with types that support defining a maximum length like
VARCHAR2(n), the Database Column Type field (in the Edit Attribute dialog)
includes the maximum attribute length as part of the value. For example, an attribute
based on a VARCHAR2(10) column in the database will initially reflect the maximum
length of 10 characters by showing VARCHAR2(10) as the database column type. If for
some reason you want to restrict the maximum length of the String-valued attribute
to fewer characters than the underlying column will allow, just change the maximum
length of the Database Column Type value.

For example, if the EMAIL column in the PERSONS table is VARCHAR2(50), then by
default the Email attribute in the Persons entity object defaults to the same. But if
you know that the actual email addresses are always 8 characters or fewer, you can
update the database column type for the Email attribute to be VARCHAR2(8) to
enforce a maximum length of 8 characters at the entity object level.

The same holds for attributes related to database column types that support defining a
precision and scale like NUMBER(p[,s]). For example, to restrict an attribute based
on a NUMBER(7,2) column in the database to instead have a precision of 5 and a scale
of 1, just update the value of the Database Column Type field to be NUMBER(5,1).

4.10.3 How to Control the Updatability of an Attribute
The Updatable property controls when the value of a given attribute can be updated.
You can select the following values:

■ Always, the attribute is always updatable

■ Never, the attribute is read-only

■ While New, the attribute can be set during the transaction that creates the entity
row for the first time, but after being successfully committed to the database the
attribute is read-only

4.10.4 How to Make an Attribute Mandatory
Select the Mandatory checkbox if the field is required. The mandatory property is
enforced during entity-level validation at runtime (and not when the attribute
validators are run).

4.10.5 How to Define the Primary Key for the Entity
The Primary Key property indicates whether the attribute is part of the key that
uniquely identifies the entity. Typically, you use a single attribute for the primary key,
but multiattribute primary keys are fully supported.

Note: In addition to the types mentioned here, you can use any Java
object type as an entity object attribute's type, provided it implements
the java.io.Serializable interface.

Note: In addition to the static declaration of updatability, you can
also add custom code in the isAttributeUpdateable() method of
the entity to determine the updatability of an attribute at runtime.

Setting Attribute Properties

4-34 Fusion Developer's Guide for Oracle Application Development Framework

At runtime, when you access the related Key object for any entity row using the
getKey() method, this Key object contains the value of the primary key attribute for
the entity object. If your entity object has multiple primary key attributes, the Key
object contains each of their values. It is important to understand that these values
appear in the same relative sequential order as the corresponding primary key
attributes in the entity object definition.

For example, if the OrderItemEO entity object has multiple primary key attributes
OrderId and LineItemId. On the Entity Attribute page of the overview editor,
OrderId is first, and LineItemId is second. An array of values encapsulated by the
Key object for an entity row of type OrderItemEO will have these two attribute
values in exactly this order.

It is crucial to be aware of the order in which multiple primary key attributes appear
on the Entity Attributes page. If you try to use findByPrimaryKey() to find an
entity with a multiattribute primary key, and the Key object you construct has these
multiple primary key attributes in the wrong order, the entity row will not be found as
expected.

4.10.6 How to Define a Static Default Value
The Value field (in the Edit Attribute dialog) allows you to specify a static default
value for the attribute when the Value Type is set to Literal. For example, you can set
the default value of the ServiceRequest entity object's Status attribute to Open, or
set the default value of the User entity object's UserRole attribute to user.

4.10.7 How to Define a Default Value Using a Groovy Expression
You can use a Groovy expression to define a default value for an attribute. This
approach is useful if you want to be able to change default values at runtime, but if the
default value is always the same, the value is easier to see and maintain using the
Default field (in the Edit Attribute dialog). For general information about using
Groovy, see Section 3.6, "Overview of Groovy Support."

To define a default value using a Groovy expression:
1. In the Application Navigator, double-click the entity to open the overview editor.

2. In the overview editor, click the Attributes navigation tab.

3. On the Attributes page, select the desired attribute and click the Edit icon.

4. In the Edit Attribute dialog, select Expression for the value type, and click Edit
(next to the Value field).

5. Enter a Groovy expression in the field provided, and click OK.

6. Click OK.

4.10.8 What Happens When You Create a Default Value Using a Groovy expression
When you define a default value using a Groovy expression, a
<TransientExpression> tag is added to the entity object’s XML file within the
appropriate attribute. Figure 4–8 shows sample XML code for an Groovy expression
that gets the current date for a default value.

Note: When more than one attribute is defaulted for an entity object,
the attributes are defaulted in the order in which they appear in the
entity object’s XML file.

Setting Attribute Properties

Creating a Business Domain Layer Using Entity Objects 4-35

Example 4–8 Default Date Value

<TransientExpression>
 <![CDATA[
 newValue <= adf.currentDate
]]>
</TransientExpression>

4.10.9 How to Synchronize with Trigger-Assigned Values
If you know that the underlying column value will be updated by a database trigger
during insert or update operations, you can enable the respective Insert or Update
checkboxes in the Refresh After area (in the Edit Attribute dialog) to ensure the
framework automatically retrieves the modified value and keeps the entity object and
database row in sync. The entity object will use the Oracle SQL RETURNING INTO
feature, while performing the INSERT or UPDATE to return the modified column back
to your application in a single database roundtrip.

4.10.10 How to Get Trigger-Assigned Primary Key Values from a Database Sequence
One common case for refreshing an attribute after insert occurs when a primary key
attribute value is assigned by a BEFORE INSERT FOR EACH ROW trigger. Often the
trigger assigns the primary key from a database sequence using PL/SQL logic.
Example 4–9 shows an example of this.

Example 4–9 PL/SQL Code Assigning a Primary Key from a Database Sequence

CREATE OR REPLACE TRIGGER ASSIGN_SVR_ID
BEFORE INSERT ON SERVICE_REQUESTS FOR EACH ROW
BEGIN
IF :NEW.SVR_ID IS NULL OR :NEW.SVR_ID < 0 THEN
SELECT SERVICE_REQUESTS_SEQ.NEXTVAL
INTO :NEW.SVR_ID
FROM DUAL;

END IF;
END;

In the Edit Attribute dialog, you can set the value of the Type field to the built-in data
type named DBSequence and the primary key will be assigned automatically by the
database sequence. Setting this data type automatically selects the refresh after Insert
checkbox.

Note: If you create an entity object for a synonym that resolves to a
remote table over a DBLINK, use of this feature will give an error at
runtime like:

JBO-26041: Failed to post data to database during "Update"
Detail 0
ORA-22816: unsupported feature with RETURNING clause

Section 38.6, "Basing an Entity Object on a Join View or Remote
DBLink" describes a technique to circumvent this database limitation.

Setting Attribute Properties

4-36 Fusion Developer's Guide for Oracle Application Development Framework

When you create a new entity row whose primary key is a DBSequence, a unique
negative number is assigned as its temporary value. This value acts as the primary key
for the duration of the transaction in which it is created. If you are creating a set of
interrelated entities in the same transaction, you can assign this temporary value as a
foreign key value on other new, related entity rows. At transaction commit time, the
entity object issues its INSERT operation using the RETURNING INTO clause to
retrieve the actual database trigger-assigned primary key value. In a composition
relationship, any related new entities that previously used the temporary negative
value as a foreign key will get that value updated to reflect the actual new primary key
of the master.

You will typically also set the Updatable property of a DBSequence-valued primary
key to Never. The entity object assigns the temporary ID, and then refreshes it with the
actual ID value after the INSERT operation. The end user never needs to update this
value.

For information on how to implement this functionality for an association that is not a
composition, see Section 38.8.3.3, "Understanding Associations Based on
DBSequence-Valued Primary Keys."

4.10.11 How to Protect Against Losing Simultaneously Updated Data
At runtime, the framework provides automatic "lost update" detection for entity
objects to ensure that a user cannot unknowingly modify data that another user has
updated and committed in the meantime. Typically, this check is performed by
comparing the original values of each persistent entity attribute against the
corresponding current column values in the database at the time the underlying row is
locked. Before updating a row, the entity object verifies that the row to be updated is
still consistent with the current state of the database. If the row and database state are
inconsistent, then the entity object raises the RowInconsistentException.

You can make the lost update detection more efficient by identifying any attributes of
your entity whose values you know will be updated whenever the entity is modified.
Typical candidates include a version number column or an updated date column in
the row. The change-indicator attribute’s value might be assigned by a database
trigger you’ve written and refreshed in the entity object using the Refresh After Insert
and Refresh After Update options (in the Edit Attribute dialog). Alternatively, you
can indicate that the entity object should manage updating the change-indicator
attribute’s value using the history attribute feature described in Section 4.10.12, "How
to Track Created and Modified Dates Using the History Column." To detect whether
the row has been modified since the user queried it in the most efficient way, select the
Change Indicator option to compare only the change-indicator attribute values.

Note: The sequence name shown on the Sequence tab is used only at
design time when you use the Create Database Tables feature
described in Section 4.2.6, "How to Create Database Tables from Entity
Objects." The sequence indicated here will be created along with the
table on which the entity object is based.

Note: For a metadata-driven alternative to the DBSequence
approach, see Section 4.12.5, "Assigning the Primary Key Value Using
an Oracle Sequence."

Setting Attribute Properties

Creating a Business Domain Layer Using Entity Objects 4-37

4.10.12 How to Track Created and Modified Dates Using the History Column
If you need to keep track of historical information in your entity object, such as when
an entity was created or modified and by whom, or the number of times the entity has
been modified, you specify an attribute with the History Column option selected (in
the Edit Attribute dialog).

If an attribute's data type is Number, String, or Date, and if it is not part of the
primary key, then you can enable this property to have your entity automatically
maintain the attribute's value for historical auditing. How the framework handles the
attribute depends which type of history attribute you indicate:

■ Created On: This attribute is populated with the time stamp of when the row was
created. The time stamp is obtained from the database.

■ Created By: The attribute is populated with the name of the user who created the
row. The user name is obtained using the getUserPrincipalName() method
on the Session object.

■ Modified On: This attribute is populated with the time stamp whenever the row
is updated/created.

■ Modified By: This attribute is populated with the name of the user who creates or
updates the row.

■ Version Number: This attribute is populated with a long value that is
incremented whenever a row is created or updated.

4.10.13 How to Configure Composition Behavior
An entity object exhibits composition behavior when it creates (or composes) other
entities, such as an OrderEO entity creating a OrderItemEO entity. This additional
runtime behavior determines its role as a logical container of other nested entity object
parts. Because of this relationship, a composition association cannot be based on a
transient attribute.

The features that are always enabled for composing entity objects are described in the
following sections:

■ Section 4.10.13.1, "Orphan-Row Protection for New Composed Entities"

■ Section 4.10.13.2, "Ordering of Changes Saved to the Database"

■ Section 4.10.13.3, "Cascade Update of Composed Details from Refresh-On-Insert
Primary Keys"

The additional features, and the properties that affect their behavior, are described in
the following sections:

■ Section 4.10.13.4, "Cascade Delete Support"

■ Section 4.10.13.5, "Cascade Update of Foreign Key Attributes When Primary Key
Changes"

■ Section 4.10.13.6, "Locking of Composite Parent Entities"

■ Section 4.10.13.7, "Updating of Composing Parent History Attributes"

Note: Composition also affects the order in which entities are
validated. For more information, see Section 7.2.3, "Understanding the
Impact of Composition on Validation Order."

Setting Attribute Properties

4-38 Fusion Developer's Guide for Oracle Application Development Framework

4.10.13.1 Orphan-Row Protection for New Composed Entities
When a composed entity object is created, it performs an existence check on the value
of its foreign key attribute to ensure that it identifies an existing entity as its owning
parent entity. At create time, if no foreign key is found or else a value that does not
identify an existing entity object is found, the entity object throws an
InvalidOwnerException instead of allowing an orphaned child row to be created
without a well-identified parent entity.

4.10.13.2 Ordering of Changes Saved to the Database
Composition behavior ensures that the sequence of data manipulation language
(DML) operations performed in a transaction involving both composing and
composed entity objects is performed in the correct order. For example, an INSERT
statement for a new composing parent entity object will be performed before the DML
operations related to any composed children.

4.10.13.3 Cascade Update of Composed Details from Refresh-On-Insert Primary
Keys
When a new entity row having a primary key configured to refresh on insert is saved,
then after its trigger-assigned primary value is retrieved, any composed entities will
have their foreign key attribute values updated to reflect the new primary key value.

There are a number of additional composition related features that you can control
through settings on the Association Properties page of the Create Association wizard
or the overview editor. Figure 4–12 shows the Relationships page for the
OrderItemsOrdersFkAssoc association between two entity objects: OrderItemEO
and OrderEO.

4.10.13.4 Cascade Delete Support
You can either enable or prevent the deletion of a composing parent while composed
children entities exist. When the Implement Cascade Delete option (see Figure 4–12)
is deselected, the removal of the composing entity object is prevented if it contains any
composed children.

Figure 4–12 Composition Settings on Relationship Page of Overview Editor for
Associations

When selected, this option allows the composing entity object to be removed
unconditionally together with any composed children entities. If the related Optimize
for Database Cascade Delete option is deselected, then the composed entity objects
perform their normal DELETE statement at transaction commit time to make the

Note: The existence check finds new pending entities in the current
transaction, as well as existing ones in the database if necessary.

Setting Attribute Properties

Creating a Business Domain Layer Using Entity Objects 4-39

changes permanent. If the option is selected, then the composed entities do not
perform the DELETE statement on the assumption that the database ON DELETE
CASCADE constraint will handle the deletion of the corresponding rows.

4.10.13.5 Cascade Update of Foreign Key Attributes When Primary Key Changes
Select the Cascade Update Key Attributes option (see Figure 4–12) to enable the
automatic update of the foreign key attribute values in composed entities when the
primary key value of the composing entity is changed.

4.10.13.6 Locking of Composite Parent Entities
Select the Lock Top-Level Container option (see Figure 4–12) to control whether
adding, removing, or modifying a composed detail entity row should attempt to lock
the composing entity before allowing the changes to be saved.

4.10.13.7 Updating of Composing Parent History Attributes
Select the Update Top-Level History Columns option (see Figure 4–12) to control
whether adding, removing, or modifying a composed detail entity object should
update the Modified By and Modified On history attributes of the composing parent
entity.

4.10.14 How to Set the Discriminator Attribute for Entity Object Inheritance Hierarchies
Sometimes a single database table stores information about several different kinds of
logically related objects. For example, a payroll application might work with hourly,
salaried, and contract employees all stored in a single EMPLOYEES table with an
EMPLOYEE_TYPE column. In this case, the value of the EMPLOYEE_TYPE column
contains values like H, S, or C to indicate respectively whether a given row represents
an hourly, salaried, or contract employee. And while it is possible that many attributes
and behavior are the same for all employees, certain properties and business logic may
also depend on the type of employee.

In situations where common information exists across related objects, it may be
convenient to represent these different types of entity objects using an inheritance
hierarchy. For example, attributes and methods common to all employees can be part
of a base Employee entity object, while subtype entity objects like HourlyEmployee,
SalariedEmployee, and ContractEmployee extend the base Employee object
and add additional properties and behavior. The Discriminator attribute setting is
used to indicate which attribute's value distinguishes the type of row. Section 38.7,
"Using Inheritance in Your Business Domain Layer," explains how to set up and use
inheritance.

4.10.15 How to Define Alternate Key Values
Database primary keys are often generated from a sequence and may not be data you
want to expose to the user for a variety of reasons. For this reason, it’s often helpful to
have alternate key values that are unique. For example, you might want to enforce that
every customer have a unique email address. Because a customer may change their
email address, you won’t want to use that value as a primary key, but you still want
the user to have a unique field they can use for login or other purposes.

Alternate keys are useful for direct row lookups via the findByKey class of methods.
Alternate keys are frequently used for efficient uniqueness checks in the middle tier.
For information on how to find out if a value is unique, see Section 7.4.1, "How to
Ensure That Key Values Are Unique."

Creating Business Events

4-40 Fusion Developer's Guide for Oracle Application Development Framework

To define an alternate key, you use the Create Entity Constraint wizard.

To define alternate key values:
1. In the Application Navigator, right-click an entity object and choose New Entity

Constraint.

2. Follow the steps in the Create Entity Constraint wizard to name your constraint
and select the attribute or attributes that participate in the key.

3. On the Properties page, select Alternate Key and choose the appropriate Key
Properties options.

For more information about the Key Properties options, press the F1 key or click
Help.

4.10.16 What Happens When You Define Alternate Key Values
When you define alternate key values, a hashmap is created for fast access to entities
that are already in memory.

4.10.17 What You May Need to Know About Alternate Key Values
The Unique key constraint is used only for forward generation of UNIQUE constraints
in the database, not for alternate key values.

4.11 Creating Business Events
Business events raised from the model layer are useful for launching business
processes and triggering external systems synchronization by way of the Oracle
Mediator.

Oracle Mediator supports declarative subscriptions which map business events to
actions. In other words, you can define and publish a business event (such as a new
customer being created) in one component, and then subscribe to that event in another
component so that a business process is notified when it occurs. You can then, in the
subscribing component, proceed with an action you assign to that event (such as
sending a welcome new customer email).

You declaratively define business events at the entity level. You may also specify
conditions under which those events should be raised. Business events that meet the
specified criteria are raised upon successful commit of the changed data. A business
event is raised to the Mediator on a successful create, update, or delete of an entity
object.

To implement a business event, you first create an event definition, then map that
event definition to an event point, then publish that definition. After the business
event is published, you can subscribe to the event from another component.

Note: Do not configure a business event to be raised on an effective
dated parent entity object from an effective dated child entity object in
a master-detail relationship. Because child objects can raise events on
parent objects, and effective dated entity objects cause row splits
during update and delete operations, it is possible for the child object
to raise an event on the wrong parent object if both the parent and
child are updated during the same transaction. For more information
about effective dated entity objects, see Section 4.2.8, "How to Store
Data Pertaining to a Specific Point in Time."

Creating Business Events

Creating a Business Domain Layer Using Entity Objects 4-41

4.11.1 Introducing Event Definitions
An event definition describes an event that will be published and raised with an event
system Mediator. An event definition is stored in an entity object’s XML file with the
elements shown in Table 4–2.

4.11.2 Introducing Event Points
An event point is a place from which an event can be raised. On a successful commit,
one of the event points shown in Table 4–3 can be raised to the Mediator for each
entity in a transaction.

Note that no events are raised by default; all events are custom. When you create the
event, you can specify the name and DML operation appropriately.

For each event point, you must specify which event definitions should be raised on a
particular event point. In other words, you must declaratively map each event
definition to an event point.

4.11.3 What You May Need to Know About Event Points
Transactional event delivery, where event delivery is part of the transaction, is not
supported by the framework.

Synchronous events, where the publisher waits for further processing until the
subscriber has confirmed event reception, is not supported by the framework.

4.11.4 How to Create a Business Event
To create a business event, use the Business Events page of the overview editor.

To create a business event:
1. In the Application Navigator, double-click an entity object.

2. In the overview editor, click the Business Events navigation tab.

3. On the Business Events page, expand the Event Definitions section and click the
New icon.

4. In the Create Business Event Definition dialog, provide a name that describes this
event, such as EmployeeContactInfoChanged.

Table 4–2 Event Definition Elements for Entity Objects

Element Description

Event Name Name of the event, for example, OrderUpdated

Payload A list of attributes sent to the subscriber. Attributes marked as
optional appear on payload only if changed.

Table 4–3 Example Event Points Raised to the Mediator

DML Type Event Name Event Description

CREATE EntityCreated A new Entity has been created.

UPDATE EntityUpdated An existing Entity has been updated.

DELETE EntityDeleted An existing Entity has been deleted.

Creating Business Events

4-42 Fusion Developer's Guide for Oracle Application Development Framework

5. In the payload table, click New and Delete to select the appropriate attributes for
this event.

Alternatively, you can double-click the cell and pick the attributes you want.

6. In the Value Sent field, choose whether the value should Always be sent, or Only
if changed.

The Only if changed option provides the best performance because the attribute
will be considered optional for the payload. If you leave the default Always, the
payload will require the attribute whether or not the value has changed. For more
details about payload efficiency, see Section 4.11.6, "What You May Need to Know
About Payload Size."

7. Use the arrow buttons to rearrange the order of attributes.

The order that the attributes appear in defines their order in the generated XSD.
Since you'll be using the XSD to build your Fabric mediator and BPEL process,
you might want the most frequently accessed attributes at the top.

8. Click OK.

Repeat the procedure for each business event that you want to define. To publish an
event, see Section 4.11.7, "How to Publish a Business Event."

4.11.5 What Happens When You Create a Business Event
When you create a business event, the entity object’s XML file is updated with the
event definition. Example 4–10 shows an example of the XML code for a business
event. JDeveloper also generates an associated XSD file for the event schema that
allows specification of required attributes and optional attributes. Required attributes
correspond to Value Sent - Always in the Create Business Event Definition dialog,
whereas optional attributes are those for which you changed Value Sent to Only if
changed.

Example 4–10 XML Code for a Business Event

<EventDef
 Name="CustBusEvent1">
 <Payload>
 <PayloadItem
 AttrName="Order.OrderId"/>
 <PayloadItem
 AttrName="LineItemId"/>
 <PayloadItem
 AttrName="ProductBase.ProductId"
 SendOnlyIfChanged="true"/>
 </Payload>
</EventDef>

Example 4–11 shows an example of the XSD event schema for a business event.

Example 4–11 XSD Event Schema for a Business Event

<?xml version = '1.0' encoding = 'UTF-8'?>

Note: Only attributes of supported types are displayed in the Entity
Attribute column. While ClobDomain attributes are supported, very
large clob data can impact performance.

Creating Business Events

Creating a Business Domain Layer Using Entity Objects 4-43

<xs:schema
targetNamespace="/oracle/fodemo/storefront/entities/events/schema/OrderItemEO"
 xmlns="/oracle/fodemo/storefront/entities/events/schema/OrderItemEO"
 elementFormDefault="qualified" attributeFormDefault="unqualified"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="CustBusEvent1Info">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Order.OrderId" type="DecimalValuePair" minOccurs="1"/>
 <xs:element name="LineItemId" type="DecimalValuePair" minOccurs="1"/>
 <xs:element name="ProductBase.ProductId" type="DecimalValuePair" minOccurs="0"/>

 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="ValuePair" abstract="true"/>
 <xs:complexType name="DecimalValuePair">
 <xs:complexContent>
 <xs:extension base="ValuePair">
 <xs:sequence>
 <xs:element name="newValue" minOccurs="0">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xs:anyType">
 <xs:attribute name="value" type="xs:decimal"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="oldValue" minOccurs="0">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xs:anyType">
 <xs:attribute name="value" type="xs:decimal"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:schema>

Example 4–12 shows an example of the EDL event definition for the entity object.

Example 4–12 EDL Event Definition for the Entity Object

<definitions
 targetNamespace="/oracle/fodemo/storefront/entities/events/edl/OrderItemEO"
 xmlns:ns0="/oracle/fodemo/storefront/entities/events/schema/OrderItemEO"
 xmlns="http://schemas.oracle.com/events/edl">
 <schema-import
 namespace="/oracle/fodemo/storefront/entities/events/schema/OrderItemEO"
 location="OrderItemEO.xsd"/>
 <event-definition name="CustBusEvent1">
 <content element="ns0:CustBusEvent1Info"/>
 </event-definition>
</definitions>

Creating Business Events

4-44 Fusion Developer's Guide for Oracle Application Development Framework

4.11.6 What You May Need to Know About Payload Size
The attributes of the associated entity object constitute the payload of a business event.
The payload attributes for a business event are defined by the creator of the event. It
isn't automatically optimized. When the event is defined, an attribute can be marked
as sent Always or Only if changed. For events fired during creation, only new values
are sent. For events fired during an update or delete, the new and old values are sent
and only the attributes that should be based on the Value Sent setting. For best
performance, you should include only the primary key attribute for delete events.

To support composition scenarios (such as a purchase order with line items), a child
entity can raise events defined on the parent entity, and events defined on the child
entity can include attributes from the parent entity. When a child entity raises an event
on a parent entity, only a single event is raised for a particular top-level entity per
transaction, regardless of how many times the child entity raises it.

In the case of entity subtypes (for example, a Manager entity object is a subtype of the
User entity), ADF Business Components does not support overriding of business
events. Because the subscriber to a business event listens to the event using the event
name, overriding of events could cause the event subscriber to receive payload data
unintended for that subscriber. Therefore, this capability is not supported.

When defining business events, remember that while ClobDomain attributes are
supported, very large clob data can have performance implications.

4.11.7 How to Publish a Business Event
To publish a business event, use the Business Events page of the entity objects
overview editor.

To publish a business event:
1. In the Application Navigator, double-click an entity object.

2. In the overview editor, click the Business Events navigation tab.

3. On the Business Events page, expand the Event Publication section and click the
Edit event publications icon.

4. In the Edit Event Publications dialog, click New to create a new event.

5. Double-click the new cell in Event column, and select the appropriate event.

6. Double-click the corresponding cell in Event Point column, and select the
appropriate event point action.

7. You can optionally define conditions for raising the event using the Raise
Conditions table.

8. Click OK.

4.11.8 How to Subscribe to Business Events
After you have created a business event, you can subscribe and respond to the event.

Before you begin:
■ Open (or create) the SCA project that will subscribe to the business event.

To subscribe to a business event:
1. Using the file system, copy the XSD and event definition files for the business

event into your SCA project's source path.

Working Programmatically with Entity Objects and Associations

Creating a Business Domain Layer Using Entity Objects 4-45

2. In the Application Navigator, right-click the project, and choose New.

3. In the New Gallery, expand SOA Tier, select Service Components and then
Mediator, and click OK.

4. In the Create Mediator dialog, select the Subscribe to Events template, as shown
in Figure 4–13.

Figure 4–13 Create Mediator Dialog, Subscribe to Events

5. Click the Add icon to add an event.

6. In the Event Chooser dialog, click the Browse icon to navigate to and select the
event’s definition file, and then click OK.

7. In the Create Mediator dialog, you can optionally change the Consistency option
and specify a Filter for the event.

8. Click OK to generate the mediator.

The resulting mediator (.mplan file) is displayed in the overview editor.

9. You can now click the Add icon in the Routing Rules section to add a rule for how
to respond to the event.

4.12 Working Programmatically with Entity Objects and Associations
You may not always need or want UI-based or programmatic clients to work directly
with entity objects. Sometimes, you may just want to use an external client program to
access an application module and work directly with the view objects in its data
model. Chapter 5, "Defining SQL Queries Using View Objects" describes how to easily
combine the flexible SQL-querying of view objects with the business logic enforcement
and automatic database interaction of entity objects to build powerful applications.
The combination enables a fully updatable application module data model, designed
to meet the needs of the current end-user tasks at hand, that shares the centralized
business logic in your reusable domain business object layer.

However, it is important first to understand how view objects and entity objects can be
used on their own before learning to harness their combined power. By learning about

Working Programmatically with Entity Objects and Associations

4-46 Fusion Developer's Guide for Oracle Application Development Framework

these objects in greater detail, you will have a better understanding of when you
should use them alone and when to combine them in your own applications.

Since clients don't work directly with entity objects, any code you write that works
programmatically with entity objects will typically be custom code in a custom
application module class or in the custom class of another entity object.

4.12.1 How to Find an Entity Object by Primary Key
To access an entity row, you use a related object called the entity definition. At runtime,
each entity object has a corresponding entity definition object that describes the
structure of the entity and manages the instances of the entity object it describes. After
creating an application module and enabling a custom Java class for it, imagine you
wanted to write a method to return a specific order. It might look like the
retrieveOrderById() method shown in Example 4–13.

To find an entity object by primary key:
1. Find the entity definition.

You obtain the entity definition object for the OrderEO entity by passing its fully
qualified name to the static getDefinitionObject() method imported from
the EntityDefImpl class. The EntityDefImpl class in the
oracle.jbo.server package implements the entity definition for each entity
object.

2. Construct a key.

You build a Key object containing the primary key attribute that you want to look
up. In this case, you're creating a key containing the single orderId value passed
into the method as an argument.

3. Find the entity object using the key.

You use the entity definition's findByPrimaryKey() method to find the entity
object by key, passing in the current transaction object, which you can obtain from
the application module using its getDBTransaction() method. The concrete
class that represents an entity object row is the
oracle.jbo.server.EntityImpl class.

4. Return the object or some of its data to the caller.

Example 4–13 show example code for a retrieveOrderById() method developed
using this basic procedure.

Example 4–13 Retrieving an OrderEO Entity Object by Key

/* Helper method to return an Order by Id */
private OrderEOImpl retrieveOrderById(long orderId) {
 EntityDefImpl orderDef = OrderEOImpl.getDefinitionObject();
 Key orderKey = OrderEOImpl.createPrimaryKey(new DBSequence(orderId));
 return (OrderEOImpl)orderDef.findByPrimaryKey(getDBTransaction(),orderKey);
}

Note: The oracle.jbo.Key object constructor can also take an
Object array to support creating multiattribute keys, in addition to the
more typical single-attribute value keys.

Working Programmatically with Entity Objects and Associations

Creating a Business Domain Layer Using Entity Objects 4-47

4.12.2 How to Access an Associated Entity Using the Accessor Attribute
You can create a method to access an associated entity based on an accessor attribute
that requires no SQL code. For example, the method findOrderCustomer() might
find an order, then access the associated PersonEO entity object representing the
customer assigned to the order. For an explanation of how associations enable easy
access from one entity object to another, see Section 4.3, "Creating and Configuring
Associations."

To avoid a conflict with an existing method in the application module that finds the
same associated entity using the same accessor attribute, you can refactor this
functionality into a helper method that you can then reuse anywhere in the application
module it is required. For example, the retrieveOrderById() method (shown in
Example 4–13) refactors the functionality that finds an order.

To access an associated entity object using the accessor attribute:
1. Find the associated entity by the accessor attribute.

The findOrderCustomer() method uses the retrieveOrderById() helper
method to retrieve the OrderEO entity object by ID.

2. Access the associated entity using the accessor attribute.

Using the attribute getter method, you can pass in the name of an association
accessor and get back the entity object on the other side of the relationship. (Note
that Section 4.3.3, "How to Change Entity Association Accessor Names," explains
that renaming the association accessor allows it to have a more intuitive name.)

3. Return some of its data to the caller.

The findOrderCustomer() method uses the getter methods on the returned
PersonEO entity to return the assigned customer's name by concatenating their
first and last names.

Notice that you did not need to write any SQL to access the related PersonEO entity.
The relationship information captured in the ADF association between the OrderEO
and PersonEO entity objects is enough to allow the common task of data navigation
to be automated.

Example 4–14 shows the code for findOrderCustomer() that uses the helper
method.

Example 4–14 Accessing an Associated Entity Using the Accessor Attribute

/* Access an associated Customer entity from the Order entity */
public String findOrderCustomer(long orderId) {
 //1. Find the OrderEO object
 OrderEOImpl order = retrieveOrderById(orderId);
 if (order != null) {
 //2. Access the PersonEO object using the association accessor attribute
 PersonEOImpl cust = (PersonEOImpl)order.getPerson();
 if (cust != null) {
 //3. Return attribute values from the associated entity object
 return cust.getFirstName() + " " + cust.getLastName();
 }
 else {
 return "Unassigned";
 }
 }
 else {
 return null;

Working Programmatically with Entity Objects and Associations

4-48 Fusion Developer's Guide for Oracle Application Development Framework

 }
}

4.12.3 How to Update or Remove an Existing Entity Row
Once you've got an entity row in hand, it's simple to update it or remove it. You could
add a method like the updateOrderStatus() shown in Example 4–15 to handle the
job.

To update an entity row:
1. Find the Order by ID.

Using the retrieveOrderById() helper method, the updateOrderStatus()
method retrieves the OrderEO entity object by Id.

2. Set one or more attributes to new values.

Using the EntityImpl class' setAttribute() method, the
updateOrderStatus() method updates the value of the Status attribute to the
new value passed in.

3. Commit the transaction.

Using the application module's getDBTransaction() method, the
updateOrderStatus() method accesses the current transaction object and calls
its commit() method to commit the transaction.

Example 4–15 Updating an Existing Entity Row

/* Update the status of an existing order */
public void updateOrderStatus(long orderId, String newStatus) {
 //1. Find the order
 OrderEOImpl order = retrieveOrderById(orderId);
 if (order != null) {
 //2. Set its Status attribute to a new value
 order.setOrderStatusCode(newStatus);
 //3. Commit the transaction
 try {
 getDBTransaction().commit();
 }
 catch (JboException ex) {
 getDBTransaction().rollback();
 throw ex;
 }
 }
}

The example for removing an entity row would be the same, except that after finding
the existing entity, you would use the following line instead to remove the entity
before committing the transaction:

// Remove the entity instead!
order.remove();

4.12.4 How to Create a New Entity Row
In addition to using the entity definition to find existing entity rows, you can also use
it to create new ones. In the case of product entities, you could write a
createProduct() method like the one shown in Example 4–16 to accept the name
and description of a new product, and return the new product ID assigned to it. This

Working Programmatically with Entity Objects and Associations

Creating a Business Domain Layer Using Entity Objects 4-49

example assumes that the ProductId attribute of the ProductBaseEO entity object
has been updated to have the DBSequence type (see Section 4.10.10, "How to Get
Trigger-Assigned Primary Key Values from a Database Sequence"). This setting
ensures that the attribute value is refreshed to reflect the value of the trigger from the
corresponding database table, assigned to it from the table’s sequence in the
application schema.

To create an entity row:
1. Find the entity definition.

Using the getDefinitionObject() method, the createProduct() method
finds the entity definition for the Product entity.

2. Create a new instance.

Using the createInstance2() method on the entity definition, the
createProduct() method creates a new instance of the entity object.

3. Set attribute values.

Using the attribute setter methods on the entity object, the createProduct()
method assigns values for the Name, Status, and other attributes in the new
entity row.

4. Commit the transaction.

Calling commit() on the current transaction object, the createProduct()
method commits the transaction.

5. Return the trigger-assigned product ID to the caller.

Using the attribute getter method to retrieve the value of the ProductId attribute
as a DBSequence, and then calling getSequenceNumber().longValue(), the
createProduct() method returns the sequence number as a long value to the
caller.

Example 4–16 Creating a New Entity Row

/* Create a new Product and Return its new id */
public long createProduct(String name, String status, String shipCode) {
 //1. Find the entity definition for the Product entity
 EntityDefImpl productDef = ProductBaseEOImpl.getDefinitionObject();
 //2. Create a new instance of a Product entity
 ProductBaseEOImpl newProduct =
(ProductBaseEOImpl)productDef.createInstance2(getDBTransaction(),null);
 //3. Set attribute values

Note: The method name has a 2 at the end. The regular
createInstance() method has protected access and is designed
to be customized as described Section E.2.4, "EntityImpl Class" of
Appendix E, "Most Commonly Used ADF Business Components
Methods." The second argument of type AttributeList is used to
supply attribute values that must be supplied at create time; it is not
used to initialize the values of all attributes found in the list. For
example, when creating a new instance of a composed child entity
row using this API, you must supply the value of a composing parent
entity's foreign key attribute in the AttributeList object passed as
the second argument. Failure to do so results in an
InvalidOwnerException.

Working Programmatically with Entity Objects and Associations

4-50 Fusion Developer's Guide for Oracle Application Development Framework

 newProduct.setProductName(name);
 newProduct.setProductStatus(status);
 newProduct.setShippingClassCode(shipCode);
 newProduct.setSupplierId(new Number(100));
 newProduct.setListPrice(new Number(499));
 newProduct.setMinPrice(new Number(479));
 newProduct.setCreatedBy("Test Client");
 newProduct.setLastUpdatedBy("Test Client");
 newProduct.setCategoryId(new Number(5));
 //4. Commit the transaction
 try {
 getDBTransaction().commit();
 }
 catch (JboException ex) {
 getDBTransaction().rollback();
 throw ex;
 }
 //5. Access the database-trigger-assigned ProductId value and return it
 DBSequence newIdAssigned = newProduct.getProductId();
 return newIdAssigned.getSequenceNumber().longValue();
}

4.12.5 Assigning the Primary Key Value Using an Oracle Sequence
As an alternative to using a trigger-assigned value (as described in Section 4.10.10,
"How to Get Trigger-Assigned Primary Key Values from a Database Sequence"), you
can assign the value to a primary key when creating a new row using an Oracle
sequence. This metadata-driven approach allows you to centralize the code to retrieve
the primary key into a single Java file that can be reused by multiple entity objects.

Example 4–17 shows a simple CustomEntityImpl framework extension class on
which the entity objects are based. Its overridden create() method tests for the
presence of a custom attribute-level metadata property named SequenceName and if
detected, populates the attribute's default value from the next number in that
sequence.

Example 4–17 CustomEntityImpl Framework Extension Class

package sample;

import oracle.jbo.AttributeDef;
import oracle.jbo.AttributeList;
import oracle.jbo.server.EntityImpl;
import oracle.jbo.server.SequenceImpl;

public class CustomEntityImpl extends EntityImpl {
 protected void create(AttributeList attributeList) {
 super.create(attributeList);
 for (AttributeDef def : getEntityDef().getAttributeDefs()) {
 String sequenceName = (String)def.getProperty("SequenceName");
 if (sequenceName != null) {
 SequenceImpl s = new SequenceImpl(sequenceName,getDBTransaction());
 setAttribute(def.getIndex(),s.getSequenceNumber());
 }
 }
 }
}

Generating Custom Java Classes for an Entity Object

Creating a Business Domain Layer Using Entity Objects 4-51

To assign the primary key value using an Oracle sequence:
1. Create the CustomEntityImpl.java file in your project, and insert the code

shown in Example 4–17.

2. In the Application Navigator, double-click the entity you want to edit.

3. In the overview editor, click the Attributes navigation tab, and double-click the
attribute you want to edit.

4. In the Edit Attribute dialog, set the attribute Type to Number, and then click the
Custom Properties node.

5. Enter SequenceName for the name.

6. Enter the name of the database sequence for the value, click Add, and then click
OK to create the custom property.

For example, a Dept entity could define the custom property SequenceName on
its Deptno attribute with the value DEPT_TABLE_SEQ.

4.13 Generating Custom Java Classes for an Entity Object
As described in this chapter, all of the database interaction and a large amount of
declarative runtime functionality of an entity object can be achieved without using
custom Java code. When you need to go beyond the declarative features to implement
custom business logic for your entities, you'll need to enable custom Java generation
for the entities that require custom code. Appendix E, "Most Commonly Used ADF
Business Components Methods," provides a quick reference to the most common code
that you will typically write, use, and override in your custom entity object and entity
definition classes.

4.13.1 How to Generate Custom Classes
To enable the generation of custom Java classes for an entity object, use the Java page
of the overview editor.

To generate a custom Java class for an entity object:
1. In the Application Navigator, double-click the entity.

2. In the overview editor, click the Java navigation tab, and then click the Edit icon.

3. In the Select Java Options dialog, select the types of Java classes you want to
generate.

■ Entity Object Class — the most frequently customized, it represents each row
in the underlying database table.

■ Entity Collection Class — rarely customized.

■ Entity Definition Class — less frequently customized, it represents the related
class that manages entity rows and defines their structure.

4. Click OK.

4.13.2 What Happens When You Generate Custom Classes
When you select one or more custom Java classes to generate, JDeveloper creates the
Java file(s) you've indicated. For example, assuming an entity object named
fodemo.storefront.entities.OrderEO, the default names for its custom Java
files will be OrderEOImpl.java for the entity object class and

Generating Custom Java Classes for an Entity Object

4-52 Fusion Developer's Guide for Oracle Application Development Framework

OrderEODefImpl.java for the entity definition class. Both files are created in the
same ./fodemo/storefront/entities directory as the component's XML
component definition file.

The Java generation options for the entity object continue to be reflected on
subsequent visits to the Java page of the overview editor. Just as with the XML
definition file, JDeveloper keeps the generated code in your custom Java classes up to
date with any changes you make in the editor. If later you decide you didn't require a
custom Java file for any reason, disabling the relevant options on the Java page causes
the custom Java files to be removed.

4.13.3 What Happens When You Generate Entity Attribute Accessors
When you enable the generation of a custom entity object class, if you also enable the
Accessors option, then JDeveloper generates getter and setter methods for each
attribute in the entity object. For example, an OrderEO entity object that has the
corresponding custom OrderEOImpl.java class might have methods (like those
shown in Example 4–18) generated in it.

Example 4–18 Getter and Setter Methods from OrderEOImpl.java

public DBSequence getOrderId() { ... }
public void setOrderId(DBSequence value) { ... }

public Date getOrderDate() { ... }
public void setOrderDate(Date value) { ... }

public String getOrderStatusCode() { ... }
public void setOrderStatusCode(String value) { ... }

public Number getCustomerId() { ... }
public void setCustomerId(Number value) { ... }

public String getShipToName() { ... }
public void setShipToName(String value) { ... }

These methods allow you to work with the row data with compile-time checking of
the correct data type usage. That is, instead of writing a line like this to get the value of
the CustomerId attribute:

Number customerId = (Number)order.getAttribute("CustomerId");

you can write the code like:

Number customerId = order.getCustomerId();

You can see that with the latter approach, the Java compiler would catch a
typographical error had you accidentally typed CustomerCode instead of
CustomerId:

// spelling name wrong gives compile error
Number customerId = order.getCustomerCode();

Without the generated entity object accessor methods, an incorrect line of code like the
following cannot be caught by the compiler:

// Both attribute name and type cast are wrong, but compiler cannot catch it
String customerId = (String)order.getAttribute("CustomerCode");

Generating Custom Java Classes for an Entity Object

Creating a Business Domain Layer Using Entity Objects 4-53

It contains both an incorrectly spelled attribute name, as well as an incorrectly typed
cast of the getAttribute() return value. When you use the generic APIs on the Row
interface, which the base EntityImpl class implements, errors of this kind raise
exceptions at runtime instead of being caught at compile time.

4.13.4 How to Navigate to Custom Java Files
As shown in Figure 4–14, when you've enabled generation of custom Java classes, they
also appear as child nodes under the Application Sources node for the entity object.
As with all ADF components, when you select an entity object in the Application
Navigator, the Structure window provides a structural view of the entity. When you
need to see or work with the source code for a custom Java file, there are two ways to
open the file in the source editor:

■ You can right-click the Java file, and choose Open from the context menu, as
shown in Figure 4–14.

■ You can right-click an item in a node in the Structure window, and choose Go To
Source from the context menu.

Figure 4–14 Seeing and Navigating to Custom Java Classes for an Entity Object

4.13.5 What You May Need to Know About Custom Java Classes
See the following sections for additional information about custom Java classes.

4.13.5.1 About the Framework Base Classes for an Entity Object
When you use an XML-only entity object, at runtime its functionality is provided by
the default ADF Business Components implementation classes. Each custom Java class
that is generated will automatically extend the appropriate ADF Business Components
base class so that your code inherits the default behavior and you can easily add to or
customize it. An entity object class will extend EntityImpl, while the entity
definition class will extend EntityDefImpl (both in the oracle.jbo.server
package).

Generating Custom Java Classes for an Entity Object

4-54 Fusion Developer's Guide for Oracle Application Development Framework

4.13.5.2 You Can Safely Add Code to the Custom Component File
Some developers are hesitant to add their own code to generated Java source files.
Each custom Java source code file that JDeveloper creates and maintains for you
includes the following comment at the top of the file to clarify that it is safe for you to
add your own custom code to this file.

// ---
// --- File generated by Oracle ADF Business Components Design Time.
// --- Custom code may be added to this class.
// --- Warning: Do not modify method signatures of generated methods.
// ---

JDeveloper does not blindly regenerate the file when you click OK or Apply in an edit
dialog. Instead, it performs a smart update to the methods that it needs to maintain,
leaving your own custom code intact.

4.13.5.3 Configuring Default Java Generation Preferences
You can generate custom Java classes for your view objects when you need to
customize their runtime behavior or when you simply prefer to have strongly typed
access to bind variables or view row attributes.

To configure the default settings for ADF Business Components custom Java
generation, you can choose Preferences from the Tools menu and open the Business
Components page to set your preferences to be used for business components created
in the future. Developers getting started with ADF Business Components should set
their preference to generate no custom Java classes by default. As you run into a
specific need for custom Java code, you can enable just the bit of custom Java you need
for that one component. Over time, you'll discover which set of defaults works best for
you.

4.13.5.4 Attribute Indexes and InvokeAccessor Generated Code
The entity object is designed to function based on XML only or as an XML component
definition combined with a custom Java class. To support this design choice, attribute
values are not stored in private member fields of an entity's class (a file that is not
present in the XML-only situation). Instead, in addition to a name, attributes are also
assigned a numerical index in the entity's XML component definition based on the
zero-based, sequential order of the <Attribute> and association-related
<AccessorAttribute> tags in that file. At runtime, attribute values in an entity row
are stored in a sparse array structure managed by the base EntityImpl class, indexed
by the attribute's numerical position in the entity's attribute list.

For the most part, this private implementation detail is unimportant, since as a
developer using entity objects, you are shielded from having to understand this.
However, when you enable a custom Java class for your entity object, this
implementation detail relates to some of the generated code that JDeveloper maintains
in your entity object class. It is sensible to understand what that code is used for. For
example, in the custom Java class for a OrderEO entity object, each attribute or
accessor attribute has a corresponding generated integer enum. JDeveloper ensures
that the values of these enums correctly reflect the ordering of the attributes in the
XML component definition.

You'll also notice that the automatically maintained, strongly typed getter and setter
methods in the entity object class use these attribute enums, as shown in
Example 4–19.

Generating Custom Java Classes for an Entity Object

Creating a Business Domain Layer Using Entity Objects 4-55

Example 4–19 Getter and Setter Methods Using Attribute Constants in the Custom
Entity Java Class

// In oracle.fodemo.storefront.entities.OrderEOImpl class
public Date getOrderDate() {
 return (Date)getAttributeInternal(ORDERDATE); // <-- Attribute enum
}
public void setOrderDate(Date value) {
 setAttributeInternal(ORDERDATE, value); // <-- Attribute enum
}

Another aspect of the automatically maintained code related to entity attribute enums
are the getAttrInvokeAccessor() and setAttrInvokeAccessor() methods.
These methods optimize the performance of attribute access by numerical index,
which is how generic code in the EntityImpl base class typically accesses attribute
values when performing generic processing. An example of the
getAttrInvokeAccessor() method is shown in Example 4–20. The companion
setAttrInvokeAccessor() method looks similar.

Example 4–20 getAttrInvokeAccessor() Method in the Custom Entity Java Class

// In oracle.fodemo.storefront.entities.OrderEOImpl class
/** getAttrInvokeAccessor: generated method. Do not modify. */
protected Object getAttrInvokeAccessor(int index, AttributeDefImpl attrDef)
 throws Exception {
 if ((index >= AttributesEnum.firstIndex()) && (index < AttributesEnum.count())) {
 return AttributesEnum.staticValues()[index - AttributesEnum.firstIndex()].get(this);

 }
 return super.getAttrInvokeAccessor(index, attrDef);
}

The rules of thumb to remember about this generated attribute-index related code are
the following.

The Do’s
■ Add custom code if needed inside the strongly typed attribute getter and setter

methods.

■ Use the overview editor to change the order or type of entity object attributes.

JDeveloper changes the Java signature of getter and setter methods, as well as the
related XML component definition for you.

The Don'ts
■ Don’t modify the getAttrInvokeAccessor() and

setAttrInvokeAccessor() methods.

■ Don't change the values of the attribute index numbers manually.

4.13.6 Programmatic Example for Comparison Using Custom Entity Classes
To better evaluate the difference of using custom generated entity classes versus
working with the generic EntityImpl class, Example 4–21 shows a version of

Note: If you need to manually edit the generated attribute enums
because of source control merge conflicts or other reasons, you must
ensure that the zero-based ordering reflects the sequential ordering of
the <Attribute> and <AccessorAttribute> tags in the
corresponding entity object XML component definition.

Generating Custom Java Classes for an Entity Object

4-56 Fusion Developer's Guide for Oracle Application Development Framework

methods in a custom entity class (StoreFrontServiceImpl.java) from a custom
application module class (StoreFrontService2Impl.java). Some important
differences to notice are:

■ Attribute access is performed using strongly typed attribute accessors.

■ Association accessor attributes return the strongly typed entity class on the other
side of the association.

■ Using the getDefinitionObject() method in your custom entity class allows
you to avoid working with fully qualified entity definition names as strings.

■ The createPrimaryKey() method in your custom entity class simplifies
creating the Key object for an entity.

Example 4–21 Programmatic Entity Examples Using Strongly Typed Custom Entity
Object Classes

package devguide.examples.appmodules;

import oracle.fodemo.storefront.entities.OrderEOImpl;

import oracle.fodemo.storefront.entities.PersonEOImpl;
import oracle.fodemo.storefront.entities.ProductBaseEOImpl;

import oracle.jbo.ApplicationModule;
import oracle.jbo.JboException;
import oracle.jbo.Key;
import oracle.jbo.client.Configuration;
import oracle.jbo.domain.DBSequence;
import oracle.jbo.domain.Number;
import oracle.jbo.server.ApplicationModuleImpl;
import oracle.jbo.server.EntityDefImpl;

// ---
// --- File generated by Oracle ADF Business Components Design Time.
// --- Custom code may be added to this class.
// --- Warning: Do not modify method signatures of generated methods.
// ---
/**
 * This custom application module class illustrates the same
 * example methods as StoreFrontServiceImpl.java, except that here
 * we're using the strongly typed custom Entity Java classes
 * OrderEOImpl, PersonsEOImpl, and ProductsBaseEOImpl instead of working
 * with all the entity objects using the base EntityImpl class.
 */

public class StoreFrontService2Impl extends ApplicationModuleImpl {
 /**This is the default constructor (do not remove).
 */
 public StoreFrontService2Impl() {
 }
 /*
 * Helper method to return an Order by Id
 */
 private OrderEOImpl retrieveOrderById(long orderId) {
 EntityDefImpl orderDef = OrderEOImpl.getDefinitionObject();
 Key orderKey = OrderEOImpl.createPrimaryKey(new DBSequence(orderId));
 return (OrderEOImpl)orderDef.findByPrimaryKey(getDBTransaction(),orderKey);
 }

Generating Custom Java Classes for an Entity Object

Creating a Business Domain Layer Using Entity Objects 4-57

 /*
 * Find an Order by Id
 */
 public String findOrderTotal(long orderId) {
 OrderEOImpl order = retrieveOrderById(orderId);
 if (order != null) {
 return order.getOrderTotal().toString();
 }
 return null;
 }

 /*
 * Create a new Product and Return its new id
 */
 public long createProduct(String name, String status, String shipCode) {
 EntityDefImpl productDef = ProductBaseEOImpl.getDefinitionObject();
 ProductBaseEOImpl newProduct =
(ProductBaseEOImpl)productDef.createInstance2(getDBTransaction(),null);
 newProduct.setProductName(name);
 newProduct.setProductStatus(status);
 newProduct.setShippingClassCode(shipCode);
 newProduct.setSupplierId(new Number(100));
 newProduct.setListPrice(new Number(499));
 newProduct.setMinPrice(new Number(479));
 newProduct.setCreatedBy("Test Client");
 newProduct.setLastUpdatedBy("Test Client");
 newProduct.setCategoryId(new Number(5));
 try {
 getDBTransaction().commit();
 }
 catch (JboException ex) {
 getDBTransaction().rollback();
 throw ex;
 }
 DBSequence newIdAssigned = newProduct.getProductId();
 return newIdAssigned.getSequenceNumber().longValue();
 }
 /*
 * Update the status of an existing order
 */
 public void updateRequestStatus(long orderId, String newStatus) {
 OrderEOImpl order = retrieveOrderById(orderId);
 if (order != null) {
 order.setOrderStatusCode(newStatus);
 try {
 getDBTransaction().commit();
 }
 catch (JboException ex) {
 getDBTransaction().rollback();
 throw ex;
 }
 }
 }

 /*
 * Access an associated Customer entity from the Order entity
 */
 public String findOrderCustomer(long orderId) {
 OrderEOImpl svcReq = retrieveOrderById(orderId);
 if (svcReq != null) {

Adding Transient and Calculated Attributes to an Entity Object

4-58 Fusion Developer's Guide for Oracle Application Development Framework

 PersonEOImpl cust = (PersonEOImpl)svcReq.getPerson();
 if (cust != null) {
 return cust.getFirstName() + " " + cust.getLastName();
 }
 else {
 return "Unassigned";
 }
 }
 else {
 return null;
 }
 }

 /*
 * Testing method
 */
 public static void main(String[] args) {
 String amDef = "devguide.model.StoreFrontService";
 String config = "StoreFrontServiceLocal";
 ApplicationModule am =
Configuration.createRootApplicationModule(amDef,config);
 /*
 * NOTE: This cast to use the StoreFrontServiceImpl class is OK since
 * this code is inside a business tier *Impl.java file and not in a
 * client class that is accessing the business tier from "outside".
 */
 StoreFrontServiceImpl service = (StoreFrontServiceImpl)am;
 String total = service.findOrderTotal(1011);
 System.out.println("Status of Order # 1011 = " + total);
 String customerName = service.findOrderCustomer(1011);
 System.out.println("Customer for Order # 1011 = " + customerName);
 try {
 service.updateOrderStatus(1011,"CANCEL");
 }
 catch (JboException ex) {
 System.out.println("ERROR: "+ex.getMessage());
 }
 long id = 0;
 try {
 id = service.createProduct(null, "NEW", "CLASS1");
 }
 catch (JboException ex) {
 System.out.println("ERROR: "+ex.getMessage());
 }
 id = service.createProduct("Canon PowerShot G9", "NEW", "CLASS1");
 System.out.println("New product created successfully with id = "+id);
 Configuration.releaseRootApplicationModule(am,true);
 }
 }

4.14 Adding Transient and Calculated Attributes to an Entity Object
In addition to having attributes that map to columns in an underlying table, your
entity objects can include transient attributes that display values calculated (for
example, using Java or Groovy) or that are value holders. For example, a transient
attribute you create, such as FullName, could be calculated based on the concatenated
values of FirstName and LastName attributes.

Adding Transient and Calculated Attributes to an Entity Object

Creating a Business Domain Layer Using Entity Objects 4-59

Once you create the transient attribute, you can perform a calculation in the entity
object Java class, or use a Groovy expression in the attribute definition to specify a
default value.

If you want to be able to change the value at runtime, you can use a Groovy
expression. If the calculated value is not likely to change (for example, if it’s a sum of
the line items), you can perform the calculation directly in the entity object Java class.

4.14.1 How to Add a Transient Attribute
Use the Attributes page of the overview editor to create a transient attribute.

To add a transient attribute to an entity object:
1. In the Application Navigator, double-click the entity.

2. In the overview editor, click the Attributes navigation tab, and then click the New
icon.

3. Enter a name for the attribute.

4. Set the Java attribute type.

5. Disable the Persistent option.

6. If the value will be calculated, set Updatable to Never.

7. Click OK.

4.14.2 What Happens When You Add a Transient Attribute
When you add a transient attribute, JDeveloper updates the XML component
definition for the entity object to reflect the new attribute.

The <Attribute> tag of a transient attribute has no TableName and a ColumnName
of $none$, as shown in Example 4–22.

Example 4–22 XML Code for a Transient Attribute

<Attribute
Name="FullName"
IsUpdateable="false"
IsQueriable="false"
IsPersistent="false"
ColumnName="$none$"
Type="java.lang.String"
ColumnType="$none$"
SQLType="VARCHAR" >

</Attribute>

In contrast, a persistent entity attribute has both a TableName and a ColumnName, as
shown in Example 4–23.

Example 4–23 XML Code for a Persistent

<Attribute
Name="FirstName"
IsNotNull="true"
Precision="30"
ColumnName="FIRST_NAME"
Type="java.lang.String"
ColumnType="VARCHAR2"

Adding Transient and Calculated Attributes to an Entity Object

4-60 Fusion Developer's Guide for Oracle Application Development Framework

SQLType="VARCHAR"
TableName="USERS" >

</Attribute>

4.14.3 How to Base a Transient Attribute On a Groovy Expression
When creating a transient attribute, you can use a Groovy expression to provide the
default value.

To create a transient attribute based on a Groovy expression:
1. Create a new attribute, as described in the first four steps of Section 4.14.1, "How

to Add a Transient Attribute."

2. In the Application Navigator, double-click the entity.

3. In the overview editor, click the Attributes navigation tab, and then click the New
icon.

4. In the New Entity Attribute dialog box, enter a name for the attribute.

5. Set the Java attribute type.

6. Click the Edit button next to the Value field.

Expressions that you define are evaluated using the Groovy scripting language, as
described in Section 3.6, "Overview of Groovy Support." Groovy lets you insert
expressions and variables into strings. The expression is saved as part of the entity
object definition.

7. In the Edit Expression dialog, enter an expression in the field provided, as shown
in Figure 4–15.

Attributes that you reference can include any attribute that the entity object
defines. Do not reference attributes in the expression that are not defined by the
entity object.

Adding Transient and Calculated Attributes to an Entity Object

Creating a Business Domain Layer Using Entity Objects 4-61

Figure 4–15 Edit Expression Dialog

8. Select the appropriate recalculate setting.

If you select Always (default), the expression is evaluated each time any attribute
in the row changes. If you select Never, the expression is evaluated only when the
row is created.

9. You can optionally provide a condition for when to recalculate the expression.

For example, the following expression in the Based on the following expression
field causes the attribute to be recalculated when either the Quantity attribute or
the UnitPrice attribute are changed:

return (adf.object.isAttributeChanged("Quantity") ||
adf.object.isAttributeChanged("UnitPrice"));

10. You can also list attributes on which this attribute is dependent.

In Figure 4–15, the Quantity and UnitPrice attributes are selected, which
causes the attribute to be recalculated when either attribute is changed.

11. Click OK to save the expression.

12. Then click OK to create the attribute.

Note: If either the value expression or the optional recalculate
expression that you define references an attribute from the base entity
object, you must define this as a dependency on the Dependencies
page of the Edit Attribute dialog. In the Dependency page, locate the
attributes in the Available list and shuttle each to the Selected list.

Adding Transient and Calculated Attributes to an Entity Object

4-62 Fusion Developer's Guide for Oracle Application Development Framework

4.14.4 What Happens When You Base a Transient Attribute on Groovy Expression
When you base a transient attribute on a Groovy expression, a
<TransientExpression> tag is added to the entity object’s XML file within the
appropriate attribute, as shown in Example 4–24.

Example 4–24 Calculating a Transient Attribute Using a Groovy Expression

<TransientExpression>
 <![CDATA[
 ((Quantity == null) ? 0 : Quantity) * ((UnitPrice == null) ? 0 : UnitPrice)
]]>
</TransientExpression>

4.14.5 How to Add Java Code in the Entity Class to Perform Calculation
A transient attribute is a placeholder for a data value. If you change the Updatable
property of the transient attribute to While New or Always, then the end user can
enter a value for the attribute. If you want the transient attribute to display a
calculated value, then you'll typically leave the Updatable property set to Never and
write custom Java code that calculates the value.

After adding a transient attribute to the entity object, to make it a calculated attribute
you need to:

■ Enable a custom entity object class on the Java page of the overview editor,
choosing to generate accessor methods

■ Write Java code inside the accessor method for the transient attribute to return the
calculated value

■ Specify each dependent attribute for the transient attribute on the Dependencies
page of the Edit Attribute dialog

For example, after generating the view row class, the Java code to return the transient
attribute’s calculated value would reside in the getter method for the attribute (such as
FullName), as shown in Example 4–25.

Example 4–25 Getter Method for a Transient Attribute

// Getter method for FullName calculated attribute in UserImpl.java
public String getFullName() {
// Commented out original line since we'll always calculate the value
// return (String)getAttributeInternal(FULLNAME);

return getFirstName()+" "+getLastName();
}

To ensure that the transient attribute is reevaluated whenever the attributes to be
concatenated (such as LastName and FirstName) might be changed by the end user,
specify the dependent attributes for the transient attribute. On the Dependencies page
of the Edit Attribute dialog, locate the attributes in the Available list and shuttle each
to the Selected list.

5

Defining SQL Queries Using View Objects 5-1

5Defining SQL Queries Using View Objects

This chapter describes how to create ADF view objects to create SQL queries that join,
filter, sort, and aggregate data for use in an Oracle Application Development
Framework (Oracle ADF) application. It describes how view objects map their
SQL-derived attributes to database table columns and static data source, such as a flat
file.

This chapter includes the following sections:

■ Section 5.1, "Introduction to View Objects"

■ Section 5.2, "Populating View Object Rows from a Single Database Table"

■ Section 5.3, "Populating View Object Rows with Static Data"

■ Section 5.4, "Limiting View Object Rows Using Effective Date Ranges"

■ Section 5.5, "Working with Multiple Tables in Join Query Results"

■ Section 5.6, "Working with Multiple Tables in a Master-Detail Hierarchy"

■ Section 5.7, "Working with a Single Table in a Recursive Master-Detail Hierarchy"

■ Section 5.8, "Working with View Objects in Declarative SQL Mode"

■ Section 5.9, "Working with View Objects in Expert Mode"

■ Section 5.10, "Working with Bind Variables"

■ Section 5.11, "Working with Named View Criteria"

■ Section 5.12, "Working with List of Values (LOV) in View Object Attributes"

■ Section 5.13, "Defining Control Hints for View Objects"

■ Section 5.14, "Adding Calculated and Transient Attributes to a View Object"

5.1 Introduction to View Objects
A view object is an Oracle Application Development Framework (Oracle ADF)
component that encapsulates a SQL query and simplifies working with its results.
There are several types of view objects that you can create in your ADF Business
Components project:

■ Read-only view objects when updates to data are not necessary (can also be
entity-based)

■ Entity-based view objects when data updates will be performed

■ Static data view objects for data defined by the view object itself

Introduction to View Objects

5-2 Fusion Developer's Guide for Oracle Application Development Framework

■ Programmatically populated view objects (for more information, see Chapter 39,
"Advanced View Object Techniques")

 An entity-based view object can be configured to support updatable rows when you
create view objects that map their attributes to the attributes of one or more existing
entity objects. The mapped entity object is saved as an entity usage in the view object
definition. In this way, entity-based view objects cooperate automatically with entity
objects to enable a fully updatable data model. The entity-based view object queries
just the data needed for the client-facing task and relies on its mapped entity objects to
automatically validate and save changes made to its view rows. Like the read-only
view object, an entity-based view object encapsulates a SQL query, it can be linked
into master-detail hierarchies, and it can be used in the data model of your application
modules.

5.1.1 Overview of View Object Concepts
View objects with no entity usage definition are always read-only. They do not pick up
entity-derived default values, they do not reflect pending changes, and they do not
reflect updated reference information. In contrast to entity-based view objects,
read-only view objects require you to write the query using the SQL query language. The
Create View Object wizard and overview editor for entity-based view objects, on the
other hand, simplify this task by helping you to construct the SQL query declaratively.
For this reason, it is almost always preferable to create a non-updatable,
entity-mapped view object, even when you want to create a view object just to read
data. Additionally, as an alternative to creating view objects that specify a SQL
statement at design time, you can create entity-mapped view objects that dynamically
generate SQL statements at runtime.

There remain a few situations where it is still preferable to create a non-entity-mapped
view object to read data, including SQL-based validation, Unions, and Group By
queries.

This chapter helps you understand these view object concepts as illustrated in
Figure 5–1:

■ You define a view object by providing a SQL query (either defined explicitly or
declaratively).

■ You use view object instances in the context of an application module that
provides the database transaction for their queries.

■ You can link a view object to one or more others to create master-detail
hierarchies.

■ At runtime, the view object executes your query and produces a set of rows
(represented by a RowSet object).

■ Each row is identified by a corresponding row key.

■ You iterate through the rows in a row set using a row set iterator.

■ You can filter the row set a view object produces by applying a set of
Query-by-Example criteria rows.

Introduction to View Objects

Defining SQL Queries Using View Objects 5-3

Figure 5–1 A View Object Defines a Query and Produces a Row Set of Rows

5.1.2 Runtime Features Unique to Entity-Based View Objects
When a view object has one or more underlying entity usages, you can create new
rows, and modify or remove queried rows. The entity-based view object coordinates
with underlying entity objects to enforce business rules and to permanently save the
changes to the database. In addition, entity-based view objects provide these
capabilities that do not exist with read-only view objects:

■ Changes in cache (updates, inserts, deletes) managed by entities survive the view
object’s execution boundary.

■ Changes made to relevant entity object attributes through other view objects in the
same transaction are immediately reflected.

■ Attribute values of new rows are initialized to the values from the underlying
entity object attributes.

■ Changes to foreign key attribute values cause reference information to get
updated.

■ Validation for row (entity) level is supported.

■ Composition feature, including validation, locking, ordered-updates is supported.

■ Support for effective dating, change indicator, and business events.

This chapter explains how instances of entity-based view objects contained in the data
model of your application module enable clients to search for, update, insert, and
delete business domain layer information in a way that combines the full data shaping
power of SQL with the clean, object-oriented encapsulation of reusable domain
business objects. And all without requiring a line of code.

This chapter helps you to understand these entity-based view object concepts as
illustrated in Figure 5–2:

■ You define an updatable view object by referencing attributes from one or more
entity objects.

■ You can use multiple, associated entity objects to simplify working with reference
information.

■ You can define view links based on underlying entity associations.

Populating View Object Rows from a Single Database Table

5-4 Fusion Developer's Guide for Oracle Application Development Framework

■ You use your entity-based view objects in the context of an application module
that provides the transaction.

■ At runtime, the view row delegates the storage and validation of its attributes to
underlying entity objects.

Figure 5–2 View Objects and Entity Objects Collaborate to Enable an Updatable Data
Model

5.2 Populating View Object Rows from a Single Database Table
View objects provide the means to retrieve data from a data source. In the majority of
cases, the data source will be a database and the mechanism to retrieve data is the SQL
query. ADF Business Components can work with JDBC to pass this query to the
database and retrieve the result.

When view objects use a SQL query, query columns map to view object attributes in
the view object. The definition of these attributes, saved in the view object’s XML
definition file, reflect the properties of these columns, including data types and
precision and scale specifications.

Using the same Create View Object wizard, you can create view objects that either
map to the attributes of existing entity objects or not. Only entity-based view objects
automatically coordinate with mapped entity objects to enforce business rules and to
permanently save data model changes. Additionally, you can disable the Updatable
feature for entity-based view objects and work entirely declaratively to query
read-only data. Alternatively, you can use the wizard or editor’s expert mode to work
directly with the SQL query language, but the view object you create will not support
the transaction features of the entity-based view object.

While there is a small amount of runtime overhead associated with the coordination
between view object rows and entity object rows, weigh this against the ability to keep
the view object definition entirely declarative and maintain a customizable view
object. Queries that cannot be expressed in entity objects, and that therefore require

Performance Tip: If the query associated with the view object
contains values that may change from execution to execution, use
bind variables. Using bind variables in the query allows the query to
reexecute without needing to reparse the query on the database. You
can add bind variables to the view object in the Query page of the
overview editor for the view object. For more information, see
Section 5.10, "Working with Bind Variables."

Populating View Object Rows from a Single Database Table

Defining SQL Queries Using View Objects 5-5

expert-mode query editing, include Unions and Group By queries. Expert mode-based
view objects are also useful in SQL-based validation queries used by the view
object-based Key Exists validator. Again, it is worth repeating that, by definition,
using expert mode to define a SQL query means the view object must be read-only.

For more information about the differences between entity-based view objects and
read-only view objects, see Section 5.1.2, "Runtime Features Unique to Entity-Based
View Objects."

5.2.1 How to Create an Entity-Based View Object
Creating an entity-based view object is the simplest way to create a view object. It is
even easier than creating an expert-mode, read-only view object, since you don't have
to type in the SQL statement yourself. An entity-based view object also offers
significantly more runtime functionality than its expert-mode counterpart.

In an entity-based view object, the view object and entity object play cleanly separated
roles:

■ The view object is the data source: it retrieves the data using SQL.

■ The entity object is the data sink: it handles validating and saving data changes.

Because view objects and entity objects have cleanly separated roles, you can build a
hundred different view objects — projecting, filtering, joining, sorting the data in
whatever way your user interfaces require, application after application — without
any changes to the reusable entity object. In fact, it is possible that the development
team responsible for the core business domain layer of entity objects might be
completely separate from another team responsible for the specific application
modules and view objects needed to support the end-user environment. This
relationship is enabled by metadata that the entity-based view object encapsulates. The
metadata specifies how the SELECT list columns are related to the attributes of one or
more underlying entity objects.

Your entity-based view object may be based on more than one database table. To use
database joins to add multiple tables to the view object, see Section 5.5, "Working with
Multiple Tables in Join Query Results."

5.2.1.1 Creating an Entity-Based View Object from a Single Table
To create an entity-based view object, use the Create View Object wizard, which is
available from the New Gallery.

Before you begin:
Create the desired entity objects as described in Section 4.2.1, "How to Create Multiple
Entity Objects and Associations from Existing Tables."

To create an entity-based view object from a single table:
1. In the Application Navigator, right-click the project in which you want to create

the view object and choose New.

2. In the New Gallery, expand Business Tier, select ADF Business Components and
then View Object, and click OK.

If this is the first component you're creating in the project, the Initialize Business
Components Project dialog appears to allow you to select a database connection.

3. In the Initialize Business Components Project dialog, select the database
connection or choose New to create a connection. Click OK.

Populating View Object Rows from a Single Database Table

5-6 Fusion Developer's Guide for Oracle Application Development Framework

4. In the Create View Object wizard, on the Name page, enter a package name and a
view object name. Keep the default setting Updatable access through entity
objects enabled to indicate that you want this view object to manage data with its
base entity object. Click Next.

5. On the Entity Objects page, select an entity object whose data you want to use in
the view object. Click Next.

An entry in this list is known as an entity usage, since it records the entity objects
that the view object will be using. Each entry could also be thought of as an entity
reference, since the view object references attributes from that entity. For
information about working table joins to create additional entity usages, see
Section 5.5, "Working with Multiple Tables in Join Query Results."

For example, Figure 5–3 shows the result after shuttling the PersonEO entity
object into the Selected list.

Figure 5–3 Create View Object Wizard, Entity Objects Page

6. On the Attributes page, select the attributes you want to include from each entity
usage in the Available list and shuttle them to the Selected list. Click Next.

For example, Figure 5–4 shows the attributes have been selected from the
PersonEO.

Populating View Object Rows from a Single Database Table

Defining SQL Queries Using View Objects 5-7

Figure 5–4 Create View Object Wizard, Attributes Page

7. On the Attribute Settings page, optionally, use the Select Attribute dropdown list
to switch between the view object attributes in order to change their names or any
of their initial settings.

For more information about any of the attribute settings, press F1 or click Help.

8. On the Query page, optionally, add a WHERE and ORDER BY clause to the query to
filter and order the data as required. JDeveloper automatically generates the
SELECT statement based on the entity attributes you've selected.

Do not include the WHERE or ORDER BY keywords in the Where and Order By
field values. The view object adds those keywords at runtime when it executes the
query.

For example, Figure 5–5 shows the ORDER BY clause is specified to order the data
by first name, last name, and email.

Populating View Object Rows from a Single Database Table

5-8 Fusion Developer's Guide for Oracle Application Development Framework

Figure 5–5 Create View Object Wizard, Query Page

9. When you are satisfied with the view object, click Finish.

5.2.1.2 Creating a View Object with All the Attributes of an Entity Object
When you want to allow the client to work with all of the attributes of an underlying
entity object, you can use the Create View Object wizard as described in Section 5.2.1.1,
"Creating an Entity-Based View Object from a Single Table." After selecting the entity
object, simply select all of its attributes on the Attributes page. However, for this
frequent operation, there is an even quicker way to perform the same task in the
Application Navigator.

Before you begin:
Create the desired entity objects as described in Section 4.2.1, "How to Create Multiple
Entity Objects and Associations from Existing Tables."

To create a default entity-based view object:
1. In the Application Navigator, right-click the entity object and choose New Default

View Object.

2. Provide a package and component name for the new view object in the Create
Default View Object dialog.

In the Create Default View Object dialog you can click Browse to select the
package name from the list of existing packages. For example, in Figure 5–6,
clicking Browse locates oracle.fodemo.storefront.enties package on the
classpath for the StoreFrontService project in the StoreFrontModule
application.

Populating View Object Rows from a Single Database Table

Defining SQL Queries Using View Objects 5-9

Figure 5–6 Shortcut to Creating a Default View Object for an Entity Object

The new entity-based view object created will be identical to one you could have
created with the Create View Object wizard. By default, it will have a single entity
usage referencing the entity object you selected in the Application Navigator, and will
include all of its attributes. It will initially have neither a WHERE nor ORDER BY clause,
and you may want to use the overview editor for the view object to:

■ Remove unneeded attributes

■ Refine its selection with a WHERE clause

■ Order its results with an ORDER BY clause

■ Customize any of the view object properties

5.2.2 What Happens When You Create an Entity-Based View Object
When you create a view object, JDeveloper creates the XML component definition file
that represents the view object's declarative settings and saves it in the directory that
corresponds to the name of its package. For example, the view object Orders, added
to the queries package, will have the XML file ./queries/Orders.xml created in
the project's source path.

To view the view object settings, expand the desired view object in the Application
Navigator, select the XML file under the expanded view object, and open the Structure
window. The Structure window displays the list of definitions, including the SQL
query, the name of the entity usage, and the properties of each attribute. To open the
file in the editor, double-click the corresponding .xml node.

Figure 5–7 depicts the entity-based view object OrderItemsInfoVO and the three
entity usages referenced in its query statement. The dotted lines represent the
metadata captured in the entity-based view object's XML component definition that
map SELECT list columns in the query to attributes of the entity objects used in the
view object. The query of the entity-based view object joins data from a primary entity
usage (OrderItemEO) with that from secondary reference entity usages
(ProductBaseEO and SupplierEO).

Note: If your IDE-level Business Components Java generation
preferences so indicate, the wizard may also create an optional custom
view object class OrdersImpl.java and/or a custom view row class
OrdersRowImpl.java class.

Populating View Object Rows from a Single Database Table

5-10 Fusion Developer's Guide for Oracle Application Development Framework

Figure 5–7 View Object Encapsulates a SQL Query and Entity Attribute Mapping Metadata

5.2.3 How to Create an Expert Mode, Read-Only View Object
When you need full control over the SQL statement, the Create View Object wizard
lets you specify that you want a view object to be read-only. In this case, you will not
benefit from the declarative capabilities to define a non-updatable entity-based view
object. However, there are a few situations where it is desirable to create read-only
view objects using expert mode. Primarily, the read-only view object that you create
will be useful when you need to write Unions or Group By queries. Additionally, you
can use a read-only view object if you need to create SQL-based validation queries
used by the view object-based Key Exists validator, provided that you have marked a
key attribute.

For more information about the tradeoffs between working with entity-based view
objects that you define as non-updatable and strictly read-only view objects, see
Section 39.2.2, "Consider Using Entity-Based View Objects for Read-Only Data."

Best Practice: Unlike entity-based view objects, read-only view
objects that you create in expert mode, will not define a key attribute
by default. While it is possible to create a read-only view object
without defining its key attribute, in expert mode it is a best practice
to select the attribute that corresponds to the queried table’s primary
key and mark it as the key attribute. The presence of a key attribute
ensures the correct runtime behavior for row set navigation. For
example, the user interface developer may create an LOV component
based on the read-only view object collection. Without a key attribute
to specify the row key value, the LOV may not behave properly and a
runtime error can result.

Populating View Object Rows from a Single Database Table

Defining SQL Queries Using View Objects 5-11

To create a read-only view object, use the Create View Object wizard, which is
available from the New Gallery.

To create a read-only view object:
1. In the Application Navigator, right-click the project in which you want to create

the view object and choose New.

2. In the New Gallery, expand Business Tier, select ADF Business Components and
then View Object, and click OK.

If this is the first component you're creating in the project, the Initialize Business
Components Project dialog appears to allow you to select a database connection.

3. In the Initialize Business Components Project dialog, select the database
connection or choose New to create a connection. Click OK.

4. In the Create View Object wizard, on the Name page, enter a package name and a
view object name. Select Read-only access through SQL query to indicate that
you want this view object to manage data with read-only access. Click Next.

5. On the Query page, use one of the following techniques:

■ Paste any valid SQL statement into the Query Statement box. The query
statement can use a WHERE clause and an Order By clause. For example,
Figure 5–8 shows a query statement that uses a WHERE clause and an Order
By clause to query a list of country codes in the language used by the
application.

■ Click Query Builder to open the SQL Statement dialog and use the interactive
query builder.

Figure 5–8 Create View Object Wizard, Query Page

Populating View Object Rows from a Single Database Table

5-12 Fusion Developer's Guide for Oracle Application Development Framework

6. After entering or building the query statement, click Next.

7. On the Bind Variables page, do one of the following:

■ If the query does not reference any bind variables, click Next to skip Step 6.

■ To add a bind variable and work with it in the query, see Section 5.10.1, "How
to Add Bind Variables to a View Object Definition."

8. On the Attribute Settings page, from the Select Attribute dropdown, select the
attribute that corresponds to the primary key of the queried table and then enable
the Key Attribute checkbox.

Because the read-only view object is not based on an entity object, the Create View
Object wizard does not define a key attribute by default. Failure to define the key
attribute can result in unexpected runtime behavior for ADF Faces components
with a data control based on the read-only view object collection. In the case of
read-only view objects, define the key attribute, as shown in Figure 5–9.

Figure 5–9 Create View Object Wizard, Attribute Settings Page

9. On the Attribute Mappings page, click Finish.

Note: If the Entity Objects page displays instead of the Query page,
go back to Step 1 of the wizard and ensure that you've selected
Read-only Access.

Note: In the ADF Business Components wizards and editors, the
default convention is to use camel-capped attribute names, beginning
with a capital letter and using uppercase letters in the middle of the
name to improve readability when the name comprises multiple
words.

Populating View Object Rows from a Single Database Table

Defining SQL Queries Using View Objects 5-13

5.2.4 What Happens When You Create a Read-Only View Object
When you create a view object, JDeveloper first parses the query to infer the following
from the columns in the SELECT list:

■ The Java-friendly view attribute names (for example, CountryName instead of
COUNTRY_NAME)

By default, the wizard creates Java-friendly view object attribute names that
correspond to the SELECT list column names, as shown in Figure 5–10.

For information about using view object attribute names to access the data from
any row in the view object's result set by name, see Section 6.4, "Testing View
Object Instances Programmatically."

■ The SQL and Java data types of each attribute

Figure 5–10 Create View Object Wizard, Attribute Mappings Page

Each part of an underscore-separated column name like SOME_COLUMN_NAME is
turned into a camel-capped word (like SomeColumnName) in the attribute name.
While the view object attribute names correspond to the underlying query columns in
the SELECT list, the attribute names at the view object level need not match
necessarily.

JDeveloper then creates the XML component definition file that represents the view
object's declarative settings and saves it in the directory that corresponds to the name
of its package. For example, the XML file created for a view object named
CountriesVO in the lookups package is ./lookups/CountriesVO.xml under
the project's source path.

To view the view object settings, expand the desired view object in the Application
Navigator, select the XML file under the expanded view object, and open the Structure
window. The Structure window displays the list of definitions, including the SQL

Tip: You can rename the view object attributes to any names that
might be more appropriate without changing the underlying query.

Populating View Object Rows from a Single Database Table

5-14 Fusion Developer's Guide for Oracle Application Development Framework

query, the name of the entity usage, and the properties of each attribute. To open the
file in the editor, double-click the corresponding .xml node.

5.2.5 How to Edit a View Object
After you've created a view object, you can edit any of its settings in the overview
editor for the view object.

To edit a view object definition:
1. In the Application Navigator, double-click the view object to open the overview

editor.

2. Select a navigation tab to open any editor page where you can adjust the SQL
query, change the attribute names, add named bind variables, add UI controls
hints, control Java generation options, and edit other settings.

5.2.5.1 Overriding the Inherit Properties from Underlying Entity Object Attributes
One interesting aspect of entity-based view objects is that each attribute that relates to
an underlying entity object attribute inherits that attribute’s properties. Figure 5–11
shows the Edit Attribute dialog with the inherited attribute selected. You can see that
fields like the Java attribute type and the query column type are disabled and their
values are inherited from the related attribute of the underlying entity object to which
this view object is related. Some properties like the attribute's data type are inherited
and cannot be changed at the view object level.

Other properties like Queryable and Updatable are inherited but can be overridden
as long as their overridden settings are more restrictive than the inherited settings. For
example, the attribute from underlying entity object might have an Updatable setting
of Always. As shown Figure 5–11, the Edit Attribute dialog allows you to set the
corresponding view object attribute to a more restrictive setting like While New or
Never. However, if the attribute in the underlying entity object had instead an
Updatable setting of Never, then the editor would not allow the view object’s related
attribute to have a less restrictive setting like Always.

Note: If your IDE-level Business Components Java generation
preferences so indicate, the wizard may also create an optional custom
view object class CountriesVOImpl.java and/or a custom view
row class CountriesVORowImpl.java class.

Performance Tip: How you configure the view object to fetch data
plays a large role in the runtime performance of the view object. For
information about the tuning parameters that you can edit to optimize
performance, see Section 6.3.10, "What You May Need to Know About
Optimizing View Object Runtime Performance."

Populating View Object Rows from a Single Database Table

Defining SQL Queries Using View Objects 5-15

Figure 5–11 View Object Attribute Properties Inherited from Underlying Entity Object

5.2.5.2 Controlling the Length, Precision, and Scale of View Object Attributes
When you display a particular attribute of the view object in the Edit Attribute dialog,
you can see and change the values of the declarative settings that control its runtime
behavior. One important property is the Type in the Query Column section, shown in
Figure 5–11. This property records the SQL type of the column, including the length
information for VARCHAR2 columns and the precision and scale information for
NUMBER columns.

Figure 5–12 Custom Attribute Settings in the Edit Attribute Dialog

JDeveloper tries to infer the type of the column automatically, but for some SQL
expressions the inferred value might default to VARCHAR2(255). You can update the

Populating View Object Rows from a Single Database Table

5-16 Fusion Developer's Guide for Oracle Application Development Framework

Type value for this type of attribute to reflect the correct length if you know it. In the
case of read-only view objects, this property is editable in the Edit Attribute dialog you
display from the overview editor for the view object. In the case of entity-based view
objects, you must edit the Type property in the Edit Attribute dialog that you display
for the entity object, as described in Section 4.10.2, "How to Indicate Data Type Length,
Precision, and Scale."

For example, VARCHAR2(30) which shows as the Type for the FirstName attribute
in Figure 5–12 means that it has a maximum length of 30 characters. For a NUMBER
column, you would indicate a Type of NUMBER(7,2) for an attribute that you want to
have a precision of 7 digits and a scale of 2 digits after the decimal.

5.2.5.3 Converting a Read-Only View Object to Allow Attribute Updates
When you use the Create View Object wizard to create a read-only view object, by
default the attributes of the view object will not be updateable. Later you may decide
to convert the view object to one that permits updates to its SQL-mapped table
columns. However, this cannot be accomplished by merely changing the attribute’s
Updateable property. To convert a read-only view object to one that is updateable,
you must add an entity usage that maps to the same table as the one used to create the
read-only view object. Choosing an entity usage that defines the same table ensures
that you can then remap the SQL-derived view attributes to entity usage attributes
corresponding to the same table columns.

To modify a read-only view object to allow updates:
1. In the Application Navigator, double-click the read-only view object.

2. In the overview editor, click the Entity Objects navigation tab.

3. In the Entity Objects page, expand the Available list and double-click the entity
object that describes the attributes of the read-only view object.

The entity object that you double-click will appear in the Selected list as an entity
usage. You will need to remap the SQL-derived attributes to corresponding
attributes defined by the entity usage.

4. Click the Query navigation tab, and in the Query page, click the Edit SQL Query
button.

5. In the Edit Query dialog, click Query and then click Attribute Mappings.

6. In the Attribute Mappings page, perform the following steps to convert all
SQL-derived attributes to their corresponding entity usage mapped attribute.

a. Click an attribute field in the View Attributes column and scroll to the top of
the dropdown list to locate the entity usage attributes.

b. In the entity usage attribute list, select the attribute corresponding to the
read-only attribute that you want to remap, as shown in Figure 5–11.

Performance Tip: Your SQL expression can control how long the
describe from the database says the column is. Use the SUBSTR()
function around the existing expression. For example, if you specify
SUBSTR(yourexpression, 1, 15), then the describe from the
database will inform JDeveloper that the column has a maximum
length of 15 characters.

Populating View Object Rows from a Single Database Table

Defining SQL Queries Using View Objects 5-17

Figure 5–13 Specifying an Entity-Derived Attribute in the Edit Query Dialog

7. Click OK.

5.2.5.4 Customizing View Object Attribute Display in the Overview Editor
When you edit view objects in the overview editor, you can customize the Attributes
page of the overview editor to make better use of the attributes table displayed for the
view object.

Customization choices that you make for the attributes table include the list of
attribute properties to display as columns in the attributes table, the order that the
columns appear (from left to right) in the attributes table, the sorting order of the
columns, and the width of the columns. The full list of columns that you can choose to
display correspond to the attribute properties that you might edit in the view object’s
Edit Attributes dialog.

For example, you can add the Updatable property as a column to display in the
attributes table when you want to quickly determine which attributes of your view
object are updatable. Or, you can add the attributes’ Label property as a column and
see the same description as the end user. Or, you might want to view the list of
attributes based on their entity usages. In this case, you can display the Entity Usage
column and sort the entire attributes table on this column.

When you have set up the attributes table with the list of columns that you find most
useful, you can apply the same set of columns to the attributes table displayed for
other view objects by right-clicking the attributes table and choose Apply to All View
Objects.

To customize the attributes table display:
1. In the Application Navigator, double-click the view object.

2. In the overview editor, click the Attributes navigation tab.

3. In the Attributes page, click the dropdown menu to the right of the attribute
column headers (just below the attributes table’s button bar) and choose Select
Columns.

Populating View Object Rows from a Single Database Table

5-18 Fusion Developer's Guide for Oracle Application Development Framework

4. In the Select Columns dialog, perform any of the following actions.

a. Click the left/right shuttle buttons to change the list of visible columns in the
attributes table of the overview editor. The overview editor displays only
those columns corresponding to the attribute properties that appear the
Selected list.

b. Click one of the Move Selection buttons to change the position of the columns
in the attributes table of the overview editor. The overview editor displays the
attribute properties arranged from left to right starting with the property at
the top of the Selected list.

5. Click OK.

6. On the Attributes page of the overview editor, perform any of the following
actions.

a. Click any column header to sort all columns in the attributes table by the
selected column.

This feature is particularly useful when you want to focus on a particular
column. For example, in the case of an entity-based view object, you can click
the Entity Usage column header to group attributes in the attributes table by
their underlying entity objects. To save this setting across all view objects that
you display in the overview editor, click the dropdown menu to the right of
the column headers and choose Apply to All View Objects.

b. Click any column header border and drag to adjust the width of the attributes
table’s column.

c. Click the dropdown icon to the right of the column headers and select among
the list of displayed columns to change the visibility of a column in the current
attributes table display.

This feature lets you easily hide columns when you want to simplify the
attributes table display in the current view object overview editor.

7. To extend the changes in the columns (including column list, column order,
column sorting, and column width) to all other view object overview editors, click
the dropdown menu to the right of the column headers and choose Apply to All
View Objects.

This feature allows you to easily compare the same attributes across view objects.
The overview editor will apply the column selections (and order) that you make in
the Select Columns dialog and the current attributes table’s column sorting and
column widths to all view objects that you edit. View objects that are currently
displayed in an open overview editor are not updated with these settings; you
must close the open view object overview editor and then reopen the view object
to see these settings applied.

5.2.5.5 Modifying the Order of Attributes in the View Object Source File
After you create a view object definition, you may decide to change the order of the
attributes queried by the view object. This view object editing feature allows you to
easily change the order that the attributes will appear in the attributes table displayed
on the Attributes page of the view object overview editor. Because this feature acts on
specific attributes and alters the XML definition of the current view object, it does not
apply to other view objects that you may edit. Alternatively, you can sort the display
of attributes on the Attribute page of the view object overview editor without affecting
the source file by clicking any column header in the overview editor’s attributes table.

Populating View Object Rows with Static Data

Defining SQL Queries Using View Objects 5-19

To modify the order of attributes in the view object source file:
1. In the Application Navigator, double-click the view object.

2. In the overview editor, click the Attributes navigation tab and click Set Source
Order.

3. In the Set Source Order dialog, select the attribute you want to reposition and click
one of the Move Selection button.

4. Click OK.

This feature has no affect on other view objects that you may edit; it only affects
the current view object.

5.2.6 How to Show View Objects in a Business Components Diagram
JDeveloper’s UML diagramming lets you create a Business Components diagram to
visualize your business domain layer. In addition to supporting entity objects,
JDeveloper's UML diagramming allows you to drop view objects onto diagrams as
well to visualize their structure and entity usages. For example, if you create a new
Business Components Diagram named StoreFrontService Data Model in the
oracle.fodemo.storefront package, and drag the CustomerAddressVO view
object from the Application Navigator onto the diagram, its entity usages would
display, as shown in Figure 5–14. When viewed as an expanded node, the diagram
shows a compartment containing the view objects entity usages.

For information about creating the diagram, see Section 4.4, "Creating an Entity
Diagram for Your Business Layer."

Figure 5–14 View Object and Its Entity Usages in a Business Components Diagram

5.3 Populating View Object Rows with Static Data
ADF Business Components lets you create view objects in your data model project
with rows that you populate at design time. Typically, you create view objects with
static data when you have a small amount of data to maintain and you do not expect
that data to change frequently. The decision whether to use a lookup table from the
database or whether to use a static view object based on a list of hardcoded values
depends on the size and nature of the data. The static view object is useful when you
have no more than 100 entries to list. Any larger number of rows should be read from
the database with a conventional table-based view object. The static view object has

Populating View Object Rows with Static Data

5-20 Fusion Developer's Guide for Oracle Application Development Framework

the advantage of being easily translatable. However, all of the rows of a static view
object will be retrieved at once and therefore, using no more than 100 entries yields the
best performance.

Static list view objects are useful as an LOV data source when it is not desirable to
query the database to supply the list of values. Suppose your order has the following
statuses: open, closed, pending. You can create a static view object with these values
and define an LOV on the static view object’s status attribute. Because the wizard
stores the values of the status view object in a translatable resource file, the UI will
display the status values using the resource file corresponding to the application’s
current locale.

5.3.1 How to Create Static View Objects with Data You Enter
You use the Create View Object wizard to create static view objects. The wizard lets
you define the desired attributes (columns) and enter as many rows of data as
necessary. The wizard displays the static data table as you create it.

You can also use the Create View Object wizard to create the attributes based on data
from a comma-separated value (CSV) file format like a spreadsheet file. The wizard
will attempt to create the attributes that you define in the wizard with data from the
first row of the flat file.

To manually create attributes for a static view object:
1. In the Application Navigator, right-click the project in which you want to create

the static list view object and choose New.

2. In the New Gallery, expand Business Tier, select ADF Business Components and
then View Object, and click OK.

If this is the first component you're creating in the project, the Initialize Business
Components Project dialog appears to allow you to select a database connection.

3. In the Initialize Business Components Project dialog, select the database
connection or choose New to create a connection. Click OK.

4. In the Create View Object wizard, on the Name page, enter a package name and a
view object name. Select Rows populated at design time (Static List) to indicate
that you want to supply static list data for this view object. Click Next.

5. On the Attributes page, click New to add an attribute that corresponds to the
columns in the static data table. In the New View Object Attribute dialog, enter a
name and select the attribute type. Click OK to return to the wizard, and click
Next.

6. On the Attribute Settings page, do nothing and click Next.

Best Practice: When you need to create a view object to access a
small list of static data, you should use the static view object rather
than query the database. The static view object is ideal for lists not
exceeding 100 rows of data. Because the Create View Object wizard
saves the data in a resource message file, these data are easily
translatable.

Note: Because the data in a static view object does not originate in
database tables, the view object will be read-only.

Populating View Object Rows with Static Data

Defining SQL Queries Using View Objects 5-21

7. On the Static List page, click the Add icon to enter the data directly into the wizard
page. The attributes you defined will appear as the columns for the static data
table.

8. On the Application Module pages, do nothing and click Next.

9. On the Summary page, click Finish.

5.3.2 How to Create Static View Objects with Data You Import
Using the Import feature of the Create View Object wizard, you can create a static data
view object with attributes based on data from a comma-separated value (CSV) file
format like a spreadsheet file. The wizard will use the first row of a CSV flat file to
identify the attributes and will use the subsequent rows of the CSV file for the data for
each attribute. For example, if your application needs to display choices for
international currency, you might define the columns Symbol, Country, and
Description in the first row and then add rows to define the data for each currency
type, as shown in Figure 5–15.

Figure 5–15 Sample Data Ready to Import from CSV Flat File

To create attributes of a static view object based on a flat file:
1. In the Application Navigator, right-click the project in which you want to create

the static list view object and choose New.

2. In the New Gallery, expand Business Tier, select ADF Business Components and
then View Object, and click OK.

If this is the first component you're creating in the project, the Initialize Business
Components Project dialog appears to allow you to select a database connection.

3. In the Initialize Business Components Project dialog, select the database
connection or choose New to create a connection. Click OK.

4. In the Create View Object wizard, on the Name page, enter a package name and a
view object name. Select Rows populated at design time (Static List) to indicate
that you want to supply static list data for this view object. Click Next.

5. On the Attributes page, optionally, click New to add an attribute that corresponds
to the columns in the static data table. In the New View Object Attribute dialog,
enter a name and select the attribute type. Click OK to return to the wizard, and
click Next.

When the static data will be loaded from a CSV flat file, you can optionally skip
this step. If you do not create the attributes yourself, the wizard will attempt to use
the first row of the CSV file to create the attributes. However, if you create the
attributes in the wizard, then the attributes you create must match the order of the
columns defined by the flat file. If you have created fewer attributes than columns,
the wizard will ignore extra columns during import. Conversely, if you create
more attributes than columns, the wizard will define extra attributes with the
value NULL.

6. On the Attribute Settings page, do nothing and click Next.

Populating View Object Rows with Static Data

5-22 Fusion Developer's Guide for Oracle Application Development Framework

7. On the Static List page, click Import to locate the CSV file and display the data in
the wizard. Verify the data and edit the values as needed.

To edit an attribute value, double-click in the value field.

8. Optionally, click the Add icon or Remove icon to change the number of rows of
data. Click Next.

To enter values for the attributes of a new row, double-click in the value field.

9. On the Application Module page, do nothing and click Next.

10. On the Summary page, click Finish.

5.3.3 What Happens When You Create a Static List View Object
When you create a static view object, the overview editor for the view object displays
the rows of data that you defined in the wizard. You can use the editor to define
additional data, as shown in Figure 5–16.

Figure 5–16 Static Values Page Displays Data

The generated XML definition for the static view object contains one transient attribute
for each column of data. For example, if you import a CSV file with data that describes
international currency, your static view object might contain a transient attribute for
Symbol, Country, and Description, as shown in Example 5–1.

Example 5–1 XML Definition for Static View Object

<ViewObject
...
// Transient attribute for first column
 <ViewAttribute
 Name="Symbol"
 IsUpdateable="false"
 IsSelected="false"
 IsPersistent="false"
 PrecisionRule="true"
 Precision="255"
 Type="java.lang.String"
 ColumnType="VARCHAR2"
 AliasName="Symbol"
 SQLType="VARCHAR"/>
// Transient attribute for second column
 <ViewAttribute
 Name="Country"
 IsUpdateable="false"
 IsPersistent="false"
 PrecisionRule="true"
 Precision="255"
 Type="java.lang.String"

Populating View Object Rows with Static Data

Defining SQL Queries Using View Objects 5-23

 ColumnType="VARCHAR"
 AliasName="Country"
 SQLType="VARCHAR"/>
// Transient attribute for third column
 <ViewAttribute
 Name="Description"
 IsUpdateable="false"
 IsPersistent="false"
 PrecisionRule="true"
 Precision="255"
 Type="java.lang.String"
 ColumnType="VARCHAR"
 AliasName="Description"
 SQLType="VARCHAR"/>
 <StaticList
 Rows="4"
 Columns="3"/>
// Reference to file that contains static data
 <ResourceBundle>
 <PropertiesBundle
 PropertiesFile="model.ModelBundle"/>
 </ResourceBundle>
</ViewObject>

Because the data is static, the overview editor displays no Query page and the
generated XML definition for the static view object contains no query statement.
Instead, the <ResourceBundle> element in the XML definition references a resource
bundle file. The resource bundle file describes the rows of data and also lets you
localize the data. When the default resource bundle type is used, the file
ModelNameBundle.properties appears in the data model project, as shown in
Example 5–2.

Example 5–2 Default Resource Bundle File for Static View Object

model.ViewObj.SL_0_0=USD
model.ViewObj.SL_0_1=United States of America
model.ViewObj.SL_0_2=Dollars
model.ViewObj.SL_1_0=CNY
model.ViewObj.SL_1_1=P.R. China
model.ViewObj.SL_1_2=Yuan Renminbi
model.ViewObj.SL_2_0=EUR
model.ViewObj.SL_2_1=Europe
model.ViewObj.SL_2_2=Euro
model.ViewObj.SL_3_0=JPY
model.ViewObj.SL_3_1=Japan
model.ViewObj.SL_3_2=Yen

5.3.4 Editing Static List View Objects
When you need to make changes to the static list table, double-click the view object in
the Application Navigator to open the overview editor for the view object. You can
add and delete attributes (columns in the static list table), add or delete rows (data in
the static list table), sort individual rows, and modify individual attribute values. The
editor will update the view object definition file and save the attribute names in the
message bundle file.

Limiting View Object Rows Using Effective Date Ranges

5-24 Fusion Developer's Guide for Oracle Application Development Framework

5.3.5 What You May Need to Know About Static List View Objects
The static list view object has a limited purpose in the application module’s data
model. Unlike entity-based view objects, static list view objects will not be updatable.
You use the static list view object when you want to display read-only data to the end
user and you do not want to create a database table for the small amount of data the
static list table contains.

5.4 Limiting View Object Rows Using Effective Date Ranges
Applications that need to query data over a specific date range can generate
date-effective row sets. To define an date-effective view object you must create an
entity-based view object that is based on an date-effective entity object. User control
over the view object’s effective date usage is supported by metadata on the view object
at design time. At runtime, ADF Business Components generates the query filter that
will limit the view rows to an effective date.

5.4.1 How to Create an Date-Effective View Object
Whether or not the query filter for an effective date will be generated depends on the
value of the Effective Dated property displayed in the Property Inspector for the view
object (to view the property, select any tab in the overview editor for the view object
other than Attributes).

The overview editor for the view object does not display the date-effective query
clause in the WHERE clause. You can use the Explain Plan dialog or Test Query dialog
to view the clause. A typical query filter for effective dates looks like this:

(:Bind_SysEffectiveDate BETWEEN Person.EFFECTIVE_START_DATE AND
Person.EFFECTIVE_END_DATE)

At runtime, the bind value for the query is obtained from a property of the root
application module. In order to set the effective date for a transaction, use code similar
to the following snippet:

am.setProperty(ApplicationModule.EFF_DT_PROPERTY_STR, new
Date("2008-10-01));

If you do not set EFF_DT_PROPERTY_STR on the application module, the current date
is used in the query filter, and the view object returns the effective rows filtered by the
current date.

The view object has its own transient attribute, SysEffectiveDate, that you can use
to set the effective date for view rows. Otherwise, the SysEffectiveDate attribute
value for new rows and defaulted rows is derived from the application module. ADF
Business Components propagates the effective date from the view row to the entity
object during DML operations only.

Before you begin:
1. Create an effective dated entity object as described in Section 4.2.8, "How to Store

Data Pertaining to a Specific Point in Time."

Note: Because the date-effective view object must be based on an
date-effective entity object, setting a view object’s Effective Dated
property to True without an underlying date-effective entity object,
will result in a runtime exception.

Limiting View Object Rows Using Effective Date Ranges

Defining SQL Queries Using View Objects 5-25

2. Use the Create View Object wizard to create the entity-based view object as
described in Section 5.2.1, "How to Create an Entity-Based View Object."

The view object you create should be based on the effective dated entity object you
created. In the Attributes page of the wizard, be sure to add the date-effective
attributes that specify the start date and end date on the entity object to the
Selected list for the view object.

To enable effective dates for a view object using the SysEffectiveDate attribute:
1. In the Application Navigator, double-click the view object you created based on

the effective dated entity object.

2. In the overview editor, click the General navigation tab.

3. In the Property Inspector, expand the Name category.

If the Name category is not displayed in the Property Inspector, click the General
navigation tab in the overview editor to set the proper focus.

4. Verify that the context menu for the Effective Dated property displays True.

5. In the overview editor, click the Attributes navigation tab and double-click the
attribute for the start date.

6. In the Edit Attribute dialog, verify that Effective Date is enabled and that Start is
selected, as shown in Figure 5–17. Verify that the attribute for the end date is also
enabled correctly, as shown in the figure. Note that these fields appear grayed out
to indicate that they cannot be edited for the view object.

Figure 5–17 Edit Attribute Dialog Displays Effective Date Settings

7. Click OK.

No additional steps are required once you have confirmed that the view object has
inherited the desired attributes from the date-effective entity object.

5.4.2 How to Create New View Rows Using Date-Effective View Objects
Creating (inserting) date-effective rows is similar to creating or inserting ordinary
view rows. The start date and end date can be specified as follows:

■ The user specifies the effective date on the application module. The start date is set
to the effective date, and the end date is set to end of time.

■ The user specifies values for the start date and the end date (advanced).

In either case, during entity validation, the new row is checked to ensure that it does
not introduce any gaps or overlaps. During post time, ADF Business Components will
acquire a lock on the previous row to ensure that the gap or overlaps are not created
upon the row insert.

5.4.3 How to Update Date-Effective View Rows
You can update view rows by using API calls like Row.setAttribute(). ADF
Business Components supports various modes to initiate the row update.

To set the update mode, invoke the Row.setEffectiveDateMode(int mode)
method with one of the following mode constants.

Limiting View Object Rows Using Effective Date Ranges

5-26 Fusion Developer's Guide for Oracle Application Development Framework

■ CORRECTION (Correction Mode)

The effective start date and effective end dates remain unchanged. The values of
the other attributes may change. This is the standard row update behavior.

■ UPDATE (Update Mode)

The effective end date of the row will be set to the effective date. All user
modifications to the row values are reverted on this row. A new row with the
modified values is created. The effective start date of the new row is set to the
effective date plus one day, and the effective end date is set to end of time. The
new row will appear after the transaction is posted to the database.

■ UPDATE_OVERRIDE (Update Override Mode)

The effective end date of the modified row will be set to the effective date. The
effective start date of the next row is set to effective date plus one day.

■ UPDATE_CHANGE_INSERT (Change Insert Mode)

The effective end date of the modified row should be set to the effective date. All
user modifications to the row values are reverted on this row. A new row with the
modified values will be created. The effective start date of the new row is set to
effective date plus one day, and the effective end date is set to effective start date
of the next row minus one day. The new row will appear after the transaction is
posted to the database.

5.4.4 How to Delete Date-Effective View Rows
ADF Business Components supports various modes to initiate the row deletion. You
can mark view rows for deletion by using API calls like
RowSet.removeCurrentRow() or Row.remove().

To set the deletion mode, invoke the Row.setEffectiveDateMode(int mode)
method with one of the following mode constants.

■ DELETE (Delete Mode)

The effective date of the row is set to the effective date. The operation for this row
is changed from delete to update. All rows with the same noneffective date key
values and with an effective start date greater than the effective date are deleted.

■ DELETE_NEXT_CHANGE (Delete Next Change Mode)

The effective end date of the row is set to the effective end date of the next row
with the same noneffective date key values. The operation for this row is changed
from delete to update. The next row is deleted.

■ FUTURE_CHANGE (Delete Future Change Mode)

The effective end date of the row is set to the end of time. The operation for this
row is changed from delete to update. All future rows with the same noneffective
date key values are deleted.

■ ZAP (Zap Mode)

All rows with the same non-effective date key values are deleted.

The effective date mode constants are defined on the row interface as well.

5.4.5 What Happens When You Create a Date-Effective View Object
When you create an date-effective view object, the view object inherits the transient
attribute SysEffectiveDate from the entity object to store the effective date for the

Limiting View Object Rows Using Effective Date Ranges

Defining SQL Queries Using View Objects 5-27

row. Typically, the insert/update/delete operations modify the transient attribute
while Oracle ADF decides the appropriate values for effective start date and effective
end date.

The query displayed in the overview editor for the date-effective view object does not
display the WHERE clause needed to filter the effective date range. To view the full
query for the date-effective view object, including the WHERE clause, edit the query
and click Explain Plan in the Edit Query dialog. The following sample shows a typical
query and query filter for effective dates:

SELECT OrdersVO.ORDER_ID,
 OrdersVO.CREATION_DATE,
 OrdersVO.LAST_UPDATE_DATE
FROM ORDERS OrdersVO
WHERE (:Bind_SysEffectiveDate BETWEEN OrdersVO.CREATION_DATE AND
 OrdersVO.LAST_UPDATE_DATE)

Example 5–3 shows sample XML entries that are generated when you create an
date-effective view object.

Example 5–3 XML Definition for Date-Effective View Object

<ViewObject
...
// Property that enables date-effective view object.
 IsEffectiveDated="true">
 <EntityUsage
 Name="Orders1"
 Entity="model.OrdersDatedEO"
 JoinType="INNER JOIN"/>
// Attribute identified as the start date
 <ViewAttribute
 Name="CreationDate"
 IsNotNull="true"
 PrecisionRule="true"
 IsEffectiveStartDate="true"
 EntityAttrName="CreationDate"
 EntityUsage="Orders1"
 AliasName="CREATION_DATE"/>
// Attribute identified as the end date
 <ViewAttribute
 Name="LastUpdateDate"
 IsNotNull="true"
 PrecisionRule="true"
 IsEffectiveEndDate="true"
 EntityAttrName="LastUpdateDate"
 EntityUsage="Orders1"
 AliasName="LAST_UPDATE_DATE"/>
// The SysEffectiveDate transient attribute
 <ViewAttribute
 Name="SysEffectiveDate"
 IsPersistent="false"
 PrecisionRule="true"
 Type="oracle.jbo.domain.Date"
 ColumnType="VARCHAR2"
 AliasName="SysEffectiveDate"
 Passivate="true"
 SQLType="DATE"/>
</ViewObject>

Working with Multiple Tables in Join Query Results

5-28 Fusion Developer's Guide for Oracle Application Development Framework

5.4.6 What You May Need to Know About Date-Effective View Objects and View Links
Effective dated associations and view links allow queries to be generated that take the
effective date into account. The effective date of the driving row is passed in as a bind
parameter during the query execution.

While it is possible to create a noneffective dated association between two entities
when using the Create Association wizard or Create View Link wizard, JDeveloper
will by default make the association or link effective dated if one of the ends is
effective dated. However, when the association or view link exists between an
effective dated and a noneffective dated object, then at runtime ADF Business
Components will inspect the effective dated nature of the view object or entity object
before generating the query clause and binding the effective date. The effective date is
first obtained from the driving row. If it is not available, then it is obtained from the
property EFF_DT_PROPERTY_STR of the root application module. If you do not set
EFF_DT_PROPERTY_STR for the application module, the current date is used in the
query filter on the driving row and applied to the other side of the association or view
link.

5.5 Working with Multiple Tables in Join Query Results
 Many queries you will work with will involve multiple tables that are related by
foreign keys. In this scenario, you join the tables in a single view object query to show
additional descriptive information in each row of the main query result. You use the
Create View Object wizard to define the query using declarative options. Whether
your view object is read-only or entity-based determines how you can define the join:

■ When you work with entity-based view objects, the Create View Object wizard
uses an existing association defined between the entities to automatically build the
view object's join WHERE clause. You can declaratively specify the type of join you
want to result from the entity objects. Inner join (equijoin) and outer joins are both
supported.

■ When you work with read-only view objects, you will use the SQL Builder dialog
to build the view object’s join WHERE clause. In this case, you must select the
columns from the tables that you want to join.

Figure 5–18 illustrates the rows resulting from two tables queried by a view object that
defines a join query. The join is a single flattened result.

Figure 5–18 Join Query Result

5.5.1 How to Create Joins for Entity-Based View Objects
It is extremely common in business applications to supplement information from a
primary business domain object with secondary reference information to help the end
user understand what foreign key attributes represent. Take the example of the
OrderItems entity object. It contains foreign key attribute of type Number like:

■ ProductId, representing the product to which the order item pertains

Working with Multiple Tables in Join Query Results

Defining SQL Queries Using View Objects 5-29

From experience, you know that showing an end user exclusively these "raw"
numerical values won't be very helpful. Ideally, reference information from the view
object’s related entity objects should be displayed to improve the application's
usability. One typical solution involves performing a join query that retrieves the
combination of the primary and reference information. This is equivalent to
populating "dummy" fields in each queried row with reference information based on
extra queries against the lookup tables.

When the end user can change the foreign key values by editing the data, this presents
an additional challenge. Luckily, entity-based view objects support easily including
reference information that's always up to date. The key requirement to leverage this
feature is the presence of associations between the entity object that act as the view
object's primary entity usage and the entity objects that contribute reference
information.

To include reference entities in a join view object, use the Create View Object wizard.
The Create View Object wizard lets you specify the type of join:

■ Inner Join

Select when you want the view object to return all rows between two or more
entity objects, where each entity defines the same primary key column. The inner
join view object will not return rows when a primary key value is missing from
the joined entities.

■ Outer Join

Select when you want the view object to return all rows that exist in one entity
object, even though corresponding rows do not exist in the joined entity object.
Both left and right outer join types are supported. The left and right designation
refers to the source (left) and destination (right) entity object named in an
association. For details about changing the default inner join to an outer join, see
Section 5.5.5, "How to Modify a Default Join Clause to Be an Outer Join When
Appropriate."

Both inner joins and outer joins are supported with the following options:

■ Reference

Select when you want the data from the entity object to be treated as reference
information for the view object. Automatic lookup of the data is supported and
attribute values will be dynamically fetched from the entity cache when a
controlling key attribute changes.

■ Updatable

Deselect when you want to prevent the view object from modifying any entity
attributes in the entity object. By default, the first entity object (primary) in the
Selected list is updatable and subsequent entity objects (secondary) are not
updatable. To understand how to create a join view object with multiple updatable
entity usages, see Section 39.9, "Creating a View Object with Multiple Updatable
Entities."

■ Participate in row delete

Select when you have defined the entity as updatable and you want the action of
removing rows in the UI to delete the participating reference entity object. This
option is disabled for the primary entity. For example, while it may be possible to
delete an order item, it should not be possible to delete the order when a remove
row is called from the join view object.

Working with Multiple Tables in Join Query Results

5-30 Fusion Developer's Guide for Oracle Application Development Framework

Before you begin:
Create the desired entity objects as described in Section 4.2.1, "How to Create Multiple
Entity Objects and Associations from Existing Tables."

To create a view object that joins entity objects:
1. In the Application Navigator, right-click the project in which you want to create

the view object and choose New.

When you want to modify an existing view object that you created to include
reference information from its related entity objects, double-click the view object
and open the Entity Objects page in the overview editor for the view object.

2. In the New Gallery, expand Business Tier, select ADF Business Components and
then View Object, and click OK.

3. In the Create View Object wizard, on the Name page, enter a package name and a
view object name. Keep the default setting Updatable Access Through Entity
Objects enabled to indicate that you want this view object to manage data with its
base entity object. Click Next.

4. In the Entity Objects page, the first entity usage in the Selected list is known as the
primary entity usage for the view object. Select the primary entity object from the
Available list and shuttle it to the Selected list.

The list is not limited to a single, primary entity usage.

5. To add additional, secondary entity objects to the view object, select them in the
Available list and shuttle them to the Selected list.

The Association dropdown list shows you the name of the association that relates
the selected secondary entity usage to the primary one. For example, Figure 5–19
shows the result of adding one secondary reference entity usage,
ShippingOptionTranslationEO, in addition to the primary
ShippingOptionBaseEO entity usage. The association that relates to this
secondary entity usage is ShippingOptionTranslationFkAssociation.

Working with Multiple Tables in Join Query Results

Defining SQL Queries Using View Objects 5-31

Figure 5–19 Create View Object Wizard, Entity Objects Page

6. Optionally, use the Alias field to give a more meaningful name to the entity usage
when the default name is not clear.

7. If you add multiple entity usages for the same entity, use the Association
dropdown list to select which association represents that usage's relationship to
the primary entity usage. Click Next.

For each secondary entity usage, the Reference option is enabled to indicate that
the entity provides reference information and that it is not the primary entity. The
Updatable option is disabled. This combination represents the typical usage.
However, when you want to create a join view object with multiple, updatable
entity usages, see Section 39.9, "Creating a View Object with Multiple Updatable
Entities."

Secondary entity usages that are updatable can also have the Participate in row
delete option enabled. This will allow secondary entity attributes to appear NULL
when the primary entity is displayed.

8. On the Attributes page, select the attributes you want each entity object usage to
contribute to the view object. Click Next.

9. On the Attribute Settings page, you can rename an attribute when the names are
not as clear as they ought to be.

The same attribute name often results when the reference and secondary entity
objects derive from the same table. Figure 5–20 shows the attribute
ShippingOptionId1 in the Select Attribute dropdown list, which has been
renamed to ShippingOptionTranslationId in the Name field.

Working with Multiple Tables in Join Query Results

5-32 Fusion Developer's Guide for Oracle Application Development Framework

Figure 5–20 Create View Object Wizard, Attribute Settings Page

10. Click Finish.

5.5.2 How to Select Additional Attributes from Reference Entity Usages
After adding secondary entity usages, you can use the overview editor for the view
object to select the specific, additional attributes from these new usages that you want
to include in the view object.

To select attributes from a secondary entity usage:
1. In the Application Navigator, double-click the view object.

2. In the overview editor, click the Attributes navigation tab and click the Add from
Entity button to view the list of available entity-derived attributes.

3. In the Attributes dialog, select the desired attribute and add it to the Selected list.

Note that even if you didn't intend to include them, JDeveloper automatically
verifies that the primary key attribute from each entity usage is part of the
Selected list. If it's not already present in the list, JDeveloper adds it for you. When
you are finished, the overview editor Query page shows that JDeveloper has
included the new columns in the SELECT statement.

4. Click OK.

Tip: The overview editor lets you sort attributes displayed in the
Attributes page by their entity usages. By default, the attributes table
displays attributes in the order they appear in the underlying entity
object. To sort the attributes by entity usage, click the header for the
Entity Usage column of the attributes table. If the Entity Usage
column does not appear in the attributes table, click the dropdown
menu icon on the top-right corner of the table (below the button bar)
and choose Select Columns to add the column to the Selected list.

Working with Multiple Tables in Join Query Results

Defining SQL Queries Using View Objects 5-33

5.5.3 How to Remove Unnecessary Key Attributes from Reference Entity Usages
The view object attribute corresponding to the primary key attribute of the primary
entity usage acts as the primary key for identifying the view row. When you add
secondary entity usages, JDeveloper marks the view object attributes corresponding to
their primary key attributes as part of the view row key as well. When your view
object consists of a single updatable primary entity usage and a number of reference
entity usages, the primary key attribute from the primary entity usage is enough to
uniquely identify the view row. Further key attributes contributed by secondary entity
usages are not necessary and you should disable their Key Attribute settings.

For example, based on the view object with primary entity usage
ShippingOptionEO, you could disable the Key Attribute property for the
ShippingOptionTranslationEO entity usage so that this property is no longer
selected for this additional key attribute: ShippingTranslationsId.

To remove unnecessary key attributes:
1. In the Application Navigator, double-click the view object.

2. In the overview editor, click the Attributes navigation tab.

3. In the Attributes page, in the attributes table, select the key attribute (identified by
the key icon in the Name column), and click the Edit selected attribute(s) button.

4. In the View Attribute page of the Edit Attribute dialog, deselect the Key Attribute
property.

5. Click OK.

5.5.4 How to Hide the Primary Key Attributes from Reference Entity Usages
Since you generally won't want to display the primary key attributes that were
automatically added to the view object, you can set the attribute’s Display Hint
property in the Control Hints page of the Edit Attribute dialog to Hide.

To hide the primary key attribute:
1. In the Application Navigator, double-click the view object.

2. In the overview editor, click the Attributes navigation tab.

3. In the Attributes page, in the attributes table, select the primary key attribute
(identified by the key icon in the Name column), and click the Edit selected
attribute(s) button.

4. In the Control Hints page of the Edit Attribute dialog, select Hide in the Display
Hint dropdown list.

5. Click OK.

5.5.5 How to Modify a Default Join Clause to Be an Outer Join When Appropriate
When you add a secondary entity usage to a view object, the entity usage is related to
an entity usage that precedes it in the list of selected entities. This relationship is
established by an entity association displayed in the Association dropdown list in the
Entity Objects page of the overview editor for the view object. You use the Association
dropdown list in the editor to select the entity association that relates the secondary
entity usage to the desired preceding entity usage in the Selected list. The name of the
preceding entity usage is identified in the Source Usage dropdown list.

Working with Multiple Tables in Join Query Results

5-34 Fusion Developer's Guide for Oracle Application Development Framework

When JDeveloper creates the WHERE clause for the join between the table for the
primary entity usage and the tables for related secondary entity usages, by default it
always creates inner joins. You can modify the default inner join clause to be a left or
right outer join when appropriate. The left designation refers to the source entity
object named in the selected association. This is the entity identified in the Source
Usage dropdown list. The right designation refers to the current secondary entity
usage that you have selected in the Selected list.

In the left outer join, you will include all rows from the left table (related to the entity
object named in the Source Usage list) in the join, even if there is no matching row
from the right table (related to the current secondary entity object selection). The right
outer join specifies the reverse scenario: you will include all rows from the right table
(related to the entity object named in the Source Usage list) in the join, even if there is
no matching row from the left table (related to the current secondary entity object
selection).

For example, assume that a person is not yet assigned a membership status. In this
case, the MembershipId attribute will be NULL. The default inner join condition will
not retrieve these persons from the MEMBERSHIPS_BASE table. Assuming that you
want persons without membership status to be viewable and updatable through the
MembershipDiscountsVO view object, you can use the Entity Objects page in the
overview editor for the view object to change the query into an left outer join to the
MEMBERSHIPS_BASE table for the possibly null MEMBERSHIP_ID column value.
When you add the person entity to the view object, you would select the left outer
join as the join type. As shown in Figure 5–21, the association
PersonsMembershipsBaseFkAssoc identifies a source usage MembershipBaseEO
on the left side of the join and the selected PersonEO entity usage on the right side.
The view object MembershipDiscountsVO joins the rows related to both of these
entity objects and defines a left outer join for PersonEO to allow the view object to
return rows from the table related to MembershipBaseEO even if they do not have a
match in the table related to PersonEO.

Figure 5–21 Setting an Outer Join to Return NULL Rows from Joined Entities

The view object’s updated WHERE clause includes the addition (+) operator on the
right side of the equals sign for the related table whose data is allowed to be missing in
the left outer join:

PersonEO.MEMBERSHIP_ID = MembershipBaseEO.MEMBERSHIP_ID(+)

Working with Multiple Tables in Join Query Results

Defining SQL Queries Using View Objects 5-35

Before you begin:
Create the desired entity objects and associations as described in Section 4.2.1, "How to
Create Multiple Entity Objects and Associations from Existing Tables."

To change an inner join type to an outer join:
1. In the Application Navigator, double-click the view object.

2. In the overview editor, click the Entity Objects navigation tab.

The entity object you select represents the table on the right side of the join.

3. In the Entity Objects page, in the Selected list, select the entity object that you
want to change the join type for.

The entity object you select represents the table on the right side of the join.

4. In the Association dropdown list, if only one association is defined, leave it
selected; otherwise, select among the list of entity object associations that relate the
secondary entity object to the desired entity object. The entity usage that
represents the joined table will be displayed in the Source Usage dropdown list.

The entity object in the Source Usage dropdown list that you choose through the
association selection represents the table on the left side of the join.

5. In the Join Type dropdown list, decide how you want the view object to return
rows from the joined entity objects:

■ left outer join will include rows from the left table in the join, even if there is
no matching row from the right table.

■ right outer join will include rows from the right table in the join, even if there
is no matching row from the left table.

The Source Usage dropdown list is the left side of the join and the current entity
usage in the Selected list is the right side.

5.5.6 What Happens When You Reference Entities in a View Object
When you create a join view object to include secondary entity usages by reference,
JDeveloper updates the view object's XML component definition to include
information about the additional entity usages. For example, the
ShippingOptionsVO.xml file for the view object includes an additional reference
entity usage. You will see this information recorded in the multiple <EntityUsage>
elements. For example, Example 5–4 shows an entity usage entry that defines the
primary entity usage.

Example 5–4 Primary Entity Usage

<EntityUsage
Name="ShippingOptionBaseEO"
Entity="oracle.fodemo.storefront.entities.ShippingOptionBaseEO"/>

The secondary reference entity usages will have a slightly different entry, including
information about the association that relates it to the primary entity usage, like the
entity usage shown in Example 5–5.

Example 5–5 Secondary Reference Entity Usage

<EntityUsage
Name="ShippingOptionTranslationEO"
Entity="oracle.fodemo.storefront.entities.ShippingOptionTranslationEO"

Working with Multiple Tables in Join Query Results

5-36 Fusion Developer's Guide for Oracle Application Development Framework

Association="oracle.fodemo.storefront.entities.associations.
ShippingOptionTranslationFkAssoc"

AssociationEnd="oracle.fodemo.storefront.entities.associations.
ShippingOptionTranslationFkAssoc.ShippingOptionTranslation"

SourceUsage="oracle.fodemo.storefront.store.queries.ShippingOptionsVO.
ShippingOptionBaseEO"

ReadOnly="true"
Reference="true"/>

Each attribute entry in the XML file indicates which entity usage it references. For
example, the entry for the ShippingOptionId attribute in Example 5–6 shows that
it's related to the ShippingOptionBaseEO entity usage, while the
ShippingMethod attribute is related to the ShippingOptionTranslationEO
entity usage.

Example 5–6 Entity Usage Reference of View Object Attribute

<ViewAttribute
Name="ShippingOptionId"
IsNotNull="true"
EntityAttrName="ShippingOptionId"
EntityUsage="ShippingOptionBaseEO"
AliasName="SHIPPING_OPTION_ID" >

</ViewAttribute>
...

<ViewAttribute
Name="ShippingMethod"
IsUpdatable="true"
IsNotNull="true"
EntityAttrName="ShippingMethod"
EntityUsage="ShippingOptionTranslationEO"
AliasName="SHIPPING_METHOD" >

</ViewAttribute>

The Create View Object wizard uses this association information at design time to
automatically build the view object's join WHERE clause. It uses the information at
runtime to enable keeping the reference information up to date when the end user
changes foreign key attribute values.

5.5.7 How to Create Joins for Read-Only View Objects
To create a read-only view object joining two tables, use the Create View Object
wizard.

To create a read-only view object joining two tables:
1. In the Application Navigator, right-click the project in which you want to create

the view object and choose New.

2. In the New Gallery, expand Business Tier, select ADF Business Components and
then View Object, and click OK.

3. In the Initialize Business Components Project dialog, select the database
connection or choose New to create a connection. Click OK.

4. In the Create View Object wizard, on the Name page, enter a package name and a
view object name. Select Read-only access through SQL query to indicate that
you want this view object to manage data with read-only access. Click Next.

Working with Multiple Tables in Join Query Results

Defining SQL Queries Using View Objects 5-37

5. On the Query page, use one of the following techniques to create the SQL query
statement that joins the desired tables:

■ Paste any valid SQL statement into the Query Statement box.

■ Click Query Builder to open the SQL Statement dialog and use the interactive
query builder, as described in Section 5.5.9, "How to Use the Query Builder
with Read-Only View Objects."

6. After entering or building the query statement, click Next.

7. On the Bind Variables page, do one of the following:

■ If the query does not reference any bind variables, click Next to skip Step 3.

■ To add a bind variable and work with it in the query, see Section 5.10.1, "How
to Add Bind Variables to a View Object Definition."

8. On the Attribute Mappings page, click Finish.

5.5.8 How to Test the Join View
To test the new view object, edit the application module and on the Data Model page
add an instance of the new view object to the data model. Then, use the Business
Component Browser to verify that the join query is working as expected. For details
about editing the data model and running the Business Component Browser, see
Section 6.3, "Testing View Object Instances Using the Business Component Browser."

5.5.9 How to Use the Query Builder with Read-Only View Objects
The Quick-pick objects page of the SQL Statement dialog lets you view the tables in
your schema, including the foreign keys that relate them to other tables. To include
columns in the select list of the query, shuttle the desired columns from the Available
list to the Selected list. For example, Figure 5–22 shows the result of selecting the
PRODUCT_ID, PRODUCT_NAME, and COST_PRICE columns from the PRODUCTS table,
along with the SUPPLIER_NAME column from the SUPPLIERS table. The column from
the second table appears, beneath the PRODUCTS_SUPPLIERS_FK foreign key in the
Available list. When you select columns from tables joined by a foreign key, the query
builder automatically determines the required join clause for you.

Working with Multiple Tables in a Master-Detail Hierarchy

5-38 Fusion Developer's Guide for Oracle Application Development Framework

Figure 5–22 View Object Query Builder to Define a Join

Optionally, use the WHERE clause page of the SQL Statement dialog to define the
expression. To finish creating the query, click OK in the SQL Statement dialog. The
Edit Query dialog will show a query like the one shown in Example 5–7.

Example 5–7 Creating a Query Using SQL Builder

SELECT
PRODUCTS_BASE.PRODUCT_ID PRODUCT_ID,
PRODUCTS_BASE.PRODUCT_NAME PRODUCT_NAME,
PRODUCTS_BASE.COST_PRICE COST_PRICE,
SUPPLIERS.SUPPLIER_NAME SUPPLIER_NAME

FROM
PRODUCTS_BASE JOIN SUPPLIERS USING (SUPPLIER_ID)

You can use the Attributes page of the Create View Object wizard to rename the view
object attribute directly as part of the creation process. Renaming the view object here
saves you from having to edit the view object again, when you already know the
attribute names that you'd like to use. As an alternative, you can also alter the default
Java-friendly name of the view object attributes by assigning a column alias, as
described in Section 5.9.2, "How to Name Attributes in Expert Mode."

5.5.10 What You May Need to Know About Join View Objects
If your view objects reference multiple entity objects, they are displayed as separate
entity usages on a business components diagram.

5.6 Working with Multiple Tables in a Master-Detail Hierarchy
 Many queries you will work with will involve multiple tables that are related by
foreign keys. In this scenario, you can create separate view objects that query the
related information and then link a "source" view object to one or more "target" view
objects to form a master-detail hierarchy.

Working with Multiple Tables in a Master-Detail Hierarchy

Defining SQL Queries Using View Objects 5-39

There are two ways you might handle this situation. You can either:

■ Create a view link that defines how the source and target view objects relate.

■ Create a view link based on an association between entity objects when the source
and target view objects are based on the underlying entity objects’ association.

In either case, you use the Create View Link wizard to define the relationship.

Figure 5–23 illustrates the multilevel result that master-detail linked queries produce.

Figure 5–23 Linked Master-Detail Queries

5.6.1 How to Create a Master-Detail Hierarchy for Read-Only View Objects
When you want to show the user a set of master rows, and for each master row a set of
coordinated detail rows, then you can create view links to define how you want the
master and detail view objects to relate. For example, you could link the Persons
view object to the Orders view object to create a master-detail hierarchy of customers
and the related set of orders they have placed.

To create the view link, use the Create View Link wizard.

Before you begin:
Create the desired read-only view objects as described in Section 5.2.3, "How to Create
an Expert Mode, Read-Only View Object."

To create a view link between read-only view objects:
1. In the Application Navigator, right-click the project in which you want to create

the view object and choose New.

2. In the New Gallery, expand Business Tier, select ADF Business Components and
then View Link, and click OK.

3. In the Create View Link wizard, on the Name page, enter a package name and a
view link name. For example, given the purpose of the view link, a name like
OrdersPlacedBy is a valid name. Click Next.

4. On the View Objects page, select a "source" attribute from the view object that will
act as the master.

For example, Figure 5–24 shows the PersonId attribute selected from the
PersonsVO view object to perform this role. Click Next.

5. On the View Objects page, select a corresponding destination attribute from the
view object that will act as the detail.

For example, if you want the detail query to show orders that were placed by the
currently selected customer, select the CustomerId attribute in the OrdersVO to
perform this role.

Working with Multiple Tables in a Master-Detail Hierarchy

5-40 Fusion Developer's Guide for Oracle Application Development Framework

6. Click Add to add the matching attribute pair to the table of source and destination
attribute pairs below. When you are finished defining master and detail link, click
Next.

Figure 5–24 shows just one (PersonId,CustomerId) pair. However, if you
require multiple attribute pairs to define the link between master and detail,
repeat the steps for the View Objects page to add additional source-target attribute
pairs.

Figure 5–24 Defining Source/Target Attribute Pairs While Creating a View Link

7. On the View Link Properties page, you can use the Accessor Name field to change
the default name of the accessor that lets you programmatically access the
destination view object.

By default, the accessor name will match the name of the destination view object.
For example, you might change the default accessor name OrdersVO to
CustomerOrders to better describe the master-detail relationship that the
accessor defines.

8. Also on the View Link Properties page, you control whether the view link
represents a one-way relationship or a bidirectional one.

By default, a view link is a one-way relationship that allows the current row of the
source (master) to access a set of related rows in the destination (detail) view
object. For example, in Figure 5–25, the checkbox settings indicate that you'll be
able to access a detail collection of rows from OrdersVO for the current row in
PersonsVO, but not vice versa. In this case, this behavior is specified by the
checkbox setting in the Destination Accessor group box for the OrdersVO (the
Generate Accessor In View Object: PersonsVO box is selected) and checkbox
setting in the Source Accessor group box for PersonsVO (the Generate Accessor
In View Object: OrdersVO box is not selected).

Working with Multiple Tables in a Master-Detail Hierarchy

Defining SQL Queries Using View Objects 5-41

Figure 5–25 View Link Properties Control Name and Direction of Accessors

9. On the Edit Source Query page, preview the view link SQL predicate that will be
used at runtime to access the master row in the source view object and click Next.

10. On the Edit Destination Query page, preview the view link SQL predicate that will
be used at runtime to access the correlated detail rows from the destination view
object for the current row in the source view object and click Next.

11. On the Application Module page, add the view link to the data model for the
desired application module and click Finish.

By default the view link will not be added to the application module’s data model.
Later you can add the view link to the data model using the overview editor for
the application module.

5.6.2 How to Create a Master-Detail Hierarchy for Entity-Based View Objects
Just as with read-only view objects, you can link entity-based view objects to other
view objects to form master-detail hierarchies of any complexity. The only difference
in the creation steps involves the case when both the master and detail view objects
are entity-based view objects and their respective entity usages are related by an
association. In this situation, since the association captures the set of source and
destination attribute pairs that relate them, you create the view link just by indicating
which association it should be based on.

To create an association-based view link, you use the Create View Link wizard.

Before you begin:
Create the desired entity-based view objects as described in Section 5.2.1, "How to
Create an Entity-Based View Object."

To create an association-based view link
1. In the Application Navigator, right-click the project in which you want to create

the view object and choose New.

Working with Multiple Tables in a Master-Detail Hierarchy

5-42 Fusion Developer's Guide for Oracle Application Development Framework

To avoid having to type in the package name in the Create View Link wizard, you
can choose New View Link on the context menu of the links package node in the
Application Navigator.

2. In the New Gallery, expand Business Tier, select ADF Business Components and
then View Link, and click OK.

3. In the Create View Link wizard, on the Name page, supply a package and a
component name.

4. On the View Objects page, in the Select Source Attribute tree expand the source
view object in the desired package. In the Select Destination Attribute tree
expand the destination view object.

For entity-based view objects, notice that in addition to the view object attributes,
relevant associations also appear in the list.

5. Select the same association in both Source and Destination trees. Then click Add
to add the association to the table below.

For example, Figure 5–26 shows the same OrderItemsOrdersFkAssoc
association in both Source and Destination trees selected.

Figure 5–26 Master and Detail Related by an Association Selection

6. Click Finish.

5.6.3 What Happens When You Create Master-Detail Hierarchies Using View Links
When you create a view link or an association-based view link, JDeveloper creates the
XML component definition file that represents its declarative settings and saves it in
the directory that corresponds to the name of its package. For example, if the view link
is named OrderInfoToOrderItemsInfo and it appears in the queries.links
package, then the XML file created will be
./queries/link/OrderInfoToOrderItemsInfo.xml under the project's source
path. This XML file contains the declarative information about the source and target

Working with Multiple Tables in a Master-Detail Hierarchy

Defining SQL Queries Using View Objects 5-43

attribute pairs you've specified and, in the case of an association-based view link,
contains the declarative information about the association that relates the source and
target view objects you've specified.

In addition to saving the view link component definition itself, JDeveloper also
updates the XML definition of the source view object in the view link relationship to
add information about the view link accessor you've defined. As a confirmation of
this, you can select the source view object in the Application Navigator and inspect its
details in the Structure window. As shown in Figure 5–27, you can see the defined
accessor in the ViewLink Accessors node for the OrderItemsInfoVO source view
object of the OrderInfoToOrderItemsInfo view link.

Figure 5–27 View Object with View Link Accessor in the Structure Window

5.6.4 How to Enable Active Master-Detail Coordination in the Data Model
When you enable programmatic navigation to a row set of correlated details by
defining a view link as described in Section 5.6.2, "How to Create a Master-Detail
Hierarchy for Entity-Based View Objects," the view link plays a passive role, simply
defining the information necessary to retrieve the coordinated detail row set when
your code requests it. The view link accessor attribute is present and programmatically
accessible in any result rows from any instance of the view link's source view object. In

Note: A view link defines a basic master-detail relationship between
two view objects. However, by creating more view links you can
achieve master-detail hierarchies of any complexity, including:

■ Multilevel master-detail-detail

■ Master with multiple (peer) details

■ Detail with multiple masters

The steps to define these more complex hierarchies are the same as the
ones covered in Section 5.6.2, "How to Create a Master-Detail
Hierarchy for Entity-Based View Objects," you just need to create it
one view link at time.

Working with Multiple Tables in a Master-Detail Hierarchy

5-44 Fusion Developer's Guide for Oracle Application Development Framework

other words, programmatic access does not require modifying the application
module's data model.

However, since master-detail user interfaces are such a frequent occurrence in
enterprise applications, the view link can be also used in a more active fashion so you
can avoid needing to coordinate master-detail screen programmatically. You opt to
have this active master-detail coordination performed by explicitly adding an instance
of a view-linked view object to your application module's data model.

To enable active master-detail coordination, open the application module in the
overview editor and select the Data Model page.

Before you begin:
Create the desired view objects as described in Section 5.2.1, "How to Create an
Entity-Based View Object" and Section 5.2.3, "How to Create an Expert Mode,
Read-Only View Object."

To add a detail instance of a view object:
1. In the Application Navigator, double-click the application module.

2. In the overview editor, click the Data Model navigation tab.

3. In the Data Model page, expand the View Object Instances section and, in the
Available View Objects list, select the detail view object node that is indented
beneath the master view object.

Note that the list shows the detail view object twice: once on its own, and once as a
detail view object via the view link. For example, in Figure 5–28 you would select
the detail view object OrderItemsInfoVO via
OrderInfoToOrderItemInfo instead of the view object labeled as
OrderItemsInfoVO (which, in this case, appears beneath the highlighted view
object).

Figure 5–28 Detail View Object Selection from Available View Objects

4. Enter a name for the detail instance you're about to create in the Name View
Instance field below the Available View Objects list.

For example, Figure 5–28 shows the name OrderItemsDetailVO for the instance
of the OrderItemsInfoVO view object that is a detail view.

5. In the Data Model list, select the instance of the view object that you want to be
the actively-coordinating master.

Working with Multiple Tables in a Master-Detail Hierarchy

Defining SQL Queries Using View Objects 5-45

6. Click Add Instance to add the detail instance to the currently selected master
instance in the data model, with the name you've chosen.

For example, in Figure 5–29, the Data Model list shows a master-detail hierarchy
of view object instances with OrderItemsDetailVO as the detail view object.

Figure 5–29 Data Model with View Linked View Object

5.6.5 How to Test Master-Detail Coordination
To test active master-detail coordination, launch the Business Component Browser on
the application module by choosing Run from its context menu in the Application
Navigator. The Business Component Browser data model tree shows the view link
instance that is actively coordinating the detail view object instance with the master
view object instance. You can double-click the view link instance node in the tree to
open a master-detail data view page in the Business Component Browser. Then, when
you use the toolbar buttons to navigate in the master view object — changing the view
object's current row as a result — the coordinated set of details is automatically
refreshed and the user interface stays in sync.

If you double-click another view object that is not defined as a master and detail, a
second tab will open to show its data; in that case, since it is not actively coordinated
by a view link, its query is not constrained by the current row in the master view
object.

For information about editing the data model and running the Business Component
Browser, see Section 6.3, "Testing View Object Instances Using the Business
Component Browser."

5.6.6 How to Access the Detail Collection Using the View Link Accessor
To work with view links effectively, you should also understand that view link
accessor attributes return a RowSet object and that you can access a detail collection
using the view link accessor programmatically.

5.6.6.1 Accessing Attributes of Row by Name
At runtime, the getAttribute() method on a Row object allows you to access the
value of any attribute of that row in the view object's result set by name. The view link
accessor behaves like an additional attribute in the current row of the source view
object, so you can use the same getAttribute() method to retrieve its value. The
only practical difference between a regular view attribute and a view link accessor
attribute is its data type. Whereas a regular view attribute typically has a scalar data
type with a value like 303 or ngreenbe, the value of a view link accessor attribute is a
row set of zero or more correlated detail rows. Assuming that curUser is a Row object

Working with a Single Table in a Recursive Master-Detail Hierarchy

5-46 Fusion Developer's Guide for Oracle Application Development Framework

from some instance of the Orders view object, you can write a line of code to retrieve
the detail row set of order items:

RowSet items = (RowSet)curUser.getAttribute("OrderItems");

5.6.6.2 Programmatically Accessing a Detail Collection Using the View Link
Accessor
Once you've retrieved the RowSet object of detail rows using a view link accessor, you
can loop over the rows it contains just as you would loop over a view object's row set
of results, as shown in Example 5–8.

Example 5–8 Programmatically Accessing a Detail Collection

while (items.hasNext()) {
Row curItem = items.next();
System.out.println("--> (" + curItem.getAttribute("LineItemId") + ") " +

curItem.getAttribute("LineItemTotal"));
}

For information about creating a test client, see Section 6.4.6, "How to Access a Detail
Collection Using the View Link Accessor."

5.7 Working with a Single Table in a Recursive Master-Detail Hierarchy
 A recursive data model is one that utilizes a query that names source and destination
attributes in a master-detail relationship based on a single table. In a typical
master-detail relationship, the source attribute is supplied by the primary key attribute
of the master view object and the destination attribute is supplied by foreign key
attribute in the detail view object. For example, a typical master-detail relationship
might relate the DepartmentId attribute on the DEPARTMENT table and the
corresponding DepartmentId attribute on the EMPLOYEE table. However, in a
recursive data model, the source attribute EmployeeId and the target attribute
ManagerId both exist in the EMPLOYEE table. The query for this relationship therefore
involves only a single view object. In this scenario, you create the view object for a
single base entity object that specifies both attributes and then you define a
self-referential view link to configure this view object as both the "source" and the
"target" view object to form a master-detail hierarchy.

After you create the view link, there are two ways you can handle the recursive
master-detail hierarchy in the data model project. You can either:

■ Create a data model that exposes two instances of the same view object, one
playing the role as master and the other playing the role as detail, actively
coordinated by a view link instance. This can be useful when you anticipate
needing to show a single level of master rows and detail rows at a time in two
separate tables.

■ Create a data model that exposes only a single instance of the view object, and use
the view link accessor attribute in each row to access a row set of details. This is
the more typical use case of the two because it allows you to display (or
programmatically work with) the recursive master-detail hierarchy to any number

Note: If you generate the custom Java class for your view row, the
type of the view link accessor will be RowIterator. Since at runtime
the return value will always be a RowSet object, it is safe to cast the
view link attribute value to RowSet.

Working with a Single Table in a Recursive Master-Detail Hierarchy

Defining SQL Queries Using View Objects 5-47

of levels that exist in the data. For example, to show the recursive hierarchy in a
tree or treeTable component, you would use this approach, as described in
Section 24.4.1, "How to Display Master-Detail Objects in Trees."

5.7.1 How to Create a Recursive Master-Detail Hierarchy for an Entity-Based View
Object

In a recursive master-detail hierarchy, the attributes of the view object that you select
for the source and destination in the view link will typically be the same pair of
attributes that define the self-referential association between the underlying entity
object, if this association exists. While this underlying association is not required to
create the view link, it does simplify the creation of the view link, so you will first
create a foreign key association for the base entity object of the view object.

To create an association, you use the Create Association wizard. Then the association
will appear as a selection choice when you use the Create View Link wizard. The view
link will be self-referential because the association you select for the source and the
destination view object names the same entity object, which is derived from a single
database table.

Before you begin:
■ When you create the view link JDeveloper won't be able to infer the association

between the source and destination attributes of the entity object. To support the
recursive hierarchy, you can use the Create Association wizard to create an
association between the source attribute and the destination attribute. On the
Entity Objects page, select the same entity object to specify the source and
destination attributes and leave all other default selections unchanged in the
wizard. For details about creating an association, see Section 4.3, "Creating and
Configuring Associations."

For example, assume the recursive master-detail hierarchy displays a list of
employees based on their management hierarchy. In this scenario, you would
create the association based on the Employees entity object. On the Entity Objects
page of the Create Association wizard, you would select
Employees.EmployeeId as the source attribute and Employee.ManagerId as
the destination attribute. The entity object Employees supplies both attributes to
ensure the association is self-referential.

■ Create the entity-based view object and create a view criteria that will filter the
view instance’s results to include only those rows you want to see at the "root" of
the hierarchy. To create a view criteria that uses a bind variable to filter the view
object, see Section 5.11, "Working with Named View Criteria."

For example, in a recursive hierarchy of managers and employees, you would
create the entity-based view object EmployeesView. After you create the view
object in the Create View Object wizard, you can use the Query page of the
overview editor to create a bind variable and view criteria which allow you to
identify the employee or employees that will be seen at the top of the hierarchy. If
only a single employee should appear at the root of the hierarchy, then the view
criteria in this scenario will filter the employees using a bind variable for the
employee ID (corresponding to the source attribute) and the WHERE clause shown
in the Create View Criteria dialog would look like ((Employees.EMPLOYEE_
ID = :TheEmployeeId)) , where TheEmployeeId is the bind variable
name. For more information on creating a view criteria that uses a bind variable to
filter the view object, see Section 5.12.2.1, "Creating a Data Source View Object to
Control the Cascading List."

Working with a Single Table in a Recursive Master-Detail Hierarchy

5-48 Fusion Developer's Guide for Oracle Application Development Framework

When you are ready to expose the employees view object in your project’s data
model, you will configure the view instance in the data model to use this view
criteria to filter the initial employee in the root of the tree. You'll configure the
bind variable to specify the employee ID of the employee that you want to be the
root value of the entire hierarchy. For example, the root value of the recursive
hierarchy of managers and employees would be the employee ID of the highest
level manager in the organization.

To create an association-based, self-referential view link:
1. In the Application Navigator, right-click the project in which you want to create

the view object and choose New.

To avoid having to type in the package name in the Create View Link wizard, you
can choose New View Link on the context menu of the links package node in the
Application Navigator.

2. In the New Gallery, expand Business Tier, select ADF Business Components and
then View Link, and click OK.

3. In the Create View Link wizard, on the Name page, supply a package and a
component name.

4. On the View Objects page, in the Select Source Attribute tree expand the source
view object in the desired package. In the Select Destination Attribute tree
expand the destination view object.

For entity-based view objects, notice that in addition to the view object attributes,
relevant associations also appear in the list.

5. Select the same association in both Source and Destination trees. Then click Add
to add the association to the table below.

For example, Figure 5–30 shows the same EmpManagersFkAssoc association in
both Source and Destination trees selected. The view link is self-referential
because the definition of the association names the source and destination
attribute on the same entity object (in this case, Employees).

Working with a Single Table in a Recursive Master-Detail Hierarchy

Defining SQL Queries Using View Objects 5-49

Figure 5–30 Master and Detail Related by a Self-Referential Association Selection

6. On the View Link Properties page, leave the default selections unchanged, but edit
the accessor name of the destination accessor to provide a meaningful name.

For example, Figure 5–31 shows the destination accessor has been renamed from
EmployeesView to StaffList. This name will be exposed in the binding editor
when the user interface developer populates the ADF Faces tree component by
selecting this accessor. The name you provide will make clear to the UI developer
the purpose of the accessor; in this case, to generate a list of employees associated
with each manager.

Figure 5–31 Renamed Destination Accessor in View LInk

Working with a Single Table in a Recursive Master-Detail Hierarchy

5-50 Fusion Developer's Guide for Oracle Application Development Framework

7. Click Finish.

To define the view object instance in an existing application module:
1. In the Application Navigator, double-click the application module.

2. In the overview editor, click the Data Model navigation tab.

3. In the Data Model page, expand the View Object Instances section and, in the
Available View Objects list, select the view object definition that you defined the
view criteria to filter.

The New View Instance field below the list shows the name that will be used to
identify the next instance of that view object that you add to the data model.

4. To change the name before adding it, enter a different name in the New View
Instance field.

5. With the desired view object selected, shuttle the view object to the Data Model
list.

Figure 5–32 shows the view object EmployeesView has been renamed to
Employees before it was shuttled to the Data Model list.

Figure 5–32 Data Model Displays Added View Object Instance

6. To filter the view object instance so that you specify the root value of the
hierarchy, select the view object instance you added and click Edit.

7. In the Edit View Instance dialog, shuttle the view criteria you created to the
Selected list and enter the bind parameter value that corresponds to the root of the
hierarchy.

Figure 5–33 shows the view object ByEmployeeId view criteria with the bind
parameter TheEmployeeId set to the value 100 corresponding to the employee
that is at the highest level of the hierarchy.

Working with a Single Table in a Recursive Master-Detail Hierarchy

Defining SQL Queries Using View Objects 5-51

Figure 5–33 View Criteria Filters View Instance

8. Click OK.

5.7.2 What Happens When You Create a Recursive Master-Detail Hierarchy
When you create an self-referential view link, JDeveloper creates the XML component
definition file that represents its declarative settings and saves it in the directory that
corresponds to the name of its package. This XML file contains the declarative
information about the source and target attribute pairs that the association you
selected specifies and contains the declarative information about the association that
relates the source and target view object you selected.

Example 5–9 shows how the EmpManagerFkLink defines the same view object
EmployeesView for the source and destination in its XML component definition file.

Example 5–9 Self-Referential View Link Defined in XML

<ViewLink
 xmlns="http://xmlns.oracle.com/bc4j"
 Name="EmpManagerFkLink"
 Version="11.1.1.53.5"
 EntityAssociation="test.model.EmpManagerFkAssoc">
 <ViewLinkDefEnd
 Name="EmployeesView1"
 Cardinality="1"
 Owner="test.model.EmployeesView"
 Source="true">
 <DesignTime>
 <Attr Name="_finderName" Value="ManagerIdEmployeesView"/>
 <Attr Name="_isUpdateable" Value="true"/>
 </DesignTime>
 <AttrArray Name="Attributes">
 <Item Value="test.model.EmployeesView.EmployeeId"/>
 </AttrArray>
 </ViewLinkDefEnd>
 <ViewLinkDefEnd

Working with View Objects in Declarative SQL Mode

5-52 Fusion Developer's Guide for Oracle Application Development Framework

 Name="EmployeesView2"
 Cardinality="-1"
 Owner="test.model.EmployeesView">
 <DesignTime>
 <Attr Name="_finderName" Value="DirectReports"/>
 <Attr Name="_isUpdateable" Value="true"/>
 </DesignTime>
 <AttrArray Name="Attributes">
 <Item Value="test.model.EmployeesView.ManagerId"/>
 </AttrArray>
 </ViewLinkDefEnd>
</ViewLink>

In addition to saving the view link component definition itself, JDeveloper also
updates the XML definition of the view object to add information about the view link
accessor you've defined. As a confirmation of this, you can select the view object in the
Application Navigator and inspect its details in the Structure window. As shown in
Figure 5–34, you can see the defined accessor in the ViewLink Accessors node for the
EmployeesView view object of the EmpManagerFkLink view link.

Figure 5–34 View Object with View Link Accessor in the Structure Window

5.8 Working with View Objects in Declarative SQL Mode
At runtime, when ADF Business Components works with JDBC to pass a query to the
database and retrieve the result, the mechanism to retrieve the data is the SQL query.
As an alternative to creating view objects that specify a SQL statement at design time,
you can create entity-based view objects that contain no SQL statements. This
capability of the ADF Business Components design time and runtime is known as
declarative SQL mode. When the data model developer works with the wizard or editor
for a view object in declarative SQL mode, they require no knowledge of SQL. In
declarative SQL mode, the view object’s metadata causes the ADF Business
Components runtime to generate the SQL query statements as follows:

■ Optionally, generates SELECT and FROM lists based on the rendered web page’s
databound UI components’ usage of one or more entity objects’ attributes

Specifying the runtime query statement based solely on databound UI component
attribute usage is an optimization that you control at the level of each view object

Working with View Objects in Declarative SQL Mode

Defining SQL Queries Using View Objects 5-53

attribute by changing the attribute’s IsSelected property setting. By default, the
property setting is IsSelected=true for each attribute that you add to the view
object in declarative SQL mode. The default setting specifies the added attribute
will be selected in the SQL statement regardless of whether or not the attribute is
exposed in the UI by a databound component. For details about changing the
property setting to optimize the runtime query statement, see Section 5.8.1, "How
to Create SQL-Independent View Objects with Declarative SQL Mode."

■ Optionally, generates a WHERE clause based on a view criteria that you add to the
view object definition

■ Optionally, generates an ORDERBY clause based on a sort criteria that you add to
the view object definition.

■ Optionally, augments the WHERE clause to support table joins based on named
view criteria that you add to the view object definition

■ Optionally, augments the WHERE clause to support master-detail view filtering
based on a view criteria that you add to either the source or destination of a view
link definition

Additionally, the SQL statement that a declarative SQL mode view object generates at
runtime will be determined by the SQL flavor specified in the Business Components
page of the Project Properties dialog.

Declarative SQL mode selection is supported in JDeveloper as a setting that you can
apply either to the entire data model project or to individual view objects that you
create. The ADF Business Components design time also allows you to override the
declarative SQL mode project-level setting for any view object you create.

The alternatives to declarative SQL mode are normal mode and expert mode. When
you work in either of those modes, the view object definitions you create at design
time always contain the entire SQL statement based on the SQL flavor required by
your application module’s defined database connection. Thus the capability of SQL
independence does not apply to view objects that you create in normal or expert
mode. For information about using the wizard and editor to customize view objects
when SQL is desired at design time, see Section 5.2, "Populating View Object Rows
from a Single Database Table."

5.8.1 How to Create SQL-Independent View Objects with Declarative SQL Mode
 All view objects that you create in JDeveloper rely on the same design time wizard
and editor. However, when you enable declarative SQL mode, the wizard and editor
change to support customizing the view object definition without requiring you to
display or enter any SQL. For example, the Query page of the Create View Object
wizard with declarative SQL mode enabled lacks the Generated SQL field present in
normal mode.

Additionally, in declarative SQL mode, since the wizard and editor do not allow you
to enter WHERE and ORDERBY clauses, you provide equivalent functionality by
defining a view criteria and sort criteria respectively. In declarative SQL mode, these
criteria appear in the view object metadata definition and will be converted at runtime

Note: Currently, the supported flavors for runtime SQL generation
are SQL92 (ANSI) style and Oracle style. For information about setting
the SQL flavor for your project, see Section 3.3.1, "Choosing a
Connection, SQL Flavor, and Type Map."

Working with View Objects in Declarative SQL Mode

5-54 Fusion Developer's Guide for Oracle Application Development Framework

to their corresponding SQL clause. When the databound UI component has no need to
display filtered or sorted data, you may omit the view criteria or sort criteria from the
view object definition.

Otherwise, after you enable declarative SQL mode, the basic procedure to create a
view object with ensured SQL independence is the same as you would follow to create
any entity-based view object. For example, you must still ensure that your view object
encapsulates the desired entity object metadata to support the intended runtime
query. As with any entity-based view object, the columns of the runtime-generated
FROM list must relate to the attributes of one or more of the view object’s underlying
entity objects. In declarative SQL mode, you automatically fulfill this requirement
when working with the wizard or editor when you add or remove the attributes of the
entity objects on the view object definition.

If you prefer to optimize the declarative SQL query so that the SELECT and FROM
clauses of the SQL query statement are based solely on whether or not the attributes
you add to the view object are rendered at runtime by a databound UI component,
then you must disable the Selected in Query checkbox (sets IsSelected=false for
the view object definition) for all added attributes. By default, the IsSelected
property is true for any attribute that you add to the view object in declarative SQL
mode. The default setting means the added attribute will be selected in the SQL
statement regardless of whether or not the attribute is exposed by a databound UI
component. When you create a new view object in declarative SQL mode, you can use
the Attribute Settings page of the Create View Object wizard to change the setting for
each attribute. If you need to alter this setting after you generate the view object, you
can use the Property Inspector to change the Selected in Query property setting for
one or more attributes that you select in the Attributes page of the view object editor.

Thus there are no unique requirements for creating entity-based view objects in
declarative SQL mode, nor does declarative SQL mode sacrifice any of the runtime
functionality of the normal mode counterpart. You can enable declarative SQL mode
as a global preference so that it is the Create View Object wizard’s default mode, or
you can leave the setting disabled and select the desired mode directly in the wizard.
The editor for a view object also lets you select and change the mode for an existing
view object definition.

To enable declarative SQL mode for all new view objects:
1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, expand the Business Components node and choose
View Objects.

3. On the Business Components: View Object page, select Enable Declarative SQL
mode for new objects and click OK.

To predetermine how the FROM list will be generated at runtime you can select
Include all attributes in runtime-generated query, as described in Section 5.8.4,
"How to Force Attribute Queries for Declarative SQL Mode View Objects."

To create an entity-based view object in declarative SQL mode, use the Create View
Object wizard, which is available from the New Gallery.

Performance Tip: A view object instance configured to generate SQL
statements dynamically will requery the database during page
navigation if a subset of all attributes with the same list of key entity
objects is used in the subsequent page navigation. Thus performance
can be improved by activating a superset of all the required attributes
to eliminate a subsequent query execution.

Working with View Objects in Declarative SQL Mode

Defining SQL Queries Using View Objects 5-55

Before you begin:
Create the desired entity objects as described in Section 4.2.1, "How to Create Multiple
Entity Objects and Associations from Existing Tables."

To create declarative SQL-based view objects:
1. In the Application Navigator, right-click the project in which you want to create

the view objects and choose New.

2. In the New Gallery, expand Business Tier, select ADF Business Components and
then View Object, and click OK.

3. On the Name page, enter a package name and a view object name. Keep the
default setting Updatable access through entity objects enabled to indicate that
you want this view object to manage data with its base entity object. Click Next.

Any other choice for the data selection will disable declarative SQL mode in the
Create View Object wizard.

4. On the Entity Objects page, select the entity object whose data you want to use in
the view object. Click Next.

When you want to create a view object that joins entity objects, you can add
secondary entity objects to the list. To create more complex entity-based view
objects, see Section 5.5.1, "How to Create Joins for Entity-Based View Objects."

5. On the Attributes page, select at least one attribute from the entity usage in the
Available list and shuttle it to the Selected list. Attributes you do not select will
not be eligible for use in view criteria and sort criteria. Click Next.

You should select any attribute that you intend to customize (in the Attribute
Settings page) or any attributes that you intend to use in a view criteria or sort
criteria (in the Query page). Additionally, the tables that appear in the FROM list of
the runtime-generated query will be limited to the tables corresponding to the
attributes of the entity objects you select.

6. On the Attribute Settings page, optionally, use the Select Attribute dropdown list
to switch between the view object attributes in order to change their names or any
of their initial settings.

7. Use the Select Attribute dropdown list to switch between the previously selected
view object attributes and deselect Selected in Query for each attribute that you
want to be selected in the SQL statement based solely on whether or not the
attribute is rendered by a databound UI component. Click Next.

By default, the Selected in Query checkbox is enabled for all view object attributes
that you add in declarative SQL mode. This default setting will generate a SQL
statement with all added attributes selected. When you deselect the checkbox for
an attribute, the IsSelected property is set to false and whether or not the
attribute is selected will be determined at runtime by the databound UI
component’s usage of the attribute.

8. On the Query page, select Declarative in the Query Mode dropdown list if it is
not already displayed. The wizard changes to declarative SQL mode.

If you did not select Enable declarative SQL mode for new objects, in the
Preferences dialog, the wizard displays the default query mode, Normal.
Changing the mode to Declarative in the wizard allows you to override the
default mode for this single view object.

Working with View Objects in Declarative SQL Mode

5-56 Fusion Developer's Guide for Oracle Application Development Framework

9. Optionally, define Where and Order By criteria to filter and order the data as
required. At runtime, ADF Business Components automatically generates the
corresponding SQL statements based on the criteria you create.

Click Edit next to the Where field to define the view criteria you will use to filter
the data. The view criteria you enter will be converted at runtime to a WHERE
clause that will be enforced on the query statement. For information about
specifying view criteria, see Section 5.11, "Working with Named View Criteria."

In the Order By field select the desired attribute in the Available list and shuttle it
to the Selected list. Attributes you do not select will not appear in the SQL
ORDERBY clause generated at runtime. Add additional attributes to the Selected
list when you want the results to be sorted by more than one column. Arrange the
selected attributes in the list according to their sort precedence. Then for each sort
attribute, assign whether the sort should be performed in ascending or descending
order. Assigning the sort order to each attribute ensures that attributes ignored by
the UI component still follow the intended sort order.

For example, as shown in Figure 5–35, to limit the CustomerCardStatus view
object to display only the rows in the CUSTOMERS table for customers with a
specific credit card code, the view criteria in the Where field limits the
CardTypeCode attribute to a runtime-determined value. To order the data by
customer ID and the customer’s card expiration date, the Order By field identifies
those attributes in the Selected list.

Figure 5–35 Creating View Object Wizard, Query Page with Declarative Mode Selected

10. Click Finish.

5.8.2 How to Filter Declarative SQL-Based View Objects When Table Joins Apply
When you create an entity-based view object you can reference more than one entity
object in the view object definition. In the case of view objects you create in declarative
SQL mode, whether the base entity objects are activated from the view object
definition will depend on the requirements of the databound UI component at

Working with View Objects in Declarative SQL Mode

Defining SQL Queries Using View Objects 5-57

runtime. If the UI component displays attribute values from multiple entity objects,
then the SQL generated at runtime will contain a JOIN operation to query the
appropriate tables.

Just as with any view object that you create, it is possible to filter the results from table
joins by applying named view criteria. In the case of normal mode view objects, all
entity objects and their attributes will be referenced by the view object definition and
therefore will be automatically included in the view object’s SQL statement. However,
by delaying the SQL generation until runtime with declarative SQL mode, there is no
way to know whether the view criteria should be applied.

Because a SQL JOIN may not always result from a view object defined in declarative
SQL mode with multiple entity objects, named view criteria that you define to filter
query results should be applied conditionally at runtime. In other words, named view
criteria that you create for declarative SQL-based view objects need not be applied as
required, automatic filters. To support declarative SQL mode, named view criteria that
you apply to a view object created in declarative SQL mode can be set to apply only on
the condition that the UI component is bound to the attributes referenced by the view
criteria. The named view criteria once applied will, however, support the UI
component’s need to display a filtered result set.

You use the Edit View Criteria dialog to create the named view criteria and enable its
conditional usage by setting the appliedIfJoinSatisfied property in the Property
Inspector.

To define a view criteria to filter only when the join is satisfied:
1. Create the view object with declarative SQL mode enabled as described in

Section 5.8.1, "How to Create SQL-Independent View Objects with Declarative
SQL Mode."

2. In the Application Navigator, double-click the view object.

3. In the overview editor, click the Query navigation tab.

4. In Query page, expand the View Criteria section, and click the Create new view
criteria button.

5. In the Create View Criteria dialog, create the view criteria as described in
Section 5.11.1, "How to Create Named View Criteria Declaratively."

6. After creating the view criteria, select it in the View Criteria section of Query page
of the overview editor.

7. With the view criteria selected, open the Property Inspector and set the
AppliedIfJoinSatisfied property to true.

The property value true means you want the view criteria to be applied only on
the condition that the UI component requires the attributes referenced by the view
criteria. The default value false means that the view criteria will automatically be
applied at runtime. In the case of declarative SQL mode-based view objects, the

Note: In declarative SQL mode, you can define a view criteria to
specify the WHERE clause (optional) when you create the view object
definition. This type of view criteria when it exists will always be
applied at runtime. For a description of this usage of the view criteria,
see Section 5.8.1, "How to Create SQL-Independent View Objects with
Declarative SQL Mode."

Working with View Objects in Declarative SQL Mode

5-58 Fusion Developer's Guide for Oracle Application Development Framework

value true ensures that the query filter will be appropriate to needs of the view
object’s databound UI component.

5.8.3 How to Filter Master-Detail Related View Objects with Declarative SQL Mode
Just as with normal mode view objects, you can link view objects that you create in
declarative SQL mode to other view objects to form master-detail hierarchies of any
complexity. The steps to create the view links are the same as with any other
entity-based view object, as described in Section 5.6.2, "How to Create a Master-Detail
Hierarchy for Entity-Based View Objects." However, in the case of view objects that
you create in declarative SQL mode, you can further refine the view object results in
the Source SQL or Destination SQL dialog for the view link by selecting a previously
defined view criteria in the Create View Link wizard or the overview editor for the
view link.

To define a view criteria for view link source or view link destination:
1. Create the view objects in declarative SQL mode as described in Section 5.8.1,

"How to Create SQL-Independent View Objects with Declarative SQL Mode."

2. In the overview editor for the view objects, define the desired view criteria for
either the source (master) view object or the destination (detail) view object as
described in Section 5.8.2, "How to Filter Declarative SQL-Based View Objects
When Table Joins Apply."

3. Create the view link as described in Section 5.6.2, "How to Create a Master-Detail
Hierarchy for Entity-Based View Objects" and perform one of these additional
steps:

■ On the SQL Source page, select a previously defined view criteria to filter the
master view object. Click Next.

■ On the Destination SQL page, select a previously defined view criteria to filter
the detail view object.

Figure 5–35 shows a view criteria that filters the master view object based on
customer IDs.

Working with View Objects in Declarative SQL Mode

Defining SQL Queries Using View Objects 5-59

Figure 5–36 Filtering a View Link in Declarative SQL Mode

4. After you create the view link, you can also select a previously defined view
criteria. In the overview editor navigation list, select Query and expand the Source
or Destination sections. In the View Criteria dropdown list, select the desired
view criteria. The dropdown list will be empty if no view criteria exist for the view
object.

If the overview editor does not display a dropdown list for view criteria selection,
then the view objects you selected for the view link were not created in declarative
SQL mode. For view objects created in normal or expert mode, you must edit the
WHERE clause to filter the data as required.

5.8.4 How to Force Attribute Queries for Declarative SQL Mode View Objects
Typically, when you define a declarative SQL mode view object, the attributes that get
queried at runtime will be determined by the requirements of the databound UI
component as it is rendered in the web page. This is the runtime-generation capability
that makes view objects independent of the design time database’s SQL flavor.
However, you may also need to execute the view object programmatically without
exposing it to an ADF data binding in the UI. In this case, you can enable the Include
all attributes in runtime-generated query option to ensure that a programmatically
executed view object has access to all of the entity attributes.

The Include all attributes in runtime-generated query option can be specified as a
global preference setting or as a setting on individual view objects. Both settings may
be used in these combinations:

Note: Be careful to limit the use of the Include all attributes in
runtime-generated query option to programmatically executed view
objects. If you expose the view object with this setting enabled to a
databound UI component, the runtime query will include all
attributes.

Working with View Objects in Declarative SQL Mode

5-60 Fusion Developer's Guide for Oracle Application Development Framework

■ Enable the global preference so that every view object you create includes all
attributes in the runtime query statement.

■ Enable the global preference, but disable the setting on view objects that will not
be executed programmatically and therefore should not include all attributes in
the runtime query statement.

■ Disable the global preference (default), but enable the setting on view objects that
will be executed programmatically and therefore should include all attributes in
the runtime query statement.

To set the global preference to include all attributes in the query:
1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, expand Business Components and select View Objects.

3. On the Business Components: View Object page, select Enable Declarative SQL
mode for new objects.

4. Select Include all attributes in runtime-generated query to force all attributes of
the view object’s underlying entity objects to participate in the query and click
OK.

Enabling this option sets a flag in the view object definition but you will still need
to add entity object selections and entity object attribute selections to the view
object definition.

You can change the view object setting in the Tuning section of the overview editor’s
General page. The overview editor only displays the Include all attributes in
runtime-generated query option if you have created the view object in declarative
SQL mode.

To set the view object-specific preference to include all attributes in the query:
1. When you want to force all attributes for specific view objects, create the view

object in the Create View Object wizard and be sure that you have enabled
declarative SQL mode.

You can verify this in the overview editor. In the overview editor, click the Query
navigation tab and click the Edit SQL Query button along the top of the page. In
the Edit Query dialog, verify that the SQL Mode dropdown list shows the
selection Declarative.

2. In the overview editor, click the General navigation tab.

3. In the General page, expand the Tuning section and select Include all attributes
in runtime-generated query.

Enabling this option forces all attributes of the view object’s underlying entity
objects to participate in the query. When enabled, it sets a flag in the view object
definition but you will still need to add entity object selections and entity object
attribute selections to the view object definition.

5.8.5 What Happens When You Create a View Object in Declarative SQL Mode
When you create the view object in declarative SQL mode, three properties get added
to the view object’s metadata: SelectListFlags, FromListFlags, and
WhereFlags. Properties that are absent in declarative SQL mode are the normal
mode view object’s SelectList, FromList, and Where properties, which contain
the actual SQL statement (or, for expert mode, the SQLQuery element). Example 5–10
shows the three view object metadata flags that get enabled in declarative SQL mode

Working with View Objects in Declarative SQL Mode

Defining SQL Queries Using View Objects 5-61

to ensure that SQL will be generated at runtime instead of specified as metadata in the
view object’s definition.

Example 5–10 View Object Metadata with Declarative SQL Mode Enabled

<ViewObject
 xmlns="http://xmlns.oracle.com/bc4j"
 Name="CustomerCardStatus"
 SelectListFlags="1"
 FromListFlags="1"
 WhereFlags="1"
 ...

Similar to view objects that you create in either normal or expert mode, the view object
metadata also includes a ViewAttribute element for each attribute that you select in
the Attribute page of the Create View Object wizard. However, in declarative SQL
mode, when you "select" attributes in the wizard (or add an attribute in the overview
editor), you are not creating a FROM or SELECT list in the design time. The attribute
definitions that appear in the view object metadata only determine the list of potential
entities and attributes that will appear in the runtime-generated statements. For
information about how ADF Business Components generates these SQL lists, see
Section 5.8.6, "What Happens at Runtime: When a Declarative SQL Mode Query is
Generated."

Example 5–11 shows the additional features of declarative SQL mode view objects,
including the optional declarative WHERE clause (DeclarativeWhereClause
element) and the optional declarative ORDERBY clause (SortCriteria element).

Example 5–11 View Object Metadata: Declarative View Criteria and Sort Criteria

<DeclarativeWhereClause>
<ViewCriteria

Name="CustomerStatusWhereCriteria"
ViewObjectName="oracle.fodemo.storefront.store.queries.CustomerCardStatus"
Conjunction="AND"
Mode="3"
AppliedIfJoinSatisfied="false">
<ViewCriteriaRow

Name="vcrow60">
<ViewCriteriaItem

Name="CardTypeCode"
ViewAttribute="CardTypeCode"
Operator="STARTSWITH"
Conjunction="AND"
Required="Optional">

<ViewCriteriaItemValue
Value=":cardtype"
IsBindVarValue="true"/>

</ViewCriteriaItem>
</ViewCriteriaRow>

</ViewCriteria>
</DeclarativeWhereClause>
<SortCriteria>

<Sort
Attribute="CustomerId"/>

<Sort
Attribute="CardTypeCode"/>

</SortCriteria>

Working with View Objects in Declarative SQL Mode

5-62 Fusion Developer's Guide for Oracle Application Development Framework

5.8.6 What Happens at Runtime: When a Declarative SQL Mode Query is Generated
At runtime, when a declarative SQL mode query is generated, ADF Business
Components determines which attributes were defined from the metadata
ViewCriteria element and SortCriteria element. It then uses these attributes to
generate the WHERE and ORDERBY clauses. Next, the runtime generates the FROM list
based on the tables corresponding to the entity usages defined by the metadata
ViewAttribute elements. Finally, the runtime builds the SELECT statement based
on the attribute selection choices the end user makes in the UI. As a result, the view
object in declarative SQL mode generates all SQL clauses entirely at runtime. The
runtime-generated SQL statements will be based on the flavor that appears in the
project properties setting. Currently, the runtime supports SQL92 (ANSI) style and
Oracle style flavors.

5.8.7 What You May Need to Know About Overriding Declarative SQL Mode Defaults
JDeveloper lets you control declarative SQL mode for all new view objects you add to
your data model project or for individual view objects you create or edit. These
settings may be used in these combinations:

■ Enable the global preference in the Preferences dialog (select Tools > Preferences).
Every view object you create will delay SQL generation until runtime. Figure 5–37
shows the global preference Enable declarative SQL for new objects set to
enabled.

■ Enable the global preference in the Preferences dialog, but change the SQL mode
for individual view objects. In this case, unless you change the SQL mode, the
view objects you create will delay SQL generation until runtime.

■ Disable the global preference (default) in the Preferences dialog, but select
declarative SQL mode for individual view objects. In this case, unless you change
the SQL mode, view objects you create will contain SQL statements.

Figure 5–37 Preferences Dialog with Declarative SQL Mode Enabled

Working with View Objects in Expert Mode

Defining SQL Queries Using View Objects 5-63

To edit the SQL mode for a view object you have already created, open the Query page
in the Edit Query dialog and select Declarative from the SQL Mode dropdown list. To
display the Edit Query dialog, open the view object in the overview editor, select
Query from the navigation list and click the Edit SQL Query button. The same option
appears in the Query page of the Create View Object wizard.

5.8.8 What You May Need to Know About Working Programmatically with Declarative
SQL Mode View Objects

As a convenience to developers, the view object implementation API allows individual
attributes to be selected and deselected programmatically. This API may be useful in
combination with the view objects you create in declarative SQL mode and intend to
execute programmatically. Example 5–12 shows how to call
selectAttributeDefs() on the view object when you want to add a subset of
attributes to those already configured with SQL mode enabled.

Example 5–12 ViewObjectImpl API with SQL Mode View Objects

ApplicationModule am = Configuration.createRootApplicationModule(amDef, config);
ViewObjectImpl vo = (ViewObjectImpl) am.findViewObject("CustomerVO");
vo.resetSelectedAttributeDefs(false);
vo.selectAttributeDefs(new String[] {"FirstName, "LastName"});
vo.executeQuery();

The call to selectAttributeDefs() adds the attributes in the array to a private
member variable of ViewObjectImpl. A call to executeQuery() transfers the
attributes in the private member variable to the actual select list. It is important to
understand that these ViewObjectImpl attribute calls are not applicable to the client
layer and are only accessible inside the Impl class of the view object on the middle
tier.

Additionally, you might call unselectAttributeDefs() on the view object when
you want to deselect a small subset of attributes after enabling the Include all
attributes in runtime-generated query option. Alternatively, you can call
selectAttributeDefs() on the view object to select a small subset of attributes
after disabling the Include all attributes in runtime-generated query option.

5.9 Working with View Objects in Expert Mode
When defining entity-based view objects, you can fully specify the WHERE and ORDER
BY clauses, whereas, by default, the FROM clause and SELECT list are automatically
derived. The names of the tables related to the participating entity usages determine
the FROM clause, while the SELECT list is based on the:

■ Underlying column names of participating entity-mapped attributes

■ SQL expressions of SQL-calculated attributes

When you require full control over the SELECT or FROM clause in a query, you can
enable expert mode.

Caution: Be careful not to expose a declarative SQL mode view
object executed with this API to the UI since only the value of the
Include all attributes in runtime-generated query option will be
honored.

Working with View Objects in Expert Mode

5-64 Fusion Developer's Guide for Oracle Application Development Framework

5.9.1 How to Customize SQL Statements in Expert Mode
To enable expert mode, select Expert Mode from the SQL Mode dropdown list on the
Query panel of the Create View Object wizard. You can also modify the SQL statement
of an existing entity-based view object in the view object overview editor. In the
overview editor, navigate to the Query page and click the Edit SQL Query button. In
the Edit Query dialog, select Expert Mode from the SQL Mode dropdown list.

5.9.2 How to Name Attributes in Expert Mode
If your SQL query includes a calculated expression, use a SQL alias to assist the Create
View Object wizard in naming the column with a Java-friendly name. Example 5–13
shows a SQL query that includes a calculated expression.

Example 5–13 SQL Query with Calculated Expression

select PERSON_ID, EMAIL,
SUBSTR(FIRST_NAME,1,1)||'. '||LAST_NAME

from PERSONS
order by EMAIL

Example 5–14 uses a SQL alias USER_SHORT_NAME to assist the Create View Object
wizard in naming the column with a Java-friendly name. The wizard will display
UserShortName as the name of the attribute derived from this calculated expression.

Example 5–14 SQL Query with SQL Alias

select PERSON_ID, EMAIL,
SUBSTR(FIRST_NAME,1,1)||'. '||LAST_NAME AS USER_SHORT_NAME

from PERSONS
order by EMAIL

5.9.3 What Happens When You Enable Expert Mode
When you enable expert mode, the read-only Generated Statement section of the
Query page becomes a fully editable Query Statement text box, displaying the full
SQL statement. Using this text box, you can change every aspect of the SQL query.

For example, Figure 5–38 shows the Query page of the Edit Query dialog for the
OrderItems view object. It’s an expert mode, entity-based view object that references
a PL/SQL function decode that obtains its input values from an expression set on the
ShippingCost attribute.

Tips: The view object editors and wizard in the JDeveloper provide
full support for generating SQL from choices that you make. For
example, two such options allow you to declaratively define outer
joins and work in declarative SQL mode (where no SQL is generated
until runtime).

Working with View Objects in Expert Mode

Defining SQL Queries Using View Objects 5-65

Figure 5–38 OrderItems Expert Mode View Object

5.9.4 What You May Need to Know About Expert Mode
When you define a SQL query using expert mode in the Edit Query dialog, you type a
SQL language statement directly into the editor. Using this mode places some
responsibility on the Business Components developer to understand how the view
object handles the metadata resulting from the query definition. Review the following
information to familiarize yourself with the behavior of the Edit Query dialog that you
use in expert mode.

5.9.4.1 Expert Mode Provides Limited Attribute Mapping Assistance
The automatic cooperation of a view object with its underlying entity objects depends
on correct attribute-mapping metadata saved in the XML component definition. This
information relates the view object attributes to corresponding attributes from
participating entity usages. JDeveloper maintains this attribute mapping information
in a fully automatic way for normal entity-based view objects. However, when you
decide to use expert mode with a view object, you need to pay attention to the changes
you make to the SELECT list. That is the part of the SQL query that directly relates to
the attribute mapping. Even in expert mode, JDeveloper continues to offer some
assistance in maintaining the attribute mapping metadata when you do the following
to the SELECT list:

■ Reorder an expression without changing its column alias

JDeveloper reorders the corresponding view object attribute and maintains the
attribute mapping.

■ Add a new expression

■ JDeveloper adds a new SQL-calculated view object attribute with a corresponding
camel-capped name based on the column alias of the new expression.

■ Remove an expression

Working with View Objects in Expert Mode

5-66 Fusion Developer's Guide for Oracle Application Development Framework

JDeveloper converts the corresponding SQL-calculated or entity-mapped attribute
related to that expression to a transient attribute.

However, if you rename a column alias in the SELECT list, JDeveloper has no way to
detect this, so it is treated as if you removed the old column expression and added a
new one of a different name.

After making any changes to the SELECT list of the query, visit the Attribute
Mappings page to ensure that the attribute-mapping metadata is correct. The table on
this page, which is disabled for view objects in normal mode, becomes enabled for
expert mode view objects. For each view object attribute, you will see its
corresponding SQL column alias in the table. By clicking into a cell in the View
Attributes column, you can use the dropdown list that appears to select the
appropriate entity object attribute to which any entity-mapped view attributes should
correspond.

5.9.4.2 Expert Mode Drops Custom Edits
When you disable expert mode for a view object, it will return to having its SELECT
and FROM clause be derived again. JDeveloper warns you that doing this might cause
your custom edits to the SQL statement to be lost. If this is what you want, after
acknowledging the alert, your view object's SQL query reverts back to the default.

5.9.4.3 Expert Mode Ignores Changes to SQL Expressions
Consider a Products view object with a SQL-calculated attribute named Shortens
whose SQL expression you defined as SUBSTR(NAME,1,10). If you switch this view
object to expert mode, the Query Statement box will show a SQL query similar to the
one shown in Example 5–15.

Example 5–15 SQL-Calculated Attribute Expression in Expert Mode

SELECT Products.PROD_ID,
Products.NAME,
Products.IMAGE,
Products.DESCRIPTION,
SUBSTR(NAME,1,10) AS SHORT_NAME

FROM PRODUCTS Products

If you go back to the attribute definition for the Shortens attribute and change the
SQL Expression field from SUBSTR(NAME,1,10) to SUBSTR(NAME,1,15), then the
change will be saved in the view object's XML component definition. Note, however,
that the SQL query in the Query Statement box will remain as the original expression.
This occurs because JDeveloper never tries to modify the text of an expert mode query.
In expert mode, the developer is in full control. JDeveloper attempts to adjust
metadata as a result of some kinds of changes you make yourself to the expert mode
SQL statement, but it does not perform the reverse. Therefore, if you change view
object metadata, the expert mode SQL statement is not updated to reflect it.

Therefore, you need to update the expression in the expert mode SQL statement itself.
To be completely thorough, you should make the change both in the attribute metadata
and in the expert mode SQL statement. This would ensure — if you (or another

Note: If the view attribute is SQL-calculated or transient, a
corresponding attribute with a "SQL" icon appears in the View
Attributes column to represent it. Since neither of these type of
attributes are related to underlying entity objects, there is no entity
attribute related information required for them.

Working with View Objects in Expert Mode

Defining SQL Queries Using View Objects 5-67

developer on your team) ever decides to toggle expert mode off at a later point in time
— that the automatically derived SELECT list would contain the correct SQL-derived
expression.

5.9.4.4 Expert Mode Returns Error for SQL Calculations that Change Entity
Attributes
When changing the SELECT list expression that corresponds to entity-mapped
attributes, don't introduce SQL calculations into SQL statements that change the value
of the attribute when retrieving the data. To illustrate the problem that will occur if
you do this, consider the query for a simple entity-based view object named
Products shown in Example 5–16.

Example 5–16 Query Statement Without SQL-Calculated Expression

SELECT Products.PROD_ID,
Products.NAME,
Products.IMAGE,
Products.DESCRIPTION

FROM PRODUCTS Products

Imagine that you wanted to limit the name column to display only the first ten
characters of the name of a product query. The correct way to do that would be to
introduce a new SQL-calculated field, such as ShortName with an expression like
SUBSTR(Products.NAME,1,10). One way you should avoid doing this is to switch
the view object to expert mode and change the SELECT list expression for the
entity-mapped NAME column to the include the SQL-calculate expression, as shown
in Example 5–17.

Example 5–17 Query Statement With SQL-Calculated Expression

SELECT Products.PROD_ID,
SUBSTR(Products.NAME,1,10) AS NAME,
Products.IMAGE,
Products.DESCRIPTION

FROM PRODUCTS Products

This alternative strategy would initially appear to work. At runtime, you see the
truncated value of the name as you are expecting. However, if you modify the row,
when the underlying entity object attempts to lock the row it does the following:

■ Issues a SELECT FOR UPDATE statement, retrieving all columns as it tries to lock
the row.

■ If the entity object successfully locks the row, it compares the original values of all
the persistent attributes in the entity cache as they were last retrieved from the

Note: If you find you had to make numerous changes to the view
object metadata of an expert mode view object, you can avoid having
to manually translate any effects to the SQL statement by copying the
text of your customized query to a temporary backup file. Then, you
can disable expert mode for the view object and acknowledge the
warning that you will lose your changes. At this point JDeveloper will
rederive the correct generated SQL statement based on all the new
metadata changes you've made. Finally, you can enable expert mode
once again and reapply your SQL customizations.

Working with View Objects in Expert Mode

5-68 Fusion Developer's Guide for Oracle Application Development Framework

database with the values of those attributes just retrieved from the database
during the lock operation.

■ If any of the values differs, then the following error is thrown:

(oracle.jbo.RowInconsistentException)
JBO-25014: Another user has changed the row with primary key [...]

If you see an error like this at runtime even though you are the only user testing the
system, it is most likely due to your inadvertently introducing a SQL function in your
expert mode view object that changed the selected value of an entity-mapped
attribute. In Example 5–17, the SUBSTR(Products.NAME,1,10) function introduced
causes the original selected value of the Name attribute to be truncated. When the
row-lock SQL statement selects the value of the NAME column, it will select the entire
value. This will cause the comparison shown in Example 5–17 to fail, producing the
"phantom" error that another user has changed the row.

The same thing would happen with NUMBER-valued or DATE-valued attributes if you
inadvertently apply SQL functions in expert mode to truncate or alter their retrieved
values for entity-mapped attributes.

Therefore, if you need to present altered versions of entity-mapped attribute data,
introduce a new SQL-calculated attribute with the appropriate expression to handle
the task.

5.9.4.5 Expert Mode Retains Formatting of SQL Statement
When you change a view object to expert mode, its XML component definition
changes from storing parts of the query in separate XML attributes, to saving the
entire query in a single <SQLQuery> element. The query is wrapped in an XML
CDATA section to preserve the line formatting you may have done to make a complex
query be easier to understand.

5.9.4.6 Expert Mode Wraps Queries as Inline Views
If your expert-mode view object:

■ Contains a ORDERBY clause specified in the Order By field of the Query Clauses
page at design time, or

■ Has a dynamic WHERE clause or ORDERBY clause applied at runtime using
setWhereClause() or setOrderByClause()

then its query gets nested into an inline view before applying these clauses. For
example, suppose your expert mode query was defined like the one shown in
Example 5–18.

Example 5–18 Expert Mode Query Specified At Design Time

select PERSON_ID, EMAIL, FIRST_NAME, LAST_NAME
from PERSONS
union all
select PERSON_ID, EMAIL, FIRST_NAME, LAST_NAME
from INACTIVE_PERSONS

Then, at runtime, when you set an additional WHERE clause like email =
:TheUserEmail, the view object nests its original query into an inline view like the
one shown in Example 5–19.

Working with View Objects in Expert Mode

Defining SQL Queries Using View Objects 5-69

Example 5–19 Runtime-Generated Query With Inline Nested Query

SELECT * FROM(
select PERSON_ID, EMAIL, FIRST_NAME, LAST_NAME
from PERSONS
union all
select PERSON_ID, EMAIL, FIRST_NAME, LAST_NAME
from INACTIVE_PERSONS) QRSLT

And, the view object adds the dynamic WHERE clause predicate at the end, so that the
final query the database sees looks like the one shown in Example 5–20.

Example 5–20 Runtime-Generated Query With Dynamic WHERE Clause

SELECT * FROM(
select PERSON_ID, EMAIL, FIRST_NAME, LAST_NAME
from PERSONS
union all
select PERSON_ID, EMAIL, FIRST_NAME, LAST_NAME
from INACTIVE_PERSONS) QRSLT
WHERE email = :TheUserEmail

This query "wrapping" is necessary in general for expert mode queries, because the
original query could be arbitrarily complex, including SQL UNION, INTERSECT,
MINUS, or other operators that combine multiple queries into a single result. In those
cases, simply "gluing" the additional runtime WHERE clause onto the end of the query
text could produce unexpected results. For example, the clause might apply only to
the last of several UNION'ed statements. By nesting the original query verbatim into an
inline view, the view object guarantees that your additional WHERE clause is correctly
used to filter the results of the original query, regardless of how complex it is.

5.9.4.7 Limitation of Inline View Wrapping at Runtime
Inline view wrapping of expert mode view objects, limits a dynamically added WHERE
clause to refer only to columns in the SELECT list of the original query. To avoid this
limitation, when necessary you can disable the use of the inline view wrapping by
calling setNestedSelectForFullSql(false).

5.9.4.8 Expert Mode Changes May Affect Dependent Objects
When you modify a view object query to be in expert mode after you have already
created the view links that involve that view object or after you created other view
objects that extend the view object, JDeveloper will warn you with the alert shown in
Figure 5–39. The alert reminds you that you should revisit these dependent
components to ensure their SQL statements still reflect the correct query.

Figure 5–39 Proactive Reminder to Revisit Dependent Components

For example, if you were to modify the OrdersVO view object to use expert mode,
because the OrdersByStatusVO view object extends it, you need to revisit the

Working with Bind Variables

5-70 Fusion Developer's Guide for Oracle Application Development Framework

extended component to ensure that its query still logically reflects an extension of the
modified parent component.

5.10 Working with Bind Variables
Bind variables provide you with the means to supply attribute values at runtime to the
view object or view criteria. All bind variables are defined at the level of the view
object and used in one of the following ways:

■ You can type the bind variable directly into the WHERE clause of your view
object’s query to include values that might change from execution to execution. In
this case, bind variables serve as placeholders in the SQL string whose value you
can easily change at runtime without altering the text of the SQL string itself. Since
the query doesn't change, the database can efficiently reuse the same parsed
representation of the query across multiple executions, which leads to higher
runtime performance of your application.

■ You can select the bind variable from a selection list to define the attribute value
for a view criteria in the Edit View Criteria dialog you open on the view object. In
this case, the bind variables allow you to change the values for attributes you will
use to filter the view object row set. For more information about filtering view
object row sets, see Section 5.11, "Working with Named View Criteria."

If the view criteria is to be used in a seeded search, you have the option of making
the bind variable updatable by the end user. With this updatable option, end users
will be expected to enter the value in a search form corresponding to the view
object query.

Bind variables that you add to a WHERE clause require a valid value at runtime, or a
runtime exception error will be thrown. In contrast, view criteria execution need not
require the bind variable value if the view criteria item for which the bind variable is
assigned is not required. To enforce this desired behavior, the Bind Variable dialog lets
you can specify whether a bind variable is required or not.

You can define a default value for the bind variable or write scripting expressions for
the bind variable that includes dot notation access to attribute property values.
Expressions are based on the Groovy scripting language, as described in Section 3.6,
"Overview of Groovy Support."

5.10.1 How to Add Bind Variables to a View Object Definition
To add a named bind variable to a view object, use the Query page of the overview
editor for the view object. You can define as many bind variables as you need.

Before you begin:
Create the desired view objects as described in Section 5.2.1, "How to Create an
Entity-Based View Object," and Section 5.2.3, "How to Create an Expert Mode,
Read-Only View Object."

To define a named bind variable:
1. In the Application Navigator, double-click the view object.

2. In the overview editor, click the Query navigation tab.

3. In the Query page, expand the Bind Variables section and click the Create new
bind variable button.

Working with Bind Variables

Defining SQL Queries Using View Objects 5-71

4. In the Bind Variable dialog, enter the name and data type for the new bind
variable.

Because the bind variables share the same namespace as view object attributes,
specify names that don't conflict with existing view object attribute names. As
with view objects attributes, by convention bind variable names are created with
an initial capital letter, but you can rename it as desired.

5. Optionally, specify a default value for the bind variable:

■ When you want the value to be determined at runtime using an expression,
enter a Groovy scripting language expression, select the Expression value
type and enter the expression in the Value field. Optionally, click Edit to open
the Expression dialog. The Expression dialog gives you a larger text area to
write the expression. For example, you might want to define a bind variable to
filter view instances based on the current user, as described in Section 5.10.2,
"How to Reference the Current User in a Named Bind Variable Using Groovy."

■ When you want to define a default value, select the Literal value type and
enter the literal value in the Value field.

6. Decide on one of the following runtime usages for the bind variable:

■ When you want the value to be supplied to a SQL WHERE clause using a bind
variable in the clause, select the Required checkbox. This ensures that a
runtime exception will be thrown if the value is not supplied. For more
information, see Section 5.10.8.2, "Errors Related to Naming Bind Variables."

■ When you want the value to be supplied to a view criteria using a bind
variable in the view criteria, only select the Required checkbox when you
need to reference the same bind variable in a SQL WHERE clause or when you
want to use the bind variable as the assigned value of a view criteria item that
is specifically defined as required by a view criteria that is applied to a view
object. When Required is unselected this ensures that the value is optional
and that no runtime exception will be thrown if the bind variable is not
resolved. For example, view criteria with bind variables defined can be used
to create Query-by-Example search forms in the user interface. For more
information, see Section 5.11, "Working with Named View Criteria."

7. Select the Control Hints tab and specify control hints like Label Text, Format
Type, Format mask, and others.

The view layer will use bind variable control hints when you build user interfaces
like search pages that allow the user to enter values for the named bind variables.
The Updatable checkbox controls whether the end user will be allowed to change
the bind variable value through the user interface. If a bind variable is not
updatable, then its value can only be changed programmatically by the developer.

8. Click OK.

After defining the bind variables, the next step is to reference them in the SQL
statement. While SQL syntax allows bind variables to appear both in the SELECT list
and in the WHERE clause, you'll typically use them in the latter context, as part of your
WHERE clause. For example, Example 5–21 shows the bind variables LowUserId and
HighUserId introduced into a SQL statement created using the Query page in the
overview editor for the view object.

Example 5–21 Bind Variables in the WHERE Clause of View Object SQL Statement

select PERSON_ID, EMAIL, FIRST_NAME, LAST_NAME
from PERSONS

Working with Bind Variables

5-72 Fusion Developer's Guide for Oracle Application Development Framework

where (upper(FIRST_NAME) like upper(:TheName)||'%'
or upper(LAST_NAME) like upper(:TheName)||'%')

and PERSON_ID between :LowUserId and :HighUserId
order by EMAIL

Notice that you reference the bind variables in the SQL statement by prefixing their
name with a colon like :TheName or :LowUserId. You can reference the bind
variables in any order and repeat them as many times as needed within the SQL
statement.

5.10.2 How to Reference the Current User in a Named Bind Variable Using Groovy
You can use the Groovy expression adf.context.securityContext.userName
to set the default value for the named bind variable that you use to provide the current
user in a view instance filter. Specifically, you can use the bind variable in a named
view criteria that you define to filter a view object instance in the data model for the
project. For example, in the StoreFront module of the Fusion Order Demo application,
the named bind variable userPrincipal is defined for the PersonsVO view object,
as shown in Figure 5–40.

Figure 5–40 Groovy Expression Used to Set userPrincipal Bind Variable

The PersonsVO view object also defines the
AuthenticatedUserByPrincipalCriteria view criteria. This view criteria
defines a filter for the PrincipalName attribute of the PersonsVO with the bind
variable userPrincipal providing the value. In this example, the bind variable
userPrincipal is defined with Updatable enabled. This ensures that the view
criteria is able to set the value obtained at runtime from the ADF security context.
Since the bind variable is not used in the SQL WHERE clause for the PersonsVO view
object, the Required field is unselected. This ensures that the value is optional and that
no runtime exception will be thrown if the bind variable is not resolved.

Then in the data model for the StoreFrontService project, where the PersonsVO
specifies the view definition for the usage AuthenticatedUser, the view criteria
AuthenticatedUserByPrincipalCriteria with the named bind variable is
defined as the view usage’s runtime filter. For details about creating view instances for
your project’s data model, see Section 9.2.3.3, "Customizing a View Object Instance
that You Add to an Application Module."

Working with Bind Variables

Defining SQL Queries Using View Objects 5-73

5.10.3 What Happens When You Add Named Bind Variables
Once you've added one or more named bind variables to a view object, you gain the
ability to easily see and set the values of these variables at runtime. Information about
the name, type, and default value of each bind variable is saved in the view object's
XML component definition file. If you have defined UI control hints for the bind
variables, this information is saved in the view object's component message bundle file
along with other control hints for the view object.

5.10.4 How to Test Named Bind Variables
The Business Component Browser allows you to interactively inspect and change the
values of the named bind variables for any view object, which can really simplify
experimenting with your application module's data model when named bind
parameters are involved. For more information about editing the data model and
running the Business Component Browser, see Section 6.3, "Testing View Object
Instances Using the Business Component Browser."

The first time you execute a view object in the Business Component Browser to display
the results in the data view page, a Bind Variables dialog will appear, as shown in
Figure 5–41.

The Bind Variables dialog lets you:

■ View the name, as well as the default and current values, of the particular bind
variable you select from the list

■ Change the value of any bind variable by updating its corresponding Value field
before clicking OK to set the bind variable values and execute the query

■ Inspect and set the bind variables for the view object in the current data view
page, using the Edit Bind Parameters button in the toolbar — whose icon looks
like ":id"

■ Verify control hints are correctly set up by showing the label text hint in the Bind
Variables list and by formatting the Value attribute using the respective format
mask

Figure 5–41 Setting Bind Variables in the Business Component Browser

If you defined the bind variable in the Bind Variables dialog with the Reference
checkbox deselected (the default), you will be able to test view criteria and supply the
bind variable with values as needed. Otherwise, if you selected the Reference
checkbox, then you must supply a value for the bind variable in the Business
Component Browser. The Business Component Browser will throw the same

Working with Bind Variables

5-74 Fusion Developer's Guide for Oracle Application Development Framework

exception seen at runtime for any view object whose SQL statement use bind variables
that do not resolve with a supplied value.

5.10.5 How to Add a WHERE Clause with Named Bind Variables at Runtime
Using the view object's setWhereClause() method, you can add an additional
filtering clause at runtime. This runtime-added WHERE clause predicate does not
replace the design-time generated predicate, but rather further narrows the query
result by adding to the existing design time WHERE clause. Whenever the dynamically
added clause refers to a value that might change during the life of the application, you
should use a named bind variable instead of concatenating the literal value into the
WHERE clause predicate.

For example, assume you want to further filter the PersonList view object at
runtime based on the value of the PERSON_TYPE_CODE column in the table. Also
assume that you plan to search sometimes for rows where PERSON_TYPE_CODE =
'CUST' and other times for rows where PERSON_TYPE_CODE = 'SUPP'. While
slightly fewer lines of code, Example 5–22 is not desirable because it changes the
WHERE clause twice just to query two different values of the same PERSON_TYPE_CODE
column.

Example 5–22 Incorrect Use of setWhereClause() Method

// Don't use literal strings if you plan to change the value!
vo.setWhereClause("person_type_code = 'CUST'");
// execute the query and process the results, and then later...
vo.setWhereClause("person_type_code = 'person'");

Instead, you should add a WHERE clause predicate that references named bind
variables that you define at runtime as shown in Example 5–23.

Example 5–23 Correct Use of setWhereClause() Method and Bind Variable

vo.setWhereClause("person_type_code = :ThePersonType");
vo.defineNamedWhereClauseParam("ThePersonType", null, null);
vo.setNamedWhereClauseParam("ThePersonType","CUST");
// execute the query and process the results, and then later...
vo.setNamedWhereClauseParam("ThePersonType","person");

This allows the text of the SQL statement to stay the same, regardless of the value of
PERSON_TYPE_CODE you need to query on. When the query text stays the same
across multiple executions, the database will return the results without having to
reparse the query.

If you later need to remove the dynamically added WHERE clause and bind variable,
you should do so the next time you need them to be different, just before executing the
query. This will prevent the type of SQL execution error as described in
Section 5.10.8.1, "An Error Related to Clearing Bind Variables." Avoid calling
removeNamedWhereClauseParam() in your code immediately after setting the
WHERE clause.

An updated test client class illustrating these techniques would look like what you see
in Example 5–24. In this case, the functionality that loops over the results several times
has been refactored into a separate executeAndShowResults() method. The
program first adds an additional WHERE clause of person_id = :ThePersonId and
then later replaces it with a second clause of person_type_code =
:ThePersonType.

Working with Bind Variables

Defining SQL Queries Using View Objects 5-75

Example 5–24 TestClient Program Exercising Named Bind Variable Techniques

package devguide.examples.readonlyvo.client;

import oracle.jbo.ApplicationModule;
import oracle.jbo.Row;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;
import oracle.jbo.domain.Number;

public class TestClientBindVars {
public static void main(String[] args) {
String amDef = "devguide.examples.readonlyvo.PersonService";
String config = "PersonServiceLocal";
ApplicationModule am =
Configuration.createRootApplicationModule(amDef,config);
ViewObject vo = am.findViewObject("PersonList");
// Set the two design time named bind variables
vo.setNamedWhereClauseParam("TheName","shelli%");
vo.setNamedWhereClauseParam("HighUserId", new Number(215));
executeAndShowResults(vo);
// Add an extra where clause with a new named bind variable
vo.setWhereClause("person_type_code = :ThePersonId");
vo.defineNamedWhereClauseParam("ThePersonId", null, null);
vo.setNamedWhereClauseParam("ThePersonId",new Number(116));
executeAndShowResults(vo);
vo.removeNamedWhereClauseParam("ThePersonId");
// Add an extra where clause with a new named bind variable
vo.setWhereClause("person_type_code = :ThePersonType");
vo.defineNamedWhereClauseParam("ThePersonType", null, null);
vo.setNamedWhereClauseParam("ThePersonType","SUPP");
// Show results when :ThePersonType = 'SUPP'
executeAndShowResults(vo);
vo.setNamedWhereClauseParam("ThePersonType","CUST");
// Show results when :ThePersonType = 'CUST'
executeAndShowResults(vo);
Configuration.releaseRootApplicationModule(am,true);

}
private static void executeAndShowResults(ViewObject vo) {
System.out.println("---");
vo.executeQuery();
while (vo.hasNext()) {
Row curUser = vo.next();
System.out.println(curUser.getAttribute("PersonId")+" "+

curUser.getAttribute("ShortName"));
}

}
}

However, if you run this test program, you may actually get a runtime error like the
one shown in Example 5–25.

Example 5–25 Runtime Error Resulting From a SQL Parsing Error

oracle.jbo.SQLStmtException: JBO-27122: SQL error during statement preparation.
Statement:
SELECT * FROM (select PERSON_ID, EMAIL, FIRST_NAME, LAST_NAME
from PERSONS
where (upper(FIRST_NAME) like upper(:TheName)||'%'

or upper(LAST_NAME) like upper(:TheName)||'%')
and PERSON_ID between :LowUserId and :HighUserId

Working with Bind Variables

5-76 Fusion Developer's Guide for Oracle Application Development Framework

order by EMAIL) QRSLT WHERE (person_type_code = :ThePersonType)
Detail 0
java.sql.SQLException: ORA-00904: "PERSON_TYPE": invalid identifier

The root cause, which appears after the ## Detail 0 ## in the stack trace, is a SQL
parsing error from the database reporting that PERSON_TYPE_CODE column does not
exist even though the PERSONS table definitely has a PERSON_TYPE_CODE column.
The problem occurs due to the mechanism that view objects use by default to apply
additional runtime WHERE clauses on top of read-only queries. Section 5.10.7, "What
Happens at Runtime: When a Read-Only View Object WHERE Clause is Set," explains
a resolution for this issue.

5.10.6 How to Set Existing Bind Variable Values at Runtime
To set named bind variables at runtime, use the setNamedWhereClauseParam()
method on the ViewObject interface. In JDeveloper, you can choose Refactor >
Duplicate to create a new TestClientBindVars class based on the existing
TestClient.java class as shown in Section 6.4.2, "How to Create a Command-Line
Java Test Client." In the test client class, you can set the values of the bind variables
using a few additional lines of code. For example, the
setNamedWhereClauseParam() might take as arguments the bind variables
HighUserId and TheName as shown in Example 5–26.

Example 5–26 Setting the Value of Named Bind Variables Programmatically

// changed lines in TestClient class
ViewObject vo = am.findViewObject("PersonList");
vo.setNamedWhereClauseParam("TheName","alex%");
vo.setNamedWhereClauseParam("HighUserId", new Number(315));
vo.executeQuery();
// etc.

Running the test client class shows that your bind variables are filtering the data. For
example, the resulting rows for the setNamedWhereClauseParam() method shown
in Example 5–26 may show only two matches based on the name alex as shown in
Example 5–27.

Example 5–27 Result of Bind Variables Filtering the Data in TestClient Class

303 ahunold
315 akhoo

Whenever a view object's query is executed, you can view the actual bind variable
values in the runtime debug diagnostics like the sample shown in Example 5–28.

Example 5–28 Debug Diagnostic Sample With Bind Variable Values

[256] Bind params for ViewObject: PersonList
[257] Binding param "LowUserId": 0
[258] Binding param "HighUserId": 315
[259] Binding param "TheName": alex%

This information that can be invaluable when debugging your applications. Notice
that since the code did not set the value of the LowUserId bind variable, it took on the
default value of 0 (zero) specified at design time. Also notice that the use of the
UPPER() function in the WHERE clause and around the bind variable ensured that the
match using the bind variable value for TheName was performed case-insensitively.

Working with Bind Variables

Defining SQL Queries Using View Objects 5-77

The sample code set the bind variable value to "alex%" with a lowercase "a", and the
results show that it matched Alexander.

5.10.7 What Happens at Runtime: When a Read-Only View Object WHERE Clause is Set
If you dynamically add an additional WHERE clause at runtime to a read-only view
object, its query gets nested into an inline view before applying the additional WHERE
clause.

For example, suppose your query was defined as shown in Example 5–29.

Example 5–29 Query Specified At Design Time

select PERSON_ID, EMAIL, FIRST_NAME, LAST_NAME
from PERSONS
where (upper(FIRST_NAME) like upper(:TheName)||'%'

or upper(LAST_NAME) like upper(:TheName)||'%')
and PERSON_ID between :LowUserId and :HighUserId

order by EMAIL

At runtime, when you set an additional WHERE clause like person_type_code =
:ThePersonType as the test program did in Example 5–24, the framework nests the
original query into an inline view like the sample shown in Example 5–30.

Example 5–30 Runtime-Generated Query With Inline Nested Query

SELECT * FROM(
select PERSON_ID, EMAIL, FIRST_NAME, LAST_NAME
from PERSONS
where (upper(FIRST_NAME) like upper(:TheName)||'%'

or upper(LAST_NAME) like upper(:TheName)||'%')
and PERSON_ID between :LowUserId and :HighUserId

order by EMAIL) QRSLT

Then the framework adds the dynamic WHERE clause predicate at the end, so that the
final query the database sees is like the sample shown in Example 5–31.

Example 5–31 Runtime-Generated Query With Dynamic WHERE Clause

SELECT * FROM(
select PERSON_ID, EMAIL, FIRST_NAME, LAST_NAME
from PERSONS
where (upper(FIRST_NAME) like upper(:TheName)||'%'

or upper(LAST_NAME) like upper(:TheName)||'%')
and PERSON_ID between :LowUserId and :HighUserId

order by EMAIL) QRSLT
WHERE person_type_code = :ThePersonType

This query "wrapping" is necessary in the general case since the original query could
be arbitrarily complex, including SQL UNION, INTERSECT, MINUS, or other operators
that combine multiple queries into a single result. In those cases, simply "gluing" the
additional runtime WHERE clause onto the end of the query text could produce
unexpected results because, for example, it might apply only to the last of several
UNION'ed statements. By nesting the original query verbatim into an inline view, the
view object guarantees that your additional WHERE clause is correctly used to filter the
results of the original query, regardless of how complex it is. The consequence (that
results in an ORA-00904 error) is that the dynamically added WHERE clause can refer
only to columns that have been selected in the original query.

Working with Bind Variables

5-78 Fusion Developer's Guide for Oracle Application Development Framework

The simplest solution is to add the dynamic query column names to the end of the
query’s SELECT list on the Edit Query dialog (click the Edit SQL Query button on the
Query page of the overview editor for the view object). Just adding the new column
name at the end of the existing SELECT list — of course, preceded by a comma — is
enough to prevent the ORA-00904 error: JDeveloper will automatically keep your
view object's attribute list synchronized with the query statement. Alternatively,
Section 5.9.4.7, "Limitation of Inline View Wrapping at Runtime" explains how to
disable this query nesting when you don't require it.

The test client program in Example 5–24 now produces the results shown in
Example 5–32.

Example 5–32 Named Bind Variables Resulting From Corrected TestClient

116 S. Baida

116 S. Baida

116 S. Baida

5.10.8 What You May Need to Know About Named Bind Variables
There are several things you may need to know about named bind variables, including
the runtime errors that are displayed when bind variables have mismatched names
and the default value for bind variables.

5.10.8.1 An Error Related to Clearing Bind Variables
You need to ensure that your application handles changing the value of bind variables
properly for use with activation and passivation of the view object instance settings at
runtime. For example, before you deploy the application, you will want to stress-test
your application in JDeveloper by disabling application module pooling, as described
in Section 40.10, "Testing to Ensure Your Application Module is Activation-Safe."
Following the instructions in that section effectively simulates the way your
application will manage the passivation store when you eventually deploy the
application.

When the application reactivates the pending state from the passivation store upon
subsequent requests during the same user session, the application will attempt to set
the values of any dynamically added named WHERE clause bind variables. Changing
the values to null before passivation takes place will prevent the bind variable values
from matching the last time the view object was executed and the following error will
occur during activation:

(oracle.jbo.SQLStmtException) JBO-27122: SQL error during statement preparation.
(java.sql.SQLException) Attempt to set a parameter name that does not occur in
SQL: 1

Do not change the value of the bind variables (or other view object instance settings)
just after executing the view object. Rather, if you will not be re-executing the view
object again during the same block of code (and therefore during the same HTTP
request), you should defer changing the bind variable values for the view object
instance until the next time you need them to change, just before executing the query.
To accomplish this, use the following pattern:

1. (Request begins and application module is acquired)

2. Call setWhereClause(null) to clear WHERE clause

Working with Named View Criteria

Defining SQL Queries Using View Objects 5-79

3. Call setWhereClauseParams(null) to clear the WHERE clause bind variables

4. Call setWhereClause() that references n bind variables

5. Call setWhereClauseParams() to set the n values for those n bind variables

6. Call executeQuery()

7. (Application module is released)

5.10.8.2 Errors Related to Naming Bind Variables
You need to ensure that the list of named bind variables that you reference in your
SQL statement matches the list of named bind variables that you've defined in the
Bind Variables section of the overview editor’s Query page for the view object.
Failure to have these two agree correctly can result in one of the following two errors
at runtime.

If you use a named bind variable in your SQL statement but have not defined it, you'll
receive an error like this:

(oracle.jbo.SQLStmtException) JBO-27122: SQL error during statement preparation.
Detail 0
(java.sql.SQLException) Missing IN or OUT parameter at index:: 1

On the other hand, if you have defined a named bind variable, but then forgotten to
reference it or mistyped its name in the SQL, then you will see an error like this:

oracle.jbo.SQLStmtException: JBO-27122: SQL error during statement preparation.
Detail 0
java.sql.SQLException: Attempt to set a parameter name that does not occur in the
SQL: LowUserId

To resolve either of these errors, double-check that the list of named bind variables in
the SQL matches the list of named bind variables in the Bind Variables section of the
overview editor’s Query page for the view object. Additionally, open the Bind
Variables dialog for the bind variable and verify that the Reference checkbox is not
still deselected (the default). To use the bind variable in a SQL statement, you must
select the Reference checkbox.

5.10.8.3 Default Value of NULL for Bind Variables
If you do not supply a default value for your named bind variable, it defaults to the
NULL value at runtime. This means that if you have a WHERE clause like:

PERSON_ID = :ThePersonId

and you do not provide a default value for the ThePersonId bind variable, it will
default to having a NULL value and cause the query to return no rows. Where it makes
sense for your application, you can leverage SQL functions like NVL(), CASE,
DECODE(), or others to handle the situation as you require. For example, the following
WHERE clause fragment allows the view object query to match any name if the value of
:TheName is null.

upper(FIRST_NAME) like upper(:TheName)||'%'

5.11 Working with Named View Criteria
A view criteria you define lets you specify filter information for the rows of a view
object collection. The view criteria object is a row set of one or more view criteria rows,

Working with Named View Criteria

5-80 Fusion Developer's Guide for Oracle Application Development Framework

whose attributes mirror those in the view object. The view criteria definition comprises
query conditions that augment the WHERE clause of the target view object. Query
conditions that you specify apply to the individual attributes of the target view object.

The key difference between a view object row of query results and a view criteria row
is that the data type of each attribute in the view criteria row is String. This key
difference supports Query-by-Example operators and therefore allows the user to
enter conditions such as "OrderId > 304", for example.

The Edit View Criteria dialog lets you create view criteria and save them as part of the
view object’s definition, where they appear as named view criteria. You use the Query
page of the overview editor to define view criteria for specific view objects.

Additionally, view criteria have full API support, and it is therefore possible to create
and apply view criteria to view objects programmatically.

5.11.1 How to Create Named View Criteria Declaratively
You create named view criteria definitions when you need to filter individual view
object results. View criteria that you define at design time can participate in these
scenarios where filtering results is desired at runtime:

■ Supporting Query-by-Example search forms that allow the end user to supply
values for attributes of the target view object.

For example, the end user might input the value of a customer name and the date
to filter the results in a web page that displays the rows of the CustomerOrders
view object. The web page designer will see the named view criteria in the
JDeveloper Data Controls panel and, from them, easily create a search form. For
more information about the utilizing the named view criteria in the Data Controls
panel, see Section 27.2, "Creating Query Search Forms."

■ Filtering the list of values (LOV) components that allow the end user may select
from one attribute list (displayed in the UI as an LOV component).

The web page designer will see the attributes of the view object in the JDeveloper
Data Controls panel and, from them, easily create LOV controls. For more
information about utilizing LOV-enabled attributes in the Data Controls panel, see
Section 25.3, "Creating a Selection List."

■ Validating attribute values using a view accessor with a view criteria applied to
filter the view accessor results.

For more information about create view accessor validators, see Section 10.4.2,
"How to Validate Against a View Accessor."

■ Creating the application module’s data model from a single view object definition
with a unique view criteria applied for each view instance.

The single view object query modified by view criteria is useful with look up data
that must be shared across the application. In this case, a base view object
definition queries the lookup table in the database and the view criteria set the
lookup table’s TYPE column to define application-specific views. To define view
instances in the data model using the view criteria you create for a base view
object definition, see Section 10.3.3, "How to Define the WHERE Clause of the
Lookup View Object Using View Criteria."

To define view criteria for the view object you wish to filter, you open the view object
in the overview editor and use the View Criteria section of the Query page. A
dedicated editor that you open from the View Criteria section helps you to build a
WHERE clause using attribute names instead of the target view object’s corresponding

Working with Named View Criteria

Defining SQL Queries Using View Objects 5-81

SQL column names. You may define multiple named view criteria for each view
object.

Each view criteria definition consists of the following elements:

■ One or more view criteria rows consisting of an arbitrary number of view criteria
groups or an arbitrary number of references to another named view criteria
already defined for the current view object.

■ Optional view criteria groups consisting of an arbitrary number of view criteria
items.

■ View criteria items consisting of an attribute name, an attribute-appropriate
operator, and an operand. Operands can be a literal value when the filter value is
defined or a bind variable that can optionally utilize a scripting expression that
includes dot notation access to attribute property values.

Expressions are based on the Groovy scripting language, as described in
Section 3.6, "Overview of Groovy Support."

When you define a view criteria, you control the source of the filtered results. You can
limit the results of the filtered view object to:

■ Just the database table specified by the view object

■ Just the in-memory results of the view object query

■ Both the database and the in-memory results of the view object query.

Filtering on both database tables and the view object’s in-memory results allows you
to filter rows that were created in the transaction but not yet committed to the
database.

View criteria expressions you construct in the Edit View Criteria dialog use logical
conjunctions to specify how to join the selected criteria item or criteria group with the
previous item or group in the expression:

■ AND conjunctions specify that the query results meet both joined conditions. This
is the default for each view criteria item you add.

■ OR conjunctions specify that the query results meet either or both joined
conditions. This is the default for view criteria groups.

Additionally, you may create nested view criteria when you want to filter rows in the
current view object based on criteria applied to view-linked detail views. A nested
view criteria group consists of an arbitrary number of nested view criteria items. You
can use nested view criteria when you want to have more controls over the logical
conjunctions among the various view criteria items. The nested criteria place
restrictions on the rows that satisfy the criteria under the nested criteria’s parent view
criteria group. For example, you might want to query both a list of employees with
(Salary > 3000) and belonging to (DeptNo = 10 or DeptNo = 20). You can
define a view criteria with the first group with one item for (Salary > 3000) and a
nested view criteria with the second group with two items DeptNo = 10 and
DeptNo =20.

Before you begin:
■ Create the desired view objects as described in Section 5.2.1, "How to Create an

Entity-Based View Object," and Section 5.2.3, "How to Create an Expert Mode,
Read-Only View Object."

Working with Named View Criteria

5-82 Fusion Developer's Guide for Oracle Application Development Framework

■ If the view criteria will use a bind variable in the operand, create the bind variable
as described in Section 5.10.1, "How to Add Bind Variables to a View Object
Definition."

To define a named view criteria:
1. In the Application Navigator, double-click the view object for which you want to

create the named view criteria.

2. In the overview editor, click the Query navigation tab.

3. In the Query page, expand the View Criteria section and click the Create new
view criteria button.

4. In the Create View Criteria dialog, enter the name of the view criteria to identify
its usage in your application.

5. In the Query Execution Mode dropdown list, decide how you want the view
criteria to filter the view object query results.

You can limit the view criteria to filter the database table specified by the view
object query, the in memory row set produced by the query, or both the database
table and the in-memory results.

Choosing Both may be appropriate for situations where you want to include rows
created as a result of enforced association consistency. In this case, in-memory
filtering is performed after the initial fetch.

6. Click one of these Add buttons to define the view criteria.

■ Add Item to add a single criteria item. The editor will add the item to the
hierarchy beneath the current group or view criteria selection. By default each
time you add an item, the editor will choose the next attribute to define the
criteria item. You can change the attribute to any attribute that the view object
query defines.

■ Add Group to add a new group that will compose criteria items that you
intend to add to it. When you add a new group, the editor inserts the OR
conjunction into the hierarchy. You can change the conjunction as desired.

■ Add Criteria to add a view criteria that you intend to define. This selection is
an alternative to adding a named criteria that already exists in the view object
definition. When you add a new view criteria, the editor inserts the AND
conjunction into the hierarchy. You can change the conjunction as desired.
Each time you add another view criteria, the editor nests the new view criteria
beneath the current view criteria selection in the hierarchy. The root node of
the hierarchy defines the named view criteria that you are currently editing.

Search forms that the UI designer will create from view criteria are not able to
use directly nested view criteria. For more information about defining nested
expressions for use with search forms, see Section 5.11.4, "What You May Need
to Know About Nested Expressions."

■ Add Named Criteria to add a view criteria that the view object defines. The
named criteria must appear in the overview editor for the view object you are
defining the view criteria.

7. Select a view criteria item node in the view criteria hierarchy and define the added
node in the Criteria Item section.

■ Choose the desired Attribute for the criteria item. By default the editor adds
the first one in the list.

Working with Named View Criteria

Defining SQL Queries Using View Objects 5-83

Optionally, you can add a nested view criteria inline when a view link exists
for the current view object you are editing. The destination view object name
will appear in the Attribute dropdown list. Selecting a view object lets you
filter the view criteria based on view criteria items for the nested view criteria
based on a view link relationship. For example, AddressVO is linked to the
PaymentOptionsVO and a view criteria definition for PaymentOptionsVO
will display the destination view object AddressVO. You could define the
nested view criteria to filter payment options based on the CountryId
attribute of the current customer, as specified by the CustomerId criteria
item, as shown in Figure 5–42.

Figure 5–42 Edit View Criteria Dialog with Nested View Criteria Specified

■ Choose the desired Operator.

The list displays only the operators that are appropriate for the selected
attribute or view object. In the case of a view object selection, the exists
operator applies to a view criteria that you will define (or reference) as an
operand. In the case of Strings and Date type attributes, the Between and Not
between operators require you to supply two operand values to define the
range. In the case of Date type attributes, you can select operators that test for
a date or date range (with date values entered in the format YYYY-MM-DD).
For example, for December 16th, 2010, enter 2010-12-16.

JDeveloper does not support the IN operator. However, you can create a view
criteria with the IN operator using the API, as described in Section 5.11.7,
"How to Create View Criteria Programmatically."

8. Choose the desired Operand for the view criteria item selection.

Working with Named View Criteria

5-84 Fusion Developer's Guide for Oracle Application Development Framework

■ Select Literal when you want to supply a value for the attribute or when you
want to define a default value for a user-specified search field for a
Query-by-Example search form. When the view criteria defines a query search
form for the user interface, you may leave the Value field empty. In this case,
the user will supply the value. You may also provide a value that will act as a
search field default value that the user will be able to override. The value you
supply in the Value field can include wildcard characters * or %.

■ Select Bind Variable when you want the value to be determined at runtime
using a bind variable. If the variable was already defined for the view object,
select it from the Parameters dropdown list. Otherwise, click New to display
the Bind Variable dialog that lets you create a new bind variable on the view
object. For more information about creating bind variables, see Section 5.10.1,
"How to Add Bind Variables to a View Object Definition."

When you define bind variables on the view object for use by the view criteria,
you must specify that the variable is not required by the SQL query that the
view object defines. To do this, deselect the Required checkbox in the Bind
Variables dialog, as explained in Section 5.10.1, "How to Add Bind Variables to
a View Object Definition."

For further discussion about view criteria use cases for bind variables and
literals, see Section 5.11.3, "What You May Need to Know About Bind Variable
Options."

9. For each item, group, or nested view criteria that you define, optionally change the
default conjunction to specify how the selection should be joined.

■ AND conjunction specifies that the query results meet both joined conditions.
This is the default for each view criteria item or view nested view criteria that
you add.

■ OR conjunction specifies that the query results meet either or both joined
conditions. This is the default for view criteria groups.

10. Verify that the view criteria definition is valid by doing one of the following:

■ Click Explain Plan to visually inspect the view criteria’s generated WHERE
clause.

■ Click Test to allow JDeveloper to verify that the WHERE clause is valid.

11. To prevent the attribute to be filtered based on the case of the runtime-supplied
value, leave Ignore Case selected.

The criteria item can be a literal value that you define or a runtime parameter that
the end user supplies. This option is supported for attributes of type String only.
The default disables case sensitive searches.

12. In the Validation dropdown list, decide whether the view criteria item is a
required or an optional part of the attribute value comparison in the generated
WHERE clause.

■ Selectively Required means that the WHERE clause will ignore the view
criteria item at runtime if no value is supplied and there exists at least one
criteria item at the same level that has a criteria value. Otherwise, an exception
is thrown.

■ Optional means the view criteria is added to the WHERE clause only if the
value is non-NULL. The default Optional for each new view criteria item
means no exception will be generated for null values.

Working with Named View Criteria

Defining SQL Queries Using View Objects 5-85

■ Required means that the WHERE clause will fail to execute and an exception
will be thrown when no value is supplied for the criteria item.

13. If the view criteria uses a bind variable as the operand, decide whether the IS
NULL condition is the generated in the WHERE clause. This field is enabled only if
you have selected Optional for the validation of the bind variable.

■ Leave Ignore Null Values selected (default) when you want to permit the
view criteria to return a result even when the bind variable value is not
supplied at runtime. For example, suppose you define a view criteria to allow
users to display a cascading list of countries and states (or provinces) through
a bind variable that takes the countryID as the child list’s controlling
attribute. In this case, the default behavior for the view criteria execution
returns the list of all states if the user makes no selection in the parent LOV (an
empty countryId field). The generated WHERE clause would look similar to
(((CountryEO.COUNTRY_ID =:bvCountryId) OR (:bvCountryId IS
NULL))), where the test for a null value guarantees that the child list displays
a result even when the bind variable is not set. When validation is set to
Required or Optionally Required, the view criteria expects to receive a value
and thus this option to ignore null values is disabled.

■ Deselect Ignore Null Values when you expect the view criteria to return a
null result when the bind variable value is not supplied at runtime. In the
example of the cascading lists, the view criteria execution returns no states if
the user makes no selection with an empty countryID field. In this case, the
generated WHERE clause would look similar to ((CountryEO.COUNTRY_
ID=:bvCountryId)), where the test for null is not performed, which means
the query is expected to function correctly with a null value bind variable.

Note that the validation settings Required or Optionally Required also
remove the null value condition but support a different use case. They should
be used in combination with Ignore Null Values feature to achieve the
desired runtime behavior. For more details about the interaction of these
features, see Section 5.11.3, "What You May Need to Know About Bind
Variable Options."

14. Click OK.

5.11.2 What Happens When You Create a Named View Criteria
The Create View Criteria dialog in JDeveloper lets you easily create view criteria and
save them as named definitions. These named view criteria definitions add metadata
to the XML component definition file that represents the target view object's
declarative settings. Once defined, named view criteria appear by name in the Query
page of the overview editor for the view object.

To view the view criteria, expand the desired view object in the Application
Navigator, select the XML file under the expanded view object, open the Structure
window, and expand the View Criteria node. Each view criteria definition for a view
object contains one or more <ViewCriteriaRow> elements corresponding to the
number of groups that you define in the Create View Criteria dialog. Example 5–33
shows the ProductsVO.xml file with the <ViewCriteria> definition
FindByProductNameCriteria and a single <ViewCriteriaRow> that defines a
developer-seeded search for products using the bind variable :bvProductName. Any
control hints that you selected to customize the behavior of a developer-seeded search
will appear in the <ViewCriteria> definition as attributes of the
<CustomProperties> element. For details about specific control hints for view
criteria, see Section 5.11.5, "How to Set User Interface Hints on View Criteria."

Working with Named View Criteria

5-86 Fusion Developer's Guide for Oracle Application Development Framework

Example 5–33 FindByProductNameCriteria View Criteria in the ProductsVO View Object
Definition

<ViewObject
 xmlns="http://xmlns.oracle.com/bc4j"
 Name="ProductsVO"
 ... >
 <SQLQuery>
 ...
 </SQLQuery>
 ...
 <ViewCriteria
 Name="FindByProductNameCriteria"
 ViewObjectName="oracle.fodemo.storefront.store.queries.ProductsVO"
 Conjunction="AND">
 <Properties>
 <CustomProperties>
 <Property
 Name="mode"
 Value="Basic"/>
 <Property
 Name="autoExecute"
 Value="false"/>
 <Property
 Name="showInList"
 Value="true"/>
 <Property
 Name="displayName"
 Value="Find Products By Name"/>
 <Property
 Name="displayOperators"
 Value="InAdvancedMode"/>
 <Property
 Name="allowConjunctionOverride"
 Value="true"/>
 </CustomProperties>
 </Properties>
 <ViewCriteriaRow
 Name="vcrow87">
 <ViewCriteriaItem
 Name="ProductName"
 ViewAttribute="ProductName"
 Operator="CONTAINS"
 Conjunction="AND"
 Value=":bvProductName"
 UpperColumns="1"
 IsBindVarValue="true"
 Required="Optional"/>
 </ViewCriteriaRow>
 </ViewCriteria>
 ...
</ViewObject>

Additionally, when you create view objects and specify them as instances in an
application module, JDeveloper automatically creates a data control to encapsulate the
collections (view instances) that the application module contains. JDeveloper then
populates the Data Controls panel with these collections and any view criteria that
you have defined, as shown in Section 12.2.1.3, "How View Objects Appear in the Data
Controls Panel."

Working with Named View Criteria

Defining SQL Queries Using View Objects 5-87

5.11.3 What You May Need to Know About Bind Variable Options
The view criteria filter that you define using a bind variable expects to obtain its value
at runtime. This can be helpful in a variety of user interface scenarios. To support a
particular use case, familiarize yourself with the combination of the Validation and
Ignore Null Values settings shown in Table 5–1.

5.11.4 What You May Need to Know About Nested Expressions
Search forms that the UI designer will create from view criteria are not able to work
with all types of nested expressions. Specifically, search forms do not support
expressions with directly nested view criteria. This type of nested expression defines
one view criteria as a direct child of another view criteria. Query search forms do
support nested expressions where you nest the view criteria as a child of a criteria item
which is itself a child of a view criteria. For more information about using view criteria
to create search forms, see Section 27.1.5, "Implicit and Named View Criteria."

5.11.5 How to Set User Interface Hints on View Criteria
Named view criteria that you create for view object collections can be used by the web
page designer to create Query-by-Example search forms. Web page designers select

Table 5–1 Use Cases for Bind Variable Options in View Criteria

Validation
Ignore Null
Values Use Cases Notes

Optional True
(Default)

Configure
cascading List
of Values (LOV)
where the
parent LOV
value is
optional.

Generate an
optional search
field in a search
form.

This combination generates the SQL
query (ProductName = :bind) OR
(:bind IS NULL).

When used for cascading LOVs, no
selection in the parent LOV returns all
rows in the child LOV.

Note that the preferred implementation
for an optional search field is a view
criteria item with a literal operand type.

Optional False Configure
cascading LOVs
where the
parent LOV
value is
required.

This combination generates the SQL
query (ProductName = :bind).

When used for cascading LOVs, no
selection in the parent LOV returns no
rows in the child LOV.

Avoid this combination for search forms,
because when the user leaves the search
field blank the search will attempt to find
rows where this field is explicitly NULL.
A better way to achieve this is for the user
to explicitly select the "IS NULL" operator
in advanced search mode.

Required False
(default)

Generate a
required search
field in a search
form.

This combination generates the SQL
query ProductName = :bind.

Avoid this setting for cascading LOVs,
because no selection in the parent LOV
will cause a validation error.

Note that the preferred implementation
for a required search field is a view
criteria item with a literal operand (not a
bind variable) type.

Working with Named View Criteria

5-88 Fusion Developer's Guide for Oracle Application Development Framework

your named view criteria from the JDeveloper Data Controls panel to create search
forms for the Fusion web application. In the web page, the search form utilizes an ADF
Faces query search component that will be bound initially to the named view criteria
selected in the Data Controls panel. At runtime, the end user may select among all
other named view criteria that appear in the Data Controls panel. Named view criteria
that the end user can select in a search form are known as developer-seeded searches. The
query component automatically displays these seeded searches in its Saved Search
dropdown list. For more information about creating search forms and using the ADF
query search component, see Section 27.2, "Creating Query Search Forms."

Because developer-seeded searches are created in the data model project, the UI Hints
page of the Edit View Criteria dialog lets you specify the default properties for the
query component’s runtime usage of individual named view criteria. At runtime, the
query component’s behavior will conform to the selections you make for the following
seeded search properties:

Search Region Mode: Select the mode that you want the query component to display
the seeded search as. The Basic mode has all features of Advanced mode, except that it
does not allow the end user to dynamically modify the displayed search criteria fields.
The default is Basic mode for a view criteria you define in the Edit View Criteria
dialog.

Query Automatically: Select when you want the query associated with the named
view criteria to be executed and the results displayed in the web page. Any
developer-seeded search with this option enabled will automatically be executed
when the end user selects it from the query component’s Saved Search list. Deselect
when the web page designer prefers not to update the previously displayed results
until the end user submits the search criteria values on the form. Additionally, when a
search form is invoked from a task flow, the search form will appear empty when this
option is deselected and populated when enabled. By default, this option is disabled
for a view criteria you define in the Edit View Criteria dialog.

Show Operators: Determine how you want the query component to display the
operator selection field for the view criteria items to the end user. For example, select
Always when you want to allow the end user to customize the operators for criteria
items (in either basic or advanced modes) or select Never when you want the view
criteria to be executed using the operators it defines. Note that the end user cannot
change the operator for criteria items that you specify with a bind variable because
bind variables may be used in more than one criteria item.

Show Match All and Match Any: Select to allow the query component to display the
Match All and Match Any radio selection buttons to the end user. When these buttons
are present, the end user can use them to modify the search to return matches for all
criteria or any one criteria. This is equivalent to enforcing AND (match all) or OR (match
any) conjunctions between view criteria items. Deselect when you want the view

Note: By default, any named view criteria you create in the Edit
View Criteria dialog will appear in the Data Controls panel. As long
as the Show In List option appears selected in the UI Hints page of
the Edit View Criteria dialog, JDeveloper assumes that the named
view criteria should be available as a developer-seeded search. When
you want to create a named view criteria that you do not want the end
user to see in search forms, deselect the Show In List option in the
dialog. For example, you might create a named view criteria only for
an LOV-enabled attribute and so you would need to deselect Show In
List.

Working with Named View Criteria

Defining SQL Queries Using View Objects 5-89

criteria to be executed using the conjunctions it defines. In this case, the query
component will not display the radio selection buttons.

Rendered Mode: Select individual view criteria items from the view criteria tree
component and choose whether you want the selected item to appear in the search
form when the end user toggles the query component between basic mode and
advanced mode. The default for every view criteria item is All. The default mode
permits the query component to render an item in either basic or advanced mode. By
changing the Rendered Mode setting for individual view criteria items, you can
customize the search form’s appearance at runtime. For example, you may want basic
mode to display a simplified search form to the end user, reserving advanced mode
for displaying a search form with the full set of view criteria items. In this case, you
would select Advanced for the view criteria item that you do not want displayed in
the query component’s basic mode. In contrast, when you want the selected view
criteria item to be rendered only in basic mode, select Basic. Set any item that you do
not want the search form to render in either basic or advanced mode to Never.

Support Multiple Value Selection: Select when you want to allow the end user to
make multiple selections for an individual criteria item that the query component
displays. This option is only enabled when the view object attribute specified by the
view criteria item has a List of Values (LOV) defined. Additionally, multiple selections
will only be supported by the query component when the end user selects the operator
equal to or not equal to. For example, if the criteria item names an attribute
CountryId and this attribute derives its values from a list of country IDs accessed by
the attribute’s associated LOV, then selecting this option would allow the end user to
submit the query with multiple country selections. At runtime, the query component
will generate the appropriate query clause based on the end user's operator selection.

Show In List: Select to ensure that the view criteria is defined as a developer-seeded
query. Deselect when the named view criteria you are defining is not to be used by the
query search component to display a search form. Your selection determines whether
the named view criteria will appear in the query search component’s Saved Search
dropdown list of available seeded searches. By default, this option is enabled for a
view criteria you define in the Edit View Criteria dialog.

Display Name: Enter the name of the seeded search that you want to appear in the
query component’s Saved Search dropdown list or click the ... button (to the right of
the edit field) to select a message string from the resource bundle associated with the
view object. The display name will be the name by which the end user identifies the
seeded search. When you select a message string from the resource bundle, JDeveloper
saves the string's corresponding message key in the view object definition file. At
runtime, the UI locates the string to display based on the end user's locale setting and

Note: When your view criteria includes an item that should not be
exposed to the user, use the Rendered Mode setting Never to prevent
it from appearing in the search form. For example, a view criteria may
be created to search for products in the logged-in customer’s cart;
however, you may want to prevent the user from changing the
customer ID to display another customer’s cart contents. In this
scenario, the view criteria item corresponding to the customer ID
would be set to the current customer ID using a named bind variable.
Although the bind variable definition might specify the variable as not
required and not updatable, with the control hint property Display
set to Hide, only the Rendered Mode setting determines whether or
not the search form displays the value.

Working with Named View Criteria

5-90 Fusion Developer's Guide for Oracle Application Development Framework

the message key in the localized resource bundle. When you do not specify a display
name, the view criteria name displayed in the Edit View Criteria dialog will be used
by default.

To create a seeded search for use by the ADF query search component, you select
Show In List in the UI Hints page of the Edit View Criteria dialog. You deselect Show
In List when you do not want the end user to see the view criteria in their search form.

Before you begin:
■ Create the desired view objects as described in Section 5.2.1, "How to Create an

Entity-Based View Object," and Section 5.2.3, "How to Create an Expert Mode,
Read-Only View Object."

■ Create the view criteria as described in Section 5.11.1, "How to Create Named
View Criteria Declaratively."

To customize a named view criteria for the user interface:
1. In the Application Navigator, double-click the view object that defines the named

view criteria you want to use as a seeded search.

2. In the overview editor, click the Query navigation tab.

3. In the Query page, expand the View Criteria section and double-click the named
view criteria that you want to allow in seeded searches.

4. On the UI Hints page of the Edit View Criteria dialog, ensure that Show In List is
selected.

This selection determines whether or not the query component will display the
seeded search in its Saved Search dropdown list.

5. Enter a user-friendly display name for the seeded search to be added to the query
component Saved Search dropdown list.

When left empty, the view criteria name displayed in the Edit View Criteria dialog
will be used by the query component.

6. Optionally, enable Query Automatically when you want the query component to
automatically display the search results whenever the end user selects the seeded
search from the Saved Search dropdown list.

By default, no search results will be displayed.

7. Optionally, apply Criteria Item UI Hints to customize whether the query
component renders individual criteria items when the end user toggles the search
from between basic and advanced mode.

By default, all view criteria items defined by the seeded search will be displayed in
either mode.

If a rendered criteria item is of type Date, you must also define UI hints for the
corresponding view object attribute. Set the view object attribute’s Format Type
hint to Simple Date and set the Format Mask to an appropriate value, as
described in Section 5.13.1, "How to Add Attribute-Specific Control Hints." This
will allow the search form to accept date values.

8. Click OK.

5.11.6 How to Test View Criteria Using the Business Component Browser
 To test the view criteria you added to a view object, use the Business Component
Browser, which is accessible from the Application Navigator.

Working with Named View Criteria

Defining SQL Queries Using View Objects 5-91

The Business Component Browser, for any view object instance that you browse, lets
you bring up the Business Components View Criteria dialog, as shown in Figure 5–43.
The dialog allows you to create a view criteria comprising one or more view criteria
rows.

To apply criteria attributes from a single view criteria row, click the Specify View
Criteria toolbar button in the browser and enter Query-by-Example criteria in the
desired fields, then click Find.

To test view criteria using the Business Component Browser:
1. In the Application Navigator, expand the project containing the desired

application module and view objects.

2. Right-click the application module and choose Run.

3. In the Business Component Browser, right-click the view instance you want to
filter and choose Find.

Alternatively, after you double-click a view instance, you can click the Specify
View Criteria toolbar button to test the view criteria.

4. In the Business Components View Criteria dialog, perform one of the following
tasks:

■ To test a view criteria that you added to the view object in your project, select
from the list and click Find. Any additional criteria that you enter in the ad
hoc Criteria panel will be added to the filter.

■ To test ad hoc criteria attributes from a single view criteria row, enter the
desired values for the view criteria and click Find. For example, Figure 5–43
shows the filter to return all customers who possess a customer ID that begins
with the letter "d" and placed an order in the amount greater than 100.

■ To test additional ad hoc view criteria rows, click the OR tab and use the
additional tabs that appear to switch between pages, each representing a
distinct view criteria row. When you click Find, the Business Component
Browser will create and apply the view criteria to filter the result.

Working with Named View Criteria

5-92 Fusion Developer's Guide for Oracle Application Development Framework

Figure 5–43 Business Components View Criteria Dialog

5.11.7 How to Create View Criteria Programmatically
Example 5–34 shows the main() method finds the PersonList view object instance
to be filtered, creates a view criteria for the attributes of this view object, and applies
the view criteria to the view object.

To create a view criteria programmatically, follow these basic steps (as illustrated in
Example 5–34):

1. Find the view object instance to be filtered.

2. Create a view criteria row set for the view object.

3. Use the view criteria to create one or more empty view criteria rows

4. Set attribute values to filter on the appropriate view criteria rows.

You can use the single method setAttribute() on the view criteria rows to set
attribute name, comparison operator, and value to filter on. Alternatively, use
ensureCriteriaItem(), setOperator(), and setValue() on the view
criteria rows to set attribute name, comparison operator, and value to filter on
individually.

5. Add the view criteria rows to the view criteria row set.

6. Apply the view criteria to the view object.

7. Execute the query.

The last step to execute the query is important, since a newly applied view criteria is
applied to the view object's SQL query only at its next execution.

Example 5–34 Creating and Applying a View Criteria

package devguide.examples.readonlyvo.client;

import oracle.jbo.ApplicationModule;
import oracle.jbo.Row;

Working with Named View Criteria

Defining SQL Queries Using View Objects 5-93

import oracle.jbo.ViewCriteria;
import oracle.jbo.ViewCriteriaRow;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;

public class TestClientViewCriteria {
public static void main(String[] args) {

String amDef = "devguide.examples.readonlyvo.PersonService";
String config = "PersonServiceLocal";
ApplicationModule am =

Configuration.createRootApplicationModule(amDef, config);
// 1. Find the view object to filter
ViewObject vo = am.findViewObject("PersonList");
// Work with your appmodule and view object here
Configuration.releaseRootApplicationModule(am, true);
// 2. Create a view criteria row set for this view object
ViewCriteria vc = vo.createViewCriteria();
// 3. Use the view criteria to create one or more view criteria rows
ViewCriteriaRow vcr1 = vc.createViewCriteriaRow();
ViewCriteriaRow vcr2 = vc.createViewCriteriaRow();
// 4. Set attribute values to filter on in appropriate view criteria rows
vcr1.setAttribute("PersonId","> 200");
vcr1.setAttribute("Email","d%");
vcr1.setAttribute("PersonTypeCode","STAFF");
// Note the IN operator must be followed by a space after the operator.
vcr2.setAttribute("PersonId","IN (204,206)");
vcr2.setAttribute("LastName","Hemant");
// 5. Add the view criteria rows to the view critera row set
vc.add(vcr1);
vc.add(vcr2);
// 6. Apply the view criteria to the view object
vo.applyViewCriteria(vc);
// 7. Execute the query
vo.executeQuery();
while (vo.hasNext()) {
Row curPerson = vo.next();
System.out.println(curPerson.getAttribute("PersonId") + " " +
curPerson.getAttribute("Email"));
}

}
}

Running the TestClientViewCriteria example produces the results shown in
Example 5–34:

206 SHEMANT

5.11.8 What Happens at Runtime: When the View Criteria Is Applied to a View Object
When you apply a view criteria containing one or more view criteria rows to a view
object, the next time it is executed it augments its SQL query with an additional WHERE
clause predicate corresponding to the Query-by-Example criteria that you've
populated in the view criteria rows. As shown in Figure 5–44, when you apply a view
criteria containing multiple view criteria rows, the view object augments its design
time WHERE clause by adding an additional runtime WHERE clause based on the
non-null example criteria attributes in each view criteria row.

A corollary of the view criteria feature is that each time you apply a new view criteria
(or remove an existing one), the text of the view object's SQL query is effectively
changed. Changing the SQL query causes the database to reparse the statement the

Working with Named View Criteria

5-94 Fusion Developer's Guide for Oracle Application Development Framework

next time it is executed. You can eliminate the reparsing and improve the performance
of a view criteria as described in Section 5.11.10, "What You May Need to Know About
Query-by-Example Criteria."

Figure 5–44 View Object Automatically Translates View Criteria Rows into Additional
Runtime WHERE Filter

5.11.9 What You May Need to Know About the View Criteria API
When you need to perform tasks that the Edit View Criteria dialog does not support,
review the View Criteria API. For example, programmatically, you can alter
compound search conditions using multiple view criteria rows, search for a row
whose attribute value is NULL, search case insensitively, and clear view criteria in
effect.

5.11.9.1 Referencing Attribute Names in View Criteria
The setWhereClause() method allows you to add a dynamic WHERE clause to a
view object, as described in Section 6.4.1, "ViewObject Interface Methods for Working
with the View Object’s Default RowSet." You can also use setWhereClause() to
pass a string that contains literal database column names like this:

vo.setWhereClause("LAST_NAME LIKE UPPER(:NameToFind)");

In contrast, when you use the view criteria mechanism, shown in Example 5–34, you
must reference the view object attribute name instead, like this:

ViewCriteriaItem vc_item1 = vc_row1.ensureCriteriaItem("UserId");
vc_item1.setOperator(">");
vc_item1.setValue("304");

The view criteria rows are then translated by the view object into corresponding
WHERE clause predicates that reference the corresponding column names.

5.11.9.2 Referencing Bind Variables in View Criteria
When you want to set the value of a view criteria item to a bind variable, use
setIsBindVarValue(true), like this:

ViewCriteriaItem vc_item1 = vc_row1.ensureCriteriaItem("UserId");

Working with Named View Criteria

Defining SQL Queries Using View Objects 5-95

vc_item1.setIsBindVarValue(true);
vc_item1.setValue(":VariableName");

5.11.9.3 Altering Compound Search Conditions Using Multiple View Criteria
When you add multiple view criteria, you can call the setConjunction() method
on a view criteria to alter the conjunction used between the predicate corresponding to
that view criteria and the one for the previous view criteria. The legal constants to pass
as an argument are:

■ ViewCriteriaComponent.VC_CONJ_AND

■ ViewCriteriaComponent.VC_CONJ_NOT

■ ViewCriteriaComponent.VC_CONJ_UNION

■ ViewCriteriaComponent.VC_CONJ_OR (default)

The NOT value can be combined with AND or OR to create filter criteria like:

(PredicateForViewCriteria1) AND (NOT (PredicateForViewCriteria2))

or

(PredicateForViewCriteria1) OR (NOT (PredicateForViewCriteria2))

The syntax to achieve compound search conditions requires using Java's bitwise OR
operator like this:

vc2.setConjunction(ViewCriteriaComponent.VC_CONJ_AND | ViewCriteriaComponent.VC_
CONJ_NOT);

The limitation for the UNION clause is that it must be defined over one view object.
This means that the SELECT and the FROM list will be the same for inner queries of the
UNION clause. To specify a UNION query, call setConjunction() on the outer view
criteria like this:

vc.setConjunction(ViewCriteriaComponent.VC_CONJ_UNION);

The outer view criteria should contain inner queries whose results will be the union.
For example, suppose you want to specify the union of these two view criteria:

■ A view criteria named MyEmpJob, which searches for Job = ’SALESMAN’.

■ A view criteria named MyEmpSalary, which searches for Sal = 1500.

To create the UNION query for these two view criteria, you would make the calls
shown in Example 5–35.

Example 5–35 Applying the Union of Two View Criteria

vcu = voEmp.createViewCriteria();

Performance Tip: Use the UNION value instead of an OR clause when
the UNION query can make use of indices. For example, if the view
criteria searches for sal > 2000 or job = 'CLERK' this query
may turn into a full table scan. Whereas if you specify the query as the
union of two inner view criteria, and the database table has an index
on sal and an index on job, then the query can take advantage of
these indices and the query performance will be significantly better
for a large data set.

Working with Named View Criteria

5-96 Fusion Developer's Guide for Oracle Application Development Framework

vcm = voEmp.getViewCriteriaManager();

vcu.setConjunction(ViewCriteria.VC_CONJ_UNION);
vcu.add(vcm.getViewCriteria("MyEmpJob"));
vcu.add(vcm.getViewCriteria("MyEmpSal"));

voEmp.applyViewCriteria(vcu);

When this view criteria is applied, it will return rows where Job is SALESMAN or Sal
is greater than 1500.

When you use a UNION view criteria, be sure that only one of the applied view criteria
has the UNION conjunction. Other view criteria that you apply will be applied to each
inner query of the UNION query.

5.11.9.4 Searching for a Row Whose Attribute Value Is NULL Value
To search for a row containing a NULL value in a column, populate a corresponding
view criteria row attribute with the value "IS NULL" or use
ViewCriteriaItem.setOperator("ISBLANK").

5.11.9.5 Searching for Rows Whose Attribute Value Matches a Value in a List
To search for all rows with a value in a column that matches any value in a list of
values that you specify, populate a corresponding view criteria row attribute with the
comma-separated list of values and use the IN operator. For example, to filter the list
of persons by IDs that match 204 and 206, set:

vcr.setAttribute("PersonId","IN (204,206)");

Note that there must be a space between the IN operator and the brace:

■ IN (204,206) is correct.

■ IN(204,206) throws a SQLSyntaxErrorException error.

5.11.9.6 Searching Case-Insensitively
To search case-insensitively, call setUpperColumns(true) on the view criteria row
to which you want the case-insensitivity to apply. This affects the WHERE clause
predicate generated for String-valued attributes in the view object to use
UPPER(COLUMN_NAME) instead of COLUMN_NAME in the predicate. Note that the value
of the supplied view criteria row attributes for these String-valued attributes must
be uppercase or the predicate won't match. In addition to the predicate, it also possible
to use UPPER() on the value. For example, you can set UPPER(ename) =
UPPER("scott").

5.11.9.7 Clearing View Criteria in Effect
To clear any view criteria in effect, you can call getViewCriteria() on a view
object and then delete all the view criteria rows from it using the remove() method,
passing the zero-based index of the criteria row you want to remove. If you don't plan
to add back other view criteria rows, you can also clear all the view criteria in effect by
simply calling applyViewCriteria(null) on the view object.

5.11.10 What You May Need to Know About Query-by-Example Criteria
For performance reasons, you want to avoid setting a bind variable as the value of a
view criteria item in these two cases:

Working with List of Values (LOV) in View Object Attributes

Defining SQL Queries Using View Objects 5-97

■ In the specialized case where the value of a view criteria item is defined as
selectively required and the value changes from non-NULL to NULL.

In this case, the SQL statement for the view criteria will be regenerated each time
the value changes from non-NULL to NULL.

■ In the case where the value of the view criteria item is optional and that item
references an attribute for an indexed column.

In the case of optional view criteria items, an additional SQL clause OR
(:Variable IS NULL) is generated, and the clause does not support using
column indices.

In either of the following cases, you will get better performance by using a view object
whose WHERE clause contains the named bind variables, as described in Section 5.10.1,
"How to Add Bind Variables to a View Object Definition." In contrast to the view
criteria filtering feature, when you use named bind variables, you can change the
values of the search criteria without changing the text of the view object's SQL
statement each time those values change.

5.12 Working with List of Values (LOV) in View Object Attributes
Edit forms displayed in the user interface portion of your application can utilize
LOV-enabled attributes that you define in the data model project to predetermine a list
of values for individual input fields. When the user submits the form with their
selected values, ADF data bindings in the ADF Model layer update the value on the
view object attributes corresponding to the databound fields. To facilitate this common
design task, ADF Business Components provides declarative support to specify the
LOV usage in the user interface.

Defining an LOV for attributes of a view object in the data model project greatly
simplifies the task of working with list controls in the user interface. Because you
define the LOV on the individual attributes of the view object, you can customize the
LOV usage for an attribute once and expect to see the list component in the form
wherever the attribute appears.

You can define an LOV for any view object attribute that you anticipate the user
interface will display as a selection list. The characteristics of the attribute’s LOV
definition depend on the requirements of the user interface. The information you
gather from the user interface designer will determine the best solution. For example,
you might define LOV attributes in the following cases:

■ When you need to display attribute values resulting from a view object query
against a business domain object.

For example, define LOV attributes to display the list of suppliers in a purchase
order form.

■ When you want to display attribute values resulting from a view object query that
you wish to filter using a parameter value from any attribute of the LOV
attribute’s current row.

Note: In order for the LOV to appear in the UI, the LOV usage must
exist before the user interface designer creates the databound form.
Defining an LOV usage for an attribute referenced by an existing form
will not change the component that the form displays to an LOV.

Working with List of Values (LOV) in View Object Attributes

5-98 Fusion Developer's Guide for Oracle Application Development Framework

For example, define LOV attributes to display the list of supplier addresses in a
purchase order form but limit the addresses list based on the current supplier.

If you wish, you can enable a second LOV to drive the value of the parameter
based on a user selection. For example, you can let the user select the current
supplier to drive the supplier addresses list. In this case, the two LOVs are known
as a cascading list.

Before you can define the LOV attribute, you must create a data source view object in
your data model project that queries the eligible rows for the attribute value you want
the LOV to display. After this, you work entirely on the base view object to define the
LOV. The base view object is the one that contains the primary data for display in the
user interface. The LOV usage will define the following additional view object
metadata:

■ A view accessor to access the data source for the LOV attribute. The view accessor
is the ADF Business Components mechanism that lets you obtain the full list of
possible values from the row set of the data source view object.

■ Optionally, supplemental values that the data source may return to attributes of
the base view object other than the data source attribute for which the list is
defined.

■ User interface hints, including the type of list component to display, attributes to
display from the current row when multiple display attributes are desirable, and a
few options specific to the choice list component.

The general process for defining the LOV-enabled attribute relies on the Edit Attribute
dialog that you display for the base view object attribute.

To define the LOV-enabled attribute, follow this general process:
1. Select the Enable List of Values option.

2. Create a new view accessor definition to point to the data source view object or
select an existing view accessor that the base view object already defines.

Optionally, you can filter the view accessor by creating a view criteria using a bind
variable that obtains its value from any attribute of base view object’s current row.

3. Select the list attribute from the view accessor’s data source view object.

This maps the attribute you select to the current attribute of the base view object.

4. Optionally, select list return values to map any supplemental values that your list
returns to the base view object.

5. Select user interface hints to specify the list’s display features.

6. Save the attribute changes.

Once you create the LOV-enabled attribute, the user interface designer can create the
list component in the web page by dragging the LOV-enabled attribute’s collection
from the Data Controls panel. For further information about creating a web page that

Note: If you create a view criteria to filter the data source view
object, you may also set an LOV on the attribute of the base view
object that you use to supply the value for the view criteria bind
variable. You set cascading LOV lists when you want the user’s
selection of one attribute to drive the options displayed in a second
attribute’s list.

Working with List of Values (LOV) in View Object Attributes

Defining SQL Queries Using View Objects 5-99

display the list, see Chapter 25, "Creating Databound Selection Lists and Shuttles."
Specifically, for more information about working with LOV-enabled attributes in the
web page, see Section 25.3.2, "How to Create a Model-Driven List."

5.12.1 How to Define a Single LOV-Enabled View Object Attribute
When an edit form needs to display a list values that is not dependent on another
selection in the edit form, you can define a view accessor to point to the list data
source. For example, assume that a purchase order form contains a field that requires
the user to select the order item’s supplier. In this example, you would first create a
view accessor that points to the data source view object (SuppliersView). You
would then set the LOV on the SupplierDesc attribute of the base view object
(PurchaseOrdersView). Finally, you would reference that view accessor from the
LOV-enabled attribute (SupplierDesc) of the base view object and select the data
source attribute (SupplierDesc).

You will use the Create List of Values dialog to define an LOV-enabled attribute for
the base view object. The dialog lets you select an existing view accessor or create a
new one to save with the LOV-attribute definition.

Before you begin:
Create the desired view objects as described in Section 5.2.1, "How to Create an
Entity-Based View Object," and Section 5.2.3, "How to Create an Expert Mode,
Read-Only View Object."

To define an LOV that displays values from a view object attribute:
1. In the Application Navigator, double-click the view object that contains the

attribute you wish to enable as an LOV.

2. In the overview editor, click the Attributes navigation tab.

3. In the Attributes page, select the attribute that is to display the LOV, and then
expand the List of Values section and click the Add list of values button.

Use the Create List of Values dialog to create the LOV on the attribute you have
currently selected in the attribute list of the overview editor. JDeveloper assigns a
unique name to identify the LOV usage. For example, the metadata for the
attribute SupplierDesc will specify the name SupplierDescLOV to indicate
that the attribute is LOV enabled.

4. In the Create List of Values dialog, click the Create new view accessor button to
add a view accessor to the view object you are currently editing.

Alternatively, you can expand List Data Source and select among the existing
view accessors. The dropdown list displays all view accessors that you have
added to the view object you are editing.

5. In the View Accessors dialog, select the view object definition or shared view
instance that defines the data source for the attribute and shuttle it to the view
accessors list.

By default, the view accessor you create will display the same name as the view
object. You can edit the accessor name to supply a unique name. For example,
assign the name SuppliersViewAccessor for the SuppliersView view
object.

The view instance is a view object usage that you have defined in the data model
of a shared application module. For more information about using shared view

Working with List of Values (LOV) in View Object Attributes

5-100 Fusion Developer's Guide for Oracle Application Development Framework

instances in an LOV, see Section 10.4.4, "How to Create an LOV Based on a Lookup
Table."

6. Click OK to save the view accessor definition for the view object.

7. In the Create List of Values dialog, expand List Data Source and select the view
accessor you created for the base view object to use as the data source. Then select
the same attribute from this view accessor that will provide the list data for the
LOV-enabled attribute.

The editor creates a default mapping between the list data source attribute and the
LOV-enabled attribute. For example, the attribute SuppliersDesc from the
PurchaseOrdersView view object would map to the attribute SuppliersDesc
from the SuppliersViewAccessor view accessor.

The editor does not allow you to remove the default attribute mapping for the
attribute for which the list is defined.

8. Optionally, when you want to specify supplemental values that your list returns to
the base view object, click the Create return attribute map button in the List
Return Values section and map the desired base view object attributes with
attributes accessed by the view accessor.

Supplemental attribute return values are useful when you do not require the user
to make a list selection for the attributes, yet you want those values, as determined
by the current row, to participate in the update. For example, to map the attribute
SupplierAddress from the PurchaseOrdersView view object, you would
choose the attribute SupplierAddress from the SuppliersViewAccessor
view accessor.

9. Click OK.

5.12.2 How to Define Cascading Lists for LOV-Enabled View Object Attributes
When the application user interface requires a list of values in one input field to be
dependent on the user’s entry in another field, you can create attributes that will
display as cascading lists in the user interface. In this case, the list of possible values
for the LOV-enabled attributes might be different for each row. As the user changes
the current row, the LOV values vary based on the value of one or more controlling
attribute values in the LOV-enabled attribute’s view row. To apply the controlling
attribute to the LOV-enabled attribute, you will create a view accessor to access the
data source view object with the additional requirement that the accessor filters the list
of possible values based on the current value of the controlling attribute. To filter the
LOV-enabled attribute, you can edit the view accessor to add a named view criteria
with a bind variable to obtain the user’s selection.

For example, assume that a purchase order form contains a field that requires the user
to select the supplier’s specific site and that the available sites will depend on the
order’s already specified supplier. To implement this requirement, you would first
create a view accessor that points to the data source view object. The data source view
object will be specific to the LOV usage, because it must perform a query that filters
the available supplier sites based on the user’s supplier selection. You might name this
data source view object definition SupplierIdsForCurrentSupplierSite to help
distinguish it from the SupplierSitesView view object that the data model already
contains. The data source view object will use a named view criteria
(SupplierCriteria) with a single view criteria item set by a bind variable
(TheSupplierId) to obtain the user’s selection for the controlling attribute
(SupplierId).

Working with List of Values (LOV) in View Object Attributes

Defining SQL Queries Using View Objects 5-101

You would then set the LOV on the SupplierSiteId attribute of the base view
object (PurchaseOrdersView). You can then reference the view accessor that points
to the data source view object from the LOV-enabled attribute
(PurchaseOrdersView.SupplierSiteId) of the base view object. Finally, you
must edit the LOV-enabled attribute’s view accessor definition to specify the
corresponding attribute
(SupplierIdsForCurrentSupplierSite.SupplierSiteId) from the view
object as the data source and, importantly, source the value of the bind variable from
the view row’s result using the attribute SupplierId.

5.12.2.1 Creating a Data Source View Object to Control the Cascading List
The data source view object defines the controlling attribute for the LOV-enabled
attribute. To make the controlling attribute accessible to the LOV-enabled attribute of
the base view object, you must define a named view criteria to filter the data source
attribute based on the value of another attribute. Because the value of the controlling
attribute is expected to change at runtime, the view criteria uses a bind variable to set
the controlling attribute.

To define the view criteria for the data source to be referenced by the
LOV-enabled attribute:
1. In the Application Navigator, double-click the view object that you created to

query the list of all possible values for the controlling attribute.

For example, if the LOV-enabled attribute SupplierSiteId depends on the
controlling attribute SupplierId value, you might have created the data source
view object SupplierIdsForCurrentSupplierSite to query the list of all
supplier sites.

2. In the overview editor, click the Query navigation tab.

3. In the Query page, expand the Bind Variables section and click the Create new
bind variable button to add a bind variable to the data source view object.

For example, for a data source view object
SupplierIdsForCurrentSupplierSite used to query the list of all supplier
sites, you would create the bind variable TheSupplierId, since it will be the
controlling attribute for the LOV-enabled attribute.

4. In the Bind Variable dialog, enter the name and type of the bind variable. Leave all
other options unchanged and click OK.

By default, the view accessor you create will display the same name as the view
object instance. You can edit the accessor name to supply a unique name. For
example, assign the name CurrencyLookupViewAccessor for the
CurrencyLookupView view object instance.

5. In Query page of the overview editor, expand the View Criteria section and click
the Create new view criteria button to add the view criteria to the data source
view object you are currently editing.

6. In the Create View Criteria dialog, click Add Group and define a single Criteria
Item for the group as follows:

■ Enter a Criteria Name to identify the view criteria. For example, you might
enter the name SupplierCriteria for the
SupplierIdsForCurrentSupplierSite.

Working with List of Values (LOV) in View Object Attributes

5-102 Fusion Developer's Guide for Oracle Application Development Framework

■ Select the controlling attribute from the Attributes list. For example, you
would select the SupplierSiteId attribute from the
SupplierIdsForCurrentSupplierSite.

■ Select equal to from the view criteria Operator list.

■ Select Bind Variable from the view criteria Operand list.

■ Select the name of the previously defined bind variable from the Parameter
list.

■ Select among the following bind variable configuration options to determine
whether or not the value is required by the parent LOV:

Optional from the Validation menu and deselect Ignore Null Values when
you want to configure cascading LOVs where the parent LOV value is
required. This combination supports the cascading LOV use case where no
selection in the parent LOV returns no rows in the child LOV. The WHERE
clause shown in the Edit View Criteria dialog should look similar to
((SupplierIdsForCurrentSupplierSite.SUPPLIER_ID =
:TheSupplierId)).

Optional from the Validation menu and leave Ignore Null Values selected
(default) when you want to configure cascading LOVs where the parent LOV
value is optional. This combination supports the cascading LOV use case
where no selection in the parent LOV returns all rows in the child LOV. The
WHERE clause shown in the Edit View Criteria dialog should look similar to
(((SupplierIdsForCurrentSupplierSite.SUPPLIER_ID =
:TheSupplierId) OR (:TheSupplierId IS NULL))).

For more details about these settings, see Section 5.11.3, "What You May Need
to Know About Bind Variable Options." Do not select Required for the
Validation option for cascading LOVs, because no selection in the parent LOV
will cause a validation error.

7. Click OK.

5.12.2.2 Creating a View Accessor to Filter the Cascading List
To populate the cascading LOV-enabled attribute, you must first set up a named view
criteria on a data source view object. To make the LOV-enabled attribute of the base
view object dependent on the controlling attribute of the data source view object, you
then add a view accessor to the LOV-enabled attribute of the base view object and
reference the previously defined data source view object’s named view criteria.

Before you begin:
Create the data source view object and named view criteria as described in
Section 5.12.2.1, "Creating a Data Source View Object to Control the Cascading List."

To create a view accessor that filters display values for an LOV-enabled attribute
based on the value of another attribute in the same view row:
1. In the Application Navigator, double-click the base view object that contains the

attribute you want to use the filtered view accessor as the list data source.

For example, the base view object PurchaseOrdersView might contain the
attribute SupplierSiteId that will depend on the value of the controlling
attribute SupplierId.

2. In the overview editor, click the Attributes navigation tab.

Working with List of Values (LOV) in View Object Attributes

Defining SQL Queries Using View Objects 5-103

3. In the Attributes page, select the attribute that is to filter the cascading LOV, and
then expand the List of Values section and click the Add list of values button.

4. In the Create List of Values dialog, click the Create new view accessor button to
add a view accessor to the view object you are currently editing.

Alternatively, you can expand List Data Source and select among the existing
view accessors. The dropdown list displays all view accessors that you have
added to the view object you are editing.

5. In the View Accessors dialog, select the view object instance name you created for
data source view object and shuttle it to the view accessors list.

6. With the new view accessor selected in the dialog, click Edit.

7. In the Edit View Accessor dialog, apply the previously defined view criteria to the
view accessor and provide a value for the bind variable as follows:

■ Click the data source view object’s view criteria in the Available list and add it
to the Selected list. For example, you would select SupplierCriteria from
the SupplierIdsForCurrentSupplierSite view object definition.

■ Set the value for the bind variable to the name of the controlling attribute. The
attribute name must be identical to the base view object’s controlling attribute.
For example, if the base view object PurchaseOrdersView contains the
LOV-enabled attribute SupplierSiteId that depends on the value of the
controlling attribute SupplierId, you would enter SupplierId for the bind
variable value.

■ Select the name of the previously defined bind variable from the Parameter
list.

■ Select Required from the Usage dropdown list.

8. Click OK to save the view accessor definition for the base view object.

9. In the Attributes page of the overview editor, select the attribute that is to display
the LOV, and then expand the List of Values section and click the Add list of
values button.

10. In the Create List of Values dialog, expand List Data Source and select the view
accessor you created for the data source view object instance to use as the data
source. Then select the controlling attribute from this view accessor that will serve
to filter the attribute you are currently editing.

The editor creates a default mapping between the view object attribute and the
LOV-enabled attribute. You use separate attributes in order to allow the bind
variable (set by the user’s controlling attribute selection) to filter the LOV-enabled
attribute. For example, the LOV-enabled attribute SupplierId from the
PurchaseOrdersView view object would map to the controlling attribute
SupplierSiteId for the
SupplierIdsForCurrentSupplierSiteViewAccessor. The runtime
automatically supports these two cascading LOVs where the row set and the base
row attribute differ.

11. Click OK.

5.12.3 How to Specify Multiple LOVs for an LOV-Enabled View Object Attribute
Another way to vary the list of values that your application user interface can display
is to define multiple list of values for a single LOV-enabled view object attribute. In
contrast to a cascading list, which varies the list contents based on a dependent LOV

Working with List of Values (LOV) in View Object Attributes

5-104 Fusion Developer's Guide for Oracle Application Development Framework

list selection, an LOV-enabled switcher attribute with multiple LOVs lets you vary the
entire LOV itself. The LOV choice to display is controlled at runtime by the value of an
attribute that you have defined specifically to resolve to the name of the LOV to apply.

For example, you might want to define one LOV to apply in a create or edit form and
another LOV to apply for a search component. In the first case, the LOV-enabled
attribute that the form can use is likely to be an entity-based view accessor that is
shared across all the view objects that reference the entity. The entity-based view
accessor is useful for user interface forms because a single accessor definition can
apply to each instance of the LOV in the forms. However, in the case of the search
component, LOV definitions based on view accessors derived from an underlying
entity will not work. The LOV definitions for search components must be based on
view accessors defined in the view object. Note that when the user initiates a search,
the values in the criteria row will be converted into WHERE clause parameters. Unlike a
regular view row displayed in create or edit type forms, the criteria row is not backed
by an entity. In this scenario, one LOV uses the entity-based accessor as a data source
and a second LOV uses the view object-based accessor as a data source.

To address this requirement to define multiple LOV lists that access the same attribute,
you add a switcher attribute to the base view object. For example, you might add a
ShipperLOVSwitcher attribute for the Orders view object that resolves through an
expression to the name of the LOV to display. Such an expression can specify two
LOVs that may apply to the ShipperID attribute:

(adf.isCriteriaRow) ? "LOV_ShipperID_ForSearch" : "LOV_
ShipperID"

This expression would appear in the Value field of the switcher attribute. At runtime,
in the case of the search component, the expression resolves to the value that identifies
the view object-based accessor LOV. In the case of the create or edit form, the
expression resolves to the value that identifies the entity-based accessor LOV.

You will use the Create List of Values dialog to add multiple LOV lists to an attribute
of the base view object. You will also use the List of Values section in the Attributes
page of the overview editor for the base view object to define the default LOV to
display and the switcher attribute to apply.

Before you begin:
Create the first LOV list for the attribute as described in Section 5.12.1, "How to Define
a Single LOV-Enabled View Object Attribute."

To specify additional LOV lists for a view object attribute with an existing LOV:
1. In the Application Navigator, double-click the view object that contains the

attribute for which you want to specify multiple LOV lists.

2. In the overview editor, click the Attributes navigation tab.

3. In the Attributes page, select the desired attribute, and then expand the List of
Values section and click the Add list of values button.

4. In the Create List of Values dialog, define the first LOV as described in
Section 5.12.1, "How to Define a Single LOV-Enabled View Object Attribute."

When you define the LOV, change the name of the LOV to match the value
returned by the attribute that you will use to determine which LOV your
application applies to the LOV-enabled attribute.

5. After you define the first LOV, return to the List of Values section of the
Attributes page of the overview editor and, with the original attribute selected,
click the Add List of Values button.

Working with List of Values (LOV) in View Object Attributes

Defining SQL Queries Using View Objects 5-105

If you have selected the correct attribute from the Attributes page of the overview
editor, the List of Values section should display your previously defined LOV.

6. In the Create List of Values dialog, repeat the procedure described in
Section 5.12.1, "How to Define a Single LOV-Enabled View Object Attribute" to
define each subsequent LOV.

The name of each LOV must correspond to a unique value returned by the
attribute that determines which LOV to apply to the LOV-enabled attribute.

You can define the LOV using any accessor and any attribute. There are no
restrictions on the type of LOV lists that you can add to an attribute with multiple
LOV lists specified.

After you finish defining the second LOV, the List of Values section changes to
display additional features that you will use to control the selection of the LOV.

7. In the Attributes page of the overview editor, expand the List of Values section
and use the List of Values Switcher dropdown list to select the attribute that will
return the name of the List of Value to use.

The dropdown list displays the attributes of the base view object. If you want your
application to dynamically apply the LOV from the LOVs you have defined, your
view object must define an attribute whose values resolve to the names of the
LOVs you defined. If you have not added this attribute to the view object, be sure
that the dropdown list displays <None Specified>. In this case, at runtime your
application will display the LOV-enabled attribute with the default LOV and it
will not be possible to apply a different LOV.

8. To change the default LOV to apply at runtime, choose the Default radio button
corresponding to the desired LOV definition.

The default LOV selection determines which list of values your application will
display when the List of Values Switcher dropdown list displays <None
Specified>. Initially, the first LOV in the overview editor List of Values section is
the default.

9. To change the component that your application will use to display the various
LOV lists, select from desired component from the List Type UI Hint dropdown
list.

The component you select will apply to all LOV lists. For a description of the
available components, see Table 5–2.

5.12.4 How to Set User Interface Hints on a View Object LOV-Enabled Attribute
When you know how the view object attribute that you define as an LOV should
appear in the user interface, you can specify additional properties of the LOV to
determine its display characteristics. These properties, or UI hints, augment the
attribute hint properties that ADF Business Components lets you set on any view
object attribute. Among the LOV UI hints for the LOV-enabled attribute is the type of
component the user interface will use to display the list. For a description of the
available components, see Table 5–2. (Not all ADF Faces components support the
default list types, as noted in the Table 5–2.)

Working with List of Values (LOV) in View Object Attributes

5-106 Fusion Developer's Guide for Oracle Application Development Framework

Table 5–2 List Component Types for List Type Control Hint

LOV List Component Type Usage

Choice List This component does not allow the user to
type in text, only select from the dropdown
list.

Combo Box This component allows the user to type text or
select from the dropdown list. This component
sometimes supports auto-complete as the user
types.

This component is not supported for ADF
Faces.

Combo Box with List of Values This component is the same the as the combo
box, except that the last entry (More...) opens a
List of Values lookup dialog that supports
query with filtering when enabled for the LOV
attribute in its UI hints. The default UI hint
enables queries on all attributes.

This component is not supported for ADF
Faces.

Note that when the LOV attribute appears in a
table component, the list type changes to an
Input Text with List of Values component.

Input Text with List of Values This component displays an input text field
with an LOV button next to it. The List of
Values lookup dialog opens when the user
clicks the button or enters an invalid value
into the text field. The List of Values lookup
dialog for this component supports query
with filtering when enabled in the UI hints for
the LOV attribute. The default UI hint enables
queries on all attributes.

This component may also support
auto-complete when a unique match exists.

Working with List of Values (LOV) in View Object Attributes

Defining SQL Queries Using View Objects 5-107

Before you begin:
Create the LOV list for the attribute as described in Section 5.12.1, "How to Define a
Single LOV-Enabled View Object Attribute."

To set view object attribute UI hints for an LOV-enabled attribute:
1. In the Application Navigator, double-click the view object that contains the

attribute that you want to customize.

2. In the overview editor, click the Attributes navigation tab.

3. In the Attributes page, and select the desired attribute and then expand the List of
Values section.

4. In the List of Values section, select the LOV list that you want to customize and
click the Edit list of values button.

5. In the Edit List of Values dialog, select the UI Hints tab.

6. In the UI Hints page, select a default list type as the type of component to display
the list.

For a description of the available components, see Table 5–2.

The list component displayed by the web page and the view object’s default list
type must match at runtime or a method-not-found runtime exception results. To
avoid this error, confirm the desired list component with the user interface
designer. You can also edit the default list type to match, so that, should the user
interface designer subsequently change the component used in the web page, the
two stay in sync.

7. Optionally, select additional display attributes to add values to the display.

The list of additional attributes is derived from the LOV-enabled attribute’s view
row. The additional attribute values can help the end user select an item from the
list.

List Box This component takes up a fixed amount of
real estate on the screen and is scrollable (as
opposed to the choice list, which takes up a
single line until the user clicks on it).

Radio Group This component displays a radio button group
with the selection choices determined by the
LOV attribute values. This component is most
useful for very short, fixed lists.

Table 5–2 (Cont.) List Component Types for List Type Control Hint

LOV List Component Type Usage

Working with List of Values (LOV) in View Object Attributes

5-108 Fusion Developer's Guide for Oracle Application Development Framework

8. If you selected the Combo Box with List of Values type component, by default,
the dropdown list for the component will display the first 10 records from the data
source. This limit also serves to keep the view object fetch size small. To change
the number of records the dropdown list of a Combo Box with List of Values
component can display, enter the number of records for Query Limit.

Because Query Limit also controls the number of rows the view object will fetch
(its sets the view object definition ListRangeSize property), specifying a large
value for Query Limit is not recommended. The end user can open the
component's LOV lookup dialog to access the full set of records (by clicking the
component's lookup icon). Query Limit is disabled for all other component types
and those components place no restriction on the number of rows that the LOV
will access.

For details about the ListRangeSize property, see Section 5.12.9, "What
Happens at Runtime: When an LOV Queries the List Data Source."

9. If you selected a component type that allows the user to open a List of Values
lookup dialog to select a list value (this includes either the Combo Box with List
of Values type component or Input Text with List of Values type component), by
default, the lookup dialog will display a search form that will allow the user to
search on all queryable attributes of the data source view object (the one defined
by the LOV-enabled attribute’s view accessor). Decide how you want to customize
these components.

a. When you select the Combo Box with List of Values type component and you
have added a large number of attributes to the Selected list, use Show in
Combo Box to improve the readability of the dropdown list portion of the
component. To limit the attribute columns to display in the dropdown list that
the Combo Box with List of Values component displays, choose First from
Show in Combo Box and enter a number corresponding to the number of
attributes from the top of the Selected list that you want the dropdown menu
to display (this combination means you are specifying the "first" x number of
attributes to display from the Create List of Values dialog’s Selected list).
Limiting the number of attribute columns to display in the dropdown list
ensures that the user does not have to horizontally scroll to view the full list,
but it does not limit the number of attribute columns to display in the List of
Values lookup dialog. This option is disabled for all list component types
except Combo Box with List of Values.

b. You can limit the attributes to display in the List of Values lookup dialog by
selecting a view criteria from the Include Search Region dropdown list. To
appear in the dropdown list, the view criteria must already have been defined
on the data source view object (the one that the LOV-enabled attribute’s view
accessor defines). Click the Edit View Criteria button to set search form
properties for the selected view criteria. For more information about
customizing view criteria for search forms, see Section 5.11.5, "How to Set User
Interface Hints on View Criteria."

c. You can prepopulate the results table of the List of Values lookup dialog by
selecting Query List Automatically. The List of Values lookup dialog will
display the results of the query when the user opens the dialog. If you leave
this option deselected, no results will be displayed until the user submits the
search form.

10. Alternatively, if you prefer not to display a search region in the List of Values
lookup dialog, select <No Search> from the Include Search Region dropdown
list. In this case, the List of Values lookup dialog will display only attributes you
add to the Display Attributes list.

Working with List of Values (LOV) in View Object Attributes

Defining SQL Queries Using View Objects 5-109

11. If you selected a choice type component to display the list, you can specify a Most
Recently Used Count as an alternative to displaying all possible values.

For example, your form might display a choice list of SupplierId values to drive
a purchase order form. In this case, you can allow the user to select from a list of
their most recently viewed suppliers, where the number of supplier choices is
determined by the count you enter. The default count 0 (zero) for the choice list
displays all values for the attribute.

12. If you selected a Combo Box with List of Values type component to display the
list, you can select a view criteria from the Filter Combo Box Using dropdown list
to limit the list of valid values the LOV will display.

When you enable Filter Combo Box Using, the dropdown list displays the
existing view criteria from the view object definition related to the LOV's view
accessor. If the dropdown list displays no view criteria, then the data source view
object defines no view criteria. When you do not enable this feature, the Combo
Box with List of Values component derives its values from the full row set
returned by the view accessor. The filtered Combo Box with List of Values is a
useful feature when you want to support the use of an LOV with popup search
dialog or LOV with a dropdown list that has a limited set of valid choices. For
details about using the Combo Box with List of Values component in user
interfaces, see Section 27.1.6, "List of Values (LOV) Input Fields."

13. Decide how you want the list component to handle a NULL value choice to display
in the list component. This option is not enabled for every list component type that
you can select.

If you enable Include "No Selection" Item, you can also determine how the NULL
value selection should appear in the list by making a selection from the dropdown
list. For example, when you select Labeled Item, you can enter the desired label in
the edit field to the right of the dropdown list or you can click the ... button (to the
right of the edit field) to select a message string from the resource bundle
associated with the view object. When you select a message string from the
resource bundle, JDeveloper saves the string's corresponding message key in the
view object definition file. At runtime, the UI locates the string to display based on
the current user's locale setting and the message key in the localized resource
bundle.

14. Click OK.

5.12.5 How to Handle Date Conversion for List Type UI Components
When the LOV-enabled attribute of the view object is bound to date information (such
as the attribute OrderShippedDate), by default Oracle ADF assumes a format for
the field like yyyy-MM-dd hh:mm:ss, which combines date and time. This combined
date-time format is specified by the ADF Business Components Date domain class
(jbo.domain.Date) and creates a conversion issue for the ADF Faces component
when the user selects a date supplied by the LOV-enable attribute. When the ADF
Faces component is unable to convert the domain type to the Date type, the user
interface invalidates the input field and displays the message Error: The date is
not in the correct format.

To avoid this potential conversion error, configure a UI hint setting for the date value
attribute of the view object that you want to enable for an LOV. The UI hint you
specify will define a date-only mask, such as yyyy-MM-dd. Subsequently, any ADF
Faces component that references the attribute will perform the conversion based on a
pattern specified by its EL value-binding expression (such as
#{bindings.Hiredate.format) and will reference the UI hint format instead of

Working with List of Values (LOV) in View Object Attributes

5-110 Fusion Developer's Guide for Oracle Application Development Framework

the ADF Business Components domain date-time. The conversion error results when
the EL expression evaluates to null because no format mask has been specified. For
more information about control hints, see Section 5.13, "Defining Control Hints for
View Objects."

To set a control hint to match the date format for the LOV-enable attribute:
1. In the Application Navigator, double-click the view object.

2. In the overview editor, click the Attributes navigation tab and double-click the
date-value attribute that you want to customize with control hints.

Alternatively, display the Property Inspector for the selected attribute and select
the UI Hints navigation tab. The Property Inspector provides a way to customize
the attribute’s control hints without using the Edit Attribute dialog.

3. In the Edit Attribute dialog, select Control Hints, and in the Control Hints page,
select Simple Date for the Format Type and choose the format with the date only
mask.

Mapping of the ADF Business Components domain type to it’s available
formatters is provided in the formatinfo.xml file in the BC4J subdirectory of
the JDeveloper system directory (for example, C:\Documents and
Settings\<username>\Application
Data\JDeveloper\system<version#>\o.BC4J.\formatinfo.xml).

4. Click OK.

5.12.6 How to Automatically Refresh the View Object of the View Accessor
If you need to ensure that your view accessor always queries the latest data from the
database table, you may be able to set the Auto Refresh property on the data source
view object. This property allows the view object instance to refresh itself after a
change in the database. You can enable this feature for any view instance that your
application modules define. Once you enable this property on a view object, it ensures
that changes a user commits to a database table will become available to any other
user working with the same database table. A typical use case is to enable auto refresh
for the data source view object when you define a view accessor for a LOV-enabled
view object attribute.

Because the auto-refresh feature relies on the database change notification feature,
observe these restrictions when enabling auto-refresh for your view object:

■ The view objects should query as few read-only tables as possible. This will ensure
the best performance and prevent the database invalidation queue from becoming
too large.

■ The application module that contains updateable, auto-refresh view instances
must be configured to lock rows during updates.

■ The database user must have database notification privileges. For example, to
accomplish this with a SQL*Plus command use grant change notification
to <user name>.

When you enable auto refresh for the view object, at runtime, prior to executing the
view object query, the framework will use the JDBC API to register the view object
query to receive Oracle database change notifications for underlying data changes.
When the view object receives a notification (because its underlying data has
changed), the row sets of the view object are marked as dirty and the framework will
refresh the row set on the next server trip from the client to the middle tier. At that
point, the dirty collections will be discarded and the request for the updated data will

Working with List of Values (LOV) in View Object Attributes

Defining SQL Queries Using View Objects 5-111

trigger a new query execution by the view object. For example, assume that a user can
create or edit a calendar entry but cannot edit calendar entries added by other users.
When the user creates a new entry, then in the same server trip the calendar entries
that other users modified or entered will be updated. But when another user creates a
calendar entry, the view object receives a notification and waits for the next server trip
before it refreshes itself; the delay to perform the update prevents contention among
various users to read the same data.

To register a view object to receive data change notifications:
1. In the Application Navigator, double-click the view object that you want to receive

database change notifications.

2. In the Property Inspector expand the Tuning Database Retrieve section, and
select True for the Auto Refresh property.

5.12.7 How to Test LOV-Enabled Attributes Using the Business Component Browser
To test the LOV you created for a view object attribute, use the Business Component
Browser, which is accessible from the Application Navigator.

The Business Component Browser, for any view object instance that you browse, will
display any LOV-enabled attributes using one of two component types you can select
in the UI Hints page of the List of Values dialog. Currently, only a Choice List
component type and Input Text with List of Values component type are supported.
Otherwise, the Business Component Browser uses the default choice list type to
display the LOV-enabled attribute.

To test an LOV using the Business Component Browser:
1. In the Application Navigator, expand the project containing the desired

application module and view objects.

2. Right-click the application module and choose Run.

3. In the Select Business Components Configuration dialog, select the desired
application module configuration from the Configuration Name list to run the
Business Component Browser.

4. Click Connect to start the application module using the selected configuration.

5. In the Business Component Browser, select the desired view object from the
section on the left. The Business Component Browser displays the LOV-enabled
attribute as a dropdown choice list unless you specified the component type as an
Input Text with List of Value, UI hint.

Best Practice: Use optimistic row locking for web applications.
Optimistic locking, the default configuration setting, assumes that
multiple transactions can complete without affecting each other.
Optimistic locking therefore allows auto-refresh to proceed without
locking the rows being refreshed. Pessimistic row locking, prevents
the row set refresh and causes the framework to throw an exception
anytime the row set has a transaction pending (for example, a user
may be in the process of adding a new row). To ensure that the
application module configuration uses optimistic row locking, open
the Properties tab of the Business Components Configuration dialog
and confirm the jbo.locking.mode property is set to optimistic.

Working with List of Values (LOV) in View Object Attributes

5-112 Fusion Developer's Guide for Oracle Application Development Framework

Figure 5–45 shows an LOV-enabled attribute, TypeCouponCode for the
OrdersVO, that specifies an input text field and List of Values dialog as the UI hint
list type. The Input Text with List of Values component is useful when you want to
display the choices in a separate LOV dialog. Other list types are not supported by
the Business Component Browser.

Figure 5–45 Displaying LOV-Enabled Attributes in the Business Component Browser

5.12.8 What Happens When You Define an LOV for a View Object Attribute
When you define an LOV for a view object attribute, the view object metadata defines
the following additional information, as shown in Example 5–36 for the
OrdersVO.TypedCouponCode attribute in the Fusion Order Demo application.

■ The <ViewAttribute> element names the attribute, points to the list binding
element that defines the LOV behavior, and specifies the component type to
display in the web page. For example, the LOV-enabled attribute
TypedCouponCode points to the list binding named LOV_TypedCouponCode
and defines the CONTROLTYPE input text field with list (input_text_lov) to
display the LOV data.

When the user interface designer creates the web page using the Data Controls
panel, the <CONTROLTYPE Value="namedType"/> definition determines the
component that JDeveloper will add to the web page. When the component type
definition in the data model project does not match the component type displayed
in the web page, a runtime exception will result. For more information, see
Section 5.12.9, "What Happens at Runtime: When an LOV Queries the List Data
Source."

■ The <ListBinding> element defines the behavior of the LOV. It also identifies a
view accessor to access the data source for the LOV-enabled attribute. The view
accessor is the ADF Business Components mechanism that lets you obtain the full
list of possible values from the row set of the data source view object. For example,
ListVOName="Coupon" points to the Coupons view accessor, which accesses
the view object CouponsVO.

Working with List of Values (LOV) in View Object Attributes

Defining SQL Queries Using View Objects 5-113

■ The <ListBinding> element maps the list data source attribute to the
LOV-enabled attribute. For example, the ListAttrNames item EasyCode is
mapped to the LOV-enabled attribute TypedCouponCode.

■ Optionally, the <ListBinding> element defines supplemental values that the
data source may return to attributes of the base view object other than the data
source attribute for which the list is defined. For example, DerivedAttrNames
item CouponId is a supplemental value set by the ListAttrNames item
DiscountId.

■ The <ListBinding> element also identifies one or more attributes to display
from the current row and provides a few options that are specific to the choice list
type component. For example, the ListDisplayAttrNames item EasyCode is
the only attribute displayed by the LOV-enabled attribute TypedCouponCode. In
this example, the value none for NullValueFlag means the user cannot select a
blank item from the list.

Example 5–36 View Object MetaData For LOV-Attribute Usage

<ViewAttribute
Name="TypedCouponCode"
LOVName="LOV_TypedCouponCode"

. . .
<Properties>

<SchemaBasedProperties>
<CONTROLTYPE Value="input_text_lov"/>

</SchemaBasedProperties>
</Properties>

</ViewAttribute>
. . .
<ListBinding

Name="LOV_TypedCouponCode"
ListVOName="Coupons"
ListRangeSize="-1"
NullValueFlag="none"
NullValueId="LOV_TypedCouponCode_NullValueId"
MRUCount="0">
<AttrArray Name="AttrNames">

<Item Value="TypedCouponCode"/>
</AttrArray>
<AttrArray Name="DerivedAttrNames">

<Item Value="CouponId"/>
</AttrArray>
<AttrArray Name="ListAttrNames">

<Item Value="EasyCode"/>
<Item Value="DiscountId"/>

</AttrArray>
<AttrArray Name="ListDisplayAttrNames">

<Item Value="EasyCode"/>
</AttrArray>

</ListBinding>

. . .
<ViewAccessor

Name="Coupons"
ViewObjectName="oracle.fodemo.storefront.store.queries.CouponsVO"/>

Working with List of Values (LOV) in View Object Attributes

5-114 Fusion Developer's Guide for Oracle Application Development Framework

5.12.9 What Happens at Runtime: When an LOV Queries the List Data Source
The ADF Business Components runtime adds view accessors in the attribute setters of
the view row and entity object to facilitate the LOV-enabled attribute behavior. In
order to display the LOV-enabled attribute values in the user interface, the LOV
facility fetches the data source, and finds the relevant row attributes and mapped
target attributes.

The number of data objects that the LOV facility fetches is determined in part by the
ListRangeSize setting in the LOV-enabled attribute’s list binding definition which
is specified in the Edit List of Values dialog that you display on the attribute from the
view object overview editor. If the number of records fetched is very large, the default
value for ListRangeSize may truncate the values available to the dropdown list
component used to display the records. The default number of fetched records for
LOV queries depends on the type of list component used to display the records. In the
case of the Combo Box with List of Values component and the Input Text with List of
Values component, the default value for ListRangeSize is 10. In the case of all other
types of list components that you can select (including choice list, combo box, list box,
and radio button group), the default value for ListRangeSize is set to -1. The value
-1 means that the user will be able to view all the data objects from the data source.
The ListRangeSize value has no effect on the records that the end user can search
on in the lookup dialog displayed for the two List of Values type components. For
more information about how each list component displays values, see Section 5.12.4,
"How to Set User Interface Hints on a View Object LOV-Enabled Attribute."

Note that although you can alter the ListRangeSize value in the metadata
definition for the <ListBinding> element, setting the value to a discrete number of
records (for example, ListRangeSize="5") most likely will not provide the user
with the desired selection choices. Instead, if the value is -1 (default for simple list
components without a LOV dialog), then no restrictions are made to the number of
records the list component will display, and the user will have access to the full set of
values.

Note, a runtime exception will occur when a web page displays a UI component for an
LOV-enabled attribute that does not match the view object’s CONTROLTYPE definition.
When the user interface designer creates the page in JDeveloper using the Data
Controls panel, JDeveloper automatically inserts the list component identified by the
Default List Type selection you made for the view object’s LOV-enabled attribute in
the List UI Hint dialog. However, if the user interface designer changes the list type
subsequent to creating the web page, you will need to edit the selection in the List UI
Hint dialog to match.

5.12.10 What You May Need to Know About Lists
There are several things you may need to know about LOVs that you define for
attributes of view objects, including how to propagate LOV-enabled attributes from
parent view objects to child view objects (by extending an existing view object) and
when to use validators instead of an LOV to manage a list of values.

Performance Tip: To limit the set of values a LOV displays, use a
view accessor to filter the LOV binding, as described in Section 5.12.1,
"How to Define a Single LOV-Enabled View Object Attribute."
Additionally, in the case of component types that display a choice list,
you can change the Most Recently Used Count setting to limit the list
to display the user’s previous selections, as described in Section 5.12.4,
"How to Set User Interface Hints on a View Object LOV-Enabled
Attribute."

Defining Control Hints for View Objects

Defining SQL Queries Using View Objects 5-115

5.12.10.1 Inheritance of AttributeDef Properties from Parent View Object Attributes
When a view object extends another view object, you can create the LOV-enabled
attribute on the base object. Then when you define the child view object in the
overview editor, the LOV definition will be visible on the corresponding view object
attribute. This inheritance mechanism allows you to define an LOV-enabled attribute
once and later apply it across multiple view objects instances for the same attribute.

You can also use the overview editor to extend the inherited LOV definition. For
example, you may add extra attributes already defined by the base view object’s query
to display in selection list. Alternatively, you can define a view object that uses a
custom WHERE clause to query the supplemental attributes not already queried by the
based view object. For information about customizing entity-based view objects, see
Section 5.10, "Working with Bind Variables."

5.12.10.2 Using Validators to Validate Attribute Values
If you have created an LOV-enabled attribute for a view object, there is no need to
validate the attribute using a List Validator. You only use an attribute validator when
you do not want the list to display in the user interface, but still need to restrict the list
of valid values. List validation may be a simple static list or it may be a list of possible
values obtained through a view accessor you define. Alternatively, you might prefer to
use Key Exists validation when the attribute displayed in the UI is one that references
a key value (such as a primary, foreign, or alternate key). For information about
declarative validation in ADF Business Components, see Chapter 7, "Defining
Validation and Business Rules Declaratively."

5.12.10.3 LOV Limitation When Exposing Application Module as EJB Session Bean
A limitation exists related to LOV-enabled attributes when your application uses an
EJB Session Bean to expose application module services. The Data Controls panel
exposes these services in the user interface project, using data binding functionality,
and you will be able to create a databound LOV list component. However, at runtime,
the LOV list will appear empty. Additionally, if the LOV dialog includes search
capabilities, clicking the search link will result in a FacesCtrlSearchBinding
exception error. This is a known limitation of deploying the business services, as
supported by an EJB Session Bean, and the user interface in separate tiers.

5.13 Defining Control Hints for View Objects
 One of the built-in features of ADF Business Components is the ability to define
control hints on view objects and attributes of view objects. Control hints are settings
that the view layer can use to automatically display the queried information to the
user in a consistent, locale-sensitive way. For example, in web pages, a UI developer
may access control hint values by entering EL expressions utility methods defined on
the bindings name space and specified for ADF binding instance names.

JDeveloper stores the hints in resource bundle files that you can easily localize for
multilingual applications.

5.13.1 How to Add Attribute-Specific Control Hints
To create control hints for attributes of a view object, use the overview editor for the
view object, which is accessible from the Application Navigator. You can also display
and edit control hints using the Property Inspector that you display for an attribute.

Defining Control Hints for View Objects

5-116 Fusion Developer's Guide for Oracle Application Development Framework

Before you begin:
Create the desired view objects as described in Section 5.2.1, "How to Create an
Entity-Based View Object," and Section 5.2.3, "How to Create an Expert Mode,
Read-Only View Object."

To customize view object attribute with control hints:
1. In the Application Navigator, double-click the view object.

2. In the overview editor, click the Attributes navigation tab and double-click the
attribute that you want to customize with control hints.

Alternatively, display the Property Inspector for the selected attribute and select
the UI Hints navigation tab. The Property Inspector provides a way to customize
the attribute’s control hints without using the Edit Attribute dialog.

3. In the Edit Attribute dialog, select Control Hints and define the desired hints.

For example, for an attribute UserId, you might enter a value for its Label Text
hint like "Id" or set the Format Type to Number, and enter a Format mask of
00000.

4. Click OK.

5.13.2 How to Add View Object Control Hints
To create control hints for attributes of a view object, use the overview editor for the
view object, which is accessible from the Application Navigator. You can also display
and edit several additional control hints using the Property Inspector that you display
for the view object.

Before you begin:
It may be helpful to have an understanding of control hints. For more information, see
Section 5.13, "Defining Control Hints for View Objects."

You will need to complete this task:

Create the desired view objects as described in Section 5.2.1, "How to Create an
Entity-Based View Object," and Section 5.2.3, "How to Create an Expert Mode,
Read-Only View Object."

To customize view objects with control hints:
1. In the Application Navigator, double-click the view object.

2. In the overview editor, click the General navigation tab.

3. In the General page, enter a Display Name to define an EL accessible hint for the
view object name.

For example, for a view object OrdersVO, you might enter a value for its Display
Name hint like "Order".

Note: Java defines a standard set of format masks for numbers and
dates that are different from those used by the Oracle database's SQL
and PL/SQL languages. For reference, see the Javadoc for the
java.text.DecimalFormat and
java.text.SimpleDateFormat classes.

Defining Control Hints for View Objects

Defining SQL Queries Using View Objects 5-117

4. With the General page displayed in the overview editor, open the Property
Inspector for the view object and expand the UI Hints section, and then enter
additional hints as needed.

For example, for a view object OrdersVO, you might enter a value for the Display
Name (Plural) hint like "Orders" and, for the Description hint, you might enter a
value like "customer orders".

5.13.3 How to Access Control Hints Using EL Expressions
A UI developer can access control hints using EL expressions and display the hint
values as data in a web page. The UI developer may access control hints through the
ADF binding instances that they create after dropping databound components into
their web pages.

In the case of the view object hints, the UI developer accesses the view object hints
through the iterator binding defined for the view object. For example, assume that you
have configured the view object control hints as follows.

■ OrdersVO view object Display Name hint = Order

■ OrdersVO view object Display Name (Plural) hint = Orders

■ OrdersVO view object Description hint = customer orders

The UI developer might display a header that makes use of these hints like this:

Showing customer orders number 10 of 51 Orders.

Example 5–37 shows that the EL expression that produces the above text. In this EL
expression the iterator binding OrdersVO1Iterator provides access to the view
object hints. The names of the EL expression utility methods match the property
names defined in the view object XML definition file for the control hints. For
example, the view object property name labelPlural, which defines the Display
Name (Plural) hint, corresponds to the utility method name used in the expression
bindings.OrdersVO1Iterator.hints.labelPlural.

Example 5–37 EL to Access View Object Control HInts

<af:panelHeader id="ph1"
 text="Showing #{bindings.OrdersVO1Iterator.hints.description} number
 #{bindings.Orderno.inputValue} of
 #{bindings.OrdersVO1.estimatedRowCount}
 #{bindings.OrdersVO1Iterator.hints.labelPlural}.">

5.13.4 What Happens When You Add Control Hints
When you define control hints for a view object or view object attributes, by default
JDeveloper creates a project-level resource bundle file in which to store them. For
example, when you define control hints for a view object in the StoreFront project,
JDeveloper creates the message bundle file named StoreFrontBundle.xxx for the
package. The hints that you define can be used by generated forms and tables in
associated view clients.

The type of resource bundle file that JDeveloper uses and the granularity of the file are
determined by settings on the Resource Bundle page of the Project Properties dialog.
By default, JDeveloper sets the option to Properties Bundle and generates one
.properties file for the entire data model project.

Alternatively, if you select the option in the Project Properties dialog to generate one
resource bundle per file, you can inspect the message bundle file for any view object

Defining Control Hints for View Objects

5-118 Fusion Developer's Guide for Oracle Application Development Framework

by selecting the object in the Application Navigator and looking in the corresponding
Sources node in the Structure window. The Structure window shows the
implementation files for the component you select in the Application Navigator. You
can inspect the resource bundle file for the view object by expanding the parent
package of the view object in the Application Navigator, as shown in Figure 5–46.

Figure 5–46 Resource Bundle File in Application Navigator

For more information on the resource bundle options you can select, see Section 4.7.1,
"How to Set Message Bundle Options."

Example 5–38 shows a sample message bundle file where the control hint information
appears. The first entry in each String array is a message key; the second entry is the
locale-specific String value corresponding to that key.

Example 5–38 Resource File With Locale-Sensitive Control Hints

devguide.examples.readonlyvo.queries.Persons.PersonId_FMT_FORMATTER=
 oracle.jbo.format.DefaultNumberFormatter
devguide.examples.readonlyvo.queries.Persons.PersonId_FMT_FORMAT=00000
devguide.examples.readonlyvo.queries.Persons.PersonId_LABEL=Id
devguide.examples.readonlyvo.queries.Persons.Email_LABEL=Email Address
devguide.examples.readonlyvo.queries.Persons.LastName_LABEL=Surname
devguide.examples.readonlyvo.queries.Persons.FirstName_LABEL=Given Name

5.13.5 What You May Need to Know About Resource Bundles
Internationalizing the model layer of an application built using ADF Business
Components entails producing translated versions of each component’s resource
bundle file. For example, the Italian version of the
QueryDataWithViewObjectsBundle.properties file would be a file named
QueryDataWithViewObjectsBundle_it.properties, and a more specific Swiss
Italian version would have the name QueryDataWithViewObjectsBundle_it_
ch.properties.

Resource bundle files contain entries for the message keys that need to be localized,
together with their localized translation. For example, assuming you didn't want to
translate the number format mask for the Italian locale, the Italian version of the
QueryDataWithViewoObjects view object message keys would look like what you
see in Example 5–39. At runtime, the resource bundles are used automatically, based
on the current user's locale settings.

Example 5–39 Localized View Object Component Resource Bundle for Italian

devguide.examples.readonlyvo.queries.Persons.PersonId_FMT_FORMATTER=
 oracle.jbo.format.DefaultNumberFormatter
devguide.examples.readonlyvo.queries.Persons.PersonId_FMT_FORMAT=00000

Adding Calculated and Transient Attributes to a View Object

Defining SQL Queries Using View Objects 5-119

devguide.examples.readonlyvo.queries.Persons.PersonId_LABEL=Codice Utente
devguide.examples.readonlyvo.queries.Persons.Email_LABEL=Indirizzo Email
devguide.examples.readonlyvo.queries.Persons.LastName_LABEL=Cognome
devguide.examples.readonlyvo.queries.Persons.FirstName_LABEL=Nome

5.14 Adding Calculated and Transient Attributes to a View Object
In addition to having attributes that map to underlying entity objects, your view
objects can include calculated attributes that don't map to any entity object attribute
value. The two kinds of calculated attributes are known as:

■ SQL-calculated attributes, when their value is retrieved as an expression in the SQL
query's SELECT list

■ Transient attributes, when their value is not retrieved as part of the query

A view object can include an entity-mapped attribute which itself is a transient
attribute at the entity object level.

5.14.1 How to Add a SQL-Calculated Attribute
You use the overview editor for the view object to add a SQL-calculated attribute.

Before you begin:
Create the desired view objects as described in Section 5.2.1, "How to Create an
Entity-Based View Object," and Section 5.2.3, "How to Create an Expert Mode,
Read-Only View Object."

To add a SQL-calculated attribute to a view object:
1. In the Application Navigator, double-click the view object for which you want to

define a SQL-calculated attribute.

2. In the overview editor, click the Attributes navigation tab and click the Create
new attribute button.

3. In the New View Object Attribute dialog, enter a name for the attribute.

4. Set the Java attribute type to an appropriate value.

5. Select the Mapped to Column or SQL checkbox.

6. Provide a SQL expression in the Expression field.

For example, to change the order of first name and last name, you could write the
expression LAST_NAME||', '||FIRST_NAME, as shown in Figure 5–47.

Adding Calculated and Transient Attributes to a View Object

5-120 Fusion Developer's Guide for Oracle Application Development Framework

Figure 5–47 New SQL-Calculated Attribute

7. Consider changing the SQL column alias to match the name of the attribute.

8. Verify the database query column type and adjust the length (or precision/scale)
as appropriate.

9. Click OK.

5.14.2 What Happens When You Add a SQL-Calculated Attribute
When you add a SQL-calculated attribute in the overview editor for the view object,
JDeveloper updates the XML component definition for the view object to reflect the
new attribute. The entity-mapped attribute’s <ViewAttribute> tag looks like the
sample shown in Example 5–40. The entity-mapped attribute inherits most of it
properties from the underlying entity attribute to which it is mapped.

Example 5–40 Metadata For Entity-Mapped Attribute

<ViewAttribute
Name="LastName"
IsNotNull="true"
EntityAttrName="LastName"
EntityUsage="User1"
AliasName="LAST_NAME" >

</ViewAttribute>

Whereas, in contrast, a SQL-calculated attribute's <ViewAttribute> tag looks like
sample shown in Example 5–41. As expected, the tag has no EntityUsage or
EntityAttrName property, and includes datatype information along with the SQL
expression.

Example 5–41 Metadata For SQL-Calculated Attribute

<ViewAttribute
Name="LastCommaFirst"
IsUpdatable="false"
IsPersistent="false"
Precision="62"

Adding Calculated and Transient Attributes to a View Object

Defining SQL Queries Using View Objects 5-121

Type="java.lang.String"
ColumnType="VARCHAR2"
AliasName="FULL_NAME"
Expression="LAST_NAME||', '||FIRST_NAME"
SQLType="VARCHAR" >

</ViewAttribute>

5.14.3 How to Add a Transient Attribute
Transient attributes are often used to provide subtotals or other calculated expressions
that are not stored in the database.

Before you begin:
Create the desired view objects as described in Section 5.2.1, "How to Create an
Entity-Based View Object," and Section 5.2.3, "How to Create an Expert Mode,
Read-Only View Object."

To add a transient attribute to a view object:
1. In the Application Navigator, double-click the view object for which you want to

define a transient attribute.

2. In the overview editor, click the Attributes navigation tab and click the Create
new attribute button.

3. In the New View Object Attribute dialog, enter a name for the attribute.

4. Set the Java attribute type to an appropriate value.

For example, a calculated attribute that concatenates a first name and a last name
would have the type String, as shown in Figure 5–48.

Note: The ' is the XML character reference for the apostrophe.
You reference it by its numerical ASCII code of 39 (decimal). Other
characters in literal text that require similar construction in XML are
the less-than, greater-than, and ampersand characters.

Adding Calculated and Transient Attributes to a View Object

5-122 Fusion Developer's Guide for Oracle Application Development Framework

Figure 5–48 New Transient Attribute

5. Leave the Mapped to Column or SQL checkbox unselected.

6. Click OK.

To create a transient attribute based on an expression:
1. In the Application Navigator, double-click the view object for which you want to

define a transient attribute.

2. In the overview editor, click the Attributes navigation tab and click the Create
new attribute button.

3. In the New View Object Attribute dialog, enter a name for the attribute.

4. Set the Java attribute type to an appropriate value.

5. Leave the Mapped to Column or SQL checkbox unselected.

A transient attribute does not include a SQL expression.

6. Next to the Value field, click Edit to define an expression that calculates the value
of the attribute.

Expressions you define will be evaluated using the Groovy Expression Language.
Groovy lets you insert expressions and variables into strings. The expression will
be saved as part of the view object definition. For more information about Groovy,
see Section 3.6, "Overview of Groovy Support."

7. In the Edit Expression dialog, enter an expression in the field provided.

Attributes that you reference can include any attribute that the base entity objects
define. Do not reference attributes in the expression that are not defined by the
view object’s underlying entity objects.

8. Select the appropriate recalculate setting.

If you select Always (default), the expression is evaluated each time any attribute
in the row changes. If you select Never, the expression is evaluated only when the
row is created.

9. You can optionally provide a condition for when to recalculate the expression.

Adding Calculated and Transient Attributes to a View Object

Defining SQL Queries Using View Objects 5-123

For example, the following expression in the Based on the following expression
field causes the attribute to be recalculated when either the Quantity attribute or
the UnitPrice attribute are changed:

return (adf.object.isAttributeChanged("Quantity") ||
adf.object.isAttributeChanged("UnitPrice"));

10. When either the value expression or the optional recalculate expression that you
define references an attribute from the base entity object, you must define this as a
dependency in the Edit Expression dialog. Locate each attribute in the Available
list and shuttle it to the Selected list.

11. Click OK to save the expression and return to the New View Object Attribute
dialog.

12. Click OK.

A view object can include an entity-mapped attribute which itself is a transient
attribute at the entity object level.

To add a transient attribute from an entity object to an entity-based view object:
1. In the Application Navigator, double-click the view object for which you want to

add a transient attribute based on an entity usage.

2. In the overview editor, click the Attributes navigation tab and click the Add From
Entity button.

3. In the Attributes dialog, move the desired transient attribute from the Available
list into the Selected list.

4. Click OK.

If you use the Business Component Browser to test the data model, you can see the
usage of your transient attributes. Figure 5–49 shows three attributes that were created
using a SQL-calculated attribute (LastCommaFirst), a transient attribute
(FirstDotLast) and an entity-derived transient attribute (FullName).

Figure 5–49 View Object with Three Kinds of Calculated Attributes

5.14.4 How to Add a Validation Rule to a Transient Attribute
Attribute-level validation rules are triggered for a particular view object transient
attribute when either the end user or the program code attempts to modify the
attribute's value. Since you cannot determine the order in which attributes will be set,
attribute-level validation rules should be used only when the success or failure of the
rule depends exclusively on the candidate value of that single attribute.

The process for adding a validation rule to an view object transient attribute is similar
to create declarative validation rules, and is done using the Add Validation Rule

Adding Calculated and Transient Attributes to a View Object

5-124 Fusion Developer's Guide for Oracle Application Development Framework

dialog. You can open this dialog from the overview editor for the view object by
clicking the Add Validation Rule icon on the Attributes page. You must first select the
transient attribute from the attributes list.

To add a validation rule for a transient attribute:
1. In the Application Navigator, double-click the desired view object.

2. Click the Attributes navigation tab on the overview editor.

3. Select the transient attribute for which you want to add a validation rule, expand
the Validation Rules section, and then click the Add Validation Rule icon.

When you add a new validation rule, the Add Validation Rule dialog appears.

4. Select the type of validation rule desired from the Rule Type dropdown list.

5. Use the dialog settings to configure the new rule.

The controls will change depending on the kind of validation rule you select. For
more information about the different validation rules, see Section 7.4, "Using the
Built-in Declarative Validation Rules."

6. You can optionally click the Validation Execution tab and enter criteria for the
execution of the rule, such as dependent attributes and a precondition expression.
For more information, see Section 7.6, "Triggering Validation Execution."

7. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails. For more information, see Section 7.7,
"Creating Validation Error Messages."

8. Click OK.

5.14.5 What Happens When You Add a Transient Attribute
When you add a transient attribute in the overview editor for a view object,
JDeveloper updates the XML component definition for the view object to reflect the
new attribute. A transient attribute's <ViewAttribute> tag in the XML is similar to
the SQL-calculated one, but it lacks an Expression property.

When you base a transient attribute on a Groovy expression, a
<TransientExpression> tag is created within the appropriate attribute, as shown
in Example 5–42.

Example 5–42 Calculating a Transient Attribute Using a Groovy Expression

<TransientExpression>
 <![CDATA[
 ((Quantity == null) ? 0 : Quantity) * ((UnitPrice == null) ? 0 : UnitPrice)
]]>
</TransientExpression>

5.14.6 Adding Java Code in the View Row Class to Perform Calculation
A transient attribute is a placeholder for a data value. If you change the Updatable
property of the transient attribute to While New or Always, the end user can enter a
value for the attribute. If you want the transient attribute to display a calculated value,
then you'll typically leave the Updatable property set to Never and write custom Java
code that calculates the value.

After adding a transient attribute to the view object, to make it a calculated transient
attribute you need to enable a custom view row class and choose to generate accessor

Adding Calculated and Transient Attributes to a View Object

Defining SQL Queries Using View Objects 5-125

methods, in the Java dialog that you open clicking the Edit icon on the Java page of the
overview editor for the view object. Then you would write Java code inside the
accessor method for the transient attribute to return the calculated value.
Example 5–42 shows the StaffListRowImpl.java view row class contains the Java
code to return a calculated value in the getLastCommaFirst() method.

// In StaffListRowImpl.java
public String getFirstDotLast() {
// Commented out this original line since we're not storing the value
// return (String) getAttributeInternal(FIRSTDOTLAST);
return getFirstName().substring(0,1)+". "+getLastName();

}

5.14.7 What You May Need to Know About Transient Attributes
The view object includes the SQL expression for your SQL-calculated attribute in the
SELECT list of its query at runtime. The database is the one that evaluates the
expression, and it returns the result as the value of that column in the query. The value
is reevaluated each time you execute the query.

Adding Calculated and Transient Attributes to a View Object

5-126 Fusion Developer's Guide for Oracle Application Development Framework

6

Working with View Object Query Results 6-1

6Working with View Object Query Results

This chapter describes how to interactively test ADF view objects query results using
the Business Component Browser provided in JDeveloper. This chapter also explains
how to use the Business Components API to access view object instances in a test
client outside of JDeveloper.

This chapter includes the following sections:

■ Section 6.1, "Introduction to View Object Runtime Behavior"

■ Section 6.2, "Creating an Application Module to Test View Instances"

■ Section 6.3, "Testing View Object Instances Using the Business Component
Browser"

■ Section 6.4, "Testing View Object Instances Programmatically"

6.1 Introduction to View Object Runtime Behavior
JDeveloper includes an interactive application module testing tool that you can use to
test all aspects of its data model without having to use your application user interface
or write a test client program. Running the Business Component Browser can often be
the quickest way of exercising the data functionality of your business service during
development.

Using the Business Component Browser, you can simulate an end user interacting
with your application module data model before you have started to build any custom
user interface of your own. Even after you have your UI pages constructed, you will
come to appreciate using the Business Component Browser to assist in diagnosing
problems when they arise. You can reproduce the issues in the Business Component
Browser to discover if the issue lies in the view or controller layers of the application,
or is instead a problem in the business service layer application module itself.

6.2 Creating an Application Module to Test View Instances
Before you can test view objects that you create in your data model project, you must
create an application module where you will define instances of the view objects you

Note: When you want to test an application module
programmatically, you can write a test client. For more information,
see Section 6.4.2, "How to Create a Command-Line Java Test Client."
When you want to log query execution, use the ADF Logger. For more
information, see Section 31.5, "Using the ADF Logger."

Creating an Application Module to Test View Instances

6-2 Fusion Developer's Guide for Oracle Application Development Framework

want to test. The application module is the transactional component that the Business
Component Browser (or UI client) will use to work with application data. The set of
view objects used by an application module defines its data model, in other words, the
set of data that a client can display and manipulate through a user interface.

To test the view objects you added to an application module, use the Business
Component Browser, which is accessible from the Application Navigator. For details
about using the Business Component Browser, see Section 6.3, "Testing View Object
Instances Using the Business Component Browser."

6.2.1 How to Create the Application Module with Individual View Object Instances
To create an application module that will define instances of individual view objects,
use the Create Application Module wizard, which is available in the New Gallery.

Before you begin:
Create the desired view objects, as described in Section 5.2.1, "How to Create an
Entity-Based View Object" and Section 5.2.3, "How to Create an Expert Mode,
Read-Only View Object."

To create an application module to test individual view object instances:
1. In the Application Navigator, right-click the project in which you want to create

the application module and choose New.

2. In the New Gallery, expand Business Tier, select ADF Business Components and
then Application Module, and click OK.

3. In the Items list, select Application Module to launch the Create Application
Module wizard.

4. In the Create Application Module wizard, in the Name page, provide a package
name and an application module name. Click Next.

5. On the Data Model page, include instances of the view objects you have
previously defined and edit the view object instance names to be exactly what you
want clients to see. Then click Finish.

Instead of accepting the default instance name shown in the Data Model page, you
can change the instance name to something more meaningful (for example,
instead of the default name OrderItems1 you can rename it to
AllOrderItems).

6.2.2 How to Create the Application Module with Master-Detail View Object Instances
You can also use the Create Application Module wizard to create a hierarchy of view
objects for an application module, based on master-detail relationships that the view
objects represent.

Before you begin:
Create hierarchical relationships between view objects, as described in Section 5.6,
"Working with Multiple Tables in a Master-Detail Hierarchy."

To create an application module based on view object relationships:
1. In the Application Navigator, right-click the project in which you want to create

the application module and choose New.

Creating an Application Module to Test View Instances

Working with View Object Query Results 6-3

2. In the New Gallery, expand Business Tier, select ADF Business Components and
then Application Module, and click OK.

3. In the Items list, select Application Module to launch the Create Application
Module wizard.

4. In the Create Application Module wizard, select the Data Model node.

5. In the Available View Objects list on the left, select the instance of the view object
that you want to be the actively coordinating master.

The master view object will appear with a plus sign in the list indicating the
available view links for this view object. The view link must exist to define a
master-detail hierarchy.

For example, Figure 6–1 shows PersonsVO selected and renamed
AuthenticatedUser in the New View Instance field.

Figure 6–1 Master View Object Selected

6. Shuttle the selected master view object to the Data Model list

For example, Figure 6–2 shows the newly created master view instance
AuthenticatedUser in the Data Model list after you add it to the list.

Figure 6–2 Master View Instance Created

7. In the Data Model list, leave the newly created master view instance selected, so
that it appears highlighted. This will be the target of the detail view instance you
will add. Then locate and select the detail view object beneath the master view
object in the Available View Objects list.

Creating an Application Module to Test View Instances

6-4 Fusion Developer's Guide for Oracle Application Development Framework

For example, Figure 6–3 shows the detail OrdersVO indented beneath master
PersonsVO with the name OrdersVO via PersonsToOrders. The name
identifies the view link PersonsToOrders, which defines the master-detail
hierarchy between PersonsVO and OrdersVO. The detail view instance is
renamed to MyOrders.

Figure 6–3 Detail View Object Selected

8. To add the detail instance to the previously added master instance, shuttle the
detail view object to the Data Model list below the selected master view instance.

Figure 6–4 shows the newly created detail view instance MyOrders is a detail of
the AuthenticatedUser in the data model.

Figure 6–4 Master View Instance Created

9. To add another level of hierarchy, select the newly added detail in the Data Model
list, then shuttle over the new detail which itself has a master-detail relationship
with the previously added detail instance.

Your data model can contain as many levels of hierarchy as your view object
relationships support. For example, Figure 6–5 shows the Data Model list with
instance AuthenticatedUser (renamed for PersonsVO) as the master of
MyOrders (renamed for OrdersVO via PersonsToOrders), which in turn is a
master for MyOrderItems (renamed from OrderItemsVO via
OrdersToOrderItems). The detail view object MyOrderItems is the last level
of the hierarchy possible because this view object is itself not a master for another
view object.

Testing View Object Instances Using the Business Component Browser

Working with View Object Query Results 6-5

Figure 6–5 Master-Detail-Detail Hierarchy Created

6.3 Testing View Object Instances Using the Business Component
Browser

Using the Business Component Browser, you can simulate an end user interacting
with your application module data model before you have started to build any custom
user interface of your own. Even after you have your UI pages constructed, you will
come to appreciate using the Business Component Browser to assist in diagnosing
problems when they arise. You can reproduce the issues in the Business Component
Browser to discover whether the problem lies in the view or controller layers of the
application, or whether there is instead a problem in the business service layer
application module itself.

6.3.1 How to Run the Business Component Browser
To test the view objects you added to an application module, use the Business
Component Browser, which is accessible from the Application Navigator.

To test view objects in an application module configuration:
1. In the Application Navigator, expand the project containing the desired

application module and view objects.

2. Right-click the application module and choose Run.

Alternatively, choose Debug when you want to run the application in the Business
Component Browser with debugging enabled. JDeveloper opens the debugger
process panel in the Log window and the various debugger windows. For
example, when debugging using the Business Component Browser, you can view
status message and exceptions, step in and out of source code, and manage
breakpoints.

For information about receiving diagnostic messages specific to ADF Business
Component debugging, see Section 6.3.8, "How to Enable ADF Business
Components Debug Diagnostics".

3. In the Select Business Components Configuration dialog, choose the desired
application module configuration from the Business Component Configuration
Name list to run the Business Component Browser.

By default, an application module has only its default configurations, named
AppModuleNameLocal and AppModuleNameShared. For example, Figure 6–6
shows the StoreFrontModuleLocal configuration used by the application
module to connect to the database.

Testing View Object Instances Using the Business Component Browser

6-6 Fusion Developer's Guide for Oracle Application Development Framework

If you have created additional configurations for your application module and
want to test it using one of those instead, just select the desired configuration from
the Business Component Configuration Name dropdown list on the
Configuration dialog before clicking Connect.

Figure 6–6 Configuration Selection in Configuration Dialog

4. Click Connect to start the application module using the selected configuration.

5. To execute a view object in the Business Component Browser, expand the data
model tree and double-click the desired view object node.

Note that the view object instance may already appear executed in the testing
session. In this case, the Business Component Browser data view page on the right
already displays query results for the view object instance. The fields in the
Business Component Browser data view page of a read-only view object will
always appear disabled since the data it represents is not editable. For example, in
Figure 6–7, data for the view instance Products appears in the Browser. Fields
like Product Id, Language, and Category appear disabled because the attributes
themselves are not editable.

Testing View Object Instances Using the Business Component Browser

Working with View Object Query Results 6-7

Figure 6–7 Testing the Data Model in the Business Component Browser

6. Right-click a node in the data model tree at the left of the Business Component
Browser to display the context menu for that node. For example, on a view object
node you can reexecute the query if needed, to remove the view object from the
data model tree, and perform other tasks.

7. Right-click the tab of an open data viewer to display the context menu for that tab,
as shown in Figure 6–8. For example, you can close the data viewer or open it in a
separate window.

Figure 6–8 Context Menu for Data Viewer Tabs in the Business Component Browser

6.3.2 How to Test Entity-Based View Objects Interactively
You test entity-based view objects interactively in the same way as read-only ones. Just
add instances of the desired view objects to the data model of some application
module, and then test that application module using the Business Component
Browser.

You'll find the Business Component Browser invaluable for quickly testing and
debugging your application modules. Table 6–1 gives an overview of the operations
that the Business Component Browser toolbar buttons perform when you display an
entity-based view object.

Table 6–1 Business Component Browser Toolbar Buttons

Button Operation Usage

Move to ... row Changes the current row displayed by the
Business Component Browser. Moves to the
first, previous, next, or last row.

Testing View Object Instances Using the Business Component Browser

6-8 Fusion Developer's Guide for Oracle Application Development Framework

To test the entity-based view objects you added to an application module, use the
Business Component Browser, which is accessible from the Application Navigator.

To test entity-based view objects using an application module configuration:
1. Select the application module in the Application Navigator and choose Run from

the context menu.

2. Click Connect on the Select Business Component Browser Configuration dialog
and use the desired configuration for testing.

3. To execute an entity-based view object in the Business Component Browser,
expand the data model tree and double-click the desired view object node.

Unlike the fields of a read-only view object, the fields displayed in the data view
page will appear enabled, because the data it represents is editable.

4. You can use the editable fields to update individual values and perform validation
checks on the entered data.

In the case of a view instance with referenced entities, you can change the foreign
key value and observe that the referenced part changes.

5. You can use the toolbar buttons to perform row-level operations, such as navigate
rows, create row, remove row, and validate the current row.

For further discussion about simulating end-user interaction in the data view
page, see Section 6.3.5, "How to Simulate End-User Interaction in the Business
Component Browser".

Insert a new row Creates and inserts a new row.

Delete the current
row

Deletes the current row.

Save changes to
the database

Posts and commits changes that you made in
the ADF Business Components cache.

Discard all
changes since last
save

Discards changes that you made in the ADF
Business Components cache and restores the
original values, rolling back any changes
posted to the database.

Specify view
criteria

Displays the Business Component View
Criteria dialog that you can use to create and
apply view criteria to the master view object
instance.

Validate row Validates the current row by applying
validation rules defined for all entity object
instances. Disabled unless at least one field is
editable.

Edit bind
variables

Displays the Bind Variable dialog that you can
use to enter values for bind parameters used
in the view object query. Disabled unless the
view object query uses bind parameters in the
query statement.

Table 6–1 (Cont.) Business Component Browser Toolbar Buttons

Button Operation Usage

Testing View Object Instances Using the Business Component Browser

Working with View Object Query Results 6-9

6.3.3 How to Update the Business Component Browser to Display Project Changes
Normally, changes that you make to the data model project will not be picked up
automatically by running the Business Component Browser. You can, however, force
the Business Component Browser to reload metadata from the data model project any
time you want to synchronize the displayed data model and the data model project.
This option is an alternative to quitting the Business Component Browser, editing your
project, and rerunning the Business Component Browser to view the latest changes.

Using the Reload Application option saves time, especially as you work iteratively
between the Business Component Browser and JDeveloper. For example, while
running the Business Component Browser you might determine the need to modify
the data model with a new view instance or you might find that a view instance is
missing an LOV attribute definition. You can return to JDeveloper and use the
Business Components overview editors to make the changes that alter the data model
metadata. Then, after you recompile the project (a necessary step), you can return to
the Business Component Browser to reload the updated metadata from the project’s
class path.

To reload the data model metadata in the running Business Component
Browser:
1. In the Application Navigator, right-click the application module and choose Run.

2. Test the data model and determine any changes you want to make. Do not exit the
Business Component Browser.

3. In JDeveloper, make the desired changes and recompile the data model project.
(For example, you can right-click the data model project in the Application
Navigator and choose Make to complete the recompile step.)

Although the metadata changes that you make are not involved in compiling the
project, the compile step is necessary to copy the metadata to the class path and to
allow the Business Component Browser to reload it.

4. Return to the Business Component Browser and click the Reload the Application
Metadata button above the data model tree. The Business Component Browser
closes all open windows.

Alternatively, you can choose Reload Application from the File menu of the
Business Component Browser.

5. Reopen the desired windows and view your changes.

6.3.4 What Happens When You Use the Business Component Browser
When you launch the Business Component Browser, JDeveloper starts the tool in a
separate process and the Business Component Browser appears. The tree at the left of
the dialog displays all of the view object instances in your application module's data
model. After you double-click the desired view object instance, the Business
Component Browser will display a data view page to inspect the query results. For
example, Figure 6–7 shows the view instance Products that has been double-clicked
in the expanded tree to display the data for this view instance in the data view page on
the right.

The data view page will appear disabled for any read-only view objects you display
because the data is not editable. But even for a read-only view object, the tool affords
some useful features:

■ You can validate that the UI hints based on the Label Text control hint and format
masks are defined correctly.

Testing View Object Instances Using the Business Component Browser

6-10 Fusion Developer's Guide for Oracle Application Development Framework

■ You can also scroll through the data using the toolbar buttons.

■ You can enter Query-by-Example criteria to find a particular row whose data you
want to inspect. By clicking the Specify View Criteria button in the toolbar, the
View Criteria dialog displays the list of available Query-by-Example criteria.

For example, as shown in Figure 6–9, you can select a view criteria like
CustomerInfoVOCriteria and enter a query criteria like "H%" for a LastName
attribute and click Find to narrow the search to only those users with a last name
that begins with the letter H.

The Business Component Browser becomes even more useful when you create
entity-based view objects that allow you to simulate inserting, updating, and deleting
rows, as described in Section 6.3.2, "How to Test Entity-Based View Objects
Interactively."

Figure 6–9 Built-in Query-by-Example Functionality

6.3.5 How to Simulate End-User Interaction in the Business Component Browser
When you launch the Business Component Browser, the tree at the left of the display
shows the hierarchy of the view object instances that the data model of your
application module defines. If the data model defines master-detail view instance
relationships, the tree will display them as parent and child nodes. A node between
the master-detail view instances represent the view link instance that performs the
active master-detail coordination as the current row changes in the master. For
example, in Figure 6–10 the tree is expanded to show the master-detail relationship
between the master ProductByCategory1 view instance and the detail
ProductStockLevelsByLocation1 view instance. The selected node,
ProductWarehousesLevelsLink1, is the view link instance that defines the
master-detail relationship.

Testing View Object Instances Using the Business Component Browser

Working with View Object Query Results 6-11

Figure 6–10 Application Module Data Model in the Business Component Browser

Double-clicking the view link instance executes the master object and displays the
master-detail data in the data view page. For example, in Figure 6–11, double-clicking
the ProductWarehousesLevelsLink1 view link instance in the tree executes the
ProductsByCategory master view instance in the top portion of the data view page
and the ProductStockLevelsByLocation1 view instance in the bottom portion of
the data view page. Additional context menu items on the view object node allow you
to reexecute the query if needed, remove the view object from the data model panel,
and perform other tasks.

In the master-detail data view page, you can scroll through the query results.
Additionally, because instance of entity-based view objects are fully editable, Instead
of displaying disabled UI controls showing read-only data for a read-only view object,
the data view page displays editable fields. You are free to experiment with creating,
inserting, updating, validating, committing, and rolling back.

Figure 6–11 Master-Detail Data View Page in the Business Component Browser

For example, you can view multiple levels of master-detail hierarchies, opening
multiple data view pages at the same time. Use the Detach context menu item to open

Testing View Object Instances Using the Business Component Browser

6-12 Fusion Developer's Guide for Oracle Application Development Framework

any tab into a separate window and visualize multiple view object's data at the same
time.

Using just the master-detail data view page, you can test several functional areas of
your application.

6.3.5.1 Testing Master-Detail Coordination
When you click the navigation buttons on the Business Component Browser toolbar,
you can see that the rows for the current master view object are correctly coordinated.
For example, Figure 6–11 shows a master-detail hierarchy with products and
warehouses. If you click the Next Row button in the master panel, the master panel
will display the next product (identified by a product ID) and the detail panel will
update to display the list of warehouses and quantities available for the product.

6.3.5.2 Testing UI Control Hints
The entity-based view object attributes inherit their control hints from those on the
underlying entity object attribute. The prompts displayed in the data view page help
you see whether you have correctly defined a user-friendly label text control hint for
each attribute. For details on setting up the hint on your entity object, see Section 5.13,
"Defining Control Hints for View Objects."

6.3.5.3 Testing Business Domain Layer Validation
Depending on the validation rules you have defined, you can try entering invalid
values to trigger and verify validation exceptions. For example, when you have
defined a range validation rule, enter a value outside the range and see an error
similar to:

(oracle.jbo.AttrSetValException) Valid product codes are between 100 and 999

Click the rollback button in the toolbar to revert data to the previous state.

6.3.5.4 Testing Alternate Language Message Bundles and Control Hints
When your application defines alternative languages in your resource message
bundles, you can configure the Business Component Browser to recognize these
languages. In the Business Component Browser, you can then display the Locale
menu and select among the available language choices.

To specify a default language for the Business Component Browser:
1. Choose Preferences from the JDeveloper Tools menu.

2. Expand Business Components in the selection panel, and select Tester.

3. To execute an entity-based view object in the Business Component Browser,
expand the data model tree and double-click the desired view object node.

4. In the Business Component Browser page, add any locale for which you have
created a resource message bundle to the Selected list.

Alternatively, you can configure the default language choice by setting ADF Business
Components runtime configuration properties. These runtime properties also
determine which language the Business Component Browser will display as the
default. In the Select Business Component Browser Configuration dialog, select the
Properties tab and enter the desired country code for the country and language. For
example, to specify the Italian language, you would enter IT and it for these two
properties:

Testing View Object Instances Using the Business Component Browser

Working with View Object Query Results 6-13

■ jbo.default.country = IT

■ jbo.default.language = it

Testing the language message bundles in the Business Component Browser lets you
verify that the translations of the entity object control hints are correctly located. Or, if
the message bundle defines date formats for specific attributes, the tool lets you verify
that date formats change (like 04/12/2007 to 12/04/2007).

6.3.5.5 Testing View Objects That Reference Entity Usages
By scrolling through the data — or using the Specify View Criteria button in the
Business Component Browser toolbar to search — you can verify whether you have
correctly altered the WHERE clause in an entity-based view object’s query to use an
outer join. The rows should appear as expected.

You also can try changing a primary key attribute of a master view object. This will
allow you to verify that the corresponding reference information is automatically
updated to reflect the new primary key value.

Use the Business Component Browser to verify that control hints defined at the view
object level override the ones it would normally inherit from the underlying entity
object. If you notice that several attributes share the same label text, you can edit the
control hint for the desired attributes at the view object level. For example, you can set
the Label Text hint to Member Since for the RegisteredDate attribute and
Provisioned? for the ProvisionedFlag attribute.

6.3.5.6 Testing Row Creation and Default Value Generation
When displaying an entity-based view object, click the Create Row button in the
Business Component Browser toolbar for the view object instance to create a new
blank row. Any fields that have a declarative default value will appear with that value
in the blank row. If the a DBSequence-valued attribute is used, a temporary value will
appear in the new row. After entering all the required fields, click the Commit button
to commit the transaction. The actual, trigger-assigned primary key should appear in
the field after successful commit.

6.3.5.7 Testing That New Detail Rows Have Correct Foreign Keys
If you click Create Row in the Business Component Browser toolbar to try adding a
new row to an existing detail entity-based view object instance, you'll notice that the
view link automatically ensures that the foreign key attribute value in the new row is
set to the value of the current master view instance row.

6.3.6 How to Test Multiuser Scenarios in the Business Component Browser
When view objects and entity objects cooperate at runtime, two exceptions can occur
when you run the application in a multiuser environment. To anticipate these
exceptions, you can simulate a multiuser environment for testing purposes using the
Business Component Browser. For example, when the application displays edit forms
for view object queries, what is the expected behavior when two users attempt to
modify the same attribute in their forms?

To understand the expected behavior, open two instances of the Business Component
Browser on the application module to simulate two users editing the same view object
attribute. Keep both instances open and perform the following two tests to
demonstrate how multiuser exceptions can arise:

■ In one instance of the Business Component Browser, modify an attribute of an
existing view object and tab out of the field. Then, in the other browser instance,

Testing View Object Instances Using the Business Component Browser

6-14 Fusion Developer's Guide for Oracle Application Development Framework

try to modify the same view object attribute in some way and commit the change.
You'll see that the second user gets the
oracle.jbo.AlreadyLockedException.

You can then change the value of jbo.locking.mode to be pessimistic on
the Properties page of the Business Component Browser Connect dialog and try
repeating the test (the default mode is set to optimistic). You'll see the error
occurs for the second user immediately after changing the value instead of after
committing the change.

■ In one instance of the Business Component Browser, modify an attribute of an
existing view object and tab out of the field. Then, in the other browser instance,
retrieve (but don't modify) the same view object attribute. Back in the first
window, commit the change. If the second user then tries to modify that same
attribute, you'll see that the second user gets the
oracle.jbo.RowInconsistentException. The row has been modified and
committed by another user since the second user retrieved the row into the entity
cache.

6.3.7 How to Customize Configuration Options Before Running the Browser
Using the Select Business Components Configuration dialog, you can select a
predefined configuration to run the tool using that named set of runtime configuration
properties. The Select Configuration dialog also features a Properties tab that allows
you to see the selected configurations settings and to override any of the
configuration's settings for the current run of the browser. For example, you could
alter the default language for the UI control hints for a single instance of the Business
Component Browser by opening the Properties tab and setting the following two
properties with the desired country code (in this case, IT for Italy):

■ jbo.default.country = IT

■ jbo.default.language = it

6.3.8 How to Enable ADF Business Components Debug Diagnostics
When launching the Business Component Browser, if your data model project's
current run configuration is set to include the Java System parameter
jbo.debugoutput=console, you can enable ADF Business Components debug
diagnostics with messages directed to the JDeveloper Log window.

Tip: If you wanted to make the changes to your configuration
permanent, you could use the Configuration Manager to copy the
current configuration and create a new configuration in which you set
the desired properties set. For example, anytime you wanted to test in
Italian you could simply choose to use the
UserServiceLocalItalian configuration, instead of the default
UserServiceLocal.

Note: Despite the similar name, the JDeveloper project's run
configurations are different from the ADF application module's
configurations. The former are part of the project properties, the latter
are defined along with your application module component in its
bc4j.xcfg file and edited using the Edit Business Components
Configuration dialog.

Testing View Object Instances Using the Business Component Browser

Working with View Object Query Results 6-15

To set the system debug output property, open the Run/Debug/Profile page in the
Project Properties dialog for your data model project. Click Edit to edit the chosen run
configuration, and add following string to the Java Options field in the page.

-Djbo.debugoutput=console

The next time you run the Business Component Browser and double-click the view
object, you'll see detailed diagnostic output in the console, as shown in Example 6–1.
Using the diagnostics will allow you to visualize everything the framework
components are doing for your application.

Example 6–1 Diagnostic Output of Business Component Browser

:
[355] Oracle SQLBuilder: Registered driver: oracle.jdbc.OracleDriver
[356] Creating a new pool resource
[357] **** DBTransactionImpl establishNewConnection
[358] Successfully logged in
[359] JDBCDriverVersion: 11.1.0.7.0-Production
[360] DatabaseProductName: Oracle
[361] DBTransactionImpl initTransaction
[362] Replacing: null with: StoreServiceAM_AddressesPageDef
[363] Replacing: null with: StoreServiceAM_MostPopularProductsByCategoriesPageDef
...
[537] Orders ViewRowSetImpl.execute caused params to be "un"changed
[538] Column count: 41
[539] ViewObject: Orders Created new QUERY statement
[540] Orders>#q computed SQLStmtBufLen: 952, actual=865, storing=895
[541] SELECT OrderEO.ORDER_ID, OrderEO.ORDER_DATE, OrderEO.ORDER_SHIPPED_DATE,
 FROM ORDERS OrderEO ORDER BY OrderEO.ORDER_DATE desc
[542] Bind params for ViewObject: Orders

Other legal values for this property are silent (the default, if not specified) and
file. If you choose the file option, diagnostics are written to the system temp
directory.

6.3.9 What Happens at Runtime: When View Objects and Entity Objects Cooperate
On their own, view objects and entity objects simplify two important jobs that every
enterprise application developer needs to do:

■ Work with SQL query results

■ Modify and validate rows in database tables

Entity-based view objects can query any selection of data that you want the end user
to be able to view and modify. Any data the end user is allowed to change will be
validated and saved by your reusable business domain layer. The key ingredients you
provide as the developer are the ones that only you can know:

■ You decide what business logic should be enforced in your business domain layer

■ You decide what queries describe the data you need to put on the screen

Tip: You can create separate JDeveloper run configurations, one with
the ADF Business Components debug diagnostics enabled, and
another without it. By choosing the appropriate project run
configuration, you can easily run JDeveloper with or without debug
diagnostics.

Testing View Object Instances Using the Business Component Browser

6-16 Fusion Developer's Guide for Oracle Application Development Framework

These are the things that make your application unique. The built-in functionality of
your entity-based view objects handles the rest of the implementation details.

6.3.9.1 What Happens When a View Object Executes Its Query
After adding an instance of an entity-based view object to the application module’s
data model, you can see what happens at runtime when you execute the query. Like a
read-only view object, an entity-based view object sends its SQL query straight to the
database using the standard Java Database Connectivity (JDBC) API, and the database
produces a result set. In contrast to its read-only counterpart, however, as the
entity-based view object retrieves each row of the database result set, it partitions the
row attributes based on which entity usage they relate to. This partitioning occurs by
creating an entity object row of the appropriate type for each of the view object's entity
usages, populating them with the relevant attributes retrieved by the query, and
storing each of these entity rows in its respective entity cache. Then, rather than
storing duplicate copies of the data, the view row simply points at the entity row parts
that comprise it.

Figure 6–12 illustrates how the entity cache partitions the result set attributes of two
entity-based view objects. In this example, the highlighted row in the database result
set is partitioned into an Order entity row with primary key 112 and a
CustomerInfo entity row with primary key 301.

As described in Section 6.4.1.2, "The Role of the Entity Cache in the Transaction," the
entity row that is brought into the cache using findByPrimaryKey() contains all
attributes of the entity object. In contrast, an entity row created by partitioning rows
from the entity-based view object’s query result contains values only for attributes that
appear in the query. It does not include the complete set of attributes. This partially
populated entity row represents an important runtime performance optimization.

Since the ratio of rows retrieved to rows modified in a typical enterprise application is
very high, you can save memory by bringing only the attributes into memory that you
need to display instead of bringing all attributes into memory all the time.

Note: Understanding row keys and what role the entity cache plays
in the transaction are important concepts that help to clarify the
nature of the entity-based view objects. These two concepts are
addressed in Section 6.4.1, "ViewObject Interface Methods for Working
with the View Object’s Default RowSet."

Testing View Object Instances Using the Business Component Browser

Working with View Object Query Results 6-17

Figure 6–12 Entity Cache Partitions View Rows into Entity Rows

By partitioning queried data this way into its underlying entity row constituent parts,
the first benefit you gain is that all of the rows that include some data queried will
display a consistent result when changes are made in the current transaction. In other
words, if one view object allows the PaymentType attribute of customer 301 to be
modified, then all rows in any entity-based view object showing the PaymentType
attribute for customer 301 will update instantly to reflect the change. Since the data
related to customer 301 is stored exactly once in the CustomerInfo entity cache in
the entity row with primary key 301, any view row that has queried the order’s
PaymentType attribute is just pointing at this single entity row.

Luckily, these implementation details are completely hidden from a client working
with the rows in a view object's row set. The client works with a view row, getting and
setting the attributes, and is unaware of how those attributes might be related to entity
rows behind the scenes.

6.3.9.2 What Happens When a View Row Attribute Is Modified
When a user attempts to update the attribute of a view row, a series of steps occur to
automatically coordinate this view row attribute modification with the underlying
entity row. These steps ensure that a validation rule defined on the entity-mapped
attribute will be triggered before the value is changed.

Figure 6–13 illustrates the basic steps that occur at runtime when the user attempts to
update an entity-mapped attribute. In this example, the modified attribute Status is
mapped to an entity usage where a validation rule is defined.

1. The user attempts to set the Status attribute to the value Ship.

2. Since Status is an entity-mapped attribute from the Order entity usage, the view
row delegates the attribute set to the appropriate underlying entity row in the
Order entity cache having primary key 112.

3. Any attribute-level validation rules on the Status attribute of the Order entity
object are evaluated and the modification attempt will fail if any rule does not
succeed.

Testing View Object Instances Using the Business Component Browser

6-18 Fusion Developer's Guide for Oracle Application Development Framework

Assume that some validation rule for the Status attribute programmatically
references the ShipDate attribute (for example, to enforce a business rule that an
Order cannot be shipped the same day it is placed). The ShipDate was not one
of the Order attributes retrieved by the query, so it is not present in the partially
populated entity row in the Order entity cache.

4. To ensure that business rules can always reference all attributes of the entity
object, the entity object detects this situation and "faults-in" the entire set of Order
entity object attributes for the entity row being modified using the primary key
(which must be present for each entity usage that participates in the view object).

5. After the attribute-level validations all succeed, the entity object attempts to
acquire a lock on the row in the ORDERS table before allowing the first attribute to
be modified.

6. If the row can be locked, the attempt to set the Status attribute in the row
succeeds and the value is changed in the entity row.

Figure 6–13 View Row Attribute Updates Delegate to the Entity

6.3.9.3 What Happens When a Foreign Key Attribute is Changed
When a user attempts to update a foreign key attribute, a series of steps occur to
automatically coordinate this view row attribute modification with the underlying
entity row. These steps ensure that a validation rule defined on the foreign key,
entity-mapped attribute will be triggered before the value is changed. They also

Note: The jbo.locking.mode configuration property controls
how rows are locked. The default value is optimistic. Typically,
Fusion web applications will use the default setting optimistic, so
that rows aren't locked until transaction commit time. In
pessimistic locking mode, the row must be lockable before any
change is allowed to it in the entity cache.

Testing View Object Instances Using the Business Component Browser

Working with View Object Query Results 6-19

ensure that the view row for the changed foreign key attribute reflects the correct
attributes of all referenced entity objects.

Figure 6–14 illustrates the basic steps that occur at runtime when the user attempts to
update a foreign key, entity-mapped attribute. In this example, the modified attribute
CustomerInfoId is mapped to an entity usage Order where the attribute is
associated with another entity object CustomerInfo.

1. The user attempts to set the CustomerInfoId attribute to the value 300.

2. Since CustomerInfoId is an entity-mapped attribute from the Order entity
usage, the view row delegates the attribute set to the appropriate underlying
entity row in the Order entity cache, which has primary key 112.

3. Any attribute-level validation rules on the CustomerInfoId attribute of the
Order entity object are evaluated and the modification attempt will fail if any rule
does not succeed.

4. The row is already locked, so the attempt to set the CustomerInfoId attribute in
the row succeeds and the value is changed in the entity row.

5. Since the CustomerInfoId attribute on the Order entity usage is associated with
the CustomerInfo entity object, this change of foreign key value causes the view
row to replace its current entity row part for customer 301 with the entity row
corresponding to the new CustomerInfoId = 300. This effectively makes the
view row for order 112 point to the entity row for 300, so the value of the
PaymentType in the view row updates to reflect the correct reference information
for this newly assigned customer.

Figure 6–14 After Updating a Foreign Key, View Row Points to a New Entity

6.3.9.4 What Happens When a Transaction is Committed
Suppose the user is satisfied with the changes, and commits the transaction. As shown
in Figure 6–15, there are two basic steps:

1. The Transaction object validates any invalid entity rows in its pending changes
list.

2. The entity rows in the pending changes list are saved to the database.

Testing View Object Instances Using the Business Component Browser

6-20 Fusion Developer's Guide for Oracle Application Development Framework

The figure depicts a loop in Step 1 before the act of validating one modified entity
object might programmatically affect changes to other entity objects. Once the
transaction has processed its list of invalid entities on the pending changes list, if the
list has entities, the transaction will complete another pass. It will attempt up to ten
passes through the list. If by that point there are still invalid entity rows, it will throw
an exception because this typically means you have an error in your business logic that
needs to be investigated.

Figure 6–15 Committing the Transaction Validates Invalid Entities, Then Saves Them

6.3.9.5 What Happens When a View Object Requeries Data
When you reexecute a view object's query, by default the view rows in its current row
set are "forgotten" in preparation for reading in a fresh result set. This view object
operation does not directly affect the entity cache, however. The view object then
sends the SQL to the database and the process begins again to retrieve the database
result set rows and partition them into entity row parts.

6.3.9.5.1 How Unmodified Attributes are Handled During Requery As part of the entity row
partitioning process during a requery, if an attribute on the entity row is unmodified,
then its value in the entity cache is updated to reflect the newly queried value.

6.3.9.5.2 How Modified Attributes are Handled During Requery However, if the value of an
entity row attribute has been modified in the current transaction, then during a requery
the entity row partitioning process does not refresh its value. Uncommitted changes in
the current transaction are left intact so the end-user’s logical unit of work is
preserved. As with any entity attribute value, these pending modifications continue to

Note: Typically when the view object requeries data, you expect it to
retrieve the latest database information. If instead you want to avoid a
database roundtrip by restricting your view object to querying only
over existing entity rows in the cache, or over existing rows already in
the view object’s row set, see Section 39.5, "Performing In-Memory
Sorting and Filtering of Row Sets."

Testing View Object Instances Using the Business Component Browser

Working with View Object Query Results 6-21

be consistently displayed in any entity-based view object rows that reference the
modified entity rows.

For example, Figure 6–16 illustrates the scenario where a user "drills down" to a
different page that uses the Orders view object instance to retrieve all details about
order 112 and that this happens in the context of the current transaction's pending
changes. That view object has two entity usages: a primary Orders usage and a
reference usage for CustomerInfo. When its query result is partitioned into entity
rows, it ends up pointing at the same Order entity row that the previous OrderInfo
view row had modified. This means the end user will correctly see the pending
change, that the order is assigned to sking in this transaction.

Figure 6–16 Entity Cache Merges Sets of Entity Attributes from Different View Objects

6.3.9.5.3 How Overlapping Subsets of Attributes are Handled During Requery Two different
view objects can retrieve two different subsets of reference information and the results
are merged whether or not they have matching sets of attributes. For example,
Figure 6–16 also illustrates the situation, where the Orders view object queries the
user’s Email, while the OrderInfo view object queried the user's PaymentOption.
The figure shows what happens at runtime: if while partitioning the retrieved row, the
entity row part contains a different set of attributes than does the partially populated
entity row that is already in the cache, the attributes get "merged". The result is a
partially populated entity row in the cache with the union of the overlapping subsets
of user attributes. In contrast, for jchen (user 302), who wasn't in the cache already,
the resulting new entity row contains only the Email attribute, but not the
PaymentOption.

Note: End-user row inserts and deletes are also managed by the
entity cache, which permits new rows to appear and deleted rows to
be skipped during requerying. For more information about new row
behavior, see Section 39.1.2, "Maintaining New Row Consistency in
View Objects Based on the Same Entity."

Testing View Object Instances Using the Business Component Browser

6-22 Fusion Developer's Guide for Oracle Application Development Framework

6.3.10 What You May Need to Know About Optimizing View Object Runtime
Performance

The view object provides tuning parameters that let you control how SQL is executed
and how data is fetched from the database. These tuning parameters play a significant
role in the runtime performance of the view object. If the fetch options are not tuned
correctly for the application, then your view object may fetch an excessive amount of
data and may make too many roundtrips to the database.

You can use the Tuning section of the General page of the overview editor to
configure the fetch options shown in Table 6–2.

Table 6–2 Parameters to Tune View Object Performance

Fetch Tuning Parameters Usage

Fetch Mode The default fetch option is the All Rows
option, which will be retrieved As Needed
(FetchMode="FETCH_AS_NEEDED") or All
at Once (FetchMode="FETCH_ALL"),
depending on which option is desired. The As
Needed option ensures that an
executeQuery() operation on the view
object initially retrieves only as many rows as
necessary to fill the first page of a display,
whose number of rows is set based on the
view object's range size.

Fetch Size In conjunction with the Fetch Mode option,
the in Batches of field controls the number of
records fetched at one time from the database
(FetchSize in the view object XML). The
default value is 1, which will give poor
performance unless only one row will be
fetched. The suggested configuration is to set
this value to n+1 where n is the number of
rows to be displayed in the user interface.

Testing View Object Instances Using the Business Component Browser

Working with View Object Query Results 6-23

When you tune view objects, you should also consider these issues:

■ Large data sets: View objects provide a mechanism to page through large data sets
such that a user can jump to a specific page in the results. This is configured by
calling setRangeSize(n) followed by setAccessMode(RowSet.RANGE_
PAGING) on the view object where n is the number of rows contained within one
page. When the user navigates to a specific page in the data set, the application
can call scrollToRangePage(P) on the view object to navigate to page P.
Range paging fetches and caches only the current page of rows in the view object
row cache at the cost of another query execution to retrieve each page of data.
Range paging is not appropriate where it is beneficial to have all fetched rows in
the view object row cache (for example, when the application needs to read all
rows in a dataset for an LOV or page back and forth in records of a small data set.

■ Spillover: There is a facility to use the data source as "virtual memory" when the
JVM container runs out of memory. By default, this is disabled and can be turned

Max Fetch Size The default max fetch size for a view object is
-1, which means that there is no limit to the
number of rows the view object can fetch. In
cases where the result set should contain only
n rows of data, the option Only up to row
number should be selected and set to n. The
developer can alternatively call
setMaxFetchSize(n) to set this
programmatically or manually add the
parameter MaxFetchSize to the view object
XML.

For view objects whose WHERE clause expects
to retrieve a single row, set the option At Most
One Row. This way the view object knows
you don't expect any more rows and it will
skip its normal test for that situation.

As mentioned earlier, setting a maximum
fetch size of 0 (zero) makes the view object
insert-only. In this case, no select query will be
issued, so no rows will be fetched.

When you want to specify a global threshold
for all view object queries in the application,
you can configure the Row Fetch Limit
property in the adf-config.xml file. Setting
this property means you can avoid changing
the Max Fetch Size for individual query
operations. If you do specify a fetch limit for
individual view objects, the Row Fetch Limit
setting will be ignored in those cases. For more
details about Row Fetch Limit, see
Section 39.1.1, "Limiting the View Object Max
Fetch Size to Fetch the First n Rows."

Forward-only Mode If a data set will only be traversed going
forward, then forward-only mode can help
performance when iterating through the data
set. This can be configured by
programmatically calling
setForwardOnly(true) on the view object.
Setting forward-only will also prevent caching
previous sets of rows as the data set is
traversed.

Table 6–2 (Cont.) Parameters to Tune View Object Performance

Fetch Tuning Parameters Usage

Testing View Object Instances Programmatically

6-24 Fusion Developer's Guide for Oracle Application Development Framework

on as a last resort by setting jbo.use.pers.coll=true. Enabling spillover can
have a large performance impact.

■ SQL style: If the generic SQL92 SQL style is used to connect to generic
SQL92-compliant databases, then some view object tuning options will not
function correctly. The parameter that choosing the generic SQL92 SQL style
affects the most is the fetch size. When SQL92 SQL style is used, the fetch size
defaults to 10 rows regardless of what is configured for the view object. You can
set the SQL style when you define the database connection. By default, the SQL
style will be Oracle. To manually override the SQL style, you can also pass the
parameter -Djbo.SQLBuilder="SQL92" to the JVM upon startup.

Additionally, you have some options to tune the view objects’ associated SQL for
better database performance:

■ Bind variables: If the query associated with the view object contains values that
may change from execution to execution, use bind variables. Using bind variables
in the query allows the query to reexecute without needing to reparse the query
on the database. You can add bind variables to the view object in the Query page
of the overview editor for the view object. For more information, see Section 5.10,
"Working with Bind Variables."

■ Query optimizer hints: The view object can pass hints to the database to influence
which execution plan to use for the associated query. The optimizer hints can be
specified in the Retrieve from the Database group box in the Tuning section of the
overview editor for the view object. For information about optimizer hints, see
Section 39.2.4.3, "Specify a Query Optimizer Hint if Necessary."

6.4 Testing View Object Instances Programmatically
When you are ready to test a working application module containing at least one view
object instance, you can build a simple test client program to illustrate the basics of
working programmatically with the data in the contained view object instances.

From the point of view of a client accessing your application module's data model, the
API's to work with a read-only view object and an entity-based view object are
identical. The key functional difference is that entity-based view objects allow the data
in a view object to be fully updatable. The application module that contains the
entity-based view objects defines the unit of work and manages the transaction. This
section presents four simple test client programs that work with the StoreFrontAM
application module in the Fusion Order Demo to illustrate:

■ Iterating master-detail-detail hierarchy

■ Finding a row and updating a foreign key value

■ Creating a new order

■ Retrieving the row key identifying a row

6.4.1 ViewObject Interface Methods for Working with the View Object’s Default RowSet
The ViewObject interface in the oracle.jbo package provides the methods to
easily perform any data-retrieval task. Some of these methods used in the example
include:

■ executeQuery(), to execute the view object's query and populate its row set of
results

■ setWhereClause(), to add a dynamic predicate at runtime to narrow a search

Testing View Object Instances Programmatically

Working with View Object Query Results 6-25

■ setNamedWhereClauseParam(), to set the value of a named bind variable

■ hasNext(), to test whether the row set iterator has reached the last row of results

■ next(), to advance the row set iterator to the next row in the row set

■ getEstimatedRowCount(), to count the number of rows a view object's query
would return

Typically, when you work with a view object, you will work with only a single row set
of results at a time. To simplify this overwhelmingly common use case, as shown in
Figure 6–17, the view object contains a default RowSet, which, in turn, contains a
default RowSetIterator. The default RowSetIterator allows you to call all of the
data-retrieval methods directly on the ViewObject component itself, knowing that
they will apply automatically to its default row set.

Figure 6–17 ViewObject Contains a Default RowSet and RowSetIterator

The phrase "working with the rows in a view object," when used in this guide more
precisely means working with the rows in the view object’s default row set. Similarly,
the phrase "iterate over the rows in a view object," more precisely means you will use
the default row set iterator of the view object's default row set to loop over its rows.

6.4.1.1 The Role of the Key Object in a View Row or Entity Row
When you work with view rows you use the Row interface in the oracle.jbo
package. As shown in Figure 6–18, the interface contains a method called getKey()
that you can use to access the Key object that identifies any row. Notice that the
Entity interface in the oracle.jbo.server package extends the Row interface.
This relationship provides a concrete explanation of why the term entity row is so
appropriate. Even though an entity row supports additional features for encapsulating
business logic and handling database access, you can still treat any entity row as a
Row.

An entity-based view object delegates the task of finding rows by key to its underlying
entity row parts.

Recall that both view rows and entity rows support either single-attribute or
multiattribute keys, so the Key object related to any given Row will encapsulate all of
the attributes that comprise its key. Once you have a Key object, you can use the
findByKey() method on any row set to find a row based on its Key object. When
you use the findByKey() method to find a view row by key, the view row proceeds
to use the entity definition's findByPrimaryKey() method to find each entity row
contributing attributes to the view row key.

Note: Chapter 39, "Advanced View Object Techniques" presents
situations when you might want a single view object to produce
multiple distinct row sets of results. You can also find scenarios for
creating multiple distinct row set iterators for a row set. Most of the
time, however, you'll need only a single iterator.

Testing View Object Instances Programmatically

6-26 Fusion Developer's Guide for Oracle Application Development Framework

In the case of a read-only view object with no underlying entity row to which to
delegate this task, the view object implementation automatically enables the
manageRowsByKey flag when at least one primary key attribute is detected. This
ensures that the findByKey() method is successful in the case of read-only view
objects. If the manageRowsByKey flag is not enabled, then UI operations like setting
the current row with the key, which depend on the findByKey() method, would not
work.

Figure 6–18 Any View Row or Entity Row Supports Retrieving Its Identifying Key

6.4.1.2 The Role of the Entity Cache in the Transaction
An application module is a transactional container for a logical unit of work. At
runtime, it acquires a database connection using information from the named
configuration you supply, and it delegates transaction management to a companion
Transaction object. Since a logical unit of work may involve finding and modifying
multiple entity rows of different types, the Transaction object provides an entity
cache as a "work area" to hold entity rows involved in the current user's transaction.
Each entity cache contains rows of a single entity type, so a transaction involving two
or more entity objects holds the working copies of those entity rows in separate caches.

By using an entity object's related entity definition, you can write code in an
application module to find and modify existing entity rows. As shown in Figure 6–19,
by calling findByPrimaryKey() on the entity definition for the Order entity object,
you can retrieve the row with that key. If it is not already in the entity cache, the entity
object executes a query to retrieve it from the database. This query selects all of the
entity object's persistent attributes from its underlying table, and finds the row using
an appropriate WHERE clause against the column corresponding to the entity object's
primary key attribute. Subsequent attempts to find the same entity row by key during
the same transaction will find it in the cache, preventing the need for a trip to the
database. In a given entity cache, entity rows are indexed by their primary key. This
makes finding an entity row in the cache a fast operation.

When you access related entity rows using association accessor methods, they are also
retrieved from the entity cache. If related entity rows are not in the cache, then they are
retrieved from the database. Finally, the entity cache is also the place where new entity
rows wait to be saved. In other words, when you use the createInstance2()

Note: When you define an entity-based view object, by default the
primary key attributes for all of its entity usages are marked with their
Key Attribute property set to true. In any nonupdatable reference
entity usages, you should disable the Key Attribute property for the
key attributes. Since view object attributes related to the primary keys
of updatable entity usages must be part of the composite view row key,
their Key Attribute property cannot be disabled.

Testing View Object Instances Programmatically

Working with View Object Query Results 6-27

method on the entity definition to create a new entity row, it is added to the entity
cache.

Figure 6–19 Entity Cache Stores Entity Rows During the Transaction

When an entity row is created, modified, or removed, it is automatically enrolled in
the transaction's list of pending changes. When you call commit() on the
Transaction object, it processes its pending changes list, validating new or modified
entity rows that might still be invalid. When the entity rows in the pending list are all
valid, the Transaction issues a database SAVEPOINT and coordinates saving the
entity rows to the database. If all goes successfully, it issues the final database COMMIT
statement. If anything fails, the Transaction performs a ROLLBACK TO
SAVEPOINT to allow the user to fix the error and try again.

The Transaction object used by an application module represents the working set of
entity rows for a single end-user transaction. By design, it is not a shared, global cache.
The database engine itself is an extremely efficient shared, global cache for multiple,
simultaneous users. Rather than attempting to duplicate all the work of fine-tuning
that has gone into the database's shared, global cache functionality, ADF Business
Components consciously embraces it. To refresh a single entity object's data from the
database at any time, you can call its refresh() method. You can
setClearCacheOnCommit() or setClearCacheOnRollback() on the
Transaction object to control whether entity caches are cleared at commit or
rollback. The defaults are false and true, respectively. The Transaction object
also provides a clearEntityCache() method you can use to programmatically
clear entity rows of a given entity type (or all types). When you clear an entity cache,
you allow entity rows of that type to be retrieved from the database fresh the next time
they are either found by primary key or retrieved by an entity-based view object.

6.4.2 How to Create a Command-Line Java Test Client
To the create a test client program, use the Create Java Class wizard, which is
accessible from the New Gallery.

6.4.2.1 Generating a Test Client with Skeleton Code
When you use the Create Java Class wizard to create the test client program,
JDeveloper will open your program file in the source editor and allow you to add code
from a predefined code template to complete the test client.

Testing View Object Instances Programmatically

6-28 Fusion Developer's Guide for Oracle Application Development Framework

To generate a skeleton Java test client:
1. In the Application Navigator, right-click the project in which you want to create

the test client and choose New.

2. In the New Gallery, expand General, select Java and then Java Class, and click
OK.

3. In the Create Java Class dialog, enter a class name, like TestClient, a package
name, like oracle.fodemo.storefront.client, and ensure that the Extends
field shows java.lang.Object.

4. In Optional Attributes, deselect Constructors from Superclass and select Main
Method.

5. Click OK.

The .java file opens in the source editor to show the skeleton code, as shown in
Example 6–2.

Example 6–2 Skeleton Code for TestClient.java

package oracle.fodemo.storefront.client;
public class TestClient {
public static void main(String[] args) {

}
}

6.4.2.2 Modifying the Skeleton Code to Create the Test Client
After you generate skeleton code for the test client, you can proceed to edit the file
using the predefined bc4jclient code template available from JDeveloper.

To insert the bc4jclient code template:
1. Place the cursor on a blank line inside the body of the main() method and use the

bc4jclient code template to create the few lines of necessary code.

2. Type the characters bc4jclient followed Ctrl + Enter.

JDeveloper will expand the class file with the template as shown in Example 6–3.

3. Adjust the values of the amDef andconfig variables to reflect the names of the
application module definition and the configuration that you want to use,
respectively.

For the Example 6–3, the changed lines look like this:

String amDef = "oracle.fodemo.storefront.store.service.StoreServiceAM";
String config = "StoreServiceAMLocal";

4. Finally, change the view object instance name in the call to findViewObject()
to the one you want to work with. Specify the name exactly as it appears in the
Data Model tree on the Data Model page of the overview editor for the
application module.

For the Example 6–3, the changed line looks like this:

ViewObject vo = am.findViewObject("Persons");

Example 6–3 Expanded Skeleton Code for TestClient.java

package oracle.fodemo.storefront.client;

Testing View Object Instances Programmatically

Working with View Object Query Results 6-29

import oracle.jbo.client.Configuration;
import oracle.jbo.*;
import oracle.jbo.domain.Number;
import oracle.jbo.domain.*;
public class TestClient {
public static void main(String[] args) {
String amDef = "test.TestModule";
String config = "TestModuleLocal";
ApplicationModule am =
Configuration.createRootApplicationModule(amDef,config);

ViewObject vo = am.findViewObject("TestView");
// Work with your appmodule and view object here
Configuration.releaseRootApplicationModule(am,true);

}
}

Your skeleton test client for your application module should contain source code like
what you see in Example 6–4.

Example 6–4 Working Skeleton Code for an Application Module Test Client Program

package oracle.fodemo.storefront.client;
import oracle.jbo.ApplicationModule;
import oracle.jbo.Row;
import oracle.jbo.RowSet;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;

public class TestClient {

public static void main(String[] args) {
String amDef = "oracle.fodemo.storefront.store.service.StoreServiceAM";
String config = "StoreServiceAMLocal";
ApplicationModule am =

Configuration.createRootApplicationModule(amDef,config);
// 1. Find the Persons view object instance.
ViewObject personList = am.findViewObject("Persons");
// Work with your appmodule and view object here
Configuration.releaseRootApplicationModule(am,true);

}
}

Replace // Work with your appmodule and view object here , with code
that will execute the view objects you want to test. For example, to execute the view
object's query, display the number of rows it will return, and loop over the result to
fetch the data and print it out to the console, you can adapt the code shown in
Example 6–5 for your model project components.

Example 6–5 Looping Over Master-Detail View Objects and Printing the Results to the
Console

// 2. Execute the query
personList.executeQuery();
// 3. Iterate over the resulting rows

Note: The examples throughout Section 9.10, "Working
Programmatically with an Application Module's Client Interface"
expand this test client sample code to illustrate calling custom
application module service methods, too.

Testing View Object Instances Programmatically

6-30 Fusion Developer's Guide for Oracle Application Development Framework

while (personList.hasNext()) {
Row person = personList.next();
// 4. Print the person's email
System.out.println("Person: " + person.getAttribute("Email"));
// 5. Get related rowset of Orders using view link accessor attribute
RowSet orders = (RowSet)person.getAttribute("Orders");
// 6. Iterate over the Orders rows
while (orders.hasNext()) {

Row order = orders.next();
// 7. Print out some order attribute values
System.out.println(" ["+order.getAttribute("OrderStatusCode")+"] "+

order.getAttribute("OrderId")+": "+
order.getAttribute("OrderTotal"));

if(!order.getAttribute("OrderStatusCode").equals("COMPLETE")) {
// 8. Get related rowset of OrderItems
RowSet items = (RowSet)order.getAttribute("OrderItems");
// 9. Iterate over the OrderItems rows
while (items.hasNext()) {

Row item = items.next();
// 10. Print out some order items attributes
System.out.println(" "+item.getAttribute("LineItemId")+": "+

item.getAttribute("LineItemTotal"));
}

}
}

}

The first line calls the executeQuery() method to execute the view object's query.
This produces a row set of zero or more rows that you can loop over using a while
statement that iterates until the view object's hasNext() method returns false.
Inside the loop, the code puts the current Row in a variable named person, then
invokes the getAttribute() method twice on that current Row object to get the
value of the Email and Orders attributes to print order information to the console. A
second while statement performs the same task for the line items of the order.

6.4.3 What Happens When You Run a Test Client Program
The call to createRootApplicationModule() on the Configuration object
returns an instance of the application module to work with. As you might have
noticed in the debug diagnostic output, the ADF Business Components runtime
classes load XML component definitions as necessary to instantiate the application
module and the instance of the view object component that you've defined in its data
model at design time. The findViewObject() method on the application module
finds a view object instance by name from the application module's data model. After
the loop shown in Example 6–5, the test client executes
releaseRootApplicationModule() on the Configuration object. This signals
that you're done using the application module and it allows the framework to clean up
resources, like the database connection that was used by the application module.

6.4.4 What You May Need to Know About Running a Test Client
The createRootApplicationModule() and
releaseRootApplicationModule() methods are very useful for command-line
access to application module components. However, you typically won’t need to write
these two lines of code in the context of an ADF-based web or Swing application. The
ADF Model data binding layer cooperates automatically with the ADF Business
Components layer to acquire and release application module components for you in
those scenarios.

Testing View Object Instances Programmatically

Working with View Object Query Results 6-31

6.4.5 How to Count the Number of Rows in a Row Set
The getEstimatedRowCount() method is used on a RowSet to determine how
many rows it contains:

long numReqs = reqs.getEstimatedRowCount();

The implementation of the getEstimatedRowCount() initially issues a SELECT
COUNT(*) query to calculate the number of rows that the query will return. The query
is formulated by "wrapping" your view object's entire query in a statement like:

SELECT COUNT(*) FROM (... your view object's SQL query here ...)

The SELECT COUNT(*) query allows you to access the count of rows for a view
object without necessarily retrieving all the rows themselves. This approach permits
an important optimization for working with queries that return a large number of
rows, or for testing how many rows a query would return before proceeding to work
with the results of the query.

Once the estimated row count is calculated, subsequent calls to the method do not
reexecute the COUNT(*) query. The value is cached until the next time the view
object's query is executed, since the fresh query result set returned from the database
could potentially contain more, fewer, or different rows compared with the last time
the query was run. The estimated row count is automatically adjusted to account for
pending changes in the current transaction, adding the number of relevant new rows
and subtracting the number of removed rows from the count returned.

You can also override getEstimatedRowCount() to perform a custom count query
that suits your application’s needs.

6.4.6 How to Access a Detail Collection Using the View Link Accessor
Once you've retrieved the RowSet of detail rows using a view link accessor, as
described in Section 5.6.6.2, "Programmatically Accessing a Detail Collection Using the
View Link Accessor,", you can loop over the rows it contains using the same pattern
used by the view object's row set of results, as shown in Example 6–6.

Example 6–6 Pattern Used to Access a Detail Collection

while (reqs.hasNext()) {
Row curReq = reqs.next();
System.out.println("--> (" + curReq.getAttribute("OrderId") + ") " +

curReq.getAttribute("OrderTotal"));
}

Example 6–7 shows the main() method sets a dynamic WHERE clause to restrict the
PersonList view object instance to show only persons whose person_type_code
has the value CUST. Additionally, the executeAndShowResults() method accesses
the view link accessor attribute and prints out the request number (PersonId) and
Email attribute for each one.

To access the a detail collection using a view link accessor, follow these basic steps (as
illustrated in Example 6–7):

1. Find the master view object instance.

2. Execute the query.

3. Iterate over the master view object rows.

Testing View Object Instances Programmatically

6-32 Fusion Developer's Guide for Oracle Application Development Framework

4. Get the related row set of the detail view object using the view link accessor
attribute.

5. Iterate over the detail view object rows.

6. Optionally, do something with the detail row set attributes.

Example 6–7 Programmatically Accessing Detail Rows Using the View Link Accessor

package devguide.examples.readonlyvo.client;

import oracle.jbo.ApplicationModule;
import oracle.jbo.Row;
import oracle.jbo.RowSet;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;

public class TestClient2 {
public static void main(String[] args) {
String amDef = "devguide.examples.readonlyvo.PersonService";
String config = "PersonServiceLocal";
ApplicationModule am =

Configuration.createRootApplicationModule(amDef, config);
// 1. Find the Persons view object instance.
ViewObject vo = am.findViewObject("PersonList");
// Add an extra where clause with a new named bind variable
vo.setWhereClause("person_type_code = :ThePersonType");
vo.defineNamedWhereClauseParam("ThePersonType", null, null);
vo.setNamedWhereClauseParam("ThePersonType", "CUST");
// Show results when :ThePersonType = 'CUST'
executeAndShowResults(vo);
Configuration.releaseRootApplicationModule(am, true);

}
private static void executeAndShowResults(ViewObject vo) {
System.out.println("---");
// 2. Execute the query
vo.executeQuery();
// 3. Iterate over the resulting rows of the Persons view object
while (vo.hasNext()) {

Row curPerson = vo.next();
// 4. Access the row set of Orders using the view link accessor attribute
RowSet orders =(RowSet)curPerson.getAttribute("OrdersShippedToPurchaser");
long numOrders = orders.getEstimatedRowCount();
System.out.println(curPerson.getAttribute("PersonId") + " " +

curPerson.getAttribute("Email")+" ["+
numOrders+" orders]");

// 5. Iterate over the resulting detail rows
while (orders.hasNext()) {

Row curOrder = orders.next();
// 6. Print out some Order attribute values

System.out.println("--> (" + curOrder.getAttribute("OrderId") + ") " +
curOrder.getAttribute("OrderTotal"));

}
}

}

Performance Tip: If the code you write to loop over the rows does
not need to display them, then you can call the closeRowSet()
method on the row set when you're done. This technique will make
memory use more efficient. The next time you access the row set, its
query will be reexecuted.

Testing View Object Instances Programmatically

Working with View Object Query Results 6-33

}

Running TestClient2.java produces output in the Log window, as shown in
Example 6–8. Each customer is listed, and for each customer that has some orders, the
order total appears beneath their name.

Example 6–8 Results of Running TestClient.java

121 AFRIPP [0 orders]
115 AKHOO [0 orders]
109 DFAVIET [0 orders]
114 DRAPHEAL [0 orders]
118 GHIMURO [0 orders]
126 IMIKKILI [0 orders]
111 ISCIARRA [0 orders]
110 JCHEN [0 orders]
127 JLANDRY [0 orders]
112 JMURMAN [0 orders]
125 JNAYER [0 orders]
119 KCOLMENA [0 orders]
124 KMOURGOS [0 orders]
129 LBISSOT [0 orders]
113 LPOPP [1 orders]
--> (1013) 89.99
120 MWEISS [1 orders]
--> (1003) 5000
108 NGREENBE [1 orders]
--> (1002) 1249.91
122 PKAUFLIN [0 orders]
116 SBAIDA [0 orders]
128 SMARKLE [0 orders]
117 STOBIAS [0 orders]
123 SVOLLMAN [0 orders]

If you run TestClient2.java with debug diagnostics enabled, you will see the SQL
queries that the view object performed. The view link WHERE clause predicate is used
to automatically perform the filtering of the detail service request rows for the current
row in the PersonList view object.

6.4.7 How to Iterate Over a Master-Detail-Detail Hierarchy
To iterate over a master-detail with an additional level of nesting, follow these basic
steps (as illustrated in Example 6–9):

1. Find the master view object instance.

2. Executes the query.

3. Iterate over the resulting rows.

4. Optionally, do something with the attributes of the master row set.

5. Get the related row set of the detail view object using the view link accessor
attribute.

6. Iterate over the detail row set rows.

7. Optionally, do something with the attributes of the detail row set.

8. Get the related row set of the second detail view object using the view link
accessor attribute.

Testing View Object Instances Programmatically

6-34 Fusion Developer's Guide for Oracle Application Development Framework

9. Iterates over the second detail row set rows.

10. Optionally, do something with the second detail row set attributes.

Other than having one additional level of nesting, Example 6–9 uses the same API's
used in the TestClient program that was iterating over master-detail read-only
view objects in Section 6.4.6, "How to Access a Detail Collection Using the View Link
Accessor."

If you use JDeveloper's Refactor > Duplicate functionality on an existing
TestClient.java class, you can quickly "clone" it to create a TestClient2.java
class. For example, the TestClient.java class in Example 6–8 is suited to this
technique.

Example 6–9 Iterating Master/Detail/Detail Hierarchy

package oracle.fodemo.storefront.client;
import oracle.jbo.ApplicationModule;
import oracle.jbo.Row;
import oracle.jbo.RowSet;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;

public class TestClient2 {

public static void main(String[] args) {
String amDef =

"oracle.fodemo.storefront.store.service.StoreServiceAM";
String config = "StoreServiceAMLocal";
ApplicationModule am =

Configuration.createRootApplicationModule(amDef,config);
// 1. Find the Persons view object instance.
ViewObject personList = am.findViewObject("Persons");
// 2. Execute the query
personList.executeQuery();
// 3. Iterate over the resulting rows
while (personList.hasNext()) {
Row person = personList.next();
// 4. Print the person's email
System.out.println("Person: " + person.getAttribute("Email"));
// 5. Get related rowset of Orders using view link accessor attribute
RowSet orders = (RowSet)person.getAttribute("Orders");
// 6. Iterate over the Orders rows
while (orders.hasNext()) {

Row order = orders.next();
// 7. Print out some order attribute values
System.out.println(" ["+order.getAttribute("OrderStatusCode")+"] "+

order.getAttribute("OrderId")+": "+
order.getAttribute("OrderTotal"));

if(!order.getAttribute("OrderStatusCode").equals("COMPLETE")) {
// 8. Get related rowset of OrderItems using view link accessor attribute
RowSet items = (RowSet)order.getAttribute("OrderItems");
// 9. Iterate over the OrderItems rows
while (items.hasNext()) {

Row item = items.next();
// 10. Print out some order items attributes
System.out.println(" "+item.getAttribute("LineItemId")+": "+

item.getAttribute("LineItemTotal"));
}

}
}

Testing View Object Instances Programmatically

Working with View Object Query Results 6-35

}
Configuration.releaseRootApplicationModule(am,true);

}
}

Running the program produces the output shown in Example 6–10.

Example 6–10 Results of Running TestClient2.java

Staff Member: David Austin
[Open] 104: Spin cycle not draining
1: Researching issue

Staff Member: Bruce Ernst
[Closed] 101: Agitator does not work
[Pending] 102: Washing Machine does not turn on
1: Called customer to make sure washer was plugged in...
2: We should modify the setup instructions to include...
[Open] 108: Freezer full of frost
1: Researching issue

Staff Member: Alexander Hunold
[Closed] 100: I have noticed that every time I do a...
[Closed] 105: Air in dryer not hot
:

6.4.8 How to Find a Row and Update a Foreign Key Value
To find a row and update a foreign key value, follow these basic steps (as illustrated in
Example 6–11):

1. Find the view object instance.

2. Construct a Key object to look up the row for the view instance.

3. Use findByKey() to find the row.

4. Optionally, do something with the row’s attribute.

Example 6–11 shows the main() method finds and updates a foreign key value to find
a row of the Orders view object instance. The sample then prints out the existing
value of the OrderStatusCode attribute before changing the value on the row.

Example 6–11 Finding and Updating a Foreign Key Value

package oracle.fodemo.storefront.client;

import oracle.jbo.ApplicationModule;
import oracle.jbo.JboException;
import oracle.jbo.Key;
import oracle.jbo.Row;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;

public class TestFindAndUpdate {
public static void main(String[] args) {

String amDef =
"oracle.fodemo.storefront.store.service.StoreServiceAM";

String config = "StoreServiceAMLocal";
ApplicationModule am =

Configuration.createRootApplicationModule(amDef,config);
// 1. Find the Orders view object instance
ViewObject vo = am.findViewObject("Orders");
// 2. Construct a new Key to find Order # 1011

Testing View Object Instances Programmatically

6-36 Fusion Developer's Guide for Oracle Application Development Framework

Key orderKey = new Key(new Object[]{1011});
// 3. Find the row matching this key
Row[] ordersFound = vo.findByKey(orderKey,1);
if (ordersFound != null && ordersFound.length > 0) {

Row order = ordersFound[0];
// 4. Print some order information
String orderStatus = (String)order.getAttribute("OrderStatusCode");
System.out.println("Current status is: "+ orderStatus);
try {

// 5. Try setting the status to an illegal value
order.setAttribute("OrderStatusCode","REOPENED");

}
catch (JboException ex) {

System.out.println("ERROR: "+ex.getMessage());
}
// 6. Set the status to a legal value
order.setAttribute("OrderStatusCode","PENDING");
// 7. Show the value of the status was updated successfully
System.out.println("Current status is: " +

order.getAttribute("OrderStatusCode"));
// 8. Show the current value of the customer for this order
System.out.println("Customer: " + order.getAttribute("CustomerId"));
// 9. Reassign the order to customer # 113
order.setAttribute("CustomerId",113); // Luis Popp
// 10. Show the value of the reference information now
System.out.println("Customer: "+order.getAttribute("CustomerId"));
// 11. Rollback the transaction
am.getTransaction().rollback();
System.out.println("Transaction canceled");

}
Configuration.releaseRootApplicationModule(am,true);

}
}

Running this example produces the output shown in Example 6–12.

Example 6–12 Results of Running TestFindAndUpdate.java

Current status is: Closed
ERROR: The status must be Open, Pending, or Closed
Current status is: Open
Assigned: bernst
Assigned: Luis Popp
Transaction canceled

6.4.9 How to Create a New Row for a View Object Instance
To create a new view row instance, follow these basic steps (as illustrated in
Example 6–13):

1. Find the view object instance.

2. Create a new row and insert it into the row set.

3. Set the values of the required attributes in the new row.

4. Commit the transaction.

Example 6–13 shows the main() method finds the Orders view object instance and
inserts a new row into the row set. Because the Orders view object is entity-based, the

Testing View Object Instances Programmatically

Working with View Object Query Results 6-37

CreatedBy attribute derives its value from the mapped entity object attribute. The
sample then sets values for the remaining attributes before committing the transaction.

Example 6–13 Creating a New Order

package oracle.fodemo.storefront.client;
import oracle.jbo.ApplicationModule;
import oracle.jbo.Row;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;
import oracle.jbo.domain.DBSequence;
import oracle.jbo.domain.Date;
import oracle.jbo.domain.Timestamp;

public class TestCreateOrder {
public static void main(String[] args) throws Throwable {

String amDef = "oracle.fodemo.storefront.store.service.StoreServiceAM";
String config = "StoreServiceAMLocal";
ApplicationModule am =

Configuration.createRootApplicationModule(amDef, config);
// 1. Find the Orders view object instance.
ViewObject orders = am.findViewObject("Orders");
// 2. Create a new row and insert it into the row set
Row newOrder = orders.createRow();
orders.insertRow(newOrder);
// Show the entity object-related defaulting for CreatedBy attribute
System.out.println("CreatedBy defaults to: " +

newOrder.getAttribute("CreatedBy"));
// 3. Set values for some of the required attributes
Date now = new Date(new Timestamp(System.currentTimeMillis()));
newOrder.setAttribute("OrderDate", now);
newOrder.setAttribute("OrderStatusCode", "PENDING");
newOrder.setAttribute("OrderTotal", 500);
newOrder.setAttribute("CustomerId", 110);
newOrder.setAttribute("ShipToAddressId", 2);
newOrder.setAttribute("ShippingOptionId", 2);
newOrder.setAttribute("FreeShippingFlag", "N");
newOrder.setAttribute("GiftwrapFlag", "N");
// 4. Commit the transaction
am.getTransaction().commit();
// 5. Retrieve and display the trigger-assigned order id
DBSequence id = (DBSequence)newOrder.getAttribute("OrderId");
System.out.println("Thanks, reference number is " +

id.getSequenceNumber());
Configuration.releaseRootApplicationModule(am, true);

}
}

Running this example produces the results shown in Example 6–14.

Example 6–14 Results of Running TestCreateOrder.java

CreatedBy defaults to: Luis Popp
Thanks, reference number is 200

6.4.10 How to Retrieve the Row Key Identifying a Row
To retrieve a row key to identify a row, follow these basic steps (as illustrated in
Example 6–15):

Testing View Object Instances Programmatically

6-38 Fusion Developer's Guide for Oracle Application Development Framework

1. Find the view object instance.

2. Construct a key using a supplied value.

3. Find the row with this key.

4. Optionally, do something with the key of the row.

Example 6–15 shows the main() method finds the Orders view object instance and
constructs a row key to find an order number. The findByKey() method find the
Orders rows with the specified key. The sample then displays the key of the row,
accesses the row set using the OrderItems view link accessor, and iterates over the
rows to display the key of each OrderItems row.

Example 6–15 Retrieving the Row Key Identifying a Row

package oracle.fodemo.storefront.client;
import oracle.jbo.ApplicationModule;
import oracle.jbo.Key;
import oracle.jbo.Row;
import oracle.jbo.RowSet;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;

public class TestFindAndShowKeys {
public static void main(String[] args) {

String amDef = "oracle.fodemo.storefront.store.service.StoreServiceAM";
String config = "StoreServiceAMLocal";
ApplicationModule am =

Configuration.createRootApplicationModule(amDef, config);
// 1. Find the Orders view object instance
ViewObject vo = am.findViewObject("Orders");
// 2. Construct a key to find order number 1011
Key orderKey = new Key(new Object[] { 1011 });
// 3. Find the Orders row with the key
Row[] ordersFound = vo.findByKey(orderKey, 1);
if (ordersFound != null && ordersFound.length > 0) {

Row order = ordersFound[0];
// 4. Displays the key of the Orders row
showKeyFor(order);
// 5. Accesses row set of Orders using OrderItems view link accessor
RowSet items = (RowSet)order.getAttribute("OrderItems");
// 6. Iterates over the OrderItems row
while (items.hasNext()) {

Row itemRow = items.next();
// 4. Displays the key of each OrderItems row
showKeyFor(itemRow);

}
}
Configuration.releaseRootApplicationModule(am, true);

}

private static void showKeyFor(Row r) {
// get the key for the row passed in
Key k = r.getKey();
// format the key as "(val1,val2)"
String keyAttrs = formatKeyAttributeNamesAndValues(k);
// get the serialized string format of the key, too
String keyStringFmt = r.getKey().toStringFormat(false);
System.out.println("Key " + keyAttrs + " has string format " +

keyStringFmt);

Testing View Object Instances Programmatically

Working with View Object Query Results 6-39

}
// Build up "(val1,val2)" string for key attributes

private static String formatKeyAttributeNamesAndValues(Key k) {
StringBuffer sb = new StringBuffer("(");
int attrsInKey = k.getAttributeCount();
for (int i = 0; i < attrsInKey; i++) {

if (i > 0)
sb.append(",");
sb.append(k.getAttributeValues()[i]);

}
sb.append(")");
return sb.toString();

}
}

Running the example produces the results shown in Example 6–16. Notice that the
serialized string format of a key is a hexadecimal number that includes information in
a single string that represents all the attributes in a key.

Example 6–16 Results of Running TestFindAndShowKeys.java

Key (1011) has string format 000100000003313031
Key (1011,1) has string format 000200000003C2020200000002C102
Key (1011,2) has string format 000200000003C2020200000002C103

Testing View Object Instances Programmatically

6-40 Fusion Developer's Guide for Oracle Application Development Framework

7

Defining Validation and Business Rules Declaratively 7-1

7Defining Validation and Business Rules
Declaratively

This chapter explains how to use ADF entity objects to write typical business rules that
implement declarative validation in an Oracle Application Development Framework
(Oracle ADF) application.

This chapter includes the following sections:

■ Section 7.1, "Introduction to Declarative Validation"

■ Section 7.2, "Understanding the Validation Cycle"

■ Section 7.3, "Adding Validation Rules to Entity Objects and Attributes"

■ Section 7.4, "Using the Built-in Declarative Validation Rules"

■ Section 7.5, "Using Groovy Expressions For Validation and Business Rules"

■ Section 7.6, "Triggering Validation Execution"

■ Section 7.7, "Creating Validation Error Messages"

■ Section 7.8, "Setting the Severity Level for Validation Exceptions"

■ Section 7.9, "Bulk Validation in SQL"

7.1 Introduction to Declarative Validation
The easiest way to create and manage validation rules is through declarative validation
rules. Declarative validation rules are defined using the overview editor, and once
created, are stored in the entity object’s XML file. Declarative validation is different
from programmatic validation (covered in Chapter 8, "Implementing Validation and
Business Rules Programmatically"), which is stored in an entity object’s Java file.

Oracle ADF provides built-in declarative validation rules that satisfy many of your
business needs. If you have custom validation rules you want to reuse, you can code
them and add them to the IDE, so that the rules are available directly from JDeveloper.
Custom validation rules are an advanced topic and covered in Section 38.9,
"Implementing Custom Validation Rules." You can also base validation on a Groovy
expression, as described in Section 7.5, "Using Groovy Expressions For Validation and
Business Rules."

When you add a validation rule, you supply an appropriate error message and can
later translate it easily into other languages if needed. You can also define how
validation is triggered and set the severity level.

One benefit of using declarative validation (versus writing your own validation) is
that the validation framework takes care of the complexities of batching validation

Understanding the Validation Cycle

7-2 Fusion Developer's Guide for Oracle Application Development Framework

exceptions, which frees you to concentrate on your application’s specific validation
rule logic.

7.1.1 When to Use Business-Layer Validation or Model-Layer Validation
In an ADF Business Components application, most of your validation code is defined
in your entity objects. Encapsulating the business logic in these shared, reusable
components ensures that your business information is validated consistently in every
view object or client that accesses it, and it simplifies maintenance by centralizing
where the validation is stored.

In the model layer, ADF Model validation rules can be set for the attributes of a
collection. Many of the declarative validation features available for entity objects are
also available at the model layer, should your application warrant the use of
model-layer validation in addition to business-layer validation.

When you use the ADF Business Components application module data control, you
do not need to use model-layer validation. Consider defining all or most of your
validation rules in the centralized, reusable, and easier to maintain entity objects of
your business layer. With other types of data controls, model-layer validation can be
more useful.

7.2 Understanding the Validation Cycle
Each entity row tracks whether or not its data is valid. When an existing entity row is
retrieved from the database, the entity is assumed to be valid. When the first persistent
attribute of an existing entity row is modified, or when a new entity row is created, the
entity is marked invalid.

When an entity is in an invalid state, the declarative validation you have configured
and the programmatic validation rules you have implemented are evaluated again
before the entity can be considered valid again. You can determine whether a given
entity row is valid at runtime by calling the isValid() method on it.

7.2.1 Types of Entity Object Validation Rules
Entity object validation rules fall into two basic categories: attribute-level and
entity-level.

Note: It is possible to go beyond the declarative behavior to
implement more complex validation rules for your business domain
layer when needed. Section 8.2, "Using Method Validators" explains
how to use the Method validator to invoke custom validation code
and Section 38.9, "Implementing Custom Validation Rules" details
how to extend the basic set of declarative rules with custom rules of
your own.

Note: Because attributes can (by default) be left blank, validations
are not triggered if the attribute contains no value. For example, if a
user creates a new entity row and does not enter a value for a given
attribute, the validation on that attribute is not run. To force the
validation to execute in this situation, set the Mandatory flag on the
attribute.

Understanding the Validation Cycle

Defining Validation and Business Rules Declaratively 7-3

7.2.1.1 Attribute-Level Validation Rules
Attribute-level validation rules are triggered for a particular entity object attribute
when either the end user or the program code attempts to modify the attribute's value.
Since you cannot determine the order in which attributes will be set, attribute-level
validation rules should be used only when the success or failure of the rule depends
exclusively on the candidate value of that single attribute.

The following examples are attribute-level validations:

■ The value of the OrderDate of an order should not be a date in the past.

■ The ProductId attribute of a product should represent an existing product.

7.2.1.2 Entity-Level Validation Rules
All other kinds of validation rules are entity-level validation rules. These are rules
whose implementation requires considering two or more entity attributes, or possibly
composed children entity rows, in order to determine the success or failure of the rule.

The following examples are entity-level validations:

■ The value of the OrderShippedDate should be a date that comes after the
OrderDate.

■ The ProductId attribute of an order should represent an existing product.

Entity-level validation rules are triggered by calling the validate() method on a
Row. This occurs when:

■ You call the method explicitly on the entity object

■ You call the method explicitly on a view row with an entity row part that is
invalid

■ A view object's iterator calls the method on the current row in the view object
before allowing the current row to change

■ During transaction commit, processing validates an invalid entity (in the list of
pending changes) before proceeding with posting the changes to the database

As part of transaction commit processing, entity-level validation rules can fire multiple
times (up to a specified limit). For more information, see Section 7.2.4, "Avoiding
Infinite Validation Cycles."

7.2.2 Understanding Commit Processing and Validation
Transaction commit processing happens in three basic phases:

1. Ensure that any invalid entity rows on the pending changes list are valid.

2. Post the pending changes to the database by performing appropriate DML
operations.

3. Commit the transaction.

If you have business validation logic in your entity objects that executes queries or
stored procedures that depend on seeing the posted changes in the SELECT statements
they execute, they should be coded in the beforeCommit() method described in
Section 8.5.3, "What You May Need to Know About Row Set Access with View
Accessors." This method fires after all DML statements have been applied so queries or
stored procedures invoked from that method can "see" all of the pending changes that
have been saved, but not yet committed.

Understanding the Validation Cycle

7-4 Fusion Developer's Guide for Oracle Application Development Framework

7.2.3 Understanding the Impact of Composition on Validation Order
Because a composed child entity row is considered an integral part of its composing
parent entity object, any change to composed child entity rows causes the parent entity
to be marked invalid. For example, if a line item on an order were to change, the entire
order would now be considered to be changed, or invalid.

Therefore, when the composing entity is validated, it causes any currently invalid
composed children entities to be validated first. This behavior is recursive, drilling into
deeper levels of invalid composed children if they exist.

7.2.4 Avoiding Infinite Validation Cycles
If your validation rules contain code that updates attributes of the current entity or
other entities, then the act of validating the entity can cause that or other entities to
become invalid. As part of the transaction commit processing phase that attempts to
validate all invalid entities in the pending changes list, the transaction performs
multiple passes (up to a specified limit) on the pending changes list in an attempt to
reach a state where all pending entity rows are valid.

The maximum number of validation passes is specified by the transaction-level
validation threshold setting. The default value of this setting is 10. You can increase
the threshold count to greater than one if the entities involved contain the appropriate
logic to validate themselves in the subsequent passes.

If after 10 passes, there are still invalid entities in the list, you will see the following
exception:

JBO-28200: Validation threshold limit reached. Invalid Entities still in cache

This is a sign that you need to debug your validation rule code to avoid inadvertently
invalidating entities in a cyclic fashion.

To change the validation threshold, use the SetValidationThreshold() method
as shown in Example 7–1. In this example, the new threshold is 12.

Example 7–1 Changing the Validation Threshold

oracle.jbo.server.DBTransaction::setValidationThreshold(12)

7.2.5 What Happens When Validations Fail
When an entity object's validation rules throw exceptions, the exceptions are bundled
and returned to the client. If the validation failures are thrown by methods you've
overridden to handle events during the transaction postChanges processing, then
the validation failures cause the transaction to roll back any database INSERT,

Caution: don’t use the transaction-level postChanges() method in
web applications unless you can guarantee that the transaction will
definitely be committed or rolled-back during the same HTTP request.
This method exists to force the transaction to post unvalidated
changes without committing them. Failure to heed this advice can
lead to strange results in an environment where both application
modules and database connections can be pooled and shared serially
by multiple different clients.

Understanding the Validation Cycle

Defining Validation and Business Rules Declaratively 7-5

UPDATE, or DELETE statements that might have been performed already during the
current postChanges cycle.

7.2.6 Understanding Entity Objects Row States
When an entity row is in memory, it has an entity state that reflects the logical state of
the row. Figure 7–1 illustrates the different entity row states and how an entity row can
transition from one state to another. When an entity row is first created, its status is
New. You can use the setNewRowState() method to mark the entity as being
Initialized, which removes it from the transaction's list of pending changes until
the user sets at least one of its attributes, at which time it returns to the New state. This
allows you to create more than one initialized row and post only those that the user
modifies.

The Unmodified state reflects an entity that has been retrieved from the database and
has not yet been modified. It is also the state that a New or Modified entity transitions
to after the transaction successfully commits. During the transaction in which it is
pending to be deleted, an Unmodified entity row transitions to the Deleted state.
Finally, if a row that was New and then was removed before the transaction commits,
or Unmodified and then successfully deleted, the row transitions to the Dead state.

Figure 7–1 Diagram of Entity Row States and Transitions

You can use the getEntityState() and getPostState() methods to access the
current state of an entity row in your business logic code. The getEntityState()
method returns the current state of an entity row with regard to the transaction, while
the getPostState() method returns the current state of an entity row with regard
to the database after using the postChanges() method to post pending changes
without committing the transaction.

For example, if you start with a new row, both getEntityState() and
getPostState() return STATUS_NEW. Then when you post the row (before commit
or rollback), the row will have entity state of STATUS_NEW and a post state of
STATUS_UNMODIFIED. If you subsequently remove that row, the entity state will
remain STATUS_NEW because for the transaction the row is still new. But the post
state will be STATUS_DEAD.

Note: The bundling of exceptions is the default behavior for ADF
Model-based web applications, but not for Business Component
Browser or Swing bindings. Additional configuration is required to
bundle exceptions for the Business Component Browser or Swing
clients.

Adding Validation Rules to Entity Objects and Attributes

7-6 Fusion Developer's Guide for Oracle Application Development Framework

7.2.7 Understanding Bundled Exception Mode
An application module provides a feature called bundled exception mode which
allows web applications to easily present a maximal set of failed validation exceptions
to the end user, instead of presenting only the first error that gets raised. By default,
the ADF Business Components application module pool enables bundled exception
mode for web applications.

You typically will not need to change this default setting. However it is important to
understand that it is enabled by default since it effects how validation exceptions are
thrown. Since the Java language and runtime only support throwing a single exception
object, the way that bundled validation exceptions are implemented is by wrapping a
set of exceptions as details of a new "parent" exception that contains them. For
example, if multiple attributes in a single entity object fail attribute-level validation,
then these multiple ValidationException objects will be wrapped in a
RowValException. This wrapping exception contains the row key of the row that
has failed validation. At transaction commit time, if multiple rows do not successfully
pass the validation performed during commit, then all of the RowValException
objects will get wrapped in an enclosing TxnValException object.

When writing custom error processing code, you can use the getDetails() method
of the JboException base exception class to recursively process the bundled
exceptions contained inside it.

7.3 Adding Validation Rules to Entity Objects and Attributes
The process for adding a validation rule to an entity object is similar for most of the
validation rules, and is done using the Add Validation Rule dialog. You can open this
dialog from the overview editor by clicking the Add icon on the Business Rules page.

It is important to note that when you define a rule declaratively using the Add
Validation Rule dialog, the rule definition you provide specifies the valid condition for
the attribute or entity object. At runtime, the entry provided by the user is evaluated
against the rule definition and an error or warning is raised if the entry fails to satisfy
the specified criteria. For example, if you specify a Length validator on an attribute
that requires it to be Less Than or Equal To 12, the validation fails if the entry is
more than 12 characters, and the error or warning is raised.

7.3.1 How to Add a Validation Rule to an Entity or Attribute
To add a declarative validation rule to an entity object, use the Business Rules page of
the overview editor.

To add a validation rule:
1. In the Application Navigator, double-click the desired entity object.

2. Click the Business Rules navigation tab on the overview editor.

3. Select the object for which you want to add a validation rule, and then click the
Add icon.

■ To add a validation rule at the entity object level, select Entity.

■ To add a validation rule for an attribute, expand Attributes and select the
desired attribute.

Note: All the exception classes mentioned here are in the
oracle.jbo package.

Adding Validation Rules to Entity Objects and Attributes

Defining Validation and Business Rules Declaratively 7-7

When you add a new validation rule, the Add Validation Rule dialog appears.

4. Select the type of validation rule desired from the Rule Type dropdown list.

5. Use the dialog settings to configure the new rule.

The controls will change depending on the kind of validation rule you select. For
more information about the different validation rules, see Section 7.4, "Using the
Built-in Declarative Validation Rules."

6. You can optionally click the Validation Execution tab and enter criteria for the
execution of the rule, such as dependent attributes and a precondition expression.
For more information, see Section 7.6, "Triggering Validation Execution."

7. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails. For more information, see Section 7.7,
"Creating Validation Error Messages."

8. Click OK.

7.3.2 How to View and Edit a Validation Rule On an Entity or Attribute
The Business Rules page of the overview editor for entity objects displays the
validation rules for an entity and its attributes in a tree control. To see the validation
rules that apply to the entity as a whole, expand in the Entity node. To see the
validation rules that apply to an attribute, expand the Attributes node and then
expand the attribute.

The validation rules that are shown on the Business Rules page of the overview editor
include those that you have defined as well as database constraints, such as
mandatory or precision. To open a validation rule for editing, double-click the rule or
select the rule and click the Edit icon.

7.3.3 What Happens When You Add a Validation Rule
When you add a validation rule to an entity object, JDeveloper updates its XML
component definition to include an entry describing what rule you've used and what
rule properties you've entered. For example, if you add a range validation rule to the
DiscountAmount attribute, this results in a RangeValidationBean entry in the
XML file, as shown in Example 7–2.

Example 7–2 Range Validation Bean

 <Attribute
 Name="DiscountAmount"
 IsNotNull="true"
 ColumnName="DISCOUNT_AMOUNT"
 . . .
 <validation:RangeValidationBean
 xmlns="http://xmlns.oracle.com/adfm/validation"
 Name="DiscountAmount_Rule_0"
 ResId="DiscountAmount_RangeError_0"
 OnAttribute="DiscountAmount"
 OperandType="LITERAL"
 Inverse="false"
 MinValue="0"

Note: For Key Exists and Method entity validators, you can also use
the Validation Execution tab to specify the validation level.

Using the Built-in Declarative Validation Rules

7-8 Fusion Developer's Guide for Oracle Application Development Framework

 MaxValue="40"/>
 . . .
 </Attribute>

At runtime, the rule is enforced by the entity object based on this declarative
information.

7.3.4 What You May Need to Know About Entity and Attribute Validation Rules
Declarative validation enforces both entity-level and attribute-level validation,
depending on where you place the rules. Entity-level validation rules are enforced
when a user tries to commit pending changes or navigates between rows.
Attribute-level validation rules are enforced when the user changes the value of the
related attribute.

The Unique Key validator (described in Section 7.4.1, "How to Ensure That Key Values
Are Unique") can be used only at the entity level. Internally the Unique Key validator
behaves like an attribute-level validator. This means that users see the validation error
when they tab out of the key attribute for the key that the validator is validating. This
is done because the internal cache of entities can never contain a duplicate, so it is not
allowed for an attribute value to be set that would violate that. This check needs to be
performed when the attribute value is being set because the cache consistency check is
done during the setting of the attribute value.

Entity object validators are triggered whenever the entity, as a whole, is dirty. To
improve performance, you can indicate which attributes play a role in your rule and
thus the rule should be triggered only if one or more of these attributes are dirty. For
more information on triggering attributes, see, Section 7.6, "Triggering Validation
Execution."

7.4 Using the Built-in Declarative Validation Rules
The built-in declarative validation rules can satisfy many, if not all, of your business
needs. These rules are easy to implement because you don’t write any code. You use
the user-interface tools to choose the type of validation and how it is used.

Built-in declarative validation rules can be used to:

■ Ensure that key values are unique (primary key or other unique keys)

■ Determine the existence of a key value

Best Practice: If the validity of one attribute is dependent on one or
more other attributes, enforce this rule using entity validation, not
attribute validation. Examples of when you would want to do this
include the following:

■ You have a Compare validator that compares one attribute to
another.

■ You have an attribute with an expression validator that examines
the value in another attribute to control branching in the
expression to validate the attribute differently depending on the
value in this other attribute.

■ You make use of conditional execution, and your precondition
expression involves an attribute other than the one that you are
validating.

Using the Built-in Declarative Validation Rules

Defining Validation and Business Rules Declaratively 7-9

■ Make a comparison between an attribute and anything from a literal value to a
SQL query

■ Validate against a list of values that might be a literal list, a SQL query, or a view
attribute

■ Make sure that a value falls within a certain range, or that it is limited by a certain
number of bytes or characters

■ Validate using a regular expression or evaluate a Groovy expression

■ Make sure that a value satisfies a relationship defined by an aggregate on a child
entity available through an accessor

■ Validate using a validation condition defined in a Java method on the entity

7.4.1 How to Ensure That Key Values Are Unique
The Unique Key validator ensures that primary key values for an entity object are
always unique. The Unique Key validator can also be used for a non-primary-key
attribute, as long as the attribute is defined as an alternate key. For information on
how to define alternate keys, see Section 4.10.15, "How to Define Alternate Key
Values."

Whenever any of the key attribute values change, this rule validates that the new key
does not belong to any other entity object instance of this entity object class. (It is the
business-logic tier equivalent of a unique constraint in the database.) If the key is
found in one of the entity objects, a TooManyObjectsException is thrown. The
validation check is done both in the entity cache and in the database.

There is a slight possibility that unique key validation might not be sufficient to
prevent duplicate rows in the database. It is possible for two application module
sessions to simultaneously attempt to create records with the same key. To prevent
this from happening, create a unique index in the database for any unique constraint
that you want to enforce.

To ensure that a key value is unique:
1. In the Application Navigator, double-click the desired entity object.

2. On the Business Rules page of the overview editor, select the Entity folder, and
click the Add icon.

3. In the Add Validation Rule dialog, in the Rule Type dropdown list, select
UniqueKey.

4. In the Keys box, select the primary or alternate key.

5. You can optionally click the Validation Execution tab and enter criteria for the
execution of the rule, such as dependent attributes and a precondition expression.
For more information, see Section 7.6, "Triggering Validation Execution."

6. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails. For more information, see Section 7.7,
"Creating Validation Error Messages."

Best Practice: While it is possible to add a precondition for a
Unique Key validator, it is not a best practice. If a Unique Key
validator fails to fire, for whatever reason, the cache consistency check
is still performed and an error will be returned. It is generally better to
add the validator and a meaningful error message.

Using the Built-in Declarative Validation Rules

7-10 Fusion Developer's Guide for Oracle Application Development Framework

7. Click OK.

7.4.2 What Happens When You Use a Unique Key Validator
When you use a Unique Key validator, a <UniqueKeyValidationBean> tag is
added to the entity object’s XML file. Example 7–3 shows the XML for a Unique Key
validator.

Example 7–3 Unique Key Validator XML Code

 <validation:UniqueKeyValidationBean
 Name="PersonEO_Rule_1"
 KeyName="AltKey"
 ResId="PersonEO_Rule_1">
 <validation:OnAttributes>
 <validation:Item
 Value="Email"/>
 </validation:OnAttributes>
 </validation:UniqueKeyValidationBean>

7.4.3 How to Validate Based on a Comparison
The Compare validator performs a logical comparison between an entity attribute and
a value. When you add a Compare validator, you specify an operator and something
to compare with. You can compare the following:

■ Literal value

When you use a Compare validator with a literal value, the value in the attribute
is compared against the specified literal value. When using this kind of
comparison, it is important to consider data types and formats. The literal value
must conform to the format specified by the data type of the entity attribute to
which you are applying the rule. In all cases, the type corresponds to the type
mapping for the entity attribute.

For example, an attribute of column type DATE maps to the
oracle.jbo.domain.Date class, which accepts dates and times in the same
format accepted by java.sql.TimeStamp and java.sql.Date. You can use
format masks to ensure that the format of the value in the attribute matches that of
the specified literal. For information about entity object attribute type mappings,
see Section 4.10.1, "How to Set Database and Java Data Types for an Entity Object
Attribute." For information about the expected format for a particular type, refer to
the Javadoc for the type class.

■ Query result

When you use this type of validator, the SQL query is executed each time the
validator is executed. The validator retrieves the first row from the query result,
and it uses the value of the first column in the query (of that first row) as the value
to compare. Because this query cannot have any bind variables in it, this feature
should be used only when selecting one column of one row of data that does not
depend on the values in the current row.

■ View object attribute

When you use this type of validator, the view object's SQL query is executed each
time the validator is executed. The validator retrieves the first row from the query
result, and it uses the value of the selected view object attribute from that row as
the value to compare. Because you cannot associate values with the view object’s
named bind variables, those variables can only take on their default values.

Using the Built-in Declarative Validation Rules

Defining Validation and Business Rules Declaratively 7-11

Therefore this feature should be used only for selecting an attribute of one row of
data that does not depend on the values in the current row.

■ View accessor attribute

When defining the view accessor, you can assign row-specific values to the
validation view object's bind variables.

■ Expression

For information on the expression option, see Section 7.5, "Using Groovy
Expressions For Validation and Business Rules."

■ Entity attribute

The entity attribute option is available only for entity-level Compare validators.

To validate based on a comparison:
1. In the Application Navigator, double-click the desired entity object.

2. On the Business Rules page of the overview editor, select where you want to add
the validator.

■ To add an entity-level validator, select the Entity folder.

■ To add an attribute-level validator, expand the Attributes folder and select the
appropriate attribute.

3. Click the Add icon.

4. In the Add Validation Rule dialog, in the Rule Type dropdown list, select
Compare. Note that the subordinate fields change depending on your choices.

5. Select the appropriate operator.

6. Select an item in the Compare With list, and based on your selection provide the
appropriate comparison value.

7. You can optionally click the Validation Execution tab and enter criteria for the
execution of the rule, such as dependent attributes and a precondition expression.
For more information, see Section 7.6, "Triggering Validation Execution."

8. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails. For more information, see Section 7.7,
"Creating Validation Error Messages."

9. Click OK.

Figure 7–2 shows what the dialog looks like when you use an entity-level Compare
validator with a entity attribute.

Using the Built-in Declarative Validation Rules

7-12 Fusion Developer's Guide for Oracle Application Development Framework

Figure 7–2 Compare Validator Using an Entity Object Attribute

7.4.4 What Happens When You Validate Based on a Comparison
When you use a Compare validator, a <CompareValidationBean> tag is added to
an entity object’s XML file. Example 7–4 shows the XML code for the Email attribute
in the PersonEO entity object.

Example 7–4 Compare Validator XML Code

<validation:CompareValidationBean
 xmlns="http://xmlns.oracle.com/adfm/validation"
 Name="PersonEO_Rule_0"
 ResId="PersonEO_Rule_0"
 OnAttribute="Email"
 OperandType="ATTR"
 Inverse="false"
 CompareType="EQUALTO"
 CompareValue="ConfirmedEmail"/>

7.4.5 How to Validate Using a List of Values
The List validator compares an attribute against a list of values (LOV). When you add
a List validator, you specify the type of list to choose from:

■ Literal values - The validator ensures that the entity attribute is in (or not in, if
specified) the list of values.

■ Query result - The validator ensures that the entity attribute is in (or not in, if
specified) the first column of the query's result set. The SQL query validator

Using the Built-in Declarative Validation Rules

Defining Validation and Business Rules Declaratively 7-13

cannot use a bind variable, so it should be used only on a fixed, small list that you
have to query from a table. All rows of the query are retrieved into memory.

■ View object attribute - The validator ensures that the entity attribute is in (or not
in, if specified) the view attribute. The View attribute validator cannot use a bind
variable, so it should be used only on a fixed, small list that you have to query
from a table. All rows of the query are retrieved into memory.

■ View accessor attribute - The validator ensures that the entity attribute is in (or not
in) the view accessor attribute. The view accessor is probably the most useful
option, because it can take bind variables and after you’ve created the LOV on the
user interface, a view accessor is required.

To validate using a list of values:
1. In the Application Navigator, double-click the desired entity object.

2. On the Business Rules page of the overview editor, select where you want to add
the validator.

■ To add an entity-level validator, select the Entity folder.

■ To add an attribute-level validator, expand the Attributes folder and select the
appropriate attribute.

3. Click the Add icon.

4. In the Add Validation Rule dialog, in the Rule Type dropdown list, select List.

5. In the Attribute list, choose the appropriate attribute.

6. In the Operator field, select In or NotIn, depending on whether you want an
inclusive list or exclusive.

7. In the List Type field, select the appropriate type of list.

8. Depending on the type of list you selected, you can either enter a list of values
(each value on a new line) or an SQL query, or select a view object attribute or
view accessor attribute.

9. You can optionally click the Validation Execution tab and enter criteria for the
execution of the rule, such as dependent attributes and a precondition expression.
For more information, see Section 7.6, "Triggering Validation Execution."

10. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails. For more information, see Section 7.7,
"Creating Validation Error Messages."

11. Click OK.

Figure 7–3 shows what the dialog looks like when you use a List validator with a view
accessor attribute.

Best Practice: When using a List validator, the view accessor is
typically the most useful choice because you can define a view criteria
on the view accessor to filter the view data when applicable; and
when defining an LOV on a view attribute, you typically use a view
accessor with a view criteria.

Using the Built-in Declarative Validation Rules

7-14 Fusion Developer's Guide for Oracle Application Development Framework

Figure 7–3 List Validator Using a View Accessor Attribute

7.4.6 What Happens When You Validate Using a List of Values
When you validate using a list of values, a <ListValidationBean> tag is added to
an entity object’s XML file. Example 7–5 shows the
PaymentOptionEO.PaymentTypeCode attribute, which uses a view accessor
attribute for the List validator.

Example 7–5 List Validator XML Code

<validation:ListValidationBean
 xmlns="http://xmlns.oracle.com/adfm/validation"
 Name="PaymentTypeCode_Rule_0"
 ResId="PaymentTypeCode_Rule_0"
 OnAttribute="PaymentTypeCode"
 OperandType="VO_USAGE"
 Inverse="false"
 ViewAccAttrName="Value"
 ViewAccName="PaymentTypesVA"/>

7.4.7 What You May Need to Know About the List Validator
The List validator is designed for validating an attribute against a relatively small set
of values. If you select the Query Result or View Object Attribute type of list
validation, keep in mind that the validator retrieves all of the rows from the query
before performing an in-memory scan to validate whether the attribute value in
question matches an attribute in the list. The query performed by the validator’s SQL
or view object query does not reference the value being validated in the WHERE clause
of the query.

Using the Built-in Declarative Validation Rules

Defining Validation and Business Rules Declaratively 7-15

It is inefficient to use a validation rule when you need to determine whether a
user-entered product code exists in a table of a large number of products. Instead,
Section 8.5, "Using View Objects for Validation" explains the technique you can use to
efficiently perform SQL-based validations by using a view object to perform a targeted
validation query against the database. See also Section 5.12.10.2, "Using Validators to
Validate Attribute Values."

Also, if the attribute you’re comparing to is a key, the Key Exists validator is more
efficient than validating a list of values; and if these choices need to be translatable,
you should use a static view object instead of the literal choice.

7.4.8 How to Make Sure a Value Falls Within a Certain Range
The Range validator performs a logical comparison between an entity attribute and a
range of values. When you add a Range validator, you specify minimum and
maximum literal values. The Range validator verifies that the value of the entity
attribute falls within the range (or outside the range, if specified).

If you need to dynamically calculate the minimum and maximum values, or need to
reference other attributes on the entity, use the Script Expression validator and
provide a Groovy expression. For more information, see Section 3.6.1, "Referencing
Business Components Objects in Groovy Expressions" and Section 3.6.3,
"Manipulating Business Component Attribute Values in Groovy Expressions."

To validate within a certain range:
1. In the Application Navigator, double-click the desired entity object.

2. On the Business Rules page of the overview editor, select where you want to add
the validator.

■ To add an entity-level validator, select the Entity folder.

■ To add an attribute-level validator, expand the Attributes folder and select the
appropriate attribute.

3. Click the Add icon.

4. In the Add Validation Rule dialog, in the Rule Type dropdown list, select Range.

5. In the Attribute list, select the appropriate attribute.

6. In the Operator field, select Between or NotBetween.

7. In the Minimum and Maximum fields, enter appropriate values.

8. You can optionally click the Validation Execution tab and enter criteria for the
execution of the rule, such as dependent attributes and a precondition expression.
For more information, see Section 7.6, "Triggering Validation Execution."

9. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails. For more information, see Section 7.7,
"Creating Validation Error Messages."

10. Click OK.

7.4.9 What Happens When You Use a Range Validator
When you validate against a range, a <RangeValidationBean> tag is added to the
entity object’s XML file. Example 7–6 shows the PersonEO.CreditLimit attribute
with a minimum credit limit of zero and a maximum of 10,000.

Using the Built-in Declarative Validation Rules

7-16 Fusion Developer's Guide for Oracle Application Development Framework

Example 7–6 Range Validator XML Code

<validation:RangeValidationBean
 Name="CreditLimit_Rule_0"
 ResId="CreditLimit_Rule_0"
 OnAttribute="CreditLimit"
 OperandType="LITERAL"
 Inverse="false"
 MinValue="0"
 MaxValue="10000"/>

7.4.10 How to Validate Against a Number of Bytes or Characters
The Length validator validates whether the string length (in characters or bytes) of an
attribute's value is less than, equal to, or greater than a specified number, or whether it
lies between a pair of numbers.

To validate against a number of bytes or characters:
1. In the Application Navigator, double-click the desired entity object.

2. On the Business Rules page of the overview editor, select where you want to add
the validator.

■ To add an entity-level validator, select the Entity folder.

■ To add an attribute-level validator, expand the Attributes folder and select the
appropriate attribute.

3. Click the Add icon.

4. In the Add Validation Rule dialog, in the Rule Type dropdown list, select Length.

5. In the Attribute list, select the appropriate attribute.

6. In the Operator field, select how to evaluate the value.

7. In the Comparison Type field, select Byte or Character and enter a length.

8. You can optionally click the Validation Execution tab and enter criteria for the
execution of the rule, such as dependent attributes and a precondition expression.
For more information, see Section 7.6, "Triggering Validation Execution."

9. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails. For more information, see Section 7.7,
"Creating Validation Error Messages."

10. Click OK.

7.4.11 What Happens When You Validate Against a Number of Bytes or Characters
When you validate using length, a <LengthValidationBean> tag is added to the
entity object’s XML file, as shown in Example 7–7. For example, you might have a field
where the user enters a password or PIN and the application wants to validate that it
is at least 6 characters long, but not longer than 10. You would use the Length
validator with the Between operator and set the minimum and maximum values
accordingly.

Example 7–7 Validating the Length Between Two Values

 <validation:LengthValidationBean
 OnAttribute="pin"
 CompareType="BETWEEN"
 DataType="CHARACTER"

Using the Built-in Declarative Validation Rules

Defining Validation and Business Rules Declaratively 7-17

 MinValue="6"
 MaxValue="10"
 Inverse="false"/>

7.4.12 How to Validate Using a Regular Expression
The Regular Expression validator compares attribute values against a mask specified
by a Java regular expression.

If you want to create expressions that can be personalized in metadata, you can use the
Script Expression validator. For more information, see Section 7.5, "Using Groovy
Expressions For Validation and Business Rules."

To validate using a regular expression
1. In the Application Navigator, double-click the desired entity object.

2. On the Business Rules page of the overview editor, select where you want to add
the validator.

■ To add an entity-level validator, select the Entity folder.

■ To add an attribute-level validator, expand the Attributes folder and select the
appropriate attribute.

3. Click the Add icon.

4. In the Add Validation Rule dialog, in the Rule Type dropdown list, select Regular
Expression.

5. In the Operator field, you can select Matches or Not Matches.

6. To use a predefined expression (if available), you can select one from the
dropdown list and click Use Pattern. Otherwise, write your own regular
expression in the field provided.

7. You can optionally click the Validation Execution tab and enter criteria for the
execution of the rule, such as dependent attributes and a precondition expression.
For more information, see Section 7.6, "Triggering Validation Execution."

8. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails. For more information, see Section 7.7,
"Creating Validation Error Messages."

9. Click OK.

Figure 7–4 shows what the dialog looks like when you select a Regular Expression
validator and validate that the Email attribute matches a predefined Email Address
expression.

Note: You can add your own expressions to the list of predefined
expressions. To add a predefined expression, add an entry in the
PredefinedRegExp.properties file in the BC4J subdirectory of
the JDeveloper system directory (for example,
C:\Documents and Settings\username\Application
Data\JDeveloper\system##\o.BC4J\PredefinedRegExp.pro
perties).

Using the Built-in Declarative Validation Rules

7-18 Fusion Developer's Guide for Oracle Application Development Framework

Figure 7–4 Regular Expression Validator Matching Email Address

7.4.13 What Happens When You Validate Using a Regular Expression
When you validate using a regular expression, a <RegExpValidationBean> tag is
added to the entity object’s XML file. Example 7–8 shows an Email attribute that must
match a regular expression.

Example 7–8 Regular Expression Validator XML Code

<validation:RegExpValidationBean
 Name="Email_Rule_0"
 OnAttribute="Email"
 Pattern="[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}"
 Flags="CaseInsensitive"
 Inverse="false"/>

7.4.14 How to Use the Average, Count, or Sum to Validate a Collection
You can use collection validation on the average, count, sum, min, or max of a
collection. This validator is available only at the entity level. It is useful for validating
the aggregate calculation over a collection of associated entities by way of an entity
accessor to a child entity (on the many end of the association). You must select the
association accessor to define the Collection validator.

To validate using an aggregate calculation:
1. In the Application Navigator, double-click the desired entity object.

2. On the Business Rules page of the overview editor, select the Entity folder and
click the Add icon.

Using the Built-in Declarative Validation Rules

Defining Validation and Business Rules Declaratively 7-19

3. In the Add Validation Rule dialog, in the Rule Type dropdown list, select
Collection.

4. In the Operation field, specify the operation (sum, average, count, min, or max) to
perform on the collection for comparison.

5. Select the appropriate accessor and attribute for the validation.

The accessor you choose must be a composition association accessor. Only
accessors of this type are displayed in the dropdown list.

6. Specify the operator and the comparison type and value.

7. You can optionally click the Validation Execution tab and enter criteria for the
execution of the rule, such as dependent attributes and a precondition expression.
For more information, see Section 7.6, "Triggering Validation Execution."

8. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails. For more information, see Section 7.7,
"Creating Validation Error Messages."

9. Click OK.

7.4.15 What Happens When You Use Collection Validation
When you validate using a Collection validator, a <CollectionValidationBean>
tag is added to the entity object’s XML file, as in Example 7–9.

Example 7–9 Collection Validator XML Code

<validation:CollectionValidationBean
 Name="OrderEO_Rule_0"
 OnAttribute="OrderTotal"
 OperandType="LITERAL"
 Inverse="false"
 CompareType="LESSTHAN"
 CompareValue="5"
 Operation="sum"/>

7.4.16 How to Determine Whether a Key Exists
The Key Exists validator is used to determine whether a key value (primary, foreign,
or alternate key) exists.

There are a couple of benefits to using the Key Exists validator:

■ The Key Exists validator has better performance because it first checks the cache
and only goes to the database if necessary.

■ Since the Key Exists validator uses the cache, it will find a key value that has been
added in the current transaction, but not yet committed to the database. For
example, you add a new Department and then you want to link an Employee to
that new department.

To determine whether a value exists:
1. In the Application Navigator, double-click the desired entity object.

2. On the Business Rules page of the overview editor, select where you want to add
the validator.

■ To add an entity-level validator, select the Entity folder.

Using the Built-in Declarative Validation Rules

7-20 Fusion Developer's Guide for Oracle Application Development Framework

■ To add an attribute-level validator, expand the Attributes folder and select the
appropriate attribute.

3. Click the Add icon.

4. In the Add Validation Rule dialog, select Key Exists from the Rule Type list.

5. Select the type of validation target (Entity Object, View Object, or View
Accessor).

If you want the Key Exists validator to be used for all view objects that use this
entity attribute, select Entity Object.

6. Depending on the validation target, you can choose either an association or a key
value.

If you are searching for an attribute that does not exist in the Validation Target
Attributes list, it is probably not defined as a key value. To create alternate keys,
see Section 4.10.15, "How to Define Alternate Key Values."

7. You can optionally click the Validation Execution tab and enter criteria for the
execution of the rule, such as dependent attributes and the validation level (entity
or transaction). For more information, see Section 7.6, "Triggering Validation
Execution."

8. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails. For more information, see Section 7.7,
"Creating Validation Error Messages."

9. Click OK.

Figure 7–5 shows a Key Exists validator that validates whether the MembershipId
entered in the PersonEO entity object exists in the MembershipBaseEO entity object.

Using the Built-in Declarative Validation Rules

Defining Validation and Business Rules Declaratively 7-21

Figure 7–5 Key Exists Validator on an Entity Attribute

7.4.17 What Happens When You Use a Key Exists Validator
When you use a Key Exists validator, an <ExistsValidationBean> tag is created
in the XML file for the entity object, as in Example 7–10.

Example 7–10 Using the Key Exists Validator With an Association

<validation:ExistsValidationBean
 Name="MembershipId_Rule_0"
 ResId="MembershipId_Rule_0"
 OperandType="EO"
 AssocName=
"oracle.fodemo.storefront.entities.associations.PersonsMembershipsBaseFkAssoc"/>

7.4.18 What You May Need to Know About Declarative Validators and View Accessors
When using declarative validators you must consider how your validation will
interact with expected input. The combination of declarative validators and view
accessors provides a simple yet powerful alternative to coding. But, as powerful as the
combination is, you still need to consider how data composition can impact
performance.

Consider a scenario where you have the following:

■ A ServiceRequestEO entity object with Product and RequestType attributes,
and a view accessor that allows it to access the RequestTypeVO view object

■ A RequestTypeVO view object with a query specifying the Product attribute as
a bind parameter

Using Groovy Expressions For Validation and Business Rules

7-22 Fusion Developer's Guide for Oracle Application Development Framework

The valid list of RequestTypes varies by Product. So, to validate the RequestType
attribute, you use a List validator using the view accessor.

Now lets add a set of new service requests. For the first service request (row), the List
validator binds the value of the Product attribute to the view accessor and executes
it. For each subsequent service request the List validator compares the new value of
the Product attribute to the currently bound value.

■ If the value of Product matches, the current RowSet object is retained.

■ If the value of Product has changed, the new value is bound and the view
accessor re-executed.

Now consider the expected composition of input data. For example, the same products
could appear in the input multiple times. If you simply validate the data in the order
received, you might end up with the following:

1. Dryer (initial query)

2. Washing Machine (re-execute view accessor)

3. Dish Washer (re-execute view accessor)

4. Washing Machine (re-execute view accessor)

5. Dryer (re-execute view accessor)

In this case, the validator will execute 5 queries to get 3 distinct row sets. As an
alternative, you can add an ORDER BY clause to the RequestTypeVO to sort it by
Product. In this case, the validator would execute the query only once each for
Washing Machine and Dryer.

1. Dish Washer (initial query)

2. Dryer (re-execute view accessor)

3. Dryer

4. Washing Machine (re-execute view accessor)

5. Washing Machine

A small difference on a data set this size, but multiplied over larger data sets and
many users this could easily become an issue. An ORDER BY clause is not a solution to
every issue, but this example illustrates how data composition can impact
performance.

7.5 Using Groovy Expressions For Validation and Business Rules
Groovy expressions are Java-like scripting code stored in the XML definition of an
entity object. Because Groovy expressions are stored in XML, you can change the
expression values even if you don’t have access to the entity object’s Java file. You can
even change or specify values at runtime.

For more information about using Groovy script in your entity object business logic,
see Section 3.6, "Overview of Groovy Support."

7.5.1 How to Reference Entity Object Methods in Groovy Validation Expressions
You can call methods on the current entity instance using the source property of the
current object. The source property allows you to access to the entity instance being
validated.

Using Groovy Expressions For Validation and Business Rules

Defining Validation and Business Rules Declaratively 7-23

If the method is a non-boolean type and the method name is getXyzAbc() with no
arguments, then you access its value as if it were a property named XyzAbc. For a
boolean-valued property, the same holds true but the JavaBean naming pattern for the
getter method changes to recognize isXyzAbc() instead of getXyzAbc(). If the
method on your entity object does not match the JavaBean getter method naming
pattern, or if it takes one or more arguments, then you must call it like a method using
its complete name.

For example, say you have an entity object with the four methods shown in
Example 7–11.

Example 7–11 Sample Entity Object Methods

public boolean isNewRow() {
 System.out.println("## isNewRow() accessed ##");
 return true;
}

public boolean isNewRow(int n) {
 System.out.println("## isNewRow(int n) accessed ##");
 return true;
}

public boolean testWhetherRowIsNew() {
 System.out.println("## testWhetherRowIsNew() accessed ##");
 return true;
}

public boolean testWhetherRowIsNew(int n) {
 System.out.println("## testWhetherRowIsNew(int n) accessed ##");
 return true;
}

Then the following Groovy validation condition would trigger them all, one of them
being triggered twice, as shown in Example 7–12.

Example 7–12 Groovy Script Calling Sample Methods

newRow && source.newRow && source.isNewRow(5) && source.testWhetherRowIsNew() &&
source.testWhetherRowIsNew(5)

By running this example and forcing entity validation to occur, you would see the
diagnostic output shown in Example 7–13 in the log window:

Example 7–13 Output From Sample Groovy Script

isNewRow() accessed
isNewRow() accessed
isNewRow(int n) accessed
testWhetherRowIsNew() accessed
testWhetherRowIsNew(int n) accessed

Notice the slightly different syntax for the reference to a method whose name matches
the JavaBeans property getter method naming pattern. Both newRow and
source.newRow work to access the boolean-valued, JavaBeans getter-style method
that has no arguments. But because the testWhetherRowIsNew method does not
match the JavaBeans getter method naming pattern, and the second isRowNew
method takes an argument, then you must call them like methods using their complete
name.

Using Groovy Expressions For Validation and Business Rules

7-24 Fusion Developer's Guide for Oracle Application Development Framework

7.5.2 How to Validate Using a True/False Expression
You can use a Groovy expression to return a true/false statement. The Script
Expression validator requires that the expression either return true or false, or that
it calls the adf.error.raise/warn() method. A common use of this feature would
be to validate an attribute value, for example, to make sure that an account number is
valid.

To validate using a true/false expression:
1. In the Application Navigator, double-click the desired entity object.

2. On the Business Rules page of the overview editor, select where you want to add
the validator.

■ To add an entity-level validator, select the Entity folder.

■ To add an attribute-level validator, expand the Attributes folder and select the
appropriate attribute.

3. Click the Add icon.

4. In the Add Validation Rule dialog, in the Rule Type dropdown list, select Script
Expression.

5. Enter a validation expression in the field provided.

6. You can optionally click the Validation Execution tab and enter criteria for the
execution of the rule, such as dependent attributes and a precondition expression.
For more information, see Section 7.6, "Triggering Validation Execution."

7. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails. For more information, see Section 7.7,
"Creating Validation Error Messages."

8. Click OK.

The sample code in Example 7–14 comes from the PaymentOptionEO entity object.
The code validates account numbers based on the Luhn algorithm, a checksum
formula in widespread use.

Example 7–14 Validating an Account Number Using an Expression

<validation:ExpressionValidationBean
 Name="AccountNumber_Rule_0"
 OperandType="EXPR"
 Inverse="false">
 <OnCondition>
 <![CDATA[PaymentTypeCode=='CC']]>
 </OnCondition>
 <MsgIds>
 <Item
 Value="PaymentOption_AccountNumber"/>
 </MsgIds>
 <TransientExpression>
 <![CDATA[

Note: Using the adf.error.raise/warn() method (rather than
simply returning true or false) allows you to define the message
text to show to the user, and to associate an entity-level validator with
a specific attribute. For more information, see Section 7.7.3, "How to
Conditionally Raise Error Messages Using Groovy."

Using Groovy Expressions For Validation and Business Rules

Defining Validation and Business Rules Declaratively 7-25

 String acctnumber = newValue;
 sumofdigits = 0;
 digit = 0;
 addend = 0;
 timesTwo = false;
 range = acctnumber.length()-1..0
 range.each {i ->
 digit = Integer.parseInt (acctnumber.substring (i, i + 1));
 if (timesTwo) {
 addend = digit * 2;
 if (addend > 9) {
 addend -= 9;
 }
 }
 else {
 addend = digit;
 }
 sumofdigits += addend;
 timesTwo = !timesTwo;
 }
 modulus = sumofdigits % 10;
 return modulus == 0;
]]>
 </TransientExpression>
</ExpressionValidationBean>

7.5.3 What Happens When You Add a Groovy Expression
When you create a Groovy expression, it is saved in the entity object’s XML
component. Example 7–15 shows the RegisteredDate attribute in the
PersonEO.xml file. The Groovy expression is wrapped by a
<TransientExpression> tag.

Example 7–15 XML Code for RegisteredDate Attribute on the PersonEO Entity Object

<Attribute
 Name="RegisteredDate"
 IsUpdateable="true"
 ColumnName="REGISTERED_DATE"
 Type="oracle.jbo.domain.Date"
 ColumnType="DATE"
 SQLType="DATE"
 TableName="PERSONS">
 <DesignTime>
 <Attr Name="_DisplaySize" Value="7"/>
 </DesignTime>
 <validation:ExpressionValidationBean
 Name="RegisteredDate_Rule_0"
 OperandType="EXPR"
 Inverse="false">
 <MsgIds>
 <Item
 Value="RegisteredDate_Rule_0"/>
 </MsgIds>
 <TransientExpression>
 <![CDATA[
newValue <= (new java.sql.Timestamp(System.currentTimeMillis()))
]]>
 </TransientExpression>

Triggering Validation Execution

7-26 Fusion Developer's Guide for Oracle Application Development Framework

 </ExpressionValidationBean>
 </Attribute>

This tag can take one of several forms. For some Groovy expressions, the
<TransientExpression> tag is wrapped by an <ExpressionValidationBean>
tag as well. Figure 7–6 shows the validation expression in the Edit Validation Rule
dialog.

Figure 7–6 Validation Expression for RegisteredDate Attribute on the PersonEO Entity
Object

7.6 Triggering Validation Execution
JDeveloper allows you to select the attributes that trigger validation, so that validation
execution happens only when one of the triggering attributes is dirty. In previous
releases of JDeveloper, an entity-level validator would fire on an attribute whenever
the entity as a whole was dirty. This feature is described in Section 7.6.1, "How to
Specify Which Attributes Fire Validation."

JDeveloper also allows you to specify a precondition for the execution of a validator
(as described in Section 7.6.3, "How to Set Preconditions for Validation") and set
transaction-level validation (described in Section 7.6.4, "How to Set Transaction-Level
Validation").

7.6.1 How to Specify Which Attributes Fire Validation
When defining a validator at the entity level, you have the option of selecting one or
more attributes of the entity object that, when changed, trigger execution of the
validator.

Triggering Validation Execution

Defining Validation and Business Rules Declaratively 7-27

If you do not specify one or more dependent attributes, the validator will fire
whenever the entity is dirty. Firing execution only when required makes your
application more performant.

To specify which attributes fire validation:
1. In the Application Navigator, double-click the desired entity object.

2. On the Business Rules page of the overview editor, select a validation rule and
click the Edit icon.

3. In the Edit Validation Rule dialog, click the Validation Execution tab.

4. Select the attributes that will fire validation.

5. Click OK.

For example, in the StoreFront module of the Fusion Order Demo application, the
OrderEO entity object has an entity-level validator that constrains the length of the
GiftwrapMessage attribute. As shown in Figure 7–7, this validator is set to be
executed on the entity object only when either the GiftwrapMessage attribute or the
GiftwrapFlag attribute has been changed.

Figure 7–7 Triggering attributes on the Validation Execution tab of the Edit Validation
Rule dialog

Note: When the validity of one attribute is dependent on the value in
another attribute, the validation should be performed as entity
validation, not attribute validation. You can set validation execution
order on the entity level or attribute level.

Triggering Validation Execution

7-28 Fusion Developer's Guide for Oracle Application Development Framework

7.6.2 What Happens When You Constrain Validation Execution with Triggering
Attributes

When you specify triggering attributes on the Validation Execution tab of the Edit
Validation Rule dialog, JDeveloper adds an <OnAttributes> tag to the validator
definition in the entity object’s XML file. Example 7–16 shows the XML code for the
entity-level validator for the OrderEO entity object in the StoreFront module of the
Fusion Order Demo application.

Example 7–16 OnAttributes element in XML validation code

<LengthValidationBean
 xmlns="http://xmlns.oracle.com/adfm/validation"
 Name="OrderEO_Rule_0"
 OnAttribute="GiftwrapMessage"
 CompareType="GREATERTHANEQUALTO"
 DataType="CHARACTER"
 CompareLength="1"
 Inverse="false"
 ResId="GiftMessage_Required_Error_0">
 <OnAttributes>
 <Item Value="GiftwrapMessage"/>
 <Item Value="GiftwrapFlag"/>
 </OnAttributes>
 <OnCondition>
 <![CDATA[GiftwrapFlag == 'Y']]>
 </OnCondition>
</LengthValidationBean>

7.6.3 How to Set Preconditions for Validation
The Validation Execution tab (on the Add/Edit Validation Rule dialog) allows you to
add a Groovy expression that serves as a precondition. If you enter an expression in
the Conditional Execution Expression box, the validator is executed only if the
condition evaluates True.

7.6.4 How to Set Transaction-Level Validation
Performing a validation during the transaction level (rather than entity level) means
that the validation will be performed after all entity-level validation is performed. For
this reason, it may be useful if you want to ensure that a validator is performed at the
end of the process.

In addition, the Key Exists validator is more performant with bulk transactions if it is
run as a transaction level validator since it will be run only once for all entities in the
transaction (of the same type), rather than once per entity. This will result in improved
performance if the validator has to go to the database.

Best Practice: While it is possible to add a precondition for a
Unique Key validator, it is not a best practice. If a Unique Key
validator fails to fire, for whatever reason, the cache consistency check
is still performed and an error will be returned. It is generally better to
add the validator and a meaningful error message.

Note: Transaction-level validation is only applicable to Key Exists
and Method entity validators.

Creating Validation Error Messages

Defining Validation and Business Rules Declaratively 7-29

To specify entity-level or transaction-level validation:
1. In the Application Navigator, double-click the desired entity object.

2. On the Business Rules page of the overview editor, select an entity-level validation
rule and click the Edit icon.

3. In the Edit Validation Rule dialog, click the Validation Execution tab.

4. Select Execute at Entity Level or Defer Execution to Transaction Level.

5. Click OK.

7.6.5 What You May Need to Know About the Order of Validation Execution
You cannot control the order in which attributes are validated – they are always
validated in the order they appear in the entity definition. You can order validations
for a given attribute (or for the entity), but you cannot reorder the attributes
themselves.

7.7 Creating Validation Error Messages
Validation error messages provide important information for the user: the message
should convey what went wrong and how to fix it.

7.7.1 How to Create Validation Error Messages
When you create or edit a validation rule, enter text to help the user determine what
caused the error.

To create validation error messages:
1. In the Application Navigator, double-click the desired entity object.

2. On the Business Rules page of the overview editor, select a validation rule and
click the Edit icon.

3. In the Edit Validation Rule dialog, click the Failure Handling tab.

4. In the Message Text field, enter your error message.

You can also define error messages in a message bundle file. To select a previously
defined error message or to define a new one in a message bundle file, click the
Select Message icon.

5. You can optionally include message tokens in the body of the message, and define
them in the Token Message Expressions list.

Figure 7–8 shows the failure message for a validation rule in the
PaymentOptionEO entity object that contains message tokens. For more
information on this feature, see Section 7.7.4, "How to Embed a Groovy Expression
in an Error Message."

6. Click OK.

Note: The Script Expression validator allows you to enter more than
one error message. This is useful if the validation script conditionally
returns different error or warning messages. For more information,
see Section 7.7.3, "How to Conditionally Raise Error Messages Using
Groovy."

Creating Validation Error Messages

7-30 Fusion Developer's Guide for Oracle Application Development Framework

7.7.2 How to Localize Validation Messages
The error message is a translatable string and is managed in the same way as
translatable UI control hints in an entity object message bundle class. To view the error
message for the defined rule in the message bundle class, locate the String key in the
message bundle that corresponds to the ResId property in the XML component
definition entry for the validator. For example, Example 7–17 shows a message bundle
where the NAME_CANNOT_BEGIN_WITH_U key appears with the error message for the
default locale.

Example 7–17 Message Bundle Contains Validation Error Messages

package devguide.advanced.customerrors;
import java.util.ListResourceBundle;

public class CustomMessageBundle extends ListResourceBundle {
 private static final Object[][] sMessageStrings = new String[][] {
// other strings here

 {"NAME_CANNOT_BEGIN_WITH_U", "The name cannot begin with the letter u!"},
// other strings here

 };
// etc.

}

Resource bundles can be created for your applications as a list resource bundle (as
shown in Example 7–17), as a properties bundle, or as an XLIFF resource bundle. For
more information about using translatable strings in a resource bundle, see Section 4.7,
"Working with Resource Bundles."

7.7.3 How to Conditionally Raise Error Messages Using Groovy
You can use the adf.error.raise() and adf.error.warn() methods to
conditionally raise one error message or another depending upon branching in the
Groovy expression. For example, if an attribute value is x, then validate as follows,
and if the validation fails, raise error messageA; whereas if the attribute value is y,
then instead validate a different way and if validation fails, raise error messageB.

If the expression returns false (versus raising a specific error message using the
raise() method), the validator calls the first error message associated with the
validator.

The syntax of the raise() method takes one required parameter (the msgId to use
from the message bundle), and optionally can take the attrName parameter. If you
pass in the AttrName, the error is associated with that attribute even if the validation
is assigned to the entity.

You can use either adf.error.raise() or adf.error.warn() methods,
depending on whether you want to throw an exception, or whether you want
processing to continue, as described in Section 7.8, "Setting the Severity Level for
Validation Exceptions."

7.7.4 How to Embed a Groovy Expression in an Error Message
A validator's error message can contain embedded expressions that are resolved by
the server at runtime. To access this feature, simply enter a named token delimited by
curly braces (for example, {2} or {errorParam}) in the error message text where
you want the result of the Groovy expression to appear.

Creating Validation Error Messages

Defining Validation and Business Rules Declaratively 7-31

After entering the token into the text of the error message (on the Failure Handling
tab of the Edit Validation Rule dialog), the Token Message Expressions table at the
bottom of the dialog displays a row that allows you to enter a Groovy expression for
the token. Figure 7–8 shows the failure message for a validation rule in the
PaymentOptionEO entity object that contains message tokens.

Figure 7–8 Using Message Tokens in a Failure Message

The expressions shown in Figure 7–8 are Groovy expressions that return the labels of
the specified fields. You can also use Groovy expressions to access attribute values and
other business components objects. You can use the Groovy expression newValue to
return the entered value, as shown in the Rule validator for the RoutingIdentifier
attribute of the PaymentOptionEO entity object in the StoreFront module of the
Fusion Order Demo application.

The Groovy syntax to retrieve a value from a view accessor is
accessorName.currentRow.AttributeName. For example, the Groovy
expression MyEmpAccessor.currentRow.Job returns the value of the Job
attribute in the current row of the MyEmpAccessor view accessor.

The Groovy expression can also be more complex, as in Example 7–18, which shows an
expression in the error message for the List validation rule for the OwnerTypeCode
attribute in the AddressUsageEO entity object.

Example 7–18 Groovy Script in the OwnerTypeCode Validation Error Message

def ownertypevalue = []
while (AddressOwnerTypesVA.hasNext()) {
AddressOwnerTypesVA.next()
 ownertypevalue.add(AddressOwnerTypesVA.currentRow.Value)
}

Setting the Severity Level for Validation Exceptions

7-32 Fusion Developer's Guide for Oracle Application Development Framework

return ownertypevalue

For more information about accessing business components objects using Groovy, see
Section 3.6, "Overview of Groovy Support."

7.8 Setting the Severity Level for Validation Exceptions
You can set the severity level for validation exceptions to two levels, Informational
Warning and Error. If you set the severity level to Informational Warning, an error
message will display, but processing will continue. If you set the validation level to
Error, the user will not be able to proceed until you have fixed the error.

Under most circumstances you will use the Error level for validation exceptions, so
this is the default setting. However, you might want to implement a Informational
Warning message if the user has a certain security clearance. For example, a store
manager may want to be able to make changes that would surface as an error if a clerk
tried to do the same thing.

To set the severity level for validation exceptions, use the Failure Handling tab of the
Add Validation Rule dialog.

To set the severity level of a validation exception:
1. In the Application Navigator, double-click the desired entity object.

2. On the Business Rules page, select an existing validation rule and click the Edit
icon, or click the Add icon to create a new rule.

3. In the Edit/Add Validation Rule dialog, click the Failure Handling tab and select
the option for either Error or Informational Warning.

4. Click OK.

7.9 Bulk Validation in SQL
To improve the performance of batch-load applications, such as data synchronization
programs, the ADF framework employs bulk validation for primary keys (including
alternate keys) and foreign keys.

When the Key Exists validator is configured to defer validation until the transaction
commits, or when the rows are being updated or inserted through the processXXX
methods of the ADF business components service layer, the validation cache is
preloaded. This behavior uses the normal row-by-row derivation and validation logic,
but uses validation logic that checks a memory cache before making queries to the
database. Performance is improved by preloading the memory cache using bulk SQL
operations based on the inbound data.

8

Implementing Validation and Business Rules Programmatically 8-1

8 Implementing Validation and Business
Rules Programmatically

This chapter explains how to use ADF entity object events and features to
programmatically implement the most common kinds of business rules in an Oracle
Application Development Framework (Oracle ADF) application. It also describes how
to invoke custom validation code, for example, using setter methods to populate entity
rows.

This chapter includes the following sections:

■ Section 8.1, "Introduction to Programmatic Business Rules"

■ Section 8.2, "Using Method Validators"

■ Section 8.3, "Assigning Programmatically Derived Attribute Values"

■ Section 8.4, "Undoing Pending Changes to an Entity Using the Refresh Method"

■ Section 8.5, "Using View Objects for Validation"

■ Section 8.6, "Accessing Related Entity Rows Using Association Accessors"

■ Section 8.7, "Referencing Information About the Authenticated User"

■ Section 8.8, "Accessing Original Attribute Values"

■ Section 8.9, "Storing Information About the Current User Session"

■ Section 8.10, "Accessing the Current Date and Time"

■ Section 8.11, "Sending Notifications Upon a Successful Commit"

■ Section 8.12, "Conditionally Preventing an Entity Row from Being Removed"

■ Section 8.13, "Determining Conditional Updatability for Attributes"

8.1 Introduction to Programmatic Business Rules
Complementing the built-in declarative validation features, entity objects and view
objects have method validators and several events you can handle to programmatically
implement encapsulated business logic using Java code. These concepts are illustrated
in Figure 8–1.

■ Attribute-level method validators trigger validation code when an attribute value
changes.

■ Entity-level method validators trigger validation code when an entity row is
validated.

■ You can override the following key methods in a custom Java class for an entity:

Using Method Validators

8-2 Fusion Developer's Guide for Oracle Application Development Framework

■ create(), to assign default values when a row is created

■ initDefaultExpressionAttributes(), to assign defaults either when a
row is created or when a new row is refreshed

■ remove(), to conditionally disallow deleting

■ isAttributeUpdateable(), to make attributes conditionally updatable

■ setAttribute(), to trigger attribute-level method validators

■ validateEntity(), to trigger entity-level method validators

■ prepareForDML(), to assign attribute values before an entity row is saved

■ beforeCommit(), to enforce rules that must consider all entity rows of a
given type

■ afterCommit(), to send notifications about a change to an entity object's
state

Figure 8–1 Key Entity Objects Features and Events for Programmatic Business Logic

8.2 Using Method Validators
Method validators are the primary way of supplementing declarative validation rules
and Groovy-scripted expressions using your own Java code. Method validators trigger
Java code that you write in your own validation methods at the appropriate time
during the entity object validation cycle. There are many types of validation you can
code with a method validator, either on an attribute or on an entity as a whole.

You can add any number of attribute-level or entity-level method validators, provided
they each trigger a distinct method name in your code. All validation method names
must begin with the word validate; however, following that rule you are free to
name them in any way that most clearly identifies the functionality. For an
attribute-level validator, the method must take a single argument of the same type as
the entity attribute. For an entity-level validator, the method takes no arguments. The

Note: When coding programmatic business rules, it’s important to
have a firm grasp of the validation cycle. For more information, see
Section 7.2, "Understanding the Validation Cycle."

Using Method Validators

Implementing Validation and Business Rules Programmatically 8-3

method must also be public, and must return a boolean value. Validation will fail if
the method returns false.

At runtime, the Method validator passes an entity attribute to a method implemented
in your entity object class.

In Example 8–1, the method accepts strings that start with a capital letter and throws
an exception on null values, empty strings, and strings that do not start with a capital
letter.

Example 8–1 Method That Validates If the First Letter Is a Capital

public boolean validateIsCapped(String text)
{
 if (text != null &&
 text.length() != 0 &&
 text[0] >= 'A' &&
 text[0] <= 'Z')
 {
 return true;
 }
}

8.2.1 How to Create an Attribute-Level Method Validator

To create an attribute-level Method validator:
1. In the Application Navigator, double-click the desired entity object.

2. In the overview editor, click the Java navigation tab.

The Java page shows the Java generation options that are currently enabled for the
entity object. If your entity object does not yet have a custom entity object class,
then you must generate one before you can add a Method validator. To generate
the custom Java class, click the Edit icon, then select Generate Entity Object Class,
and click OK to generate the *.java file.

3. Click the Business Rules navigation tab, and then expand the Attributes node,
and select the attribute that you want to validate.

4. Click the New icon to add a validation rule.

5. Select Method from the Rule Type dropdown list.

The Add Validation Rule dialog displays the expected method signature for an
attribute-level validation method. You have two choices:

■ If you already have a method in your entity object's custom Java class of the
appropriate signature, it will appear in the list and you can select it after
deselecting the Create and Select Method checkbox.

■ If you leave the Create and Select Method checkbox selected (see Figure 8–2),
you can enter any method name in the Method Name box that begins with the
word validate. When you click OK, JDeveloper adds the method to your
entity object's custom Java class with the appropriate signature.

Note: Although it is important to be aware of these rules, when you
use JDeveloper to create method validators, JDeveloper creates the
correct interface for the class.

Using Method Validators

8-4 Fusion Developer's Guide for Oracle Application Development Framework

6. Finally, supply the text of the error message for the default locale that the end user
should see if this validation rule fails.

Figure 8–2 Adding an Attribute-Level Method Validator

8.2.2 What Happens When You Create an Attribute-Level Method Validator
When you add a new method validator, JDeveloper updates the XML component
definition to reflect the new validation rule. If you asked to have the method created,
the method is added to the entity object's custom Java class. Example 8–2 illustrates a
simple attribute-level validation rule that ensures that the OrderShippedDate of an
order is a date in the current month. Notice that the method accepts an argument of
the same type as the corresponding attribute, and that its conditional logic is based on
the value of this incoming parameter. When the attribute validator fires, the attribute
value has not yet been set to the new value in question, so calling the
getOrderShippedDate() method inside the attribute validator for the
OrderShippedDate attribute would return the attribute’s current value, rather than
the candidate value that the client is attempting to set.

Example 8–2 Simple Attribute-Level Method Validator

public boolean validateOrderShippedDate(Date data) {
if (data != null && data.compareTo(getFirstDayOfCurrentMonth()) <= 0) {
return false;

}
return true;

}

Using Method Validators

Implementing Validation and Business Rules Programmatically 8-5

8.2.3 How to Create an Entity-Level Method Validator

To create an entity-level method validator:
1. In the Application Navigator, double-click the desired entity object.

2. In the overview editor, click the Java navigation tab.

The Java page shows the Java generation options that are currently enabled for the
entity object. If your entity object does not yet have a custom entity object class,
then you must generate one before you can add a Method validator. To generate
the custom Java class, click the Edit icon, then select Generate Entity Object Class,
and click OK to generate the *.java file.

3. Click the Business Rules navigation tab, and then select the Entity node.

4. Click the New icon to add a validation rule.

5. Select Method from the Rule Type dropdown list.

The Add Validation Rule dialog displays the expected method signature for an
entity-level validation method. You have two choices:

■ If you already have a method in your entity object's custom Java class of the
appropriate signature, it will appear in the list and you can select it after
deselecting the Create and Select Method checkbox.

■ If you leave the Create and Select Method checkbox selected (see Figure 8–3),
you can enter any method name in the Method Name box that begins with the
word validate. When you click OK, JDeveloper adds the method to your
entity object's custom Java class with the appropriate signature.

6. Finally, supply the text of the error message for the default locale that the end user
should see if this validation rule fails.

Note: The return value of the compareTo() method is zero (0) if
the two dates are equal, negative one (-1) if the first date is less than
the second, or positive one (1) if the first date is greater than the
second.

Using Method Validators

8-6 Fusion Developer's Guide for Oracle Application Development Framework

Figure 8–3 Adding an Entity-Level Method Validator

8.2.4 What Happens When You Create an Entity-Level Method Validator
When you add a new method validator, JDeveloper updates the XML component
definition to reflect the new validation rule. If you asked to have the method created,
the method is added to the entity object's custom Java class. Example 8–3 illustrates a
simple entity-level validation rule that ensures that the OrderShippedDate of an
order comes after the OrderDate.

Example 8–3 Simple Entity-Level Method Validator

public boolean validateOrderShippedDateAfterOrderDate() {
Date orderShippedDate = getOrderShippedDate();
Date orderDate = getOrderDate();
if (orderShippedDate != null && orderShippedDate.compareTo(orderDate) < 0) {
return false;

}
return true;

}

8.2.5 What You May Need to Know About Translating Validation Rule Error Messages
Like the locale-specific UI control hints for entity object attributes, the validation rule
error messages are added to the entity object's component message bundle file. These
entries in the message bundle represent the strings for the default locale for your
application. To provide translated versions of the validation error messages, follow the
same steps as for translating the UI control hints, as described in Section 4.7, "Working
with Resource Bundles."

Assigning Programmatically Derived Attribute Values

Implementing Validation and Business Rules Programmatically 8-7

8.3 Assigning Programmatically Derived Attribute Values
When declarative defaulting falls short of your needs, you can perform programmatic
defaulting in your entity object:

■ When an entity row is first created

■ When the entity row is first created or when refreshed to null values

■ When the entity row is saved to the database

■ When an entity attribute value is set

8.3.1 How to Provide Default Values for New Rows at Create Time
The create() method provides the entity object event you can handle to initialize
default values the first time an entity row is created. Example 8–4 shows the
overridden create method of the OrderEO entity object in the StoreFront module of
the Fusion Order Demo. It calls an attribute setter methods to populate the
OrderDate attribute in a new order entity row.

You can also define default values using a Groovy expression. For more information,
see Section 4.10.6, "How to Define a Static Default Value."

Example 8–4 Programmatically Defaulting Attribute Values for New Rows

// In OrderEOImpl.java in Fusion Order Demo
protected void create(AttributeList nameValuePair) {
 super.create(nameValuePair);
 this.setOrderDate(new Date());
}

8.3.1.1 Choosing Between create() and initDefaultExpressionAttributes() Methods
You should override the initDefaultExpressionAttributes() method for
programmatic defaulting logic that you want to fire both when the row is first created,
and when it might be refreshed back to initialized status.

If an entity row has New status and you call the refresh() method on it, then the
entity row is returned to an Initialized status if you do not supply either the
REFRESH_REMOVE_NEW_ROWS or REFRESH_FORGET_NEW_ROWS flag. As part of this
process, the entity object's initDefaultExpressionAttributes() method is
invoked, but not its create() method again.

8.3.1.2 Eagerly Defaulting an Attribute Value from a Database Sequence
Section 4.10.9, "How to Synchronize with Trigger-Assigned Values," explains how to
use the DBSequence type for primary key attributes whose values need to be
populated by a database sequence at commit time. Sometimes you may want to eagerly
allocate a sequence number at entity row creation time so that the user can see its
value and so that this value does not change when the data is saved. To accomplish
this, use the SequenceImpl helper class in the oracle.jbo.server package in an
overridden create() method as shown in Example 8–5. It shows code from the

Note: Calling the setAttribute() method inside the overridden
create() method does not mark the new row as being changed by
the user. These programmatically assigned defaults behave like
declaratively assigned defaults.

Assigning Programmatically Derived Attribute Values

8-8 Fusion Developer's Guide for Oracle Application Development Framework

custom Java class of the WarehouseEO entity object in the StoreFront module of the
Fusion Order Demo. After calling super.create(), it creates a new instance of the
SequenceImpl object, passing the sequence name and the current transaction object.
Then it calls the setWarehouseId() attribute setter method with the return value
from SequenceImpl’s getSequenceNumber() method.

Example 8–5 Eagerly Defaulting an Attribute’s Value from a Sequence at Create Time

// In WarehouseEOImpl.java
import oracle.jbo.server.SequenceImpl;
// Default WarehouseId value from WAREHOUSE_SEQ sequence at entity row create time
protected void create(AttributeList attributeList) {
 super.create(attributeList);
 SequenceImpl sequence = new SequenceImpl("WAREHOUSE_SEQ",getDBTransaction());
 setWarehouseId(sequence.getSequenceNumber());
}

8.3.2 How to Assign Derived Values Before Saving
If you want to assign programmatic defaults for entity object attribute values before a
row is saved, override the prepareForDML() method and call the appropriate
attribute setter methods to populate the derived attribute values. To perform the
assignment only during INSERT, UPDATE, or DELETE, you can compare the value of
the operation parameter passed to this method against the integer constants DML_
INSERT, DML_UPDATE, DML_DELETE respectively.

Example 8–6 shows an overridden prepareForDML() method that assigns derived
values.

Example 8–6 Assigning Derived Values Before Saving Using PrepareForDML

protected void prepareForDML(int operation, TransactionEvent e) {
 super.prepareForDML(operation, e);
 //Populate GL Date
 if (operation == DML_INSERT) {
 if (this.getGlDate() == null) {
 String glDateDefaultOption =
 (String)this.getInvoiceOption().getAttribute("DefaultGlDateBasis");
 if ("I".equals(glDateDefaultOption)) {
 setAttribute(GLDATE, this.getInvoiceDate());
 } else {
 setAttribute(GLDATE, this.getCurrentDBDate());
 }
 }
 }

 //Populate Exchange Rate and Base Amount if null
 if ((operation == DML_INSERT) || (operation == DML_UPDATE)) {
 BigDecimal defaultExchangeRate = new BigDecimal(1.5);
 if ("Y".equals(this.getInvoiceOption().getAttribute("UseForeignCurTrx"))) {
 if (!(this.getInvoiceCurrencyCode().equals(
 this.getLedger().getAttribute("CurrencyCode")))) {
 if (this.getExchangeDate() == null) {

Note: For a metadata-driven alternative to this approach, see
Section 4.12.5, "Assigning the Primary Key Value Using an Oracle
Sequence."

Undoing Pending Changes to an Entity Using the Refresh Method

Implementing Validation and Business Rules Programmatically 8-9

 setAttribute(EXCHANGEDATE, this.getInvoiceDate());
 }
 if (this.getExchangeRateType() == null) {
 String defaultConvRateType =
 (String)this.getInvoiceOption().getAttribute("DefaultConvRateType");
 if (defaultConvRateType != null) {
 setAttribute(EXCHANGERATETYPE, defaultConvRateType);
 } else {
 setAttribute(EXCHANGERATETYPE, "User");
 }
 }
 if (this.getExchangeRate() == null) {
 setAttribute(EXCHANGERATE, defaultExchangeRate);
 }
 if ((this.getExchangeRate() != null) &&
 (this.getInvoiceAmount() != null)) {
 setAttribute(INVAMOUNTFUNCCURR,
 (this.getExchangeRate().multiply(this.getInvoiceAmount())));
 }
 } else {
 setAttribute(EXCHANGEDATE, null);
 setAttribute(EXCHANGERATETYPE, null);
 setAttribute(EXCHANGERATE, null);
 setAttribute(INVAMOUNTFUNCCURR, null);
 }
 }
 }
}

8.3.3 How to Assign Derived Values When an Attribute Value Is Set
To assign derived attribute values whenever another attribute’s value is set, add code
to the latter attribute’s setter method. Example 8–7 shows the setter method for an
AssignedTo attribute in an entity object.

Example 8–7 Setting the Assigned Date Whenever the AssignedTo Attribute Changes

public void setAssignedTo(Number value) {
 setAttributeInternal(ASSIGNEDTO, value);
 setAssignedDate(getCurrentDateWithTime());
}

After the call to setAttributeInternal() to set the value of the AssignedTo
attribute, it uses the setter method for the AssignedDate attribute to set its value to
the current date and time.

8.4 Undoing Pending Changes to an Entity Using the Refresh Method
You can use the refresh(int flag) method on a row to refresh any pending
changes it might have. The behavior of the refresh() method depends on the flag
that you pass as a parameter. The three key flag values that control its behavior are the
following constants in the Row interface:

Note: It is safe to add custom code to the generated attribute getter
and setter methods as shown here. When JDeveloper modifies code in
your class, it intelligently leaves your custom code in place.

Using View Objects for Validation

8-10 Fusion Developer's Guide for Oracle Application Development Framework

■ REFRESH_WITH_DB_FORGET_CHANGES forgets modifications made to the row in
the current transaction, and the row's data is refreshed from the database. The
latest data from the database replaces data in the row regardless of whether the
row was modified or not.

■ REFRESH_WITH_DB_ONLY_IF_UNCHANGED works just like REFRESH_WITH_DB_
FORGET_CHANGES, but for unmodified rows. If a row was already modified by this
transaction, the row is not refreshed.

■ REFRESH_UNDO_CHANGES works the same as REFRESH_WITH_DB_FORGET_
CHANGES for unmodified rows. For a modified row, this mode refreshes the row
with attribute values at the beginning of this transaction. The row remains in a
modified state if it had been previously posted but not committed in the current
transaction prior to performing the refresh operation.

8.4.1 How to Control What Happens to New Rows During a Refresh
By default, any entity rows with New status that you refresh() are reverted back to
blank rows in the Initialized state. Declarative defaults are reset, as well as
programmatic defaults coded in the initDefaultExpressionAttributes()
method, but the entity object's create() method is not invoked during this
blanking-out process.

You can change this default behavior by combining one of the flags in Section 8.4 with
one of the following two flags (using the bitwise-OR operator):

■ REFRESH_REMOVE_NEW_ROWS, new rows are removed during refresh.

■ REFRESH_FORGET_NEW_ROWS, new rows are marked Dead.

8.4.2 How to Cascade Refresh to Composed Children Entity Rows
You can cause a refresh() operation to cascade to composed child entity rows by
combining the REFRESH_CONTAINEES flag (using the bitwise-OR operator) with any
of the valid flag combinations described in Section 8.4 and Section 8.4.1. This causes
the entity to invoke refresh() using the same mode on any composed child entities
it contains.

8.5 Using View Objects for Validation
When your business logic requires performing SQL queries, the natural choice is to
use a view object to perform that task. Keep in mind that the SQL statements you
execute for validation will "see" pending changes in the entity cache only if they are
entity-based view objects. Read-only view objects will only retrieve data that has been
posted to the database.

8.5.1 How to Use View Accessors for Validation Against View Objects
Since entity objects are designed to be reused in any application scenario, they should
not depend directly on a view object instance in any specific application module's data
model. Doing so would prevent them from being reused in other application modules,
which is highly undesirable.

Instead, you should use a view accessor to validate against a view object. For more
information, see Section 10.4.1, "How to Create a View Accessor for an Entity Object or
View Object."

Using View Objects for Validation

Implementing Validation and Business Rules Programmatically 8-11

Using a view accessor, your validation code can access the view object and set bind
variables, as shown in Example 8–8.

Example 8–8 Using a Validation View Object in a Method Validator

// Sample entity-level validation method
public boolean validateSomethingUsingViewAccessor() {
RowSet rs = getMyValidationVO();
rs.setNamedBindParameter("Name1", value1);
rs.setNamedBindParameter("Name2", value2);
rs.executeQuery();
if (/* some condition */) {
/*
* code here returns true if the validation succeeds
*/
}

 return false;
}

As the sample code suggests, view objects used for validation typically have one or
more named bind variables in them. In this example, the bind variables are set using
the setNamedBindParameter() method. However, you can also set these variables
declaratively in JDeveloper using Groovy expressions in the view accessor definition
page.

Depending on the kind of data your view object retrieves, the "/* some
condition */" expression in the example will look different. For example, if your
view object's SQL query is selecting a COUNT() or some other aggregate, the condition
will typically use the rs.first() method to access the first row, then use the
getAttribute() method to access the attribute value to see what the database
returned for the count.

If the validation succeeds or fails based on whether the query has returned zero or one
row, the condition might simply test whether rs.first() returns null or not. If
rs.first() returns null, there is no "first" row. In other words, the query retrieved
no rows. In other cases, you may be iterating over one or more query results retrieved
by the view object to determine whether the validation succeeds or fails.

8.5.2 How to Validate Conditions Related to All Entities of a Given Type
The beforeCommit() method is invoked on each entity row in the pending changes
list after the changes have been posted to the database, but before they are committed.
This can be a useful method in which to execute view object based validations that
must assert some rule over all entity rows of a given type.

Best Practice: Any time you access a row set programmatically, you
should consider creating a secondary iterator for the row set. This
ensures that you will not disturb the current row set of the default
row set iterator that may be utilized when your expose your view
objects as data controls to the user interface project. You can call
createRowSetIterator() on the row set you are working with to
create a secondary named row set iterator. When you are through
with programmatic iteration, your code should call
closeRowSetIterator() on the row set to remove the secondary
iterator from memory.

Accessing Related Entity Rows Using Association Accessors

8-12 Fusion Developer's Guide for Oracle Application Development Framework

If your beforeCommit() logic can throw a ValidationException, you must set
the jbo.txn.handleafterpostexc property to true in your configuration to have
the framework automatically handle rolling back the in-memory state of the other
entity objects that may have already successfully posted to the database (but not yet
been committed) during the current commit cycle.

8.5.3 What You May Need to Know About Row Set Access with View Accessors
If your entity object or view object business logic iterates over its own view accessor
row set, and that view accessor is not also used by a model-defined List of Values,
then there is no need to use a secondary row set iterator. For example, if an entity
object has a view accessor named AirportValidationVA for a view object that takes
one named bind parameter, it can iterate its own view accessor row set using either
Groovy script or Java. Example 8–9 show a Groovy script that iterates over a view
accessor row set.

Example 8–9 Using a View Accessor in Groovy Script

AirportValidationVA.setNamedWhereClauseParam("VarTla",newValue)
AirportValidationVA.executeQuery();
return AirportValidationVA.first() != null;

Example 8–10 shows a Java method validator that iterates over a view accessor row
set.

Example 8–10 Using a View Accessor in a Method Validator

public boolean validateJob(String job) {
 getAirportValidationVA().setNamedWhereClauseParam("VarTla",job);
 getAirportValidationVA().executeQuery();
 return getAirportValidationVA().first() != null;
}

8.6 Accessing Related Entity Rows Using Association Accessors
To access information from related entity objects, you use an association accessor
method in your entity object’s custom Java class. By calling the accessor method, you
can easily access any related entity row — or set of entity rows — depending on the
cardinality of the association.

8.6.1 How to Access Related Entity Rows
You can use an association accessor to access related entity rows. Example 8–11 shows
code from the ControllingPostingOrder project in the
AdvancedEntityExamples module of the Fusion Order Demo that shows the
overridden postChanges() method in the ProductsBase entity object's custom
Java class. It uses the getSupplier() association accessor to retrieve the related
supplier for the product.

Note: You can also do this declaratively using a transaction-level
validator (see Section 7.6.4, "How to Set Transaction-Level
Validation").

Accessing Related Entity Rows Using Association Accessors

Implementing Validation and Business Rules Programmatically 8-13

Example 8–11 Accessing a Parent Entity Row In a Create Method

// In ProducstBaseImpl.java in the ControllingPostingOrder project
// of the Fusion Order Demo Advanced Entity Examples
@Override
public void postChanges(TransactionEvent transactionEvent) {
 /* If current entity is new or modified */
 if (getPostState() == STATUS_NEW || getPostState() == STATUS_MODIFIED) {
 /* Get the associated supplier for the product */
 SuppliersImpl supplier = getSupplier();
 /* If there is an associated product */
 if (supplier != null) {
 /* And if it's post-status is NEW */
 if (supplier.getPostState() == STATUS_NEW) {
 /* Post the supplier first, before posting this entity */
 supplier.postChanges(transactionEvent);
 }
 }
 }
 super.postChanges(transactionEvent);
}

8.6.2 How to Access Related Entity Row Sets
If the cardinality of the association is such that multiple rows are returned, you can
use the association accessor to return sets of entity rows.

Example 8–12 illustrates the code for the overridden postChanges() method in the
Suppliers entity object's custom Java class. It shows the use of the
getProductsBase() association accessor to retrieve the RowSet object of
ProductsBase rows in order to update the SupplierId attribute in each row using
the setSupplierId() association accessor.

Example 8–12 Accessing a Related Entity Row Set Using an Association Accessor

// In SuppliersImpl.java in the ControllingPostingOrder project
// of the Fusion Order Demo Advanced Entity Examples
RowSet newProductsBeforePost = null;
@Override
public void postChanges(TransactionEvent transactionEvent) {
 /* Only update references if Supplier is new */
 if (getPostState() == STATUS_NEW) {
 /*
 * Get a rowset of products related to this new supplier before calling super
 */
 newProductsBeforePost = (RowSet)getProductsBase();
 }
 super.postChanges(transactionEvent);
}

...

protected void refreshFKInNewContainees() {
 if (newProductsBeforePost != null) {
 Number newSupplierId = getSupplierId().getSequenceNumber();
 /*
 * Process the rowset of suppliers that referenced the new product prior
 * to posting, and update their ProdId attribute to reflect the refreshed
 * ProdId value that was assigned by a database sequence during posting.
 */

Referencing Information About the Authenticated User

8-14 Fusion Developer's Guide for Oracle Application Development Framework

 while (newProductsBeforePost.hasNext()){
 ProductsBaseImpl product = (ProductsBaseImpl)newProductsBeforePost.next();
 product.setSupplierId(newSupplierId);
 }
 closeNewProductRowSet();
 }
}

8.7 Referencing Information About the Authenticated User
If you have run the Configure ADF Security wizard on your application to enable the
ADF authentication servlet to support user login and logout, the
oracle.jbo.server.SessionImpl object provides methods you can use to get
information about the name of the authenticated user and about the roles of which
they are a member. This is the implementation class for the oracle.jbo.Session
interface that clients can access.

For information about how to access information about the authenticated user, see
Section 30.11.3.3, "How to Determine the Current User Name, Enterprise Name, or
Enterprise ID" and Section 30.11.3.4, "How to Determine Membership of a Java EE
Security Role".

For more information about security features in Oracle Fusion Web Applications, read
Chapter 30, "Enabling ADF Security in a Fusion Web Application."

8.8 Accessing Original Attribute Values
If an entity attribute's value has been changed in the current transaction, when you call
the attribute getter method for it you will get the pending changed value. Sometimes
you want to get the original value before it was changed. Using the
getPostedAttribute() method, your entity object business logic can consult the
original value for any attribute as it was read from the database before the entity row
was modified. This method takes the attribute index as an argument, so pass the
appropriate generated attribute index enums that JDeveloper maintains for you.

8.9 Storing Information About the Current User Session
If you need to store information related to the current user session in a way that entity
object business logic can reference, you can use the user data hash table provided by
the Session object.

8.9.1 How to Store Information About the Current User Session
When a new user accesses an application module for the first time, the
prepareSession() method is called. As shown in Example 8–13, the application
module overrides prepareSession() to retrieve information about the
authenticated user by calling a retrieveUserInfoForAuthenticatedUser()
method on the view object instance. Then, it calls the
setUserIdIntoUserDataHashtable() helper method to save the user's
numerical ID into the user data hash table.

Example 8–13 Overriding prepareSession() to Query User Information

// In the application module
protected void prepareSession(Session session) {
super.prepareSession(session);

Storing Information About the Current User Session

Implementing Validation and Business Rules Programmatically 8-15

/*
* Query the correct row in the VO based on the currently logged-in
* user, using a custom method on the view object component
*/
getLoggedInUser().retrieveUserInfoForAuthenticatedUser();
setUserIdIntoUserDataHashtable();

}

Example 8–14 shows the code for the view object's
retrieveUserInfoForAuthenticatedUser() method. It sets its own
EmailAddress bind variable to the name of the authenticated user from the session
and then calls executeQuery() to retrieve the additional user information from the
USERS table.

Example 8–14 Accessing Authenticated User Name to Retrieve Additional User Details

// In the view object’s custom Java class
public void retrieveUserInfoForAuthenticatedUser() {
SessionImpl session = (SessionImpl)getDBTransaction().getSession();
setEmailAddress(session.getUserPrincipalName());
executeQuery();
first();

}

One of the pieces of information about the authenticated user that the view object
retrieves is the user's numerical ID number, which that method returns as its result.
For example, the user sking has the numeric UserId of 300.

Example 8–15 shows the setUserIdIntoUserDataHashtable() helper method —
used by the prepareSession() code in Example 8–13 — that stores this numerical
user ID in the user data hash table, using the key provided by the string constant
CURRENT_USER_ID.

Example 8–15 Setting Information into the UserData Hashtable for Access By Entity
Objects

// In the application module
private void setUserIdIntoUserDataHashtable() {
Integer userid = getUserIdForLoggedInUser();
Hashtable userdata = getDBTransaction().getSession().getUserData();
userdata.put(CURRENT_USER_ID, userid);

}

The corresponding entity objects in this example can have an overridden create()
method that references this numerical user ID using a helper method like the one in
Example 8–16 to set the CreatedBy attribute programmatically to the value of the
currently authenticated user's numerical user ID.

Example 8–16 Referencing the Current User ID in a Helper Method

protected Number getCurrentUserId() {
Hashtable userdata = getDBTransaction().getSession().getUserData();
Integer userId = (Integer)userdata.get(CURRENT_USER_ID);
return userdata != null ? Utils.intToNumber(userId):null;

}

Accessing the Current Date and Time

8-16 Fusion Developer's Guide for Oracle Application Development Framework

8.9.2 How to Use Groovy to Access Information About the Current User Session
The top-level adf object allows you access to objects that the framework makes
available to Groovy script. The adf.userSession object returns a reference to the
ADF Business Components user session, which you can use to reference values in the
userData hash map that is part of the session.

Example 8–17 shows the Groovy script you would use to reference a userData hash
map key named MyKey.

Example 8–17 Accessing the Current User Session Using Groovy Script

adf.userSession.userData.MyKey

8.10 Accessing the Current Date and Time
You might find it useful to reference the current date and time in your entity object
business logic. You can reference the current date or current date and time using the
following Groovy script expressions:

■ adf.currentDate — returns the current date (time truncated)

■ adf.currentDateTime — returns the current date and time

For more information about using Groovy script in your entity object business logic,
see Section 3.6, "Overview of Groovy Support."

8.11 Sending Notifications Upon a Successful Commit
The afterCommit() method is invoked on each entity row that was in the pending
changes list and got successfully saved to the database. You can use this method to
send a notification on a commit.

A better way to send notifications upon a successful commit is by declaring a business
event. For more information on how to create a business event, see Section 4.11,
"Creating Business Events."

8.12 Conditionally Preventing an Entity Row from Being Removed
Before an entity row is removed, the remove() method is invoked on an entity row.
You can throw a JboException in the remove() method to prevent a row from
being removed if the appropriate conditions are not met.

For example, you can add a test in the remove() method that determines the state of
the entity object and allows the removal only if it is a new record. Example 8–18
demonstrates this technique.

Example 8–18 Overriding the remove() Method to Verify Entity Status Before Removal

// In the Addresses entity object custom Java class
private boolean isDeleteAllowed() {
 byte s = this.getEntityState();

Note: This example is in the AddressesImpl.java file in the
ConditionalDelete project of the DevGuideExamples workspace
in the StandaloneExamples module of the Fusion Order Demo
application.

Determining Conditional Updatability for Attributes

Implementing Validation and Business Rules Programmatically 8-17

 return s==STATUS_NEW;
}

/**
 * Add entity remove logic in this method.
 */
public void remove() {
 if (isDeleteAllowed())
 super.remove();
 else
 throw new JboException("Delete not allowed in this view");
}

8.13 Determining Conditional Updatability for Attributes
You can override the isAttributeUpdateable() method in your entity object class
to programmatically determine whether a given attribute is updatable or not at
runtime based on appropriate conditions.

Example 8–19 shows how an entity object can override the
isAttributeUpdateable() method to enforce that its PersonTypeCode attribute
is updatable only if the current authenticated user is a staff member. Notice that when
the entity object fires this method, it passes in the integer attribute index whose
updatability is being considered.

You can implement conditional updatability logic for a particular attribute inside an
if or switch statement based on the attribute index. Here PERSONTYPECODE is
referencing the integer attribute index enums that JDeveloper maintains in your entity
object custom Java class.

Example 8–19 Conditionally Determining an Attribute's Updatability at Runtime

// In the entity object custom Java class
public boolean isAttributeUpdateable(int index) {
if (index == PERSONTYPECODE) {
if (!currentUserIsStaffMember()) {
return super.isAttributeUpdateable(index);

}
return CUSTOMER_TYPE.equals(getPersonTypeCode()) ? false : true;

}
return super.isAttributeUpdateable(index);

}

Note: The entity object offers declarative prevention of deleting a
master entity row that has existing, composed children rows. You
configure this option on the Relationship page of the overview editor
for the association.

Determining Conditional Updatability for Attributes

8-18 Fusion Developer's Guide for Oracle Application Development Framework

Note: Entity-based view objects inherit this conditional updatability
as they do everything else encapsulated in your entity objects. Should
you need to implement this type of conditional updatability logic in a
way that is specific to a transient view object attribute, or to enforce
some condition that involves data from multiple entity objects
participating in the view object, you can override this same method in
a view object's view row class to achieve the desired result.

9

Implementing Business Services with Application Modules 9-1

9Implementing Business Services with
Application Modules

This chapter describes how to define JDBC data sources for the data model project and
how to create ADF application modules that encapsulate the data model in an Oracle
Application Development Framework (Oracle ADF) application. This chapter also
describes how to combine business service methods with that data model to
implement a complete business service.

This chapter includes the following sections:

■ Section 9.1, "Introduction to Application Modules"

■ Section 9.2, "Creating and Modifying an Application Module"

■ Section 9.3, "Configuring Your Application Module Database Connection"

■ Section 9.4, "Defining Nested Application Modules"

■ Section 9.5, "Creating an Application Module Diagram for Your Business Service"

■ Section 9.6, "Supporting Multipage Units of Work"

■ Section 9.7, "Customizing an Application Module with Service Methods"

■ Section 9.8, "Customizing Application Module Message Strings"

■ Section 9.9, "Publishing Custom Service Methods to UI Clients"

■ Section 9.10, "Working Programmatically with an Application Module's Client
Interface"

■ Section 9.11, "Overriding Built-in Framework Methods"

9.1 Introduction to Application Modules
An application module is an ADF Business Components component that encapsulates
the business service methods and UI-aware data model for a logical unit of work
related to an end-user task.

In the early phases of application development, architects and designers often use
UML use case techniques to create a high-level description of the application’s
planned end-user functionalities. Each high-level, end-user use case identified during
the design phase typically depends on:

■ The domain business objects involved. To answer the question, "What core
business data is relevant to the use case?"

Introduction to Application Modules

9-2 Fusion Developer's Guide for Oracle Application Development Framework

■ The user-oriented view of business data required. To answer the questions, "What
subset of columns, what filtered set of rows, sorted in what way, grouped in what
way, is needed to support the use case?"

The identified domain objects involved in each use case help you identify the required
entity objects from your business domain layer. The user-oriented view of the required
business data helps to define the right SQL queries captured as view objects and to
retrieve the data in the exact way needed by the end user. For best performance, this
includes retrieving the minimum required details necessary to support the use case. In
addition to leveraging view object queries to shape the data, you've learned how to
use view links to set up natural master-detail hierarchies in your data model to match
exactly the kind of end-user experience you want to offer the user to accomplish the
use case.

The application module is the "work unit" container that includes instances of the
reusable view objects required for the use case in question, related through metadata
to the underlying entity objects in your reusable business domain layer whose
information the use case is presenting or modifying.

This chapter illustrates the following concepts illustrated in Figure 9–1, and more:

■ You use instances of view objects in an application module to define its data
model.

■ You write service methods to encapsulate task-level business logic.

■ You expose selected methods on the client interface for UI clients to call.

■ You expose selected methods on the service interface for programmatic use in
application integration scenarios.

■ You use application modules from a pool during a logical transaction that can
span multiple web pages.

■ Your application module works with a Transaction object that acquires a
database connection and coordinates saving or rolling back changes made to
entity objects.

■ The related Session object provides runtime information about the current
application user.

Creating and Modifying an Application Module

Implementing Business Services with Application Modules 9-3

Figure 9–1 Application Module Is a Business Service Component Encapsulating a Unit
of Work

9.2 Creating and Modifying an Application Module
In a large application, you typically create one application module to support each
coarse-grained end-user task. In a smaller-sized application, you may decide that
creating a single application module is adequate to handle the needs of the complete
set of application functionality. Section 9.4, "Defining Nested Application Modules"
provides additional guidance on this subject.

9.2.1 How to Create an Application Module
Any view object you create is a reusable component that can be used in the context of
one or more application modules to perform the query it encapsulates in the context of
that application module's transaction. The set of view objects used by an application
module defines its data model, in other words, the set of data that a client can display
and manipulate through a user interface.

To create an application module, use the Create Application Module wizard, which is
available in the New Gallery.

Before you begin:
Create the desired view objects as described in Section 5.2.1, "How to Create an
Entity-Based View Object," and Section 5.2.3, "How to Create an Expert Mode,
Read-Only View Object."

To create an application module:
1. In the Application Navigator, right-click the project in which you want to create

the application module and choose New.

Creating and Modifying an Application Module

9-4 Fusion Developer's Guide for Oracle Application Development Framework

2. In the New Gallery, expand Business Tier, select ADF Business Components and
then Application Module, and click OK.

3. In the Create Application Module wizard, on the Name page, provide a package
name and an application module name. Click Next.

4. On the Data Model page, include instances of the view objects you have
previously defined and edit the view object instance names to be exactly what you
want clients to see. Then click Next.

5. On the Java page, you can optionally generate the Java files that allow you to
programmatically customize the behavior of the application module or to expose
methods on the application module’s client interface that can be called by clients.
To generate an XML-only application module component, leave the fields
unselected and click Finish.

Initially, you may want to generate only the application module XML definition
component. After you complete the wizard, you can subsequently use the
overview editor to generate the application module class files when you require
programmatic access. For details about the programmatic use of the application
module, see Section 9.7, "Customizing an Application Module with Service
Methods."

For more step by step details, see Section 9.2.3.2, "Adding Master-Detail View Object
Instances to an Application Module."

9.2.2 What Happens When You Create an Application Module
When you create an application module, JDeveloper creates the XML component
definition file that represents its declarative settings and saves it in the directory that
corresponds to the name of its package. For example, given an application module
named StoreServiceAM in the storefront.model package, the XML file created
will be ./storefront/model/StoreServiceAM.xml under the project's source
path. This XML file contains the information needed at runtime to re-create the view
object instances in the application module's data model.

If you are curious to view its contents, you can see the XML file for the application
module by double-clicking the StoreServiceAM node in the Application Navigator
to open the overview editor. In the editor window, click the Source tab to view the
XML so that you can inspect it. The Structure window shows the structure of the XML
file.

When you create business components, JDeveloper automatically creates a data
control that contains all the functionality of the application module. Data controls are
an ADF Model abstraction layer that provides supplemental metadata to describe the
application module’s operations and data collections (row sets of view object
instances), including information about the attributes, methods, and types involved.
Developers can then use the representation of the data control displayed in
JDeveloper’s Data Controls panel to create UI components that are automatically
bound to the application module. At runtime, the ADF Model layer reads the
metadata describing the data controls and bindings from appropriate XML files and

Note: In Fusion web applications, the reserved words data,
bindings, security, and adfContext must not be used to name
your application module. Also, avoid using the "_" (underscore) at the
beginning of the name. For more information, see Section 9.2.5, "How
to Edit an Existing Application Module."

Creating and Modifying an Application Module

Implementing Business Services with Application Modules 9-5

implements the two-way connection between the user interface and the business
service.

For example, the StoreServiceAMDataControl application module implements
the business service layer of the StoreFront module application. Its data model
contains numerous view object instances, including several master-detail hierarchies.
The view layer of the Fusion Order Demo application consists of JSF pages whose UI
components are bound to data from the view object instances in the
StoreServiceAMDataControl's data model, and to built-in operations and service
methods on its client interface. For details about how the Data Controls panel exposes
the application module to UI developers, see Section 12.2, "Exposing Application
Modules with ADF Data Controls."

9.2.3 How to Add a View Object to an Application Module
You can add a view object to an application module as you are creating the application
module with the Create Application Module wizard, or you can add it later.

For information about using the Create Application Module wizard, see Section 9.2.1,
"How to Create an Application Module."

9.2.3.1 Adding a View Object Instance to an Existing Application Module
You can add a view object to an application module that you have already created. To
add a view object to an existing application module, and optionally, customize the
view object instance, use the Data Model Components page of the overview editor for
the application module.

Before you begin:
Create the desired view objects as described in Section 5.2.1, "How to Create an
Entity-Based View Object," and Section 5.2.3, "How to Create an Expert Mode,
Read-Only View Object."

To add a view object instance to an existing application module:
1. In the Application Navigator, double-click the application module.

2. In the overview editor, click the Data Model navigation tab.

3. On the Data Model Components page, expand the View Object Instances section
and, in the Available View Objects list, select the view instance you want to add.

The New View Instance field below the list shows the name that will be used to
identify the next instance of that view object that you add to the data model.

4. To change the name before adding it, enter a different name in the New View
Instance field.

5. With the desired view object selected, shuttle the view object to the Data Model
list.

Figure 9–2 shows the view object AddressVO has been renamed to Address
before it was shuttled to the Data Model list.

Creating and Modifying an Application Module

9-6 Fusion Developer's Guide for Oracle Application Development Framework

Figure 9–2 Data Model Displays Added View Object Instances

9.2.3.2 Adding Master-Detail View Object Instances to an Application Module
You can use the data model that the application module overview editor displays to
create a hierarchy of view instances, based on existing view links that your project
defines. If you have defined view links that establish more than one level of
master-detail hierarchy, then you can proceed to create as many levels of master-detail
view instances as your application supports.

Before you begin:
Create hierarchical relationships between view objects as described in Section 5.6,
"Working with Multiple Tables in a Master-Detail Hierarchy."

To add master-detail view object instances to a data model:
1. In the Application Navigator, double-click the application module.

2. In the overview editor, click the Data Model navigation tab.

3. On the Data Model Components page, expand the View Object Instances section
and, in the Data Model list, select the instance of the view object that you want to
be the actively coordinating master.

The master view object will appear with a plus sign in the list indicating the
available view links for this view object. The view link must exist to define a
master-detail hierarchy.

Figure 9–3 shows PersonsVO selected and renamed AuthenticatedUser in the
New View Instance field.

Creating and Modifying an Application Module

Implementing Business Services with Application Modules 9-7

Figure 9–3 Master View Object Selected

4. Shuttle the selected master view object to the Data Model list.

Figure 9–4 shows the newly created master view instance AuthenticatedUser
in the Data Model list.

Figure 9–4 Master View Instance Created

5. In the Data Model list, leave the newly created master view instance selected so
that it appears highlighted. This will be the target of the detail view instance you
will add. Then locate and select the detail view object beneath the master view
object in the Available View Objects list.

Figure 9–5 shows the detail OrdersVO indented beneath master PersonsVO with
the name OrdersVO via PersonsToOrders. The name identifies the view link
PersonsToOrders, which defines the master-detail hierarchy between
PersonsVO and OrdersVO. Notice also that the OrdersVO will have the view
instance name MyOrders when added to the data model.

Creating and Modifying an Application Module

9-8 Fusion Developer's Guide for Oracle Application Development Framework

Figure 9–5 Detail View Object Selected

6. To add the detail instance to the previously added master instance, shuttle the
detail view object to the Data Model list below the selected master view instance.

Figure 9–6 shows the newly created detail view instance MyOrders as a detail of
the AuthenticatedUser in the data model.

Figure 9–6 Master View Instance Created

7. To add another level of hierarchy, repeat Step 3 through Step 6, but select the
newly added detail in the Data Model list, then shuttle over the new detail, which
itself has a master-detail relationship with the previously added detail instance.

Figure 9–7 shows the Data Model list with instance AuthenticatedUser
(renamed from PersonsVO) as the master of MyOrders (renamed from
OrdersVO via PersonsToOrders), which is, in turn, a master for
MyOrderItems (renamed from OrderItemsVO via OrdersToOrderItems).

Creating and Modifying an Application Module

Implementing Business Services with Application Modules 9-9

Figure 9–7 Master-Detail-Detail Hierarchy Created

9.2.3.3 Customizing a View Object Instance that You Add to an Application Module
You can optionally customize the view object instance by using the Data Model
Components page of the overview editor for the application module. For example, you
might want to apply a filter to set the controlling attribute for a master-detail view
object relationship.

To customize a view object instance that you add to an existing application
module:
1. In the Application Navigator, double-click the application module.

2. In the overview editor, click the Data Model navigation tab.

3. On the Data Model Components page, expand the View Object Instances section
and, in the Data Model list, select the view object instance you want to customize
and click the Edit button.

4. In the Edit View Instance dialog, perform any of the following steps, and then
click OK.

■ In the View Criteria group box, select one or more view criteria that you want
to apply to the view object instance. The view criteria will be appended as a
WHERE clause to the instance query. For details about defining view criteria,
see Section 5.11, "Working with Named View Criteria."

■ In the Bind Parameters Values group box, enter any values that you wish the
instance to use when applying the defined view criteria. For more information
about defining bind variables, see Section 5.10, "Working with Bind Variables."

Figure 9–8 shows the Edit View Instance dialog opened for the
AuthenticatedUser view usage with the
AuthenticatedUserByPrincipalCriteria selected. No default value is
supplied for the bind variable userPrincipal since the value will be provided
at runtime through the evaluation of a Groovy expression that obtains the current
user from the ADF security context. The data model for the project defines a
master-detail relationship with the PrincipalName attribute as the controlling
attribute for AuthenticatedUser view usage. The controlling attribute, when
set by the view criteria filter, provides a way to retrieve only the view rows for the
current user.

Creating and Modifying an Application Module

9-10 Fusion Developer's Guide for Oracle Application Development Framework

Figure 9–8 Customized View Object Instance Using a View Criteria FIlter

9.2.4 What Happens When You Add a View Object to an Application Module
While adding a view object to an application module, you use instances of a view
object component to define its data model. Figure 9–9 shows a JDeveloper business
components diagram of a PersonService application module.

Figure 9–9 Application Module Containing Two Instances of a View Object Component

Creating and Modifying an Application Module

Implementing Business Services with Application Modules 9-11

The sample application module contains two instances of the Persons view object
component, with member names of PersonList and AnotherPersonList to
distinguish them. At runtime, both instances share the same PersonsVO view object
component definition—ensure that they have the same attribute structure and view
object behavior—however, each might be used independently to retrieve data about
different users. For example, some of the runtime properties, like an additional
filtering WHERE clause or the value of a bind variable, might be different on the two
distinct instances.

Example 9–1 shows how the PersonService application module defines its member
view object instances in its XML component definition file.

Example 9–1 Member View Object Instances Defined in XML

<AppModule Name="PersonService">
<ViewUsage

Name="PersonList"
ViewObjectName="oracle.fodemo.storefront.store.queries.PersonsVO"/>

<ViewUsage
Name="AnotherPersonList"
ViewObjectName="oracle.fodemo.storefront.store.queries.PersonsVO"/>

</AppModule>

9.2.5 How to Edit an Existing Application Module
After you've created a new application module, you can edit any of its settings by
using the Edit Application Module dialog. To launch the editor, choose Open from the
context menu in the Application Navigator, or double-click the application module. By
visiting the different pages of the editor, you can adjust the data model to determine
whether or not to reference nested application modules, specify Java generation
settings, client interface methods, runtime instantiation behavior, and custom
properties.

If you edit the name of your application module, choose a name that is not among the
reserved words that Oracle Application Development Framework (Oracle ADF)
defines. In particular, reserved words are not valid for a data control usage name
which JDeveloper automatically assigns based on your application module's name. In
Fusion web applications, these reserved words consist of data, bindings,
security, and adfContext. For example, you should not name an application
module data. If JDeveloper creates a data control usage with an ID that collides with
a reserved word, your application may not reliably access your data control objects at
runtime and may fail with a runtime ClassCastException.

Do not name the application module with an initial underscore (_) character to
prevent a potential name collision with a wider list of reserved words that begin with
the underscore.

Application module names that incorporate a reserved word into their name (or that
change the case of the reserved word) will not conflict. For example, Product_Data,
Product_data, or just Data are all valid application module names since the whole
name does not match the reserved word data.

9.2.6 How to Change the Data Control Name Before You Begin Building Pages
By default, an application module will appear in the Data Controls panel as a data
control named AppModuleNameDataControl. The user interface designer uses the
Data Controls panel to bind data from the application module to the application’s web

Creating and Modifying an Application Module

9-12 Fusion Developer's Guide for Oracle Application Development Framework

pages. For example, if the application module is named StoreServiceAM, the Data
Controls panel will display the data control with the name
StoreServiceAMDataControl. You can change the default data control name to
make it shorter or to supply a more preferable name.

When the user interface designer works with the data control, they will see the data
control name for your application module in the DataBindings.cpx file in the user
interface project and in each data binding page definition XML file. In addition, you
might refer to the data control name in code when needing to work programmatically
with the application module service interface. For this reason, if you plan to change
the name of your application module, do this change before you begin building your
view layer.

For complete information about the application module data control, see Chapter 12,
"Using ADF Model in a Fusion Web Application."

To change the application module data control name:
1. In the Application Navigator, double-click the application module.

2. Open the Property Inspector and expand the Other section.

3. Enter your preferred data control name in the Data Control Name field.

9.2.7 What You May Need to Know About Application Module Granularity
A common question related to application modules is, "How big should my
application module be?" In other words, "Should I build one big application module to
contain the entire data model for my enterprise application, or many smaller
application modules?" The answer depends on your situation.

In general, application modules should be as big as necessary to support the specific
use case you have in mind for them to accomplish. They can be assembled from
finer-grained application module components using a nesting feature, as described in
Section 9.4, "Defining Nested Application Modules." Since a complex business
application is not really a single use case, a complex business application implemented
using Oracle ADF will typically not be just a single application module.

In actual practice, you may choose any granularity you wish. For example, in a small
application with one main use case and a "backend" supporting use case, you could
create two application modules. However, for the sake of simplicity you can combine
both use cases, rather than create a second application module that contains just a
couple of view objects.

9.2.8 What You May Need to Know About View Object Components and View Object
Instances

While designing an application module, you use instances of a view object component
to define its data model. Just as the user interface may contain two instances of a
Button component with member names of myButton and anotherButton to
distinguish them, your application module contains two instances of the Persons

Note: If you decide to change the application module's data control
name after you have already referenced it in one or more pages, you
will need to open the page definition files and DataBindings.cpx
file where it is referenced and update the old name to the new name
manually.

Configuring Your Application Module Database Connection

Implementing Business Services with Application Modules 9-13

view object component, with member names of PersonList and
AnotherPersonList to distinguish them.

9.3 Configuring Your Application Module Database Connection
You configure your application module to use a database connection by identifying
either a Java Database Connectivity (JDBC) URL or a JDBC data source name in the
Connection Type section of the Edit Business Components Configuration dialog. A
data source is a vendor-independent encapsulation of a database server connection.

You can use either the JDBC URL and the JDBC data source connection type to run the
application module in any context where Java can run. Your application is not
restricted to running inside a Java Enterprise Edition (Java EE) application server. For
example, although the Business Component Browser is a standalone Java tool and
does not run within the context of a Java EE application server, you can use either
connection type to test your business components in the Business Component
Browser.

The JDBC data source offers advantages that the JDBC URL connection type does not.
When you define a connection type based on a data source, you reconfigure the data
source without changing the deployed application. The data source is also centrally
defined at the application server level, whereas JDBC URL connections are not.
Although the default connection type for the application module is the JDBC URL, the
Edit Business Components Configuration dialog lets you select among the existing
application resources connections that appears in the Database Navigator.

9.3.1 How to Use a JDBC URL Connection Type
The default YourAppModuleNameLocal configuration uses a JDBC URL connection.
It is based on the named connection definition set on the Business Components page
of the Project Properties dialog for the project containing your application module.
Figure 9–10 shows what this section would look like in a configuration using a JDBC
URL connection.

Figure 9–10 JDBC URL Connection Type Setting in Edit Business Components
Configuration Dialog

Note: If you are using a non-Oracle JDBC driver, make sure that you
set the appropriate properties for the driver on the Properties page of
the Edit Business Components Configuration dialog to avoid runtime
exceptions.

For example, if you are using a Sybase JDBC driver, you must set the
jbo.sql92.LockTrailer property (which is set to FOR UPDATE
by default) to a value appropriate for the Sybase database. Not setting
this property would generate a SybSQLException runtime
exception.

Configuring Your Application Module Database Connection

9-14 Fusion Developer's Guide for Oracle Application Development Framework

9.3.2 How to Use a JDBC Data Source Connection Type
The other type of connection you can use is a JDBC data source. You define a JDBC
data source as part of your application server configuration information, and then the
application module looks up the resource at runtime using a logical name. Figure 9–11
shows what this section would look like in a configuration using a JDBC data source
connection

Figure 9–11 JDBC DataSource Connection Type Setting in Edit Business Components
Configuration Dialog

Example 9–2 shows the <resource-ref> tags in the web.xml file of a Fusion web
application. These define two logical data sources named jdbc/FODemoDS and
jdbc/FODemoCoreDS. The Edit Business Components Configuration dialog
references this logical connection name after the prefix java:comp/env in the JDBC
Datasource Name field. For example, the JDBC data source connection name for the
same Fusion web application would display the value
java:comp/env/jdbc/FODemoDS that you can select. Therefore the JDBC
Datasource Name field is prepopulated with the JNDI name for all available
application resources connection names.

Example 9–2 Logical Data Source Resource Names Defined in web.xml

 <!-- In web.xml -->
 <resource-ref>
 <res-ref-name>jdbc/FODemoDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
 <resource-ref>
 <res-ref-name>jdbc/FODemoCoreDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>

You can directly edit the JDBC Datasource Name field when you want to specify a
connection name for a global data source that is required to run the application on a
target standalone application server. When you deploy to Oracle WebLogic Server, by
default, the application-specific data source is not packaged with the application and
Oracle WebLogic Server is configured to find a global data source named
jdbc/applicationConnectNameDS using the look up
java:comp/env/jdbc/applicationConnectNameDS. Therefore, by following
this naming convention, you enable a single data source connection name to work
correctly when running the application in JDeveloper using an application-specific

Note: See Section 41.1.1.2, "Database Connection Pools," and
Section 41.2.9, "What You May Need to Know About Database
Connection Pool Parameters" for more information on how database
connection pools are used and how you can tune them.

Configuring Your Application Module Database Connection

Implementing Business Services with Application Modules 9-15

data source or when running on the deployed standalone server using a global data
source.

9.3.3 What Happens When You Create an Application Module Database Connection
When you select the database connection in the Edit Business Components
Configuration dialog, JDeveloper updates the application module configuration file,
bc4j.xcfg in the ./common subdirectory relative to the application module's XML
component definition. The file defines configurations for all of the application
modules in a single Java package. For example, if you look at the bc4j.xcfg file in
the ./classes/oracle/fodemo/storefront/store/service/common
directory of the Fusion Order Demo application's StoreFront project, you will see
the three named configurations for its StoreServiceAM application module.

The configurations defined by the bc4j.xcfg file allow the Fusion web application to
interact with specific, deployed application modules. In addition to the database
connection details for the application module, the bc4j.xcf file contains metadata
information about application module names and it contains the runtime parameters
that are configured for the application module.

Example 9–3 displays a sample bc4j.xcfg file from the Fusion Order Demo
application. The configurations StoreServiceAMLocal and
StoreServiceAMLocalWeb both reference a JDBC connection (named FOD) in the
JDBCName attribute. The JDBC connection string for the JDBC connection is defined in
the Connections folder of the Application Navigator and saved in the application’s
connection.xml file. The configuration StoreFrontService references a data
source that will eventually be defined on the target application server. The
JDBCDataSource attribute in the StoreFrontService configuration specifies the
JNDI name for the application resources connection name in the form of
java:comp/env/jdbc/applicationConnectNameDS, where
applicationConnectName is the name of the application resources database
connection defined in JDeveloper (in this case, FOD). This JNDI naming convention
(with the application-specific name space java:comp/env/jdbc/ and DS appended
to the application resources database connection name) ensures that a deployed
Fusion web application will run on Oracle WebLogic Server using the application’s
global data source and no changes will be required. The global data source is typically
defined by the application server administrator using the Oracle WebLogic Server
Administration Console.

Example 9–3 Application Module Database Configurations in the bc4j.xcfg File

<BC4JConfig version="11.1" xmlns="http://xmlns.oracle.com/bc4j/configuration">
 <AppModuleConfigBag ApplicationName="oracle.fodemo.storefront.store.service.StoreServiceAM">
 <AppModuleConfig

Note: When configuring the ADF application module to access a
highly available database system, such as redundant databases or
Oracle Real Application Clusters (Oracle RAC) as the backend, the
data source must be container-defined. In this scenario, the
application module will use a multi data source; however, from the
standpoint of the application module configuration, the naming
convention for the multi data source is the same as it is for an
non-multi data source. This ensures that the correct data source will
be used at runtime. For details about configuring multi data sources
for high availability applications, see the Oracle Fusion Middleware
High Availability Guide.

Configuring Your Application Module Database Connection

9-16 Fusion Developer's Guide for Oracle Application Development Framework

 DeployPlatform="LOCAL"
 JDBCName="FOD"
 jbo.project="StoreFrontService"
 name="StoreServiceAMLocal"
 ApplicationName="oracle.fodemo.storefront.store.service.StoreServiceAM">
 ...
 </AppModuleConfig>
 <AppModuleConfig
 DeployPlatform="LOCAL"
 JDBCName="FOD"
 jbo.project="StoreFrontService"
 name="StoreServiceAMLocalWeb"
 ApplicationName="oracle.fodemo.storefront.store.service.StoreServiceAM">
 ...
 </AppModuleConfig>
 <AppModuleConfig
 name="StoreFrontService"
 ApplicationName="oracle.fodemo.storefront.store.service.StoreServiceAM"
 jbo.project="StoreFrontService"
 ...
 <Custom JDBCDataSource="java:comp/env/jdbc/FODDS"/>
 </AppModuleConfig>
 </AppModuleConfigBag>
</BC4JConfig>

9.3.4 How to Change Your Application Module's Runtime Configuration
In addition to creating the application module XML component definition, JDeveloper
also adds a default configuration named appModuleNameLocal to the bc4j.xcfg
file in the subdirectory named common, relative to the directory containing the
application module XML component definition file. The bc4j.xcfg file does not
appear in the Application Navigator. To view the default settings or to change the
application module’s runtime configuration settings, you can use the Manage
Configurations dialog shown in Figure 9–12.

Figure 9–12 bc4j.xcfg File Configurations Displayed by Manage Configurations Dialog

Defining Nested Application Modules

Implementing Business Services with Application Modules 9-17

To manage your application module’s configuration:
1. To display the Edit Business Components Configuration dialog, do one of the

following:

■ In the Application Navigator, right-click the application module and choose
Configurations. In the Manage Configurations dialog, select the default
configuration named appModuleNameLocal and click Edit.

■ In the overview editor for the application module, click the Configurations
navigation tab and double-click the default configuration named
appModuleNameLocal in the displayed list.

2. In the Edit Business Components Configuration dialog, edit the desired runtime
properties and click OK to save the changes for your configuration.

9.3.5 How to Change the Database Connection for Your Project
When you are developing applications, you may have a number of different users or
schemas that you want to switch between. You can do this by changing the connection
properties of the project that contains the business components. The selection you
make will automatically update the connection name for each configuration that your
project’s bc4j.xcfg file defines.

To change the connection used by your application module’s configuration:
1. In the Application Navigator, right-click the project that contains the application

module and choose Project Properties.

2. In the Project Properties dialog, select Business Components to display the
Business Components page, which shows details of the current database
connection.

3. Click Edit, and in the Edit Database Connection dialog, make the appropriate
changes.

4. Click OK.

9.4 Defining Nested Application Modules
Application modules support the ability to create software components that mimic the
modularity of your use cases, for which your higher-level functions might reuse a
"subfunction" that is common to several business work flows. You can implement this
modularity by defining composite application modules that you assemble using
instances of other application modules. This task is referred to as application module
nesting. That is, an application module can contain (logically) one or more other
application modules, as well as view objects. The outermost containing application
module is referred to as the root application module.

Declarative support for defining nested application modules is available through the
overview editor for the application module, as shown in Figure 9–14. The API for
application modules also supports nesting of application modules at runtime.

When you nest an instance of one application module inside another, you aggregate
not only the view objects in its data model, but also any custom service methods it
defines. This feature of "nesting," or reusing, an instance of one application module
inside of another is one of the most powerful design aspects of the ADF Business
Components layer of Oracle ADF for implementing larger-scale, real-world
application systems.

Defining Nested Application Modules

9-18 Fusion Developer's Guide for Oracle Application Development Framework

Using the basic logic that an application module represents an end-user use case or
work flow, you can build application modules that cater to the data required by some
shared, modular use case, and then reuse those application modules inside of other
more complicated application modules that are designed to support a more complex
use case. For example, imagine that after creating the application modules
StoreServiceAM and ProductService, you later need to build an application that
uses both of these services as an integral part of a new CompositeService
application module. Figure 9–13 illustrates what this CompositeService would look
like in a JDeveloper business components diagram. Notice that an application module
like CompositeService can contain a combination of view object instances and
application module instances.

Figure 9–13 Application Module Instances Can Be Reused to Assemble Composite
Services

9.4.1 How to Define a Nested Application Module
To specify a composite root application module that nests an instance of an existing
application module, use the overview editor for the application module. All of the
nested component instances (contained by the application module instance) share the
same transaction and entity object caches as the root application module that reuses an
instance of them.

Before you begin:
Create the desired application modules as described in Section 9.2.1, "How to Create
an Application Module."

To define a nested application module:
1. In the Application Navigator, double-click the root application module.

2. In overview editor, click the Data Model navigation tab.

3. In the Data Model Components page, expand the Application Module Instances
section and, in the Available list, select the application module that you want to
add to the data model.

The New App Module Instance field below the list shows the name that will be
used to identify the nested application module that you add to the data model.

Tip: If you leverage nested application modules in your application,
be sure to read Section 12.2.1.4, "How Nested Application Modules
Appear in the Data Controls Panel" to avoid common pitfalls when
performing data binding involving them.

Creating an Application Module Diagram for Your Business Service

Implementing Business Services with Application Modules 9-19

4. To change the name before adding it, type a different name in the New App
Module Instance field.

5. With the desired application module selected, shuttle the application module to
the Selected list.

Figure 9–14 shows the application module LookupServiceAM has been renamed
to NestedLookupServiceAM before it was shuttled to the Selected list.

Figure 9–14 Data Model Displays Added Application Module Instances

9.4.2 What You May Need to Know About Root Application Modules Versus Nested
Application Module Usages

At runtime, your application works with a main — or what's known as a root —
application module. Any application module can be used as a root application
module; however, in practice the application modules that are used as root application
modules are the ones that map to more complex end-user use cases, assuming you're
not just building a straightforward CRUD application. When a root application
module contains other nested application modules, they all participate in the root
application module's transaction and share the same database connection and a single
set of entity caches. This sharing is handled for you automatically by the root
application module and its Transaction object.

Additionally, when you construct an application using an ADF bounded task flow, to
declaratively manage the transactional boundaries, Oracle ADF will automatically nest
application modules used by the task flow at runtime. For details about bounded task
flows and transactions, see Section 18.4, "Managing Transactions."

9.5 Creating an Application Module Diagram for Your Business Service
As you develop the business service's data model, it is often convenient to be able to
visualize it using a UML model. JDeveloper supports easily creating a diagram for
your application module that other developers can use for reference.

You can perform a number of tasks directly on the diagram, such as editing the
application module, controlling display options, filtering methods names, showing
related objects and files, publishing the application, and launching the Business
Component Browser.

9.5.1 How to Create an Application Module Diagram
To create an application module diagram, use the Create Business Components
Diagram dialog, which is available in the New Gallery.

Creating an Application Module Diagram for Your Business Service

9-20 Fusion Developer's Guide for Oracle Application Development Framework

To create a diagram of your application module:
1. In the Application Navigator, right-click the project in which you want to create

the diagram and choose New.

2. In the New Gallery, expand Business Tier, select ADF Business Components and
then Business Components Diagram, and click OK.

3. In the Create Business Components dialog, enter a diagram name and a package
name in which the diagram will be created.

4. Click OK to create the empty diagram and open the diagrammer.

5. To add your existing application module to the open diagram, select the desired
application module in the Application Navigator and drop it onto the diagram
surface.

6. Use the Property Inspector to:

■ Hide the package name

■ Change the font

■ Turn off the grid and page breaks

■ Turn off the display of the end names on the view link connectors
("Master"/"Detail")

After completing these steps, the diagram looks similar to the diagram shown in
Figure 9–15.

Figure 9–15 Partial UML Diagram of Application Module

9.5.2 What Happens When You Create an Application Module Diagram
When you create a business components diagram, JDeveloper creates a .adfbc_
diagram file to represents the diagram in a subdirectory of the project's model path
that matches the package name in which the diagram resides.

By default, the Application Navigator unifies the display of the project content’s paths
so that ADF components and Java files in the source path appear in the same package
tree as the UML model artifacts in the project model path. You can use the Navigator
Display Options > Show Directories toolbar option in the Application Navigator to
switch between the unified directory view and a more distinct directory path view of
the project content.

9.5.3 How to Use the Diagram to Edit the Application Module
The UML diagram of business components is not just a static picture that reflects the
point in time when you dropped the application module onto the diagram. Rather, it is
a UML-based rendering of the current component definitions, so it will always reflect
the current state of affairs. The UML diagram is both a visualization aid and a visual
navigation and editing tool.

Creating an Application Module Diagram for Your Business Service

Implementing Business Services with Application Modules 9-21

You can bring up the overview editor for any application module in a diagram by
choosing Properties from the context menu (or by double-clicking the application
module).

You can also perform some application module editing tasks directly on the diagram,
tasks such as renaming view object instances, dropping view object definitions from
the Application Navigator onto the data model to create a new view object instance,
and removing view object instances by pressing the Delete key.

9.5.4 How to Control Diagram Display Options
After you display the application module in the diagram, you can use the Property
Inspector to control its display options.

In the Display Options category, toggle properties like the following:

■ Show Methods — to display service methods

■ Show Package — to display the package name

■ Show Stereotype — to display the type of object (for example "<<application
module>>")

In the Operations category, consider changing the following properties depending on
the amount of detail you want to provide in the diagram:

■ Parameter Style

■ Show Return Type

■ Show Visibility (public, private, etc.)

By default, all operations of the application module are fully displayed, as shown by
the Property Inspector settings in Figure 9–16.

Note: Deleting components from the diagram only removes their
visual representation on the diagram surface. The components and
classes remain on the file system and in the Application Navigator.

Note: The term operation is a more generic, UML name for methods.

Creating an Application Module Diagram for Your Business Service

9-22 Fusion Developer's Guide for Oracle Application Development Framework

Figure 9–16 Property Inspector with Default Diagrammer Options

On the context menu of the diagram, you can also select to View As:

■ Compact — to show only the icon and the name

■ Symbolic — to show service operations

■ Expanded — to show operations and data model (default)

9.5.5 How to Filtering Method Names Displayed in the Diagram
Initially, if you show the operations for the application module, the diagram displays
all the methods. Any method it recognizes as an overridden framework method
displays in the <<Framework>> operations category. The rest display in the
<<Business>> methods category.

The Name Filter property in the Operations category of the Property Inspector is a
regular expression that you can use to filter out methods you don't want to display on
the diagram. For example, by setting the Name Filter property to:

findLoggedInUser.*|retrieveOrder.*|get.*

you can filter out all of the following application module methods:

■ findLoggedInUserByEmail

■ retrieveOrderById

■ All the generated view object getter methods

9.5.6 How to Show Related Objects and Implementation Files in the Diagram
After selecting the application module on the diagram — or any set of individual view
object instances in its data model — you can choose Show > Related Elements from
the context menu to display related component definitions on the diagram. In a similar
fashion, choosing Show > Implementation Files will include the files that implement
the application module on the diagram. You can repeat these options on the additional
diagram elements that appear until the diagram includes the level of detail you want
to convey.

Figure 9–17 illustrates how the diagram displays the implementation files for an
application module. You will see the related elements for the application module’s

Supporting Multipage Units of Work

Implementing Business Services with Application Modules 9-23

implementation class (StoreServiceAMImpl). The diagram also draws an
additional dependency line between the application module and the implementation
class. If you have cast the application module instance to a specific custom interface,
the diagram will also show that.

Figure 9–17 Adding Detail to a Diagram Using Show Related Elements and Show Implementation Files

9.5.7 How to Publish the Application Module Diagram
To publish the diagram to PNG, JPG, SVG, or compressed SVG format, choose Publish
Diagram from the context menu on the diagram surface.

9.5.8 How to Test the Application Module from the Diagram
To launch the Business Component Browser for an application module in the diagram,
choose Run from the context menu.

9.6 Supporting Multipage Units of Work
While interacting with your Fusion web application, end users might:

■ Visit the same pages multiple times, expecting fast response times

■ Perform a logical unit of work that requires visiting many different pages to
complete

■ Need to perform a partial "rollback" of a pending set of changes they've made but
haven't saved yet.

■ Unwittingly be the victim of an application server failure in a server farm before
saving pending changes

The application module pooling and state management features simplify
implementing scalable, well-performing applications to address these requirements.

Supporting Multipage Units of Work

9-24 Fusion Developer's Guide for Oracle Application Development Framework

9.6.1 How to Simulate State Management in the Business Component Browser
To simulate what the state management functionality does, you can launch two
instances of Business Component Browser on an application module in the
Application Navigator.

To simulate transaction state passivation using the Business Component
Browser:
1. Run the Business Component Browser and double-click a view object instance to

query its data.

2. Make a note of the current values of a several attributes for a few rows.

3. Update those rows to have a different value those attributes, but do not commit
the changes.

4. Choose File > Save Transaction State from the Business Component Browser
main menu.

A Passivated Transaction State dialog appears, indicating a numerical transaction
ID number. Make a note of this number.

5. Exit out of the Business Component Browser completely.

6. Restart the Business Component Browser and double-click the same view object
instance to query its data.

7. Notice that the data is not changed. The queried data from the data reflects the
current state of the database without your changes.

8. Choose File > Restore Transaction State from the Business Component Browser
main menu, and enter the transaction ID you noted in Step 4.

At this point, you'll see that your pending changes are reflected again in the rows you
modified. If you commit the transaction now, your changes are permanently saved to
the database.

9.6.2 What Happens When the Application Uses Application Module Pooling and State
Management

Applications you build that leverage an application module as their business service
take advantage of an automatic application module pooling feature. This facility
manages a configurable set of application module instances that grows and shrinks as
the end-user load on your application changes during the day. Due to the natural
"think time" inherent in the end user's interaction with your application user interface,
the number of application module instances in the pool can be smaller than the overall
number of active users using the system.

As shown in Figure 9–18, as a given end user visits multiple pages in your application
to accomplish a logical task, with each page request an application module instance in
the pool is acquired automatically from the pool for the lifetime of that one request. At
the end of the request, the instance is automatically returned to the pool for use by
another user session. In order to protect the end user's work against application server

Note: ADF bounded task flows can represent a transactional unit of
work. You can specify options on the task flow to determine how to
handle the transaction. For details about the declarative capabilities of
ADF bounded task flows, see Section 18.4, "Managing Transactions."

Customizing an Application Module with Service Methods

Implementing Business Services with Application Modules 9-25

failure, the application module supports the ability to freeze the set of pending
changes in its entity caches to a persistent store by saving an XML snapshot describing
the change set. For scalability reasons, this state snapshot is typically saved in a state
management schema that is a different database schema than the one containing the
application data.

Figure 9–18 Using Pooled Application Modules Throughout a Multipage, Logical Unit of
Work

The pooling algorithm affords a tunable optimization whereby a certain number of
application module instances will attempt to stay "sticky" to the last user session that
returned them to the pool. The optimization is not a guarantee, but when a user can
benefit from the optimization, they continue to work with the same application
module instance from the pool as long as system load allows. When load is too high,
the pooling algorithm uses any available instance in the pool to service the user's
request and the frozen snapshot of their logical unit of work is reconstituted from the
persistent store to allow the new instance of the application module to continue where
the last one left off. The end user continues to work in this way until they commit or
roll back their changes.

Using these facilities, the application module delivers the productivity of a stateful
development paradigm that can easily handle multipage work flows, in an
architecture that delivers the runtime performance near that of a completely stateless
application. You will learn more about these application module features in
Chapter 40, "Application State Management" and about how to tune them in
Chapter 41, "Tuning Application Module Pools and Connection Pools."

9.7 Customizing an Application Module with Service Methods
An application module can expose its data model of view objects to clients without
requiring any custom Java code. This allows client code to use the
ApplicationModule, ViewObject, RowSet, and Row interfaces in the
oracle.jbo package to work directly with any view object in the data model.
However, just because you can programmatically manipulate view objects any way
you want to in client code doesn't mean that doing so is always a best practice.

Note: This application module pooling and state management is also
available for thin-client, desktop-fidelity Swing applications and
web-style user interfaces.

Customizing an Application Module with Service Methods

9-26 Fusion Developer's Guide for Oracle Application Development Framework

Whenever the programmatic code that manipulates view objects is a logical aspect of
implementing your complete business service functionality, you should encapsulate
the details by writing a custom method in your application module's Java class. This
includes code that:

■ Configures view object properties to query the correct data to display

■ Iterates over view object rows to return an aggregate calculation

■ Performs any kind of multistep procedural logic with one or more view objects

By centralizing these implementation details in your application module, you gain the
following benefits:

■ You make the intent of your code more clear to clients.

■ You allow multiple client pages to easily call the same code if needed.

■ You simplify regression-testing of your complete business service functionality.

■ You keep the option open to improve your implementation without affecting
clients.

■ You enable declarative invocation of logical business functionality in your pages.

9.7.1 How to Generate a Custom Class for an Application Module
To add a custom service method to your application module, you must first enable a
custom Java class for it. If you have configured your IDE-level Business Components
Java generation preferences to automatically generate an application module class, a
custom class will be present. If you're not sure whether your application module has a
custom Java class, open the overview editor for the application module node in the
Application Navigator. The Java Classes page of the editor displays the complete list
of classes generated for the application module in the project. If the file exists because
someone created it already, then the Java Classes page will display a linked file name
identified as the Application Module Class. To open an existing file in the source
editor, click the corresponding file name link.

You can also check the application module node’s context menu for the Go to
Application Module Class option, as shown in Figure 9–19. When this option is
present in the menu, you can use it to quickly navigate to your application module's
custom class. If you don't see the option in the menu, then your application module is
currently an XML-only component.

Figure 9–19 Quickly Navigating to an Application Module's Custom Java Class

Customizing an Application Module with Service Methods

Implementing Business Services with Application Modules 9-27

If no Java class exists in your project, you can generate one using the Java Classes page
of the overview editor for the application module.

Before you begin:
Create the desired application module as described in Section 9.2.1, "How to Create an
Application Module."

To generate a Java file for your application module class:
1. In the Application Navigator, double-click the application module.

2. In the overview editor, click the Java navigation tab and click the Edit java
options button.

3. In the Select Java Options dialog, select Generate Application Module Class.

4. Click OK.

The new .java file will appear in the Java Classes page.

9.7.2 What Happens When You Generate a Custom Class for an Application Module
When you generate a custom class for an application module, JDeveloper creates the
file in the same directory as the component's XML component definition file. The
default name for its custom Java file will be AppModuleNameImpl.java.

The Java generation option choices you made for the application module persist on the
Java Classes page on subsequent visits to the overview editor for the application
module. Just as with the XML definition file, JDeveloper keeps the generated code in
your custom Java classes up to date with any changes you make in the editor. If later
you decide you do not require a custom Java file, from the Java Classes page open the
Select Java Options dialog and deselect Generate Application Module Class to
remove the custom Java file from the project.

9.7.3 What You May Need to Know About Default Code Generation
By default, the application module Java class will look similar to what you see in
Example 9–4 when you've first enabled it. Of interest, it contains:

■ Getter methods for each view object instance in the data model

■ A main() method allowing you to debug the application module using the
Business Component Browser

Example 9–4 Default Application Module Generated Code

package devguide.model;
import devguide.model.common.StoreServiceAM;
import oracle.jbo.server.ApplicationModuleImpl;
import oracle.jbo.server.ViewLinkImpl;
import oracle.jbo.server.ViewObjectImpl;
// ---
// --- File generated by Oracle ADF Business Components Design Time.
// --- Custom code may be added to this class.
// --- Warning: Do not modify method signatures of generated methods.
// ---
public class StoreServiceAMImpl extends ApplicationModuleImpl {
/** This is the default constructor (do not remove) */
public StoreServiceImpl() { }

/** Container's getter for YourViewObjectInstance1 */

Customizing an Application Module with Service Methods

9-28 Fusion Developer's Guide for Oracle Application Development Framework

public ViewObjectImpl getYourViewObjectInstance1() {
return (ViewObjectImpl)findViewObject("YourViewObjectInstance1");

}

// ... Additional ViewObjectImpl getters for each view object instance

// ... ViewLink getters for view link instances here
}

As shown in Figure 9–20, your application module class extends the base ADF
ApplicationModuleImpl class to inherit all the default behavior before adding
your custom code.

Figure 9–20 Your Custom Application Module Class Extends ApplicationModuleImpl

9.7.4 How to Add a Custom Service Method to an Application Module
To add a custom service method to an application module, simply navigate to the
application module's custom class and enter the Java code for a new method into the
application module's Java implementation class. Use the following guidelines to
decide on the appropriate visibility for the method:

■ If you will use the method only inside this component's implementation as a
helper method, make the method private.

■ If you want to allow eventual subclasses of your application module to be able to
invoke or override the method, make it protected.

■ If you need clients to be able to invoke it, it must be public.

Example 9–5 shows a private retrieveOrderById() helper method in the
StoreServiceAMImpl.java class for the StoreServiceAM application module. It
uses the static getDefinition() method of the OrdersEOImpl entity object
class to access its related entity definition, it uses the createPrimaryKey() method
on the entity object class to create an appropriate Key object to look up the order, and
then it uses the findByPrimaryKey() method on the entity definition to find the
entity row in the entity cache. It returns an instance of the strongly typed
OrdersEOImpl class, the custom Java class for the OrderEO entity object.

Example 9–5 Private Helper Method in Custom Application Module Class

// In devguide.model.StoreServiceAMImpl class

Note: The StoreServiceAM application module examples in this
chapter use the strongly typed, custom entity object classes that you
saw illustrated in the StoreServiceAMImpl2.java example at the
end of Chapter 4, "Creating a Business Domain Layer Using Entity
Objects."

Customizing an Application Module with Service Methods

Implementing Business Services with Application Modules 9-29

/*
* Helper method to return a Order by Id
*/
private OrdersEOImpl retrieveOrderById(long orderId) {
EntityDefImpl orderDef = OrdersEOImpl.getDefinitionObject();
Key orderKey =
OrdersEOImpl.createPrimaryKey(new DBSequence(orderId));

return (OrdersEOImpl)orderDef.findByPrimaryKey(getDBTransaction(),
orderKey);

}

Example 9–6 shows a public createProduct() method that allows the caller to
pass in a name and description of a product to be created. It uses the
getDefinition() method of the ProductImpl entity object class to access its
related entity definition, and it uses the createInstance2() method to create a new
ProductImpl entity row, whose Name and Description attributes it populates
with the parameter values passed in before committing the transaction.

Example 9–6 Public Method in Custom Application Module Class

/*
* Create a new Product and Return its new id
*/
public long createProduct(String name, String description) {
EntityDefImpl productDef = ProductImpl.getDefinitionObject();
ProductImpl newProduct =
(ProductImpl)productDef.createInstance2(getDBTransaction(),null);

newProduct.setName(name);
newProduct.setDescription(description);
try {
getDBTransaction().commit();

}
catch (JboException ex) {
getDBTransaction().rollback();
throw ex;

}
DBSequence newIdAssigned = newProduct.getProdId();
return newIdAssigned.getSequenceNumber().longValue();

}

9.7.5 How to Test the Custom Application Module Using a Static Main Method
When you are ready to test the methods of your custom application module, you can
use JDeveloper to generate JUnit test cases. With JUnit, you can use any of the
programmatic APIs available in the oracle.jbo package to work with the
application module and invoke the custom methods. For details about using JUnit
with ADF Business Components, see Section 31.10, "Regression Testing with JUnit."

As an alternative to JUnit test cases, a common technique to test your custom
application module methods is to write a simple test case. For example, you could
build the testing code into an object and include that code in the static main()
method. Example 9–7 shows a sample main() method you could add to your custom
application module class to test the sample methods you will write. You'll make use of
a Configuration object (see Section 6.4.2, "How to Create a Command-Line Java
Test Client") to instantiate and work with the application module for testing.

Customizing an Application Module with Service Methods

9-30 Fusion Developer's Guide for Oracle Application Development Framework

A glance through the code in Example 9–7 shows that it exercises the four methods
created in the previous examples to:

1. Retrieve the total for order 1011.

2. Retrieve the name of the customer for order 1011.

3. Set the status of order 1011 to the value "CANCEL".

4. Create a new product supplying a null product name.

5. Create a new product with a product name and display its newly assigned
product ID.

Example 9–7 Sample Main Method to Test a Custom Application Module from the Inside

// Main method in StoreServiceAMImpl.java
public static void main(String[] args) {
String amDef = "devguide.model.StoreFrontService";
String config = "StoreServiceLocal";
/*
* This is the correct way to use application custom methods
* from the client, by using the application module's automatically-
* maintained custom service interface.
*/
// 1. Acquire instance of application module, cast to client interface
ApplicationModule am =

Configuration.createRootApplicationModule(amDef,config);
/*
* NOTE: This cast to use the StoreFrontServiceImpl class is OK since this
* code is inside a business tier *Impl.java file and not in a
* client class that is accessing the business tier from "outside".
*/

StoreFrontServiceImpl service = (StoreFrontServiceImpl)am;
String total = service.findOrderTotal(1011);
System.out.println("Total for Order # 1011 = " + total);
String customerName = service.findOrderCustomer(1011);
System.out.println("Customer for Order # 1011 = " + customerName);
try {

service.updateOrderStatus(1011,"CANCEL");
}
catch (JboException ex) {

System.out.println("ERROR: "+ex.getMessage());
}
long id = 0;
try {

id = service.createProduct(null, "NEW", "CLASS1");
}

Note: The fact that this Configuration object resides in the
oracle.jbo.client package suggests that it is used for accessing
an application module as an application client. Because a main()
method is a kind of programmatic, command-line client, so this is an
acceptable practice. Furthermore, even though you typically would
not cast the return value of createRootApplicationModule()
directly to an application module's implementation class, it is legal to
do so in this one situation since despite being a client to the
application module, the main() method's code resides right inside
the application module implementation class itself.

Customizing an Application Module with Service Methods

Implementing Business Services with Application Modules 9-31

catch (JboException ex) {
System.out.println("ERROR: "+ex.getMessage());

}
id = service.createProduct("Canon PowerShot G9", "NEW", "CLASS1");
System.out.println("New product created successfully with id = "+id);
Configuration.releaseRootApplicationModule(am,true);

}

Running the custom application module class calls the main() method in
Example 9–7, and shows the following output:

Total for Order # 1011 = 99.99
Customer for Order # 1011 = John Chen
ERROR: JBO-27014: Attribute ProductName in ProductsBaseEO is required.
New product created successfully with id = 133

Notice that the first attempt to call createProduct() with a null for the product
name raises an exception due to the built-in mandatory validation on the Name
attribute of the Product entity object.

9.7.6 What You May Need to Know About Programmatic Row Set Iteration
Any time your application logic accesses a row set to perform programmatic iteration,
you should use a secondary row set iterator when working with view object instances
in an application module's data model, or view link accessor row sets of these view
object instances, since they may be bound to user interface components. To create a
secondary iterator, use the createRowSetIterator() method on the row set you
are working with. When you are done using it, call the closeRowSetIterator()
method on the row set to remove the secondary iterator from memory. Example 9–8
shows a typical application module custom method that correctly uses a secondary
row set iterator for programmatic iteration, because the EmpView1 view object
instance in its data model may be bound to a user interface (either now or at a later
time).

Example 9–8 Using a Secondary Row Set Iterator in an Application Module Custom
Method

// Custom method in an application module implementation class
public void doSomeCustomProcessing() {
 ViewObject vo = getEmpView1();
 // create secondary row set iterator with system-assigned name
 RowSetIterator iter = vo.createRowSetIterator(null);
 while (iter.hasNext()) {
 Row r = iter.next();
 // Do something with the current row.
 }
 // close secondary row set iterator
 iter.closeRowSetIterator();
}

Note: For an explanation of how you can use the client application to
invoke the custom service methods that you create in your custom
application module, see Section 9.9, "Publishing Custom Service
Methods to UI Clients."

Customizing Application Module Message Strings

9-32 Fusion Developer's Guide for Oracle Application Development Framework

There are two important reasons to follow this recommendation. Failing to do so can
lead to confusion for the end user when the current row unexpectedly changes or it
can introduce subtle business logic errors because the first or last row, or both rows
get skipped.

■ Confusing the end user by changing the current row unexpectedly

The iterator bindings determine what row the end-user sees as the current row in
the row set. If your own programmatic logic iterates through the row set using the
same default row set iterator that the iterator binding uses, you may inadvertently
change the current row the user has selected, leaving the user confused.

■ Introducing subtle business logic errors by inadvertently skipping the first or last
row

Iterator bindings force their row set iterator to be on a valid row to guarantee that
UI components display data when the row set is not empty. This has the
side-effect of preventing your custom logic from navigating to the slot either
before the first row or to the slot after the last row (when it is using the same row
set iterator as an iterator binding). In concrete terms, this means that a typical
while (rowset.hasNext()) iteration loop will either be skipped or start by
processing the second row instead of the first as shown in Example 9–9.

Example 9–9 Consequences of Using the Default Row Set Iterator

// Reset the default row set iterator to the slot before the first row
rowset.reset();
// If an iterator binding is bound to the same default row set iterator,
// then it has already forced it to navigate to the first row here instead
// of being on the slot before the first row.
//
// If the row set has only one row, the following will then return false
while (rowset.hasNext()) {
 // If the row set has more than one row, the first time through the loop
 // this call to next() will return the second row rather than the first
 // row as expected.
 Row curRow = rowset.next();
 // Do something with current row
}

9.8 Customizing Application Module Message Strings
The ADF application module does not have a resource bundle of its own and there is
no design time in JDeveloper to associate one with the application module. However,
if you do want to register a .properties file that contains your custom message
strings, you can set a resource bundle definition in the definition class file that you
generate for the application module.

9.8.1 How to Add a Resource Bundle to an Application Module
To generate the custom definition class file for the application module, use the Select
Java Options dialog, which you open for the application module on the Java Classes

Note: The same recommendation holds for custom code in a view
object's implementation class that iterates its own default row set
using that row set's default row set iterator.

Customizing Application Module Message Strings

Implementing Business Services with Application Modules 9-33

page of the application module overview editor. You can use this file to override the
built-in framework method finishedLoading().

Before you begin:
1. Create the desired application module, as described in Section 9.2.1, "How to

Create an Application Module."

2. Create the .properties file and add the message key and message, as described
in .Section 4.7, "Working with Resource Bundles."

The .properties file you create can reference attribute properties by their
fully-qualified package name and custom method exception messages. For
example, you might define message keys and strings as follows:

test.Order.Orderno_LABEL=Order Number
INVALID=You have called the method foo in an invalid way.

3. If your resource bundle defines a message for a method exception message, the
custom method should appear in the application module client interface, as
described in Section 9.9.1, "How to Publish a Custom Method on the Application
Module’s Client Interface."

For example, if you defined a message for the method foo() that to replace the
exception message INVALID, your interface might define this method to invoke
the message from the resource bundle as:

public void foo() {
 ResourceBundleDef r = getResourceBundleDef();
 throw new JboException(r,"INVALID",null);
}

To generate the definition class and override the finishedLoading method:
1. In the Application Navigator, double-click the application module.

2. In the overview editor, click the Java navigation tab.

3. On the Java Classes page, click the Edit java options button.

4. In the Select Java Options dialog, select Generate Application Module Definition
Class and click OK.

5. In the overview editor, on the Java Classes page, click the linked file name of the
application module definition class that you want to customize. JDeveloper opens
the class file in the source editor.

6. From the JDeveloper toolbar, choose Source > Override Methods.

If the Source menu is not displayed in the JDeveloper toolbar, be sure the
definition class file is open and the source editor is visible.

7. In the Override Methods dialog, scroll the list to locate the finishedLoading()
methods, select it, and click OK.

8. In the source editor for the definition class file, add the code to invoke your
message bundle .properties file.

For example, if your file is MyAMBundle in the test package, your code would
look like:

@Override
protected void finishedLoading() {
 super.finishedLoading();
 PropertiesBundleDef pbd = new PropertiesBundleDef(this);

Publishing Custom Service Methods to UI Clients

9-34 Fusion Developer's Guide for Oracle Application Development Framework

 pbd.setPropertiesFile("test.MyAMBundle");
 setResourceBundleDef(pbd);
}

In this example, the finishedLoading() method creates a message bundle
definition and then sets the custom message bundle on the definition.

9. Save the file.

9.8.2 What Happens When You Add a Resource Bundle to an Application Module
When you generate a custom definition class for an application module, JDeveloper
creates the file in the same directory as the component's XML component definition
file. The default name for its custom Java file will be
AppModuleNameDefImpl.java.

Because you override the built-in finishedLoading() method in the definition
class file, after the application is loaded at runtime, the framework will invoke the
method and automatically load the named .properties file.

9.9 Publishing Custom Service Methods to UI Clients
When you add a public custom method to your application module class, if you
want your application’s UI to be able to invoke it, you need to include the method on
the application module's UI client interface.

9.9.1 How to Publish a Custom Method on the Application Module’s Client Interface
To include a public method from your application module's custom Java class on the
client interface, use the Java Classes page of the overview editor for the application
module, and then click the Edit icon in the Client Interface section of the page to
display the Edit Client Interface dialog. Select one or more desired methods from the
Available list and click the Add button to shuttle them into the Selected list. Then
click OK to close the editor. Figure 9–21 shows multiple public methods added to the
client interface.

Publishing Custom Service Methods to UI Clients

Implementing Business Services with Application Modules 9-35

Figure 9–21 Public Methods Added to an Application Module's Client Interface

9.9.2 What Happens When You Publish Custom Service Methods
When you publish custom service methods on the client interface, as shown in
Figure 9–22, JDeveloper creates a Java interface with the same name as the application
module in the common subpackage of the package in which your application module
resides. For an application module named StoreServiceAM in the fodemo.model
package, this interface will be named StoreServiceAM and reside in the
fodemo.model.common package. The interface extends the base
ApplicationModule interface in the oracle.jbo package, reflecting that a client
can access all of the base functionality that your application module inherits from the
ApplicationModuleImpl class.

Figure 9–22 Custom Client Interface Extends the Base ApplicationModule Interface

As shown in Example 9–10, the StoreServiceAM interface includes the method
signatures of all of the methods you've selected to be on the client interface of your
application module.

Example 9–10 Custom Client Interface Based on Methods Selected in the Client
Interface Panel

package fodemo.model.common;
import oracle.jbo.ApplicationModule;
// ---
// --- File generated by Oracle ADF Business Components Design Time.
// ---
public interface StoreServiceAM extends ApplicationModule {

Publishing Custom Service Methods to UI Clients

9-36 Fusion Developer's Guide for Oracle Application Development Framework

void deleteCurrentMyOrderItem();
void executeMyOrdersForCustomerVO();
void userRegistrationCreate(String userType);
void updateUserInterests(List pCategoryIds);
void userRegistrationCreateAddress();

}

9.9.3 How to Generate Client Interfaces for View Objects and View Rows
In addition to generating a client interface for your application module, it is also
possible to generate strongly typed client interfaces for working with the other key
client objects that you can customize. For example, you can open Java page in the
overview editor for a view object, you can then expand the Client Interface section
and the Client Row Interface section and add custom methods to the view object
client interface and the view row client interface, respectively.

If for the Products view object in the devguide.model.queries package you
were to enable the generation of a custom view object Java class and add one or more
custom methods to the view object client interface, JDeveloper would generate the
ProductsImpl class and Products interface, as shown in Figure 9–23. As with the
application module custom interface, notice that it gets generated in the common
subpackage.

Figure 9–23 Custom View Object Interface Extends the Base ViewObject Interface

Likewise, if for the same view object you were to enable the generation of a custom
view row Java class and add one or more custom methods to the view row client
interface, JDeveloper would generate the ProductsRowImpl class and
ProductsRow interface, as shown in Figure 9–24.

Note: After adding new custom methods to the client interface, if
your new custom methods do not appear to be available when you
use JDeveloper’s code insight context-sensitive statement completion,
try recompiling the generated client interface. To do this, select the
application module in the Application Navigator, select the source file
for the interface of the same name in the Structure window, and
choose Rebuild from the context menu. Consider this tip for new
custom methods added to view objects and view rows as well.

Publishing Custom Service Methods to UI Clients

Implementing Business Services with Application Modules 9-37

Figure 9–24 Custom View Row Interface Extends the Base Row Interface

9.9.4 How to Test Custom Service Methods Using the Business Component Browser
You can test the methods of your custom application module in the Business
Component Browser after you have published them on the client interface, as
described in Section 9.9, "Publishing Custom Service Methods to UI Clients."

To test the service methods that you have published:
1. In the Application Navigator, expand the project containing the desired

application module and view objects.

2. Right-click the application module and choose Run.

Alternatively, choose Debug when you want to run the application in the Business
Component Browser with debugging enabled. JDeveloper opens the debugger
process panel in the Log window and the various debugger windows. When
debugging using the Business Component Browser, you can use these windows to
view status message and exceptions, step in and out of source code, and manage
breakpoints.

For information about receiving diagnostic messages specific to ADF Business
Component debugging, see Section 6.3.8, "How to Enable ADF Business
Components Debug Diagnostics."

3. To open the method testing panel for a method defined by a client interface, do
one of the following:

■ In the data model tree, select the application module node and from the main
menu choose View - Operations when you want to execute a method you
published for the application module client interface. You can also
double-click the application module node to display the method testing panel.

■ In the data model tree, select the desired view object node and from the main
menu choose View - Operations when you want to execute a method you
published on the client interface for a view object. You can also right-click the
view object node and choose Operations.

4. To open the method testing panel for a method defined by a client row interface
for a view object row, expand the data model tree, right-click the desired view
object node and choose Show Table. Then in the overview panel for the view
instance, select the desired row, and from the main menu, choose View -
Operations.

Publishing Custom Service Methods to UI Clients

9-38 Fusion Developer's Guide for Oracle Application Development Framework

Do not select a master view instance in the data model tree since view row
operations are not permitted on master view objects. Always select a detail view
instance or a view instance that is not specified in a master-detail hierarchy, as
shown in Figure 9–25.

Figure 9–25 Menu Selection for View Row Operations in the Business Component
Browser

5. In the method panel, select the desired service method from the dropdown list,
enter values to pass as method parameters, and click Execute.

Notice that the method testing panel displays the parameter names to help you
identify where to enter the values to pass. This is particularly useful when the
method signature defines multiple parameters of the same data type.

You can view the return value (if any) and test result. The result displayed in the
Business Component Browser will indicate whether or not the method executed
successfully.

9.9.5 What You May Need to Know About Method Signatures on the Client Interface
You can include any custom method in the client interface that obeys these
implementation rules:

■ If the method has a non-void return type, the type must be serializable.

■ If the method accepts any parameters, all their types must be serializable.

■ If the method signature includes a throws clause, the exception must be an
instance of JboException in the oracle.jbo package.

In other words, all the types in its method signature must implement the
java.io.Serializable interface, and any checked exceptions must be
JboException or its subclass. Your method can throw any unchecked exception —
java.lang.RuntimeException or a subclass of it — without disqualifying the
method from appearing on the application module's client interface.

Note that method signatures of type java.util.List are allowed as long as the
implementing class for the interface is serializable. For example,
java.util.ArrayList and java.util.LinkedList are both serializable
implementing classes. The same requirement applies to element types within the
collection. The ADF Business Components runtime will produce an error if you

Tip: In the case of a detail view instance, you can open the master
view instance to navigate to the detail with the desired row. The
Business Component Browser automatically synchronizes the data
displayed in the open overview panel with the master view instance
that you navigate to.

Working Programmatically with an Application Module's Client Interface

Implementing Business Services with Application Modules 9-39

instantiate a class that implements the interface yet does not implement the
java.io.Serializable interface.

9.9.6 What You May Need to Know About Passing Information from the Data Model
The private implementation of an application module custom method can easily refer
to any view object instance in the data model using the generated accessor methods.
By calling the getCurrentRow() method on any view object, it can access the same
current row for any view object that the client user interface sees as the current row.
As a result, while writing application module business service methods, you may not
need to pass in parameters from the client. This is true if you would be passing in
values only from the current rows of other view object instances in the same
application module's data model.

For example, the custom application module method in Example 9–11 accepts no
parameters. Internally, the createOrderItem() method calls
getGlobals().getCurrentRow() to access the current row of the Globals view
object instance. Then it uses the strongly typed accessor methods on the row to access
the values of the Description and LineItemId attributes to set them as the values
of corresponding attributes in a newly created OrderItem entity object row.

Example 9–11 Using View Object Accessor Methods to Access a Current Row

// In StoreServiceAMImpl.java, createOrderItem() method
GlobalsRowImpl globalsRow = (GlobalsRowImpl)getGlobals().getCurrentRow();
newReq.setDescription(globalsRow.getDescription());
newReq.setLineItemId(globalsRow.getLineItemId());

9.10 Working Programmatically with an Application Module's Client
Interface

After publishing methods on your application module's client interface, you can
invoke those methods from a client.

9.10.1 How to Work Programmatically with an Application Module's Client Interface
To work programmatically with an application module's client interface, do the
following:

■ Cast ApplicationModule to the more specific client interface.

■ Call any method on the interface.

Note: If the method you've added to the application module class
doesn't appear in the Available list, first verify that it doesn't violate
any of the method implementation rules. If it seems like it should be a
legal method, try recompiling the application module class before
visiting the overview editor for the application module again.

Note: For simplicity, this section focuses on working only with the
custom application module interface; however, the same downcasting
approach works on the client to use a ViewObject interface as a view
object interface like Orders or a Row interface as a custom view row
interface like OrdersRow.

Working Programmatically with an Application Module's Client Interface

9-40 Fusion Developer's Guide for Oracle Application Development Framework

Example 9–12 illustrates a TestClientCustomInterface class that puts these two
steps into practice. You could also use the main() method of this class to test
application module methods, as described in Section 9.7.5, "How to Test the Custom
Application Module Using a Static Main Method." Here you use it to call all of the
same methods from the client using the StoreFrontService client interface.

The basic logic of Example 9–12 follows these steps:

1. Retrieve the total for order 1011.

2. Retrieve the name of the customer for order 1011.

3. Set the status of order 1011 to the value "CANCEL".

4. Create a new product supplying a null product name.

5. Create a new product with a product name and display its newly assigned
product ID.

Example 9–12 Using the Custom Interface of an Application Module from the Client

package devguide.examples.appmodules;

import devguide.examples.appmodules.common.StoreFrontService;
import devguide.examples.entities.PersonsEOImpl;
import devguide.examples.entities.ProductsBaseEOImpl;

import oracle.jbo.ApplicationModule;
import oracle.jbo.JboException;
import oracle.jbo.Key;
import oracle.jbo.client.Configuration;
import oracle.jbo.domain.DBSequence;
import oracle.jbo.domain.Number;
import oracle.jbo.server.ApplicationModuleImpl;
import oracle.jbo.server.EntityDefImpl;

public class TestClientCustomInterface {
public static void main(String[] args) {
String amDef = "devguide.model.StoreFrontService";
String config = "StoreFrontServiceLocal";
/*
* This is the correct way to use application custom methods
* from the client, by using the application module's automatically-
* maintained custom service interface.
*/
// Acquire instance of application module, cast to client interface

StoreFrontService service =
(StoreFrontService)Configuration.createRootApplicationModule(amDef,config);
String total = service.findOrderTotal(1011);
System.out.println("Status of Order # 1011 = " + total);
String customerName = service.findOrderCustomer(1011);
System.out.println("Customer for Order # 1011 = " + customerName);
try {

service.updateOrderStatus(1011,"CANCEL");

Note: If you work with your application module using the default
ApplicationModule interface in the oracle.jbo package, you
won’t have access to your custom methods. Make sure to cast the
application module instance to your more specific custom interface
like the StoreFrontService interface in this example.

Working Programmatically with an Application Module's Client Interface

Implementing Business Services with Application Modules 9-41

}
catch (JboException ex) {

System.out.println("ERROR: "+ex.getMessage());
}
long id = 0;
try {

id = service.createProduct(null, "NEW", "CLASS1");
}
catch (JboException ex) {

System.out.println("ERROR: "+ex.getMessage());
}
id = service.createProduct("Canon PowerShot G9", "NEW", "CLASS1");
System.out.println("New product created successfully with id = "+id);
Configuration.releaseRootApplicationModule(am,true);

}
}
Running the test client in Example 9–12 calls the custom methods of the client
interface, and shows the following output:

Total for Order # 1011 = 99.99
Customer for Order # 1011 = John Chen
ERROR: JBO-27014: Attribute ProductName in ProductsBaseEO is required.
New product created successfully with id = 133

Notice that the first attempt to call createProduct() with a null for the product
name raises an exception due to the built-in mandatory validation on the Name
attribute of the Product entity object

9.10.2 What Happens When You Work with an Application Module's Client Interface
Because the client layer accessing your application module will be located in the same
tier of the Java EE architecture, the application module is deployed in what is known
as local mode. In local mode, the client interface is implemented directly by your
custom application module Java class. You access an application module in local mode
whether you need to access the application module in the web tier of a JavaServer
Faces application or you need to access the application module in the client tier
(two-tier client-server style) for a Swing application.

9.10.3 How to Access an Application Module Client Interface in a Fusion Web
Application

The Configuration class in the oracle.jbo.client package makes it very easy
to get an instance of an application module for testing. This eases writing test client
programs like the test client program described in Section 31.10, "Regression Testing
with JUnit" as part of the JUnit regression testing fixture.

When working with Fusion web applications using the ADF Model layer for data
binding, JDeveloper configures a servlet filter in your user interface project called the
ADFBindingFilter. It orchestrates the automatic acquisition and release of an

Best Practice: For Fusion web applications you should always work
though the binding layer to access the application module. While
developers may be tempted to use the class
createRootApplicationModule() and
releaseApplicationModule() methods anywhere to access an
application module, the best approach is to use the declarative
features of the ADF Model layer.

Working Programmatically with an Application Module's Client Interface

9-42 Fusion Developer's Guide for Oracle Application Development Framework

appropriate application module instance based on declarative binding metadata, and
ensures that the service is available to be looked up as a data control using a known
action binding or iterator binding, specified by any page definition file in the user
interface project. You may eventually want to read about the ADF binding container,
data controls, page definition files, and bindings, as described in Chapter 12, "Using
ADF Model in a Fusion Web Application." For now, it is enough to realize that you can
access the application module's client interface from this DCBindingContainer by
naming an ADF action binding or an ADF iterator binding. You can reference the
binding context and call methods on the custom client interface in a JSF managed
bean, as shown in Example 9–13 for an action binding and Example 9–14 for an
iterator binding.

To access the custom interface of your application module using an action binding,
follow these basic steps (as illustrated in Example 9–13):

1. Access the ADF binding container.

2. Find a named action binding. (Use the name of any available action binding in the
page definition files of the user interface project.)

3. Get the data control by name from the action binding.

4. Access the application module data provider from the data control.

5. Cast the application module to its client interface.

6. Call any method on the client interface.

Example 9–13 Accessing the Application Module Client Interface in a JSF Backing Bean
Using a Named Action Binding

package demo.view;
import oracle.fodemo.storefront.store.service.common.StoreServiceAM;
import oracle.adf.model.binding.DCBindingContainer;
import oracle.adf.model.binding.DCDataControl;
import oracle.jbo.ApplicationModule;
import oracle.jbo.uicli.binding.JUCtrlActionBinding;
public class YourBackingBean {
public String commandButton_action() {
// Example using an action binding to get the data control
public String commandButton_action() {
// 1. Access the binding container
DCBindingContainer bc = (DCBindingContainer)getBindings();
// 2. Find a named action binding
JUCtrlActionBinding action =

(JUCtrlActionBinding)bc.findCtrlBinding("SomeActionBinding");
// 3. Get the data control from the iterator binding (or method binding)
DCDataControl dc = action.getDataControl();
// 4. Access the data control's application module data provider
ApplicationModule am = (ApplicationModule)dc.getDataProvider();
// 5. Cast the AM to call methods on the custom client interface
StoreServiceAM service = (StoreServiceAM)am;
// 6. Call a method on the client interface
service.doSomethingInteresting();
return "SomeNavigationRule";

}
}
To access the custom interface of your application module using an iterator binding,
follow these basic steps (as illustrated in Example 9–14):

1. Access the ADF binding container.

Overriding Built-in Framework Methods

Implementing Business Services with Application Modules 9-43

2. Find a named iterator binding. (Use the name of any iterator binding in the page
definition files of the user interface project.)

3. Get the data control by name from the iterator binding.

4. Access the application module data provider from the data control.

5. Cast the application module to its client interface.

6. Call any method on the client interface.

Example 9–14 Accessing the Application Module Client Interface in a JSF Backing Bean
Using a Named Iterator Binding

package demo.view;
import oracle.fodemo.storefront.store.service.common.StoreServiceAM;
import oracle.adf.model.binding.DCBindingContainer;
import oracle.adf.model.binding.DCDataControl;
import oracle.adf.model.binding.DCIteratorBinding;
import oracle.jbo.ApplicationModule;
public class YourBackingBean {
public String commandButton_action() {
// Example using an iterator binding to get the data control
public String commandButton_action() {
// 1. Access the binding container
DCBindingContainer bc = (DCBindingContainer)getBindings();
// 2. Find a named iterator binding
DCIteratorBinding iter = bc.findIteratorBinding("SomeIteratorBinding");
// 3. Get the data control from the iterator binding
DCDataControl dc = iter.getDataControl();
// 4. Access the data control's application module data provider
ApplicationModule am = (ApplicationModule)dc.getDataProvider();
// 5. Cast the AM to call methods on the custom client interface
StoreServiceAM service = (StoreServiceAM)am;
// 6. Call a method on the client interface
service.doSomethingInteresting();
return "SomeNavigationRule";

}
}
These backing bean examples depend on the helper method shown in Example 9–15.

Example 9–15 Helper Method for Backing Bean Class

public BindingContainer getBindings() {
{

return BindingContext.getCurrent().getCurrentBindingsEntry();
}

If you create the backing bean class by overriding a button that is declaratively bound
to an ADF action, then JDeveloper will automatically generate this method in your
class. Otherwise, you will need to add the helper method to your class yourself.

9.11 Overriding Built-in Framework Methods
The ApplicationModuleImpl base class provides a number of built-in methods
that implement its functionality. While Appendix E, "Most Commonly Used ADF
Business Components Methods" provides a quick reference to the most common code
that you will typically write, use, and override in your custom application module
classes, this section focuses on helping you understand the basic steps to override one
of these built-in framework methods to augment the default behavior.

Overriding Built-in Framework Methods

9-44 Fusion Developer's Guide for Oracle Application Development Framework

9.11.1 How to Override a Built-in Framework Method
To override a built-in framework method for an application module, use the Override
Methods dialog, which you select for the application module Java class from the main
menu.

Before you begin:
Create the desired application module as described in Section 9.2.1, "How to Create an
Application Module."

To override an application module framework method:
1. In the Application Navigator, double-click the application module.

2. In the overview editor, click the Java navigation tab.

3. On the Java Classes page, click the linked file name of the application module Java
class that you want to customize.

JDeveloper opens the class file in the source editor.

4. From the main menu, choose Source > Override Methods.

If the Source menu is not displayed, be sure that the desired Java class file is open
and that the source editor is visible.

5. In the Override Methods dialog, scroll the list to locate the desired methods or
type the first few letters of the method name to perform an incremental search.

6. Select one or more methods.

The Override Methods dialog allows you to select any number of methods to
override simultaneously.

For example, if you wanted to override the application module's
prepareSession() method to augment the default functionality when a new
user session begins working with an application module service component for
the first time, you would select the checkbox next to the
prepareSession(Session) method, as shown in Figure 9–26.

Figure 9–26 Overriding a Built-in Framework Method

Overriding Built-in Framework Methods

Implementing Business Services with Application Modules 9-45

7. Click OK.

9.11.2 What Happens When You Override a Built-in Framework Method
When you dismiss the Override Methods dialog, you return to the source editor with
the cursor focus on the overridden method, as shown in Figure 9–27. Notice that the
method appears with a single line that calls super.prepareSession(). This is the
syntax in Java for invoking the default behavior that the base class would have
normally performed for this method. By adding code before or after this line in the
custom application module class, you can augment the default behavior before or after
the default functionality.

Figure 9–27 Source Editor Margin Gives Visual Feedback About Overridden Methods

Also notice that when you override a method using the Override Methods dialog, the
source editor inserts the JDK @Override annotation just before the overridden
method. This causes the compiler to generate a compile-time error if the method in the
application module class does not match the signature of any method in the
superclass.

Be careful when you add method names to your class to override a method in the
superclass; you must have the signature exactly the same as the base class method you
want to override. Be sure to add the @Override annotation just before the method.
This way, if your method does not match the signature of any method in the
superclass, the compiler will generate a compile-time error. Also, when you write code
for a method instead of calling the superclass implementation, you should have a
thorough understanding of what built-in code you are suppressing or replacing.

9.11.3 How to Override prepareSession() to Set Up an Application Module for a New
User Session

Since the prepareSession() method is invoked by the application module when it
is used for the first time by a new user session, it's a useful method to override in your
custom application module class to perform setup tasks that are specific to each new
user that uses your application module. Example 9–16 illustrates an overridden
prepareSession() method in the
oracle.fodemo.storefront.adfextensions.FODApplicationModuleImpl
class that invokes a setCurrentUserLanguage() helper method to initialize the
language used by the application.

Example 9–16 Initializing the Language to Use for Current User Session

public class FODApplicationModuleImpl extends ApplicationModuleImpl {

public static String preferredLanguage;
public static boolean isWebUser=false;
private String[] supportedLanguages = {"EN","JA","EL","FR","DE"};

 /**
 * @param session
 */
 @Override
 protected void prepareSession(Session session) {

Overriding Built-in Framework Methods

9-46 Fusion Developer's Guide for Oracle Application Development Framework

 super.prepareSession(session);
 setCurrentUserLanguage();
 }

 private void setCurrentUserLanguage() {
 DBTransactionImpl dbti = (DBTransactionImpl)getDBTransaction();
 CallableStatement statement =
 dbti.createCallableStatement(("BEGIN " +
 "user_context_pkg.set_app_user_lang(?); " +
 "END;"), 0);
 try {
 statement.setString(1, getApplicationLanguage());
 statement.execute();
 } catch (SQLException sqlerr) {
 throw new JboException(sqlerr);
 } finally {
 try {
 if (statement != null) {
 statement.close();
 }
 } catch (SQLException closeerr) {
 throw new JboException(closeerr);
 }
 }
 }

 /**
 * @return
 */
 public String getApplicationLanguage(){
 String appLanguage = "EN";
 if (isWebUser){
 for (int index=0; index<supportedLanguages.length; index++){
 if (preferredLanguage.equals(supportedLanguages[index])){
 appLanguage = preferredLanguage;
 break;
 }
 }
 } else{
 appLanguage = getAMLanguage();
 }
 return appLanguage;
 }

 /**
 * @return
 */
 public String getAMLanguage(){
 PropertyMetadata langProperty =
 PropertyMetadata.findProperty("jbo.default.language");
 String amLanguage = langProperty.getProperty();
 return amLanguage.toUpperCase();
 }
}

10

Sharing Application Module View Instances 10-1

10Sharing Application Module View Instances

This chapter describes how to organize your ADF Business Components data model
project to most efficiently share read-only data accessed from lookup tables or other
static data source, such as a flat file. It describes the differences between ADF
application modules that you may share at the application level and those that you
may share at the session level.

This chapter includes the following sections:

■ Section 10.1, "Introduction to Shared Application Modules"

■ Section 10.2, "Sharing an Application Module Instance"

■ Section 10.3, "Defining a Base View Object for Use with Lookup Tables"

■ Section 10.4, "Accessing View Instances of the Shared Service"

■ Section 10.5, "Testing View Object Instances in a Shared Application Module"

10.1 Introduction to Shared Application Modules
Web applications often utilize data that is required across sessions and does not
change very frequently. An example of this type of static data might be displayed in the
application user interface in a lookup list. Each time your application accesses the
static data, you could incur an unnecessary overhead when the static data caches are
repopulated from the database for each application session on every request. In order
to optimize performance, a common practice when working with ADF Business
Components is to cache the shared static data for reuse across sessions and requests.

10.2 Sharing an Application Module Instance
Declarative support for shared data caches is available in JDeveloper through the
Project Properties dialog. Creating a shared application module allows requests from
multiple sessions to share a single application module instance which is managed by
an application pool for the lifetime of the web server virtual machine.

Sharing an Application Module Instance

10-2 Fusion Developer's Guide for Oracle Application Development Framework

As shown in Figure 10–1, the Project Properties dialog lets you specify
application-level or session-level sharing of the application module’s data model. In
the case of application-level sharing, any HTTP user session will be able to access the
same view instances contained in the shared application module. In contrast, the
lifecycle of the session-level shared application module extends to an application module
session (SessionImpl) that is in use by a single HTTP user session and applies to a
single root application module. In this case, each distinct root application module used
by a given HTTP user session will get its own distinct instance of a session-scoped
shared application module. In other words, distinct root application modules used by
the same HTTP session do not share data in a session-scoped shared application
module.

Figure 10–1 Project Properties Dialog Defines Shared Application Module Instance

When you create the data model for the application module that you intend to share,
be sure that the data in cached row sets will not need to be changed either at the
application level or session level. For example, in the application-level shared
application module, view instances should query only static data such as state codes
or currency types. If a view object instance queries data that depends on the current
user, then the query can be cached at the session level and shared by all components
that reference the row-set cache. For example, the session-level shared application
module might contain a view instance with data security that takes a manager as the

Best Practice: Use a shared application module to group view
instances when you want to reuse lists of static data across the
application. The shared application module can be configured to
allow any user session to access the data or it can be configured to
restrict access to just the UI components of a single user session. For
example, you can use a shared application module to group view
instances that access lookup data, such as a list of countries. The use of
a shared application module allows all shared resources to be
managed in a single place and does not require a scoped managed
bean for this purpose.

Sharing an Application Module Instance

Sharing Application Module View Instances 10-3

current user to return the list of direct reports. In this case, the cache of direct reports
would exist for the duration of the manager’s HTTP user session. The ADF Business
Components application module pool will recreate the session-scoped application
module should an HTTP user session be assigned a recycled application module from
the pool. This ensures that the duration of the session-scoped application module is
tied to the HTTP session for as long as the HTTP session is able to continue to use the
same root application module instance. Note that the cache of direct reports of the
session-level shared application module cannot be accessed across distinct root
application modules.

10.2.1 How to Create a Shared Application Module Instance
To create a shared application module instance, use the Project Properties dialog. You
define a logical name for a distinct, separate root application module that will hold
your application’s read-only data.

Before you begin:
Create the application module that you will share as described in Section 9.2.1, "How
to Create an Application Module."

To create a shared application module instance:
1. In the Application Navigator, right-click the project in which you want to create

the shared application module and choose Project Properties.

2. In the Project Properties dialog, expand Business Components and select
Application Module Instances.

3. In the Available Application Modules list, select the desired application module
and shuttle it to the Application Module Instances list.

4. Assign the application module a unique instance name.

The shared application module instance (of either scope) must have a unique
instance name. Supplying a meaningful name will also help to clarify which
shared application module instance a given usage is referencing.

5. Select the Cache level of the shared application module:

■ When you want to define the shared application module for the context of the
application, select Application.

■ When you want to define the shared application module for the context of the
current user session, select Session.

6. Click OK.

10.2.2 What Happens When You Define a Shared Application Module
JDeveloper automatically creates the AppModuleNameShared configuration when
you create an application module. The presence of this configuration in the
bc4j.xcfg file informs JDeveloper that the application module is a candidate to be
shared, and allows JDeveloper to display the application module in the Available
Application Modules list of the Project Properties dialog’s Application Module Usage
page.

The AppModuleNameShared configuration sets these properties on the application
module to enable sharing and help to maintain efficient use of the shared resource at
runtime:

Sharing an Application Module Instance

10-4 Fusion Developer's Guide for Oracle Application Development Framework

■ jbo.ampool.isuseexclusive is set to false to specify that requests from
multiple sessions can share a single instance of the application module, which is
managed by the application pool for the lifetime of the web server virtual
machine. When you do not enable application module sharing, JDeveloper sets the
value true to repopulate the data caches from the database for each application
session on every request.

■ jbo.ampool.maxpoolsize is set to 1 (one) to specify that only a single
application module instance will be created for the ADF Business Components
application module pool. This setting enforces the efficient use of the shared
application module resource and prevents unneeded multiple instances of the
shared application module from being created at runtime.

You can view the shared application module’s configuration by choosing
Configurations from the context menu on the application module in the Application
Navigator. JDeveloper saves the bc4j.xcfg file in the ./common subdirectory
relative to the application module’s XML component definition. If you remove the
configuration or modify the values of the jbo.ampool runtime properties
(isuseexclusive, maxpoolsize), the application module will not be available to
use as a shared application module instance.

For example, if you look at the bc4j.xcfg file in the
./src/oracle/fodemo/storefront/lookups/common directory of the Fusion
Order Demo application’s StoreFrontService project, you will see the two named
configurations for the LookupServiceAM application module, as shown in
Example 10–1. Specifically, the LookupServiceAMShared configuration sets the
jbo.ampool runtime properties on the shared application module instance. For more
information about the ADF Business Components application module pooling and
runtime configuration of application modules, see Chapter 41, "Tuning Application
Module Pools and Connection Pools."

Example 10–1 LookupServiceAMShared Configuration in the bc4j.xcfg File

<BC4JConfig version="11.1" xmlns="http://xmlns.oracle.com/bc4j/configuration">
 <AppModuleConfigBag
 ApplicationName="oracle.fodemo.storefront.lookups.LookupServiceAM">
 <AppModuleConfig DeployPlatform="LOCAL"
 JDBCName="FOD"
 jbo.project="StoreFrontService"
 name="LookupServiceAMLocal"
 ApplicationName="oracle.fodemo.storefront.lookups.LookupServiceAM">
 <Database jbo.locking.mode="optimistic"/>
 <Security
 AppModuleJndiName="oracle.fodemo.storefront.lookups.LookupServiceAM"/>
 </AppModuleConfig>
 <AppModuleConfig DeployPlatform="LOCAL"
 JDBCName="FOD"
 jbo.project="StoreFrontService"
 name="LookupServiceAMShared"
 ApplicationName="oracle.fodemo.storefront.lookups.LookupServiceAM">
 <AM-Pooling jbo.ampool.dynamicjdbccredentials="false"
 jbo.ampool.isuseexclusive="false"
 jbo.ampool.maxpoolsize="1"
 jbo.ampool.resetnontransactionalstate="false"/>
 <Database jbo.locking.mode="optimistic"/>
 <Security
 AppModuleJndiName="oracle.fodemo.storefront.lookups.LookupServiceAM"/>
 </AppModuleConfig>
 </AppModuleConfigBag>

Sharing an Application Module Instance

Sharing Application Module View Instances 10-5

</BC4JConfig>

Because the shared application module can be accessed by any Business Components
project in the same application workspace, JDeveloper maintains the scope of the
shared application module in the Business Components project configuration file
(.jpx). This file is saved in the src directory of the project. For example, if you look at
the StoreFrontService.jpx file in the ./src directory of the Fusion Order Demo
application’s StoreFrontService project, you will see that the
SharedLookupService application module’s usage definition specifies
SharedScope = 2, corresponding to application-level sharing, as shown in
Example 10–2. An application module that you set to session-level sharing will show
SharedScope = 1.

Example 10–2 Application Module Usage Configuration in the .jpx File

<JboProject
 xmlns="http://xmlns.oracle.com/bc4j"
 Name="StoreFrontService"
 SeparateXMLFiles="true"
 PackageName="">
 . . .
 <AppModuleUsage
 Name="SharedLookupService"
 FullName="oracle.fodemo.storefront.lookups.LookupServiceAM"
 ConfigurationName="oracle.fodemo.storefront.lookups.LookupServiceAMShared"
 SharedScope="2"/>
</JboProject>

10.2.3 What You May Need to Know About Design Time Scope of the Shared
Application Module

Defining the shared application module in the Project Properties dialog makes the
application module’s data model available to other Business Components projects of
the same application workspace only. When you want to make the data model
available beyond the application workspace, you can publish the data model as an
ADF Library, as described in Chapter 33, "Reusing Application Components."

When viewing a data control usage from the DataBindings.cpx file in the Structure
window, do not set the Configuration property to a shared application module
configuration. By default, for an application module named AppModuleName, the
Property Inspector will list the configurations named AppModuleNameShared and
AppModuleNameLocal. At runtime, Oracle Application Development Framework
(Oracle ADF) uses the shared configuration automatically when you configure an
application as a shared application module, but the configuration is not designed to be
used by an application module data control usage. For more information about data
control usage, see Section 12.4, "Working with the DataBindings.cpx File."

10.2.4 What You May Need to Know About the Design Time Scope of View Instances of
the Shared Application Module

In JDeveloper, you must define view accessors on the business component definition
for the project that will permit access to view instances of the shared application
module. The view accessor lets you point from an entity object or view object
definition in one Business Components project to a view object definition or view
instance in a shared application module. For details about creating view accessors for
this purpose, see Section 10.4, "Accessing View Instances of the Shared Service."

Sharing an Application Module Instance

10-6 Fusion Developer's Guide for Oracle Application Development Framework

10.2.5 What You May Need to Know About Managing the Number of Shared Query
Collections

Similar to the way application module pooling works in ADF Business Components,
shared query collections are stored in a query collection pool. To manage the query
collection pool, the ADF Business Components framework removes query collections
based on a maximum idle time setting. This behavior limits the growth of the cache
and prevents rarely-used query collections from occupying memory space.

As in application module and connection pooling, a query collection pool monitor
wakes up after a user-specified sleep interval and then initiates the cleanup operation.
Any query collection that exceeds the maximum idle time (length of time since it was
last used), will be removed from the pool.

You can change the default values for the maximum idle time for the shared query
collection (default is 900000 ms/15 min) and the sleep period for its pool monitor
(default is 1800000 ms/30 min). To configure these values, open the Edit Business
Components Configuration dialog, select the AppModuleNameShared configuration,
and set these properties in the Properties page of the editor:

■ jbo.qcpool.monitorsleepinterval the time (ms) that the shared query
collection pool monitor should sleep between pool checks.

■ jbo.qcpool.maxinactiveage the maximum amount of time (ms) that a
shared query collection may remain unused before it is removed from the pool.

10.2.6 What You May Need to Know About Shared Application Modules and
Connection Pooling

The default connection behavior for all application modules is to allow each root
application module to have its own database connection. When your application
defines more than one shared application module, you can change the default to
optimize database connection usage by defining a named transaction for each root
application module to use. The transaction name is an arbitrary string that you set on
the jbo.shared.txn property in the Properties page of the editor for the
bc4j.xcfg file of the root application module. At runtime, the root application
modules with the same jbo.shared.txn property setting (identified by the string
you supply) will share the same database connection and entity cache. This
optimization can reduce the database resources that the application uses and is
particularly useful in shared application modules cases because they are read only and
have longer life than transactional application modules.

Currently, the application module configuration parameter
jbo.doconnectionpooling=true is not supported for use with shared application
modules. This feature is available to configure non-shared application modules when
it is desirable to release JDBC connection objects to the database connection pool.

This feature is intentionally not supported for shared application modules to prevent
decreases in performance that would result from managing state for shared access.
Instead, the default use of jbo.doconnectionpooling=false is enforced.

The default connection pooling configuration ensures that each shared application
module instance holds onto the JDBC connection object that it acquires from the pool
until the application module instance is removed from the application module pool.
For more information about the jbo.doconnectionpooling parameter and
connection pool behavior, see Section 41.2.6, "What You May Need to Know About
How Database and Application Module Pools Cooperate."

Defining a Base View Object for Use with Lookup Tables

Sharing Application Module View Instances 10-7

10.3 Defining a Base View Object for Use with Lookup Tables
When your application needs to display static data, you can define a shared
application module with view instances that most likely will access lookup tables. A
lookup table is a static, translated list of data to which the application refers. Lookup
table data can be organized in the database in various ways. While it is possible to
store related lookup data in separate tables, it is often convenient to combine all of the
lookup information for your application within a single table. For example, a column
LOOKUP_TYPE created for the ORDERS_LOOKUPS table would serve to partition one
table that might contain diverse codes such as FWK_TBX_YES_NO for the values yes
and no, FWK_TBX_COUNTRY for country names, and FWK_TBK_CURRENCY for the
names of national currencies.

When your database schema organizes lookup data in a single database table, you
want to avoid creating individual queries for each set of data. Instead, you will use the
overview editor to define a single, base view object that maps the desired columns of
the lookup table to the view object attributes you define. Since only the value of the
LOOKUP_TYPE column will need to change in the query statement, you can add view
criteria on the view object definition to specify a WHERE clause that will set the
LOOKUP_TYPE value. In this way, your application encapsulates access to the lookup
table data in a single view object definition that will be easy to maintain when a
LOOKUP_TYPE value changes or your application needs to query additional lookup
types.

10.3.1 How to Create a Base View Object Definition for a Lookup Table
The base view object that queries columns of the lookup table will be a read-only view
object, since you do not need to handle updating data or require any of the benefits
provided by entity-based view objects. (For a description of those benefits, see
Section 5.1.2, "Runtime Features Unique to Entity-Based View Objects.")

To create a read-only view object, use the Create View Object wizard, which is
available from the New Gallery.

To create a base view object for a lookup table:
1. In the Application Navigator, locate the shared application module you created in

which you want to create the view object, right-click its package node, and choose
New.

2. In the New Gallery, expand Business Tier, select ADF Business Components and
then select View Object, and click OK.

3. In the Create View Object wizard, on the Name page, enter a package name and a
view object name.

When naming the package, consider creating a separate package for the lookup.

4. Select Read-only access through SQL query to indicate that you want this view
object to manage data with read-only access and click Next.

Note: While read-only view objects you create to access lookup
tables are ideal for inclusion in a shared application module, if you
intend to share the view object in a shared application module
instance, you must create the view object in the same package as the
shared application module.

Defining a Base View Object for Use with Lookup Tables

10-8 Fusion Developer's Guide for Oracle Application Development Framework

5. On the Query page, enter your SQL statement directly into the Query Statement
box.

Your query names the columns of the lookup table, similar to the SQL statement
shown in Figure 10–2 to query the LOOKUP_CODE, MEANING, and DESCRIPTION
columns in the LOOKUP_CODES table.

Figure 10–2 Create View Object Wizard, SQL Query for Lookup Table

6. After entering the query statement, no other changes are required. Click Next.

7. On the Bind Variables page, click Next.

8. On the Attribute Mappings page, note the mapped view object attribute names
displayed and click Next.

By default, the wizard creates Java-friendly view object attribute names that
correspond to the SELECT list column names.

9. On the Attribute Settings page, from the Select Attribute dropdown, select the
attribute that corresponds to the primary key of the queried table and then enable
the Key Attribute checkbox.

Because the read-only view object is not based on an entity object, the Create View
Object wizard does not define a key attribute by default. Failure to define the key
attribute can result in unexpected runtime behavior for ADF Faces components
with a data control based on the read-only view object collection. In the case of
read-only view objects, define the key attribute, as shown in Figure 10–3.

Defining a Base View Object for Use with Lookup Tables

Sharing Application Module View Instances 10-9

Figure 10–3 Create View Object Wizard, Attribute Settings Page

10. If you want to rename individual attributes to use names that might be more
appropriate, from the Select Attributes dropdown, choose the attribute and enter
the desired name in the Name field. When you are finished, click Next.

For example, the Fusion Order Demo application renames the default attributes
LookupType and LookupCode to Type and Value respectively. Changes you
make to the view object definition will not change the underlying query.

11. On the Java page, click Next.

12. On the Application Module page, do not add an instance of the view object to the
application module data model. Click Finish.

The shared application module data model will include view instances based on
view criteria that you add to the base view object definition. In this way, you do
not need to create an individual view object to query each LOOKUP_TYPE value.
For details about adding the view object instances to the data model, see
Section 9.2.3.2, "Adding Master-Detail View Object Instances to an Application
Module."

10.3.2 What Happens When You Create a Base View Object
When you create the view object definition for the lookup table, JDeveloper first
describes the query to infer the following from the columns in the SELECT list:

■ The Java-friendly view attribute names (for example, LookupType instead of
LOOKUP_TYPE)

By default, the wizard creates Java-friendly view object attribute names that
correspond to the SELECT list column names.

■ The SQL and Java data types of each attribute

JDeveloper then creates the XML component definition file that represents the view
objects's declarative settings and saves it in the directory that corresponds to the name
of its package. For example, the XML file created for a view object named

Defining a Base View Object for Use with Lookup Tables

10-10 Fusion Developer's Guide for Oracle Application Development Framework

LookupsBaseVO in the lookups package is ./lookups/LookupsBaseVO.xml
under the project's source path.

To view the view object settings, expand the desired view object in the Application
Navigator, select the XML file under the expanded view object, and open the Structure
Window. The Structure window displays the list of definitions, including the SQL
query and the properties of each attribute. To open the file in the editor, double-click
the corresponding .xml node. As shown in Example 10–3, the LookupsBaseVO.xml
file defines one <SQLQuery> definition and one <ViewAttribute> definition for
each mapped column. Without a view criteria to filter the query results, the view
object query returns the LOOKUP_CODE, LOOKUP_MEANING, and LOOKUP_
DESCRIPTION and maps them to view instance attribute values for Value, Name, and
Description respectively. Key attributes are defined to ensure proper row set
navigation when the base view object collection is bound to an ADF Faces component.

Example 10–3 LookupsBaseVO SQL Query and Attribute Mapping Definition

<ViewObject
 xmlns="http://xmlns.oracle.com/bc4j"
 Name="LookupsBaseVO"
 BindingStyle="OracleName"
 CustomQuery="true"
 PageIterMode="Full"
 UseGlueCode="false"
 FetchMode="FETCH_AS_NEEDED"
 FetchSize="500">
 <SQLQuery>
 <![CDATA[SELECT L.LOOKUP_TYPE
 ,L.LOOKUP_CODE
 ,L.MEANING
 ,L.DESCRIPTION
 FROM LOOKUP_CODES L
 WHERE L.LANGUAGE = USERENV('CLIENT_INFO')
 ORDER BY L.MEANING]]>
 </SQLQuery>
 <DesignTime>
 <Attr Name="_codeGenFlag2" Value="Access|VarAccess"/>
 <Attr Name="_isExpertMode" Value="true"/>
 </DesignTime>
 <ViewAttribute
 Name="Type"
 IsUpdateable="false"
 IsPersistent="false"
 IsNotNull="true"
 PrecisionRule="true"
 Precision="255"
 Type="java.lang.String"
 ColumnType="VARCHAR2"
 AliasName="LOOKUP_TYPE"
 Expression="LOOKUP_TYPE"
 SQLType="VARCHAR">
 <DesignTime>
 <Attr Name="_DisplaySize" Value="30"/>
 </DesignTime>
 ...
 </ViewAttribute>
 <ViewAttribute
 Name="Value"
 IsUpdateable="false"
 IsPersistent="false"

Defining a Base View Object for Use with Lookup Tables

Sharing Application Module View Instances 10-11

 IsNotNull="true"
 PrecisionRule="true"
 Precision="30"
 Type="java.lang.String"
 ColumnType="VARCHAR2"
 AliasName="LOOKUP_CODE"
 Expression="LOOKUP_CODE"
 SQLType="VARCHAR">
 <DesignTime>
 <Attr Name="_DisplaySize" Value="30"/>
 </DesignTime>
 ...
 </ViewAttribute>
 <ViewAttribute
 Name="Name"
 IsUpdateable="false"
 IsPersistent="false"
 IsNotNull="true"
 PrecisionRule="true"
 Precision="80"
 Type="java.lang.String"
 ColumnType="VARCHAR2"
 AliasName="MEANING"
 Expression="MEANING"
 SQLType="VARCHAR">
 <DesignTime>
 <Attr Name="_DisplaySize" Value="80"/>
 </DesignTime>
 ...
 </ViewAttribute>
 <ViewAttribute
 Name="Description"
 IsUpdateable="false"
 IsPersistent="false"
 PrecisionRule="true"
 Precision="240"
 Type="java.lang.String"
 ColumnType="VARCHAR2"
 AliasName="DESCRIPTION"
 Passivate="true"
 Expression="DESCRIPTION"
 SQLType="VARCHAR">
 <DesignTime>
 <Attr Name="_DisplaySize" Value="240"/>
 </DesignTime>
 ...
 </ViewAttribute>
 <AttrArray Name="KeyAttributes">
 <Item Value="Type"/>
 <Item Value="Value"/>
 </AttrArray>
. . .
</ViewObject>

10.3.3 How to Define the WHERE Clause of the Lookup View Object Using View Criteria
You create named view criteria definitions in the data model project when you need to
filter view object results. View criteria that you define at design time can participate in
UI scenarios that require filtering of data.

Defining a Base View Object for Use with Lookup Tables

10-12 Fusion Developer's Guide for Oracle Application Development Framework

Use the Edit View Criteria dialog to create the view criteria definition for the lookup
base view object you defined to query the lookup table. The editor lets you build a
WHERE clause using attribute name instead of the target view object’s corresponding
SQL column names. The resulting definition will include:

■ One view criteria row consisting of one view criteria group, with a single view
criteria item used to define the lookup view object’s Type attribute.

■ The view criteria item will consist of an Type attribute name, the Equal operator,
and the value of the LOOKUP_TYPE that will filter the query results.

Because a single view criteria is defined, no logical conjunctions are needed to bracket
the WHERE clause conditions.

To create LOOKUP_TYPE view criteria for the lookup view object:
1. In the Application Navigator, double-click the lookup base view object you

defined.

2. In the overview editor, click the Query navigation tab.

3. In the Query page, expand the View Criteria section, and click the Create new
view criteria button.

4. In the Create View Criteria dialog, on the View Criteria page, click the Add Item
button to add a single criteria item to the view criteria group.

5. In the Criteria Item panel, define the criteria item as follows:

■ Choose Type as the attribute (or other name that you defined for the attribute
the view object maps to the LOOKUP_TYPE column).

■ Choose equal to as the operator.

■ Keep Literal as the operand choice and enter the value name that defines the
desired type. For example, to query the marital status codes, you might enter
the value MARITAL_STATUS_CODE corresponding to the LOOKUP_TYPE
column.

Leave all other settings unchanged.

The view object WHERE clause shown in the editor should display a simple criteria
similar to the one shown in Figure 10–4, where the value MARITAL_STATUS_CODE
is set to filter the LOOKUP_TYPE column.

6. Click OK.

7. Repeat this procedure to define one view criteria for each LOOKUP_TYPE that you
wish to query.

Defining a Base View Object for Use with Lookup Tables

Sharing Application Module View Instances 10-13

Figure 10–4 Edit View Criteria Dialog with Lookup View Object View Criteria Specified

10.3.4 What Happens When You Create a View Criteria with the Editor
The Create View Criteria dialog in JDeveloper lets you easily create view criteria and
save them as named definitions. These named view criteria definitions add metadata
to the target view object’s own definition. Once defined, named view criteria appear
by name in the Query page of the overview editor for the view object.

JDeveloper then creates the XML component definition file that represents the view
objects's declarative settings and saves it in the directory that corresponds to the name
of its package. For example, the XML file created for a view object named
LookupsBaseVO in the lookups package is ./lookups/LookupsBaseVO.xml
under the project's source path.

To view the view criteria, expand the desired view object in the Application
Navigator, select the XML file under the expanded view object, open the Structure
window, and expand the View Criteria node. As shown in Example 10–4, the
LookupsBaseVO.xml file specifies the <ViewCriteria> definition that allows the
LookupsBaseVO to return only the marital types. Other view criteria added to the
LookupsBaseVO are omitted from this example for brevity.

Example 10–4 listMaritalStatusTypes View Criteria in the Lookup View Object Definition

<ViewObject
 xmlns="http://xmlns.oracle.com/bc4j"
 Name="LookupsBaseVO"
 BindingStyle="OracleName"
 CustomQuery="true"
 PageIterMode="Full"
 UseGlueCode="false">

Accessing View Instances of the Shared Service

10-14 Fusion Developer's Guide for Oracle Application Development Framework

 <SQLQuery>
 <![CDATA[SELECT L.LOOKUP_TYPE
 ,L.LOOKUP_CODE
 ,L.MEANING
 ,L.DESCRIPTION
 FROM LOOKUP_CODES L
 WHERE L.LANGUAGE = SYS_CONTEXT('USERENV','LANG')
 ORDER BY L.MEANING]]>
 </SQLQuery>
 ...
 <ViewCriteria
 Name="listMaritalStatusTypes"
 ViewObjectName="oracle.fodemo.storefront.lookups.LookupsBaseVO"
 Conjunction="AND"
 Mode="3"
 <Properties>
 <CustomProperties>
 <Property
 Name="autoExecute"
 Value="false"/>
 <Property
 Name="showInList"
 Value="true"/>
 <Property
 Name="mode"
 Value="Basic"/>
 </CustomProperties>
 </Properties>
 <ViewCriteriaRow
 Name="vcrow24">
 <ViewCriteriaItem
 Name="Type"
 ViewAttribute="Type"
 Operator="="
 Conjunction="AND"
 Value="MARITAL_STATUS_CODE"
 Required="Optional"/>
 </ViewCriteriaRow>
</ViewCriteria>

10.3.5 What Happens at Runtime: When a View Instance Accesses Lookup Data
When you create a view instance based on a view criteria, the next time the view
instance is executed it augments its SQL query with an additional WHERE clause
predicate corresponding to the view criteria that you've populated in the view criteria
rows.

10.4 Accessing View Instances of the Shared Service
View accessors in ADF Business Components are value accessor objects that point from
an entity object attribute (or view object) to a destination view object or shared view
instance in the same application workspace. The view accessor returns a row set that
by default contains all rows from the destination view object. You can optionally filter
this row set by applying view criteria to the view accessor. The base entity object or
view object on which you create the view accessor and the destination view object
need not be in the same project or application module, but they must be in the same
application workspace.

Accessing View Instances of the Shared Service

Sharing Application Module View Instances 10-15

Because view accessors give you the flexibility to reach across application modules to
access the queried data, they are ideally suited for accessing view instances of shared
application modules. For details about creating a data model of view instances for a
shared application module, see Section 10.2.1, "How to Create a Shared Application
Module Instance."

This ability to access view objects in different application modules makes view
accessors particularly useful for:

■ Validation rules that you set on the attributes of an entity object. In this case, the
view accessor derives the validation rule’s values from lookup data corresponding
to a view instance attribute in the shared application module.

■ List of Value (LOV) that you enable for the attribute of any view object. In this
case, the view accessor derives the list of values from lookup data corresponding
to a view instance attribute in the shared application module.

Validation rules with accessors are useful when you do not want the UI to display a
list of values to the user, but you still need to restrict the list of valid values.
Alternatively, consider defining an LOV for view object attributes to simplify the task
of working with list controls in the user interface. Because you define the LOV on the
individual attributes of business components, you can customize the LOV usage for an
attribute once and expect to see the list control in the form wherever the attribute
appears.

10.4.1 How to Create a View Accessor for an Entity Object or View Object
Entity-based view objects inherit view accessors that you define on their base entity
objects. Thus, defining the view accessor once on the entity object itself allows you to
reuse the same view accessor, whether you want to define validation rules for entity
object attributes or to create LOV-enabled attributes for that entity object’s view object.
However, when you do not anticipate using view accessors for validation rules, you
can add the view accessor directly to the view object that defines the LOV-enabled
attribute.

For example, in the StoreFrontModule package of the Fusion Order Demo
application, the AddressEO entity object defines the Shared_CountriesVA view
accessor and the AddressesVO view object inherits this view accessor. In this case,
defining the view accessor on the entity object is useful: the accessor for AddressEO
defines a validation rule on the CountryId attribute and the same accessor for
AddressesVO enables an LOV on its CountryId attribute.

When you create a view accessor that accesses a view instance from a shared
application module, you may want to use a prefix like Shared_ to name the view
accessor. This naming convention will help you identify the view accessor when you
need to select it for the entity object or view object.

You can further refine the list returned by a view accessor by applying view criteria
that you define on the view object. To create view criteria for use with a view accessor,
see Section 10.3.3, "How to Define the WHERE Clause of the Lookup View Object
Using View Criteria."

To create the view accessor:
1. In the Application Navigator, double-click the entity object or view object on

which you want to define the view accessor.

Whether you create the view accessor on the entity object or on the view object
will depend on the view accessor’s intended usage. Generally, creating view
accessors on the entity object ensures the widest possible usage.

Accessing View Instances of the Shared Service

10-16 Fusion Developer's Guide for Oracle Application Development Framework

2. In the overview editor, click the View Accessors navigation tab and click the
Create new view accessors button to add the accessor to the entity object or view
object definition you are currently editing.

3. In the View Accessors dialog, select the view instance name you created for your
lookup table from the shared application module node and shuttle it to the view
accessors list.

For example, the View Accessors dialog in the Fusion Order Demo application
shows the shared application module LookupServiceAM with the list of view
instances, as shown in Figure 10–5.

The dialog will display all view objects and view instances from your application.
If you have not yet enabled application module sharing, you must do so before
selecting the view instance. For details, see Section 10.2.1, "How to Create a Shared
Application Module Instance."

By default, the view accessor you create will display the same name as the view
object instance (or will have an integer appended when it is necessary to
distinguish it from a child view object of the same name). You can edit Accessor
Name to give it a unique name.

For example, the View Accessors dialog in Figure 10–5 shows the view accessor
SharedLookupService_AddressUsageTypesVA for the
AddressUsageTypes view instance selection in the shared application module
LookupServiceAM. This view accessor is created on the base entity object
AddressUsagesEO and accesses the row set of the AddressUsageTypes view
instance.

Figure 10–5 Defining a View Accessor on an Entity Object

4. Optionally, if you want to apply an existing view criteria to filter the accessor,
with the view accessor selected in the overview editor, click the Edit icon.

In the Edit View Accessor dialog, click Edit and perform the following steps to
apply the view criteria:

a. Select the view criteria that you want to apply and shuttle it to the Selected
list.

Accessing View Instances of the Shared Service

Sharing Application Module View Instances 10-17

You can add additional view criteria to apply multiple filters (a logical AND
operation will be performed at runtime).

b. Enter the attribute name for the bind variable that defines the controlling
attribute for the view accessor row set.

Unlike view criteria that you set directly on a view object (to create a view
instance, for example), the controlling attribute of the view accessor's view
criteria derives the value from the view accessor's base view object.

c. Click OK to return to the View Accessors dialog.

5. Click OK.

10.4.2 How to Validate Against a View Accessor
View accessors that you create to access the view rows of a destination view object
may be used to verify data that your application solicits from the end user at runtime.
For example, when the end user fills out a registration form, individual validation
rules can verify the title, marital status, and contact code against lookup table data
queried by view instances of the shared application module.

You can apply view accessors you have defined on the entity object to these built-in
declarative validation rules:

■ The Compare validator performs a logical comparison between an entity attribute
and a value. When you specify a view accessor to determine the possible values,
the compare validator applies the Equals, NotEquals, GreaterThan,
LessThan, LessOrEqualTo, GreaterOrEqualTo operator you select to
compare against the values returned by the view accessor.

■ The List validator compares an entity attribute against a list of values. When you
specify a view accessor to determine the valid list values, the List validator applies
an In or NotIn operator you select against the values returned by the view
accessor.

■ The Collection validator performs a logical comparison between an operation
performed on a collection attribute and a value. When you specify a view accessor
to determine the possible values, the Collection validator applies the Sum,
Average, Count, Min, Max operation on the selected collection attribute to
compare against the values returned by the view accessor.

Validation rules that you define to allow runtime validation of data for entity-based
view objects are always defined on the attributes of the entity object. You use the
editor for the entity object to define the validation rule on individual attributes. Any
view object that you later define that derives from an entity object with validation
rules defined will automatically receive attribute value validation.

Before you begin:
Create the desired entity objects as described in Section 4.2.1, "How to Create Multiple
Entity Objects and Associations from Existing Tables."

To validate against a view accessor comparison, list, or collection type:
1. In the Application Navigator, double-click the desired entity object.

2. In the overview editor, click the Business Rules navigation tab.

3. In the Business Rules page, expand the entity object, select the attribute to be
validated and then click the Create new validator button to add the validation
rule to the entity object attribute.

Accessing View Instances of the Shared Service

10-18 Fusion Developer's Guide for Oracle Application Development Framework

4. In the Add Validation Rule dialog, in the Rule Type dropdown list, select
Compare, List, or Collection.

5. Make the selections required by the validator selection.

6. In the Compare With or List Type dropdown list, select View Accessor Attribute.

7. In the Select View Accessor Attribute group box, expand the desired view
accessor from the shared service and select the attribute you want to provide as
validation.

Figure 10–6 shows what the dialog looks like when you use a List validator to
select a view accessor attribute.

Figure 10–6 List Validator Using a View Accessor

8. Click the Failure Handling tab and enter a message that will be shown to the user
if the validation rule fails.

9. Click OK.

10.4.3 What Happens When You Validate Against a View Accessor
When you use a List validator, a <ListValidationBean> tag is added to an entity
object’s XML file. Example 10–5 shows the XML code for the CountryId attribute in
the Address entity object. A List validator has been used to validate the user’s entry
against the list of country ID values as retrieved by the view accessor from the
Countries view instance.

Example 10–5 List Validator with View Accessor List Type XML Code

<Attribute

Accessing View Instances of the Shared Service

Sharing Application Module View Instances 10-19

 Name="CountryId"
 IsNotNull="true"
 Precision="2"
 ColumnName="COUNTRY_ID"
 Type="java.lang.String"
 ColumnType="CHAR"
 SQLType="VARCHAR"
 TableName="ADDRESSES">
 RetrievedOnUpdate="true"
 RetrievedOnInsert="true">
 <DesignTime>
 <Attr Name="_DisplaySize" Value="2"/>
 </DesignTime>
 <ListValidationBean
 xmlns="http://xmlns.oracle.com/adfm/validation"
 Name="CountryId_Rule_1"
 ResId="CountryId_Rule_0"
 OnAttribute="CountryId"
 OperandType="VO_USAGE"
 Inverse="false"
 ViewAccAttrName="Value"
 ViewAccName="SharedCountriesVA">
 <ResExpressions>
 <Expression
 Name="0"><![CDATA[SharedCountriesVA.Value]]>
 </Expression>
 </ResExpressions>
 </ListValidationBean>
 <Properties>
 <SchemaBasedProperties>
 <LABEL
 ResId="CountryId_LABEL"/>
 </SchemaBasedProperties>
 </Properties>
</Attribute>

10.4.4 How to Create an LOV Based on a Lookup Table
View accessors that you create to access the view rows of a destination view object
may be used to display a list of values to the end user at runtime. You first create a
view accessor with the desired view instance as its data source, and then you can add
the view accessor to an LOV-enabled attribute of the displaying view object. You will
edit the view accessor definition for the LOV-enabled attribute so that it points to the
specific lookup attribute of the view instance. Because you want to populate the row
set cache for the query with static data, you would locate the destination view instance
in a shared application module.

While the list usage is defined on the attribute of a view object bound to a UI list
control, the view accessor definition exists on either the view object or the view
object’s base entity object. If you choose to create the view accessor on the view
object’s entity object, the View Accessors page of the overview editor for the view
object will display the inherited view accessor, as shown in Figure 10–7. Alternatively,
if you choose to create the view accessor on the attribute’s view object, you can
accomplish this from either the editor for the LOV definition or from the View
Accessors page of the overview editor.

Accessing View Instances of the Shared Service

10-20 Fusion Developer's Guide for Oracle Application Development Framework

Figure 10–7 View Accessors Page of the Overview Editor

For additional examples of how to work with LOV-enabled attributes, see Section 5.12,
"Working with List of Values (LOV) in View Object Attributes."

Before you begin:
Create the desired view objects as described in Section 5.2.1, "How to Create an
Entity-Based View Object," and Section 5.2.3, "How to Create an Expert Mode,
Read-Only View Object."

To create an LOV that displays values from a lookup table:
1. In the Application Navigator, right-click the view object that contains the desired

attribute and choose Open ViewObjectName.

2. In the overview editor, click the View Accessors navigation tab.

3. In the View Accessors page, check to see whether the view object inherited the
desired view accessor from its base entity object. If no view accessor is present,
either create the view accessor on the desired entity object or click the Create new
view accessors button to add the accessor to the view object you are currently
editing.

Validation rules that you define are always defined on the attributes of the view
object’s base entity object. It may therefore be convenient to define view accessors
at the level of the base entity objects when you know that you will also validate
entity object attributes using a view accessor list.

For details about creating a view accessor, see Section 10.4.1, "How to Create a
View Accessor for an Entity Object or View Object."

4. In the overview editor, click the Attributes navigation tab.

5. In the Attributes page, select the attribute that is to display the LOV, and then
expand the List of Values section and click the Add list of values button.

6. In the List of Values dialog, select the view accessor from the List Data Source
dropdown list.

The view accessor you select, will be the one created for the lookup table view
object instances to use as the data source.

7. Select the attribute from this view accessor from the List Attribute dropdown list
that will return the list of values for the attribute you are currently editing.

The editor creates a default mapping between the view object attribute and the
LOV-enabled attribute. In this use case, the attributes are the same. For example,
the attribute OrderId from the OrdersView view object would map to the
attribute OrderId from the Shared_OrdersVA view accessor.

8. Optionally, when you want to specify supplemental values that your list returns to
the base view object, click Add icon in List Return Values and map the desired
view object attributes to the same attributes accessed by the view accessor.

Accessing View Instances of the Shared Service

Sharing Application Module View Instances 10-21

Supplemental attribute return values are useful when you do not require the user
to make a list selection for the attributes, yet you want those attributes values, as
determined by the current row, to participate in the update.

For example, to map the attribute StartDate from the OrdersView view object,
you would choose the attribute StartDate from the Shared_OrdersVA view
accessor. Do not remove the default attribute mapping for the attribute for which
the list is defined.

9. Click OK.

10.4.5 What Happens When You Define an LOV for a View Object Attribute
When you add an LOV to a view object attribute, JDeveloper updates the view object’s
XML file with an LOVName property in the <ViewAttribute> element. The
definition of the LOV appears in a new <ListBinding> element. The metadata in
Example 10–6 shows that the MaritalStatusCode attribute refers to the
MaritalStatusLOV LOV and sets the choice control type to display the LOV. The
LOV definition for MaritalStatusLOV appears in the <ListBinding> element.

Example 10–6 View Object with LOV List Binding XML Code

<ViewObject
 xmlns="http://xmlns.oracle.com/bc4j"
 Name="CustomerRegistrationVO"
 ...
 <ViewAttribute Name="MaritalStatusCode" IsNotNull="true" PrecisionRule="true"
 EntityAttrName="MaritalStatusCode" EntityUsage="PersonEO"
 AliasName="MARITAL_STATUS_CODE"
 LOVName="MaritalStatusCodeLOV">
 <Properties>
 <SchemaBasedProperties>
 <CONTROLTYPE Value="choice"/>
 </SchemaBasedProperties>
 </Properties>
 </ViewAttribute>
 ...
 <ListBinding
 Name="MaritalStatusLOV"
 ListVOName="PersonEO.MaritalStatusVA"
 ListRangeSize="-1"
 NullValueFlag="start"
 NullValueId="LOVUIHints_NullValueId"
 MRUCount="0">
 <AttrArray Name="AttrNames">
 <Item Value="MaritalStatusCode"/>
 </AttrArray>
 <AttrArray Name="ListAttrNames">
 <Item Value="Value"/>
 </AttrArray>
 <AttrArray Name="ListDisplayAttrNames">
 <Item Value="Name"/>
 </AttrArray>
 <DisplayCriteria/>
 <AttrArray Name="DerivedAttrNames"/>
 </ListBinding>
 ...
</ViewObject>

Accessing View Instances of the Shared Service

10-22 Fusion Developer's Guide for Oracle Application Development Framework

10.4.6 How to Automatically Refresh the View Object of the View Accessor
If you need to ensure that your view accessor always queries the latest data from the
lookup table, you can set the Auto Refresh property on the destination view object.
This property allows the view object instance to refresh itself after a change in the
database. The typical use case is when you define a view accessor for the destination
view object.

Because the auto-refresh feature relies on the database change notification feature,
observe these restrictions when enabling auto-refresh for your view object:

■ The view objects should query as few read-only tables as possible. This will ensure
the best performance and prevent the database invalidation queue from becoming
too large.

■ The database user must have database notification privileges. For example, to
accomplish this with a SQL*Plus command use grant change notification
to <user name>.

When these restrictions are observed, the refresh is accomplished through the Oracle
database change notification feature. Prior to executing the view object query, the
framework will use the JDBC API to register the query for database notifications.
When a notification arrives, the row sets of the corresponding view object instance are
marked for refresh during the next checkout of the application module. Because the
shared application module waits until the next checkout, the row set currency of the
current transaction is maintained and the end user is not hampered by the update.

For example, assume that an LOV displays a list of zip codes that is managed in
read-only fashion by a database administrator. After the administrator adds a new zip
code as a row to the database, the shared application module detects a time when
there are no outstanding requests and determines that a pending notification exists for
the view instance that access the list of zip codes; at that point, the view object
refreshes the data and all future requests will see the new zip code.

To enable auto-refresh for a view instance of a shared application module:
1. In the Application Navigator, double-click the view object that you want to receive

database change notifications.

2. In the Property Inspector expand the Tuning Database Retrieve section, and
select True for the Auto Refresh property.

10.4.7 What Happens at Runtime: When the Attribute Displays the List of Values
The ADF Business Components runtime adds functionality in the attribute setters of
the view row and entity object to facilitate the LOV-enabled attribute behavior. In
order to display the LOV-enabled attribute values in the user interface, the LOV
facility fetches the data source, and finds the relevant row attributes and mapped
target attributes.

10.4.8 What You May Need to Know About Displaying List of Values From a Lookup
Table

Unlike entity-based view objects, read-only view objects that you create in expert
mode, will not define a key attribute by default. While it is possible to create a
read-only view object without defining its key attribute, in expert mode it is a best
practice to select the attribute that corresponds to the queried table’s primary key and
mark it as the key attribute. The presence of a key attribute ensure the correct runtime
behavior for row set navigation. For example, the user interface developer may create

Testing View Object Instances in a Shared Application Module

Sharing Application Module View Instances 10-23

a LOV component based on the read-only view object collection. Without a key
attribute to specify the row key value, the LOV may not behave properly and a
runtime error can result.

10.4.9 What You May Need to Know About Inheritance of AttributeDef Properties
When one view object extends another, you can create the LOV-enabled attribute on
the base object. Then when you define the child view object in the overview editor, the
LOV definition will be visible on the corresponding view object attribute. This
inheritance mechanism allows you to define an LOV-enabled attribute once and apply
it later across multiple view objects instances for the same attribute. For details about
extending a view object from another view object definition, see Section 37.9.2, "How
To Extend a Component After Creation."

You can also use the overview editor to extend the inherited LOV definition. For
example, you may add extra attributes already defined by the base view object’s query
to display in selection list. Alternatively, you can create a view object instance that
uses a custom WHERE clause to query the supplemental attributes not already queried
by the base view object. For information about customizing entity-based view objects,
see Section 5.10, "Working with Bind Variables."

10.4.10 What You May Need to Know About Using Validators
If you have created an LOV-enabled attribute for a view object, there is no need to
validate the attribute using a List validator. You use an attribute validator only when
you do not want the list to display in the user interface but still need to restrict the list
of valid values. A List validator may be a simple static list or it may be a list of possible
values obtained through a view accessor you define. Alternatively, you might prefer to
use a Key Exists validator when the attribute displayed in the UI is one that references
a key value (such as a primary, foreign, or alternate key). For information about
declarative validation in ADF Business Components, see Chapter 7, "Defining
Validation and Business Rules Declaratively."

10.5 Testing View Object Instances in a Shared Application Module
JDeveloper includes an interactive application module testing tool that you can use to
test all aspects of its data model without having to use your application user interface
or write a test client program. Running the Business Component Browser can often be
the quickest way of exercising the data functionality of your business service during
development.

10.5.1 How to Test the Base View Object Using the Business Component Browser
The application module is the transactional component that the Business Component
Browser (or UI client) will use to work with application data. The set of view objects
used by an application module defines its data model, in other words, the set of data
that a client can display and manipulate through a user interface. You can use the
Business Component Browser to test that the accessors you defined yield the expected
validation result and that they display the correct LOV attribute values.

To create an application module, use the Create Application Module wizard, which is
available in the New Gallery. For more information, see Section 9.2, "Creating and
Modifying an Application Module."

To test the view objects you added to an application module, use the Business
Component Browser, which is accessible from the Application Navigator.

Testing View Object Instances in a Shared Application Module

10-24 Fusion Developer's Guide for Oracle Application Development Framework

To test view objects in an application module configuration:
1. In the Application Navigator, expand the project containing the desired

application module and view objects.

2. Right-click the application module and choose Run.

Alternatively, choose Debug when you want to run the application in the Business
Component Browser with debugging enabled. For example, when debugging
using the Business Component Browser, you can view status message and
exceptions, step in and out of source code, and manage breakpoints. JDeveloper
opens the debugger process panel in the Log window and the various debugger
windows.

For details about receiving diagnostic messages specific to ADF Business
Components debugging, see Section 6.3.8, "How to Enable ADF Business
Components Debug Diagnostics."

3. In the Select Business Components Configuration dialog, choose the desired
application module configuration from the Business Component Configuration
Name list to run the Business Component Browser.

By default, an application module has only its default configurations, named
AppModuleNameLocal and AppModuleNameShared. If you have created
additional configurations for your application module and want to test it using
one of those instead, just select the desired configuration from the Business
Components Configuration dropdown list on the Connect dialog before clicking
Connect.

4. Click Connect to start the application module using the selected configuration.

5. To execute a view object in the Business Component Browser, expand the tree list
and double-click the desired view object node.

Note that the view object instance may already appear executed in the testing
session. In this case, the tester panel on the right already displays query results for
the view object instance, as shown in Figure 10–8. The fields in the tester panel of a
read-only view object will always appear disabled since the data it represents is
not editable.

Testing View Object Instances in a Shared Application Module

Sharing Application Module View Instances 10-25

Figure 10–8 Testing the Data Model in the Business Component Browser

10.5.2 How to Test LOV-Enabled Attributes Using the Business Component Browser
To test the LOV you created for a view object attribute, use the Business Component
Browser, which is accessible from the Application Navigator. For details about
displaying the Browser and the supported control types, see Section 5.12.7, "How to
Test LOV-Enabled Attributes Using the Business Component Browser."

10.5.3 What Happens When You Use the Business Component Browser
When you launch the Business Component Browser, JDeveloper starts the tester tool
in a separate process and the Business Component Browser appears. The tree at the
left of the dialog displays all of the view object instances in your application module's
data model. Figure 10–8 shows just one instance in the expanded tree, called
ProductImages. After you double-click the desired view object instance, the
Business Component Browser will display a panel to inspect the query results, as
shown in Figure 10–8.

The test panel will appear disabled for any read-only view objects you display because
the data is not editable. But even for the read-only view objects, the tool affords some
useful features:

■ You can validate that the UI hints based on the Label Text control hint and format
masks are defined correctly.

■ You can also scroll through the data using the toolbar buttons.

The Business Component Browser becomes even more useful when you create
entity-based view objects that allow you to simulate inserting, updating, and deleting
rows, as described in Section 6.3.2, "How to Test Entity-Based View Objects
Interactively."

Testing View Object Instances in a Shared Application Module

10-26 Fusion Developer's Guide for Oracle Application Development Framework

10.5.4 What Happens at Runtime: When Another Service Accesses the Shared
Application Module Cache

When a shared application module with application scope is requested by an LOV,
then the ADF Business Components runtime will create an ApplicationPool object
for that usage. There is only one ApplicationPool created for each shared usage
that has been defined in the Business Components project file (.jpx). The runtime will
then use that ApplicationPool to acquire an application module instance that will
be used like a user application module instance, to acquire data. The reference to the
shared application module instance will be released once the application-scoped
application module is reset. The module reference is released whenever you perform
an unmanaged release or upon session timeout.

Since multiple threads will be accessing the data caches of the shared application
module, it is necessary to partition the iterator space to prevent race conditions
between the iterators of different sessions. This will help ensure that the next request
from one session does not change the state of the iterator that is being used by another
session. The runtime uses ADF Business Components support for multiple iterators on
top of a single RowSet to prevent these race conditions. So, the runtime will
instantiate as many iterators as there are active sessions for each RowSet.

An application-scoped shared application module lifecycle is similar to the lifecycle of
any application module that is managed by the ApplicationPool object. For
example, once all active sessions have released their shared application module, then
the application module may be garbage-collected by the ApplicationPool object.
The shared pool may be tuned to meet specific application requirements.

Session-scoped shared application modules are simply created as nested application
module instances within the data model of the root, user application module. For
details about nested application modules, Section 9.4, "Defining Nested Application
Modules."

11

Integrating Service-Enabled Application Modules 11-1

11Integrating Service-Enabled Application
Modules

This chapter describes how to publish ADF application modules and how to define a
service interface connection to make them available as external web services in a
Fusion web application. It also describes how to incorporate the published application
module as an external service in a Fusion web application.

This chapter includes the following sections:

■ Section 11.1, "Introduction to Service-Enabled Application Modules"

■ Section 11.2, "Publishing Service-Enabled Application Modules"

■ Section 11.3, "Accessing Remote Data Over the Service-Enabled Application
Module"

11.1 Introduction to Service-Enabled Application Modules
Service-enabled application modules are ADF application modules that you advertise
through a service interface to service consumers. There are three scenarios for service
consumers to consume a published service-enabled application module: web service
access, Service Component Architecture (SCA) composite access, and access by
another ADF application module.

Service Component Architecture (SCA) provides an open, technology-neutral model
for implementing remotable services that are defined in terms of business
functionality and that make middleware functions more accessible to application
developers. ADF Business Components supports an SCA-compliant solution through
application modules you can publish with a service interface. Any development team
can publish a service-enabled application module to contribute to the composite
Fusion web application. The Fusion web application assembled from remote services
also does not require the participating services to run on a single application server.

Although composite applications often run on separate application servers, the
appearance that SCA provides is one of a unified application. Consuming client
projects use the ADF service factory lookup mechanism to access the data and any
business methods encapsulated by the service-enabled application module. At
runtime, the calling client and the ADF service may or may not participate in the same
transaction, depending on the protocol used to invoke the service (either SOAP or

Note: For background about web services and Oracle WebLogic
Server support for web services, see Oracle Fusion Middleware
Introducing Web Services.

Publishing Service-Enabled Application Modules

11-2 Fusion Developer's Guide for Oracle Application Development Framework

RMI). Only the RMI protocol and a Java Transaction API (JTA) managed transaction
support the option to call the service in the same transaction as the calling client. By
default, to support the RMI protocol, the ADF service is configured to participate in
the same transaction.

When you service-enable your application module, JDeveloper generates the
necessary artifacts comprising: 1) The Java interface defining the service, 2) an EJB 3.0
session bean that implements this Java interface, 3) a WSDL file that describes the
service’s operations, and (4) an XML Schema Document (XSD) that defines the
service’s data structures. The service interface is described for Fusion web application
clients in a language-neutral way by the combination of WSDL and XSD.

Services, including data access and method calls, defined by the remote application
modules are interoperable with any other application module. This means the same
application module can support interactive web user interfaces using ADF data
controls and web service clients.

The common mechanism for invoking components such as a BPEL process is used by
the ADF connection architecture to invoke a replaced service implementation (see
Section 13.2, "Calling a Web Service from an Application Module") and a generic web
service provider handles any application invocation that takes DataObject
arguments and returns DataObject.

For information about the SCA and SDO standards, see the Open SOA web site at
http://www.osoa.org.

11.2 Publishing Service-Enabled Application Modules
The application module is ADF Business Components framework component that
encapsulates business logic as a set of related business functions. Application modules
are mapped to services. You use the overview editor for your application module to
enable a web service interface and publish rows of view object data as Service Data
Object (SDO) components. The SDO framework upon which these components are
based abstracts the data of the view object and standardizes the way that data
structures are passed between Java and XML. This data abstraction simplifies working
with heterogeneous data sources in a service-oriented architecture (SOA) and lets you
selectively service-enable view objects using the same view object to support
interactive web user interfaces and web service clients.

JDeveloper allows you to expose application modules as web services which use SDOs
to standardize the way that data structures are passed between Java and XML.

Note: SCA defines two kinds of service:

■ Remoteable services, typically coarse-grained and designed to be
published remotely in a loosely coupled SOA architecture

■ Local services, typically fine-grained and designed to be used
locally by other implementations that are deployed concurrently
in a tightly coupled architecture

ADF Business Components services fall into the first category, and
should only be used as remoteable services. For local service support,
use the ApplicationModule interface and ViewObject interface
support described in Section 9.10, "Working Programmatically with an
Application Module's Client Interface."

Publishing Service-Enabled Application Modules

Integrating Service-Enabled Application Modules 11-3

JDeveloper also generates the WSDL service description that is used by the web
service client in the consuming application.

The service-enabled application module exposes the view objects, custom methods,
built-in data manipulation operations, and specialized find methods based on named
view criteria to be used by the client. Once you have enabled the application module
service interface, you will need to create an ADF Business Components Service
Interface deployment profile and deploy it to the target application server.

You can also expose the view instance data manipulation operations for use with a
Business Process Execution Language (BPEL) process service component. BPEL is a
language for composing multiple services into an end-to-end business process. For
details about how to delegate data operations to the SDO data provider through the
use of the BPEL entity variable, see the Oracle Fusion Middleware Developer's Guide for
Oracle SOA Suite.

11.2.1 How to Enable the Application Module Service Interface
You edit the application module in JDeveloper to create a web service interface that
exposes the top-level view objects and defines the available service operations it
supports. The top-level view objects that you select are service-enabled automatically
and will be accessible by the service client.

The primary purpose of the standard service operations is to expose data
manipulation operations on the view objects. Any business logic that you have defined
on the underlying framework objects (for example, business rule validation) will be
applied when you invoke a standard service operation. Table 11–1 shows the list of
standard operations that service view instances support.

Note: It is important to note that you don't implement methods with
SDO parameters directly. The SDO framework is used to wrap the
view row types during runtime only.

Table 11–1 Standard View Instance Data Manipulation Operations

Operation Method Name Operation Description

Create create<VOName> Creates a single ADF Business
Components view row.

Update update<VOName> Updates a single ADF Business
Components view row.

Delete delete<VOName> Deletes a single ADF Business
Components view row.

Merge merge<VOName> Updates a ADF Business Components
view row if one exists; otherwise,
creates a new one.

GetByKey get<VOName> Gets a single ADF Business
Components view row by primary key.

Publishing Service-Enabled Application Modules

11-4 Fusion Developer's Guide for Oracle Application Development Framework

For information on how to create SDO classes to selectively service-enable child view
objects, see Section 11.2.4, "How to Service-Enable Individual View Objects."

Before you begin:
Create the desired application module as described in Section 9.2.1, "How to Create an
Application Module."

To create the web service:
1. In the Application Navigator, double-click the application module.

2. In the overview editor, click the Service Interface navigation tab and click the
Enable support for Service Interface button.

Use the Create Service Interface wizard to configure the desired options.

3. In Create Service Interface wizard, on the Service Interface page, enter the name
and target namespace for the web service.

Find (by view object
query statement)

find<VOName> Finds and returns a list of ADF Business
Components view rows based on the
selected view object’s query statement.

Note that the query must not specify a
bind variable defined as required for
the query to execute. The service
interface does not expose required bind
variables at runtime. For details about
creating a find method for this scenario,
see Section 11.2.8, "How to Expose a
Declarative Find Operation Filtered By
a Required Bind Variable."

Find (by view criteria) find<VOName><VCNam
e>

Finds and returns a list of single ADF
Business Components view rows by
SDO-based view criteria. This is the
preferred way to filter the ADF
Business Components view rows that
rely on a required bind variable.

Process process<VOName> Performs a Create, Update, Delete, or
Merge operation on a list of ADF
Business Components view rows. The
specified operation is applied to all
objects in the given list.

ProcessChangeSummary processCS<VOName> Performs a Create, Update, or Delete
operation on a list of ADF Business
Components view rows. Different
operations may be applied to different
objects, depending on what is specified
in the ChangeSummary object.

Note: When you enable the service interface on a parent view object,
JDeveloper automatically enables the service interface for view
instances that extend the parent in a polymorphic collection. For
details about polymorphic view objects, see Section 39.6.5, "Working
with Polymorphic View Rows."

Table 11–1 (Cont.) Standard View Instance Data Manipulation Operations

Operation Method Name Operation Description

Publishing Service-Enabled Application Modules

Integrating Service-Enabled Application Modules 11-5

The target namespace is a URI for the service that you can assign to group similar
services together by entering the same URI.

4. To generate a method that will return the static control hints (UI hints) defined on
the service view instances that you enable, select Generate Control Hints
Operation.

When you enable this option, the wizard adds the getDfltCtrlHints()
method to the service interface. The service interface client can invoke this method
to resolve UI hints on the server without requiring a database roundtrip. The
method takes the view object name and a locale and returns the base UI hints for
that locale.

5. To expose the methods of the application module as asynchronous service
methods and enable both synchronous and asynchronous operations on the web
service, select Generate Asynchronous Web Service Methods.

By default, the web service supports synchronous service methods. This forces the
invoking client application to wait for the response to return before it can continue
with its work. In cases where the response returns immediately, this method of
invoking the web service is common. However, because request processing can be
delayed, it is often useful for the client application to continue its work and to
handle the response later on.

6. On the Service Custom Methods page, add the custom methods you want to
expose in the service interface and define the data types of each method’s
parameters and return value.

The parameters and non-void return value of the custom service methods you
enable must be one of the supported data types, such as a primitive Java type,
oracle.jbo.server.ViewRowImpl, java.util.List<ViewRowImpl>,
oracle.jbo.AttributeList, or java.util.List<AttributeList>.

Note that although both ViewRowImpl and AttributeList data types expose
the identical row structure to the web service client, at runtime there will be a
fundamental difference. For a description of the supported data types, see
Section 11.2.3, "What You May Need to Know About Method Signatures on the
Service Interface."

After selecting a qualifying custom method to appear in the service interface, for
each parameter and return value using the ViewRowImpl or AttributeList
data type, you must in turn select the name of the view object instance
corresponding to the row structure:

a. In the Selected list, expand return or parameters and select the item.

b. Enter the Java element data type in Element Java Type.

c. In the case where the Java element type is ViewRowImpl or AttributeList,
enter the view object instance name to identify the row structure in Element
View Object.

For example, if you define a custom method to return a single row of the
CustomerInfo view object instance, you would need a custom method
signature like this:

public ViewRowImpl findCustomerInfo(int id)

Then, after selecting the findCustomerInfo() custom method to appear in
the service interface, you would select its return value in the tree and
configure its View Object property to be CustomerInfo, the view instance
name whose row structure should be used at runtime.

Publishing Service-Enabled Application Modules

11-6 Fusion Developer's Guide for Oracle Application Development Framework

7. On the Service View Instances page, select the top-level view instances in the
application module that you want to expose in the service interface.

View object subtypes of the top-level view instance will automatically be
service-enabled.

Also, on this page, you can set the available data manipulation operations
supported on the exposed methods, as shown in Figure 11–1.

Figure 11–1 View Instances and CRUD Operation Selection

8. In the Basic Operations tab, select the data manipulation operations for the
currently selected view instance.

The primary purpose of the standard service operations is to expose data
manipulation operations on the view objects. Any business logic that you have
defined on the underlying framework objects (for example, business rule
validation) will be applied when you invoke the service operations. For a
description of the operations that service view instances support, see Table 11–1.

In the case of the find method operation that you can select, the find method must
not reference a required bind variable in the view object’s query statement. A
required bind variable is one that makes the query execution dependent on the
availability of a valid value for the bind variable. The service interface does not
expose required bind variables at runtime. For details about defining a find
operation for this scenario, see Section 11.2.8, "How to Expose a Declarative Find
Operation Filtered By a Required Bind Variable."

9. To expose declarative find operations, select the View Criteria Find Operations
tab and click the Add View Criteria icon.

You can define custom find operations when you want the service to support
executing a predefined query. For information about defining a named view
criteria, see Section 5.11, "Working with Named View Criteria."

Publishing Service-Enabled Application Modules

Integrating Service-Enabled Application Modules 11-7

a. In the Configure View Criteria Find Operation dialog, choose the named view
criteria for the find operation.

The dialog displays the list of view criteria exposed by the referenced view
object. For example, OrderInfoVO defines OrderInfoVOCriteria with a
bind variable OrdId that specifies the order ID, as shown in Figure 11–2.

Figure 11–2 Specialized Find Methods Based on Named View Criteria

b. If the view criteria uses a bind variable, you can double-click the XML name to
customize the name as it will appear in the XML definition for the service.

10. Click Next to review the custom methods that your service view instances will
expose.

11. Click Finish.

11.2.2 What Happens When You Create an Application Module Service Interface
JDeveloper generates the service interface class and enables any view instance options
you have chosen, as shown in Figure 11–3.

Caution: The service interface find operations are based on specific
view criteria that your project defines. This means that that the bind
variables of the view criteria must match the parameters of the
corresponding find operation method. If you change the number or
order of the bind variables after the find operation is defined and
service interface generated, the corresponding method will not
execute at runtime. Therefore, after changing the underlying view
criteria, you must regenerate the service interface.

Publishing Service-Enabled Application Modules

11-8 Fusion Developer's Guide for Oracle Application Development Framework

Figure 11–3 Service Interface Page of the Overview Editor for an Application Module

The following types of files are generated and are listed in the Application Navigator
in the Projects panel, under the application module’s serviceinterface node, as shown
in Figure 11–4.

■ Remote common interface, for example, StoreFrontService.java

■ Remote service schema file, for example, StoreFrontService.xsd

■ Remote service definition file, for example, StoreFrontService.wsdl

■ Remote server class, for example, StoreFrontServiceImpl.java

Publishing Service-Enabled Application Modules

Integrating Service-Enabled Application Modules 11-9

Figure 11–4 Service Interface Files Appear Below Application Module

In addition, the connections.xml file is created when you first create an ADF
Business Components service. This file appears in the Application Navigator in the
Application Resources panel, under the Descriptors and ADF META-INF folders.

11.2.2.1 Remote Common Interface
The remote common interface uses metadata annotations specified by the web service
specification (JSR-181) to indicate how the interface should be exposed as a web
service. This example shows part of StoreFrontService.java, which is the remote
common class for the StoreServiceAM application module in the StoreFront module
of the Fusion Order Demo.

Example 11–1 Remote Common Interface in Fusion Order Demo

package oracle.fodemo.storefront.store.service.common.serviceinteface;
...
import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebResult;
import javax.jws.soap.SOAPBinding;
...
import oracle.fodemo.storefront.store.queries.common.CustomerInfoVOSDO;
import oracle.fodemo.storefront.store.queries.common.OrderInfoVOSDO;
...
import oracle.webservices.annotations.PortableWebService;
import oracle.webservices.annotations.SDODatabinding;
...
@SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.WRAPPED, style=SOAPBinding.Style.DOCUMENT)
@PortableWebService(targetNamespace="http://www.globalcompany.com/StoreFrontService",
 name="StoreFrontService",
 wsdlLocation=
 "oracle/fodemo/storefront/store/service/common/serviceinteface/StoreFrontService.wsdl")
@SDODatabinding(schemaLocation=

Publishing Service-Enabled Application Modules

11-10 Fusion Developer's Guide for Oracle Application Development Framework

 "oracle/fodemo/storefront/store/service/common/serviceinteface/StoreFrontService.xsd")
public interface StoreFrontService
{
 public static final String NAME = ("http://www.globalcompany.com/StoreFrontService")

 /**
 * @param orderId
 * @return
 * @throws ServiceException
 */
 @WebMethod(action="www.globalcompany.example.com/getOrderInfoVOSDO",
 operationName="getOrderInfoVOSDO")
 @RequestWrapper(targetNamespace="www.globalcompany.example.com/types/",
 localName="getOrderInfoVOSDO")
 @ResponseWrapper(targetNamespace="www.globalcompany.example.com/types/",
 localName="getOrderInfoVOSDOResponse")
 @WebResult(name="result")
 OrderInfoVOSDO getOrderInfoVOSDO(@WebParam(mode = WebParam.Mode.IN, name="orderId")
 BigInteger orderId) throws ServiceException;
 ...
}

11.2.2.2 Remote Service Schema File
The remote service schema file is an XML schema file which represents the web
service schema, as shown in Figure 11–5.

Figure 11–5 Remote Service Schema File

11.2.2.3 Remote Service Definition File
The remote service definition file is a XML-structured document file that conforms to
the Web Service Definition Language (WSDL) specification that describes the
generated web service as a collection of endpoints, or ports. A port is defined by
associating a network address with a reusable binding. The client application that
connects to the web service reads the WSDL to determine what functions are available

Publishing Service-Enabled Application Modules

Integrating Service-Enabled Application Modules 11-11

on the server. The WSDL also specifies the endpoint for the service itself, which you
can use to locate and test your deployed service.

Figure 11–6 shows the WSDL for the web service generated for the StoreServiceAM
application module in the WSDL visual editor. You can see the WSDL as an XML
document by selecting the Source tab.

Figure 11–6 WSDL Document

11.2.2.4 Remote Server Class
The remote server class is an EJB 3.0 stateless session bean that implements the remote
common interface and extends the ServiceImpl class, the generic service engine for
ADF Business Components. Example 11–2 shows part of
StoreFrontServiceImpl.java, which is the remote server class for the
StoreServiceAM application module in the StoreFront module of the Fusion Order
Demo.

Example 11–2 Remote Server Class Implements the Remote Common Interface

package oracle.fodemo.storefront.store.service.server.serviceinteface;
...
import oracle.fodemo.storefront.store.queries.common.CustomerInfoVOSDO;
import oracle.fodemo.storefront.store.queries.common.OrderInfoVOSDO;
import oracle.fodemo.storefront.store.service.common.serviceinterface.StoreFrontService;

...
import oracle.webservices.annotations.PortableWebService;
import weblogic.javaee.CallByReference;
...
@Stateless(name="oracle.fodemo.storefront.store.service.common.StoreFrontServiceBean")
@Remote(StoreFrontService.class)
@PortableWebService(targetNamespace="http://www.globalcompany.com/StoreFrontService",
 serviceName="StoreFrontService", portName="StoreFrontServiceSoapHttpPort",
 endpointInterface="oracle.fodemo.storefront.service.common.serviceinteface.StoreFrontService")
@CallByReference
public class StoreFrontServiceImpl extends ServiceImpl implements StoreFrontService

Publishing Service-Enabled Application Modules

11-12 Fusion Developer's Guide for Oracle Application Development Framework

{
 ...
 /**
 * findCustomerInfoVO1: generated method. Do not modify.
 * @param findCriteria
 * @param findControl
 * @return
 * @throws ServiceException
 */
 public List<CustomerInfoVOSDO> findCustomerInfoVO1(FindCriteria findCriteria,
 FindControl findControl) throws ServiceException {
 return (List<CustomerInfoVOSDO>)find(findCriteria, findControl,
 "CustomerInfoVO1",
 CustomerInfoVOSDO.class);
 }
...
}

11.2.2.5 connections.xml
The ADF Business Components service factory is the mechanism that allows the
service client to look up the service. The service factory relies on ADF connection
architecture and the connections.xml file to manage service endpoint locations.
The connections.xml file is created when you first create an ADF Business
Components service. This file appears in the Application Navigator in the Application
Resources panel, under the Descriptors and ADF META-INF folders.

Example 11–3 shows the initial connections.xml entry created by JDeveloper when
you first create an ADF Business Components service.

Example 11–3 connections.xml File Generated by JDeveloper

<Reference name="{http://www.globalcompany.com}StoreFrontService"
 className="oracle.jbo.client.svc.Service" xmlns="">
 <Factory className="oracle.jbo.client.svc.ServiceFactory"/>
 <RefAddresses>
 <StringRefAddr addrType="serviceInterfaceName">
 <Contents>oracle.fodemo.storefront.store.service.common.serviceinterface.
 StoreFrontService</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceEndpointProvider">
 <Contents>ADFBC</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="jndiName">
 <Contents>oracle.fodemo.storefront.store.service.common.
 StoreFrontServiceBean</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceSchemaName">
 <Contents>StoreFrontService.xsd</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceSchemaLocation">
 <Contents>oracle/fodemo/storefront/store/service/common/
 serviceinterface/</Contents>
 </StringRefAddr>
 </RefAddresses>
</Reference>

Publishing Service-Enabled Application Modules

Integrating Service-Enabled Application Modules 11-13

11.2.3 What You May Need to Know About Method Signatures on the Service Interface
You can define two different kinds of interfaces for an application module: the client
interface and the service interface. The client interface is used by the ADF Model layer
for UI clients. The service interface is for application integration and is used by
external web services or other application services (either programmatically or
automatically using the service-enabled entity feature).

An application module can support no interface at all, only client interfaces, only
service interfaces, or both client interfaces and service interfaces combined. However,
be aware that the two kinds of interfaces differ in the data types that are supported for
the parameters and/or return values of your custom methods that you define for the
respective interfaces. The types supported on the client interface are described in
Section 9.9.5, "What You May Need to Know About Method Signatures on the Client
Interface."

The service interface, in contrast to the client interface, supports a more narrow set of
data types for custom method parameters and return values and is limited to:

■ Java primitive types and their object wrapper types (e.g. int, Integer)

■ java.lang.String

■ java.math.BigDecimal

■ java.math.BigInteger

■ java.sql.Date

■ java.sql.Time

■ java.sql.Timestamp

■ java.util.Date

■ oracle.jbo.AttributeList

■ oracle.jbo.domain.BlobDomain

■ oracle.jbo.domain.Char

■ oracle.jbo.domain.ClobDomain

■ oracle.jbo.domain.DBSequence

■ oracle.jbo.domain.Date

■ oracle.jbo.domain.NClobDomain

■ oracle.jbo.domain.Number

■ oracle.jbo.domain.Timestamp

■ oracle.jbo.domain.TimestampLTZ

■ oracle.jbo.domain.TimestampTZ

■ oracle.jbo.server.ViewRowImpl or any subtype

■ java.util.List<aType>, where aType is any of the service-interface
supported data types, including Java primitive type

Note: The service interface specifically does not support Java Map collection. This
means it is not possible to return a collection of objects that are of different types.
However, a collection is not limited to view row attributes, a return type can be
defined as a list of any service-interface supported data type. For example,
List<DataObject>, List<AttributeList>, and List<String> are all valid
types.

Publishing Service-Enabled Application Modules

11-14 Fusion Developer's Guide for Oracle Application Development Framework

You can define a custom method that returns a type of AttributeList when you
want the client developer to work with the list of service-enabled entity object or view
object attributes to perform custom operations without the need to involve framework
behavior before running the custom method. As an alternative, when the client
developer wants the framework to manage rows (create, find, and populate), define
custom methods that return ViewRowImpl instead. In summary, if your method
signature defines ViewRowImpl as the data type, then the application automatically:

1. Looks up the row in the corresponding view object instance by primary key
and/or alternate key

2. If the row is not found, then creates a new row

3. Applies the attribute changes in the found or new row

Whereas, if your method signature defines the AttributeList data type, then no
automatic behavior is provided, and the actions performed and data modified by the
custom method will be limited to your custom method's code.

11.2.4 How to Service-Enable Individual View Objects
As a result of enabling the web service interface using the overview editor for the
application module, JDeveloper automatically enables your parent view instance
selections as Service Data Object (SDO) components. The generated SDO components
for each view instance will reference the same namespace and will be configured with
the same settings for options such as whether or not warnings are supported. You can
use the Java page of the overview editor to customize the SDO definition of these
existing service-enabled view objects. You can also use the Java page to service-enable
view objects that were not added already to the service interface. For example, if you
selected a parent view object that represents the master in a master-detail relationship,
the child view object will not be automatically service-enabled. You can use the Java
page of the overview editor for the child view object to individually add it to the
service interface.

You use the Java page of the overview editor for the view object to configure the SDO
name and namespace for a view object, or to selectively service-enable child view
objects.

Before you begin:
Create the desired view objects, as described in Section 5.2.1, "How to Create an
Entity-Based View Object," and Section 5.2.3, "How to Create an Expert Mode,
Read-Only View Object."

To set the SDO name and namespace for a view object:
1. In the Application Navigator, double-click the view object.

2. In the overview editor, click the Java navigation tab and click the Edit java
options button.

3. In the Select Java Options dialog, in the Service Data Object section, select
Generate Service Data Object Class. Enter a value for the service data object
name and the service data object’s target namespace.

The target namespace is a URI for the SDO that you can assign to group similar
SDOs together by entering the same URI.

A default SDO namespace is created for you based on the SDO’s package name
with periods replaced by "/". If you have defined a prefix for the namespace in the
View Objects page of the Preferences dialog, the prefix will be added at runtime to

Publishing Service-Enabled Application Modules

Integrating Service-Enabled Application Modules 11-15

the beginning of the namespace. For example, Figure 11–7 shows the default
namespace based on the package name.

Figure 11–7 Service Data Object Name and Namespace Options

4. Optionally, select Support Warnings when you want to be able to extract
warnings associated with the view rows of the service interface object.

5. Click OK.

11.2.5 How to Customize the SDO Properties of Service-Enabled View Objects
You can use the overview editor for the view object to customize the SDO component
definition of the service-enabled view object. By default, all attributes of the
service-enabled view object will be exposed as SDO properties. By customizing the
view object definition, you can exclude individual SDO properties from participating
in the service interface. In the case of SDO properties that define numeric values, you
can associate two properties so they appear as a single complex type in the service
interface. For example, you can associate one property that defines a currency code or
unit of measure with another property that displays the numeric value. Currently,
only the complex service types AmountType (a currency code) and MeasureType (a
unit of measure) are supported.

11.2.5.1 Excluding Individual SDO Properties in a Generated SDO Component
As a result of enabling the web service interface using the overview editor for the
application module, JDeveloper automatically enables your parent view instance
selections as SDO components. Additionally, you can selectively service-enable
individual child view objects and generate SDO components. By default, generated
SDO components expose all attributes of their base view object definition as SDO
properties. You can hide any attribute that you do not want the service interface to
return as an SDO property.

You use the Attributes page of the overview editor to select the view object attribute
that you want to exclude from the service interface. You use the Edit Attribute dialog

Publishing Service-Enabled Application Modules

11-16 Fusion Developer's Guide for Oracle Application Development Framework

that you display from the Attributes page of the overview editor for the view object to
hide the selected attribute from the SDO component.

Before you begin:
It may be helpful to have an understanding of how the SDO framework supports
service-enabled ADF view objects and enables web service clients to access rows of
data and perform service operations. For more information, see Section 11.2,
"Publishing Service-Enabled Application Modules."

You will need to complete these tasks:

1. Create the desired view objects, as described in Section 5.2.1, "How to Create an
Entity-Based View Object," and Section 5.2.3, "How to Create an Expert Mode,
Read-Only View Object."

2. Service-enable the desired view object, as described in Section 11.2.4, "How to
Service-Enable Individual View Objects."

To exclude an SDO property from a service-enabled view object:
1. In the Application Navigator, double-click the view object.

2. In the overview editor, click the Attributes navigation tab.

3. In the Attributes page, select the attribute corresponding to the property that you
want to exclude, and then click the Edit selected attribute button.

4. In the Edit Attribute dialog, in the View Attribute page, deselect SDO Property.

5. Click OK.

11.2.5.2 Associating Related SDO Properties Using Complex Data Types
As a result of service-enabling the view object, JDeveloper automatically exposes SDO
properties as XSD-defined service types that correspond to the data types of the
underlying view object’s attributes. In the case of attributes that define numeric
values, you can change the SDO property’s service type to associate a related property
using one of these predefined service types:

■ AmountType service type, for use with any property that defines a currency code

■ MeasureType service type, for use with any property that defines a unit of
measure

When you change the service type of an SDO property to either of these complex
types, the service interface associates the two properties together and returns them as
a single XML element. Both properties of the SDO component must be defined by
attributes in the base service-enabled view object.

For example, suppose that your view object defines the OrderTotal attribute and a
CurrencyCode attribute to specify the currency code of allowed countries. By
default, the service interface exposes these attributes as SDO properties and returns
each property as a separate XML element:

<OrderTotal>100.00</Price>
<CurrencyCode>USD</CurrencyCode>

If you change the type of the OrderTotal property (assume that the XSD file defines
this property as a decimal type) to the complex type AmountType and then associate
the CurrencyCode property, the service interface will return them as one XML
element:

<OrderTotal CurrencyCode="USD">123.00</OrderTotal>

Publishing Service-Enabled Application Modules

Integrating Service-Enabled Application Modules 11-17

Also, when you generate a web service proxy, as described in Section 13.2.5.4,
"Invoking Application Modules with a Web Service Proxy Class," the class treats the
two values as one object:

AmountType price;
...
price.setValue(123.00);
price.setCurrencyCode("USD");

You use the Attributes page of the overview editor to select the view object attribute
whose service type you want to customize. You use the Edit Attribute dialog that you
display from the Attributes page of the overview editor to associate SDO properties
for the selected attribute and select the predefined complex service type.

Before you begin:
It may be helpful to have an understanding of how the SDO framework supports
service-enabled ADF view objects and enables web service clients to access rows of
data and perform service operations. For more information, see Section 11.2,
"Publishing Service-Enabled Application Modules."

Complete these tasks:

1. Create the desired view objects, as described in Section 5.2.1, "How to Create an
Entity-Based View Object," and Section 5.2.3, "How to Create an Expert Mode,
Read-Only View Object."

2. Service-enable the desired view object, as described in Section 11.2.4, "How to
Service-Enable Individual View Objects."

To associate SDO properties in a service-enabled view object:
1. In the Application Navigator, double-click the view object.

2. In the overview editor, click the Attributes navigation tab.

3. In the Attributes page, select the attribute corresponding to the property that you
will associate with another SDO property, and then click the Edit selected
attribute button.

The attribute you select must define a numeric type. For example, to associate a
currency code with the attribute that displays the amount paid by a customer, you
might select the OrderTotal attribute in the Orders service-enabled view object.

4. In the Edit Attribute dialog, in the View Attribute page, choose the desired XSD
Type.

If the XSD Type field is not enabled, return to the overview editor and select an
attribute of type numeric. Attributes whose values are not a numeric type cannot
be associated with the available complex service types.

The SDO framework supports the complex service types AmountType and
MeasureType. Choose AmountType when the property you want to associate
specifies currency information. Choose MeasureType when the property you
want to associate specifies a unit of measure.

5. In the currencyCode or unitCode dropdown list, select the view object attribute to
define the complex type.

The dialog changes to display the dropdown list appropriate to the XSD type
selection. You can choose any numeric attribute that the view object defines.

6. Click OK.

Publishing Service-Enabled Application Modules

11-18 Fusion Developer's Guide for Oracle Application Development Framework

11.2.6 How to Support Nested Processing in Service-Enabled Master-Detail View
Objects

When your data model defines master-detail relationships between parent and child
view objects, the service operations that you enable for the master view object will not
automatically be executed on the detail view object. You will need to enable support
for nested processing for these methods in the service interface:

■ To support get and find methods that retrieve child details along with the parent,
the view link between the master and detail view objects must have the
destination accessor generated. The destination accessor permits traversal of the
hierarchy from the master to the detail view object.

■ To support create/merge/update/process methods that post child details along
with the parent, the custom property SERVICE_PROCESS_CHILDREN must be
defined in one of these two situations:

– The view link is based on an association, and the association has the
destination accessor generated, and the association has a custom property
SERVICE_PROCESS_CHILDREN=true defined.

– The view link is not based on an association but has a custom property
SERVICE_PROCESS_CHILDREN=true defined.

Normally, post operations on the detail view object would only be supported
when the primary entity object of the master view object is composed with the
primary entity object of the detail view object. The custom property provides an
alternative that makes it convenient to support nested processing for any view
objects with a view link defined. You can define SERVICE_PROCESS_CHILDREN
as a custom property in the overview editor for either the view link or the view
link’s association (when present).

Before you begin:
1. Create the desired view objects and service-enable the child view object in the

master-detail hierarchy, as described in Section 11.2.4, "How to Service-Enable
Individual View Objects."

2. If the view link is not based on an association, confirm that a destination accessor
exists for the view link by opening the view link in the overview editor and
viewing the Relationship page. To generate the accessor so it appears in the
Relationship page, click the Edit Accessors button, and then, in the View Link
Properties dialog, select Generate Accessor in View Object for the destination
accessor. For more information about view links, see Section 5.6, "Working with
Multiple Tables in a Master-Detail Hierarchy."

If the view link is based on an association, then the destination accessor must be
exist for the association’s destination entity object. To generate one, use the
Relationship page of the overview editor for the association. For more information
about associations, see Section 4.3, "Creating and Configuring Associations."

To support nested processing in a master-detail hierarchy:
1. If the view link for the master-detail hierarchy is not based on an association, then

in the Application Navigator, double-click the view link; otherwise, if the view is
based on an association, then in the Application Navigator, double-click the
association.

You can confirm how the view link was created in the Relationship page of the
overview editor. The Attributes section names the source and destination
attributes. When the view link is based on an association, the attribute hyperlinks

Publishing Service-Enabled Application Modules

Integrating Service-Enabled Application Modules 11-19

will contain the names of the association. Otherwise, the hyperlinks will contain
the names of the base entity objects.

2. In the overview editor, click the General navigation tab.

The overview editor for the view link and the association both display these same
selections.

3. In the General page, expand the Custom Properties section, and then click Add
Custom Property and enter SERVICE_PROCESS_CHILDREN for the property and
enter true for the property value, as shown in Figure 11–8.

Figure 11–8 Custom Property to Support Nested Processing

11.2.7 What Happens When You Create SDO Classes
When you create SDO classes, the following files are generated and appear in the
Application Navigator under the owning view object:

■ Service data object Interface

■ Service data object class

■ Service data object schema file

■ Service data object result class and Interface, generated when Support Warnings
is enabled in the Select Java Options dialog

11.2.7.1 Service Data Object Interface
The view object SDO interface contains strongly typed accessors for the SDO
properties, as shown in Example 11–4.

Example 11–4 SDO Interface Contains Strongly Typed Accessors for SDO Properties

package oracle.fodemo.storefront.store.queries.common;
 public interface AddressesVOSDO {
 public java.math.BigInteger getAddressId();
 public void setAddressId(java.math.BigInteger value);
...}

11.2.7.2 Service Data Object Class
The view object SDO class implements the view object SDO interface and extends the
SDODataObject class, which is Oracle's implementation of the SDO specification.

At runtime an instance of an SDO object represents a row in memory.

The SDO class is similar to the view row class, as shown in Example 11–5.

Example 11–5 SDO Class Implements View Object SDO Interface

package oracle.fodemo.storefront.store.queries.common;
import commonj.sdo.Type;
import oracle.sdo.SDODataObject;
public class AddressesVOSDOImpl extends SDODataObject implements AddressesVOSDO
 {

Publishing Service-Enabled Application Modules

11-20 Fusion Developer's Guide for Oracle Application Development Framework

 ...
 }

11.2.7.3 Service Data Object Schema File
The view object SDO schema file, as shown in Figure 11–13, is an XML Schema file
which represents the SDO schema.

Figure 11–9 Generated SDO Schema

11.2.7.4 Service Data Object Result Class and Interface
The view object SDO result class is a container object that allows a service method to
return a list of view rows (wrapped in service data objects) and a list of warnings
associated with these view rows. You can use the generated method result interface to
extract warnings and exceptions.

Note that a service-enabled view object throws service exceptions rather than ADF
Business Components exceptions (JboException object). To remedy this, the service
interface adapter attempts to reconstitute ServiceException to JboException,
where possible.

The view object SDO result class, as shown in Example 11–6, is similar to the view row
class.

Example 11–6 SDO Result Class Defines Methods to Get Warnings from List

package oracle.fodemo.storefront.store.queries.common;
import oracle.sdo.SDODataObject;
public class OrderInfoVOSDOResultImpl extends
 oracle.jbo.common.service.types.MethodResultImpl implements OrderInfoVOResult {

 public static final int START_PROPERTY_INDEX =
 oracle.jbo.common.service.types.MethodResultImpl.END_PROPERTY_INDEX + 1;
 public static final int END_PROPERTY_INDEX = START_PROPERTY_INDEX + 0;
 public OrderInfoVOResultImpl() {}
 public java.util.List getValue() {
 return getList(START_PROPERTY_INDEX + 0);

Publishing Service-Enabled Application Modules

Integrating Service-Enabled Application Modules 11-21

 }

 public void setValue(java.util.List value) {
 set(START_PROPERTY_INDEX + 0 , value);
 }
}

11.2.8 How to Expose a Declarative Find Operation Filtered By a Required Bind
Variable

The ADF service interface framework allows you to expose declarative find operations
to execute the query define by a view object you select. However, when that query
uses a bind variable to filter the query results, the bind variable must not be specified
as Required and Updatable. Because the service interface does not expose required,
updatable bind variables, a find operation that you execute for such a view object
would fail to return any result.

When you want to filter a query result using bind parameters, use the view criteria
and expose it as a find operation on the service interface. A service interface find
operation based on a view criteria that you create can specify required bind variables.

Before you begin:
1. Create the desired application module as described in Section 9.2.1, "How to

Create an Application Module."

2. Create the view criteria as described in Section 5.11.1, "How to Create Named
View Criteria Declaratively." In the Edit View Criteria dialog, set the criteria item
as a bind variable and set the Validation field to Required. This selection ensures
that the query will not execute without a valid value.

To expose a find operation for a view criteria with required bind variable:
1. In the Application Navigator, double-click the application module.

2. In the overview editor, click the Service Interface navigation tab and click the Edit
attributes of Service Interface button.

Alternatively, you can select Edit Service Custom Methods if you have already
defined the service interface.

3. In the Edit Service Interface dialog, select Service View Instances from the
navigation list and add the view object that you want to filter with its named view
criteria to the Selected list.

4. To expose the find operation, select the view instance, click the View Criteria Find
Operations tab, and then click the Add View Criteria button.

5. In the Configure View Criteria Find Operation dialog, choose the named view
criteria for the find operation.

The dialog displays the bind variable for the selected view criteria.

6. You can double-click the XML name to customize the bind variable name shown
in the XML definition for the service.

7. Click OK.

11.2.9 How to Expose a Custom Find Method Filtered By a Required Bind Variable
As an alternative to exposing a declarative find operation that relies on a view criteria,
you can define a service method in your data model project’s application module

Publishing Service-Enabled Application Modules

11-22 Fusion Developer's Guide for Oracle Application Development Framework

implementation class. The class you create for this purpose allows you to encapsulate
business service functionality into a single method that you implement. For details
about the purpose of the custom application module implementation class, see
Section 9.7, "Customizing an Application Module with Service Methods."

Example 11–7 shows a custom find method implemented in the
AppModuleNameImpl.java file to set the bind variable and execute the view object
instance query. It uses setNamedWhereClauseParam() on the view object instance
to set the bind variable. Before executing the query, the find method sets the view
object in forward-only mode to prevent caching the view rows that the find method
iterates over. For more information about programmatically filtering a query result,
see Section 5.10.5, "How to Add a WHERE Clause with Named Bind Variables at
Runtime."

Example 11–7 Find Method Added to Application Module Implementation Class

public class AppModuleImpl extends ApplicationModuleImpl
{
 public List<ViewRowImpl> findProducts(String location)
 {
 List<ViewRowImpl> result = new ArrayList<ViewRowImpl>();
 ViewObjectImpl vo = getProductsView1();
 vo.setNamedWhereClauseParam("TheLocation", location);
 vo.setForwardOnly(true);
 vo.executeQuery();
 while (vo.hasNext()) {
 result.add((ViewRowImpl)vo.next());
 }
 return result;
 }
}

Before you begin:
Create the custom application module class as described in Section 9.7.1, "How to
Generate a Custom Class for an Application Module."

To expose a find method that sets a required bind variable:
1. In the Application Navigator, double-click the application module.

2. In the overview editor, click the Service Interface navigation tab and click the Edit
attributes of Service Interface button.

Alternatively, you can select Edit Service Custom Methods if you have already
defined the service interface.

3. In the Edit Service Interface dialog, select Service View Instances from the
navigation list and add the view object that you want to filter with its named view
criteria to the Selected list.

4. To expose the find operation, select the view instance and select the View Criteria
Find Operations tab and then click the Add View Criteria icon.

5. Click OK.

11.2.10 How to Generate Asynchronous Web Service Methods
By default, the web service supports synchronous service methods. This forces the
invoking client application to wait for the response to return before it can continue

Publishing Service-Enabled Application Modules

Integrating Service-Enabled Application Modules 11-23

with its work. In cases where the response returns immediately, this method of
invoking the web service is common. However, because request processing can be
delayed, it is often useful for the client application to continue its work and to handle
the response later on.

For more information about invoking the web service using asynchronous
request-response, see Oracle Fusion Middleware Concepts Guide for Oracle Infrastructure
Web Services.

Before you can deploy an asynchronous web service, you must configure the queues
used to store the request and response. For information about configuring the request
and response queues, see the Oracle Fusion Middleware Concepts Guide for Oracle
Infrastructure Web Services.

Before you begin:
Create the desired application module as described in Section 9.2.1, "How to Create an
Application Module."

To expose asynchronous web service methods:
1. In the Application Navigator, double-click the application module.

2. In the overview editor, click the Service Interface navigation tab and click the Edit
attributes of Service Interface button.

3. In the Edit Service Interface dialog, select Generate Asynchronous Web Service
Methods.

4. Click OK.

11.2.11 What Happens When You Generate Asynchronous Service Methods
JDeveloper generates the remote common interface for the service and enables the
asynchronous service operation. As shown in Example 11–8, the class annotation
@AsyncWebService declares the EmpService service interface asynchronous and
for each synchronous method in the interface, the service exposes an asynchronous
method with the same method name and "Async" appended.

Exposing both synchronous and asynchronous methods in the same interface allows
the web service client developer to decide how to invoke the operation through a web
service proxy: by calling the appropriately named method. Note that developers
should not invoke asynchronous methods through the ADF Business Components
service proxy directly.

In this example, because the EmpService service is enabled for asynchronous
operation, the interface exposes the getEmployeeAsync() method and declares the
getEmployee() method synchronous using the method annotation
@CallbackMethod(exclude=true) to override the default operation (it is the
exclude=true part that declares a method in the asynchronous service as
synchronous). No annotation is required to declare the asynchronous service methods
when the class annotation @AsyncWebService is present.

Example 11–8 Remote Common Interface with Asynchronous Service Methods

import javax.xml.ws.Action;
...
import oracle.webservices.annotations.async.AsyncWebService;
import oracle.webservices.annotations.async.CallbackMethod;

@SOAPBinding(parameterStyle=SOAPBinding.ParameterStyle.WRAPPED, style=SOAPBinding.Style.DOCUMENT)

Publishing Service-Enabled Application Modules

11-24 Fusion Developer's Guide for Oracle Application Development Framework

@PortableWebService(targetNamespace="http://xmlns.example.com/apps/service/", name="EmpService",
 wsdlLocation="oracle/apps/service/EmpService.wsdl")
@SDODatabinding(schemaLocation="oracle/apps/service/EmpService.xsd")
@AsyncWebService
public interface EmpService
{
 ...

 @WebMethod(action="http://xmlns.example.com/apps/service/getEmployee",
 operationName="getEmployee")
 @RequestWrapper(targetNamespace="http://xmlns.example.com/apps/service/types/",
 localName="getEmployee")
 @ResponseWrapper(targetNamespace="http://xmlns.example.com/apps/service/types/",
 localName="getEmployeeResponse")
 @WebResult(name="result")
 @CallbackMethod(exclude=true)
 Emp getEmployee(@WebParam(mode = WebParam.Mode.IN, name="empno") Integer empno)
 throws ServiceException;

 @WebMethod(action="http://xmlns.example.com/apps/service/getEmployeeAsync",
 operationName="getEmployeeAsync")
 @RequestWrapper(targetNamespace="http://xmlns.example.com/apps/service/types/",
 localName="getEmployeeAsync")
 @ResponseWrapper(targetNamespace="http://xmlns.example.com/apps/service/types/",
 localName="getEmployeeAsyncResponse")
 @WebResult(name="result")
 @Action(input="http://xmlns.example.com/apps/service/getEmployeeAsync",
 output="http://xmlns.example.com/apps/service/getEmployeeAsyncResponse")
 Emp getEmployeeAsync(@WebParam(mode = WebParam.Mode.IN, name="empno") Integer empno);
}

The duplicate asynchronous methods delegate to the synchronous methods in the
service implementation, as shown in Example 11–9. This ensures that the underlying
business logic is the same for operations declared as either synchronous or
asynchronous.

Example 11–9 Remote Server Class Implements Asynchronous Service Methods

...
import oracle.webservices.annotations.async.AsyncWebService;

@Stateless(name="oracle.apps.service.EmpServiceBean", mappedName="EmpServiceBean")
@Remote(EmpService.class)
@PortableWebService(targetNamespace="http://xmlns.oracle.com/apps/service/",
 serviceName="EmpService", portName="EmpServiceSoapHttpPort",
 endpointInterface="oracle.apps.service.EmpService")
@Interceptors(ServiceContextInterceptor.class)
@AsyncWebService
public class EmpServiceImpl extends ServiceImpl implements EmpService
{
 ...

 /**
 * getEmployee: generated method. Do not modify.
 */
 public Emp getEmployee(Integer empno)
 throws ServiceException
 {
 return (Emp) get(new Object[] { empno }, "Employee", Emp.class);
 }

Publishing Service-Enabled Application Modules

Integrating Service-Enabled Application Modules 11-25

 /**
 * getEmployeeAsync: generated method. Do not modify.
 */
 public Emp getEmployeeAsync(Integer empno)
 throws ServiceException
 {
 return getEmployee(empno);
 }
}

11.2.12 What Happens at Runtime: When the Asynchronous Call Is Made
From the client’s point of view, an asynchronous call consists of two one-way message
exchanges. The sequence diagram in Figure 11–10 depicts the following flow:

1. The client calls for the asynchronous operation. (In the figure, Step 1.)

2. The asynchronous service receives the request and returns the HTTP
acknowledgement back to the client without actually processing the request. (In
the figure, step 2)

3. Eventually the asynchronous operation will complete and the module on the
server side will send the response to the client side. (In the figure, step 3.)

To receive the response at the client side, the client must have some kind of HTTP
listener, for example, a servlet or a web service.

4. The client side-generated web service (the Callback Service) receives the
asynchronous responses. (In the figure, step 4.)

The module in step 3 on the server side acts like a client to the callback service and
so is referred as the callback client.

Figure 11–10 Asynchronous Call Sequence

11.2.13 How to Set Preferences for Generating the Service Interface
You have additional control of the service generated by JDeveloper. You can set
JDeveloper preferences to use a default suffix for the names of generated SDO classes,
modifying the default subpackage where the service common interface and classes go.

Publishing Service-Enabled Application Modules

11-26 Fusion Developer's Guide for Oracle Application Development Framework

To set the SDO class name suffix:
1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, expand the Business Components node and choose
Class Naming.

3. In the View Object suffix list, enter a suffix for SDO, for example, SDO.

To set the default subpackage for the generated service interface:
1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, expand ADF Business Components and choose
Packages.

3. In the Relative Package Specification for Classes list, specify the default package
names:

■ To set the Service Interface package name, enter a value for the Client
Interface. (The Service Interface displays the same package name you specify
for the client interface). The default package name is common.

■ Enter a value for the Service Interface Subpackage of the Service Interface.
The default subpackage name is serviceinterface.

For example, if you enter common for Service Interface and serviceinterface
for Service Interface Subpackage (the defaults), service interfaces for data model
components in the data model package oracle.storefront.store.service
will be placed in the subpackage
oracle.storefront.store.service.common.serviceinterface.

To set the default namespace prefix for the generated SDO schema and web
service:
1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, expand the Business Components node and choose
View Objects.

3. Enter a value for the Service Data Object Namespace Prefix to be added to the
beginning of the target namespace of the generated SDO schema and web service.
For example, http://example.com/.

11.2.14 How to Secure the Web Service for SOAP Clients
At runtime, the web service client will invoke the service-enable methods of the
application module through the SOAP protocol. You can configure a Oracle Web
Service Manager (Oracle WSM) security policy to enable authentication and
authorization on the service. The security policy that you select will require the SOAP
client call to provide credential information (or SAML token) as part of the SOAP
header. You can also configure other policies to enable message protection (integrity
and confidentiality) for inbound SOAP requests, for instance. For information about
the predefined policies supported by Oracle WSM, see the Oracle Fusion Middleware
Security and Administrator's Guide for Web Services.

11.2.14.1 Enabling Authentication for SOAP Clients
You can enable authentication to require users to supply credentials before they have
access to the service methods on the service interface. The type of authentication
required is configured on the remote server class using an Oracle WSM authentication

Publishing Service-Enabled Application Modules

Integrating Service-Enabled Application Modules 11-27

policy. For details about the available authentication policies, see the Oracle Fusion
Middleware Security and Administrator's Guide for Web Services.

To configure an authentication policy:
1. In the Application Navigator, expand the application module, expand the

serviceinterface folder, and then double-click the remote server class
(AppModuleServiceImpl.java file).

In the web service generated from the StoreServiceAM application module in
the StoreFrontModule application of the Fusion Order Demo, the remote server
class is StoreFrontServiceImpl.java.

2. In the source for the remote server class, place your cursor on the
@PortableWebService annotation.

For example, StoreFrontService.wsdl shows the annotation for the service as
follows:

...
@PortableWebService(targetNamespace="www.globalcompany.example.com",
 serviceName="StoreFrontService", portName="StoreFrontServiceSoapHttpPort",
 endpointInterface=
 "oracle.fodemo.storefront...common.serviceinterface.StoreFrontService")
...

3. Open the Property Inspector and expand the Web Services Extension section, and
then click the ellipsis button next to the Security field for Oracle WSM Policies.

4. In the Edit Property: Security dialog, select the desired authentication security
policy and click OK.

For details about the available security policies supported by Oracle WSM, see the
Oracle Fusion Middleware Security and Administrator's Guide for Web Services.

5. Return to the source file and note that new annotation @SecurityPolicy has
been added.

The @SecurityPolicy annotation that you define for the remote server class
specifies the security requirements to potential clients. For example, if you had
selected oracle/wss_username_token_service_policy in the dialog, the following
@SecurityPolicy annotation would appear below the
@PortableWebService annotation:

...
@PortableWebService(targetNamespace="www.globalcompany.example.com",
 serviceName="StoreFrontService",
 portName="StoreFrontServiceSoapHttpPort",
 endpointInterface=

"oracle.fodemo.storefront.store.service.common.serviceinterface.StoreFrontServi
ce")
@SecurityPolicy({ "oracle/wss_username_token_service_policy" })
...

For details about configuring an authorization policy to require users to have
sufficient access rights in order to invoke methods on the service, see
Section 11.2.14.2, "Enabling Authorization for SOAP Clients."

6. Save the remote server class file.

Publishing Service-Enabled Application Modules

11-28 Fusion Developer's Guide for Oracle Application Development Framework

11.2.14.2 Enabling Authorization for SOAP Clients
You can enable permission checking to enable only users with sufficient privileges to
invoke a service method on the service interface. This permission checking is
configured on the remote server class using this Oracle Web Services Manager (Oracle
WSM) authorization policy:

■ binding_permission_authorization_policy

This policy provides simple permission-based authorization for the request based
on the authenticated Subject at the SOAP binding level. This policy ensures that
the Subject has permission to perform the operation. This policy should follow an
authentication policy where the Subject is established and can be attached to any
SOAP-based endpoint.

As an alternative to the permission checking policy, you can configure one of these
role-based Oracle WSM security policies:

■ binding_authorization_denyall_policy

This policy provides simple role-based authorization for the request based on the
authenticated Subject at the SOAP binding level. This policy denies all users with
any roles. It should follow an authentication policy where the Subject is
established and can be attached to any SOAP-based endpoint.

■ binding_authorization_permitall_policy

This policy provides a simple role-based authorization for the request based on
the authenticated Subject at the SOAP binding level. This policy permits all users
with any roles. It should follow an authentication policy where the Subject is
established and can be attached to any SOAP-based endpoint.

For further details about these authorization policy, see the Oracle Fusion Middleware
Security and Administrator's Guide for Web Services.

Before you begin:
1. Configure an authentication policy for the service, as described in

Section 11.2.14.1, "Enabling Authentication for SOAP Clients."

2. Grant users access to the service, as described in Section 11.2.16, "How to Grant
Test Users Access to the Service."

To configure a permission-based authorization policy:
1. In the Application Navigator, expand the application module, expand the

serviceinterface folder, and then double-click the remote server class
(AppModuleServiceImpl.java file).

In the web service generated from the StoreServiceAM application module in
the StoreFrontModule application of the Fusion Order Demo, the remote server
class is StoreFrontServiceImpl.java.

2. In the source for the remote server class, place your cursor on the
@PortableWebService annotation.

For example, StoreFrontService.wsdl shows the annotation for the service as
follows:

...
@PortableWebService(targetNamespace="www.globalcompany.example.com",
 serviceName="StoreFrontService",
 portName="StoreFrontServiceSoapHttpPort",
 endpointInterface=

Publishing Service-Enabled Application Modules

Integrating Service-Enabled Application Modules 11-29

 "oracle.fodemo.storefront...common.serviceinterface.StoreFrontService")
...

3. Open the Property Inspector and expand the Web Services Extension section, and
then click the ellipsis button next to the Security field for Oracle WSM Policies.

4. In the Edit Property: Security dialog, select the desired security policy and click
OK.

For details about the security policies supported by Oracle WSM, see the Oracle
Fusion Middleware Security and Administrator's Guide for Web Services.

5. Return to the source file and note that annotation @SecurityPolicy is
configured.

The @SecurityPolicy annotation that you define for the remote server class
specifies the security requirements to potential clients. In this example, the
annotation shows both the permission-checking authorization policy
(oracle/binding_permission_authorization_policy) and an
authentication policy:

...
@PortableWebService(targetNamespace="www.globalcompany.example.com",
 serviceName="StoreFrontService", portName="StoreFrontServiceSoapHttpPort",
 endpointInterface=
 "oracle.fodemo.storefront...common.serviceinterface.StoreFrontService")
@SecurityPolicy({ "oracle/binding_permission_authorization_policy",
 "oracle/wss_username_token_service_policy" })
...

For details about configuring an authentication policy to require the client to
supply credentials in order to access the service, see Section 11.2.14.1, "Enabling
Authentication for SOAP Clients."

6. Save the remote server class file.

11.2.15 How to Secure the Web Service for RMI Clients
Because the ADF web service is implemented as an EJB and deployed on Oracle
WebLogic Server as Oracle Web Service’s PortableWebService, the client
application can invoke the service-enable methods of the application module through
the RMI protocol.

11.2.15.1 Enabling Authentication for RMI Clients
When the ADF service is invoked through RMI, authentication is handled with the
common JAAS login module. The login module can be passed the principal and
credential as part of the JNDI initial context for the EJB in the calling application. If
you do not define the JNDI context properties, the login module will attempt to obtain
the caller’s current security context.

When you choose to define remote JNDI context information, then these four JNDI
context properties need to be added to the connections.xml file.

Publishing Service-Enabled Application Modules

11-30 Fusion Developer's Guide for Oracle Application Development Framework

■ jndiFactoryInitial should be set to
weblogic.jndi.WLInitialContextFactory.

■ jndiProviderURL is the JNDI provider URL that indicates the location of the
JNDI server. The URL should be composed as t3://<hostname>:<server
port>.

When you test the service in JDeveloper, and your service is deployed to
Integrated WebLogic Server, specify the JNDI provider URL of Integrated
WebLogic Server: t3://<hostname>:7101.

When you deploy the service to remote Oracle WebLogic Server, specify a URL
like: t3://localhost:8888, where t3 is the Oracle WebLogic protocol,
localhost is the host name that the remote Oracle WebLogic Server instance
runs in, 8888 is the port number.

■ jndiSecurityPrincipal specifies the principal (user name) with permission to
access the remote JNDI.

As Example 11–10 shows, when you test the service in JDeveloper Integrated
WebLogic Server, you should omit this context property since no security is
configured for the JNDI server on Integrated WebLogic Server.

As Example 11–11 and Example 11–12 show, when you deploy the service to
standalone Oracle WebLogic Server, the user name can be read from the file.

■ jndiSecurityCredentials specifies the credentials (password) to be used for
the security principal.

As Example 11–10 shows, when you test the service in JDeveloper Integrated
WebLogic Server, you should omit this context property since no security is
configured for the JNDI server on Integrated WebLogic Server.

As Example 11–11 shows, when you deploy the service to standalone Oracle
WebLogic Server in a test environment, you can specify credentials in plain text for
the JNDI provider. For example, you can specify weblogic/weblogic1 which
are the default administrator user name/password credentials with sufficient
privileges to access JNDI provider for Oracle WebLogic Server.

When you deploy the service to a production environment, you must remove the
plain text password to avoid creating a security vulnerability. As Example 11–12
shows, the connections.xml file must contain <SecureRefAddr
addrType="jndiSecurityCredentials"/> with no password. To configure
the service password for standalone Oracle WebLogic Server, you must use Oracle
Enterprise Manager, which will store the encrypted password in Oracle’s
credential store.

To configure JNDI context properties to handle authentication:
1. In the Application Navigator in the Application Resources panel, expand the

Descriptors and ADF META-INF folders, and then double-click the
connections.xml file.

Note: When you intend to test the service in JDeveloper using
Integrated WebLogic Server, before deploying the service you can edit
the JNDI context properties in the connections.xml file directly.
However, when you deploy the service to standalone Oracle
WebLogic Server, you will use Oracle Enterprise Manager to
configure the JNDI context properties.

Publishing Service-Enabled Application Modules

Integrating Service-Enabled Application Modules 11-31

2. If the source editor, use the JNDI context properties to specify the principal and
credentials.

If you are testing the service in JDeveloper’s Integrated WebLogic Server, you only
need to specify the jndiProviderURL property, as shown in Example 11–10.

Example 11–10 JNDI Properties for JDeveloper Integrated WebLogic Server

<References xmlns="http://xmlns.oracle.com/adf/jndi">
<Reference name="{www.globalcompany.com}StoreFrontService"

className="oracle.jbo.client.svc.Service" xmlns="">
<Factory className="oracle.jbo.client.svc.ServiceFactory"/>
<RefAddresses>
...
<StringRefAddr addrType="jndiFactoryInitial">

<Contents>weblogic.jndi.WLInitialContextFactory</Contents>
</StringRefAddr>
<StringRefAddr addrType="jndiProviderURL">

<Contents>t3://a_hostname:7101</Contents>
</StringRefAddr>
...

</RefAddresses>
</Reference>
...

</References>

If you are deploying the service for testing purposes to standalone Oracle
WebLogic Server, you can use the connections.xml file to specify credentials
for the JNDI provider. For example, as shown in Example 11–11, you can specify
weblogic/weblogic1 which are the default administrator user name/password
credentials with sufficient privileges to access JNDI provider for Oracle WebLogic
Server.

Example 11–11 JNDI Properties for a Test Environment

<References xmlns="http://xmlns.oracle.com/adf/jndi">
<Reference name="{www.globalcompany.com}StoreFrontService"

className="oracle.jbo.client.svc.Service" xmlns="">
<Factory className="oracle.jbo.client.svc.ServiceFactory"/>
<RefAddresses>
...
<StringRefAddr addrType="jndiFactoryInitial">

<Contents>weblogic.jndi.WLInitialContextFactory</Contents>
</StringRefAddr>
<StringRefAddr addrType="jndiProviderURL">

<Contents>t3://localhost:8888</Contents>
</StringRefAddr>
<StringRefAddr addrType="jndiSecurityPrincipal">

<Contents>weblogic</Contents>
</StringRefAddr>
<SecureRefAddr addrType="jndiSecurityCredentials">

<Contents>weblogic1</Contents>
</SecureRefAddr>
...

</RefAddresses>
</Reference>
...

</References>

Publishing Service-Enabled Application Modules

11-32 Fusion Developer's Guide for Oracle Application Development Framework

If you are deploying the service to production Oracle WebLogic Server, you can
use the connections.xml file to specify the user name. As shown in
Example 11–12, you must not specify the password.

Example 11–12 JNDI Properties for a Production Environment

<References xmlns="http://xmlns.oracle.com/adf/jndi">
<Reference name="{www.globalcompany.com}StoreFrontService"

className="oracle.jbo.client.svc.Service" xmlns="">
<Factory className="oracle.jbo.client.svc.ServiceFactory"/>
<RefAddresses>
...
<StringRefAddr addrType="jndiFactoryInitial">

<Contents>weblogic.jndi.WLInitialContextFactory</Contents>
</StringRefAddr>
<StringRefAddr addrType="jndiProviderURL">

<Contents>t3://localhost:8888</Contents>
</StringRefAddr>
<StringRefAddr addrType="jndiSecurityPrincipal">

<Contents>a_username</Contents>
</StringRefAddr>
<SecureRefAddr addrType="jndiSecurityCredentials/">
...

</RefAddresses>
</Reference>
...

</References>

3. Save the file.

11.2.15.2 Enabling Authorization for RMI Clients
You can enable permission checking to enable only users with sufficient privileges to
invoke a service method on the service interface. In order enable permission checking,
the ADF web service framework provides an EJB interceptor named
ServicePermissionCheckInterceptor. This EJB interceptor ensures permission
checking is enforced at runtime. Currently, the interceptor is configured to use the
Oracle Web Services Manager (Oracle WSM) authorization policy binding_
permission_authorization_policy. For further details about this authorization
policy, see the Oracle Fusion Middleware Security and Administrator's Guide for Web
Services.

Before you begin:
1. Configure the authentication policy for the service in the connections.xml file

of the client application (the one invoking the service), as described in
Section 11.2.15.1, "Enabling Authentication for RMI Clients."

2. Grant users access to the service, as described in Section 11.2.16, "How to Grant
Test Users Access to the Service."

To configure a permission-based authorization policy:
1. In the Application Navigator, expand the META-INF folder of the web service

project and double-click the ejb-jar.xml file.

2. In the source editor, add the following JpsInterceptor definition required by
the EJB for application roles evaluation.

<?xml version = '1.0' encoding = 'windows-1252'?>
<ejb-jar xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Publishing Service-Enabled Application Modules

Integrating Service-Enabled Application Modules 11-33

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/j2ee/ejb-jar_3_0.xsd" version="3.0"
 xmlns="http://java.sun.com/xml/ns/javaee">
 <enterprise-beans>
 ...
 </enterprise-beans>
 <interceptors>
 <interceptor>
 <interceptor-class>
 oracle.security.jps.ee.ejb.JpsInterceptor
 </interceptor-class>
 <env-entry>
 <env-entry-name>application.name</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>ApplicationName</env-entry-value>
 <injection-target>
 <injection-target-class>
 oracle.security.jps.ee.ejb.JpsInterceptor
 </injection-target-class>
 <injection-target-name>
 application_name
 </injection-target-name>
 </injection-target>
 </env-entry>
 </interceptor>
 ...
 <interceptors>
 <assembly-descriptor>
 <interceptor-binding>
 <ejb-name>*</ejb-name>
 <interceptor-class>
 oracle.security.jps.ee.ejb.JpsInterceptor
 </interceptor-class>
 </interceptor-binding>
 </assembly-descriptor>
</ejb-jar>

3. In the Application Navigator, expand the application module, expand the
serviceinterface folder, and then double-click the remote server class
(AppModuleServiceImpl.java) file.

4. In the source editor, place your cursor at the end of your annotations section and
add the annotation named ServicePermissionCheckInterceptor to enable
permission checking at runtime.

...
@Stateless(name="oracle.fodemo.storefront.store.service.common.
 StoreFrontServiceBean")
@Remote(StoreFrontService.class)
@PortableWebService(targetNamespace="http://www.globalcompany.com/
 StoreFrontService", serviceName="StoreFrontService",
 portName="StoreFrontServiceSoapHttpPort",
 endpointInterface="oracle.fodemo.storefront.
 service.common.serviceinteface.StoreFrontService")
@CallByReference
@Interceptors({ServiceContextInterceptor.class,
 ServicePermissionCheckInterceptor.class})

5. Save the files.

Publishing Service-Enabled Application Modules

11-34 Fusion Developer's Guide for Oracle Application Development Framework

11.2.16 How to Grant Test Users Access to the Service
After you have have configured the authorization policy for the service, you must
configure the Oracle Platform Security Services (OPSS) security provider to specify
which users can invoke method on the service. At design time, you perform this task
by editing the jazn-data.xml configuration file to create application roles and make
an invoke permission grant to the desired application roles. Then when you deploy
the service, the administrator for the target Oracle WebLogic Server will associate
enterprise users with the application roles you specify. This allows you to confer the
right to invoke a service method to any user who is a member of that application role.
Users who are members of a role that has not been granted the invoke permission, will
denied access to the service method. For more information about the OPSS security
provider and application roles, see the Oracle Fusion Middleware Security Guide.

To configure the jazn-data.xml file with test users that you can use to run the
application in Integrated WebLogic Server, see Section 30.6, "Creating Test Users."

The invoke permission for Oracle Web Services is defined by the
oracle.wsm.security.WSFunctionPermission class. You can grant the invoke
permission to the application roles you define for all the methods of the service or just
to individual methods.

Before you begin:
1. Configure authentication and authorization policies for your service, as described

in Section 11.2.14, "How to Secure the Web Service for SOAP Clients," or
Section 11.2.15, "How to Secure the Web Service for RMI Clients."

2. Add the OPSS security provider configuration file to your project by creating a
jazn-data.xml deployment descriptor as described in "Creating and Editing a
Deployment Descriptor" in the Deploying Applications section of the JDeveloper
online help.

Note that in JDeveloper you open the New Gallery, expand General, select
Deployment Descriptors and then Oracle Deployment Descriptors, and click
OK.

3. Create the desired application roles, as described in Section 30.4, "Creating
Application Roles."

4. For the purpose of testing your web service in JDeveloper, you can populate the
application roles with test users, as described in Section 30.6, "Creating Test Users."

To grant the web service permission to application roles in the jazn-data.xml file:
1. From the Application menu, choose Secure > ADF Policies.

Before you begin this procedure, you need to create the application roles that you
want to make grants to, as described in Section 30.4, "Creating Application Roles."
If you are testing in JDeveloper, you can also populate the application roles with
test users, as described in Section 30.6, "Creating Test Users."

2. In the editor window for the jazn-data.xml file, select the Source tab.

3. In the source for the jazn-data.xml file, expand the <policy-store> element
to view all ADF security policies that you already defined for your application.

Currently, this release does not provide an editor to create an application security
policy; you will need to manually create the policy in the source for the
jazn-data.xml file.

Publishing Service-Enabled Application Modules

Integrating Service-Enabled Application Modules 11-35

4. Inside the <jazn-policy> element, create a <grant> element that defines the
<grantee> with the desired application role and the <permission> with the
fully qualified class name of the Oracle WSM permission class
(oracle.wsm.security.WSFunctionPermission), the permission target
name that uniquely identifies the service method, and the invoke method action
that you want to grant to the application role principal.

Your finished source should look similar to this:

<grant>
 <grantee>
 <principals>
 <principal>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>customers</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.wsm.security.WSFunctionPermission</class>
 <name>www.globalcompany.example.com/
 StoreFrontService#CreateAccount</name>
 <actions>invoke</actions>
 </permission>
 </permissions>
</grant>

The <principal> element is defined by the application role class name
oracle.security.jps.service.policystore.ApplicationRole and an
application role name that you already created. For example, if you created an
application role customers and you want to grant invoke service method
permission to the members of that role, then enter customers.

The <permission> element is defined by the Oracle WSM class name
oracle.wsm.security.WSFunctionPermission and the permission target
name. The permission target name is formed by appending
/serviceInterfaceName and #serviceMethodName (or wildcard character)
to the service target namespace.

For example, in the Fusion Order Demo, the WSDL definition file defines the
following name and namespace:

<wsdl:definitions
 name="StoreFrontService"
 targetNamespace="www.globalcompany.example.com"

Assume that you want to grant a permission to allow authorized users to invoke a
CreateAccount service method on the service interface with these Fusion Order
Demo name and namespace, you would enter the target name like this:

www.globalcompany.example.com/StoreFrontService#CreateAccount

Alternatively, you can enter the target name using the wildcard character * to
grant all operations of the service interface in a single permission:

Tip: You can find the target namespace and service name from the
WSDL definition file for the service. In the Application Navigator,
double-click the WSDL file in the serviceinterface folder to view the
name and targetNamespace definitions.

Publishing Service-Enabled Application Modules

11-36 Fusion Developer's Guide for Oracle Application Development Framework

www.globalcompany.example.com/StoreFrontService#*

The actions that you can enter are defined by the permission class. In this case,
oracle.wsm.security.WSFunctionPermission defines the single action
invoke.

5. Save the changes to the jazn-data.xml file.

11.2.17 How to Enable Support for Binary Attachments for SOAP Clients
The ADF service interface framework supports using Message Transmission
Optimization Mechanism (MTOM) to handle sending binary data in any service
method that operates on a ViewRow with a BlobDomain/ClobDomain attribute. This
permits binary data to accompany XML messages, for example when images are
required to document an insurance claim. The SDO data objects of the service-enabled
application module maps BlobDomain/ClobDomain to
javax.activation.DataHandler. These DataHandler properties could be
passed as attachments during SDO data object marshalling/unmarshalling when the
web service is called using the SOAP protocol.

To enable MTOM support for your SOAP protocol, you must add the @MTOM
annotation to the service interface implementation class (for example,
StoreFrontServiceImpl.java) and your method must operate on a ViewRow
with BlobDomain/ClobDomain attribute.

To enable support for sending binary data attachments:
1. In the Application Navigator, expand the application module, expand the

serviceinterface folder, and then double-click the remote server class
(AppModuleServiceImpl.java) file.

In the web service generated from the StoreServiceAM application module in
the StoreFrontModule application of the Fusion Order Demo, the remote server
class is StoreFrontServiceImpl.java.

2. In the source for the remote server class, place your cursor anywhere in the
annotation section.

For example, in the StoreFrontServiceImpl.java the annotation section for
the service is:

...
@Stateless(name="oracle.fodemo.storefront....common.StoreFrontServiceBean",
 mappedName="StoreFrontServiceBean")
@Remote(StoreFrontService.class)
@PortableWebService(targetNamespace="www.globalcompany.example.com",
 serviceName="StoreFrontService", portName="StoreFrontServiceSoapHttpPort",
 endpointInterface=
 "oracle.fodemo.storefront...common.serviceinterface.StoreFrontService")
...

3. Open the Property Inspector and expand the Web Services section, then select
Enable MTOM.

JDeveloper adds the @MTOM annotation to the annotations section of the file.

...
@Stateless(name="oracle.fodemo.storefront....common.StoreFrontServiceBean",
 mappedName="StoreFrontServiceBean")
@Remote(StoreFrontService.class)
@PortableWebService(targetNamespace="www.globalcompany.example.com",

Publishing Service-Enabled Application Modules

Integrating Service-Enabled Application Modules 11-37

 serviceName="StoreFrontService", portName="StoreFrontServiceSoapHttpPort",
 endpointInterface=
 "oracle.fodemo.storefront...common.serviceinterface.StoreFrontService")
@MTOM
...

11.2.18 How to Test the Web Service Using Integrated WebLogic Server
You can run the web service in JDeveloper using Integrated WebLogic Server. You can
also deploy the web service to Oracle WebLogic Server to test the service.

To run and test using Integrated WebLogic Server:
1. In the Application Navigator, expand the application module, expand the

serviceinterface folder, and then select the remote server class
(AppModuleServiceImpl.java) file.

In the web service generated from the StoreServiceAM application module in
the StoreFrontModule application of the Fusion Order Demo, the remote server
class is StoreFrontServiceImpl.java.

2. Right-click the remote server class file, and choose Run or Debug.

The Configure Default Domain dialog displays the first time you run the
application and start a new domain in Integrated WebLogic Server. Use the dialog
to define an administrator password for the new domain. Passwords you enter can
be eight characters or more and must have a numeric character.

JDeveloper initializes the server instance, and then deploys the application and
starts the web service. During this time, the output from these processes is
displayed in the Running tab of the Log window. After the web service has
started, the target URL is also displayed in the Log window.

3. Copy the target URL (beginning with http://) from the Log window.

4. Launch a web browser, paste the endpoint URL you copied from the Log window
into the browser address field, append the service name, and submit the HTTP
request.

For example, if the Log window displays:

http://130.35.103.93:8888/ADFServiceDemo-ADFModel-context-roo
t

and the name of the service is AppModuleService, the target URL would look
like this:

http://130.35.103.93:8888/ADFServiceDemo-ADFModel-context-roo
t/AppModuleService

5. In the test page, choose the operation you want to invoke from the Operations
dropdown menu and enter sample data in its parameter fields.

6. When you are ready, press Invoke to submit the operation and view the results for
the operation in the Test Results page.

The Test Results page displays the XML Soap format of the information returned
by the operation.

Publishing Service-Enabled Application Modules

11-38 Fusion Developer's Guide for Oracle Application Development Framework

11.2.19 How to Prevent Custom Service Methods from Timing Out
When you test the web service you may find that some of your custom methods
exceed the established timeout limitation established by the Java Transaction API
(JTA). The JTA timeout setting establishes an execution boundary for service methods
that by default may not exceed 30 seconds. You could use the Administration Console
for Oracle WebLogic Server to increase the JTA timeout setting. If you still receive a
timeout exception or you anticipate that the custom methods of the service interface
may be long running, you can specify an EJB transaction attribute for the stateless
session bean to prevent the EJB from executing those methods in a JTA transaction.

To make a custom method exempt from timing out, you set
TransactionAttributeType.NOT_SUPPORTED in the Property Inspector
specifically for that method. Because a method with this transaction attribute setting
will not be executed in the JTA transaction, it is your responsibility to enforce control
over the transaction using the ADF Business Components methods of the
oracle.jbo.ApplicationModule and oracle.jbo.Transaction interfaces.
For instance, on the methods of the implementation class of the application module
that you service-enabled, you will need to call
am.getDBTransaction().commit() or rollback() in order to complete the
transaction.

You should not change the default transaction attribute setting for the standard service
methods generated for the service interface (see Table 11–1). The standard methods
will execute within the default execution boundary set for the JTA transaction.

To prevent custom methods from executing in a JTA transaction:
1. In the Application Navigator, expand the application module, expand the

serviceinterface folder, then double-click the remote server class
(AppModuleServiceImpl.java) file.

In the web service generated from the StoreServiceAM application module in
the StoreFrontModule application of the Fusion Order Demo, the remote server
class is StoreFrontServiceImpl.java.

2. In the source editor, locate the custom method that you want to prevent from
timing out and place your cursor on the method.

3. In the Property Inspector, expand Stateless Session Bean and choose
TransactionAttributeType.NOT_SUPPORTED from the TransactionAttribute
dropdown menu.

JDeveloper updates the method by adding the annotation
@TransactionAttribute(TransactionAttributeType.NOT_
SUPPORTED).

For example, for the custom service method updateCustomerInterests() it
would look like this:

@TransactionAttribute(TransactionAttributeType.NOT_SUPPORTED)
public void updateCustomerInterests(List<String> pCategoryIds) throws
 ServiceException {
 invokeCustom((Method) _map.get("updateCustomerInterests"),
 new Object[] { pCategoryIds }, new String[] { null }, false);
}

4. Save the remote server class.

5. In the Application Navigator, double-click the application module implementation
class (AppModuleImpl.java) file.

Publishing Service-Enabled Application Modules

Integrating Service-Enabled Application Modules 11-39

The implementation class defines the custom methods that the you exposed
through the service interface. In the Fusion Order Demo, the application module
implementation class is StoreServiceAMImpl.java.

6. In the source editor, in the custom method that implements the service method
that you previously set the TransactionAttribute property on, add the custom
code that will commit and rollback the transaction.

For example, if you configured the TransactionAttribute property on the service
method named updateCustomerInterests(), then you would open the
implementation class for the application module, locate the custom method
updateCustomerInterests(), and add
am.getDBTransaction().commit() and rollback() as part of the method’s
try and catch statements like this:

public void updateCustomerInterests(List pCategoryIds) {
 try
 {
 if (pCategoryIds != null && pCategoryIds.size() > 0) {
 List<Integer> copyOfCategoryIds = (List<Integer>)
 this.cloneList(pCategoryIds);
 ViewObject selectedCategories =
 this.getSelectedCategoriesShuttleList();
 RowSetIterator rsi = selectedCategories.createRowSetIterator(null);
 // remove rows for the current user not in the list of product keys
 while (rsi.hasNext()) {
 Row r = rsi.next();
 Number interestId = (Number)r.getAttribute("CategoryId");
 // existing row is in the list, we're ok, so remove from list.
 if (copyOfCategoryIds.contains(interestId)) {
 copyOfCategoryIds.remove(interestId);
 }
 // if the existing row is in not list, remove it.
 else {
 r.remove();
 }
 }
 rsi.closeRowSetIterator();
 // at this point, add new rows for the keys that are left
 for (int i =0 ;i < copyOfCategoryIds.size(); i++) {
 Row newRow = selectedCategories.createRow();
 selectedCategories.insertRow(newRow);
 newRow.setAttribute("CategoryId", (String)
 copyOfCategoryIds.get(i).toString());
 }
 this.getTransaction().commit();
 }
 }
 catch (JboException e)
 {
 this.getTransaction().rollback();
 throw e;
 }
}

7. Save the application module implementation class.

Publishing Service-Enabled Application Modules

11-40 Fusion Developer's Guide for Oracle Application Development Framework

11.2.20 How to Deploy Web Services to Oracle WebLogic Server
You can deploy the web service to Oracle WebLogic Server, for example to perform a
second stage of testing the service. The procedure to deploy the web service will
depend on whether or not you have enabled authorization for the web service. If you
have enabled authorization, then preliminary steps to modify the web.xml file in the
packaged application’s EAR file must be performed. These steps are required only if
you have enabled an authorization policy, as described in Section 11.2.14.2, "Enabling
Authorization for SOAP Clients."

Before you begin:
1. If you created an asynchronous web service, before you can deploy the service you

must configure the queues used to store the request and response. For information
about configuring the request and response queues, see the Oracle Fusion
Middleware Concepts Guide for Oracle Infrastructure Web Services.

2. If you configured authorization for the web service as described in
Section 11.2.14.2, "Enabling Authorization for SOAP Clients," edit the
weblogic-application.xml file to define application ID parameters. This file
appears in the Application Navigator in the Application Resources panel, under
the Descriptors and META-INF folders.

Add the following <application-param> definition as the first element:

<weblogic-application
xmlns="http://www.bea.com/ns/weblogic/weblogic-application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=

"http://www.bea.com/ns/weblogic/weblogic-application.xsd">
 <application-param>
 <param-name>jps.policystore.applicationid</param-name>
 <param-value>ApplicationName</param-value>
 </application-param>
 ...
</weblogic-application>

Note that the ApplicationName that you enter must match the name identified
in the jazn-data.xml policy store definition:

<jazn-data>
 <policy-store>
 <applications>
 <application>
 <name>ApplicationName</name>
 <app-roles>
 ...
 </app-roles>

Caution: Follow the procedure outlined in this section to modify the
web.xml of the packaged EAR file for a web service with
authorization enabled, but do not use JDeveloper to deploy the EAR
file since this will overwrite the web.xml file on the target server.
Instead, use a tool like the Administration Console for Oracle
WebLogic Server to manually deploy the packaged application’s EAR
file. For details about deploying secure web service applications
outside of JDeveloper, see the Oracle Fusion Middleware Security and
Administrator's Guide for Web Services.

Publishing Service-Enabled Application Modules

Integrating Service-Enabled Application Modules 11-41

 <jazn-policy>
 ...
 </jazn-policy>
 </application>
 </applications>
 </policy-store>
</jazn-data>

3. Edit the ejb-jar.xml file to add the following JpsInterceptor definition
required by the EJB for application roles evaluation. This file appears in the
Application Navigator under the META-INF folder of the web service project.

<?xml version = '1.0' encoding = 'windows-1252'?>
<ejb-jar xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/j2ee/ejb-jar_3_0.xsd" version="3.0"
 xmlns="http://java.sun.com/xml/ns/javaee">
 <enterprise-beans>
 ...
 </enterprise-beans>
 <interceptors>
 <interceptor>
 <interceptor-class>
 oracle.security.jps.ee.ejb.JpsInterceptor
 </interceptor-class>
 <env-entry>
 <env-entry-name>application.name</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>ApplicationName</env-entry-value>
 <injection-target>
 <injection-target-class>
 oracle.security.jps.ee.ejb.JpsInterceptor
 </injection-target-class>
 <injection-target-name>
 application_name
 </injection-target-name>
 </injection-target>
 </env-entry>
 </interceptor>
 ...
 <interceptors>
 <assembly-descriptor>
 <interceptor-binding>
 <ejb-name>*</ejb-name>
 <interceptor-class>
 oracle.security.jps.ee.ejb.JpsInterceptor
 </interceptor-class>
 </interceptor-binding>
 </assembly-descriptor>
</ejb-jar>

Note that ApplicationName must also match the application name identified in
the jazn-data.xml policy store definition.

To deploy to Oracle WebLogic Server:
1. Create an application server connection to Oracle WebLogic Server:

a. From the main menu, choose View > Application Server Navigator.

Publishing Service-Enabled Application Modules

11-42 Fusion Developer's Guide for Oracle Application Development Framework

b. In the Application Server Navigator, right-click the Application Servers folder
and choose New Application Server, and complete the Create Application
Server Connection wizard.

2. Create a service deployment profile:

a. In the Application Navigator, right-click the project contain the web service
and choose Project Properties.

b. In the Project Properties dialog, open the Deployment page and click New.

c. In the Create Deployment Profile dialog, choose Business Components
Service Interface as the archive type, as shown in Figure 11–11.

Figure 11–11 Dialog for Creating a Business Components Service Deployment Profile

3. If you configured security for the web service using the Oracle WSM authorization
policy for SOAP invocation as described in Section 11.2.14, "How to Secure the
Web Service for SOAP Clients," deploy the web service to an EAR file so that you
can manually edit the web.xml file.

Note: If you did not configure security for the web service, you can skip this step
and the manual editing tasks it describes. You can deploy the EAR as described in
step 4.

a. From the Application menu, choose Deploy > deployment profile for the
deployment profile you created.

b. In the Deploy wizard, on the Deployment Action page, select Deploy to EAR.

c. Click OK.

d. Locate the EAR file that JDeveloper creates for you. The file will appear in the
deploy folder in your application’s mywork folder. For example, if the
application is named StoreFrontService, the EAR file is found here:

C:\JDeveloper\mywork\StoreFrontService\deploy\StoreFrontServiceProject_
bcprofile1.ear

Accessing Remote Data Over the Service-Enabled Application Module

Integrating Service-Enabled Application Modules 11-43

Unjar this EAR file and locate the WAR file for the service interface project.
For example, the WAR file might be named
StoreFrontService-MiddleTier_web.war.

e. Unjar the WAR file and locate the web.xml file in the WEB-INF folder. Extract
the web.xml file and add the following JPSWlsFilter definitions:

<filter>
 <filter-name>JpsWlsFilter</filter-name>
 <filter-class>oracle.security.jps.ee.http.JpsFilter</filter-class>
 <init-param>
 <param-name>application.name</param-name>
 <param-value>ApplicationName</param-value>
 </init-param>
</filter>
<filter-mapping>
 <filter-name>JpsWlsFilter</filter-name>
 <servlet-name>
 ProjectName.server.serviceinterface.AppModuleServiceImpl
 </servlet-name>
 <dispatcher>REQUEST</dispatcher>
</filter-mapping>

When you configure the JPSWlsFilter, the application name value must
match the application name set in jazn-data.xml and
weblogic-application.xml files. For the filter mapping, enter the
<servlet-name> that will match the servlet name already present in your
web.xml. Note the filter name must match the filter name set for the
JpsFilter.

f. Repackage the modified WAR and EAR files with your edited file.

g. Do not use JDeveloper to deploy the EAR file since this will overwrite the
web.xml file on the target server. Instead, use a tool like the Administration
Console for Oracle WebLogic Server to manually deploy the application EAR
file. For details about deploying secure applications outside of JDeveloper, see
the Oracle Fusion Middleware Security and Administrator's Guide for Web Services.

4. If you are deploying a web service EAR without configuring an Oracle WSM
authorization policy for SOAP invocation, you can deploy the EAR file to Oracle
WebLogic Server in JDeveloper:

a. From the Application menu, choose Deploy > deployment profile for the
deployment profile you created.

b. In the Deploy wizard, on the Deployment Action page, select Deploy to
Application Server and click Next.

c. On the Select Server page, select the application server connection.

d. Click OK.

11.3 Accessing Remote Data Over the Service-Enabled Application
Module

ADF Business Components application modules offer built-in support for web
services and for publishing rows of view object data as service data objects (SDOs).
Entity objects that you create in your local data model project can utilize the SDO
services that the service-enabled application module exposes on its service interface.
By creating service-backed entity objects in your local project, you avoid having to

Accessing Remote Data Over the Service-Enabled Application Module

11-44 Fusion Developer's Guide for Oracle Application Development Framework

work directly with the service proxy and SDOs programmatically for all common
remote service data access tasks.

The Create Entity Object wizard makes it easy for you to choose between a local
database and the remote ADF Business Components service when you create the
entity object, as described in Section 11.3.1, "How to Use Service-Enabled Entity
Objects and View Objects." In this way, service-enabled application modules provide
an alternative way to access data that is not available locally in the database.

Once you create the service-backed entity object, you will be able to create view
objects, view links, and view criteria to filter the data at runtime. You will also be able
to utilize these view objects in your data model as though you were working with
locally available data accessed from database tables.

The following sections describe how to augment your data model project using a
service-enabled ADF application module.

11.3.1 How to Use Service-Enabled Entity Objects and View Objects
You will want to use the service-backed components as part of your application design
strategy when one of the following conditions is true:

■ The client data model project needs to work with data from a service-enabled
application that is part of a separate business process.

■ The client data model project needs to work with data from a pluggable, external
service.

In the first case, you provide both sides of the service. In the second case, you may not
know what the external service looks like and you may need to perform the following:

1. Even though you might not need a Fusion implementation of the service, since the
service-enabled application module’s service interface is the supported unit of
pluggability and the supported way of creating service-backed entity objects and
view objects, you create an application module with a service interface that
describes the shape you want your "canonical" pluggable service to have.

2. After generating the service-enabled application module as described in
Section 11.2.1, "How to Enable the Application Module Service Interface," you then
build service-back entity objects and view objects.

3. Finally, you can create an EJB session bean (or an SCA composite) that supports
the same service interface as the "canonical" service-enabled application module
that you created in Step 2 and configure the connections.xml file of the client
project containing the service-enabled business components based on this service
interface to use this "plugged" version instead.

For details about how to expose an application module as a web service, see
Section 11.2, "Publishing Service-Enabled Application Modules."

11.3.1.1 Creating Entity Objects Backed by SDO Services
You create the service-backed entity object using the Create Entity Object wizard by
specifying the URL for the WSDL document that describes the deployed service
already running on an application server. The wizard uses the WSDL service
description to display the list of available service view instances. In the wizard, you
select among the displayed view instances to specify the entity object’s data source. At
the time you run the wizard, the service endpoint must be accessible in order to locate
the WSDL document.

Accessing Remote Data Over the Service-Enabled Application Module

Integrating Service-Enabled Application Modules 11-45

Before you begin:
Expose an application module as a web service, as described in Section 11.2.1, "How to
Enable the Application Module Service Interface."

Service-enable the desired view object, as described in Section 11.2.4, "How to
Service-Enable Individual View Objects."

Define a complex type (one that includes currency codes or a unit of measure) for
attributes of the service-enabled view object, as described in Section 11.2.5.2,
"Associating Related SDO Properties Using Complex Data Types."

To create the entity object that uses a service view instance as its data source:
1. In the Application Navigator, right-click the project in which you want to create

the entity object and choose New.

2. In the New Gallery, expand the Business Tier node, select ADF Business
Components and then Entity Object, and click OK.

3. On the Name page of the Create Entity Object wizard, do the following to create
the entity object:

■ Enter the package name in which the entity object will be created and enter the
entity object name.

■ Select Service Interface as the data source for which you want to create the
entity object.

■ Enter the WSDL document URL for the published web service or click Browse
to use the Find Web Services wizard to locate the remote service from the
UDDI registry.

■ Select Service View Instance from the dropdown list, as shown in
Figure 11–12.

The wizard will attempt to connect with the service endpoint and populate the
list from the WSDL service description. If the endpoint is unavailable, the list
will remain empty.

Accessing Remote Data Over the Service-Enabled Application Module

11-46 Fusion Developer's Guide for Oracle Application Development Framework

Figure 11–12 Service Interface as Data Source in the Create Entity Object Wizard

4. Click Next and modify the attributes of the entity object.

For example, on the Attributes page, you can remove an attribute when you do
not want the service-backed entity object to reference it.

5. Click Next and modify the attributes settings of the entity object before you
complete the wizard.

For example, on the Attributes Settings page, you can enable the Refresh After
Insert and Refresh After Update options for attributes that you anticipate will be
modified whenever the entity is modified. Typical candidates include a version
number column or an updated date column in the row.

When the attribute has a complex type definition (one that includes currency
codes or a unit of measure), the Attribute Settings page displays the Service
section with a dropdown box labeled either currencyCode or unitCode,
depending on the XSD type definition of the service-enabled view object attribute.
Although the wizard does not display related attributes in the dropdown box
(only displays <None Specified>), the wizard will add the attribute’s complex
type definition to the entity object definition file. After you complete the wizard,
you will use the overview editor for the service-backed entity object to complete
the definition of complex type attributes, as described in Section 11.3.1.2, "Using
Complex Data Types with Service-Backed Entity Object Attributes."

6. Click Finish.

11.3.1.2 Using Complex Data Types with Service-Backed Entity Object Attributes
As a result of creating a service-backed entity object, JDeveloper automatically exposes
attributes that were defined by the SDO properties of the base service-enabled view
object. When your entity object contains attributes with complex types, you will need
to select the complex type’s related attribute from the entity object. For example,
suppose that your service-backed entity object defines the OrderTotal attribute and
a CurrencyCode attribute to specify the currency code of allowed countries. You will

Accessing Remote Data Over the Service-Enabled Application Module

Integrating Service-Enabled Application Modules 11-47

need to map the related attribute CurrencyCode to the SDO property type specified
by the service-enabled view object. Complex types support these service types:

■ AmountType service type, for use with any property that defines a currency code

■ MeasureType service type, for use with any property that defines a unit of
measure

For more information about complex types and SDO properties, see Section 11.2.5.2,
"Associating Related SDO Properties Using Complex Data Types."

You use the Attributes page of the overview editor to select the service-backed entity
object attribute defined as a complex type. You use the Edit Attribute dialog that you
display from the Attributes page of the overview editor to map the complex type of
the selected attribute to a related attribute.

Before you begin:
Expose an application module as a web service, as described in Section 11.2.1, "How to
Enable the Application Module Service Interface."

Service-enable the desired view object, as described in Section 11.2.4, "How to
Service-Enable Individual View Objects."

Define a complex type for attributes of the service-enabled view object, as described in
Section 11.2.5.2, "Associating Related SDO Properties Using Complex Data Types."

Create the service-backed entity object as described in Section 11.3.1.1, "Creating Entity
Objects Backed by SDO Services."

To associate attributes using a complex type in the service-backed entity object:
1. In the Applications window, double-click the service-backed entity object.

2. In the overview editor, click the Attributes navigation tab.

3. In the Attributes page, select the attribute backed by an attribute defined as a
complex type in the service-enabled view object.

The attribute you select will be defined as a numeric type by the SDO property of
the service-enabled view object.

4. With the attribute selected, click the Edit Attribute button.

5. In the Edit Attribute dialog, in the Service section, in the currencyCode or
unitCode dropdown list, select the entity object attribute that you want to
associate with the complex type.

The dropdown list displays all String attributes that the entity object defines.
Select the attribute that is appropriate to map as the related attribute in the
complex type definition. For example, to associate a currency code with the
OrderTotal attribute that displays the amount paid by a customer, you might
select the CurrencyCode attribute in the Orders service-backed entity object.

The SDO framework supports related service attribute values currencyCode and
unitCode. When the editor displays currencyCode, the attribute you associate
must specify currency information. When the editor displays unitCode, the
attribute you associate must specify a unit of measure.

6. Click OK.

Accessing Remote Data Over the Service-Enabled Application Module

11-48 Fusion Developer's Guide for Oracle Application Development Framework

11.3.1.3 Creating View Objects Backed by SDO Services
After you add the service-backed entity object to your project, you can create
service-backed view objects to query and optionally filter the data from the remote
service for use in the user interface. A service-backed view object is a view object
whose single entity usage references an entity object that is backed an SDO service. In
JDeveloper you cannot make existing view objects service-backed. Instead, when you
create the view object in JDeveloper, the new view object will automatically be
service-backed if its entity usage is a service-backed entity object.

Before you begin:
Create the service-backed entity object as described in Section 11.3.1.1, "Creating Entity
Objects Backed by SDO Services."

To create a view object from the service-backed entity object:
1. In the Application Navigator, right-click the service-backed entity object and

choose New Default View Object.

2. In the Create Default View Object dialog, enter the package name in which the
view object will be created and enter the view object name, as shown in
Figure 11–13.

The generated view object will contain the same attributes as the entity object. You
can optionally edit the view object in the overview editor to customize the query.
You can also define view criteria for the view object when you want to filter the
data from the remote service. For details about filtering query results, see
Section 5.11, "Working with Named View Criteria."

Figure 11–13 View Object Can Be Created from Service-Backed Entity Object

11.3.2 What Happens When You Create Service-Backed Business Components
The service-backed entity object is an entity object that encapsulates the details of
accessing and, if necessary, modifying a row of data from a remote ADF Business
Components service. After you use the Create Entity Object wizard to create the
service-backed entity object, JDeveloper saves additional service-related metadata in
the <Datasource> element of the entity component definition. The entity component
definition includes all the attributes that you selected from the service-enabled view
object instance, including attributes with a complex type definition, as shown in
Example 11–13.

The service-backed view object references the single, service-backed entity object in its
metadata just as any entity-based view object does. You can use the service-backed
view object just as you would use any other view object. For details about working
with view objects, see Chapter 5, "Defining SQL Queries Using View Objects." The
ADF runtime handles the interaction with the remote ADF Business Components
service.

Example 11–13 Entity Object Metadata Shows Service View as Data Source

<Entity

Accessing Remote Data Over the Service-Enabled Application Module

Integrating Service-Enabled Application Modules 11-49

xmlns="http://xmlns.example.com/bc4j"
Name="Customer_ServiceBasedEO"
InheritPersnalization="true"
AliasName="CustomerSEO"
BindingStyle="OracleName"
UseGlueCode="false">
<DataSource

DataSourceClass="oracle.jbo.datasource.svc.SIEODataSourceImpl"
Type="ServiceInterface">
<ServiceInterface

ServiceName="{http://www.globalcompany.com/oesvc/}OrderEntryService"
SDOName="{http://www.globalcompany.com/oesvc/}CustomersSVO"
SVIName="{http://www.globalcompany.com/oesvc/}CustomersSVO"
CreateOpName="createCustomer"
UpdateOpName="updateCustomer"
DeleteOpName="deleteCustomer"
GetOpName="getCustomer"
FindOpName="findCustomers"
ProcessOpName="processCustomers"/>

</DataSource>
<Attribute

Name="CustomerId"
ColumnName="CustomerId"
SQLType="NUMERIC"
Type="oracle.jbo.domain.Number"
ColumnType="NUMBER"
PrimaryKey="true"/>

<!-- ... Attribute that is associated with complex type attribute ... -->
<Attribute

Name="CurrencyCode"
Precision="255"
ColumnName="CurrencyCode"
SQLType="VARCHAR"
Type="java.lang.String"
ColumnType="VARCHAR2"/>

<!-- ... Attribute with complex type mapping ... -->
<Attribute

Name="OrderTotal"
ColumnName="OrdTotal"
SQLType="NUMERIC"
Type="java.math.BigDecimal"
ColumnType="NUMBER"
<Properties>

<SchemaBasedProperties>
<DomainAttrMappings>
<DomainAttrMapping
MappedAttrName="CurrencyCode"
Name="currencyCode"/>

</DomainAttrMappings>
</SchemaBasedProperties>

</Properties>
</Attribute>
<!-- ... Other Attribute elements here ... -->

</Entity>

11.3.3 How to Update the Data Model for Service-Backed Business Components
Because the service interface exposes individual view instances, you are responsible
for defining hierarchical relationships between service-backed entity objects (through
associations) and service-backed view objects (through view links) in your consuming

Accessing Remote Data Over the Service-Enabled Application Module

11-50 Fusion Developer's Guide for Oracle Application Development Framework

project. View links and associations are not automatically created when you create the
service-backed business component. For example, if the application module of the
published ADF Business Components service defines a master-detail relationship that
you want to utilize, then you must define a view link for the corresponding view
objects in your own project to preserve this hierarchy.

Furthermore, while you can create view links between view objects that query their
data locally and service-backed view objects (and the other way around), once you
define the view link, you will not be able to create entity-based view objects with the
following entity object usages:

■ The view object will not be able to reference a secondary entity usage that is a
service-backed entity object.

■ The view object will not be able to reference a primary entity usage that is a
service-backed entity object with secondary entity usages.

The same restrictions apply to associations in the client project between regular entity
objects and service-backed entity objects: while you can create the associations, you
will not be able to create view objects.

You use the Create View Link wizard to specify relationships between the view objects
that your project defines, as shown in Figure 11–14. For details about creating view
links, see Section 5.6.2, "How to Create a Master-Detail Hierarchy for Entity-Based
View Objects."

Figure 11–14 One to Many Relationship Defined in Create View Link Wizard

View links you create may define relationships between service-backed view objects
and view objects that query locally accessed database tables. For example, you might
choose to drive a database-derived detail view object with a service-backed master
view object. You can create view links with the combinations shown in Table 11–2.

Accessing Remote Data Over the Service-Enabled Application Module

Integrating Service-Enabled Application Modules 11-51

Once you have defined the desired view hierarchy, using the Create View Link
wizard, you use the overview editor for your project’s application module to define
new view instances on the data model, as shown in Figure 11–15. The updated data
model allows you to expose the view objects as ADF data controls that enable
databinding with the user interface components of the Fusion web application. For
details about updating the data model, see Section 9.2.3.2, "Adding Master-Detail View
Object Instances to an Application Module."

Figure 11–15 Data Model Contains Service View Instances

Table 11–2 Supported View Link Combinations Involving Service-Backed View Objects

Use Case Master View Object Type
View Linked Detail
View Object Type View Link Cardinality

Local master rows
with remote details

Query-based Service-backed One-to-many

Remote master rows
with local details

Service-backed Query-based One-to-many

Local master rows
with remote reference
information

Query-based Service-backed Many-to-one

Remote master rows
with local reference
information

Service-backed Query-based Many-to-one

Accessing Remote Data Over the Service-Enabled Application Module

11-52 Fusion Developer's Guide for Oracle Application Development Framework

11.3.4 How to Configure the Service-Backed Business Components Runtime
Before you can run your application and interact with the published service-enabled
ADF application module to invoke service operations, you need to describe the
published service, including the service’s endpoint provider type and other
configuration information. The ADF Business Components ServiceFactory class
(oracle.jbo.client.svc.ServiceFactory) returns a proxy for the service, then
uses the service proxy to invoke the service operations. The service factory can return
proxies for three different service endpoint providers, to support these transport
protocols:

■ When the service endpoint provider is ADF Business Component, the transport
protocol is EJB RMI.

■ When the service endpoint provider is SOA Fabric, the transport protocol is SOA
Fabric SDO binding.

■ When the service endpoint provider is SOAP (for JAX-WS clients), the transport
protocol is SOAP.

To configure the consuming application to invoke published service operations:

1. Add the bcProfileName_Common.jar file for the SDO’s generated classes to
the client project’s classpath.

2. Update the connections.xml file in the client project’s .adf/META-INF folder
to describe the published ADF Business Components service.

The updates you make to the file will depend on the transport protocol your
application uses: EJB RMI protocol, SOA Fabric SDO binding, or SOAP protocol
(for JAX-WS clients).

11.3.4.1 Adding the SDO Client Library to the Classpath
Before your application can access the published service, the service consuming
project must have access to the generated SDO classes and their schema definitions.
These files are packaged in the bcProfileName_Common.jar file generated by the
development team responsible for publishing the service.

To make the SDO classes available to your application, obtain the bcProfileName_
Common.jar file from the service-provider team and place this JAR file in a folder of
your local project. For example, you may copy the JAR file into your project’s deploy
folder. You can then use JDeveloper to add the JAR file to your project’s classpath with
a SDO client library you create. For steps to generate the SDO classes JAR file, see
Section 11.2.20, "How to Deploy Web Services to Oracle WebLogic Server."

To add the SDO client library to the classpath:
1. In the Application Navigator, right-click your project folder and choose Project

Properties.

2. In the Project Properties dialog, select Libraries and Classpath and click Add
Libraries.

3. In the Add Library dialog, click New to create the SDO client library.

4. In the Create Library dialog, click Add Entry to add a classpath entry.

5. In the Select Path Entry dialog, browse to the folder that contains the
bcProfileName_Common.jar file and select the file to view it in the Create
Library dialog.

Accessing Remote Data Over the Service-Enabled Application Module

Integrating Service-Enabled Application Modules 11-53

The Select Path Entry dialog lets you browse the file system or local area network
to locate the JAR file. If you cannot browse the deploy folder of the
service-provider’s application workspace to obtain the JAR file, you must obtain
the file and copy it into your own project’s folder. For example, you may have
copied the JAR file into your project’s deploy folder.

6. Click OK in the dialogs to display the Project Properties dialog with the SDO
client library selected. Click OK to add the library to the classpath.

Figure 11–16 shows the SDO client library with the name ServiceProvider_
Common.jar selected. In this case, the library name is the same as the JAR file
name. Optionally, you can edit the library name in the Create Library dialog.

Figure 11–16 SDO Client Library Classpath Entry

11.3.4.2 Registering the ADF Business Components Service in the Consuming
Application’s connections.xml for the EJB RMI Protocol
When the service endpoint provider is ADF Business Components, the service factory
will return an EJB object proxy bound to a stateless session bean running in the EJB
container. You must provide the JNDI context information to allow the consuming
application to look up the published service.

Lookup information that you provide to register the published ADF Business
Components service appears in the consuming Fusion web application's
connections.xml file, located in the .adf/META-INF folder relative to the
application. The ADF connection architecture uses this file to encapsulate the details of
the service endpoint provider.

The JNDI lookup information you provide will depend on whether the published
service runs locally (in the same JVM) with the consuming application or runs
remotely on a separate server from the consuming application. Typically, the ADF
Business Components service is in a different application from the consuming
application and is therefore run remotely.

Accessing Remote Data Over the Service-Enabled Application Module

11-54 Fusion Developer's Guide for Oracle Application Development Framework

To register the published service with your client application, update the
connections.xml file following the example in Example 11–14. When the ADF
Business Components service runs local to the consuming application (as occurs when
you run within JDeveloper), the service factory needs only the JNDI name to look up
the service.

Example 11–14 Client connections.xml File Registers the Local EJB ADF Business Components Service

<References xmlns="http://xmlns.oracle.com/adf/jndi">
<Reference name="{www.globalcompany.com}StoreFrontService"

className="oracle.jbo.client.svc.Service" xmlns="">
<Factory className="oracle.jbo.client.svc.ServiceFactory"/>
<RefAddresses>
<StringRefAddr addrType="serviceInterfaceName">
<Contents>oracle.foddemo.storefront.store.service.common.

serviceinterface.StoreFrontService</Contents>
</StringRefAddr>
<StringRefAddr addrType="serviceEndpointProvider">

<Contents>ADFBC</Contents>
</StringRefAddr>
<StringRefAddr addrType="jndiName">

<Contents>StoreFrontServiceBean#oracle.fodemo.storefront.store.service.common.
serviceinterface.StoreFrontService</Contents>

</StringRefAddr>
<StringRefAddr addrType="serviceSchemaName">

<Contents>StoreFrontAMService.xsd</Contents>
</StringRefAddr>
<StringRefAddr addrType="serviceSchemaLocation">

<Contents>oracle/fodemo/storefront/store/service/common/serviceinterface/</Contents>
</StringRefAddr>

</RefAddresses>
</Reference>
...

</References>
When the ADF Business Components service runs remotely to the calling client, then
remote JNDI context information needs to be added to the connections.xml file.
You can edit these JNDI context properties in the connections.xml file, as shown in
Example 11–15:

■ jndiFactoryInitial should be set to
weblogic.jndi.WLInitialContextFactory.

■ jndiProviderURL is the JNDI provider URL that indicates the location of the
JNDI server. The URL should be composed as t3://<hostname>:<server
port>.

For example, specify a URL like: t3://localhost:8888, where t3 is the Oracle
WebLogic protocol, localhost is the host name that the remote Oracle WebLogic
Server instance runs in, 8888 is the port number.

■ jndiSecurityPrincipal specifies the principal (user name) with permission to
access the remote JNDI.

Note: When you deploy the calling application to standalone Oracle
WebLogic Server, you will use Oracle Enterprise Manager to
configure the JNDI context properties instead of editing the
connections.xml file. For instructions, refer to the online
documentation in Oracle Enterprise Manager.

Accessing Remote Data Over the Service-Enabled Application Module

Integrating Service-Enabled Application Modules 11-55

When you deploy the service to standalone Oracle WebLogic Server, the user
name can be read from the file.

■ jndiSecurityCredentials specifies the credentials (password) to be used for
the security principal.

As Example 11–11 shows, when you deploy the service to standalone Oracle
WebLogic Server in a test environment, you can specify credentials in plain text for
the JNDI provider. For example, you can specify weblogic/weblogic1 which
are the default administrator user name/password credentials with sufficient
privileges to access JNDI provider for Oracle WebLogic Server.

When you deploy the service to a production environment, you must remove the
plain text password to avoid creating a security vulnerability. As Example 11–15
shows, the connections.xml file must contain <SecureRefAddr
addrType="jndiSecurityCredentials"/> with no password. To configure
the service password for standalone Oracle WebLogic Server, you must use Oracle
Enterprise Manager, which will store the encrypted password in Oracle’s
credential store.

Example 11–15 Client connections.xml File Registers the Remote EJB ADF Business Components Service

<References xmlns="http://xmlns.oracle.com/adf/jndi">
<Reference name="{www.globalcompany.com}StoreFrontService"

className="oracle.jbo.client.svc.Service" xmlns="">
<Factory className="oracle.jbo.client.svc.ServiceFactory"/>
<RefAddresses>
<StringRefAddr addrType="serviceInterfaceName">
<Contents>oracle.foddemo.storefront.store.service.common.

serviceinterface.StoreFrontService</Contents>
</StringRefAddr>
<StringRefAddr addrType="serviceEndpointProvider">

<Contents>ADFBC</Contents>
</StringRefAddr>
<StringRefAddr addrType="jndiName">

<Contents>StoreFrontServiceBean#oracle.fodemo.storefront.store.service.common.
serviceinterface.StoreFrontService</Contents>

</StringRefAddr>
<StringRefAddr addrType="jndiFactoryInitial">

<Contents>weblogic.jndi.WLInitialContextFactory</Contents>
</StringRefAddr>
<StringRefAddr addrType="jndiProviderURL">

<Contents>t3://localhost:8888</Contents>
</StringRefAddr>
<StringRefAddr addrType="jndiSecurityPrincipal">

<Contents>a_username</Contents>
</StringRefAddr>
<SecureRefAddr addrType="jndiSecurityCredentials"/>
<StringRefAddr addrType="serviceSchemaName">

<Contents>StoreFrontAMService.xsd</Contents>
</StringRefAddr>
<StringRefAddr addrType="serviceSchemaLocation">

<Contents>oracle/fodemo/storefront/store/service/common/serviceinterface/</Contents>
</StringRefAddr>

</RefAddresses>
</Reference>
...

</References>

Accessing Remote Data Over the Service-Enabled Application Module

11-56 Fusion Developer's Guide for Oracle Application Development Framework

11.3.4.3 Registering the ADF Business Components Service in the Consuming
Application’s connections.xml for the SOAP Protocol
When the service endpoint provider is SOAP, the service factory will create a dynamic
JAX-WS client proxy. You must provide the WSDL URL and port name to allow the
consuming application to look up the published service. Additionally, for the SOAP
client, Oracle Web Service Manager (Oracle WSM) client security policy can be
attached as part of the SOAP header.

Lookup information that you provide to register the published ADF Business
Components service appears in the consuming Fusion web application's
connections.xml file, located in the .adf/META-INF folder relative to the
application. The ADF connection architecture uses this file to encapsulate the details of
the service endpoint provider.

To register the published service with your client application for the SOAP protocol,
depending on whether your application uses identity propagation or identity
switching, update the connections.xml file following the example in either
Example 11–16 or Example 11–17. Identity propagation and switching are similar in
that each process involves propagating an identity. In Fusion web applications,
identity propagation involves propagating the identity that is currently executing
code. Identity switching, on the other hand, involves propagating an application
identity that is different from that currently executing code.

To register the published service with your client application so the the user identity
will be switched based on the credential key, specify the clientside policy
oracle/wss11_username_token_with_message_protection_client_
policy in the connections.xml file following the example in Example 11–16.

Example 11–16 Client connections.xml File Registers the Remote Business Components Service for the
SOAP Protocol Using Identify Switching

<Reference name="{http://xmlns.oracle.com/apps/sample/hrService/}HrService"
className="oracle.jbo.client.svc.Service" xmlns="">
 <Factory className="oracle.jbo.client.svc.ServiceFactory"/>
 <RefAddresses>
 <StringRefAddr addrType="serviceInterfaceName">
 <Contents>oracle.apps.sample.hrService.HrService</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceEndpointProvider">
 <Contents>SOAP</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="webServiceConnectionName">
 <Contents>HrServiceConnection</Contents>

Note: When you deploy the calling application to standalone Oracle
WebLogic Server, you will use Oracle Enterprise Manager to
configure the JNDI context properties instead of editing the
connections.xml file. For instructions, refer to the online
documentation in Oracle Enterprise Manager.

Note: The connections.xml file supports Oracle WSM security
policy client overrides. When the security policy is oracle/wss11_
username_token_with_message_protection_client_
policy, the csf-key property can be overridden to specify the
consuming application’s credentials.

Accessing Remote Data Over the Service-Enabled Application Module

Integrating Service-Enabled Application Modules 11-57

 </StringRefAddr>
 <StringRefAddr addrType="serviceSchemaName">
 <Contents>HrService.xsd</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceSchemaLocation">
 <Contents>oracle/apps/sample/hrService/</Contents>
 </StringRefAddr>
 </RefAddresses>
</Reference>

<Reference name="HrServiceConnection"
 className="oracle.adf.model.connection.webservice.impl.WebServiceConnectionImpl" xmlns="">
 <Factory
 className="oracle.adf.model.connection.webservice.api.WebServiceConnectionFactory"/>
 <RefAddresses>
 <XmlRefAddr addrType="WebServiceConnection">
 <Contents>
 <wsconnection
 description="http://rws65094fwks:7202/MySampleSvc/HrService?WSDL"
 service="{http://xmlns.oracle.com/apps/sample/hrService/}HrService">
 <model
 name="{http://xmlns.oracle.com/apps/sample/hrService/}HrService"
 xmlns="http://oracle.com/ws/model">
 <service name="{http://xmlns.oracle.com/apps/sample/hrService/}HrService">
 <port name="HrServiceSoapHttpPort"
 binding="{http://xmlns.oracle.com/apps/sample/hrService/}HrServiceSoapHttp"
 portType="http://xmlns.oracle.com/apps/sample/hrService/}HrService">
 <call-properties xmlns="http://oracle.com/adf">
 <call-property id="csf-key" xmlns="">
 <name>csf-key</name>
 <value>meuser.credentials</value>
 </call-property>
 </call-properties>
 <policy-references xmlns="http://oracle.com/adf">
 <policy-reference category="security"
 uri="oracle/wss11_username_token_with_message_protection_client_policy"
 enabled="true"
 id="oracle/wss11_username_token_with_message_protection_client_policy"
 xmlns=""/>
 </policy-references>
 <soapaddressUrl="http://rws65094fwks:7202/MySampleSvc/HrService"
 xmlns="http://schemas.xmlsoap.org/wsdl/soap/"/>
 </port>
 </service>
 </model>
 </wsconnection>
 </Contents>
 </XmlRefAddr>
 </RefAddresses>
</Reference>

To register the published service with your client application so the the user identity
will be propagated to the caller, specify the clientside policy oracle/wss11_saml_
token_with_message_protection_client_policy in the connections.xml
file following the example in Example 11–17.

Example 11–17 Client connections.xml File Registers the Remote Business Components Service for the
SOAP Protocol Using Identify Propagation

<Reference name="{http://xmlns.oracle.com/apps/sample/hrService/}HrService"

Accessing Remote Data Over the Service-Enabled Application Module

11-58 Fusion Developer's Guide for Oracle Application Development Framework

className="oracle.jbo.client.svc.Service" xmlns="">
 <Factory className="oracle.jbo.client.svc.ServiceFactory"/>
 <RefAddresses>
 <StringRefAddr addrType="serviceInterfaceName">
 <Contents>oracle.apps.sample.hrService.HrService</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceEndpointProvider">
 <Contents>SOAP</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="webServiceConnectionName">
 <Contents>HrServiceConnection</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceSchemaName">
 <Contents>HrService.xsd</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="serviceSchemaLocation">
 <Contents>oracle/apps/sample/hrService/</Contents>
 </StringRefAddr>
 </RefAddresses>
</Reference>

<Reference name="HrServiceConnection"
 className="oracle.adf.model.connection.webservice.impl.WebServiceConnectionImpl" xmlns="">
 <Factory
 className="oracle.adf.model.connection.webservice.api.WebServiceConnectionFactory"/>
 <RefAddresses>
 <XmlRefAddr addrType="WebServiceConnection">
 <Contents>
 <wsconnection
 description="http://rws65094fwks:7202/MySampleSvc/HrService?WSDL"
 service="{http://xmlns.oracle.com/apps/sample/hrService/}HrService">
 <model
 name="{http://xmlns.oracle.com/apps/sample/hrService/}HrService"
 xmlns="http://oracle.com/ws/model">
 <service
 name="{http://xmlns.oracle.com/apps/sample/hrService/}HrService">
 <port name="HrServiceSoapHttpPort"
 binding="{http://xmlns.oracle.com/apps/sample/hrService/}HrServiceSoapHttp"
 portType="http://xmlns.oracle.com/apps/sample/hrService/}HrService">
 <policy-references xmlns="http://oracle.com/adf">
 <policy-reference category="security"
 uri="oracle/wss11_saml_token_with_message_protection_client_policy"
 enabled="true"
 id="oracle/wss11_saml_token_with_message_protection_client_policy"
 xmlns=""/>
 </policy-references>
 <soap addressUrl="http://rws65094fwks:7202/MySampleSvc/HrService"
 xmlns="http://schemas.xmlsoap.org/wsdl/soap/"/>
 </port>
 </service>
 </model>
 </wsconnection>
 </Contents>
 </XmlRefAddr>
 </RefAddresses>
</Reference>

Accessing Remote Data Over the Service-Enabled Application Module

Integrating Service-Enabled Application Modules 11-59

11.3.4.4 Registering the ADF Business Components Service in the Consuming
Application’s connections.xml for Fabric SDO Binding
When the service endpoint provider is SOA Fabric, the service factory will return a
SOA Fabric composite proxy and call the service running inside a Fabric composite
through Fabric’s SDO binding. You must provide the name of the Fabric composite to
allow the consuming application to look up the published service.

Lookup information that you provide to register the published ADF Business
Components service appears in the consuming Fusion web application's
connections.xml file, located in the .adf/META-INF folder relative to the
application. The ADF connection architecture uses this file to encapsulate the details of
the service endpoint provider.

To register the published service with your client application for the Fabric protocol,
update the connections.xml file following the example in Example 11–18, where
fabricAddress is the name of the Fabric composite for the published service.

Example 11–18 Client connections.xml File Registers the Remote Business Components Service for the
SOA Fabric Protocol

<References xmlns="http://xmlns.oracle.com/adf/jndi">
<Reference name="{www.globalcompany.com}StoreFrontService"

className="oracle.jbo.client.svc.Service" xmlns="">
<Factory className="oracle.jbo.client.svc.ServiceFactory"/>
<RefAddresses>
<StringRefAddr addrType="serviceInterfaceName">
<Contents>oracle.foddemo.storefront.store.service.common.

serviceinterface.StoreFrontService</Contents>
</StringRefAddr>
<StringRefAddr addrType="serviceEndpointProvider">

<Contents>Fabric</Contents>
</StringRefAddr>
<StringRefAddr addrType="fabricAddress">
<Contents>fabric_StoreFrontService</Contents>

<StringRefAddr addrType="serviceSchemaName">
<Contents>StoreFrontAMService.xsd</Contents>

</StringRefAddr>
<StringRefAddr addrType="serviceSchemaLocation">

<Contents>oracle/fodemo/storefront/store/service/common/serviceinterface/</Contents>
</StringRefAddr>

</RefAddresses>
</Reference>
...

</References>

11.3.5 How to Test the Service-Backed Components in the Business Component
Browser

Before you can launch the Business Component Browser, your project must meet the
runtime requirements as described in Section 11.3.4, "How to Configure the

Note: When you deploy the calling application to standalone Oracle
WebLogic Server, you will use Oracle Enterprise Manager to
configure the JNDI context properties instead of editing the
connections.xml file. For instructions, refer to the online
documentation in Oracle Enterprise Manager.

Accessing Remote Data Over the Service-Enabled Application Module

11-60 Fusion Developer's Guide for Oracle Application Development Framework

Service-Backed Business Components Runtime." The Business Component Browser
will display the view objects you create from the remote service and allow you to
interact with the service to perform standard CRUD operations.

Because the application module that you run can access locally queried data and
remotely queried data together, service-backed view objects and database-derived
view objects will display in the same Browser. If the endpoint is unavailable at the
time you select the service-backed view object in the Business Component Browser,
you will get a runtime exception.

For details about running the Business Component Browser, see Section 6.3.1, "How to
Run the Business Component Browser."

11.3.6 How to Invoke Operations of the Service-Backed Components in the Consuming
Application

The ADF Business Components service interface requires that you return a service
proxy to ensure that operations you invoke use the transport protocol specified by the
published service.

Before you begin:
You need to ensure that the consuming application has the correct libraries on the
classpath. In the Application Navigator, double-click the project and in the Project
Properties dialog, select Libraries and Classpath and confirm the following libraries
appear:

■ Java EE 1.5

■ Oracle XML Parser v2

■ BC4J Service Client

■ JAX-WS Client

■ The service's common JAR file

As Example 11–19 shows, when you invoke the operation, you perform the following
tasks:

1. Import the oracle.jbo.client.svc.ServiceFactory class and published
service class.

2. Call getServiceProxy() on the service factory object and pass in the service
name in the form <serviceName>.NAME. The ADF service factory embeds a
SDOHelperContext ID in the service proxy object returned by this method to
ensure delivery of the latest ADF Business Component service schema metadata to
the SDO.

The schema (.xsd files) for the service object may be stored in MDS and may have
been extended for example to add more business component attributes, extend
existing types, or define new types. The local helper context allows customization
of individual service’s schema definitions without affecting other service’s SDO
metadata or requiring restarting the application.

3. Call create() on a data factory object, where the proxy object is obtained from
the getServiceProxy() call.

4. Invoke the operation on the proxy object and return a data object.

5. Save the data object return as XML.

Accessing Remote Data Over the Service-Enabled Application Module

Integrating Service-Enabled Application Modules 11-61

Example 11–19 Obtaining and Invoking a Service Proxy in the Consuming Application

import commonj.sdo.DataObject;
import commonj.sdo.helper.DataFactory;
import commonj.sdo.helper.XMLHelper;
import hr.common.Dept;
import hr.common.serviceinterface.HRAppService;
import oracle.jbo.client.svc.ServiceFactory;

...
{

HRAppService proxy = (HRAppService) ServiceFactory.getServiceProxy(HRAppService.NAME);

Dept dept = (Dept)
ServiceFactory.getDataFactory(proxy).create("http://example.com/hr/common/" "Dept");

dept.setDname("ENGINEERING");
...
dept = proxy.createDept(dept);
String xml = ServiceFactory.getXMLHelper(proxy).save((DataObject) dept,

 "http://example.com/hr/common/", "dept");
out.print(xml);

}

11.3.7 What Happens at Runtime: When the Application Accesses the Published
Application Module

The ADF runtime obtains the data source information from the service-backed entity
object XML definition to automate interactions with the service interface methods as
needed. By using the service-backed entity object, you avoid having to work directly
with the service proxy and service data objects programmatically for all common
remote service data access tasks. The ADF service factory looks up the service and
then uses the service interface you specified in the connections.xml to invoke the
service methods.

When your application accesses a remote ADF Business Components service, each
remote call is stateless, and the remote service will not participate in the same
transaction as the business component that uses a service-enabled application
module’s service interface.

In the majority of the cases, calls to remote services will be informational in nature and
will not make changes to remote objects. However, if you must use a remote service to
make changes, then keep these points in mind:

■ An exception thrown by the remote service will cause the local transaction to fail.

■ If you successfully call a remote service that results in modifying data, and then
subsequently your local transaction fails for any reason, then it is the responsibility
of your error handling code to perform a compensating transaction against the
remote service to "undo" the previous change made.

11.3.8 What You May Need to Know About Service-Backed Entity Objects and View
Objects

You will use some web services to access reference information. However, other
services you call may modify data. This data modification might be in your own
company's database if the service was written by a member of your own or another
team in your company. If the web service is outside your firewall, of course the
database being modified will be managed by another company. In either of these
situations, it is important to understand that any data modifications performed by a
web service you invoke will occur in its own distinct transaction unrelated to the

Accessing Remote Data Over the Service-Enabled Application Module

11-62 Fusion Developer's Guide for Oracle Application Development Framework

service-enabled application module's current unit of work. For example, if you have
invoked a web service that modifies data and then you later call rollback() to
cancel the pending changes in the application module's current unit of work, rolling
back the changes has no effect on the changes performed by the web service you called
in the process. You may need to invoke a corresponding web service method to
perform a compensating change to account for your rollback of the application
module's transaction.

At runtime, ADF handles the interaction with the remote ADF Business Components
service. However, you should be aware that service-backed business components have
the following design time restrictions that may restrict your application’s runtime
behavior. For more details about how these restrictions apply at design time, see
Section 11.3.3, "How to Update the Data Model for Service-Backed Business
Components."

■ View objects that you create cannot reference a service-backed entity object as a
secondary entity object usage.

■ View objects that you create cannot produce a flattened join from two or more
related entity objects when at least one of those entity objects is a service-backed
entity object.

■ Service-backed view objects that you create from service-backed entity objects will
not reference secondary entity usages.

For more details about how these restrictions apply at design time, see Section 11.3.3,
"How to Update the Data Model for Service-Backed Business Components."

12

Using ADF Model in a Fusion Web Application 12-1

12Using ADF Model in a Fusion Web
Application

This chapter describes how an ADF application module's data model and business
service interface methods appear at design time for drag and drop data binding, how
they are accessible at runtime by the ADF Model data binding layer using the
application module data control, and how developers can use the Data Controls panel
to create databound pages.

This chapter includes the following sections:

■ Section 12.1, "Introduction to ADF Data Binding"

■ Section 12.2, "Exposing Application Modules with ADF Data Controls"

■ Section 12.3, "Using the Data Controls Panel"

■ Section 12.4, "Working with the DataBindings.cpx File"

■ Section 12.5, "Configuring the ADF Binding Filter"

■ Section 12.6, "Working with Page Definition Files"

■ Section 12.7, "Creating ADF Data Binding EL Expressions"

■ Section 12.8, "Using Simple UI First Development"

12.1 Introduction to ADF Data Binding
ADF Model implements concepts that enable decoupling the user interface technology
from the business service implementation: data controls and declarative bindings.

Data controls abstract the implementation technology of a business service by using
standard metadata interfaces to describe the service’s operations and data collections,
including information about the properties, methods, and types involved. In an
application that uses business components, a data control is automatically created
when you create an application module, and it contains all the functionality of the
application module. Developers can then use the representation of the data control
displayed in JDeveloper’s Data Controls panel to create UI components that are
automatically bound to the application module. At runtime, the ADF Model layer
reads the information describing the data controls and bindings from appropriate
XML files and implements the two-way connection between the user interface and the
business service.

Declarative bindings abstract the details of accessing data from data collections in a
data control and of invoking its operations. There are three basic kinds of declarative
binding objects:

Introduction to ADF Data Binding

12-2 Fusion Developer's Guide for Oracle Application Development Framework

■ Iterator bindings: Simplify the building of user interfaces that allow scrolling and
paging through collections of data and drilling-down from summary to detail
information.

■ Value bindings: Used by UI components that display data. Value bindings range
from the most basic variety that work with a simple text field to more
sophisticated list and tree bindings that support the additional needs of list, table,
and tree UI controls.

■ Action bindings: Used by UI components like hyperlinks or buttons to invoke
built-in or custom operations on data collections or a data control without writing
code.

Figure 12–1 shows how bindings connect UI components to data control collections
and methods.

Figure 12–1 Bindings Connect UI Components to Data Controls

The group of bindings supporting the UI components on a page are described in a
page-specific XML file called the page definition file. The ADF Model layer uses this file
at runtime to instantiate the page’s bindings. These bindings are held in a
request-scoped map called the binding container, accessible during each page request
using the EL expression #{bindings}. This expression always evaluates to the
binding container for the current page.

You can design a databound user interface by dragging an item from the Data
Controls panel and dropping it on a page as a specific UI component. When you use
data controls to create a UI component, JDeveloper automatically creates the various
code and objects needed to bind the component to the data control you selected.

Exposing Application Modules with ADF Data Controls

Using ADF Model in a Fusion Web Application 12-3

12.2 Exposing Application Modules with ADF Data Controls
The application module data control is a thin adapter over an application module pool
that automatically acquires an available application module instance at the beginning
of the request. During the current request, the application module data control holds a
reference to the application module instance on behalf of the current user session. At
the end of the request, the data control releases the instance back to the pool.
Importantly, the application module component directly implements the interfaces
that the binding objects expect for data collections, built-in operations, and service
methods. This optimized interaction allows the bindings to work directly with the
application module instances in its data model in the following ways:

■ Iterator bindings directly bind to the default row set iterator of the default row set
of any view object instance. The row set iterator manages the current object and
current range information.

■ Action bindings directly bind to either:

■ Custom methods on the data control client interface

■ Built-in operations of the application module and view objects

Figure 12–2 illustrates the pool management role the application module data control
plays and highlights the direct link between the bindings and the application module
instance.

Note: Using the ADF Model layer to perform business service access
ensures that the view and the business service stay in sync. For
example, while you could.call a method on an application module by
class-casting the data control reference to the application module
instance and then calling the method directly, doing so would bypass
the model layer and it would then become unaware of any changes.

Tip: You can also use the iterator binding to bind to a secondary
named row set that you have created. To bind to a secondary row set,
you need to use the RSIName attribute on the binding. For more
information about the difference between the default row set and
secondary row sets and how to create them, see Section 39.1.9,
"Working with Multiple Row Sets and Row Set Iterators."

Exposing Application Modules with ADF Data Controls

12-4 Fusion Developer's Guide for Oracle Application Development Framework

Figure 12–2 Bindings Connect Directly to View Objects and Methods of an Application
Module from a Pool

12.2.1 How an Application Module Data Control Appears in the Data Controls Panel
You use the Data Controls panel to create databound HTML elements (for JSP pages),
and databound UI components (for JSF JSP pages) by dragging and dropping icons
from the panel onto the visual editor for a page. Figure 12–3 shows the Data Controls
panel displaying the data controls for the StoreFront module.

Figure 12–3 Data Controls Panel in JDeveloper

The Data Controls panel lists all the data controls that have been created for the
application’s business services and exposes all the collections (row sets of data objects),
methods, and built-in operations that are available for binding to UI components.

Exposing Application Modules with ADF Data Controls

Using ADF Model in a Fusion Web Application 12-5

For example, in an application that uses ADF Business Components to define the
business services, each data control on the Data Controls panel represents a specific
application module, and exposes the view object instances in that application’s data
model. The hierarchy of objects in the data control is defined by the view links
between view objects that have specifically been added to the application module data
model. For information about creating view objects and view links, see Chapter 5,
"Defining SQL Queries Using View Objects." For information about adding view links
to the data model, see Section 5.6.4, "How to Enable Active Master-Detail Coordination
in the Data Model."

For example, the StoreServiceAMDataControl application module implements
the business service layer of the StoreFront module application. Its data model
contains numerous view object instances, including several master-detail hierarchies.
The view layer of the ADF sample application consists of JSF pages whose UI
components are bound to data from the view object instances in the
StoreServiceAMDataControl's data model, and to built-in operations and service
methods on its client interface.

12.2.1.1 How the Data Model and Service Methods Appear in the Data Controls
Panel
Each view object instance appears as a named data collection whose name matches the
view object instance name. Figure 12–4 illustrates how the Data Controls panel
displays the view object instances in the StoreServiceAMDataControl's data
model (note that for viewing simplicity, the figure omits some details in the tree that
appear for each view object). The Data Controls panel reflects the master-detail
hierarchies in your application module data model by displaying detail data
collections nested under their master data collection.

The Data Controls panel also displays each custom method on the application
module's client interface as a named data control custom operation whose name
matches the method name. If a method accepts arguments, they appear in a
Parameters node as operation parameters nested inside the operation’s node.

Note: If you’ve configured JDeveloper to expose them, any view link
accessor returns are also displayed. For more information, see
Section 5.6, "Working with Multiple Tables in a Master-Detail
Hierarchy." To view the accessor methods:

1. From the JDeveloper main menu, choose Tools > Preferences.

2. Select the Data Controls Panel node.

3. Select Show Underlying Accessor Nodes to activate the checkbox.

Tip: You can open the overview editor for a view object by
right-clicking the associated data control object and choosing Edit
Definition.

Exposing Application Modules with ADF Data Controls

12-6 Fusion Developer's Guide for Oracle Application Development Framework

Figure 12–4 How the Data Model Appears in the Data Controls Panel

12.2.1.2 How Transaction Control Operations Appear in the Data Controls Panel
The application module data control exposes two data control built-in operations
named Commit and Rollback, as shown in Figure 12–5 (note that the Operations
node in the data controls tree omits all of the data collections and custom operations
for a more streamlined view). At runtime, when these operations are invoked by the
data binding layer, they delegate to the commit() and rollback() methods of the
Transaction object associated with the current application module instance.

Figure 12–5 How Transaction Control Operations Appear in the Data Controls panel

Note: In an application module with many view object instances and
custom methods, you may need to scroll the Data Controls panel
display to find the Operations node that is the direct child node of the
data control. This node is the one that contains these built-in
operations.

Exposing Application Modules with ADF Data Controls

Using ADF Model in a Fusion Web Application 12-7

12.2.1.3 How View Objects Appear in the Data Controls Panel
The view object attributes are displayed as immediate child nodes of the
corresponding data collection, as are any custom methods you’ve created. Figure 12–6
shows how each view object instance in the application module's data model appears
in the Data Controls panel. If you have selected any custom methods to appear on the
view object's client interface, they appear as custom methods immediately following
the view object attributes at the same level. If the method accepts arguments, these
appear in a nested Parameters node as operation parameters.

By default, implicit view criteria are created for each attribute that is able to be queried
on a view object. They appear as the All Queriable Attributes node under the Named
Criteria node, as shown in Figure 12–6. If any named view criteria were created for the
view object, they appear under the Named Criteria node. The View Criteria
expressions (both implicit and named) appear as method returns. The conjunction
used in the query, along with the criteria items and if applicable, any nested criteria,
are shown as children. These items are used to create quick search forms, as detailed in
Chapter 27, "Creating ADF Databound Search Forms."

Figure 12–6 How View Objects Appear in the Data Controls Panel

As shown in Figure 12–6, the Operations node under the data collection displays all its
available built-in operations. If an operation accepts one or more parameters, then
those parameters appear in a nested Parameters node. At runtime, when one of these
data collection operations is invoked by name by the data binding layer, the
application module data control delegates the call to an appropriate method on the

Exposing Application Modules with ADF Data Controls

12-8 Fusion Developer's Guide for Oracle Application Development Framework

ViewObject interface to handle the built-in functionality. The built-in operations fall
into three categories: operations that affect the current row, operations that refresh the
data collection, and all other operations.

Operations that affect the current row:

■ Create: Creates a new row that becomes the current row, but does not insert it.

■ CreateInsert: Creates a new row that becomes the current row, and inserts the
new blank row into the data source.

■ Create with Parameters: Creates a new row taking parameter values. The
passed parameters can supply the create-time value of the discriminator or
composing parent’s foreign key attributes that are required at create time for
polymorphic view object and for a composed child view object row when not
created in the context of a current view linked parent row, respectively. For more
information about polymorphic view objects, see Section 39.6, "Using View Objects
to Work with Multiple Row Types."

■ Delete: Deletes the current row.

■ First: Sets the current row to be the first row in the row set.

■ Last: Sets the current row to be the last row in the row set.

■ Next: Sets the row to be the next row in the row set.

■ Next Set: Navigates forward one full set of rows.

■ Previous: Sets the current row to be the previous row in the row set.

■ Previous Set: Navigates backward one full set of rows.

■ setCurrentRowWithKey: Tries to finds a row using the serialized string
representation of row key passed as a parameter. If found, that row becomes the
current row.

■ setCurrentRowWithKeyValue: Tries to finds a row using the primary key
attribute value passed as a parameter. If found, that row becomes the current row.

Operations that refresh the data collection:

■ Execute: Refreshes the data collection by executing or reexecuting the view
object's query, leaving any bind parameters at their current values.

■ ExecuteWithParams: Refreshes the data collection by first assigning new values
to the named bind variables passed as parameters, then executing or reexecuting
the view object's query.

All other operations:

■ removeRowWithKey: Tries to finds a row using the serialized string
representation of row key passed as a parameter. If found, the row is removed.

■ Find: Toggles "Find Mode" on and off for the data collection.

Note: The executeWithParams operation appears only for view
objects that have defined one or more named bind variables at design
time.

Exposing Application Modules with ADF Data Controls

Using ADF Model in a Fusion Web Application 12-9

12.2.1.4 How Nested Application Modules Appear in the Data Controls Panel
If you build composite application modules by including nested instances of other
application modules, the Data Controls panel reflects this component assembly in the
tree hierarchy. For example, assume that, in addition to the
StoreServiceAMDataControl application module, you have also created the
following application modules in the same package:

■ An application module named ProductService, and renamed its data control to
ProductService

■ An application module named CompositeService, and renamed its data
control to CompositeService

Then assume that you've added two view object instances named OtherViewObject
and AnotherViewObject to the data model of CompositeService and that on the
Application Modules page of the Edit Application Module dialog you have added an
instance of the StoreServiceAMDataControl application module and an instance
of the ProductService application module to reuse them as part of
CompositeService. Figure 12–7 illustrates how your CompositeService would
appear in the Data Controls panel (note that much of the structure of the nested
StoreServiceAMDataControl has been omitted for clarity). The nested instances
of StoreServiceAMDataControl and ProductService appear in the panel tree
display nested inside of the CompositeService data control. The entire data model
and set of client methods that the nested application module instances expose to
clients are automatically available as part of the CompositeService that reuses
them.

Figure 12–7 How Nested Application Modules Appear in the Data Controls Panel

One possibly confusing point is that even though you have reused nested instances of
StoreServiceAMDataControl and ProductService inside of
CompositeService, the StoreServiceAMDataControl and ProductService
application modules also appear themselves as top-level data control nodes in the
panel tree. JDeveloper assumes that you might want to sometimes use
StoreServiceAMDataControl or ProductService on their own as separate data
controls from CompositeService, so it displays all three of them. You need to be
careful to perform your drag-and-drop data binding from the correct data control. If
you want your page to use a view object instance from the nested
StoreServiceAMDataControl instance's data model that is an aggregated part of
the CompositeService data control, then ensure that you select the data collection
that appears as part of the CompositeService data control node in the panel.

It is important to do the drag -and-drop operation that corresponds to your intended
usage. When you drop a data collection from the top-level
StoreServiceAMDataControl data control node in the panel, at runtime your page
will use an instance of the StoreServiceAMDataControl application module

Exposing Application Modules with ADF Data Controls

12-10 Fusion Developer's Guide for Oracle Application Development Framework

acquired from a pool of StoreServiceAMDataControl components. When you
drop a data collection from the nested instance of StoreServiceAMDataControl
that is part of CompositeService, at runtime your page will use an instance of the
CompositeService application module acquired from a pool of
CompositeService components. Since different types of application module data
controls will have distinct transactions and database connections, inadvertently
mixing and matching data collections from both a nested application module and a
top-level data control will lead to unexpected runtime behavior.

12.2.2 How to Open the Data Controls Panel
The Data Controls panel is a panel within the Application Navigator, located at the top
left of JDeveloper. To view its contents, click the panel header to expand the panel. If
you do not see the panel header, then the Application Navigator may not be
displaying.

To open the Application Navigator and Data Controls panel:
1. From the main menu, choose View > Application Navigator.

2. To open the Data Controls accordion panel, click the expand icon in the Data
Controls header, as shown in Figure 12–8.

Figure 12–8 Data Controls Panel in the Application Navigator

12.2.3 How to Refresh the Data Controls Panel
Any time changes are made to the application module or underlying services, you
need to manually refresh the data control in order to view the changes. To refresh the
application module data control, click the Refresh icon in the header of the Data
Controls panel, as shown in Figure 12–9.

Using the Data Controls Panel

Using ADF Model in a Fusion Web Application 12-11

Figure 12–9 Refresh Icon on Data Controls Panel

When you click Refresh, the Data Controls panel looks for all available data controls,
and therefore will now reflect any structural changes made to the data control.

12.2.4 Packaging a Data Control for Use in Another Project
You can package up data controls so that they can be used in another project. For
example, one development group might be tasked with creating the services and data
controls, while another development group might be tasked with creating the UI. The
first group would create the services and data controls, and then package them up as
an Oracle ADF Library and send it to the second group. The second group can then
add the data controls to their project using the Resource Palette. For more information,
see Chapter 33, "Reusing Application Components."

12.3 Using the Data Controls Panel
You can design a databound user interface by dragging an item from the Data
Controls panel and dropping it on a page as a specific UI component. When you use
data controls to create a UI component, JDeveloper automatically creates the various
code and objects needed to bind the component to the data control you selected.

In the Data Controls panel, each data control object is represented by a specific icon.
Table 12–1 describes what each icon represents, where it appears in the Data Controls
panel hierarchy, and what components it can be used to create.

Using the Data Controls Panel

12-12 Fusion Developer's Guide for Oracle Application Development Framework

Table 12–1 Data Controls Panel Icons and Object Hierarchy

Icon Name Description Used to Create...

Data
Control

Represents a data control. You cannot use the data control itself
to create UI components, but you can use any of the child
objects listed under it. Depending on how your business
services were defined, there may be more than one data control.

Usually, there is one data control for each application module.
However, you may have additional data controls that were
created for other types of business services (for example, for
web services). For information about creating data controls for
web services, see Chapter 13, "Integrating Web Services Into a
Fusion Web Application."

Serves as a container for
the other object and is not
used to create anything.

Collection Represents a named data collection. A data collection represents
a set of data objects (also known as a row set) in the data model.
Each object in a data collection represents a specific structured
data item (also known as a row) in the data model. Throughout
this guide, data collection and collection are used interchangeably.

For application modules, the data collection is the default row
set contained in a view object instance. The name of the
collection matches the view object instance name.

A view link creates a master-detail relationship between two
view objects. If you explicitly add an instance of a detail view
object (resulting from a view link) to the application module
data model, the collection contained in that detail view object
appears as a child of the collection contained in the master view
object. For information about adding detail view objects to the
data model, see Section 5.6.4, "How to Enable Active
Master-Detail Coordination in the Data Model."

The children under a collection may be attributes of the
collection, other collections that are related by a view link,
custom methods that return a value from the collection, or
built-in operations that can be performed on the collection.

If you’ve configured JDeveloper to display viewlink accessor
returns, then those are displayed as well.

Forms, tables, graphs,
trees, range navigation
components, and
master-detail components.

For more information
about using collections on
a data control to create
forms, see Chapter 22,
"Creating a Basic
Databound Page."

For more information
about using collections to
create tables, see
Chapter 23, "Creating
ADF Databound Tables."

For more information
about using master-detail
relationships to create UI
components, see
Chapter 24, "Displaying
Master-Detail Data."

For information about
creating graphs, charts,
and other visualization UI
components, see
Chapter 26, "Creating
Databound ADF Data
Visualization
Components."

Attribute Represents a discrete data element in an object (for example, an
attribute in a row). Attributes appear as children under the
collections or method returns to which they belong.

Only the attributes that were included in the view object are
shown under a collection. If a view object joins one or more
entity objects, that view object’s collection will contain selected
attributes from all of the underlying entity objects.

Label, text field, date, list
of values, and selection
list components.

For information about
using attributes to create
fields on a page, see
Section 22.2, "Using
Attributes to Create Text
Fields."

For information about
creating lists, see
Chapter 25, "Creating
Databound Selection Lists
and Shuttles."

Using the Data Controls Panel

Using ADF Model in a Fusion Web Application 12-13

Structured
Attribute

Represents a returned object that is neither a Java primitive type
(represented as an attribute) nor a collection of any type. An
example of a structured attribute would be a domain, which is a
developer-created data type used to simplify application
maintenance.

For more information about domains, see Section 38.1,
"Creating Custom, Validated Data Types Using Domains."

Label, text field, date, list
of values, and selection
list components.

Method Represents an operation in the data control or one of its exposed
structures that may accept parameters, perform some business
logic and optionally return single value, a structure, or a
collection.

In application module data controls, custom methods are
defined in the application module itself and usually return
either nothing or a single scalar value. For more information
about creating custom methods, see Chapter 9, "Implementing
Business Services with Application Modules."

Command components

For methods that accept
parameters: command
components and
parameterized forms.

For more information
about using methods that
accept parameters, see
Section 28.2.2.2, "Using
Parameters in a Method."

Method
Return

Represents an object that is returned by a custom method. The
returned object can be a single value or a collection.

If a custom method defined in the application module returns
anything at all, it is usually a single scalar value. Application
module methods do not need to return a set of data to the view
layer, because displaying the latest changes to the data is
handled by the view objects in the data model (for more
information, see Section 3.4, "Overview of the UI-Aware Data
Model"). However, custom methods in non-application module
data controls (for example, a data control for a CSV file) can
return collections to the view layer.

A method return appears as a child under the method that
returns it. The objects that appear as children under a method
return can be attributes of the collection, other methods that
perform actions related to the parent collection, or operations
that can be performed on the parent collection.

The same components as
for collections and
attributes.

For named criteria: query
or quick query forms. For
more information, see
Chapter 27, "Creating
ADF Databound Search
Forms."

When a single-value
method return is dropped,
the method is not invoked
automatically by the
framework. You need
either to create an invoke
action as an excecutable,
or to drop the
corresponding method as
a button to invoke the
method. For more
information about
executables, see
Section 12.6.2.2,
"Executable Binding
Objects."

Operation Represents a built-in data control operation that performs
actions on the parent object. Data control operations are located
in an Operations node under collections or method returns, and
also under the root data control node. The operations that are
children of a particular collection or method return operate on
those objects only, while operations under the data control node
operate on all the objects in the data control.

If an operation requires one or more parameters, they are listed
in a Parameters node under the operation.

UI command components,
such as buttons, links, and
menus.

For more information, see
Section 22.4,
"Incorporating Range
Navigation into Forms,"
and Section 22.5,
"Creating a Form to Edit
an Existing Record."

Parameter Represents a parameter value that is declared by the method or
operation under which it appears. Parameters appear in the
Parameters node under a method or operation.

Label, text, and selection
list components.

Table 12–1 (Cont.) Data Controls Panel Icons and Object Hierarchy

Icon Name Description Used to Create...

Using the Data Controls Panel

12-14 Fusion Developer's Guide for Oracle Application Development Framework

12.3.1 How to Use the Data Controls Panel
JDeveloper provides you with a predefined set of UI components from which to
choose for each data control item you can drop.

To use the Data Controls panel to create UI components:
1. Select an item in the Data Controls panel and drag it onto the visual editor for

your page. For a definition of each item in the panel, see Table 12–1.

Figure 12–10 Filtering the Data Controls Panel

2. From the ensuing context menu, select a UI component.

When you drag an item from the Data Controls panel and drop it on a page,
JDeveloper displays a context menu of all the default UI components available for
the item you dropped. The components displayed are based on the libraries in
your project.

Figure 12–11 shows the context menu displayed when a data collection from the
Data Controls panel is dropped on a page.

Figure 12–11 Data Controls Panel Context Menu

Depending on the component you select from the context menu, JDeveloper may
display a dialog that enables you to define how you want the component to look.

Tip: If you need to drop an operation or method onto a method
activity in a task flow, you can simply drag and drop it onto the
activity in the diagram.

Tip: You can use the Filter icon in the Data Controls Panel header to
search for a specific item, as shown in Figure 12–10.

Using the Data Controls Panel

Using ADF Model in a Fusion Web Application 12-15

For example, if you select ADF Read-only Table from the context menu, the Edit
Table Columns dialog launches. This dialog enables you to define which attributes
you want to display in the table columns, what the column labels are, what types
of text fields you want use for each column, and what functionality you want to
include, such as row selection or column sorting. For more information about
creating tables, see Chapter 23, "Creating ADF Databound Tables."

The UI components selected by default are determined first by any UI control
hints set on the corresponding business object. If no control hints have been set,
then JDeveloper uses input components for standard forms and tables, and output
components for read-only forms and tables. Components for lists are determined
based on the type of list you chose when dropping the data control object.

Once you select a component, JDeveloper inserts the UI component on the page in
the visual editor. For example, if you drag a collection from the Data Controls
panel and choose ADF Read-only Table from the context menu, a read-only table
appears in the visual editor, as shown in Figure 12–12.

Figure 12–12 Databound UI Component: ADF Read-Only Table

By default, the UI components created when you use the Data Controls panel use
ADF Faces components, are bound to attributes in the ADF data control, and may
have one or more built-in features, including:

■ Databound labels

■ Tooltips

■ Formatting

■ Basic navigation buttons

■ Validation, if validation rules are attached to a particular attribute. For more
information, see Chapter 7, "Defining Validation and Business Rules
Declaratively."

The default components are fully functional without any further modifications.
However, you can modify them to suit your particular needs. Each component
and its various features are discussed further in Section IV, "Creating a Databound
Web User Interface."

12.3.2 What Happens When You Use the Data Controls Panel
When an Oracle ADF web application is built using the JSF framework, it requires a
few additional application object definitions to render and process a page containing

Tip: If you want to change the type of ADF databound component
used on a page, the easiest method is to delete the component and
drag and drop a new one from the Data Controls panel. When you
delete a databound component from a page, if the related binding
objects in the page definition file are not referenced by any other
component, JDeveloper automatically deletes those binding objects for
you.

Using the Data Controls Panel

12-16 Fusion Developer's Guide for Oracle Application Development Framework

ADF databound UI components. If you do not use the Data Controls panel, you will
have to manually configure these various files yourself. However, when you use the
Data Controls panel, JDeveloper does all of the following required steps:

■ Creates a DataBindings.cpx file in the default package for the project (if one
does not already exist), and adds an entry for the page.

DataBindings.cpx files define the binding context for the application. The
binding context is a container object that holds a list of available data controls and
data binding objects. For more information, see Section 12.3.3, "What Happens at
Runtime: How the Binding Context Works." Each DataBindings.cpx file maps
individual pages to the binding definitions in the page definition file and registers
the data controls used by those pages. For more information, see Section 12.4,
"Working with the DataBindings.cpx File."

■ Creates the adfm.xml file in the META-INF directory. This file creates a registry
for the DataBindings.cpx file, which allows the application to locate it at
runtime so that the binding context can be created.

■ Registers the ADF binding filter in the web.xml file.

The ADF binding filter preprocesses any HTTP requests that may require access to
the binding context. For more information about the binding filter configuration,
see Section 12.5, "Configuring the ADF Binding Filter."

■ Creates the orion-application.xml file and adds a reference to the Oracle
ADF shared libraries needed by the application

■ Adds the following libraries to the view project:

– ADF Faces Databinding Runtime

– Oracle XML Parser v2

– JDeveloper Runtime

– SQLJ Runtime

– ADF Model Runtime

– BC4J Runtime

– Oracle JDBC

– Connection Manager

– BC4J Oracle Domains

■ Adds a page definition file (if one does not already exist for the page) to the page
definition subpackage, the name of which is defined in the ADF Model settings of
the project properties. The default subpackage is view.pageDefs in the
adfmsrc directory.

The page definition file (pageNamePageDef.xml) defines the ADF binding
container for each page in an application’s view layer. The binding container
provides runtime access to all the ADF binding objects for a page. In later
chapters, you will see how the page definition files are used to define and edit the
binding object definitions for specific UI components. For more information about
the page definition file, see Section 12.6, "Working with Page Definition Files."

■ Configures the page definition file, which includes adding definitions of the
binding objects referenced by the page.

■ Adds ADF Faces components to the JSF page.

Using the Data Controls Panel

Using ADF Model in a Fusion Web Application 12-17

These prebuilt components include ADF data binding expression language (EL)
expressions that reference the binding objects in the page definition file. For more
information, see Section 12.7, "Creating ADF Data Binding EL Expressions."

■ Adds all the libraries, files, and configuration elements required by ADF Faces
components. For more information, see the "ADF Faces Configuration" appendix
in the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle
Application Development Framework.

12.3.3 What Happens at Runtime: How the Binding Context Works
When a page contains ADF bindings, at runtime the interaction with the business
services initiated from the client or controller is managed by the application through a
single object known as the binding context. The binding context is a runtime map
(named data and accessible through the EL expression #{data}) of all data controls
and page definitions within the application.

The ADF lifecycle creates the Oracle ADF binding context from the application
module, DataBindings.cpx, and page definition files, as shown in Figure 12–13.
The union of all the DataControls.dcx files and any application modules in the
workspace define the available data controls at design time, but the
DataBindings.cpx files define what data controls are available to the application at
runtime. A DataBindings.cpx file lists all the data controls that are being used by
pages in the application and maps the binding containers, which contain the binding
objects defined in the page definition files, to web page URLs. The page definition files
define the binding objects used by the application pages. There is one page definition
file for each page.

The binding context does not contain real live instances of these objects. Instead, the
map contains references that become data control or binding container objects on
demand. When the object (such as a page definition) is released from the application,
for example when a task flow ends or when the binding container or data control is
released at the end of the request, data controls and binding containers turn back into
reference objects. For information about the ADF lifecycle, see Chapter 21,
"Understanding the Fusion Page Lifecycle."

Working with the DataBindings.cpx File

12-18 Fusion Developer's Guide for Oracle Application Development Framework

Figure 12–13 ADF File Binding Runtime Usage

12.4 Working with the DataBindings.cpx File
The DataBindings.cpx files define the binding context for the entire application
and provide the metadata from which the Oracle ADF binding objects are created at
runtime. An application may have more than one DataBindings.cpx file if a
component, for example a region, was created outside of the project and then
imported. These files map individual pages to page definition files and declare which
data controls are being used by the application. At runtime, only the data controls
listed in the DataBindings.cpx files are available to the current application.

12.4.1 How JDeveloper Creates a DataBindings.cpx File
The first time you use the Data Controls panel to add a component to a page or an
operation to an activity, JDeveloper automatically creates a DataBindings.cpx file
in the default package of the view project. It resides in the adfmsrc directory for the
project. Once the DataBindings.cpx file is created, JDeveloper adds an entry for the
first page or task flow activity. Each subsequent time you use the Data Controls panel,
JDeveloper adds an entry to the DataBindings.cpx for that page or activity, if one
does not already exist.

12.4.2 What Happens When JDeveloper Creates a DataBindings.cpx File
Once JDeveloper creates a DataBindings.cpx file, you can open it in the overview
editor. Figure 12–14 shows the DataBindings.cpx file from the StoreFront module
application, as viewed in the overview editor (note that it’s been truncated).

Tip: JDeveloper supports refactoring. That is, you can safely rename
or move many of the objects referenced in the DataBindings.cpx
file, and the references will be updated. For more information, see
Chapter 32, "Refactoring a Fusion Web Application."

Working with the DataBindings.cpx File

Using ADF Model in a Fusion Web Application 12-19

Figure 12–14 DataBindings.cpx File in the Overview Editor

Example 12–1 shows an excerpt from the .cpx file in the StoreFront module
application.

Example 12–1

<Application xmlns="http://xmlns.oracle.com/adfm/application"
 version="11.1.1.44.61" id="DataBindings" SeparateXMLFiles="false"
 Package="oracle.fodemo.storefront" ClientType="Generic"
 ErrorHandlerClass="oracle.fodemo.frmwkext.FODCustomErrorHandler">
 <definitionFactories>
 <factory nameSpace="http://xmlns.oracle.com/adf/controller/binding"
 className="oracle.adf.controller.internal.binding.
 TaskFlowBindingDefFactoryImpl"/>
 <factory nameSpace="http://xmlns.oracle.com/adfm/dvt"
 className="oracle.adfinternal.view.faces.dvt.model.binding.
 FacesBindingFactory"/>
 <dtfactory className="oracle.adf.controller.internal.dtrt.binding.
 BindingDTObjectFactory"/>
 </definitionFactories>
 <pageMap>
 <page path="/home.jspx" usageId="homePageDef"/>
 <page path="/templates/StoreFrontTemplate.jspx"
 usageId="templates_StoreFrontTemplatePageDef"/>
 <page path="/login.jspx" usageId="loginPageDef"/>
 <page path="/myOrders.jspx" usageId="myOrdersPageDef"/>
.
.
.
 </pageMap>
 <pageDefinitionUsages>
 <page id="homePageDef"
 path="oracle.fodemo.storefront.pageDefs.homePageDef"/>
 <page id="templates_StoreFrontTemplatePageDef"
 path="oracle.fodemo.storefront.pageDefs.
 templates_StoreFrontTemplatePageDef"/>

Configuring the ADF Binding Filter

12-20 Fusion Developer's Guide for Oracle Application Development Framework

 <page id="loginPageDef"
 path="oracle.fodemo.storefront.pageDefs.loginPageDef"/>
 <page id="myOrdersPageDef"
 path="oracle.fodemo.storefront.pageDefs.myOrdersPageDef"/>
 <page id="cart_cartSummaryPageDef"
 path="oracle.fodemo.storefront.pageDefs.cart_cartSummaryPageDef"/>
 <page id="checkout_orderPageDef"
 path="oracle.fodemo.storefront.pageDefs.checkout_orderPageDef"/>
.
.
.
 </pageDefinitionUsages>
 <dataControlUsages>
 <BC4JDataControl id="StoreServiceAMDataControl"
 Package="oracle.fodemo.storefront.store.service"
 FactoryClass="oracle.adf.model.bc4j.DataControlFactoryImpl"
 SupportsTransactions="true" SupportsFindMode="true"
 SupportsRangesize="true" SupportsResetState="true"
 SupportsSortCollection="true"
 Configuration="StoreServiceAMLocalWeb" syncMode="Immediate"
 xmlns="http://xmlns.oracle.com/adfm/datacontrol"/>
 <BC4JDataControl id="LookupServiceAMDataControl"
 Package="oracle.fodemo.storefront.lookups"
 FactoryClass="oracle.adf.model.bc4j.DataControlFactoryImpl"
 SupportsTransactions="true" SupportsFindMode="true"
 SupportsRangesize="true" SupportsResetState="true"
 SupportsSortCollection="true"
 Configuration="LookupServiceAMLocal" syncMode="Immediate"
 xmlns="http://xmlns.oracle.com/adfm/datacontrol"/>
 </dataControlUsages>
</Application>

The Page Mappings section of the editor maps each JSF page or task flow activity to
its corresponding page definition file using an ID. The Page Definition Usages section
maps the page definition ID to the absolute path for page definition file in the
application. The Data Control Usages section identifies the data controls being used
by the binding objects defined in the page definition files. These mappings allow the
binding container to be initialized when the page is invoked.

You can use the overview editor to change the ID name for page definition files or
data controls by double-clicking the current ID name and editing inline. Doing so will
update all references in the application. Note, however, that JDeveloper updates only
the ID name, it does not update the file name. Be sure that you do not change a data
control name to a reserved word. For more information, see Section 9.2.5, "How to Edit
an Existing Application Module."

You can also click an element in the Structure window and then use the Property
Inspector to change property values. For more information about the elements and
attributes in the DataBindings.cpx file, see Section A.7, "DataBindings.cpx."

12.5 Configuring the ADF Binding Filter
The ADF binding filter is a servlet filter that is an instance of the
oracle.adf.model.servlet.ADFBindingFilter class. ADF web applications
use the ADF binding filter to preprocess any HTTP requests that may require access to
the binding context. To do this, the ADF binding filter must be aware of all
DataBindings.cpx files that exist for an application.

Configuring the ADF Binding Filter

Using ADF Model in a Fusion Web Application 12-21

12.5.1 How JDeveloper Configures the ADF Binding Filter
The first time you add a databound component to a page using the Data Controls
panel, JDeveloper automatically configures the filter for you in the application's
web.xml file.

12.5.2 What Happens When JDeveloper Configures an ADF Binding Filter
To configure the binding filter, JDeveloper adds the following elements to the
web.xml file:

■ An ADF binding filter class: Specifies the name of the binding filter object, which
implements the javax.servlet.Filter interface.

The ADF binding filter is defined in the web.xml file, as shown in Example 12–2.
The filter-name element must contain the value adfBindings, and the
filter-class element must contain the fully qualified name of the binding
filter class, which is oracle.adf.model.servlet.ADFBindingFilter.

Example 12–2 Binding Filter Class Defined in the web.xml File

<filter>
 <filter-name>adfBindings</filter-name>
 <filter-class>oracle.adf.model.servlet.ADFBindingFilter</filter-class>
</filter>

■ Filter mappings: Link filters to static resources or servlets in the web application.

At runtime, when a mapped resource is requested, a filter is invoked. Filter
mappings are defined in the web.xml file, as shown in Example 12–3. The
filter-name element must contain the value adfBindings.

Example 12–3 Filter Mapping Defined in the web.xml File

<filter-mapping>
 <filter-name>adfBindings</filter-name>
 <servlet-name>Faces Servlet</servlet-name>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
</filter-mapping>

12.5.3 What Happens at Runtime: How the ADF Binding Filter Works
 At runtime, the ADF binding filter performs the following functions:

■ Overrides the character encoding when the filter is initialized with the name
specified as a filter parameter in the web.xml file. The parameter name of the
filter init-param element is encoding.

■ Instantiates the ADFContext object, which is the execution context for a Fusion
web application and contains context information about ADF, including the
security context and the environment class that contains the request and response
object.

Tip: If you have multiple filters defined in the web.xml file, be sure
to list them in the order in which you want them to run. At runtime,
the filters are executed in the sequence in which they appear in the
web.xml file. The adfBindings filter should appear before any
filters that depend on the ADF context to be initialized.

Working with Page Definition Files

12-22 Fusion Developer's Guide for Oracle Application Development Framework

■ Initializes the binding context for a user's HTTP session. To do this, it first loads
the bindings as defined in the DataBindings.cpx file in the current project’s
adfmsrc directory. If the application contains DataBindings.cpx files that
were imported from another project, those files are present in the application’s
class path. The filter additively loads any auxiliary .cpx files found in the class
path of the application.

■ Serializes incoming HTTP requests from the same browser (for example, from
frame sets) to prevent multithreading problems.

■ Notifies data control instances that they are about to receive a request, allowing
them to do any necessary per-request setup.

■ Notifies data control instances after the response has been sent to the client,
allowing them to do any necessary per-request cleanup.

12.6 Working with Page Definition Files
Page definition files define the binding objects that populate the data in UI
components at runtime. For every page that has ADF bindings, there must be a
corresponding page definition file that defines the binding objects used by that page.
Page definition files provide design time access to all the ADF bindings. At runtime,
the binding objects defined by a page definition file are instantiated in a binding
container, which is the runtime instance of the page definition file.

12.6.1 How JDeveloper Creates a Page Definition File
The first time you use the Data Controls panel, JDeveloper automatically creates a
page definition file for that page and adds definitions for each binding object
referenced by the component. For each subsequent databound component you add to
the page, JDeveloper automatically adds the necessary binding object definitions to the
page definition file.

By default, the page definition files are located in the view.PageDefs package in the
Application Sources directory of the view project. If the corresponding JSF page is
saved to a directory other than the default (public_html), or to a subdirectory of the
default, then the page definition will also be saved to a package of the same name. For
example, if you save your JSF file to the public_html\myDirectory directory, the
page definition will be saved to the myDirectory package. You can change the
location of the page definition files using the ADF Model Settings page of the Project
Properties dialog.

JDeveloper names the page definition files using the following convention:

pageNamePageDef.xml

where pageName is the name of the JSF page. For example, if the JSF page is named
home.jsp, the default page definition file name is homePageDef.xml. If you
organize your pages into subdirectories, JDeveloper prefixes the directory name to the
page definition file name using the following convention:

directoryName_pageNamePageDef.xml

Note: When multiple windows are open to the same page, the ADF
Controller assigns each window its own DataControlFrame. This
ensures that each window has its own binding container.

Working with Page Definition Files

Using ADF Model in a Fusion Web Application 12-23

For example, in the StoreFront module, the name of the page definition file for the
updateUserInfo page, which is in the account subdirectory of the Web Content
node is account_updateUserInfoPageDef.xml.

To open a page definition file, you can right-click directly on the page or activity in the
visual editor, and choose Go to Page Definition, or for a JSF page, you can click the
Bindings tab of the editor and click the Page Definition File link.

12.6.2 What Happens When JDeveloper Creates a Page Definition File
When JDeveloper creates a paged definition file, it is displayed in the overview editor.
Figure 12–15 shows the page definition file in the overview editor that was created for
the myOrders.jspx page in the StoreFront module application.

Figure 12–15 Page Definition File in the Overview Editor

The overview editor contains the following tabs, which allow you to view and
configure bindings, contextual events, and parameters for a page:

■ Bindings and Executables: The Bindings and Executables tab of the page definition
overview editor shows three different types of objects: bindings, executables, and
the associated data controls (note that the data controls do not display unless you
select a binding or executable). For example, in Figure 12–15, you can see that the
binding for the OrderDate1 attribute uses the MyOrdersIterator iterator to
get its value. The iterator accesses the MyOrders collection on the
StoreServiceAMDataControl data control. For more information, see
Section 12.6.2.2, "Executable Binding Objects."

Tip: Page definitions for task flows follow the same naming
convention.

Tip: While JDeveloper automatically creates a page definition for a
JSF page when you create components using the Data Controls panel,
or for a task flow when you drop an item onto an activity, it does not
delete the page definition when you delete the associated JSF page or
task flow activity (this is to allow bindings to remain when they are
needed without a JSF page, for example when using desktop
integration). If you no longer want the page definition, you need to
delete the page definition and all references to it manually. Note
however, that as long as a corresponding page or activity is never
called, the page definition will never be used to create a binding
context. It is therefore not imperative to remove any unused page
definition files from your application.

Working with Page Definition Files

12-24 Fusion Developer's Guide for Oracle Application Development Framework

By default, the model binding objects are named after the data control object that
was used to create them. If a data control object is used more than once on a page,
JDeveloper adds a number to the default binding object names to keep them
unique. In Section 12.7, "Creating ADF Data Binding EL Expressions," you will see
how the ADF data binding EL expressions reference the binding object names.

Table 12–2 shows the icons for each of the binding objects, as displayed in the
overview editor (note that while parameter objects are shown in the Parameter
section of the editor, they are also considered binding objects).

■ Contextual Events: You can create contextual events that artifacts in an application
can subscribe to. For example, in the StoreFront module, contextual events are
used in the customer registration page to display the appropriate informational
topic. The register.jspx page contains two regions. One region contains the
customer registration task flow, and the other contains the informational topic task
flow. A contextual event is passed from the customer registration region to the
informational topic region so that the informational topic task flow can display the
correct information topic. At design time, the event name, producer region,
consumer region, consumer handler, and other information is stored in the event
map section of the page definition file. For more information about contextual
events, see Section 28.7, "Creating Contextual Events."

■ Parameters: Parameter binding objects declare the parameters that the page
evaluates at the beginning of a request. (For more information about the ADF
lifecycle, see Chapter 21, "Understanding the Fusion Page Lifecycle.") You can
define the value of a parameter in the page definition file using static values, or EL
expressions that assign a static value.

Example 12–4 shows how parameter binding objects can be defined in a page
definition file.

Table 12–2 Binding Object Icons

Binding
Object Type Icon Description

Parameter Represents a parameter binding object.

Bindings Represents an attribute value binding object.

Represents a list value binding object.

Represents a tree value binding object.

Represents a method action binding object

Bindings/
Executables

Represents an action binding object. Also represents an
invoke action executable binding object and an event.

Executables Represents an iterator binding object.

Represents a task flow executable binding object.

Working with Page Definition Files

Using ADF Model in a Fusion Web Application 12-25

Example 12–4 parameters Element of a Page Definition File

<parameters>
 <parameter id="filedBy"
 value="${bindings.userId}"/>
 <parameter id="status"
 value="${param.status != null ? param.status : 'Open'}"/>
</parameters>

The value of the filedBy parameter is defined by a binding on the userID data
attribute, which would be an attribute binding defined later in the bindings
element. The value of the status parameter is defined by an EL expression,
which assigns a static value.

For more information about passing parameters to methods, see Section 28.3,
"Setting Parameter Values Using a Command Component."

When you click an item in the overview editor (or the associated node in the Structure
window), you can use the Property Inspector to view and edit the attribute values for
the item, or you can edit the XML source directly by clicking the Source tab.
Example 12–5 shows abbreviated XML code for the page definition file shown in
Figure 12–15.

Example 12–5 Page Definition File

<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
 version="11.1.1.44.61" id="myOrdersPageDef"
 Package="oracle.fodemo.storefront.pageDefs"
 EnableTokenValidation="false">
 <parameters/>
 <executables>
 <page path="oracle.fodemo.storefront.pageDefs.
 templates_StoreFrontTemplatePageDef"
 id="pageTemplateBinding"/>
 <iterator Binds="MyOrderItems" RangeSize="25"
 DataControl="StoreServiceAMDataControl"
 id="MyOrderItemsIterator"/>
 <iterator Binds="MyOrders" RangeSize="-1"
 DataControl="StoreServiceAMDataControl" id="MyOrdersIterator"/>
.
.
.
 </executables>
 <bindings>
 <action id="Commit" InstanceName="StoreServiceAMDataControl"
 DataControl="StoreServiceAMDataControl" RequiresUpdateModel="true"
 Action="commitTransaction"/>
 <action id="Rollback" InstanceName="StoreServiceAMDataControl"
 DataControl="StoreServiceAMDataControl" RequiresUpdateModel="false"
 Action="rollbackTransaction"/>
 <methodAction id="executeMyOrdersForCustomerVO" RequiresUpdateModel="true"
 Action="invokeMethod"
 MethodName="executeMyOrdersForCustomerVO"
 IsViewObjectMethod="false"
 DataControl="StoreServiceAMDataControl"

Tip: By default, JDeveloper uses the dollar sign ($), which is a JSP EL
syntax standard, as the prefix for EL expressions that appear in the
page definition file. However, you can use the hash sign (#) prefix,
which is a JSF EL syntax standard, as well.

Working with Page Definition Files

12-26 Fusion Developer's Guide for Oracle Application Development Framework

 InstanceName="StoreServiceAMDataControl.dataProvider"/>
 <tree IterBinding="MyOrdersIterator" id="MyOrders">
 <nodeDefinition DefName="oracle.fodemo.storefront.store.queries.OrdersVO">
 <AttrNames>
 <Item Value="OrderId"/>
 <Item Value="OrderDate"/>
 <Item Value="OrderShippedDate"/>
 <Item Value="OrderStatusCode"/>
 <Item Value="OrderTotal"/>
 <Item Value="CustomerId"/>
 <Item Value="ShipToName"/>
 <Item Value="ShipToAddressId"/>
 <Item Value="ShipToPhoneNumber"/>
 <Item Value="ShippingOptionId"/>
 <Item Value="PaymentOptionId"/>
 <Item Value="CalculatedOrderTotal"/>
 <Item Value="TotalShippingCost"/>
 <Item Value="DiscountAmount"/>
 <Item Value="InvoiceTotal"/>
 <Item Value="LastUpdateDate"/>
 <Item Value="TypedCouponCode"/>
 </AttrNames>
 </nodeDefinition>
 </tree>
 <attributeValues IterBinding="MyOrdersIterator" id="OrderDate1">
 <AttrNames>
 <Item Value="OrderDate"/>
 </AttrNames>
 </attributeValues>
 <attributeValues IterBinding="MyOrdersIterator" id="OrderId1">
 <AttrNames>
 <Item Value="OrderId"/>
 </AttrNames>
 </attributeValues>
.
.
.
 </bindings>
</pageDefinition>

In later chapters, you will see how the page definition file is used to define and edit
the bindings for specific UI components. For a description of all the possible elements
and attributes in the page definition file, see Section A.8, "pageNamePageDef.xml."

12.6.2.1 Bindings Binding Objects
There are three types of Bindings binding objects used to bind UI components to
objects on the data control:

■ Value: Displays data in UI components by referencing an iterator binding. Each
discrete UI component on a page that will display data from the data control is
bound to a value binding object. Value binding objects include:

– Attribute Values: Binds text fields to a specific attribute in an object (also
referred to as an attribute binding object.)

– List: Binds the list items to all values of an attribute in a data collection.

– Tree: Binds an entire table to a data collection and can also bind the root node
of a tree to a data collection.

Working with Page Definition Files

Using ADF Model in a Fusion Web Application 12-27

– Button (boolean): Binds a checkbox to a boolean value for an attribute.

– Graph: Binds a graph directly to the source data.

■ Method Action: Binds command components, such as buttons or links, to custom
methods on the data control. A method action binding object encapsulates the
details about how to invoke a method and what parameters (if any) the method is
expecting.

■ Action: Binds command components, such as buttons or links, to built-in data
control operations (such as, Commit or Rollback) or to built-in collection-level
operations (such as, Create, Delete, Next, or Previous).

Collectively, the binding objects are referred to as control binding objects, because they
work with the UI controls on a page.

Example 12–6 shows a sample bindings element, which defines one action binding
called Commit, one attribute binding for a text field called PaymentOptionID1, and
one list binding called PaymentTypeCode.

Example 12–6 bindings Element of a Page Definition File

<bindings>
 <action id="Commit" InstanceName="StoreServiceAMDataControl"
 DataControl="StoreServiceAMDataControl" RequiresUpdateModel="true"
 Action="commitTransaction"/>
 <attributeValues IterBinding="PaymentOptionsForUserIterator"
 id="PaymentOptionId1">
 <AttrNames>
 <Item Value="PaymentOptionId"/>
 </AttrNames>
 </attributeValues>
 <list IterBinding="PaymentOptionsForUserIterator" id="PaymentTypeCode"
 Uses="LOV_PaymentTypeCode" StaticList="false">
 <AttrNames>
 <Item Value="PaymentTypeCode"/>
 </AttrNames>
 </list>
</bindings>

The binding object defined in the action element encapsulates the information needed
to invoke the built-in commit operation on the StoreServiceAMDataControl data
control. The value of true in the RequiresUpdateModel attribute specifies that the
model layer needs to be updated before the operation is executed.

If this operation also raised a contextual event, an event definition would appears
well. If the page contained bindings that consumed an event, the event mapping
would also appear. For more information, see Section 28.7, "Creating Contextual
Events."

The attributeValues element defines the value bindings for the text fields on the
page. In the example, the PaymentOptionId1 attribute binding will display the
value of the PaymentOptionId, which is defined in the AttrNames element. The
IterBinding attribute references the iterator binding that manages the data to be
displayed in the text field (for more information, see Section 12.6.2.2, "Executable
Binding Objects").

The PaymentTypeCode element defines the list binding used to display the list of
payment type codes by accessing the LOV created on the PaymentOptions view
object. For more information about creating lists using LOVs on view objects, see
Chapter 25, "Creating Databound Selection Lists and Shuttles."

Working with Page Definition Files

12-28 Fusion Developer's Guide for Oracle Application Development Framework

12.6.2.2 Executable Binding Objects
There are seven types of executable binding objects:

■ Iterator: Binds to an iterator that iterates over view object collections. There is one
iterator binding for each collection used on the page. All of the value bindings on
the page must refer to an iterator binding in order for the component values to be
populated with data at runtime.

When you drop a collection or an attribute of a collection on the page, an iterator
binding is automatically added as an executable. Iterator binding objects bind to
an underlying ADF RowSetIterator object, which manages the current object
and current range information. The iterator binding exposes the current object and
range state to the other binding objects used by the page. The iterator range
represents the current set of objects to be displayed on the page. The maximum
number of objects in the current range is defined in the rangeSize attribute of
the iterator. For example, if a collection in the data control contains products and
the iterator range size is 25, the first 25 products in the collection are displayed on
the page. If the user scrolls down, the next set of 25 is displayed, and so on. If the
user scrolls up, the previous set of 25 is displayed. If your view object uses range
paging, then you can configure the iterator binding to return a set of ranges at one
time. For more information, see Section 39.1.5, "Efficiently Scrolling Through Large
Result Sets Using Range Paging."

■ Method Iterator: Binds to an iterator that iterates over the collections returned by
custom methods in the data control.

A method iterator binding is always related to a method action binding object. The
method action binding encapsulates the details about how to invoke the method
and what parameters (if any) the method is expecting. The method action binding
is itself bound to the method iterator, which provides the data.

You will see method iterator executable binding objects only if you drop a method
return collection or an attribute of a method return collection from a custom
method on the data control. If you are using only application module data
controls, you will see only iterator binding objects.

■ Variable Iterator: Binds to an iterator that exposes all the variables in the binding
container to the other bindings. While there is an iterator binding for each
collection, there is only one variable iterator binding for all variables used on the
page. (The variable iterator is like an iterator pointing to a collection that contains
only one data object whose attributes are the binding container variables.)

Page variables are local to the binding container and exist only while the binding
container object exists. When you use a data control method (or an operation) that
requires a parameter that is to be collected from the page, JDeveloper
automatically defines a variable for the parameter in the page definition file.
Attribute bindings can reference the page variables.

A variable iterator can contain one of two types of variables: variable and
variableUsage. A variable type variable is a simple value holder, while a

Note: If you have two pages each with an iterator binding bound to
the iterator on the same view object (which you will if you drop the
same collection, for example, on two different pages), then you should
ensure that the rangeSize attribute is the same for both pages’
iterator bindings. If not, the page with a smaller range size may cause
the iterator to reexecute, causing unexpected results on the other page.

Working with Page Definition Files

Using ADF Model in a Fusion Web Application 12-29

variableUsage type variable is a value holder that is related to a view object's
named bind parameter. Defining a variable as a variableUsage type allows it to
inherit the default value and UI control hints from the view object named bind
variable to which it is bound.

■ Invoke Action: Binds to a method that invokes the operations or methods defined
in action or method action bindings during any phase of the page lifecycle.

■ Page: Binds to the template’s page definition file (if a template is used). For more
information about how this works with templates, see Section 20.2, "Using Page
Templates."

■ Search Region: Binds named criteria to the iterator, so that the search can be
executed.

■ Task Flow: Instantiates the binding container for a region’s task flow.

At runtime, executable bindings are refreshed based on the value of their Refresh
attribute. Refreshing an iterator binding reconnects it with its underlying
RowSetIterator object. Refreshing an invoke action binding invokes the action.
Before refreshing any bindings, the ADF runtime evaluates any Refresh and
RefreshCondition attributes specified in the executables. The Refresh attribute
specifies the ADF lifecycle phase within which the executable should be invoked. The
RefreshCondition attribute specifies the conditions under which the executable
should be invoked. You can specify the RefreshCondition value using a boolean
EL expression. If you leave the RefreshCondition attribute blank, it evaluates to
true.

By default, the Refresh value is set to deferred. This means the binding will not be
executed unless its value is accessed (for example by an EL expression on a JSF page).
Once called, it will not reexecute unless any parameter values for the binding have
changed, or if the binding itself has changed.

Tip: If you know you want a method to execute before the page is
rendered, you should use a method call activity in the task flow to
invoke the method, rather than an invoke action in the page definition
file. Using the method call activity makes invoking page logic easier,
and allows you to show more information on the task flow, making
the diagram more readable and useful to anyone else who might be
using it. However, if you need the method to be executed in more
than one phase of the page's lifecycle, or if you plan to reuse the page
and page definition file and want the method to be tied to the page, or
if your application does not use ADFc, then you should use an invoke
action to invoke the method.

Note: You can also use the page element to bind to another page
definition file. However, at runtime, only the current incoming page’s
(or if the rendered page is different from the incoming, the rendered
page’s) binding container is automatically prepared by the framework
during the current request. Therefore, to successfully access a bound
value in another page from the current page, you must
programmatically prepare that page’s binding container in the current
request (for example, using a backing bean). Otherwise, the bound
values in that page may not be available or valid in the current
request.

Creating ADF Data Binding EL Expressions

12-30 Fusion Developer's Guide for Oracle Application Development Framework

For more information about how bindings are refreshed and how to set the Refresh
and RefreshCondition attributes, see Section 21.2, "The JSF and ADF Page
Lifecycles."

Example 12–7 shows an example of executable binding objects.

Example 12–7 executable Binding Objects in a Page Definition File

<executables>
 <page path="oracle.fodemo.storefront.pageDefs.
 templates_StoreFrontTemplatePageDef"
 id="pageTemplateBinding"/>
 <iterator Binds="MyOrderItems" RangeSize="25"
 DataControl="StoreServiceAMDataControl"
 id="MyOrderItemsIterator"/>
 <iterator Binds="MyOrders" RangeSize="-1"
 DataControl="StoreServiceAMDataControl" id="MyOrdersIterator"/>

The iterator binding named MyOrderItems was created by dropping the
MyOrderItems collection on the page as a table. The iterator binding named
MyOrders was created by dropping the MyOrders collection, which has a
master-detail relationship with the MyOrderItems collection. For more information,
see Chapter 24, "Displaying Master-Detail Data."

The Binds attribute of the iterator element defines the collection the iterator will
iterate over. The RangeSize attribute defines the number of objects the iterator is to
display on the page at one time. A RangeSize value of -1 causes the iterator to
display all the objects from the collection.

12.7 Creating ADF Data Binding EL Expressions
To display data from the data model, web page UI components are bound to binding
objects using JSF Expression Language (EL) expressions. These EL expressions
reference a specific binding object in a binding container. At runtime, the JSF runtime
evaluates an EL expression and pulls the value from the binding object to populate the
component with data when the page is displayed. If the user updates data in the UI
component, the JSF runtime pushes the value back into the corresponding binding
object based on the same EL expression.

Tip: Normally, an iterator binding’s default range size is 25.
However, when an iterator binding is created from the Edit List
Binding dialog, the range size defaults to -1 so that all choices display
in the list, not just the first 25.

Performance Tip: When you want to reduce the number of
roundtrips the iterator requires to fetch the data objects from the view
object in the ADF Business Components layer, you can set the
rangeSize attribute to -1, and the objects will be fetched in a single
round trip to the server, rather than in multiple trips as the user
navigates through the objects.

Tip: There may be cases when you need to use EL expressions
within managed beans. For information on working with EL
expressions within managed beans, see the "Creating EL Expressions"
section in the Oracle Fusion Middleware Web User Interface Developer's
Guide for Oracle Application Development Framework.

Creating ADF Data Binding EL Expressions

Using ADF Model in a Fusion Web Application 12-31

12.7.1 How to Create an ADF Data Binding EL Expression
When you use the Data Controls panel to create a component, the ADF data binding
expressions are created for you. The expressions are added to every component
attribute that will either display data from or reference properties of a binding object.
Each prebuilt expression references the appropriate binding objects defined in the
page definition file. You can edit these binding expressions or create your own, as long
as you adhere to the basic ADF binding expression syntax. ADF data binding
expressions can be added to any component attribute that you want to populate with
data from a binding object.

In JSF pages, a typical ADF data binding EL expression uses the following syntax to
reference any of the different types of binding objects in the binding container:

#{bindings.BindingObject.propertyName}

where:

■ bindings is a variable that identifies that the binding object being referenced by
the expression is located in the binding container of the current page. All ADF
data binding EL expressions must start with the bindings variable.

■ BindingObject is the ID, or for attributes the name, of the binding object as it is
defined in the page definition file. The binding objectID or name is unique to
that page definition file. An EL expression can reference any binding object in the
page definition file, including parameters, executables, or value bindings.

■ propertyName is a variable that determines the default display characteristics of
each databound UI component and sets properties for the binding object at
runtime. There are different binding properties for each type of binding object. For
more information about binding properties, see Section 12.7.2, "What You May
Need to Know About ADF Binding Properties."

 For example, in the following expression that might appear on a JSF page:

#{bindings.ProductName.inputValue}

the bindings variable references a bound value in the current page’s binding
container. The binding object being referenced is ProductName, which is an attribute
binding object. The binding property is inputValue, which returns the value of the
first ProductName attribute.

As stated previously, when you use the Data Controls panel to create UI components,
these expressions are built for you. However, you can also manually create them if you
need to. The JDeveloper Expression Builder is a dialog that helps you build EL
expressions by providing lists of binding objects defined in the page definition files, as
well as other valid objects to which a UI component may be bound. It is particularly
useful when creating or editing ADF databound expressions because it provides a
hierarchical list of ADF binding objects and their most commonly used properties. For
information about binding properties, see Section 12.7.2, "What You May Need to
Know About ADF Binding Properties."

12.7.1.1 Opening the Expression Builder from the Property Inspector
You can select an item in the visual editor, and then create EL expressions for specific
attributes using the Property Inspector.

Tip: While the binding expressions in the page definition file can use
either a dollar sign ($) or hash sign (#) prefix, the EL expressions in
JSF pages can use only the hash sign (#) prefix.

Creating ADF Data Binding EL Expressions

12-32 Fusion Developer's Guide for Oracle Application Development Framework

To open the Expression Builder from the Property Inspector:
1. Select a UI component in the Structure window or the visual editor.

2. In the Property Inspector, click the dropdown list next to a field, and choose
Expression Builder.

12.7.1.2 Using the Expression Builder
Once the Expression Builder is open, you can use it to create EL expressions.

To use the Expression Builder:
1. Open the Expression Builder dialog.

2. Use the Expression Builder to edit or create ADF binding expressions using the
following features:

■ Use the Variables tree to select items that you want to include in the binding
expression. The tree contains a hierarchical representation of the binding
objects. Each icon in the tree represents various types of binding objects that
you can use in an expression (see Table 12–3 for a description of each icon).

To narrow down the tree, you can either use the dropdown filter or enter
search criteria in the search field. Double-click an item in the tree to move it to
the Expression box.

■ Use the operator buttons to add logical or mathematical operators to the
expression.

Tip: You can also type the expression directly in the Expression box.

Table 12–3 Icons Under the ADF Bindings Node of the Expression Builder

Icon Description

Represents the bindings container variable, which references
the binding container of the current page. Opening the
bindings node exposes all the binding objects for the current
page.

Represents the data binding variable, which references the
entire binding context (created from all the .cpx files in the
application). Opening the data node exposes all the page
definition files in the application.

Represents an action binding object. Opening a node that uses
this icon exposes a list of valid action binding properties.

Represents an iterator binding object. Opening a node that uses
this icon exposes a list of valid iterator binding properties.

Represents an attribute binding object. Opening a node that uses
this icon exposes a list of valid attribute binding properties.

Represents a list binding object. Opening a node that uses this
icon exposes a list of valid list binding properties.

Represents a table or tree binding object. Opening a node that
uses this icon exposes a list of valid table and tree binding
properties.

Represents an ADF binding object property. For more
information about ADF properties, see Section 12.7.2, "What You
May Need to Know About ADF Binding Properties."

Using Simple UI First Development

Using ADF Model in a Fusion Web Application 12-33

12.7.2 What You May Need to Know About ADF Binding Properties
When you create a databound component using the Expression Builder, the EL
expression might reference specific ADF binding properties. At runtime, these binding
properties can define such things as the default display characteristics of a databound
UI component or specific parameters for iterator bindings. The ADF binding
properties are defined by Oracle APIs. For a full list of the available properties for each
binding type, see Appendix B, "Oracle ADF Binding Properties."

Values assigned to certain properties are defined in the page definition file. For
example, iterator bindings have a property called RangeSize, which specifies the
number of rows the iterator should display at one time. The value assigned to
RangeSize is specified in the page definition file, as shown in Example 12–8.

Example 12–8 Iterator Binding Object with the RangeSize Property

<iterator Binds="ProductsByCategory1" RangeSize="25"
 DataControl="StoreFrontModuleDataControl"
 id="Products2Iterator"/>

12.8 Using Simple UI First Development
While the Data Controls panel enables you to design and create bound components in
a single drag-and-drop action, in some cases, it may be preferable to create the basic UI
components first and add the bindings later. For example, if your page will use
declarative components, you will first need to drop the declarative component, and
then bind it to the correct ADF control. Declarative components are reusable,
composite UI components that are made up of other ADF Faces components. Once
imported into a project, declarative components can be dropped onto a page from the
Component Palette, similar to standard ADF Faces components. While the entire
declarative component cannot use ADF data binding, you can use ADF data binding
on the individual components that make up the declarative component, once the
declarative component is dropped on the page. For more information about
declarative components, see the "Using Declarative Components" section of the Oracle
Fusion Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework.

Represents a parameter binding object.

Represents a JavaBean.

Represents a method.

Note: If you know the UI components on your page will eventually
use ADF data binding, but you need to develop the pages before the
data controls are ready, then you should consider using placeholder
data controls, rather than manually binding the components. Using
placeholder data controls will provide the same declarative
development experience as using developed data controls. For more
information, see Chapter 29, "Designing a Page Using Placeholder
Data Controls."

Table 12–3 (Cont.) Icons Under the ADF Bindings Node of the Expression Builder

Icon Description

Using Simple UI First Development

12-34 Fusion Developer's Guide for Oracle Application Development Framework

When designing web pages, keep in mind that ADF bindings can be added only to
certain ADF Faces tags or their equivalent JSF HTML tags. Table 12–4 lists the ADF
Faces and JSF tags to which you can later add ADF bindings.

Before adding binding to the UI components, ensure that you follow these guidelines:

■ When creating the JSF page using the Create JSF JSP wizard, choose the Do not
Automatically Expose UI Components in a Managed Bean option in the Page
Implementation section.

Tip: To enable the use of JSF Reference Implementation UI
component tags with ADF bindings, you must choose the Include JSF
HTML Widgets for JSF Databinding option in the ADF View
Settings of the project properties. However, using ADF Faces tags,
especially with ADF bindings, provides greater functionality than
does using the reference implementation JSF tags.

Table 12–4 Tags That Can Be Used for ADF Bindings

ADF Faces Tags Used in ADF Bindings Equivalent JSF HTML Tags

Text Fields

af:inputText h:inputText

af:outputText h:outputText

af:outputLabel h:outputLabel

af:inputDate n/a

Tables

af:table h:dataTable

Actions

af:commandButton h:commandButton

af:commandLink h:commandLink

af:commandMenuItem n/a

af:commandToolbarButton n/a

Selection Lists

af:inputListOfValues n/a

af:selectOneChoice h:selectOneMenu

af:selectOneListbox h:selectOneListbox

af:selecOneRadio h:selectOneRadio

af:selectBooleanCheckbox h:selectBooleanCheckbox

Queries

af:query n/a

af:quickQuery n/a

Trees

af:tree n/a

af:treeTable n/a

Using Simple UI First Development

Using ADF Model in a Fusion Web Application 12-35

This option turns off JDeveloper’s auto-binding feature, which automatically
associates every UI component in the page to a corresponding property in the
backing bean for eventual programmatic manipulation. If you intend to add ADF
bindings to a page, do not use the auto-binding feature. If you use the
auto-binding feature, you will have to remove the managed bean bindings later,
after you have added the ADF bindings. The managed bean UI component
property bindings do not affect the ADF bindings, but their presence may be
confusing in the JSF code. For information about managed beans, see Section 20.4,
"Using a Managed Bean in a Fusion Web Application."

■ Add the ADF Faces tag libraries.

While you can add ADF bindings to JSF components, the ADF Faces components
provide greater functionality, especially when combined with ADF bindings.

12.8.1 How to Apply ADF Model Data Binding to Existing UI Components
You apply ADF model binding to components using the Structure window.

To apply ADF Model data binding:
1. In the Design page of the visual editor, select the UI component to which you

want to add ADF bindings.

The component must be one of the tags listed in Table 12–4. When you select a
component in the visual editor, JDeveloper simultaneously selects that component
tag in the Structure window, as shown in Figure 12–16.

Figure 12–16 The Structure Window in JDeveloper

2. In the Structure window, right-click the UI component, and from the context
menu, choose Bind to ADF Control.

Using Simple UI First Development

12-36 Fusion Developer's Guide for Oracle Application Development Framework

3. In the Bind to ADF Control dialog, select the data control to which you want the
UI component bound. JDeveloper will notify you if you choose a control that is not
compatible with the selected UI component.

12.8.2 What Happens When You Apply ADF Model Data Binding to UI Components
When you use the Data Controls panel all of the required ADF objects are
automatically created for you, as described in Section 12.3.2, "What Happens When
You Use the Data Controls Panel."

Note: Your project must already contain data controls for the Bind to
ADF Control menu option to appear. If yours does not, you should
consider using placeholder data controls, as described in Chapter 29,
"Designing a Page Using Placeholder Data Controls."

13

Integrating Web Services Into a Fusion Web Application 13-1

13Integrating Web Services Into a
Fusion Web Application

This chapter describes how to call a third-party web service in a Fusion web
application and work directly with the service proxy and service data objects (SDOs)
programmatically for all common remote service data access tasks. It also describes
how to create ADF data controls for third-party web services when you want to work
with the web service in the user interface.

This chapter includes the following sections:

■ Section 13.1, "Introduction to Web Services in Fusion Web Applications"

■ Section 13.2, "Calling a Web Service from an Application Module"

■ Section 13.3, "Creating Web Service Data Controls"

■ Section 13.4, "Securing Web Service Data Controls"

13.1 Introduction to Web Services in Fusion Web Applications
Web services allow enterprises to expose business functionality irrespective of the
platform or language of the originating application because the business functionality
is exposed in such a way that it is abstracted to a message composed of standard XML
constructs that can be recognized and used by other applications.

Web services are modular business services that can be easily integrated and reused,
and it is this that makes them ideally suited as components within SOA. JDeveloper
helps you to create top-down web services (services created starting from a WSDL),
bottom-up web services (created from the underlying implementation such as a Java
class or a PL/SQL stored procedure in a database), and services created from existing
functionality such as exposing an application module as a service.

You can consume web services in web applications, and common reasons for wanting
to do so are:

■ To add functionality which would be time-consuming to develop with the
application, but which is readily available as a web service

■ To access an application that runs on different architecture

■ To access an application that is owned by another team when their application
must be independently installed, upgraded, and maintained, especially when its
data is not replicated locally (for example, when other methods of accessing their
application cannot be used)

Calling a Web Service from an Application Module

13-2 Fusion Developer's Guide for Oracle Application Development Framework

13.2 Calling a Web Service from an Application Module
In a service-oriented architecture, your Oracle ADF application module may need to
take advantage of functionality offered by a web service that is not based on an
application module. A web service can be implemented in any programming language
and can reside on any server on the network. Each web service identifies the methods
in its API by describing them in a standard, language-neutral XML format. This XML
document, whose syntax adheres to the Web Services Description Language (WSDL),
enables JDeveloper to understand the names of the web service's methods, as well as
the data types of the parameters they might expect and their eventual return value.

JDeveloper's built-in web services wizards make this an easy task. Create a web
service proxy class using the wizard, then call the service using method calls you add
to a local Java object.

13.2.1 How to Call an External Service Programmatically
To call a web service from an application module, you create a web service proxy class
for the service you want to invoke. A web service proxy is a generated Java class that
represents the web service inside your application. It encapsulates the service URL of
the web service and handles the lower-level details of making the call.

To work with a web service, you need to know the URL that identifies its WSDL
document. If you have received the WSDL document as an email attachment, for
example, and saved it to your local hard drive, the URL could be similar to:

file:///D:/temp/SomeService.wsdl

Alternatively, the URL could be an HTTP-based URL like:

http://someserver.somecompany.com/SomeService/SomeService.wsdl

Some web services make their WSDL document available by using a special parameter
to modify the service URL. For example, a web service that expects to receive requests
at the HTTP address of http://someserver.somecompany.com/SomeService
might publish the corresponding WSDL document using the same URL with an
additional parameter on the end, like this:

http://someserver.somecompany.com/SomeService?WSDL

Since there is no established standard, you will just need to know what the correct
URL to the WSDL document is. With the URL information, you can then create a web
service proxy class to call the service.

ADF Business Components services have URLs to the service of the following formats:

■ On Integrated WebLogic Server, the URL has the format
http://host:port/EJB-context-root/@WebService-name?WSDL,
for example:

http://localhost:8888/EJB-StoreFrontService/StoreFrontService?WSDL

Note: Application modules can also be exposed as web services so
that they can be consumed across modules of the deployed Fusion
web application. For details about reusing ADF Business Components
using external services, see Chapter 11, "Integrating Service-Enabled
Application Modules."

Calling a Web Service from an Application Module

Integrating Web Services Into a Fusion Web Application 13-3

■ On Oracle WebLogic Server, the URL has the format
http://host:port/context-root/@WebService-name?WSDL,
for example:

http://localhost:8888/StoreFrontService/StoreFrontService?WSDL

The web service proxy class presents a set of Java methods that correspond to the web
service's public API. By using the web service proxy class, you can call any method in
the web service in the same way as you work with the methods of any other local Java
class.

To call a web service from an application module using a proxy class, you perform the
following tasks:

1. Create a web service proxy class for the web service. To create a web service proxy
class for a web service that you need to call, use the Create Web Service Proxy
wizard.

2. Implement the methods in the proxy class to access the desired web services.

3. Create an instance of the web service proxy class in your application module and
invoke one or more methods on the web service proxy object.

13.2.1.1 Creating a Web Service Proxy Class to Programmatically Access the
Service
To create a web service proxy class for a web service you need to call, use the Create
Web Service Proxy wizard.

To create a web service proxy class to programmatically access the service:
1. In the Application Navigator, right-click the project in which you want to create

the web service proxy, and choose New.

2. In the New Gallery, expand Business Tier, select Web Services and then Web
Service Proxy, and click OK.

3. On the Select Web Service Description page of the wizard, enter or choose a Java
package name for the generated web service proxy class.

4. Enter the URL for the WSDL of the service you want to call in your application,
and then tab out of the field.

If the Next button does not enable, click Why Not? to understand what problem
JDeveloper encountered when trying to read the WSDL document. If necessary,
fix the problem after verifying the URL and repeat this step.

5. When the wizard displays Next enabled, then JDeveloper has recognized and
validated the WSDL document. You can click Next and continue.

6. Continue through the pages of the wizard to specify details about the web service
proxy. For more information about each page of the wizard, press F1 or click
Help.

7. Click Finish.

13.2.1.2 Calling the Web Service Proxy Template to Invoke the Service
After you create the web service proxy, you must implement the methods in the proxy
class to access the desired web services.

Calling a Web Service from an Application Module

13-4 Fusion Developer's Guide for Oracle Application Development Framework

To call the web service proxy template to invoke the service:
1. Open the proxy client class, called port_nameClient.java, in the source editor,

and locate the comment // Add your own code to call the desired
methods, which is in the main method.

2. Add the appropriate code to invoke the web service.

3. Deploy the full set of client module classes that JDeveloper has generated, and
reference this class in your application.

13.2.1.3 Calling a Web Service Method Using the Proxy Class in an Application
Module
After you've generated the web service proxy class, you can use it inside a custom
method of your application module, as shown in Example 13–1. The method creates an
instance of the web service proxy class and calls the web service method from the web
service proxy class for the result.

Example 13–1 Web Service Proxy Class Calls Web Service Method

// In YourModuleImpl.java
public void performSomeApplicationTask(String symbol) throws Exception {
 // application-specific code here
 :
 // Create an instance of the web service proxy class
 StockQuoteServiceSoapHttpPortClient svc =
 new StockQuoteServiceSoapHttpPortClient();
 // Call a method on the web service proxy class and get the result
 QuoteInfo quote = svc.quoteForSymbol(symbol);
 float currentPrice = quote.getPrice();
 // more application-specific code here
}

13.2.2 How to Create a New Web Service Connection
After developing a web service proxy, you can generate additional connections for the
proxy that you can use in testing and deployment situations. For example, you might
want to create a connection that includes user name and password for testing
purposes.

The connection information is stored in the connections.xml file along with the
other connections in your application. This abstraction of the endpoint URL also
allows you to edit the connection after deployment using Enterprise Manager without
requiring modification to the client code.

To create a new web service connection:
1. In the Application Navigator, right-click a web service proxy and choose Create

ADF Web Service Connection.

The New ADF Web Service Connection dialog displays the default settings for a
connection associated with the selected proxy.

2. Modify the connection information as necessary, and click OK.

WARNING: If you create a new web service connection with the
same name as an existing connection, the existing connection will
be overwritten with the new information.

Calling a Web Service from an Application Module

Integrating Web Services Into a Fusion Web Application 13-5

After you create a new web service connection, you can modify your client to use this
connection. You could use code similar to that shown in Example 13–2 to access the
connection from your client.

Example 13–2 Accessing a Web Service Connection from a Client

Context ctx = ADFContext.getCurrent().getConnectionsContext();
WebServiceConnection wsc = (WebServiceConnection) ctx.lookup("MyAppModuleService");

MyAppModuleService proxy = wsc.getJaxWSPort(MyAppModuleService.class);

The argument that you pass to the lookup() method is the name that you gave to the
web service connection. In this example, it is MyAppModuleService.

13.2.3 What Happens When You Create the Web Service Proxy
JDeveloper generates the web service proxy class in the package you've indicated with
a name that reflects the name of the web service port it discovered in the WSDL
document. The web service port name might be a human-readable name like
StockQuoteService, or could be a less-friendly name like
StockQuoteServiceSoapHttpPort. The port name is decided by the developer
that published the web service you are using. If the port name of the service were
StockQuoteServiceSoapHttpPort, for example, JDeveloper would generate a
web proxy class named StockQuoteServiceSoapHttpPortClient.

The web service proxy displays in the Application Navigator as a single, logical node
called WebServiceNameProxy. For example, the node for the StockQuoteService
web service would appear in the navigator with the name
StockQuoteServiceProxy. As part of generating the proxy class, in addition to the
main web service proxy class that you use to invoke the server, JDeveloper generates a
number of auxiliary classes and interfaces. You can see these files in the Application
Navigator under the WebServiceNameProxy node. The generated files are used as
part of the lower-level implementation of invoking the web service.

The only auxiliary generated classes you need to reference are those created to hold
structured web service parameters or return types. For example, imagine that the
StockQuoteService web service has a quoteForSymbol() method that accepts
one String parameter and returns a floating-point value indicating the current price
of the stock. If the designer of the web service chose to return a simple floating-point
number, then the web service proxy class would have a corresponding method like
this:

public float quoteForSymbol(String symbol)

If instead the designer of the web service thought it useful to return multiple pieces of
information as the result, then the service's WSDL file would include a named
structure definition describing the multiple elements it contains. For example, assume
that the service returns both the symbol name and the current price as a result. To
contain these two data elements, the WSDL file might define a structure named
QuoteInfo with an element named symbol of string type and an element named
price of floating-point type. In this situation, when JDeveloper generates the web
service proxy class, the Java method signature would instead look like this:

public QuoteInfo quoteForSymbol(String symbol)

The QuoteInfo return type references one of the auxiliary classes that comprises the
web service proxy implementation. It is a simple bean whose properties reflect the
names and types of the structure defined in the WSDL document. In a similar way, if
the web service accepts parameters whose values are structures or arrays of structures,

Calling a Web Service from an Application Module

13-6 Fusion Developer's Guide for Oracle Application Development Framework

then you will work with these structures in your Java code using the corresponding
generated beans.

13.2.4 What Happens at Runtime: When You Call a Web Service Using a Web Service
Proxy Class

When you invoke a web service from an application module, the web service proxy
class handles the lower-level details of using the XML-based web services protocol
described in SOAP. In particular, it does the following:

■ Creates an XML document to represent the method invocation

■ Packages any method arguments in XML

■ Sends the XML document to the service URL using an HTTP POST request

■ Unpackages the XML-encoded response from the web service

If the method you invoke has a return value, your code receives it as an appropriately
typed object to work with in your application module code.

13.2.5 What You May Need to Know About Web Service Proxies
When you are implementing web service proxies in an application, you might want to
use a try-catch block to handle web service exceptions or invoke an application
module with a web service proxy class. The following sections contain additional
information you might need to know about these and other features with regard to
web service proxies.

13.2.5.1 Using a Try-Catch Block to Handle Web Service Exceptions
By using the generated web service proxy class, invoking a remote web service
becomes as easy as calling a method in a local Java class. The only distinction to be
aware of is that the web service method call could fail if there is a problem with the
HTTP request involved. The method calls that you perform against a web service
proxy should anticipate the possibility that the request might fail by wrapping the call
with an appropriate try...catch block. Example 13–3 improves on the simpler
example (shown in Section 13.2.1.3, "Calling a Web Service Method Using the Proxy
Class in an Application Module") by catching the web service exception. In this case, it
simply rethrows the error as a JboException, but you could implement more
appropriate error handling in your own application.

Example 13–3 Wrapping Web Service Method Calls with a Try-Catch Block

// In YourModuleImpl.java
public void performSomeApplicationTask(String symbol) {
 // application-specific code here
 // :
 QuoteInfo quote = null;
 try {
 // Create an instance of the web service proxy class
 StockQuoteServiceSoapHttpPortClient svc =
 new StockQuoteServiceSoapHttpPortClient();
 // Call a method on the web service proxy class and get the result
 quote = svc.quoteForSymbol(symbol);
 }
 catch (Exception ex) {
 throw new JboException(ex);
 }
 float currentPrice = quote.getPrice();

Creating Web Service Data Controls

Integrating Web Services Into a Fusion Web Application 13-7

 // more application-specific code here
}

13.2.5.2 Separating Application Module and Web Services Transactions
You will use some web services to access reference information. However, other
services you call may modify data. This data modification might be in your own
company's database if the service was written by a member of your own team or
another team in your company. If the web service is outside your firewall, of course
the database being modified will be managed by another company.

In either of these situations, it is important to understand that any data modifications
performed by a web service you invoke will occur in their own distinct transaction,
unrelated to the application module's current unit of work. For example, if you have
invoked a web service that modifies data and then you later call rollback() to
cancel the pending changes in the application module's current unit of work, this has
no effect on the changes performed by the web service you called in the process. You
may need to invoke a corresponding web service method to perform a compensating
change to account for your rollback of the application module's transaction.

13.2.5.3 Setting Browser Proxy Information
If the web service you need to call resides outside your corporate firewall, you need to
ensure that you have set the appropriate Java system properties to configure the use of
an HTTP proxy server. The Java system properties to configure are:

■ http.proxyHost — Set this to the name of the proxy server.

■ http.proxyPort — Set this to the HTTP port number of the proxy server (often
80).

■ http.nonProxyHosts — Optionally set this to a vertical-bar-separated list of
servers not requiring the user of a proxy server (for example,
localhost|127.0.0.1|*.yourcompany.com).

Within JDeveloper, you can configure an HTTP proxy server on the Web Browser and
Proxy page of the Preferences dialog. When you run your application, JDeveloper
includes appropriate -D command-line options to set these three system properties
based on the settings you've indicated in this dialog.

13.2.5.4 Invoking Application Modules with a Web Service Proxy Class
If you use a web service proxy class to invoke an Oracle ADF service-based
application module, you lose the ability to optimize the call when the calling
component and the service you are calling are colocated. As an alternative, you can
use the service interface approach described in Chapter 11, "Integrating
Service-Enabled Application Modules."

13.3 Creating Web Service Data Controls
The most common way of using web services in an application developed using
Oracle ADF is to create a data control for an external web service. A typical reason for
doing this is to add functionality that is readily available as a web service, but which
would be time consuming to develop with the application, or to access an application
that runs on a different architecture.

Additionally, you can reuse components created by Oracle ADF to make them
available as web services for other applications to access.

Creating Web Service Data Controls

13-8 Fusion Developer's Guide for Oracle Application Development Framework

13.3.1 How to Create a Web Service Data Control
JDeveloper allows you to create a data control for an existing web service using just
the WSDL for the service. You can browse to a WSDL on the local file system, locate
one in a UDDI registry, or enter the WSDL URL directly.

To create a web service data control:
1. In the Application Navigator, right-click an application and choose New.

2. In the New Gallery, expand Business Tier, select Web Services and then Web
Service Data Control, and click OK.

3. Follow the wizard instructions to complete creating the data control.

4. In the Create Web Service Data Control wizard, on the Data Source page, specify a
name for the data control, a WSDL URL, and the specific web service to be
accessed by the data control.

5. On the Data Control Operations page, select the operations you want the data
control to support.

If you want to include header parameters when invoking the SOAP request, select
Include Http Header Parameter. For more information, see Section 13.3.2, "How
to Include a Header Parameter for a Web Service Data Control."

6. On the Response Format page, specify the format of the SOAP response.

7. On the Endpoint Authentication page, specify the authentication details for the
endpoint URL, and click Finish.

13.3.2 How to Include a Header Parameter for a Web Service Data Control
When using a web service data control, you may want to add an enterprise ID to the
HTTP header when invoking the SOAP request. This enterprise ID in the request
allows the web service data control to specify which cloud service the request will be
directed to.

To configure the web service data control to use a header parameter, you select
Include Http Header Parameter on the Data Control Operations page of the Create
Web Service Data Control wizard. After creating the data control, you will be able to
see the HttpHeader parameter in the Data Controls panel under the Parameters node
of the web service data control's methods. You will also notice that
AdapterDataControl element for the web service data control (in the .dcx file)
contains an <httpHeaders paramName="HttpHeader"/> element.

To use the HttpHeader parameter, you will need to create a backing bean in the view
controller project for the web service data control. The value for the HttpHeader
parameter is provided through the backing bean. The backing bean must have a
property of the type Map and the name/value pairs for the http headers should be
added to that property. Additionally, the Map must be of type <String,
List<String>> or <String,String>, and you should expose the property with
getter and setter methods, as shown Example 13–4.

Note: If you are working behind a firewall and you want to use a
web service that is outside the firewall, you must configure the Web
Browser and Proxy settings in JDeveloper. For more information, see
Section 13.2.5.3, "Setting Browser Proxy Information."

Creating Web Service Data Controls

Integrating Web Services Into a Fusion Web Application 13-9

Example 13–4 Backing Bean to Support Http Header Parameters in a Web Service Data
Control

public class BackingBean {
 private Map<String,Object> httpHeadersMap = new HashMap<String,Object>();
 public BackingBean() {
 List<String> headersList = new ArrayList<String>();
 headersList.add("Oracle");
 httpHeadersMap.put("enterpriseID",headersList);
 }
 public void setHttpHeadersMap(Map<String,Object> httpHeadersMap) {
 this.httpHeadersMap = httpHeadersMap;
 }
 public Map<String,Object> getHttpHeadersMap() {
 return httpHeadersMap;
 }
}
When you drag and drop the operation from the Data Controls panel onto a page as
an ADF Parameter Form, remove the HttpHeader from the list of fields. Then, in the
Edit Action Binding dialog, under the Parameters section specify the value for
HttpHeader parameter by providing an expression that points to the backing bean
Map property.

13.3.3 How to Adjust the Endpoint for a Web Service Data Control
After developing a web service data control, you can modify the endpoint. This is
useful, for example, when you migrate the application from a test environment to
production.

To change the endpoint for a web service data control:
1. In the Application Navigator, select the .dcx file for the web service data control.

2. In the Structure window, right-click the web service data control and choose Edit
Web Service Connection from the context menu.

3. In the Edit Web Service Connection dialog, make the necessary changes to the
endpoint URL and port name.

4. Click OK.

13.3.4 How to Refresh a Web Service Data Control
After creating a web service data control, you might find that a web service operation
has changed in its method signature, return type, or structure. When this happens,
you can update the data control without having to re-create it.

To refresh an operation in a web service data control:
1. In the Application Navigator, select the .dcx file for the web service data control.

2. In the Structure window, right-click the desired web service operation and choose
Update from the context menu.

JDeveloper queries the web service and updates the web service data control to reflect
the current state of the selected operation.

13.3.5 What You May Need to Know About Web Service Data Controls
As with other kinds of data controls, you can design a databound user interface by
dragging an item from the Data Controls panel and dropping it on a page as a specific

Creating Web Service Data Controls

13-10 Fusion Developer's Guide for Oracle Application Development Framework

UI component. For more information, see Section 12.3.1, "How to Use the Data
Controls Panel."

In the Data Controls panel, each data control object is represented by an icon.
Table 13–1 describes what each icon represents, where it appears in the Data Controls
panel hierarchy, and what components it can be used to create.

Table 13–1 Data Controls Panel Icons and Object Hierarchy for Web Services

Icon Name Description Used to Create...

Data
Control

Represents a data control. You cannot use the data control itself
to create UI components, but you can use any of the child
objects listed under it. Depending on how your web services
are defined, there may be more than one data control.

Typically, there is one data control for each web service.
However, you may have additional data controls that were
created for other types of business services (for example,
application modules). For information about creating data
controls for application modules, see Chapter 12, "Using ADF
Model in a Fusion Web Application."

Serves as a container for
other objects and is not
used to create anything

Collection Represents a named data collection. A data collection represents
a set of data objects (also known as a row set) in the data model.
Each object in a data collection represents a specific structured
data item (also known as a row) in the data model. Throughout
this guide, data collection and collection are used
interchangeably.

For more information about using collections on a data control
to create forms, see Chapter 22, "Creating a Basic Databound
Page."

For more information about using collections to create tables,
see Chapter 23, "Creating ADF Databound Tables."

For more information about using master-detail relationships
to create UI components, see Chapter 24, "Displaying
Master-Detail Data."

For information about creating graphs, charts, and other
visualization UI components, see Chapter 26, "Creating
Databound ADF Data Visualization Components."

Forms, tables, graphs,
trees, range navigation
components, and
master-detail components.

Attribute Represents a discrete data element in an object (for example, an
attribute in a row). Attributes appear as children under the
collections or method returns to which they belong.

For information about using attributes to create fields on a
page, see Section 22.2, "Using Attributes to Create Text Fields."

For information about creating lists, see Chapter 25, "Creating
Databound Selection Lists and Shuttles."

Label, text field, date, list
of values, and selection list
components.

Structured
Attribute

Represents a returned object that is not one of the Java
primitive types (which are represented as attributes) and is also
not a collection of any type. An example of a structured
attribute would be a domain, which is a developer-created data
type used to simplify application maintenance.

For more information about domains, see Section 38.1,
"Creating Custom, Validated Data Types Using Domains."

Label, text field, date, list
of values, and selection list
components

Securing Web Service Data Controls

Integrating Web Services Into a Fusion Web Application 13-11

13.4 Securing Web Service Data Controls
Web services allow applications to exchange data and information through defined
application programming interfaces. SSL (Secure Sockets Layer) provides secure data
transfer over unreliable networks, but SSL only works point to point. Once the data
reaches the other end, the SSL security is removed and the data becomes accessible in
its raw format. A complex web service transaction can have data in multiple messages
being sent to different systems, and SSL cannot provide the end-to-end security that
would keep the data invulnerable to eavesdropping.

Method Represents an operation in the data control or one of its
exposed structures that may accept parameters, perform some
business logic and optionally return single value, a structure or
a collection of those.

For more information about using methods that accept
parameters, see Section 28.2.2.2, "Using Parameters in a
Method."

Command components

For methods that accept
parameters: command
components and
parameterized forms

Method
Return

Represents an object that is returned by a custom method. The
returned object can be a single value or a collection.

If a custom method returns anything at all, it is usually a single
scalar value. However, some custom methods can return
collections.

A method return appears as a child under the method that
returns it. The objects that appear as children under a method
return can be attributes of the collection, other methods that
perform actions related to the parent collection, and operations
that can be performed on the parent collection.

When a single-value method return is dropped, the method is
not invoked automatically by the framework. You either need
to also create an invoke action as an executable, or drop the
corresponding method as a button to invoke the method. For
more information about executables, see Section 12.6.2.2,
"Executable Binding Objects."

The same components as
for collections and
attributes.

For named criteria: query
or quick query forms. For
more information, see
Chapter 27, "Creating ADF
Databound Search Forms."

Operation Represents a built-in data control operation that performs
actions on the parent object. Data control operations are located
in an Operations node under collections or method returns,
and also under the root data control node. The operations that
are children of a particular collection or method return operate
on those objects only, while operations under the data control
node operate on all the objects in the data control.

If an operation requires one or more parameters, they are listed
in a Parameters node under the operation.

The standard operations supported by the web service data
control are for form navigation: First, Last, Next, and Previous.
Because the web service data control is not an updateable data
control, you cannot use built-in operations like commit,
rollback, and execute.

UI command components,
such as buttons, links, and
menus.

For more information, see
Section 22.4,
"Incorporating Range
Navigation into Forms,"
and Section 22.5, "Creating
a Form to Edit an Existing
Record."

Parameter Represents a parameter value that is declared by the method or
operation under which it appears. Parameters appear in the
Parameters node under a method or operation.

Array and structured parameters are exposed as updateable
structured attributes and collections under the data control,
which can be dropped as an ADF form or an updateable table
on the UI. You can use the UI to build a parameter that is an
array or a complex object (not a standard Java type).

Label, text, and selection
list components.

Table 13–1 (Cont.) Data Controls Panel Icons and Object Hierarchy for Web Services

Icon Name Description Used to Create...

Securing Web Service Data Controls

13-12 Fusion Developer's Guide for Oracle Application Development Framework

Any form of security for web services has to address the following issues:

■ The authenticity and integrity of data

■ Data privacy and confidentiality

■ Authentication and authorization

■ Non-repudiation

■ Denial of service attacks

Throughout this section the "client" is the web service data control, which sends SOAP
messages to a deployed web service. The deployed web service may be:

■ A web service running on Oracle WebLogic Server

■ A web service running anywhere in the world that is accessible through the
Internet

13.4.1 WS-Security Specification
The WS-Security specification unifies multiple security technologies to make secure
web services interoperable between systems and platforms. You can view the
specification at
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-mes
sage-security-1.0.pdf.

WS-Security addresses the following aspects of web services security issues:

■ Authentication and authorization

The identity of the sender of the data is verified, and the security system ensures
that the sender has privileges to perform the data transaction.

The type of authentication can be a basic username/password pair transmitted in
plain text, or trusted X509 certificate chains. SAML assertion tokens can also be
used to allow the client to authenticate against the service, or allow it to participate
in a federated SSO environment, where authenticated details are shared between
domains in a vendor-independent manner.

■ Data authenticity, integrity, and non-repudation

XML digital signatures, which use industry-standard messages, digest algorithms
to digitally sign the SOAP message.

■ Data privacy

XML encryption that uses industry-standard encryption algorithms to encrypt the
message.

■ Denial of service attacks

Defines XML structures to time-stamp the SOAP message. The server uses the
time stamp to invalidate the SOAP message after a defined interval.

13.4.2 Using Key Stores
A web service data control can be configured for message-level security using either
Java Key Store (JKS) or the Oracle Wallet. For information on setting up and using
Oracle Wallet, see the Oracle Technology Network at
http://www.oracle.com/technetwork.

For more information about creating and using key stores for message protection, see
the section about managing keystores, wallets, and certificates in the Oracle Fusion

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

Securing Web Service Data Controls

Integrating Web Services Into a Fusion Web Application 13-13

Middleware Administrator's Guide, and the section about configuring policies in the
Oracle Fusion Middleware Security and Administrator's Guide for Web Services.

13.4.3 How to Define Web Service Data Control Security
After you create a web services data control in a JDeveloper project, you can define
security for the data control using the Edit Data Control Policies dialog.

To define security for a web service data control:
1. In the Application Navigator, select the web service data control .dcx file.

2. In the Structure window, right-click the web service data control, and choose
Define Web Service Security.

JDeveloper displays the Edit Data Control Policies dialog, which shows the Policy
Store location. To select an alternative policy store, use the WS Policy Store page
of the Preferences dialog.

3. From the Ports dropdown list, select the port to which you want the specified
policies are applied.

4. From the MTOM dropdown list, select the MTOM (message transmission
optimization mechanism) policy you want to use. If you leave this field blank, no
MTOM policy is used.

5. From the Reliability dropdown list, select the reliability policy you want to use. If
you leave this field blank, no reliability policy is used.

6. From the Addressing dropdown list, select the addressing policy you want to use.
If you leave this field blank, no addressing policy is used.

7. In the Security list, you can optionally specify additional security policies to
apply. To add a policy, click the Add security policy icon.

8. In the Management list, you can optionally specify additional management
policies to apply. To add a policy, click the Add management policy icon.

9. If necessary, you can also remove policies from the Security list and the
Management list by selecting the appropriate policy and clicking the
corresponding delete icon.

10. You can optionally override properties for the policies in the Security list and the
Management list by clicking Override Properties.

11. After you have selected the appropriate policies for your web service data control,
click OK to apply your selections and close the dialog.

For more information about predefined policies and configuring policies and their
properties, see the Oracle Fusion Middleware Security and Administrator's Guide for Web
Services.

Securing Web Service Data Controls

13-14 Fusion Developer's Guide for Oracle Application Development Framework

Part III
Part III Creating ADF Task Flows

Part III contains the following chapters:

■ Chapter 14, "Getting Started with ADF Task Flows"

■ Chapter 15, "Working with Task Flow Activities"

■ Chapter 16, "Using Parameters in Task Flows"

■ Chapter 17, "Using Task Flows as Regions"

■ Chapter 18, "Creating Complex Task Flows"

■ Chapter 19, "Using Dialogs in Your Application"

14

Getting Started with ADF Task Flows 14-1

14Getting Started with ADF Task Flows

This chapter describes how to create ADF task flows that enable navigation,
encapsulation, reuse, managed bean lifecycles, and transactions within an application.
It includes the basic steps for creating a task flow diagram, adding activities and
control flows to it, and running the finished task flow.

This chapter includes the following sections:

■ Section 14.1, "Introduction to ADF Task Flows"

■ Section 14.2, "Creating a Task Flow"

■ Section 14.3, "Adding Activities to a Task Flow"

■ Section 14.4, "Testing ADF Task Flows"

■ Section 14.5, "Refactoring to Create New ADF Task Flows and Templates"

■ Section 14.6, "What You Should Know About Task Flow Constraints"

14.1 Introduction to ADF Task Flows
ADF task flows provide a modular approach for defining control flow in an application.
Instead of representing an application as a single large JSF page flow, you can break it
up into a collection of reusable task flows. Each task flow contains a portion of the
application's navigational graph. The nodes in the task flows are activities. An activity
node represents a simple logical operation such as displaying a page, executing
application logic, or calling another task flow. The transactions between the activities
are called control flow cases.

Figure 14–1 shows two view activities called Create and Confirm. These view
activities are similar to page nodes within a JSF page flow.

Figure 14–1 ADF Task Flow

Task flows can invoke managed beans. For more information about defining managed
beans for use with a task flow, the supported memory scopes, and other related
information, see Section 14.2.4, "What You May Need to Know About Memory Scope
for Task Flows" and Section 20.4, "Using a Managed Bean in a Fusion Web
Application".

Introduction to ADF Task Flows

14-2 Fusion Developer's Guide for Oracle Application Development Framework

14.1.1 Task Flow Advantages
ADF task flows offer significant advantages over standard JSF page flows, as
described in Table 14–1.

14.1.2 Task Flow Types
The two types of ADF task flow are:

■ Unbounded task flow: A set of activities, control flow rules, and managed beans
that interact to allow a user to complete a task. An ADF unbounded task flow
consists of all activities and control flows in an application that are not included
within any bounded task flow.

■ Bounded task flow: A specialized form of task flow that, in contrast to an
unbounded task flow, has a single entry point and zero or more exit points. It
contains its own set of private control flow rules, activities, and managed beans.
An ADF bounded task flow allows reuse, parameters, transaction management,
and reentry.

For a description of the activity types that you can add to an ADF unbounded or
bounded task flow see Chapter 15, "Working with Task Flow Activities".

A bounded task flow is also known as a task flow definition. By default, JDeveloper
proposes the following filename for the source file of a bounded task flow:

task-flow-definitionN.xml

where N is a number that increments each time that you create a new bounded
task flow.

Table 14–1 ADF Task Flow Advantages

JSF Page Flow ADF Task Flow

The entire application must be represented
in a single page navigation file
(faces-config.xml). Although you can
have multiple copies of
faces-config.xml in a project, the
application loads these files as one at
runtime.

The application can be broken up into a series of
modular flows that call one another.

All nodes within a JSF page flow must be
JSF pages. No other types of objects can
exist within the JSF page flow.

You can add to the task flow diagram nodes such
as views, method calls, and calls to other task
flows.

Navigation is only between pages. Navigation is between pages as well as other
activities, including routers. For more
information, see Section 15.4, "Using Router
Activities".

Application fragments cannot be reused. ADF task flows are reusable within the same or
an entirely different application.

After you break up your application into task
flows, you may decide to reuse task flows
containing common functionality.

For more information see Chapter 33, "Reusing
Application Components".

There is no shared memory scope between
multiple requests except for session scope.

Shared memory scope (for example, page flow
scope) enables data to be passed between
activities within the task flow. Page flow scope
defines a unique storage area for each instance of
an ADF bounded task flow.

Introduction to ADF Task Flows

Getting Started with ADF Task Flows 14-3

The file contains the metadata for the bounded task flow. Multiple task flow
definitions (bounded task flows) can be included within the same task flow
definition file.

A typical application is a combination of an unbounded and one or more bounded
task flows. For example, JDeveloper, by default, creates an empty unbounded task
flow (source file name is adfc-config.xml) when you create a Fusion web
application using the Fusion Web Application template. At runtime, the Fusion web
application can call bounded task flows from activities that you added to this
unbounded task flow.

As shown in Figure 14–2, the first activity to execute in an application is often a view
activity within an ADF unbounded task flow. A view activity represents a JSF page
that displays as part of the application. The activity shown in Figure 14–2 starts with
the Home view activity and then calls a bounded task flow. The calltoLogin_
taskFlow activity calls a bounded task flow that enables a user to log into the
application.

Figure 14–2 Unbounded Task Flow Calling a Bounded Task Flow

You can also design an application in which all application activities reside within the
ADF unbounded flow. This mimics a Struts or JSF application, but doesn't take
advantage of ADF bounded task flow functionality. To take full advantage of task flow
functionality, use ADF bounded task flows.

14.1.2.1 Unbounded Task Flows
A Fusion web application always contains an ADF unbounded task flow, which contains
the entry point or points to the application. Figure 14–3 displays the diagram for the
unbounded task flow from the Fusion Order Demo Application. This task flow
contains a number of view activities that are all entry points to the application.

Figure 14–3 Unbounded Task Flow in Fusion Order Demo Application

You typically use an unbounded instead of a bounded task flow if:

Introduction to ADF Task Flows

14-4 Fusion Developer's Guide for Oracle Application Development Framework

■ You want to take advantage of ADF Controller features not offered by bounded
task flows, such as bookmarkable view activities. For more information, see
Section 15.2.3, "Bookmarking View Activities".

■ The task flow will not be called by another task flow.

■ The application has multiple points of entry. In Figure 14–3, the task flow can be
entered through any of the pages represented by the view activity icons on the
unbounded task flows.

Pages are associated with view activities. The icon for a view activity displays a
page image like this:

■ You want to bookmark more than one activity on the task flow. See Section 15.2.3,
"Bookmarking View Activities" for more information.

An unbounded task flow cannot declaratively specify parameters. In addition, it
cannot contain a default activity, an activity designated as the first to run in the
unbounded task flow. This is because an unbounded task flow does not have a single
point of entry. To perform any of these requires an ADF bounded task flow.

In order to take advantage of completely declarative ADF Controller transaction and
reentry support, use a bounded rather than an unbounded task flow.

14.1.2.2 Bounded Task Flows
An ADF bounded task flow is used to encapsulate a reusable portion of an application. A
bounded task flow is similar to a Java method in that it:

■ Has a single entry point

■ May accept input parameters

■ May generate return values

■ Has its own collection of activities and control flow rules

■ Has its own memory scope and managed bean lifespan (a page flow scope
instance)

The checkout-task-flow activity in Figure 14–3 is a call to an ADF bounded task
flow. An unbounded task flow can call an ADF bounded task flow, but cannot be
called by another task flow. A bounded task flow can call another bounded task flow,
which can call another and so on. There is no limit to the depth of the calls.

The checkout process is created as a separate ADF bounded task flow, as shown in
Figure 14–4.

Introduction to ADF Task Flows

Getting Started with ADF Task Flows 14-5

Figure 14–4 Checkout Bounded Task Flow in Fusion Order Demo Application

The reasons for creating the checkout-task-flow activity as a called bounded task
flow are:

■ The bounded task flow always specifies a default activity, a single point of entry
that must execute immediately upon entry of the bounded task flow.

In the checkout task flow, the activity labeled reconcileShoppingCart invokes
a method that returns a list of items that an anonymous user (one who has not yet
logged in to the application) may have chosen to purchase. Any items chosen
before authentication are included in the shopping cart after the user has logged
in. Because it is the default activity, the method is always invoked before the
shopping cart order page displays.

■ checkout-task-flow is reusable. For example, it can be included in other
applications requiring an item checkout process. The bounded task flow can also
be reused within the same application.

■ Any managed beans you decide to use within checkout-task-flow can be
specified in page flow scope, so are isolated from the rest of the application.

The main features of ADF bounded task flows are summarized in Table 14–2.

Table 14–2 ADF Bounded Task Flow Features

Feature Description

Well-defined boundary An ADF bounded task flow consists of its own set of private
control flow rules, activities, and managed beans. A caller
requires no internal knowledge of such things as page names,
method calls, child bounded task flows, managed beans, and
control flow rules within the bounded task flow boundary. Input
parameters can be passed into the bounded task flow, and
output parameters can be passed out on exit of the bounded task
flow. Data controls can be shared between task flows.

Introduction to ADF Task Flows

14-6 Fusion Developer's Guide for Oracle Application Development Framework

Single point of entry An ADF bounded task flow has a single point of entry, a default
activity that executes before all other activities in the task flow.
For more information, see Section 14.2.3, "What You May Need
to Know About the Default Activity in an ADF Bounded Task
Flow".

Page flow memory scope You can specify page flow scope as the memory scope for
passing data between activities within the ADF bounded task
flow. Page flow scope defines a unique storage area for each
instance of an ADF bounded task flow. Its lifespan is the ADF
bounded task flow, which is longer than request scope and
shorter than session scope. For more information, see
Section 14.2.4, "What You May Need to Know About Memory
Scope for Task Flows".

Addressable You can access an ADF bounded task flow by specifying its
unique identifier within the XML source file for the bounded
task flow and the file name of the XML source file. For more
information, see Section 15.6.8, "What Happens When You Add
a Task Flow Call Activity".

Reuse You can identify an entire group of activities as a single entity,
an ADF bounded task flow, and reuse the bounded task flow in
another application within an ADF region. For example, the Hot
Items and Start Shopping tabs on the home page of the Fusion
Order Demo application reuse the same task flow embedded in
a region. Different parameters are passed to each region to
determine the lists of products that display.For more
information, see Section 17.2, "Creating an ADF Region".

You can also reuse an existing bounded task flow simply by
calling it. For example, one task flow can call another bounded
task flow using a task flow call activity or a URL.

In addition, you can use task flow templates to capture common
behaviors for reuse across different ADF bounded task flows.
For more information, see Section 18.12, "Creating a Task Flow
Template".

Parameters and return
values

A caller can pass input parameters to an ADF bounded task flow
and accept return values from it. For more information, see
Section 16.3, "How to Pass Parameters to an ADF Bounded Task
Flow".

In addition, you can share data controls between bounded task
flows. For more information, see Section 18.3, "Sharing Data
Controls Between Task Flows."

Transaction management An ADF bounded task flow can represent a transactional unit of
work. You can declaratively specify options on the bounded task
flow that determine whether, when entering the task flow, the
task flow creates a new transaction, joins an existing one or is
not part of the existing transaction. For more information, see
Section 18.4, "Managing Transactions".

Reentry You can specify options on the bounded task flow that
determine whether or not it can be reentered. For more
information, see Section 18.5, "Reentering a Bounded Task Flow".

On-demand loading of
metadata

ADF bounded task flow metadata is loaded on demand when
entering an ADF bounded task flow.

Security You can secure an ADF bounded task flow by defining the
privileges that are required for someone to use it.

Table 14–2 (Cont.) ADF Bounded Task Flow Features

Feature Description

Introduction to ADF Task Flows

Getting Started with ADF Task Flows 14-7

14.1.3 Control Flows
A task flow consists of activities and control flow cases that define the transitions
between activities. In Figure 14–5, the control flow labeled toView2 defines the
transition between ViewActivity1 and ViewActivity2. ViewActivity1
displays before ViewActivity2 when the task flow in Figure 14–5 executes.

Figure 14–5 Task Flow with Activities and Control Flow Cases

Figure 14–5 contains a method call (methodCall1) that invokes after
ViewActivity2 and before it calls the taskflowCall1 bounded task flow. In a task
flow, you invoke an activity such as a method before or after a page renders. Invoking
a method outside of a particular page can facilitate reuse because you can reuse the
page in other contexts that don't require the method (for example, a different task
flow).

Control flow rules are based on JSF navigation rules, but capture additional
information. JSF navigation is always between pages, whereas control flow rules
describe transitions between activities. For example, a control flow rule can indicate a
transition between a view activity and a subsequent method call activity. Or, it can
indicate that control passes from the page to another task flow.

Save point restore, task flow return, and URL view activities cannot be the source of a
control flow rule.

The basic structure of a control flow rule mimics a JSF navigation rule. Table 14–3
describes how metadata maps from JSF navigation rules to control flow rules.

Table 14–3 Mapping of JSF Navigation Rules to Control Flow Rules

JSF Navigation Rule Control Flow Rule

Navigation Rule Control Flow Rule

 From View ID From Activity ID

Navigation Case Control Flow Case

 From Action From Action

 From Outcome From Outcome

 To View ID To Activity ID

Introduction to ADF Task Flows

14-8 Fusion Developer's Guide for Oracle Application Development Framework

A wildcard control flow rule represents a control flow from-activity-id that
contains a trailing wildcard (foo*) or a single wildcard character (*). Use the single
wildcard character when you want to pass control from any activity in the task flow to
the wildcard control flow rule. Alternatively, use a trailing wildcard when you want to
constrain the activities that can pass control to the wildcard control flow rule.

In Figure 14–6, the wildcard control flow rule contains a single wildcard character,
indicating that control can pass to the activities connected to it in the task flow
diagram from any activity within the task flow.

Figure 14–6 Wildcard Control Flow Rule With Single Wildcard

The trailing wildcard in Figure 14–7 indicates that control flow can pass to the
loginPage view from any valid source activity whose activity-id begins with the
characters storefront.

Figure 14–7 Wildcard Control Flow Rule with Trailing Wildcard

Note: When using ADF task flows, perform all application
navigation using ADF Controller control flow rules instead of using
navigation rules in faces-config.xml.

ADF Controller delegates navigation handling when no matching
control flow cases are found in ADF Controller metadata. However,
not all ADF Controller functionality is guaranteed to work correctly if
navigation is performed by a non-ADF Controller
NavigationHandler.

Creating a Task Flow

Getting Started with ADF Task Flows 14-9

14.2 Creating a Task Flow
A task flow is made up of the task flow itself, plus a number of activities with control
flow rules between those activities. In most cases, the majority of the activities are
view activities which represent the different pages in the flow. When some method or
operation needs to be called, for example before a page is rendered, you use a method
call activity with a control flow rule from that activity to the appropriate next activity.
When you want to call another task flow, you use a task flow call activity. If the flow
requires some sort of branching, you use a router activity. At the end of a bounded
task flow, you use a return activity which allows the flow to exit and control is sent
back to the flow that called this bounded task flow.

For more detailed information and procedures regarding the individual components
of a task flow, including the metadata created for each and additional configuration
that you can set, see Section 14.3, "Adding Activities to a Task Flow."

14.2.1 How to Create a Task Flow
The processes for creating ADF bounded and unbounded task flows are similar. The
main difference is that you select the Create as Bounded Task Flow checkbox in the
Create Task Flow dialog to create an ADF bounded task flow.

To create a task flow:
1. Create the task flow:

a. In the Application Navigator, right-click the project where you want to create
the task flow and choose New.

b. In the New Gallery, expand Web Tier, select JSF and then ADF Task Flow and
click OK.

The dialog shown in Figure 14–8 displays.

Note: If your application uses Facelets XHTML files in the view
layer, you manually configure navigation in a task flow's source file
between the view activities that reference these Facelets XHTML files.

Note: When you create the project, you may not need to create an
unbounded task flow for it. If ADF Page Flow is specified as a
selected technology on the Technology Scope page of the Project
Properties dialog, the new adfc-config.xml source file is
automatically created within the project. The adfc-config.xml
source file is the main source file for an unbounded task flow.

Creating a Task Flow

14-10 Fusion Developer's Guide for Oracle Application Development Framework

Figure 14–8 Create Task Flow Dialog

c. In the Create Task Flow dialog, the Create as Bounded Task Flow checkbox is
selected by default. Deselect it to create a source file that will be incorporated
into the application's unbounded task flow.

Deselecting the checkbox automatically changes the default value in the File
Name field. This value will be used to name the XML source file for the ADF
task flow you are creating. The XML source file contains metadata describing
the activities and control flow rules in the task flow.

Because a single project can contain multiple task flows, a number may be
added to the default value in the File Name field in order to give the source
file a unique name, for example, task-flow-definition3.xml.

Clear the Create with Page Fragments checkbox that is selected by default if
you want the view activities that you add to the task flow to reference JSF
pages. Leave the Create with Page Fragments checkbox selected if you want
the view activities that you add to the task flow to reference page fragments
files (.jsff).

d. Click OK.

A diagram representing the task flow displays in the editor.

e. After you create the task flow, you can update it using the diagram, overview,
and source editors

You can also use the Structure window to update the task flow.

Tip: The default name for an unbounded task flow is
adfc-config.xml. The default name for the source file for a
bounded task flow matches the value specified in the Task Flow ID
field.

Tip: You can view a thumbnail of the entire task flow diagram by
clicking the diagram and then choosing View > Thumbnail from the
main menu.

Creating a Task Flow

Getting Started with ADF Task Flows 14-11

2. Drag an activity from the ADF Task Flow page in the Component Palette onto the
diagram. Normally, you would start with a view activity. For more detailed
procedures for adding any type of activity, see Section 14.3.1, "How to Add
Additional Activities to an ADF Task Flow."

■ If you drag a view activity onto the diagram, you can double-click it to display
the wizard for the page or page fragment that the task flow is configured to
invoke. Use the wizard to define characteristics for the page or page fragment.
For more information, see Section 15.2, "Using View Activities".

■ If you drag a router activity onto the diagram, you can user the Property
Inspector to create an expression whose evaluation will determine which
control flow rule will be followed. For more information, see Section 15.4,
"Using Router Activities."

■ If you drag a method call activity onto the diagram, you can use the Property
Inspector to configure the method to be called. For more information, see
Section 15.5, "Using Method Call Activities."

■ If you drag a task flow call activity onto the diagram, you can double-click it
to display the Create Bounded Task Flow dialog where you can define settings
for a new bounded task flow. For more information, see Section 15.6, "Using
Task Flow Call Activities".

■ If you are creating a bounded task flow, and you drag a task flow return
activity onto the diagram, you can use the Property Inspector to configure the
activity. For more information, see Section 15.7, "Using Task Flow Return
Activities."

3. Create control flow cases between the activities (for more information and detailed
procedures, see Section 14.3.3, "How to Add Control Flows"):

a. In the ADF Task Flow page of the Component Palette, select Control Flow
Case.

b. On the diagram, click a source activity, for example a view, and then click the
destination activity. For example in Figure 14–15, two activities have been
linked with a control flow. Both source (view1) and the destination (view2)
activities are linked.

c. Set the outcome value, using either the From Action attribute (if the outcome
is to be determine by a method) or the From Outcome attribute (if the
outcome can be set as a String).

4. If you are creating a bounded task flow, once that flow is complete, you may want
to designate one of the activities as the default activity. Doing so ensures that
specific activity will be executed first whenever the task flow is run. By default,
the first activity you added to the task flow is the default. To change to a different
activity, right-click the appropriate activity in the diagram and choose Mark

Tip: There are other ways to create task flows, for example, by
refactoring the contents of an existing ADF task flow into a new task
flow. For more information, see Section 14.5, "Refactoring to Create
New ADF Task Flows and Templates".

Note: You can also add a view activity to a task flow by dragging a
page from the Application Navigator and dropping it on the diagram
for the task flow.

Creating a Task Flow

14-12 Fusion Developer's Guide for Oracle Application Development Framework

Activity > Default Activity. For more information, see Section 14.2.3, "What You
May Need to Know About the Default Activity in an ADF Bounded Task Flow."

14.2.2 What Happens When You Create a Task Flow
A new XML source file is created every time you create a new ADF unbounded or
bounded task flow. By default, the XML source file for an ADF unbounded task flow is
called adfc-config.xml.

As shown in Example 14–1, <adfc-config> appears first as the top-level element in
all ADF Controller XML source files. Bounded task flows, activities and control flow
rules are defined inside the <adfc-config> element. Bounded task flows are
identified within the source file by the <task-flow-definition> metadata
element.

Example 14–1 ADF Bounded Task Flow XML Source File

<?xml version="1.0" encoding="windows-1252" ?>
<adfc-config xmlns="http://xmlns.oracle.com/adf/controller" version="1.2" id="__
1">
 <task-flow-definition id="task-flow-definition">
 <use-page-fragments/>
 </task-flow-definition>
</adfc-config>

An ADF bounded task flow is identified by its task flow reference, which is comprised
of a unique combination of identifier and document name. Example 14–2 shows a
sample task flow reference within a task flow call activity.

Example 14–2 Task Flow Reference

<adfc-config xmlns="http://xmlns.oracle.com/adf/Controller" version="1.2">
 <task-flow-definition id="task-flow-definition">
 <use-page-fragments/>
.
.
 <task-flow-call id="taskFlowCall">
 <task-flow-reference>
 <document>/WEB-INF/target-task-flow-definition.xml</document>
 <id>my-task-flow</id>
 </task-flow-reference>
 </task-flow-call>
.
.
 </task-flow-definition>
</adfc-config>

You assign both identifier and document name when you create the ADF bounded
task flow. As shown in Example 14–2, the identifier is the value in the Task Flow ID
field. The document name is the value in the File Name field.

Note: If you use JDeveloper to create the ADF bounded task flow,
specify only one ID (indicating one bounded task flow) per document.

Creating a Task Flow

Getting Started with ADF Task Flows 14-13

14.2.3 What You May Need to Know About the Default Activity in an ADF Bounded Task
Flow

The default activity is the first activity to execute in an ADF bounded task flow. For
example, the default activity always executes first when a task flow call activity passes
control to the ADF bounded task flow.

ADF unbounded task flows do not have default activities.

As shown in Figure 14–9, a green circle identifies the default activity in a task flow
diagram.

Figure 14–9 Default Activity in ADF Bounded Task Flow

The first activity that you add to a new ADF bounded task flow diagram is
automatically identified as the default activity. You can also right-click any activity in
the task flow diagram and choose Mark Activity > Default Activity. The default can
be any activity type and it can be located anywhere in the control flow of the ADF
bounded task flow. To find the default activity, right-click anywhere on the task flow
diagram and choose Go to Default Activity.

An ADF bounded task flow can have only one default activity. If you mark a second
activity as the default, the first is unmarked automatically. To unmark an activity
manually, right-click the activity in the task flow diagram and choose Unmark
Activity > Default Activity.

You should not specify a train stop in the middle of a train as a default activity (for
more information, see Section 18.10, "Creating a Train").

Example 14–3 contains sample metadata for a default activity called SurveyPrompt
in a bounded task flow:

Example 14–3 Default Activity Metadata in a Bounded Task Flow

<task-flow-definition id="survey">
 <default-activity>SurveryPrompt</default-activity>
 <view id="SurveryPrompt">
 <page>/SurveryPrompt.jsff</page>
 </view>
 <use-page-fragments/>
</task-flow-definition>

14.2.4 What You May Need to Know About Memory Scope for Task Flows
Each task flow in your Fusion web application defines a pageFlow scope to manage
state. The pageFlow scope begins when the task flow begins and ends when the task
flow ends. A pageFlow scope defines a unique storage area for each instance of a task
flow within an application which is used to pass data values between the activities in
the task flow. When one task flow calls another, the calling task flow cannot access the

Creating a Task Flow

14-14 Fusion Developer's Guide for Oracle Application Development Framework

called task flow’s pageFlow scope. This means, for example, that a UI component on a
page referenced by a task flow’s view activity cannot access the pageFlow scope of
another task flow even if this task flow is an ADF region embedded in the same page
as the UI component.

You can register multiple managed beans with task flows. Figure 14–10 shows
examples from the Fusion Order Demo application where the default unbounded task
flow (adfc-config.xml) and the customer registration task flow reference multiple
managed beans with varying scope values. You can determine the scope assigned to a
managed bean.

Figure 14–10 Managed Beans Registered with Task Flows

Table 14–4 lists available scopes for managed beans and describes when it is
appropriate to use each scope in a managed bean that you register with a task flow.
The table lists the scopes in order of their life span. For example, the application scope
has a longer life span than the request scope.

Table 14–4 Memory Scope for ADF Managed Beans

Scope Description

application The application scope lasts until the application stops. Values that you store in a
managed bean with this scope are available to every session and every request
that uses the application.

Avoid using this scope in a task flow because it persists beyond the life span of
the task flow.

Creating a Task Flow

Getting Started with ADF Task Flows 14-15

When you register a managed bean with a task flow, JDeveloper generates an entry
similar to the following in the task flow’s source file:

<managed-bean id="__15">
 <managed-bean-name id="__16">egBackingBean</managed-bean-name>
 <managed-bean-class id="__13">oracle....egBackingBean</managed-bean-class>
 <managed-bean-scope id="__14">backingBean</managed-bean-scope>
</managed-bean>

The <managed-bean-scope> element holds the value for the scope of the managed
bean (backingBean in the example).

When you bind a UI component to a managed bean, JDeveloper appends Scope to the
scope name in the EL expression that it generates to reference the managed bean. For
example, the binding attribute of a table component that references the managed bean
has the following EL expression:

<af:table id="cartTab"
 ...
 binding="#{backingBeanScope.egBackingBean.table}"
 ...
</af:table>

session The session scope begins when a user first accesses a page in the application
and ends when the user's session times out due to inactivity, or when the
application invalidates the session.

Use this scope only for information that is relevant to the whole session, such as
user or context information. Avoid using it to pass values from one task flow to
another. Instead, use parameters to pass values between task flows. Using
parameters gives your task flow a clear contract with other task flows that call it
or are called by it. Another reason to avoid use of session scope is because it
may persist beyond the life span of the task flow.

pageFlow Choose this scope if you want the managed bean to be accessible across the
activities within a task flow. A managed bean that has a pageFlow scope shares
state with pages from the task flow that access it. A managed bean that has a
pageFlow scope exists for the life span of the task flow.

If another task flow’s page references the managed bean, the managed bean
creates a separate instance of this object and adds it to the pageFlow scope of its
task flow.

view Use this scope for managed bean objects that are needed only within the current
view activity and not across view activities. It defines scope for each view port
that ADF Controller manages, for example, a root browser window or an ADF
region.

The life span of this scope begins and ends when the current viewId of a view
port changes. If you specify view, the application retains managed bean objects
used on a page as long as the user continues to interact with the page. These
objects are automatically released when the user leaves the page.

request Use request scope when the managed bean does not need to persist longer than
the current request.

backingBean A backing bean is a convention to describe a managed bean that stores
accessors for UI components and event handling code on a JSF page. It exists for
the duration of a request and should not be used to maintain state.

Use this scope if it is possible that your task flow appears in two ADF regions
on the same JSF page and you want to isolate each instance of ADF region.

Table 14–4 (Cont.) Memory Scope for ADF Managed Beans

Scope Description

Adding Activities to a Task Flow

14-16 Fusion Developer's Guide for Oracle Application Development Framework

Restrict the scope of the managed bean that you reference through a UI component’s
binding attribute to backingBean or request scope. Instances of UI components cannot
be serialized. Objects in scopes other than backingBean and request are expected to be
serializable. For this reason, you should not bind UI components to managed beans
that have a scope other than backingBean or request. Note that JDeveloper defaults the
binding attribute for UI components and region fragments to use the backingBean
scope.

14.2.5 What Happens at Runtime: Using ADF Task Flows
A single application can have multiple ADF unbounded task flow XML source files
and multiple ADF bounded task flow XML source files. The set of files that are
combined to produce the ADF unbounded task flow is referred to as the application's
ADF Controller bootstrap configuration files. An ADF unbounded task flow is assembled
at runtime by combining one or more ADF Controller bootstrap configuration files. All
activities within the bootstrap configuration files that are not contained within an ADF
bounded task flow are considered to be within the ADF unbounded task flow.

The names of the source files within a single application must be different. The
example in Figure 14–11 contains two unbounded task flows (adfc-config,
adfc-config2) and a bounded task flow (task-flow-definition).

Figure 14–11 Application with Two ADF Unbounded Task Flow XML Source Files

14.3 Adding Activities to a Task Flow
After you create a task flow, you add activities to the task flow and configure the
control flow between the activities. The Component Palette in JDeveloper displays
available activities and control flows. You drag and drop the activities and control
flows from the Component Palette to the diagram for the task flow. You can then
configure control flow between the activities so that the task flow performs the task
you want it to perform.

Note: Write EL expressions that explicitly qualify the scope to access
when writing EL expressions to access custom scopes unique to
Oracle ADF (pageFlow, backingBean, and view scopes). For example,
write an EL expression to access a pageFlow scope as follows:

#{pageFlowScope.inpTxtBB.uiComponent}

Adding Activities to a Task Flow

Getting Started with ADF Task Flows 14-17

14.3.1 How to Add Additional Activities to an ADF Task Flow
After you create a task flow, a task flow diagram and the Component Palette
automatically display. The task flow diagram is a visual editor on which you can add
the activities and control flows for the task flow. You can add them to the diagram by
dragging them from the Component Palette.

To add an activity to an ADF task flow:
1. In the Application Navigator, double-click a task flow source file.

For example, Figure 14–12 shows the editor and the Component Palette that
automatically appears when you double-click a task flow source file
(task-flow-definition.xml).

Figure 14–12 Task Flow Diagram

2. Drag an activity from the ADF Task Flow page in the Component Palette onto the
diagram.

■ If you drag a view activity onto the diagram, you can double-click it to display
the Create JSF Page Fragment wizard, where you can define characteristics for
the page or page fragment. For more information, see Section 15.2, "Using
View Activities".

■ If you drag a task flow call activity onto the diagram, you can double-click it
to display the Create Bounded Task Flow dialog where you can define settings
for a new bounded task flow. For more information, see Section 15.6, "Using
Task Flow Call Activities".

Adding Activities to a Task Flow

14-18 Fusion Developer's Guide for Oracle Application Development Framework

14.3.2 What Happens When You Add an Activity to an ADF Task Flow
As shown in Figure 14–13, the Component Palette contains separate sections for
components and diagram annotations. The contents of the Components section differ
slightly depending on whether you are creating an ADF bounded or an unbounded
task flow. For example, if you are creating an ADF bounded task flow, the
Components section contains an additional task flow return activity.

Figure 14–13 displays the activities you can add to an ADF task flow.

Figure 14–13 ADF Unbounded Task Flow Component Palette

14.3.3 How to Add Control Flows
A control flow case identifies how control passes from one activity to the next in the
application. To create a control flow, you select Control Flow Case in the ADF Task
Flow page of the Component Palette and drag it from a source activity to a target

Tip: Each activity you drag to the task flow diagram can display
optional status icons and a tooltip that provides additional
information about the activity. For example, after you drag a view
activity to the task flow diagram, it may display a warning icon until
you associate it with a JSF page.

To turn on the icons, select Show at the top of the task flow diagram,
and then select Status and one of the following:

■ Error: Displays when there is a problem in the task flow metadata
which prevents it from running. For example, a view activity in
the metadata can contain a <bookmark> or <redirect>
element, but not both.

■ Warning: Displays when an activity is incomplete. For example, a
view activity that doesn’t have a physical page associated with it
or a task flow call that doesn’t have a task flow reference
associated with it are both considered incomplete activities. The
resulting task flow metadata may prevent it from running.

You can drag your mouse over a secondary icon to read a tooltip
describing the icon's meaning.

Adding Activities to a Task Flow

Getting Started with ADF Task Flows 14-19

activity. Dragging the control flow case between the two activities automatically
creates a control flow comprised of the following:

■ control-flow-rule: Identifies the source activity using a
from-activity-id.

■ control-flow-case: Identifies the target activity using a to-activity-id.

Once you identify an activity as the source for a control flow case, any additional
control flow case that has the activity as its source is organized under the same control
flow rule. In Figure 14–14, there is one control-flow-rule that identifies view1 as
the source activity, and two control-flow cases that identify the target activities
view2 and view3.

There can be multiple control flow cases for each control flow rule.

Figure 14–14 Multiple Control Flow Cases from a Single Activity

Example 14–4 shows the metadata for the multiple control flow cases shown in
Figure 14–14.

Example 14–4 Control Flow Rule Metadata Within a Bounded Task Flow

<task-flow-definition id="task-flow-definition">
.
.
.
 <control-flow-rule>
 <from-activity-id>view1</from-activity-id>
 <control-flow-case>
 <from-outcome>toView2</from-outcome>
 <to-activity-id>view2</to-activity-id>
 </control-flow-case>
 <control-flow-case>
 <from-outcome>toView3</from-outcome>
 <to-activity-id>view3</to-activity-id>
 </control-flow-case>
 </control-flow-rule>
.
.
.

Tip: You can drag and drop an activity onto an existing control flow.
This splits the existing control flow into two, with the activity in the
center.

Adding Activities to a Task Flow

14-20 Fusion Developer's Guide for Oracle Application Development Framework

 </task-flow-definition>

Use the task flow diagram as a starting point for creating basic control flows between
activities. Later, you can edit control flow properties in the Structure window,
Property Inspector or overview editor for the task flow diagram.

To define a control flow case directly in the task flow diagram:
1. In the Application Navigator, double-click a task flow source file, for example,

adfc-config.xml, to display the task flow diagram.

2. In the ADF Task Flow page of the Component Palette, select Control Flow Case.

3. On the diagram, click a source activity, for example a view, and then click the
destination activity. For example in Figure 14–15, two activities have been linked
with a control flow. Both source (view1) and the destination activities are linked.

Figure 14–15 Control Flow Case

JDeveloper adds the control flow case to the diagram. Each line that JDeveloper
adds between activities represents a control flow case. The arrow indicates the
direction of the control flow case. The from-outcome contains a value that can be
matched against values specified in the action attribute of UI components.

4. To change the from-outcome, select the text next to the control flow in the
diagram. By default, this text is the wildcard * character as shown in Figure 14–15.
You can overwrite the text with a new from-outcome, for example, toView2.

5. To change the from-activity-id (identifies the source activity) or
to-activity-id (identifies the target activity), drag either end of the arrow in
the diagram to a new activity.

Figure 14–16 Control Flows on Overview Editor for the Task Flow

Tips: After you select the control flow in the task flow diagram, you
can also change its properties in the Property Inspector or the
Structure window. The Structure window is helpful for displaying the
relationship between control rules and cases.

You can also click Control Flows on the overview editor for the task
flow diagram to add cases, as shown in Figure 14–16. To add a case,
make sure that the From Activity (source activity) and the To Activity
(target activity) for the rule have already been added to the task flow.

Adding Activities to a Task Flow

Getting Started with ADF Task Flows 14-21

14.3.4 How to Add a Wildcard Control Flow Rule
You can add a wildcard control flow rule to an unbounded or bounded task flow. The
steps for adding it are similar to those for adding any activity to a task flow diagram.

To add a wildcard control flow rule:
1. In the Application Navigator, double-click a task flow source file, for example,

adfc-config.xml, to display the task flow diagram.

2. Drag Wildcard Control Flow Rule from the ADF Task Flow page of the
Component Palette and drop it on the task flow diagram.

3. Select Control Flow Case from the ADF Task Flow page list of the Component
Palette.

4. In the task flow diagram, drag the control flow case from the wildcard control flow
rule to the target activity.

The target can be any activity type.

5. By default, the label below the wildcard control flow rule is *, which corresponds
to a single * character in its from-activity-id value. To change this value,
select the wildcard control flow rule in the diagram. In the Property Inspector for
the wildcard control flow rule, enter a new value in the From Activity ID field. For
example, enter project*. The wildcard must be a trailing character in the new
label.

14.3.5 What Happens When You Create a Control Flow Rule
Understanding the elements that define the rules in the source file for the task flow
helps when creating control flow rules directly in the ADF task flow diagram, ADF
task flow overview editor, or Structure window, or when adding them directly in the
XML source file. Example 14–5 shows the general syntax of a control flow rule element
in the task flow source file.

Example 14–5 Control Flow Rule Syntax in the Source File

<control-flow-rule>
 <from-activity-id>from-view-activity</from-activity-id>
 <control-flow-case>
 <from-action>actionmethod</from-action>
 <from-outcome>outcome</from-outcome>
 <to-activity-id>destinationActivity</to-activity-id>
 </control-flow-case>
 <control-flow-case>
 .
 .
 .
 </control_flow-case>
</control-flow-rule>

Control flow rules can consist of the following metadata:

■ control-flow-rule: A mandatory wrapper element for control flow case
elements.

■ from-activity-id: The identifier of the activity where the control flow rule
originates, for example, source.

Tip: You can also change the from-activity-id value in the
overview editor for the task flow diagram.

Adding Activities to a Task Flow

14-22 Fusion Developer's Guide for Oracle Application Development Framework

A trailing wildcard (*) character in from-activity-id is supported. The rule
will apply to all activities that match the wildcard pattern. For example, login*
matches any logical activity ID name beginning with the literal login. If you
specify a single wildcard character in the metadata (not a trailing wildcard), the
control flow automatically converts to a wildcard control flow rule activity in the
diagram. For more information, see Section 14.3.4, "How to Add a Wildcard
Control Flow Rule".

■ control-flow-case: A mandatory wrapper element for each case in the control
flow rule. Each case defines a different control flow for the same source activity. A
control flow rule must have at least one control flow case.

■ from-action: An optional element that limits the application of the rule to
outcomes from the specified action method. The action method is specified as an
EL binding expression, such as #{backing_bean.cancelButton_action}.

In Example 14–5, control passes to destinationActivity only if outcome is
returned from actionmethod.

The value in from-action applies only to a control flow originating from a view
activity, not from any other activity types. Wildcards are not supported in
from-action.

■ from-outcome: Identifies a control flow case that will be followed based on a
specific originating activity outcome. All possible originating activity outcomes
should be accommodated with control flow cases.

If you leave both the from-action and the from-outcome elements empty, the
case applies to all outcomes not identified in any other control flow cases defined
for the activity, thus creating a default case for the activity. Wildcards are not
supported in from-outcome.

■ to-activity-id: A mandatory element that contains the complete identifier of
the activity to which the navigation is routed if the control flow case is performed.
Each control flow case can specify a different to-activity-id.

14.3.6 What Happens at Runtime: Evaluating Control Flow Rules
At runtime, ADF Controller evaluates control flow rules from the most specific to the
least specific match to determine the next transition between activities. Evaluation is
based on the following priority, which is similar to that for JSF navigation rules:

1. from-activity-id, from-action, from-outcome

2. from-activity-id, from-outcome

3. from-activity-id

ADF Controller first searches for a match in all three elements: from-activity-id,
from-action, and from-outcome. If there is no match, ADF Controller searches for
a match in just the from-activity-id and from-outcome elements. Finally, ADF
Controller searches for a match in the from-activity-id element alone.

If ADF Controller cannot find a control flow rule within its metadata to match a
request, it will allow the standard JSF navigation handler to find a match.

An unbounded task flow can have more than one ADF Controller XML source file.
Because control flow rules can be defined in more than one ADF Controller XML
source file, similar rules may be defined in different files. If there is a conflict in which
two or more cases have the same from-activity-id, and the same from-action
or from-outcome values, the last case (as listed in the adfc-config.xml,

Testing ADF Task Flows

Getting Started with ADF Task Flows 14-23

bootstrap, or bounded task flow source file) is used. If the conflict is among rules
defined in different source files, the rule in the last source file to be loaded is used.

14.4 Testing ADF Task Flows
The procedure for running and debugging task flows differs depending on whether
the task flow is bounded or unbounded, whether it contains pages or page fragments,
or whether it accepts input parameters.

The Configure Default Domain dialog displays the first time you run the application
and start a new domain in Integrated WebLogic Server. Use the dialog to define an
administrator password for the new domain. Passwords you enter can be eight
characters or more and must have a numeric character.

14.4.1 How to Run a Bounded Task Flow That Contains Pages
You can run or debug an ADF bounded task flow that contains view activities that are
pages.

For information on running a bounded task flow that contains view activities that are
page fragments, see Section 14.4.2, "How to Run a Bounded Task Flow That Uses Page
Fragments".

To run or debug a bounded task flow that uses pages:
■ In the task flow diagram, right-click the task flow and choose either Run or

Debug.

■ You can also run the task flow directly by entering its URL in the browser, for
example.
http://mymachine:8988/StoreFrontModule-StoreFrontUI-context-r
oot/faces/home

■ You can right-click the bounded task flow in the Application Navigator and
choose either Run or Debug.

14.4.2 How to Run a Bounded Task Flow That Uses Page Fragments
ADF bounded task flows that use page fragments are intended to run only within an
ADF region. A page fragment is a JSF JSP document that is rendered as content in
another JSF page. For more information, see Section 17.1.3.1, "Page Fragments and
ADF Regions".

Note: You can select a view activity inside an ADF task flow diagram
or the Application Navigator and choose Run to run an ADF bounded
task flow.

In an ADF bounded task flow, you must designate the view as a
default activity and run the ADF unbounded task flow from the
Application Navigator. For more information, see Section 14.2.3,
"What You May Need to Know About the Default Activity in an ADF
Bounded Task Flow".

If the first activity that runs in the ADF task flow is an activity type
other than view, you must use an ADF bounded task flow.

Testing ADF Task Flows

14-24 Fusion Developer's Guide for Oracle Application Development Framework

To run or debug a bounded task flow that uses page fragments:
1. Create a JSF page containing a region that is bound to the bounded task flow.

When you drop a bounded task flow containing page fragments onto a JSF page,
JDeveloper does this automatically for you.

2. Create a view activity in the project's unbounded task flow that refers to the page.
See Section 14.3.1, "How to Add Additional Activities to an ADF Task Flow" for
more information.

3. Right-click the view activity in the Application Navigator or in the task flow
diagram and choose Run.

14.4.3 How to Run a Bounded Task Flow That Has Parameters
Before you run a bounded task flow with parameters, you must first run a bounded
task flow containing pages. For more information about bounded task flow input
parameters, see Chapter 16, "Using Parameters in Task Flows".

To run a bounded task flow that has input parameter definitions:
1. If the bounded task flow has defined input parameters, the Set Run Configuration

dialog displays after you select either Run or Debug, as shown in Figure 14–17.

Figure 14–17 Set Run Configuration dialog

2. In the Input Parameters list, enter values that you want to be passed as input
parameters to the task flow. If you do not specify a value, the input parameter is
not used when calling the bounded task flow.

Each required input parameter in the list displays with an asterisk, as shown in
Figure 14–17. You must specify the parameter value as a literal string. You cannot
specify an EL expression.

3. Click OK.

14.4.4 How to Run a JSF Page
You can run a JSF page by right-clicking the page in the Application Navigator and
choosing Run. However, if the page contains navigation UI components, such as a
button or link, navigation is not guaranteed to work.

To run a JSF Page with fully functioning navigation:
1. Create a bounded or unbounded task flow. See Section 14.2.1, "How to Create a

Task Flow" for more information.

2. Add a view activity to the task flow. See Section 14.3.1, "How to Add Additional
Activities to an ADF Task Flow" for more information.

Testing ADF Task Flows

Getting Started with ADF Task Flows 14-25

3. In the Application Navigator, select the JSF page you want to run and drop it on
top of the view activity in the task flow diagram.

This associates the view activity with the JSF page.

4. In the diagram, right-click the view activity and choose Run.

14.4.5 How to Run an ADF Unbounded Task Flow
To run or debug an unbounded task flow, you must select a specific view activity with
which to start.

To run a view activity in an ADF unbounded task flow:
■ In the task flow diagram, right-click the view activity and choose either Run or

Debug.

The unbounded task flow runs beginning with the selected view activity.

■ If you have selected something other than a single view activity (or have nothing
selected), you are prompted to select one in the Set Run Configuration dialog.

14.4.6 How to Set a Run Configuration for a Project
A run configuration contains settings that determine how projects run, such as
specifying the first activity to run in a task flow. You can define one or more run
configurations for a project. Within a run configuration, you can designate an ADFc
source file as the default run target. When you run the project, the source file is the
first to run.

To define a default task flow run target:
1. Select the project in the Application Navigator.

2. From the main menu, choose Run > Choose Active Run Configuration > Manage
Run Configurations.

3. In the Manage Run Configurations dialog, choose Run/Debug/Profile and choose
New.

4. In the New dialog, enter the name for the new run configuration.

5. If you want to base the new configuration on an existing one, choose a
configuration in the Copy Configuration Settings dropdown list.

6. Click OK to exit the dialog.

7. Click Edit.

8. In the Default Run Target dropdown list in the Edit Run Configuration dialog,
select a source file for the ADF task flow that should run first when you run the
project.

Once you choose a task flow, you can set a view activity (for an unbounded task
flow) or input parameters (for bounded task flows).

9. In the left panel of the Edit Configuration dialog, click ADF Task Flow.

10. In the Task Flow dropdown list, located on the right panel, select the ADF task
flow containing the run target.

11. If you are running an unbounded task flow, the Edit Run Configuration dialog
displays the Run Target Activity list. Select the view activity that will run first in
the application.

Refactoring to Create New ADF Task Flows and Templates

14-26 Fusion Developer's Guide for Oracle Application Development Framework

12. Click Open.

The next time you run the project, the saved run configuration will be available in
the Run > Choose Active Run Configuration menu.

If you are running a bounded task flow that has been set up to accept input
parameters, a dialog will display a section for specifying values for all input
parameters defined for the bounded task flow. See Chapter 14.4.3, "How to Run a
Bounded Task Flow That Has Parameters" for more information.

14.5 Refactoring to Create New ADF Task Flows and Templates
You can convert existing activities, JSF page flows, and JSF pages into new ADF
Controller components such as ADF bounded task flows and task flow templates.

14.5.1 How to Create an ADF Bounded Task Flow from Selected Activities
You can create a new ADF bounded task flow based on activities you select in an
existing ADF bounded or unbounded task flow.

To create a new ADF bounded task flow from selected activities:
1. In the editor, open the ADF unbounded or bounded task flow containing the

activities you want to use in the new task flow.

2. In the task flow diagram, select one or more activities.

3. Right-click your selection and choose Extract Task Flow.

The Create Task Flow dialog displays, which allows you to create a new ADF
bounded task flow. For more information, see Section 14.2, "Creating a Task Flow".

When you are done, the new ADF bounded task flow displays in the editor. The
properties shown in Table 14–5 are automatically set for the new task flow.

Tip: To select multiple activities in a diagram, click the left mouse
button and drag the cursor over the activities.

You can also press the Ctrl key while selecting each activity.

Table 14–5 Properties Updated in the New ADF Bounded Task Flow

Property Value

Task flow definition ID Value you entered in the Task Flow ID field in the Create Task
Flow dialog.

Default activity Determined as the destination of all incoming control flow cases.
If more than one destination exists, an error is flagged and the
entire operation is rolled back.

Control flow rules Control flow cases with selected source activities are included in
the new ADF bounded task. A source activity is an activity from
which a control flow leads. The new ADF bounded task flow
includes the following types of control flow cases:

■ Both the source and target activities in the control flow case
were selected to create the new task flow.

■ Only the source activity was selected to create the new task
flow. Destinations are changed to the corresponding new
task flow return activities added for each outcome.

Refactoring to Create New ADF Task Flows and Templates

Getting Started with ADF Task Flows 14-27

The following changes automatically occur in the originating task flow (the task flow
containing the activities you selected as the basis for the new task flow):

■ A new task flow call activity is added to the originating task flow. The task flow
call activity calls the new ADF bounded task flow.

■ The selected activities are removed from the originating task flow.

■ Existing control flow cases associated with the activities you selected are removed
from the originating task flow. They are replaced with new control flow cases:

– An incoming control flow case to the old activity is redirected to the new task
flow call activity.

– An outgoing control flow case from the old activity is redirected from the new
task flow call activity.

14.5.2 How to Create a Task Flow from JSF Pages
You can create a new ADF bounded task flow based on selected pages in a JSF page
flow. Only pages that are part of a flow (that is, those that are linked by JSF navigation
cases) are converted to view activities in the new task flow.

To create a new task flow from selected JSF pages in a page flow.
1. In the editor, open the page flow containing the pages you want to use in the new

bounded task flow.

2. In the task flow diagram, select one or more JSF pages.

3. Right-click your selection and choose Generate ADF Task Flow.

The Create Task Flow dialog displays, which allows you to create a new ADF
unbounded or bounded task flow. For more information, see Section 14.2,
"Creating a Task Flow".

14.5.3 How to Convert ADF Bounded Task Flows
You can convert an existing ADF bounded task flow to an unbounded task flow or
change whether the views it contains are pages or page fragments. Table 14–6
describes the results of each conversion.

Tip: To select multiple elements in a diagram, click the left mouse
button and drag the cursor over the elements.

You can also press the Ctrl key while selecting each element.

Table 14–6 Converting ADF Bounded Task Flows

Conversion Result

ADF bounded task flow to
unbounded task flow

Loses all metadata not valid for unbounded task flows, such as
parameter definitions and transactions.

ADF bounded task flow to
use JSF pages

Converts page fragments associated with any view activities in
the task flow to JSF pages. Old page fragments are saved if you
select the Keep Page Fragment checkbox. New JSF page names
default to the name of the old page fragment.

ADF bounded task flow to
use page fragments

Converts all pages associated with view activities in the ADF
bounded task flow to page fragments. Old pages are saved if
you select the Keep Page checkbox. New page fragment names
default to the name of the old page

What You Should Know About Task Flow Constraints

14-28 Fusion Developer's Guide for Oracle Application Development Framework

To convert an ADF bounded task flow:
1. In the editor, open the bounded task flow diagram.

2. Right-click anywhere in the diagram other than on an activity or control flow.

3. Choose a menu item such as Convert to Unbounded Task Flow or Convert to
Task Flow with Page Fragments.

If the bounded task flow contains fragments, the menu item will be Convert to
Task Flow with Pages.

14.6 What You Should Know About Task Flow Constraints
Table 14–7 summarizes assumptions about and constants for using task flows,
activities, and other associated ADF Controller features.

Table 14–7 ADF Controller Features Assumptions and Constraints

Feature Area
Assumption/
Constraint Description

ADF Controller objects
and diagram UI

JSF view layer ADF Controller operates only in a JSF 1.2
environment. Oracle's web-based Fusion
web application strategy focuses on JSF as
the sole view layer technology.

Dependent on ADF
Faces

ADF Controller extensions are
implemented on top of ADF Faces. They
are dependent on the ADF Faces libraries,
but ADF Controller can run against any JSF
implementation, providing these libraries
are present.

Navigation and state
management
encapsulated

ADF Controller encapsulates both
navigation and, to some extent, state
management. JSF and the Servlet API are
still available for the basic management of
state at the application, session, and
request levels.

Model layer ADF model layer is used to implement the
application's model layer.

Dependent on MDS ADF Controller metadata is stored in MDS.
However, MDS is currently not capable of
loading faces-config.xml.

If the customization features that MDS
provides are required, you should use ADF
task flows exclusively in order to define
managed beans and control flow rules.

No supported
migration path from
struts or model 1

There is no support for a migration from
Struts or Model 1 to the Fusion ADF
Controller.

However, you can create a new ADF
bounded task flow based on selected pages
in a JSF page flow. For more information,
see Section 14.5.2, "How to Create a Task
Flow from JSF Pages".

What You Should Know About Task Flow Constraints

Getting Started with ADF Task Flows 14-29

Bounded task flow Exposed as page
flow-scoped state

ADF Controller manages implementation
of a page flow scoped-state. Any
auto-management functions provided by
the framework, such as back button
support and state cleanup function,
assume page flow-scoped data. In order for
an application to fully implement such
functions for all of its pages, the entire
application should be exposed as an ADF
bounded task flow, using nested bounded
task flows as needed. The application
should store any state requiring versioning
within the page flow scope.

Transactional
boundaries

The developer will use ADF bounded task
flows to manage transaction boundaries.

Page flow scope Access availability
within ADF lifecycle

An application cannot attempt to access the
page flow scope early in the ADF lifecycle
before ADF Controller is ready to provide
it.

Page flow scope is not guaranteed to be
available for access until after Before and
After listeners have executed on the
Restore View phase. ADF Controller uses
before and after listeners on the Restore
View phase to synchronize the server side
state with the request. This is where things
such as browser back-button detection and
bookmark dereference are handled.

Navigation Navigation When using ADF Controller task flows,
perform all application navigation should
be performed using ADF Controller control
flow rules instead of using navigation rules
in faces-config.xml.

Although the ADF Controller delegates
navigation handling when no matching
control flow cases are found in ADF
Controller metadata, not all ADF
Controller functionality is guaranteed to
work correctly if navigation is performed
by a non-ADF Controller
NavigationHandler.

Table 14–7 (Cont.) ADF Controller Features Assumptions and Constraints

Feature Area
Assumption/
Constraint Description

What You Should Know About Task Flow Constraints

14-30 Fusion Developer's Guide for Oracle Application Development Framework

15

Working with Task Flow Activities 15-1

15Working with Task Flow Activities

This chapter describes how to use activities in your ADF task flows. The chapter
contains detailed information about each task flow activity that displays in the
Component Palette and its properties.

This chapter includes the following sections:

■ Section 15.1, "Introduction to Activity Types"

■ Section 15.2, "Using View Activities"

■ Section 15.3, "Using URL View Activities"

■ Section 15.4, "Using Router Activities"

■ Section 15.5, "Using Method Call Activities"

■ Section 15.6, "Using Task Flow Call Activities"

■ Section 15.7, "Using Task Flow Return Activities"

■ Section 15.8, "Using Save Point Restore Activities"

■ Section 15.9, "Using Parent Action Activities"

■ Section 15.10, "Using Task Flow Activities with Page Definition Files"

15.1 Introduction to Activity Types
An activity represents a piece of work that is performed when the task flow runs. It
displays in the task flow’s overview editor as a node. You can add most activities to
both bounded and unbounded task flows, although some activity types can be added
only to a bounded task flow.

The bounded task flow shown in Figure 15–1 contains activities that run in order to
check out of the application:

1. A call to a method synchronizes the items a user may have chosen before logging
in with those selected after logging in

2. A page (view activity) that displays the items the user has currently selected and
another page that summarizes the order

3. An activity that causes control to return back to the calling unbounded task flow
shown in Figure 15–1

Introduction to Activity Types

15-2 Fusion Developer's Guide for Oracle Application Development Framework

Figure 15–1 Checkout Bounded Task Flow in Fusion Order Demo Application

A task flow consists of activities and control flow cases that define the transitions
between activities. Table 15–1 describes the types of activities and control flows you
can add to a task flow.

Table 15–1 Task Flow Activities and Control Flows

Icon
Component
Name Description

Method Call Invokes a method, typically a method on a managed
bean. A method call activity can be placed anywhere
within an application’s control flow to invoke
application logic based on control flow rules. See
Section 15.5, "Using Method Call Activities" for more
information.

Parent Action Allows a bounded task flow to generate outcomes
that are passed to its parent view activity. See
Section 15.9, "Using Parent Action Activities" for
more information.

Router Evaluates an EL expression and returns an outcome
based on the value of the expression. For example, a
router in a credit check task flow might evaluate the
return value from a previous method call and
generate success, failure, or retry outcomes based on
various cases. These outcomes can then be used to
route control to other activities in the task flow. See
Section 15.4, "Using Router Activities" for more
information.

Save Point Restore Restores a previous persistent save point, including
application state and data, in an application
supporting save for later functionality. See
Section 18.9, "Using Save Points in Task Flows" for
more information.

Using View Activities

Working with Task Flow Activities 15-3

Table 15–2 describes the annotations (notes and attachments) you can add to a task
flow.

15.2 Using View Activities
The primary type of task flow activity is a view, which displays a JSF page or page
fragment. A page fragment is a JSF JSP document that is rendered as content in another
JSF page. Page fragments are typically used in bounded task flows. The bounded task
flow can be added to a page as region. For more information, see Section 17.2,
"Creating an ADF Region".

Figure 15–2 shows the home view activity in the Fusion Order Demo application.

Task Flow Call Calls a bounded task flow from an unbounded task
flow or another bounded task flow. See Section 15.6,
"Using Task Flow Call Activities" for more
information.

Task Flow Return Identifies when a bounded task flow completes and
sends control flow back to the caller. (Available for
bounded task flows only). See Section 15.7, "Using
Task Flow Return Activities" for more information.

URL View Redirects the root view port (for example, a browser
page) to any URL-addressable resource, even from
within the context of an ADF region. See Section 15.3,
"Using URL View Activities" for more information.

View Displays a JSF page or page fragment. Multiple view
activities can represent the same page or same page
fragment. See Section 15.2, "Using View Activities"
for more information. See Section 20.3, "Creating a
Web Page" for more information about pages and
page fragments.

Control Flow Case Identifies how control passes from one activity to the
next in the application. See Section 14.1.3, "Control
Flows" for more information.

Wildcard Control
Flow Rule

Represents a control flow case that can originate from
any activities whose IDs match a wildcard
expression. For example, it can represent a control
case from-activity-id containing a trailing
wildcard such as foo*. See Section 14.3.4, "How to
Add a Wildcard Control Flow Rule" for more
information.

Table 15–2 Task Flow Diagram Annotations

Icon Icon Name Description

Note Adds a note to the task flow diagram. You can select
the note in the diagram to add or edit text.

Note Attachment Attaches an existing note to an activity or a control
flow case in the diagram.

Table 15–1 (Cont.) Task Flow Activities and Control Flows

Icon
Component
Name Description

Using View Activities

15-4 Fusion Developer's Guide for Oracle Application Development Framework

Figure 15–2 View Activity

A view activity is associated in metadata with a physical JSF page or page fragment.
The view activity is identified by an id attribute. The page or page fragment name is
identified by a <page> element in the task flow metadata:

<view id="home">
 <page>/home.jspx</page>
 </view>

The view activity ID and page name do not have to be the same.

The file extension for a page fragment is.jsff:

<view id="Home">
 <page>WEB-INF/Home.jsff</page>
 </view>

15.2.1 Adding a View Activity
The steps for adding a view activity are similar to those for adding any activity to a
task flow diagram. For more information, see Section 14.3.1, "How to Add Additional
Activities to an ADF Task Flow". After you add the view activity, you can double-click
it to display the Create JSF JSP Page wizard, which enables you to create a new page or
page fragment. You also use the wizard to define characteristics for the page or page
fragment. JDeveloper automatically associates the completed page or page fragment
with the view activity.

You can also drag an existing page or page fragment from the Application Navigator
and drop it on top of a view activity.

If you drag a page or page fragment to any other location on the diagram, a new view
activity associated with the page or page fragment is automatically created. During
creation, a default id for the view activity is automatically generated (for example
Home) based on the name of the page or page fragment.

Tip: Click the + icon in the upper-left part of the view activity to see
a thumbnail preview of the referenced page or page fragment.

Using View Activities

Working with Task Flow Activities 15-5

15.2.2 Transitioning Between View Activities
Transitioning refers to one view activity passing control to another view activity. For
example, control flow can be initiated at runtime by selecting a UI component on a
page, such as a button or link. The Action attribute of the UI component should be set
to the corresponding control flow case from-outcome leading to the next task flow
activity. You can navigate from a view activity to another activity using either a
constant or dynamic value on the Action attribute of the UI component.

■ Constant: The value of the Action attribute of the component is an action outcome,
as shown in Figure 15–3. Action outcome is a constant value that always triggers
the same control flow case. When an end user clicks the component, the activity
specified in the control flow case is performed. There are no alternative control
flows.

Figure 15–3 Edit Property dialog

■ Dynamic: The value of the Action attribute of the component is bound to a
managed bean or a method. The value of the method binding determines the next
control flow case that should be performed.

For example, the method might verify user input on a page and return one value if
the input is valid and another value if the input is invalid. Each of these different
action values could trigger different navigation cases, causing the application to
navigate to one of two possible target pages.

For more information about components that are bound to data control operations, see
Section 28.2, "Creating Command Components to Execute Methods".

15.2.2.1 How to Transition to a View Activity
Before you begin, you should already have a target view activity, as well as a JSF page
on which you will add a component. The component's action will be based on the
from-outcome of the control flow case leading to the target activity.

To transition to a view activity:
1. Add a UI component to the JSF page using one of the following techniques:

■ Open the JSF page. From the ADF Faces Common Components list in the
Component Palette, drag a navigation UI component such as a button or link
onto the JSF page.

■ Open the JSF page. From the Data Controls panel, drag and drop an operation
or a method onto the JSF page and choose Rich Command Button or Rich
Command Link from the context menu.

2. Select the UI component and open the Property Inspector.

3. On the Common page, expand the Button Action section.

Using View Activities

15-6 Fusion Developer's Guide for Oracle Application Development Framework

4. From the dropdown menu next to Action, choose Edit.

5. Select Action Outcome.

6. From the Action Outcome dropdown list select a value.

The list contains control flow case from-outcomes already defined for the view
activity associated with the page.

7. Click OK.

15.2.2.2 What Happens When You Transition Between Activities
Example 15–1 contains an example of a control flow case defined in the XML source
file for a bounded or unbounded task flow.

Example 15–1 Control Flow Case Defined in XML Source File

<control-flow-rule>
 <from-activity-id>Start</from-activity-id>
 <control-flow-case>
 <from-outcome>toOffices</from-outcome>
 <to-activity-id>WesternOffices</to-activity-id>
 </control-flow-case>
</control-flow-rule>

As shown in Example 15–2, a button on a JSF page associated with the Start view
activity specifies toOffices as the action attribute. When the user clicks the button,
control flow passes to the WesternOffices activity specified as the
to-activity-id in the control flow metadata.

Example 15–2 Static Navigation Button Defined in a View Activity

<af:commandButton text="Go" action="toOffices">

15.2.3 Bookmarking View Activities
Bookmarking is available only for view activities within unbounded task flows.

When an end user bookmarks a page associated with a view activity, the URL that
displays in the browser’s address field for the view is saved as the bookmark. In most
cases, this URL cannot be used to redisplay the page associated with the view. For
example, the URL may contain Microsoft OS Windows state information that cannot
be used to redisplay the page.

The bookmark URL should contain information that enables dynamic content on the
page to be reproduced. For example, if an end user bookmarks a page displaying a
customer's contact information, the bookmark URL needs to contain not only the page
but also some identifier for the customer. This will enable contact information for the
same customer to display when he returns to the page using the bookmark.

To ensure that the URL for a page displayed in a browser can be used as a bookmark,
identify the view activity associated with the page as bookmarkable.

Tips: The action attribute of the UI component can be bound either
to a literal string to hardcode a navigation case, or it can be bound to a
method binding expression that points to a method, which takes no
arguments and returns a String. It can't be bound to any other type of
EL expression.

Using View Activities

Working with Task Flow Activities 15-7

At runtime, you can identify if a view activity within an unbounded task flow has
been designated as bookmarkable using the ViewBookmarkable() method. The
method is located off the view port context.

After you designate a view activity as bookmarkable, you can optionally specify one
or more URL parameters. The value of url-parameter is an EL expression. The EL
expression specifies where the parameters that will be included in the URL are
retrieved when the bookmarkable URL is generated. The EL expression also stores a
value from the URL when the bookmarkable URL is dereferenced. The converter
option identifies a method that performs conversion and validation when parameters
are passed via bookmarkable view activity URLs.

In addition, you can specify an optional method that is invoked after updating the
application model with submitted URL parameter values and before rendering the
view activity. You can use this method to retrieve additional information based on
URL parameter key values.

Instead of designating the view activity as bookmarkable, you can specify the
redirect option. redirect causes ADF Controller to create a new browser URL for
the view activity. The original URL for the view activity is no longer used. For more
information, see Section 15.2.3.2, "How to Specify HTTP Redirect" for more
information.

Example 15–3 contains the URL syntax for a bookmarked view activity.

Example 15–3 Unbounded Task Flow View Activity URL Syntax

<server root>/<app_context>/faces/<view activity id>?<param name>=<param
value>&...

The syntax of the URL for the bookmarked view activity is:

■ <server root>: Provided by customization at site or admin level, for example,
http://mycompany.com/internalApp.

■ <app context>: The web application context root, for example, myapp. The
context root is the base path of a web application. For example, <app_context>
maps to the physical location of the WEB-INF node on the server.

■ faces: The faces servlet mapping. The value in faces points to the node
containing the faces-config.xml configuration file.

■ <view activity id>: The identifier for the bookmarked view activity, for
example, edit-customers.

■ <param name>: The name of the bookmarked view activity URL parameter, for
example, customer-id.

■ <param value>: The parameter value, derived from an EL expression, for
example, #{pageFlowScope.employee.id}. The value of the EL expression
must be capable of being represented as a string.

Example 15–4 contains a sample URL for a bookmarkable view activity in an
unbounded task flow.

Example 15–4 Sample URL for Bookmarkable View Activity

http://mycompany.com/internalApp/MyApp/faces/edit-customers?customer-id=1234&...

Using View Activities

15-8 Fusion Developer's Guide for Oracle Application Development Framework

15.2.3.1 How to Create a Bookmarkable View Activity
To create a bookmarkable view activity, designate a view activity as bookmarkable,
specify a URL parameter in the bookmark, and specify a method that is executed after
the bookmark is dereferenced.

To designate a view activity as bookmarkable:
1. In the unbounded task flow diagram, select the view activity.

2. In the Property Inspector, click Bookmark.

3. In the bookmark dropdown list, select true.

4. Expand the URL Parameters section to add optional URL parameters that will be
included in the URL for the bookmarked view activity:

■ name: A name for the parameter.

■ value: A settable EL expression that, when evaluated, specifies the parameter
value, for example, #{pageFlowScope.employeeID}. The value must be
capable of being represented as a string.

■ converter: (optional): An EL expression to an object that implements
oracle.adf.controller.URLParameterConverter.

The value is where the parameters that will be included in the URL are retrieved
from when the bookmarkable URL is generated. In addition, parameters are stored
here when the bookmarkable URL is dereferenced.

If the EL expression entered in value returns NULL, the parameter is omitted from
the bookmarked view activity URL.

The name and value are used to append a bookmark parameter to the view
activity URL, as shown in Example 15–4.

5. In the converter field, you can enter an optional value binding to use for each
bookmark URL parameter value, for example,
#{pageFlowScope.employee.idConverter}.

A URL parameter converter’s getAsObject() method takes a single string value
as its input parameter and returns an object of the appropriate type. ADF
Controller invokes the converter method on the URL parameters before applying
the parameter value to the application's model objects. Similarly, the converter's
getAsString() method takes an object as its input parameter and returns a
string representation that is used on the URL.

In a JSF application, data values are converted and validated using the converters
and validators specified with the UI components on the submitting page. In a
Fusion web application using a bookmark URL, there is no submitting page to
handle the conversion and validation. Therefore, you have the option of
designating a converter to use for each URL parameter.

15.2.3.2 How to Specify HTTP Redirect
The redirect option specified for a view activity indicates that ADF Controller
should issue an HTTP redirect for a view activity request. The redirected request
creates a new browser URL for the view activity. The original view URL is no longer
used.

When specified, the redirect will occur from a client GET request. For HTTP GETs, the
#{bindings} EL scope is invalid until ADF Controller and ADF Model layer set up a
new bindings context for the page. Therefore, the redirected input parameter for the
view activity cannot be mapped.

Using URL View Activities

Working with Task Flow Activities 15-9

A view activity can be identified as either bookmarkable or identified with the redirect
option, but not both.

To specify HTTP redirect for a view activity:
1. In the unbounded task flow diagram, select the view activity.

2. In the Property Inspector, click Common.

3. In the redirect dropdown list, select true.

15.2.3.3 What Happens When You Designate a View as Bookmarkable
When you designate a view activity as bookmarkable, a bookmark element is added to
the metadata for the view activity, as shown in Example 15–5. The bookmark element
can optionally contain metadata specifying URL parameters and a method that is
executed after the bookmark is dereferenced.

Example 15–5 Sample Metadata for a Bookmarkable View Activity

<view id="employee-view">
 <page>/folderA/folderB/display-employee-info.jspx</page>
 <bookmark>
 <url-parameter>
 <name>employee-id</name>
 <value>#{pageFlowScope.employee.id}</value>
 <converter>#{pageFlowScope.employee.validateId}</converter>
 </url-parameter>
 <method>#{pageFlowScope.employee.queryData}</method>
 </bookmark>
</view>

15.3 Using URL View Activities
You can use a URL view activity to redirect the root view port (for example, a browser
page) to any URL-addressable resource, even from within the context of an ADF
region. URL addressable resources include:

■ Bounded task flows

■ View activities in an unbounded task flow

■ Addresses external to the current web application (for example,
http://www.oracle.com)

To display the resource, you must specify an EL expression that is evaluated at
runtime to generate the URL to the resource. In addition, you can specify EL

Note: If you want http://www.mycompany.org/x.html to
instead display what is at http://www.mycompany.org/y.html,
do not use refresh techniques such as:

<META HTTP-EQUIV=REFRESH CONTENT="1;
URL=http://www.example.org/bar">

This technique could adversely affect back button behavior. If an end
user clicks a browser back button, the refresh occurs again, and
navigation is forward, not backward as expected.

In this situation, use HTTP redirect instead.

Using URL View Activities

15-10 Fusion Developer's Guide for Oracle Application Development Framework

expressions that, when evaluated, are added as parameters and parameter values to
the URL.

A URL view activity redirects the client regardless of the view port (root view port or
an ADF region) from which it is executed. The <redirect> element of a view activity
performs in a similar way, except that it can be used only if the view activity is within
the root view port. The <redirect> element is ignored within the context of an ADF
region. For more information, see Section 15.2.3.2, "How to Specify HTTP Redirect".

Redirecting elsewhere within the same application using URL view activities (not the
<redirect> element) is handled similarly to back button navigation since the task
flow stack is cleaned up. Redirecting out of the web application is handled like
dereferencing a URL to a site external to the application.

15.3.1 How to Add a URL View Activity to a Task Flow
You can add a URL view activity to a bounded or unbounded task flow.

To add a URL view activity to a task flow:
1. Drag a URL view activity from the ADF Task Flow page in the Component Palette

onto the diagram.

2. In the task flow diagram, select the URL view activity.

3. On the General page of the Property Inspector, in the Activity ID field, enter an ID
that identifies the URL view activity.

4. Click the button next to the URL field to invoke the Expression Builder and write
an EL expression that renders a URL at runtime.

For example, Figure 15–4 shows a URL activity (register) in the Fusion Order
Demo application’s myorders-task-flow.xml bounded task flow with an EL
expression (#{myOrdersBean.registerNav}) that retrieves a URL at runtime.

Figure 15–4 URL View Activity

5. Expand the URL Parameters section to add optional URL parameters that will be
included in the URL:

■ name: A name for the parameter.

■ value: An EL expression that, when evaluated, generates the parameter value.

■ converter: A settable EL expression that, when evaluated, specifies a method
to perform conversion and validation when parameters are passed via
bookmarkable view activity URLs. For more information, see Section 30.3,
"Enabling ADF Security".

Using Router Activities

Working with Task Flow Activities 15-11

15.3.2 Constructing a URL for Use Within a Portlet
When constructing a URL for use in a task flow's URL view activity that may be used
within the context of a portlet, construct the URL by calling one of the following:

■ ControllerContext.getLocalViewActivityURL()

■ ControllerContext.getGlobalViewActivityURL(), passing in the target
viewId

or a fully qualified absolute URL, a context path relative URL, or a URL that is relative
to the current view.

When a URL view activity is used within a task flow in a portlet, the following
behavior occurs:

■ If the redirect URL refers to a location within the portlet application and doesn't
contain a queryString parameter named x_DirectLink whose value is true,
then the portlet within the containing page will navigate to this new view.

■ Otherwise, a client redirect is issued, resulting in the user being directed away
from the application or containing page and to the URL.

15.4 Using Router Activities
You can use a router activity to declaratively route control to activities based on logic
specified in an EL expression. Figure 15–5 shows how a router might be used to
branch to multiple control flows leading from it to different activities.

Figure 15–5 Router for Alternate Control Flow Cases

Note: If you call the
ControllerContext.getLocalViewActivityURL()or
ControllerContext.getGlobalViewActivityURL() methods
to construct the redirect URL, do not call
ExternalContext.encodeActionURL() with the response before
calling ExternalContext.redirect().

This is because the methods already incorporate the necessary
encoding of the URL.

Using Router Activities

15-12 Fusion Developer's Guide for Oracle Application Development Framework

Each control flow can correspond to a different router case. Each router case contains
the following elements, which are used to choose the activity to which control is next
routed:

■ expression: An EL expression evaluating to either true or false, for example,
#{(pageFlowScope.welcomeUserRegistrationBean.userSelection eq
'Customer')}

The first expression that evaluates to true is used to determine the
corresponding outcome.

■ outcome: A value returned by the router activity if the EL expression evaluates to
true, for example, newCustomer.

If the router outcome matches a from-outcome on a control flow case, control
passes to the activity that the control flow case points to. If none of the cases for
the router activity evaluates to true, or if no cases are specified, the outcome
specified in the router default outcome field (if any) is used.

For example, suppose you want to base control flow on whether a user clicks the
Create a New Customer or Create a New Employee button on the
welcomeUserRegistration page fragment shown in Figure 15–5.

You could add an EL expression for one of the router cases that evaluates whether the
user entered in the input text field on the user registration page fragment is a new
customer. You would next specify an expected outcome, for example, newCustomer.
As shown in Figure 15–5, if the expression evaluates to true, control passes to the
customer-registration-task-flow task flow call activity, based on the control
flow case from-outcome, newCustomer.

To define a control flow using the router activity:
1. From the ADF Task Flow page of the Component Palette, drag a router activity to

the task flow diagram.

2. In the task flow diagram, select the router activity.

3. From the main menu, choose View > Property Inspector.

4. On the Common page of the Property Inspector, enter an id.

The ID is an identifier that is used to reference the router activity within the
metadata, for example, router1.

5. Click the Add icon next to Cases.

6. Specify values for each of the router’s cases.

A case is a condition that, when evaluated to true, returns an outcome. For each
case, you must enter:

Best Practice:

If your routing condition can be expressed in EL, use a router.

Using a router allows you to do more when you are designing the task
flow that contains it. The router activity allows you to show more
information about the condition on the task flow, thus making it more
readable and useful to someone else who looks at your diagram.

Using a router activity also makes it easier to modify your application
later. For example, you may want to modify or add a routing
condition later.

Using Method Call Activities

Working with Task Flow Activities 15-13

■ expression: An EL expression evaluating to true or false.

The expression can reference an input text field in a view activity. For example,
suppose the value of the field is #{pageFlowScope.value}. The expression
could be #{pageFlowScope.value==’view2’}, meaning that the specified
outcome will be returned if a user enters view2 in the field.

■ outcome: Returned by the router activity when its corresponding expression
evaluates true.

You must account for each outcome with a matching control flow case or a
wildcard control flow rule in your task flow diagram. For example, for each
case outcome, you can ensure there is a corresponding from-outcome
specified for a control flow case element leading from the router activity in the
diagram. In Figure 15–5, the value for both the case outcome and the control
flow case element from-outcome is newCustomer. This ensures that control
flow will pass to the newCustomer activity, the target of the control flow
element.

7. In the Property Inspector, enter a default-outcome.

This outcome is returned if none of the cases for the router activity evaluates to
true, or if no cases are specified.

Example 15–6 identifies a default outcome, toRegion3. Control flow goes to the
case whose from outcome is to Region3. Router1 is returned by the router
activity when none of its cases evaluates to true.

Example 15–6 Router Metadata Defining a Default Outcome

<router id="Router1">
 <case>
 <expression>#{binding.Region.InputValue='1'}</expression>
 <outcome>toRegion1</outcome>
 </case>
 <case>
 <expression>#{binding.Region.InputValue='2'}</expression>
 <outcome>toRegion2</outcome>
 </case>
 <case>
 <expression>#{binding.Region.InputValue='3'}</expression>
 <outcome>toRegion3</outcome>
 </case>
 <default-outcome>toRegion3</default-outcome>
</router>

15.5 Using Method Call Activities
In a standard JSF application, application logic can be invoked only from actions
specified within the JSF page markup. A method call activity allows you to call a
custom or built-in method that invokes application logic from anywhere within an
application's control flow. You can specify methods to perform tasks such as
initialization before displaying a page, cleanup after exiting a page, exception
handling, and so forth.

As shown in Figure 15–6, the Fusion Order Demo application uses a method call
activity in the Employee Registration bounded task flow. The activity calls
userRegistrationCreate, a method exposed on the StoreServiceAM data
control.

Using Method Call Activities

15-14 Fusion Developer's Guide for Oracle Application Development Framework

Figure 15–6 Method Call Activity in employee-registration-task-flow

You can set an outcome for the method that specifies a control flow case to pass control
to after the method finishes. For more information, see Section 14.1.3, "Control Flows".
You can specify the outcome as either:

■ fixed-outcome: On successful completion, the method always returns this
single outcome, for example, success. If the method doesn't complete
successfully, an outcome isn't returned. If the method type is void, you must
specify a fixed-outcome, not a to-string.

■ to-string: If specified as true, the outcome is based on calling the toString()
method on the Java object returned by the method. For example, if toString()
returns editBasicInfo, navigation goes to the editBasicInfo control flow
case shown in Figure 15–6.

As shown in Example 15–7, the method outcome and the method result are two
different values. The <return-value> element specifies where to put the result of
the calculateSalesTax method. The <outcome> element indicates which control
flow case to use after the method finishes.

Example 15–7 Method Call Activity Metadata with Return and Outcome Elements

<method-call id="calculateSalesTax">
 <method>#{pageFlowScope.taxService.calculateSalesTax}</method>
 <return-value>#{pageFlowScope.result}</return-value>
 <outcome>
 <fixed-outcome>gotoError</fixed-outcome>
 </outcome>
 </method-call

Using Method Call Activities

Working with Task Flow Activities 15-15

15.5.1 How to Add a Method Call Activity
Before you begin, you should have already created a bounded or unbounded task
flow. For more information, see Section 14.2, "Creating a Task Flow". Drag a method
call activity from the Component Palette to the task flow diagram. You can associate
the method call activity with an existing method by dropping a data control operation
from the Data Controls panel directly onto the method call activity in the task flow
diagram.

In the Fusion Order Demo application, for example, you could drag a
setCurrentRowWithKey or setCurrentRowWithKeyValues operation to the
diagram from the Data Control Iterator to display or select the current row in a table.

You can also drag methods and operations directly to the task flow diagram. A new
method call activity is created automatically after you drop it on the diagram. You can
specify an EL expression and other options for the method.

To add a method call activity to a task flow:
1. In the Component Palette, drag a method call activity from the ADF Task Flow

page to the diagram for the task flow.

Best Practice:

You can use a method call on a task flow to invoke a method before a
page renders, or you can use an invokeAction on a page definition.

If you want your method to execute before the application renders the
page, it is usually best to use a method call activity in the task flow
rather than an invokeAction in the page definition file. By adding
your method as a method activity on a task flow, it is easier to invoke
logic between pages. This allows you to do more at the time you're
designing the task flow. You can also show more information on the
task flow, thus making it more readable and useful to someone else
who looks at your diagram.

You might want to use an invokeAction instead of a method call for
one of the following reasons:

■ You want the method to be executed in more than one phase of
the page's lifecycle.

■ You plan to reuse the page and page definition file, and want the
method to be tied to the page.

■ You are not using ADF Controller.

Note: Parameters for data control method parameters are defined in
the page definition for the corresponding page rather than within
ADF Controller metadata. For more information, see Section 28.3,
"Setting Parameter Values Using a Command Component".

Tip: To identify the method that a method call activity invokes,
right-click the method call activity in the diagram of the task flow and
choose Go to Method. JDeveloper navigates to the method that the
method call activity invokes.

Using Method Call Activities

15-16 Fusion Developer's Guide for Oracle Application Development Framework

The method call activity optionally displays a default id, methodCalln, and a
warning icon that indicates that a method EL expression has not yet been
specified.

For more information about turning on the warning icons, see Section 14.3.1, "How
to Add Additional Activities to an ADF Task Flow".

2. If you want to change the default ID, click the text that appears under the method
call activity in the task flow diagram.

You can enter a name for the method call, for example, addItemToCart.

3. In the task flow diagram, select the method call activity.

4. On the General page of the Property Inspector, enter an EL expression for the
method in the Method field.

For example, you can enter an EL binding expression such as
#{bindings.addItemstoCart.execute}.

You can also use the Edit Property dialog box shown in Figure 15–7 to build the EL
expression for the method:

a. In the General page of the Property Inspector, from the dropdown menu next
to the Method field, choose Expression Builder.

b. In the Expression Builder dialog, expand a node, for example, ADF Bindings
and choose a method. Or, under the ADF Managed Beans node, navigate to
the managed bean containing the method you want to call and select the
method.

c. Click Insert Into Expression.

The Expression Builder dialog should look similar to Figure 15–7. In
Figure 15–7, for example, the addItemToCart method and
shoppingCartBean combine to form the EL expression shown at the top of
the Expression Builder.

Note: The bindings variable in the EL expression indicates an ADF
model binding from the current binding container. In order to specify
the bindings variable, you must specify a binding container definition
or page definition. See Section 12.6, "Working with Page Definition
Files".

Using Method Call Activities

Working with Task Flow Activities 15-17

Figure 15–7 EL Expression for Method in Expression Builder Dialog

d. Click OK.

5. In the General page of the Property Inspector, specify one of the following in the
Outcome section:

■ Fixed Outcome: On successful completion, the method always returns this
single outcome, for example, success. If the method doesn't complete
successfully, an outcome isn't returned. If the method type is void, you must
specify a fixed-outcome, not a to-string.

■ tostring(): If you select true, the outcome is based on calling the toString()
method on the Java object returned by the method.

15.5.2 How to Specify Method Parameters and Return Values
You can specify parameters and return values for a method. Figure 15–8 shows a
single parameter defined for a method called calculateSalesTax. The value field
contains an EL expression that evaluates to the parameter value.

Tip: If the method call activity is going to invoke a managed bean
method, double-click the method call activity in the diagram for the
task flow. This invokes a dialog where you can specify the managed
bean method you want to invoke.

Using Method Call Activities

15-18 Fusion Developer's Guide for Oracle Application Development Framework

Figure 15–8 Method Parameters in Property Inspector

If parameters haven't already been created by associating the method call activity to an
existing method, add the parameters yourself.

To add method parameters:
1. Follow the steps in Section 15.5.1 to add a method call activity to a task flow

diagram.

2. In the task flow diagram, select the method call activity.

3. In the Property Inspector, click Parameters.

4. On the Parameter page, expand the Parameters section.

5. Click the plus Add icon.

6. In the class field, enter the parameter class, for example, java.lang.Double.

7. In the value field, enter an EL expression indicating where the value for the
parameter will be retrieved, for example,
#{pageFlowScope.shoppingCart.totalPurchasePrice}.

8. In the return-value field, enter an EL expression indicating where to store the
method return value, for example, #{pageFlowScope.Return}.

9. Click OK.

10. Repeat the above steps to add additional parameters.

15.5.3 What Happens When You Add a Method Call Activity
After you specify parameters and return values for a method, the XML source file is
updated. Example 15–8 shows how a method call to userRegistrationCreate
appears in the XML source file for a bounded task flow.

Example 15–8 Call to userRegistrationCreate method

<method-call id="userRegistrationCreate">
 <method>#{bindings.userRegistrationCreate.execute}</method>
 <outcome>
 <fixed-outcome>editBasicInfo</fixed-outcome>
 </outcome>
<method-call>

Tip: You can click the icon next to the value field and choose
Expression Builder to search for the method parameters.

Using Task Flow Call Activities

Working with Task Flow Activities 15-19

15.6 Using Task Flow Call Activities
You can use a task flow call activity to call a bounded task flow from either an
unbounded or bounded task flow. A task flow call activity allows you to call a
bounded task flow located within the same or a different application.

The called bounded task flow executes its default activity first. There is no limit to the
number of bounded task flow that can be called. For example, a called bounded task
flow can call another bounded task flow, which can call another, and so on.

To pass parameters into a bounded task flow, you must specify input parameter values
on the task flow call activity. These values must correspond to the input parameter
definitions on the called bounded task flow. For more information, see Section 15.6.3,
"How to Specify Input Parameters on a Task Flow Call Activity".

■ The value on the task flow call activity Input Parameter specifies where the value
will be taken from within the calling task flow.

■ The value on the Input Parameter Definition for the called task flow specifies
where the value will be stored within the called bounded task flow once it is
passed.

By default, all objects are passed by reference. Primitive types (for example, int, long,
or boolean) are always passed by value.

The technique for passing return values out of the bounded task flow to the caller is
similar to the way that input parameters are passed. See Section 16.4, "Specifying
Return Values" for more information.

15.6.1 How to Call a Bounded Task Flow Using a Task Flow Call Activity
Add a task flow call activity to the calling bounded or unbounded task flow to call a
bounded task flow.

To call a bounded task flow:
1. Open the calling task flow in the diagram editor.

2. In the ADF Task Flow page of the Component Palette, drag a Task Flow Call
activity and drop it on the calling task flow.

3. Identify the called task flow using one of the following techniques:

■ In the task flow diagram, double-click the task flow call activity.

The Create Bounded Task Flow dialog displays, where you specify options for
creating a new bounded task flow.

■ Drag an existing bounded task flow from the Application Navigator and drop
it on the task flow call activity.

Tip: When a bounded task flow is associated with a task flow call
activity, input parameters are automatically inserted on the task flow
call activity based on the input parameter definitions defined on the
bounded task flow. Therefore, the application developer needs only to
assign values to the task flow call activity input parameters.

Using Task Flow Call Activities

15-20 Fusion Developer's Guide for Oracle Application Development Framework

■ If you know the name of the bounded task flow that you want to invoke, carry
out the following steps:

a. In the task flow diagram, select the task flow call activity.

b. On the General page of the Property Inspector, select Static from the Task
Flow Reference dropdown list.

c. In the Document field, enter the name of the source file for the bounded
task flow to call. For example, called-task-flow-definition.xml.

d. In the ID field, enter the bounded task flow ID contained in the XML
source file for the called bounded task flow, for example,
targetTaskFlow.

■ If you do not know the name of the bounded task flow to invoke and it is
dependent on an end user selection at runtime, carry out the following steps:

a. In the task flow diagram, select the task flow call activity.

b. On the General page of the Property Inspector, select Dynamic from the
Task Flow Reference dropdown list.

c. Select Expression Builder from the dropdown menu displayed to the
right of the Dynamic Task Flow Reference property.

d. Write an EL expression that identifies the ID of the bounded task flow to
invoke at runtime.

Figure 15–9 shows the checkout-task-flow task flow call activity in an
unbounded task flow of the Fusion Order Demo application. This task flow
call activity invokes the checkout-task-flow located in the
checkout-task-flow.xml file.

 Tips: You can drop a bounded task flow on a page or page
fragment. If the bounded task flow consists of pages (not page
fragments), you can choose to add a Go Link or Go Button UI
component on the page where you drop the task flow. An end user
can click the button or link to call the task flow. This may in turn
automatically generate the task flow call activity if the page is already
associated with an existing view activity in a task flow.

You cannot drop a bounded task flow from one application to a task
flow diagram contained in another application using the Application
Navigator, even though both applications appear in the navigator. In
addition, you cannot drop a bounded task flow contained in one
project onto a task flow diagram contained in another project.

Instead, you can package the bounded task flow in an ADF library,
then reuse it in your current application or project. You can then drag
the bounded task flow from the Resource Catalog or from the
Component Palette page that is created when you import the library.
For more information, see Section 33.1.2, "Using the Resource Palette".

Using Task Flow Call Activities

Working with Task Flow Activities 15-21

Figure 15–9 Task Flow Call Activity That Invokes a Bounded Task Flow

15.6.2 What Happens When You Call a Bounded Task Flow Using a Task Flow Call
Activity

JDeveloper generates metadata entries in the source file for the task flow that calls the
bounded task flow. Example 15–9 shows an example from the Fusion Order Demo
application’s adfc-config.xml that references the checkout bounded task flow
(checkout-task-flow.xml). At runtime, the task flow call activity calls the
checkout bounded task flow.

Example 15–9 Task Flow Call Activity in Fusion Order Demo Application’s
adfc-config.xml File

<task-flow-call id="checkout-task-flow">
 <task-flow-reference>
 <document>/WEB-INF/checkout-task-flow.xml</document>
 <id>checkout-task-flow</id>
 </task-flow-reference>
 </task-flow-call>

15.6.3 How to Specify Input Parameters on a Task Flow Call Activity
The suggested method for mapping parameters between a task flow call activity and
its called bounded task flow is to first specify input parameter definitions for the
called bounded task flow. Then you can drag the bounded task flow from the
Application Navigator and drop it on the task flow call activity. The task flow call
activity input parameters will be created automatically based on the bounded task
flow’s input parameter definition. For more information, see Section 16.3, "How to
Pass Parameters to an ADF Bounded Task Flow".

You can, of course, first specify input parameters on the task flow call activity. Even if
you have defined them first, they will automatically be replaced based on the input
parameter definitions of the called bounded task flow, once it is associated with the
task flow call activity.

If you haven’t yet created the called bounded task flow, you may still find it useful to
specify input parameters on the task flow call activity. Doing so at this point allows
you to identify any input parameters you expect the task flow call activity to
eventually map when calling a bounded task flow.

To specify input parameters on a task flow call activity:
1. Select the task flow call activity in the diagram for the task flow.

2. In the Property Inspector, expand the Parameters section and click the Add icon to
enter a name for the parameter.

Using Task Flow Call Activities

15-22 Fusion Developer's Guide for Oracle Application Development Framework

3. Enter a parameter value, for example,
#{pageFlowScope.callingTaskflowParm}.

The value specifies where the parameter value will be taken from within the
calling task flow.

By default, all objects are passed by reference. Primitive types (for example, int,
long, or boolean) are always passed by value.

4. After you have specified an input parameter, you can specify a corresponding
input parameter definition for the called bounded task flow. For more information,
see Section 16.3, "How to Pass Parameters to an ADF Bounded Task Flow".

15.6.4 How to Call a Bounded Task Flow Using a URL
You can call a bounded task flow that does not use page fragments (.jsff) in another
web application using a URL. You use a task flow call activity to call the bounded task
flow that you want to invoke. You write an EL expression for the task flow call
activity’s remote-app-url property that, when evaluated, returns a URL.

In addition to writing a value for the remote-app-url property, you specify values
for task flow reference properties that identify the bounded task flow to call. The task
flow reference and the remote-app-url property are combined at runtime to
generate a URL to the called bounded task flow in the remote web application.

You also need to set visibility properties for the bounded task flow in the remote web
application that you want to call so that it invokes when it receives the URL generated
from the task flow call activity in the calling task flow.

Be aware that JSF portlets provide all content from the same web application. As a
result, do not configure your web application to invoke a remote task flow using a
URL if plan to use your web application in a JSF portlet.

To call a bounded task flow using a URL:
1. Open the task flow in your web application that you want to configure to invoke a

bounded task flow in a remote web application.

2. In the ADF Task Flow page of the Component Palette, from the Activities panel,
drag a Task Flow Call activity and drop it on the diagram for the task flow.

3. In the Property Inspector, expand the General section and write values for the
properties to invoke a bounded task flow.

For more information, see Section 15.6.1, "How to Call a Bounded Task Flow Using
a Task Flow Call Activity".

4. For the Remote Application URL property, use the Expression Builder to write an
EL expression that, when evaluated, returns a string with the parts required to
construct a URL of the remote web application.

For example, the following example EL expression invokes a managed bean
method that returns a string with the parts required to construct a URL:

#{myOrdersBean.createOrder}

5. Open the bounded task flow that you specified values for in step 3.

Tip: Dropping a bounded task flow on a task flow call activity in a
diagram automatically populates the name field.

Using Task Flow Call Activities

Working with Task Flow Activities 15-23

6. In the Structure window, right-click the node for the bounded task flow (task flow
definition) and choose Go to Properties.

7. In the Property Inspector, expand the General category and set values for the
following properties:

■ URL Invoke: select url-invoke-allowed from the dropdown list if you
want to allow a URL to invoke the bounded task flow. Select
url-invoke-disallowed if you do not want to allow a URL to invoke the
bounded task flow. Selecting this value returns a HTTP 403 status code if a
URL attempts to invoke the bounded task flow. The default value
(calculated) allows a URL to invoke the bounded task flow if the bounded
task flow does not specify an initializer and it has a view activity as its default
activity. If the bounded task flow does not meet these conditions, a HTTP 403
status code is returned. Selecting url-invoke-allowed or
url-invoke-disallowed overrides the default behavior.

■ Library Internal: set to true if you want the bounded task flow to be internal
when you package it in an ADF Library JAR. The default value is false.

For more information about packaging a bounded task flow in an ADF
Library JAR, see Section 33.2, "Packaging a Reusable ADF Component into an
ADF Library".

8. Save and close the bounded task flow.

15.6.5 What Happens When You Configure a Bounded Task Flow to be Invoked by a
URL

JDeveloper generates metadata entries in the source file of the task flow that invokes
the task flow call activity to the bounded task flow in a remote web application.
Example 15–10 shows an example entries for a task flow call activity.

Example 15–10 Metadata Entries for a Task Flow Call Activity to a Bounded Task Flow

<task-flow-call id="createOrder">
 <task-flow-reference>
 <document id="__6">myorders-task-flow.xml</document>
 <id id="__5">myorders-task-flow</id>
 </task-flow-reference>
 <remote-app-url id="__7">#{myOrdersBean.createOrder}</remote-app-url>
 </task-flow-call>

The createOrder method in Example 15–10 returns a string with the URL syntax
required to invoke a bounded task flow. For more information about the URL syntax,
including descriptions of the required parts in the returned string and an example
URL, see Section 15.6.6, "What You May Need to Know About Calling a Bounded Task
Flow Using a URL."

JDeveloper also generates entries in the source file for the bounded task flow to invoke
when you configure it so it can be called by a URL. Example 15–11 shows sample
metadata entries that allow a bounded task flow to be invoked by a URL.

Note: The bounded task flow you specify cannot use page
fragments (.jsff).

Using Task Flow Call Activities

15-24 Fusion Developer's Guide for Oracle Application Development Framework

Example 15–11 Metadata Entries to Allow a URL Invoke a Bounded Task Flow

<task-flow-definition id="task-flow-definition3">
 <visibility id="__2">
 <url-invoke-allowed/>
 <library-internal/>
 </visibility>
 </task-flow-definition>

15.6.6 What You May Need to Know About Calling a Bounded Task Flow Using a URL
Adding a context parameter in your local application´s deployment descriptor may
ease the administration of interaction with a remote web application.

Context Parameter for Remote Web Application
Consider adding a context parameter to the deployment descriptor (web.xml) for
your Fusion web application (local application) if you use a URL to invoke a bounded
task flow in another Fusion web application (remote application). Set the value of the
context parameter to the URL of the remote application. Use the context parameter
name when writing EL expressions in the local application, as shown in the following
example where remoteAppUrl is the name of the context parameter:

#{initParam.remoteAppUrl}

If the URL of the remote application changes, you can update the context parameter to
reference the changed URL.

URL Syntax to Invoke a Bounded Task Flow
Typically, you write an EL expression that references a managed bean method which,
in turn, retrieves the required parts of the URL or you could write an EL expression
that renders the URL directly, as shown in Example 15–12.

Example 15–12 Example URL to Invoke a Bounded Task Flow

http://somecompany.com/internalApp/MyApp/faces/adf.task-flow?adf.tfId=displayHelp&
adf.tfDoc=%2FWEB-INF%2Fdisplayhelp.xml&topic=createPurchaseOrder

Example 15–13 describes the parts of the URL syntax to invoke a bounded task flow.

Example 15–13 URL Syntax for a Call to a Bounded Task Flow Using Named Parameters

<server root>/<app_context>/faces/adf.task-flow?adf.tfid=<task flow definition
ID>&adf.tfDoc=<document name>&<named parameter>=<named parameter value>

The following list describes each part of the URL syntax in Example 15–13:

■ <server root>: Provided by customization at site or admin level. For example:

http://mycompany.com/internalApp

The <server root> value depends on the application server where you deploy
the bound task flow. The bounded task flow URL is a resource within the JSF
servlet's URL path.

■ <app context>: The Web application context root, for example, MyApp. The
context root is the base path of a Web application.

■ faces: Faces servlet mapping.

Using Task Flow Call Activities

Working with Task Flow Activities 15-25

■ adf.task-flow: A reserved keyword that identifies the ADF Controller for the
remote web application.

■ adf.tfId: A URL parameter that supplies the task flow ID to call.

■ <task flow ID>: The identifier of the bounded task flow to call, for example,
displayHelp. This is the same task flow ID that is used when calling locally.
Note that this identifier is not the same as the task flow call activity instance ID.
The parameter value must be represented as a string.

■ adf.tfDoc: A URL parameter that supplies the document name containing the
bounded task flow ID to be called.

■ <document name>: A document name containing the bounded task flow ID to be
called, for example,%2FWEB-INF%2FtoUppercase%2FdisplayHelp.xml. If
you are handcrafting the bounded task flow URL, you are responsible for the
appropriate encoding.

■ <named parameter>: (optional) The name of an input parameter definition for
the called bounded task flow, for example, topic. You must supply all required
input parameter definitions.

■ <named parameter value>: (optional) The value of the input parameter.

Object Type for Parameter Converters
Parameter converters, if specified, can be used to convert task flow parameter values
to and from the string representations used in a URL. A parameter converter is an EL
expression that evaluates to an object of the following type:

oracle.adf.controller.UrlParameterConverter

If you do not specify a parameter converter, a default converter checks the parameters
for cross-site-scripting (XSS) attacks. If you know that the parameter values used in
your application contain special characters, you should create your own
implementation of UrlParameterConverter and use it to perform conversion of
the task flow parameter values.

15.6.7 How to Specify Before and After Listeners
Task flow call activity before and after listeners are used to identify the start and end
of a bounded task flow. Specifying a listener in the task flow call activity means that
the listener executes on that specific usage of the called bounded task flow.

You specify the listener as an EL expression for a method that will be called upon entry
or exit of a bounded task flow, for example,
<before-listener>#{global.showState}</before-listener}>. The
method cannot have parameters.

■ Before listener: An EL expression for a Java method called before a bounded task
flow is entered. It is used when the caller needs to know when a bounded task
flow is being initiated.

Note: URL parameter names that begin with an underscore ('_') are
intended for internal use only and should not be used. Although you
may see these names on URLs generated by ADF Controller, you
should not attempt to use or depend on them.

Using Task Flow Call Activities

15-26 Fusion Developer's Guide for Oracle Application Development Framework

■ After listener: An EL expression for a Java method called after a bounded task
flow returns. It is used when the caller needs to know when a bounded task flow
exits and control flow returns to the caller.

If multiple before listeners or multiple after listeners are specified, they are called in
the order in which they appear in the source document for the unbounded or bounded
task flow. A task flow call activity can have only have before listener and one after
listener.

In order for the task flow call after listeners to be called, control flow must return from
the bounded task flow using a control flow rule. If an end user leaves a bounded task
flow using the browser back button or other URL, task flow call after listeners will not
be called. You must use a bounded task flow finalizer to release all acquired resources
and perform cleanup of a bounded task flow that the end user left by clicking a
browser back button. See Section 18.2, "Using Initializers and Finalizers" for more
information.

To specify a before or after listener on a task flow call activity:
1. In the diagram of the calling bounded task flow, select the task flow call activity.

2. In the Property Inspector, click Listeners.

3. Click the button next to either before-listener or after-listener.

4. In the Expression Builder dialog, drill down to the Java class containing the
method for the listener.

5. Open the class node and select the listener method.

When you are done, your EL expression might look like
#{pageFlowscope.managedBean.methodListener}.

6. Click OK.

15.6.8 What Happens When You Add a Task Flow Call Activity
After you add a task flow call activity to a task flow diagram, you must specify a
reference to the called bounded task flow using one of the methods described in
Section 15.6.1, "How to Call a Bounded Task Flow Using a Task Flow Call Activity".
For example, if you drop an existing bounded task flow on the task flow call activity,
JDeveloper generates the task flow reference automatically. The task flow reference is
used to invoke the called bounded task flow.

If the task flow reference is static, each task flow reference consists of:

■ id: The bounded task flow id contained in the XML source file for the called
bounded task flow. For example, a called task flow might have an ID called
targetFlow. The same XML source file can contain multiple bounded task flows,
each bounded task flow identified by a unique ID.

■ document: The name of the XML source file containing the ID of the called
bounded task flow. If document is not specified, adfc-config.xml is assumed.

The document is a physical XML file and must be accessible via MDS.

Note: If you use JDeveloper to create the bounded task flow, there is
only one bounded task flow per document.

Using Task Flow Call Activities

Working with Task Flow Activities 15-27

Example 15–14 contains an example static task flow reference within a task flow call
activity. In order to invoke a bounded task flow, you need to know its id and name of
the file containing the id.

Example 15–14 Static Task Flow Reference

<adfc-config xmlns="http://xmlns.oracle.com/adf/controller" version="1.2" id="__
1">
...
 <task-flow-definition id="task-flow-definition">
 <default-activity>view1</default-activity>
 <task-flow-call id="taskFlowCall">
 <task-flow-reference>
 <document>/WEB-INF/called-task-flow-definition.xml</document>
 <id>called-task-flow-definition</id>
 </task-flow-reference>
 </task-flow-call>
 </task-flow-definition>
...
</adfc-config>

Example 15–15 shows the metadata that JDeveloper generates for a dynamic task flow
reference within a task flow call activity.

Example 15–15 Dynamic Task Flow Reference

<?xml version="1.0" encoding="windows-1252" ?>
<adfc-config xmlns="http://xmlns.oracle.com/adf/controller" version="1.2"
 id="__1">
 <task-flow-definition id="bounded_tf">
 <default-activity id="__2">taskFlowCall1</default-activity>
 <task-flow-call id="taskFlowCall1">
 <dynamic-task-flow-reference id="__3">#{EL_Expression_Retrieve_
 TaskflowID}</dynamic-task-flow-reference>
 </task-flow-call>
 </task-flow-definition>
</adfc-config>

15.6.9 What Happens at Runtime When a Task Flow Call Activity Invokes a Task Flow
The ADF Controller performs the following steps when a bounded task flow is called
using a task flow call activity:

1. Verifies that the user is authorized to call the bounded task flow.

2. Invokes task flow call activity before listener or listeners, if specified (see
Section 15.6.7, "How to Specify Before and After Listeners").

3. Evaluates the input parameter values on the bounded task flow.

4. Pushes the called bounded task flow onto the stack and initializes its page flow
scope.

5. Sets input parameter values in the called bounded task flow's context.

6. Invokes a bounded task flow initializer method, if one is specified (see
Section 18.2, "Using Initializers and Finalizers" for more information).

7. Executes the bounded task flow's default activity.

Using Task Flow Return Activities

15-28 Fusion Developer's Guide for Oracle Application Development Framework

15.7 Using Task Flow Return Activities
A task flow return activity identifies the point in an application’s control flow where a
bounded task flow completes and sends control flow back to the caller. You can use a
task flow return activity only within a bounded task flow.

A gray circle around a task flow return activity icon indicates that the activity is an exit
point for a bounded task flow. A bounded task flow can have zero to many task flow
return activities. Figure 15–10 shows a bounded task flow with task flow return
activities named Login and addNewCust.

Figure 15–10 Multiple Task Flow Return Activities

Each task flow return activity specifies an outcome that is returned to the calling task
flow. For example, the outcome for the rollbackReturn task flow return activity in
the Fusion Order Demo application customer registration bounded task flow is
cancelCreateCust.

Figure 15–11 shows an extract of the customer registration bounded task flow
(customer-registration-task-flow.xml). This task flow contains two task
flow return activities (rollbackReturn and commitReturn). The
rollbackReturn task flow return activity’s outcome is cancelCreateCust. In
contrast, the commitReturn task flow return activity’s outcome returns
globalhome.

Figure 15–11 Task Flow Return Activities Specifying Different Outcomes

The outcome returned to the task flow that invokes the customer registration task
flow depends on the end user action. You can configure control flow cases in the
invoking task flow to determine the next action by the invoking task flow. Set the
from-outcome element of a control flow case to the value returned by the task flow

Using Task Flow Return Activities

Working with Task Flow Activities 15-29

return activity’s outcome to invoke an action based on that outcome. This determines
control flow upon return from the customer registration task flow.

Set a value for the Restore Save Point property to specify if model changes made in a
bounded task flow are saved or discarded when the bounded task flow exits by using
a task flow return activity. Set to true to roll back transactions to the ADF Model save
point that was created when the Fusion web application first entered the bounded task
flow. The default value is false. You can specify a value for this property only if the
bounded task flow on which the task flow return activity is located was entered
without starting a new transaction. For more information, see Section 18.4.1, "How to
Enable Transactions in a Bounded Task Flow".

To add a task flow return activity to a bounded task flow:
1. Drag a task flow return activity from the ADF Task Flow page in the Component

Palette to the diagram for the bounded task flow.

2. In the task flow diagram, select the task flow return activity.

3. On the Common page of the Property Inspector, expand the Outcome section.

4. In the Name field, enter an outcome, for example, preferredCustomer.

Specifying this returns an outcome to the caller when the bounded task flow exits.
You can specify only one outcome per task flow return activity. The calling task
flow should define control flow rules to handle control flow upon return. See
Section 14.3.3, "How to Add Control Flows" for more information.

5. In the Property Inspector, expand the Behavior section.

6. In the Reentry dropdown list, choose one of the following options:

■ reentry-allowed: Reentry is allowed on any view activity within the bounded
task flow.

■ reentry-not-allowed: Reentry of the bounded task flow is not allowed.

If you specify reentry-not-allowed on a bounded task flow, an end user can
still click the browser back button and return to a page within the bounded
task flow. However, if the user does anything on the page such as clicking a
button, an exception (for example, InvalidTaskFlowReentry) is thrown
indicating the bounded task flow was reentered improperly. The actual reentry
condition is identified upon the submit of the reentered page.

Your selection defines the default behavior when the bounded task flow is
reentered by an end user clicking a browser’s Back button. This selection applies
only if reentry-outcome-dependent has been set on the bounded task flow where
the task flow return activity is located. For more information, see Section 18.5,
"Reentering a Bounded Task Flow".

7. In the End Transaction dropdown list, choose one of the following options:

■ commit: Select to commit the existing transaction to the database.

■ rollback: Select to roll back the transaction to what it was on entry of the
called task flow. This has the same effect as canceling the transaction, since it
rolls back a new transaction to its initial state when it was started on entry of
the bounded task flow.

If you do not specify commit or rollback, the transaction is left open to be
closed by calling bounded task flow.

8. In the Restore Save Point dropdown list, select true when either of the following
conditions apply:

Using Save Point Restore Activities

15-30 Fusion Developer's Guide for Oracle Application Development Framework

■ If Always Begin New Transaction (new-transaction) is not selected on the
bounded task flow on which the task flow return activity is located

■ ADF model changes made within a bounded task flow should be discarded
when exiting using the task flow call activity. The transaction is rolled back to
the save point created on entry of the bounded task flow.

For more information, see Section 18.4.1, "How to Enable Transactions in a
Bounded Task Flow".

15.8 Using Save Point Restore Activities
The save point restore activity allows you to restore a previous persistent save point in
an application supporting save for later functionality. A save point captures a snapshot
of the Fusion web application at a specific instance. Save point restore enables the
application to restore whatever was captured when the save point was originally
created.

When a save point is restored, ADF Controller terminates the saved application and
restarts the application that was executing when the end user performed a save. The
end user’s original location in the application is displayed. Once the save-point-id
is restored, it is deleted from its method of persistence (database or Java object cache).

A save point restore activity is not required within every individual application
supporting save for later capabilities. It is only required within the applications
responsible for restoring the previously persistent save-point-ids. For example, a
save point restore activity would not be required within a Create Expense Report
application, but would be within the application used to select previously saved
expense reports for further updates.

Section 18.9, "Using Save Points in Task Flows" contains detailed information about
enabling save for later capabilities in a task flow and provides an example of how to
use the save point restore activity to retrieve the saved application state and data.

15.9 Using Parent Action Activities
A bounded task flow running in an ADF region may need to trigger navigation of its
parent view activity. The parent action activity allows a bounded task flow to generate
outcomes that are passed to its parent view activity. The outcomes are used to navigate
the task flow containing the parent view activity rather than navigating the task flow
of the ADF region.

■ Parent Outcome: Specifies a value passed to the parent viewport to navigate the
enclosing view's task flow rather than navigating the region's task flow where the
parent action activity is defined.

■ Outcome: Specifies a control flow outcome within the region after the parent
outcome is queued to the parent.

This is useful in cases where the parent does not navigate as a result of the parent
outcome sent by the region and the region does not want to continue displaying
the same view. If you do not specify a value for outcome, the region's viewId
remains unchanged.

For more information, see Section 17.7.1, "How to Trigger Navigation Outside of an
ADF Region’s Task Flow".

Using Task Flow Activities with Page Definition Files

Working with Task Flow Activities 15-31

15.10 Using Task Flow Activities with Page Definition Files
Page definition files define the binding objects that populate data at runtime. They are
typically used in a Fusion web application to bind page UI components to data
controls. A number of task flow activities can also use page definition files to bind to
data controls. These are:

■ Method call

You can drag and drop a data control operation from the Data Control panel onto
a task flow to create a method call activity or onto an existing method call activity.
In both cases, the method call activity binds to the data control operation.

■ Router

Associating a page definition file with a router activity creates a binding container.
At runtime, this binding container makes sure that the router activity references
the correct binding values when it evaluates the router activity cases’ EL
expressions. Each router activity case specifies an outcome to return if its EL
expression evaluates to true. For this reason, only add data control operations to
the page definition file that evaluate to true or false.

■ Task flow call

Associating a page definition file with a task flow call activity creates a binding
container. At runtime, the binding container is in context when the task flow call
activity passes input parameters. The binding container makes sure that the task
flow call activity references the correct values if it references binding values when
passing input parameters from a calling task flow to a called task flow.

■ View

You cannot directly associate a view activity with a page definition file. Instead,
you associate the page that the view activity references.

If you right-click any of the above task flow activities (except view activity) in the
diagrammer for a task flow, JDeveloper displays an option on the context menu that
enables you to create a page definition file (Create Page Definition) if one does not yet
exist. If a page definition file does exist, JDeveloper displays a context menu option for
all task flow activities to go to the page definition file (Go to Page Definition).
JDeveloper also displays a context menu option (Edit Binding) when you right-click a
method call activity that is associated with a page definition file.

A task flow activity that is associated with a page definition file displays an icon in the
lower-right section of the task flow activity icon. Figure 15–12 shows an example for
each of the task flow activities.

Figure 15–12 Task Flow Activities Associated with Page Definition Files

Using Task Flow Activities with Page Definition Files

15-32 Fusion Developer's Guide for Oracle Application Development Framework

15.10.1 How to Associate a Page Definition File with a Task Flow Activity
JDeveloper provides a context menu option that you can access from the task flow
activity. You use this context menu option to associate the task flow activity with a
page definition file.

To associate a page definition file with a task flow activity
1. In the diagrammer for the task flow, right-click the task flow activity for which

you want to create a page definition file.

2. Choose Create Page Definition from the context menu that appears.

3. In the resulting page definition file, add the bindings that you want your task flow
activity to reference at runtime.

For more information about page definition files, see Section 12.6, "Working with
Page Definition Files".

15.10.2 What Happens When You Associate a Page Definition File with a Task Flow
Activity

At design time, JDeveloper generates a page definition file for the task flow activity.
The filename of the page definition file comprises the originating task flow and either
the name of the task flow activity or the data control operation to invoke. For example,
taskflowName_taskflowName_methodCall1PageDef.xml or taskflowName_
taskflowName_CreateInsertPageDef.xml.

JDeveloper also generates an EL expression from the task flow activity to the binding
in the created page definition file. Example 15–16 shows a method call activity that
references a CreateInsert action binding.

Example 15–16 Task Flow Activity Referencing an Action Binding

<method-call id="CreateInsert">
 <method>#{bindings.CreateInsert.execute}</method>
 <outcome>
 <fixed-outcome>CreateInsert</fixed-outcome>
 </outcome>
 </method-call>

At runtime, a binding container makes sure that a task flow activities’ EL expressions
reference the correct value.

16

Using Parameters in Task Flows 16-1

16Using Parameters in Task Flows

This chapter describes how to specify parameters in view activities and in ADF
bounded task flows.

This chapter includes the following sections:

■ Section 16.1, "Introduction to Parameters in Task Flows"

■ Section 16.2, "Passing Parameters to a View Activity"

■ Section 16.3, "How to Pass Parameters to an ADF Bounded Task Flow"

■ Section 16.4, "Specifying Return Values"

■ Section 16.5, "Specifying EL Binding Expressions"

16.1 Introduction to Parameters in Task Flows
You can use view activity input page parameters as aliases. The alias allows you to
map bounded task flow input parameters to page parameters. The view activity input
page parameters map managed beans and any information available to the calling task
flow to a managed bean on the page itself. To pass values out of view activities, store
values in page flow scope or managed beans. For information about using view
activities in a task flow, see Section 15.2, "Using View Activities".

For example, the page might specify #{pageFlowScope.empno} as a page
parameter and a bounded task flow might specify
#{pageFlowScope.employeeID} as the value of an input parameter definition.

The from-value on the view activity input page parameter would be
#{pageFlowScope.employeeID} and the to-value would be
#{pageFlowScope.empno}. This enables reuse of both the page definition and
bounded task flow because you don’t have to redefine parameters for every context in
which each is used.

Other values contained within the task flow can be mapped to input page parameters,
not just bounded task flow input parameter definition values.

16.2 Passing Parameters to a View Activity
Figure 16–1 illustrates how to specify an input page parameter mapping. You can pass
a parameter to the Employee activity as a pageFlowScope value or a value on a
managed bean. The Employee activity can pass a value to the Target activity by
placing it within pageFlowScope or a managed bean to the Target activity, based on
the EL expression you specified in the to-value.

How to Pass Parameters to an ADF Bounded Task Flow

16-2 Fusion Developer's Guide for Oracle Application Development Framework

Figure 16–1 Task Flow with Two Activities

To set an input page parameter value and retrieve it:
1. In the editor, open the task flow diagram.

2. In the task flow diagram, select the view activity.

3. In the Property Inspector, click Page Parameters.

4. In the Input Page Parameter section, click the Add icon.

5. Enter a from-value using an EL expression that, when evaluated, specifies
where the input page parameter value will be passed from, for example,
#{pageFlowScope.EmployeeID}.

The task flow shown in Figure 16–1 can set an input parameter definition value
that the view activity can retrieve. To retrieve the parameter value, you can specify
a from-value on the view activity that matches the Value specified for the ADF
bounded task flow input parameter definition.

6. Enter a to-value using an EL expression that, when evaluated, specifies where
the page associated with the view activity can retrieve the value of the input page
parameter, for example, #{pageFlowScope.EmployeeNo}.

The to-value is the second part of the view activity input page parameter. It
specifies where the page associated with the view can retrieve the value of the
view parameter.

16.3 How to Pass Parameters to an ADF Bounded Task Flow
A called ADF bounded task flow can accept input parameters and can pass return
values to the caller upon exit. See Section 16.4, "Specifying Return Values" for more
information.

To pass an input parameter to a bounded task flow, you must specify one or more:

■ Input parameters on the task flow call activity. These specify where the calling task
flow will store parameter values.

■ Input parameter definitions on the called bounded task flow. These specify where
the called bounded task flow can retrieve parameter values.

If you call a bounded task flow using a URL rather than a task flow call activity, you
pass parameters and values on the URL itself. For more information, see Section 15.6.4,
"How to Call a Bounded Task Flow Using a URL".

Note: Instead of explicitly passing a data controls as parameters
between task flows, you can simply share them by specifying the
data-control-scope option on the called bounded task flow. For
more information, see Section 18.3, "Sharing Data Controls Between
Task Flows."

How to Pass Parameters to an ADF Bounded Task Flow

Using Parameters in Task Flows 16-3

The input parameter name specified for each option will be the same in order to map
input parameter values back into the called bounded task flow. The value for each
corresponds to the mapping between where the value will be retrieved within the
caller and the called task flow.

If you don't specify a value for the input parameter, the value defaults to
#{pageFlowScope.parmname}, where parmname is the name of your parameter.

You can specify on the input parameter definition for the called bounded task flow
whether an input parameter is required. If a required input parameter is not received,
an error occurs (these are flagged at design time as well as at runtime). An input
parameter definition that is identified as not required can be ignored during task flow
call activity creation.

By default, all objects are passed by reference. Task flow call activity input parameters
can be passed by reference only if managed bean objects are passed, not individual
values. By default, primitive types (for example, int, long, or boolean) are passed
by value.

The pass by value checkbox applies only to objects, not primitives and is used to
override the default setting of passing by reference. Mixing the two, however, can lead
to unexpected behavior in cases where parameters reference each other. If input
parameter A on the task flow call activity is passed by value and if input parameter B
on the task flow call activity is passed by reference, and B has a reference to A, the
result can be two different instances of A and B.

Example 16–1 shows an input parameter definition specified on a a bounded task flow.

Example 16–1 Input Parameter Definition

<task-flow-definition id="sourceTaskflow">
.
.
.
 <input-parameter-definition>
 <name>inputParameter1</name>
 <value>#{pageFlowScope.parmValue1}</value>
 <class>java.lang.String</class>
 </input-parameter-definition>
.
.
.
</task-flow-definition>

Example 16–2 shows the input parameter metadata that would be specified on the task
flow call activity that called the bounded task flow shown in Example 16–1.

Example 16–2 Input Parameter on Task Flow Call Activity

<task-flow-call id="taskFlowCall1">
.
.
.
 <input-parameter>
 <name>inputParameter1</name>
 <value>#{pageFlowScope.newCustomer}</value>
 <pass-by-value/>
 </input-parameter>
.
.
.

How to Pass Parameters to an ADF Bounded Task Flow

16-4 Fusion Developer's Guide for Oracle Application Development Framework

</task-flow-call>

The following steps describe passing an input parameter from a source task flow to a
target bounded task flow using a task flow call activity. Although you can pass
parameter values from any activity on the source task flow, the passed parameter in
the steps below will contain the value of an input text field on a page in the source task
flow.

Before you begin:

■ Create a calling and called task flow (see Section 14.2, "Creating a Task Flow" for
more information). The caller can be a bounded or unbounded task flow. The
called task flow must be a bounded task flow.

■ On the calling task flow, add the activities shown in Figure 16–2. The page
associated with the view on the calling task flow should contain an input text field
and a button. When an end user clicks the button on the JSF page, control should
pass to the task flow call activity.

Figure 16–2 Calling Task Flow

To pass an input parameter to an ADF bounded task flow:
1. Select the input text component on the JSF page.

2. In the Property Inspector, enter a value for the input text component.

You can specify the value as an EL expression, for example
#{pageFlowScope.inputValue}.

3. In the Application Navigator, double-click the name of the called task flow to open
its diagram.

4. Click the Overview tab for the called task flow.

5. Click Parameters and expand the Input Parameter Definition node.

6. Click the Add icon next to Input Parameter Definition.

7. In the Name field, enter a name for the parameter, for example, inputParm1.

Tip:

You can set parameters for a page using an ADF task flow rather than
dropping a parameterized form from the data control panel or using a
form with a method which takes parameters that are invoked using an
invoke action.

The first technique is a way of passing parameters to a page. The
others are ways of consuming parameters on a page. If a page needs
parameters, you should pass them by using task flow parameters or
by setting scope variables.

Specifying Return Values

Using Parameters in Task Flows 16-5

8. In the Value field, enter an EL expression where the parameter value is stored and
referenced, for example, #{pageFlowScope.inputValue}.

9. In the editor, open the diagram for the calling task flow.

10. In the Application Navigator, drag the called ADF bounded task flow and drop it
on top of the task flow call activity that is located on the calling task flow.

Dropping a bounded task flow on top of a task flow call activity in a diagram
automatically creates a task flow reference to the bounded task flow. As shown in
Figure 16–3, the task flow reference contains the bounded task flow ID and a
document name. The document name points to the XML source file that contains
the ID.

Figure 16–3 Task Flow Reference in Property Inspector

11. In the Property Inspector for the task flow call activity, click Parameters and
expand the Input Parameters section.

12. Enter a name that identifies the input parameter.

Because you dropped the bounded task flow on a task flow call activity having
defined input parameters, the name should be already be specified. You must keep
the same input parameter name.

13. Enter a parameter value, for example, #{pageFlowScope.parm1}.

The value on the task flow call activity input parameter specifies where the calling
task flow will store parameter values.

The value on the input parameter definition for the called task flow specifies
where the value will be retrieved from for use within the called bounded task flow
once it is passed.

14. At runtime, the called task flow is able to use the input parameter. Since you
specified pageFlowScope as the value in the input parameter definition for
the called task flow, you can use the parameter value anywhere in the called ADF
bounded task flow. For example, you can pass it to a view activity on the called
bounded task flow. For more information, see Section 15.2.2.2, "What Happens
When You Transition Between Activities".

16.4 Specifying Return Values
As shown in Figure 16–4, a task flow return activity causes the ADF bounded task
flow to return to the task flow that called it. The called bounded task flow can pass
return values back to the calling task flow.

Specifying Return Values

16-6 Fusion Developer's Guide for Oracle Application Development Framework

Figure 16–4 ADF Bounded Task Flow Returning to a Calling Task Flow

As shown in Figure 16–5, the values are returned to the calling task flow.

Figure 16–5 ADF Unbounded Task Flow Calling a Bounded Task

To return a value, you must specify:

■ Return value definitions on the called bounded task flow. These specify where the
return value is to be taken from upon exit of the called bounded task flow.

■ Return values on the task flow call activity in the calling task flow. These specify
where the calling task flow can find return values

The caller of the bounded task flow can choose to ignore return value definition values
by not identifying any task flow call activity return values back to the caller.

Return values on the task flow call activity are passed back by reference. Nothing
inside the ADF bounded task flow will still reference them, so there is no need to pass
by value and make a copy.

Before you begin the following steps:

■ Create a calling task flow (can be either bounded or unbounded) and a target
bounded task flow

To specify a return value for a called ADF bounded task flow:
1. Open the ADF bounded task flow that will be called in the overview editor.

2. Click Parameters and expand the Return Value Definitions section.

3. Click the Add icon next to Return Value Definitions.

4. In the Name field, enter a name to identify the return value, for example,
Return1.

Specifying EL Binding Expressions

Using Parameters in Task Flows 16-7

5. In the Value field, enter an EL expression that specifies where the return value is
to be taken from upon exit of the called bounded task flow, for example,
#{pageFlowScope.ReturnValueDefinition}.

6. In the task flow overview editor, open the calling ADF task flow.

7. In the Component Palette, drag the task flow call activity from the ADF Task Flow
list and drop it on the diagram for the ADF calling task flow.

8. In the task flow diagram, select the task flow call activity.

9. In the Property Inspector, click Parameters and expand the Return Values section.

10. In the name field, enter a name to identify the return value, for example,
Return1.

The name of the return value must match the name of the return value definition
on the called bounded task flow.

11. In the value field, enter an EL expression that specifies where the calling task flow
can find return values, for example, #{pageFlowScope.ReturnValue}.

16.5 Specifying EL Binding Expressions
If a bounded task flow is implemented using a task flow call activity, as an ADF region
or as an ADF dynamic region, you can specify parameter values using standard EL
expression syntax. For example, you can specify parameters using
#{bindings.bindingId.inputValue} or #{bindings.bindingId} or simply
#{inputValue} syntax.

Example 16–3 shows an example of a task flow binding for an ADF region.

Example 16–3 ADF Region taskFlow Binding

<taskFlow id="Department1" taskFlowId="/WEB-INF/Department.xml#Department"
 xmlns="http://xmlns.oracle.com/adf/Controller/binding"
 Refresh="ifNeeded">
 <parameters>
 <parameter id="DepartmentId" value="#{bindings.DepartmentId.inputValue}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 </parameters>
</taskFlow>

Appending inputValue to the parameter value binding EL expression ensures that
the parameter is assigned the value of the binding rather than the actual binding
object.

If you use the syntax in Example 16–3 without appending inputValue
#{bindings.bindingId}, the binding object (not the value of the binding) is
passed. Therefore, the binding will end up being evaluated within the wrong context
(the context of the task flow call, ADF region, or ADF dynamic region instead of the
context of the page) and multiple data control instances will be created, eventually
setting the wrong data control context in the frame.

Tip: If you drop the bounded task flow that you intend to call on the
task flow call activity, the name field will already be specified.
Therefore, the name field for the return value will automatically
match the name of the return value definition on the called bounded
task flow.

Specifying EL Binding Expressions

16-8 Fusion Developer's Guide for Oracle Application Development Framework

17

Using Task Flows as Regions 17-1

17Using Task Flows as Regions

This chapter describes how to render ADF task flows in JSF pages or page fragments
using ADF regions.

This chapter includes the following sections:

■ Section 17.1, "Introduction to Using Task Flows in ADF Regions"

■ Section 17.2, "Creating an ADF Region"

■ Section 17.3, "Specifying Parameters for an ADF Region"

■ Section 17.4, "Specifying Parameters for ADF Regions Using Parameter Maps"

■ Section 17.5, "Refreshing an ADF Region"

■ Section 17.6, "Configuring Activation of an ADF Region"

■ Section 17.7, "Navigating Outside an ADF Region’s Task Flow"

■ Section 17.8, "Creating ADF Dynamic Regions"

■ Section 17.9, "Adding Additional Task Flows to an ADF Dynamic Region"

17.1 Introduction to Using Task Flows in ADF Regions
You can render a bounded task flow in a JSF page or page fragment (.jsff) by using
an ADF region. An ADF region comprises the following:

■ An af:region tag that appears in the page or page fragment where you render
the region

■ An instance object that implements RegionModel from the following package:

oracle.adf.view.rich.model

For more information about RegionModel, see the Oracle Fusion Middleware Java
API Reference for Oracle ADF Faces.

■ A task flow binding (taskFlow) in the page definition that identifies the bounded
task flow to use in the ADF region

When first rendered, the ADF region’s content is that of the first view activity in the
bounded task flow. The view activities used in the bounded task flow must be
associated with page fragments, not pages.

You can pass values to the ADF Region using task flow binding input parameters or
contextual events. In addition, you can configure the task flow binding's
parametersMap property to determine what input parameters the task flow binding
passes from the bounded task flow to the ADF region.

Introduction to Using Task Flows in ADF Regions

17-2 Fusion Developer's Guide for Oracle Application Development Framework

ADF regions can be configured so that you determine when the region activates or
refreshes. You can also configure an ADF region and a bounded task flow so that
navigation control stops in the bounded task flow and passes to the page that contains
the ADF region. Finally, you can create dynamic regions (ADF dynamic regions) where
the task flow binding determines at runtime what bounded task flow renders in the
region and configure a dynamic region link so that end users can change the bounded
task flow that renders in the ADF dynamic region at runtime.

17.1.1 Benefits of Executing a Task Flow in an ADF Region
A primary reason for executing a bounded task flow as an ADF region is reuse. You
can isolate specific pieces of application functionality in a bounded task flow and an
ADF region in order to reuse it throughout the application. You can extract, configure,
and package application functionality within a bounded task flow so that it can be
added to other pages using an ADF region. ADF regions can be reused wherever
needed, which means they are not dependent on a parent page. This also means that
you can isolate the presentation of the parent pages from the ADF region; menus,
buttons, and navigation areas are not affected by what is displayed in the ADF region.
If you modify a bounded task flow, the changes apply to any ADF region that uses the
task flow.

17.1.2 Task Flows and ADF Region Use Cases and Examples
Figure 17–1 shows the Registration page (register.jspx) in the Fusion Order Demo
application which renders two ADF regions. One of these regions (Registration Help)
is static; it appears regardless of actions that an end user invokes elsewhere on the
Registration page. It displays help information for the end user by rendering the view
activities defined in the Fusion Order Demo application’s help-task-flow.xml
task flow. For more information about creating this type of region, see Section 17.2,
"Creating an ADF Region."

The second region that register.jspx renders is a dynamic region (ADF dynamic
region). The task flow that it renders depends on the end user’s action. If the end user
clicks Register as a customer on the registration page, the ADF dynamic region
renders the customer registration task flow
(customer-registration-task-flow.xml). Alternatively, if the end user clicks
Register as an employee, the ADF dynamic region renders the employee registration
task flow (employee-registration-task-flow.xml). For more information
about creating this type of region, see Section 17.8, "Creating ADF Dynamic Regions."

Introduction to Using Task Flows in ADF Regions

Using Task Flows as Regions 17-3

Figure 17–1 ADF Dynamic Region and ADF Region in the Fusion Order Demo Application

The task flows that you render in an ADF region can be simple (for example, the help
task flow has one view activity that renders help information) or can involve a number
of steps where you guide end users through a process to complete a task, as in the case
of the customer registration task flow.

Figure 17–2 shows parts of the customer registration task flow. It contains view
activities that allow end users to review information they enter (for example,
reviewCustomerInfo), an exception handler activity to display a message when an
error occurs (errorPage), and task flow return activities to cancel or commit the
changes that end users make. All these task flow activities can be rendered within an
ADF region.

Figure 17–2 Customer Registration Bounded Task Flow in Fusion Order Demo Application

One special case is the task flow return activity. In many cases, you cannot return
control when the bounded task flow finishes execution because there is no caller
(except the page or page fragment that hosts the bounded task flow) to which you can

Introduction to Using Task Flows in ADF Regions

17-4 Fusion Developer's Guide for Oracle Application Development Framework

return control. For this reason, design control flow appropriately in a bounded task
flow that you intend to render in an ADF region.

17.1.3 Additional Functionality for Task Flows that Render in ADF Regions
You may find it helpful to understand how a task flow that renders in an ADF region
interacts with other task flow and ADF functionality. Review the information in the
following sections before you attempt to render a task flow in an ADF region.

17.1.3.1 Page Fragments and ADF Regions
A page fragment is a JSF JSP document (file extension is .jsff) that renders as
content in another JSF page. A page fragment should not have more than one root
component. Wrapping multiple root components in a single root component is
recommended so that you optimize the display performance of the page fragment. In
addition, if a page fragment has only one visual root component and a popup
component (which is invisible to end users until invoked), it is also recommended to
wrap these components in a single root component. For example, place the popup
component in a panelStretchLayout component's bottom facet with the
bottomHeight attribute set to 0 pixels.

If a page fragment has more than one root component, the Fusion web application logs
a message at runtime, as shown in Example 17–1, where r1 identifies the ADF region
that renders the page fragment.

Example 17–1 Log Message for a Page Fragment with Multiple Root Components

<RegionRenderer> <encodeAll> The region component with id: r1
has detected a page fragment with multiple root components.
Fragments with more than one root component may not display
correctly in a region and may have a negative impact on
performance. It is recommended that you restructure the page
fragment to have a single root component.

Apart from having only one root component element, a page fragment must not
contain any of the following tags:

■ <af:document>

■ <f:view>

■ <f:form>

■ <html>

■ <head>

■ <body>

These tags can only appear once in a document and do not support nesting in a JSF JSP
page. For example, a page fragment embedded in a page cannot have an <html> tag
because the JSF JSP page already has one.

Example 17–2 contains an example of a simple page fragment. Unlike a JSF JSP page, it
contains no <f:view> or <f:form> tags.

Example 17–2 Page Fragment Source Code

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich">
 <af:commandButton text="commandButton 1" id="cb1"/>

Introduction to Using Task Flows in ADF Regions

Using Task Flows as Regions 17-5

</jsp:root>

You must nest a page fragment that you include in another JSF page within a region
(af:region tag). A bounded task flow that you add to a JSF JSP page as a region
cannot call pages; it must call page fragments.

17.1.3.2 View Ports and ADF Regions
A view port is a display area capable of navigating independently of other view ports.
A browser window and an ADF region are both examples of view ports. The root view
port displays the main page in a browser window. The root view port may have child
view ports, for example, regions on the page, but does not have a parent view port.

Java classes that implement the ViewPortContext interface in the
oracle.adf.controller package get you more information about view ports. For
more information, see the Oracle Fusion Middleware Java API Reference for Oracle ADF
Controller.

17.1.3.3 Security and ADF Regions
You can set security on a bounded task flow that displays in an ADF region and
associated page definitions. If an end user displays a page that contains an ADF region
he or she is not authorized to view, the contents of the ADF region do not display. No
authentication mechanism is triggered. For more information, see Chapter 30,
"Enabling ADF Security in a Fusion Web Application".

17.1.3.4 Parent Page Determines the Capabilities of an ADF Region
In some cases, a page may need to determine the capabilities currently available
within one of the ADF regions that it contains. For example, the page may need to
initiate control flow within the ADF region based on its current state using the
queueActionEventInRegion() method. Region capabilities are used by a parent
page to identify the current outcomes of one of its regions based on the region’s
current state. They identify to the parent page whether or not an outcome is possible
within the region.

The following scenario describes how region capabilities might typically be used in an
application:

1. An ADF region within a page displays its associated page fragment.

2. A user selects a button or performs some other action in the ADF region.

3. The parent page identifies the outcomes (region capabilities) for the ADF region.

4. The parent page updates its buttons based on the ADF region capabilities.

The syntax of an EL expression to determine an ADF region’s capabilities is as follows:

 #{bindings.[regionId].regionModel.capabilities['outcome']}

where regionId is the ID of the ADF region component on the page and outcome is
the possible outcome being verified within the ADF region.

Region capabilities require the availability of the specified ADF region's
regionModel through an EL expression. The EL expression should never access
bindings in any other binding container other than the current binding container.
Region capabilities cannot be used in some cases. For example, a nested ADF region
where a regionModel cannot be reached within the current binding container. This is
because a nested region's nested binding container might not yet exist or might have
already been released.

Creating an ADF Region

17-6 Fusion Developer's Guide for Oracle Application Development Framework

17.2 Creating an ADF Region
You create an ADF region by dragging and dropping a bounded task flow that
contains at least one view activity or one task flow call activity to the page where you
want to render the ADF region. This makes sure that the ADF region you create has
content to display at runtime.

The bound task flow’s view activities must be associated with page fragments
(.jsff). If you attempt to drag and drop a bounded task flow that is associated with
pages rather than page fragments, JDeveloper does not display the context menu that
allows you to create an ADF region. You can convert a bound task flow that uses pages
to use page fragments. For more information, see Section 14.5.3, "How to Convert ADF
Bounded Task Flows."

The context menu that JDeveloper displays to create an ADF region presents options
to create a non-dynamic and a dynamic region. A dynamic region (ADF dynamic
region) determines the bounded task flow that it renders at runtime. For more
information about creating an ADF dynamic region, see Section 17.8, "Creating ADF
Dynamic Regions." You determine, at design time, the bounded task flow that a
non-dynamic region (ADF region) displays.

Before you create an ADF region, you need to do the following:

■ Create a bounded task flow with one or more view activities associated with page
fragments or one task flow call activity to a task flow with view activities

For more information, see Section 14.2, "Creating a Task Flow.".

■ Create a page to host the ADF region

17.2.1 How to Create an ADF Region
Drag a bounded task flow from the Application Navigator to the page where you want
to render an ADF region.

Before you begin:
It may be helpful to understand the requirements for a bounded task flow that you use
in an ADF region. For more information, see Section 17.2, "Creating an ADF Region."

You may also find it helpful to understand functionality that can be added using other
task flow features and ADF region features. For more information, see Section 17.1.3,
"Additional Functionality for Task Flows that Render in ADF Regions."

To create an ADF region:
1. In the Application Navigator, drag the bounded task flow onto the JSF page and

drop it where you want to locate the ADF region.

2. From the context menu that appears, choose Create > Region.

The Edit Task Flow Binding dialog appears if the bounded task flow that you drop
on the JSF page has an input parameter defined, as described in Section 16.3, "How
to Pass Parameters to an ADF Bounded Task Flow." For more information about
specifying parameters for an ADF region, see Section 17.3, "Specifying Parameters
for an ADF Region."

Creating an ADF Region

Using Task Flows as Regions 17-7

Figure 17–3 Edit Task Flow Binding Dialog for an ADF Region

3. In the Structure window, right-click the node for the ADF region that you added
(af:region) and choose Go to Properties.

4. Review or modify (as appropriate) the following properties which JDeveloper
automatically populates with default values in the Property Inspector for the ADF
region:

■ Id: An ID that the JSF page uses to reference the ADF region, for example, r1.

■ Value: An EL reference to the ADF region model, for example,
#{bindings.region1.regionModel}. This is the region model that
describes the behavior of the region.

■ Rendered: If true (the default value), the ADF region renders when the JSF
page renders.

5. For information about how to map parameters between the view activity
associated with the JSF page and the ADF region, see Section 17.3, "Specifying
Parameters for an ADF Region".

17.2.2 What Happens When You Create an ADF Region
When you drop a bounded task flow onto a JSF page to create an ADF region,
JDeveloper adds an af:region tag to the page. The af:region tag references an
object that implements RegionModel. Example 17–3 shows a sample of the metadata
that JDeveloper adds to the JSF page.

Example 17–3 Metadata Added to a JSF Page to Create an ADF Region

<af:region value="#{bindings.tf_register_employee1.regionModel}"
 id="r1"/>

JDeveloper also adds a task flow binding to the page definition file of the page that
hosts the ADF region. Example 17–4 shows a sample of the metadata that JDeveloper
adds. The task flow binding provides a bridge between the ADF region and the
bounded task flow. It binds a specific instance of an ADF region to its associated
bounded task flow and maintains all information specific to the bounded task flow.
The taskFlowId attribute specifies the directory path and the name of the source file
for the bounded task flow.

Example 17–4 Metadata Added to Page Definition to Create a Task Flow Binding

<taskFlow id="tf_register_employee1"
 taskFlowId="/WEB-INF/tf_register_employee.xml#tf_register_employee"
 activation="deferred"
 xmlns="http://xmlns.oracle.com/adf/controller/binding"/>

Specifying Parameters for an ADF Region

17-8 Fusion Developer's Guide for Oracle Application Development Framework

The bounded task flow preserves all of the data bindings when you drop it on the JSF
page. At runtime, a request for a JSF page containing an ADF region initially handles
like any other request for a JSF page. As the JSF page definition executes, data loads in
to the JSF page. When the component tree for the parent JSF page encounters the
<af:region> tag, it executes it in order to determine the first page fragment of
content to display. Once it determine the first page fragment of content, it adds the
appropriate UI components from the page fragment to the component tree for the
parent JSF page.

The task flow binding creates an object for its task flow that implements the following
interface in order to get the current view activity:

oracle.adf.controller.ViewPortContext

The task flow binding’s taskFlowId attribute can also reference an EL expression
that evaluates to one of the following:

■ java.lang.String

■ oracle.adf.controller.TaskFlowId

You use this capability if you create an ADF dynamic region. For more information,
see Section 17.8, "Creating ADF Dynamic Regions."

17.3 Specifying Parameters for an ADF Region
You can make input parameters that you defined for a bounded task flow available to
an ADF region by adding them to the task flow binding that the ADF region
references. Use EL expressions to reference input parameters available in memory
scopes, managed beans, or the ADF binding layer.

Specifying input parameters is one method of providing information to an ADF
region. An alternative method is to use contextual events. The nature of the
information that you want to provide to the ADF region determines the method you
choose to provide the information. For example, choose:

■ Input parameters if the required information is at the beginning of the task flow
and a change in the value of this information requires a restart of the task flow.

For example, you have a page that contains a table of employees. An ADF region
on that page contains a task flow to enroll a selected employee in a benefits
program. A change in the selected employee requires that you restart the benefits
enrollment task flow from the beginning for the newly selected employee. Using
input parameters to the task flow is the right decision for this use case.

You can pass input parameters by reference or by value. If you pass by reference,
an update on the main page for the selected employee's information, such as last
name, is automatically reflected in the task flow running in the ADF region
without restarting the task flow.

■ Contextual events if you can only determine the information to exchange after the
start of a task flow and a change in the information does not require a restart of the
task flow. For example, the Fusion Order Demo application uses contextual events
to display the appropriate help topic when the customer registration task flow
renders in the register.jspx page. For more information about contextual
events, see Section 28.7, "Creating Contextual Events."

For information about creating an ADF region and adding task flow bindings, see
Section 17.2, "Creating an ADF Region." For information about how to define an input

Specifying Parameters for an ADF Region

Using Task Flows as Regions 17-9

parameter for a bounded task flow, see Section 16.3, "How to Pass Parameters to an
ADF Bounded Task Flow".

17.3.1 How to Specify Parameters for an ADF Region
Use EL expressions to specify parameters available in memory scopes, managed
beans, or the ADF binding layer as input for the ADF region.

Before you begin:
It may be helpful to understand the requirements for specifying parameters for an
ADF region. For more information, see Section 17.3, "Specifying Parameters for an
ADF Region."

You may also find it helpful to understand functionality that can be added using other
task flow features and ADF region features. For more information, see Section 17.1.3,
"Additional Functionality for Task Flows that Render in ADF Regions."

To specify input parameters for an ADF region:
1. In the Application Navigator, right-click the JSF page that holds the ADF region

and choose Go to Page Definition.

2. In the overview editor for the page definition file, expand the Model section and
select the task flow binding for which you want to specify parameters.

3. Click the Edit icon to display the Edit Task Flow Binding dialog, as shown in
Figure 17–4.

If you defined input parameters for the bounded task flow, as described in
Section 16.3, "How to Pass Parameters to an ADF Bounded Task Flow", the Edit
Task Flow Binding dialog lists these parameters in the Input Parameters section.

Figure 17–4 Edit Task Flow Binding Dialog

4. Write an EL expression that retrieves the value of each input parameter you want
to specify for the ADF region. Note that you must write an EL expression for
parameters that you defined as required. For example, write an EL expression
similar to the following:

#{pageFlowScope.inputParameter1}

Note: You can write an EL expression that references a list of input
parameters specified in a managed bean using the Input Parameters
Map field of the Edit Task Flow Binding dialog. For more information
about implementing this functionality, see Section 17.4, "Specifying
Parameters for ADF Regions Using Parameter Maps."

Specifying Parameters for ADF Regions Using Parameter Maps

17-10 Fusion Developer's Guide for Oracle Application Development Framework

5. Click OK.

17.3.2 What Happens When You Specify Parameters for an ADF Region
JDeveloper writes entries that are child elements of the taskFlow element in the page
definition of the JSF page, as illustrated in example Example 17–5.

Example 17–5 Metadata Entries to Specify Input Parameters for an ADF Region

 <taskFlow id="tflow_tf11"
 taskFlowId="/WEB-INF/tflow_tf1.xml#tflow_tf1"
 activation="deferred"
 xmlns="http://xmlns.oracle.com/adf/controller/binding">
 <parameters>
 <parameter id="inputParameter1"
 value="#{pageFlowScope.inputParameter1}"/>
 <parameter id="inputParameter2"
 value="#{pageFlowScope.inputParameter2}"/>
 </parameters>
 </taskFlow>

At runtime, the values specified by the EL expression in the value attribute are
passed to the ADF region.

17.4 Specifying Parameters for ADF Regions Using Parameter Maps
In addition (or as an alternative) to listing all the input parameters on the task flow
binding, as described in Section 17.3, "Specifying Parameters for an ADF Region," you
can use the parametersMap property of the task flow binding to specify a parameter
map object on a managed bean. The parameter map object that you reference must be
of a type that implements the following interface:

java.util.Map

The parameter map object that you reference specifies keys that map to the values you
want to input to the ADF region. Using this approach reduces the number of
parameter child elements that appear under the task flow binding (taskFlow)
element in the page definition for the page. This approach also allows you more
flexibility in determining what input parameters pass to the ADF region.

You can configure an ADF region or an ADF dynamic region’s task flow binding to
reference a parameter map. Make sure that the name of an input parameter you define
for a bounded task flow matches the name of a key that you define in the parameter
map object.

17.4.1 How to Create a Parameter Map to Specify Input Parameters for an ADF Region
You configure the task flow binding’s parametersMap property to reference the
parameter map object that defines the key-value pairs you want to pass to the ADF
region.

Before you begin:
It may be helpful to understand the configuration options available to you when
passing input parameters to an ADF region. For more information, see Section 17.4,
"Specifying Parameters for ADF Regions Using Parameter Maps."

Specifying Parameters for ADF Regions Using Parameter Maps

Using Task Flows as Regions 17-11

You may also find it helpful to understand functionality that can be added using other
task flow and ADF region features. For more information, Section 17.1.3, "Additional
Functionality for Task Flows that Render in ADF Regions."

To create a parameter map to specify input parameters for an ADF region:
1. Create a managed bean or edit an existing managed bean so that it returns an

object that implements the java.util.Map interface.

Configure the managed bean so the object returns key-value pairs with the values
that you want to pass to the ADF region. For more information about managed
beans, see Section 20.4, "Using a Managed Bean in a Fusion Web Application."

2. In the Application Navigator, right-click the JSF page that holds the ADF region
and choose Go to Page Definition.

3. In the overview editor for the page definition file, expand the Model section and
select the task flow binding for which you want to specify a parameter map.

4. Click the Edit icon to display the Edit Task Flow Binding dialog.

5. From the dropdown list beside the Input Parameters Map, select Expression
Builder.

6. Write or build an EL expression that references a parameter map. For example,
write an EL expression similar to the following:

#{pageFlowScope.userInfoBean.parameterMap}

7. Click OK.

17.4.2 What Happens When You Create a Parameter Map to Specify Input Parameters
At runtime, the task flow binding evaluates the EL expression specified for its
parametersMap property and returns values to the ADF region from the managed
bean for keys that match name of the input parameters defined for the bounded task
flow that renders in the ADF region.

Example 17–6 shows code snippets from a managed bean that puts two values
(isLoggedIn and principalName) into a parameter map named parameterMap.

Example 17–6 Managed Bean Defining a Parameter Map

import java.util.HashMap;
import java.util.Map;

public class UserInfoBean {
 private Map<String, Object> parameterMap = new HashMap<String, Object>();

 public Map getParameterMap() {

 parameterMap.put("isLoggedIn", getSecurity().isAuthenticated());
 parameterMap.put("principalName", getSecurity().getPrincipalName());
 return parameterMap;
 }
}

Figure 17–5 shows the Edit Task Flow Binding dialog after you close the Expression
Builder dialog, having specified the parameter map object (parameterMap) shown in
Example 17–6. The Input Parameters field in the Edit Task Flow Binding dialog lists
the input parameters defined for the bounded task flow associated with this ADF

Refreshing an ADF Region

17-12 Fusion Developer's Guide for Oracle Application Development Framework

region (checkout-flow). The task flow binding retrieves the values for these
parameters from the managed bean shown in Example 17–6.

Figure 17–5 EL Expression Referencing Parameter Map on Task Flow Binding

Example 17–7 shows the metadata that appears for the task flow binding in the page
definition of the page that renders the ADF region. The metadata for the task flow
binding references both the bounded task flow (taskFlowId attribute) and the
managed bean (parametersMap).

Example 17–7 Task Flow Binding Specifying a Parameter Map

<taskFlow id="checkoutflow1"
 taskFlowId="/WEB-INF/checkout-flow.xml#checkout-flow"
 activation="deferred"
 xmlns="http://xmlns.oracle.com/adf/controller/binding"
 parametersMap="#{pageFlowScope.userInfoBean.parameterMap}"/>

You specify the <parameterMap> element in the page definition. The position of the
<parameterMap> element within the <parameters> list determines whether or not
values in the parameter map are used. The <parameterMap> element specifies an EL
expression that returns an object that implements java.util.Map. The object
contains task flow input parameter key/value pairs. The parameter set for the task
flow is built from the order that is specified in the task flow binding.

17.5 Refreshing an ADF Region
You can configure when an ADF Region refreshes and whether it invokes a task flow.
An ADF Region can only invoke a task flow when the ADF Region is in an active state.

Note: If you specify Refresh="ifNeeded", parameters are not
supported in the <parameterMap> element. The only condition that
determines whether the region need to be refreshed is the boolean
value returned by the evaluation of RefreshCondition. For more
information, see Section 17.5.2, "What You May Need to Know About
Refreshing an ADF Region".

Refreshing an ADF Region

Using Task Flows as Regions 17-13

An ADF Region in an inactive state cannot invoke a task flow and returns a null value
for the ID of the referenced task flow to the parent page.

17.5.1 How to Configure the Refresh of an ADF Region
You set values for the task flow binding of the task flow associated with the ADF
Region to determine when an ADF Region switches from an inactive to an active state
and to determine when an ADF Region refreshes.

Before you begin:
It may be helpful to understand the requirements for a bounded task flow that you use
in an ADF region. For more information, see Section 17.5, "Refreshing an ADF Region."

You may also find it helpful to understand functionality that can be added using other
task flow features and ADF region features. For more information, see Section 17.1.3,
"Additional Functionality for Task Flows that Render in ADF Regions."

To configure the refreshing of an ADF Region:
1. In the Application Navigator, select the page that contains the ADF Region,

right-click and choose Go to Page Definition.

2. In the page definition file, expand the Model view and select the task flow binding
in the Executables section, as illustrated in Figure 17–6.

Figure 17–6 Task Flow Binding

3. In the Property Inspector, select a value from the dropdown list beside the Refresh
property, as described in the following list:

■ default: refresh the ADF Region once when the page that hosts the ADF
Region appears or when the EL expression you set as a value for the
RefreshCondition property in step 4 returns true.

■ ifNeeded: refresh the ADF Region if the value of a task flow binding
parameter changes. Do not set a value for the RefreshCondition property in
step 4 if you select this value.

4. If you selected default as the value for the Refresh property, select Edit from the
dropdown list beside the RefreshCondition property to invoke the Expression
Builder and write an EL expression that returns a boolean value at runtime. If the
EL expression returns true, the ADF Region refreshes.

Refreshing an ADF Region

17-14 Fusion Developer's Guide for Oracle Application Development Framework

5. In the Property Inspector, select a value from the dropdown list beside the
activation property, as described in the following list:

■ conditional: activates the ADF region if the EL expression set as a value for
the task flow binding active property returns true.

■ deferred: select this option if your application uses Facelets XHTML pages in
the view layer and you want to activate the ADF region when a Facelets
XHTML page first requests a viewID. If your application uses JSP technology
in the view layer, selecting this option has the same effect as selecting
immediate (the ADF region activates immediately) provided that the parent
component for the ADF region is not a popup or panelTabbed component
that has its childCreation attribute set to deferred. If this latter scenario
occurs, the parent component (popup or panelTabbed) determines behavior.

This option is recommended if your application uses Facelets XHTML pages.
For more information about Facelets with ADF Faces, see the "Getting Started
with ADF Faces" chapter in the Oracle Fusion Middleware Web User Interface
Developer's Guide for Oracle Application Development Framework.

■ immediate: activates the ADF region immediately. This is the default value.

The value that you select in the dropdown list determines when an ADF region
switches from an inactive to an active state. An ADF region must have an active
state before it can invoke a task flow.

6. If you selected conditional as the value for the activation property, select Edit
from the dropdown list beside the active property to invoke the Expression
Builder and write an EL expression that returns a boolean value at runtime. If the
EL expression returns true, the ADF Region invokes the task flow.

17.5.2 What You May Need to Know About Refreshing an ADF Region
An ADF region initially refreshes when the parent JSF page on which the region is
located first displays. During the initial refresh, any ADF region task flow binding
parameter values are passed in from the parent page. The parameter values are used to
display the initial page fragment within the ADF region. If the bounded task flow
relies on input parameter values that are not available when the page is first created,
make sure that your task flow behaves correctly if the input parameter values are null
by, for example, using a NullPointerException object. Alternatively (or
additionally), make sure that the task flow does not activate until the input parameters
become available by configuring the task flow binding’s active property.

An ADF region task flow binding can be refreshed again based on one of the following
task flow binding attributes:

■ Neither Refresh or RefreshCondition attributes are specified (default)

If neither the Refresh nor RefreshCondition task flow binding attribute is
specified, the ADF Region is refreshed only once at the time the parent page is first
displayed unless you configure a value for the task flow binding’s active
property.

■ RefreshCondition="#{EL.expression}"

The ADF region is refreshed a single time when its RefreshCondition evaluates
true. The RefreshCondition must evaluate to a boolean value.

At the time the RefreshCondition is evaluated, if the variable bindings is
used within the EL Expression, the context refers to the binding container of the
parent page, not the page fragment displayed within the ADF region.

Configuring Activation of an ADF Region

Using Task Flows as Regions 17-15

RefreshCondition is independent of the change of value of binding
parameters. If the task flow binding parameters do not change, nothing within the
ADF region will change.

■ Refresh="ifNeeded"

Any change to a task flow binding parameter value causes the ADF region to
refresh.

If the ADF region task flow binding does not have parameters,
Refresh="ifNeeded" is equivalent to not specifying the Refresh attribute.

If you set Refresh to ifNeeded, the RefreshCondition attribute should not
be specified.

Refresh="ifNeeded" is not supported if you pass parameters to the task flow
binding using a dynamic parameter map. You must instead use the
RefreshCondition="#{EL.Expression}".

For more information about specifying parameter values using a parameter map,
see Section 17.4, "Specifying Parameters for ADF Regions Using Parameter Maps."

The RefreshCondition and Refresh properties are mutually exclusive. The
Refresh="ifNeeded" property takes precedence over RefreshCondition. If the
bindings variable is used within the EL expression at the time RefreshCondition is
evaluated, the context refers to the binding container of the parent page, not the page
fragment displayed within the ADF region. The expression is evaluated during the
PrepareRender phase of the ADF page lifecycle. For more information, see
Chapter 21, "Understanding the Fusion Page Lifecycle".

Example 17–8 contains a sample task flow binding located within the page definition
of a page on which an ADF region has been added.

Example 17–8 Refresh Option Specified in ADF Region Binding

<taskFlow id="Department1" taskFlowId="/WEB-INF/Department#Department"
 Refresh="ifNeeded"
 xmlns="http://xmlns.oracle.com/adf/controller/binding">
 <parameters>
 <parameter id="DepartmentId" value="#{bindings.DepartmentId.inputValue}"
 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
 </parameters>
</taskFlow>

You do not need to refresh an ADF region to refresh the data controls inside the ADF
region. During the ADF lifecycle, the refresh events telling the iterators to update will
be propagated to the binding container of the current page of the ADF region.

17.6 Configuring Activation of an ADF Region
You can configure when an ADF region activates. This determines when the task flow
contained in the ADF region activates. Configuring the activation of ADF regions can
optimize the performance of a Fusion web application's page. For example, a page that
contains 5 ADF regions may reference 5 task flows. You may not want these 5 task
flows to execute simultaneously when the Fusion web application page loads so you
configure an activation property to determine when a task flow executes.

Configuring Activation of an ADF Region

17-16 Fusion Developer's Guide for Oracle Application Development Framework

17.6.1 How to Configure Activation of an ADF Region
You configure the activation property for the task flow binding associated with the
ADF region to determine when to activate the ADF region.

Before you begin:
It may be helpful to understand the configuration options for activating an ADF
region. For more information, see Section 17.6, "Configuring Activation of an ADF
Region."

You may also find it helpful to understand functionality that can be added using other
task flow features and ADF region features. For more information, see Section 17.1.3,
"Additional Functionality for Task Flows that Render in ADF Regions."

To configure the activation of an ADF Region:
1. In the Application Navigator, select the page that contains the ADF region(s),

right-click and choose Go to Page Definition.

2. In the page definition file, expand the Model view and select the task flow binding
in the Executables section, as illustrated in Figure 17–7.

Figure 17–7 Task Flow Bindings for ADF Region Configured for Activation

3. In the Property Inspector, select a value from the dropdown list beside the
activation property, as described in the following list:

■ conditional: activates the ADF region if the EL expression set as a value for
the task flow binding active property returns true.

■ deferred: select this option if your application uses Facelets XHTML pages in
the view layer and you want to activate the ADF region when a Facelets
XHTML page first requests a viewID. If your application uses JSP technology
in the view layer, selecting this option has the same effect as selecting
immediate (the ADF region activates immediately).

This option is recommended if your application uses Facelets XHTML pages.
For more information about Facelets with ADF Faces, see the "Getting Started
with ADF Faces" chapter in the Oracle Fusion Middleware Web User Interface
Developer's Guide for Oracle Application Development Framework.

■ immediate: activates the ADF region immediately. This is the default value.

The value that you select in the dropdown list determines when an ADF region
switches from an inactive to an active state. An ADF region must have an active
state before it can invoke a task flow.

Configuring Activation of an ADF Region

Using Task Flows as Regions 17-17

4. If you selected conditional as the value for the activation property, select Edit
from the dropdown list beside the active property to invoke the Expression
Builder and write an EL expression that returns a boolean value at runtime. If the
EL expression returns true, the ADF region invokes the task flow. If the EL
expression returns false, the ADF region deactivates a task flow that was active
in the ADF region.

17.6.2 What Happens When You Configure Activation of an ADF Region
The behavior of the ADF region at runtime depends on the options that you set for the
activation property.

Figure 17–8 shows the default behavior where all task flows in ADF regions execute
when the page loads the ADF regions (Tab # 1, Tab # 2, Tab # 3).

Figure 17–8 Default Activation of ADF Regions

Figure 17–9 shows an example where the activation property was set to deferred
and the application uses Facelets. The regions in Tab # 1 and Tab # 2 have an active
state because the end user navigated to these regions. The region in Tab # 3 is inactive.

Figure 17–9 Deferred Activation of ADF Regions

Figure 17–10 shows an example where the activation property was set to
conditional and the active property to an EL expression that returns a boolean
value at runtime. The region in Tab # 1 is in an active state because the EL expression
specified for the active property returns true. The regions in Tab # 2 and Tab # 3 are
inactive because the EL expression specified for the active property returns false.

Note that the following events occur if a region deactivates a task flow (the value
returned by the active property changes from true to false):

■ A task flow with an active transaction rolls back the transaction.

For more information about transaction options in task flows, see Section 18.4,
"Managing Transactions."

Navigating Outside an ADF Region’s Task Flow

17-18 Fusion Developer's Guide for Oracle Application Development Framework

■ If a task flow has a data control frame with a data-control-scope value of
isolated, the task flow releases the data control frame and any data controls in
the data control frame.

For more information about data controls, see Section 18.3, "Sharing Data Controls
Between Task Flows."

■ ADF Controller releases the view port data structures for the region (including
pageFlow and view scopes).

For more information about view ports, see Section 17.1.3.2, "View Ports and ADF
Regions." For more information about memory scopes, see Section 14.2.4, "What
You May Need to Know About Memory Scope for Task Flows."

Figure 17–10 Conditional Activation of ADF Regions

17.7 Navigating Outside an ADF Region’s Task Flow
A bounded task flow running in an ADF region may need to trigger navigation of its
parent view activity or to navigate to the root page of its application. The parent action
activity exposes properties (parent-outcome and root-outcome) that you
configure if you want to implement either of these use cases.

For example, you might specify a value for parent-outcome if you have a page that
displays employee information and an ADF region that contains an enroll button for
an employee. After the enroll page completes and the ADF region returns, the
employee information page refreshes with the next employee.

17.7.1 How to Trigger Navigation Outside of an ADF Region’s Task Flow
You add a parent action activity to the bounded task that runs in the ADF region and
configure it so that it navigates to the parent’s view activity.

Before you begin:
It may be helpful to understand the configuration options for activating an ADF
region. For more information, see Section 17.6, "Configuring Activation of an ADF
Region."

You may also find it helpful to understand functionality that can be added using other
task flow features and ADF region features. For more information, see Section 17.1.3,
"Additional Functionality for Task Flows that Render in ADF Regions."

Note: An ADF region does not maintain state when you navigate
away from the region.

Navigating Outside an ADF Region’s Task Flow

Using Task Flows as Regions 17-19

To trigger navigation outside of an ADF region’s task flow:
1. In the Application Navigator, double-click the XML file for the bounded task flow

that runs in the ADF region.

2. In the ADF Task Flow page of the Component Palette, select Parent Action and
drag it to the bounded task flow.

3. Select the parent action activity in the diagram for the bounded task flow.

4. In the Property Inspector, choose the appropriate option:

■ Parent Outcome: enter a literal value or write an EL expression that returns an
outcome so that the parent action activity navigates to the parent view activity.
The outcome is then used to navigate the parent view activity's task flow
rather than navigating the ADF region's bounded task flow.

The parent view activity’s task flow should contain a control flow case or
wildcard control flow rule that accepts the value you specify for
parent-outcome.

■ Root Outcome: enter a literal value or write an EL expression that returns an
outcome so that the parent action activity navigates to the root page of the
application.

5. (Optional) In the Outcome field, enter a literal value that specifies an outcome for
control flow within the ADF region after the parent action activity adds
parent-outcome or root-outcome to the appropriate queue.

Specifying an outcome element is useful in cases where the parent view activity
or root page does not navigate as a result of the parent-outcome or
root-outcome sent by the parent action activity. In addition, the ADF region
should not continue to display the same view. If you do not specify a value for
outcome, the ADF region's viewId remains unchanged.

17.7.2 What Happens When You Configure Navigation Outside a Task Flow
At design time, JDeveloper writes entries to the source file for the bounded task flow
based on the property values you set for the parent action activity. Example 17–9
shows sample entries that JDeveloper generates when you write a literal value for the
Parent Outcome and Outcome properties of the parent action activity.

Example 17–9 Metadata for a Parent Action Activity with a Parent Outcome

<parent-action id="parentAction1">
 <parent-outcome>parent_outcome</parent-outcome>
 <outcome id="__2">outcome</outcome>
 </parent-action>

Example 17–10 shows sample entries that JDeveloper generates when you write a
literal value for the Root Outcome and Outcome properties of the parent action
activity.

Example 17–10 Metadata for a Parent Action Activity with a Root Outcome

<parent-action id="parentAction1">
 <root-outcome>root_outcome</root-outcome>
 <outcome id="__2">outcome</outcome>

Note: Parent Outcome and Root Outcome are mutually exclusive.

Creating ADF Dynamic Regions

17-20 Fusion Developer's Guide for Oracle Application Development Framework

</parent-action>

At runtime, the bounded task flow navigates to its parent view activity or the root
page of the Fusion web application depending on the property that you configured for
the parent action activity.

17.8 Creating ADF Dynamic Regions
An ADF dynamic region is an ADF region where the task flow binding dynamically
determines the value of its taskFlowId attribute at runtime. This allows the Fusion
web application to determine which bounded task flow to execute within the ADF
dynamic region based on the result of evaluation of the task flow binding’s
taskFlowId attribute.

Figure 17–11 shows a runtime example from the Fusion Order Demo application
where the register.jspx page renders a different registration task flow in its center
facet in response to the command component button that the end user clicks. For
example, if the end user clicks Register as an employee the Fusion Order Demo
application renders the employee-registration-task-flow in the ADF dynamic
region.

At runtime, the ADF dynamic region swaps the task flows that it renders during the
Prepare Render lifecycle phase. To give components from a previous task flow the
opportunity to participate smoothly in the lifecycle phases, do not navigate off the
regionModel until the JSF Invoke Application lifecycle phase. It is good practice,
therefore, not to navigate a task flow in a dynamic region in response to contextual
events. For more information about lifecycle phases, see Chapter 21, "Understanding
the Fusion Page Lifecycle," and for more information about contextual events, see
Section 28.7, "Creating Contextual Events."

Figure 17–11 Customer Registration Task Flow in an ADF Dynamic Region

You create an ADF dynamic region by dragging and dropping a bounded task flow to
the page where you want to render the ADF dynamic region. The view activities in the
bounded task flow must be associated with page fragments (.jsff).

If you attempt to drag and drop a bounded task flow that is associated with pages
rather than page fragments, JDeveloper does not display the context menu that allows
you to create an ADF dynamic region. You can convert a bound task flow that uses

Creating ADF Dynamic Regions

Using Task Flows as Regions 17-21

pages to use page fragments. For more information, see Section 14.5.3, "How to
Convert ADF Bounded Task Flows."

After you create an ADF dynamic region, you can add additional bounded task flows
to the dynamic region by creating ADF dynamic region links, as described in
Section 17.9, "Adding Additional Task Flows to an ADF Dynamic Region."

17.8.1 How to Create an ADF Dynamic Region
Drag and drop bounded task flows to the page where you want to render the ADF
dynamic region.

Before you begin:
It may be helpful to understand the configuration options available to you when
creating an ADF dynamic region. For more information, see Section 17.8, "Creating
ADF Dynamic Regions."

You may also find it helpful to understand other functionality that can be added using
other task flow and ADF region features. For more information, see Section 17.1.3,
"Additional Functionality for Task Flows that Render in ADF Regions."

To create an ADF dynamic region:
1. In the Application Navigator, select and open the JSF page where you want to

create the ADF dynamic region.

2. Drag and drop the first bounded task flow onto the JSF page.

3. From the context menu that JDeveloper displays, choose Create > Dynamic
Region.

4. Choose the appropriate option in the Choose Managed Bean for Dynamic Region
dialog that JDeveloper displays:

■ If you want an existing managed bean to store the bounded task flow’s ID,
select an existing managed bean from the Managed Bean dropdown list.

The managed bean passes the value of the bounded task flow’s ID into the
task flow binding of the ADF dynamic region.

■ If no managed bean exists for the page, click the Add icon next to the
Managed Bean dropdown list to create a new one. Enter values in the dialog
that appears as follows:

a. Bean Name: Enter a name for the new managed bean. For example, enter
DynamicRegionBean.

b. Class Name: Enter the name of the new managed bean class.

c. Package: Enter the name of the package that is to contain the managed
bean or browse to locate it.

d. Extends: Enter the name of the Java class that the managed bean extends.
The default value is java.lang.Object.

e. Scope: This field is read-only and its value is set to backingBean. For
more information about the memory scope for managed beans, see
Section 14.2.4, "What You May Need to Know About Memory Scope for
Task Flows."

f. Click OK to close the dialogs where you configure the managed bean.

Creating ADF Dynamic Regions

17-22 Fusion Developer's Guide for Oracle Application Development Framework

5. Choose the appropriate option in the Edit Task Flow Binding dialog that
JDeveloper displays:

■ Click OK if you do not want specify input parameters or an input parameter
map for the ADF dynamic region.

■ Specify input parameters for the ADF dynamic region.

For more information, see Section 17.3, "Specifying Parameters for an ADF
Region."

Figure 17–12 shows the Edit Task Flow Binding dialog that JDeveloper displays
after you configure a managed bean.

Figure 17–12 Edit Task Flow Binding Dialog for an ADF Dynamic Region

6. Click OK.

17.8.2 What Happens When You Create an ADF Dynamic Region
When you drop a bounded task flow onto a JSF page to create an ADF dynamic
region, JDeveloper adds an af:region tag to the page. The af:region tag contains
a reference to a task flow binding. Example 17–11 shows a sample of the metadata that
JDeveloper adds to the JSF page.

Example 17–11 Metadata Added to a JSF Page to Create an ADF Dynamic Region

<af:region value="#{bindings.dynamicRegion1.regionModel}" id="r1"/>

JDeveloper also adds a task flow binding to the page definition file of the page that
hosts the ADF dynamic region. Example 17–12 shows a sample of the metadata that
JDeveloper adds. The task flow binding provides a bridge between the ADF dynamic
region and the bounded task flow. It binds the ADF dynamic region to the bounded
task flow and maintains all information specific to the bounded task flow.

Note: You can write an EL expression that references a list of input
parameters specified in a managed bean using the Input Parameters
Map field of the Edit Task Flow Binding dialog. For more information
about implementing this functionality, see Section 17.4, "Specifying
Parameters for ADF Regions Using Parameter Maps."

Adding Additional Task Flows to an ADF Dynamic Region

Using Task Flows as Regions 17-23

Example 17–12 Metadata Added to Page Definition to Create a Task Flow Binding

<taskFlow id="dynamicRegion1"
 taskFlowId="${backingBeanScope.ManagedBeanName.dynamicTaskFlowId}"
 activation="deferred"
 xmlns="http://xmlns.oracle.com/adf/controller/binding"/>

The taskFlowId attribute in the task flow binding metadata specifies the managed
bean that determines at runtime what bounded task flow to associate with the ADF
dynamic region. JDeveloper creates this managed bean or modifies an existing
managed bean to store this data. Example 17–13 shows extracts of the code that
JDeveloper writes to the managed bean.

Example 17–13 Managed Bean Entries to Retrieve Bounded Task Flow for an ADF
Dynamic Region

import oracle.adf.controller.TaskFlowId;
 ...
 private String taskFlowId = "/directoryPath/toTaskFlow";
 ...
 public TaskFlowId getDynamicTaskFlowId() {
 return TaskFlowId.parse(taskFlowId);
 }
...

At runtime, the managed bean stores the value of the bounded task flow’s ID
(taskFlowId) that displays inside the ADF dynamic region. The managed bean
swaps the different bounded task flows into the task flow binding of the ADF dynamic
region.

When an ADF dynamic region reinitializes, the Fusion web application must
reinitialize the task flow binding associated with the ADF dynamic region. This
includes evaluating if there are new input parameters and input parameter values to
pass to the ADF dynamic region.

17.9 Adding Additional Task Flows to an ADF Dynamic Region
An ADF dynamic region link swaps a bounded task flow for another bounded task
flow within an ADF dynamic region. An end user clicks a command component (for
example, a button or a link) to update the ADF dynamic region with the new bounded
task flow.

For example, a bounded task flow in the ADF dynamic region displays general
information about an employee such as an ID and photo. When the end user clicks a
link command component labeled Details, the ADF dynamic region updates with a
table containing more information about the employee from another bounded task
flow. The end user’s action (clicking the link) invokes a method on the ADF dynamic
region’s managed bean. The value of the new bounded task flow is passed to the
method, and the ADF dynamic region refreshes with the new bounded task flow. The
new bounded task flow now displays within the ADF dynamic region.

By default, a ADF dynamic region link swaps another bounded task flow in for the
original, but cannot swap back to the original. To toggle back to the original bounded
task flow, you could add a second ADF dynamic region link on the page that, when
clicked, swaps the current task flow back to the original one.

You can add an ADF dynamic region link if you already have at least one ADF
dynamic region on a page and are adding a new bounded task flow as an ADF
dynamic region to the same page. After you drop the bounded task flow on the page

Adding Additional Task Flows to an ADF Dynamic Region

17-24 Fusion Developer's Guide for Oracle Application Development Framework

and choose to create an ADF dynamic region link, a menu displays all of the dynamic
regions currently on the page, as shown in Figure 17–13.

JDeveloper displays a list of the current dynamic regions in a document when you
choose Dynamic Region Link from the menu that appears after you drag and drop a
bounded task that you want to add as an option to an existing dynamic region in the
document, as shown in Figure 17–13.

Figure 17–13 ADF Dynamic Region Link Menu

Use this menu to select the ADF dynamic region within which you want to display the
contents of the bounded task flow.

17.9.1 How to Create an ADF Dynamic Region Link
You drag and drop a bounded task flow to a page that already contains an ADF
dynamic region and you select Dynamic Region Link on the context menu that
JDeveloper displays to view a list of ADF dynamic regions to which you can create a
link.

Before you begin:
It may be helpful to understand the configuration options required before you attempt
to create an ADF dynamic region link. For more information, see Section 17.9, "Adding
Additional Task Flows to an ADF Dynamic Region."

You may also find it helpful to understand functionality that can be added using other
task flow and ADF region features. For more information, see Section 17.1.3,
"Additional Functionality for Task Flows that Render in ADF Regions."

To create an ADF dynamic region link:
1. In the Application Navigator, select and open the JSF page where you want to

create the ADF dynamic region link.

This procedure assumes that you have already added at least one ADF dynamic
region to the JSF page that you open. For information about adding an ADF
dynamic region to a JSF page, see Section 17.8, "Creating ADF Dynamic Regions."

2. Drag a bounded task flow and drop it anywhere on the page.

The view activities of the bounded task flow must be associated with page
fragments You can convert a bounded task flow that uses pages to use page

Tip: You can use the values in the dynamic region link in other UI
components. For example, you could create a selection list in which
each of the items in the list links to a different bounded task flow. All
of the linked bounded task flows would display in the same dynamic
region. The links perform a method in the class behind the managed
bean created to swap the bounded task flow it displays.

Adding Additional Task Flows to an ADF Dynamic Region

Using Task Flows as Regions 17-25

fragments. For more information, Section 14.5.3, "How to Convert ADF Bounded
Task Flows.".

3. From the context menu that JDeveloper displays, choose Dynamic Region Link.

A menu displays a list of all ADF dynamic regions that have already been added
to the page.

4. Select the name of the ADF dynamic region in which you want to display the
contents of the bounded task flow.

5. Click OK.

17.9.2 What Happens When You Create an ADF Dynamic Region
JDeveloper adds a command link to the page, as shown in Example 17–14. JDeveloper
also updates the managed bean for the ADF dynamic region and updates the
corresponding task flow binding with any new parameters.

Example 17–14 Dynamic Region Link

<af:commandLink text="region2" action="#{RegionBean.region2}"
 id="dynamicRegionLink1"/>

Adding Additional Task Flows to an ADF Dynamic Region

17-26 Fusion Developer's Guide for Oracle Application Development Framework

18

Creating Complex Task Flows 18-1

18Creating Complex Task Flows

This chapter describes how to use advanced features of ADF task flows in an ADF
application.

This chapter includes the following sections:

■ Section 18.1, "Introduction to Complex Task Flows"

■ Section 18.2, "Using Initializers and Finalizers"

■ Section 18.3, "Sharing Data Controls Between Task Flows."

■ Section 18.4, "Managing Transactions"

■ Section 18.5, "Reentering a Bounded Task Flow"

■ Section 18.6, "Executing a Bounded Task Flow Directly From a JSF Page"

■ Section 18.7, "Handling Exceptions in Task Flows"

■ Section 18.8, "Configuring Your Application to Use Save Points"

■ Section 18.9, "Using Save Points in Task Flows"

■ Section 18.10, "Creating a Train"

■ Section 18.11, "Running Multiple Task Flows"

■ Section 18.12, "Creating a Task Flow Template"

■ Section 18.13, "Creating a Page Hierarchy"

■ Section 18.14, "Using BPEL with Task Flows"

18.1 Introduction to Complex Task Flows
After creating a basic unbounded or bounded task flow and adding task flow activities
to it, you can perform specialized tasks such as transaction management and reentry.

For basic information about using task flow activities, see Chapter 15, "Working with
Task Flow Activities".

If you want to work with ADF regions, see Chapter 17, "Using Task Flows as Regions".

To work with parameters, see Chapter 16, "Using Parameters in Task Flows".

18.2 Using Initializers and Finalizers
An initializer is custom code that is invoked when a bounded task flow is entered. A
finalizer is custom code that is invoked when a bounded task flow is exited via a task
flow return activity or because an exception occurred. The finalizer is a method on a

Sharing Data Controls Between Task Flows

18-2 Fusion Developer's Guide for Oracle Application Development Framework

managed bean. Common finalizer tasks include releasing all resources acquired by the
bounded task flow and performing cleanup before exiting the task flow.

You specify both the initializer and the finalizer as an EL expression for a method on a
managed bean, for example:

#{pageFlowScope.modelBean.releaseResources}

There are two techniques for running initializer code at the beginning of the bounded
task flow, depending on whether or not the task flow may be reentered via a browser
back button:

■ No reentry via back button expected: Designate a method call activity as the
default activity (first to execute) in the bounded task flow. The method call activity
calls a custom method containing the intializer code. For more information, see
Section 15.5, "Using Method Call Activities" and Section 22.4.5, "What You May
Need to Know About the Browser Back Button and Navigating Through Records".

■ Back button reentry possible: Specify an intializer method using an option on the
bounded task flow metadata. For more information, see Section 14.2, "Creating a
Task Flow". Use this technique if you expect that a user may reenter the task flow
using a browser back button. In such a case, the designated default activity for the
bounded task flow may never be called, but a method designated using the
Initializer method will.

18.3 Sharing Data Controls Between Task Flows
You can share data controls between task flows. A called bounded task flow can
reference and modify the value of the data control owned by its calling task flow. This
allows the called task flow to share the same data control instance as its parent. Both
task flows look in the same place, the data control frame, to get the data control
instance.

A data control frame is the mechanism that associates one or more task flows and their
data controls. Task flows making use of the task flow transaction management options
when committing or rolling back use the data control frame to know which data
controls to perform the transaction operations on. A data control frame is created at
runtime for your application’s unbounded task flow and any bounded task flow with
a data-control-scope value of isolated. When a task flows specifies a
data-control-scope value of shared, the called task flow uses the data control
frame of the calling task flow rather than create its own. This allows the called task
flow to share data control instances attached to the data control frame. Alternatively, if
a called task flow specifies a data-control-scope value of isolated, a new data
control frame is created and a new instance of any data controls used by the bounded
task flow will be attached to the newly-created data control frame.

To specify whether data controls are shared between the calling and called task flows,
you must set a data-control-scope value of either shared or isolated on the
called bounded task flow. The default value is shared.

If data-control-scope is set to shared on both the calling and called bounded task
flow, the data control frame used will be the one for the calling task flow. In
Example 18–1, the data control frame for Bounded Task Flow A will also be used by
both B and C.

If data-control-scope is set to isolated on both the calling and called bounded
task flow, the task flows both use their own data control frames.

Sharing Data Controls Between Task Flows

Creating Complex Task Flows 18-3

Example 18–1 Sharing Data Controls

Bounded Task Flow A - isolated
 Bounded Task Flow B - shared
 Bounded Task Flow C - shared

A caller of a bounded task flow can share its caller's data controls to any depth. For
example, Task Flow A can share data controls with called bounded Task Flow B.
Called Task Flow C can share the same data controls.

A bounded task flow that specifies data-control-scope as shared and is used
within an ADF region shares the data controls of the task flow in the parent view port.
For more information about view ports, see Section 17.1.3.2, "View Ports and ADF
Regions."

A new data control frame is created for the unbounded task flow in the call stack of
each RootViewPort. Each browser window is isolated from all other browser
windows within the same HTTP session. The browser windows do not share data
controls. However, if an end user opens a new browser window, the two browser
windows have the same server-side state and share data controls.

For performance reasons, data controls are not instantiated until needed.

18.3.1 How to Share a Data Control Between Task Flows
You share data controls between task flows by specifying a value for the
data-control-scope element of the called task flow.

Before you begin:
■ Create a calling and called task flow

To share a data control between task flows:
1. In the Application Navigator, double-click the called task flow.

2. In the Property Inspector, expand the Behavior section and select the Share data
controls with calling task flow checkbox.

18.3.2 What Happens When You Share a Data Control Between Task Flows
JDeveloper writes an entry in the source file for the called task flow when you select
the Share data controls with calling task flow checkbox, as illustrated in
Example 18–2.

At runtime, the called task flow shares data controls with the calling task flow.

Example 18–2 Metadata to Share Data Controls Between Task Flows

<task-flow-definition id="task-flow-definition">
 ...
 <data-control-scope>
 <shared/>
 </data-control-scope>
 ...

Note: After you select the Share data controls with calling task flow
checkbox, you may need to configure transaction options for the task
flow. For more information, see Section 18.4.3, "What You May Need
to Know About Sharing Data Controls and Managing Transactions."

Managing Transactions

18-4 Fusion Developer's Guide for Oracle Application Development Framework

 </task-flow-definition>

18.4 Managing Transactions
A transaction is a persisted collection of work that can be committed or rolled back
together as a group. You can use a bounded task flow to represent a transaction and to
declaratively manage transaction boundaries. In the Fusion Order Demo application,
the customer registration and employee registration task flows are both implemented
with the use of task flow return activities. The Cancel button implements rollback in
the task flows. The Register button on the reviewCustomerInfo.jsff and
reviewEmployeeInfo.jsff page fragment files implements commit functionality.

An end user can navigate from the shopping cart to initiate a backorder request for an
out-of-stock item. The backorder request application is implemented as a bounded
task flow that initiates a new transaction upon entry.

Transaction options on the called bounded task flow specify whether a called bounded
task flow should join an existing transaction, create a new one, or create a new one
only if there is no existing transaction.

If the called bounded task flow is able to start a new transaction (based on the
transaction option that you selected), you can specify whether the transaction will
be committed or rolled back when the task flow returns to its caller. The commit and
rollback options are set on the task flow return activity that returns control back to the
calling task flow. The same task flow that starts a transaction must also resolve the
transaction.

In a called bounded task flow, you can specify two different return task flow activities
that result in either committing or rolling back a transaction in the called bounded task
flow. Each of the task flow return activities passes control back to the same calling task
flow. The difference is that one task flow return activity specifies the commit option,
while the other specifies the rollback option. As shown in Figure 18–1, if transaction
processing successfully completes, control flow passes to the success task flow return
activity, which specifies options to commit the transaction. If the transaction is
cancelled before completion, the cancel task flow activity specifies options to roll back
the transaction.

Figure 18–1 Task Flow Return Activities in Called Bounded Task Flow

If no transaction option is specified, a transaction is not started on entry of the called
bounded task flow. A runtime exception is thrown if the bounded task flow attempts
to access transactional services.

Managing Transactions

Creating Complex Task Flows 18-5

Use the restore-save-point option on the task flow return activity if you want to
discard the changes an end user makes within a called bounded task flow when the
called bounded task flow exits. ADF Controller rolls back to the previous ADF Model
save point that was created when the bounded task flow was entered. The
restore-save-point option applies only to cases when a bounded task flow is
entered by joining an existing transaction (either the
requires-existing-transaction or requires-transaction option is also
specified) and a save point is created upon entry.

If you use the task flow transaction management features that commit and rollback the
data controls associated with the data control frame of the current task flow, you must
use task flow return activities with their End Transaction property set to commit or
rollback, or programatically commit the associated data control frame. Alternatively
if you use the <No Controller Transaction> setting or you only want to commit or
rollback one data control, use the associated commit or rollback operations from the
Data Control panel or programatically execute the associated commit and rollback
bindings.

18.4.1 How to Enable Transactions in a Bounded Task Flow
Define transaction options on a bounded task flow that is called by another task flow.
Add a task flow return activity on the called bounded task flow that returns control to
the task flow that calls the bounded task flow.

To enable a bounded task flow to run as a transaction:
1. In the overview editor for the called bounded task flow, click Behavior and

expand the Transaction section.

2. Choose one of the following from the dropdown list:

■ <No Controller Transaction>: The called bounded task flow does not use the
task flow transaction management facilities to commit or rollback all data
controls attached to the task flow and associated data control frame. Instead,
you must individually commit and rollback data controls attached to the task
flow.

■ Always Use Existing Transaction: When called, the bounded task flow
participates in an existing transaction already in progress.

■ Use Existing Transaction If Possible: When called, the bounded task flow
either participates in an existing transaction if one exists, or starts a new
transaction upon entry of the bounded task flow if one doesn't exist.

■ Always Begin New Transaction: A new transaction starts when the bounded
task flow is entered, regardless of whether or not a transaction is in progress.
The new transaction completes when the bounded task flow exits.

3. Optionally, deselect the Share data controls with calling task flow checkbox so
that data controls are not shared with the calling task flow if you chose one of the
following options in step 2:

Note: After choosing a transaction option, you may also need to
select the Share data controls with calling task flow option for the
bounded task flow to determine whether there are any interactions
between the options. For more information, see Section 18.4.3, "What
You May Need to Know About Sharing Data Controls and Managing
Transactions."

Managing Transactions

18-6 Fusion Developer's Guide for Oracle Application Development Framework

■ Use Existing Transaction If Possible

■ Always Begin New Transaction

The default behavior is to share data controls. For more information, see
Section 18.4.3, "What You May Need to Know About Sharing Data Controls and
Managing Transactions."

4. Optionally, select the No save point on task flow entry checkbox to prevent the
creation of an ADF Model save point on task flow entry if you chose one of the
following options in step 2:

■ Always Use Existing Transaction

■ Use Existing Transaction If Possible

An ADF Model save point is a saved snapshot of the ADF Model state. Selecting
the No save point on task flow entry checkbox means that overhead associated
with a save point is not created for the transaction.

5. Select the task flow return activity in the called bounded task flow.

6. In the Property Inspector, expand the Behavior section.

7. If the called bounded task flow supports creation of a new transaction (bounded
task flow specifies Use Existing Transaction If Possible or Always Begin New
Transaction options), select one of the following in the End Transaction dropdown
list:

■ commit: Select to commit the existing transaction to the database.

■ rollback: Select to roll back a new transaction to its initial state on task flow
entry. This has the same effect as cancelling the transaction.

8. In the Restore Save Point dropdown list, select true if you want changes the user
makes within the called bounded task flow to be discarded when the task flow
exits. The save point that was created upon task flow entry will be restored.

18.4.2 What Happens When You Specify Transaction Options
Example 18–3 shows the metadata for transaction options on a called bounded task
flow. The <new-transaction> element indicates that a new transaction always
starts when the called bounded task flow is invoked.

Example 18–3 Called Bounded Task Flow Metadata

 <task-flow-definition id="trans-taskflow-definition">
 <default-activity>taskFlowReturn1</default-activity>
 <transaction>
 <new-transaction/>
 </transaction>
 <task-flow-return id="taskFlowReturn1">
 <outcome>
 <name>success</name>
 <commit/>
 </outcome>
 </task-flow-return>
 </task-flow-definition>

Example 18–3 also shows the metadata for transaction options on the task flow return
activity on the called task flow. The <commit/> element commits the existing
transaction to the database. The <outcome> element specifies a literal outcome, for
example, success, that is returned to the caller when the bounded task flow exits.

Reentering a Bounded Task Flow

Creating Complex Task Flows 18-7

The calling ADF task flow can define control flow rules based on this outcome to For
more information about defining control flow upon return, see Section 15.7, "Using
Task Flow Return Activities."

18.4.3 What You May Need to Know About Sharing Data Controls and Managing
Transactions

Data controls cannot be shared across more than one transaction at the same time. If
your task flow is involved in managing transactions, the value you select for the
data-control-scope option may affect the transaction option settings for a
bounded task flow. Table 18–1 describes how these options interact.

The ADF Model layer exposes the DataControlFrame interface to manage a
transaction in which the data controls within the frame participate. The
DataControlFrame interface exposes methods such as:

■ beginTransaction()

■ commit()

■ rollback()

Similarly, ADF Controller allows a task flow to demarcate a transaction boundary, to
begin a transaction at task flow entry, and to either commit or roll back the transaction
on task flow exit. It does this by invoking methods exposed by the ADF Model layer’s
DataControlFrame interface.

ADF Controller supports the transaction options listed in Table 18–1. The behavior of
these transaction options depends on whether you select or deselect the Share data
controls with calling task flow checkbox (XML element: <data-control-scope>)
in the overview editor for a task flow.

18.5 Reentering a Bounded Task Flow
To deal with cases in which the end user clicks the back button to navigate back into a
bounded task flow that was already exited, you can specify task-flow-reentry
options for the bounded task flow. These options specify whether a page in the
bounded task flow can be reentered.

Upon reentry, bounded task flow input parameters are evaluated using the current
state of the application, not the application state existing at the time of the original
bounded task flow entry.

Table 18–1 Transaction Settings Behavior

Transaction Setting Share Data Control Scope Isolate Data Control Scope

<No Controller Transaction> The DataControlFrame is shared
without the need for an open
transaction on the frame.

A new DataControlFrame is created
without an open transaction.

Always Begin New Transaction

XML element: <new-transaction/>

Begins a new transaction if one is not
already open and throws an exception if
one is already open.

Always begins a new transaction.

Always Use Existing Transaction

XML element:
<requires-existing-transaction/>

Throws an exception if the transaction is
not already open.

Invalid. The checkbox cannot be
deselected.

Use Existing Transaction if Possible

XML element:
<requires-transaction/>

Begins a new transaction if one is not
already open.

Always begins a new transaction.

Reentering a Bounded Task Flow

18-8 Fusion Developer's Guide for Oracle Application Development Framework

18.5.1 How to Set Reentry Behavior
You can set reentry behavior on a bounded task flow.

To set reentry behavior:
1. Open the bounded task flow in the overview editor.

2. Click Behavior.

3. In the Task Flow Reentry list, choose one of the following:

■ reentry-allowed: Reentry is allowed on any view activity within the bounded
task flow.

■ reentry-not-allowed: Reentry of the bounded task flow is not allowed. If you
specify reentry-not-allowed on a bounded task flow, an end user can still
click the browser back button and return to a page within the bounded task
flow. However, if the user does anything on the page such as clicking a button,
an exception (for example, InvalidTaskFlowReentry) is thrown indicating
the bounded task flow was reentered improperly. The actual reentry condition
is identified upon the submit of the reentered page.

You can set up an exception handler to display the exception and route control
flow in order to navigate to the default activity of the called bounded task
flow. If the bounded task flow was not called from another bounded task flow,
a normal web error is posted and handled as specified in the web.xml file.

■ reentry-outcome-dependent: Reentry of a bounded task flow using the
browser back button is dependent on the outcome that was received when the
same bounded task flow was previously exited via task flow return activities.
If specified, any task flow return activities on the called bounded task flow
must also specify either reentry-allowed or reentry-not-allowed to
define outcome-dependent reentry behavior.

If you choose this option, the user can navigate to a task flow using a back
button based solely on how the user originally exited the task flow. For
example, a task flow representing a shopping cart can be reentered if the user
exited by canceling an order, but not if the user exited by completing the order.

18.5.2 How to Set Outcome-Dependent Options
You can set outcome-dependent options on bounded task flows that have specified the
reentry-outcome-dependent option, as described in Section 18.5.1, "How to Set
Reentry Behavior."

To set outcome-dependent options:
1. In the task flow diagram for the bounded task flow, select the task flow return

activity.

Note: Different browsers handle the back button differently. In order
to ensure that back button navigation is properly detected across all
browsers, the view activities within the task flow need to be properly
configured. When a task flows uses the reentry-not-allowed or
reentry-outcome-dependent option, the redirect attribute on
each view activity within the task flow should be set to true. See
Section 15.3, "Using URL View Activities" for more information on
how to configure view activities.

Executing a Bounded Task Flow Directly From a JSF Page

Creating Complex Task Flows 18-9

For information about adding a task flow return activity, see Section 15.7, "Using
Task Flow Return Activities."

2. In the Property Inspector, expand the General section.

3. In the Name field, enter the name of literal outcome, for example, success or
failure.

4. Expand the Behavior section.

5. In the Reentry dropdown list, choose one of the following options:

■ reentry-allowed: Reentry is allowed on any view activity within the bounded
task flow.

■ reentry-not-allowed: Reentry of the bounded task flow is not allowed. If you
specify reentry-not-allowed on a bounded task flow, an end user can still
click the browser back button and return to a page within the bounded task
flow. However, if the user does anything on the page such as clicking a button,
an exception (for example, InvalidTaskFlowReentry) is thrown indicating
the bounded task flow was reentered improperly. The actual reentry condition
is identified upon the submit of the reentered page.

You can set up an exception handler to display the exception and route control
flow in order to navigate to the default activity of the called bounded task
flow. If the bounded task flow was not called from another bounded task flow,
a normal web error is posted and handled as specified in the web.xml file.

18.5.3 What You Should Know About Managed Bean Values Upon Task Flow Reentry
When an end user reenters a bounded task flow using a browser’s back button, and
reentry is allowed, the value of a managed bean is reset to the value of the managed
bean before the end user exited the bounded task flow. The managed bean value is
reset before a view activity in the reentered bounded task flow renders. Any changes
that occur before the reentry of the bounded task flow are lost. To change this
behavior, specify the <redirect> element on the view activity in the reentered
bounded task flow. When the end user reenters the bounded task flow using the back
button, the managed bean has the new value from the parent task flow, not the
original value from the child task flow that is reentered.

18.6 Executing a Bounded Task Flow Directly From a JSF Page
You can drag and drop a bounded task directly from the Application Navigator onto a
JSF page. If the bounded task flow contains view activities that are page fragments,
JDeveloper adds it to the JSF page as an ADF region. For example, the home page of
the Fusion Order demo application contains a bounded task flow that displays a
summary of items that the end user has added to a shopping cart page of the Fusion
Order demo application. All view activities in the bounded task flow are page
fragments, so the bounded task flow will be dropped on the Fusion Order demo
application home page as a region. The contents of the shopping cart summary will
display within a physical region on the home page of the Fusion Order demo
application. For more information, see Chapter 17, "Using Task Flows as Regions".

However, if the bounded task flow contains view activities that are pages, JDeveloper
proposes a choice of adding a task flow call as a button or a link. At runtime, end users
can click the button or link to invoke the bounded task flow.

Handling Exceptions in Task Flows

18-10 Fusion Developer's Guide for Oracle Application Development Framework

To add a bounded task flow containing pages to a JSF page:
1. In the Application Navigator, drag the source file for the ADF bounded task flow

onto the page and drop it where you want to locate the button or link.

You can find task flows in the Application Navigator under the Page Flows or
WEB-INF nodes.

2. Choose Create and either Task Flow Call as Button or Task Flow Call as Link.

As shown in Figure 18–2, the bounded task flow appears on the JSF page as either
a button or link UI component.

Figure 18–2 Button and Link UI Components

18.7 Handling Exceptions in Task Flows
During execution of a task flow, exceptions can occur that may require some kind of
exception handling, for example:

■ A method call activity throws an exception.

■ A custom method you have written as a task flow intializer or finalizer throws an
exception.

■ A user is not authorized to execute the activity.

To handle exceptions thrown from an activity or caused by some other type of ADF
Controller error, you can designate one activity in a bounded or unbounded task flow
as an exception handler.

When a task flow throws an exception, control flow passes to the designated exception
handling activity. For example, the exception handling activity might be a view
activity that displays an error message. Alternatively, the activity might be a router
activity that passes control flow to a method based on an EL expression that evaluates
the type of exception. For example:

 #{someException == "oracle.adf.controller.ControllerException"}

After control flow passes to the exception handling activity, flow from the exception
handling activity uses standard control flow rules. For example, you designate a router
activity as the exception handling activity. At runtime, the task flow passes control to
the exception handling activity (in this example, a router activity) in response to an
exception. In addition to designating the router activity as an exception handler, you
can define task flow control cases that the router invokes based on the type of
exception that it has to handle. This allows you to manage your end user’s application
session gracefully when an exception occurs. For more information, see Section 14.1.3,
"Control Flows."

You can optionally specify an exception handler for both bounded and unbounded
task flows. Each task flow can have only a single exception handler. However, a task
flow called from another task flow can have a different exception handler from that of
the caller. In addition, a region on a page can have a different exception handler from
that of the task flow containing the page. The exception handler activity can be any
supported activity type, for example, a view or router activity.

Handling Exceptions in Task Flows

Creating Complex Task Flows 18-11

If a bounded task flow does not have a designated exception handler activity, control
passes to an exception handler activity in a calling bounded task flow, if there is a
calling task flow and if it contains an exception handler activity. The exception is
propagated up the task flow stack until either an exception handler activity or the
top-level unbounded task flow is reached. If no exception handler is found, the
exception is propagated to the web container.

If a bounded task flow does have a designated exception handler activity, make sure
the exception handler activity leaves the application in a valid state after it handles an
exception. One way to do this is to redirect to a view activity in the same task flow
after the exception handler activity.

18.7.1 How to Designate an Activity as an Exception Handler
You can designate an exception handler activity for a bounded task flow running as an
ADF region. If an exception occurs in the bounded task flow and it is not handled by
the task flow’s exception handler, the exception is not propagated up the task flow
stack of the parent page. Instead, it becomes an unhandled exception.

To designate an activity as an exception handler for a task flow:
1. Right-click the activity in the task flow diagram, and choose Mark Activity >

Exception Handler.

A red exclamation point is superimposed on the activity in the task flow to
indicate that it is an exception handler. Figure 18–3 shows an example.

Figure 18–3 Example of an Activity Designated as an Exception Handler

2. To unmark the activity, right-click the activity in the task flow diagram, and
choose Unmark Activity > Exception Handler.

If you mark an activity as an exception handler in a task flow that already has a
designated exception handler, the old handler is unmarked.

18.7.2 What Happens When You Designate an Activity as an Exception Handler
After you designate an activity to be the exception handling activity for a task flow,
JDeveloper updates the task flow metadata with an <exception-handler>
element that specifies the ID of the activity, as shown in Example 18–4.

Example 18–4 <exception-handler> element

<exception-handler id="__8>activityID</exception-handler>

18.7.3 How to Designate Custom Code as an Exception Handler
Rather than designate a task flow activity as the activity to invoke, you can write
custom code to invoke when a task flow throws an exception. This requires you to:

Handling Exceptions in Task Flows

18-12 Fusion Developer's Guide for Oracle Application Development Framework

■ Write a Java class that extends the class ExceptionHandler from the following
package:

oracle.adf.view.rich.context.ExceptionHandler

■ Register the Java class that you write as a service in the .adf\META-INF directory
of your Fusion web application

Example 18–5 shows custom code that checks if an exception thrown by a task flow
corresponds to a particular type of error message (ADF_FACES-30108). If it is, the
custom code redirects the task flow to the faces/SessionExpired.jspx page.

Example 18–5 Custom Code for an Exception Handler

package oracle.fodemo.frmwkext;

import javax.faces.context.ExternalContext;
import javax.faces.context.FacesContext;
import javax.faces.event.PhaseId;
import oracle.adf.view.rich.context.ExceptionHandler;

public class CustomExceptionHandler extends ExceptionHandler {

 public CustomExceptionHandler() {
 super();
 }

 public void handleException(FacesContext facesContext, Throwable throwable,
 PhaseId phaseId) throws Throwable {

 String error_message;
 error_message = throwable.getMessage();

 if (error_message != null &&
 error_message.indexOf("ADF_FACES-30108") > -1) {
 ExternalContext ectx = facesContext.getExternalContext();
 ectx.redirect("faces/SessionExpired.jspx");
 }

 else {
 super.handleException(facesContext, throwable, phaseId);
 }
 }
}

Before you begin:
It may help to understand other options for handling exceptions in task flows. For
more information, see Section 18.7, "Handling Exceptions in Task Flows."

For information about the APIs that you can use to write custom code, see the
following reference documents:

■ Oracle Fusion Middleware Java API Reference for Oracle ADF Controller

■ Oracle Fusion Middleware Java API Reference for Oracle ADF Faces

You may also find it useful to understand additional functionality that can be added
using task flow features. For more information, see

Handling Exceptions in Task Flows

Creating Complex Task Flows 18-13

To designate custom code as an exception handler:
1. In the Application Navigator, expand the project where you want to write the

custom and navigate to the Application Sources/META-INF node.

2. Create a folder named services under the META-INF node.

3. Create a text file named oracle.adf.view.rich.context.ExceptionHandler in the
services folder.

4. Write the package name and class name of the code custom that you wrote to
handle exceptions in the text file named
oracle.adf.view.rich.context.ExceptionHandler.

For example, if you want to register the custom code in Example 18–5, write the
following:

oracle.fodemo.frmwkext.CustomExceptionHandler

5. Save and close the text file.

18.7.4 What Happens When You Designate Custom Code as an Exception Handler
At runtime, the task flow passes control to the custom code that you specified if the
task flow throws an exception.

18.7.5 What You May Need to Know About Handling Exceptions During Transactions
Designate an exception handling activity for a bounded task flow that is enabled to
run as a transaction. A Fusion web application attempts to commit a transaction if you
set commit as the value for a task flow return activity’s End Transaction property on a
bounded task flow that runs as a transaction. If an exception occurs when the Fusion
web application attempts to commit a transaction, the exception handling activity
receives control and provides the end user with an opportunity to correct the
exception. You can use the exception handling activity (for example, a view activity) to
display a warning message to an end user with information about how to correct the
exception and how to recommit the transaction. For information about enabling a
bounded task flow as a transaction and setting commit as a value for the End
Transaction property, see Section 18.4.1, "How to Enable Transactions in a Bounded
Task Flow."

18.7.6 What You May Need to Know About Handling Validation Errors
For validation errors on a JSF page, you can rely on standard JSF to attach validator
error messages to specific components on a page or to the whole page. A
component-level validator typically attaches an error message inline with the specific
UI component. There is no need to pass control to an exception handler activity.

In addition, your application should define validation logic on data controls that are
executed during the Validate Model Updates phase of the JSF lifecycle. In this way,
data errors are found as they are submitted to the server without waiting until
attempting the final commit.

Validations done during the Validate Model Updates phase typically do not have
direct access to the UI components because the intention is to validate the model after
the model has been updated. These validations are often things like checking to see
whether dependent fields are in sync. In these cases, the error message is usually
attached to the whole page, which this logic can access.

You should attach errors detected during the Validate Model Updates phase to the JSF
page, and call FacesContext.renderResponse(). This signals that following this

Configuring Your Application to Use Save Points

18-14 Fusion Developer's Guide for Oracle Application Development Framework

phase, the current (submitting) page should be rendered showing the attached error
messages. There is no need to pass control to an exception handler activity.

For more information, see Chapter 8, "Implementing Validation and Business Rules
Programmatically".

18.8 Configuring Your Application to Use Save Points
Before you can add save points to a task flow, as described in Section 18.9, "Using Save
Points in Task Flows" and configure related functionality, you need to make sure that
the Fusion web application allows save points. To do this, you define a value for the
<savepoint-datasource> element in the adf-config.xml file to specify the
JNDI name for the data source that contains the save points' database table. You may
also need to run a SQL script (adfc_create_save_point_table.sql), as
described in Section 18.8.3, "What You May Need to Know About the Database Table
for Save Points," to create the database table that stores save points. Once your Fusion
web application starts using save points, you can use another SQL script (adfc_
cleanup_save_point_table.sql) to delete expired save points.

18.8.1 How to Configure Your Fusion Web Application to Use Save Points
You define a value for the <savepoint-datasource> element in your application’s
adf-config.xml file to specify the JNDI name for the data source that contains the
save points' database table. Optionally, you can also specify an expiration time for save
points.

To configure your Fusion web application to allow save points:
1. With the Fusion web application open in JDeveloper, open the Application

Resources pane in the Application Navigator.

2. Expand Descriptors, then expand ADF META-INF.

3. Right-click adf-config.xml and choose Open from the context menu.

4. On the Controller page of the overview editor, write a value for the Data Source
property to specify the JNDI name for the data source that contains the save
points' database table.

For example, write the following:

java:comp/env/jdbc/Connection1DS

where Connection1 is the JDeveloper connection name.

5. Optionally, write a value in seconds for the Expiration property to specify the time
between when a task flow creates a save point and when the save point manager
removes it. The default value is 86400 seconds.

For more information, see Section 18.9.9, "What You May Need to Know About the
Time-to-Live Period for a Save Point."

6. Save the adf-config.xml file.

18.8.2 What Happens When You Configure a Fusion Web Application to Use Save
Points

JDeveloper generates an entry, similar to that illustrated in Example 18–6, in the
adf-config.xml file to specify the JNDI name for the data source that contains the
save points' database table.

Using Save Points in Task Flows

Creating Complex Task Flows 18-15

Example 18–6 Save Point Data Source Definition in adf-config.xml

<adf-controller-config xmlns="http://xmlns.oracle.com/adf/controller/config">
 ...
 <savepoint-datasource>
 java:comp/env/jdbc/Connection1DS
 </savepoint-datasource>
 <savepoint-expiration>
 86399
 </savepoint-expiration>
 </adf-controller-config>

For more information about the adf-config.xml file, see Section A.11,
"adf-config.xml."

18.8.3 What You May Need to Know About the Database Table for Save Points
A database table named ORADFCSAVPT stores save points. If this database table does
not exist, it is created the first time that a save point is created if your Fusion web
application has the necessary permissions to create a database table. If your Fusion
web application does not have the necessary permissions, you or an administrator
with the necessary permissions can use SQL scripts to create and maintain the
ORADFCSAVPT database table. These SQL scripts are:

■ adfc_cleanup_save_point_table.sql

Each save point in the ORADFCSAVPT database table has an expiration date. Use
this script to delete save points that have passed their expiration date.

■ adfc_create_save_point_table.sql

Use this script to create the ORADFCSAVPT database table that stores save points.

You can find these SQL scripts in the following directory of your JDeveloper
installation:

jdev_install\oracle_common\common\sql

18.9 Using Save Points in Task Flows
You can configure a task flow to capture the state of a Fusion web application at a
particular instance creating what is called a save point. This allows you to save
application state if, for example, a user leaves a page without finalizing it. The
application state can be restored at a later point.

Table 18–2 describes what information a save point captures.

Using Save Points in Task Flows

18-16 Fusion Developer's Guide for Oracle Application Development Framework

You add a method call activity to a bounded task flow that invokes a
createSavePoint method to create save points. Later, you use a save point restore
activity to restore application state and data associated with the created save points.

The same save point can be used if a user repeatedly performs a save for later on a task
flow instance that executes in one session within the same browser window. The new
save point overwrites the existing save point when a user performs a save for later
following navigation from page to page in a task flow. For more information about
restoring a save point, see Section 18.9.3, "How to Restore a Save Point."

You can specify the createSavePoint method exposed by the currentViewPort
node of the ADF Controller Objects in the Expression Builder. Alternatively, you can
write a custom method that updates the save point with the values of attributes you
specify in your custom method, as illustrated in Example 18–7.

Example 18–7 Example Custom Method for Creating a Save Point

package viewController;

import java.io.Serializable;

import oracle.adf.controller.ControllerContext;
import oracle.adf.controller.savepoint.SavePointManager;

public class SaveForLater implements Serializable {
 public SaveForLater() {
 super();
 }

 public String saveTaskFlow() {
 ControllerContext cc = ControllerContext.getInstance();
 if (cc != null) {
 SavePointManager mgr = cc.getSavePointManager();

Table 18–2 Saved Application State Information

Saved State
Information Description

User Interface State UI state of the current page, including selected tabs, selected checkboxes, selected table rows, and table
column sort order.

This state assumes the end user cannot select the browser back button on save point restore.

Managed Beans State information saved in several possible memory scopes, including session and page flow scope. The
managed beans must be serializable in order to be saved. If you have page flow scope beans that are not
serializable and you attempt to create a save point, a runtime exception occurs.

Request scope is not supported since its lifespan is a single HTTP request and its lifespan can't be used to
store cross request application state.

Save points will not save and restore application-scoped managed beans since they're not passivated in
failover scenarios. Therefore, the application is always responsible for ensuring that all required
application-scoped state is available.

Potential naming conflicts for managed beans already existing within the session scope at restore time will
not occur because multiple managed beans using the same name should not be implemented within an
application.

Navigation State Task flow call stack, which ADF Controller maintains as one task flow calls another at runtime.

The task flow call stack tracks where the end user is in the application and the navigation path for getting
there. The task flow stack also identifies the starting point of any persisted data transactions originated for
the end user.

ADF Model State Fusion web applications use ADF Model to represent the persisted data model and business logic service
providers. The ADF Model holds any data model updates made from when the current bounded task flow
begins. The model layer determines any limits on the saved state lifetime. For more information, see
Chapter 40, "Application State Management."

Using Save Points in Task Flows

Creating Complex Task Flows 18-17

 if (mgr != null) {
 String id = mgr.createSavePoint();
 System.out.println("Save point is being set " + id);
 ...

The SavePointListener interface exposes methods that notify clients when save
point events occur. The following package contains the SavePointListener
interface:

oracle.adf.controller.savepoint

18.9.1 How to Add a Save Point to a Task Flow
You drag and drop a method call activity to the task flow and configure it to invoke
the createSavePoint method or to invoke a custom method if you created one.

Before you begin:
Using a save point in a Fusion web application requires that you leave the value of the
jbo.locking.mode property set to the default value optimistic. The value
pessimistic causes an old session to lock until the session has timed out. In
pessimistic mode, if you run an application and change data without committing
changes to the database, you may get an error when you create a save point and try to
restore it at a later point. For information about the jbo.locking.mode property, see
Section 40.11.1, "How to Set Applications to Use Optimistic Locking."

To add a save point to a task flow:
1. Open the bounded task flow that you want to configure and navigate to the

diagram editor.

2. In the ADF Task Flow page of the Component Palette, from the Component panel,
drag and drop a Method Call activity onto the diagram.

3. In the Property Inspector, expand the General node and write an EL expression
for the Method property to specify the save point method that the method call
activity invokes.

If you use the Expression Builder to specify the createSavePoint method
exposed by the currentViewPort node of the ADF Controller Objects, the
resulting EL expression is similar to the following:

#{controllerContext.currentViewPort.createSavePoint}

4. Use a control flow to connect the method call activity with other activities in the
bounded task flow.

For more information, see Section 14.3.3, "How to Add Control Flows.".

5. Optionally, configure save point options in the Fusion web application’s
adf-config.xml file to determine, for example, if implicit save points can be
created for the application.

For more information, see Section 18.9.7, "How to Enable Implicit Save Points."

Note: All save points created inside a bounded task flow are deleted
when the bounded task flow exits.

Using Save Points in Task Flows

18-18 Fusion Developer's Guide for Oracle Application Development Framework

18.9.2 What Happens When You Add Save Points to a Task Flow
JDeveloper generates entries similar to those shown in Example 18–8 in the task flow’s
source file when you configure a method call activity to invoke the
createSavePoint method.

Example 18–8 Method Call Metadata to Invoke the createSavePoint Method

<method-call id="methodCall1">
 <method id="__3">#{controllerContext.currentViewPort.createSavePoint}</method>
 </method-call>

18.9.3 How to Restore a Save Point
Use the save point restore activity to restore a previously persisted save point for an
application. The save point restore activity uses the save point that was originally
created by invoking the createSavePoint method to identify the save point to
restore.

You can obtain a list of the current persisted save points with createSavePoint.
However, ADF Controller does not determine which save points to restore. A user
must select the save point from a list or the application developer must select it
programmatically. The savepoint ID is then passed to a save point restore activity to
perform the restore.

To add a save point restore activity to a bounded or unbounded task flow:
1. Open the bounded or unbounded task flow where you want to add the save point

restore activity and navigate to the diagram editor.

2. In the ADF Task Flow page of the Component Palette, from the Components
panel, drag a Save Point Restore activity and drop it on the diagram for the task
flow.

3. In the Property Inspector, expand the General node and write an EL expression
for the Save Point ID property that, when evaluated, retrieves the save point that
was originally created when the createSavePoint method was invoked.

If you use the Expression Builder to specify the getSavePoint method of the
ADF Controller Objects, the resulting EL expression is similar to the following:

#{SessionScope.myBean.savepointID}

18.9.4 What Happens When You Restore a Save Point
JDeveloper generates entries similar to Example 18–9 in the task flow’s source file
when you add a save point restore activity that gets a save point ID.

Example 18–9 Metadata for a Save Point Restore Activity in a Task Flow

<save-point-restore id="savePointRestore1">
 <save-point-id id="__4">#{sessionScope.myBean.savepointID}</save-point-id>
 </save-point-restore>

18.9.5 How to Use the Save Point Restore Finalizer
When using the save point restore activity, you may need to invoke
application-specific logic as part of restoring the application state. You can write an EL

Using Save Points in Task Flows

Creating Complex Task Flows 18-19

expression for the Save Point Restore Finalizer property of a bounded task flow that
specifies a finalizer method. The bounded task flow invokes the specified method after
the task flow’s state has been restored. It performs any necessary logic to make sure
that the application’s state is correct before proceeding with the restore.

To use the save point restore finalizer:
1. In the Structure window, right-click the node for the bounded task flow

(task-flow-definition) and select Go to Properties.

2. In the Property Inspector, expand the General tab, and select Expression Builder
from the Save Point Restore Finalizer dropdown menu.

3. Write an EL expression that specifies the finalizer method to invoke.

18.9.6 What Happens When a Task Flow Invokes a Save Point Restore Finalizer
JDeveloper generates entries similar to Example 18–10 in the task flow’s source file
when you write an EL expression for the Save Point Restore Finalizer property.

Example 18–10 Metadata to Invoke a Save Point Restore Finalizer

<task-flow-definition id="task-flow-definition1">
 <save-point-restore-finalizer id="__2">#{sessionScope.MyBean.invokeFinalizer}
 </save-point-restore-finalizer>
 </task-flow-definition>

18.9.7 How to Enable Implicit Save Points
A save point in a task flow can be categorized as implicit or explicit. An explicit save
point requires an end user action before a bounded or unbounded task flow creates a
save point. For example, an end user clicks a button that invokes a method call activity
that, in turn, creates a save point.

An implicit save point can only originate from a bounded task flow. It includes
everything from when the originating task flow creates a save point. It occurs when
data is saved automatically because:

■ A session times out due to end user inactivity

■ An end user logs out without saving the data

■ An end user closes the only browser window, thus logging out of the application

■ An end user navigates away from the current application using control flow rules
(for example, uses a goLink component to go to an external URL) and having
unsaved data.

Enabling implicit save points requires you to add an element to your Fusion web
application’s adf-config.xml file and to make the bounded task flow critical.

You configure the adf-config.xml file in your application and the bounded task
flow(s) for which you want to create implicit save points. Enabling implicit save points
involves a performance cost because your Fusion web application has to do extra work
that it would otherwise not do. This is why you have to explicitly enable implicit save
points in your application and specify the task flows to which it applies.

To enable implicit save points:
1. In the Application Resources panel of the Application Navigator, expand

Descriptors, then expand ADF META-INF.

Using Save Points in Task Flows

18-20 Fusion Developer's Guide for Oracle Application Development Framework

2. Right-click adf-config.xml and choose Open from the context menu.

3. On the Controller page of the overview editor, select the Enable Implicit
Savepoints checkbox.

JDeveloper generates the following entry in the adf-config.xml file:

<adf-controller-config xmlns="http://xmlns.oracle.com/adf/controller/config">
 ...
 <enable-implicit-savepoints>true</enable-implicit-savepoints>
</adf-controller-config>

For more information about the adf-config.xml file, see Section A.9,
"adfc-config.xml."

4. In the Application Navigator, double-click the source file for the bounded task
flow.

5. In the overview editor, click the Behavior navigation tab and select the Critical
checkbox.

18.9.8 What You May Need to Know About Enabling Implicit Save Points
If multiple windows are open when the implicit save point is created, a different save
point is created for each browser window. This includes everything from the root view
port of the browser window on down. You can write an EL expression for the Method
property of a method call activity to retrieve the list of implicit save points using the
savePointManager node under ADF Controller Objects. The resulting EL
expression is similar to the following:

ControllerContext.savePointManager.listSavePointIds

Implicit save points are generated only if a critical task flow is present in any of the
page flow stacks for any view port under the current root view port. An implicit save
point is not generated if the request is for an ADF Controller resource, such as:

■ Task flow call activity

■ Task flow return activity

■ Save point restore activity

■ A dialog

Implicit save points are deleted when the task flow at the bottom of the stack
completes or a new implicit save point is generated, whichever comes earlier.

18.9.9 What You May Need to Know About the Time-to-Live Period for a Save Point
An application-level property (savepoint-expiration) that is defined in the
adf-config.xml file determines the period between when a task flow creates a save
point and when the save point manager removes it (time-to-live period). The default
value is 86400 seconds (24 hours).

You can change the time-to-live period for individual save points by calling the
setSavePointTimeToLive method on an instance of SavePointManger from the
following package:

oracle.adf.controller.savepoint

An instance of SavePointManager can be obtained as follows:

SavePointManager mgr = ControllerContext.getInstance().getSavePointManager();

Creating a Train

Creating Complex Task Flows 18-21

Example 18–11 shows the syntax for the setSavePointTimeToLive method.

Example 18–11 Syntax for the setSavePointTimeToLive Method

 public void setSavePointTimeToLive(long timeInSeconds) {
 }

If you supply a value for the setSavePointTimeToLive method argument
(timeInSeconds in Example 18–11) equal to or less than zero, the default value is
used (86400).

The SavePointManger defines methods that help you manage save points. For
example, it defines getSavePoint and removeSavePoint methods that can
retrieve and remove save points. Note that the removeSavePoint method does not
get called automatically when a save point expires. You must explicitly call the
removeSavePoint method to remove save points (including expired save points)
from the ORADFCSAVPT database table. Alternatively, Oracle ADF provides a SQL
script (adfc_cleanup_save_point_table.sql) that removes expired save points.
For more information, see Section 18.8.3, "What You May Need to Know About the
Database Table for Save Points."

Consider calling the setSavePointTimeToLive method at the same time that you
call the method to create save points, as illustrated in Example 18–7. For more
information about the SavePointManger, see the Oracle Fusion Middleware Java API
Reference for Oracle ADF Controller.

18.10 Creating a Train
A train represents a progression of related activities that guides an end user to the
completion of a task. The end user clicks a series of train stops, each stop linking to a
particular page. Figure 18–4 shows a train in the Fusion Order demo application that is
called when an end user clicks the Register as a customer link on the registration
page.

Figure 18–4 Self-Registration Train in Fusion Order Demo Application

This train contains four stops, each corresponding to a JSF page where the end user
can enter and review registration information. The train stops are:

■ Basic Information

■ Address

■ Payment Options

Creating a Train

18-22 Fusion Developer's Guide for Oracle Application Development Framework

■ Review

Each JSF page in the train contains an ADF Faces Train UI component similar to that
shown in Figure 18–5. It enables the user to navigate through the train stops in an
order specified in the underlying train model.

Figure 18–5 Train UI Component

The optional Train Button Bar component shown in Figure 18–6 contains buttons that
provide an additional means to navigate backwards and forwards though the stops.
This component can be used in conjunction with the train component to provide
multiple ways to navigate through train stops.

Figure 18–6 Train Button Bar UI Component

18.10.1 Bounded Task Flows as Trains
You can create a train based on activities in a bounded task flow that specifies the
<train/> element in its metadata. You cannot create a train from activities in an
unbounded task flow.

Each bounded task flow can have a single train only. If the bounded task flow logically
includes multiple trains, you must add each train to a separate bounded task flow.

Figure 18–7 displays the bounded task flow that the Fusion Order Demo application
uses to create the self-registration train shown in Figure 18–4.

Tip: You can also create a task flow template that has the <train/>
element in its metadata, and then create a bounded task flow based on
the template.

Creating a Train

Creating Complex Task Flows 18-23

Figure 18–7 Customer Registration Task Flow

Figure 18–8 contains a simplified detail of the first two train stops in
customer-registration-task-flow. In the figure, an icon (two blue circles)
identifies each train stop in the train. The dotted line connecting each stop indicates
the sequence in which the end user visits them. For more information, see
Section 18.10.2, "Train Sequences". Although you can’t drag the dotted line to change
the sequence, you can right-click a train stop and choose options to move the train stop
forwards or backwards in the sequence. Each train stop is usually a view activity
corresponding to a JSF page, although you can also add a task flow call activity as a
train stop.

Creating a Train

18-24 Fusion Developer's Guide for Oracle Application Development Framework

Figure 18–8 Detail of Customer Registration Task Flow

The task flow call activity is used to group sets of activities together as a train stop or
to call a child train. For example, there are cases when other activities, such as router
and method call activities, should be considered part of a train stop along with the
corresponding view activity. A method call activity might need to precede a view
activity for initialization purposes. When grouped this way, the activities can be
performed as a set each time the train stop is visited. For more information, see
Section 18.10.4, "What You May Need to Know About Grouping Activities".

Branching using router activities and control flow cases is supported on the task flow
diagram containing the train, as well as in child bounded task flows called from the
train. For more information, see Section 18.10.7, "What You May Need to Know About
Branching".

18.10.2 Train Sequences
By default, train stops are sequential. A user can select a sequential train stop only after
visiting the train stop that is before it in the sequence. A nonsequential train stop can be
performed in any order.

A single train can contain both sequential and nonsequential stops. In Figure 18–9, the
first step is the current train stop. Second stop is sequential because the user can click it
only after visiting first stop. Third step is nonsequential because it can be clicked
immediately after the user visits first stop without also having to visit second stop.

When first step is the current stop, the end user cannot click the fifth and sixth steps,
indicating that they are sequential.

Figure 18–9 Train with Sequential and Nonsequential Stops

You can set the sequential option on the view activity (or task flow call activity) for
each train stop to specify whether it has sequential or nonsequential behavior. The
sequential option contains an EL expression that evaluates end-user input or some
other factor, for example, #{myTrainModel.isSequential}. When the EL

Creating a Train

Creating Complex Task Flows 18-25

expression evaluates to true, the train stop behaves as sequential. When it evaluates
to false, the train stop behaves as nonsequential.

In addition, you can alter the overall train sequence by skipping over individual train
stops. The skip option on the activity corresponding to the train stop uses an EL
expression that evaluates end-user input or some other factor to determine whether to
skip over the train stop. If it evaluates to true, the train stop appears disabled and
will be passed over. The end user is taken to the next enabled stop in the train. In
addition, the train stop will be skipped if the end user clicks a Next or Previous
button.

18.10.3 How to Create a Train
To use a bounded task flow as a train, its metatdata must contain the <train/>
element. There are several ways to include this element in the metadata:

■ Select the Create Train checkbox in the Create Task Flow dialog box. For more
information, see Section 14.2, "Creating a Task Flow".

■ Select the Create Train checkbox in the Create ADF Task Flow Template dialog box
and then use the template to create a new bounded task flow. For more
information, see Section 18.12, "Creating a Task Flow Template".

■ Right-click an existing bounded task flow diagram in the editor and choose Train
> Create Train.

■ Open an existing bounded task flow in the overview editor, click Behavior and
select the Train checkbox.

To create a train:
1. In the editor, open a bounded task flow that is usable as a train.

You must include the <train/> element in the bounded task flow's metadata by
following one of the methods described above.

2. Drag each view activity or JSF page you want to include in the train from the
Application Navigator to the bounded task flow diagram.

■ If you drag a JSF page, JDeveloper automatically adds a view activity to the
diagram.

■ If you drag a view activity, you can double- click it later to create a new JSF
page.

3. To rearrange the order of train stops, right-click the stop corresponding to an
activity in the diagram. Choose Train, and then choose a menu item to move the
train stop within the sequence, for example, Move Forward or Move Backward.

Note: If you want the train to execute by default at some train stop
other than the first one, use the skip option. For example, if you want
the train to begin executing at train stop 3, specify skip on train stops 1
and 2. This is better than marking a view activity associated with a
train stop as the default activity for the bounded task flow, which can
cause unpredictable results. For more information, see Section 14.2.3,
"What You May Need to Know About the Default Activity in an ADF
Bounded Task Flow".

Tip: Don’t worry about adding pages or view activities to the
diagram in a particular order. You can adjust the train sequence later.

Creating a Train

18-26 Fusion Developer's Guide for Oracle Application Development Framework

4. By default, trains stops are sequential. You can optionally define whether the train
stop behaves nonsequentially.

a. In the bounded task flow diagram, select the activity associated with the
nonsequential train stop.

b. In the Property Inspector for the activity, click Train Stop.

c. In the sequential field, enter an EL expression, for example,
#{myTrainModel.isSequential}.

You can also specify a literal value, for example, true.

If the EL expression evaluates to true, the train stop will be sequential. If
false, the train stop will be nonsequential.

5. By default, a train stop will not be skipped. You can optionally designate that the
train stop can be skipped based on the result of an EL expression.

a. In the bounded task flow diagram, select the activity associated with the
nonsequential train stop.

b. In the Property Inspector, click Train Stop.

c. In the skip field, enter an EL expression, for example,
#{myTrainModel.shouldSkip}.

If the EL expression evaluates to true, the train stop will be skipped. If
false, the train stop will be not be skipped.

6. In the diagram, double-click each view activity that is being used as a train stop.

Double-clicking the view activity opens a dialog to create a new JSF page. If a JSF
page is already associated with the view activity, the existing page displays.

7. Open the JSF page in the editor.

8. For each JSF page in the train, select a Train and, optionally, a Train Button Bar UI
component from the Common Components section of the ADF Faces page of the
Component Palette. Drag the UI component onto the JSF page.

The train and train button bar UI components are not automatically added to
pages and page fragments corresponding to the view activities within a bounded
task flow for a train. You must add them manually to each page or page fragment.
You can also add them using a page template.

After you add the components to the page, they are automatically bound to the
train model. For more information about creating a train model, see the Oracle
Fusion Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework.

18.10.4 What You May Need to Know About Grouping Activities
Activities such as routers and method calls can be grouped with a view activity to
form a single train stop. As shown in Figure 18–7, in the customer registration
bounded task flow, the createAddress method call activity and the
addressDetails view activity are grouped with the defineAddress view activity
to create the second stop in the train. The activities are performed as a set each time the
train stop is visited. createAddress validates user input on the Address page and
defineAddress is an optional page where the end user can enter additional address
information. Because the page is optional and is accessed using a link on the Address
page, it is not included in the bounded task flow as a separate train stop. Instead, it is
grouped as one of the activities for the createAddress train stop.

Creating a Train

Creating Complex Task Flows 18-27

Although this approach groups a set of activities for a train stop within a child
bounded task flow, you can provide the same functionality without a call to a child
bounded task flow. Instead you can group the activities on the parent bounded task
flow, as shown in Figure 18–10. All activities leading from the first nonview activity
through the next view activity are considered part of the implied train stop's
execution.

To group activities without a child bounded task flow, you must ensure that:

■ All non-view and non-task flow call activities for the train stop, such as routers
and methods calls, follow the view or task flow call activity being used as the train
stop.

This associates the activities with the train stop and not with the previous stop in
the train.

■ A wildcard control flow leads to first activity of the train stop.

You must specify a value for from-outcome (for example
gotoCollateSurveryAnswers) on the control flow leading from the wildcard
control flow. This value must match the value you specify for the train outcome
on the view activity that is used as the train stop.

The wildcard control flow ensures that if an end user returns to a previously
visited train stop, all activities will be performed beginning with the activity the
wildcard control flow points to.

In Figure 18–10, the SurveyPage2 train stop consists of the following group of
activities that execute in the following order:

Note: The approach for grouping a set of activities to form a train
stop is to use a child bounded task flow (see Section 18.10.5, "What
You May Need to Know About Grouping Activities in Child Task
Flows"). The advantage of this approach is that all activities in the
group are always performed together regardless of whether the train
stop is being visited for the first time or on later returns.

If you don’t use a child bounded task flow, all activities from the
leading nonview activity through the next view activity will be
considered part of the train stop's execution.

Creating a Train

18-28 Fusion Developer's Guide for Oracle Application Development Framework

Figure 18–10 Grouping Activities Without Using a Task Flow Call Activity

1. Wildcard control flow leading to first activity of the train stop,
CollateSurveyAnswers.

2. Method call to CollateSurveyAnswers method.

3. SurveyPage2 view.

18.10.5 What You May Need to Know About Grouping Activities in Child Task Flows
You can also group related activities along with a corresponding view activity in a
child bounded task flow. Then you can designate a task flow call activity as train stop
in the train. For more information, see (Section 15.6, "Using Task Flow Call Activities".
The task flow call activity calls the child bounded task flow. The group of activities are
always performed together regardless of whether the train stop is being visited for the
first time or on later returns.

To group activities in the called child bounded task flow, you must ensure that:

■ All non view activities for the train stop, such as routers and methods calls,
precede the view activity in the control flow of the child bounded task flow.

Note: The train stop outcome element is used only if an activity
such as a method call activity or router is placed prior to the view
activity train stop. The element allows you to specify a custom
outcome that results in navigation to the train stop.

Best practice:

When activities are grouped in a called child bounded task flow,
nonview activities such as routers and methods calls typically precede
the view activity in the control flow. You can include multiple view
activities within the child bounded task flow, although in most cases
there will be only one.

Creating a Train

Creating Complex Task Flows 18-29

■ The child task flow contains a single view activity, unless the view activities are
dialogs or helper pages originating from the main train stop view activity.

Figure 18–11 shows the SurveyTaskFlow train stop, a task flow call activity that calls
a child bounded task flow.

Figure 18–11 Task Flow Call Activity Train Stop

The child bounded task flow is shown in Figure 18–21

Figure 18–12 Called Child Bounded Task Flow

All of the activities in the child bounded task flow are performed together every time
the SurveyTaskFlow train is visited, regardless of whether the end user is visiting
the first time or later.

If you use a child bounded task flow to group a set of activities, you must add a task
flow return activity to the child task flow. The task flow return activity leads back to
the parent bounded task flow, thus continuing the train. The task flow return activity
should specify a value in outcome, for example, done, that will be used when
returning to the parent train. In addition, you must manually add a control flow to the
parent task flow that will be used to continue control flow within the train after
returning from the child task flow.

As shown in Figure 18–11 and Figure 18–12, the value specified in the from-outcome
for the control flow case (done) matches the task flow return activity outcome value.

18.10.6 What You May Need To Know About Using Child Trains
A train can use a task flow call activity as a train stop to invoke a child bounded task
flow representing another train. The child bounded task flow must be created as its
own train (that is, it must have the <train/> element in its metadata) and contain its
own train stops. There is no limit to the depth of calls that are allowed to child trains.

18.10.7 What You May Need to Know About Branching
You can branch using router activities and control flow cases within a group of
activities that are grouped to represent a single train stop, for example, the wildcard
control flow rule router, and methods calls under step 2 in Figure 18–13.

You cannot branch between the activities that represent each train stop in a train. For
example, you can not branch between steps 1, 2, and 3 in Figure 18–13.

Running Multiple Task Flows

18-30 Fusion Developer's Guide for Oracle Application Development Framework

Figure 18–13 Branching within Grouped Activities for a Single Train Stop

18.11 Running Multiple Task Flows
Multiple task flows may run simultaneously within a Fusion web application and
within the same HTTP session. In many cases, you can run each task flow in a separate
browser window. For example a customer support representative might work multiple
customer cases simultaneously, each within its own browser window.

Task flows can be initiated to display within new browser windows from either a
request by the application or the browser.

■ Application requests new window

For example, the application itself requests a new browser window. This might
occur when the end user clicks a button, a row in a table, or a link that results in a
new browser window being launched. The UI component's JavaScript specifies the
URL to load.

■ Browser requests new window

New browser windows can also be initiated when end users press Ctrl+N (Ctrl+T
using Mozilla FireFox) or choose the File > New Window.

In Microsoft Internet Explorer, pressing Ctrl+N opens up the application home
page as defined in the web.xml file. The server state of the new window will be
separate from the original window.

An application may also use different frames, multiple portlets, or ADF regions within
a single browser window A view port describes the area that displays a view and its
independent navigation. A view port can be in a full browser window, a frame, a
portlet, or an ADF region.

Each view port maintains a task flow stack that represents an end user's current
navigational state. A view port's task flow stack begins with the application's top-level
task flow as the first entry on the stack. As the end user navigates into a bounded task
flow, additional entries are pushed onto the stack representing the bounded task flow.
As the end user navigates out of bounded task flows, entries are removed from the
stack. If the end user navigates away from the parent page, any child modes and
modal dialogs are closed.

Creating a Task Flow Template

Creating Complex Task Flows 18-31

18.11.1 Understanding How the ViewPortInstance Works in ADF Regions
View ports can also be created when a page with a bounded task flow region is
rendered. When a request for the first activity in a Fusion web application is received,
ADF Controller creates a view port and a ViewPortContext corresponding to the main
browser window. Each ADF region has an associated ViewPortContext instance.
The ViewPortContext instance is created during the Restore View phase of the JSF
lifecycle.

ADF Controller uses the ViewPortContext instance every time it needs to interact
with JSF RI FacesContext. The ViewPortContext is responsible for dispatching all
calls to FacesContext directly or to ADF view APIs. For example, when the ADF
Controller finds a new view activity for the view port, it calls
ViewPortContext.setRootViewId. For the bounded task flow representing the
root page, this call results in calling FacesContext.setRootViewId. For bounded
task flows embedded inside an ADF region, the ViewPortContext keeps track of
the root view ID. When ADF View is ready to assemble the page markup for the root
page, it can access the ADF region component’s view ID stored on
ViewPortContext.

For example, once a page containing ADF regions is rendered, an end user might click
a button inside an ADF region causing a form submit:

1. ADF Controller handles the request in the context of a view port created for the
ADF region.

2. The correct ViewPortContext is set up by the ADF region before the ADF
Controller NavigationHandler is called.

3. Based on from-action and from-outcome values, ADF Controller produces
the ID of the next view activity for the bounded task flow region and sets it on the
ViewPortContext.

4. ADF view will use the view activity ID in the Render Response stage of the JSF
lifecyccle to pick up new markup for the ADF region. Because the
NavigationHandler is called in the Region context, the root view ID for the main
page is not be reset.

5. When the end user navigates away from the page, the bounded task flow region is
destroyed. The view layer again notifies ADF Controller in order for resources
allocated to the ADF region to be released.

18.12 Creating a Task Flow Template
You can create a task flow template that other developers can use as a starting point
when creating new bounded task flows.

Best Practice: Although it is not necessary to notify the ADF
Controller when a browser window is closed, it is at good design
practice for the framework. This gives ADF Controller an opportunity
to clean up resources allocated to the browser window's view port,
such as managed beans and open, unresolved transactions.

Note: You cannot use a task flow template as the basis for creating a
new unbounded task flow.

Creating a Task Flow Template

18-32 Fusion Developer's Guide for Oracle Application Development Framework

The task flow template enables reuse because any bounded task flow based on it has
the same set of activities, control flows, input parameters, and managed bean
definitions that the template contains. In addition, you can specify that changes to the
template be automatically propagated to any task flow or template that is created
based on the template.

For example, suppose you have set up an activity to be used as an exception handler
for a bounded task flow, such as a view activity associated with a page for global
exception handling. Or, the exception handler might be set up to handle exceptions
typically expected to occur in a task flow. If you expect multiple bounded task flows to
rely on the same error handler, you might consider adding the error handler to a task
flow template. New task flows created based on the template automatically have the
exception handling activity added to the template. See Section 18.7, "Handling
Exceptions in Task Flows" for more information.

You can base a new task flow template on an existing task flow template. You can also
refactor an existing bounded task flow to create a new task flow template. For more
information, see Section 14.5.3, "How to Convert ADF Bounded Task Flows".

If you select the Update the Task Flow When the Template Changes checkbox in the
Create ADF Task Flow or Create ADF Task Flow Template dialog, the template will be
reused by reference. Any changes you make to the template will be propagated to any
bounded task flow or task flow template based on it.

18.12.1 How to Copy and Reference a Task Flow Template
There are two methods for reusing a task flow templates.

■ Reuse by copy

Deselect the Update the task flow when the template changes checkbox when
creating a new bounded task flow, as shown in Figure 18–14. If you deselect the
checkbox, the bounded task flow is independent of the template. Changes to the
template are not propagated to the bounded task flow.

For example, if you add view activities associated with JSF pages to the template,
the new bounded task flow will display the views and any control flows between
them, and it will retain the view associations with JSF pages. If you add a train on
a task flow template, any bounded task flow created from it contains page
navigation for the train.

■ Reuse by reference

Select the Update the task flow when the template changes checkbox when
creating a new bounded task flow, as shown in Figure 18–14, or when creating a
new task flow template. Changes to the parent task flow template propagate to
any bounded task flow or template based on it.

You can change, update, or disassociate the parent task flow template of a child
bounded task flow or task flow template at any point during development of the
child.

At runtime, the contents of a child bounded task flow or a child template reused by
reference are combined additively with the contents of the parent template. Any
collision between the parent template and child task flow or child template are won by
the child. For example, suppose you created a parent task flow template containing a
train, and then created a child bounded task flow based on the parent template. Later,
you deselect the Train checkbox on the Behavior page of the overview editor for
bounded task flows. The difference in how the Train checkbox is set for the parent
template and the child task flow is a collision.

Creating a Task Flow Template

Creating Complex Task Flows 18-33

Table 18–3 describes the specific combination algorithm used for each element. As
shown in the table, in the event of a collision between train settings, the child task flow
overrides the parent task flow template.

Table 18–3 Collision Resolution between Parent Template and Children

Bounded Task Flow
Metadata Combination Algorithm

Default activity Child bounded task flow or child task flow template overrides
parent task flow template.

Transaction Child bounded task flow or child task flow template overrides
parent task flow template as an entire block of metadata,
including all subordinate elements.

Task flow reentry Child bounded task flow or child task flow template overrides
parent task flow template as an entire block of metadata,
including all subordinate elements.

Control flow rules Combination algorithm occurs at the control flow case level, not
the control flow rule level. Control flow cases fall into the
following categories:

■ Both from action and from outcome specified

■ Only from action specified

■ Only from outcome specified

■ Neither from action nor from outcome specified

Each of these categories is merged additively. The child bounded
task flow or template overrides parent task flow template for
identical matches within each of the four categories.

Input parameter definitions Child bounded task flow or child task flow template overrides
parent task flow template for identical input parameter
definition names.

Return value definitions Child bounded task flow or child task flow template overrides
parent task flow template for identical return value definition
names.

Activities Child bounded task flow or child task flow template overrides
parent task flow template for identical activity IDs.

Managed beans Child bounded task flow or child task flow template overrides
parent task flow template for identical managed bean names.

Initializer Child bounded task flow or child task flow template overrides
parent task flow template.

Finalizer Child bounded task flow or child task flow template overrides
parent task flow template.

Critical Child bounded task flow or child task flow template overrides
parent task flow template.

Use page fragments Child bounded task flow or child task flow template overrides
parent task flow template.

Exception handler Child bounded task flow or child task flow template overrides
parent task flow template.

Security - permission Child bounded task flow or child task flow template overrides
parent task flow template.

Privilege maps are additive. Child bounded task flow or child
task flow template overrides parent task flow template for
identical privilege map operations.

Creating a Task Flow Template

18-34 Fusion Developer's Guide for Oracle Application Development Framework

Validations at both design time and runtime verify that the resulting parent-child
extension hierarchy does not involve cycles of the same task flow template.

18.12.2 How to Create a Task Flow Template from Another Task Flow
The process for creating a new task flow template from an existing template is similar
to the process for creating a bounded task flow based on a template. For more
information, see Section 14.2, "Creating a Task Flow".

18.12.3 How to Use a Task Flow Template
After you create a task flow template, you can use it as the basis for creating a new
bounded task flow or a new task flow template. As shown in Figure 18–14, the Create
Task Flow dialog has fields for creating a bounded task flow based on the template file
name and the ID. You must specify both the file name and ID of the template. These
fields are available only if you select the Create as Bounded Task Flow checkbox.

Figure 18–14 Create Task Flow Dialog

You can base a new template on an existing template. The Create ADF Task Flow
Template dialog box contains fields for creating a task flow template based on the file
name and the template ID of an existing task flow template.

You cannot run a task flow template on its own. For more information, see
Section 14.4, "Testing ADF Task Flows".

Security - transport
guarantee

Child bounded task flow or child task flow template overrides
parent task flow template.

Train Child bounded task flow or child task flow template overrides
parent task flow template.

Table 18–3 (Cont.) Collision Resolution between Parent Template and Children

Bounded Task Flow
Metadata Combination Algorithm

Creating a Task Flow Template

Creating Complex Task Flows 18-35

18.12.4 How to Create a Task Flow Template
The process for creating a new task flow template is similar to creating a bounded task
flow. This section describes how to create a new task flow template. You can also
convert an existing bounded task flow to a task flow template and vice versa. For more
information, see Section 18.12.2, "How to Create a Task Flow Template from Another
Task Flow".

To create a task flow template from scratch:
1. In the Application Navigation, right-click the project where you want to create the

task flow and choose New.

2. In the New Gallery, expand Web Tier.

3. Select JSF, and then ADF Task Flow Template and click OK.

The value in File Name is used to name the XML source file for the task flow
template you are creating. The source file includes the activities and control flow
rules that are in the task flow template. The default name for the XML source file is
task-flow-template.xml.

4. In the Create ADF Task Flow Template dialog, the Create with Page Fragments
checkbox is selected by default. If you expect that a bounded task flow based on
the template will be used as an ADF region, select this option.

If you want to add JSF pages instead of JSF page fragments to the task flow
template, deselect the checkbox.

5. Click OK.

A diagram for the task flow template automatically opens in the editor.

6. You can add activities, control flows, and other items to the template.

Anything that you can add to a bounded task flow can be added to the task flow
template.

7. When you are finished, save your work.

The template will be available for use when you create a bounded task flow or
task flow template.

18.12.5 What Happens When You Create a Task Flow Template
As shown in Example 18–12, an XML file is created each time you create a new task
flow template using JDeveloper. You can find the XML file in the Application
Navigator in the location that you specified in the Directory field of the Create ADF
Task Flow Template dialog, for example,.../WEB-INF.

The contents of the XML source file for the task flow template can be similar to those
of a bounded task flow. One difference is the inclusion of the
<task-flow-template> tag.

Example 18–12 Task flow template source file

<?xml version="1.0" encoding="windows-1252" ?>
<adfc-config xmlns="http://xmlns.oracle.com/adf/controller" version="1.2" id="__
1">
 <task-flow-template id="task-flow-template">
 <default-activity>view1</default-activity>
 <view id="view1">view1.jsff</view>
 </task-flow-template>

Creating a Page Hierarchy

18-36 Fusion Developer's Guide for Oracle Application Development Framework

</adfc-config>

18.12.6 What You May Need to Know About Task Flow Templates That Use Bindings
If you use a task flow template that contains bindings, you must change the
component IDs of task flows based on the task flow template. Doing this ensures that
the IDs are unique. Task flows generated from the template inherit the same ID as the
template. This may cause an exception at runtime.

For more information, see Section 20.2.1, "How to Use ADF Data Binding in ADF Page
Templates".

18.13 Creating a Page Hierarchy
Creating a page hierarchy is a useful way of organizing the JSF pages in your Fusion
web application so that end users can more easily navigate the application. End users
access information on the pages by navigating a path of links. Figure 18–15 shows a
sample page hierarchy.

Figure 18–15 Page Hierarchy

To navigate this hierarchy, an end user clicks links on each page to drill down or up to
another level of the hierarchy. For example, clicking Human Resources on the Fusion
App home page displays the Human Resources page hierarchy shown in Figure 18–15.
Clicking the link on the Benefits tab displays the page hierarchy shown in
Figure 18–16.

Figure 18–16 Benefits Page

Creating a Page Hierarchy

Creating Complex Task Flows 18-37

The user can click links on the Benefits page to display other pages, for example, the
Medical, Dental or Vision pages. The breadcrumbs on each page indicate where the
current page fits in the hierarchy. The user can click each node in a breadcrumb to
navigate to other pages in the hierarchy. The bold tab labels match the path to the
current page shown the breadcrumbs.

Pages referenced by view activities in a bounded task flow can also be included in any
page hierarchy that you generate. Figure 18–17 shows the runtime view of a page
hierarchy that renders view activities referenced by a bounded task flow.

Figure 18–17 Runtime Menu Hierarchy Including a Bounded Task Flow

You can use ADF Controller with an XMLMenuModel implementation to create the
previously-discussed page hierarchies. If you do, JDeveloper generates the following
for you:

■ Control flow metadata that determines the view or page to display when an end
user selects a menu item

■ An XMLMenuModel metadata file

■ Default navigation widgets such as Previous and Next button

■ Breadcrumbs

■ Managed bean configuration

If you decide not to use ADF Controller, you can create the page hierarchy using an
XMLMenuModel implementation. For more information about this method of building
a page hierarchy, see the "Using a Menu Model to Create a Page Hierarchy" section in
the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework.

18.13.1 How to Create a Page Hierarchy
Create an unbounded task flow or open an existing one. Add view activities or
bounded task flows to the unbounded task flow. Each view activity or bounded task
flow that you add to the unbounded task flow contains references to pages to appear
in the proposed page hierarchy. Use JDeveloper’s Create ADF Menu Model dialog to
generate an XMLMenuModel metadata file. Organize the item nodes in the generated
XMLMenuModel metadata file to create the page hierarchy you want. Connect
submenus to parent menus to finalize the hierarchy.

Figure 18–18 shows an example page hierarchy that consists of view activities:

■ The top-level menu (Home Page) is the root parent page. It contains a single tab
that links to the Human Resources submenu.

In JDeveloper, Home Page page is represented as an item node and Human
Resources page as a shared node.

■ Human Resources has four tab links to Payroll, Time, Labor, and Benefits pages.

Creating a Page Hierarchy

18-38 Fusion Developer's Guide for Oracle Application Development Framework

In this menu, Human Resources is a group node that references child item nodes
(Payroll, Time, and Labor) and a shared node (Benefits) that references the
Benefits submenu.

■ Benefits is a group node that references child item nodes (Medical, Dental, and
Vision) pages.

Figure 18–18 Menu Hierarchy

Figure 18–19 shows the corresponding design-time view in JDeveloper of the
unbounded and bounded task flows that render the page hierarchy shown in
Figure 18–17. The unbounded task flow (adfc-config.xml) contains a view activity
(view1) and a task flow call activity (task-flow-definition) that invokes the bounded
task flow (task-flow-definition.xml) shown in the lower part of Figure 18–19.

Note: It is possible to create the entire menu hierarchy in one menu
model. However, breaking a menu hierarchy into submenus makes
maintenance easier. In addition, breaking the menu hierarchy into
smaller submenu models enables each separate development
organization to develop its own menu. These separate menus can later
be combined using shared nodes to create the complete menu
hierarchy.

Creating a Page Hierarchy

Creating Complex Task Flows 18-39

Figure 18–19 Design Time Menu Hierarchy Including a Bounded Task Flow

18.13.1.1 How to Create an XMLMenuModel Metadata File
You use JDeveloper’s Create ADF Menu Model dialog to generate an XMLMenuModel
metadata file once you have defined what menus (unbounded task flows) and nodes
(pages) you want to appear in the final page hierarchy.

To create the XMLMenuModel metadata file:
1. Create an unbounded task flow for each menu in the final page hierarchy.

For example, to achieve the page hierarchy illustrated in Figure 18–18, you create
two unbounded task flows (Human Resources menu and Benefits menu).

For more information about creating an unbounded task flow, see Section 14.2.1,
"How to Create a Task Flow".

2. Add view activities that reference pages to each unbounded task flow. The pages
referenced by the view activities correspond to the menu nodes in the menu.

For example, the Benefits menu contains one group node (benefits) and three item
nodes (medical, dental and vision) so you add four view activities to the
unbounded task flow for the Benefits menu, as illustrated in Figure 18–20.

Figure 18–20 View Activities on a Task Flow

Tip: Prefix the name of the file for unbounded task flows that you
create with adfc- to help you to identify the file as the source of an
unbounded task flow, as opposed to a bounded task flow.

Creating a Page Hierarchy

18-40 Fusion Developer's Guide for Oracle Application Development Framework

Do not add view activities for menus that include other menus using shared
nodes. For example, the Human Resources menu in Figure 18–18 has a tab called
Benefits that references the Benefits menu using a shared node. The bounded task
flow for the Benefits menu already includes a view activity for Benefits so there is
no need to add a view activity to the bounded task flow for the Human Resources
menu.

For more information about adding view activities, see Section 15.2.1, "Adding a
View Activity".

3. In the Application Navigator, right-click the file(s) for each of the unbounded task
flows you created in step 1 and choose Create ADF Menu Model.

4. In the Create ADF Menu Model dialog, enter a file name for the XMLMenuModel
metadata file and a directory to store it.

5. Click OK.

18.13.1.2 How to Create a Submenu with a Hierarchy of Group and Child Nodes
You open the XMLMenuModel metadata file you created and convert the item nodes
that you want to make group nodes to group nodes. You then create a hierarchy where
a group node is a parent to one or more item nodes.

To create a submenu with a hierarchy of group and item nodes:
1. In the Application Navigator, select and open the XMLMenuModel metadata file.

An item node appears in the Structure window for each view activity in the
unbounded task flow. By default, no hierarchy is defined.

2. Drag and drop the item nodes to become child nodes of the item node that you are
going to convert to a group node.

Each item node that you convert to a group node must have at least one child item
node. For example, to create the menu hierarchy in Figure 18–18, you convert the
item node for Benefits to a group node, you drag and drop the item nodes for
Medical, Dental, and Vision so that they become child nodes of the Benefit item
node.

3. In the Structure window, right-click the parent item node and choose Convert To
groupNode.

4. Enter a new identifier or accept the default value in the id field of the groupNode
Properties dialog that appears

The identifier must be unique among all of the nodes in all of the XMLMenuModel
metadata files. It is good practice to specify a value that identifies the node. For
example, if you change the Benefits node to a group node, you can update its
default ID, itemNode_benefits, to groupNode_benefits.

5. In the idref field of the groupNode Properties dialog, enter the ID of one of the
other nodes in the menu, for example, itemNode_Medical.

The value you enter can be an ID of a child item node that is a group node or an
item node.

Note: If the page hierarchy includes pages referenced by a bounded
task flow, add a task flow call activity to the unbounded task flow that
calls the bounded task flow.

Creating a Page Hierarchy

Creating Complex Task Flows 18-41

6. Enter or change the existing default value in the label field to match what you
want to appear at runtime.

For example, you might change label_benefits to Benefits.

7. Accept the rest of the default values in the fields and click Finish

A Confirm Convert dialog asks if you want to delete the action and
focusViewID attributes on the groupNode element. Group nodes do not use
these attributes, always click OK

8. Click OK

18.13.1.3 How to Attach a Menu Hierarchy to Another Menu Hierarchy
You use a shared node element to link two menus together. For example, the Human
Resources menu illustrated in the menu hierarchy in Figure 18–18 contains four
submenus (Payroll, Time, Labor, and Benefits). The Benefits submenu is itself a menu
with submenu entries. In the XMLMenuModel metadata file for the Human Resources
menu, you convert the item node for the Benefits submenu to a shared node. You write
an EL expression for an attribute (ref) of the newly-created shared node that
references the XMLMenuModel metadata file for the Benefits menu.

To attach a menu hierarchy to another hierarchy using a shared node:
1. In the Application Navigator, select and open the XMLMenuModel metadata file

for the menu that is going to reference the other menu.

2. In the Structure window, select a node, right-click and select the appropriate menu
options to insert a sharedNode element.

3. In the ref field of the Insert sharedNode dialog that appears, enter an EL
expression to reference the XMLMenuModel metadata file for the other menu.

4. Click OK.

18.13.2 What Happens When You Create a Page Hierarchy
Changes occur in a number of different files when you create a page hierarchy.

Changes to the adfc-config.xml File
When you create a new unbounded task flow, JDeveloper automatically adds a
reference in the adfc-config.xml file to the source file for the newly-created
unbounded task flow. In Example 18–13, adfc-unbounded_tflow.xml is the name
of the source file for a newly-created unbounded task flow.

Example 18–13 Unbounded task flow referenced by adfc-config.xml

<?xml version="1.0" encoding="windows-1252" ?>
<adfc-config xmlns="http://xmlns.oracle.com/adf/controller" version="1.2"
 id="__1">
 <metadata-resource id="__2">/WEB-INF/adfc-unbounded_
tflow.xml</metadata-resource>
</adfc-config>

Note: If your page hierarchy has more than one unbounded task
flow, ensure that the file name for each additional unbounded task
flow appears as a value for the <metadata-resources> element in
the adfc_config.xml file. For more information, see Section 18.13.2,
"What Happens When You Create a Page Hierarchy".

Creating a Page Hierarchy

18-42 Fusion Developer's Guide for Oracle Application Development Framework

For more information about adfc-config.xml, see Section A.9, "adfc-config.xml".

At runtime, the Fusion web application loads the adfc-config.xml file when it first
starts. The adfc-config.xml file can contain:

■ ADF navigation metadata for an unbounded task flow

■ ADF activity metadata for an unbounded task flow

■ Managed bean definitions used by ADF activities

XMLMenuModel Metadata File
JDeveloper generates an XMLMenuModel metadata file with nodes for each of the view
activities that you added to the unbounded task flow, as illustrated in Example 18–4.

Example 18–14 Example XMLMenuModel Metadata File

<?xml version="1.0" encoding="windows-1252" ?>
<menu xmlns="http://myfaces.apache.org/trinidad/menu">
 <groupNode id="groupNode_benenfits" label="Benefits" idref="itemNode_medical">
 <itemNode id="itemNode_medical" label="label_medical"
 action="adfMenu_medical" focusViewId="/medical"/>
 <itemNode id="itemNode_dental" label="label_dental" action="adfMenu_dental"
 focusViewId="/dental"/>
 <itemNode id="itemNode_vision" label="label_vision" action="adfMenu_vision"
 focusViewId="/vision"/>
 </groupNode>
</menu>

Diagram for an Unbounded Task Flow
JDeveloper updates the file for the unbounded task flow with the control flow rules
and managed beans used to navigate the page hierarchy. Figure 18–21 shows the
updated unbounded task flow in the diagrammer that corresponds unbounded task
flow in Figure 18–20.

Figure 18–21 Updated Unbounded Task Flow

Using BPEL with Task Flows

Creating Complex Task Flows 18-43

18.14 Using BPEL with Task Flows
Business Process Execution Language (BPEL) is a language for composing multiple
services into an end-to-end business process. You can use BPEL with task flows to:

■ Invoke a BPEL process from an unbounded or bounded task flow to perform a
function or use services

■ Call a bounded task flow from the BPEL process manager in order to model user
interactions with a web interface

For more information about BPEL, see the Oracle Fusion Middleware Developer's Guide
for Oracle SOA Suite.

18.14.1 How to Invoke a BPEL Process from a Task Flow
You can use any of the following techniques for calling a BPEL process from an
unbounded or bounded task flow:

■ Bind an existing method call activity on the task flow diagram to a managed bean
method wrapping the BPEL process call as a Java component. For more
information, see Section 15.5, "Using Method Call Activities".

■ Bind an existing method call activity on the task flow diagram to an action binding
performing the BPEL process call as a web service For more information, see
Section 15.5, "Using Method Call Activities"for more information. The web service
data control is the preferred approach to use when calling as a Web Service.

During runtime, the application will place the request to the BPEL process in the form
of a payload. The BPEL process receives the payload and responds with a payload
containing the information the application requested. The BPEL process outcome is to
continue control flow in the unbounded or bounded task flow.

18.14.2 How to Call a Bounded Task Flow from BPEL
BPEL workflow services allow human interactions to be interspersed between tasks
within end-to-end flows. During a BPEL process flow, a task is assigned to a user or
role and then it waits for a response. The user will act on the task using the BPEL
worklist application. The worklist application is able to initiate a bounded task flow
assigned as part of the user's task. Bounded task flow functionality can be used while
still taking advantage of the human interaction framework of a BPEL process (for
example, notifications, escalation policy, and worklist).

Using BPEL with Task Flows

18-44 Fusion Developer's Guide for Oracle Application Development Framework

19

Using Dialogs in Your Application 19-1

19Using Dialogs in Your Application

This chapter describes how you can use ADF Controller and ADF task flows to create
dialogs or, alternatively, how to use the ADF Faces dialog framework in an ADF
application.

This chapter includes the following sections:

■ Section 19.1, "Introduction to Using Dialogs in Your Application"

■ Section 19.2, "Running a Bounded Task Flow in a Modal Dialog"

■ Section 19.3, "Using the ADF Faces Dialog Framework"

19.1 Introduction to Using Dialogs in Your Application
Use dialogs if you want to show information to end users in a secondary browser
window external to the browser window that displays the end user’s current page. For
example, you want to display help information to end users to assist them with a task
in the primary browser window or you want end users to select a value from a list of
values. The help information example is a use case a modeless dialog is appropriate. A
modeless dialog allows end users work in both the primary window and the dialog at
the same time. For the use case where you want an end user to select a value, a modal
dialog is more appropriate. A modal dialog prevents an end user accessing the page that
invoked the dialog until they execute an action requested by the dialog (for example,
select a value).

Use the ADF Faces dialog framework if you want to configure modeless dialogs for
your end users. If you plan to configure modal dialogs for your end users, configure
an ADF Controller bounded task flow to invoke one or more dialogs.

19.2 Running a Bounded Task Flow in a Modal Dialog
You can configure a bounded task flow to run in a modal dialog, retrieve input from
an end user, and return to the view activity that called the bounded task flow with the
retrieved input.

Figure 19–1 shows an example of the configuration required.

Running a Bounded Task Flow in a Modal Dialog

19-2 Fusion Developer's Guide for Oracle Application Development Framework

Figure 19–1 Task Flow Activities to Invoke a Modal Dialog

19.2.1 How to Run a Bounded Task Flow in a Modal Dialog
In an existing task flow, add a view activity and a task flow call activity to a bounded
task flow. The view activity invokes a page where an end user can invoke an action
that, in turn, invokes the bounded task flow to appear in a modal dialog.

To run a bounded task flow in a modal dialog box:
1. In the diagram editor for the existing task flow, double-click the view activity to

open the associated page.

2. Select the UI component that the end user clicks at runtime to invoke the bounded
task flow as a modal dialog box (for example, a commandButton component).

3. In the Property Inspector, expand the Common section and set the action
attribute to the control flow case to invoke the bounded task flow.

For example, callTarget in Figure 19–1.

4. Set the useWindow attribute to true to invoke the bounded task flow in a popup
dialog.

5. Return to the diagram editor for the existing task flow and select the task flow call
activity.

6. In the Property Inspector, expand the Behavior section and set the
run-as-dialog attribute to true to run the bounded task flow as a dialog.

7. For the display-type attribute, select external-window (the default value) if
you want to render the dialog in an external browser window or inline-popup
if you want to render the dialog in the same browser window.

19.2.2 How to Return a Value From a Modal Dialog
You can configure a bounded task flow that renders in a modal dialog to return a value
to the view activity that invoked the bounded task flow when the end user dismisses
the modal dialog. The returned value can, for example, be displayed in an input
component on the page associated with the view activity.

You must configure the bounded task flow that is called by the task flow call activity to
declare input and output parameters. For more information, see Section 16.3, "How to
Pass Parameters to an ADF Bounded Task Flow".

You specify a method binding for a method with one argument (a return event) as the
value for the returnListener attribute of the command component (for example, a
commandButton component). The returnListener attribute sets this value in the
input component on the page associated with the view activity. Specify a backing bean
for the input component and set the input component’s partialTrigger attribute to
the ID of the command component.

You also need to specify:

Running a Bounded Task Flow in a Modal Dialog

Using Dialogs in Your Application 19-3

■ A return value definition on the called bounded task flow to indicate where to take
the return value from upon exit of the called bounded task flow.

■ Return values on the task flow call activity in the existing task flow to indicate
where the existing task flow can find return values.

For more information, see Section 16.4, "Specifying Return Values".

For more information about creating backing beans, input components, and command
components, see the "Using Input Components and Defining Forms" chapter in the
Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework.

Before you begin:
Configure a bounded task flow to run in a modal dialog. For more information, see
Section 19.2.1, "How to Run a Bounded Task Flow in a Modal Dialog".

To specify a return value:
1. In the diagram editor for the existing task flow, select the task flow call activity.

2. In the Property Inspector, expand the Behavior section and set the
run-as-dialog attribute to true.

3. Set the dialog-return-value to the name of the return value definition you
specified for the target bounded task flow.

For information about how to specify the return value definition on a bounded
task flow, see Section 16.4, "Specifying Return Values".

4. In the Application Navigator, double-click the page that launches the modal
dialog.

5. Select the input component on the page and, in the Property Inspector, expand the
Behavior section to specify an EL expression for the partialTriggers attribute.

The EL expression you specify identifies the command component, accepts the
return value of the command component, and specifies a backing bean. For
example, enter an EL expression with syntax similar to the following:

#{pageFlowScope.backingBean.gotoModalDialog}

Where gotoModalDialog identifies the command component.

6. Select the command component and, in the Property Inspector, expand the
Behavior section.

7. In the Secondary Window, enter an EL expression that references a return listener
method in the page’s backing bean as a value for the returnListener attribute.

The return listener method you specify processes the return event that is generated
when an end user dismisses the modal dialog. Enter an EL expression with syntax
similar to the following:

#{pageBean.listenerMethod}

19.2.3 What You May Need to Know About Running a Bounded Task Flow in a Modal
Dialog

A bounded task flow can run in an ADF region. The ADF region can be in an
af:popup UI component.

Using the ADF Faces Dialog Framework

19-4 Fusion Developer's Guide for Oracle Application Development Framework

You cannot specify dialog:syntax in navigation rules within the
faces-config.xml file if your Fusion web application uses ADF Controller features
such as task flows. However, you can use the dialog:syntax in the control flow
rules that you specify in the adfc-config.xml file.

Example 19–1 shows an example of what you can specify in the adfc-config.xml
file.

Example 19–1 adfc-config.xml file with dialog:syntax

<?xml version="1.0" encoding="windows-1252" ?>
 <adfc-config xmlns="http://xmlns.oracle.com/adf/controller" version="1.2" id="__
1">
 <view id="view1"
 <page>/view1.jspx</page>
 </view>
 <view id="dialog">
 <page>/dialog/untitled1.jspx</page>
 </view>
 <control-flow-rule>
 <from-activity-id>test</from-activity-id>
 <control-flow-case>
 <from-outcome>dialog:test</from-outcome
 <to-activity-id>dialog</to-activity-id>
 </control-flow-case>
</adfc-config>

19.3 Using the ADF Faces Dialog Framework
You can use the ADF Faces dialog framework to create modal and modeless dialogs in
an application that does not use the ADF Controller and task flows. The dialog
framework enables you to display a page or series of pages in a new browser window
instead of displaying it in the same window (using the same view ID) as the current
page. There may also be cases where you want to use a series of inline dialogs, that is,
dialogs that are part of the parent page, but that have a flow of their own, but that do
not use a separate view ID. This is important for applications that do not support
popups such as, for example, applications that run on client devices or that use the
Active Data Service described in Chapter 42, "Using the Active Data Service."
Ordinarily, you would need to use JavaScript to open the dialog and manage the
process. With the dialog framework, ADF Faces has made it easy to open a new
browser window as well as manage dialogs and processes without using JavaScript.

Consider a simple application that requires users to log in to see their orders.
Figure 19–2 shows the page flow for the application, which consists of five pages -
login.jspx, orders.jspx, new_account.jspx, account_details.jspx, and
error.jspx.

Note: If your application uses the Fusion technology stack with the
ADF Controller, then you should use task flows to create dialogs
launched in a separate window, or multiple dialog processes. For
more information, see Section 19.2, "Running a Bounded Task Flow in
a Modal Dialog".

Using the ADF Faces Dialog Framework

Using Dialogs in Your Application 19-5

Figure 19–2 Page Flow of an External Dialog Sample Application

When an existing user logs in successfully, the application displays the Orders page,
which shows the user's orders, if any. When a user does not log in successfully, the
Error page displays in a separate popup dialog window, as shown in Figure 19–3.

Figure 19–3 Error Page Popup

On the Error page there is a Cancel button. When the user clicks Cancel, the popup
dialog closes and the application returns to the Login page and the original flow, as
shown in Figure 19–4.

Figure 19–4 Login Page

When a new user clicks the New User link on the Login page, the New Account page
displays in a popup dialog in a new window, as shown in Figure 19–5.

Using the ADF Faces Dialog Framework

19-6 Fusion Developer's Guide for Oracle Application Development Framework

Figure 19–5 New Account Page in a Separate Window

After entering information such as first name and last name, the user then clicks the
Details button to display the Account Details page in the same popup dialog, as
shown in Figure 19–6. In the Account Details page, the user enters other information
and confirms a password for the new login account. There are two buttons on the
Account Details page - Cancel and Done.

Figure 19–6 Account Details Page in a Popup Dialog

If the new user decides not to proceed with creating a new login account and clicks
Cancel, the popup dialog closes and the application returns to the Login page. If the
new user clicks Done, the popup dialog closes and the application returns to the Login
page where the Username field is now populated with the user’s first name, as shown
in Figure 19–7. The new user can then proceed to enter the new password and log in
successfully.

Figure 19–7 LogIn Page with Username Field Populated

Using the ADF Faces Dialog Framework

Using Dialogs in Your Application 19-7

To make it easy to support dialog page flows in your applications, ADF Faces has built
in the dialog functionality to action components (such as commandMenuItem and
commandButton). For ADF Faces to know whether or not to open a page in a new
flow from an action component, the following conditions must exist:

■ There must be a JSF navigation rule with an outcome that begins with dialog:.

■ The command component’s action outcome must begin with dialog:.

■ The useWindow attribute on the command component must be true.

The page that is displayed in a dialog is an ordinary JSF page, but for purposes of
explaining how to implement external dialogs in this chapter, a page that is displayed
in a popup dialog is called the dialog page, and a page from which the dialog is opened
is called the originating page. A dialog process starts when the originating page opens a
dialog (which can contain one dialog page or a series of dialog pages), and ends when
the user dismisses the dialog and returns to the originating page.

The tasks for supporting a dialog page flow in an application are:

1. Define a JSF navigation rule for opening a dialog.

2. Create the JSF page from which a dialog is opened.

3. Create the dialog page and return a dialog value.

4. Optional: Pass a value into a dialog.

5. Handle the return value.

The tasks can be performed in any order.

19.3.1 How to Define a JSF Navigation Rule for Opening a Dialog
You manage the navigation into a dialog flow by defining a standard JSF navigation
rule with a special dialog: outcome.

To define a navigation rule to open a dialog:
1. In the adfc-config.xml file, create a page flow for your originating page and

dialog pages. For detailed procedures, see Section 14.3.3, "How to Add Control
Flows".

2. When creating navigation rules to the dialog pages, the outcome must begin with
dialog:. For example, in the login sample application shown in Figure 19–2, the
outcome from the Login page to the New Account dialog page is
dialog:newAccount.

Note: The dialog framework should not be used to have more than
one dialog open at a time, or to launch dialogs that have a life span
outside of the life span of the base page.

Note: If the useWindow attribute is false, or if you configure the
popup to be a separate window (and not inline) and the client device
does not support popups, ADF Faces automatically shows the page in
the current window instead of using a popup window; code changes
are not required to facilitate this action.

Using the ADF Faces Dialog Framework

19-8 Fusion Developer's Guide for Oracle Application Development Framework

At runtime, the dialog navigation rules on their own simply show the specified pages
in the originating page. But when used with command components with dialog:
action outcomes and with useWindow attributes set to true, ADF Faces knows to
open the pages in dialogs.

19.3.2 How to Create the JSF Page That Opens a Dialog
In the originating page, you need to use a command component to launch the dialog.
The command component’s action value needs to be the outcome to the dialog that is
to be launched.

To create the JSF Page that opens a dialog
1. Create a JSF page.

For more information, see the "Creating a View Page" section in the Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application Development
Framework.

2. Add a command component to the page.

For more information about adding a command component to a page, see the
"Using Buttons and Links for Navigation" section in Oracle Fusion Middleware Web
User Interface Developer's Guide for Oracle Application Development Framework.

Note the following when setting the attributes on the command component:

■ action: Set the action attribute to the outcome that navigates to the dialog, as
created in Section 19.3.1, "How to Define a JSF Navigation Rule for Opening a
Dialog."

For example, the action attribute on the command component of the Login
page is bound to a method that determines whether to navigate to the Orders
page or to the Error dialog page, based on the returned outcome. If the
method returns dialog:error, the error dialog opens. If the method returns
success, the user navigates to the orders page.

■ useWindow: Set to true to have the dialog open.

■ windowHeight and windowWidth: Set the desired size of the dialog window.
These values will set the contentWidth and contentHeight attributes on
the popup component for the dialog.

Tip: The action value can be either a static string or the return of a
method on a managed bean.

Tip: When set to false, ADF Faces shows the dialog page in the
current window after preserving all of the state of the current page -
you do not have to write any code to facilitate this.

Tip: While the user can change the values of these attributes at
runtime, the values will not be retained once the user leaves the page
unless you configure your application to use change persistence. For
information about enabling and using change persistence, see the
"Allowing User Customization on JSF Pages" chapter in the Oracle
Fusion Middleware Web User Interface Developer's Guide for Oracle
Application Development Framework.

Using the ADF Faces Dialog Framework

Using Dialogs in Your Application 19-9

■ partialSubmit: Set to true. This prevents the originating page from reloading
(and hence being visible only momentarily) when the popup dialog is
displayed.

■ windowEmbedStyle: Set to inlineDocument if you want the ensuing dialog
to open in a popup that belongs to the originating page. Set to window if you
want the ensuing dialog to open in a separate browser.

■ windowModalityType: Set to applicationModal if you want the dialog to
be modal. Modal dialogs do not allow the user to return to the originating
page until the dialog has been dismissed. Set to modeless if you want the
user to be able to go back and forth between the originating page and the
dialog.

When a command component is about to open a dialog, it delivers a LaunchEvent
event. The LaunchEvent event stores information about the component that is
responsible for opening a popup dialog, and the root of the component tree to display
when the dialog process starts. A LaunchEvent can also pass a map of parameters
into the dialog. For more information, see Section 19.3.5, "How to Pass a Value into a
Dialog."

19.3.3 How to Create the Dialog Page and Return a Dialog Value
A dialog page is just like any other JSF page, with one exception. In a dialog page, you
must provide a way to tell ADF Faces when the dialog process finishes, that is, when
the user dismisses the dialog or series of dialogs.

For example, the New Account page and Account Details page belong in the same
dialog process. A dialog process can have as many pages as you desire, you only need
to notify the framework that the dialog process has ended once.

You do this declaratively using the returnActionListener tag as a child to the
command component used to close the dialog. However, if you need to provide a
return value or other action event processing, you can bind the actionListener
attribute on the command component to a method that calls the
AdfFacesContext.returnFromDialog() method. This method lets you send
back a return value in the form of a java.lang.Object or a java.util.Map of
parameters. You do not have to know where you are returning the value to - ADF
Faces automatically takes care of it.

At runtime, the AdfFacesContext.returnFromDialog() method tells ADF Faces
when the user dismisses the dialog. This method can be called whether the dialog
page is shown in a popup dialog or in the main window. If a popup dialog is used,
ADF Faces automatically closes it.

To close a dialog window an optionally return a value:
1. To the dialog page, add a command component. If that component will be used to

close the window, set the immediate attribute to true.

If the button will be used to navigate to another page in the dialog process,
configure the button as though it were standard navigation, and set the
useWindow attribute to false, which will cause the next page to display in the
same dialog window, preserving the state of the previous page.

2. If you need to end the dialog process and close the dialog, but do not need to
return a value, in the Component Palette, from the Operations panel, drag a
Return Action Listener and drop it as a child to the command component.

Using the ADF Faces Dialog Framework

19-10 Fusion Developer's Guide for Oracle Application Development Framework

The returnActionListener tag calls the returnFromDialog method on the
AdfFacesContext object - no backing bean code is needed.

No attributes are used with the af:returnActionListener tag. The
immediate attribute on the af:commandButton component is set to true: if the
user clicks Cancel without entering values in the required Password and Confirm
Password fields, the default JSF ActionListener can execute during the Apply
Request Values phase instead of the Invoke Application phase, thus bypassing
input validation. For more information, see the "Using the JSF Lifecycle with ADF
Faces" chapter in the Oracle Fusion Middleware Web User Interface Developer's Guide
for Oracle Application Development Framework.

3. If you need to end the dialog process and do need to return a value, create a
method on a managed bean that handles the action event and returns the
needed values using the returnFromDialog method on the current instance of
AdfFacesContext.

For example, when the user clicks Done on the Account Details page, the process
ends and returns the user input values. Example 19–2 shows the code for the event
handler method to which Done button is bound. The method gets the customer
information, then either creates a Faces message for an incorrect password, or sets
the values on the new customer object and return that object.

Example 19–2 Action Listener Method for the Done Button in a Managed Bean

public void done(ActionEvent e)
{
 AdfFacesContext afContext = AdfFacesContext.getCurrentInstance();
 String firstname = afContext.getPageFlowScope().get("firstname").toString();
 String lastname = afContext.getPageFlowScope().get("lastname").toString();
 String street = afContext.getPageFlowScope().get("street").toString();
 String zipCode = afContext.getPageFlowScope().get("zipCode").toString();
 String country = afContext.getPageFlowScope().get("country").toString();
 String password = afContext.getPageFlowScope().get("password").toString();
 String confirmPassword =
 afContext.getPageFlowScope().get("confirmPassword").toString();
 if (!password.equals(confirmPassword))
 {
 FacesMessage fm = new FacesMessage();
 fm.setSummary("Confirm Password");
 fm.setDetail("You've entered an incorrect password. Please verify that you've
 entered a correct password!");
 FacesContext.getCurrentInstance().addMessage(null, fm);
 }
 else
 {
 //Get the return value
 Customer cst = new Customer();
 cst.setFirstName(firstname);
 cst.setLastName(lastname);
 cst.setStreet(street);
 cst.setPostalCode(zipCode);
 cst.setCountry(country);
 cst.setPassword(password);

Note: The AdfFacesContext.returnFromDialog() method
returns null. This is all that is needed in the backing bean to handle
the Cancel action event.

Using the ADF Faces Dialog Framework

Using Dialogs in Your Application 19-11

 // And return it
 afContext.getCurrentInstance().returnFromDialog(cst, null);
 afContext.getPageFlowScope().clear();
 }
}

19.3.4 What Happens at Runtime: Raising the Return Event from the Dialog
When the dialog is dismissed, ADF Faces generates a return event (ReturnEvent).
The AdfFacesContext.returnFromDialog() method sends a return value as a
property of the return event. The return event is delivered to the return listener
(ReturnListener) that is registered on the command component that opened the
dialog (for example, the New User commandLink on the Login page). How you
would handle the return value is described in Section 19.3.7, "How to Handle the
Return Value."

19.3.5 How to Pass a Value into a Dialog
To pass a value into a dialog, you use a LaunchListener listener bound to a handler
method for the LaunchEvent. You can use the getDialogParameters() method
to add a parameter to a Map using a key-value pair.

To Pass a Value into a Dialog:
1. Create a handler method for the LaunchEvent that uses the

getDialogParameters method to get the parameters from a dialog.

For example, in the sample application, a new user can enter a name in the
Username field on the Login page, and then click the New User? link. When the
New Account dialog page displays in a popup dialog, the First Name input field
is automatically populated with the name that was entered in the Login page. To
accomplish this, you create a handler that uses the getDialogParameters
method to put the value of the username field into the dialog, as shown in
Example 19–3.

Example 19–3 LaunchEvent Listener Method for the New User Command Link in a
Backing Bean

public void handleLaunch(LaunchEvent event)
{
 //Pass the current value of the field into the dialog
 Object usr = username;
 event.getDialogParameters().put("firstname", getUsername());
}
// Use by inputText value binding
private String username;
public String getUsername()
{
 return username;
}
public void setUsername(String username)
{
 this.username = username;
}

2. Bind the launchListener attribute of the command component used to navigate to
the next page, to the handler method created in Step 1.

Using the ADF Faces Dialog Framework

19-12 Fusion Developer's Guide for Oracle Application Development Framework

Example 19–4 shows the code for the commandLink component, whose
launchListener attribute is bound to the handler method.

Example 19–4 Input Field and New User Command Link on the Login Page

<af:inputText label="Username" value="#{backing_login.username}"/>
<af:commandLink id="cmdLink" text="New User?"
 action="dialog:newAccount"
 useWindow="true" partialSubmit="true"
 launchListener="#{backing_login.handleLaunch}"
 returnListener="#{backing_login.handleReturn}"
 windowHeight="200" windowWidth="500" />

3. On the resulting page, use the pageFlowScope object to retrieve the key and
value via a special EL expression in the format #{pageFlowScope.someKey}, as
shown in Example 19–5

Example 19–5 Input Field on the New Account Page

<af:inputText label="First name" value="#{pageFlowScope.firstname}"/>

19.3.6 What Happens at Runtime: Handling the LaunchEvent
In ADF Faces, a process always gets a copy of all the values that are in the
pageFlowScope of the page from which a dialog is launched. When the
getDialogParameters() method has added parameters to a Map, those parameters
also become available in pageFlowScope, and any page in the dialog process can get
the values out of pageFlowScope by referring to the pageFlowScope objects via EL
expressions.

19.3.7 How to Handle the Return Value
To handle a return value once the dialog is dismissed, you register a return listener on
the command component that launched the dialog. For example, in the sample
application, once a new user enters information, that information needs to be handled
once the dialog process is complete.

To handle the return value:
1. Create a handler method for the returnEvent. You use the getReturnValue()

method to retrieve the return value, because the return value is automatically
added as a property of the ReturnEvent.

 Example 19–6 shows the code for the return listener method that handles the
return value.

Note: Unlike sessionScope, pageFlowScope values are visible
only in the current page flow or process. If the user opens a new
window and starts navigating, that series of windows has its own
process; values stored in each window remain independent. Clicking
on the browser's Back button automatically resets pageFlowScope to
its original state. When you return from a process the
pageFlowScope is back to the way it was before the process started.
To pass values out of a process you would use
AdfFacesContext.returnFromDialog(), sessionScope or
applicationScope.

Using the ADF Faces Dialog Framework

Using Dialogs in Your Application 19-13

Example 19–6 Return Listener Method for the New User Link in a Backing Bean

public void handleReturn(ReturnEvent event)
{
 if (event.getReturnValue() != null)
 {
 Customer cst;
 String name;
 String psw;
 cst = (Customer)event.getReturnValue();
 name = cst.getFirstName();
 psw = cst.getPassword();
 CustomerList.getCustomers().add(cst);
 inputText1.setSubmittedValue(null);
 inputText1.setValue(name);
 inputText2.setSubmittedValue(null);
 inputText2.setValue(psw);
 }
}

2. Bind the returnListener attribute on the command component that launched
the dialog to the returnEvent handler method created in Step 1.

19.3.8 What Happens at Runtime: Handling the ReturnEvent on the Launching
Component

At runtime in the sample application, when ADF Faces delivers a ReturnEvent to
the ReturnListener registered on the commandLink component, the
handleReturn() method is called and the return value is processed accordingly. The
new user is added to a customer list, and as a convenience to the user any previously
submitted values in the Login page are cleared and the input fields are populated with
the new information.

Using the ADF Faces Dialog Framework

19-14 Fusion Developer's Guide for Oracle Application Development Framework

Part IV
Part IV Creating a Databound Web User Interface

Part IV contains the following chapters:

■ Chapter 20, "Getting Started with Your Web Interface"

■ Chapter 21, "Understanding the Fusion Page Lifecycle"

■ Chapter 22, "Creating a Basic Databound Page"

■ Chapter 23, "Creating ADF Databound Tables"

■ Chapter 24, "Displaying Master-Detail Data"

■ Chapter 25, "Creating Databound Selection Lists and Shuttles"

■ Chapter 26, "Creating Databound ADF Data Visualization Components"

■ Chapter 27, "Creating ADF Databound Search Forms"

■ Chapter 28, "Creating More Complex Pages"

■ Chapter 29, "Designing a Page Using Placeholder Data Controls"

20

Getting Started with Your Web Interface 20-1

20Getting Started with Your Web Interface

This chapter describes how to use the Data Controls panel and ADF Model data
binding to create databound UI components on JSF pages of a Fusion web application.
It describes how to use page templates and page fragments to build a page. It also
describes how to use managed beans to store logic for the page.

This chapter includes the following sections:

■ Section 20.1, "Introduction to Developing a Web Application with ADF Faces"

■ Section 20.2, "Using Page Templates"

■ Section 20.3, "Creating a Web Page"

■ Section 20.4, "Using a Managed Bean in a Fusion Web Application"

20.1 Introduction to Developing a Web Application with ADF Faces
Most of what you need to know to get started with your web interface is covered in
the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework. However, using the ADF Model layer for data binding instead
of JSF managed beans provides additional functionality, such as the ability to
declaratively bind components to your business services. For more information on
what ADF Model can provide, see Section 1.2.2, "ADF Model Layer." This chapter
provides a high-level overview of the web interface development process as detailed
in the Faces guide, and also provides information about the additional functionality
available when you use ADF Model data binding.

Following the development process outlined in Chapter 1, "Introduction to Building
Fusion Web Applications with Oracle ADF", developing a web application with ADF
Faces and using ADF Model for data binding involves the following steps:

■ Creating ADF Faces templates for your pages (optional)

■ Creating the individual pages and page fragments for regions to be used within a
page

■ Creating any needed managed beans

Additionally, the lifecycle of a Fusion web application is different from that of a
standard JSF or ADF Faces application. For more information about how the lifecycle
works, see Chapter 21, "Understanding the Fusion Page Lifecycle."

20.2 Using Page Templates
As you design the flow of your application, you can begin to think about the design of
your pages. To ensure consistency throughout your application, you use ADF page

Using Page Templates

20-2 Fusion Developer's Guide for Oracle Application Development Framework

templates. These page templates provide structure and consistency for other
developers building web pages. Page templates typically contain static areas which
cannot be changed when they are used, and dynamic areas, where developers can
place content specific to the page they are building.

For example, the StoreFront module of the Fusion Order Demo application contains a
page template that provides a top area for branding and navigation, a bottom area for
copyright information, and a center area for the main content of the page. Page
developers do not need to do anything to the branding and copyright information
when they use the template. They need only to develop the main content area.

In addition to using ADF Faces components to build a page template, you can add
attributes to the template definition. These attributes provide placeholders for specific
information that the page developer needs to provide when using the page template.
For example, the page template in the StoreFront module application contains an
attribute for a welcome message. When page developers use this page template, they
can add a different welcome message for each page.

You can also add facet references to the page template. These references act as
placeholders for content on the page. Figure 20–1 shows a rendition of how the
StoreFrontTemplate template used in the StoreFront module application uses facet
references.

Figure 20–1 Facets in the StoreFrontTemplate

In this page template, facet references are used inside four different panelSplitter
components. When the home page was created using this page template, the
navigational links were placed in the Header facet and the accordion panels that hold
the navigation trees and search panels were placed in the Start facet. The cart
summary was placed in the End facet, and the main portion of the page was placed in
the Center facet. The copyright information was placed in the Bottom facet.

When you choose to add databound components to a page template, an associated
page definition file and the other metadata files that support ADF Model layer data

Using Page Templates

Getting Started with Your Web Interface 20-3

binding are created. Each component is bound in the same fashion as for standard JSF
pages, as described in Chapter 12, "Using ADF Model in a Fusion Web Application."
You can also create model parameters for the page template. The values for these
parameters can then be set at runtime by the calling page.

For example, if you wanted a list of products to appear on each page that uses the
page template, you could drag and drop the ProductName attribute of the Products
collection as a list. Or, if you wanted the pages to display the currently selected
product ID, you could create a model parameter for the page template that would
evaluate to that product’s ID.

If a page template does not contain databound components, it can be referenced
dynamically by the calling page using an EL expression. That is, the page template to
be used can be determined at runtime. For instance, a page may use templateA or
templateB based on user selection. When you add a page template to a page, an
af:pageTemplate tag is added to the page. The af:pageTemplate tag includes a
viewId attribute that specifies the page template the page will use. You can set
viewId with an EL expression to a managed bean method that returns the page
template Id, as shown in Example 20–1.

Example 20–1 Page with Dynamic Page Template (not Databound Page Template Only)

<af:pageTemplate
 id="pt1"
 viewId="#{myBean.templateViewId}"

If the page template has databound components, setting the viewId with an EL
expression is not enough. Because databound components require access to the
binding container, you must specify the page template as well as its associated binding
container.

For databound page templates, you use the pageTemplateModel to manage both the
page template Id and the associated binding container. In the JSF page, instead of
using the viewId attribute, you set the value attribute to the pageTemplateModel.
You must also modify the page executable section of the calling page’s page definition
file and create a managed bean with methods to process the page template Ids. For
detailed instructions, see Section 20.2.3, "How to Add a Databound Page Template to a
Page Dynamically."

20.2.1 How to Use ADF Data Binding in ADF Page Templates
Creating a page template for use in an application that uses ADF Business
Components and ADF Model layer data binding is the same as creating a standard
ADF Faces page template, as documented in the "Using Page Templates" section of the
Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework. Once you create the template, you can drag and drop items
from the Data Controls panel. JDeveloper automatically adds the page definition file
when you drag and drop items from this panel.

Note: Page templates are primarily a project artifact. While they can
be reused between projects and applications, they are not fully
self-contained and will always have some dependencies to external
resources, for example, any ADF data binding, Strings from a
message bundle, images, and managed beans.

Using Page Templates

20-4 Fusion Developer's Guide for Oracle Application Development Framework

The Create JSF Page Template wizard also allows you to create model parameters for
use by the template.

To add model parameters to a template:
1. Create a page template following the instructions in the "How to Create a Page

Template" section of the Oracle Fusion Middleware Web User Interface Developer's
Guide for Oracle Application Development Framework. However, do not complete the
dialog.

2. In the Create JSF Page Template dialog, select Create Associated ADFm Page
Definition.

3. Click the Model Parameters tab.

4. Click the Add icon.

5. Enter the following for the parameter:

■ Id: Enter a name for the parameter.

■ Value: Enter a value or an EL expression that can resolve to a value. If needed,
click the Invoke Expression Builder (...) button to open the Expression Builder.
You can use this to build the expression. For more information about EL
expressions and the EL expression builder, see Chapter 12.7, "Creating ADF
Data Binding EL Expressions."

■ Option: Select the option that determines how the parameter value will be
specified.

– optional: The binding definition's value is used only if the parameter is
not specifically set by the caller. This is the default.

– final: The binding definition has the expression to access the value that
should be used for this parameter.

– mandatory: The parameter value has to be set by the caller.

■ Read Only: Select if the parameter’s value is to be read-only and should not be
overwritten

6. Create more parameters as needed. Use the order buttons to arrange the
parameters into the order in which you want them to be evaluated.

You can now use the Data Controls panel to add databound UI components to the
page, as you would for a standard JSF page, as described in the remaining chapters in
this part of the book.

Note: You only need to select this checkbox if you wish to add
parameters. JDeveloper automatically adds the page definition file
when you drag and drop items from the Data Controls panel.

Note: If your template contains any method actions bound to a
method iterator, you cannot change the value of the refresh
attribute on the iterator to anything other than Default. If set to
anything other than Default, the method will not execute.

Using Page Templates

Getting Started with Your Web Interface 20-5

20.2.2 What Happens When You Use ADF Model Layer Bindings on a Page Template
When you add ADF databound components to a template or create model parameters
for a template, a page definition file is created for the template, and any model
parameters are added to that file.

Example 20–2 shows what the page definition file for a template for which you created
a productId model parameter might look like.

Example 20–2 Model Parameters in a Page Definition for a Template

<parameters>
 <parameter id="productID" readonly="true"
 value="#{bindings.productId.inputValue}"/>
</parameters>
<executables/>
<bindings/>

Parameter binding objects declare the parameters that the page evaluates at the
beginning of a request. For more information about binding objects and the ADF
lifecycle, see Chapter 12, "Using ADF Model in a Fusion Web Application." However,
since a template itself is never executed, the page that uses the template (the calling
page) must access the binding objects created for the template (including parameters
or any other type of binding objects created by dragging and dropping objects from
the Data Controls panel onto the template).

In order to access the template’s binding objects, the page definition file for the calling
page must instantiate the binding container represented by the template’s page
definition file. As a result, a reference to the template’s page definition is inserted as an
executable into the calling page’s page definition file, as shown in Example 20–3.

Example 20–3 Reference to Template’s Page Definition as an Executable

<executables>
 <page path="oracle.foddemo.storefront.pageDefs.templates_MyTemplatePageDef"
 id="pageTemplateBinding"/>
</executables>

In this example, the calling page was built using the MyTemplate template. Because
the page definition file for the MyTemplate template appears as an executable for the
calling page, when the calling page’s binding container is instantiated, it will in turn
instantiate the MyTemplatePageDef’s binding container, thus allowing access to the
parameter values or any other databound values.

Because there is an ID for this reference (in this case, pageTemplateBinding), the
calling page can have components that are able to access values from the template.
When you create a JSF page from a template, instead of you having to repeat the code
contained within the template, you can use the af:pageTemplate tag on the calling
page. This tag contains the path to the template JSF page.

Additionally, when the template contains any ADF data binding, the value of that tag
is the ID set for the calling page’s reference to the template’s page definition, as shown

Note: This section describes what happens for a statically assigned
page template. For information about dynamic templates, see
Section 20.2.3, "How to Add a Databound Page Template to a Page
Dynamically."

Using Page Templates

20-6 Fusion Developer's Guide for Oracle Application Development Framework

in Example 20–4. This binding allows the component access to the binding values from
the template.

Example 20–4 Page Template Page Definition Reference

<af:pageTemplate viewId="/MyTemplate.jspx"
 value="#{bindings.pageTemplateBinding}".../>

20.2.3 How to Add a Databound Page Template to a Page Dynamically
You can dynamically add a page template without databound components by using
an EL expression to select the page template. For more information on how to do this,
see Section 20.2, "Using Page Templates."

You can also statically add a page template with databound components. For more
information on how to do this, see Section 20.2.1, "How to Use ADF Data Binding in
ADF Page Templates."

This section describes how to dynamically add a page template with databound
components to a page.

You use the pageTemplateModel to dynamically manage a page template and its
binding container. You use an EL expression in the page definition file to set the page
template Id. You create managed bean methods to return the page template Id.

To add a databound page template to a page dynamically:
1. Add the page template to the page as described in Section 20.2.1, "How to Use

ADF Data Binding in ADF Page Templates."

2. In the JSF page source editor, remove the viewId attribute and change the value
attribute to the pageTemplateModel. You do not need to create a
pageTemplateModel explicitly. You can use the pageTemplateModel from the
corresponding page definition file’s page executable binding. For example, for a
page executable binding called pageTemplate1, you would add the following
line under the af:pageTemplate tag:

value="#{bindings.pageTemplate1.templateModel}"/>

3. In the page definition file <executable> section, make the following changes to
the <page> section:

■ Remove the path attribute. It is no longer needed. The pageTemplateModel
manages databound components’ access to the binding container.

■ Change the id attribute to the page executable binding. In this example, it is
pageTemplate1.

■ Add a Refresh attribute and set it to ifNeeded.

■ Add a viewId attribute and set it to an EL expression with a managed bean
method that returns the current page template Id.

For example, for a page executable binding of pageTemplate1, the id attribute
would also be pageTemplate1:

<executables>
 <page id="pageTemplate1"
 viewId="#{myBean.templateViewId}"
 Refresh="ifNeeded"/>
 ...
</executables>

Creating a Web Page

Getting Started with Your Web Interface 20-7

4. Create a pageFlowScope managed bean with a method that returns the current
page template Id.

The managed bean code should be similar to that of Example 20–5. In this
example, gettemplateViewId() obtains the user’s page template selection and
returns the page template Id. setMDTemplateViewId() sets the page template
to be MDPageTemplate and setPopupTemplateViewId() sets the page
template to be PopupPageTemplate.

Example 20–5 Managed Bean Code to Process Page Templates Dynamically

public class myClass {
 final private String MDPageTemplate = "/MDPageTemplate.jspx";
 final private String PopupPageTemplate = "/PopupPageTemplate.jspx";
 private String templateViewId;

 public myClass() {
 super();
 templateViewId = MDPageTemplate;
 }
 public String gettemplateViewId() {
 return templateViewId;
 }
 public void setMDTemplateViewId(ActionEvent ae) {
 templateViewId = MDPageTemplate;
 }
 public void setPopupTemplateViewId(ActionEvent ae) {
 templateViewId = PopupPageTemplate;
 }
}

20.2.4 What Happens at Runtime: How Pages Use Templates
When a page is created using a template that contains ADF data binding, the following
happens:

1. The calling page follows the standard JSF/ADF lifecycle, as documented in
Chapter 21, "Understanding the Fusion Page Lifecycle." As the page enters the
Restore View phase, the URL for the calling page is sent to the binding context,
which finds the corresponding page definition file.

2. During the Initialize Context phase, the binding container for the calling page is
created based on the page definition file.

3. During the Prepare Model phase, the page template executable is refreshed. At
this point, the binding container for the template is created based on the
template’s page definition file, and added to the binding context.

4. The lifecycle continues, with UI components and bindings from both the page and
the template being processed.

20.3 Creating a Web Page
Creating a web page for an application that uses ADF Model layer data binding is no
different than described in the "Creating a JSF Page" section in the Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application Development
Framework. You can create pages either by double-clicking a view activity in a task
flow or by using the New Gallery. When creating the page (or dropping a view
activity onto a task flow), you can choose to create the page as a JSF JSP or as a JSF JSP

Using a Managed Bean in a Fusion Web Application

20-8 Fusion Developer's Guide for Oracle Application Development Framework

fragment. JSF fragments provide a simple way to create reusable page content in a
project, and are what you use when you wish to use task flows as regions on a page.
When you modify a JSF page fragment, the JSF pages that consume the page fragment
are automatically updated.

When you begin adding content to your page, you typically use the Component
Palette and Data Controls panel of JDeveloper. The Component Palette contains all the
ADF Faces components needed to declaratively design your page. Once you have the
basic layout components placed on the page, you can then drag and drop items from
the Data Controls panel to create ADF Model databound UI components. The
remaining chapters in this part of the book explain in detail the different types of
databound components and pages you can create using ADF Model data binding.

20.4 Using a Managed Bean in a Fusion Web Application
Managed beans are Java classes that you register with the application using various
configuration files. When the JSF application starts up, it parses these configuration
files, and the beans listed within them are made available. The managed beans can be
referenced in an EL expression, allowing access to the beans’ properties and methods.
Whenever a managed bean is referenced for the first time and it does not already exist,
the Managed Bean Creation Facility instantiates the bean by calling the default
constructor method on it. If any properties are also declared, they are populated with
the declared default values.

Often, managed beans handle events or some manipulation of data that is best
handled at the front end. For a more complete description of how managed beans are
used in a standard JSF application, see the Java EE tutorial on Oracle’s Technology
Network web site
(http://www.oracle.com/technetwork/java/javaee/overview/index.ht
ml).

In an application that uses ADF data binding and ADF task flows, managed beans are
registered in different configuration files from those used for a standard JSF
application. In a standard JSF application, managed beans are registered in the
faces-config.xml configuration file. In a Fusion web application, managed beans
can be registered in the faces-config.xml file, the adfc-config.xml file, or a
task flow definition file. Which configuration file you use to register a managed bean
depends on what will need to access that bean, whether or not it needs to be
customized at runtime, what the bean’s scope is, and in what order all the beans in the

Note: Although JDeveloper supports XHTML files to be used in
applications that use Facelets, the faces-config.xml and
adfc-config.xml diagrammers do not support XHTML. In order to
add navigation to these files, you have to manually edit the code by
clicking the Source tab.

Best Practice: Use managed beans to store logic that is related to the
UI rendering only. All application data and processing should be
handled by logic in the business layer of the application. Similar to
how you store data-related logic in the database using PL/SQL rather
than a Java class, the rule of thumb in a Fusion web application is to
store business-related logic in the middle tier. This way, you can
expose this logic as business service methods, which can then become
accessible to the ADF Model layer and be available for data binding.

http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://www.oracle.com/technetwork/java/javaee/overview/index.html

Using a Managed Bean in a Fusion Web Application

Getting Started with Your Web Interface 20-9

application need to be instantiated. Table 20–1 describes how registering a bean in each
type of configuration file affects the bean.

Note: Registering managed beans within the faces-config.xml
file is not recommended in a Fusion web application.

Managed beans accessed within the task flow definition must be
registered in that task flow’s definition file.

Table 20–1 Effects of Managed Bean Configuration Placement

Managed Bean Placement Effect

adfc-config.xml ■ Managed beans can be of any scope. However, any backing
beans for page fragments or declarative components should
use BackingBean scope. For more information regarding
scope, see Section 21.3, "Object Scope Lifecycles."

■ When executing within an unbounded task flow,
faces-config.xml will be checked for managed bean
definitions before the adfc-config.xml file.

■ Lookup precedence is enforced per scope. Request-scoped
managed beans take precedence over session-scoped
managed beans. Therefore, a request-scoped managed bean
named foo in the adfc-config.xml file will take
precedence over a session-scoped managed bean named
foo in the current task flow definition file.

■ Already instantiated beans take precedence over new
instances being instantiated. Therefore, an existing
session-scoped managed bean named foo will always take
precedence over a request-scoped bean named foo defined
in the current task flow definition file.

Using a Managed Bean in a Fusion Web Application

20-10 Fusion Developer's Guide for Oracle Application Development Framework

As a general rule for Fusion web applications, a bean that may be used in more than
one page or task flow, or one that is used by pages within the main unbounded task
flow (adfc-config), should be registered in the adfc-config.xml configuration
file. A managed bean that will be used only by a specific task flow should be
registered in that task flow’s definition file. There should be no beans registered in the
faces-config.xml file.

For example, in the StoreFront module, the myOrdersBean managed bean is used by
the myOrders.jspx page to handle the case where a user decides to cancel editing an
order, and the edits have already been committed to the model but have not yet been

Task flow definition file ■ Managed bean can be of any scope. However, managed
beans of pageFlow scope or view scope that are to be
accessed within the task flow definition must be defined
within the task flow definition file. Any backing beans for
page fragments in a task flow should use BackingBean
scope.

■ Managed bean definitions within task flow definition files
will be visible only to activities executing within the same
task flow.

■ When executing within a bounded task flow,
faces-config.xml will be checked for managed bean
definitions before the currently executing task flow
definition. If no match is found in either location,
adfc-config.xml and other bootstrap configuration files
will be consulted. However, this lookup in other
adfc-config.xml and bootstrap configuration files will
only occur for session- or application-scoped managed
beans.

■ Lookup precedence is enforced per scope. Request-scoped
managed beans take precedence over session-scoped
managed beans. Therefore, a request-scoped managed bean
named foo in the adfc-config.xml file will take
precedence over a session-scoped managed bean named
foo in the current task flow definition file.

■ Already instantiated beans take precedence over new
instances being instantiated. Therefore, an existing
session-scoped managed bean named foo will always take
precedence over a request-scoped bean named foo
registered in the current task flow definition file.

■ Customizations are allowed.

faces-config.xml ■ Managed beans can be of any scope other than pageFlow
scope or view scope.

■ When searching for any managed bean, the
faces-config.xml file is always consulted first. Other
configuration files will be searched only if a match is not
found. Therefore, beans registered in the
faces-config.xml file will always win any naming
conflict resolution.

■ No customizations can be made.

Note: If you create managed beans from dialogs within JDeveloper,
the bean is registered in the adfc-config.xml file, if it exists.

Table 20–1 (Cont.) Effects of Managed Bean Configuration Placement

Managed Bean Placement Effect

Using a Managed Bean in a Fusion Web Application

Getting Started with Your Web Interface 20-11

persisted to the database. Because this bean is used by a page within the
adfc-config unbounded task flow, it is registered in the adfc-config.xml file.
The custRegBasicInformationBean is a managed bean used by the
basicInformation JSF fragment to handle the selections in the shuttle component
on that page. Because it is used solely within the customer-registration task
flow, it is registered in the customer-registration-task-flow definition file.

This section describes how to create a managed bean for use within a task flow (either
the default adfc-config flow or any bounded task flow). For more information
regarding managed beans and how they are used as backing beans for JSF pages, see
the "Creating and Using Managed Beans" section in the Oracle Fusion Middleware Web
User Interface Developer's Guide for Oracle Application Development Framework.

20.4.1 How to Use a Managed Bean to Store Information
Within the editors for a task flow definition, you can create a managed bean and
register it with the JSF application at the same time.

To create a managed bean for a task flow:
1. In the Application Navigator, double-click either the adfc-config.xml file or

any other task flow definition file.

2. At the bottom of the window, click the Overview tab.

3. In the overview editor, click the Managed Beans navigation tab. Figure 20–2
shows the editor for the adfc-config.xml file.

Figure 20–2 Managed Beans in the adfc-config.xml File

4. Click the Add icon to add a row to the Managed Beans table.

5. In the fields, enter the following:

■ managed-bean-name: A name for the bean.

■ managed-bean-class: If the corresponding class has already been created for
the bean, use the browse (...) button for the managed-bean-class field to search
for and select the class. If a class does not exist, enter the name you’d like to
use. Be sure to include any package names as well. You can then use the
drop-down menu to choose Generate Class, and the Java file will be created
for you.

Using a Managed Bean in a Fusion Web Application

20-12 Fusion Developer's Guide for Oracle Application Development Framework

■ managed-bean-scope: The bean’s scope. For more information about the
different object scopes, see Section 21.3, "Object Scope Lifecycles."

6. You can optionally add needed properties for the bean. With the bean selected in
the Managed Beans table, click the Add icon for the Managed Properties table.
Enter a property name (other fields are optional).

20.4.2 What Happens When You Create a Managed Bean
When you use the configuration editor to create a managed bean and elect to generate
the Java file, JDeveloper creates a stub class with the given name and a default
constructor. Example 20–6 shows the code added to the MyBean class stored in the
view package.

Example 20–6 Generated Code for a Managed Bean

package view;

Note: When determining what scope to register a managed bean
with or to store a value in, keep the following in mind:

■ Always try to use the narrowest scope possible.

■ If your managed bean takes part in component binding by
accepting and returning component instances (that is, if UI
components on the page use the binding attribute to bind to
component properties on the bean), then the managed bean must
be stored in BackingBean scope. If it can’t be stored in one of
those scopes (for example, if it needs to be stored in
sessionScope for high availability reasons), then instead of
using component binding, you need to use the
ComponentReference API. For more information, see the “What
You May Need to Know About Component Bindings and
Managed Beans” section of the Oracle Fusion Middleware Web User
Interface Developer's Guide for Oracle Application Development
Framework

■ Use the sessionScope scope only for information that is
relevant to the whole session, such as user or context information.
Avoid using the sessionScope scope to pass values from one
page to another.

■ You can also set the scope to none. While not technically a scope,
none means that the bean will not live within any particular
scope, but will instead be instantiated each time it is referenced.
You should set a bean’s scope to none when it is referenced by
another bean.

Note: While you can declare managed properties using this editor,
the corresponding code is not generated on the Java class. You will
need to add that code by creating private member fields of the
appropriate type and then using the Generate Accessors menu item
on the context menu of the source editor to generate the
corresponding getter and setter methods for these bean properties.

Using a Managed Bean in a Fusion Web Application

Getting Started with Your Web Interface 20-13

public class MyBean {
 public MyBean() {
 }
}

You now need to add the logic required by your task flow or page. You can then refer
to that logic using an EL expression that refers to the managed-bean-name value
given to the managed bean. For example, to access the myInfo property on the bean,
the EL expression would be:

#{my_bean.myInfo}

JDeveloper also adds a managed-bean element to the appropriate task definition file.
Example 20–7 shows the managed-bean element created for the MyBean class.

Example 20–7 Managed Bean Configuration on the adfc-config.xml File

<managed-bean>
 <managed-bean-name>my_bean</managed-bean-name>
 <managed-bean-class>view.MyBean</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
</managed-bean>

20.4.3 How to Set Managed Bean Memory Scopes in a Server-Cluster Environment
Typically, in an application that runs in a clustered environment, a portion of the
application's state is serialized and copied to another server or a data store at the end
of each request so that the state is available to other servers in the cluster.

When you are designing an application to run in a clustered environment, you must:

■ Ensure that all managed beans with a lifespan longer than one request are
serializable (that is, they implement the java.io.Serializable interface).
Specifically, beans stored in session scope, page flow scope, and view scope need
to be serializable.

■ Make sure that the framework is aware of changes to managed beans stored in
ADF scopes (view scope and page flow scope).

Note: If the managed bean will be calling set and get methods on
ADF Faces components, you cannot serialize the managed beans
because ADF Faces components are not serializable. You will need to
access the ADF Faces components in another way. For more
information, see the “What You May Need to Know About
Component Bindings and Managed Beans” section of the Oracle
Fusion Middleware Web User Interface Developer's Guide for Oracle
Application Development Framework.

Tip: To identify failures with objects stored in page flow scope and
view scope, use writeObject(). This method provides additional
information in an exception about the object and scope that failed to
serialize. Additional information might be a region's page flow scope
and the key of the object.

Using a Managed Bean in a Fusion Web Application

20-14 Fusion Developer's Guide for Oracle Application Development Framework

When a value within a managed bean in either view scope or page flow scope is
modified, the application needs to notify the framework so that it can ensure that the
bean's new value is replicated.

In Example 20–8, an attribute of an object in view scope is modified.

Example 20–8 Code That Modifies an Object in viewScope

Map<String, Object> viewScope =
 AdfFacesContext.getCurrentInstance().getViewScope();
MyObject obj = (MyObject)viewScope.get("myObjectName");
Obj.setFoo("newValue");

Without additional code, the framework will be unaware of this change and it will not
know that a new value needs to be replicated within the cluster. To inform the
framework that an object in an ADF scope has been modified and that replication is
needed, use the markScopeDirty() method, as shown in Example 20–9. The
markScopeDirty() method accepts only viewScope and pageFlowScope as
parameters.

Example 20–9 Additional Code to Notify Oracle ADF of Changes to an Object

ControllerContext ctx = ControllerContext.getInstance();
ctx.markScopeDirty(viewScope);

This code is needed for any request that modifies an existing object in one of the ADF
scopes. If the scope itself is modified by the scope's put(), remove(), or clear()
methods, it is not necessary to notify the framework.

If an application is not deployed to a clustered environment, the tracking of changes to
ADF memory scopes is not needed, and by default, this functionality is disabled. To
enable ADF Controller to track changes to ADF memory scopes and replicate the page
flow scope and view scope within the server cluster, set the
<adf-scope-ha-support> parameter in the adf-config.xml file to true.
Because scope replication has a small performance overhead, it should be enabled only
for applications running in a server-cluster environment.

Example 20–10 shows adf-scope-ha-support set to true in the
adf-config.xml file.

Example 20–10 adf-scope-ha-support Parameter in the adf-config.xml File

<?xml version="1.0" encoding="US-ASCII" ?>
<adf-config xmlns="http://xmlns.oracle.com/adf/config"
 xmlns:adfc="http://xmlns.oracle.com/adf/controller/config">
 <adfc:adf-controller-config>
...
 <adfc:adf-scope-ha-support>true</adfc:adf-scope-ha-support>
...
 </adfc:adf-controller-config>
...
</adf-config>

21

Understanding the Fusion Page Lifecycle 21-1

21Understanding the Fusion Page Lifecycle

This chapter describes the ADF page lifecycle, its phases, and how to best use the
lifecycle within a Fusion web application.

This chapter includes the following sections:

■ Section 21.1, "Introduction to the Fusion Page Lifecycle"

■ Section 21.2, "The JSF and ADF Page Lifecycles"

■ Section 21.3, "Object Scope Lifecycles"

■ Section 21.4, "Customizing the ADF Page Lifecycle"

21.1 Introduction to the Fusion Page Lifecycle
When a page is submitted and a new page requested, the application invokes both the
ADF Faces page lifecycle, which extends the standard JSF request lifecycle, and the
ADF page lifecycle. The extended JSF lifecycle handles submitting the values on the
page, validating component values, navigating pages, displaying components on the
resulting page, and saving and restoring state. The JSF lifecycle phases use a UI
component tree to manage the display of the faces components. This tree is a runtime
representation of a JSF page: each UI component tag in a page corresponds to a UI
component instance in the tree. The FacesServlet servlet manages the request
processing lifecycle in JSF applications. FacesServlet creates an object called
FacesContext, which contains the information necessary for request processing, and
invokes an object that executes the lifecycle. For more details about the extended JSF
lifecycle, see the "Understanding the JSF and ADF Faces Lifecycles" chapter of the
Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework.

The ADF page lifecycle handles preparing and updating the data model, validating
the data at the model layer, and executing methods on the business layer. The ADF
page lifecycle uses the binding container to make data available for easy referencing
by the page during the current page request.

The combined JSF and ADF page lifecycle is only one sequence within a larger
sequence of events that begins when an HTTP request arrives at the application server
and continues until the page is returned to the client. This overall sequence of events
can be called the web page lifecycle. It follows processing through the model, view, and
controller layers as defined by the MVC architecture. The page lifecycle is not a rigidly
defined set of events, but is rather a set of events for a typical use case. Figure 21–1
shows a sequence diagram of the lifecycle of a web page request using JSF and Oracle
ADF in tandem.

Introduction to the Fusion Page Lifecycle

21-2 Fusion Developer's Guide for Oracle Application Development Framework

Figure 21–1 Lifecycle of a Web Page Request Using JSF and Oracle ADF

The basic flow of processing a web page request using JSF and Oracle ADF happens as
follows:

1. A web request for http://yourserver/yourapp/faces/some.jsp arrives
from the client to the application server.

2. The ADFBindingFilter object looks for the ADF binding context in the HTTP
session, and if it is not yet present, initializes it for the first time. Some of the
functions of the ADFBindingFilter include finding the name of the binding
context metadata file, and finding and constructing an instance of each data
control.

3. The ADFBindingFilter object invokes the beginRequest() method on each
data control participating in the request. This method gives the data control a
notification at the start of every request so that it can perform any necessary setup.

4. The JSF Lifecycle object, which is responsible for orchestrating the standard
processing phases of each request, notifies the ADFPhaseListener class during
each phase of the lifecycle, so that it can perform custom processing to coordinate
the JSF lifecycle with the ADF Model data binding layer. For more information
about the details of the JSF and ADF page lifecycle phases, see Section 21.2, "The
JSF and ADF Page Lifecycles."

The JSF and ADF Page Lifecycles

Understanding the Fusion Page Lifecycle 21-3

5. The ADFPhaseListener object creates an ADF PageLifecycle object to
handle each request and delegates appropriate before and after phase methods to
corresponding methods in the ADF PageLifecycle class. If the appropriate
binding container for the page has never been used before during the user's
session, it is created.

6. The first time an application module data control is referenced during the request,
it acquires an instance of the application module from the application module
pool.

7. The JSF Lifecycle object forwards control to the page to be rendered.

8. The UI components on the page access value bindings and iterator bindings in the
page's binding container and render the formatted output to appear in the
browser.

9. The ADFBindingFilter object invokes the endRequest() method on each
data control participating in the request. This method gives a data control
notification at the end of every request, so that they can perform any necessary
resource cleanup.

10. An application module data control uses the endRequest notification to release
the instance of the application module back to the application module pool.

11. The user sees the resulting page in the browser.

The ADF page lifecycle also contains phases that are defined simply to notify ADF
page lifecycle listeners before and after the corresponding JSF phase is executed (that
is, there is no implementation for these phases). These phases allow you to create
custom listeners and register them with any phase of both the JSF and ADF page
lifecycles, so that you can customize the ADF page lifecycle if needed, both globally or
at the page level.

21.2 The JSF and ADF Page Lifecycles
Figure 21–2 shows how the JSF and ADF phases integrate in the lifecycle of a page
request. For more information about how the JSF lifecycle operates on its own, see the
"Understanding the JSF and ADF Faces Lifecycles" chapter of the Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application Development
Framework.

Note: The FacesServlet class (in javax.faces.webapp),
configured in the web.xml file of a JSF application, is responsible for
initially creating the JSF Lifecycle class (in
javax.faces.lifecycle) to handle each request. However, since
it is the Lifecycle class that does all the interesting work, the
FacesServlet class is not shown in the diagram.

The JSF and ADF Page Lifecycles

21-4 Fusion Developer's Guide for Oracle Application Development Framework

Figure 21–2 Lifecycle of a Page Request in a Fusion Web Application

In a JSF application that uses the ADF Model layer, the phases in the page lifecycle are
as follows:

■ Restore View: The URL for the requested page is passed to the bindingContext
object, which finds the page definition file that matches the URL. The component
tree of the requested page is either newly built or restored. All the component
tags, event handlers, converters, and validators on the submitted page have access
to the FacesContext instance. If the component tree is empty, (that is, there is no
data from the submitted page), the page lifecycle proceeds directly to the Render
Response phase.

If any discrepancies between the request state and the server-side state are
detected, an error will is thrown and the page lifecycle jumps to the Render
Response phase.

■ JSF Restore View: Provides before and after phase events for the Restore View
phase. You can create a listener and register it with the before or after event of this
phase, and the application will behave as if the listener were registered with the
Restore View phase. The Initialize Context phase of the ADF Model page lifecycle
listens for the after(JSF Restore View) event and then executes. The ADF
Controller uses listeners for the before and after events of this phase to
synchronize the server-side state with the request. For example, it is in this phase

The JSF and ADF Page Lifecycles

Understanding the Fusion Page Lifecycle 21-5

that browser back button detection and bookmark reference are handled. After the
before and after listeners are executed, the page flow scope is available.

■ Initialize Context: The page definition file is used to create the
bindingContainer object, which is the runtime representation of the page
definition file for the requested page. The LifecycleContext class used to
persist information throughout the ADF page lifecycle phases is instantiated and
initialized with values for the associated request, binding container, and lifecycle.

■ Prepare Model: The ADF page lifecycle enters the Prepare Model phase by calling
the BindingContainer.refresh(PREPARE_MODEL) method. During the
Prepare Model phase, BindingContainer page parameters are prepared and
then evaluated. If parameters for a task flow exist, they are passed into the flow.

Next, any executables that have their refresh attribute set to prepareModel are
refreshed based on the order of entry in the page definition file’s <executables>
section and on the evaluation of their RefreshCondition properties (if present).
When an executable leads to an iterator binding refresh, the corresponding data
control will be executed, and that leads to execution of one or more collections in
the service objects. If an iterator binding fails to refresh, a JBO exception will be
thrown and the data will not be available to display. For more information, see
Section 21.2.1, "What You May Need to Know About Using the Refresh Property
Correctly."

If the incoming request contains no POST data or query parameters, then the
lifecycle forwards to the Render Response phase.

If the page was created using a template, and that template contains bindings
using the ADF Model layer, the template’s page definition file is used to create the
binding container for the template. The container is then added to the binding
context.

If any taskFlow executable bindings exist (for example, if the page contains a
region), the taskFlow binding creates an ADF Controller ViewPortContext
object for the task flow, and any nested binding containers for pages in the flow
are then executed.

■ Apply Request Values: Each component in the tree extracts new values from the
request parameters (using its decode method) and stores those values locally.
Most associated events are queued for later processing. If you have set a
component’s immediate attribute to true, then the validation, conversion, and
events associated with the component are processed during this phase and the
lifecycle skips the Process Validations, Update Model Values, and Invoke
Application phases. Additionally, any associated iterators are invoked. For more
information about ADF Faces validation and conversion, see the "Validating and
Converting Input" chapter in the Oracle Fusion Middleware Web User Interface
Developer's Guide for Oracle Application Development Framework.

■ JSF Apply Request Values: Provides before and after phase events for the Apply
Request Values phase. You can create a listener and register it with the before or
after event of this phase, and the application will behave as if the listener were
registered with the Apply Request Values phase.

■ Process Validations: Local values of components are converted and validated on
the client. If there are errors, the lifecycle jumps to the Render Response phase. At
the end of this phase, new component values are set, any validation or conversion
error messages and events are queued on FacesContext, and any value change
events are delivered. Exceptions are also caught by the binding container and
cached.

The JSF and ADF Page Lifecycles

21-6 Fusion Developer's Guide for Oracle Application Development Framework

■ JSF Process Validations: Provides before and after phase events for the Process
Validations phase. You can create a listener and register it with the before or after
event of this phase, and the application will behave as if the listener were
registered with the Process Validations phase.

■ Update Model Values: The component’s validated local values are moved to the
model and the local copies are discarded. For any updateable components (such as
an inputText component), corresponding iterators are refreshed, if the refresh
condition is set to the default (deferred) and the refresh condition (if any)
evaluates to true.

If you are using a backing bean for a JSF page to manage your UI components, any
UI attributes bound to a backing bean property will also be refreshed in this phase.

■ JSF Update Model Values: Provides before and after phase events for the Update
Model Values phase. You can create a listener and register it with the before or
after event of this phase, and the application will behave as if the listener were
registered with the Update Model Values phase.

■ Validate Model Updates: The updated model is now validated against any
validation routines set on the model. Exceptions are caught by the binding
container and cached.

■ Invoke Application: Any action bindings for command components or events are
invoked.

■ JSF Invoke Application: Provides before and after phase events for the Invoke
Application phase. You can create a listener and register it with the before or after
event of this phase, and the application will behave as if the listener were
registered with the Invoke Application phase.

■ Metadata Commit: Changes to runtime metadata are committed. This phase stores
any runtime changes made to the application using the Metadata Service (MDS).
For more information about using MDS to persist runtime changes, see
Chapter 34, "Customizing Applications with MDS."

■ Initialize Context (only if navigation occurred in the Invoke Application lifecycle):
The Initialize Context phase listens for the beforeJSFRenderResponse event to
execute. The page definition file for the next page is initialized.

■ Prepare Model (only if navigation occurred in the Invoke Application lifecycle):
Any page parameters contained in the next page’s definition are set.

■ Prepare Render: The binding container is refreshed to allow for any changes that
may have occurred in the Apply Request Values or Validation phases. Any
iterators that correspond to read-only components (such as an outputText
component) are refreshed. Any dynamic regions are switched, if needed. The
prepareRender event is sent to all registered listeners, as is the
afterJSFRenderResponse event.

■ Render Response: The components in the tree are rendered as the Java EE web
container traverses the tags in the page. State information is saved for subsequent
requests and the Restore View phase.

Note: Instead of displaying prepareRender as a valid phase for a
selection, JDeveloper displays renderModel, which represents the
refresh(RENDER_MODEL) method called on the binding container.

The JSF and ADF Page Lifecycles

Understanding the Fusion Page Lifecycle 21-7

In order to lessen the wait time required to display both a page and any associated
data, certain ADF Faces components such as the table component, use data
streaming for their initial request. When a page contains one or more of these
components, the page goes through the normal lifecycle. However, instead of
fetching the data during that request, a special separate request is run. Because the
page has just rendered, only the Render Response phase executes for the
components that use data streaming, and the corresponding data is fetched and
displayed. If the user’s action (for example scrolling in a table), causes a
subsequent data fetch another request is executed. Tables, trees, tree tables, and
data visualization components all use data streaming.

■ JSF Render Response: Provides before and after phase events for the Render
Response phase. You can create a listener and register it with the before or after
event of this phase, and the application will behave as if the listener were
registered with the Render Response phase.

21.2.1 What You May Need to Know About Using the Refresh Property Correctly
For scalability reasons, at runtime the iterator bindings in the binding container release
any reference they have to a row set iterator at the end of each request. During the
next request, each iterator binding rebinds itself to a "live" row set iterator that is
tracking the current row of some data collection. The process of rebinding an ADF
iterator binding during the ADF page lifecycle is known as refreshing the iterator. By
default, this happens only once, on demand, when the iterator is first accessed by the
client layer during the lifecycle. This initial access to the iterator typically occurs
during page rendering, while EL expressions in the page, which reference the iterator
or a control binding related to that iterator, are being evaluated. Alternatively, you can
writ code that programmatically causes the first access to the iterator to be before the
Prepare Render phase. To force the iterator binding to refresh its row set iterator
earlier in the lifecyle, you can set the refresh attribute on the iterator binding to a
value other than the default.

The refresh and refreshCondition attributes are used to determine when and
whether to invoke an executable, such as an iterator binding, or an invokeAction.
The value of the refresh attribute determines the lifecycle phase in which to invoke
the executable, while the value of the refreshCondition attribute provides an
optional boolean condition whose outcome determines whether the refresh will occur
at the indicated lifecycle phase or not. By default, when JDeveloper adds an executable
to a page definition (for example, when you drop an operation as a command
component), the refresh attribute for the executable binding is set to deferred,

Tip: Refreshing an iterator binding does not forcibly reexecute its
query each time. The first time the view object instance's row set
iterator is accessed during a particular user's session, it will implicitly
execute the view object's query if it was not already executed, as long
as a search binding in the page definition related to that iterator has
not already cleared the row set in preparation for allowing the user to
enter search criteria before executing the query.

Subsequent refreshing of the iterator binding related to that view
object instance on page requests that are part of the same logical unit
of work will only access the row set iterator again, not forcibly
reexecute the query. When you want reexecuting the query to refresh
its data, use the Execute or ExecuteWithParams built-in
operation, or programmatically call the executeQuery() method on
the iterator binding.

The JSF and ADF Page Lifecycles

21-8 Fusion Developer's Guide for Oracle Application Development Framework

which enforces execution whenever the binding is accessed the first time. If no
refreshCondition value exists, the executable is invoked. If a value for
refreshCondition exists, then that value is evaluated as an EL expression, and if
the return value of the evaluation is true, then the executable is invoked. If the value
evaluates to false, the executable is not invoked. For details about the refresh
attribute, see Section A.8.1, "PageDef.xml Syntax.".

For most cases in a Fusion web application, you should not need to change the
refresh or refreshCondition values on an iterator binding. These values are set
to ensure that the correct data is displayed.

While the invokeAction executable continues to be supported for upward
compatibility from previous releases, in Oracle ADF 11g you use a method activity in a
task flow to call an action binding (or any backing bean method) to perform some
application behavior before the page is rendered. For example, for a page used to
create an object, you might have a task flow that begins with a method activity that
calls the CreateInsert operation. The task flow then proceeds to the view activity
for the page where the user inputs data. Modeling this behavior as discreet method
call activities provides a much cleaner separation of application logic and data
bindings, making applications both self-documenting and easier to maintain. For more
information, see Section 22.6, "Creating an Input Form."

However, for completeness' sake, in case you encounter situations where you decide
to change the refresh attribute for iterator bindings or for invokeAction (for
example, if you have programmatic code that runs after the Prepare Model phase and
needs to access the iterator programmatically), you should do so, informed of the
following information regarding the valid values:

■ deferred (the default): On demand

■ prepareModel: During the Prepare Model phase.

■ renderModel: During the Prepare Render phase.

■ ifNeeded: During the Prepare Model and Prepare Render phases, only if needed.
For iterators, the refresh is considered needed if the binding has not yet been
refreshed. To determine if the execution is needed for an invokeAction, the
framework compares the current set of evaluated parameter values with the set
that was used to invoke the method action binding previously. If the parameter
values for the current invocation are exactly the same as those used previously, the
invokeAction does not invoke its bound method action binding. Use this setting
if the invokeAction executable binds to a method action binding that accepts
parameters.

Tip: Any invokeAction executable in a page definition file must
have a value other than the default (deferred) for its refresh
attribute, or it will not be refreshed and invoked.

Tip: Notice in Figure 21–2 that the key distinction between the
Prepare Model phase and the Prepare Render phase is that one comes
before JSF's Invoke Application phase, and one after. Since JSF's
Invoke Application phase is when action listeners fire, if you need
your iterator refreshed or the method or operation associated with the
invokeAction to execute after these action listeners have performed
their processing, you'll want to set the refresh attribute to
renderModel.

The JSF and ADF Page Lifecycles

Understanding the Fusion Page Lifecycle 21-9

■ prepareModelIfNeeded and renderModelIfNeeded: Same as ifNeeded,
except that it is executed during the named phase.

■ never: Not valid for invokeAction executables. For iterators, the iterator will
never be refreshed. Use when your own code calls getRowSetIterator() on
the iterator binding.

■ always: Not valid for invokeAction executables. For iterators, the iterator will
always be refreshed (potentially multiple times) during both the Prepare Model
and Prepare Render phases, as well as during the Update Model phase.

■ refreshAfter: Use to handle dependencies between executables. For example,
you can set the condition so that this executable refreshes after another executable.

21.2.2 What You May Need to Know About Task Flows and the Lifecycle
Task flows are initially refreshed when the parent binding container (the one
associated with the page) is refreshed. This happens in the Prepare Model phase. On a
subsequent request, the task flow will be refreshed during the Prepare Render phase,
depending on its refresh and refreshCondition attributes and its parameter
value.

If you set an EL expression as the value of the refreshCondition attribute, it will be
evaluated during the Prepare Render phase of the lifecycle. When the expression
evaluates to true, the task flow will be refreshed again. When refreshCondition
evaluates to false, the behavior is the same as if the refreshCondition had not
been specified.

Tip: For invokeAction executables bound to methods that do not
take parameters, the invokeAction executable will be called twice.
To use the invokeAction executable with parameterless methods,
you should use ensure that the condition associated with the
refreshCondition attribute evaluates to invoke the method only if
the value has changed. This will prevent multiple invocations.

Tip: You can determine the order of executable invocation using the
refreshAfter attribute. For example, suppose you have two
invokeAction elements—one with an ID of myAction and another
with an ID of anotherAction—and you want myAction to fire
after anotherAction. You would set the refreshAfter condition
on myAction to anotherAction.

Note: Any child page fragment’s page definition still handles the
refresh of the bindings of the child page fragments.

Tip: If you have a region on a page that is not initially disclosed (for
example, a popup dialog), the parameters still need to be available
when the parent page is rendered, even though the region might not
be displayed. If a region requires parameters, but those parameter
values will not be available when the parent page is rendered, then
you should use dynamic regions. If the parameters are null, an empty
task flow can be used until the parameters for the region are ready
and that region can display. To swap in an empty task flow, you set
the dynamic region’s taskFlowId attribute to an empty string.

Object Scope Lifecycles

21-10 Fusion Developer's Guide for Oracle Application Development Framework

The valid values for the refresh property of a task flow executable are as follows:

■ default: The region will be refreshed only once, when the parent page is first
displayed.

■ ifNeeded: Refreshes the region only if there has been a change to taskFlow
binding parameter values. If the taskFlow binding does not have parameters,
then ifNeeded is equivalent to the default. When ifNeeded is used, the
refreshCondition attribute is not considered.

Because the only job of the taskFlow binding is to refresh its parameters, setting
Refresh to always does not make sense. If the taskFlow binding’s parameters
don’t change, there is no reason to refresh the ADF region.

Note that the child page fragment’s page definition still handles the refresh of the
bindings of the child page fragments.

21.3 Object Scope Lifecycles
At runtime, ADF objects such as the binding container and managed beans are
instantiated. Each of these objects has a defined lifespan set by its scope attribute. You
can access a scope as a java.util.Map from the RequestContext API. For
example, to access an object named foo in the request scope, you would use the
expression #{requestScope.foo}.

There are six types of scopes in a Fusion web application:

■ Application scope: The object is available for the duration of the application.

■ Session scope: The object is available for the duration of the session.

■ Page flow scope: The object is available for the duration of a bounded task flow.

Note: If the variable bindings is used within the EL expression, the
context refers to the binding container of the parent page, not the page
fragment displayed within the region.

Note: Setting the refresh attribute to ifNeeded takes precedence
over any value for the refreshCondition attribute. Also note that
ifNeeded is not supported when you pass parameters to the
taskFlow binding using a dynamic parameter Map. Instead, use
refreshCondition="#{EL.Expression}".

Note: There's no window uniqueness for session scope, all windows
in the session share the same session scope instance. If you are
concerned about multiple windows being able to access the same
object (for example to ensure that managed beans do not conflict
across windows), you should use a scope that is window-specific,
such as page flow or view scope.

Object Scope Lifecycles

Understanding the Fusion Page Lifecycle 21-11

■ Request scope: The object is available from the time an HTTP request is made until
a response is sent back to the client.

■ Backing bean scope: Used for managed beans for page fragments and declarative
components only, the object is available from the time an HTTP request is made
until a response is sent back to the client. This scope is needed for fragments and
declarative components because there may be more than one page fragment or
declarative component on a page, and to prevent collisions, any values must be
kept in separate scope instances. Therefore, any managed bean for a page
fragment or declarative component must use backing bean scope.

■ View scope: The object is available until the view ID for the current view activity
changes. This scope can be used to hold values for a given page. However, unlike
request scope, which can be used to store a value needed from one page to the
next, anything stored in view scope will be lost once the view ID changes.

Object scopes are analogous to global and local variable scopes in programming
languages. The wider the scope, the higher availability of an object. During their life,
these objects may expose certain interfaces, hold information, or pass variables and
parameters to other objects. For example, a managed bean defined in session scope
will be available for use during multiple page requests. However, a managed bean
defined in request scope will only be available for the duration of one page request.

By default, the binding container and the binding objects it contains are defined in
session scope. However, the values referenced by value bindings and iterator bindings
are undefined between requests and for scalability reasons do not remain in session
scope. Therefore, the values that binding objects refer to are valid only during a
request in which that binding container has been prepared by the ADF lifecycle. What
stays in session scope are only the binding container and binding objects themselves.

Figure 21–3 shows the time period during which each type of scope is valid.

Note: Because this is not a standard JSF scope, EL expressions must
explicitly include the scope to reference bean. For example, to
reference the MyBean managed bean from the pageFlowScope
scope, your expression would be #{pageFlowScope.MyBean}.

Note: Because this is not a standard JSF scope, EL expressions must
explicitly include the scope to reference bean. For example, to
reference the MyBean managed bean from the backing bean scope,
your expression would be #{backingBeanScope.MyBean}.

Note: Because this is not a standard JSF scope, EL expressions must
explicitly include the scope to reference bean. For example, to
reference the MyBean managed bean from the view scope, your
expression would be #{viewScope.MyBean}.

Note: When you create objects (such as a managed bean) that require
you to define a scope, you can set the scope to none, meaning that it
will not live within any particular scope, but will instead be
instantiated each time it is referenced.

Object Scope Lifecycles

21-12 Fusion Developer's Guide for Oracle Application Development Framework

Figure 21–3 Relationship Between Scopes and Page Flow

When determining what scope to register a managed bean with, always try to use the
narrowest scope possible. Only use the session scope for information that is relevant to
the whole session, such as user or context information. Avoid using session scope to
pass values from one task flow to another. When creating a managed bean for a page
fragment or a declarative component, you must use backing bean scope.

Managed beans can be registered in either the adfc-config.xml or the
configuration file for a specific task flow. For more information about using managed
beans in a Fusion application, see Section 20.4, "Using a Managed Bean in a Fusion
Web Application."

21.3.1 What You May Need to Know About Object Scopes and Task Flows
When determining what scope to use for variables within a task flow, you should use
any of the scope options other than application or session scope. These two scopes will
persist objects in memory beyond the life of the task flow and therefore compromise
the encapsulation and reusable aspects of a task flow. In addition, application and
session scopes may keep objects in memory longer than needed, causing unneeded
overhead.

When you need to pass data values between activities within a task flow, you should
use page flow scope. View scope is recommended for variables that are needed only
within the current view activity, not across view activities. Request scope should be

Note: Registering managed beans within the faces-config.xml
file is not recommended in a Fusion web application.

Customizing the ADF Page Lifecycle

Understanding the Fusion Page Lifecycle 21-13

used when the scope does not need to persist longer than the current request. It is the
only scope that should be used to store UI component information. Lastly, backing
bean scope must be used for backing beans in your task flow if there is a possibility
that your task flow will appear in two region components or declarative components
on the same page and you would like to achieve region instance isolations.

21.4 Customizing the ADF Page Lifecycle
The ADF lifecycle contains clearly defined phases that notify ADF lifecycle listeners
before and after the corresponding JSF phase is executed. You can customize this
lifecycle by creating a custom phase listener that invokes your needed code, and then
registering it with the lifecycle to execute during one of these phases.

For example, you can create a custom listener that executes custom code and then
register it with the JSF Apply Request Values phase so that it can be invoked either
before or after the Apply Request Values phase.

21.4.1 How to Create a Custom Phase Listener
To create a custom phase listener, you must create a listener class that implements the
PagePhaseListener interface. You then add methods that execute code either
before or after the phase that the code needs to execute.

Example 21–1 contains a template that you can modify to create a custom phase
listener. See Section 4.13.1, "How to Generate Custom Classes," for more information
about creating a class in JDeveloper.

Example 21–1 Example Custom Phase Listener

public class MyPagePhaseListener implements PagePhaseListener
{
 public void afterPhase(PagePhaseEvent event)
 {
 System.out.println("In afterPhase " + event.getPhaseId());
 }

 public void beforePhase(PagePhaseEvent event)
 {
 System.out.println("In beforePhase " + event.getPhaseId());
 }
}

Once you create the custom listener class, you need to register it with the phase in
which the class needs to be invoked. You can either register it globally (so that the
whole application can use it), or you can register it only for a single page.

Note: An application cannot have multiple phase listener instances.
An initial ADFPhaseListener instance is by default, registered in
the META-INF/faces-config.xml configuration file. Registering,
for example, a customized subclass of the ADFPhaseListener
creates a second instance. In this scenario, only the instance that was
most recently registered is used.

The following warning message indicates when an instance has been
replaced by a newer one: "ADFc: Replacing the ADF Page Lifecycle
implementation with class name of the new listener."

Customizing the ADF Page Lifecycle

21-14 Fusion Developer's Guide for Oracle Application Development Framework

21.4.2 How to Register a Listener Globally
To customize the ADF lifecycle globally, register your custom phase listener by editing
the adf-settings.xml configuration file. The adf-settings.xml file is shared
by several ADF components, including ADF Controller, to store configuration
information. If the adf-settings.xml file does not yet exist, you need to create it.
For information, see the "Configuration in adf-settings.xml" section of the Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application Development
Framework.

To register the listener in adf-settings.xml:
1. In the META-INF directory, double-click the adf-settings.xml file to open it.

2. Click the Source tab, and scroll down to
<adfc-controller-config xmlns=
"http://xmlns.oracle.com/adf/controller/config">

If this entry does not exist, add it to the file.

3. Enter the remaining elements shown in italics in Example 21–2.

Example 21–2 adf-settings.xml Configuration File with Listener Registration

 <?xml version="1.0" encoding="US-ASCII" ?>
 <adf-config xmlns="http://xmlns.oracle.com/adf/config">
 .
 .
 .
 <adfc-controller-config xmlns="http://xmlns.oracle.com/adf/controller/config">
 <lifecycle>
 <phase-listener>
 <listener-id>MyPagePhaseListener</listener-id>
 <class>mypackage.MyPagePhaseListener</class>
 </phase-listener>
 </lifecycle>
 </adfc-controller-config>
 .
 .
 .
</adf-config>

4. Add values for the following elements:

■ <listener-id> A unique identifier for the listener (you can use the fully
qualified class name)

■ <class> The class name of the listener

21.4.3 What You May Need to Know About Listener Order
You can specify multiple phase listeners in the adf-settings.xml and, optionally,
the relative order in which they are called. When registering a new listener in the file,
you determine the position in the list of listeners using two parameters:

■ beforeIdSet: The listener is called before any of the listeners specified in
beforeIdSet

■ afterIdSet: The listener is called after any of the listeners specified in
afterIdSet

Customizing the ADF Page Lifecycle

Understanding the Fusion Page Lifecycle 21-15

Example 21–3 contains an example configuration file in which multiple listeners have
been registered for an application.

Example 21–3 adf-settings.xml Configuration File with Multiple Listener Registration

<lifecycle>
 <phase-listener>
 <listener-id>MyPhaseListener</listener-id>
 <class>view.myPhaseListener</class>
 <after-id-set>
 <listener-id>ListenerA</listener-id>
 <listener-id>ListenerC</listener-id>
 </after-id-set>
 <before-id-set>
 <listener-id>ListenerB</listener-id>
 <listener-id>ListenerM</listener-id>
 <listener-id>ListenerY</listener-id>
 </before-id-set>
 </phase-listener>
</lifecycle>

In the example, MyPhaseListener is a registered listener that executes after listeners
A and C but before listeners B, M, and Y. To execute MyPhaseListener after listener
B, move the <listener-id> element for listener B under the <after-id-set>
element.

21.4.4 How to Register a Lifecycle Listener for a Single Page
To customize the lifecycle of a single page, you set the ControllerClass attribute
on the page definition file. This listener will be valid only for the lifecycle of the
particular page described by the page definition. For more information about the page
definition file and its role in a Fusion web application, see Section 12.6, "Working with
Page Definition Files."

You specify a different controller class depending on whether it is for a standard JSF
page or a page fragment:

To customize the ADF Lifecycle for a single page or page fragment:
1. In the Application Navigator, right-click the page or page fragment and choose Go

To Page Definition.

2. In the Structure window, select the page definition node.

3. In the Property Inspector, click the dropdown menu next to the ControllerClass
field and choose Edit.

4. Click Hierarchy and navigate to the appropriate controller class for the page or
page fragment. Following are the controller classes to use for different types of
pages:

■ Standard JSF page - specify
oracle.adf.controller.v2.lifecycle.PageController

If you need to receive afterPhase/beforePhase events, specify
oracle.adf.controller.v2.lifecycle.PagePhaseListener

■ Page fragment - specify
oracle.adf.model.RegionController

Customizing the ADF Page Lifecycle

21-16 Fusion Developer's Guide for Oracle Application Development Framework

21.4.5 What You May Need to Know About Extending RegionController for Page
Fragments

Bindings inside page fragments used as regions are refreshed through the
refreshRegion and validateRegion events of the RegionController
interface. These events are available if you specify
oracle.adf.model.RegionController in the ControllerClass field as described
in Section 21.4.4, "How to Register a Lifecycle Listener for a Single Page."

As shown in Example 21–4, you can use the refreshRegion event to add custom
code that executes before the region is refreshed. For example, you may want to
refresh the bindings used by the page fragment in the region so that the refreshed
binding values are propagated to the inner binding container.

To do this, create a new class that implements the RegionController interface.
Then, write the following refreshRegion method, including your custom code that
you want to execute before the Prepare Model phase.

Example 21–4 regionRefresh Method

public boolean refreshRegion(RegionContext regionCtx)
 {
 int refreshFlag = regionCtx.getRefreshFlag();
 if (refreshFlag == RegionBinding.PREPARE_MODEL)
 {
 // Execute some code before
 }
 // Propagate the refresh to the inner binding container
 regionCtx.getRegionBinding().refresh(refreshFlag);

 return false;
 }

 public boolean validateRegion(RegionContext regionCtx)
 {
 // Propagate the validate to the inner binding container
 regionCtx.getRegionBinding().validate();

 return false;
 }

As shown in Example 21–4, the refresh flag value can be:

■ RegionBinding.PREPARE_MODEL - corresponds to the event occurring during
the ADF Lifecycle prepareModel phase

■ RegionBinding.RENDER_MODEL - corresponds to the event occurring during
the ADF Lifecycle prepareRender phase

Tip: You can specify the value of the page definition's
ControllerClass attribute as a fully qualified class name or you
can enter an EL expression that resolves to a class directly in the
ControllerClass field.

When using an EL expression for the value of the ControllerClass
attribute, the Structure window may show a warning indicating that e
"#{YourExpression}" is not a valid class. You can safely ignore this
warning.

22

Creating a Basic Databound Page 22-1

22Creating a Basic Databound Page

This chapter describes how to use the Data Controls panel to create databound forms
using ADF Faces components and ADF data binding.

This chapter includes the following sections:

■ Section 22.1, "Introduction to Creating a Basic Databound Page"

■ Section 22.2, "Using Attributes to Create Text Fields"

■ Section 22.3, "Creating a Basic Form"

■ Section 22.4, "Incorporating Range Navigation into Forms"

■ Section 22.5, "Creating a Form to Edit an Existing Record"

■ Section 22.6, "Creating an Input Form"

■ Section 22.7, "Using a Dynamic Form to Determine Data to Display at Runtime"

■ Section 22.8, "Modifying the UI Components and Bindings on a Form"

22.1 Introduction to Creating a Basic Databound Page
You can create UI pages that allow you to display and collect information using data
controls created for your business services. For example, using the Data Controls
panel, you can drag an attribute for an item, and then choose to display the value
either as read-only text or as an input text field with a label. JDeveloper creates all the
necessary JSF tag and binding code needed to display and update the associated data.
For more information about the Data Controls panel and the declarative binding
experience, see Chapter 12, "Using ADF Model in a Fusion Web Application."

Instead of having to drop individual attributes, JDeveloper allows you to drop all
attributes for an object at once as a form. The actual UI components that make up the
form depend on the type of form dropped. You can create forms that display values,
forms that allow users to edit values, and forms that collect values (input forms).

For example, the StoreFront module contains a page that allows users to register
information about themselves, as shown in Figure 22–1. This form was created by
dragging and dropping the CustomerRegistration collection from the Data
Controls panel.

Using Attributes to Create Text Fields

22-2 Fusion Developer's Guide for Oracle Application Development Framework

Figure 22–1 Register Customer Form in the StoreFront Module

Once you drop the UI components, you can then drop built-in operations as command
UI components that allow you to navigate through the records in a collection or that
allow users to operate on the data, such as committing, deleting, or creating a record.
For example, you can create a button that allows users to delete data objects displayed
in the form. You can also modify the default components to suit your needs.

22.2 Using Attributes to Create Text Fields
JDeveloper allows you to create text fields declaratively in a WYSIWYG development
environment for your JSF pages, meaning you can design most aspects of your pages
without needing to look at the code. When you drag and drop items from the Data
Controls panel, JDeveloper declaratively binds ADF Faces text UI components to
attributes on a data control using an attribute binding.

22.2.1 How to Create a Text Field
To create a text field that can display or update an attribute, you drag and drop an
attribute of a collection from the Data Controls panel.

To create a bound text field:
1. From the Data Controls panel, select an attribute for a collection. For a description

of the icons that represent attributes and other objects in the Data Controls panel,
see Section 12.3, "Using the Data Controls Panel."

For example, Figure 22–2 shows the FirstName attribute under the
CustomerRegistration collection of the StoreServiceAMDataControl
data control in the StoreFront module. This is the attribute to drop to display or
enter the customer’s first name.

Using Attributes to Create Text Fields

Creating a Basic Databound Page 22-3

Figure 22–2 Attributes Associated with a Collection in the Data Controls Panel

2. Drag the attribute onto the page, and from the context menu choose the type of
widget to display or collect the attribute value. For an attribute, you are given the
following choices:

■ Text:

– ADF Input Text w/ Label: Creates an ADF Faces inputText component
with a nested validator component. The label attribute is populated.

– ADF Input Text: Creates an ADF Faces inputText component with a
nested validator component. The label attribute is not populated.

– ADF Output Text w/ Label: Creates a panelLabelAndMessage
component that holds an ADF Faces outputText component. The label
attribute on the panelLabelAndMessage component is populated.

– ADF Output Text: Creates an ADF Faces outputText component. No
label is created.

– ADF Output Formatted w/Label: Same as ADF Output Text w/Label, but
uses an outputFormatted component instead of an outputText
component. The outputFormatted component allows you to add a
limited amount of HTML formatting. For more information, see the
"Displaying Output Text and Formatted Output Text" section of the Oracle
Fusion Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework

– ADF Output Formatted: Same as ADF Output Formatted w/Label, but
without the label.

– ADF Label: An ADF Faces outputLabel component.

■ List of Values: Creates ADF LOV lists. For more information about how these
lists work, see Section 5.12, "Working with List of Values (LOV) in View Object
Attributes." For more information about using the lists on a JSF page, see
Section 25.3, "Creating a Selection List."

■ Single selections: Creates single selection lists. For more information about
creating lists on a JSF page, see Section 25.3, "Creating a Selection List."

Tip: For more information about validators and other attributes of
the inputText component, see the "Using Input Components and
Defining Forms" chapter of the Oracle Fusion Middleware Web User
Interface Developer's Guide for Oracle Application Development Framework.

Using Attributes to Create Text Fields

22-4 Fusion Developer's Guide for Oracle Application Development Framework

For the purposes of this chapter, only the text components (and not the lists) will
be discussed.

22.2.2 What Happens When You Create a Text Field
When you drag an attribute onto a JSF page and drop it as a UI component, among
other things, a page definition file is created for the page (if one does not already
exist). For a complete account of what happens when you drag an attribute onto a
page, see Section 12.3.2, "What Happens When You Use the Data Controls Panel."
Bindings for the iterator and attributes are created and added to the page definition
file. Additionally, the necessary JSPX page code for the UI component is added to the
JSF page.

22.2.2.1 Creating and Using Iterator Bindings
Whenever you create UI components on a page by dropping an item that is part of a
collection from the Data Controls panel (or you drop the whole collection as a form or
table), JDeveloper creates an iterator binding if it does not already exist. An iterator
binding references an iterator for the data collection, which facilitates iterating over its
data objects. It also manages currency and state for the data objects in the collection.
An iterator binding does not actually access the data. Instead, it simply exposes the
object that can access the data and it specifies the current data object in the collection.
Other bindings then refer to the iterator binding in order to return data for the current
object or to perform an action on the object’s data. Note that the iterator binding is not
an iterator. It is a binding to an iterator. In the case of ADF Business Components, the
actual iterator is the default row set iterator for the default row set of the view object
instance in the application module’s data model.

For example, if you drop the FirstName attribute under the
CustomerRegistration collection, JDeveloper creates an iterator binding for the
CustomerRegistration collection.

The iterator binding’s rangeSize attribute determines how many rows of data are
fetched from a data control each time the iterator binding is accessed. This attribute
gives you a relative set of 1-n rows positioned at some absolute starting location in the
overall row set. By default, it the attribute set to 25. For more information about using
this attribute, see Section 22.4.2.2, "Iterator RangeSize Attribute." Example 22–1 shows
the iterator binding created when you drop an attribute from the
CustomerRegistration collection.

Note: These selections are your choices by default. However, the list
of components available to use for an attribute can be configured as a
control hint on the associated entity or view object. For more
information, see Section 4.6, "Defining Attribute Control Hints for
Entity Objects" and Section 5.13, "Defining Control Hints for View
Objects."

Tip: There is one iterator binding created for each collection. This
means that when you drop two attributes from the same collection (or
drop the collection twice), they use the same binding. This is fine,
unless you need the binding to behave differently for the different
components. In that case, you will need to manually create separate
iterator bindings.

Using Attributes to Create Text Fields

Creating a Basic Databound Page 22-5

Example 22–1 Page Definition Code for an Iterator Binding for an Attribute Dropped
from a Collection

<executables>
 <iterator Binds="CustomerRegistration" RangeSize="25"
 DataControl="StoreServiceAMDataControl"
 id="CustomerRegistrationIterator"/>
</executables>

For information regarding the iterator binding element attributes, see Appendix B,
"Oracle ADF Binding Properties."

This metadata allows the ADF binding container to access the attribute values.
Because the iterator binding is an executable, by default, it is invoked when the page is
loaded, thereby allowing the iterator to access and iterate over the
CustomerRegistration collection. This means that the iterator will manage all the
CustomerRegistration objects in the collection, including determining the current
CustomerRegistration or range of CustomerRegistration objects.

22.2.2.2 Creating and Using Value Bindings
When you drop an attribute from the Data Controls panel, JDeveloper creates an
attribute binding that is used to bind the UI component to the attribute’s value. This
type of binding presents the value of an attribute for a single object in the current row
in the collection. Value bindings can be used both to display and to collect attribute
values.

For example, if you drop the PrincipalName attribute under the
CustomerRegistration collection as an ADF Output Text w/Label widget onto a
page, JDeveloper creates an attribute binding for the PrincipalName attribute. This
allows the binding to access the attribute value of the current record. Example 22–2
shows the attribute binding for PrincipalName created when you drop the attribute
from the CustomerRegistration collection. Note that the attribute value references
the iterator named CustomerRegistrationIterator.

Example 22–2 Page Definition Code for an Attribute Binding

<bindings>
 ...
 <attributeValues IterBinding="CustomerRegistrationIterator"
 id="PrincipalName">
 <AttrNames>
 <Item Value="PrincipalName"/>
 </AttrNames>
 </attributeValues>
</bindings>

For information regarding the attribute binding element properties, see Appendix B,
"Oracle ADF Binding Properties."

22.2.2.3 Using EL Expressions to Bind UI Components
When you create a text field by dropping an attribute from the Data Controls panel,
JDeveloper creates the UI component associated with the widget dropped by writing
the corresponding tag to the JSF page.

For example, when you drop the PrincipalName attribute as an Output Text
w/Label widget, JDeveloper inserts the tags for a panelLabelAndMessage
component and an outputText component. It creates an EL expression that binds the
label attribute of the panelLabelAndMessage component to the label property

Using Attributes to Create Text Fields

22-6 Fusion Developer's Guide for Oracle Application Development Framework

of hints created for the PrincipalName’s binding. This expression evaluates to the
label hint set on the view object (for more information about hints, see Section 5.13,
"Defining Control Hints for View Objects"). It creates another expression that binds the
outputText component’s value attribute to the inputValue property of the
PrincipalName binding, which evaluates to the value of the PrincipalName
attribute for the current row. An ID is also automatically generated for both
components.

Example 22–3 shows the code generated on the JSF page when you drop the
PrincipalName attribute as an Output Text w/Label widget.

Example 22–3 JSF Page Code for an Attribute Dropped as an Output Text w/Label

<af:panelLabelAndMessage label="#{bindings.PrincipalName.hints.label}" id="plam1">
 <af:outputText value="#{bindings.PrincipalName.inputValue}" id="ot1"/>
</af:panelLabelAndMessage>

If instead you drop the PrincipalName attribute as an Input Text w/Label widget,
JDeveloper creates an inputText component. As Example 22–4 shows similar to the
output text component, the value is bound to the inputValue property of the
PrincipalName binding. Additionally, the following properties are also set:

■ label: Bound to the label property of the control hint set on the object.

■ required: Bound to the mandatory property of the control hint.

■ columns: Bound to the displayWidth property of the control hint, which
determines how wide the text box will be.

■ maximumLength: Bound to the precision property of the control hint. This control
hint property determines the maximum number of characters per line that can be
entered into the field.

In addition, JDeveloper adds a validator component.

Example 22–4 JSF Page Code for an Attribute Dropped as an Input Text w/Label

<af:inputText value="#{bindings.PrincipalName.inputValue}"
 label="#{bindings.PrincipalName.hints.label}"
 required="#{bindings.PrincipalName.hints.mandatory}"
 columns="#{bindings.PrincipalName.hints.displayWidth}"
 maximumLength="#{bindings.PrincipalName.hints.precision}">
 shortDesc="#{bindings.PrincipalName.hints.tooltip}" id="it1">
 <f:validator binding="#{bindings.PrincipalName.validator}"/>
</af:inputText>

You can change any of these values to suit your needs. For example, the mandatory
control hint on the view object is set to false by default, which means that the
required attribute on the component will evaluate to false as well. You can override
this value by setting the required attribute on the component to true. If you decide
that all instances of the attribute should be mandatory, then you can change the
control hint on the view object, and all instances will then be required. For more
information about these properties, see Appendix B, "Oracle ADF Binding Properties."

Tip: JDeveloper automatically generates IDs for all ADF Faces
components. You can override these values as needed.

Creating a Basic Form

Creating a Basic Databound Page 22-7

22.3 Creating a Basic Form
Instead of dropping each of the individual attributes of a collection to create a form,
you can a complete form that displays or collects data for all the attributes on an
object.

For example, you could create a page that displays basic information about registered
users in the StoreFront module by dragging and dropping the CustomerInfoVO1
collection.

You can also create forms that provide more functionality than simply displaying data
from a collection. For information about creating a form that allows a user to update
data, see Section 22.5, "Creating a Form to Edit an Existing Record." For information
about creating forms that allow users to create a new object for the collection, see
Section 22.6, "Creating an Input Form". You can also create search forms. For more
information, see Chapter 27, "Creating ADF Databound Search Forms."

22.3.1 How to Create a Form
To create a form using a data control, you bind the UI components to the attributes on
the corresponding object in the data control. JDeveloper allows you to do this
declaratively by dragging and dropping a collection or a structured attribute from the
Data Controls panel.

To create a basic form:
1. From the Data Controls panel, select the collection that represents the data you

wish to display. Figure 22–3 shows the CustomerInfoVO1 collection for the
StoreServiceAMDataControl data control.

Figure 22–3 CustomerInfo View Object in the Data Controls Panel

2. Drag the collection onto the page, and from the context menu choose the type of
form that will be used to display or collect data for the object. For a form, you are
given the following choices:

– ADF Form: Launches the Edit Form Fields dialog that allows you to select
individual attributes instead of having JDeveloper create a field for every
attribute by default. It also allows you to select the label and UI component
used for each attribute. By default, ADF inputText components are used for
most attributes. Each inputText component has the label attribute
populated.

Attributes that are dates use the InputDate component. Additionally, if a
control type control hint has been created for an attribute, or if the attribute
has been configured to be a list, then the component set by the hint is used
instead. InputText components contain a validator tag that allows you to set
up validation for the attribute, and if the attribute is a number or a date, a
converter is also included.

Creating a Basic Form

22-8 Fusion Developer's Guide for Oracle Application Development Framework

– ADF Read-Only Form: Same as the ADF Form, but only read-only
outputText components are used. Since the form is meant to display data,
no validator tags are added (converters are included). Attributes of type
Date use the outputText component when in a read-only form. All
components are placed inside panelLabelAndMessage components, which
have the label attribute populated, and are placed inside a
panelFormLayout component.

– ADF Search Form: Creates a form that can be used to execute a
Query-by-Example (QBE) search. For more information, see Chapter 27,
"Creating ADF Databound Search Forms."

3. In the Edit Form Fields dialog, configure your form.

You can elect to include navigational controls that allow users to navigate through
all the data objects in the collection. For more information, see Section 22.4,
"Incorporating Range Navigation into Forms." You can also include a Submit
button used to submit the form. This button submits the HTML form and applies
the data in the form to the bindings as part of the JSF/ADF page lifecycle. For
additional help in using the dialog, click Help. All UI components are placed
inside a panelFormLayout component.

4. If you are building a form that allows users to update data, you now need to drag
and drop an operation that will perform the update. For more information, see
Section 22.5, "Creating a Form to Edit an Existing Record."

22.3.2 What Happens When You Create a Form
Dropping an object as a form from the Data Controls panel has the same effect as
dropping a single attribute, except that multiple attribute bindings and associated UI
components are created. The attributes on the UI components (such as value) are
bound to properties on that attribute’s binding object (such as inputValue) or to the
values of control hints set on the corresponding business object. Example 22–5 shows
some of the code generated on the JSF page when you drop the CustomerInfoVO1
collection as a default ADF Form.

Example 22–5 Code on a JSF Page for an Input Form

<af:panelFormLayout id="pfl1">
 <af:inputText value="#{bindings.PersonId.inputValue}"
 label="#{bindings.PersonId.hints.label}"
 required="#{bindings.PersonId.hints.mandatory}"
 columns="#{bindings.PersonId.hints.displayWidth}"
 maximumLength="#{bindings.PersonId.hints.precision}"
 shortDesc="#{bindings.PersonId.hints.tooltip}" id="it2">
 <f:validator binding="#{bindings.PersonId.validator}"/>
 </af:inputText>
 <af:inputText value="#{bindings.FirstName.inputValue}"

Tip: For more information about validators, converters, and other
attributes of the inputText component, see the "Using Input
Components and Defining Forms" chapter of the Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework.

Note: If an attribute is marked as hidden on the associated view or
entity object, then no corresponding UI is created for it.

Incorporating Range Navigation into Forms

Creating a Basic Databound Page 22-9

 label="#{bindings.FirstName.hints.label}"
 required="#{bindings.FirstName.hints.mandatory}"
 columns="#{bindings.FirstName.hints.displayWidth}"
 maximumLength="#{bindings.FirstName.hints.precision}"
 shortDesc="#{bindings.FirstName.hints.tooltip}"
 id="it1">
 <f:validator binding="#{bindings.FirstName.validator}"/>
 </af:inputText>
 <af:inputText value="#{bindings.LastName.inputValue}"
 label="#{bindings.LastName.hints.label}"
 required="#{bindings.LastName.hints.mandatory}"
 columns="#{bindings.LastName.hints.displayWidth}"
 maximumLength="#{bindings.LastName.hints.precision}"
 shortDesc="#{bindings.LastName.hints.tooltip}" id="it7">
 <f:validator binding="#{bindings.LastName.validator}"/>
 </af:inputText>
. . .
</af:panelFormLayout>

When you choose to create an input form using an object that contains a defined list of
values (LOV), then a selectOneChoice component is created instead of an
inputText component. For example, the PersonsVO view object contains a defined
LOVs for the Title, Gender, MaritalStatusCode, and PersonTypeCode
attributes. When you drop the Persons data control object as an ADF Form, instead
of as an empty input text field, a dropdown list showing all values is created. For more
information about how these lists work, see Section 5.12, "Working with List of Values
(LOV) in View Object Attributes." For more information about using the lists on a JSF
page, see Section 25.3, "Creating a Selection List."

22.4 Incorporating Range Navigation into Forms
When you create an ADF Form, if you elect to include navigational controls,
JDeveloper includes ADF Faces command components bound to existing navigational
logic on the data control. This built-in logic allows the user to navigate through all the
data objects in the collection. For example,Figure 22–4 shows a form that would be
created if you drag the CustomerInfoVO1 collection and drop it as an ADF Form that
uses navigation.

Note: For information regarding the validator and converter tags,
see the "Validating and Converting Input" chapter of the Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework.

Note: If the object contains a structured attribute (an attribute that is
neither a Java primitive type nor a collection), that attribute will not
appear in the dialog, and it will not have a corresponding component
in the form. You will need to create those fields manually.

Incorporating Range Navigation into Forms

22-10 Fusion Developer's Guide for Oracle Application Development Framework

Figure 22–4 Navigation in a Form

22.4.1 How to Insert Navigation Controls into a Form
By default, when you choose to include navigation when creating a form using the
Data Controls panel, JDeveloper creates First, Last, Previous, and Next buttons that
allow the user to navigate within the collection.

You can also add navigation buttons to an existing form manually.

To manually add navigation buttons:
1. From the Data Controls panel, select the operation associated with the collection of

objects on which you wish the operation to execute, and drag it onto the JSF page.

For example, if you want to navigate through a collection of persons, you would
drag the Next operation associated with the Persons collection. Figure 22–5
shows the operations associated with the CustomerInfoVO1 collection.

Figure 22–5 Operations Associated with a Collection

2. From the ensuing context menu, choose either ADF Button or ADF Link.

22.4.2 What Happens When You Create Command Buttons
When you drop any operation as a command component, JDeveloper:

■ Defines an action binding in the page definition file for the associated operations

■ Configures the iterator binding to use partial page rendering for the collection

Tip: You can also drop the First, Previous, Next, and Last buttons at
once. To do so, drag the corresponding collection, and from the
context menu, choose Navigation > ADF Navigation Buttons.

Incorporating Range Navigation into Forms

Creating a Basic Databound Page 22-11

■ Inserts code in the JSF page for the command components

22.4.2.1 Action Bindings for Built-in Navigation Operations
Action bindings execute business logic. For example, they can invoke built-in methods
on the action binding object. These built-in methods operate on the iterator or on the
data control itself, and are represented as operations in the Data Controls panel.
JDeveloper provides navigation operations that allow users to navigate forward,
backwards, to the last object in the collection, and to the first object.

Like value bindings, action bindings for operations contain a reference to the iterator
binding when the action binding is bound to one of the iterator-level actions, such as
Next or Previous. These types of actions are performed by the iterator, which
determines the current object and can therefore determine the correct object to display
when a navigation buttons is clicked. Action bindings to other than iterator-level
actions, for example for a custom method on an application module, or for the commit
or rollback operations, will not contain this reference.

Action bindings use the RequiresUpdateModel property, which determines
whether or not the model needs to be updated before the action is executed. In the case
of navigation operations, by default this property is set to true, which means that any
changes made at the view layer must be moved to the model before navigation can
occur. Example 22–6 shows the action bindings for the navigation operations.

Example 22–6 Page Definition Code for an Operation Action Binding

<action IterBinding="CustomerInfoVO1Iterator" id="First"
 RequiresUpdateModel="true" Action="first"/>
<action IterBinding="CustomerInfoVO1Iterator" id="Previous"
 RequiresUpdateModel="true" Action="previous"/>
<action IterBinding="CustomerInfoVO1Iterator" id="Next"
 RequiresUpdateModel="true" Action="next"/>
<action IterBinding="CustomerInfoVO1Iterator" id="Last"
 RequiresUpdateModel="true" Action="last"/>

22.4.2.2 Iterator RangeSize Attribute
Iterator bindings have a rangeSize attribute that the binding uses to determine the
number of data objects to make available for the page for each iteration. This attribute
helps in situations when the number of objects in the data source is quite large. Instead
of returning all objects, the iterator binding returns only a set number, which then
become accessible to the other bindings. Once the iterator reaches the end of the range,
it accesses the next set. Example 22–7 shows the default range size for the
CustomerInfoVO iterator.

Example 22–7 RangeSize Attribute for an Iterator

<iterator Binds="CustomerInfoVO" RangeSize="25"
 DataControl="StoreServiceAMDataControl"
 id="CustomerInfoVO1Iterator"
 ChangeEventPolicy="ppr"/>

Note: This rangeSize attribute is not the same as the rows
attribute on a table component. For more information, see Table 23–1,
" ADF Faces Table Attributes and Populated Values".

Incorporating Range Navigation into Forms

22-12 Fusion Developer's Guide for Oracle Application Development Framework

By default, the rangeSize attribute is set to 25. This means that a user can view 25
objects, navigating back and forth between them, without needing to access the data
source. The iterator keeps track of the current object. Once a user clicks a button that
requires a new range (for example, clicking the Next button on object number 25), the
binding object executes its associated method against the iterator, and the iterator
retrieves another set of 25 records. The bindings then work with that set. You can
change this setting as needed. You can set it to -1 to have the full record set returned.

Table 22–1 shows the built-in navigation operations provided on data controls and the
result of invoking the operation or executing an event bound to the operation. For
more information about action events, see Section 22.4.4, "What Happens at Runtime:
How Action Events and Action Listeners Work."

22.4.2.3 EL Expressions Used to Bind to Navigation Operations
When you create command components using navigation operations, the command
components are placed in a panelGroupLayout component. JDeveloper creates an
EL expression that binds a navigational command button’s actionListener
attribute to the execute property of the action binding for the given operation.

At runtime an action binding will be an instance of the FacesCtrlActionBinding
class, which extends the core JUCtrlActionBinding implementation class. The
FacesCtrlActionBinding class adds the following methods:

■ public void execute(ActionEvent event): This is the method that is
referenced in the actionListener property, for example
#{bindings.First.execute}.

This expression causes the binding’s operation to be invoked on the iterator when
a user clicks the button. For example, the First command button’s
actionListener attribute is bound to the execute method on the First
action binding.

Note: When you create a navigateable form using the Data Controls
panel, the CacheResults property on the associated iterator is set to
true. This ensures that the iterator’s state, including currency
information, is cached between requests, allowing it to determine the
current object. If this property is set to false, navigation will not
work.

Table 22–1 Built-in Navigation Operations

Operation When invoked, the associated iterator binding will...

First Move its current pointer to the beginning of the result set.

Last Move its current pointer to the end of the result set.

Previous Move its current pointer to the preceding object in the result set. If
this object is outside the current range, the range is scrolled
backward a number of objects equal to the range size.

Next Move its current pointer to the next object in the result set. If this
object is outside the current range, the range is scrolled forward a
number of objects equal to the range size.

Previous Set Move the range backward a number of objects equal to the range
size attribute.

Next Set Move the range forward a number of objects equal to the range
size attribute.

Incorporating Range Navigation into Forms

Creating a Basic Databound Page 22-13

■ public String outcome(): This can be referenced in an Action property, for
example #{bindings.Next.outcome}.

This can be used for the result of a method action binding (once converted to a
String) as a JSF navigation outcome to determine the next page to navigate to.

Every action binding for an operation has an enabled boolean property that Oracle
ADF sets to false when the operation should not be invoked. By default, JDeveloper
binds the UI component’s disabled attribute to this value to determine whether or
not the component should be enabled. For example, the UI component for the First
button has the following as the value for its disabled attribute:

#{!bindings.First.enabled}

This expression evaluates to true whenever the binding is not enabled, that is, when
operation should not be invoked, thereby disabling the button. In this example,
because the framework will set the enabled property on the binding to false
whenever the first record is being shown, the First button will automatically be
disabled because its disabled attribute is set to be true whenever enabled is
False. For more information about the enabled property, see Appendix B, "Oracle
ADF Binding Properties."

Example 22–8 shows the code generated on the JSF page for navigation operation
buttons. For more information about the partialSubmit attribute on the button, see
Section 22.4.3, "What You May Need to Know About Automatic Partial Page
Rendering."

Example 22–8 JSF Code for Navigation Buttons Bound to ADF Operations

<f:facet name="footer">
 <af:panelGroupLayout>
 <af:commandButton actionListener="#{bindings.First.execute}"
 text="First"
 disabled="#{!bindings.First.enabled}"
 partialSubmit="true" id="cb1"/>
 <af:commandButton actionListener="#{bindings.Previous.execute}"
 text="Previous"
 disabled="#{!bindings.Previous.enabled}"
 partialSubmit="true" id="cb2"/>
 <af:commandButton actionListener="#{bindings.Next.execute}"
 text="Next"
 disabled="#{!bindings.Next.enabled}"
 partialSubmit="true" id="cb3"/>
 <af:commandButton actionListener="#{bindings.Last.execute}"
 text="Last"
 disabled="#{!bindings.Last.enabled}"
 partialSubmit="true" id="cb4"/>
 </af:panelGroupLayoutr>
 </f:facet>

Note: Using the outcome method on the action binding implies tying
the view-controller layer too tightly to the model, so it should be
rarely used.

Incorporating Range Navigation into Forms

22-14 Fusion Developer's Guide for Oracle Application Development Framework

22.4.3 What You May Need to Know About Automatic Partial Page Rendering
When you create a form with navigational controls, JDeveloper configures the iterator
binding to automatically use partial page rendering (PPR). PPR allows only certain
components on a page to be rerendered without the need to refresh the entire page.
For example, a command link or button can cause another component on the page to
be rerendered, without the whole page refreshing. You can configure components to
use PPR by setting one component as a target for another component’s event, for
example a value change or action event. For more information about partial page
rendering, see the "Rerendering Partial Page Content" chapter of the Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application Development
Framework.

When you create a form, setting up PPR to work for all the components in the form
can be time consuming and error prone. To alleviate this, you can set the
changeEventPolicy attribute to ppr on value bindings. Doing so means that
anytime the associated component’s value changes as a result of backend business
logic, the component will be automatically rerendered. You can also set an iterator
binding’s changeEventPolicy to ppr. When you do this, any action or value
binding associated with the iterator will act as though its changeEventPolicy is set
to PPR. This allows entire forms to use PPR without your having to configure each
component separately.

When you drop a form and elect to include navigation controls, JDeveloper
automatically sets the changeEventPolicy attribute on the associated iterator to
ppr. JDeveloper also sets each of the navigation buttons’ partialSubmit attribute to
true. This is how command components notify the framework that PPR should occur.
When you set the navigation command components’ partialSubmit attribute to
true and you set the iterator’s changeEventPolicy to ppr, each time a navigation
button is clicked, all the components in the form that use the iterator binding are
rerendered. Example 22–9 shows the page definition code for the iterator created when
dropping the CustomerInfoVO collection from the Data Controls Panel as a form
with navigation.

Example 22–9 ChangeEventPolicy Attribute for an Iterator

<iterator Binds="CustomerInfoVO1" RangeSize="25"
 DataControl="StoreServiceAMDataControl"
 id="CustomerInfoVOIterator"
 ChangeEventPolicy="ppr"/>

22.4.4 What Happens at Runtime: How Action Events and Action Listeners Work
An action event occurs when a command component is activated. For example, when
a user clicks a Submit button, the form is submitted, and subsequently, an action
event is fired. Action events might affect only the user interface (for example, a link to
change the locale, causing different field prompts to display), or they might involve
some logic processing in the back end (for example, a button to navigate to the next
record).

An action listener is a class that wants to be notified when a command component
fires an action event. An action listener contains an action listener method that
processes the action event object passed to it by the command component.

In the case of the navigation operations, when a user clicks, for example, the Next
button, an action event is fired. This event object stores currency information about the
current data object, taken from the iterator. Because the component’s
actionListener attribute is bound to the execute method of the Next action

Creating a Form to Edit an Existing Record

Creating a Basic Databound Page 22-15

binding, the Next operation is invoked when the event fires. This method takes the
currency information passed in the event object to determine what the next data object
should be.

In addition, when a user clicks a navigation button, only those components associated
with the same iterator as the button’s action binding are processed through the
lifecycle. This is because a navigation command button’s partialSubmit attribute is
set to true, and the associated iterator is configured to use PPR.

22.4.5 What You May Need to Know About the Browser Back Button and Navigating
Through Records

You must use the navigation buttons to navigate through the records displayed in a
form; you cannot use the browser’s back or forward buttons. Because navigation forms
automatically use PPR, only part of the page goes through the lifecycle, meaning that
when you click a navigation button, the components displaying the data are refreshed
and display new data, and you actually remain on the same page. Therefore, when
you click the browser’s back button, you will be returned to the page that was
rendered before the page with the form, instead of to the previous record displayed in
the form.

For example, say you are on a page that contains a link to view all current orders.
When you click the link, you navigate to a page with a form and the first order, Order
#101, is displayed. You then click Next and Order #102 is displayed. You click Next
again, and Order #103 is displayed. If you click the browser’s back button, you will not
be shown Order #102. Instead, you will be returned to the page that contained the link
to view all current orders.

22.5 Creating a Form to Edit an Existing Record
You can create a form that allows a user to edit the current data, and then commit
those changes to the data source. To do this, you use operations that can modify data
records associated with the collection or the data control itself to create command
buttons. For example, you can use the Delete operation to create a button that allows
a user to delete a record from the current range. Or you can use the built-in Submit
button to submit changes.

It is important to note that these operations are executed only against objects in the
ADF cache. You need to use the Commit operation on the root data control to actually
commit any changes to the data source. You use the data control’s Rollback
operation to roll back any changes made to the cached object. If the page is part of a
transaction within a bounded task flow, you would most likely use these operations to
resolve the transaction in a task flow return activity. For more information, see
Section 18.4, "Managing Transactions."

Tip: While you can use the Create operation on a form to create a
new object, using the ADF Creation Form instead provides additional
built-in functionality. See Section 22.6, "Creating an Input Form" for
more information.

If instead of using one of the ADF built-in operations, you want to use
a custom method to operate on the data in a form, see Section 28.2,
"Creating Command Components to Execute Methods."

Creating a Form to Edit an Existing Record

22-16 Fusion Developer's Guide for Oracle Application Development Framework

22.5.1 How to Create Edit Forms
To use the operations on a form, you follow the same procedures as with the
navigation operations.

To create an edit form:
1. From the Data Controls panel, drag the collection for which you wish to create the

form, and select ADF Form from the context menu.

This creates a form using inputText components, which will allow the user to
edit the data in the fields.

2. In the Edit Form Fields dialog, select Include Submit Button and click OK.

3. You can either create new buttons for the operations you want to include, or you
can rebind the Submit button so that it invokes another operation. To keep the
Submit button as is and create new buttons for the operations, continue with this
step. To rebind the Submit button, see Step 5.

From the Data Controls panel, select the operation associated with the collection of
objects on which you wish the operation to execute, and drag it onto the JSF page.
If you simply want to be able to edit the data, then the Submit button is all that is
required.

For example, if you want to be able to delete a customer record, you would drag
the Delete operation associated with the CustomerInfoVO1 collection.
Figure 22–6 shows the operations associated with a collection.

Figure 22–6 Operations Associated with a Collection

4. From the ensuing context menu, choose either ADF Button or ADF Link.

5. To rebind the Submit button, right-click the button in the Structure window, and
choose Bind to ADF Control. In the Bind to ADF Control dialog, select the
operation to which you want the button bound. Ensure that the operation you
select is associated with the collection on which the form is based.

Creating a Form to Edit an Existing Record

Creating a Basic Databound Page 22-17

For example, if you want to be able to delete a customer record, you would select
the Delete operation associated with the CustomerInfoVO1 collection.
Figure 22–6 shows the operations associated with a collection.

6. If the page is not part of a transaction within a bounded task flow, then you need
to create buttons that allow the user either to commit or roll back the changes.
From the Data Controls panel, drag the Commit and Rollback operations
associated with the root-level data control, and drop them as either a command
button or a command link. Figure 22–7 shows the commit and rollback operations
for the StoreServiceAMDataControl data control (note that for viewing
simplicity, the figure omits details in the tree that appear for each view object).

Figure 22–7 Commit and Rollback Operations for a Data Control

If the page is part of a transaction within a bounded task flow, then you can
simply enter Commit and Rollback as the values for the transaction resolution
when creating the task flow return activity. For more information, see Section 18.4,
"Managing Transactions."

22.5.2 What Happens When You Use Built-in Operations to Change Data
Dropping any data control operation as a command button causes the same events as
does dropping navigation operations. For more information, see Section 22.4.2, "What
Happens When You Create Command Buttons."

The only difference is that the action bindings for the Commit and Rollback
operations do not require a reference to the iterator, because they execute a method on
the application module (the data control itself), as opposed to the iterator. Note that
the Rollback action has the RequiresUpdateModel property set to false. This is
because the model should not be updated before the operation is executed, since all
changes need to be discarded. Example 22–10 shows the action bindings generated in
the page definition file for these operations.

Example 22–10 Action Bindings for Commit and Rollback Operations

<action id="Commit" RequiresUpdateModel="true" Action="commitTransaction"
 DataControl="StoreServiceAMDataControl"/>
<action id="Rollback" RequiresUpdateModel="false"
 Action="rollbackTransaction"
 DataControl="StoreServiceAMDataControl"/>

Table 22–2 shows the built-in non-navigation operations provided on data controls and
data control objects, along with the result of invoking the operation or executing an
event bound to the operation. For more information about action events, see
Section 22.4.4, "What Happens at Runtime: How Action Events and Action Listeners
Work."

Creating a Form to Edit an Existing Record

22-18 Fusion Developer's Guide for Oracle Application Development Framework

Table 22–2 More Built-in Operations

Operation When invoked, the associated iterator binding will...

CreateInsert Creates a row directly before the current row, inserts the new record
into the row set, then moves the current row pointer to the new row.
Note that the range does not move, meaning that the last row in the
range may now be excluded from the range. For more information
about using the CreateInsert operation to create objects, see
Section 22.6, "Creating an Input Form."

Create Creates a row directly before the current row, then moves the current
row pointer to the new row. Note that the range does not move,
meaning that the last row in the range may now be excluded from the
range. Also note that the record will not be inserted into the row set,
preventing a blank row should the user navigate away without
actually creating data. The new row will be created when the user
submits the data. For more information, see Section 23.4.5, "What You
May Need to Know About Create and CreateInsert."

CreateWith
Parameters

Same as the CreateInsert operation (the new record is inserted into
the row set), however uses named parameters to create the object.

CreateWith
Parameters
(temporary)

Same as the CreateWithParameters operation, however the newly
created record will not be inserted into the row set, preventing a blank
row should the user navigate away without actually creating data. The
new row will be created when the user submits the data. This
difference is the same as the difference between CreateInsert and
Create. For more information, see Section 23.4.5, "What You May
Need to Know About Create and CreateInsert."

Delete Deletes the current row from the cache and moves the current row
pointer to the next row in the result set. Note that the range does not
move, meaning that a row may be added to the end of the range. If the
last row is deleted, the current row pointer moves to the preceding
row. If there are no more rows in the collection, the enabled attribute
is set to disabled.

RemoveRowWithKey Uses the row key as a String converted from the value specified by
the input field to remove the data object in the bound data collection.

SetCurrentRowWith
Key

Sets the row key as a String converted from the value specified by
the input field. The row key is used to set the currency of the data
object in the bound data collection. For an example of when this is
used, see Section 23.2.3, "What You May Need to Know About Setting
the Current Row in a Table."

SetCurrentRowWith
KeyValue

Sets the current object on the iterator, given a key’s value. For more
information, see Section 23.2.3, "What You May Need to Know About
Setting the Current Row in a Table."

ExecuteWithParams Refreshes the data collection by first assigning new values to the
named bind variables passed as parameters, then (re)executing the
view object's query. You would use this operation in the same manner
as you would use the CreateInsert operation to create an input
form. For more information, see Section 22.6, "Creating an Input
Form."

This operation appears only for view objects that have defined one or
more named bind variables at design time. For more information, see
Section 5.10, "Working with Bind Variables.". For more information
about how the page definition works with bind variables and the
executeWithParams operation, see Section 28.2.2.2, "Using
Parameters in a Method."

Commit Causes all items currently in the cache to be committed to the
database.

Rollback Clears the cache and returns the transaction and iterator to the initial
state. Resets the ActionListener method.

Creating an Input Form

Creating a Basic Databound Page 22-19

22.6 Creating an Input Form
You can create a form that allows a user to enter information for a new record and
then commit that record to the data source. You need to use a task flow that contains a
method activity that will call the CreateInsert operation before the page with the
input form is displayed. This method activity causes a blank row to be inserted into
the row set which the user can then populate using a form.

For example, in the StoreFront module, the customer-registration-task-flow
task flow contains the createAddress method activity, which calls the
CreateInsert operation on the CustomerAddress view object. Control is then
passed to the addressDetails view activity, which displays a form where the user
can enter a new address, as shown in Figure 22–8.

Figure 22–8 Create an Address

22.6.1 How to Create an Input Form Using a Task Flow
Before you create the input form, you need to create a bounded task flow that will
contain both the form and the method activity that will execute the CreateInsert
operation.

To create an input form:
1. To the bounded task flow, add a method activity. Have this activity execute the

CreateInsert operation associated with the collection for which you are
creating the form. For procedures on using method activities, see Section 15.5,
"Using Method Call Activities."

Execute and Find These operations are used only in search forms. See Chapter 27,
"Creating ADF Databound Search Forms" for more information.

Note: If your application does not use task flows, then the calling
page should invoke the createInsert operation similar to the way
in which a task flow’s method activity would. For example, you could
provide application logic within an event handler associated with a
command button on the calling page. For more information about
invoking logic with a command button, see Section 28.2, "Creating
Command Components to Execute Methods."

Table 22–2 (Cont.) More Built-in Operations

Operation When invoked, the associated iterator binding will...

Creating an Input Form

22-20 Fusion Developer's Guide for Oracle Application Development Framework

2. In the Property Inspector, enter a string for the fixed-outcome property. For
example, the createAddress method activity in the
customer-registration-task-flow task flow has editAddress as the
fixed-outcome value.

3. Add a view activity that represents the page for the input form. For information
on adding view activities, see Section 15.2, "Using View Activities."

4. Add a control flow case from the method activity to the view activity. In the
Property Inspector, enter the value of the fixed-outcome property of the method
activity set in Step 2 as the value of the from-outcome of the control flow case.

5. Open the page for the view activity in the design editor, and from the Data
Controls panel, drag the collection for which the form will be used to create a new
record, and choose ADF Form from the context menu.

6. Because you need to commit the new data, the application needs to execute the
commit operation of the data control. To do this, you can add a button that
navigates to a return activity that calls the commit operation. For procedures for
using a return activity, see Section 15.7, "Using Task Flow Return Activities."

22.6.2 What Happens When You Create an Input Form Using a Task Flow
When you use an ADF Form to create an input form, JDeveloper:

Tip: If you want the user to be able to create multiple entries before
committing to the database, do the following:

1. In the task flow, add another control flow case from the view activity
back to the method activity, and enter a value for the from-outcome
method. For example, you might enter createAnother.

2. Drag and drop a command component from the Component Palette onto
the page, and set the action attribute to the from-outcome just
created. This will cause the task flow to return to the method activity and
reinvoke the CreateInsert operation.

Best Practice: Use the return activity unless the task flow contains
data managed by more than one data control, or you need to commit
the data before the end of the flow. In those cases, you can add a
button to the page bound to the commit button.

If you need to add a commit button to the page, do the following:

1. In the Data Controls panel, drag the commit operation associated with
the data control that contains the collection associated with the input
form, and drop it as a command button.

2. In the Structure window, select the command button for the commit
operation.

3. In the Property Inspector, set the action to the outcome String that will
navigate back to the method activity. You then need to add a control flow
case from the page back to the activity, using the same outcome value.

4. Set the command button’s disabled property to false.

By default, JDeveloper binds the disabled attribute of the button
to the enabled property of the binding, causing the button to be
disabled when the enabled property is set to false. For this
binding, the enabled property is false until an update has been
posted. For the purposes of an input form, the button should
always be enabled, since there will be no changes posted before
the user needs to create the new object.

Creating an Input Form

Creating a Basic Databound Page 22-21

■ Creates an iterator binding for the collection and an action binding for the
CreateInsert operation in the page definition for the method activity. The
CreateInsert operation is responsible for creating a row in the row set and
populating the data source with the entered data. In the page definition for the
page, JDeveloper creates an iterator binding for the collection and attribute
bindings for each of the attributes of the object in the collection, as for any other
form. If you created command buttons or links using the Commit and Rollback
operations, JDeveloper also creates an action bindings for those operations.

■ Inserts code in the JSF page for the form using ADF Faces inputText
components, and in the case of the operations, commandButton components.

For example, the StoreFront module contains a page that displays all the addresses for
a customer in a table. The table includes an Add button that navigates to a form where
you can input data for a new address. Once the address is created, you return to the
page with the table and the new address is displayed. Figure 22–9 shows the
customer-registration-task-flow task flow with the createAddress
method activity.

Figure 22–9 Task Flow for an Input Form

Example 22–11 shows the page definition file for the method activity.

Example 22–11 Page Definition Code for a Creation Method Activity

<executables>
 <iterator id="CustomerAddressIterator" RangeSize="25"
 Binds="CustomerAddress" DataControl="StoreServiceAMDataControl"/>
</executables>
<bindings>
 <action id="CreateInsert" IterBinding="CustomerAddressIterator"
 InstanceName="StoreServiceAMDataControl.CustomerAddress"
 DataControl="StoreServiceAMDataControl" RequiresUpdateModel="true"
 Action="createInsertRow"/>
</bindings>

22.6.3 What Happens at Runtime: CreateInsert Action from the Method Activity
When the createMethodCall activity is accessed, the CreateInsert action
binding is invoked, which executes the CreateInsertRow operation, and a new
blank instance for the collection is created. Note that during routing from the method

Using a Dynamic Form to Determine Data to Display at Runtime

22-22 Fusion Developer's Guide for Oracle Application Development Framework

activity to the view activity, the method activity’s binding container skips validation
for required attributes, allowing the blank instance to be displayed in the form on the
page.

22.6.4 What You May Need to Know About Displaying Sequence Numbers
Because the Create action is executed before the page is displayed, if you are
populating the primary key using sequences, the next number in the sequence will
appear in the input text field, unlike the rest of the fields, which are blank. The
sequence number is displayed because the associated entity class contains a method
that uses an eager fetch to generate a sequence of numbers for the primary key
attribute. The eager fetch populates the value as the row is created. Therefore, using
sequences works as expected with input forms.

However, if instead you’ve configured the attribute’s type to DBSequence (which
uses a database trigger to generate the sequence), the number would not be populated
until the object is committed to the database. In this case, the user would see a
negative number as a placeholder. To avoid this, you can use the following EL
expression for the Rendered attribute of the input text field:

#{bindings.EmployeeId.inputValue.value > 0}

This expression will display the component only when the value is greater than zero,
which will not be the case before it is committed. Similarly, you can simply set the
Rendered attribute to false. However, then the page will never display the input
text field component for the primary key.

22.7 Using a Dynamic Form to Determine Data to Display at Runtime
ADF Faces offers a library of dynamic components that includes dynamic form and
dynamic table widgets that you can drop from the Data Controls panel. Dynamic
components differ from standard components in that all the binding metadata is
created at runtime. This dynamic building of the bindings allows you set display
information using control hints on a view object instead of configuring the information
in the Edit Form Fields dialog as you drop the control onto the page. Then if you want
to change how the data displays, you need only change it on the view object, and all
dynamic components bound to that view object will change their display accordingly.
With standard components, if you want to change any display attributes (such as the
order or grouping of the attributes) you would need to change each page on which the
data is displayed.

For example, in the StoreFront module, you could set the Category and Field Order
attribute hints on the CustomerInfoVO view object that groups the FirstName and
LastName attributes together and at the top of a form (or at the leftmost columns of a
table), the ConfirmedEmail and MobilePhoneNumber together and at the bottom
of a form (or the rightmost columns of a table), and the MembershipID and
MembershipType together and at the middle of a form or table. You could make it so
that the PersonId does not display at all. For more information about control hints
on view objects, see Section 5.13, "Defining Control Hints for View Objects."

Figure 22–10 shows a dynamic form at runtime created by dragging and dropping the
CustomerInfoVO view object with control hints set as described previously, as a
dynamic form. Note that the input fields are grayed out because the view object is
nonupdateable.

Using a Dynamic Form to Determine Data to Display at Runtime

Creating a Basic Databound Page 22-23

Figure 22–10 Dynamic Form Displays Based on Hints Set on the View Object

22.7.1 How to Use Dynamic Forms
To use dynamic forms you first need to set control hints (especially the order and
grouping hints) on any corresponding view objects. Next you import the libraries for
the dynamic components. You can then drop the dynamic form or table widgets onto
your page.

To use dynamic components:
1. Set UI hints on the corresponding view objects. For the Category hint, enter a

string that can be used to group attributes together. For example, in the
CustomerInfoVO hints, the FirstName and LastName attributes both have
name as the value for the Category UI hint. The Field Order hint determines the
order the attributes are displayed within a category. For example, in the
CustomerInfoVO hints, the FirstName attribute has a Field Order value of 1
and the LastName attribute has a Field Order value of 2.

For procedures on creating UI hints, see Section 5.13, "Defining Control Hints for
View Objects."

2. If not already included, import the dynamic component library.

1. In the Application Navigator, right-click the view project in which the
dynamic components will be used, and from the context menu, choose Project
Properties.

2. In the tree, select JSP Tag Libraries.

3. On the JSP Tag Libraries page, click Add.

4. In the Choose Tag Libraries dialog, select ADF Dynamic Components, and
click OK.

5. On the JSP Tag Libraries page, click OK.

3. From the Data Controls panel, select the collection that represents the view object.

4. Drag the collection onto the page, and from the context menu, choose Forms >
ADF Dynamic Form.

5. In the Property Inspector, enter the following: for the Category field, .

■ Category: Enter the string used as the value for the Category UI hint for the
first group you’d like to display in your form. For example, in Figure 22–10,
the Category value would be name.

■ Editable: Enter true if you want the data to be editable (the default). Enter
false if the data should be read-only.

Tip: If dynamic components are not listed, then the library was not
imported into the project. Repeat Step 2.

Using a Dynamic Form to Determine Data to Display at Runtime

22-24 Fusion Developer's Guide for Oracle Application Development Framework

6. Repeat Steps 4 and 5 for each group that you want to display on the form. For
example, the form in Figure 22–10 is actually made up of three different forms: one
for the category name, one for the category membership, and one for the category
contact.

22.7.2 What Happens When You Use Dynamic Components
When you drop a dynamic form, only a binding to the iterator is created.
Example 22–12 shows the page definition for a page that contains one dynamic form
component created by dropping the CustomerInfoVO collection. Note that no
attribute bindings are created.

Example 22–12 Page Definition Code for a Dynamic Form

<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
 version="11.1.1.53.2" id="DynamicFormPageDef"
 Package="package.pageDefs">
 <parameters/>
 <executables>
 <iterator Binds="CustomerInfoVO1" RangeSize="25"
 DataControl="StoreServiceAMDataControl"
 id="CustomerInfoVO1Iterator"/>
 </executables>
 <bindings/>
</pageDefinition>

JDeveloper inserts a a form tag which contains a dynamic form tag for each of the
forms dropped. The form tag’s value is bound to the iterator binding, as shown in
Example 22–13. This binding means the entire form is bound to the data returned by
the iterator. You cannot set display properties for each attribute individuality, nor can
you rearrange attributes directly on the JSF page.

Example 22–13 JSF Page Code for a Dynamic Form

<af:document>
 <af:messages/>
 <af:form>
 <dynamic:form value="#{bindings.CustomerInfoVO1Iterator}"
 category="name"/>
 <dynamic:form value="#{bindings.CustomerInfoVO1Iterator}"
 category="member"/>
 <dynamic:form value="#{bindings.CustomerInfoVO1Iterator}"
 category="contact"/>
 </af:form>
</af:document>

22.7.3 What Happens at Runtime: How Attribute Values Are Dynamically Determined
When a page with dynamic components is rendered, the bindings are created just as
they are when items are dropped from the Data Controls panel at design time, except

Tip: You can set certain properties that affect the functionality of the
form. For example, you can make a form available for upload, set the
rendered property, or set a partial trigger. To do this, select the
af:form tag in the Structure window, and set the needed properties
using the Property Inspector.

Modifying the UI Components and Bindings on a Form

Creating a Basic Databound Page 22-25

that they are created at runtime. For more information, see Section 22.3.2, "What
Happens When You Create a Form."

22.8 Modifying the UI Components and Bindings on a Form
Once you use the Data Controls panel to create any type of form (except a dynamic
form), you can then delete attributes, change the order in which they are displayed,
change the component used to display data, and change the attribute to which the
components are bound.

22.8.1 How to Modify the UI Components and Bindings
You can modify certain aspects of the default components dropped from the Data
Controls panel. You can use the Structure window to change the order in which
components are displayed, to add new components or change existing components, or
to delete components. You can use the Property Inspector to change or delete bindings,
or to change the label displayed for a component.

To modify default components and bindings:
1. Use the Structure window to do the following:

■ Change the order of the UI components by dragging them up or down the
tree. A black line with an arrowhead denotes where the UI component will be
placed.

■ Add a UI component. Right-click an existing UI component in the Structure
window and choose to place the new component before, after, or inside the
selected component. You then choose from a list of UI components.

■ Bind a UI component. Right-click an existing UI component in the Structure
window and choose Bind to ADF Control. You can then select the object to
which you want your component bound.

■ Rebind a UI component. Right-click an existing UI component in the Structure
window and choose Rebind to another ADF Control. You can then select the
new control object to which you want your component bound.

■ Delete a UI component. Right-click the component and choose Delete. If you
wish to keep the component, but delete the binding, you need to use the
Property Inspector. See the second bullet point in Step 2.

2. With the UI component selected in the Structure window, you can then do the
following in the Property Inspector:

■ Add a non-ADF binding for the UI component. Enter an EL expression in the
Value field, or use the dropdown menu and choose Edit.

■ Delete a binding for the UI component by deleting the EL expression.

Tip: While there is a slight performance hit because the bindings
need to be created at runtime, there is also a performance gain because
the JSF pages do not need to be regenerated and recompiled when the
structure of the view object changes.

Note: You cannot change how a dynamic form displays using the
following procedures. You must change display information on the
view object or entity object instead.

Modifying the UI Components and Bindings on a Form

22-26 Fusion Developer's Guide for Oracle Application Development Framework

■ Change the label for the UI component. By default, the label is bound to the
binding’s label property of its hint. This property allows your page to use
the UI control hints for labels that you have defined for your entity object
attributes or view object attributes. The UI hints allow you to change the value
once and have it appear the same on all pages that display the label.

You can change the label just for the current page. To do so, select the label
attribute. You can enter text or an EL expression to bind the label value to
something else, for example, a key in a properties or resource file.

For example, the inputText component used to display the name of a
product might have the following for its Label attribute:

#{bindings.ProductName.hints.label}

However, you could change the expression to instead bind to a key in a
properties file, for example:

#{properties[’productName’]}

In this example, properties is a variable defined in the JSF page used to
load a properties file.

22.8.2 What Happens When You Modify Attributes and Bindings
When you modify how an attribute is displayed by moving or changing the UI
component, JDeveloper changes the corresponding code on the JSF page. When you
use the binding editors to add or change a binding, JDeveloper adds the code to the
JSF page, and also adds the appropriate elements to the page definition file.

23

Creating ADF Databound Tables 23-1

23Creating ADF Databound Tables

This chapter describes how to use the Data Controls panel to create databound tables
using ADF Faces components and ADF data binding.

This chapter includes the following sections:

■ Section 23.1, "Introduction to Adding Tables"

■ Section 23.2, "Creating a Basic Table"

■ Section 23.3, "Creating an Editable Table"

■ Section 23.4, "Creating an Input Table"

■ Section 23.5, "Providing Multiselect Capabilities"

■ Section 23.6, "Modifying the Attributes Displayed in the Table"

23.1 Introduction to Adding Tables
Unlike forms, tables allow you to display more than one data object from a collection
at a time. Figure 23–1 shows the Items Ordered tab of the My Orders page in the
StoreFront module application, which uses a browse table to display the items for a
given order.

Figure 23–1 The Orders Table

You can create tables that simply display data, or you can create tables that allow you
to edit or create data. Once you drop a collection as a table, you can add command
buttons bound to actions that execute some logic on a selected row. You can also
modify the default components to suit your needs.

Creating a Basic Table

23-2 Fusion Developer's Guide for Oracle Application Development Framework

23.2 Creating a Basic Table
Unlike with forms where you bind the individual UI components that make up a form
to the individual attributes on the collection, with a table you bind the ADF Faces
table component to the complete collection or to a range of n data objects at a time
from the collection. The individual components used to display the data in the
columns are then bound to the attributes. The iterator binding handles displaying the
correct data for each object, while the table component handles displaying each
object in a row. JDeveloper allows you to do this declaratively, so that you don’t need
to write any code.

23.2.1 How to Create a Basic Table
To create a table using a data control, you bind the table component to a collection.
JDeveloper allows you to do this declaratively by dragging and dropping a collection
from the Data Controls panel.

To create a databound table:
1. From the Data Controls panel, select a collection.

For example, to create a simple table in the StoreFront module that displays
products in the system, you would select the Products collection.

2. Drag the collection onto a JSF page, and from the context menu, choose the
appropriate table.

When you drag the collection, you can choose from the following types of tables:

■ ADF Table: Allows you to select the specific attributes you wish your editable
table columns to display, and what UI components to use to display the data.
By default, ADF inputText components are used for most attributes, thus
enabling the table to be editable. Attributes that are dates use the inputDate
component. Additionally, if a control type control hint has been created for an
attribute, or if the attribute has been configured to be a list, then the
component set by the hint is used instead.

■ ADF Read-Only Table: Same as the ADF Table; however, each attribute is
displayed in an outputText component.

■ ADF Read-Only Dynamic Table: Allows you to create a table when the
attributes returned and displayed are determined dynamically at runtime.
This component is helpful when the attributes for the corresponding object are
not known until runtime, or you do not wish to hardcode the column names
in the JSF page.

3. The ensuing Edit Table Columns dialog shows each attribute in the collection, and
allows you to determine how these attributes will behave and appear as columns
in your table.

Using this dialog, you can do the following:

Tip: You can also create a table by dragging a table component from
the Component Palette and completing the Create ADF Faces Table
wizard.

Note: If the collection contains a structured attribute (an attribute
that is neither a Java primitive type nor a collection), the attributes of
the structured attributes will also appear in the dialog.

Creating a Basic Table

Creating ADF Databound Tables 23-3

■ Allow the ADF Model layer to handle selection by selecting the Row Selection
checkbox. Selecting this option means that the iterator binding will access the
iterator to determine the selected row. Select this option unless you do not
want the table to allow selection.

■ Allow the ADF Model layer to handle column sorting by selecting the Sorting
checkbox. Selecting this option means that the iterator binding will access the
iterator, which will perform an order-by query to determine the order. Select
this option unless you do not want to allow column sorting.

■ Allow the columns in the table to be filtered using entered criteria by selecting
the Filtering checkbox. Selecting this option allows the user to enter criteria in
text fields above each column. That criteria is then used to build a
Query-by-Example (QBE) search on the collection, so that the table will
display only the results returned by the query. For more information, see
Section 27.5, "Creating Standalone Filtered Search Tables from Named View
Criteria."

■ Group columns for selected attributes together under a parent column, by
selecting the desired attributes (shown as rows in the dialog), and clicking the
Group button. Figure 23–2 shows how three grouped columns appear in the
visual editor after the table is created.

Figure 23–2 Grouped Columns in an ADF Faces Table

■ Change the display label for a column. By default, the label is bound to the
labels property for any control hint defined for the attribute on the table
binding. This binding allows you to change the value of a label text once on
the view object, and have the change appear the same on all pages that display
the label.

Instead of using this default, you can enter text or an EL expression to bind the
label value to something else, for example, a key in a resource file.

■ Change the value binding for a column. You can change the column to be
bound to a different attribute. If you simply want to rearrange the columns,
you should use the order buttons. If you do change the attribute binding for a
column, the label for the column also changes.

■ Change the UI component used to display an attribute. The UI components
are set based on the table you selected when you dropped the collection onto
the page, on the type of the corresponding attribute (for example, inputDate
components are used for attributes that are dates), and on whether or not
default components were set as control hints on the corresponding view
object. You can change to another component using the dropdown menu.

Tip: If one of the attributes for your table is also a primary key, you
may want to choose a UI component that will not allow a user to
change the value.

Creating a Basic Table

23-4 Fusion Developer's Guide for Oracle Application Development Framework

■ Change the order of the columns using the order buttons.

■ Add a column using the Add icon. There’s no limit to the number of columns
you can add. When you first click the icon, JDeveloper adds a new column
line at the bottom of the dialog and populates it with the values from the first
attribute in the bound collection; subsequent new columns are populated with
values from the next attribute in the sequence, and so on.

■ Delete a column using the Delete icon.

4. Once the table is dropped on the page, you can use the Property Inspector to set
other display properties of the table. For example, you may want to set the width
of the table to a certain percentage or size.For more information about display
properties, see the "Using Tables and Trees" chapter of the Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application Development
Framework.

5. If you want the user to be able to edit information in the table and save any
changes, you need to provide a way to submit and persist those changes. For more
information, see Section 23.3, "Creating an Editable Table." For procedures on
creating tables that allow users to input data, see Section 23.4, "Creating an Input
Table."

23.2.2 What Happens When You Create a Table
Dropping a table from the Data Controls panel has the same effect as dropping a text
field or form. Briefly, JDeveloper does the following:

■ Creates the bindings for the table and adds the bindings to the page definition file

■ Adds the necessary code for the UI components to the JSF page

For more information, see Section 22.2.2, "What Happens When You Create a Text
Field."

23.2.2.1 Iterator and Value Bindings for Tables
When you drop a table from the Data Controls panel, a tree value binding is created. A
tree consists of a hierarchy of nodes, where each subnode is a branch off a higher level
node. In the case of a table, it is a flattened hierarchy, where each attribute (column) is
a subnode off the table. Like an attribute binding used in forms, the tree value binding
references the iterator binding, while the iterator binding references an iterator for the
data collection, which facilitates iterating over the data objects in the collection.
Instead of creating a separate binding for each attribute, only the tree binding to the
table node is created. In the tree binding, the AttrNames element within the
nodeDefinition element contains a child element for each attribute that you want
to be available for display or reference in each row of the table.

Tip: If you want to use a component that is not listed in the
dropdown menu, use this dialog to select the outputText
component, and then manually add the other tag to the page.

Tip: When you set the table width to 100%, the table will not include
borders, so the actual width of the table will be larger. To have the
table set to 100% of the container width, expand the Style section of
the Property Inspector, select the Box tab, and set the Border Width
attribute to 0 pixels.

Creating a Basic Table

Creating ADF Databound Tables 23-5

The tree value binding is an instance of the FacesCtrlHierBinding class that
extends the core JUCtrlHierBinding class to add two JSF specific properties:
collectionModel.

■ collectionModel: Returns the data wrapped by an object that extends the
javax.faces.model.DataModel object that JSF and ADF Faces use for
collection-valued components like tables.

■ treeModel: Extends collectionModel to return data that is hierarchical in
nature. For more information, see Chapter 24, "Displaying Master-Detail Data."

Example 23–1 shows the value binding for the table created when you drop the
Products collection.

Example 23–1 Value Binding Entries for a Table in the Page Definition File

<bindings>
 <tree IterBinding="ProductsIterator" id="Products">
 <nodeDefinition DefName="oracle.fodemo.storefront.store.queries.ProductsVO">
 <AttrNames>
 <Item Value="ProductId"/>
 <Item Value="SupplierId"/>
 <Item Value="CategoryId"/>
 <Item Value="ProductName"/>
 <Item Value="CostPrice"/>
 <Item Value="ListPrice"/>
 .
 .
 .
 </AttrNames>
 </nodeDefinition>
 </tree>
</bindings>

Only the table component needs to be bound to the model (as opposed to the columns
or the text components within the individual cells), because only the table needs access
to the data. The tree binding for the table drills down to the individual structure
attributes in the table, and the table columns can then derive their information from
the table component.

23.2.2.2 Code on the JSF Page for an ADF Faces Table
When you use the Data Controls panel to drop a table onto a JSF page, JDeveloper
inserts an ADF Faces table component, which contains an ADF Faces column
component for each attribute named in the table binding. Each column then contains
another component (such as an inputText or outputText component) bound to the
attribute’s value. Each column’s heading is bound to the labels property for the
control hint of the attribute.

Example 23–2 shows a simplified code excerpt from a table created by dropping the
Products collection as a read only table.

Example 23–2 Simplified JSF Code for an ADF Faces Table

<af:table value="#{bindings.Products.collectionModel}" var="row"

Tip: If an attribute is marked as hidden on the associated view or
entity object, no corresponding UI is created for it.

Creating a Basic Table

23-6 Fusion Developer's Guide for Oracle Application Development Framework

 rows="#{bindings.Products.rangeSize}"
 emptyText="#{bindings.Products.viewable ? 'No data to display.':
 'Access Denied.'}"
 fetchSize="#{bindings.Products.rangeSize}"
 selectedRowKeys="#{bindings.Products.collectionModel.selectedRow}"
 selectionListener="#{bindings.Products.collectionModel.makeCurrent}"
 rowSelection="single" id="t1">
 <af:column sortProperty="ProductId" sortable="true"
 headerText="#{bindings.Products.hints.ProductId.label}" id="c1">
 <af:outputText value="#{row.ProductId}" id="ot1"/>
 </af:column>
 <af:column sortProperty="SupplierId" sortable="true"
 headerText="#{bindings.Products.hints.SupplierId.label}" id="c2">
 <af:outputText value="#{row.SupplierId}" id="ot2">
 <af:convertNumber groupingUsed="false"
 pattern="#{bindings.Products.hints.SupplierId.format}"/>
 </af:outputText>
 </af:column>
 <af:column sortProperty="CostPrice" sortable="true"
 headerText="#{bindings.Products.hints.CostPrice.label}" id="c3">
 <af:outputText value="#{row.CostPrice}" id="ot3">
 <af:convertNumber groupingUsed="false"
 pattern="#{bindings.Products.hints.CostPrice.format}"/>
 </af:outputText>
 </af:column>
.
.
.
</af:table>

The tree binding iterates over the data exposed by the iterator binding. Note that the
table’s value is bound to the collectionModel property, which accesses the
collectionModel object. The table wraps the result set from the iterator binding in a
collectionModel object. The collectionModel allows each item in the collection
to be available within the table component using the var attribute.

In the example, the table iterates over the rows in the current range of the Products
iterator binding. The iterator binding binds to a row set iterator that keeps track of the
current row. When you set the var attribute on the table to row, each column then
accesses the current data object for the current row presented to the table tag using the
row variable, as shown for the value of the af:outputText tag:

<af:outputText value="#{row.ProductId}"/>

When you drop an ADF Table (as opposed to an ADF Read Only Table), instead of
being bound to the row variable, the value of the input component is implicitly bound
to a specific row in the binding container through the bindings property, as shown
in Example 23–3. Additionally, JDeveloper adds validator and converter components
for each input component. By using the bindings property, any raised exception can be
linked to the corresponding binding object or objects. The controller iterates through
all exceptions in the binding container and retrieves the binding object to get the client
ID when creating FacesMessage objects. This retrieval allows the table to display
errors for specific cells. This strategy is used for all input components, including
selection components such as lists.

Example 23–3 Using Input Components Adds Validators and Converters

<af:table value="#{bindings.Products.collectionModel}" var="row"
 rows="#{bindings.Products.rangeSize}"
 first="#{bindings.Products.rangeStart}"

Creating a Basic Table

Creating ADF Databound Tables 23-7

 emptyText="#{bindings.Products.viewable ? 'No data to display.':
 'Access Denied.'}"
 fetchSize="#{bindings.Products.rangeSize}"
 selectedRowKeys="#{bindings.Products.collectionModel.selectedRow}"
 selectionListener="#{bindings.Products.collectionModel.makeCurrent}"
 rowSelection="single" id="t1">
 <af:column sortProperty="ProductId" sortable="true"
 headerText="#{bindings.Products.hints.ProductId.label}" id="c1">
 <af:inputText value="#{row.bindings.ProductId.inputValue}" id="it1"
 <f:validator binding="#{row.bindings.ProductId.validator}"/>
 <af:convertNumber groupingUsed="false"
 pattern="#{bindings.Products.hints.ProductId.format}"/>
 </af:inputText>
 </af:column>

For more information about using ADF Faces validators and converters, see the
"Validating and Converting Input" chapter of the Oracle Fusion Middleware Web User
Interface Developer's Guide for Oracle Application Development Framework.

Table 23–1 shows the other attributes defined by default for ADF Faces tables created
using the Data Controls panel.

Table 23–1 ADF Faces Table Attributes and Populated Values

Attribute Description Default Value

rows Determines how
many rows to
display at one time.

An EL expression that, by default, evaluates to
the rangeSize property of the associated
iterator binding, which determines how many
rows of data are fetched from a data control at
one time. Note that the value of the rows
attribute must be equal to or less than the
corresponding iterator’s rangeSize value, as
the table cannot display more rows than are
returned.

first Index of the first row
in a range (based on
0).

An EL expression that evaluates to the
rangeStart property of the associated
iterator binding.

emptyText Text to display when
there are no rows to
return.

An EL expression that evaluates to the
viewable property on the iterator. If the table is
viewable, the attribute displays No data to
display when no objects are returned. If the
table is not viewable (for example, if there are
authorization restrictions set against the table),
it displays Access Denied.

fetchSize Number of rows of
data fetched from the
data source.

An EL expression that, by default, evaluates to
the rangeSize property of the associated
iterator binding. For more information about
the rangeSize property, see Section 22.4.2.2,
"Iterator RangeSize Attribute." This attribute
can be set to a larger number than the rows
attribute.

Note that to improve scrolling behavior in a
table, when the table’s iterator binding is
expected to manage a data set consisting of
over 200 items, and the view object is
configured to use range paging, the iterator
actually returns a set of ranges instead of just
one range. For more information about using
range paging, see Section 39.1.5, "Efficiently
Scrolling Through Large Result Sets Using
Range Paging."

Creating a Basic Table

23-8 Fusion Developer's Guide for Oracle Application Development Framework

23.2.3 What You May Need to Know About Setting the Current Row in a Table
When you use tables in an application and you allow the ADF Model layer to manage
row selection, the current row is determined by the iterator. When a user selects a row
in an ADF Faces table, the row in the table is shaded, and the component notifies the
iterator of the selected row. To do this, the selectedRowKeys attribute of the table is
bound to the collection model’s selected row, as shown in Example 23–4.

Example 23–4 Selection Attributes on a Table

<af:table value="#{bindings.Products1.collectionModel}" var="row"
.
.
.
 selectedRowKeys="#{bindings.Products.collectionModel.selectedRow}"
 selectionListener="#{bindings.Products.collectionModel.
 makeCurrent}"
 rowSelection="single">

This binding binds the selected keys in the table to the selected row of the collection
model. The selectionListener attribute is then bound to the collection model’s
makeCurrent property. This binding makes the selected row of the collection the
current row of the iterator.

selectedRowKeys The selection state
for the table.

An EL expression that by default, evaluates to
the selected row on the collection model.

selectionListener Reference to a
method that listens
for a selection event.

An EL expression that by default, evaluates to
the makeCurrent method on the collection
model.

rowSelection Determines whether
rows are selectable.

Set to single to allow one row to be selected
at a time. For information about allowing more
than one row to be selected at a time, see
Section 23.5, "Providing Multiselect
Capabilities."

Column Attributes

sortProperty Determines the
property on which to
sort the column.

Set to the columns corresponding attribute
binding value.

sortable Determines whether
a column can be
sorted.

Set to false. When set to true, the iterator
binding will access the iterator to determine
the order.

headerText Determines the text
displayed at the top
of the column.

An EL expression that, by default, evaluates to
the label control hint set on the corresponding
attribute.

Note: If you create a custom selection listener, you must create a
method binding to the makeCurrent property on the collection
model (for example
#{binding.Products.collectionModel.makeCurrent}) and
invoke this method binding in the custom selection listener before any
custom logic.

Table 23–1 (Cont.) ADF Faces Table Attributes and Populated Values

Attribute Description Default Value

Creating an Editable Table

Creating ADF Databound Tables 23-9

Although a table can handle selection automatically, there may be cases where you
need to programmatically set the current row for an object on an iterator.

You can call the getKey() method on any view row to get a Key object that
encapsulates the one or more key attributes that identify the row. You can also use a
Key object to find a view row in a row set using the findByKey(). At runtime, when
either the setCurrentRowWithKey or the setCurrentRowWithKeyValue built-in
operation is invoked by name by the data binding layer, the findByKey() method is
used to find the row based on the value passed in as a parameter before the found row
is set as the current row.

The setCurrentRowWithKey and setCurrentRowWithKeyValue operations both
expect a parameter named rowKey, but they differ precisely by what each expects that
rowKey parameter value to be at runtime:

setCurrentRowWithKey
setCurrentRowWithKey expects the rowKey parameter value to be the serialized
string representation of a view row key. This is a hexadecimal-encoded string that looks
like this:

000200000002C20200000002C102000000010000010A5AB7DAD9

The serialized string representation of a key encodes all of the key attributes that
might comprise a view row's key in a way that can be conveniently passed as a single
value in a browser URL string or form parameter. At runtime, if you inadvertently
pass a parameter value that is not a legal serialized string key, you may receive
exceptions like oracle.jbo.InvalidParamException or
java.io.EOFException as a result. In your web page, you can access the value of
the serialized string key of a row by referencing the rowKeyStr property of an ADF
control binding (for example. #{bindings.SomeAttrName.rowKeyStr}) or the
row variable of an ADF Faces table (e.g. #{row.rowKeyStr}).

setCurrentRowWithKeyValue
The setCurrentRowWithKeyValue operation expects the rowKey parameter value
to be the literal value representing the key of the view row. For example, its value
would be simply "201" to find product number 201.

23.3 Creating an Editable Table
You can create a table that allows the user to edit information within the table, and
then commit those changes to the data source. To do this, you use operations that can
modify data records associated with the collection (or the data control itself) to create
command buttons, and place those buttons in a toolbar in the table. For example, you
might use the Delete operation to create a button that allows a user to delete a record
from the current range. Or you can use the built-in Submit button to submit changes.

Note: If you write custom code in an application module class and
need to find a row based on a serialized string key passed from the
client, you can use the getRowFromKey() method in the JboUtil
class in the oracle.jbo.client package:

static public Row getRowFromKey(RowSetIterator rsi, String sKey)

The first parameter is the view object instance in which you'd like to
find the row. The second parameter is the serialized string format of
the key.

Creating an Editable Table

23-10 Fusion Developer's Guide for Oracle Application Development Framework

It is important to note that these operations are executed only against objects in the
ADF cache. You need to use the Commit operation on the root data control to actually
commit any changes to the data source. You use the data control’s Rollback
operation to roll back any changes made to the cached object. If the page is part of a
transaction within a bounded task flow, you would most likely use these operations to
resolve the transaction in a task flow return activity. For more information, see
Section 18.4, "Managing Transactions."

When you decide to use editable components to display your data, you have the
option of the table displaying all rows as editable at once, or displaying all rows as
read-only until the user double-clicks within the row. Figure 23–3 shows a table whose
rows all have editable fields. The page renders using the components that were added
to the page (for example, inputText, inputDate, and inputNumberSpinbox
components).

Figure 23–3 Table with Editable Fields

Figure 23–4 shows the same table, but configured so that the user must double-click
(or single-click if the row is already selected) a row in order to edit or enter data. Note
that outputText components are used to display the data in the non-selected rows,
even though the same input components as in Figure 23–3 were used to build the
page. The only row that actually renders those components is the row selected for
editing.

Figure 23–4 Click to Edit a Row

For more information about how ADF Faces table components handle editing, see the
"Editing Data in Tables, Trees, and Tree Tables" section of the Oracle Fusion Middleware
Web User Interface Developer's Guide for Oracle Application Development Framework.

Tip: To create a table that allows you to insert a new record into the
data store, see Section 23.4, "Creating an Input Table."

Creating an Editable Table

Creating ADF Databound Tables 23-11

23.3.1 How to Create an Editable Table
To create an editable table, you follow similar procedures to creating a basic table, then
you add command buttons bound to operations. However, in order for the table to
contain a toolbar, you need to add an ADF Faces component that associates the toolbar
with the items in the collection used to build the table.

To create an editable table:
1. From the Data Controls panel, select a collection.

For example, to create a simple table in the StoreFront module that will allow you
to edit products in the system, you would select the Products collection.

2. Drag the collection onto a JSF page, and from the context menu, choose ADF
Table.

This creates an editable table using input components.

3. Use the ensuing Edit Table Columns dialog to determine how the attributes
should behave and appear as columns in your table. Be sure to select the Row
Selection checkbox, which will allow the user to select the row to edit.

For more information about using this dialog to configure the table, see
Section 23.2.1, "How to Create a Basic Table."

4. With the table selected in the Structure window, expand the Behavior section of
the Property Inspector and set the EditingMode attribute. If you want all the rows
to be editable select editAll. If you want the user to click into a row to make it
editable, select clickToEdit.

5. From the Structure window, right-click the table component and select Surround
With from the context menu.

6. In the Surround With dialog, ensure that ADF Faces is selected in the dropdown
list, select the Panel Collection component, and click OK.

The panelCollection component’s toolbar facet will hold the toolbar which, in
turn, will hold the command components used to update the data.

7. In the Structure window, right-click the panelCollection’s toolbar facet folder
and from the context menu, choose Insert inside toolbar > Toolbar.

This creates a toolbar that already contains a default menu that allows users to
change how the table is displayed and a Detach link that detaches the entire table
and displays it such that it occupies the majority of the space in the browser
window. For more information about the panelCollection component, see the
"Displaying Table Menus, Toolbars, and Status Bars" section of the Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application Development
Framework.

8. From the Data Controls panel, select the operation associated with the collection of
objects on which you wish the operation to execute, and drag it onto the toolbar
component in the Structure window. This will place the databound command
component inside the toolbar.

For example, if you want to be able to delete a product record, you would drag the
Delete operation associated with the Products collection. Figure 23–5 shows
the operations associated with a collection.

Creating an Editable Table

23-12 Fusion Developer's Guide for Oracle Application Development Framework

Figure 23–5 Operations Associated with a Collection

9. Choose Operations > ADF Toolbar Button from the context menu.

10. To create a Submit button that submits changes to the cache, right-click the
toolbar component in the Structure window and choose Insert inside af:toolbar >
Toolbar Button.

11. If the page is not part of a transaction within a bounded task flow, then you need
to create buttons that allow the user to either commit or rollback the changes.
From the Data Controls panel, drag the Commit and Rollback operations
associated with the root-level data control, and drop them as either a command
button or command link into the toolbar.

Figure 23–6 shows the commit and roll back operations for the
StoreServiceAMDataControl data control.

Figure 23–6 Commit and Rollback Operations for a Data Control

If the page is part of a transaction within a bounded task flow, then you can
simply enter Commit and Rollback as the values for the transaction resolution
when creating the task flow return activity. For more information, see Section 18.4,
"Managing Transactions."

23.3.2 What Happens When You Create an Editable Table
Creating an editable table is similar to creating a form used to edit records. Action
bindings are created for the operations dropped from the Data Controls panel. For
details on what happens when you create an editable table, see Section 22.4.2, "What
Happens When You Create Command Buttons."

Creating an Input Table

Creating ADF Databound Tables 23-13

23.4 Creating an Input Table
You can create a table that allows users to insert a new blank row into a table and then
add values for each column (any default values set on the corresponding entity or
view object will be automatically populated).

23.4.1 How to Create an Input Table
When you create an input table, you want the user to see the new blank row in the
context of the other rows within the current row set. To allow this insertion, you need
to use the CreateInsert operation instead of the Create operation (as you would
use with forms). The CreateInsert operation actually creates the new row within
the row set instead of only in the cache.

ADF Faces components can be set so that one component refreshes based on an
interaction with another component, without the whole page needing to be refreshed.
This is known as partial page rendering. When the user clicks a button to create the new
row, you want the table to refresh to display that new row. To have that happen, you
need to configure the table to respond to that user action.

Before you begin:
1. Create an editable table, as described in Section 23.3, "Creating an Editable Table."

2. If your table is not part of a bounded task flow, be sure to include buttons bound
to the Commit and Rollback operations.

To create an input table:
1. From the Data Controls panel, drag the CreateInsert operation associated with the

dropped collection and drop it as a toolbar button into the toolbar. You may want
to change the ID to something more recognizable, such as CreateInsert. This will
make it easier to identify when you need to select it as the partial trigger.

2. In the Structure window, select the table component. In the Property Inspector,
expand the Behavior section.

3. In the Property Inspector, click the dropdown menu for the PartialTriggers
attribute, and select Edit.

4. In the Edit Property dialog, expand the toolbar facet for the panelCollection
component and then expand the toolbar that contains the CreateInsert command
component. Select that component and shuttle it to the Selected panel. Click OK.
This sets that component to be the trigger that will cause the table to refresh.

23.4.2 What Happens When You Create an Input Table
When you use the CreateInsert operation to create an input table, JDeveloper:

■ Creates an iterator binding for the collection, an action binding for the
CreateInsert operation, and attribute bindings for the table. The
CreateInsert operation is responsible for creating the new row in the row set. If
you created command buttons or links using the Commit and Rollback
operations, JDeveloper also creates an action bindings for those operations.

■ Inserts code in the JSF page for the table using ADF Faces table, column, and
inputText components, and in the case of the operations, commandButton
components.

Creating an Input Table

23-14 Fusion Developer's Guide for Oracle Application Development Framework

Example 23–5 shows the page definition file for an input table created from the
Products collection (some attributes were deleted in the Edit Columns dialog when
the collection was dropped).

Example 23–5 Page Definition Code for an Input Table

<executables>
 <iterator Binds="Products" RangeSize="25"
 DataControl="StoreServiceAMDataControl" id="ProductsIterator"/>
</executables>
<bindings>
 <tree IterBinding="ProductsIterator" id="Products">
 <nodeDefinition DefName="oracle.fodemo.storefront.store.queries.ProductsVO">
 <AttrNames>
 <Item Value="ProductId"/>
 <Item Value="ProductName"/>
 <Item Value="CostPrice"/>
 <Item Value="ListPrice"/>
 <Item Value="Description"/>
 <Item Value="CategoryName"/>
 <Item Value="CategoryDescription"/>
 <Item Value="ProductImageId"/>
 </AttrNames>
 </nodeDefinition>
 </tree>
 <action IterBinding="ProductsIterator" id="CreateInsert"
 RequiresUpdateModel="true" Action="createInsertRow"/>
 <action id="Commit" RequiresUpdateModel="true" Action="commitTransaction"
 DataControl="StoreServiceAMDataControl"/>
 <action id="Rollback" RequiresUpdateModel="false"
 Action="rollbackTransaction"
 DataControl="StoreServiceAMDataControl"/>
</bindings>

Example 23–6 shows the code added to the JSF page that provides partial page
rendering, using the CreateInsert command toolbar button as the trigger to refresh
the table.

Example 23–6 Partial Page Trigger Set on a Command Button for a Table

<af:form>
 <af:panelCollection id="pc1">
 <f:facet name="menus"/>
 <f:facet name="toolbar">
 <af:toolbar id="tb1">
 <af:commandToolbarButton actionListener="#{bindings.CreateInsert.execute}"
 text="CreateInsert"
 disabled="#{!bindings.CreateInsert.enabled}"
 id="CreateInsert"/>
 <af:commandToolbarButton actionListener="#{bindings.Commit.execute}"
 text="Commit"
 disabled="false" id="ctb2"/>
 <af:commandToolbarButton actionListener="#{bindings.Rollback.execute}"
 text="Rollback"
 disabled="#{!bindings.Rollback.enabled}"
 immediate="true" id="ctb3">
 <af:resetActionListener/>
 </af:commandToolbarButton>
 </af:toolbar>
 </f:facet>

Creating an Input Table

Creating ADF Databound Tables 23-15

 <f:facet name="statusbar"/>
 <af:table value="#{bindings.Products.collectionModel}" var="row"
 rows="#{bindings.Products.rangeSize}"
 emptyText="#{bindings.Products.viewable ? \'No data to display.\' :
 \'Access Denied.\'}"
 fetchSize="#{bindings.Products.rangeSize}"
 rowSelection="single" partialTriggers="CreateInsert" id="t1">
 <af:column sortProperty="ProductId" sortable="false"
 headerText="#{bindings.Products.hints.ProductId.label}" id="c1">
 <af:inputText value="#{row.ProductId}" simple="true"
 required="#{bindings.Products.hints.ProductId.mandatory}"
 columns="#{bindings.Products.hints.ProductId.displayWidth}"
 maximumLength="#{bindings.Products.hints.
 productId.precision}" id="it1"/>
 </af:column>
.
.
.
 </af:table>
 </af:panelCollection>
</af:form>

23.4.3 What Happens at Runtime: How CreateInsert and Partial Page Refresh Work
When the button bound to the CreateInsert operation is invoked, the action
executes, and a new instance for the collection is created and inserted as the page is
rerendered. Because the button was configured to be a trigger that causes the table to
refresh, the table redraws with the new empty row shown at the top. When the user
clicks the button bound to the Commit action, the newly created rows in the row set
are inserted into the database. For more information about partial page refresh, see the
"Rendering Partial Page Content" chapter in the Oracle Fusion Middleware Web User
Interface Developer's Guide for Oracle Application Development Framework.

23.4.4 What You May Need to Know About Creating a Row and Sorting Columns
If your table columns allow sorting, and the user has sorted on a column before
inserting a new row, then that new row will not be sorted. To have the column sort
with the new row, the user must first sort the column opposite to the desired sort, and
then resort. This is because the table assumes the column is already sorted, so clicking
on the desired sort order first will have no effect on the column.

For example, say a user had sorted a column in ascending order, and then added a
new row. Initially, that row appears at the top. If the user first clicks to sort the column
again in ascending order, the table will not resort, as it assumes the column is already
in ascending order. The user must first sort on descending order and then ascending
order.

If you want the data to automatically sort on a specific column in a specific order after
inserting a row, then programmatically queue a SortEvent after the commit, and
implement a handler to execute the sort. For more information about adding
functionality to a declarative operation (such as the Commit operation), see
Section 28.4, "Overriding Declarative Methods."

23.4.5 What You May Need to Know About Create and CreateInsert
When you use the Create or CreateInsert operation to declaratively create a new
row, it performs the following lines of code:

// create a new row for the view object

Providing Multiselect Capabilities

23-16 Fusion Developer's Guide for Oracle Application Development Framework

Row newRow = yourViewObject.createRow();
// mark the row as being "initialized", but not yet new
newRow.setNewRowState(Row.STATUS_INITIALIZED);

However, if you are using the CreateInsert operation, it performs the additional
line of code to insert the row into the row set:

// insert the new row into the view object's default rowset
yourViewObject.insertRow(newRow);

When you create a row in an entity-based view object, the Transaction object
associated with the current application module immediately takes note of the fact. The
new entity row that gets created behind the view row is already part of the
Transaction's list of pending changes. When a newly created row is marked as
having the initialized state, it is removed from the Transaction's pending changes
list and is considered a blank row in which the end user has not yet entered any data
values. The term initialized is appropriate since the end user will see the new row
initialized with any default values that the underlying entity object has defined. If the
user never enters any data into any attribute of that initialized row, then it is as if the
row never existed. At transaction commit time, since that row is not part of the
Transaction's pending changes list, no INSERT statement will be attempted for it.

As soon as at least one attribute in an initialized row is set, it automatically transitions
from the initialized status to the new status (Row.STATUS_NEW). At that time, the
underlying entity row is enrolled in the Transaction's list of pending changes, and
the new row will be permanently saved the next time you commit the transaction.

23.5 Providing Multiselect Capabilities
By default, when you drop a table component and set it to use row selection, it is set to
allow a user to select a single row. You can change the table so that using the CTRL key
or the SHIFT key, the user can select multiple rows, allowing the application to work
on multiple rows at the same time.

For example, Figure 23–7 shows the Addresses tab of the UpdateUserInfo page,
which shows the current addresses for the logged-in user in a table. The user can select
multiple addresses and then click the Remove toolbar button. This action removes the
addresses from the data store.test

Figure 23–7 Address Table Allows Multiple Selection

In order to allow the user to select and operate on more than one row, among other
things, you need to change the rowSelection attribute to multiple. In Fusion web

Note: If the end user performs steps that result in creating many
initialized rows but never populating them, it might seem like a recipe
for a slow memory leak. However, the memory used by an initialized
row that never transitions to the new state will eventually be
reclaimed by the Java virtual machine's garbage collector.

Providing Multiselect Capabilities

Creating ADF Databound Tables 23-17

applications, operations (such as methods) work on the current data object, which the
iterator keeps track of. When the rowSelection attribute is set to single (as it is by
default when you select the Row Selection checkbox in the Edit Table Columns dialog
when creating the table), the table is able to show the current data object as being
selected, and it is also able to set any newly selected row to the current object on the
iterator. If the same iterator is used on a subsequent page (for example, if the user
selects a row and then clicks the command button to navigate to a page where the
object can be edited), the selected object will be displayed. This selection and
navigation works because the iterator and the component are working with a single
object: the notion of the current row is the same because the different iterator bindings
in different binding containers are bound to the same row set iterator.

However, when you set the rowSelection attribute to multiple, there potentially
could be multiple selected objects. The ADF Model layer has no notion of "selected" as
opposed to "current." You must add logic to the model layer that takes the component
instance, reads the selected rows, and translates the selection state to the binding. The
method can then perform some action on the selected rows.

23.5.1 How to Add Multiselect Capabilities
To add multiselect capabilities, you first modify certain table component attributes.
Then you use a managed bean to handle setting the selected rows as the current rows.

Before you begin:
Create a table as described in Section 23.2, "Creating a Basic Table," being sure to not
select the Row Selection checkbox.

To add multiselect capabilities:
1. In the Structure window, select the table component and set the following

attributes in the Property Inspector:

■ Row Selection: multiple

■ ID: an ID of your choice for the table

2. Create and register a managed bean for the page, if one does not already exist.
You’ll use the managed bean to handle the row selection and execute logic against
the selection (for example, deleting the selected rows), so that it executes against
all selected rows. For procedures for creating a managed bean, see Section 20.4,
"Using a Managed Bean in a Fusion Web Application."

3. Add a property to the managed bean that represents the table component. Set the
value of the property to the table ID value as set in Step 1, and the property class
to be the ADF Faces table component class, as shown in Example 23–7.

Tip: You can follow the same procedures for adding multiselect
capabilities to a tree or tree table.

Note: You should not select the Row Selection checkbox, because
when you do, JDeveloper automatically binds the
selectionListener attribute to the makeCurrent method on the
CollectionModel class and the selectedRowKeys attribute to the
selectedRow property on that class. Both are designed to work only
for single selection tables. Make sure that for any table for which you
need multiple selection, that neither of these attributes are populated.

Providing Multiselect Capabilities

23-18 Fusion Developer's Guide for Oracle Application Development Framework

Example 23–7 Property on a Managed Bean That Represents a Table

<managed-property>
 <property-name>table1</property-name>
 <property-class>
 oracle.adf.view.rich.component.rich.data.RichTable
 </property-class>
 <value>#{table1}</value>
</managed-property>

4. Add getter and setter methods for the table to the managed bean, as shown in
Example 23–8.

Example 23–8 Getter and Setter Methods for the Table Component

private RichTable _table1;

 public void setTable1(RichTable table1) {
 this.table1 = table1;
 }
 public RichTable getTable1() {
 return table1;
 }

5. Back in the JSP page, in the Structure window select the table component and set
the binding attribute to be bound to the managed property you created in Step 3.
For example:

binding="#{myBean.table1}"

This binding is what allows the application to work with the entire table
component. For more information about the binding attribute and how it allows
you access objects programmatically, refer to the Java EE 5 tutorial on Sun’s web
site (http://www.oracle.com/technetwork/java/index.html).

6. Add logic to allow the declarative operation or method to operate against the set
of selected rows.

Example 23–9 shows the method named deleteOnTable() that removes the
selected rows from the address table on the updateUserInfo page.

Example 23–9 Deleting Multiple Rows on an Iterator

 public void deleteOnTable(RichTable myTable) {
 RowKeySet rowKeySet = (RowKeySet) myTable.getSelectedRowKeys();

Tip: You’ll need to import the ADF Faces table class into the
managed bean. JDeveloper can do this for you declaratively when you
press CTRL+ENTER after adding the code in Example 23–8.

Tip: If you elected to use automatic component binding when
creating the JSF page, then most of Steps 2 through 5 will have been
done for you. You need only create the set method on the managed
bean, as shown in Step 6. It is important, however, to understand the
behavior of the page when using automatic component binding. For
more information, see the "What You May Need to Know About
Automatic Component Binding" section of the Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework.

http://www.oracle.com/technetwork/java/index.html

Modifying the Attributes Displayed in the Table

Creating ADF Databound Tables 23-19

 CollectionModel cm = (CollectionModel) myTable.getValue();
 for (Object facesTreeRowKey : rowKeySet) {
 cm.setRowKey(facesTreeRowKey);
 JUCtrlHierNodeBinding rowData = (JUCtrlHierNodeBinding)
 cm.getRowData()
 rowData.getRow().remove();
 }
 }

23.5.2 What Happens at Runtime: How an Operation Executes Against Multiple Rows
When the user selects multiple rows and then clicks the command button, the
application uses different contexts to access the expression factory to build an
expression that resolves to the binding container. It then retrieves the iterator and the
selected row keys on the component, and sets the selected rows on the binding. Next,
it uses the collection model of the binding to remove the row and then reaccesses the
component to display the collection with the now removed rows.

23.6 Modifying the Attributes Displayed in the Table
Once you use the Data Controls panel to create a table, you can then delete attributes,
change the order in which they are displayed, change the component used to display
them, and change the attribute binding for the component. You can also add new
attributes, or rebind the table to a new data control.

23.6.1 How to Modify the Displayed Attributes
You can modify the following aspects of a table that was created using the Data
Controls panel:

■ Change the binding for the label of a column

■ Change the attribute to which a UI component is bound

■ Change the UI component bound to an attribute

■ Reorder the columns in the table

■ Delete a column in the table

Note: CollectionModel supports a version of the getRowData
method that takes a row key parameter and thus allows you to get
row data without changing currency. This is particularly useful when
your view object uses range paging.

In the above example, you can thus replace this code:

cm.setRowKey(facesTreeRowKey);
JUCtrlHierNodeBinding rowData = (JUCtrlHierNodeBinding)
 cm.getRowData();

with this code:

JUCtrlHierNodeBinding rowData = (JUCtrlHierNodeBinding)
 cm.getRowData(facesTreeRowKey);

Modifying the Attributes Displayed in the Table

23-20 Fusion Developer's Guide for Oracle Application Development Framework

■ Add a column to the table

■ Enable selection and sorting

To change the attributes for a table:
1. In the Structure window, select the table component.

2. In the Property Inspector, expand the different sections to change the attributes for
the table.

23.6.2 How to Change the Binding for a Table
Instead of modifying a binding, you can completely change the object to which the
table is bound.

To rebind a table:
1. Right-click the table in the Structure window and choose Rebind to Another ADF

Control.

2. In the Bind to ADF Control dialog, select the new collection to which you want to
bind the table. Note that changing the binding for the table will also change the
binding for all the columns. You can then use the procedures in Section 23.6.1,
"How to Modify the Displayed Attributes" to modify those bindings.

23.6.3 What Happens When You Modify Bindings or Displayed Attributes
When you simply modify how an attribute is displayed by moving the UI component
or changing the UI component, JDeveloper changes the corresponding code on the JSF
page. When you use the binding editors to add or change a binding, JDeveloper adds
the code to the JSF page, and also adds the appropriate elements to the page definition
file.

Tip: You can also rebind a table by dragging a different view object
on top of the existing table.

24

Displaying Master-Detail Data 24-1

24Displaying Master-Detail Data

This chapter describes how to create various types of pages that display master-detail
related data using ADF data binding.

This chapter includes the following sections:

■ Section 24.1, "Introduction to Displaying Master-Detail Data"

■ Section 24.2, "Identifying Master-Detail Objects on the Data Controls Panel"

■ Section 24.3, "Using Tables and Forms to Display Master-Detail Objects"

■ Section 24.4, "Using Trees to Display Master-Detail Objects"

■ Section 24.5, "Using Tree Tables to Display Master-Detail Objects"

■ Section 24.6, "Using Selection Events with Trees and Tables"

For information about using a selection list to populate a collection with a key value
from a related master or detail collection, see Chapter 25, "Creating Databound
Selection Lists and Shuttles".

24.1 Introduction to Displaying Master-Detail Data
In ADF Business Components, a master-detail relationship refers to two view object
instances that are related by a view link. As described in Section 5.1, "Introduction to
View Objects", a view link represents the relationship between two view objects, which
is usually, but not necessarily, based on a foreign-key relationship between the
underlying data tables. The view link associates a row of one view object instance (the
master object) with one or more rows of another view object instance (the detail
object).

To display master-detail data on a page using ADF data binding, you exclusively use
data model view link instances, which support master-detail coordination. When
using ADF Business Components in combination with the ADF Model layer and ADF
Faces UI components, the data model automatically updates to reflect any changes to
the row sets of these business objects.

To enable master-detail coordination, you must add both the master view object and
the detail view object instances to the application module data model. For example, in
the Fusion Order Demo application, there is a view link from the ProductsVO view
object to the WarehouseStockLevelsVO view object based on the ProductId
attribute, both contained in the application module data model, as shown in
Figure 24–1. A change in the current row of the master view object instance causes the
row set of the detail view object instance to refresh to include the details for the current
master.

Introduction to Displaying Master-Detail Data

24-2 Fusion Developer's Guide for Oracle Application Development Framework

Figure 24–1 View Link between Products and WarehouseStockLevels View Objects

When objects have a master-detail relationship, you can declaratively create pages that
display the data from both objects simultaneously. For example, the page shown in
Figure 24–2 displays a country code in a form at the top of the page and its related
states and provinces in a table at the bottom of the page. This is possible because the
objects have a master-detail relationship. In this example, the Country Code is the
master object and States is the detail object. ADF iterators automatically manage the
synchronization of the detail data objects displayed for a selected master data object.
Iterator bindings simplify building user interfaces that allow scrolling and paging
through collections of data and drilling-down from summary to detail information.

Identifying Master-Detail Objects on the Data Controls Panel

Displaying Master-Detail Data 24-3

Figure 24–2 Detail Table

You display master and detail objects in forms and tables. The master-detail form can
display these objects on separate pages. For example, you can display the master
object in a table on one page and detail objects in a read-only form on another page.

24.2 Identifying Master-Detail Objects on the Data Controls Panel
You can declaratively create pages that display master-detail data using the Data
Controls panel. The Data Controls panel displays master-detail related objects in a
hierarchy that mirrors the one you defined in the application module data model,
where the detail objects are children of the master objects. For information about
adding master-detail objects to the data model, see Section 5.6.4, "How to Enable
Active Master-Detail Coordination in the Data Model."

To display master-detail objects as form or table objects, drag the detail object from the
Data Controls panel and drop it on the page. Its master object is automatically created
on the page.

Figure 24–3 shows two master-detail related collections in the Data Controls panel of
the Fusion Order Demo application. The Products collection is an instance of the
ProductsVO view object, and the WarehouseStockLevels collection, which

Note: There are some cases when the master-detail UI components
that JDeveloper provides cannot provide the functionality you require.
For example, you may need to bind components programatically
instead of using the master-detail UI components.

A master object can have many detail objects, and each detail object
can in turn have its own detail objects, down to many levels of depth.
If one of the detail objects in this hierarchy is dropped from the
Application Navigator as a master-detail form on a page, only its
immediate parent master object displays on the page. The hierarchy
will not display all the way up to the topmost parent object.

If you display the detail object as a tree or tree table object, it is
possible to display the entire hierarchy with multiple levels of depth,
starting with the topmost master object, and traversing detail children
objects at each node.

Identifying Master-Detail Objects on the Data Controls Panel

24-4 Fusion Developer's Guide for Oracle Application Development Framework

appears as a child of the Products collection, is an instance of the
WarehouseStockLevelsVO view object.

Figure 24–3 Master-Detail Objects in the Data Controls Panel

The master-detail hierarchy on the Data Controls panel reflects the hierarchy defined
in the application module data model, as shown in Figure 24–4. The hierarchy was
established by creating a view link from the ProductsVO view object to the
WarehouseStockLevelsVO view object. Next, an instance of the resulting detail
view object, WarehouseStockLevelsVO via
ProductsToWarehouseStockLevels, was added to the application module data
model shown in Figure 24–4.

Note: The master-detail hierarchy displayed in the Data Controls
panel does not reflect the cardinality of the relationship (that is,
one-to-many, one-to-one, many-to-many). The hierarchy simply shows
which collection (the master) is being use to retrieve one or more
objects from another collection (the detail).

Using Tables and Forms to Display Master-Detail Objects

Displaying Master-Detail Data 24-5

Figure 24–4 Master-Detail Hierarchy Defined in the Application Module Data Model

In the Fusion Order Demo application, the view link between the ProductsVO view
object and WarehouseStockLevelsVO view object is a one-way relationship. If the
view link were bidirectional and both sets of master and detail view objects were
added to the application module data model, then the Data Controls panel would also
display the WarehouseStockLevelsVO collection at the same node level as the
Products collection, and the detail instance of the Products collection as a child of
the WarehouseStockLevelsVO collection.

For more information about the icons displayed on the Data Controls panel, see
"Section 12.3.1, "How to Use the Data Controls Panel."

24.3 Using Tables and Forms to Display Master-Detail Objects
You can create a master-detail browse page in a single declarative action using the
Data Controls panel. All you have to do is drop the detail collection on the page and
choose the type of widget you want to use.

The prebuilt master-detail widgets available from the Data Controls panel include
range navigation that enables the end user to scroll through the data objects in
collections. You can delete unwanted attributes by removing the text field or column
from the page.

Figure 24–5 shows an example of prebuilt master-detail widget, which displays
products information in a form at the top of the page and stock levels in a table at the
bottom of the page. When the user clicks the Next button to scroll through the records
in the master data at the top of the page, the page automatically displays the related
detail data.

Tip: By default, when you define a view link using the Create View
Link wizard, the source view object is the master and the destination
view object is the detail. However, if you choose to generate accessors
in both the source and the destination view objects, then the
master-detail relationship is bidirectional. If both sets of master-detail
view objects resulting from a bidirectional view link are added to the
application module data model, then instances of both sets of view
objects will appear independently on the Data Controls panel.

Using Tables and Forms to Display Master-Detail Objects

24-6 Fusion Developer's Guide for Oracle Application Development Framework

Figure 24–5 Prebuilt Data Controls Panel Master-Detail Widget

24.3.1 How to Display Master-Detail Objects in Tables and Forms
If you do not want to use the prebuilt master-detail widgets, you can drag and drop
the master and detail objects individually from the Data Controls panel as tables and
forms on a single page or on separate pages.

The Data Controls panel enables you to create both the master and detail widgets on
one page with a single declarative action using prebuilt master-detail forms and tables.
For information about displaying master and detail data on separate pages, see
Section 24.3.4, "What You May Need to Know About Displaying Master-Detail
Widgets on Separate Pages."

To create a master-detail page using the prebuilt ADF master-detail forms and
tables:
1. From the Data Controls panel, locate the detail object, as described in Section 24.2,

"Identifying Master-Detail Objects on the Data Controls Panel."

2. Drag and drop the detail object onto the JSF page.

3. In the context menu, choose one of the following master-detailsUI components:

■ ADF Master Table, Detail Form: Displays the master objects in a table and the
detail objects in a read-only form under the table.

When a specific data object is selected in the master table, the first related
detail data object is displayed in the form below it. The user must use the form
navigation to scroll through each subsequent detail data object.

■ ADF Master Form, Detail Table: Displays the master objects in a read-only
form and the detail objects in a read-only table under the form.

Note: If you want to create an editable master-detail form, drop the
master object and the detail object separately on the page.

Using Tables and Forms to Display Master-Detail Objects

Displaying Master-Detail Data 24-7

When a specific master data object is displayed in the form, the related detail
data objects are displayed in a table below it.

■ ADF Master Form, Detail Form: Displays the master and detail objects in
separate forms.

When a specific master data object is displayed in the top form, the first
related detail data object is displayed in the form below it. The user must use
the form navigation to scroll through each subsequent detail data object.

■ ADF Master Table, Detail Table: Displays the master and detail objects in
separate tables.

When a specific master data object is selected in the top table, the first set of
related detail data objects is displayed in the table below it.

If you want to modify the default forms or tables, see Section 22.3, "Creating a
Basic Form" or Section 23.2, "Creating a Basic Table."

24.3.2 What Happens When You Create Master-Detail Tables and Forms
When you drag and drop a collection from the Data Controls panel, JDeveloper does
many things for you, including adding code to the JSF page and the corresponding
entries in the page definition file. For a full description of what happens and what is
created when you use the Data Controls panel, see Section 12.3.1, "How to Use the
Data Controls Panel."

24.3.2.1 Code Generated in the JSF Page
The JSF code generated for a prebuilt master-detail widget is similar to the JSF code
generated when you use the Data Controls panel to create a read-only form or table. If
you are building your own master-detail widgets, you might want to consider
including similar components that are automatically included in the prebuilt
master-detail tables and forms.

The tables and forms in the prebuilt master-detail widgets include a panelHeader
tag that contains the fully qualified name of the data object populating the form or
table. You can change this label as needed using a string or an EL expression that binds
to a resource bundle.

If there is more than one data object in a collection, a form in a prebuilt master-detail
widget includes four commandButton tags for range navigation: First, Previous,
Next, and Last. These range navigation buttons enable the user to scroll through the
data objects in the collection. The actionListener attribute of each button is bound
to a data control operation, which performs the navigation. The execute property
used in the actionListener binding, invokes the operation when the button is
clicked. (If the form displays a single data object, JDeveloper automatically omits the
range navigation components.) For more information about range navigation, see
Section 22.4, "Incorporating Range Navigation into Forms."

Using Tables and Forms to Display Master-Detail Objects

24-8 Fusion Developer's Guide for Oracle Application Development Framework

24.3.2.2 Binding Objects Defined in the Page Definition File
Example 24–1 shows the page definition file created for a master-detail page that was
created by dropping the WarehouseStockLevels collection, which is a detail object
under the Products object, on the page as an ADF Master Form, Detail Table.

The executables element defines two iterators: one for the product (the master
object) and one for the WarehouseStockLevels (the detail object). The underlying view
link from the master view object to the detail view object establishes the relationship
between the two iterators. At runtime, the UI-aware data model and the row set
iterator for the detail view object instance keep the row set of the detail view object
refreshed to the correct set of rows for the current master row as that current row
changes (for more information, see Section 24.3.3, "What Happens at Runtime: ADF
Iterator for Master-Detail Tables and Forms").

The bindings element defines the value bindings for the form and the table. The
attribute bindings that populate the text fields in the form are defined in the
attributeValues elements. The id attribute of the attributeValues element
contains the name of each data attribute, and the IterBinding attribute references an
iterator binding to display data from the master object in the text fields.

The attribute bindings that populate the text fields in the form are defined in the
attributeValues elements. The id attribute of the attributeValues element
contains the name of each data attribute, and the IterBinding attribute references an
iterator binding to display data from the master object in the text fields.

The range navigation buttons in the form are bound to the action bindings defined in
the action elements. As in the attribute bindings, the IterBinding attribute of the
action binding references the iterator binding for the master object.

The table, which displays the detail data, is bound to the table binding object defined
in the table element. The IterBinding attribute references the iterator binding for
the detail object.

For more information about the elements and attributes of the page definition file, see
Section A.8, "pageNamePageDef.xml."

Example 24–1 Binding Objects Defined in the Page Definition for a Master-Detail Page

<executables>
 <iterator Binds="Products" RangeSize="25"
 DataControl="StoreServiceAMDataControl" id="ProductsIterator"/>
 <iterator Binds="WarehouseStockLevels" RangeSize="25"
 DataControl="StoreServiceAMDataControl"
 id="WarehouseStockLevelsIterator"/>
</executables>

Tip: If you drop an ADF Master Table, Detail Form or ADF Master
Table, Detail Table widget on the page, the parent tag of the detail
component (for example, panelHeader tag or table tag)
automatically has the partialTriggers attribute set to the id of the
master component (see Section 23.4.1, "How to Create an Input Table"
for more information about partial triggers). At runtime, the
partialTriggers attribute causes only the detail component to be
rerendered when the user makes a selection in the master component,
which is called partial rendering. When the master component is a
table, ADF uses partial rendering, because the table does not need to
be rerendered when the user simply makes a selection in the facet.
Only the detail component needs to be rerendered to display the new
data.

Using Tables and Forms to Display Master-Detail Objects

Displaying Master-Detail Data 24-9

<bindings>
 <methodAction id="findHelpTextById" RequiresUpdateModel="true"
 Action="invokeMethod" MethodName="findHelpTextById"
 IsViewObjectMethod="false"
 DataControl="LookupServiceAMDataControl"
 InstanceName="LookupServiceAMDataControl.dataProvider"
 ReturnName="LookupServiceAMDataControl.methodResults.
 findHelpTextById_LookupServiceAMDataControl_
 dataProvider_findHelpTextById_result">
 <NamedData NDName="helpId" NDType="java.lang.Long"
 NDOption="2"/>
 </methodAction>
 <tree IterBinding="ProductsIterator" id="Products">
 <nodeDefinition DefName="oracle.fodemo.storefront.store.queries.ProductsVO">
 <AttrNames>
 <Item Value="ProductId"/>
 <Item Value="SupplierId"/>
 <Item Value="CategoryId"/>
 <Item Value="ProductName"/>
 ...
 <Item Value="CostPrice"/>
 <Item Value="DragId"/>
 </AttrNames>
 </nodeDefinition>
 </tree>
 <tree IterBinding="WarehouseStockLevelsIterator" id="WarehouseStockLevels">
 <nodeDefinition DefName="oracle.fodemo.storefront.store.
 queries.WarehouseStockLevelsVO">
 <AttrNames>
 <Item Value="ProductId"/>
 <Item Value="WarehouseId"/>
 ...
 <Item Value="ShippingClassCode"/>
 </AttrNames>
 </nodeDefinition>
 </tree>
</bindings>

24.3.3 What Happens at Runtime: ADF Iterator for Master-Detail Tables and Forms
At runtime, an ADF iterator determines which row from the master table object to
display in the master-detail form. When the form first displays, the first master table
object row appears highlighted in the master section of the form. Detail table rows that
are associated with the master row display in the detail section of the form.

As described in Section 24.3.2.2, "Binding Objects Defined in the Page Definition File,"
ADF iterators are associated with underlying row setIterator objects. These
iterators manage which data objects, or rows, currently display on a page. At runtime,
the row set iterators manage the data displayed in the master and detail components.

Both the master and detail row set iterators listen to row set navigation events, such as
the user clicking the range navigation buttons, and display the appropriate row in the
UI. In the case of the default master-detail components, the row set navigation events
are the command buttons on a form (First, Previous, Next, Last).

The row set iterator for the detail collection manages the synchronization of the detail
data with the master data. Because of the underlying view link from the master view

Using Trees to Display Master-Detail Objects

24-10 Fusion Developer's Guide for Oracle Application Development Framework

object to the detail view object, the detail row set iterator listens for row navigation
events in both the master and detail collections. If a row set navigation event occurs in
the master collection, the detail row set iterator automatically executes and returns the
detail rows related to the current master row.

24.3.4 What You May Need to Know About Displaying Master-Detail Widgets on
Separate Pages

The default master-detail components display the master-detail data on a single page.
However, using the master and detail objects on the Data Controls panel, you can also
display the collections on separate pages, and still have the binding iterators manage
the synchronization of the master and detail objects.

For example, in the Fusion Order Demo application, a product table and product
details are displayed on the home page. However, the page could display the product
table only. It could provide a button called Details. If the user clicked the Details
button, the application would navigate to a new page that displays all the related
details in a list. A button on the list’s page would enable the user to return to the
service request page.

To display master-detail objects on separate pages, create two pages, one for the
master object and one for the detail object, using the individual tables or forms
available from the Data Controls panel. Remember that the detail object iterator
manages the synchronization of the master and detail data. Be sure to drag the
appropriate detail object from the Data Controls panel when you create the page to
display the detail data. For more information, see Section 24.2, "Identifying
Master-Detail Objects on the Data Controls Panel."

To handle the page navigation, create an ADF task flow, and then add two view
activities to it, one for the master page and one for the detail page. (See Section 14.2,
"Creating a Task Flow" for information about associating a View activity with an
existing JSF page). Add command buttons or links to each page, or use the default
Submit button available when you create a form or table using the Data Controls
panel. Each button must specify a navigation rule outcome value in the action
attribute. In the task-flow-defintion.xml file, add a navigation rule from the
master data page to the detail data page, and another rule to return from the detail
data page to the master data page. The from-outcome value in the navigation rules
must match the outcome value specified in the action attribute of the buttons. For
information about adding navigation between pages, see Section 14.2, "Creating a Task
Flow."

24.4 Using Trees to Display Master-Detail Objects
In addition to tables and forms, you can also display master-detail data in hierarchical
trees. The ADF Faces tree component is used to display hierarchical data. It can
display multiple root nodes that are populated by a binding on a master object. Each
root node in the tree may have any number of branches, which are populated by
bindings on detail objects. A tree can have multiple levels of nodes, each representing
a detail object of the parent node. Each node in the tree is indented to show its level in
the hierarchy.

The tree component includes mechanisms for expanding and collapsing the tree
nodes; however, it does not have focusing capability. If you need to use focusing,
consider using the ADF Faces treeTable component (for more information, see
Section 24.5, "Using Tree Tables to Display Master-Detail Objects"). By default, the icon
for each node in the tree is a folder; however, you can use your own icons for each
level of nodes in the hierarchy.

Using Trees to Display Master-Detail Objects

Displaying Master-Detail Data 24-11

Figure 24–6 shows an example of a tree located on the home.jspx page of the Fusion
Order Demo application. The tree displays two levels of nodes: root and branch. The
root node displays parent product categories such as Media, Office, and Electronics.
The branch nodes display and subcategories under each parent category, such as
Hardware, Supplies, and Software under the Office parent category.

Figure 24–6 Databound ADF Faces Tree

24.4.1 How to Display Master-Detail Objects in Trees
A tree consists of a hierarchy of nodes, where each subnode is a branch off a higher
level node. Each node level in a databound ADF Faces tree component is populated
by a different data collection. In JDeveloper, you define a databound tree using the
Edit Tree Binding dialog, which enables you to define the rules for populating each
node level in the tree. There must be one rule for each node level in the hierarchy. Each
rule defines the following node-level properties:

■ The data collection that populates that node level

■ The attributes from the data collection that are displayed at that node level

■ A view link accessor attribute that returns a detail object to be displayed as a
branch of the current node level (for information about view link accessors, see
Section 5.6.6.2, "Programmatically Accessing a Detail Collection Using the View
Link Accessor")

To create the Browse tree on the Fusion Order Demo home page shown in Figure 24–6,
a view object, ParentProductCategories was created to return a list of parent
categories. Another view object, ProductCategories was created to return
subcategories of products. A view link was created from the
ParentProductCategories view object to the ProductCategories view object,
thus establishing a master-detail relationship.

To add a third-level node, for example, a list of products under each subcategory, a
view link would need to exist from the ProductCategories object to the Products
view object. For more information about creating view links, see Section 5.6.6, "How to
Access the Detail Collection Using the View Link Accessor."

In the case where a branch of the tree is recursive, a single view object accompanied by
a self-referential view link must be defined in the data model project. For example, in a
collection defined by EmployeesView, the root node of each branch is specified by
the ManagerId attribute and the child nodes of the same branch are the employees
(also known as "direct reports") who are related to the ManagerId. The source and

Using Trees to Display Master-Detail Objects

24-12 Fusion Developer's Guide for Oracle Application Development Framework

destination view object named by the self-referential view link are both defined as
EmployeesView with the destination renamed to DirectReports for clarify. For
more information about creating self-referential view links, see Section 5.7.1, "How to
Create a Recursive Master-Detail Hierarchy for an Entity-Based View Object."

To display master-detail objects in a tree:
1. Drag the master object from the Data Controls panel, and drop it onto the page.

This should be the master data that will represent the root level of the tree.

2. In the context menu, choose Trees > ADF Tree.

JDeveloper displays the Edit Tree Binding dialog, as shown in Figure 24–7. You
use the binding editor to define a rule for each level that you want to appear in the
tree.

Figure 24–7 Edit Tree Binding Dialog

3. In the Root Data Source dropdown list, select the data collection that will
populate the root node level. This will be the master data collection. By default,
this is the same collection that you dragged from the Data Controls panel to create
the tree, which was a master collection.

4. Click the + icon to add the root data source you selected to the Tree Level Rules
list.

5. In the Tree Level Rules list, select the data source you just added.

Tip: If you don’t see the data collection you want in the Root Data
Source list, click the Add button. In the Add Data Source dialog, select
a data control and an iterator name to create a new data source.

Using Trees to Display Master-Detail Objects

Displaying Master-Detail Data 24-13

6. In the Accessor dropdown list, select a view link accessor attribute.

The list displays only the accessor attributes that return the detail collections for
the master collection you selected. For example, if you are defining the
ParentProductCategories node level and you want to add a detail level that
displays all subcategories under each parent category, you would select the
accessor attribute that returns the ProductCategories collection.

If you select <none>, the node will not expand to display any detail collections,
thus ending the branch.

View link accessor attributes, which return data collections, are generated when
you create a view link. The Accessor field displays all accessor attributes that
return detail collections for the master collection selected in the Tree Level Rules
list. For more information about view objects, view links, and view link accessors,
see Section 5.6.6, "How to Access the Detail Collection Using the View Link
Accessor."

7. Select an attribute in the Available Attributes list and move it to the Display
Attributes list.

The attribute will be used to display nodes at the master level. For example, for the
Parent Product Categories level, you might select the Categories attribute.

When you are finished, the Tree Binding Editor should contain values similar to
those in Figure 24–7.

After defining a rule for the master level, you must next define a second rule for
the detail level that will appear under the master level in the tree.

For example, in the sample tree shown in Figure 24–6, the first rule added to the
tree binding editor populates the parent category nodes (Media, Office, and
Electronics). The detail level rule populates the product category nodes (for
example, Hardware, Supplies, and Software under the Media parent category). ‘

8. To add a second rule, click the Add icon above the Tree Level Rules list.

A detail data source should appear automatically under the master data source, as
shown in Figure 24–8.

Figure 24–8 Master-Detail Tree Level Rules

For example, if you specified Products as the master Root Data Source,
WarehouseStockLevels will automatically appear underneath in the Tree
Level Rules list, because the two data sources share a master-detail relationship.

If you are creating a tree with a recursive master-detail hierarchy, then you only
need to define a rule that specifies a data source with a self accessor. A recursive
tree displays root nodes based on a single collection and displays the child nodes
from the attributes of a self accessor that recursively fetches data from that
collection. The recursive tree differs from a typical master-detail tree because it
requires only a single rule to define the branches of the tree. A recursive data
source should display the data source followed by the name of the self accessor in
brackets, as shown in Figure 24–9.

Using Trees to Display Master-Detail Objects

24-14 Fusion Developer's Guide for Oracle Application Development Framework

Figure 24–9 Recursive Tree Level Rule

For example, in a collection defined by EmployeesView, the root node of each
branch could be specified by the ManagerId for the employee and the child nodes
of the same branch are the employees who are related to the ManagerId, as
specified by the self accessor DirectReports.

9. Click OK.

10. You can add data sources to the Tree Level Rules list to increase the number of
nodes that display in the tree. The order of the remaining data sources should
follow the hierarchy of the nodes you want to display in the tree.

24.4.2 What Happens When You Create an ADF Databound Tree
When you drag and drop from the Data Controls panel, JDeveloper does many things
for you. For a full description of what happens and what is created when you use the
Data Controls panel, see Section 12.3.1, "How to Use the Data Controls Panel."

When you create a databound tree using the Data Controls panel, JDeveloper adds
binding objects to the page definition file, and it also adds the tree tag to the JSF Page.
The resulting UI component is fully functional and does not require any further
modification.

24.4.2.1 Code Generated in the JSF Page
Example 24–2 shows the code generated in a JSF page when you use the Data Controls
panel to create a tree. This sample tree displays two levels of nodes: parent product
categories and product categories. The ParentProductCategories collection was
used to populate the root node.

Example 24–2 Code Generated in the JSF Page for a Databound Tree

<af:tree id="productCategoriesTree" contentDelivery="immediate"
 selectionListener="#{homePageBean.
 productCategoriesTreeSelectionListener}"
 rowSelection="single"
 value="#{bindings.ParentProductCategories.treeModel}"
 var="node" initiallyExpanded="true">
 <f:facet name="nodeStamp">
 <af:panelGroupLayout>
 <af:outputText rendered="#{node.ParentCategoryId eq null}"
 value="#{node.CategoryName}"
 inlineStyle="color:#FF8000;font-weight:bold;"/>
 <af:outputText rendered="#{node.ParentCategoryId ne null}"
 value="#{node.CategoryName}"/>
 </af:panelGroupLayout>
 </f:facet>
</af:tree>

By default, the af:tree tag is created inside a form. The value attribute of the tree
tag contains an EL expression that binds the tree component to the

Using Trees to Display Master-Detail Objects

Displaying Master-Detail Data 24-15

ParentProductCategories tree binding object in the page definition file. The
treeModel property in the binding expression refers to an ADF class that defines
how the tree hierarchy is displayed, based on the underlying data model. The var
attribute provides access to the current node.

In the f:facet tag, the nodeStamp facet is used to display the data for each node.
Instead of having a component for each node, the tree repeatedly renders the
nodeStamp facet, similar to the way rows are rendered for the ADF Faces table
component.

The ADF Faces tree component uses an instance of the
oracle.adf.view.faces.model.PathSet class to display expanded nodes. This
instance is stored as the treeState attribute on the component. You may use this
instance to programmatically control the expanded or collapsed state of an element in
the hierarchy. Any element contained by the PathSet instance is deemed expanded.
All other elements are collapsed.

24.4.2.2 Binding Objects Defined in the Page Definition File
Example 24–3 shows the binding objects defined in the page definition file for the ADF
databound tree.

Example 24–3 Binding Objects Defined in the Page Definition File for a Databound Tree

<executables>
 <iterator Binds="ParentProductCategories" RangeSize="25"
 DataControl="StoreServiceAMDataControl"
 id="ParentProductCategoriesIterator"/>
</executables>
<bindings>
 <tree IterBinding="ParentProductCategoriesIterator"
 id="ParentProductCategories">
 <nodeDefinition
 DefName="oracle.fodemo.storefront.store.queries.ProductCategoriesVO">
 <AttrNames>
 <Item Value="CategoryId"/>
 </AttrNames>
 <Accessors>
 <Item Value="ProductCategoriesVO"/>
 <Item Value="ParentCategoryIdProductCategoriesVO"/>
 </Accessors>
 </nodeDefinition>
 </tree>
</bindings>

The page definition file contains the rule information defined in the Tree Binding
Editor. In the executables element, notice that although the tree displays two levels
of nodes, only one iterator binding object is needed. This iterator iterates over the
master collection, which populates the root nodes of the tree. The accessor you
specified in the node rules returns the detail data for each branch node.

The tree element is the value binding for all the attributes displayed in the tree. The
iterBinding attribute of the tree element references the iterator binding that
populates the data in the tree. The AttrNames element within the tree element
defines binding objects for all the attributes in the master collection. However, the
attributes that you select to appear in the tree are defined in the AttrNames elements
within the nodeDefinition elements.

Using Tree Tables to Display Master-Detail Objects

24-16 Fusion Developer's Guide for Oracle Application Development Framework

The nodeDefinition elements define the rules for populating the nodes of the tree.
There is one nodeDefinition element for each node, and each one contains the
following attributes and subelements:

■ DefName: An attribute that contains the fully qualified name of the data collection
that will be used to populate the node.

■ id: An attribute that defines the name of the node.

■ AttrNames: A subelement that defines the attributes that will be displayed in the
node at runtime.

■ Accessors: A subelement that defines the accessor attribute that returns the next
branch of the tree.

The order of the nodeDefintion elements within the page definition file defines the
order or level of the nodes in the tree, were the first nodeDefinition element
defines the root node. Each subsequent nodeDefinition element defines a sub-node
of the one before it.

For more information about the elements and attributes of the page definition file, see
Appendix A.8, "pageNamePageDef.xml."

24.4.3 What Happens at Runtime: Displaying an ADF Databound Tree
Tree components use org.apache.myfaces.trinidad.model.TreeModel to
access data. This class extends CollectionModel, which is used by the ADF Faces
table component to access data. For more information about the TreeModel class,
refer to the ADF Faces Javadoc.

When a page with a tree is displayed, the iterator binding on the tree populates the
root nodes. When a user collapses or expands a node to display or hide its branches, a
DisclosureEvent event is sent. The isExpanded method on this event determines
whether the user is expanding or collapsing the node. The DisclosureEvent event
has an associated listener.

The DisclosureListener attribute on the tree is bound to the accessor attribute
specified in the node rule defined in the page definition file. This accessor attribute is
invoked in response to the DisclosureEvent event; in other words, whenever a user
expands the node the accessor attribute populates the branch nodes.

24.5 Using Tree Tables to Display Master-Detail Objects
Use the ADF Faces treeTable component to display a hierarchy of master-detail
collections in a table. The advantage of using a treeTable component rather than a
tree component is that the treeTable component provides a mechanism that
enables users to focus the view on a particular node in the tree.

For example, you can create a tree table that displays three levels of nodes: countries,
states or provinces, and cities. Each root node represents an individual country. The
branches off the root nodes display the state or provinces in the country. Each state or
province node branches to display the cities contained in it.

As with trees, to create a tree table with multiple nodes, it is necessary create view
links between the view objects. The view links establish the master-detail relationships
For example, to create a tree table with three levels of country, state, and city, it was
necessary to create view links from the CountryCodes object to the
StatesandProvinces view object, and another view link from the
StatesandProvinces view object to the Cities view object. For more information

Using Tree Tables to Display Master-Detail Objects

Displaying Master-Detail Data 24-17

about creating view links, see Section 5.6, "Working with Multiple Tables in a
Master-Detail Hierarchy."

A databound ADF Faces treeTable displays one root node at a time, but provides
navigation for scrolling through the different root nodes. Each root node can display
any number of branch nodes. Every node is displayed in a separate row of the table,
and each row provides a focusing mechanism in the leftmost column.

You can edit the following treeTable component properties in the Property
Inspector:

■ Range navigation: The user can click the Previous and Next navigation buttons to
scroll through the root nodes.

■ List navigation: The list navigation, which is located between the Previous and
Next buttons, enables the user to navigate to a specific root node in the data
collection using a selection list.

■ Node expanding and collapsing mechanism: The user can open or close each node
individually or use the Expand All or Collapse All command links. By default,
the icon for opening and closing the individual nodes is an arrowhead with a plus
or minus sign. You can also use a custom icon of your choosing.

■ Focusing mechanism: When the user clicks on the focusing icon (which is
displayed in the leftmost column) next to a node, the page is redisplayed showing
only that node and its branches. A navigation link is provided to enable the user to
return to the parent node.

24.5.1 How to Display Master-Detail Objects in Tree Tables
The steps for creating an ADF Faces databound tree table are exactly the same as those
for creating an ADF Faces databound tree, except that you drop the data collection as
an ADF Tree Table instead of an ADF Tree.

24.5.2 What Happens When You Create a Databound Tree Table
When you drag and drop from the Data Controls panel, JDeveloper does many things
for you. For a full description of what happens and what is created when you use the
Data Controls panel, see Section 12.3.1, "How to Use the Data Controls Panel."

When you create a databound tree table using the Data Controls panel, JDeveloper
adds binding objects to the page definition file, and it also adds the treeTable tag to
the JSF Page. The resulting UI component is fully functional and does not require any
further modification.

24.5.2.1 Code Generated in the JSF Page
Example 24–4 shows the code generated in a JSF page when you use the Data Controls
panel to create a tree table. This sample tree table displays two levels of nodes:
products and stock levels.

By default, the treeTable tag is created inside a form. The value attribute of the
tree table tag contains an EL expression that binds the tree component to the
binding object that will populate it with data. The treeModel property refers to an
ADF class that defines how the tree hierarchy is displayed, based on the underlying
data model. The var attribute provides access to the current node.

Using Tree Tables to Display Master-Detail Objects

24-18 Fusion Developer's Guide for Oracle Application Development Framework

Example 24–4 Code Generated in the JSF Page for a Databound ADF Faces Tree Table

<af:form>
 <af:treeTable value="#{bindings.Products.treeModel}" var="node"
 selectionListener="#{bindings.Products.treeModel.makeCurrent}"
 rowSelection="single">
 <f:facet name="nodeStamp">
 <af:column customizationId="column1">
 <af:outputText value="#{node}"/>
 </af:column>
 </f:facet>
 <f:facet name="pathStamp">
 <af:outputText value="#{node}"/>
 </f:facet>
 </af:treeTable>
</af:form>

In the facet tag, the nodeStamp facet is used to display the data for each node.
Instead of having a component for each node, the tree repeatedly renders the
nodeStamp facet, similar to the way rows are rendered for the ADF Faces table
component. The pathStamp facet renders the column and the path links above the
table that enable the user to return to the parent node after focusing on a detail node.

24.5.2.2 Binding Objects Defined in the Page Definition File
The binding objects created in the page definition file for a tree table are exactly the
same as those created for a tree.

24.5.3 What Happens at Runtime: Events
Tree components use oracle.adf.view.faces.model.TreeModel to access
data. This class extends CollectionModel, which is used by the ADF Faces table
component to access data. For more information about the TreeModel class, refer to
the ADF Faces Javadoc.

When a page with a tree table is displayed, the iterator binding on the treeTable
component populates the root node and listens for a row navigation event (such as the
user clicking the Next or Previous buttons or selecting a row from the range
navigator). When the user initiates a row navigation event, the iterator displays the
appropriate row.

If the user changes the view focus (by clicking on the component’s focus icon), the
treeTable component generates a focus event (FocusEvent). The node to which
the user wants to change focus is made the current node before the event is delivered.
The treeTable component then modifies the focusPath property accordingly. You
can bind the FocusListener attribute on the tree to a method on a managed bean.
This method will then be invoked in response to the focus event.

When a user collapses or expands a node, a disclosure event (DisclosureEvent) is
sent. The isExpanded method on the disclosure event determines whether the user is
expanding or collapsing the node. The disclosure event has an associated listener,
DisclosureListener. The DisclosureListener attribute on the tree table is
bound to the accessor attribute specified in the node rule defined in the page definition
file. This accessor attribute is invoked in response to a disclosure event (for example,
the user expands a node) and returns the collection that populates that node.

The treeTable component includes Expand All and Collapse All links. When a user
clicks one of these links, the treeTable sends a DisclosureAllEvent event. The
isExpandAll method on this event determines whether the user is expanding or

Using Tree Tables to Display Master-Detail Objects

Displaying Master-Detail Data 24-19

collapsing all the nodes. The table then expands or collapses the nodes that are
children of the root node currently in focus. In large trees, the expand all command
will not expand nodes beyond the immediate children. The ADF Faces treeTable
component uses an instance of the oracle.adf.view.faces.model.PathSet
class to determine expanded nodes. This instance is stored as the treeState attribute
on the component. You can use this instance to programmatically control the
expanded or collapsed state of a node in the hierarchy. Any node contained by the
PathSet instance is deemed expanded. All other nodes are collapsed. This class also
supports operations like addAll() and removeAll().

For more information about the ADF Faces treeTable component, refer to the
oracle.adf.view.faces.component.core.data.CoreTreeTable class in the
ADF Faces Javadoc.

24.5.4 Using the TargetIterator Property
You can expand a node binding in the page definition editor to view the page’s node
Definition elements. These are the same tree binding rules that you can configure
in the tree binding dialog.

For each node definition (rule), you can specify an optional TargetIterator
property. Its value is an EL expression that is evaluated at runtime when the user
selects a row in the tree. The EL expression evaluates an iterator binding in the current
binding container. The iterator binding’s view row key attributes match (in order,
number, and data type) the view row key of the iterator from which the
nodeDefinition type's rows are retrieved for the tree.

At runtime, when the tree control receives a selectionChanged event, it passes in
the list of keys for each level of the tree. These keys uniquely identify the selected
node.

The tree binding starts at the top of the tree. For each tree level whose key is present in
the Currently Selected Tree Node Keys list, if there is a TargetIterator
property configured for that nodeDefinition, the tree binding performs a
setCurrentRowWithKey() operation on the selected target iterator. It uses the key
from the appropriate level of the Currently Selected Tree Node Keys list.

For example, you may have created DeptEO and EmpEO entity objects, and created
view links based on these entity objects. The view link accessor in the DeptVO object
that returns the linked collection of employees in that department is named
EmployeesInDepartment. The application module will have a DepartmentsTree
view object instance of type DeptVO. It will also have an EditDepartment view
object instance of type DeptVO, and a view link for the EditEmployees view object
instance of type EmpVO.

To use the property:
1. Drag the DepartmentsTree data collection from the Data Controls panel onto the

page and choose Create > Trees > ADF Tree.

2. Configure tree binding rules to navigate the EmployeesInDepartment view link
accessor attribute.

This will access the children employee rows of the current department row.

3. Drag the EditEmployees detail view object instance to the page, and choose
Create > Master-Detail > ADF Master Form, Detail Form.

This creates a form to edit a department and a form to edit an employee in that
department.

Using Selection Events with Trees and Tables

24-20 Fusion Developer's Guide for Oracle Application Development Framework

4. For the DeptVO node definition of the tree binding, configure the
TargetIterator property to be #{bindings.EditDepartmentIterator}.

5. For the EmpVO node definition of the tree binding, configure the
TargetIterator property to be #{bindings.EditEmployeesIterator}.

When you run the master-detail form, clicking on an employee in any department
in the tree will first set the current department row in the target iterator for the
department of that selected employee. Then it will set the current employee row in
the target iterator for the selected employee.

24.6 Using Selection Events with Trees and Tables
There may be cases when you need to determine which node in a tree or tree table has
been selected in order to handle some processing in your application. For example, on
the home page of the StoreFront module, when a user selects a category node in the
Browse tree, a selection event is fired. The listener associated with this event needs to
determine the product category of the node selected, and then to return all products
whose category attribute matches that value.

24.6.1 How to Use Selection Events with Trees and Tables
To programmatically use selection events, you need to create a listener in a managed
bean that will handle the selection event and perform the needed logic. You then need
to bind the selectionListener attribute of the tree or table to that listener.

To use selection events with trees and tables:
1. If one does not already exist, create a managed bean to contain the needed listener.

For more information about creating and using managed beans, see Section 20.4,
"Using a Managed Bean in a Fusion Web Application."

2. Create a listener method on the managed bean. For more information about
creating listener methods, see the "Using ADF Faces Server Events" section of the
Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework. Your listener should do the following:

a. Access the component using the event source. Example 24–5 shows how the
productCategoriesTreeSelectionListener method on the HomeBean
managed bean accesses the tree that launched the selection event.

Example 24–5 Getting the Source of an Event

public void productCategoriesTreeSelectionListener(SelectionEvent evt) {
 RichTree tree = (RichTree)evt.getSource();

For more information about finding the event source component, see the
"How to Return the Original Source of the Event" section of the Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework.

b. Access the tree model to get the value of the model, use the RowKeySet object
to get the currently selected node, and then set that as the current row on the
model, as shown in Example 24–6. For more information about RowKeySet
objects, see Section 24.6.2, "What Happens at Runtime: RowKeySet Objects
and SelectionEvent Events."

Using Selection Events with Trees and Tables

Displaying Master-Detail Data 24-21

Example 24–6 Setting the Current Row on a Tree Model

TreeModel model = (TreeModel)tree.getValue();
RowKeySet rowKeySet = evt.getAddedSet();
Object key = rowKeySet.iterator().next();
model.setRowKey(key);

c. You can now add logic to execute against the currently selected row. For
example, the productCategoriesTreeSelectionListener method uses
the value binding of the selected row to determine the category ID, and then
uses that value as the parameter for another method that when executed,
returns all products with that category ID, as shown in Example 24–7.

Example 24–7 Returning Objects that Match a Given Attribute Value

JUCtrlValueBinding nodeBinding =
 (JUCtrlValueBinding)model.getRowData();
Number catId = (Number)nodeBinding.getAttribute("CategoryId");
_selectedCategory = (String)nodeBinding.getAttribute("CategoryName");

OperationBinding ob =
 ADFUtils.findOperation("ProductsByCategoriesExecuteWithParams");
ob.getParamsMap().put("category", catId);
ob.execute();

3. On the associated JSF page, select the tree or table component. In the Property
Inspector, expand the Behavior section and set the value of the
SelectionListener attribute to the listener method just created. You can use
the Edit option from the dropdown method to declaratively select the bean and
the method.

24.6.2 What Happens at Runtime: RowKeySet Objects and SelectionEvent Events
Whenever a user selects a node in a tree (or a row in a table), the component triggers
selection events. A selectionEvent event reports which rows were just deselected
and which rows were just selected. The current selection, that is, the selected row or
rows, is managed by the RowKeySet object, which keeps track of all currently selected
nodes by adding and deleting the associated key for the row into or out of the key set.
When a user selects a new node, and the tree or table is configured for single selection,
then the previously selected key is discarded and the newly selected key is added. If
the tree or table is configured for multiple selection, then the newly selected keys are

Note: CollectionModel (and thus also TreeModel) supports a
version of the getRowData method that takes a row key parameter
and thus allows you to get row data without changing currency. This
is particularly useful when your view object uses range paging.

In the above example, you can thus replace this code:

model.setRowKey(key);
JUCtrlValueBinding nodeBinding =
 (JUCtrlValueBinding)model.getRowData();

with this code:

JUCtrlValueBinding nodeBinding =
 (JUCtrlValueBinding)model.getRowData(key);

Using Selection Events with Trees and Tables

24-22 Fusion Developer's Guide for Oracle Application Development Framework

added to the set, and the previously selected keys may or may not be discarded, based
on how the nodes were selected. For example, if the user pressed the CTRL key, then
the newly selected nodes would be added to the current set.

25

Creating Databound Selection Lists and Shuttles 25-1

25Creating Databound Selection Lists and
Shuttles

This chapter describes how to add databound selection lists and shuttle components to
pages using ADF data binding. It describes how to create the List of Value (LOV)
components that utilize a query to populate the selection list. It includes instructions
for creating standard selection components that use a model-driven, fixed-value, or
dynamically generated list. It describes how to add navigation list bindings to let users
navigate through a list of objects in a collection. It also describes how to use the shuttle
component to allow the user to quickly move items between two lists.

This chapter includes the following sections:

■ Section 25.1, "Introduction to Selection Lists and Shuttles"

■ Section 25.2, "Creating List of Values (LOV)"

■ Section 25.3, "Creating a Selection List"

■ Section 25.4, "Creating a List with Navigation List Binding"

■ Section 25.5, "Creating a Databound Shuttle"

25.1 Introduction to Selection Lists and Shuttles
Selection lists and shuttles work the same way as do standard JSF list components.
ADF Faces list components, however, provide extra functionality such as support for
label and message display, automatic form submission, and partial page rendering.

List of values (LOV) are UI components that allow the user to enter values by picking
from a list that is generated by a query. The LOV displays inside a modal popup
dialog that typically includes search capabilities. The af:inputListOfValues and
af:inputComboboxListOfValues components, for example, offer additional
features that are not available in selection lists, such as search fields inside the LOV
modal dialog and queries based on multiple table columns. For more information, see
Section G.2.6, "How to Create a Popup List of Values" and the Oracle Fusion Middleware
Web User Interface Developer's Guide for Oracle Application Development Framework.

When the user selects an item from a navigation list, a corresponding component
bound to the list also changes its value in response to the selection. For example, when
the user selects a product from a shopping list, the table that is bound to the products
list updates to display the details of the selected product.

A shuttle allows the user to easily see the available items on an available list and the
selected items in the selected list and to quickly move those items back and forth
between the lists.

Creating List of Values (LOV)

25-2 Fusion Developer's Guide for Oracle Application Development Framework

25.2 Creating List of Values (LOV)
List of values (LOV) components are input components that allow the user to enter
values by picking from a list that is generated by a query. ADF Faces provides the
af:inputListOfValues and af:inputComboboxListOfValues components.

If you are using dependent LOVs as part of your search form, you must use them with
the af:query component. For more information about using LOV components with
search forms, see Section 27.1.6, "List of Values (LOV) Input Fields."

The af:inputListOfValues component has a search icon next to the search criteria
field, as shown in Figure 25–1.

Figure 25–1 Search Criteria Input Field Defined as an inputListOfValues

The af:inputComboboxListOfValues component has a dropdown icon next to
the field, as shown in Figure 25–2 for the PaymentOptionId attribute.

Figure 25–2 Search Criteria Input Field Defined as an inputComboboxListOfValues

For af:inputComboboxListOfValues, clicking the dropdown icon displays the
LOV dropdown list and either a More or a Search command link, as shown in
Figure 25–3. A Search link appears when the LOV Search and Select popup dialog
contains a search panel to refine the search. A More link appears when the popup
dialog contains only the list-of-values table.

Figure 25–3 LOV Dropdown List with Search Link for inputComboboxListOfValues

The user can select any of the items in the dropdown list to populate the input field.
The dropdown list includes a filtered list of values and an optional list of most recently
used items. The width of each attribute in the dropdown list can be configured using
the DisplayWidth UI hint for that attribute in the view object definition. The width of
the dropdown list will be the sum of the widths of all the attributes in the dropdown
list.

Creating List of Values (LOV)

Creating Databound Selection Lists and Shuttles 25-3

You can create custom content to be rendered in the Search and Select dialog using the
searchContent facet. You will need to define the returnPopupDataValue
attribute and implement a returnPopupListener. For more information about
adding custom content, see the "Using List-of-Values Components" chapter of the
Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework.

If the component’s readOnly attribute is set to true, then the input field is disabled
and the value cannot be changed. By default, the readOnly attribute is set to false,
which also enables the editMode attribute to determine whether the user is permitted
only to select a value from the list (editMode set to select) or whether the user can
also enter a value into the input field (editMode set to input).

When the user clicks the Search or More link (or for af:inputListOfValues, the
search icon), the LOV Search and Select dialog displays with the full list of values in a
table format. The LOV Search and Select dialog launched from a More link is shown in
Figure 25–4.

Figure 25–4 LOV Search and Select Dialog

The Search and Select popup dialog also presents a create function that allows the user
to add a new row. Be aware that if you are creating a new record using the LOV
Search and Select dialog, the new row will appear as an empty row in the table if the
LOV has the Query Automatically control hint set to false. The content of the row
will appear when you perform a query using the Search button.

If the LOV is part of a task flow that is using an isolated data control, and you use the
create function to add a new record, the newly added record will not be displayed in
the parent page. This is because the search region is also using isolated data control
scope, so the underlying view object updates are not displayed.

To programmatically refresh the LOV and to display the view object updates, add a
returnListener to the Create link with code similar to that shown in Example 25–1.

Example 25–1 Code to Refresh the LOV

public void refreshLOV() {
 BindingContainer bindings = this.getBindings();
 oracle.jbo.uicli.binding.JUCtrlListBinding lovBinding =
 (oracle.jbo.uicli.binding.JUCtrlListBinding)
 bindings.get("Description1");
 JUIteratorBinding lovIter = lovBinding.getIteratorBinding();
 RowSet rs = lovIter.getRowSetIterator().getRowSet();

Creating List of Values (LOV)

25-4 Fusion Developer's Guide for Oracle Application Development Framework

 rs.executeQuery();

 //Add LOV as the partialTrigger

 AdfFacesContext.getCurrentInstance().addPartialTarget(this.getPlatformDesc());

An LOV is associated with a data source via the view accessor. You can apply one or
more view criteria to the view accessor associated with the LOV. The view accessor
provides permanent filtering to the LOV data source. In addition to this permanent
filtering, you may be able to apply other filters.

The LOV dialog may include a query panel to allow the user to enter criteria to search
for the list of values, or it may contain only a table of results. When you define the
LOV in the view object, you can use the UI hints to specify whether a search region
should be displayed, which view criteria should be used as the search to populate the
list of values, and which LOV component to use. Figure 25–5 shows the Create List of
Values dialog and some of its options. In this example, the search region will be made
available with the AvailableLanguages1ViewCriteria view criteria used for the
query, and af:inputComboboxListOfValues as the component. Another useful
option for the af:inputComboboxListOfValues is the Show in Combo Box
option, which allows you to select the number of attributes to display in the dropdown
list and in the Search and Select dialog. For more information on LOV UI hints, see
Section 5.12.4, "How to Set User Interface Hints on a View Object LOV-Enabled
Attribute."

For both af:inputListOfValues and af:inputComboboxListOfValues, if the
user enters a partial match in the input search field and presses the Tab or Enter key,
the LOV automatically launches the LOV Search and Select dialog and executes the
query after applying an auto-generated view criteria with a single item representing
the partial match value entered by the user. If there are matches, the Search and Select
dialog displays all the entries matching the partially entered criteria. If there are no
entries that match the entered partial match, then the dialog displays all the entries.

Creating List of Values (LOV)

Creating Databound Selection Lists and Shuttles 25-5

Figure 25–5 List of Values Dialog UI Hints Tab

You can also set up the LOV component to display a list of selectable suggested items
when the user types in a partial value. For example, when the user types in Ca, then a
suggested list which partially matches Ca is displayed as a suggested items list. The
user can select an item from the list to be entered into the input field. You add this auto
suggest behavior feature by including an af:autoSuggestBehavior tag from the
Component Palette into the LOV and set the selectedItem attribute to the
suggestedItems method implemented in ADF Model.

If the LOV is an af:inputComboboxListOfValues, you can apply an additional
view criteria to further filter the values in the dropdown list to create a smart list. If the
Filter Combo Box Using UI hint is not applied, the dropdown list is filtered by the
view criteria applied to the view accessor. Note that this smart list filter applies only to
the dropdown list. The full list is still used for validation and for searching from the
LOV Search and Select popup dialog.

If both the auto suggest behavior and smart list filter are enabled for an LOV, auto
suggest will search from the smart list first. If the user waits for two seconds without a
gesture, then auto suggest will also search from the full list and append the results.
You can also specify the number of suggested items returned by setting the
maxSuggestedItems attribute (-1 indicates a complete list). If
maxSuggestedItems > 0, a More link is rendered for the user to click on to launch
the LOV’s Search and Select dialog. Example 25–2 shows the code from an LOV with
both auto suggest behavior and smart list.

Example 25–2 Auto Suggest Behavior and Smart List

af:autoSuggestBehavior
 suggestItems="#{bindings.CountryName.suggestItems}"
 smartList="#{bindings.CountryName.smartList}"

Creating List of Values (LOV)

25-6 Fusion Developer's Guide for Oracle Application Development Framework

 maxSuggestedItems="5"
/>

You can define an attribute in the view object to be one or more LOVs. If multiple
LOVs are defined on an attribute, each LOV has its own name, view accessor, data
mappings, validator, and UI hints (except for the Default List Type hint, which is
defined once for the attribute). To switch between which LOV will be used at runtime,
an LOV switcher is used with the multiple LOVs. The LOV switcher can be based on
an existing attribute of type String, or created as a new String attribute solely for
switching between LOVs. The LOV switcher returns the name of the LOV to use at
runtime. For instance, you can create three LOVs for the price attribute, and designate
the CountryCode attribute as the LOV switcher. At runtime, the value of
CountryCode will switch the price attribute to use the LOV that reflects the country’s
price and currency.

If an attribute is defined as an LOV, you can set the Support Multiple Value Selection
control hint in its view criteria to enable users to make multiple selections in the search
criteria field. If multiple selection is enabled on an LOV attribute, and the Equal to
or Not equal to operator is chosen, a selectManyChoice component will render
in the query panel. The user can select multiple items as the search criteria.

If the value of an LOV depends on the value of another LOV, then the two LOVs are
called cascading LOVs. For instance, the list of values for the City LOV depends on the
value of the Country LOV that was selected. If the LOV is defined as a named bind
variable, or if validation is enabled, the LOV query may behave differently depending
on such conditions as whether null values for the named bind variable are acceptable.
If the bind variable is null, you may want the LOV query to return an empty list. The
view criteria’s Ignore Null Values and Validation options can be used to define LOV
query behavior.

If the view object has an LOV with a bind variable, you should set that view object
bind variable’s control hint to Hide. Otherwise, the bind variable will be displayed in
the LOV Search and Select popup dialog. In the view object overview editor’s Query
tab, double-click the bind variable, click the Control Hints tab and select Hide from
the Display Hint dropdown list.

For more information about different usage scenarios and other view criteria options,
see Section 5.11.1, "How to Create Named View Criteria Declaratively," and
Section 5.11.3, "What You May Need to Know About Bind Variable Options."

25.2.1 How to Create an LOV
You can create the LOV using either the af:inputListOfValues or the
af:inputComboboxListOfValues component. You can add auto suggest behavior
to the component to display a list of possible matches from user input.

Best Practice: An attribute that has been enabled as an LOV should
not be used as search criteria in a manually created search form using
the "Find Mode" iterator. Creating a search form in this way could
result in SQL exception: java.sql.SQLException: Attempt to
set a parameter name that does not occur in the SQL.
It is best practice to use the query and quick query components for
creating search forms. For more information, see Chapter 27, "Creating
ADF Databound Search Forms."

Creating List of Values (LOV)

Creating Databound Selection Lists and Shuttles 25-7

Before you begin:
Define the attribute to be an LOV in the view object by following the procedure
described in Section 5.12, "Working with List of Values (LOV) in View Object
Attributes."

To create an LOV:
1. From the Data Controls panel, drag and drop the attribute onto the JSF page and

choose Create > List of Values > ADF LOV Input or Create > List of Values >
ADF LOV Choice List.

2. In the Operations page of the Component Palette, from the ADF Faces panel, drag
and drop Auto Suggest Behavior as a child to the LOV component.

3. In the Property Inspector, for each of the auto suggest attributes, enter the:

■ EL expression that resolves to the suggestItems method.

■ EL expression that resolves to the smartList method.

■ number of items to be displayed in the auto suggest list. Enter -1 to display the
complete list.

Example 25–3 shows an inputListOfValues component with the auto suggest
behavior and smart list features.

Example 25–3 LOV Component with Auto Suggest Behavior

<af:inputListOfValues id="ProductsId"
 popupTitle="Search and Select: #{bindings.Products.hints.label}"
 value="#{bindings.Products.inputValue}"
 label="#{bindings.Products.hints.label}"
 model="#{bindings.Products.listOfValuesModel}"
 required="#{bindings.Products.hints.mandatory}"
 columns="#{bindings.Products.hints.displayWidth}"
 shortDesc="#{bindings.Products.hints.tooltip}">
 <f:validator binding="#{bindings.Products.validator}"/>
 <af:autoSuggestBehavior suggestItems="#{bindings.Products.suggestedItems}"
 smartList="#{bindings.Products.smartList}"
 maxSuggestedItems="5"/>
</af:inputListOfValues>

4. If you added the auto suggest behavior, you must set the component’s
autoSubmit property to true.

25.2.2 What Happens When You Create an LOV
When you drag and drop an attribute from the Data Controls panel, JDeveloper does
many things for you. For a full description of what happens and what is created when
you use the Data Controls panel, see Section 22.2.2, "What Happens When You Create
a Text Field."

When you drag and drop an attribute defined as an LOV from the Data Controls panel
onto a JSF page as an inputListOfValues or inputComboboxListOfValues
component, JDeveloper adds code to the page similar to that shown in Example 25–4.
The language attribute in the CountryCodes view object has been defined as an
LOV and its default component is set to be an inputComboboxListOfValues. The
component gets its properties from the control hints defined declaratively in the view
object. If you want to include the auto suggest behavior, you must manually add that
tag from the Component Palette.

Creating a Selection List

25-8 Fusion Developer's Guide for Oracle Application Development Framework

Example 25–4 inputComboboxListOfValues Component Code in a JSF Page

<af:inputComboboxListOfValues id="languageId"
 popupTitle="Search and Select: #{bindings.Language.hints.label}"
 value="#{bindings.Language.inputValue}"
 label="#{bindings.Language.hints.label}"
 model="#{bindings.Language.listOfValuesModel}"
 required="#{bindings.Language.hints.mandatory}"
 columns="#{bindings.Language.hints.displayWidth}"
 shortDesc="#{bindings.Language.hints.tooltip}"
 readOnly="false">
 <f:validator binding="#{bindings.Language.validator}"/>
</af:inputComboboxListOfValues>

In the page definition file, JDeveloper adds code as shown in Example 25–5. The
bindings section of the page definition specifies that the LOV is for the language
attribute and the name of the LOV is LOV_language. JDeveloper adds the definitions
for the iterator binding objects into the executables element, and the list of values
binding object into the bindings element,

Example 25–5 inputComboboxListOfValues Component Code in Page Definition

<executables>
 <variableIterator id="variables"/>
 <iterator Binds="CountryCodesView1" RangeSize="25"
 DataControl="AppModuleDataControl"
 id="CountryCodesView1Iterator"/>
</executables>
<bindings>
 <listOfValues StaticList="false" IterBinding="CountryCodesView1Iterator"
 Uses="LOV_Language" id="Language"/>
</bindings>

For more information about the page definition file and ADF data binding
expressions, see Section 12.6, "Working with Page Definition Files,"and Section 12.7,
"Creating ADF Data Binding EL Expressions."

25.3 Creating a Selection List
ADF Faces Core includes components for selecting a single value and multiple values
from a list. Single selection lists are described in Table 25–1.

Table 25–1 ADF Faces Single and Multiple List Components

ADF Faces component Description Example

SelectOneChoice Select a single value from a list of items.

SelectOneRadio Select a single value from a set of radio
buttons.

Creating a Selection List

Creating Databound Selection Lists and Shuttles 25-9

25.3.1 How to Create a Single Selection List
You can create selection lists using the SelectOneChoice ADF Faces component.
The steps are similar for creating other single-value selection lists, such as
SelectOneRadio and SelectOneListbox.

A databound selection list displays values from a data control collection or a static list
and updates an attribute in another collection or a method parameter based on the
user’s selection. When adding a binding to a list, you use an attribute from the data
control that will be populated by the selected value in the list.

To create a selection list, you choose a base data source and a list data source in the
Edit List Binding dialog:

■ Base data source: Select the data collection that you want to bind to your control
and that contains the attributes to be updated from user selections.

SelectOneListbox Select a single value from a scrollable list of
items.

SelectManyChoice Select multiple values from a scrollable list
of checkboxes. Each selection displays at
the top of the list.

SelectManyCheckbox Select multiple values from a group of
checkboxes.

SelectManyListbox Select multiple values from a scrollable list
of checkboxes,

Note: Using an ADF Model list binding with the
valuePassThru=true on a selectOneChoice component is not
supported. The list binding will return indexes, not values.

Table 25–1 (Cont.) ADF Faces Single and Multiple List Components

ADF Faces component Description Example

Creating a Selection List

25-10 Fusion Developer's Guide for Oracle Application Development Framework

■ List data source: Select the data collection that contains the attributes to display.

The data collection is based on the view object. For more information about creating a
view object, see Section 5.2.1, "How to Create an Entity-Based View Object."

25.3.2 How to Create a Model-Driven List
 You can create three types of selection lists in the Edit List Binding dialog:

■ Model-driven list: List selections are based on a list of values bound to a data
collection. This type of selection list offers significant advantages over the other
two, as described in Section 25.3.2, "How to Create a Model-Driven List."

■ Static list: List selections are based on a fixed list that you create a manually by
entering values one at a time into the editor. For more information, see
Section 25.3.3, "How to Create a Selection List Containing Fixed Values."

■ Dynamic list: List selections are generated dynamically based on one or more
databound attribute values. For more information, see Section 25.3.4, "How to
Create a Selection List Containing Dynamically Generated Values."

A model-driven list is based on a list of values that is bound to a view data object. Lists
of Values are typically used in forms to enable an end user to select an attribute value
from a dropdown list instead of having to enter it manually. When the user submits
the form with the selected values, ADF data bindings in the ADF Model layer update
the value on the view object attributes corresponding to the databound fields.

You can also use the list of values as the basis for creating a selection list. The
advantages of creating a model-driven list based on a list of values are:

■ Reuse: The list of values is bound to a view data collection. Any selection list that
you create based on the data collection can use the same list of values. Because you
define the LOV on the individual attributes of view objects in a data model project
with ADF Business Components, you can customize the LOV usage for an
attribute once and expect to see the changes anywhere that the business
component is used in the user interface.

■ Translation: Values in the list of values can be included in resource bundles used
for translation.

The procedure for creating a list of values is:

1. Create a view object.

2. Create a view accessor on the object.

3. Create a list of values on an attribute of the view object.

This procedure is described in detail in Section 5.12.1, "How to Define a Single
LOV-Enabled View Object Attribute."

Note: One way to create a model-driven list is to drag a collection
from the Data Controls panel onto a JSF page, choose one of the ADF
Forms in the popup menu, and accept the defaults. The advantage is
that if there are LOVs defined on the underlying view object
attributes, all the LOVs on the entire form will be configured
automatically. For more information, see Section 5.12.1, "How to
Define a Single LOV-Enabled View Object Attribute."

Creating a Selection List

Creating Databound Selection Lists and Shuttles 25-11

Before you begin:
Create a list of values that is bound to an attribute on the base data source for the
selection list. For example, you can create a list of values bound to the CountryId
attribute of the Addresses view data object. For more information, see Section 5.12.1,
"How to Define a Single LOV-Enabled View Object Attribute."

To create a model-driven selection list:
1. From the Data Controls panel, drag and drop the attribute onto the JSF page and

choose Create > Single Selections > ADF Select One Choice.

The Edit List Binding dialog displays. The view object collection containing the
attribute you dropped on the JSF page is selected by default in the Base Data
Source list.

To select a different view data collection, click the Add icon next to the list.

2. Select the Model Driven List radio button.

3. In the Base Data Source Attribute list, select an attribute on which you based a list
of values, for example, CountryId.

The list contains all the attributes for the view data collection selected in the Base
Data Source list.

4. If a list of values was created for the attribute you selected, it will be listed in the
Server List Binding Name list.

For example, you could select LOV_CountryId in the Server List Binding Name
list because a list of values was created for the CountryId attribute.

5. Click OK.

25.3.3 How to Create a Selection List Containing Fixed Values
You can create a selection list containing selections that you code yourself, rather than
retrieving the values from another data source. See Section 25.3.4, "How to Create a
Selection List Containing Dynamically Generated Values," for information about
populating selection lists with values that are dynamically generated from another
data source.

Figure 25–6 Selection List Bound to a Fixed List of Values

Before you begin:
Prepare a list of values that you will enter into the component as a fixed list.

To create a list bound to a fixed list of values:
1. From the Data Controls panel, drag and drop the attribute onto the JSF page and

choose Create > Single Selections > ADF Select One Choice.

The Edit List Binding dialog displays. The view object collection containing the
attribute you dropped on the JSF page is selected by default in the Base Data
Source list.

Creating a Selection List

25-12 Fusion Developer's Guide for Oracle Application Development Framework

To select a different view data collection, click the Add icon next to the list.

2. Select the Fixed List radio button.

The Fixed List option lets end users choose a value from a static list that you
define.

3. In the Base Data Source Attribute list, choose an attribute.

The Base Data Source Attribute list contains all of the attributes in the view data
collection you selected in the Base Data Source list. For example, if you selected
CountryCodes as the Base Data Source, you can choose CountryName in the
list.

4. In the Set of Values box, enter each value you want to appear in the list. Press the
‘Enter key to set a value before typing the next value. For example, you could add
the country codes India, Japan, and Russia.

The order in which you enter the values is the order in which the list items are
displayed in the SelectOneRadio control at runtime.

The SelectOneRadio component supports a null value. If the user has not
selected an item, the label of the item is shown as blank, and the value of the
component defaults to an empty string. Instead of using blank or an empty string,
you can specify a string to represent the null value. By default, the new string
appears at the top of the list.

5. Click OK.

25.3.4 How to Create a Selection List Containing Dynamically Generated Values
You can populate a selection list component with values dynamically at runtime.

Before you begin:
Define two data sources: one for the list data source that provides the dynamic list of
values, and the other for the base data source that is to be updated based on the user’s
selection.

To create a selection list bound containing dynamically generated values:
1. From the Data Controls panel, drag and drop the attribute onto the JSF page and

choose Create > Single Selections > ADF Select One Choice.

The Edit List Binding dialog displays. The view object collection containing the
attribute you dropped on the JSF page is selected by default in the Base Data
Source list.

To select a different view data collection, click the Add icon next to the list.

2. Select the Dynamic List radio button.

The Dynamic List option lets you specify one or more base data source attributes
that will be updated from another set of bound values.

3. Click the Add button next to List Data Source.

4. In the Add Data Source dialog, select the view data collection that will populate
the values in the selection list.

Tip: Another option is to create a static view object or a database
view object within a shared application module. Then use a model-
driven LOV to create the list. This provides caching and
translatability.

Creating a Selection List

Creating Databound Selection Lists and Shuttles 25-13

In the Fusion Order Demo application, for example, you could select
ProductQuantities.

5. Accept the default iterator name and click OK.

The Data Mapping section of the Edit List Binding dialog updates with a default
data value and list attribute. The Data Value control contains the attribute on the
data collection that is updated when the user selects an item in the selection list.
The List Attribute Control contains the attribute that populates the values in the
selection list.

6. You can accept the default mapping or select different attributes items from the
Data Value and List Attribute lists to update the mapping.

To add a second mapping, click Add.

7. Click OK.

25.3.5 What Happens When You Create a Model-Driven Selection List
When you drag and drop an attribute from the Data Controls panel, JDeveloper does
many things for you. For a full description of what happens and what is created when
you use the Data Controls panel, see Section 22.2.2, "What Happens When You Create
a Text Field."

Example 25–6 shows the page source code after you add a model-driven
SelectOneChoice component to it.

Example 25–6 Model-Driven SelectOneChoice List in JSF Page Source Code

<af:selectOneChoice value="#{bindings.CountryId1.inputValue}"
 label="#{bindings.CountryId1.label}">
 <f:selectItems value="#{bindings.CountryId1.items}"/>
</af:selectOneChoice>

The f:selectItems tag, which provides the list of items for selection, is bound to
the items property on the CountryId1 list binding object in the binding container.
For more information about ADF data binding expressions, see Section 12.5,
"Configuring the ADF Binding Filter."

In the page definition file, JDeveloper adds the list binding object definitions in the
bindings element, as shown in Example 25–7.

Example 25–7 List Binding Object for the Model-Driven List in the Page Definition File

 <bindings>
 <list IterBinding="AddressesView1Iterator" id="CountryId"
 Uses="LOV_AddressId" StaticList="false" ListOperMode="0">
 <AttrNames>
 <Item Value="AddressId"/>
 </AttrNames>
 </list>
 <list IterBinding="AddressesView1Iterator" id="CountryId1"
 Uses="LOV_CountryId" StaticList="false" ListOperMode="0">
 <AttrNames>

Note: The list and base collections do not have to form a
master-detail relationship, but the attribute in the list collection must
have the same type as the base collection attributes.

Creating a Selection List

25-14 Fusion Developer's Guide for Oracle Application Development Framework

 <Item Value="CountryId"/>
 </AttrNames>
 </list>
 </bindings>

In the list element, the id attribute specifies the name of the list binding object. The
IterBinding attribute references the variable iterator, whose current row is a row of
attributes representing each variable in the binding container. The variable iterator
exposes the variable values to the bindings in the same way as do other collections of
data. The AttrNames element specifies the attribute value returned by the iterator.

For more information about the page definition file and ADF data binding
expressions, see Section 12.6, "Working with Page Definition Files,"and Section 12.7,
"Creating ADF Data Binding EL Expressions."

25.3.6 What Happens When You Create a Fixed Selection List
When you add a fixed selection list, JDeveloper adds source code to the JSF page and
list and iterator binding objects to the page definition file.

Example 25–8 shows the page source code after you add a fixed SelectOneChoice
component to it.

Example 25–8 Fixed SelectOneChoice List in JSF Page Source Code

<af:selectOneChoice value="#{bindings.CountryId.inputValue}"
 label="#{bindings.CountryId.label}">
 <f:selectItems value="#{bindings.CountryId.items}"/>
 </af:selectOneChoice>

The f:selectItems tag, which provides the list of items for selection, is bound to
the items property on the CountryId list binding object in the binding container.
For more information about ADF data binding expressions, see Section 12.7, "Creating
ADF Data Binding EL Expressions."

In the page definition file, JDeveloper adds the definitions for the iterator binding
objects into the executables element, and the list binding object into the bindings
element, as shown in Example 25–9.

Example 25–9 List Binding Object for the Fixed Selection List in the Page Definition File

<executables>
 <iterator Binds="Addresses1" RangeSize="10"
 DataControl="StoreFrontModuleDataControl"
 id="Addresses1Iterator"/>
 </executables>
 <bindings>
 <list IterBinding="Addresses1Iterator" id="CountryId" ListOperMode="0"
 StaticList="true">
 <AttrNames>
 <Item Value="CountryId"/>
 </AttrNames>
 <ValueList>
 <Item Value="India"/>
 <Item Value="Japan"/>
 <Item Value="Russia"/>
 </ValueList>
 </list>
 </bindings>

Creating a Selection List

Creating Databound Selection Lists and Shuttles 25-15

For complete information about page definition files, see Section 12.6, "Working with
Page Definition Files."

25.3.7 What You May Need to Know About Values in a Selection List
Once you have created a list binding, you may want to access a value in the list. If you
attempt to get the value of the list binding directly using an EL expression, for
example, #{bindings.deptList.inputValue}, the expression returns an index
number that specifies the position of the selected item in the list, not the value of the
selected item.

25.3.8 What Happens When You Create a Dynamic Selection List
When you add a dynamic selection list to a page, JDeveloper adds source code to the
JSF page and list and iterator binding objects to the page definition file.

Example 25–10 shows the page source code after you add a dynamic
SelectOneChoice component to it.

Example 25–10 Dynamic SelectOneChoice List in JSF Page Source Code

 <af:selectOneChoice value="#{bindings.Quantity.inputValue}"
 label="#{bindings.Quantity.label}">
 <f:selectItems value="#{bindings.Quantity.items}"/>
 </af:selectOneChoice>

The f:selectItems tag, which provides the list of items for selection, is bound to
the items property on the Quantity list binding object in the binding container. For
more information about ADF data binding expressions, see Section 12.7, "Creating
ADF Data Binding EL Expressions."

In the page definition file, JDeveloper adds the definitions for the iterator binding
objects into the executables element, and the list binding object into the bindings
element, as shown in Figure 25–11.

Example 25–11 List Binding Object for the Dynamic Selection List in the Page Definition
File

<executables>
 <iterator Binds="OrderItems" RangeSize="-1"
 DataControl="StoreFrontModuleDataControl1"
 id="OrderItemsIterator"/>
 <iterator Binds="ProductQuantities" RangeSize="10"
 DataControl="StoreFrontModuleDataControl1"
 id="ProductQuantitiesIterator"/>
 </executables>
 <bindings>
 <list IterBinding="AddressesView1Iterator" id="CountryId"
 Uses="LOV_AddressId" StaticList="false" ListOperMode="0">
 <AttrNames>
 <Item Value="AddressId"/>
 </AttrNames>
 </list>
 <list IterBinding="ProductQuantities1Iterator" id="Quantity"
 StaticList="false" ListOperMode="0" ListIter="OrderItems1Iterator">
 <AttrNames>
 <Item Value="Quantity"/>
 </AttrNames>

Creating a List with Navigation List Binding

25-16 Fusion Developer's Guide for Oracle Application Development Framework

 <ListAttrNames>
 <Item Value="Quantity"/>
 </ListAttrNames>
 <ListDisplayAttrNames>
 <Item Value="OrderId"/>
 </ListDisplayAttrNames>
 </list>
 </bindings>

By default, JDeveloper sets the RangeSize attribute on the iterator element for the
OrderItems iterator binding to a value of -1 thus allowing the iterator to furnish the
full list of valid products for selection. In the list element, the id attribute specifies
the name of the list binding object. The IterBinding attribute references the iterator
that iterates over the ProductQuantities collection. The ListIter attribute
references the iterator that iterates over the ProductList collection. The AttrNames
element specifies the base data source attributes returned by the base iterator. The
ListAttrNames element defines the list data source attributes that are mapped to the
base data source attributes. The ListDisplayAttrNames element specifies the list
data source attribute that populates the values users see in the list at runtime.

For complete information about page definition files, see Section 12.6, "Working with
Page Definition Files."

25.4 Creating a List with Navigation List Binding
Navigation list binding lets users navigate through the objects in a collection. As the
user changes the current object selection using the navigation list component, any
other component that is also bound to the same collection through its attributes will
display from the newly selected object. In addition, if the collection whose current row
you change is the master view object instance in a data model master-detail
relationship, the row set in the detail view object instance is automatically updated to
show the appropriate data for the new current master row.

Before you begin:
Define a data collection.

To create a list that uses navigation list binding:
1. From the Data Controls panel, drag and drop a collection to the page and choose

Create > Navigation > ADF Navigation Lists.

2. In the Edit List Binding dialog, from the Base Data Source dropdown list, select
the collection whose members will be used to create the list.

This should be the collection you dragged from the Data Controls panel. If the
collection does not appear in the dropdown menu, click the Add button to select
the collection you want.

3. From the Display Attribute dropdown list, select the attribute that will display in
the list. You can choose the selection that includes all the attributes, and you can
choose Select Multiple to launch a selection dialog.

In the Select Multiple Display Attributes dialog, shuttle the attributes you want to
display from the Available Attributes pane to the Attributes to Display pane.
Click OK to close the dialog.

4. Click OK.

Creating a Databound Shuttle

Creating Databound Selection Lists and Shuttles 25-17

25.5 Creating a Databound Shuttle
The selectManyShuttle and selectOrderShuttle components render two list
boxes, and buttons that allow the user to select multiple items from the leading (or
available) list box and to move or shuttle items over to the trailing (or selected) list
box, and vice versa. Figure 25–9 shows an example of a rendered
selectManyShuttle component. You can specify any text you want for the headers
that display above the list boxes.

Figure 25–7 SelectManyShuttle Component

The only difference between selectManyShuttle and selectOrderShuttle is
that in the selectOrderShuttle component, the user can reorder the items in the
trailing list box by using the up and down arrow buttons on the side.

The Fusion Order Demo application uses a selectManyShuttle component to
select customer interest categories from a Categories of Interest list box to an I am
interested in list box. The leading list box on the left displays all the categories. The
trailing list box on the right displays the categories the customer has selected.

Like other ADF Faces selection list components, the selectManyShuttle
component can use the f:selectItems tag to provide the list of items available for
display and selection in the leading list.

Before you can bind the f:selectItems tag, create a generic class that can be used
by any page that requires a shuttle. In the class, declare and include getter and setter
methods for the properties that describe the view object instance names that should be
used for the list of all available choices (leading list or available product categories)
and the list of selected choices (trailing list or assigned product categories).
Example 25–12 shows the CustRegBasicInformationBean class that is created to
manage the population and selection state of the shuttle component on the
basicInformation.jsff page.

Example 25–12 CustRegBasicInformationBean Class

package oracle.fodemo.storefront.account.view.managed;
import java.io.Serializable;
import java.util.List;
import javax.faces.application.FacesMessage;
import javax.faces.context.FacesContext;
import oracle.binding.OperationBinding;
import oracle.binding.BindingContainer;
import oracle.fodemo.storefront.adf.util.ADFUtils;
import javax.faces.event.ValueChangeEvent;
import oracle.fodemo.storefront.jsf.util.JSFUtils;
public class CustRegBasicInformationBean implements Serializable {

Creating a Databound Shuttle

25-18 Fusion Developer's Guide for Oracle Application Development Framework

 String allItemsIteratorName;
 String allItemsValueAttrName;
 String allItemsDisplayAttrName;
 String allItemsDescriptionAttrName;
 String selectedValuesIteratorName;
 String selectedValuesValueAttrName;
 List selectedValues;
 List allItems;
 private boolean refreshSelectedList = false;
 public CustRegBasicInformationBean() {
 }

public void setAllItemsIteratorName(String allItemsIteratorName) {
 this.allItemsIteratorName = allItemsIteratorName;
 }
 public String getAllItemsIteratorName() {
 return allItemsIteratorName;
 }

// other getter and setter methods are omitted
 public void setSelectedValues(List selectedValues) {
 this.selectedValues = selectedValues;
 }
 public void refreshSelectedList(ValueChangeEvent event) {
 refreshSelectedList = true;
 }
 public List getSelectedValues() {
 if (selectedValues == null || refreshSelectedList) {
 selectedValues =
 ADFUtils.attributeListForIterator(selectedValuesIteratorName,
 selectedValuesValueAttrName);
 }
 return selectedValues;
 }
 public void setAllItems(List allItems) {
 this.allItems = allItems;
 }

 public List getAllItems() {
 if (allItems == null) {
 allItems =
 ADFUtils.selectItemsForIterator(allItemsIteratorName,
 allItemsValueAttrName,
 allItemsDisplayAttrName,
 allItemsDescriptionAttrName);
 }
 return allItems;
 }
}

The getAllItems() method populates the shuttle's leading list. The
getSelectedValues() method also returns a List, but the list defines the items in
the shuttle's trailing list. Note that the CustRegBasicInformationBean class calls several
utility methods in the ADFUtils class. Also note that this class uses values for several
properties of the base bean. Example 25–13 shows the managed bean and managed
properties configured in customer-registration-task-flow.xml for working
with the shuttle component.

Creating a Databound Shuttle

Creating Databound Selection Lists and Shuttles 25-19

Example 25–13 Managed Bean for the Shuttle Component in the
customer-registration-task-flow File

<managed-bean>
 <managed-bean-name>
 custRegBasicInformationBean</managed-bean-name>
 <managed-bean-class>
 oracle.fodemo.storefront.account.view.managed.CustRegBasicInformationBean
 </managed-bean-class>
 <managed-bean-scope>view</managed-bean-scope>
 <managed-property>
 <property-name>allItemsIteratorName</property-name>
 <value>AvailableCategoriesShuttleListIterator</value>
 </managed-property>
 <managed-property>
 <property-name>allItemsValueAttrName</property-name>
 <value>CategoryId</value>
 </managed-property>
 <managed-property>
 <property-name>allItemsDisplayAttrName</property-name>
 <value>CategoryName</value>
 </managed-property>
 <managed-property>
 <property-name>allItemsDescriptionAttrName</property-name>
 <value>CategoryDescription</value>
 </managed-property>
 <managed-property>
 <property-name>selectedValuesIteratorName</property-name>
 <value>SelectedCategoriesShuttleListIterator</value>
 </managed-property>
 <managed-property>
 <property-name>selectedValuesValueAttrName</property-name>
 <value>CategoryId</value>
 </managed-property>
</managed-bean>

The basicInformation.jsff page uses the following iterator objects:

■ CustomerRegistrationIterator: Iterates over the
CustomerRegistration collection, which provides the context for the form
above the shuttle.

■ SelectedCategoriesShuttleListIterator: Iterates over the
SelectedCategoriesShuttleList collection, which provides the list of
categories assigned to the current customer.

■ AvailableCategoriesShuttleListIterator: Iterates over the
AvailableCategoriesShuttleList collection, which provides the list of
product categories.

All the bindings of the basicInformation.jsff page are defined in the file
account_basicInformationPageDef.xml. Example 25–14 shows part of the page
definition file for the basicInformation.jsff page.

Example 25–14 Page Definition File for the basicInformation Page

<?xml version="1.0" encoding="UTF-8" ?>
<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
 version="11.1.1.48.68" id="account_basicInformationPageDef"
 Package="oracle.fodemo.storefront.pageDefs">
 <parameters/>

Creating a Databound Shuttle

25-20 Fusion Developer's Guide for Oracle Application Development Framework

 <executables>
 <page path="oracle.fodemo.storefront.pageDefs.
 templates_StoreFrontTemplatePageDef"
 id="pageTemplateBinding"/>
 <iterator Binds="CustomerRegistration" RangeSize="25"
 DataControl="StoreServiceAMDataControl"
 id="CustomerRegistrationIterator" Refresh="ifNeeded"/>
 <iterator id="SelectedCategoriesShuttleListIterator"
 Binds="SelectedCategoriesShuttleList" RangeSize="-1"
 DataControl="StoreServiceAMDataControl"/>
 <iterator id="AvailableCategoriesShuttleListIterator"
 Binds="AvailableCategoriesShuttleList" RangeSize="-1"
 DataControl="StoreServiceAMDataControl"/>
 <invokeAction Binds="setHelpId" id="invokeSetHelpId" Refresh="ifNeeded"/>
 </executables>

Before you begin:
■ Create the relevant iterator bindings in the page definition file. Use Example 25–14

as a guide.

■ Create a class similar to the CustRegBasicInformationBean class. Use
Example 25–12 as a guide.

■ Configure the required managed bean and managed properties in the task flow
definition or in the case of an unbounded task flow, the adfc-config.xml file.
Use Example 25–13 as a guide.

To create a shuttle component:
1. In the Common Components page of the Component Palette, from the Common

panel, drag and drop SelectManyShuttle onto the page. JDeveloper displays the
Insert SelectManyShuttle wizard, as illustrated in Figure 25–8.

Figure 25–8 Insert SelectManyShuttle Wizard

Creating a Databound Shuttle

Creating Databound Selection Lists and Shuttles 25-21

2. Select Bind to list (select items) and click Bind to open the Expression Builder.

3. In the Expression Builder, expand ADF Managed Beans > pageFlowScope >
CustRegBasicInformationBean > allItems to build the expression
#{pageFlowScope.custRegBasicInformationBean.allItems} and click
Next.

This binds the f:selectItems tag to the getAllItems() method that
populates the shuttle’s leading list.

4. In the Common Properties page, click Bind next to the Value field to open the
Expression Builder again.

5. In the Expression Builder, expand ADF Managed Beans > pageFlowScope >
CustRegBasicInformationBean > selectedValues to build the expression
#{pageFlowScope.custRegBasicInformationBean.selectedValues}
and click Finish.

This binds the value attribute of the selectManyShuttle component to the
getSelectedValues() method that populates the shuttle’s trailing list.

Example 25–15 shows the code for the selectManyShuttle component after you
complete the Insert SelectManyShuttle dialog.

Example 25–15 SelectManyShuttle Component in basicInformation.jsff File

<af:selectManyShuttle
 value="#{pageFlowScope.custRegBasicInformationBean.selectedValues}"
 leadingHeader="#{res['basicinfo.leadingHeader']}"
 trailingHeader="#{res['basicinfo.trailingHeader']}"
 leadingDescShown="true" size="8"
 trailingDescShown="true"
 inlineStyle="background-color:transparent;"
 id="sms1">
 <f:selectItems
 value="#{pageFlowScope.custRegBasicInformationBean.allItems}"/>
</af:selectManyShuttle>

Creating a Databound Shuttle

25-22 Fusion Developer's Guide for Oracle Application Development Framework

26

Creating Databound ADF Data Visualization Components 26-1

26Creating Databound ADF Data Visualization
Components

This chapter describes how to use the Data Controls panel and ADF data binding to
create databound ADF Data Visualization components. These components allow you
to display and analyze data through a wide variety of graphs, several kinds of gauges,
a pivot table, geographic maps with multiple layers of information, several kinds of
Gantt charts, and a hierarchy viewer.

This chapter includes the following sections:

■ Section 26.1, "Introduction to Creating ADF Data Visualization Components"

■ Section 26.2, "Creating Databound Graphs"

■ Section 26.3, "Creating Databound Gauges"

■ Section 26.4, "Creating Databound Pivot Tables"

■ Section 26.5, "Creating Databound Geographic Maps"

■ Section 26.6, "Creating Databound Gantt Charts"

■ Section 26.7, "Creating Databound Hierarchy Viewers"

26.1 Introduction to Creating ADF Data Visualization Components
ADF Data Visualization components provide extensive graphical and tabular
capabilities for visually displaying and analyzing data.

Both ADF graph and gauge components render graphical representations of data.
However, graphs (which produce more than 50 types of charts) allow you to evaluate
multiple data points on multiple axes in a variety of ways. Many graph types assist in
the comparison of results from one group with the results from another group. In
contrast, gauges focus on a single data point and examine that point relative to
minimum, maximum, and threshold indicators to identify problems.

The ADF pivot table component produces a grid that supports multiple layers of data
labels on the row edge or the column edge of the grid. An optional pivot filter bar uses
a page edge to filter the pivot table data not in view. This component also provides the
option of automatically generating subtotals and totals for grid data. Pivot tables let
you pivot data layers from one edge to another to obtain different views of your data.
For example, a pivot table might initially display total sales data for products within
regions on the row edge, broken out by years on the column edge. If you pivot region
and year at runtime, then you end up with total sales data for products within years,
broken out by region. At runtime, end users can click buttons that appear in the inner
column labels to sort rows in ascending or descending order.

Introduction to Creating ADF Data Visualization Components

26-2 Fusion Developer's Guide for Oracle Application Development Framework

The ADF geographic map component represents business data spatially, enabling you
to superimpose multiple layers (also referred to as themes) of information on a single
map. For example, a map of the United States might use a color theme that provides
varying color intensity to indicate the popularity of a product within each state, a pie
chart theme that shows sales within product category, and a point theme that
identifies the exact location of each warehouse. When all three themes are
superimposed on the United States map, you can easily evaluate whether there is
sufficient inventory to support the popularity level of a product in specific locations.

There are three types of ADF Gantt chart components: the project Gantt chart (which
focuses on project management), the scheduling Gantt chart, and the resource
utilization Gantt chart (both of which focus on resource management). Each Gantt
chart shows the following regions combined with a splitter:

■ List region content: The left side of the splitter provides a list of tasks (for the
project Gantt chart) and a list of resources (for the resource utilization and
scheduling Gantt charts). This region can display any number of additional
columns of related information.

■ Chart region content: The right side of the splitter consists of an area in which task
progress, resource utilization, or resource progress is graphed over time. The
ability of the Gantt chart to zoom in or out on its time axis lets you view
management information across the desired time period.

The ADF hierarchy viewer component produces a graphic that displays hierarchical
data as a set of linked shapes. The shapes and links correspond to the elements and
relationships in the data. For example, a hierarchy viewer component might be used to
generate an organizational chart based on employee data. At runtime, end users can
pan and zoom the graphic and expand, select, and navigate the management hierarchy
that the graphic displays.

Each ADF Data Visualization component needs to be bound to data before it can be
rendered because the appearance of the components is dictated by the data that is
displayed. This chapter describes how to bind each component to a data source.

Figure 26–1 shows a number of the ADF Data Visualization components at runtime,
including a bar graph, a pie chart graph, a dial gauge, and a status meter gauge.

Creating Databound Graphs

Creating Databound ADF Data Visualization Components 26-3

Figure 26–1 Dashboard with ADF Data Visualization Components

26.2 Creating Databound Graphs
When you create a graph using a data collection inserted from the Data Controls
panel, a Component Gallery allows you to choose from a wide number of graph
categories, graph types, and layout options. Graph categories group together one or
more types of graph. For example, the Scatter/Polar category includes the following
types of graph:

■ Scatter

■ Dual-Y Scatter

■ Polar

Explore the Component Gallery that appears when you create a graph to view
available graph categories, types, and descriptions for each one. Figure 26–2 shows the
Component Gallery that appears for ADF graphs when you use the Data Controls
panel.

Creating Databound Graphs

26-4 Fusion Developer's Guide for Oracle Application Development Framework

Figure 26–2 ADF Graphs Component Gallery from Data Controls Panel

You can also create a graph by dragging a graph component from the Component
Palette. This approach allows you the option of designing the graph user interface
before binding the component to data. A Component Gallery appears to view graph
types, descriptions, and quick layout options.

Table 26–1 lists the categories that appear in the Component Gallery for graphs. Each
category has one or more graph types associated with it.

Note: Some graph types require very specific kinds of data. If you
bind a graph to a data collection that does not contain sufficient data
to display the graph type requested, then the graph is not displayed
and a message about insufficient data appears.

Note: The ADF sparkchart can only be inserted from the Component
Palette and bound to data afterwards. For more information, see
Section 26.2.4, "How to Create a Databound Sparkchart."

Table 26–1 ADF Graph Categories in the Component Gallery

Category Description

Area Creates a graph in which data is represented as a filled-in area. Use area graphs
to show trends over time, such as sales for the last 12 months. Area graphs
require at least two groups of data along an axis. The axis is often labeled with
time periods such as months.

Creating Databound Graphs

Creating Databound ADF Data Visualization Components 26-5

Figure 26–3 shows the horizontal bar graph that appears in the Hot Items Statistics
page of the StoreFrontModule application. This graph displays the quantity of

Bar Creates a graph in which data is represented as a series of vertical bars. Use to
examine trends over time or to compare items at the same time, such as sales
for different product divisions in several regions.

Bar
(Horizontal)

Creates a graph that displays bars horizontally along the y-axis. Use to provide
an orientation that allows you to show trends or compare values.

Bubble Creates a graph in which data is represented by the location and size of round
data markers (bubbles). Use to show correlations among three types of values,
especially when you have a number of data items and you want to see the
general relationships. For example, use a bubble graph to plot salaries (x-axis),
years of experience (y-axis), and productivity (size of bubble) for your work
force. Such a graph allows you to examine productivity relative to salary and
experience.

Combination Creates a graph that uses different types of data markers (bars, lines, or areas)
to display different kinds of data items. Use to compare bars and lines, bars and
areas, lines and areas, or all three.

Funnel Creates a graph that is a visual representation of data related to steps in a
process. The steps appear as vertical slices across a horizontal cylinder. As the
actual value for a given step or slice approaches the quota for that slice, the slice
fills. Typically a funnel graph requires actual values and target values against a
stage value, which might be time. For example, use this component to watch a
process (such as a sales pipe line) move towards a target across the stage of the
quarters of a fiscal year.

Line Creates a graph in which data is represented as a line, as a series of data points,
or as data points that are connected by a line. Line graphs require data for at
least two points for each member in a group. For example, a line graph over
months requires at least two months. Typically a line of a specific color is
associated with each group of data such as the Americas, Europe, or Asia. Use
to compare items over the same time.

Pareto Creates a graph in which data is represented by bars and a percentage line that
indicates the cumulative percentage of bars. Each set of bars identifies different
sources of defects, such as the cause of a traffic fatality. The bars are arranged
by value, from the largest number to the lowest number of incidents. A pareto
graph is always a dual-y graph in which the first y-axis corresponds to values
that the bars represent and the second y-axis runs from 0 to 100% and
corresponds to the cumulative percentage values. Use the pareto graph to
identify and compare the sources of defects.

Pie Creates a graph in which one group of data is represented as sections of a circle
causing the circle to look like a sliced pie. Use to show relationship of parts to a
whole such as how much revenue comes from each product line.

Radar Creates a graph that appears as a circular line graph. Use to show patterns that
occur in cycles, such as monthly sales for the last three years.

Scatter/Polar Creates a graph in which data is represented by the location of data markers.
Use to show correlation between two different kinds of data values such as
sales and costs for top products. Scatter graphs are especially useful when you
want to see general relationships among a number of items.

Sparkchart Creates a simple, condensed graph that displays trends or variations, often in
the column of a table, or inline with text. Sparkcharts are only available in the
Component Gallery when inserted using the Component Palette and bound to
data afterwards.

Stock Creates a graph in which data shows the high, low, and closing prices of a
stock. Each stock marker displays three separate values.

Table 26–1 (Cont.) ADF Graph Categories in the Component Gallery

Category Description

Creating Databound Graphs

26-6 Fusion Developer's Guide for Oracle Application Development Framework

orders for each product so that you can easily identify the items that have been
ordered most frequently.

Figure 26–3 Hot Items Statistics Graph

For information about customizing graphs after the data binding is completed, see the
"Using ADF Graph Components" chapter in Oracle Fusion Middleware Web User
Interface Developer's Guide for Oracle Application Development Framework.

26.2.1 How to Create a Graph
Graphs are based on data collections. Using data controls in Oracle ADF, Oracle
JDeveloper makes this a declarative task. You drag and drop a collection from the
Data Controls panel.

To create a databound graph:
1. From the Data Controls panel, select a collection.

For example, to create the bar graph that displays the order count for each product
in the Hot Items Statistics page of the StoreFrontModule application, select the
ProductOrdersCount collection. Figure 26–4 shows the
ProductOrdersCount collection in the Data Controls panel.

Creating Databound Graphs

Creating Databound ADF Data Visualization Components 26-7

Figure 26–4 Data Collection for Counting Product Orders

2. Drag the collection onto a JSF page and, from the context menu, choose Graphs to
display the Component Gallery.

3. Select a graph category and a graph type from the Component Gallery and click
OK.

For information about the graph categories and graph types that appear in the
Component Gallery, see Table 26–1.

The name of the dialog and the input field labels that appears depends on the
category and type of graph that you select. For example, if you select Bar
(Horizontal) as the category and Bar as the type, then the name of the dialog that
appears is Create Horizontal Bar Graph and the input field is labeled Bars.

4. Do the following in the dialog to configure the graph to display data:

■ Drag attributes from the Available list to the Bars or X Axis input fields,
depending on where you want the values for the attributes to appear at
runtime.

■ In the Attribute Labels field, enter a value or select a value from the
dropdown list in the Label column to specify the label that appears at
runtime.

■ If you want to change the display of the data represented in the bars to the
Y-Axis, click the Swap Bars with Y-Axis button. This action switches the
hidden data layer between the graph series and groups, not a simple manual
swap of the bars and y-axis attributes.

■ If you want to change from the default selection of Typed Attributes to
Name-Value Pairs to configure how data points are stored in a collection, then
click the Change Data Shape button. A dialog appears that presents you with
the following options:

– Typed Attributes

Each kind of data point in the collection is represented by a different
attribute. This option is also valid when there is only a single kind of data
point in the graph.

For example, if you have data points for Estimated Value and Actual
Value, then select Typed Attributes only if you have one attribute for the
estimated value and a second attribute for the actual value.

– Name-Value Pairs

Indicates that there are multiple kinds of data points, but only a single
attribute to designate these points. In this case, the single attribute has
values that identify each kind of data point.

Creating Databound Graphs

26-8 Fusion Developer's Guide for Oracle Application Development Framework

For example, the attribute might have the value EST for a data point that
represents an estimated value and ACT for a data point that represents an
actual value.

■ Select Set the current row for master-detail to use the graph’s row selection
listener to enable clicks on a bar, slice, or other graph data element to update
the data in another ADF component. For more information see Section 26.2.3,
"What You May Need to Know About Using a Graph’s Row Selection Listener
for Master-Detail Processing."

Figure 26–5 shows the Create Horizontal Bar Graph dialog that generates a graph
using data from the ItemsOrdered attribute in the ProductOrdersCount data
collection. The ProductName attribute provides labels for the displayed data.

Figure 26–5 Create Horizontal Bar Graph Dialog for ProductsOrderCount

5. Optionally, click the Preview tab to display a live preview of the bar graph and its
data. If necessary, go back to the Configuration tab so that you can adjust the bar
graph specifications.

6. Click OK.

After completing the data binding dialog, you can use the Property Inspector to
specify settings for the graph attributes and you can also use the child tags associated
with the graph tag to customize the graph further.

Note: Use the emptyText attribute to specify the text to display
when there is no data to return in the graph. The default message is
No data to display. The attribute accepts HTML for formatting the
message and an EL expression that evaluates to the viewable property
of the data. If the graph is not viewable (for example, if there are
authorization restrictions set against the graph), it displays Access
Denied.

Creating Databound Graphs

Creating Databound ADF Data Visualization Components 26-9

26.2.2 What Happens When You Use the Data Controls Panel to Create a Graph
Dropping a graph from the Data Controls panel has the following effect:

■ Creates the bindings for the graph and adds the bindings to the page definition
file

■ Adds the necessary code for the UI components to the JSF page

The data binding XML that JDeveloper generates varies depending on the type of
graph you select. The XML represents the physical model of the specific graph type
you create. Example 26–1 shows the bindings that JDeveloper generated in the page
definition file where a horizontal bar graph was created using data from the
ItemsOrdered attribute in the ProductOrdersCount data collection.

Example 26–1 Binding XML for an ADF Bar (Horizontal) Graph

<graph IterBinding="ProductOrdersCountIterator" id="ProductOrdersCount"
 xmlns="http://xmlns.oracle.com/adfm/dvt" type="BAR_HORIZ_CLUST">
 <graphDataMap leafOnly="true">
 <series>
 <data>
 <item value="ItemsOrdered"/>
 </data>
 </series>
 <groups>
 <item value="ProductName" label="ProductName"/>
 </groups>
 </graphDataMap>
 </graph>

Example 26–2 shows the code generated for a horizontal bar graph when you drag the
ProductOrdersCount data collection onto a JSF page.

Example 26–2 JSF Code for an ADF Bar (Horizontal) Graph

<dvt:horizontalBarGraph id="horizontalBarGraph1"
 value="#{bindings.ProductOrdersCount.graphModel}"
 subType="BAR_HORIZ_CLUST">
 <dvt:background>
 <dvt:specialEffects/>
 </dvt:background>
 <dvt:graphPlotArea/>
 <dvt:seriesSet>
 <dvt:series/>
 </dvt:seriesSet>
 <dvt:o1Axis/>
 <dvt:y1Axis/>
 <dvt:legendArea automaticPlacement="AP_NEVER"/>
 </dvt:horizontalBarGraph>

26.2.3 What You May Need to Know About Using a Graph’s Row Selection Listener for
Master-Detail Processing

You can use the row selection listener of a graph (which serves as a master view) to
enable clicks on a bar, slice, or other graph data element to update the data in another
ADF component (which serves as a detail view). For example, a click on a bar that
represents sales for a given product in a graph might cause the display of the detailed
sales data related to the product in a pivot table.

Creating Databound Graphs

26-10 Fusion Developer's Guide for Oracle Application Development Framework

The following requirements must be met to achieve this master-detail processing
declaratively:

1. You must use the same data control to provide data for both views as follows:

a. Bind the graph as a row set to the parent collection in the data control, for
example, DepartmentsView.

b. Bind the other ADF view (such as a table or pivot table) to the dependent
detail collection in the data control, for example EmployeesView.

2. Select Set the current row for master-detail in the Create <type> Graph dialog to
automatically set a value for the clickListener attribute of the graph tag and
use the processClick method that is already part of the graph binding.

For example, if the value attribute of the graph tag is
value="#{bindings.myGraph.graphModel}", then the clickListener
attribute is set to
clickListener="#{bindings.myGraph.graphModel.processClick}".

3. Ensure that the partialTriggers attribute on the parent tag for the detail
component is set correctly. It should be set to the ID of the graph component.

You do not have to write Java code for handling clicks on data elements in the graph.
The processClick event on the graph binding recognizes click events on data
component in a graph and performs the necessary processing.

26.2.4 How to Create a Databound Sparkchart
Sparkcharts are simple, condensed graphs that display trends or variations, often in
the column of a table, or inline with text. Line, bar, and area sparkcharts require a
single series of data values. Figure 26–6 shows an example of a line sparkchart in a
table column.

Figure 26–6 Line Sparkchart

Floating bar sparkcharts require two series of data values, one for the float offset, and
one for the bar value. Figure 26–7 shows an example of a floating bar sparkchart in a
table column.

Figure 26–7 Floating Bar Sparkchart

You create a sparkchart by inserting the component from the Component Palette and
binding the sparkchart to data afterwards. Inserting a sparkchart from the Data
Controls panel is not supported. Figure 26–8 shows the Component Gallery that
displays when you drag a sparkchart component onto your page from the Component
Palette.

Creating Databound Graphs

Creating Databound ADF Data Visualization Components 26-11

Figure 26–8 Create Sparkchart Component Gallery

You can provide data to sparkcharts in any of the following ways:

■ Specify data statically in child dvt:sparkItem tags. Example 26–3 shows an
example of providing static data to a sparkchart.

Example 26–3 Static Data in Sparkchart

<dvt:sparkChart>
 <dvt:sparkItem value="20"/>
 <dvt:sparkItem value="15"/>
 <dvt:sparkItem value="30"/>
</dvt:sparkChart>

■ Specify data using EL Expression in child dvt:sparkItem tags. Example 26–4
shows an example of providing data using EL Expressions.

Example 26–4 EL Expression Data in Sparkchart

<af:table value="#{sample.tableModel}" var="row">
 <af:column>
 <dvt:sparkChart>
 <dvt:sparkItem value="#{row.col1}"/>
 <dvt:sparkItem value="#{row.col2}"/>
 <dvt:sparkItem value="#{row.col3}"/>
 </dvt:sparkChart>
 </af:column>
</af:table>

Creating Databound Gauges

26-12 Fusion Developer's Guide for Oracle Application Development Framework

■ Specify data using a child accessor in a table. Example 26–5 shows an example of
using af:iterator to provide sparkchart data from the data collection model,
row.stockValues.

Example 26–5 Sparkchart Data in Table Child Accessor

<af:table value="#{sample.tableModel}" var="row">
 <af:column>
 <dvt:sparkChart>
 <af:iterator value="#{row.stockValues}" var="data">
 <dvt:sparkItem value="#{data.closeValue}"/>
 </af:iterator>
 </dvt:sparkChart>
 </af:column>
</af:table>

26.3 Creating Databound Gauges
A gauge plots one data point with indication of whether the data point falls in an
acceptable or unacceptable range. One databound gauge component can create a
single gauge or an entire set of gauges, depending on the number of rows in the data
collection used. In a collection, each row contains the values for a single gauge.

The Component Gallery for gauges allows you to choose from the following categories
of gauges:

■ Dial: Indicates the metric value of a task along a 180 degree arc.

■ Status Meter: Indicates the progress of a task or the level of some measurement
along a rectangular bar.

■ Status Meter (Vertical): Indicates the progress of a task or the level of some
measurement along a rectangular bar.

■ LED: Depicts graphically a measurement such as a key performance indicator
(KPI). Several styles of graphics are available for LED gauges such as arrows that
indicate good (up arrow), fair (left- or right-pointing arrow), and poor (down
arrow).

Each of these categories contains a number of different types of gauge. Explore the
Component Gallery that appears when you create a gauge to view all available gauge
and category types, and descriptions for each one. Figure 26–9 shows the Component
Gallery that appears for ADF gauges.

Creating Databound Gauges

Creating Databound ADF Data Visualization Components 26-13

Figure 26–9 ADF Gauges Component Gallery

The data binding process is essentially the same regardless of which type of gauge you
create. Only the metric value (that is, the measurement that the gauge is to indicate) is
required. However, if a row in a data collection contains range information such as
maximum, minimum, and thresholds, then these values can be bound to the gauge to
provide dynamic settings. If information that you want to use in a gauge’s upper or
lower labels is available in the data collection, then you can bind these values to the
gauge also.

For information about customizing a gauge after the data binding is completed, see the
"Using ADF Gauge Components" chapter in Oracle Fusion Middleware Web User
Interface Developer's Guide for Oracle Application Development Framework.

26.3.1 How to Create a Databound Dial Gauge
You can use the ADF gauge component to create a dial gauge against a background
that specifies ranges of values (also called thresholds) that vary from poor to excellent.
The gauge indicator specifies the current value of the metric while the graphic allows
you to evaluate the status of that value easily.

Figure 26–10 shows a single dial gauge that appears if you create a gauge from the
collection that stores WarrantyPeriodMonths data. Because only one gauge
appears, this data collection must contain only a single row of data. The value of the
metric (which is 6) appears in a label below the gauge. The range of values in the
gauge is displayed as 0 to 24. Threshold ranges are identified at 8, 16, and 24 and are
filled with the colors red for poor (below 8), yellow for adequate (from 8 to 16), and
green for superior (above 16).

Creating Databound Gauges

26-14 Fusion Developer's Guide for Oracle Application Development Framework

Figure 26–10 The Warranty in Months Dial Gauge

To create a dial gauge using a data control, you bind the gauge component to a
collection. JDeveloper allows you to do this declaratively by dragging and dropping a
collection from the Data Controls panel.

To create a databound dial gauge:
1. From the Data Controls panel, select a collection.

For example, to create a dial gauge in the StoreFrontModule application to
display the current warranty period in months for a product in a particular
warehouse, you would select the WarehouseStockLevels collection.
Figure 26–11 shows the WarehouseStockLevels collection in the Data Controls
panel.

Figure 26–11 Data Collection with Warranty Period for a Product

2. Drag the collection onto a JSF page and, from the context menu, choose Gauges.

3. In the Component Gallery dialog, choose the category, type of gauge, and quick
start layout, and then click OK.

4. In the Configuration tab of the dialog, do the following:

■ In the Metric box, select the column in your data collection that contains the
actual value that the gauge is to plot. This is the only required value in the
dialog.

Creating Databound Gauges

Creating Databound ADF Data Visualization Components 26-15

■ In the Minimum box, if your data collection stores a minimum value for the
gauge range, select the column that contains this value.

■ In the Maximum box, if your data collection stores a maximum value for the
gauge range, select the column that contains this value.

■ In the Top Label box, if your data collection stores a value that you want to
display in the top label of the gauge, select the column that contains this value.

■ In the Bottom Label box, if your data collection stores a value that you want to
display in the bottom label of the gauge, then select the column that contains
this value.

■ In the Threshold Attributes list, if you want to specify threshold values, click
the Add icon to insert a row for each threshold and specify the value in that
row. Do not create a threshold equal to the maximum value for the gauge
because the gauge automatically treats the maximum value as a threshold
setting.

5. Optionally, click the Preview tab to display a live preview of the gauge and its
data. If necessary, go back to the Configuration tab so that you can adjust the
gauge specifications.

6. Click OK.

Figure 26–12 shows the dialog that appears if you examine the gauge binding for
WarehouseStockLevels in the page definition file.

Figure 26–12 Edit Gauge Dialog

Note: The data source and metric data values are required. Other
data values in the dialog are optional and can be specified in the
gauge tag through the Property Inspector.

Creating Databound Gauges

26-16 Fusion Developer's Guide for Oracle Application Development Framework

In the Property Inspector, after you complete the binding of the gauge, you can set
values for additional attributes in the gauge tag and its child tags to customize the
component.

26.3.2 What Happens When You Create a Dial Gauge from a Data Control
Dropping a gauge from the Data Controls panel has the following effect:

■ Creates the bindings for the gauge and adds the bindings to the page definition
file

■ Adds the necessary code for the UI components to the JSF page

Example 26–6 shows the bindings that JDeveloper generated for the dial gauge that
displays warranty in months for a product in a warehouse. This code example shows
that the gauge metric receives its value dynamically from the
WarrantyPeriodMonths column in the data collection and that the remaining data
values have static settings.

Example 26–6 Bindings for a Dial Gauge

<gauge IterBinding="WarehouseStockLevelsIterator" id="WarehouseStockLevels"
 xmlns="http://xmlns.oracle.com/adfm/dvt">
 <gaugeDataMap>
 <item type="threshold" value="8" valueType="literal"/>
 <item type="threshold" value="16" valueType="literal"/>
 <item type="metric" value="WarrantyPeriodMonths"/>
 <item type="minimum" value="0" valueType="literal"/>
 <item type="maximum" value="24" valueType="literal"/>
 <item type="topLabel" value="Warranty (Months)" valueType="literal"/>
 </gaugeDataMap>
 </gauge>

Example 26–7 shows the code that JDeveloper generated in the JSF page for a dial
gauge. The <dvt:thresholdSet> element specifies one <dvt:threshold>
element for each threshold. Colors for the threshold ranges default to red, yellow, and
green as specified by the values for the fillColor attributes. The
<dvt:indicator> element specifies IT_NEEDLE as the indicator to use. This renders
a needle at runtime. The default value for <dvt:indicator> renders a line (IT_
LINE).

Example 26–7 Code on the JSF Page for an ADF Dial Gauge

<dvt:gauge id="gauge1"
 value="#{bindings.WarehouseStockLevels.gaugeModel}"
 gaugeType="DIAL" imageFormat="FLASH">
 <dvt:gaugeBackground>
 <dvt:specialEffects fillType="FT_GRADIENT">
 <dvt:gradientStopStyle/>
 </dvt:specialEffects>
 </dvt:gaugeBackground>
 <dvt:thresholdSet>
 <dvt:threshold text="Low" fillColor="#d62800"/>
 <dvt:threshold text="Medium" fillColor="#ffcf21"/>
 <dvt:threshold text="High" fillColor="#84ae31"/>
 </dvt:thresholdSet>
 <dvt:gaugeFrame/>
 <dvt:indicator type="IT_NEEDLE"/>
 <dvt:indicatorBase/>
 <dvt:gaugePlotArea/>

Creating Databound Gauges

Creating Databound ADF Data Visualization Components 26-17

 <dvt:tickLabel/>
 <dvt:tickMark/>
 <dvt:topLabel/>
 <dvt:bottomLabel/>
 <dvt:metricLabel position="LP_WITH_BOTTOM_LABEL"/>
</dvt:gauge>

26.3.3 How to Create a Databound Status Meter Gauge Set
You can use the ADF gauge component to create a status meter gauge where the inner
rectangle shows the current level of a measurement against the ranges marked in the
outer rectangle. The graphic of the status meter gauge allows you to evaluate the
condition or progress of a measurement easily.

Figure 26–13 shows a set of status meter gauges that represent the inventory levels in a
number of warehouses. This set of gauges results from binding one gauge component
to a data collection (WarehouseStockLevels). This data collection contains a row of
data for each warehouse. Each row produces one gauge in the set. Notice that all
gauges in the set share the same range values of minimum (0) and maximum (1500)
with thresholds set at 500 and 1000 and 1500. Each gauge in the set displays the name
of the warehouse that it represents and the stock metric for that warehouse in its
bottom label.

Figure 26–13 The Warehouse Inventory Status Meter Gauge Set

To create a status meter gauge set using a data control, you bind the gauge component
to a data collection that contains multiple rows of data. JDeveloper allows you to do
this declaratively by dragging and dropping a collection from the Data Controls panel.

To create a databound status meter gauge:
1. From the Data Controls panel, select a collection.

For example, to create a status meter gauge in the StoreFrontModule
application that displays the quantity of stock on hand in a warehouse, you select
the WarehouseStockLevels collection.

2. Drag the collection onto a JSF page and, from the context menu, choose Gauges.

3. In the Component Gallery, choose the following:

■ Status Meter or Status Meter (Vertical) in the Categories list

■ The type of gauge that you want to create

■ The quick start layout for the gauge at runtime

4. Click OK.

Creating Databound Gauges

26-18 Fusion Developer's Guide for Oracle Application Development Framework

5. In the Create Gauge dialog that appears, select values as described in the
following list:

■ Select an attribute binding from the Metric dropdown list. This attribute
binding contains the actual value that the gauge is to plot.

■ Input a minimum value in the Minimum field if your data collection stores a
minimum value for the gauge range.

■ Input a maximum value in the Maximum field if your data collection stores a
maximum value for the gauge range.

■ Write or select a value in the Top Label field if you want to display a label on
top of the gauge at runtime.

■ Write or select a value in the Bottom Label field if you want to display a label
below the gauge at runtime.

■ Click the Add icon to insert a row for each threshold and specify the value for
that threshold if you want to specify threshold values in the Threshold
Attributes list. Do not create a threshold equal to the maximum value for the
gauge because the gauge automatically treats the maximum value as a
threshold setting.

6. Optionally, click the Preview tab to display a live preview of the gauge and its
data. If necessary, click the Configuration tab so that you can adjust the gauge
specifications.

Figure 26–14 shows the settings for the set of status meter gauges that appears in
Figure 26–13. In addition to setting values for the required metric value, this dialog
sets values for thresholds and for the name of the warehouse to appear in the
gauge’s bottom label.

Figure 26–14 Create Gauge Dialog for Warehouse Inventory Gauge Set

7. Click OK.

Creating Databound Gauges

Creating Databound ADF Data Visualization Components 26-19

In the Property Inspector, after you complete the binding of the gauge, you can set
values for additional attributes in the gauge tag and its child tags to customize the
component as needed.

26.3.4 What Happens When You Create a Status Meter Gauge from a Data Control
Dropping a gauge from the Data Controls panel has the following effect:

■ Creates the bindings for the gauge and adds the bindings to the page definition
file

■ Adds the necessary code for the UI components to the JSF page

Example 26–8 shows the row set bindings that were generated for the status meter
gauge set that displays inventory levels for each warehouse as illustrated in
Figure 26–14. This example shows the value binding created between the gauge metric
attribute and the QuantityOnHand value in the data collection. It also shows the
value binding between the Bottom Label attribute and the WarehouseName value
in the data collection.

Example 26–8 Bindings Code for the ADF Status Meter Gauge Set

<gauge IterBinding="WarehouseStockLevelsIterator" id="WarehouseStockLevels"
 xmlns="http://xmlns.oracle.com/adfm/dvt">
 <gaugeDataMap>
 <item type="threshold" value="500" valueType="literal"/>
 <item type="threshold" value="1000" valueType="literal"/>
 <item type="metric" value="QuantityOnHand"/>
 <item type="minimum" value="0" valueType="literal"/>
 <item type="maximum" value="1500" valueType="literal"/>
 <item type="bottomLabel" value="WarehouseName"/>
 </gaugeDataMap>
 </gauge>

Example 26–9 shows the code generated on the JSF page for the status meter gauge set
that shows inventory levels for warehouses. The gaugeSetColumnCount attribute
specifies that gauges should be displayed in two columns. The code also specifies
three thresholds: Low, Medium, and High. For brevity, the value of the inlineStyle
attribute has been omitted.

Example 26–9 Code on the JSF Page for the ADF Status Meter Gauge Set

<dvt:gauge id="gauge1"
 value="#{bindings.WarehouseStockLevels.gaugeModel}"
 gaugeType="STATUSMETER" imageFormat="FLASH">
 <dvt:gaugeBackground>
 <dvt:specialEffects fillType="FT_GRADIENT">
 <dvt:gradientStopStyle/>
 </dvt:specialEffects>
 </dvt:gaugeBackground>
 <dvt:thresholdSet>
 <dvt:threshold text="Low" fillColor="#d62800"/>
 <dvt:threshold text="Medium" fillColor="#ffcf21"/>
 <dvt:threshold text="High" fillColor="#84ae31"/>
 </dvt:thresholdSet>
 <dvt:indicatorBar/>
 <dvt:gaugePlotArea/>
 <dvt:tickLabel/>
 <dvt:tickMark/>
 <dvt:topLabel/>

Creating Databound Pivot Tables

26-20 Fusion Developer's Guide for Oracle Application Development Framework

 <dvt:bottomLabel/>
 <dvt:metricLabel position="LP_WITH_BOTTOM_LABEL"/>
</dvt:gauge>

26.4 Creating Databound Pivot Tables
The ADF pivot table displays a grid of data with rows and columns and optionally, a
pivot filter bar to filter data not displayed in the rows or columns. The pivot table has
the following structure:

■ Column edge: The horizontal axis above the pivot table containing one or more
layers of information in the pivot table.

■ Row edge: The vertical axis to the left of the pivot table containing one or more
layers of information in the pivot table.

■ Page edge: The optional pivot filter bar containing zero or more layers of
information for filtering the display of data in the pivot table.

■ Data body: One or more measures, or data values, displayed in the cells of the
pivot table.

Figure 26–15 shows a Sales pivot table that displays data values for sales and units in
the data body, a geography data layer on the column edge, and year and product data
layers on the row edge. A pivot filter bar displays a channel filter on the page edge.

Figure 26–15 Sales Pivot Table

The pivot table aggregates data based on a CSV file of data shown in Figure 26–16.

Figure 26–16 Pivot Table CSV Data

Creating Databound Pivot Tables

Creating Databound ADF Data Visualization Components 26-21

A Create Pivot Table wizard provides declarative support for data-binding and
configuring the pivot table. In the wizard pages you can:

■ Specify the initial layout of the pivot table

■ Associate and configure a pivot filter bar

■ Specify alternative labels for the data layers

■ Configure insert or filter drilling

■ Define aggregation of data values

■ Configure category and data sorting

■ View a live data preview of the pivot table

As you lay out the pivot table in the first page of the wizard, corresponding entries are
initialized in the following wizard pages. You can use the Back and Next buttons to
adjust the pivot table as you go through the wizard pages. You can also skip
configuration options in later wizard pages by clicking Finish.

For information about customizing a pivot table after data binding is completed, see
the "Using ADF Pivot Table Components" chapter in Oracle Fusion Middleware Web
User Interface Developer's Guide for Oracle Application Development Framework.

26.4.1 How to Create a Pivot Table
To create a pivot table using a data control, you bind the pivot table component to a
collection. JDeveloper allows you to do this declaratively by dragging and dropping a
collection from the Data Controls panel.

To demonstrate the creation of the sample Sales pivot table shown in Figure 26–15, a
placeholder data control was created and data types defined for the CSV file shown in
Figure 26–16. For more information, see Section 29.4, "Using Placeholder Data
Controls."

To create a databound pivot table:
1. From the Data Controls panel, select a collection.

For example, to create a pivot table that displays sales and units sold by year for
each product, you could select the ptExampleData defined for the
ptExamplePlaceholder collection in the Data Controls panel, as shown in
Figure 26–17.

Tip: You can also create a pivot table by dragging a pivot table
component from the Component Palette. This approach allows you
the option of designing the pivot table user interface before binding
the component to data.

Creating Databound Pivot Tables

26-22 Fusion Developer's Guide for Oracle Application Development Framework

Figure 26–17 Data Collection for Product Sales by Year

2. Drag the data collection onto a JSF page and, from the context menu, choose
Tables > ADF Pivot Table.

3. In the Select Display Attributes page of the Create Pivot Table wizard, specify the
initial layout of the pivot table by doing the following:

a. If you want to associate a pivot filter bar with your pivot table, select Create
Pivot Filter Bar. Optionally, you can drag attributes from the Available
Attributes list to the page edge to configure the initial display of filters;
otherwise, an empty pivot filter bar is created. If you add a pivot filter bar to a
pivot table after data binding, you must edit the page source directly to bind
the data model to the pivot filter bar.

b. For the initial layout, select the attributes for the pivot table’s columns, rows,
and data body by dragging the attributes from the Available Attributes list to
the pivot table layout.

In the pivot table layout, Data Labels refers to a layer of the pivot table that
identifies the data in the cells (data values), and that appears as header labels
in the row, column, or page edge. Labels for attributes that you drag to the
data body of the pivot table appear in the data labels layer.

You can drag data labels to any location on the row, column, or page edge.
You can also drag attributes to different locations on the same edge or on
another edge.

As an alternative to using a drag operation to place or move attributes in the
layout, you can right-click the attribute or use Shift+F10 to display a context
menu of options. shows the context menu options for the Geography
attribute.

Note: You can add attributes to the page edge without creating a
pivot filter bar. The attributes are then available for access
programmatically in the data model.

Creating Databound Pivot Tables

Creating Databound ADF Data Visualization Components 26-23

Figure 26–18 Display Attributes Context Menu

c. If you want to change from the default selection of Typed Attributes to
Name-Value Pairs to configure how data points are stored in a collection, then
click the Change Data Shape button. A dialog appears that presents you with
the following options:

– Typed Attributes

Each kind of data point in the collection is represented by a different
attribute. This option is also valid when there is only a single kind of data
point in the pivot table.

For example, if you have data points for Estimated Value and Actual
Value, then select Typed Attributes only if you have one attribute for the
estimated value and a second attribute for the actual value.

– Name-Value Pairs

Indicates that there are multiple kinds of data points, but only a single
attribute to designate these types. In this case, the single attribute has
values that identify each kind of data type.

For example, the attribute might have the value EST for a data point that
represents an estimated value and ACT for a data point that represents an
actual value.

For example, to specify the initial layout of the Sales pivot table shown in
Figure 26–15, you would drag the Channel attribute to the page edge, Year and
Product attributes to the row edge, Sales and Units attributes to the data body
(Data Labels), Geography to the column edge, and select Create Pivot Filter Bar,
as shown in Figure 26–19.

Note: Potential drill paths between attributes are defined as you lay
out multiple attributes on the row, column, and page edges. These
drill paths can later be enabled to support pivot table drilling at
runtime.

Creating Databound Pivot Tables

26-24 Fusion Developer's Guide for Oracle Application Development Framework

Figure 26–19 Select Display Attributes Page of Create Pivot Table Wizard

4. If you want to specify alternative labels or values for the attributes laid out in the
Select Display Attributes page of the wizard, use the Specify Attribute Labels page
to do the following:

a. To specify alternative labels for data values in the Data Values area, change
the default <Use Data Attribute Name> text label stamped in the header
cell for the attribute at runtime. You can enter the text directly or select <No
Label> to suppress the header cell, for example, in the case of using a single
data value for the pivot table.

b. To specify alternative labels for attribute categories in the Categories area,
change the default <Use Data Attribute Name> text label stamped in the
header cell for the attribute at runtime by entering the text directly in the
Attribute Display Name column. The label displays in the pivot handle at
runtime.

You can also specify an alternative value for an attribute category by selecting
a different attribute in the Attribute Display Value column. For example, you
might use a ProductId attribute in the data collection to lay out the pivot
table, but you want the ProductName attribute value to improve human
readability in the pivot table.

For example, to specify an alternate label for the Year attribute of the Sales pivot
table shown in Figure 26–15, you would enter text (Time) in the Attribute Display
Name field, as shown in Figure 26–20.

Creating Databound Pivot Tables

Creating Databound ADF Data Visualization Components 26-25

Figure 26–20 Specify Attribute Labels Page of Create Pivot Table Wizard

5. If you want to expose drill operations in the pivot table at runtime, use the
Configure Drilling page of the Create Pivot Table wizard to enable one of the
following options:

■ Select Insert Drilling to provide a collapsed or expanded view of the
relationship between two attributes while preserving the aggregate value of
the details in the data layer. At runtime, a drill icon is displayed in the parent
attribute display label.

Use Insert Parent Row to specify whether the aggregate total for the parent
attribute will be displayed before or after the child attributes in the expanded
view.

To enable insert drilling you must also:

– Select the drill paths to enable. Drill paths are configured based upon the
layout of the attributes in the Select Display Attributes page of the wizard.

– Configure aggregation in the Configure Aggregation page of the wizard.

For example, Figure 26–21 shows a pivot table using insert drilling to expand
the view for the Year data layer. The aggregated value of Sales (52,500 in 2007,
544,150 in 2006) and Units (410 in 2007, 507 in 2006) for each year is displayed
in the row above the products.

Creating Databound Pivot Tables

26-26 Fusion Developer's Guide for Oracle Application Development Framework

Figure 26–21 Pivot Table with Insert Drilling Enabled

■ Select Filter Drilling to provide a collapsed or expanded view of the
relationships between attributes without preserving the aggregate value of the
details in the data layer in the collapsed view. At runtime, a drill icon is
enabled in the parent attribute display label.

Filter drilling focuses the view on the details of the data layer attribute. For
example, Figure 26–22 shows a pivot table using filter drilling to expand the
view of the Year (2007) data layer, displaying the total Sales (52,500) and Units
(410).

Figure 26–22 Pivot Table with Filter Drilling Enabled

To enable filter drilling you must select the drill paths to enable. Drill paths
are configured based upon the layout of the attributes in the Select Display
Attributes page of the wizard.

For example, to enable the insert drilling for the Sales pivot table shown in
Figure 26–15, complete the Configure Drilling page of the wizard, as shown in
Figure 26–23.

Creating Databound Pivot Tables

Creating Databound ADF Data Visualization Components 26-27

Figure 26–23 Configure Drilling Page of Create Pivot Table Wizard

6. If you want to define how data is aggregated in totals and subtotals for the pivot
table, use one or both of the Configure Aggregation pages of the Create Pivot
Table wizard.

By default, if the attributes displayed in the pivot table do not uniquely identify
each row in the data collection, the data from duplicate rows is aggregated to
collapse that data into a single pivot table cell. You can also override the default
aggregate type for a particular data item.

■ If you want to specify how data is aggregated in the pivot table, in the Data
Aggregation page, do the following:

– If you want to change the default aggregation method for handling
duplicate rows, use the Default Function dropdown list to specify the
value. Valid values are Sum, Average, Count, Maximum, Minimum,
Standard Deviation, and Variance.

– If you want to override the default aggregate type for a specific data
value, click the Add icon to insert a row for the available attributes. Then,
in the Function column for each attribute, select the mathematical
operation that you want to use for the aggregation. Available options are
Sum, Average, Count, Maximum, Minimum, Standard Deviation, and
Variance. This attribute is useful only when you have multiple data
values (such as Sales and Units) bound to your pivot table.

For example, to override the default aggregation type for the Units data value
in the Sales pivot table shown in Figure 26–15, use the Add icon to add the
Units attribute and select Average in the Function column in the Data
Aggregation page, as shown in Figure 26–24.

Creating Databound Pivot Tables

26-28 Fusion Developer's Guide for Oracle Application Development Framework

Figure 26–24 Data Aggregation Page of Create Pivot Table Wizard

■ You can also define totals and subtotals for attribute categories added to the
column, row, or page edges in the pivot table. In the Categories Totals page,
use the Add icon to insert each attribute or select Aggregate All to add all
available attributes, and do the following:

– In the Attribute column, select the attribute that you want to total.

– In the Function column, select the mathematical operation that you want
to use for the aggregation. Available options are Sum, Average, Count,
Maximum, Minimum, Standard Deviation, and Variance.

– In the Insert Total column, select the value that indicates where you want
the aggregate display to appear relative to the item referenced in the
Attribute column. Valid values are: Before, After, or Replace.

– In the Total Label column, enter the text that you want to use as a label for
the aggregation.

For example, to define totals for the Geography and Year data layers in the
Sales pivot table shown in Figure 26–15, select Sum in the Function column
and After in the Insert Total column, and enter text (Total Geography and
Total Year) in the Total Labels column respectively for each attribute in the
Categories Totals page, as shown in Figure 26–25.

Note: The read-only Insert Drill Totals table displays the category
totals automatically defined as a consequence of enabling insert
drilling on the pivot table.

Creating Databound Pivot Tables

Creating Databound ADF Data Visualization Components 26-29

In the resulting pivot table at runtime, expanding a particular Year value will
automatically preserve the aggregate total computed from its child value
based on the layout and configuration of the insert drill option in the previous
wizard page.

Figure 26–25 Categories Totals Page of the Create Pivot Table Wizard

7. If you want to configure sorting in the pivot table, use one or both of the
Configure Sorting pages in the Create Pivot Table wizard.

By default, a pivot table initially sorts data based on values in the outer row data
layer. You can specify sort order on the data layer of any row, column, or page
edge, called a category sort. At runtime, when the data layer is pivoted to a
different edge, the specified category sort order is honored.

You cannot specify a category sort of data labels (data values), although you can
order the attributes mapped to the data body in the Select Display Attributes page
of the wizard. For example, Figure 26–19 shows a pivot table layout with data
values for Sales and Units. While you cannot specify a category sort of these
measures, you can specify the order in which the values will appear in the data
body of the pivot table at runtime, shown in Figure 26–15.

You can also specify an initial sort order of the data values in the data body when
the pivot table is rendered, called a data sort.

■ To configure sorting by category, in the Category Sort page, use the Add icon
to add the attribute for each row, column, or page edge you wish to configure,
and do the following:

– In the Sort Attribute column, accept the default <Use Attribute
Value> to specify an alphabetical sort based on the actual values in the
pivot table header, or customize the sort order by specifying a data label

Creating Databound Pivot Tables

26-30 Fusion Developer's Guide for Oracle Application Development Framework

value from the dropdown list. For example, if the underlying query
included a rank calculation for ranking products by profitability, you
could choose to see products ordered by (ProductRank, Descending).

– In the Initial Sort Order select the initial direction of the sort. Valid values
are ASCENDING or DESCENDING.

For example, Figure 26–26 shows the Category Sort page of the wizard
configured to display the Channel data layer descending on the column edge
and the Year data layer ascending on the row edge.

Figure 26–26 Category Sort Page of Create Pivot Table Wizard

 At runtime, the pivot table displays as shown in Figure 26–27.

Figure 26–27 Category Sort Example

■ To configure data sorting, in the Data Sort page, do the following:

– Select Sort by Columns to specify an initial sort order of the data when
the pivot table is rendered.

– In the Initial Sort Order dropdown list select the initial direction of the
sort. Valid values are ASCENDING and DESCENDING.

Creating Databound Pivot Tables

Creating Databound ADF Data Visualization Components 26-31

– In the Sequence Nulls dropdown list, select First if you want the null
values to appear at the beginning of a sort and select Last if you want the
null values to appear at the end of the sort.

– In the Initial Sort Column table, specify a data value in the Value column
for the data layer displayed in the Layer Attribute column.

For example, Figure 26–28 shows the Data Sort page configured to sort the
Channel data layer grouped by Year, based upon Units/World/Canoes data
values.

Figure 26–28 Data Sort Page of the Create Pivot Table Wizard

At runtime, the pivot table initially renders as shown in Figure 26–29.

Figure 26–29 Data Sort Example

8. In the Preview Your Pivot Table page of the Create Pivot Table wizard, see a live
preview of the data that will be displayed in the pivot table. The preview does not
require that you compile and run code. If you are not satisfied with the preview,
alter the settings in the binding wizard pages and return again to the preview
page to verify that your data looks as desired.

Creating Databound Pivot Tables

26-32 Fusion Developer's Guide for Oracle Application Development Framework

Figure 26–30 shows the Preview Your Pivot Table page of the wizard for the Sales
pivot table shown in Figure 26–15.

Figure 26–30 Live Data Preview of Pivot Table

26.4.2 What Happens When You Use the Data Controls Panel to Create a Pivot Table
Dropping a pivot table from the Data Controls panel has the following effect:

■ Creates the bindings for the pivot table and adds the bindings to the page
definition file

■ Adds the necessary code for the UI components to the JSF page

26.4.2.1 Bindings for Pivot Tables
When you create a pivot table from the Data Controls panel, the page definition file is
updated with the bindings. Example 26–10 shows the row set bindings that were
generated for the pivot table that displays product sales and units sold within
geography by year. The pivot table data map contains the following elements:

■ <columns>: Defines each column item

■ <rows>: Defines each row item in the appropriate sequence

■ <pages>: Defines the items to be included in the pivot filter bar

■ <aggregatedItems>: Defines the totals and subtotals of items

■ <hierarchies>: Defines the potential drill paths between two items

■ <sorts>: Defines category sorts and the initial sort order of pivot table data

Creating Databound Pivot Tables

Creating Databound ADF Data Visualization Components 26-33

The default data aggregation method for duplicate rows is specified in the <data>
element. For more information about aggregating duplicates, see Section 26.4.3, "What
You May Need to Know About Aggregating Attributes in the Pivot Table."

For more information about sorting operations, see Section 26.4.4, "What You May
Need to Know About Specifying an Initial Sort for a Pivot Table."

Example 26–10 Binding XML for the ADF Pivot Table

<pivotTable IterBinding="ptExampleDataIterator" id="ptExampleData"
 xmlns="http://xmlns.oracle.com/adfm/dvt"
 ChangeEventPolicy="ppr">
 <pivotTableDataMap>
 <columns>
 <item value="Geography" itemLabel="Location"/>
 <data aggregateDuplicates="true" defaultAggregateType="SUM">
 <item value="Sales"/>
 <item value="Units" aggregateType="AVERAGE"/>
 </data>
 </columns>
 <rows>
 <item value="Year"/>
 </rows>
 <pages>
 <item value="Channel"/>
 </pages>
 <aggregatedItems>
 <item aggregateLocation="AFTER" aggregateType="SUM" value="Geography"
 aggregateLabel="Total Geography"/>
 <item aggregateLocation="AFTER" aggregateType="SUM" value="Year"
 aggregateLabel="Total Across Years"/>
 </aggregatedItems>
 <drills type="INSERT"/>
 <hierarchies>
 <item value="Year" location="BEFORE">
 <child value="Product" label="Product"/>
 </item>
 </hierarchies>
 <sorts>
 <categorySort item="Channel" direction="DESCENDING"/>
 <categorySort item="Year" direction="ASCENDING"/>
 <qdrSliceSort direction="DESCENDING" edge="rows" grouped="true"
 nullsFirst="true">
 <item name="Geography" value="World"/>
 </qdrSliceSort>
 </sorts>
 </pivotTableDataMap>
 </pivotTable>

26.4.2.2 Code on the JSF Page for a Pivot Table and Pivot Filter Bar
When the pivot table is created using the Data Controls panel, the necessary code is
added to the page. Example 26–11 shows the code generated on the JSF page for the
sales pivot table and associated pivot filter bar.

Example 26–11 XML Code on a JSF Page for the Pivot Table and Pivot Filter Bar

<dvt:pivotFilterBar id="pivotTable1pivotFilterBar"
 value="#{bindings.ptExampleData.pivotFilterBarModel}"
 modelName="pivotTable1Model"/>

Creating Databound Pivot Tables

26-34 Fusion Developer's Guide for Oracle Application Development Framework

<dvt:pivotTable id="pivotTable1"
 value="#{bindings.ptExampleData.pivotTableModel}"
 modelName="pivotTable1Model"/>

26.4.3 What You May Need to Know About Aggregating Attributes in the Pivot Table
If the attributes that you choose to display in your pivot table do not uniquely identify
each row in your data collection, then you can aggregate the data from duplicate rows
to collapse that data into a single pivot table cell.

For example, if the rows in the data collection shown in Figure 26–15 also contained a
store identification, then the data rows from all stores in a given combination of
Product, Channel, and Geography would have to be collapsed into a single cell in the
pivot table.

The pivot table has the following optional data binding attributes available for
controlling the calculation of duplicate data rows:

■ aggregateDuplicates: Boolean property of the <data> element that
determines whether special processing is enabled at binding runtime to aggregate
data values in duplicate rows. If this attribute is not specified, then false is
assumed.

■ defaultAggregateType: String property of the <data> element that specifies a
default aggregation method for handling duplicates. Valid values are SUM,
AVERAGE, COUNT, MIN, MAX, STDDEV, VARIANCE. If aggregateDuplicates is
true and defaultAggregateType is unspecified, then SUM is assumed.

■ aggregateType: String property of an <item> element that enables you to
override the default aggregate type for a particular data item. This attribute is
useful only when you have multiple data values (such as Sales and Units) bound
to your pivot table.

26.4.3.1 Default Aggregation of Duplicate Data Rows
By default, the pivot table uses the SUM operation to aggregate the data values of
duplicate data rows in a data collection to produce a single cell value in the pivot
table. This means that the aggregateDuplicates attribute is set to true and the
defaultAggregateType is assumed to be SUM.

The <data> element shown in Example 26–10 is an example of such default
aggregation.

26.4.3.2 Custom Aggregation of Duplicate Rows
If you want the pivot table to use a different mathematical operation to aggregate the
data values of duplicate rows, then you set the defaultAggregateType to the
desired operation.

Example 26–12 shows a data element with the defaultAggregateType set to SUM.
This operation would be appropriate if you want to see the total of sales from all stores
for each unique combination of Product, Channel, and State.

Example 26–12 Binding XML for Custom Aggregation of Duplicate Rows

<pivotTable IterBinding="SalesPivotTable1Iterator" id="SalesPivotTable11"
 xmlns="http://xmlns.oracle.com/adfm/dvt">
 <pivotTableDataMap>
 <columns>
 <data aggregateDuplicates="true" defaultAggregateType="SUM">
 <item value="Sales"/>

Creating Databound Pivot Tables

Creating Databound ADF Data Visualization Components 26-35

 </data>
 <item value="Geography"/>
 </columns>
 <rows>
 <item value="Channel"/>
 <item value="Product"/>
 </rows>
 <aggregatedItems>
 <item aggregateLocation="After" aggregateType="AVERAGE"
 value="Product" aggregateLabel="Average"/>
 </aggregatedItems>
 </pivotTableDataMap>
</pivotTable>

If you have a pivot table with multiple data values (such as sales and the average size
of a store in square feet) and you want to sum the sales data values in duplicate rows,
but you want to average the square feet data values, then do the following:

■ On the <data> element, set the defaultAggregateType to SUM.

■ On the <item> element for the square feet attribute, set the aggregateType to
AVERAGE.

Example 26–13 shows the <columns> elements wrapped by a PivotTableDataMap
element. The <data> element contains the default attributes for aggregation. These
apply to all data items that do not have a specific custom aggregateType attribute
specified.

Example 26–13 Data and Item Elements for Multiple Custom Aggregations

 <columns>
 <data aggregateDuplicates="true" defaultAggregateType="SUM">
 <item value="Sales" label="Total Sales"/>
 <item value="StoreSqFeet" label="Avg Sq Feet" aggregateType="AVERAGE"/>
 </data>
 <item value="State"/>
 </columns>

26.4.4 What You May Need to Know About Specifying an Initial Sort for a Pivot Table
By default, a pivot table initially sorts data based on values in the outer row data layer.
You can specify sort order on the data layer of any row, column, or page item, called a
category sort. At runtime, when the data layer is pivoted to a different edge, the
specified category sort order is honored. Insert a categorySort element inside the
sorts element and set values for the attributes as described in Table 26–2.

You can also specify the initial sort order of the data values in the data body when the
pivot table is rendered, called a data sort. You can change the default behavior by
inserting a sorts element inside the pivotTableDataMap element of a pivot table

Table 26–2 Attribute Values for categorySort Element

Attribute Description

item Specify the column, row, or page item for which you are setting
the category sort. A value for this attribute is required.

direction Specify the initial direction of the sort. Valid values are
ASCENDING and DESCENDING. A value for this attribute is
required.

Creating Databound Geographic Maps

26-36 Fusion Developer's Guide for Oracle Application Development Framework

binding in the page definition file. Insert a qdrSliceSort element inside the sorts
element and set values for the attributes as described in Table 26–3.

Insert one or more item tags inside the qdrSliceSort tag. An item tag specifies the
slice on the opposite edge from which the values to be sorted should be obtained. Set
values for the attributes as described in Table 26–4.

26.5 Creating Databound Geographic Maps
An ADF geographic map is an ADF Data Visualization component that provides the
functionality of Oracle Spatial within Oracle ADF. This component allows users to
represent business data on a geographic map and to superimpose multiple layers of
information (known as themes) on a single map. These layers can be represented as any
of the following themes: bar graph, pie graph, color, point, and predefined theme.

Figure 26–31 shows a geographic map component that uses a base map for a region in
the United States with the following themes:

■ Color theme: For the selected product, this theme colors states based on product
popularity. The colors range from green (which represents the highest popularity
for that product) to red (which represents the lowest popularity for that product).

■ Pie graph theme: This theme displays a pie graph in each state to indicate the
popular product categories in that state. In this example, the pie graph shows the
following product categories as pie slices: Media, Office, and Electronics.

■ Point theme: This theme identifies warehouses as points. For each point, it
displays an icon to indicate the inventory level at that warehouse for the selected
product. A separate icon is displayed for each of the following ranges of
inventory: low inventory, medium inventory, and high inventory.

Table 26–3 Attribute Values for qdrSliceSort Element

Attribute Description

direction Specify the initial direction of the sort. Valid values are ASCENDING and
DESCENDING. A value for this attribute is required.

edge Specify columns or rows to determine which edge sorts data. A value for this
attribute is required.

grouped Specify true if you want to sort slices within their parent or false if you want
to sort across the entire edge. A value for this attribute is optional. The default
value is false.

nullsFirst Specify true if you want null values to appear at the beginning of a sort and
false if you want null values to appear at the end of a sort. A value for this
attribute is optional.

Table 26–4 Attribute Values for item Tag

Attribute Description

name Specify the name of the layer to sort on. Typically, this is the column name in the
row set. Specify DataLayer if you want to specify the layer that contains the data
columns in a row set (for example, Sales, Costs, and so on).

value Specify the value of the specified layer on the desired slice.

Creating Databound Geographic Maps

Creating Databound ADF Data Visualization Components 26-37

Figure 26–31 Geographic Map with Color Theme, Pie Graph Theme, and Point Theme for
a Product

A geographic map component differs from other ADF Data Visualization components
as you do not need to put multiple maps on a page to display multiple sets of data.
This contrasts to components such as graphs where you can put multiple graphs on a
page. Instead, you show how multiple sets of data relate to each other spatially or, for
a specific point, you display different attributes layered in separate themes.

The geographic map component itself is not bound to data. However, each map theme
has its own data bindings.

A base map forms the background on which the ADF geographic map component
layers the themes that developers create.

In Oracle Spatial, administrators create base maps that consist of one or more themes.
The administrator controls the visibility of the base map themes. When you zoom in
and out on a base map, various base map themes are hidden or displayed. At the ADF
geographic map component level, you cannot use zoom factor to control the display of
the themes created by the administrator on the base map.

When you overlay themes on the ADF geographic map, you can control the visibility
of your themes by setting the maxZoom and minZoom attributes of the tags related to
these themes. At runtime, you can also hide or display your custom themes by using
the View menu of the Map toolbar or by using other ADF components that you create
on the page.

For information about customizing a geographic map after data-binding is completed,
see the "Using ADF Geographic Map Components" chapter in Oracle Fusion Middleware
Web User Interface Developer's Guide for Oracle Application Development Framework.

26.5.1 How to Create a Geographic Map with a Point Theme
To create a geographic map, you first configure the map (that is, select a base map and
provide URLs for processing) and then bind a theme of the map to a data collection.
JDeveloper allows you to do this declaratively by dragging and dropping a collection
from the Data Controls panel for the theme that you want to create.

Creating Databound Geographic Maps

26-38 Fusion Developer's Guide for Oracle Application Development Framework

When you create a map point theme, you have the option of customizing the style of
the points that appear in the map. For each different point style, you can use a
mapPointStyleItem tag.

To create a geographic map with a databound point theme:
1. From the Data Controls panel, select a collection.

Figure 26–32 shows an example where you could select the
WarehouseStockLevelsByProduct1 collection in the Data Controls panel to
create a geographic map with a point theme that displays an image to represent
the quantity on hand for each warehouse point.

Figure 26–32 Data Collection for Warehouse Stock Levels

2. Drag the collection onto a JSF page and, from the context menu, choose
Geographic Map > Map and Point Theme.

3. If you have not yet configured a map on the page, then in the ensuing Create
Geographic Map dialog, click the New icon to display the Create Geographic Map
Configuration dialog and do the following:

a. In the Id field enter the unique identifier for the map configuration.

b. In the MapViewer URL field enter the URL for the Oracle WebLogic Server
MapViewer Service.

c. In the Geocoder URL field select the URL for the Geocoder Web service that
converts street addresses into latitude and longitude coordinates for mapping.

Note: The Geocoder URL is needed only if you do not already have
longitude and latitude information for addresses.

Creating Databound Geographic Maps

Creating Databound ADF Data Visualization Components 26-39

d. Click OK to dismiss the dialog and return to the Create Geographic Map
dialog.

4. In the Maps page, you select the base map for the geographic map component and
provide other settings to use with the map by doing the following:

a. From the Data Source list select the collection of maps from which you will
choose a base map.

b. From the Base Map list select the map that will serve as the background for
the geographic map component.

c. To specify values for the StartingX field and the StartingY field click on the
image of the map to center it within the Preview window.

You can use the arrows in the map navigator in the upper left-hand corner to
move the map in the appropriate direction.

d. Optionally use the sliding arrow in the Preview window to adjust the zoom
factor of the map.

e. Click OK to dismiss the dialog and to display the Create Point Map Theme
dialog.

5. In the Theme Id field enter the unique identifier for the point map theme.

6. In the Location section, specify whether the point location is to be specified by a
pair of x and y coordinates (longitude and latitude) or as an address.

The choice you select for location will determine which controls appear in the
Location section.

7. For the x and y point location, you select the data that corresponds to the
following items:

■ X (Longitude): The horizontal location of the point on the map.

■ Y (Latitude): The vertical location of the point on the map.

■ Label: The labels for the points in the top section of the information window,
which is displayed when you click a point.

8. In the Point Data section, provide the following information that identifies the
data associated with the point, its label, and optionally the style for the point:

■ In the Data field, select the data column that is associated with the point, such
as QuantityOnHand.

■ In the Label field, enter the text that will appear in the information window
before the data value when you click a point.

■ Optionally, in the Category field, select a data column to use for finding the
appropriate style for a point. If you select a value for Category, that value is
stored in the binding for this point theme and then matched against the
itemValue attribute of the mapPointStyleItem tags that you create for
this point theme.

Tip: Using x and y coordinates is a more efficient way to present
data on the map rather than using the Address controls, which must
be converted by a Geocoder to x and y coordinates. If the data
collection has more than 100 rows, then to ensure adequate
performance, use x and y coordinates.

Creating Databound Geographic Maps

26-40 Fusion Developer's Guide for Oracle Application Development Framework

9. Select the Enable Row Selection field only if you want to enable the selection of
rows in a related component. You select this option when the page contains a
component that is linked to a data collection which is related to the geographic
map that you are creating.

10. Click OK.

Figure 26–33 shows the Create Point Map Theme dialog for a geographic map with a
point theme that displays an image representing quantity on hand for each warehouse
point.

Figure 26–33 Create Point Map Theme Dialog for Warehouse Inventory Levels

26.5.2 How to Create Point Style Items for a Point Theme
There are a variety of options available for creating point style items for use in a given
map point theme. These are:

■ A single image for all data points

■ Separate images for each data point category

■ Images that represent low, medium, and high data value ranges

After you create the data binding for a map point theme, you have the option of
selecting a single built-in image that should be used for all points in that map theme.
In the Property Inspector, you can make this selection in the builtInImage attribute
of the mapPointTheme tag. The default value for this attribute is OrangeBall.

Note: If your data does not have a column that you want to use as a
category for finding the style of a point, you can also use
mapPointStyleItem tags to define styles related to data ranges
(such as high, medium, and low) that are matched to the values in the
column that you select in the Data field. For more information, see
Section 26.5.2, "How to Create Point Style Items for a Point Theme".

Creating Databound Geographic Maps

Creating Databound ADF Data Visualization Components 26-41

Alternatively, if you specify a value for Category in the Create Point Map Theme
dialog, then you should also create a set of point style items to determine a separate
image that represents data points in each category. In this case, you do not use the
minimum and maximum values in the point style item tags. Instead, you set the
itemValue attribute of point style item tags to a value that matches entries in the data
column that you specified for Category.

In a point theme for a geographic map, if you do not specify a value for Category, you
can still use the mapPointStyleItem child tags of the mapPointTheme tag to
specify ranges of values (such as low, medium, and high) and the images that are to
represent these ranges. If you do this, then each point will be represented by an image
that identifies the range in which the data value for that point falls.

The following procedure assumes that you have already created a geographic map
with a point theme.

To add point style items to a map point theme to represent low, medium, and
high data value ranges:
1. In the Structure window, right-click the dvt:mapPointTheme tag and choose

Insert inside the dvt:mapPointTheme > Point Style Item.

2. In the Point Style Item Property Inspector, set values as described Table 26–5,
" Properties for Point Style Item".

3. If you defined a data value range for a low data value range in Steps 1 and 2, then
repeat Steps 1 and 2 to define medium and high data value ranges with
appropriate values.

Table 26–5 Properties for Point Style Item

For this property Set this value

Id Specify a unique ID for the point style item.

MinValue Specify the minimum value in a data range that you define.

MaxValue Specify the maximum value in a data range that you define.

ShortLabel Specify text to appear when a user hovers over the point item.
For example, if you define a point item for low inventory, then
enter Low Inventory as the value for this property.

ImageURL Specify the URL to the image file or select it from the dropdown
list. At runtime, the image you specify appears on the map to
represent the data range identified by the MinValue and
MaxValue properties.

Alternatively, you can select one of a number of predefined
images referenced by the BuiltInImage dropdown list that
appears in the Other section.

HoverImageURL Specify the URL to the image file or select it from the dropdown
list. At runtime, the image you specify appears when a user
hovers over the point item.

SelectedImageURL Specify the URL to the image file or select it from the dropdown
list. At runtime, the image you specify appears when a user
selects the point item.

Creating Databound Geographic Maps

26-42 Fusion Developer's Guide for Oracle Application Development Framework

26.5.3 What Happens When You Create a Geographic Map with a Point Theme
Dropping a geographic map and a point theme (which in this case would be the initial
theme added to the map) from the Data Controls panel has the following effect:

■ Creates the bindings for the point theme and adds the bindings to the page
definition file

■ Adds the necessary tags to the JSF page for the geographic map component

■ Adds the necessary point theme tags to the JSF page within the map XML

26.5.3.1 Binding XML for a Point Theme
Example 26–14 shows the row set bindings that were generated for the point theme of
the geographic map.

Example 26–14 Point Theme Binding XML

<mapTheme IterBinding="WarehouseStockLevelsByProduct1Iterator"
 id="WarehouseStockLevelsByProduct1"
 xmlns="http://xmlns.oracle.com/adfm/dvt">
 <mapThemeDataMap mapThemeType="point">
 <item type="data" value="QuantityOnHand" label="Product Quantity"/>
 <item type="lat_long" latitude="Latitude"
 longitude="Longitude" label="WarehouseName"/>
 </mapthemeDataMap>
</mapTheme>

26.5.3.2 XML Code on the JSF Page for a Geographic Map and Point Theme
Example 26–15 shows the XML code generated on the JSF page for the geographic
map and its point theme. Notice the code for the three kinds of point style settings
based on data value.

The initial point style setting (ps0) applies to values that do not exceed 500. This point
style displays an image for very low inventory and provides corresponding tooltip
information.

The second point style setting (ps1) applies to values between 500 and 1000. This
point style displays an image for low inventory and provides corresponding tooltip
information.

The final point style setting (ps2) applies to values between 1000 and 1600. This point
style displays an image for high inventory and provides corresponding tooltip
information.

Example 26–15 Geographic Map and Point Theme XML Code on the JSF Page

<dvt:map id="map1"
 mapServerConfigId="mapConfig1"
 inlineStyle="width:850px;height:490px"
 startingX="-96.0"

Note: The use of mapPointStyleItem child tags to customize the
style of points is a declarative approach that lets you provide custom
point images. For information about using a callback to provide not
only custom images but also custom HTML, see Section 26.5.4, "What
You May Need to Know About Adding Custom Point Style Items to a
Map Point Theme".

Creating Databound Geographic Maps

Creating Databound ADF Data Visualization Components 26-43

 baseMapName="ELOCATION_MERCATOR.WORLD_MAP"
 startingY="37.0" zoomBarPosition="WEST"
 showScaleBar="false"
 partialTriggers="go pointTheme pieTheme colorTheme" mapZoom="3">
 <dvt:mapPointTheme id="mapPointTheme1"
 shortLabel="Warehouse Stock Levels"
 selectionListener="#{MapBean.processSelection}"
 value="#{bindings.WarehouseStockLevelsByProduct1.geoMapModel}"
 rendered="#{AppState.showPointTheme}">
 <dvt:mapPointStyleItem id="ps0"
 minValue="0"
 maxValue="500"
 imageURL="/images/low.png"
 selectedImageURL="/images/lowSelected.png"
 shortLabel="Very Low Inventory"/>
 <dvt:mapPointStyleItem id="ps1"
 minValue="500"
 maxValue="1000"
 imageURL="/images/medium.png"
 selectedImageURL="/images/mediumSelected.png"
 shortLabel="Low Inventory"/>
 <dvt:mapPointStyleItem id="ps2"
 minValue="1000"
 maxValue="1600"
 imageURL="/images/regularGreen.png"
 selectedImageURL="/images/regularGreenSelected.png"
 shortLabel="High Inventory"/>
 </dvt:mapPointTheme>
 </dvt:map>

26.5.4 What You May Need to Know About Adding Custom Point Style Items to a Map
Point Theme

If you want to provide custom HTML as well as custom images for map points, then
you can use the customPointCallback attribute of the dvt:mapPointTheme tag
to accomplish this customization.

To use a callback to customize the style of map points:
1. Write a method in Java to perform the desired point customization.

2. Store this method in a managed bean for the map.

For more information about managed beans, see the "Creating and Using
Managed Beans" section in the Oracle Fusion Middleware Web User Interface
Developer's Guide for Oracle Application Development Framework.

3. After you finish data-binding the map point theme, use the Property Inspector to
specify a reference to the managed bean method in the customPointCallback
attribute of the dvt:mapPointTheme tag.

For example, if the managed bean is named MapSampleBean and the method is
named setCustomPointStyle, then the reference becomes
#{mapSampleBean.CustomPointStyle}.

Important: If you set the customPointCallback attribute for a
map point theme, the map ignores any dvt:mapPointStyleItem
child tags because the callback overrides these tags.

Creating Databound Geographic Maps

26-44 Fusion Developer's Guide for Oracle Application Development Framework

26.5.5 How to Add a Databound Color Theme to a Geographic Map
When you create a geographic map, you can choose to create themes (point, color, and
graph) in any sequence that you wish.

The following procedure assumes that a geographic map has already been configured
and, therefore, the map component does not display the dialog for configuring the
map. Instead, only the dialog for creating the color theme appears.

To add a databound color theme to a geographic map:
1. From the Data Controls panel, select a collection.

Figure 26–34 shows an example where you could select the
ProductPopularity1 collection in the Data Controls panel to create a color map
theme that shows product popularity by the color of regions (for example, states).

Figure 26–34 Data Collection for Product Popularity by State

2. Drag the collection onto a JSF page which already contains a geographic map
component and, from the context menu, choose Geographic Map > Color Theme.

3. In the ensuing Create Color Map Theme dialog, enter a unique identifier for the
map theme in the Id field.

4. In the Base Map Theme section, identify the base map color theme to use for the
geographic map by doing the following:

a. In the Name field, select the name of the base map theme.

b. For Location, select the location column in the data collection that should be
matched to the location column in the base map theme that you selected.

c. Optionally, click View Sample Theme Data to display the Sample Theme
Data dialog, in which you can examine the first several rows of the actual data
so that you can identify the appropriate location column.

For example, if you want to view the data for a region that consists of states in
the United States map, you might select MAP_STATES_NAME as shown in
Figure 26–35.

Note: It is possible for an administrator of Oracle Spatial to disable
the display of sample data. If this button is not available, then consult
the administrator for guidance.

Creating Databound Geographic Maps

Creating Databound ADF Data Visualization Components 26-45

Figure 26–35 Sample Theme Data for Regions or States

5. In the Appearance section, specify the look of the color theme as follows:

a. In Data Bucket Count, enter the number of groups for the data in this
geographic map. Each group is coded with a color. After specifying this
number, you can provide colors for the minimum value and the maximum
value. The colors for the other values are chosen automatically using an RGB
algorithm.

b. In Minimum Value Color, select the color for the minimum value.

c. In Maximum Value Color, select the color for the maximum value.

6. In the Data section, provide the following information about the data in the
collection:

a. For Location, select the column in the data collection that should match the
values in the location column that you selected from the base map theme.

b. For Location Label, select the column in the data collection that contains the
labels associated with the values in the location column. These labels are
shown in the information window that is displayed when you click or hover
over a color.

c. For Data Label, enter the label to use for describing the data in the
information window and the tooltip that is displayed when you click or hover
over a color. For example, the information window might include a label
before the data value, such as Product Popularity.

7. Use Enable Row Selection only if you want to enable master-detail relationships.
This is useful when the data collection for the map theme is a master in a
master-detail relationship with a detail view that is displayed in another UI
component on the page.

Figure 26–36 shows the Create Color Map Theme dialog for the product popularity by
state color theme.

Note: If you want to specify an exact color for each data bucket, see
Section 26.5.7, "What You May Need to Know About Customizing
Colors in a Map Color Theme".

Creating Databound Geographic Maps

26-46 Fusion Developer's Guide for Oracle Application Development Framework

Figure 26–36 Create Color Map Theme for Product Popularity By State

26.5.6 What Happens When You Add a Color Theme to a Geographic Map
Dropping a color theme from the Data Controls panel to an existing geographic map
has the following effect:

■ Creates the bindings for the color theme and adds the bindings to the page
definition file

■ Adds the necessary color theme tags to the JSF page within the map XML

26.5.6.1 Binding XML for a Color Theme
Example 26–16 shows the row set bindings that were generated for the color theme of
the geographic map.

Example 26–16 Color Theme Binding XML

<mapTheme IterBinding="ProductPopularity1Iterator" id="ProductPopularity1"
 xmlns="http://xmlns.oracle.com/adfm/dvt">
 <mapThemeDataMap mapThemeType="color">
 <item type="location" value="StateProvince" label="StateProvince"/>
 <item type="data" value="CountAddressesStateProvince"
 label="Popularity"/>
 </mapThemeDataMap>
</mapTheme>

26.5.6.2 XML Code on the JSF Page for a Color Theme
Example 26–17 shows the XML code generated on the JSF page for a color theme that
represents product popularity in different states on the United States map.

Example 26–17 Color Theme XML Code on the JSF Page

<dvt:mapColorTheme id="mapColorTheme1"
 themeName="MAP_STATES_NAME"
 shortLabel="Product Popularity"
 value="#{bindings.ProductPopularity1.geoMapModel}"
 locationColumn="POLYGON_NAME"

Creating Databound Geographic Maps

Creating Databound ADF Data Visualization Components 26-47

 minColor="#ff0000"
 maxColor="#008200"
 bucketCount="5"/>

26.5.7 What You May Need to Know About Customizing Colors in a Map Color Theme
While you are data-binding a map color theme, you can specify only a minimum color
and a maximum color for the data buckets. The map uses an algorithm to determine
the colors of the buckets between the minimum and maximum. However, after the
data-binding is finished, you have the option of specifying the exact color to be used
for each data bucket.

In the Object Inspector, for the dvt:mapColorTheme tag you can use the colorList
attribute to specify the color for each bucket. You can either bind a color array to this
attribute or you can specify a string of colors using a semicolon separator.

For example, if the value of this attributes is set to: #ff0000;#00ff00;#0000ff,
then the color of the first bucket is red, the second bucket is green, and the third bucket
is blue.

26.5.8 How to Add a Databound Pie Graph Theme to a Geographic Map
When you create a geographic map, you can choose to create themes (point, color, and
graph) in any sequence that you wish. However, only one graph theme (pie or bar) can
be visible at a time on the ADF geographic map component.

The following procedure assumes that a geographic map has already been configured
and, therefore, the map component does not display the dialog for configuring the
map. Instead, only the dialog for creating the pie graph theme appears.

To add a databound pie graph theme to a geographic map:
1. From the Data Controls panel, select a collection.

Figure 26–37 shows an example where you could select the
PopularCategories1 collection to create a pie bar theme in an existing
geographic map component to represent the popular product categories within a
state.

Figure 26–37 Data Collection for Popular Product Categories by State

2. Drag the collection onto a JSF page and, from the context menu, choose Create >
Pie Graph Theme.

Creating Databound Geographic Maps

26-48 Fusion Developer's Guide for Oracle Application Development Framework

3. In the ensuing Create Pie Graph Theme Binding dialog, do the following to
identify the new theme and the base map theme elements that you want to work
with:

a. For Theme Id, enter a unique identifier for the pie graph theme that you are
creating.

b. In the Base Map Theme section, select the name of the base map and the
region in which you want to place the pie graphs.

4. In the Appearance section, under Data, do the following:

a. For Location, select the location column in the data collection that should be
matched to the location column in the base map theme that you selected.

If needed, click View Sample Theme Data to examine the first several rows of
the actual data so that you can identify the appropriate location column.

b. For Location Label, select the column in the data collection that contains
labels for the locations in the data collection.

c. In the grid for Series Attributes, enter each attribute that contains values that
you want represented in the pie graph that you are creating.

d. Beside each series attribute, enter text that should be used as a label for the
data values in the series attribute.

5. Select Enable Row Selection only if you want to enable the selection of rows in a
related component. You select this component when the page contains a
component that is linked to a data collection that is related to the geographic map
that you are creating.

6. Click OK.

Figure 26–38 shows the completed Create Pie Graph Map Theme dialog for the
product popularity by state pie graph theme.

Figure 26–38 Create Pie Graph Map Theme for Product Popularity by State

Creating Databound Gantt Charts

Creating Databound ADF Data Visualization Components 26-49

26.5.9 What Happens When You Add a Pie Graph Theme to a Geographic Map
Dropping a pie graph theme from the Data Controls panel to an existing geographic
map has the following effect:

■ Creates the bindings for the pie graph theme and adds the bindings to the page
definition file

■ Adds the necessary pie graph theme code to the JSF page within the map XML

26.5.9.1 Binding XML for a Pie Graph Theme
Example 26–18 shows the row set bindings that were generated for the pie graph
theme of the geographic map.

Example 26–18 Pie Graph Theme Binding XML

<mapTheme IterBinding="PopularCategoriesByState1Iterator"
 id="PopularCategoriesByState1"
 xmlns="http://xmlns.oracle.com/adfm/dvt">
 <mapThemeDataMap mapThemeType="pieChart">
 <item type="location" value="StateProvince" label="StateProvince"/>
 <item type="data" value="AudioVideo" label="Audio Video"/>
 <item type="data" value="CellPhones" label="Cell Phones"/>
 <item type="data" value="Games" label="Games"/>
 </mapThemeDataMap>
</mapTheme>

26.5.9.2 Code on the JSF Page for a Pie Graph Theme
Example 26–19 shows the XML code generated on the JSF page for the pie graph
theme of the geographic map.

Example 26–19 Pie Graph Theme Code on the JSF Page

<dvt:mapPieGraphTheme id="mapPieGraphTheme1"
 themeName="MAP_STATES_NAME"
 shortLabel="Popular Categories"
 pieRadius="10"
 styleName="comet"
 value="#{bindings.PopularCategoriesByState1.geoMapModel}"
 locationColumn="POLYGON_ID"/>

26.6 Creating Databound Gantt Charts
A Gantt chart is a type of bar graph (with time on the horizontal axis). It is used in
planning and tracking projects to show tasks or resources in a time frame with a
distinct beginning and end.

When you create a Gantt chart, you can choose from the following types:

■ Project

A project Gantt chart lists tasks vertically and shows the duration of each task as a
bar on a horizontal time line.

■ Resource Utilization

A resource utilization Gantt chart shows graphically whether resources are over or
under allocated. It shows resources vertically while showing their allocation and,
optionally, capacity on the horizontal time axis.

Creating Databound Gantt Charts

26-50 Fusion Developer's Guide for Oracle Application Development Framework

■ Scheduling

A scheduling Gantt chart is based on manual scheduling boards and shows
resources vertically with corresponding activities on the horizontal time axis.
Examples of resources include people, machines, or rooms.

For information about customizing Gantt chart charts after data-binding is completed,
see the "Using ADF Gantt Chart Components" chapter in Oracle Fusion Middleware Web
User Interface Developer's Guide for Oracle Application Development Framework.

26.6.1 How to Create a Databound Project Gantt Chart
For a project Gantt chart, you must specify values for tasks. Optionally, you can
specify values for split tasks, subtasks, recurring tasks, and dependencies between
tasks, if your data collection has accessors for this additional information.

The project Gantt chart is displayed with default values for overall start time and end
time and for the major and minor time axis values. In a project Gantt chart, the setting
for the major time axis defaults to weeks and the setting for the minor time axis
defaults to days.

Figure 26–39 shows a project Gantt chart in which each task is an order to be filled. The
list region on the left side of the splitter shows columns with the name of the person
who is responsible for the order and columns for the order date and shipped date. In
the chart region on the right side of the splitter, the Gantt chart displays a horizontal
bar from the order date to the ship date for each order.

Figure 26–39 The Order Shipping Project Gantt Chart

To create a project Gantt chart using a data control, you bind the project Gantt chart
component to a data collection. JDeveloper allows you to do this declaratively by
dragging and dropping a collection from the Data Controls panel.

To create a databound project Gantt chart:
1. From the Data Controls panel, select a data collection. For a Gantt chart, you can

select a row set collection (which produces a flat list of tasks) or a basic tree
collection (which produces a hierarchical list of tasks).

Tip: You can also create a project Gantt chart by dragging a project
Gantt chart component from the Component Palette and completing
the Create Project Gantt dialog. This approach allows you to design
the Gantt chart user interface before binding the component to data.

Creating Databound Gantt Charts

Creating Databound ADF Data Visualization Components 26-51

Figure 26–40 shows an example where you could select the
OrderShippingSummary1 collection in the Data Controls panel to create a
project Gantt chart that displays the progress of order shipping.

Figure 26–40 Data Collection for Shipping Orders

2. Drag the collection onto a JSF page and, from the context menu, choose Gantt >
Project.

3. In the ensuing Create Project Gantt dialog, you do the following to connect
task-related controls in the pages at the top of the dialog with corresponding
columns in the data collection:

a. In the Tasks page at the top of the dialog, you select the columns in the data
collection that correspond to each of the following controls: Task Id, Start
Time, and End Time. By clicking Show More in the dialog, you can select
additional columns in the data collection that correspond to the following
controls: Actual Start, Actual End, % Complete, Completed Through,
Critical, and Is Container.

Optionally, you can select a column in the data collection to map to the task
type. If you do not bind Task Type to a column in your data collection, then
all tasks default to Normal. The task type controls the appearance of the task
bar when it is rendered in the Gantt chart.

A project Gantt chart component supports the following task types that you
configure the data collection to return: Summary, Normal, and Milestone.

b. If the data collection has an accessor for subtasks, you have the option of using
the Subtasks page in the dialog to select the subtasks accessor and to select the
columns in the data collection that correspond to each of the following
controls: SubTask Id, Start Time, and End Time. Optionally, you can select a
column in the data collection to map to the subtask type. If you do not bind
SubTask Type to data, then all subtasks default to Normal.

A project Gantt chart component supports the following task types that you
configure the data collection to return: Summary, Normal, and Milestone.

If you do not bind subtasks, then the Gantt chart cannot render a hierarchy
view of tasks. If you bind subtasks, then you can drill from tasks to subtasks in
the hierarchy view of the Gantt chart.

c. If the data collection has an accessor for dependent tasks, you have the option
of using the Dependent Tasks page in the dialog to select the dependent task
accessor and to select the columns in the data collection that correspond to the
following controls: Dependency Type, From Task Id, and To Task Id.

Creating Databound Gantt Charts

26-52 Fusion Developer's Guide for Oracle Application Development Framework

Dependent tasks are linked by their dependency between their finish and start
times.

A project Gantt chart component supports the following dependency types
that you configure the data collection to return: fs (for finish to start), ss (for
start to start), ff (for finish to finish), and sf (for start to finish).

d. If the data collection has an accessor for split tasks, you have the option of
using the Split Tasks page in the dialog to select Split Tasks accessor and to
select the columns in that data collection that correspond to each of the
following controls: SplitTask Id, Start Time, and End Time.

e. If the data collection has an accessor for recurring tasks, you have the option
of using the Recurring Tasks page in the dialog to select the recurring tasks
accessor and to select the columns in that data collection that correspond to
each of the following controls: Recurring Task Id, Type, Start Time, and End
Time.

f. You can use the Appearance page in the dialog to specify the attributes that
correspond to the Label of the task bar, and up to three icons to associate with
the task bar.

4. In the Table Columns section, you specify the columns to appear in the list region
of the Gantt chart. Specify one row of information for each column that is to
appear. Use the New icon to add new rows. Use the arrow icons to arrange the
rows in the exact sequence that you want the columns to appear in the Gantt chart
list.

For each row, you provide the following specifications:

■ Display Label: Select the values for the headers of the columns in the Gantt
chart list. If you select <default>, then the text for the header is automatically
retrieved from the data binding.

■ Value Binding: Select the columns in the data collection to use for the
columns in the Gantt chart list. The available values are the same as those for
the tasks group.

■ Component to Use: Select the type of component to display in the cell of the
Gantt chart list. The default is the ADF Output Text component.

5. Click OK.

6. If you want to include a legend in the Gantt chart, right-click the project Gantt
chart node in the Structure window and choose Insert inside dvt:projectGantt >
Legend.

The legend shows information about each symbol and color coded bar that is used
to represent different task types. It also shows detailed information about the task
that is selected in the Gantt chart.

Figure 26–41 shows the dialog used to create the project Gantt dialog from the data
collection for shipping orders.

Note: The first row that you specify in the Table Columns section
designates the nodestamp column for the list region. The nodestamp
column is the one that you can expand or collapse when you have a
subtask collection.

Creating Databound Gantt Charts

Creating Databound ADF Data Visualization Components 26-53

Figure 26–41 Create Project Gantt Dialog for Orders Shipped

After completing the data binding dialog, you can use the Property Inspector to
specify values for additional attributes for the project Gantt chart.

26.6.2 What Happens When You Create a Project Gantt Chart from a Data Control
Dropping a project Gantt chart from the Data Controls panel has the following effect:

■ Creates the bindings for the Gantt chart and adds the bindings to the page
definition file

■ Adds the necessary code for the UI components to the JSF page

Example 26–20 displays the row set bindings that were generated for the project Gantt
chart that displays orders shipped. This code example shows that there are nodes
defined for tasks and subtasks, along with attributes. There are also nodes defined for
dependent tasks, split tasks, and recurring tasks but no attributes.

Example 26–20 Bindings for a Project Gantt Chart

<gantt IterBinding="OrderShippingSummary2Iterator"
 id="OrderShippingSummary2" xmlns="http://xmlns.oracle.com/adfm/dvt">
<ganttDataMap>
<nodeDefinition DefName="oracle.fod.model.OrderShippingSummary"
type="Tasks">
 <AttrNames>
 <Item Value="PersonId" type="taskId"/>
 <Item Value="OrderDate" type="startTime"/>
 <Item Value="TaskType" type="taskType"/>
 <Item Value="ShippedDate" type="endTime"/>
 </AttrNames>
 <Accessors>
 <Item Value="OrderShippingDetails" type="subTasks"/>

Creating Databound Gantt Charts

26-54 Fusion Developer's Guide for Oracle Application Development Framework

 </Accessors>
</nodeDefinition>
<nodeDefinition type="SubTasks"
DefName="oracle.fod.model.OrderShippingDetails">
 <AttrNames>
 <Item Value="OrderId" type="taskId"/>
 <Item Value="OrderDate" type="startTime"/>
 <Item Value="TaskType" type="subTaskType"/>
 <Item Value="ShippedDate" type="endTime"/>
 </AttrNames>
</nodeDefinition>
<nodeDefinition type="Dependents">
 <AttrNames/>
</nodeDefinition>
<nodeDefinition type="SplitTasks">
 <AttrNames/>
</nodeDefinition>
<nodeDefinition type="RecurringTasks">
 <AttrNames/>
</nodeDefinition>
</ganttDataMap>
</gantt>

Example 26–21 shows the code generated on the JSF page for the ADF project Gantt
chart. This tag code contains settings for the overall start and end time for the project
Gantt chart. It also shows the default time axis settings for the major axis (in weeks)
and the minor axis (in days). Finally, it lists the specifications for each column that
appears in the list region of the Gantt chart. For brevity, the code in the af:column
elements for OrderStatusCode and ShippedDate has been omitted.

Example 26–21 Code on the JSF Page for a Project Gantt Chart

<projectGantt id="projectGantt1"
 value="#{bindings.OrderShippingSummary2.projectGanttModel}"
 var="row" startTime="2008-05-17" endTime="2008-07-07"
 inlineStyle="width:100%; height:100%;">
 <f:facet name="major">
 <timeAxis scale="weeks"/>
 </f:facet>
 <f:facet name="minor">
 <timeAxis scale="days"/>
 </f:facet>
 <f:facet name="nodeStamp">
 <af:column sortProperty="FirstName" sortable="false"
 headerText="#{bindings.OrderShippingSummary2.hints.FirstName.label}">
 <af:outputText value="#{row.FirstName}"/>
 </af:column>
 </f:facet>
 <af:column sortProperty="LastName" sortable="false"
 headerText="#{bindings.OrderShippingSummary2.hints.LastName.label}">
 <af:outputText value="#{row.LastName}"/>
 </af:column>
 <af:column sortProperty="OrderDate" sortable="false"
 headerText="#{bindings.OrderShippingSummary2.hints.OrderDate.label}">
 <af:outputText value="#{row.OrderDate}">
 <af:convertDateTime
 pattern="#{bindings.OrderShippingSummary2.hints.OrderDate.format}"/>
 </af:outputText>
 </af:column>
 <af:column sortProperty="ShippedDate" sortable="false"

Creating Databound Gantt Charts

Creating Databound ADF Data Visualization Components 26-55

 headerText="#{bindings.OrderShippingSummary2.hints.ShippedDate.label}">
 <af:outputText value="#{row.ShippedDate}">
 <af:convertDateTime
 pattern="#{bindings.OrderShippingSummary2.hints.ShippedDate.format}"/>
 </af:outputText>
 </af:column>
 <af:column sortProperty="TaskType" sortable="false"
 headerText="#{bindings.OrderShippingSummary2.hints.TaskType.label}">
 <af:outputText value="#{row.TaskType}"/>
 </af:column>
 </projectGantt>

26.6.3 What You May Need to Know About Summary Tasks in a Project Gantt Chart
A summary task shows start time and end time for a group of tasks (which are usually
subtasks). A summary task cannot be moved or extended. However, your application
should recalculate the summary task times when the dates of any subtask changes.

To detect a change in task duration, register an event handler by specifying a method
binding expression on the DataChangeListener attribute of the Gantt chart
component. When an action occurs that potentially changes data in the Gantt chart,
the event fired is of type
oracle.adf.view.faces.bi.event.DataChangeEvent. This event contains
information about the data changes and is fired to the registered event listener. The
listener is responsible for validating the new values and updating the underlying data
model.

When the update is completed, the Gantt chart is refreshed with either the old data (if
the update failed) or with the new data. The Gantt chart uses partial page rendering so
that only the Gantt chart and not the entire page is refreshed.

26.6.4 What You May Need to Know About Percent Complete in a Project Gantt Chart
Percent complete can be represented as an inner bar that indicates what percentage of
a task is complete. The length of the inner bar is calculated based on percent complete
returned by the data object.

The data binding dialog for the project Gantt chart does not provide a control in which
you can enter the percentage complete value, but this value is required to render a
percent complete. However, the Gantt chart data object does contain a
percentComplete attribute.

To provide the percent complete integer, you must add a new attribute mapping in the
nodeDefinition for type Tasks. For example, if your data collection has a column
named PercentDone, then the attribute mapping would appear as follows: <Item
Value="PercentDone" type="percentComplete"/>.

Example 26–22 shows the percent complete attribute mapping added to the data
binding code for the nodeDefinition of type Tasks in the project Gantt chart
binding displayed in Example 26–20.

Example 26–22 Bindings for Project Gantt Chart with Percent Complete

<nodeDefinition DefName="oracle.fod.model.OrderShippingSummary"
type="Tasks">
 <AttrNames>
 <Item Value="PersonId" type="taskId"/>
 <Item Value="OrderDate" type="startTime"/>
 <Item Value="TaskType" type="taskType"/>

Creating Databound Gantt Charts

26-56 Fusion Developer's Guide for Oracle Application Development Framework

 <Item Value="ShippedDate" type="endTime"/>
 <Item Value="PercentDone" type="percentComplete"/>
 </AttrNames>

Another attribute (completedThrough) exists that allows you to specify a date rather
than a percentage. The Gantt chart data object calculates the percentage complete
based on the date that the completedThrough attribute references. For example, if
your data collection has a column named PercentDone, then the attribute mapping
would appear as follows: <Item Value="PercentDone"
type="completedThrough"/>.

26.6.5 What You May Need to Know About Variance in a Project Gantt Chart
Variance can be rendered within two horizontal bars. One bar represents the base (or
original) start and end time for the task. The second bar represents the actual start and
end time for the task. You enter the binding information for the base start time and
end time in the data binding dialog for a project Gantt chart.

The data binding dialog for Gantt chart does not provide controls in which you can
enter the actual start time and actual end time for the Gantt chart, but these values are
required to render variance. However, the Gantt chart data object does contain the
following attributes: actualStart and actualEnd.

To provide the actual start and actual end time, you must add two new attribute
mappings in the nodeDefinition for type Tasks. For example, if your data
collection has columns named ActualStartDate and ActualEndDate, then the
attribute mappings would appear as shown in Example 26–23.

Example 26–23 Attribute Mappings for Actual Start and Actual End

<Item Value="ActualStartDate" type="actualStart"/>
<Item Value="ActualEndDate" type="actualEnd"/>

Example 26–24 shows the actual start and actual end attribute mappings added to the
data binding code for the nodeDefinition of type Tasks for a project Gantt chart.

Example 26–24 Bindings for Project Gantt Chart with Actual Start and Actual End

<nodeDefinition DefName="oracle.fod.model.OrderShippingSummary"
 type="Tasks">
 <AttrNames>
 <Item Value="PersonId" type="taskId"/>
 <Item Value="OrderDate" type="startTime"/>
 <Item Value="TaskType" type="taskType"/>
 <Item Value="ShippedDate" type="endTime"/>
 <Item Value="ActualStartDate" type="actualStart"/>
 <Item Value="ActualEndDate" type="actualEnd"/>
 </AttrNames>

26.6.6 How to Create a Databound Resource Utilization Gantt Chart
For a resource utilization Gantt chart, you must supply identification for resources,
identification for time, and start and end times for resource usage. Optionally, you can
provide data values for subresources.

The resource utilization Gantt chart is displayed with default values for the major and
minor time axis values. In a resource utilization Gantt chart, the setting for the major
time axis defaults to weeks and the setting for the minor time axis defaults to days.

Creating Databound Gantt Charts

Creating Databound ADF Data Visualization Components 26-57

Figure 26–42 shows a resource utilization Gantt chart that lists each resource and an
associated calendar that can display when the resource is in use.

Figure 26–42 Resource Utilization Gantt Chart

To create a resource utilization Gantt chart using a data control, you bind the resource
utilization component to a data collection. JDeveloper allows you to do this
declaratively by dragging a collection from the Data Controls panel and dropping it on
a JSF page.

To create a resource utilization Gantt chart:
1. From the Data Controls panel, select a data collection. For a Gantt chart, you can

select a row set collection or a basic tree collection.

Figure 26–43 shows an example where you could select the
GanttRugResourcesView1 collection in the Data Controls panel to create a
resource utilization Gantt chart to display the usage of a resource.

Figure 26–43 Data Collection for Resource Utilization

2. Drag the collection onto a JSF page and, from the context menu, choose Gantt >
Resource Utilization.

3. In the Create Resource Utilization Gantt dialog, connect resource- and time-related
controls with corresponding columns in the data collection.

a. For Resource Id, select the column in the data collection that corresponds to
the unique identifier of the resource.

b. In the Time Buckets page, select a value from the Bucket Accessor dropdown
list that contains the time buckets assigned to the resource and select a value
from the Bucket Date dropdown list that corresponds to a unit of time.

c. In the Bucket Metrics list, you can optionally specify attributes that appear as
bars within the time bucket. Each attribute that you specify in the Bucket

Tip: You can also create a resource utilization Gantt chart by
dragging a resource utilization Gantt chart component from the
Component Palette and completing the Create Resource Utilization
Gantt dialog. This approach gives you the option of designing the
Gantt chart user interface before binding the component to data.

Creating Databound Gantt Charts

26-58 Fusion Developer's Guide for Oracle Application Development Framework

Metrics list must be of type Number as the value of the attribute is used to
calculate the height of the bar.

d. In the Table Columns list, specify the column(s) to appear in the list region of
the Gantt chart resource utilization on the left side of the splitter. Specify one
row of information for each column that is to appear. Use the New icon to add
new rows. Use the arrow icon to arrange the rows in the exact sequence that
you want the columns to appear in the resource utilization list. For each row,
provide values for Display Label, Value Binding, and Component to Use.

e. If the data collection has an accessor for subresources, you can use the
Subresources page to select a subresources accessor and a resource ID.

4. Click OK.

Figure 26–44 shows the dialog used to create a resource utilization Gantt chart
from the data collection for resources available for a project.

Figure 26–44 Create Resource Utilization Gantt Chart

26.6.7 What Happens When You Create a Resource Utilization Gantt Chart
Dropping a resource utilization Gantt chart from the Data Controls panel onto a JSF
page has the following effects:

■ Creates bindings for the resource utilization Gantt chart and adds the bindings to
the page definition file

■ Adds the necessary code for the UI components to the JSF page

Example 26–25 shows the row set bindings that were generated for the resource
utilization Gantt chart illustrated in Figure 26–44.

Example 26–25 Binding XML for a Resource Utilization Gantt Chart

<gantt IterBinding="GanttRugResourcesView2Iterator"

Creating Databound Gantt Charts

Creating Databound ADF Data Visualization Components 26-59

 id="GanttRugResourcesView2"
 xmlns="http://xmlns.oracle.com/adfm/dvt">
<ganttDataMap>
<nodeDefinition DefName="model.GanttRugResourcesView" type="Resources">
 <AttrNames>
 <Item Value="ResourceId" type="resourceId"/>
 </AttrNames>
 <Accessors>
 <Item Value="GanttRugTimebucketsView2" type="timeBuckets"/>
 </Accessors>
</nodeDefinition>
<nodeDefinition type="TimeBuckets"
DefName="model.GanttRugTimebucketsView">
 <AttrNames>
 <Item Value="TimeDaily" type="time"/>
 <Item type="metric" Value="Available"/>
 <Item type="metric" Value="Setup"/>
 <Item type="metric" Value="Used"/>
 </AttrNames>
</nodeDefinition>
<nodeDefinition type="Subresources">
 <AttrNames/>
</nodeDefinition>
</ganttDataMap>
</gantt>

Example 26–26 shows the code generated on the JSF page for the resource utilization
Gantt chart. This tag code contains settings for the overall start and end time for the
resource utilization Gantt chart. These settings have to be edited manually. The code
also shows the time axis settings for the major time axis (in weeks) and the minor time
axis (in days). Finally, it lists the specifications for each column to appear in the list
region of the resource utilization Gantt chart.

Example 26–26 Code on the JSF Page for a Resource Utilization Gantt Chart

<dvt:resourceUtilizationGantt id="resourceUtilizationGantt1"
value="#{bindings.GanttRugResourcesView2.resourceUtilizationGanttModel}"
var="row"
metrics="#{bindings.GanttRugResourcesView2.metrics}"
taskbarFormatManager="#{bindings.GanttRugResourcesView2.resourceUtilizationGanttTa
skbarFormatManager}"
startTime="2008-07-03"
endTime="2008-07-29">
 <f:facet name="major">
 <dvt:timeAxis scale="weeks"/>
 </f:facet>
 <f:facet name="minor">
 <dvt:timeAxis scale="days"/>
 </f:facet>
 <f:facet name="nodeStamp">
 <af:column sortProperty="ResourceId" sortable="false"
 headerText="#{bindings.GanttRugResourcesView2.hints.ResourceId.label}">
 <af:outputText value="#{row.ResourceId}"/>
 </af:column>
 </f:facet>
 <af:column sortProperty="ResourceName" sortable="false"
 headerText="#{bindings.GanttRugResourcesView2.hints.ResourceName.label}">
 <af:outputText value="#{row.ResourceName}"/>
 </af:column>

Creating Databound Gantt Charts

26-60 Fusion Developer's Guide for Oracle Application Development Framework

 <af:column sortProperty="ServiceRegion" sortable="false"
 headerText="#{bindings.GanttRugResourcesView2.hints.ServiceRegion.label}">
 <af:outputText value="#{row.ServiceRegion}"/>
 </af:column>
</dvt:resourceUtilizationGantt>

26.6.8 How to Create a Databound Scheduling Gantt Chart
For a scheduling Gantt chart, you must supply identification for resources,
identification for tasks, and start and end times for tasks. Optionally, you can provide
data values for subresources, recurring tasks, split tasks, and dependencies between
tasks.

The scheduling Gantt chart is displayed with default values for overall start and end
time and for the major and minor time axis values. In a scheduling Gantt chart, the
setting for the major time axis defaults to weeks and the setting for the minor time axis
defaults to days.

Figure 26–45 shows a scheduling Gantt chart that lists each resource and all the orders
for which that resource is responsible. In contrast to a project Gantt chart, the
scheduling Gantt chart shows all the tasks for a given resource on the same line, while
the project Gantt chart lists each task on a separate line.

Figure 26–45 The Scheduling Gantt Chart for Order Shipping

To create a scheduling Gantt chart using a data control, you bind the
schedulingGantt tag to a data collection. JDeveloper allows you to do this
declaratively by dragging and dropping a collection from the Data Controls panel.

To create a databound scheduling Gantt chart:
1. From the Data Controls panel, select a data collection. For a Gantt chart, you can

select a row set collection or a basic tree collection.

Creating Databound Gantt Charts

Creating Databound ADF Data Visualization Components 26-61

Figure 26–46 shows an example where you could select the Persons data
collection to create a scheduling Gantt chart that displays the orders that each
resource is responsible for.

Figure 26–46 Data Collection for Resources

2. Drag the collection onto a JSF page and, from the context menu, choose Gantt,
then Scheduling.

3. In the ensuing Create Scheduling Gantt dialog, you do the following to connect
resource- and task-related controls at the top of the dialog with corresponding
columns in the data collection:

a. For Resource Id, select the column in the data collection that corresponds to
the unique identifier of the resource.

b. In the Tasks page select a value from the Task Accessor dropdown list that
contains the tasks assigned to the resource. Select the columns in the data
collection that correspond to each of the following controls: Task Id, Start
Time, and End Time. You can optionally specify a data column to map to task
type. If you do not bind task type to data, then all task types default to
Normal.

c. If the data collection has an accessor that holds dependent tasks, you have the
option of using the Dependent Tasks page in the dialog to select the
dependent tasks accessor and to select the columns in that data collection that
correspond to each of the following controls: Dependency Type, From Task
Id, and To Task Id.

d. If the data collection has an accessor for split tasks, you have the option of
using the Split Tasks page in the dialog to select the split tasks accessor and to
select the columns in that data collection that correspond to each of the
following controls: Split Task Id, Start Time, and End Time.

e. If the data collection has an accessor for recurring tasks, you have the option
of using the Recurring Tasks page in the dialog to select the Recurring Tasks
accessor and to select the columns in that data collection that correspond to

Creating Databound Gantt Charts

26-62 Fusion Developer's Guide for Oracle Application Development Framework

each of the following controls: Recurring Task Id, Type, Start Time, and End
Time.

f. If the data collection has an accessor for subresources (lower-level resources),
you have the option of using the Subresouces page to specify the appropriate
accessor and to select the data column that contains the unique identifier of
the subresource.

For example, a manager might be a resource and his direct reports might be
subresources. If data contains subresources, then you can drill in a resource to
locate subresources.

4. In the Table Columns section, you specify the columns that will appear in the list
region of the Gantt chart on the left side of the splitter. Specify one row of
information for each column that is to appear. Use the New icon to add new rows.
Use the arrow icon to arrange the rows in the exact sequence that you want the
columns to appear in the Gantt chart list. For each row, you provide the following
specifications:

■ Display Label: Select the values for the headers of the columns in the Gantt
chart list. If you select <default>, then the text for the header is
automatically retrieved from the data binding.

■ Value Binding: Select the columns in the data collection to use for the column
in the Gantt chart list. The available values are the same as those for the tasks
group.

■ Component to Use: Select the type of component to display in the cell of the
Gantt chart list. The default is the ADF Output Text component.

5. Click OK to dismiss the Create Scheduling Gantt dialog.

6. Select the dvt:schedulingGantt element in the Structure window of the JSF
page and set dates for the following attributes of the dvt:schedulingGantt
element in the Property Inspector:

■ StartTime

■ EndTime

The dates that you specify determine the initial view that appears in the
scheduling Gantt chart at runtime.

Figure 26–47 shows the dialog used to create the scheduling Gantt chart from the data
collection for resources responsible for shipping orders.

Creating Databound Gantt Charts

Creating Databound ADF Data Visualization Components 26-63

Figure 26–47 Create Scheduling Gantt Dialog

26.6.9 What Happens When You Create a Scheduling Gantt Chart
Dropping a scheduling Gantt chart from the Data Controls panel has the following
effect:

■ Creates the bindings for the Gantt chart and adds the bindings to the page
definition file

■ Adds the necessary code for the UI components to the JSF page

Example 26–27 shows the row set bindings that were generated for the scheduling
Gantt chart that displays resources and orders shipped.

Example 26–27 Binding XML for a Scheduling Gantt Chart

<gantt IterBinding="PersonsIterator" id="Persons"
 xmlns="http://xmlns.oracle.com/adfm/dvt">
 <ganttDataMap>
 <nodeDefinition DefName="oracle.fodemo.storefront.store.queries.PersonsVO"
 type="Resources">
 <AttrNames>
 <Item Value="PersonId" type="resourceId"/>
 </AttrNames>
 <Accessors>
 <Item Value="OrdersVO" type="tasks"/>
 </Accessors>
 </nodeDefinition>
 <nodeDefinition type="Tasks"
 DefName="oracle.fodemo.storefront.store.queries.OrdersVO">
 <AttrNames>
 <Item Value="OrderId" type="taskId"/>
 <Item Value="OrderDate" type="startTime"/>
 <Item Value="OrderStatusCode" type="taskType"/>
 <Item Value="OrderShippedDate" type="endTime"/>
 </AttrNames>
 </nodeDefinition>
 <nodeDefinition type="Dependents">

Creating Databound Hierarchy Viewers

26-64 Fusion Developer's Guide for Oracle Application Development Framework

 <AttrNames/>
 </nodeDefinition>
 <nodeDefinition type="SplitTasks">
 <AttrNames/>
 </nodeDefinition>
 <nodeDefinition type="RecurringTasks">
 <AttrNames/>
 </nodeDefinition>
 <nodeDefinition type="Subresources">
 <AttrNames/>
 </nodeDefinition>
 </ganttDataMap>
 </gantt>

Example 26–28 shows the code generated on the JSF page for the scheduling Gantt
chart. This tag code contains settings for the overall start and end time for the
scheduling Gantt chart. It also shows the time axis settings for the major time axis (in
months) and the minor time axis (in weeks). Finally, it lists the specifications for each
column that appears in the list region of the Gantt chart. For brevity, the code in the
af:column elements for MembershipId, Email, and PhoneNumber has been
omitted.

Example 26–28 Code on the JSF Page for a Scheduling Gantt Chart

<dvt:schedulingGantt id="schedulingGantt1"
 value="#{bindings.Persons.schedulingGanttModel}"
 var="row" startTime="2008-03-29"
 endTime="2008-05-30"
 taskbarFormatManager="#{GanttBean.taskbarFormatManager}">
 <f:facet name="major">
 <dvt:timeAxis scale="months"/>
 </f:facet>
 <f:facet name="minor">
 <dvt:timeAxis scale="weeks"/>
 </f:facet>
 <f:facet name="nodeStamp">
 <af:column sortProperty="FirstName" sortable="false"
 headerText="#{bindings.Persons.hints.FirstName.label}">
 <af:outputText value="#{row.FirstName}"/>
 </af:column>
 </f:facet>
 <af:column sortProperty="LastName" sortable="false"
 headerText="#{bindings.Persons.hints.LastName.label}">
 <af:outputText value="#{row.LastName}"/>
 </af:column>
 ...
 <dvt:ganttLegend>
</dvt:schedulingGantt>

26.7 Creating Databound Hierarchy Viewers
A hierarchy viewer is an ADF Data Visualization component that visually displays
data where parent-child relationships exist within the data. This component is useful
where you want to display organization charts, network diagrams, or social networks,
for example.

Figure 26–48 shows a runtime view of a hierarchy viewer component that renders an
organization chart.

Creating Databound Hierarchy Viewers

Creating Databound ADF Data Visualization Components 26-65

Figure 26–48 Hierarchy Viewer Component Rendering an Organization Chart

Figure 26–49 shows the Component Gallery displaying the types of hierarchy viewers
and the quick start layouts that you can use to create a hierarchy viewer.

Creating Databound Hierarchy Viewers

26-66 Fusion Developer's Guide for Oracle Application Development Framework

Figure 26–49 Component Gallery for Hierarchy Viewer Types

Each hierarchy viewer component (dvt:hierarchyViewer) that you create can
include:

■ One or more node elements (dvt:node)

■ One or more link elements (dvt:link)

The optional panel card element (dvt:panelCard) can be used in conjunction with
the hierarchy viewer component. The panel card provides a method to dynamically
switch between multiple sets of content referenced by a node element using animation
by, for example, horizontally sliding the content or flipping a node over. You can
specify the use of a panel card by choosing the quick start layout selected in
Figure 26–49.

For information about customizing a hierarchy viewer after the databinding is
complete, see the "Using ADF Hierarchy Viewer Components" chapter in Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application Development
Framework.

26.7.1 How to Create a Databound Hierarchy Viewer
Hierarchy viewers are based on data collections where a master-detail relationship
exists between one or more detail collections and a master data collection. Using data
controls in Oracle ADF, JDeveloper makes this a declarative task. You drag and drop a
data collection from the Data Controls panel that generates one or more root nodes
onto a JSF page.

To create a databound hierarchy viewer:
1. From the Data Controls panel, select a collection.

Creating Databound Hierarchy Viewers

Creating Databound ADF Data Visualization Components 26-67

2. Drag the collection onto a JSF page and, from the context menu, choose Hierarchy
Viewer, then select the type of hierarchy viewer you want to create and the layout
of the hierarchy viewer component. Figure 26–49, "Component Gallery for
Hierarchy Viewer Types" shows the available types of hierarchy viewers.

3. In the resulting Create Hierarchy Viewer dialog, do the following:

■ In the Hierarchy list, select the collections you want to include as nodes in the
runtime diagram.

■ For each collection that you select in the Hierarchy list, select attributes in the
adjoining Node Attributes list to appear, using one or more of the zoom levels
available to you. Select Add Zoom Level for each of the 75%, 50%, or 25%
levels that you configure.

The hierarchy viewer component defines four zoom levels. You cannot modify
these zoom levels or create new zoom levels. The default zoom level is 100%.

4. Click OK.

Figure 26–50 shows the Create Hierarchy Viewer dialog that appears if you create a
hierarchy viewer using data from a data collection named rootEmp1. In the example,
the following is configured for the 100% zoom level:

■ In the Hierarchy area, the data collection rootEmp1 is selected to display the tree
binding, and the accessor HvtestView is selected to display the child nodes in the
tree.

■ The Quick Start Layout selection specifies that a dvt:panelCard will be
configured for the hierarchy viewer node.

■ The Image selection specifies the image file to be stamped in each node. This
option is only available for the panel card Quick Start Layout.

■ The Node Attributes selection specifies the contents and order of display in each
node, along with the ADF component used to render the content.

Note: Other than choosing a Quick Start layout, the Component
Gallery and the subsequent Create Hierarchy Viewer dialog do not
allow you to customize the appearance of the hierarchy viewer. To
customize the appearance of the hierarchy viewer, set values for the
hierarchy viewer using the Property Inspector after you complete this
procedure.

Creating Databound Hierarchy Viewers

26-68 Fusion Developer's Guide for Oracle Application Development Framework

Figure 26–50 Create Hierarchy Viewer Dialog for Employees

After completing the Create Hierarchy Viewer dialog, you can use the Property
Inspector to specify settings for the hierarchy viewer attributes and you can also use
the child tags associated with the hierarchy viewer tag to customize the hierarchy
further.

26.7.2 What Happens When You Create a Databound Hierarchy Viewer
Creating a hierarchy viewer from Data Controls panel has the following effect:

■ Creates the bindings for the hierarchy viewer in the page definition file of the JSF
page

■ Adds the necessary tags to the JSF page for the hierarchy viewer component

Example 26–29 displays bindings that JDeveloper generated for a hierarchy viewer
component. The rules for populating the nodes of the master-detail tree are defined as
a node definition. The example shows that two node definitions were generated. Each
of these node definitions references a view object and associated attributes. The code
example also references an accessor (HvtestView).

Example 26–29 Bindings for a Hierarchy Viewer

<tree IterBinding="rootEmp1Iterator" id="rootEmp1">
 <nodeDefinition DefName="model.rootEmp">
 <AttrNames>
 <Item Value="Adress"/>
 <Item Value="Email"/>
 <Item Value="Lastname"/>
 <Item Value="Thumburl"/>
 <Item Value="Firstname"/>

Creating Databound Hierarchy Viewers

Creating Databound ADF Data Visualization Components 26-69

 <Item Value="Title"/>
 <Item Value="Managerid"/>
 <Item Value="Id"/>
 <Item Value="Phone"/>
 <Item Value="City"/>
 <Item Value="State"/>
 </AttrNames>
 <Accessors>
 <Item Value="HvtestView"/>
 </Accessors>
 </nodeDefinition>
 <nodeDefinition DefName="model.HvtestView">
 <AttrNames>
 <Item Value="Adress"/>
 <Item Value="Email"/>
 <Item Value="Lastname"/>
 <Item Value="Thumburl"/>
 <Item Value="Firstname"/>
 <Item Value="Title"/>
 <Item Value="Managerid"/>
 <Item Value="Id"/>
 <Item Value="Phone"/>
 <Item Value="City"/>
 <Item Value="State"/>
 </AttrNames>
 <Accessors>
 <Item Value="ManageridHvtestView"/>
 </Accessors>
 </nodeDefinition>
 </tree>

Example 26–30 shows the code generated on the JSF page that is associated with the
page definition file in Example 26–29. For brevity, the code in the facet elements
named zoom75, zoom50, and zoom25 has been omitted. Some code from elements
such as <af:panelGroupLayout>, <af:spacer/>, and <af:separator/> has
also been omitted.

The example shows a hierarchy viewer component that references the rootEmp1 tree
binding. It includes a node (dvt:node) component that in turn includes a panel card
component (dvt:panelCard). The panel card component defines slide_horz as
the effect to use when changing the display of content referenced by the node.

It is not possible to customize the layout of a hierarchy viewer component or to add
additional components, such as panel card, using the Create Hierarchy dialog
illustrated in Figure 26–50. For this reason, you customize the layout of a hierarchy
viewer component directly in the code, in the visual editor, or by setting values in the
Property Inspector. You add additional components, such as panel card, using the
Component Palette.

Example 26–30 Code on the JSF Page for a Hierarchy Viewer

<dvt:hierarchyViewer inlineStyle="width:100%;height:100%;"
 id="hv1" var="node"
 value="#{bindings.rootEmp1.treeModel}"
 selectionListener="#{bindings.rootEmp1.treeModel.makeCurrent}"
 navigateUpListener="#{bindings.ExecuteWithParams1.execute}">
 <dvt:link linkType="orthogonalRounded"/>
 <dvt:node type="model.rootEmp model.HvtestView"
 width="186" height="210"
 setAnchorListener="#{bindings.ExecuteWithParams.execute}"

Creating Databound Hierarchy Viewers

26-70 Fusion Developer's Guide for Oracle Application Development Framework

 showNavigateUp="#{node.Managerid != null}">
 <f:facet name="zoom100">
<af:panelGroupLayout layout="vertical"
inlineStyle="width:100%;height:100%;background-color:#C0E4FD;border-color:#87CDFC;
border-width:1;padding:5;">
 <dvt:panelCard effect="slide_horz">
 <af:showDetailItem text="Contact Info"
 inlineStyle="font-size:xx-small;">
 <af:spacer height="2"/>
 <af:panelFormLayout inlineStyle="width:100%;height:100%;">
<af:panelLabelAndMessage label="#{bindings.rootEmp1.hints.Email.label}">
 <af:goLink text="#{node.bindings.Email.inputValue}"
 destination="mailto:#{node.bindings.Email.inputValue}"/>
</af:panelLabelAndMessage>
<af:panelLabelAndMessage label="#{bindings.rootEmp1.hints.Phone.label}">
 <af:outputFormatted value="#{node.bindings.Phone.inputValue}"/>
</af:panelLabelAndMessage>
 </af:panelFormLayout>
 </af:showDetailItem>
 <af:showDetailItem text="Address">
 <af:spacer height="2"/>
 <af:panelFormLayout inlineStyle="width:100%;height:100%;">
<af:panelLabelAndMessage label="Address">
 <af:outputFormatted value="#{node.bindings.Adress.inputValue}"/>
</af:panelLabelAndMessage>
<af:panelLabelAndMessage label="">
 <af:outputFormatted value="#{node.bindings.City.inputValue},
#{node.bindings.State.inputValue} "/>
</af:panelLabelAndMessage>
 </af:panelFormLayout>
 </af:showDetailItem>
 </dvt:panelCard>
</af:panelGroupLayout>
 </f:facet>
 </dvt:node>
 </dvt:hierarchyViewer>

26.7.3 How to Create a Databound Search in a Hierarchy Viewer
The search function in a hierarchy viewer is based on the searchable attributes or
columns of the data collection that is the basis of the hierarchy viewer data model.
Using a query results collection defined in data controls in Oracle ADF, JDeveloper
makes this a declarative task. You drag and drop an ExecuteWithParams operation
into an existing hierarchy viewer component on the page.

Before you begin:
1. You must have a databound hierarchy viewer component present on your page.

2. Verify the query that retrieves the root node in the hierarchy viewer.

For example, Figure 26–51 shows retrieving the root node by EMPNO column.

Creating Databound Hierarchy Viewers

Creating Databound ADF Data Visualization Components 26-71

Figure 26–51 Root Node Query

3. Create a view object that performs the search.

For example, Figure 26–52 shows the EmployeesSearchResults view object
that performs the search based on the Job column in the data collection with a
default value of % for matching any value, and a comparison value of = specifying
an exact match against the column.

Figure 26–52 EmployeeSearchResults View Object

For information about creating a view object, see Section 5.2.1, "How to Create an
Entity-Based View Object."

To create a databound search with a hierarchy viewer:
1. From the Data Controls panel, select the collection that corresponds to the query

results and expand the Operations node to display the ExecuteWithParams
operation.

Creating Databound Hierarchy Viewers

26-72 Fusion Developer's Guide for Oracle Application Development Framework

2. Drag the ExecuteWithParams operation and drop it onto the hierarchy viewer in
the visual editor or onto the component in the Structure window. Alternatively,
you can drag the parameter onto the hierarchy viewer.

3. In the Create Hierarchy Viewer Search dialog that displays, use the Add icon to
specify the list of results to display in the Search Results panel, and specify the
following for each result:

a. Display Label: Select the values for the headers of the nodes in the hierarchy.
If you select <default>, then the text for the header is automatically
retrieved from the data binding.

b. Value Binding: Select the columns in the data collection to use for nodes in
the tree for the hierarchy viewer.

c. Component to Use: Select the type of component to display in the node. The
default is the ADF Output Text component.

After selecting an existing field, use the arrow icons (Up, Down, Top, Bottom) to
reorder the results or use the Delete icon to delete that result.

4. In the Operation dropdown list select the hierarchy root data collection to use
when a search result is selected. Valid values include:

■ removeRowWithKey: Uses the row key as a String converted from the
value specified by the input field to remove the data object in the bound data
collection.

■ setCurrentRowWithKey: Sets the row key as a String converted from the
value specified by the input field. The row key is used to set the currency of
the data object in the bound data collection.

■ setCurrentRowWithKeyValue: Sets the current object on the iterator, given
a key's value.

■ ExecuteWithParams: Sets the values to the named bind variables passed as
parameters.

5. In the Parameter Mapping table, use the dropdown list in the Results Attribute
column to select the results collection attribute to map to the parameter displayed
in the Hierarchy Parameter column.

Figure 26–53 shows the Create Hierarchy Viewer Search dialog that appears if you
create a hierarchy viewer using data from a data collection named
EmployeesSearchResults1.

Creating Databound Hierarchy Viewers

Creating Databound ADF Data Visualization Components 26-73

Figure 26–53 Create Hierarchy Viewer Search Dialog

At runtime, the search results are displayed in a table by Ename and Job. Figure 26–54
shows the resulting search results panel when the user enters "MANAGER" in the
search box.

Figure 26–54 Hierarchy Viewer Search Results

Creating Databound Hierarchy Viewers

26-74 Fusion Developer's Guide for Oracle Application Development Framework

27

Creating ADF Databound Search Forms 27-1

27Creating ADF Databound Search Forms

This chapter describes how to use ADF Faces components and ADF data binding to
create search forms to perform complex searches on multiple attributes and search
forms to search on a single attribute. For complex query search forms, it describes how
to set up the query search form mode, results table, saved searches list, and
personalization. For single attribute search forms, it describes how to configure the
form layout. In addition, it includes information on using named bind variables and
Query-by-Example (QBE) filtered table searches.

This chapter includes the following sections:

■ Section 27.1, "Introduction to Creating Search Forms"

■ Section 27.2, "Creating Query Search Forms"

■ Section 27.3, "Setting Up Search Form Properties"

■ Section 27.4, "Creating Quick Query Search Forms"

■ Section 27.5, "Creating Standalone Filtered Search Tables from Named View
Criteria"

27.1 Introduction to Creating Search Forms
You can create search forms that allow users to enter search criteria into input fields
for known attributes of an object. The search criteria can be entered via input text
fields or selected from a list of values in a popup list picker or dropdown list box. The
entered criteria is constructed into a query to be executed. Named bind variables can be
used to supply attribute values during runtime for the query. The results of the query
can be displayed as a table, a form, or another UI component.

Search forms are based either on view criteria defined in view objects or on implicit
view criteria defined by JDeveloper. Search forms are region-based components that
are reusable and personalizable. They encapsulate and automate many of the actions
and iterator management operations required to perform a query. You can create
several search forms on the same page without any need to change or create new
iterators.

The search forms are based on the model-driven af:query and af:quickQuery
components. Because these underlying components are model-driven, the search form
will change automatically to reflect changes in the model. The view layer does not
need to be changed. For example, if you define a list of values (LOV) on an attribute in
the view object or entity object, the LOV will automatically show up in the search form
as an LOV component. Or, if you modify a view criteria to include a new attribute for
the WHERE clause, the search panel using this view criteria will automatically reflect
that change by adding a search field for that attribute.

Introduction to Creating Search Forms

27-2 Fusion Developer's Guide for Oracle Application Development Framework

Oracle ADF supports two types of search forms: query and quick query. The query
search form is a full-featured search form. The quick query search form is a simplified
form with only one search criteria. Each of these search forms can be combined with a
filtered table to display the results, thereby enabling additional search capabilities.
You can also create a standalone filtered table to perform searches without the query
or quick query search panel.

A filtered table is a table that has additional Query-by-Example (QBE) search criteria
fields above each searchable column. When the filtering option of a table is enabled,
you can enter QBE-style search criteria for each column to filter the query results. For
more information about tables, see Chapter 23, "Creating ADF Databound Tables."

For more information about individual query and table components, see the "Using
Query Components" and the "Using Tables and Trees" chapters of the Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application Development
Framework.

27.1.1 Query Search Forms
The query search form is the standard form for complex transactional searches. You
can build complex search forms with multiple search criteria fields each with a
dropdown list of built-in operators. You can also add custom operators and customize
the list. The query search form supports lists of values, AND and OR conjunctions, and
saving searches for future use.

A query search form has a basic mode and an advanced mode. The user can toggle
between the two modes using the basic/advanced button. At design time, you can
declaratively specify form properties (such as setting the default state) to be either
basic or advanced. Figure 27–1 shows an advanced mode query search form with three
search criteria.

Figure 27–1 Advanced Mode Query Search Form with Three Search Criteria Fields

The advanced mode query form features are:

■ Selecting search criteria operators from a dropdown list

■ Adding custom operators and deleting standard operators

■ Selecting WHERE clause conjunctions of either AND or OR (match all or match any)

■ Dynamically adding and removing search criteria fields at runtime

■ Saving searches for future use

■ Personalizing saved searches

Typically, the query search form in either mode is used with an associated results table
or tree table. For example, the query results for the search form in Figure 27–1 may be
displayed in a table, as shown in Figure 27–2.

Introduction to Creating Search Forms

Creating ADF Databound Search Forms 27-3

Figure 27–2 Results Table for a Query Search

The basic mode has all the features of the advanced mode except that it does not allow
the user to dynamically add search criteria fields. Figure 27–3 shows a basic mode
query search form with one search criteria field. Notice the lack of a dropdown list
next to the Save button used to add search criteria fields in the advanced mode.

Figure 27–3 Basic Mode Query Form with One Search Criteria Field

In either mode, each search criteria field can be modified by selecting operators such
as Greater Than and Equal To from a dropdown list, and the entire search panel
can be modified by the Match All/Any radio buttons. Partial page rendering is also
supported by the search forms in almost all situations. For example, if a Between
operator is chosen, another input field will be displayed to allow the user to select the
upper range.

A Match All selection implicitly uses AND conjunctions between the search criteria in
the WHERE clause of the query. A Match Any selection implicitly uses OR conjunctions
in the WHERE clause. Example 27–1 shows how a simplified WHERE clause may appear
(the real WHERE in the view criteria is different) when Match All is selected for the
search criteria shown in Figure 27–1.

Example 27–1 Simplified WHERE Clause Fragment When "Match All" Is Selected

 WHERE (ProductId=4) AND (InStock > 2) AND (ProductName="Ipod")

Introduction to Creating Search Forms

27-4 Fusion Developer's Guide for Oracle Application Development Framework

Example 27–2 shows a simplified WHERE clause if Match Any is selected for the search
criteria shown in Figure 27–3.

Example 27–2 Simplified WHERE Clause Fragment When "Match Any" Is selected

 WHERE (ProductId=4) OR (InStock > 2) OR (ProductName="Ipod")

If the view criteria for the query has mixed AND and OR conjunctions between the
criteria items, then neither Match All nor Match Any will be selected when the
component first renders. However, the user can select Match All or Match Any to
override the conjunctions defined as the initial state in the view criteria.

Advanced mode query forms allow users to dynamically add search criteria fields to
the query panel to perform more complicated queries. These user-created search
criteria fields can be deleted, but the user cannot delete existing fields. Figure 27–4
shows how the Add Fields dropdown list is used to add the CategoryId criteria field
to the search form.

Figure 27–4 Dynamically Adding Search Criteria Fields at Runtime

Figure 27–5 shows a user-added search criteria with the delete icon to its right. Users
can click the delete icon to remove the criteria.

Figure 27–5 User-Added Search Criteria with Delete Icon

If either Match All or Match Any is selected and then the user dynamically adds the
second instance of a search criteria, then both Match All and Match Any will be
deselected. The user must reselect either Match All or Match Any before clicking the
Search button.

If you intend for a query search form to have both a basic and an advanced mode, you
can define each search criteria field to appear only for basic, only for advanced, or for

Introduction to Creating Search Forms

Creating ADF Databound Search Forms 27-5

both. When the user switches from one mode to the other, only the search criteria
fields defined for that mode will appear. For example, suppose three search fields for
basic mode (A, B, C) and three search fields for advanced mode (A, B, D) are defined
for a query. When the query search form is in basic mode, search criteria fields A, B,
and C will appear. When it is in advanced mode, then fields A, B, and D will appear.
Any search data that was entered into the search fields will also be preserved when
the form returns to that mode. If the user entered 35 into search field C in basic mode,
switched to advanced mode, and then switched back to basic, field C would reappear
with value 35.

Along with using the basic or advanced mode, you can also determine how much of
the search form will display. The default setting displays the whole form. You can also
configure the query component to display in compact mode or simple mode. The
compact mode has no header or border, and the Saved Search dropdown lists moves
next to the expand/collapse icon. Figure 27–6 shows a query component set to
compact mode.

Figure 27–6 Query Component in Compact Mode

The simple mode displays the component without the header and footer, and without
the buttons normally displayed in those areas. Figure 27–7 shows the same query
component set to simple mode.

Figure 27–7 Query Component in Simple Mode

A query is associated with the view object that it uses for its query operation. In
particular, a query component is the visual representation of the view criteria defined
for that view object. If there are multiple view criteria defined, each can be selected
from the Saved Search dropdown list. These saved searches are created at design time
and are called system searches. For example, in the StoreFront module of the Fusion
Order Demo application, there are two view criteria defined on the ProductsVO view
object. When the query associated with that view criteria is run, both view criteria are
available for selection, as shown in Figure 27–8.

Introduction to Creating Search Forms

27-6 Fusion Developer's Guide for Oracle Application Development Framework

Figure 27–8 Query Form Saved Search Dropdown List

If there are no explicitly defined view criteria for a view object, you can use the default
implicit view criteria.

Users can also create saved searches at runtime to save the state of a search for future
use. The entered search criteria values and the basic/advanced mode state can be
saved by clicking the Save button to open a Save Search dialog, as shown in
Figure 27–9. User-created saved searches persist for the session. If they are intended to
be available beyond the session, you must configure a persistent data store to store
them. For Oracle ADF, you can use an access-controlled data source such as MDS. For
more information about using MDS, see Chapter 34, "Customizing Applications with
MDS." For more information about user customizations, see Chapter 35, "Allowing
User Customizations at Runtime."

Figure 27–9 Runtime Saved Search Dialog Window

Table 27–1 lists the possible scenarios for creators of saved searches, the method of
their creation, and their availability.

Table 27–1 Design Time and Runtime Saved Searches

Creator
Created at Design time as
View Criteria

Created at Runtime with the
Save Button

Developer Developer-created saved
searches (system searches) are
created during application
development and typically are
a part of the software release.
They are created at design
time as view criteria. They are
usually available to all users
of the application and appear
in the lower part of the Saved
Search dropdown list.

Introduction to Creating Search Forms

Creating ADF Databound Search Forms 27-7

You can use the runQueryAutomatically property as listed in the Property Inspector
to specify whether a saved search will run the query automatically. Setting the
property to allSavedSearches means all system and user-created saved searches will
run automatically when the query component is initially loaded, whenever the saved
search has changed, or the reset button is pressed. If you set the
runQueryAutomatically property to searchDependent, you can specify at design time
whether that specific query will run automatically. searchDependent is the default
value.

For new user-created saved searches with runQueryAutomatically property set to
searchDependent, the Create Saved Search dialog, as shown in Figure 27–9, will have
the Run Automatically option set as the default. For new user-created saved searches
with runQueryAutomatically property set to allSavedSearches, the Create Saved
Search dialog will not display the Run Automatically option, but it will be set
implicitly.

End users can manage their saved searches by using the Personalize function in the
Saved Search dropdown list to bring up the Personalize Saved Searches dialog, as
shown in Figure 27–10.

End users can use the Personalize function to:

■ Update a user-created saved search

■ Delete a user-created saved search

■ Set a saved search as the default

■ Set a saved search to run automatically

■ Set the saved search to show or hide from the Saved Search dropdown list

Administrator Administrator-created saved
searches are created during
predeployment by site
administrators. They are
created before the site is made
available to the general end
users. Administrators can
create saved searches (or view
criteria) using the JDeveloper
design time when they are
logged in with the appropriate
role. These saved searches (or
view criteria) appear in the
lower part of the Saved
Search dropdown list.

End User End-user saved searches are
created at runtime using the
query form Save button. They
are available only to the user
who created them. End-user
saved searches appear in the
top part of the Saved Search
dropdown list.

Table 27–1 (Cont.) Design Time and Runtime Saved Searches

Creator
Created at Design time as
View Criteria

Created at Runtime with the
Save Button

Introduction to Creating Search Forms

27-8 Fusion Developer's Guide for Oracle Application Development Framework

Figure 27–10 Personalize Saved Searches Dialog

27.1.2 Quick Query Search Forms
A quick query search form is intended to be used in situations where a single search
will suffice or as a starting point to evolve into a full query search. Both the query and
quick query search forms are ADF Faces components. A quick query search form has
one search criteria field with a dropdown list of the available searchable attributes
from the associated data collection. Typically, the searchable attributes are all the
attributes in the associated view object. You can exclude attributes by setting the
attribute’s Display Hint property in the Control Hints page of the Edit Attribute
dialog to Hide. The user can search against the selected attribute or search against all
the displayed attributes. The search criteria field type will automatically match the
type of its corresponding attribute. An Advanced link built into the form offers you
the option to create a managed bean to control switching from quick query to
advanced mode query search form. For more information, see the "Using Query
Components" chapter in the Oracle Fusion Middleware Web User Interface Developer's
Guide for Oracle Application Development Framework.

You can configure the form to have a horizontal layout, as shown in Figure 27–11.

Figure 27–11 Quick Query Search Form in Horizontal Layout

You can also choose a vertical layout, as shown in Figure 27–12.

Figure 27–12 Quick Query Search Form in Vertical Layout

Note: If in you are changing the value of a view criteria item
programmatically, you must invoke the
ViewCriteria.saveState() method to prevent the searchRegion
binding from resetting the value of the view criteria item to the value
that was specified at design time.

Introduction to Creating Search Forms

Creating ADF Databound Search Forms 27-9

27.1.3 Named Bind Variables in Query Search Forms
Instead of specifying a literal operand in a view criteria to be used in a search form,
you have the option of specifying a named bind variable. The named bind variable
performs like a parameter whose value can change at runtime without the need to
change the SQL statement. It must be defined in the view object before it can be used
in a view criteria.

If you specify a literal operand in the view criteria and leave the value blank, it will
not appear in the SQL preview. When the view criteria is applied as a search form at
runtime, that attribute is rendered as a blank input search field. If a value is specified
for the literal operand, then the SQL preview will generate a SQL clause for it. When
the view criteria is applied as a search form at runtime, the SQL statement is not
automatically applied even though the value specified in the view criteria appears in
the input search field. The SQL statement won’t get applied until the user clicks
Search (or when auto-execute is set to true).

If a named bind variable is used in the query defined in the view criteria, the SQL
preview will display the WHERE clause with the bind variable. When the view criteria
is applied as a search form at runtime, the bind variable will be rendered with a
prompt and an input search field based on the name of the attribute (not on the name
of the bind variable). The named bind variable input field may be NULL, it may contain
the default value, or it may contain a value that has loaded from previous processing,
such as from another page. The user can enter values for the named bind variable as in
any other search criteria. When the search is executed, the value of the named bind
variable will be evaluated with the other criteria, as defined by the SQL query
statement.

If the bind variable is used more than once in the same view criteria, each occurrence
of the bind variable will be rendered as an individual input field. Because there is only
one bind variable backing all the input fields, the value of all the fields will be
synchronized. For instance, if you specify a view criteria that uses the same bind
variable three times, then three input fields will be rendered. When the user enters a
value into one input field, the other two input fields will have the same value. Using
bind variables in this way eliminates the need for the user to enter the same value
multiple times.

Another use of the bind variable is to pass a value from the base row into a search for
an LOV search form.

Bind variables can also be used to pass parameter values from one page to another,
such as when a customer ID is passed to another page for more detail processing. And,
depending on the construct of the SQL statement, using the named bind variable may
speed up the query because it may lessen the need to prepare a new statement, which
means that the database does not need to reparse. For more information about creating
and using named bind variables, see Section 5.10, "Working with Bind Variables."

For example, in the StoreFront module of the Fusion Order Demo application, in the
listCustomerAddresses view criteria, the WHERE clause checks to see whether the
AssociatedOwnerId is the same as the value of the paramCustomerId named
bind variable. This view criteria is in the AddressesLookupVO view object. The
listCustomerAddresses view criteria as defined in the Edit View Criteria dialog is
shown in Figure 27–13.

Introduction to Creating Search Forms

27-10 Fusion Developer's Guide for Oracle Application Development Framework

Figure 27–13 View Criteria with Named Bind Variable

A query search form for a view criteria with a named bind variable will render with a
search field for the variable using the inputText component. Figure 27–14 shows the
AssociatedOwnerId search field displayed as an inputText component.

Figure 27–14 Query Search Form with Named Bind Variable

27.1.4 Filtered Table and Query-by-Example Searches
A filtered table can be created standalone or as the results table of a query or quick
query search form. Filtered table searches are based on Query-by-Example and use the
QBE text or date input field formats. The input validators are turned off to allow for
entering characters such as > and <= to modify the search criteria. For example, you
can enter >1500 as the search criteria for a number column. Wildcard characters may
also be supported. If a column does not support QBE, the search criteria input field
will not render for that column.

The filtered table search criteria input values are used to build the query WHERE clause
with the AND operator. If the filtered table is associated with a query or quick query
search panel, the composite search criteria values are also combined to create the
WHERE clause.

Introduction to Creating Search Forms

Creating ADF Databound Search Forms 27-11

Figure 27–15 shows a query search form with a filtered results table. When the user
enters a QBE search criteria, such as >100 for the PersonId field, the query result is
the AND of the query search criteria and the filtered table search criteria.

Figure 27–15 Query Search Form with Filtered Table

Table 27–2 lists the acceptable QBE search operators that can be used to modify the
search value.

27.1.5 Implicit and Named View Criteria
When you create data controls, all data collections will automatically include a Named
Criteria node with an All Queriable Attributes criteria. This is the default view criteria

Note: If the filtered table is used with a query component in a search
form and the search region is using an existing named criteria, the
results of the query will be filtered by all the view criteria rows in an
iterative manner. For example, a filtered table has two view criteria
rows: PersonId and DeptId. The first view criteria row has
PersonId > 1. When the user enters > 100 in the filter field, then the
second view criteria row DeptId is used to accept input to further
filter the results. This process iterates through all the view criteria
rows until the final query result is reached.

Table 27–2 Query-by-Example Search Criteria Operators

Operator Description

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

AND And

OR Or

Introduction to Creating Search Forms

27-12 Fusion Developer's Guide for Oracle Application Development Framework

that includes all the searchable attributes or columns of the data collection. You cannot
edit or modify this view criteria. These implicit view criteria can be used in the same
way as declaratively created (or named) view criteria during the creation of query and
quick query search forms. For more information about creating named view criteria,
see Section 5.11, "Working with Named View Criteria."

When you add additional named view criteria for that view object or collection, the
new view criteria will be added to the Named Criteria node.

In the Data Controls panel, a data collection’s Named Criteria node will always
include the implicit view criteria, regardless of whether any named view criteria were
defined. The implicit view criteria is always available for every data collection.

27.1.6 List of Values (LOV) Input Fields
List of values (LOV) components are input components that allow the user to enter
values by picking from a list that is generated by a query. ADF Faces provides the
af:inputListOfValues and af:inputComboboxListOfValues components. If
you are using dependent LOVs as part of your search form, you must use them with
the af:query component. For more information about LOV components, see
Section 25.2, "Creating List of Values (LOV)."

If an attribute is defined as an LOV, you can set the Support Multiple Value Selection
control hint in its view criteria to enable users to make multiple selections in the search
criteria field. If multiple selection is enabled on an LOV attribute, and the Equal to
or Not equal to operator is chosen, a selectManyChoice component will render
in the query panel. The user can select multiple items as the search criteria.

When the LOV is in a query component, if the Support Multiple Value Selection hint
is not set and the Equal to or Not equal to operator is chosen, the query
component will render a search criteria component according to the Default List Type
control hint for the corresponding attribute in the view object.

The quick query component does not support multiple selection. It will always render
the component specified by the Default List Type control hint. Table 27–3 shows the
control hint selection and the default list component.

For more information about view criteria options, see Section 5.11.1, "How to Create
Named View Criteria Declaratively," and Section 5.11.3, "What You May Need to Know
About Bind Variable Options."

Note: Query search forms have certain restrictions for working with
expressions that have nested view criteria and may not work with all
types of nested expressions. For more information about the nested
expressions supported by search forms, see Section 5.11.4, "What You
May Need to Know About Nested Expressions."

Table 27–3 Query and Quick Query Search Criteria Field Input Components

Default List Type Control Hint Component

Input Text with List of Values af:inputListOfValues

Combo Box with List of Values af:inputComboboxListOfValues

Choice List, Combo Box, List Box, Radio
Group

af:selectOneChoice

Creating Query Search Forms

Creating ADF Databound Search Forms 27-13

27.2 Creating Query Search Forms
You create a query search form by dropping a named view criteria item from the Data
Controls panel onto a page. You have a choice of dropping only a search panel,
dropping a search panel with a results table, or dropping a search panel with a tree
table.

If you choose to drop the search panel with a table, you can select the filtering option
in the dialog to turn the table into a filtered table.

Typically, you would drop a query search panel with the results table or tree table.
JDeveloper will automatically create and associate a results table or tree table with the
query panel.

If you drop a query panel by itself and want a results component or if you already
have an existing component for displaying the results, you will need to match the
query panel’s ResultsComponentId with the results component’s Id.

27.2.1 How to Create a Query Search Form with a Results Table or Tree Table
You create a search form by dragging and dropping a view criteria from the Data
Controls panel onto the page. You have the option of having a results table or only the
query panel.

Before you begin:
You should have created a view object to be the basis of the search form. If you intend
to create searches using explicitly created view criteria, you need to create them, if you
have not already. You can also use the default implicit view criteria, which would
include all queriable attributes in the collection.

When you create a view criteria, you should also set some of the search form default
properties. For more information about setting the default state of the search form, see
Section 27.3.1, "How to Set Search Form Properties on the View Criteria." For
information on how to create view criteria, see Section 5.11, "Working with Named
View Criteria."

If you intend for some or all of your input fields to be LOVs, you should declare those
attributes as LOVs in the view object.

To create a query search form with a results table or tree table:
1. From the Data Controls panel, select the data collection and expand the Named

Criteria node to display a list of named view criteria.

2. Drag the named view criteria item and drop it onto the page or onto the Structure
window.

3. From the context menu, choose Create > Query > ADF Query Panel with Table or
Create > Query > ADF Query Panel with Tree Table, as shown in Figure 27–16.

Note: When you drop a named view criteria onto a page, that view
criteria will be the basis for the initial search form. All other view
criteria defined against that data collection will also appear in the
Saved Search dropdown list. Users can then select any of the view
criteria search forms, and also any end-user created saved searches.

Creating Query Search Forms

27-14 Fusion Developer's Guide for Oracle Application Development Framework

Figure 27–16 Data Controls Panel with Query Context Menu

4. In the Edit Table Columns dialog, you can rearrange any column and select table
options. If you choose the filtering option, the table will be a filtered table.

After you have created the form, you may want to set some of its properties or add
custom functions. For more information on how to do this, see Section 27.3, "Setting
Up Search Form Properties."

27.2.2 How to Create a Query Search Form and Add a Results Component Later
You create a search form by dragging and dropping a view criteria from the Data
Controls panel onto the page. You have the option of having a results table or only the
query panel.

Before you begin:
You should have created a view object to be the basis of the search form. If you intend
to create searches using your own view criteria, you need to create them, if you have
not already. You can also use the default implicit view criteria, which would include
all queriable attributes in the collection.

When you create a view criteria, you should also set some of the search form default
properties. For more information about setting the default state of the search form, see
Section 27.3.1, "How to Set Search Form Properties on the View Criteria." For
information on how to create view criteria, see Section 5.11, "Working with Named
View Criteria."

If you intend for some or all of your input fields to be LOVs, you should declare those
attributes as LOVs in the view object.

To create a query search form and add a results component in a separate step:
1. From the Data Controls panel, select the data collection and expand the Named

Criteria node to display a list of named view criteria.

2. Drag the named view criteria item and drop it onto the page or onto the Structure
window.

3. Choose Create > Query > ADF Query Panel from the context menu, as shown in
Figure 27–16.

4. If you do not already have a results component, then drop the data collection
associated with the view criteria as a component.

5. In the Property Inspector for the table, copy the value of the Id field.

6. In the Property Inspector for the query panel, paste the value of the table’s ID into
the query’s ResultsComponentId field.

After you have created the search form, you may want to set some of its properties or
add custom functions. See Section 27.3, "Setting Up Search Form Properties," for more
information.

Creating Query Search Forms

Creating ADF Databound Search Forms 27-15

27.2.3 How to Persist Saved Searches into MDS
If you want saved searches to be persisted to MDS, you need to define the /persdef
namespace in the adf-config.xml file. In addition, you need to perform the regular
MDS configuration, such as specifying metadatapath. Example 27–3 shows an
adf-config.xml file with the /persdef namespace defined.

Example 27–3 Sample adf-config.xml with /persdef Namespace

<persistence-config>
 <metadata-namespaces>
 <namespace path="/persdef" metadata-store-usage="mdsstore"/>
 </metadata-namespaces>
 <metadata-store-usages>
 <metadata-store-usage id="mdsstore" deploy-target="true"
 default-cust-store="true">
 </metadata-store-usage>
 </metadata-store-usages>
</persistence-config>

In order for the added saved searches to be available the next time the user logs in,
cust-config needs to be defined as part of the MDS configuration. For more
information about setting cust-config and MDS, see Section 34.2.7, "How to
Configure the adf-config.xml file."

If you are also saving the layout of the results component, the application must have
the ADF PageFlow Runtime and ADF Controller Runtime libraries installed. Set the
project’s technology scope to include ADF Page Flow or automatically include these
libraries by using the Fusion Web Application (ADF) application template.

27.2.4 How to Set Default Search Binding Behavior
A search binding provides the model-driven behavior for a search form at runtime. The
search binding is related to a particular iterator and the view criteria on that iterator,
whose runtime defaults are specified by the Binds and Criteria properties of the search
binding, respectively. The behavior of the search binding depends on the Query
Automatically control hint. For more information about creating named view criteria,
see Section 5.11, "Working with Named View Criteria."

The first time a search form is rendered in a task flow, the search binding’s runtime
behavior, also known as the initial AutoQuery-or-ClearRowSet behavior, is as follows:

■ If Query Automatically is set to true: The search binding automatically executes
the iterator when the search binding is initialized in a task flow. The user will be
presented with the results of the search based on the view criteria.

■ If Query Automatically is set to false: The search binding clears the row set
related to its iterator. The user will be presented with an empty search results
component, which allows the user to enter search criteria and click the Search
button to execute the search.

The Query Automatically control hint is available declaratively only for named view
criteria. For the All Queriable Attributes view criteria, you can use the
setProperty() method on the view criteria API interface to configure the hint at
runtime. You can also use this method to set the hint on named view criteria. In the
method, set the ViewCriteriaHints.CRITERIA_AUTO_EXECUTE property to
true.

If the user changes the search form by selecting a different view criteria from the
dropdown Saved Search list, the runtime behavior is as follows:

Creating Query Search Forms

27-16 Fusion Developer's Guide for Oracle Application Development Framework

■ If Query Automatically is set to true: The search binding automatically executes
the iterator after applying the new view criteria. The user will be presented with
the results of the newly selected saved search.

■ If Query Automatically is set to false: The search binding applies the new view
criteria only, leaving any existing search results intact. The user is presented with
the results of the previous search.

The search binding's queryPerformed property evaluates to true if the search
binding has performed the query, either automatically or by the user clicking the
Search button. Clicking the Reset button in the search form resets the view criteria and
sets the queryPerformed property to false.

The search binding offers two properties that allow you to customize its default
behavior: TrackQueryPerformed and InitialQueryOverridden. You can set the
TrackQueryPerformed and the InitialQueryOverridden properties in the
Property Inspector.

A search binding's TrackQueryPerformed property controls whether it manages its
queryPerformed property during runtime at the page flow level or at the individual
page or page fragment level. The valid values for TrackQueryPerformed are
pageFlow and page, and the default is pageFlow. The search binding’s behavior is
as follows:

■ If TrackQueryPerformed is set to pageFlow, then queryPerformed is
initialized once per page flow and tracked at the page flow level. The user can
navigate away from the search form page, return to the page within the life of the
page flow, and the value of the queryPerformed flag will remain the same.

■ If TrackQueryPerformed is set to page, then queryPerformed is initialized
each time the user navigates to the page or page fragment. This happens when the
page is navigated to for the first time and when the page is returned from another
page within the page flow.

When TrackQueryPerformed of a search binding is set to pageFlow, its initial
AutoQuery-or-ClearRowSet behavior is performed once during the page flow. In
contrast, when TrackQueryPerformed is set to page, the initial
AutoQuery-or-ClearRowSet behavior is performed each time the user visits the page
or page fragment.

A search binding's InitialQueryOverridden property controls whether it should
suppress its initial AutoQuery-or-ClearRowSet behavior the first time the search
binding is used in a page flow. If InitialQueryOverridden is true, then all valid
values, including true, false, or a boolean-valued EL expression, are suppressed.
The default value is false.

When you set the InitialQueryOverridden property to true, you are responsible
for writing custom application logic to execute the query. Typically, the query should
execute after the code applies some view criteria, sets some bind variables, or performs
some other programmatic query setup. If your custom code fails to execute the query
as expected with InitialQueryOverridden set to true, unless Query
Automatically is set to false, the framework will still implicitly execute your query
the first time during a user session in which there is an iterator binding reference. This
occurs because when Query Automatically is not set to false, the iterator binding’s
default executeQueryIfNeeded behavior takes effect and executes the query.

When InitialQueryOverridden evaluates to true or boolean true, then the
initial AutoQuery-or-ClearRowSet behavior is suppressed the first time the search
binding is used in a page flow. If TrackQueryPerformed is set to pageFlow, then

Creating Query Search Forms

Creating ADF Databound Search Forms 27-17

only the initial AutoQuery-or-ClearRowsSet behavior (that would have occurred for
this search binding) is suppressed.

In contrast, if a search binding's TrackQueryPerformed property is set to page,
then only the initial AutoQuery-or-ClearRowSet behavior is suppressed. Subsequent
initial AutoQuery-or-ClearRowSet behaviors that occur due to the user's navigating
back to the same page (or page fragment) are not affected by the
InitialQueryOverridden property.

If you want to avoid the search binding's performing any initial
AutoQuery-or-ClearRowSet behavior, then leave the TrackQueryPerformed set to
pageFlow and set InitialQueryOverridden to true.

You should not use the RefreshCondition property of an iterator to reference the
queryPerformed property of a search binding. Doing so will inadvertently prevent
new rows from being created in that iterator's row set until after the search binding's
query has been performed.

27.2.5 What You May Need to Know About Dependent Criterion
There are situations when one search criteria is dependent on the value of another
criteria. For example, a bug database has a search form with a Component and a
Subomponent search criteria, both defined as LOVs. When the user selects a value
from the Component search criteria, that value must be submitted to the model so that
Subomponent can be filtered and populated with the appropriate search list for the
user to choose from.

If you have a search criteria that has dependents, you must set the root and dependent
criteria’s underlying view attribute’s Auto Submit control hint to true. You can create
a custom listener to trigger a partial submit to update the model and refresh the search
panel when the query component detects a value change for the root criteria. You need
to create a custom listener because the standard QueryOperationListener does
not handle this event type. You can create a custom QueryOperationListener class
using the QueryOperationListener interface. You then register this class by
implementing it in a managed bean or by directly setting it in the JSF page.

27.2.6 What Happens When You Create a Query Form
When you drop a query search form onto a page, JDeveloper creates an af:query tag
on the page. If you drop a query with table or tree table, then an af:table tag or
af:treeTable tag will follow the af:query tag.

Under the af:query tag are several attributes that define the query properties. They
include:

■ The id attribute, which uniquely identifies the query.

■ The resultsComponentId attribute, which identifies the component that will
display the results of the query. Typically, this will be the table or tree table that
was dropped onto the page together with the query. You can change this value to
be the id of a different results component. For more information, see
Section 27.2.2, "How to Create a Query Search Form and Add a Results
Component Later."

In the page definition file, JDeveloper creates an iterator and a searchRegion entry
in the executables section. Example 27–4 shows the sample code for a page
definition file.

In the page definition file executable section:

Creating Query Search Forms

27-18 Fusion Developer's Guide for Oracle Application Development Framework

■ The iterator binds property is set to the name of the data collection. In the
example, the value is set to Products.

■ The iterator id property is set to a data collection iterator. In the example, the
value is set to SearchProductsIterator

■ If there is more than one view criteria defined for that data collection, the
searchRegion Criteria property is set to the name of the view criteria that
was dropped. In the example, the value is set to FindByProductNameCriteria.
If there is only one view criteria defined, then there will not be a Criteria
property.

■ The searchRegion Binds property is set to the same value as the iterator id
property. In the example, the value is set to SearchProductsIterator

■ The searchRegion id property is set to the name of the view criteria
concatenated with Query. In the example, the value is set to
FindByProductNameCriteriaQuery.

If the query was dropped onto the page with a table or tree, then in the page definition
file bindings section, a tree element is added with the Iterbinding property set to
the search iterator. In this example, the value is set to SearchProductsIterator.
This should be the same iterator defined in the executable section.

Example 27–4 Search Form Code in the Page Definition File

<?xml version="1.0" encoding="UTF-8" ?>
<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
 version="11.1.1.52.34" id="homePageDef"
 Package="oracle.fodemo.storefront.pageDefs"
 EnableTokenValidation="false">
 <parameters/>
<executables>
 ...
 <iterator Binds="Products" RangeSize="25"
 DataControl="StoreServiceAMDataControl"
 id="SearchProductsIterator"/>
 ...
 <searchRegion Criteria="FindByProductNameCriteria"
 Customizer="oracle.jbo.uicli.binding.JUSearchBindingCustomizer"
 Binds="SearchProductsIterator"
 id="FindByProductNameCriteriaQuery"/>
 ...
</executables>
<bindings>
 <tree IterBinding="SearchProductsIterator"
 id="SearchProducts">
 <nodeDefinition DefName="oracle.fodemo.storefront.store.queries.ProductsVO"
 Name="SearchProducts">
 <AttrNames>
 <Item Value="ProductId"/>
 <Item Value="ProductName"/>
 <Item Value="ListPrice"/>
 <Item Value="MinPrice"/>
 ,,,
 </AttrNames>
 </nodeDefinition>
 </tree>
 ...
</bindings>

Setting Up Search Form Properties

Creating ADF Databound Search Forms 27-19

27.2.7 What Happens at Runtime: Search Forms
At runtime, the search form displays as a search panel on the page. The search panel
will display in either basic mode or advanced mode, depending on the mode control
hint when its corresponding view criteria was created. The Saved Search dropdown
list will contain all the view criteria that are enabled (Show in List control hint
enabled). The Match All/Any conjunction radio button may be enabled.

A search criteria field will be rendered for each search criteria defined in the view
criteria. If the Default List Type control hint in the view object has been declared as an
LOV or a selection list component, the search criteria field component is as shown in
Table 27–3.

After the user enters the search criteria and clicks Search, a query against the view
criteria is executed and the results are displayed in the associated table, tree table, or
component.

27.3 Setting Up Search Form Properties
A query search form is based on a view criteria defined in a view object. When you
create the view criteria, you also specify some of the search form properties. Later on,
when you drop the named criteria onto the page to create a query component, you can
specify other search form properties.

Search form properties that can be set when the view criteria is being created include:

■ Default mode in basic or advanced mode

■ Automatic query execution when the page loads

■ Rendering of the search criteria field

■ Enabling multiple selections for attributes defined as an LOV

Search form properties that can be set after the query component has been added to
the JSF page include:

■ id of the results table or results component

■ Show or hide of the basic/advanced button

■ Position of the mode button

■ Default, simple, or compact mode for display

Search form attribute properties that can be set when the view object is being created
include:

■ timezone control hint for a timestamp attribute

27.3.1 How to Set Search Form Properties on the View Criteria
When you are creating a view criteria, you can declaratively set the initial state of
several properties. Figure 27–17 shows the Edit View Criteria dialog for setting default
options. For more information about view criteria, see Section 5.11, "Working with
Named View Criteria."

Setting Up Search Form Properties

27-20 Fusion Developer's Guide for Oracle Application Development Framework

Figure 27–17 Edit View Criteria Dialog

You must select the default mode of the query search form as either basic or advanced.
The default is basic.

You also must declare whether each individual search criteria field will be available
only in basic mode, only in advanced mode, available in both modes, or never
displayed. If a search criteria field is declared only for basic mode, it will not appear
when the user switches to advanced mode, and the reverse is true. If the field is
declared for all, then it will appear in all modes. The default for search criteria field
rendering is all modes.

To set the default mode and search criteria field display option:
1. While creating a view criteria, in the Edit View Criteria dialog, click UI Hints.

2. From the Search Region Mode dropdown list, select either Basic or Advanced.

3. In the Criteria Item UI Hints section, select the criteria item you want to set.

4. In the Rendered Mode dropdown list, select All, Basic, Advanced, or Never.

27.3.2 How to Set Search Form Properties on the Query Component
After you have dropped the query search form onto a page, you can edit other form
properties in the Property Inspector, as shown in Figure 27–18. Some of the common
properties you may set are:

■ Enabling or disabling the basic/advanced mode button

■ Setting the ID of the query search form

■ Setting the ID of the results component (for example, a results table)

Setting Up Search Form Properties

Creating ADF Databound Search Forms 27-21

■ Setting a control hint for a timezone attribute

■ Selecting the default, simple, or compact mode for display

Figure 27–18 Property Inspector for a Query Component

One common option is to show or hide the basic/advanced button.

To enable or hide the basic/advanced button in the query form:
1. In the Structure window, double-click af:query.

2. In the Property Inspector, click the Appearance tab.

3. To enable the basic/advanced mode button, select true from the
ModeChangeVisible field. To hide the basic/advance mode button, select false
from the ModeChangeVisible field.

27.3.3 How to Set Timezone Control Hint for Timestamp Attribute
If a query includes a timestamp attribute, you can set its timezone using control
hints on the view object or entity object where the attribute is defined. For instance,
you can set the hiredate of an employee to have the correct timezone for the
employee’s local office.

Before you begin:
Create the desired view objects as described in Section 5.2.1, "How to Create an
Entity-Based View Object," and Section 5.2.3, "How to Create an Expert Mode,
Read-Only View Object."

To customize view object timestamp attribute with control hints:
1. In the Application Navigator, double-click the entity object.

2. In the overview editor, click the Attributes navigation tab and select the
timestamp attribute that you want to customize with control hints.

3. Click the overview editor Source navigation tab and enter an entry for
TimeZoneID expressed as a value of GMT + hours. For instance, the following
entry is GMT plus 8 hours.

<Attribute

Setting Up Search Form Properties

27-22 Fusion Developer's Guide for Oracle Application Development Framework

 Name="Hiredate"
 ColumnName="HIREDATE"
 SQLType="TIMESTAMP"
 Type="oracle.jbo.domain.Date"
 ColumnType="DATE"
 TableName="EMP">
 <DesignTime>
 <Attr Name="_DisplaySize" Value="7"/>
 </DesignTime>
 <Properties>
 <SchemaBasedProperties>
 <AUTOSUBMIT Value="true"/>
 <TimeZoneID Value="GMT+08:00"/>
 </SchemaBasedProperties>
 </Properties>
</Attribute>

27.3.4 How to Create Custom Operators or Remove Standard Operators
You can create custom operators for each view criteria item by adding code to the
view object XML file. For example, you can create a new operator called more than
a year, which operates on a date attribute (greater than 365 days from the current
date).

You can also remove standard operators from a view criteria item. For example, you
can remove the standard operator before from the list.

For a list of standard operators, see the "Using Query Components" chapter of the
Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework.

To add a custom operator:
1. In the Application Navigator, select the view object for the view criteria in which

you want to add a custom operator.

2. In the editor window, click the Source tab.

3. In the XML editor, locate the code for the view criteria attribute, and add the
CompOper code statements after the last item within the ViewCriteriaItem
group.

In Example 27–5, the CompOper code statements appear in bold.

Example 27–5 Adding the Custom Operator Code to the View Object XML

<ViewCriteriaRow
 Name="vcrow50"
 UpperColumns="1">
 <ViewCriteriaItem
 Name="LastUpdateDate"
 ViewAttribute="LastUpdateDate"
 Operator="="
 Conjunction="AND"
 Required="Optional">
 <CompOper
 Name="LastUpdateDate"

Setting Up Search Form Properties

Creating ADF Databound Search Forms 27-23

 ToDo="1"
 OperDescStrCode="LastUpdateDate_custOp_grt_year"
 Oper=">Y"
 MinCardinality="0"
 MaxCardinality="0" >
 <TransientExpression><![CDATA[return " < SYSDATE - 365"
]]></TransientExpression>
 </CompOper>
 </ViewCriteriaItem>

The CompOper properties are:

■ Name: Specify an id for the operation.

■ ToDo: Set to 1 to add this custom operator. Set to -1 to remove an operator.

■ OperDescStrCode: Specify the id used in the message bundle to map to the
description string, as described in Step 4.

■ Oper: Set to a value that will be used programmatically to denote this
operation in the SQL statement. In Example 27–5, Oper was set to >Y to
denote greater than 1 year.

■ MinCardinality: If there is an input range, set this property to the
minimum value for the range. For example, if the range is months in a year,
this value should be set to 1. If there is no range, set it to 0.

■ MaxCardinality: If there is an input range, set this property to the
maximum value for the range. For example, if the range is months in a year,
this value should be set to 12. If there is no range, set it to 0.

■ TransientExpression: Set the expression to perform the custom operator
function. In Example 27–5, the expression is ![CDATA[return " >
SYSDATE -365"]], which returns the string " > SYSDATE -365".

4. Open the message bundle file for the view object and add an entry for the custom
operator, using the OperDescStrCode identifier defined in the view object XML
in Step 3.

Example 27–6 shows the message bundle code for the LastUpdateDate custom
operator described in Example 27–5.

Example 27–6 Adding the Custom Operator Entry for LastUpdateDate to the Message
Bundle

public class AvailLangImplMsgBundle extends JboResourceBundle {
 static final Object[][] sMessageStrings =
 {
 { "LastUpdateDate_custOp_grt_year", "more than a year old"
 },

To remove a standard operator:
1. In the Application Navigator, select the view object for the view criteria in which

you want to remove a standard operator.

Creating Quick Query Search Forms

27-24 Fusion Developer's Guide for Oracle Application Development Framework

2. In the editor window, click the Source tab.

3. In the XML editor, locate the code for the view criteria attribute, and add the
CompOper code statements after the last item within the ViewCriteriaItem
group.

In Example 27–7, the CompOper code statements appear in bold. The code in this
example removes the BEFORE operator from the list of operators for the
LastUpdateDate attribute.

Example 27–7 Removing a Standard Operator Code in the View Object XML

<ViewCriteriaRow
 Name="vcrow50"
 UpperColumns="1">
 <ViewCriteriaItem
 Name="LastUpdateDate"
 ViewAttribute="LastUpdateDate"
 Operator="="
 Conjunction="AND"
 Required="Optional">
 <CompOper
 Name="LastUpdateDate"
 ToDo="-1"
 Oper="BEFORE"
 </CompOper>
 </ViewCriteriaItem>

The CompOper properties are:

■ Name: Specify an id for the operation.

■ ToDo: Set to -1 to remove an operator. Set to 1 to add an operator.

Do not set ToDo to -2, which would remove all the operators.

■ Oper: Set to the standard operator you want to remove from the list.

27.4 Creating Quick Query Search Forms
You can use quick query search forms to let users search on a single attribute of a
collection. Quick query search form layout can be either horizontal or vertical. Because
they occupy only a small area, quick query search forms can be placed in different
areas of a page. You can create a managed bean to enable users to switch from a quick
query to a full query search. For more information about switching from quick query
to query using a managed bean, see the "Using Query Components" chapter in the
Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework.

If you drop a quick query panel with a results table or tree, JDeveloper will
automatically create the results table, as described in Section 27.4.1, "How to Create a
Quick Query Search Form with a Results Table or Tree Table." If you drop a quick
query panel by itself and subsequently want a results table or component or if you
already have one, you will need to match the quick query Id with the results

Note: Before you attempt to remove the standard operator, make
sure you do not remove the default operator for that view criteria
item.

Creating Quick Query Search Forms

Creating ADF Databound Search Forms 27-25

component’s partialTrigger value, as described in Section 27.4.2, "How to Create a
Quick Query Search Form and Add a Results Component Later."

27.4.1 How to Create a Quick Query Search Form with a Results Table or Tree Table
You can create quick query searches using the full set of searchable attributes and
simultaneously add a table or tree table as the results component.

Before you begin:
Create a view object to be the basis of the search form.

To create a quick query search form with a results table:
1. From the Data Controls panel, select the data collection and expand the Named

Criteria node to display a list of named view criteria.

2. Drag the All Queriable Attributes item and drop it onto the page or onto the
Structure window.

3. From the context menu, choose Create > Quick Query > ADF Quick Query Panel
with Table or Create > Quick Query > ADF Quick Query Panel with Tree Table,
as shown in Figure 27–19.

4. In the Edit Table Columns dialog, you can rearrange any column and select table
options. If you choose the filtering option, the table will be a filtered table.

Figure 27–19 Data Control Panel with Quick Query Context Menu

27.4.2 How to Create a Quick Query Search Form and Add a Results Component Later
You can create quick query searches using the full set of searchable attributes and add
a table or tree table as the results component later.

Before you begin:
Create a view object to be the basis of the search form.

To create a quick query search form and add a results component in a separate
step:
1. From the Data Controls panel, select the data collection and expand the Named

Criteria node to display a list of named view criteria.

2. Drag the All Queriable Attributes item and drop it onto the page or onto the
Structure window.

Note: A quick query search creates a dropdown list of all searchable
attributes defined in the underlying view object. If you want to show
only a subset of those attributes, you can set the attribute’s Display
control hint to Hide for those attributes you want to exclude. For more
information about setting control hints on view objects, see Chapter 5,
"Defining SQL Queries Using View Objects."

Creating Quick Query Search Forms

27-26 Fusion Developer's Guide for Oracle Application Development Framework

3. From the context menu, choose Create > Quick Query > ADF Quick Query
Panel.

4. If you do not already have a results component, then drop the data collection
associated with the view criteria as a component.

5. In the Property Inspector for the quick query panel, copy the value of the Id field.

6. In the Property Inspector for the results component (for example, a table), paste or
enter the value into the PartialTriggers field.

27.4.3 How to Set the Quick Query Layout Format
The default layout of the form is horizontal. You can change the layout option using
the Property Inspector.

To set the layout:
1. In the Structure window, double-click af:quickQuery.

2. In the Property Inspector, on the Commons page, select the Layout property using
the dropdown list to specify default, horizontal, or vertical.

27.4.4 What Happens When You Create a Quick Query Search Form
When you drop a quick query search form onto a page, JDeveloper creates an
af:quickQuery tag. If you have dropped a quick query with table or tree table, then
an af:table tag or af:treeTable tag is also added.

Under the af:quickQuery tag are several attributes and facets that define the quick
query properties. Some of the tags are:

■ The id attribute, which uniquely identifies the quick query. This value should be
set to match the results table or component’s partialTriggers value.
JDeveloper will automatically assign these values when you drop a quick query
with table or tree table. If you want to change to a different results component, see
Section 27.4.2, "How to Create a Quick Query Search Form and Add a Results
Component Later."

■ The layout attribute, which specifies the quick query layout to be default,
horizontal, or vertical.

■ The end facet, which specifies the component to be used to display the Advanced
link (that changes the mode from quick query to the query). For more information
about creating this function, see the "Using Query Components" chapter of the
Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework.

27.4.5 What Happens at Runtime: Quick Query
At runtime, the quick query search form displays a single search criteria field with a
dropdown list of selectable search criteria items. If there is only one searchable criteria
item, then the dropdown list box will not be rendered. An input component that is
compatible with the selected search criteria type will be displayed, as shown in
Table 27–4. For example, if the search criteria type is date, then inputDate will be
rendered.

Creating Standalone Filtered Search Tables from Named View Criteria

Creating ADF Databound Search Forms 27-27

If the Default List Type control hint in the view object has been declared as an LOV or
a selection list component, the search criteria field component appears as shown in
Table 27–3 in Section 27.1.6, "List of Values (LOV) Input Fields."

In addition, a Search button is rendered to the right of the input field. If the end facet
is specified, then any components in the end facet are displayed. By default, the end
facet contains an Advanced link.

27.5 Creating Standalone Filtered Search Tables from Named View
Criteria

You use query search forms for complex searches, but you can also perform simple
QBE searches using the filtered table. You can create a standalone ADF-filtered table
without the associated search panel and perform searches using the QBE-style search
criteria input fields. For more information about filtered tables, see Section 27.1.4,
"Filtered Table and Query-by-Example Searches."

When creating a table, you can make almost any table a filtered table by selecting the
filtering option if the option is enabled. There are three ways to create a standalone
filtered table:

■ You can drop a table onto a page from the Component Palette, bind it to a data
collection, and set the filtering option. For more information, see the "Using Query
Components" chapter of the Oracle Fusion Middleware Web User Interface Developer's
Guide for Oracle Application Development Framework.

■ You can create a filtered table by dragging and dropping a data collection onto a
page and setting the filtering option. For more information, see Section 23.2.1,
"How to Create a Basic Table."

■ You can also create a filtered table or a read-only filtered table by dropping named
criteria onto a page. You can use either the implicitly created named criteria All
Queriable Attributes or any declaratively created named view criteria. The
resulting filtered table will have a column for each searchable attribute and an
input search field above each column.

You can set the QBE search criteria for each filterable column to be a case-sensitive or
case-insensitive search using the filterFeature attribute of af:column in the
af:table component. For more information, see the "Enable Filtering in Tables"
section of the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle
Application Development Framework.

Before you begin:
Create a view object to be the basis of the table.

To create a filtered table using named view criteria:
1. From the Data Controls panel, select the data collection and expand the Named

Criteria node to display a list of named view criteria.

Table 27–4 Quick Query Search Criteria Field Components

Attribute Type Rendered Component

DATE af:inputDate

VARCHAR af:inputText

NUMBER af:inputNumberSpinBox

Creating Standalone Filtered Search Tables from Named View Criteria

27-28 Fusion Developer's Guide for Oracle Application Development Framework

2. Drag the named view criteria item and drop it onto the page or onto the Structure
window.

3. From the context menu, choose Create > Tables > ADF Filtered Table or Create >
Tables >ADF Read-Only Filtered Table.

4. In the Edit Table Columns dialog, you can rearrange any column and select table
options. Because the table is created by JDeveloper during quick query creation,
the filtering option is automatically enabled and not user-selectable, as shown in
Figure 27–20.

Figure 27–20 Edit Table Columns Dialog for Filtered Table

28

Creating More Complex Pages 28-1

28Creating More Complex Pages

This chapter describes how to use ADF data binding to add more complex features to
the pages of a Fusion web application. It describes how to use methods that take
parameters for creating forms and command components. It also includes information
about creating contextual events and using ADF Model-level validation.

This chapter includes the following sections:

■ Section 28.1, "Introduction to More Complex Pages"

■ Section 28.2, "Creating Command Components to Execute Methods"

■ Section 28.3, "Setting Parameter Values Using a Command Component"

■ Section 28.4, "Overriding Declarative Methods"

■ Section 28.5, "Using the ADF Faces Calendar Component"

■ Section 28.6, "Using the ADF Faces Carousel Component"

■ Section 28.7, "Creating Contextual Events"

■ Section 28.8, "Adding ADF Model Layer Validation"

■ Section 28.9, "Displaying Error Messages"

■ Section 28.10, "Customizing Error Handling"

28.1 Introduction to More Complex Pages
Once you create a basic page and add navigation capabilities, you may want to add
more complex features, such as passing parameters between pages or providing the
ability to override declarative actions. Oracle ADF provides many features that allow
you to add this complex functionality using very little actual code.

Some of the functions described in this chapter may be performed using other
methodology. For example, if you are using task flows instead of individual page
flows, you should use the task flow parameter passing mechanism. Or, if you are
using ADF Business Components, you should use the validation rules on entity objects
in the data model project, rather than using ADF Model validation rules. For more
information about validation rules for Business Components, see Chapter 7, "Defining
Validation and Business Rules Declaratively."

Note: Some of the implementation methods in this chapter are
intended for page-level designs. If you are using task flows, you may
be able to perform many of the same functions. For more information,
see Chapter 14, "Getting Started with ADF Task Flows."

Creating Command Components to Execute Methods

28-2 Fusion Developer's Guide for Oracle Application Development Framework

28.2 Creating Command Components to Execute Methods
When your application contains custom methods, these methods appear in the Data
Controls panel. You can then drag these methods and drop them as command buttons.
When a user clicks the button, the method is executed.

For more information about creating custom methods, see Section 9.7, "Customizing
an Application Module with Service Methods," and Section 9.9, "Publishing Custom
Service Methods to UI Clients."

For example, the application module in the StoreFront module of the Fusion Order
Demo application contains the updateItemInCart(Integer, Integer,
Boolean) method. This method updates the items in the shopping cart. To allow the
user to execute this method, you drag the updateItemInCart(Integer, Integer
Boolean) method from the Data Controls panel, as shown in Figure 28–1.

Figure 28–1 Methods in the Data Controls Panel

28.2.1 How to Create a Command Component Bound to a Custom Method
In order to perform the required business logic, many methods require a value for
their parameter or parameters. This means that when you create a button bound to the
method, you need to specify where the value for the parameter(s) is to be retrieved
from.

Before you begin:
Create a custom method that can be added to the page.

For example, if you use the updateItemInCart(Integer, Integer, Boolean)
method, you need to specify the items to be updated.

To add a button bound to a method:
1. From the Data Controls panel, drag the method onto the page.

Note: If you are using task flows, you can call methods directly from
the task flow definition. For more information, see Section 15.5, "Using
Method Call Activities."

Tip: If you are dropping a button for a method that needs to work
with data in a table or form, that button must be dropped inside the
table or form.

Creating Command Components to Execute Methods

Creating More Complex Pages 28-3

2. From the context menu, choose Create > Methods > ADF Button.

If the method takes parameters, the Edit Action Binding dialog opens. In the Edit
Action Binding dialog, enter values for each parameter or click the Show EL
Expression Builder menu selection in the Value column of Parameters to launch
the EL Expression Builder.

28.2.2 What Happens When You Create Command Components Using a Method
When you drop a method as a command button, JDeveloper:

■ Defines a method action binding for the method.

■ If the method takes any parameters, JDeveloper creates NamedData elements that
hold the parameter values.

■ Inserts code in the JSF page for the ADF Faces command component.

■ Binds the button to the method using actionListener.

■ Uses the return value from the method call.

28.2.2.1 Defining Method Action Binding
JDeveloper adds an action binding for the method. Action bindings use the
RequiresUpdateModel property, which determines whether or not the model needs
to be updated before the action is executed. For command operations, this property is
set to true by default, which means that any changes made at the view layer must be
moved to the model before the operation is executed.

28.2.2.2 Using Parameters in a Method
When you drop a method that takes parameters onto a JSF page, JDeveloper creates a
method action binding. This binding is what causes the method to be executed when a
user clicks the command component. When the method requires parameters to run,
JDeveloper also creates NamedData elements for each parameter. These elements
represent the parameters of the method.

For example, the updateItemInCart(Integer, Integer, Boolean) method
action binding contains NamedData elements for the parameter. This element is
bound to the value specified when you created the action binding. Example 28–1
shows the method action binding created when you drop the
updateItemInCart(Integer, Integer, Boolean) method, and bind the
Integer parameter (named productId) and the other Integer parameter (named
quantity) and the Boolean parameter (named isSet) to the appropriate variables.

Example 28–1 Method Action Binding for a Parameter Method

<methodAction id="updateItemInCart"
 InstanceName="StoreServiceAMDataControl.dataProvider"
 DataControl="StoreServiceAMDataControl"
 RequiresUpdateModel="true" Action="invokeMethod"
 MethodName="updateItemInCart" IsViewObjectMethod="false">
 <NamedData NDName="productId" NDType="java.lang.Integer"/>
 <NamedData NDName="quantity" NDType="java.lang.Integer"/>
 <NamedData NDName="isSet" NDType="java.lang.Boolean"/>
</methodAction>

Creating Command Components to Execute Methods

28-4 Fusion Developer's Guide for Oracle Application Development Framework

28.2.2.3 Adding ADF Faces Component Code to JSF Page
JDeveloper adds code for the ADF Faces component to the JSF page. This code is the
same as code for any other command button, as described in Section 22.4.2.3, "EL
Expressions Used to Bind to Navigation Operations." However, instead of being
bound to the execute method of the action binding for a built-in operation, the
button is bound to the execute method of the method action binding for the method
that was dropped.

28.2.2.4 Using EL Expressions to Bind to Methods
Like creating command buttons using operations, when you create a command button
using a method, JDeveloper binds the button to the method using the
actionListener attribute. The button is bound to the execute property of the
action binding for the given method using an EL expression. This EL expression
causes the binding’s method to be invoked on the application module. For more
information about the command button’s actionListener attribute, see
Section 22.4.4, "What Happens at Runtime: How Action Events and Action Listeners
Work."

Like navigation operations, the disabled property on the button uses an EL
expression to determine whether or not to display the button. Example 28–2 shows the
EL expression used to bind the command button to the
updateItemInCart(Integer, Integer, Boolean) method.

Example 28–2 JSF Code to Bind a Command Button to a Method

<af:commandButton actionListener="#{bindings.updateItemInCart.execute}"
 text="updateItemInCart"
 disabled="#{!bindings.updateItemInCart.enabled}"/>

28.2.2.5 Using the Return Value from a Method Call
You can also use the return value from a method call. Example 28–3 shows a custom
method that returns a string value.

Example 28–3 Custom Method That Returns a Value

/**
 * Custom method.
*/
 public String getHelloString() {
 return ("Hello World");
 }

Tip: Instead of binding a button to the execute method on the
action binding, you can bind the button to the method in a backing
bean that overrides the execute method. Doing so allows you to add
logic before or after the original method runs. For more information,
see Section 28.4, "Overriding Declarative Methods."

Tip: When you drop a command button component onto the page,
JDeveloper automatically gives it an ID based on the number of the
same type of component that was previously dropped. For example,
commandButton1, commandButton2. If you change the ID to
something more descriptive, you must manually update any
references to it in any EL expressions in the page.

Setting Parameter Values Using a Command Component

Creating More Complex Pages 28-5

Example 28–4 shows the code in the JSF page for the command button and an
outputText component.

Example 28–4 Command Button to Call the Custom Method

<af:commandButton actionListener="#{bindings.getHelloString.execute}"
 text="getHelloString"
 disabled="#{!bindings.getHelloString.enabled}"
 id="helloButtonId"/>
<af:outputText value="#{bindings.return.inputValue}"
 id="helloOutputId"/>

When the user clicks the command button, it calls the custom method. The method
returns the string "Hello World" to be shown as the value of the outputText
component.

28.2.3 What Happens at Runtime: Command Button Method Bindings
When the user clicks the button, the method binding causes the associated method to
be invoked, passing in the value bound to the NamedData element as the parameter.
For example, if a user clicks a button bound to the
updateItemInCartItem(Integer, Integer, Boolean) method, the method
takes the values of the product Id and quantity and updates the shopping cart.

28.3 Setting Parameter Values Using a Command Component
There may be cases where an action on one page needs to set parameters that will be
used to determine application functionality. For example, you can create a search
command button on one page that will navigate to a results table on another page. But
the results table will display only if a parameter value is false.

You can use a managed bean to pass this parameter between the pages, and to contain
the method that is used to check the value of this parameter. The managed bean is
instantiated as the search page is rendered, and a method on the bean checks that
parameter. If it is null (which it will be the first time the page is rendered), the bean
sets the value to true.

For more information about creating custom methods, see Section 9.7, "Customizing
an Application Module with Service Methods," and Section 9.9, "Publishing Custom
Service Methods to UI Clients."

A setPropertyListener component with type property set to action, which is
nested in the command button that executed this search, is then used to set this flag to
false, thus causing the results table to display once the search is executed. For
information about using managed beans, see Section 20.4, "Using a Managed Bean in a
Fusion Web Application."

Note: If you are using task flows, you can use the task flow
parameter passing mechanism. For more information, see Chapter 16,
"Using Parameters in Task Flows."

Setting Parameter Values Using a Command Component

28-6 Fusion Developer's Guide for Oracle Application Development Framework

28.3.1 How to Set Parameters Using setPropertyListener Within a Command
Component

You can use the setPropertyListener component to set values on other objects.
This component must be a child of a command component.

Before you begin:
Create a command component on the page.

To use the setPropertyListener component:
1. In the Component Palette, from the Operations panel, drag a setPropertyListener

component and drop it as a child to the command component.

Or right-click the component and select Insert inside Button > ADF Faces >
setPropertyListener.

2. In the Insert Set Property Listener dialog, enter the parameter value in the From
field.

3. Enter the parameter target in the To field.

4. From the Type dropdown menu, select Action.

5. Click OK.

28.3.2 What Happens When You Set Parameters
The setPropertyListener component lets the command component set a value
before it navigates to the next page. When you set the from attribute either to the
source of the value you need to pass or to the actual value, the component will be able
to access that value. When you set the to attribute to a target, the command
component is able to set the value on the target. Example 28–5 shows the code on the
JSF page for a command component that takes the value false and sets it as the value
of the initialSearch flag on the searchResults managed bean.

Example 28–5 JSF Page Code for a Command Button Using a setPropertyListener
Component

<af:commandButton actionListener="#{bindings.Execute.execute}"
 text=Search>
 <af:setPropertyListener from="#{false}"
 to="#{searchResults.initialSearch}"/>
 type="action"/>
</af:commandButton>

Tip: Consider storing the parameter value on a managed bean or in
scope instead of setting it directly on the resulting page’s page
definition file. By setting it directly on the next page, you lose the
ability to easily change navigation in the future. For more information,
see Section 20.4, "Using a Managed Bean in a Fusion Web
Application." Additionally, the data in a binding container is valid
only during the request in which the container was prepared. The
data may change between the time you set it and the time the next
page is rendered.

Overriding Declarative Methods

Creating More Complex Pages 28-7

28.3.3 What Happens at Runtime: setPropertyListener for a Command Component
When a user clicks the command component, before navigation occurs, the
setPropertyListener component sets the parameter value. In Example 28–5, the
setPropertyListener takes the value false and sets it as the value for the
initialSearchattribute on the searchResults managed bean. Now, any
component that needs to know this value in determining whether or not to render can
access it using the EL expression #{searchResults.initialSearch}.

28.4 Overriding Declarative Methods
When you drop an operation or method as a command button, JDeveloper binds the
button to the execute method for the operation or method. However, there may be
occasions when you need to add logic before or after the existing logic.

JDeveloper allows you to add logic to a declarative operation by creating a new
method and property on a managed bean that provides access to the binding
container. By default, this generated code executes the operation or method. You can
then add logic before or after this code. JDeveloper automatically binds the command
component to this new method, instead of to the execute property on the original
operation or method. Now when the user clicks the button, the new method is
executed.

For example, in the Fusion Order Demo application Orders page, the Commit
operation requires additional processing. The Commit button is renamed to Submit
Orders and logic is added to the submitOrders method in the orderPageBean
managed bean.

In order to override a declarative method, you must have a managed bean to hold the
new method to which the command component will be bound. If your page has a
backing bean associated with it, JDeveloper adds the code needed to access the
binding object to this backing bean. If your page does not have a backing bean,
JDeveloper asks you to create one.

28.4.1 How to Override a Declarative Method

Before you begin:
Create the method that will override the declarative method in a managed bean.
Operations are available by default.

To override a declarative method:
1. Drag the operation or method to be overridden onto the JSF page and drop it as a

UI command component.

Note: If you are using task flows, you can call custom methods from
the task flow. For more information, see Chapter 14, "Getting Started
with ADF Task Flows."

Note: You cannot override the declarative method if the command
component currently has an EL expression as its value for the Action
attribute, because JDeveloper will not overwrite an EL expression.
You must remove this value before continuing.

Overriding Declarative Methods

28-8 Fusion Developer's Guide for Oracle Application Development Framework

The component is created and bound to the associated binding object in the ADF
Model layer with the ActionListener attribute.

For more information about creating command components using methods on the
Data Controls panel, see Section 28.2, "Creating Command Components to Execute
Methods."

For more information about creating command components from operations, see
Section 22.4.2, "What Happens When You Create Command Buttons."

2. On the JSF page, double-click the component.

3. In the Bind Action Property dialog, identify the backing bean and the method to
which you want to bind the component, using one of the following techniques:

■ If auto-binding has been enabled on the page, the backing bean is already
selected for you, as shown in Figure 28–2.

Figure 28–2 Bind Action Property Dialog for a Page with Auto-Binding Enabled

– To create a new method, enter a name for the method in the Method field,
which initially displays a default name.

 or

– To use an existing method, select a method from the dropdown list in the
Method field.

– Select Generate ADF Binding Code.

■ If the page is not using auto-binding, you can select from an existing backing
bean or create a new one, as shown in Figure 28–3.

Figure 28–3 Bind Action Property Dialog for a Page with Auto-Binding Disabled

– Click New to create a new backing bean. In the Create Managed Bean
dialog, name the bean and the class, and set the bean’s scope.

or

– Select an existing backing bean and method from the dropdown lists.

Overriding Declarative Methods

Creating More Complex Pages 28-9

4. After identifying the backing bean and method, click OK in the Bind Action
Property dialog

JDeveloper opens the managed bean in the source editor. Example 28–6 shows the
code inserted into the bean. In this example, a command button is bound to the
Commit operation.

Example 28–6 Generated Code in a Backing Bean to Access the Binding Object

public String submitOrder() {
 BindingContainer bindings = getBindings();
 OperationBinding operationBinding =
 bindings.getOperationBinding("Commit");
 Object result = operationBinding.execute();
 if (!operationBinding.getErrors().isEmpty()) {
 return null;
 }
}

5. You can now add logic either before or after the binding object is accessed, as
shown in Example 28–7.

Example 28–7 Code Added to the Overridden Method

public String submitOrder() {
 DCBindingContainer bindings =
 (DCBindingContainer)JSFUtils.resolveExpression("#{bindings}");
 OperationBinding operationBinding =
 bindings.getOperationBinding("Commit");
 JUCtrlAttrsBinding statusCode =
 (JUCtrlAttrsBinding)bindings.findNamedObject("OrderStatusCode");
 statusCode.setAttribute("OrderStatusCode", "PENDING");
 JUCtrlAttrsBinding orderDate =
 (JUCtrlAttrsBinding)bindings.findNamedObject("OrderDate");
 orderDate.setAttribute("OrderDate", new Date());
 JUCtrlAttrsBinding orderId =
 (JUCtrlAttrsBinding)bindings.findNamedObject("OrderId");
 JSFUtils.storeOnSession("orderId", orderId.getAttribute("OrderId"));
 JUCtrlAttrsBinding invoiceTotal =
 (JUCtrlAttrsBinding)bindings.findNamedObject("InvoiceTotal");
 JUCtrlAttrsBinding orderTotal =
 (JUCtrlAttrsBinding)bindings.findNamedObject("OrderTotal");
 orderTotal.setAttribute("OrderTotal",
 invoiceTotal.getAttribute("InvoiceTotal"));
 Object result = operationBinding.execute();
 ShoppingCartBean shoppingCartBean =
 (ShoppingCartBean)JSFUtils.resolveExpression("#{shoppingCartBean}");
 shoppingCartBean.removeAllItems();
 return "orderSummary";
}

Note: Whenever there is a value for the ActionListener attribute
on the command component, JDeveloper understands that the button
is bound to the execute property of a binding. If you have removed
that binding, you will not be given the choice to generate the ADF
binding code. You will need to insert the code manually, or to set a
dummy value for the ActionListener before double-clicking the
command component.

Overriding Declarative Methods

28-10 Fusion Developer's Guide for Oracle Application Development Framework

The code in Example 28–7 uses the FOD utility method
JSFUtils.resolveExpression to resolve EL expressions. The code for such a
method would be similar to the code in Example 28–8.

Example 28–8 Utility Method to Solve EL Expressions

public static Object resolveExpression(String expression) {
 FacesContext facesContext = getFacesContext();
 Application app = facesContext.getApplication();
 ExpressionFactory elFactory = app.getExpressionFactory();
 ELContext elContext = facesContext.getELContext();
 ValueExpression valueExp =
 elFactory.createValueExpression(elContext, expression, Object.class);
 return valueExp.getValue(elContext);
 }

In addition to any processing logic, you may also want to write conditional logic
to return one of multiple outcomes. For example, you might want to return null
if there is an error in the processing, or another outcome value if the processing
was successful. A return value of null causes the navigation handler to forgo
evaluating navigation cases and to immediately redisplay the current page.

The command button is now bound to this new method using the Action
attribute instead of the ActionListener attribute. If a value had previously
existed for the Action attribute (such as an outcome string), that value is added
as the return for the new method. If there was no value, the return is kept as null.

28.4.2 What Happens When You Override a Declarative Method
When you override a declarative method, JDeveloper adds a managed property to
your backing bean with the managed property value of #{bindings} (the reference
to the binding container), and it adds a strongly typed bean property to your class of
the BindingContainer type, which the JSF runtime will then set with the value of
the managed property expression #{bindings}. JDeveloper also adds logic to the UI
command action method. This logic includes the strongly typed getBindings()
method used to access the current binding container.

The code does the following:

■ Accesses the binding container.

■ Finds the binding for the associated method, and executes it.

■ Adds a return for the method that can be used for navigation. By default, the
return is null. If an outcome string had previously existed for the button’s
Action attribute, that attribute is used as the return value. You can change this
code as needed.

JDeveloper automatically rebinds the UI command component to the new method
using the Action attribute, instead of the ActionListener attribute. Example 28–9
shows the code when a Commit operation is declaratively added to a page.

Example 28–9 JSF Page Code for a Command Button Bound to a Declarative Method

<af:commandButton actionListener="#{bindings.Commit.execute}"

Tip: To trigger a specific navigation case, the outcome value
returned by the method must exactly match the outcome value in the
navigation rule, including case.

Using the ADF Faces Calendar Component

Creating More Complex Pages 28-11

 text="Commit"
 disabled="#{!bindings.Commit.enabled}"/>

Example 28–10 shows the code after the method on the page’s backing bean is
overridden. Note that the action attribute is now bound to the backing bean’s
method.

Example 28–10 JSF Page Code for a Command Button Bound to an Overridden Method

<af:commandButton text="#{res['order.cart.submit']}"
 action="#{orderPageBean.submitOrder}"/>

28.5 Using the ADF Faces Calendar Component
ADF Faces includes a calendar component that displays created activities in daily,
weekly, or monthly views. Figure 28–4 shows an ADF Faces calendar in weekly view
mode with some sample activities.

Figure 28–4 ADF Faces Calendar

The calendar component also includes the following functionality:

■ A toolbar that allows users to switch between monthly, weekly, daily, and list
views.

Tip: If when you click the button that uses the overridden method
you receive this error:

SEVERE: Managed bean main_bean could not be created
The scope of the referenced object: '#{bindings}' is
shorter than the referring object

it is because the managed bean that contains the overriding method
has a scope that is greater than request (that is, either session or
application). Because the data in the binding container referenced
in the method has a scope of request, the scope of this managed
bean must be set to the same or a lesser scope.

Using the ADF Faces Calendar Component

28-12 Fusion Developer's Guide for Oracle Application Development Framework

■ Configurable start of the week days and start of the day hours. For example, a
calendar’s week might start on Sunday and the day might show 8:00 am at the top.

■ Configurable styles using skinning keys.

Additionally, you can implement the following functionality using other ADF Faces
components and the rich client framework:

■ Popup functionality. Components placed in supported faces that respond to
certain events and allow the user to act on activities or the calendar. For example,
when a user clicks an activity in the calendar, the CalendarActivityEvent is
invoked and any popup component in the ActivityDetail facet is displayed.
You might use a dialog component that contains a form where users can view and
edit the activity, as shown in Figure 28–5.

Figure 28–5 Edit Dialog for ActivityDetail Facet

■ Drag and drop capability: You can add the calendarDropTarget tag that
allows a user to drag an activity to another place on the calendar. You then
implement the functionality so that the time is actually changed on the activity
and persisted to the data store.

■ Toolbar customization: By default, the toolbar contains buttons that allow the user
to switch between the different views, along with previous and next buttons and a
button that returns to the current date. The toolbar also displays the current date
range (or the date when in day view). You can customize the toolbar by adding
facets that contain additional buttons of your choosing.

■ Skinning: The calendar uses skinning keys to determine things like colors and
icons used. You can extend the skin to change the appearance of the calendar.

Details for configuring the built-in functionality or for implementing additional
functionality can be found in the "Creating a Calendar" chapter of the Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application Development
Framework.

Tip: When these toolbar buttons are used, attribute values on the
calendar are changed. You can configure these values to be persisted
so that they remain for a particular user whenever he or she accesses
the calendar. For more information, see Chapter 35, "Allowing User
Customizations at Runtime".

Using the ADF Faces Calendar Component

Creating More Complex Pages 28-13

An ADF Faces Calendar component must be bound to a CalendarModel class. This
class can be created for you when you use ADF Business Components to manage your
calendar’s data. For example, say you have data in your data store that represents the
details of an activity, such as the date, time, title, location, and owner. When you
create an entity object to represent that data, and then a view object to display the
data, you can drag and drop the associated collection from the Data Controls panel to
create the calendar. JDeveloper will declaratively create the model and bind the view
to that model so that the correct data will display when the calendar is launched.
However, in order for the model to be created, your entity objects in the data model
project with ADF Business Components and your view objects in the same project
must contain date-effective attributes. Additionally, the view objects must contain
variables that will be used to modify the query to return the correct activities for the
given date range.

28.5.1 How to Use the ADF Faces Calendar
Before you can create a calendar on a JSF page, you must first create an entity object
with specific attributes that represent attributes on a calendar. You then must create a
view object from that entity object, and modify the query to use named bind variables
that represent the date range and current time zone to display. This will allow the
query to return only the activities that should be displayed in the given view on the
calendar.

For example, say you have a database table that represents an activity. It has a column
for title, start time, end time, and a reference to a provider object that represents the
owner. You would create an entity object and a view object based on that table
(ensuring that it meets the requirements, as described in the following steps). To the
view object, you would then add named bind variables for the start and end times
currently displayed on the calendar, along with the time zone currently in use by the
calendar, so that the query returns only those activities that fall within that time range.

Once you add the calendar component to a JSF page, you can configure it, and add
further needed functionality.

To create an ADF Faces calendar:
1. Create an entity object based on your data source. The entity object must include

the attributes shown in Table 28–1. The attributes do not have to use the names
shown in the table; they can be named anything. However, they must be of one of
the types noted. You will map these attributes to attributes in the
CalendarModel in a later step.

Table 28–1 Required Attributes for a Calendar

Attribute Valid Types Description

Start time java.util.Date,
java.sql.Date,
oracle.jbo.domain.Date,
oracle.jbo.domain.TimeStamp

Start time for the activity

End time java.util.Date,
java.sql.Date,
oracle.jbo.domain.Date,
oracle.jbo.domain.TimeStamp

End time for the activity

ID String Unique ID

Provider ID String ID of the provider object that
represents the owner of the activity

Using the ADF Faces Calendar Component

28-14 Fusion Developer's Guide for Oracle Application Development Framework

The entity object can also contain the known (but not required) attributes shown in
Table 28–2:

Your entity objects can also contain other attributes that the CalendarModel has
no knowledge of. You will be able to add these to the model as custom properties
in a later step.

For information on creating entity objects, see Chapter 4, "Creating a Business
Domain Layer Using Entity Objects."

2. Create an associated view object. In the Query page of the overview editor, create
named bind variables for the following:

■ A string that represents the time zone

■ A date that represents the start time for the current date range shown on the
calendar.

■ A date that represents the end time for the current date range shown on the
calendar.

For more information about creating named bind variables, see Section 5.10,
"Working with Bind Variables".

3. Create an entity object that represents the provider (owner) of activities. The entity
object must include the attributes shown in Table 28–3. The attributes do not have

Title String Short description of the activity

Table 28–2 Optional Attributes for a Calendar

Attribute Type Description

Recurring String or
CalendarActivity.Recurring

Status of recurrence for the activity.
Valid values are SINGLE (does not
recur), RECURRING, or CHANGED (this
activity was part of the recurring
activity but has been modified to be
different from parent activity).

Reminder String or
CalendarActivity.Reminder

Whether or not the activity has an
associated reminder. Valid values are
ON or OFF.

Time Type String or
CalendarActivity.TimeType

Type of time associated with the
activity. Valid values are ALLDAY and
TIME. Activities that have a value of
ALLDAY do not have any time
associated with them. They are
considered to span the entire day.
Activities with a value of TIME have a
specific time duration.

Location String Location of an activity.

Tags Set of Strings or a semicolon
separated list of Strings.

Keywords for the activity.

Tip: Dates in an ADF Faces calendar are "half-open," meaning that
the calendar will return all activities that start on or after the start time
and before (but not on) the end time.

Table 28–1 (Cont.) Required Attributes for a Calendar

Attribute Valid Types Description

Using the ADF Faces Calendar Component

Creating More Complex Pages 28-15

to use the names shown in the table; they can be named anything. However, they
must be of the type noted. You will map these attributes to attributes in the
CalendarProvider class in a later step.

4. Create a view object for the provider.

5. Ensure that the new view objects are part of the application module, and if
needed, refresh the Data Controls panel.

6. Create your JSF page, as documented in Section 20.3, "Creating a Web Page".

7. From the Data Controls panel, drag the collection that represents the view object
for the activity created in Step 2 and drop it as a Calendar.

8. Complete the Calendar Bindings dialog to map the bind variables and attributes to
the CalendarModel and the CalendarProvider classes. For additional help,
click Help or press F1.

9. By default, the calendar will be read-only and will return only those activities
currently in the data store. You will need to configure the calendar and implement
additional functionality as described in the "Creating a Calendar" chapter of the
Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework.

For example, to allow creation of a new activity, you might create an input form in
a dialog (as described in the "How to Create a Dialog" section of the Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application Development
Framework) using the same data control collection used to create the calendar. For
more information about creating input forms, see Section 22.6, "Creating an Input
Form".

28.5.2 What Happens When You Create a Calendar
When you drop a collection as a calendar, JDeveloper:

■ Defines an iterator binding to the collection of activities, and another iterator
binding to the collection of providers.

■ Defines an action binding to the executeWithParams operation on the activities
collection. It is this operation that will be invoked to execute the query to return
the activities to display. Because the operation requires parameters to determine
the date range and time zone, NamedData elements are also created for each of the
parameters (created as named bind variables on the view object). For more
information about NamedData elements, see Section 28.2.2.2, "Using Parameters in
a Method".

■ Defines a calendar binding. This binding contains a node element that represents
a row in the collection and maps the data control attributes to the calendar

Table 28–3 Attributes for a CalendarProvider Class

Attribute Type Description

Id String Unique ID.

Display Name String The name of the provider that can be
displayed in the calendar.

Tip: The Calendar option will display in the context menu only if the
view object contains the required attributes documented in Table 28–1
and the bind variables described in Step 2.

Using the ADF Faces Calendar Component

28-16 Fusion Developer's Guide for Oracle Application Development Framework

activity’s attributes, as defined when using the wizard.The value is the data
control attribute and the type is the calendar attribute. For any custom defined
attributes, the type will be custom and value will be the data control attribute.
Each row (node) is represented by a rowKey, which is the activity ID.

There is also a providerDefinition element the determines the source and
mapping of available providers. This mapping allows the calendar model to filter
activities based on the state of the provider (either enabled or disabled).

 Example 28–11 shows the page definition code for a calendar.

Example 28–11 Page Definition Code for a Calendar Binding

<executables>
 <iterator Binds="ActivityView1" RangeSize="-1"
 DataControl="AppModuleDataControl" id="ActivityView1Iterator"/>
 <iterator Binds="EmployeesView1" RangeSize="25"
 DataControl="AppModuleDataControl" id="EmployeesView1Iterator"/>
 </executables>
 <bindings>
 <action IterBinding="ActivityView1Iterator" id="ExecuteWithParams"
 RequiresUpdateModel="true" Action="executeWithParams">
 <NamedData NDName="startTime"
 NDValue="#{bindings.ActivityView1.startDate}"
 NDType="oracle.jbo.domain.Date"/>
 <NamedData NDName="endTime" NDValue="#{bindings.ActivityView1.endDate}"
 NDType="oracle.jbo.domain.Date"/>
 <NamedData NDName="timeZone"
 NDValue="#{bindings.ActivityView1.timeZoneId}"
 NDType="java.lang.String"/>
 </action>
 <calendar IterBinding="ActivityView1Iterator" id="ActivityView1"
 xmlns="http://xmlns.oracle.com/adf/faces/binding"
 ActionBindingName="ExecuteWithParams">
 <nodeDefinition DefName="model.ActivityView">
 <AttrNames>
 <Item Type="id" Value="Id"/>
 <Item Type="providerId" Value="ProviderId"/>
 <Item Type="title" Value="Title"/>
 <Item Type="startTime" Value="StartTime"/>
 <Item Type="endTime" Value="EndTime"/>
 </AttrNames>
 </nodeDefinition>
 <providerDefinition IterBindingName="EmployeesView1Iterator">
 <AttrNames>
 <Item Type="id" Value="EmployeeId"/>
 <Item Type="displayName" Value="FirstName"/>
 </AttrNames>
 </providerDefinition>
 </calendar>
 </bindings>

JDeveloper inserts code onto the JSF page that binds the calendar value to the
CalendarModel class, as shown in Example 28–12.

Tip: To access a custom attribute, use the
CalendarActivity.getCustomAttributes() method, passing
in the name of the attribute as defined by the value element.

Using the ADF Faces Carousel Component

Creating More Complex Pages 28-17

Example 28–12 JSF Page Code for a Calendar

<af:form>
 <af:calendar value="#{bindings.ActivityView1.calendarModel}"/>
</af:form>

The CalendarModel class uses CalendarActivityDefinition class to access the
calendar binding.

28.5.3 What Happens at Runtime: How the Calendar Binding Works
When the calendar is accessed, the executeWithParams operation is invoked, with
the value of the startDate and endDate parameters determined by the value of the
calendar component’s view and activeDay attributes. For example, if the view
attribute is set to month and the activeDay is set to the current date (say, February 6,
2009), then the value for the startDate would be February 1, 2009 and the
endDate value would be February 28, 2009. By default, the time zone value is
taken from the time-zone setting in the trinidad-config.xml file (for more
information, see the "Configuration in trinidad-config.xml" section of the Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application Development
Framework). Therefore, the query would be restricted to return only activities that fall
within that date range.

When the query returns data, because the calendar component is bound to the
CalendarModel, the CalendarModel uses the CalendarActivityDefinition
class to access the calendar binding class and map the values from the data source to
the calendar, using the mappings provided by the binding.

28.6 Using the ADF Faces Carousel Component
You can display images in a revolving carousel, as shown in Figure 28–6. Users can
change the image at the front by using either the slider at the bottom or by dragging
another image to the front.

Using the ADF Faces Carousel Component

28-18 Fusion Developer's Guide for Oracle Application Development Framework

Figure 28–6 Carousel Component

Instead of containing a child carouselItem component for each image to be
displayed, and then binding these components to the individual images, the
carousel component is bound to a complete collection and repeatedly renders one
carouselItem component by stamping the value for each item, similar to the way a
tree stamps out each row of data. As each item is stamped, the data for the current
item is copied into a property that can be addressed using an EL expression using the
carousel component’s var attribute. Once the carousel has completed rendering,
this property is removed or reverted back to its previous value. Carousels contain a
nodeStamp facet, which is a holder for the carouselItem component used to
display the text and short description for each item, and is also the parent component
to the image displayed for each item. For more information about the carousel
component, see the "Displaying Images in a Carousel" section of the Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application Development
Framework.

28.6.1 How to Create a Databound Carousel Component
When using a carousel component in a Fusion web application, you create the
component using the Data Controls Panel. You also use a managed bean to handle the
carousel spin event, and for other logic you may need to display your items.

Before you begin:
You need to create a view object for the collection to be displayed in the carousel. The
view object should contain attributes for at least the following:

■ Title, which will be displayed below the image in the carousel

■ Short description used for text displayed when the user mouses over the image.

Using the ADF Faces Carousel Component

Creating More Complex Pages 28-19

To create a databound carousel component:
1. From the Data Controls panel, drag the collection for the view object on to the

page and select Carousel from the context menu.

2. In the Property Inspector, in the Behavior section, bind the CarouselSpinListener
to a handler method that handles the spinning of the carousel when you need
logic to be executed when the carousel spin is executed. Example 28–13 shows the
handler methods that might be used to handle the display of product images for
the Products view object used to create the carousel:

Example 28–13 Handler for the CarouselSpinEvent

public void handleCarouselSpin(CarouselSpinEvent event)
{
 RichCarousel carousel = getCarousel();
 carousel.setRowKey(event.getNewItemKey());
 detailNodeItem = (JUCtrlHierNodeBinding)carousel.getRowData();
}
public JUCtrlHierNodeBinding getDetailNodeItem()
{
// Get the initial item
 if(detailNodeItem == null)
 {
 RichCarousel carousel = getCarousel();

 Object oldKey = carousel.getRowKey();
 try
 {
 Object key = carousel.getCurrentItemKey();
 getCarousel().setRowKey(key);
 detailNodeItem = (JUCtrlHierNodeBinding)carousel.getRowData();
 }
 finally
 {
 carousel.setRowKey(oldKey);
 }
 }

 return detailNodeItem;
}

3. In the Advanced section of the Property Inspector, click the dropdown menu for

the Bindings attribute and select Edit. In the Edit Property: Binding dialog, select
the managed bean used in Step 2. Create a new property called carousel. This
will allow the handler methods to access the carousel object.

4. In the Structure window, expand the carousel component and the nodeStamp
facet, and select the carouselItem component.

5. Bind the CarouselItem component’s text attribute to the associated property
in the data model using variable value set on the carousel’s var attribute, which
by default is set to item. So the value of the carouselItem’s text attribute
would be item.title (given that title is the property used to access the text
used for the carousel items on the data model).

If you were using the Products view object, the value would be
#{item.ProductName}.

Using the ADF Faces Carousel Component

28-20 Fusion Developer's Guide for Oracle Application Development Framework

6. In the Advanced section of the Property Inspector, click the dropdown menu for
the Bindings attribute and select Edit. In the Edit Property: Binding dialog, select
the managed bean used in Step 2. Create a new property called carouselItem.

7. In the ADF Faces page of the Component Palette, from the Common Components
panel, drag an Image and drop it as a child to the carouselItem.

In the Insert Image dialog, enter the path to the source for the images, being sure
to use the variable for the item in the carousel. For example, the path to the image
files for the products would normally be:

/imageservlet?detail=#{Products.ProductId}

For an image in the carousel, you would use:

/imageservlet?detail=#{item.ProductId}

For information about setting other attributes of the carousel and
carouselItem components, see the "How to Create a Carousel" section of the
Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework.

8. If you want to provide additional information about the items in the carousel, you
can drag and drop the same view object onto the page, for example, as a form. For
the components in the form to redisplay the information for the current item
displayed once the carousel is spun, you need to set the partialTrigger
attribute of the component containing the form to the carousel component’s ID.

For example, the form that displays the information for each item in Figure 28–6 is
contained in a panelBox component.The partialTrigger attribute for the
panelBox component is set to c1, which is the carousel component’s ID. This
means that whenever the carouselItem invokes the CarouselSpinEvent, the
panelBox will be refreshed, causing it to display information about the item that
was just made current. For more information about partial page rendering and the
partialTriggers attribute, see the "Rendering Partial Page Content" chapter of the
Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework.

Example 28–14 shows the page code for the carousel displayed in Figure 28–6.

Example 28–14 Partial Trigger Updates the Form to Match the Displayed Carousel Item

<af:carousel
 currentItemKey="#{bindings.Products.treeModel.rootCurrencyRowKey}"
 value="#{bindings.Products.treeModel}" var="item"
 id="c1"
 carouselSpinListener="#{carBean.handleCarouselSpin}">
 <f:facet name="nodeStamp">
 <af:carouselItem id="ci1" text="#{item.ProductName}"
 binding="#{carBean.carouselItem}">
 <af:image source="/imageservlet?detail=#{item.ProductId}"
 id="i1"/>
 </af:carouselItem>
 </f:facet>
 </af:carousel>
 <af:panelBox text="PanelBox1" id="pb1" partialTriggers="c1">
 <af:panelFormLayout id="pfl1">
 <af:panelLabelAndMessage label="#{bindings.ProductName.hints.label}"
 id="plam2">
 <af:outputText value="#{bindings.ProductName.inputValue}"
 id="ot4"/>

Creating Contextual Events

Creating More Complex Pages 28-21

 </af:panelLabelAndMessage>
.
.
.
</af:panelBox>

28.6.2 What Happens When You Create a Carousel
When you drop a collection from the Data Controls panel as a carousel, a tree value
binding is created. A tree consists of a hierarchy of nodes, where each subnode is a
branch off a higher level node.

The tree binding iterates over the data exposed by the iterator binding. The carousel
wraps the result set from the iterator binding in a treeModel object, which is an
extension of the collectionModel. The collectionModel allows each item in the
collection to be available within the carousel component using the var attribute. For
more information about the tree binding, see Section 23.2.2.1, "Iterator and Value
Bindings for Tables."

JDeveloper adds both a carousel component and it’s child carouselItem
component onto the page, as shown in Example 28–15.

Example 28–15 Page Code for a Carousel Component

<af:carousel
 currentItemKey="#{bindings.Products.treeModel.rootCurrencyRowKey}"
 value="#{bindings.Products.treeModel}" var="item"
 id="c1"
 carouselSpinListener="#{carBean.handleCarouselSpin}">
 <f:facet name="nodeStamp">
 <af:carouselItem id="ci1" text="#{item.ProductName}"/>
 </f:facet>
 </af:carousel>

The carousel value is bound to the treeModel for the associated collection, and the
currentItemKey attribute of the carousel is bound to the rootCurrencyRowKey of
the binding object. In this example, the carousel iterates over the items in the
Products iterator binding. The iterator binding binds to a rowKeySet that keeps
track of the current product. By default, the currentItemKey attribute of the
carousel is bound to the rootCurrencyRowKey of the binding object, which causes
the product currently displayed at the front of the carousel to be the root and the
current item. The carouselItem component accesses the current data object for the
current item presented to the carousel tag using the item variable.

28.7 Creating Contextual Events
Often a page or a region within a page needs information from somewhere else on the
page or from a different region. While you can pass parameters to obtain that
information, doing so makes sense only when the parameters are well known and the
inputs are EL-accessible to the page. Parameters are also useful when a task flow may
need to be restarted if the parameter value changes.

However, suppose you have a task flow with multiple page fragments that contain
various interesting values that could be used as input on one of the pages in the flow.
If you were to use parameters to pass the value, the task flow would need to surface
output parameters for the union of each of the interesting values on each and every
fragment. Instead, for each fragment that contains the needed information, you can
define a contextual event that will be raised when the page is submitted. The page or

Creating Contextual Events

28-22 Fusion Developer's Guide for Oracle Application Development Framework

fragment that requires the information can then subscribe to the various events and
receive the information through the event.

For example, in the StoreFront module, contextual events are used in the customer
registration page to display the appropriate informational topic. The user registration
page register.jspx contains two regions. One region contains the customer
registration task flow customer-registration-task-flow, and the other
contains the informational topic task flow help-task-flow. A contextual event is
passed from the customer registration region to the informational topic region so that
the informational topic task flow can display the information topic. At design time, the
event name, producer region, consumer region, consumer handler, and other
information is stored in the event map section of the page definition file, as shown in
Example 28–16.

Example 28–16 Event Map in the registerPageDef.xml File

<eventMap xmlns="http://xmlns.oracle.com/adfm/contextualEvent">
 <event name="queueHelpTopic">
 <producer region="*">
 <consumer region="helptaskflow1"
 handler="helpPageDef.findHelpTextById">
 <parameters>
 <parameter name="helpTopicId" value="${payLoad}"/>
 </parameters>
 </consumer>
 </producer>
 </event>
</eventMap>

At runtime, when a user enters the customer registration task flow, he or she
progresses through a series of view activities from Basic Information to Address and
then to Payment Options by entering data and clicking the Next button. When the
user clicks Next, a contextual event with a payLoad parameter is broadcasted by the
customer registration task flow. This event is then consumed by the information task
flow and its handler, the helpPageDef.findHelpTextById() method. The
consuming method uses the payLoad parameter to determine which information
topic text to display. In the event map, you can specify EL expressions to bind the
input parameters to variables and parameters of the page.

Events are configured in the page definition file for the page or region that will raise
the event (the producer). In order to associate the producer with the consumer that
will do something based on the event, you create an event map also in the page
definition (when using events between regions, the page definition file which holds
both the regions contains the event map). If the consuming page is in a dynamic
region, the event map should be in the page definition file of the consuming page and
the producer's attribute region set to "*". The attribute region is set to "*" because at
design time, the framework cannot determine the relative path to the producer.

You can raise a contextual event for an action binding, a method action binding, a
value attribute binding, or a range binding (table, tree, or list binding). You also can
conditionally fire an event and conditionally handle an event using EL expressions.

For action and method action bindings, the event is raised when the action or method
is executed. The payLoad contains the binding container and event source, and a
single parameter that you can define. Action bindings can be published by multiple
sources, while value attribute and list bindings can be published only by a single
source.

Creating Contextual Events

Creating More Complex Pages 28-23

You can also raise a contextual event from an ADF Faces event such as clicking a
button or selecting from a menu. The ADF Faces component will use eventBinding
to act as a contextual event producer.

For a value attribute binding, the event is triggered by the binding container and
raised after the attribute is set successfully. The payLoad contains the new value,
iterator, binding container and source object, and a single parameter that you can
define. Example 28–17 shows a value change event inside an attribute value binding
associated with an input component. The event, valueChangeEvent, will be
dispatched when the user changes the value of LAST_NAME in the page.

Example 28–17 Value Attribute Event in the Page Definition File

<attributeValues IterBinding="DeptView1Iterator" id="Dname"
 xmlns="http://xmlns.oracle.com/adfm/jcuimodel">
 <events xmlns="http://xmlns.oracle.com/adfm/contextualEvent">
 <event name="valueChangeEvent"/>
 </events>
 <AttrNames xmlns="http://xmlns.oracle.com/adfm/uimodel">
 <Item Value="LAST_NAME"/>
 </AttrNames>
</attributeValues>
</bindings>
<eventMap xmlns="http://xmlns.oracle.com/adfm/contextualEvent">
 <event name="valueChangeEvent">
 <producer region="LAST_NAME">
 <consumer region="" handler="consumeEvent"/>
 </producer>
 </event>
</eventMap>

For a range binding (tree, table, list), the event is raised after the currency change has
succeeded. The payLoad contains the iterator, row key, binding container and source
object, and a single parameter you can define.

Value attribute binding and range binding contextual events may also be triggered by
navigational changes. For example, if you create an event inside a tree table binding,
the event will be dispatched when the user selects a different node of the tree in the
page.

You create, publish, and subscribe to contextual events using the overview editor for
page definition file’s Contextual Events tab, as shown in Figure 28–7.

Creating Contextual Events

28-24 Fusion Developer's Guide for Oracle Application Development Framework

Figure 28–7 Page Definition Contextual Events Tab

You can also use the Contextual Events page in the Property Inspector to create,
publish, and subscribe to contextual events. The Contextual Events panel will only
appear when you select eligible components in the page, as shown in Figure 28–8.

Figure 28–8 Contextual Events Panel in the Property Inspector

Contextual events are not the same as the business events that can be raised by ADF
Business Components or the events raised by UI components. For a description of
these types of events, see the Oracle Fusion Middleware Web User Interface Developer's

Creating Contextual Events

Creating More Complex Pages 28-25

Guide for Oracle Application Development Framework. Contextual events can be used in,
however, in association with UI events. In this case, an action listener that is invoked
due to a UI event can, in turn, invoke a method action binding that then raises the
event.

28.7.1 How to Create Contextual Events Declaratively
You create contextual events by first creating and publishing the event on the
producer based on a method action, action, value attribute, or list binding. On the
consumer, you subscribe to the event and create a handler to process the event.

Before you begin:
Decide on the type of component you want to use to raise the contextual event. If you
plan to use a method action binding, you must have already created the method to be
dropped onto the page.

Typically, you create a parent page with regions that contain task flows and view
activities. You create contextual events in one region to be published for consumer
event handlers in the other region. For more information about using task flows and
regions, see Chapter 17, "Using Task Flows as Regions."

28.7.1.1 Creating Contextual Events in the Publisher
You use the overview editor for page definition files to create contextual events in the
producer’s page.

To create a contextual event:
1. In the producer page, drag and drop a component from the Data Controls panel to

the page that will trigger the event. It must have a method action, action, value
attribute, or list binding. In the StoreFront module, the setHelpId() method
from the Data Controls panel was added to the page.

2. In the overview editor for the producer page definition, select the Contextual
Events tab.

3. In the Events section, click the Add icon.

4. In the Publish Contextual Events dialog:

a. Select Create New Event.

b. Enter the name of the event.

c. Select Pass Custom Value From if you want to pass payLoad data to the
consumer.

d. If you are passing payload data, select the type of data from the dropdown
list.

For example, if you want to pass an attribute value from the producer page to
the consumer page, you can select Page Data and select the attribute from the
tree structure.

e. You can conditionally raise the event by entering an EL expression in the
Raise Condition tab.

Note: You can also publish an action contextual event from code (for
example, from within a managed bean), using the call:

getBindingContainer.raiseEvent(myEventName);

Creating Contextual Events

28-26 Fusion Developer's Guide for Oracle Application Development Framework

For instance, entering an expression such as ${bindings.LAST_
NAME.inputValue == 'KING'} will cause the event to be raised only if the
customer’s last name is KING.

f. Click OK.

The event is created on the page, but it is not ready for publishing until it is
associated with the component binding.

Figure 28–9 Publish a Contextual Event

5. In the producer page, select the component you want to trigger the event, open the
Contextual Events pane in the Property Inspector, and click the Add icon

6. In the Publish Contextual Events dialog:

a. Choose Select Existing Event.

b. Click the Search icon next to the Name field.

c. In the Select Contextual Event dialog, select the event from the tree structure.
The event should be the one you have created in Step 4.

d. Click OK and click OK again.

The event is now ready for publishing.

7. Alternatively, you can create and enable publishing an event in one gesture by
accessing the Publish Contextual Events dialog via the Property Inspector for the
component when you add the component to the page as described in Step 1.
Creating the event in the page definition makes it available for components on that
page to publish the event and for other pages to subscribe to that event.

Creating Contextual Events

Creating More Complex Pages 28-27

28.7.1.2 Subscribing to and Consuming Events
You use the overview editor for page definition files on the parent page to subscribe to
contextual events.

To subscribe and consume the event:
1. In the consuming page, add the components that may respond to the event.

In the StoreFront module, the findHelpTextById method handler return String
is dropped onto the page as an outputText component to display the help
information.

2. Create a handler to process the event and its payLoad data. In the
StoreFrontModule example, the findHelpTextById handler method was
created in the LookupServiceAMDataControl module. You can add an EL
expression to the handler to conditionally handle the page.

3. In the overview editor for the consumer page definition’s Bindings and
Executables tab, click the Add icon in the Bindings section.

4. In the Insert Item dialog, select methodAction and click OK.

5. In the Create Action Binding dialog:

a. Select the data collection where you have created your handler.

b. From the Operation dropdown list, select the handler.

c. Click OK.

6. In the overview editor for the consumer page definition’s Bindings and
Executables tab, Click the Add icon in the Bindings section.

7. In the Insert Item dialog, select attributeValue and click OK.

8. In the Create Attribute Binding dialog:

a. From the Data Source dropdown list, select Variable.

b. Select the return value of the handler as the Attribute.

c. Click OK.

9. In the overview editor of the parent page definition (where both regions are
located), navigate to the Contextual Events tab, and from the Events section click
the Add icon.

10. In the Publish Contextual Events dialog, select Select Existing Event and click the
Search icon.

11. In the Select Contextual Events dialog, select the event you want to publish from
the tree and click OK.

12. In the Publish Contextual Events dialog, check the event parameters and click OK.

The event appears in the Events list in the overview editor for page definition file.

13. In the overview editor of the parent page definition, click Subscribers and click
the Add icon in the Event Subscribers section.

14. In the Subscribe to Contextual Event dialog, click the Search icon.

15. In the Select Contextual Events dialog, select the event you want to subscribe to
from the tree and click OK.

16. In the Subscribe to Contextual Event dialog:

Creating Contextual Events

28-28 Fusion Developer's Guide for Oracle Application Development Framework

a. Select the producer or <Any> from the Publisher dropdown list. A contextual
event can have more than one publisher.

Selecting <Any> will allow the consumer to subscribe to any event. In the
page definition file, the producer attribute will be set to the wildcard "*". If
your publisher is in a dynamic region, you should set this field to <Any> so
that the subscriber can consume from any producer.

b. Click the Search icon next to the Handler field.

c. In the Select Handler dialog, select the event handler from the tree and click
OK.

d. If the handler requires parameters, select the Parameters tab, click Add, and
enter name-value pair as parameters.

e. If you want to conditionally handle the event, select the Handle tab, and enter
an EL Expression that determines the conditions under which the handler will
process the event.

f. Click OK.

Figure 28–10 Subscribe to a Contextual Event

28.7.2 How to Create Contextual Events Manually
You create contextual events by first creating the event on the producer. You then
determine the consumer of the event and map the producer and consumer.

Note: You can edit the event map by right-clicking the page
definition in the Structure window and choosing Edit Event Map.
You can also edit event attributes in the page definition file or in the
Property Inspector.

Creating Contextual Events

Creating More Complex Pages 28-29

Before you begin:
Create a contextual event that has a method binding, action binding, value attribute
binding, or list binding on the producer page. If you do not, you must create the
binding first. For example, for a method binding, in the Structure window, right-click
the binding and choose Insert inside bindings > Generic Bindings > methodAction
and add the method action binding or use the overview editor for the page definition
file to add the binding. For the other bindings, you may need to drop a component
such as an input text, table, or tree to the page.

To create a contextual event:
1. Open the page definition file that contains the binding for the producer of the

event.

A producer must have an associated binding that will be used to raise the event.
For example, if a method or operation will be the producer, the associated action
binding or method action binding will contain the event.

2. In the Structure window, right-click the binding for the producer and choose
Insert inside binding name > events or Insert inside binding name > Contextual
Events > events.

3. In the Structure window, right-click the events element just created, and choose
Insert inside events > event.

4. In the Insert event dialog, enter a name for the event in the name field, and click
Finish.

The event is now created. By default, any return of the associated method or
operation will be taken as the payload for the event and stored in the EL-accessible
variable ${payLoad}. You now need to map the event to the consumer, and to
configure any payload that needs to be passed to the consumer.

5. Open the page definition that contains the binding for the consumer.

The binding container represented by this page provides access to the events from
the current scope, including all contained binding containers (such as task flow
regions). If regions or other nested containers need to be aware of the event, the
event map should be in the page definition of the page in the consuming region.

6. In the Structure window, right-click the topmost node that represents the page
definition, and choose Edit Event Map.

7. In the Event Map Editor, click the Add icon to add an event entry.

8. In the Add New EventMap Entry dialog, do the following:

a. Use the Producer dropdown menu to choose the producer.

b. Use the Event Name dropdown menu to choose the event.

c. Use the Consumer dropdown menu to choose the consumer. This should be
the actual method that will consume the event.

d. If the consuming method or operation requires parameters, click the Add icon.

Note: If the producer event comes from a page in an embedded
dynamic region, you may not be able to edit the event map using the
Event Map Editor. You can manually create the event map by editing
the page definition file or use insert inside steps, as described in
Section 28.7.5, "How to Manually Create the Event Map."

Creating Contextual Events

28-30 Fusion Developer's Guide for Oracle Application Development Framework

In the Param Name field, enter the name of the parameter expected by the
method. In the Param Value field, enter the value. If this is to be the payload
from the event, you can access this value using the ${payLoad} expression. If
the payload contains many parameters and you don’t need them all, use the
ellipses button to open the Expression Builder dialog. You can use this dialog
to select specific parameters under the payload node.

You can also click the Parameters ellipses button to launch the selection
dialog.

e. Click OK.

9. In the Event Map Editor, click OK.

28.7.3 How to Create Contextual Event Using Managed Beans
You can publish an action contextual event from code such as from within a managed
bean. You bind the producer component to the method in the managed bean, as
shown in Example 28–18.

In this example, the producer is a command button that invokes an action binding and
the consumer is an outputText component that displays a string. They are both on
the same page.

Example 28–18 Event Producer and Event Consumer on the JSF

<af:form id="f1">
 <af:eventProducerButton value="eventProducerButton1" id="cb1"
 action="#{MyBean.myActionPerformed}"
 />
 <af:panelLabelAndMessage label="#{bindings.return.hints.label}"id="plam1">
 <af:outputText value="#{bindings.return.inputValue}" id="ot1"/>
 </af:panelLabelAndMessage>
</af:form>

The page definition file contains the method action bindings for the producer, the
consumer, and the event map, as shown in Example 28–19.

Example 28–19 Page Definition with Event Producer, Event Consumer, and Event Map

<executables>
 <variableIterator id="variables">
 <variable Type="java.lang.String" Name="eventConsumer_return"
 IsQueriable="false" IsUpdateable="0"
 DefaultValue="${bindings.eventConsumer.result}"/>
 </variableIterator>
</executables>
<bindings>
 <methodAction id="eventProducer"
 InstanceName="AppModuleDataControl.dataProvider"
 DataControl="AppModuleDataControl" RequiresUpdateModel="true"
 Action="invokeMethod" MethodName="eventProducer"
 IsViewObjectMethod="false"
 ReturnName="AppModuleDataControl.methodResults.eventProducer_
 AppModuleDataControl_dataProvider_eventProducer_result">
 <events xmlns="http://xmlns.oracle.com/adfm/contextualEvent">
 <event name="myEvent"/>
 </events>
 </methodAction>
 <methodAction id="eventConsumer" RequiresUpdateModel="true"
 Action="invokeMethod" MethodName="eventConsumer"

Creating Contextual Events

Creating More Complex Pages 28-31

 IsViewObjectMethod="false" DataControl="AppModuleDataControl"
 InstanceName="AppModuleDataControl.dataProvider"
 ReturnName="AppModuleDataControl.methodResults.eventConsumer_
 AppModuleDataControl_dataProvider_eventConsumer_result">
 <NamedData NDName="str" NDValue="test" NDType="java.lang.String"/>
 </methodAction>
 <attributeValues IterBinding="variables" id="return">
 <AttrNames>
 <Item Value="eventConsumer_return"/>
 </AttrNames>
 </attributeValues>
</bindings>
<eventMap xmlns="http://xmlns.oracle.com/adfm/contextualEvent">
 <event name="myEvent">
 <producer region="eventProducer">
 <consumer region="" handler="eventConsumer">
 <parameters>
 <parameter name="test" value="${payLoad}"/>
 </parameters>
 </consumer>
 </producer>
 </event>
</eventMap>

In the managed bean, create a method for the producer method action binding. This
method will include code to publish the contextual event. Example 28–20 show the
myBean managed bean and the myActionPerformed method that creates the
eventProducer contextual event.

Example 28–20 Managed Bean Code to Generate Contextual Events

public class myBean {
 public myBean() {
 }

public Object myActionPerformed() {
 // Add event code here...
 BindingContainer bc BindingContext.getCurrent().getCurrentBindingsEntry();
 JUCtrlActionBinding actionBnd =
 (JUCtrlActionBinding)bc.getControlBinding("eventProducer");

 ((DCBindingContainer)bc).getEventDispatcher().queueEvent(actionBnd.
 getEventProducer(),"myString");

 ((DCBindingContainer)bc).getEventDispatcher().processContextualEvents();
 return null;
 }
}

When the button is pressed, the myActionPerformed method is invoked and calls
the following methods to generate the contextual event:

 ((DCBindingContainer)bc).getEventDispatcher().queueEvent(actionBnd.
 getEventProducer(),"myString");
 ((DCBindingContainer)bc).getEventDispatcher().processContextualEvents();
 return null;

Creating Contextual Events

28-32 Fusion Developer's Guide for Oracle Application Development Framework

28.7.4 How to Create a Contextual Event from JavaScript
Every action and method binding that is accessible from a managed bean can be
invoked from JavaScript. ADF Faces provides an af:serverListener operation
component that can be used to call a managed bean method from client-side
JavaScript. To invoke this component using the referenced managed bean method, use
the BindingContext object to look up the current BindingContainer and to
access the OperationBinding or a JUEventBinding binding. The
af:serverListener component can also be used to send a message payload from
the browser client to the managed bean method.

28.7.5 How to Manually Create the Event Map
Under most circumstances, you can create the event map using the Event Map Editor
as described in Section 28.7.2, "How to Create Contextual Events Manually." However,
in situations such as when the producer event is from a page in an embedded dynamic
region, the Event Map Editor at design time cannot obtain the necessary information
to create an event map.

To create the event map manually:
1. Open the page definition that contains the binding for the consumer.

2. In the Structure window, right-click the topmost node that represents the page
definition, and choose Insert inside pagedef name > eventMap.

An eventMap node appears in the Structure window.

3. Select the eventMap node, right-click and choose Insert inside eventMap > event.

In the Insert Event dialog, enter the name of the event and click OK.

An event node appears under the eventMap node.

Repeat this step to add more events.

4. Select event, right-click and choose Insert inside event > producer.

The Insert Producer dialog appears. Enter the name of the binding that is
producing this event. You can also enter the name of the producer region, in
which case all the consumers specified under this tag can consume the event. You
can also enter "*" to denote that this event is available for all consumers under this
tag. Click OK.

A producer node appears under the event node.

5. Select producer, right-click and choose Insert inside producer > consumer.

The Insert Consumer dialog appears. Enter the name of the handler that will
consume the event. Click OK.

A consumer node appears under the producer node.

Repeat this step to add more consumers.

6. If there are parameters being passed, add the parameter name and value. Select
consumer, right-click and choose Insert inside consumer > parameters.

A parameters node appears under the consumer node.

Select parameters, right-click and choose Insert inside parameters > parameter.

The Insert parameter dialog appears. Enter the name of the parameter and the
value of the parameter. The value can be an EL expression. Click OK.

Creating Contextual Events

Creating More Complex Pages 28-33

Repeat Insert inside parameters > parameter to add more parameters

28.7.6 How to Register a Custom Event Dispatcher
By default, the contextual event framework uses EventDispatcherImpl to dispatch
events that would traverse through the regions. You can create a custom event
dispatcher to override the default event dispatcher to provide custom behaviors. After
you have created the custom event dispatcher, you must register it in the
Databindings.cpx file to override the default dispatcher.

To register a custom event dispatcher:
1. Create a custom event dispatcher Java class based on the EventDispatcher

class.

2. Register the custom event dispatcher in the Databindings.cpx file with a fully
qualified name using the following format:

EventDispatcher="package_name.CustomEventDispatcher_name"

Example 28–21 shows the code for a custom event dispatcher called
NewCustomEventDispatcher created in package NewPackage.

Example 28–21 Adding Custom Event Dispatcher in the Databindings.cpx File

<Application xmlns="http://xmlns.oracle.com/adfm/application"
 version="11.1.1.51.60" id="DataBindings" SeparateXMLFiles="false"
 Package="project3" ClientType="JClient"
 EventDispatcher="NewPackage.NewCustomEventDispatcher">

3. Create the event in the producer’s page definition.

4. Create the event map in the consumer region if the consumer is in a dynamic
region. If the consumer is not in a dynamic region, you can also specify the event
map in the parent page which holds both the producer and consumer regions.

28.7.7 What Happens When You Create Contextual Events
When you create an event for the producer, JDeveloper adds an events element to
the page definition file. Each event name is added as a child. Example 28–22 shows the
event on the setHelpId method action binding in the account_
basicinformationPageDef page definition file of the StoreFront module. This is
the page definition for the Basic Information view of the customer registration task
flow.

Example 28–22 Event Definition for the Producer

<methodAction id="setHelpId"
 InstanceName="LookupServiceAMDataControl.dataProvider"
 DataControl="LookupServiceAMDataControl"
 RequiresUpdateModel="true" Action="invokeMethod"
 MethodName="setHelpId" IsViewObjectMethod="false"
 ReturnName="LookupServiceAMDataControl.
 methodResults.setHelpId_
 LookupServiceAMDataControl_dataProvider_
 setHelpId_result">

Creating Contextual Events

28-34 Fusion Developer's Guide for Oracle Application Development Framework

 <NamedData NDName="usage" NDValue="CREATE_PROFILE"
 NDType="java.lang.String"/>
 <events xmlns="http://xmlns.oracle.com/adfm/contextualEvent">
 <event name="queueHelpTopic"/>
 </events>

When the method action binding is invoked, the event is broadcasted to its consumers.

When you configure an event map, JDeveloper creates an event map entry in the
corresponding page definition file. Example 28–23 shows the event map on the
registerPageDef page definition file that maps the queueHelpTopic event from
the customerregistrationtaskflow1 region to the helptaskflow1 region. It
also maps the helpPageDef.findHelpTextById handler method bindings that is
defined in the helpPageDef page definition file. The consumer invokes a method
that determine the information text to display based on the parameters that are passed
into it. The mapping is in the registerPageDef page definition, as that is the parent
container for both the customerregistrationtaskflow1 and the
helptaskflow1 regions.

Example 28–23 Event Map in the Parent Page Definition File

<eventMap xmlns="http://xmlns.oracle.com/adfm/contextualEvent">
 <event name="queueHelpTopic">
 <producer region="*">
 <consumer region="helptaskflow1"
 handler="helpPageDef.findHelpTextById">
 <parameters>
 <parameter name="helpTopicId" value="${payLoad}"/>
 </parameters>
 </consumer>
 </producer>
 </event>
</eventMap>

28.7.8 How to Control Contextual Events Dispatch
You can control the dispatch of contextual events to child regions at the application
level or at the page level. At the application level, you can disable the event dispatch to
regions that has an eventMap with producers as wildCards.

For application level control, set the dynamicEventSubscriptions property to
false in the adf-config.xml file, as shown in Example 28–24.

Example 28–24 Disabling Contextual Event Dispatch at the Application Level Using
adf-config.xml

<?xml version="1.0" encoding="windows-1252" ?>
<adf-config xmlns="http://xmlns.oracle.com/adf/config"
 xmlns:cef="http://xmlns.oracle.com/adfm/contextualEvent">
 <cef:DynamicRegionEventsConfig dynamicEventSubscriptions="false">
 </cef:DynamicRegionEventsConfig>
</adf-config>

You can also disable contextual event dispatch for individual pages by setting the
DynamicEventSubscriptions property to false in the associated page definition

Adding ADF Model Layer Validation

Creating More Complex Pages 28-35

file as shown in Example 28–25. Contextual events will not be passed to the page and
any of its children.

Example 28–25 Disabling Contextual Event Dispatch for a Page Using the Page
Definition File

<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
 version="11.1.1.52.8" id="viewBPageDef" Package="view.pageDefs"
 DynamicEventSubscriptions="false">

28.7.9 What Happens at Runtime: Contextual Events
If both the event producer and the consumer are defined in the same page definition
file, then after the corresponding page is invoked and the binding container is created,
the event is raised when:

■ The corresponding method or action binding is executed

■ A value binding is set successfully

■ A range binding currency is set successfully

For a method binding, the result of the method execution forms the payload of the
event, and the event is queued. In the Invoke Application phase of the JSF lifecycle, all
the queued events will be dispatched. The event dispatcher associated with the
binding container checks the event map (also in the binding container, as it is part of
the same page definition file) for a consumer interested in that event and delivers the
event to the consumer. The payload is then removed from the queue.

When the producer and consumer are in different regions, the event is first dispatched
to any consumer in the same container, and then the event propagation is delegated to
the parent binding container. This process continues until the parent or the topmost
binding container is reached. After the topmost binding container is reached, the event
is again dispatched to child binding containers which have regions with pages that
have producer set to wildcard "* ".

28.8 Adding ADF Model Layer Validation
In the model layer, ADF Model validation rules can be set for a binding’s attribute on a
particular page. When a user edits or enters data in a field and submits the form, the
bound data is validated against any set rules and conditions. If validation fails, the
application displays an error message.

Note that you don’t need to add additional ADF Model validation if you have already
set validation rules in the business domain layer of your entity objects. In an ADF
Business Components-based Fusion web application, unless you use data controls
other than your application module data controls, you won’t need to use ADF Model
validation.

You can set the skipValidation property to true to bypass the ADF Model
validation. You can set skipValidation to skipDataControls to validate the
bound objects without validating the transaction. For instance, set skipValidation
to skipDataControls if you have a table action that opens a popup window to
accept data entries and you want to allow the view layer to validate those entries
before the commit on the table. The skipValidation property can be found in the
Property Inspector after you have selected the root node of the page definition file in
the Structure window.

Displaying Error Messages

28-36 Fusion Developer's Guide for Oracle Application Development Framework

28.8.1 How to Add Validation
You set ADF Model validation on the page definition file. You define the validation
rule, and set an error message to display when the rule is broken.

Table 28–4 describes the ADF Model validation rules that you can configure for a
binding’s attributes.

Before you begin:
Create a component on the page. The component must have binding attributes.

To create an ADF Model validation rule:
1. Open the page definition that contains the binding for which you want to create a

rule.

2. In the Structure window, select the attribute, list, or table binding.

3. In the Property Inspector, select More and then Edit Validation Rule.

4. In the Edit Validation Rules dialog, expand the binding node, select the attribute
name, and click New.

5. In the Add Validation Rule dialog, select a validation rule and configure the rule
accordingly.

6. Select the Failure Handling tab and configure the message to display when the
rule is broken.

28.8.2 What Happens at Runtime: Model Validation Rules
When a user submits data, as long as the submitted value is a non-null value or a
string value of at least one character, then all validators on a component are called one
at a time. Because the f:validator tag on the component is bound to the
validator property on the binding, any validation routines set on the model are
accessed and executed.

The process then continues to the next component. If all validations are successful, the
Update Model Values phase starts and a local value is used to update the model. If
any validation fails, the current page is redisplayed along with an error message.

28.9 Displaying Error Messages
When you use the Data Controls panel to create input components, JDeveloper inserts
the af:messages tag at the top of the page. This tag can display all error messages in
the queue for any validation that occurs on the server side, in a box offset by color. If

Table 28–4 ADF Model Validation Rules

Validator Rule Name Description

Compare Compares the attribute’s value with a literal value

List Validates whether or not the value is in a list of values

Range Validates whether or not the value is within a range of values

Length Validates the value’s character or byte size against a size and
operand (such as greater than or equal to)

Regular Expression Validates the data using Java regular expression syntax

Required Validates whether or not a value exists for the attribute

Displaying Error Messages

Creating More Complex Pages 28-37

you choose to turn off client-side validation for ADF Faces, those error messages are
displayed along with any ADF Model error messages. ADF Model messages are
shown first. Messages are shown within the af:messages tag, and with the
associated components.

Figure 28–11 shows the error message for an ADF Model validation rule, which states
that the value the user entered is not acceptable.

Figure 28–11 Displaying Model Error Messages

You can display server-side error messages in a box at the top of a page using the
af:messages tag. When you drop any item from the Data Controls panel onto a page
as an input component, JDeveloper automatically adds this tag for you.

To display error messages in an error box:
1. In the Structure window, select the af:messages tag.

This tag is created automatically whenever you drop an input widget from the
Data Controls panel. However, if you need to insert the tag manually, simply add
the code, as shown in Example 28–26, within the af:document tag.

Example 28–26 Messages Tag in a Page

<af:document>
 <af:messages globalOnly="false" />
 ...
</af:document>

2. In the Property Inspector set the following attributes:

■ globalOnly: By default, ADF Faces displays global messages (that is,
messages that are not associated with components), followed by individual
component messages. If you wish to display only global messages in the box,
set this attribute to true. Component messages will continue to display with
the associated component.

■ Inline: Specify whether to render the message list inline with the page or in a
popup window.

■ message: The main message text that displays just below the message box
title, above the list of individual messages.

3. Ensure that client-side validation has been disabled. If you do not disable
client-side validation, the alert dialog will display whenever there are any ADF
Faces validation errors and prevent propagation of the error to the server.

To disable client-side validation, add an entry for
<client-validation-disable> and set it to true in the
trinidad-config.xml file, as shown in Example 28–27.

Example 28–27 Disabling Client-Side Validation in the Trinidad-config.xml

<?xml version="1.0" encoding="windows-1252"?>

Customizing Error Handling

28-38 Fusion Developer's Guide for Oracle Application Development Framework

<trinidad-config xmlns="http://myfaces.apache.org/trinidad/config">
 <skin-family>blafplus-rich</skin-family>
 <client-validation-disabled>true</client-validation-disabled>
</trinidad-config>

28.10 Customizing Error Handling
You can report errors using a custom error handler that extends the default
DCErrorHandlerImpl class. You are not required to write any code to register your
custom exception handler class. Instead, you select the root node of the
DataBindings.cpx file in the Structure window, and then use the Property
Inspector to set the ErrorHandlerClass property to the fully qualified name of the
error handler you want it to use.

Your custom error handler can contain the following overridable methods:

■ reportException(): Called to report any exception that occurs. It can be
overridden to analyze reported exceptions.

■ getDisplayMessage(): Returns the message that will be reported to JSF for
each error that occurs. Returning null is the way your custom error handler
signals that a given exception should not be reported to the client.

■ getDetailedDisplayMessage(): Returns the detail portion of the message as
a String object or HTML that will be reported to JSF for each error that occurs.
Returning null is the way your custom error handler signals that a given
exception should not be reported to the client.

■ skipException(): Returns a boolean depending on whether you want to
display each item from the nested exception in the final error list displayed to the
user. This method override lets you implement logic to check for specifics
exception types and, based on the business scenario, determine whether to display
it in the list.

Example 28–28 illustrates a custom error handler that extends the
DCErrorHandlerImpl class and shows the override for the skipException()
method that is needed to skip exceptions that should not appear in the list displayed
to the user.

Example 28–28 Custom Error Handler

package view.controller.fwkext;

import java.sql.SQLIntegrityConstraintViolationException;

import java.util.ArrayList;
import java.util.List;

import oracle.adf.model.binding.DCBindingContainer;
import oracle.adf.model.binding.DCErrorHandlerImpl;

import oracle.jbo.CSMessageBundle;
import oracle.jbo.DMLConstraintException;
import oracle.jbo.JboException;

public class CustomErrorHandler extends DCErrorHandlerImpl {

 List<ExceptionMapper> exceptionMapperList = new ArrayList<ExceptionMapper>();
 public CustomErrorHandler() {

Customizing Error Handling

Creating More Complex Pages 28-39

 this(true);
 }

 public CustomErrorHandler(boolean setToThrow) {
 super(setToThrow);
 exceptionMapperList.add(new DisableJboExceptionCodesMapper());
 }

 public void reportException(DCBindingContainer bc, Exception ex) {
 for (ExceptionMapper mapper : exceptionMapperList) {
 if (mapper.canMapException(ex)) {
 ex = mapper.mapException(ex);
 }
 }
 super.reportException(bc, ex);
 }

 /**
 * If an exception is a RowValException or a TxnValException and they
 * have nested exceptions, then do not display it. This example shows
 * an implementation that skips the SQLIntegrityConstraintViolationException
 * from displaying in the error final list displayed to the user.
 */
 @Override
 protected boolean skipException(Exception ex) {

 if (ex instanceof DMLConstraintException) {
 return false;
 } else if (ex instanceof SQLIntegrityConstraintViolationException) {
 return true;
 }
 return super.skipException(ex);
 }

}

You must change the constuctor to MyErrorHandler(). The exception error handler
must have a default constructor, as shown in Example 28–29.

Example 28–29 Default Constructor

ErrorHandlerClass="viewcontroller.MyErrorHandler"
 public MyErrorHandler()
 {
 super(true);
 }

28.10.1 How to Customize the Detail Portion of a Message
If you plan to customize and use the detail portion of a message, you can create a
custom error handler and implement the getDetailedDisplayMessage method to
retrieve and process that message. The finalized message will be passed to the view
layer to be integrated with other messages.

To customize the detail portion of a message:
1. Create a custom error handler class that extends the default

DCErrorHandlerImpl class.

Customizing Error Handling

28-40 Fusion Developer's Guide for Oracle Application Development Framework

2. In that class, override the getDetailedDisplayMessage method that returns a
DCErrorMessage object.

Example 28–30 shows an implementation of the getDetailedDisplayMessage
method in the custom error handler class.

Example 28–30 Custom Error Handler Class with getDetailDisplayMessage Method

public final class MyErrorMessageHandler extends DCErrorHandlerImpl {
 public MyErrorMessageHandler (){
 super(false);
 }
 public DCErrorMessage getDetailedDisplayMessage(BindingContext ctx,
 RegionBinding ctr,
 Exception ex) {
 ...
 return new MyDCErrorMesssage(ctr, ex);
 }
}

3. Create a custom class that implements the DCErrorMessage interface. The class
must implement the getHTMLText method and the getText method.

You will add code to the getHTMLText method to perform the actual processing,
but you must also implement getText to satisfy the interface requirements.

4. In the getHTMLText implementation, add code to create and process the error
message.

getHTMLText of getDetailedDisplayMessage should return the finalized
version of the error message as an HTML fragment that will be inserted into the
HTML code of the page. For this reason, you should perform all necessary
preprocessing on the text message before the message is returned by
getDetailedDisplayMessage. For instance, you may want to retrieve the
localized version of the message or change the right-to-left ordering of the
message before it is returned.

Example 28–31 shows an implementation of this interface.

Example 28–31 Implementing the DCErrorMessage Interface

public final class MyDCErrorMesssage implements DCErrorMessage {
 RegionBinding m_regionBinding;
 Exception m_ex;
 public MyDCErrorMesssage(RegionBinding ctr, Exception ex) {
 super();
 this.m_regionBinding = ctr;
 this.m_ex = ex;
 }
 public String getText() {
 ...
 return "Message String";
 }
 public String getHTMLText() {
 ...
 /* Add code to process the message, including localization */
 /* and right-to-left directional requirements. */
 /* Return the message as the finalized HTML fragment.*/
 return "<html>error message details</html>";
 }
}

Customizing Error Handling

Creating More Complex Pages 28-41

To format the message using HTML tags, you must enclose the message within
<html></html> tags, as shown in the example. Note that only the following
HTML tags are allowed in error messages:

■

■

■ <a>

■ <i>

■

■

■ <hr>

■

■

■

■ <p>

■ <tt>

■ <big>

■ <small>

■ <pre>

28.10.2 How to Write an Error Handler to Deal with Multiple Threads
Oracle ADF constructs an instance of the custom error handler for each
BindingContext object that is created. Because Oracle ADF serializes simultaneous
web requests from the same logical end-user session, multiple threads generally will
not use the same error handler at the same time. However, to guarantee a thread-safe
custom error handler, use the setProperty() API on JboException. This method
stores in the exception objects themselves any hints you might need later during the
phase when exceptions are translated to JSF FacesMessage objects for display.

Customizing Error Handling

28-42 Fusion Developer's Guide for Oracle Application Development Framework

29

Designing a Page Using Placeholder Data Controls 29-1

29 Designing a Page Using Placeholder Data
Controls

This chapter describes how to create and use placeholder data controls to aid in
designing the user interface (UI) of a Fusion web application. It shows you how to
create placeholder data types, including master-detail relationships. It also describes
how to create and import sample data.

This chapter includes the following sections:

■ Section 29.1, "Introduction to Placeholder Data Controls"

■ Section 29.2, "Creating Placeholder Data Controls"

■ Section 29.3, "Creating Placeholder Data Types"

■ Section 29.4, "Using Placeholder Data Controls"

29.1 Introduction to Placeholder Data Controls
Application development is typically divided into two separate processes: technical
implementation and user interface design. More often than not, they are undertaken
by separate teams with very different skill sets. The two teams can work together
either in a data-first approach or a UI-first approach, or with some overlap between the
two. With either approach, the teams usually work together iteratively, refining the
application with each cycle.

In a data-first approach, the model, or data control is built first. Then the designer
creates the layout and page flow by dragging and dropping the data controls onto
pages as UI components. The model data is automatically bound to the components.
This approach requires the data model to be available before the designer can proceed.

In a UI-first approach, the designer creates the layout using components from the
Component Palette. When the data controls do become available, UI components are
then bound to them. With this approach, you should be able to see most of the layout
and page flows to make a development evaluation. However, until the data controls
are available and bound to components, the application may not fully convey the
intent of its design. For instance, an application that has a master-detail relationship is
best reviewed when there is actual data that dynamically drives that relationship.

Placeholder data controls are easy-to-create, yet fully functional, stand-in data controls
that can efficiently speed up the design-development process. UI designers can use
placeholder data controls to create page layouts and page flows without the need to
have real data controls available. These placeholder controls can be loaded with
sample data to realistically simulate application execution for design evaluations.

Creating Placeholder Data Controls

29-2 Fusion Developer's Guide for Oracle Application Development Framework

When the real data controls are ready, the UI components can be easily rebound to
complete the application.

For many complex applications, the UI design may actually drive the development of
the model, or data source. In this UI-first scenario, having placeholder data controls
with sample data is essential to properly model the behavior of the application. In
some cases, even if production data controls are available, UI designers may opt to use
placeholder data controls because of their flexibility and ease of use.

Creating placeholder data controls is a purely declarative process and does not require
coding. It does not require in-depth knowledge of the underlying model, data source
technology, actual database schema, or any of the complex relationships in an actual
production data control. Placeholder data controls do not require an existing data
source or a database connection. You can define multiple data types with multiple
attributes. You can also define nested master-detail hierarchies between data types.
Placeholder data controls have the same built-in operations such as Execute, Next, and
Create. An implicitly created named criteria item allows the user to create search
forms as if view objects and view criteria were available.

Placeholder data controls can be used in many other situations. In addition to being
used for design review and development, they can be used to develop realistic
runtime mock-ups for usability studies, or for proof-of-concept requirements. They
can be used to create demos when the data model is not yet ready.

29.2 Creating Placeholder Data Controls
You add placeholder data controls to a project using the New Gallery. After the
placeholder data control has been created, it appears as a node in the Data Controls
panel. It has a different icon than do standard data controls. Instead of an Operations
node, the placeholder data control has a Built-in Operations node. Although the
Built-in Operations node contains Commit and Rollback operations, these operations
do not perform commits or rollbacks because there is not an actual data source for the
data.

When a data control is initially created, it does not have any data types associated with
it. You will need to manually create the data types as described in section Section 29.3,
"Creating Placeholder Data Types".

29.2.1 How to Create a Placeholder Data Control
Placeholder data controls are defined at the project level in JDeveloper. You must
already have created a project before you can create placeholder data controls.

To create a placeholder data control:
1. In the Application Navigator, right-click the project and choose New.

2. In the New Gallery, expand Business Tier, select Data Controls and then
Placeholder Data Control, and click OK.

3. In the Placeholder Data Control dialog, as shown in Figure 29–1, enter:

■ Placeholder Name: The name of the placeholder data control.

■ Directory Name: The package name that will be used to reference the
placeholder data control.

■ Description: Optional description of the placeholder data control.

Creating Placeholder Data Controls

Designing a Page Using Placeholder Data Controls 29-3

Figure 29–1 New Placeholder Data Control

4. Click OK.

29.2.2 What Happens When You Create a Placeholder Data Control
When you create a placeholder data control, the package you selected to contain the
data control appears under the project node in the Application Navigator. A data
control XML file PlaceholderDataControl.xml appears under the package, where
PlaceholderDataControl is the name of the placeholder data control.
Example 29–1 shows a sample file called StoreFrontPlaceHolder.xml, which was
created when the StoreFrontPlaceHolder data control was created.

Example 29–1 Sample placeholderdatacontrol.xml

<?xml version='1.0' encoding='windows-1252' ?>
<AppModule
 xmlns="http://xmlns.oracle.com/placeholder"
 Name="StoreFrontPlaceholder" >
</AppModule>

JDeveloper also creates a DataControls.dcx file if it has not yet been defined, and
adds entries for the placeholder data control, as shown in Example 29–2.

Example 29–2 Placeholder Data Control entry in DataControls.dcx

<?xml version="1.0" encoding="UTF-8" ?>
<DataControlConfigs xmlns="http://xmlns.oracle.com/adfm/configuration"
 version="11.1.1.44.30" id="DataControls"
 Package="storefront">
 <PlaceholderDataControl SupportsTransactions="true" SupportsFindMode="true"
 SupportsResetState="true" SupportsRangesize="true"
 SupportsSortCollection="true"
 FactoryClass=
 "oracle.adf.model.placeholder.DataControlFactoryImpl"
 id="StoreFrontPlaceholder"
 xmlns="http://xmlns.oracle.com/adfm/datacontrol"
 Definition="storefront.StoreFrontPlaceholder"
 Package="storefront"/>
</DataControlConfigs>

In the Data Controls panel, the placeholder data control appears alongside other data
controls in the root tree. A placeholder data control that does not yet have data types
defined will have only the Commit and Rollback built-in operations available, as
shown in Figure 29–2.

Creating Placeholder Data Types

29-4 Fusion Developer's Guide for Oracle Application Development Framework

Figure 29–2 Application Navigator and Data Controls Panel

29.3 Creating Placeholder Data Types
A standard data control obtains its data collections and attributes from its underlying
data source in the model or business service layer. For example, an application module
data control obtains its data collections from the view objects and associated database
tables.

For a placeholder data control, instead of data collections, it has placeholder data
types. A placeholder data type is analogous to a data collection. It can be dropped onto a
page to create complex components such as forms, tables, and trees. It also has a set of
attributes that can be dropped onto pages as individual components such as input text,
output text, and select choice. Some attributes may be defined as LOVs.

When you first create a placeholder data control, it is devoid of any data types because
there are no underlying database tables for the placeholder data control to reference.
You must declaratively create one or more placeholder data types. For each data type,
you specify attribute names, types, default UI components, and other options. You can
create multiple data types for a data control, similar to the multiple data collections in
an application module.

After you have created a placeholder data type, it appears as a child node of the
placeholder data control. It also has a Built-in operations node with the standard set of
operations. It has a Named Criteria node that contains an All Queriable Attributes
item that is analogous to the named view criteria of a view object in a standard data
control. You can drag and drop the All Queriable Attributes item onto a page to create
a query or quick query search form. In a standard data control, you can create multiple
view criteria on a view object. Because there is no real view object in a placeholder
data type, only one All Queriable Attributes item is available. For more information
about query search forms, see Chapter 27, "Creating ADF Databound Search Forms".

You can create master-detail relationships between placeholder data types, similar to
the master-detail data collections in a standard data control. You can drop
master-detail data types onto pages to create master-detail forms and tables. For more
information on master-detail forms and tables, see Chapter 24, "Displaying
Master-Detail Data".

Creating Placeholder Data Types

Designing a Page Using Placeholder Data Controls 29-5

JDeveloper allows you to reuse placeholder data types created for other placeholder
data controls in the same project. When you are creating a data type, you can select an
option to load existing data types from another placeholder data control. If you select
the Copy Data Type option, the attributes from the imported data type will be added
to the list of existing attributes.

You can also select an option to copy the sample data associated with the imported
data type when the attributes are added.

29.3.1 How to Create a Placeholder Data Type
After you have created a placeholder data control, you can proceed to create data
types. You define a name for the data type, and define each of its individual attributes.
For each attribute, you then define its type, format, default UI component, and
whether it should be an LOV.

In order to simplify the process of creating placeholder data types, you can select from
a list of four of the most common types: String, Boolean, Date, and Number.
Because placeholder attributes are typed, you can create column labels and include UI
control hints in the design.

If you have a sample data file in comma-separated value or CSV format, you can
automatically create all the attributes and load sample data using the sample data file
import function. You do not need to create the attributes. JDeveloper will
automatically create them for you from the format of the CSV file, which should be a
comma-separated value list of column headings. The attributes default to type
String. You can manually reset each attribute to another type as required. For
instructions to import sample data, see Section 29.3.6, "How to Add Sample Data".

To create a placeholder data type manually:
1. In the Data Controls panel, right-click the placeholder data control and choose

Create Placeholder Data Type.

Figure 29–3 shows the Create Placeholder Data Type dialog.

Note: Although you do not need sample data until you run the
application, you should add sample data to provide a consistent
design time rendering of the components.

Creating Placeholder Data Types

29-6 Fusion Developer's Guide for Oracle Application Development Framework

Figure 29–3 Create Placeholder Data Type Dialog

2. If you already have data types defined for another placeholder data control, and
you want to copy or append them, click Copy Data Type.

a. In the Copy Placeholder Data Type dialog, as shown in Figure 29–4, select the
placeholder data type you want. Select Replace to replace the current
attributes with the attributes from the file, or select Append to add the
attributes from the file to the list of current attributes.

b. Select the Copy Sample Data checkbox to load sample data from the file.

c. Click OK.

Note: If you had already added placeholder data types previously
and want only to add or edit them, choose Edit Placeholder Data
Type from the context menu instead. The dialog that appears will be
the Edit Placeholder Data Type dialog. It has the same options as the
Create Placeholder Data Type dialog.

Creating Placeholder Data Types

Designing a Page Using Placeholder Data Controls 29-7

Figure 29–4 Copy Placeholder Data Type

3. In the Create Placeholder Data Type dialog, enter a name for the placeholder data
type, and then in the Attributes Definition section, enter:

■ Name: Enter a name for the attribute.

■ Type: Select a type for the attribute from the dropdown list. The supported
types are String, Boolean, Date, and Number.

■ Default Component: Select a default component for the attribute from the
dropdown list. For an LOV, select Combo Box List of Values.

■ Default Value: Enter the initial value for the attribute.

■ Label: Enter a label for the attribute. The label will be used when the
component is displayed.

■ Format Type: This field is enabled only when the type is Date or Number.
Select a format type from the dropdown list.

■ Format: This field is enabled only when a format mask has been defined for
that format type.

■ Searchable: Select this checkbox to make the attribute searchable.

■ Use Lov Binding: Select this checkbox if you want the attribute to be an LOV.
To configure the attribute, see Section 29.3.3, "How to Configure a Placeholder
Data Type Attribute to Be an LOV".

Click the Add icon to add more attributes.

4. To add data, use the Sample Data tab. For that procedure, see Section 29.3.6, "How
to Add Sample Data".

You need sample data for runtime and for a consistent design time.

5. Click OK.

Creating Placeholder Data Types

29-8 Fusion Developer's Guide for Oracle Application Development Framework

29.3.2 What Happens When You Create a Placeholder Data Type
When you create a placeholder data type, JDeveloper creates a
PlaceholderDataType.xml file, where PlaceholderDataType is the name of the
placeholder data type you had specified.

The PlaceholderDataType.xml file has the same format as a view object XML file.
It includes the name of the view object and the name and values of each placeholder
attribute that was defined.

Example 29–3 shows a PlaceholderDataType.xml for the Supplier data type.
Two attributes were declarative defined: Supplier_Id and Supplier_Name.

Example 29–3 Sample Placeholder Data Type Suppliers.xml file

<?xml version='1.0' encoding='windows-1252' ?>
<ViewObject
 xmlns="http://xmlns.oracle.com/placeholder"
 Name="Suppliers"
 BindingStyle="OracleName"
 CustomQuery="true"
 ComponentClass="oracle.adf.model.placeholder.PlaceholderVOImpl"
 UseGlueCode="false" >
 <ViewAttribute
 Name="Supplier_Id"
 Type="oracle.jbo.domain.Number"
 PrimaryKey="true" >
 </ViewAttribute>
 <ViewAttribute
 Name="Supplier_Name"
 Type="java.lang.String" >
 </ViewAttribute>
 <StaticList
 Name="Suppliers"
 Rows="2"
 Columns="2" >
 </StaticList>
 <ResourceBundle >
 <PropertiesBundle
 xmlns="http://xmlns.oracle.com/bc4j"
 PropertiesFile="storefrontproject.StoreFrontProjectBundle" >
 </PropertiesBundle>
 </ResourceBundle>
</ViewObject>

Since a data type is similar to a data collection and is based on a view object, each data
type will have a corresponding PlaceholderDataType.xml file.

JDeveloper also adds entries for each placeholder data type to the
PlaceholderDataControl.xml file. For example, after the Suppliers data type
has been created, the StoreFrontPlaceholder.xml file includes a new
ViewUsage entry for the Suppliers data type, as shown in Example 29–4.

Example 29–4 Sample PlaceholderDataControl.xml File After Addition of Placeholder
Data Type

<?xml version='1.0' encoding='windows-1252' ?>
<AppModule
 xmlns="http://xmlns.oracle.com/placeholder"

Creating Placeholder Data Types

Designing a Page Using Placeholder Data Controls 29-9

 Name="StoreFrontPlaceHolder" >
 <ViewUsage
 Name="Suppliers"
 ViewObjectName="storefrontproject.Suppliers" >
 </ViewUsage>
</AppModule>

In the Data Controls panel, a placeholder data type node appears under the
placeholder data control. Expanding the node reveals the presence of each of the
attributes, the Built-in Operations node, and the Named Criteria node.

Figure 29–5 shows a placeholder data control as it appears in the Data Controls panel.

Figure 29–5 Data Controls Panel Showing Placeholder Data Control

29.3.3 How to Configure a Placeholder Data Type Attribute to Be an LOV
A placeholder data type attribute can be configured to be a list of values (LOV). An
LOV-formatted attribute binds to UI components that display dropdown lists or list
picker dialogs. For more information about LOVs, see Section 5.12, "Working with List
of Values (LOV) in View Object Attributes".

When you are creating a placeholder data type, you can select an option to bring up a
dialog to configure that attribute to be an LOV.

If you have only one data source, you can only create a fixed LOV. To create a
dynamic LOV, there must be more than one placeholder data type available to be the
source.

29.3.3.1 Configuring an Attribute to Be a Fixed LOV
Before you begin, you should determine which attribute you want to be a fixed LOV
and which values should be in the fixed list.

To configure an attribute to be a fixed LOV:
1. In the Data Controls panel, right-click the placeholder data control and choose

Create Placeholder Data Type or Edit Placeholder Data Type.

2. In the Create Placeholder Data type or Edit Placeholder Datatype dialog, select the
Use Lov Binding checkbox.

The Configure List of Values dialog appears, as shown in Figure 29–6.

Creating Placeholder Data Types

29-10 Fusion Developer's Guide for Oracle Application Development Framework

Figure 29–6 Configure List of Values Dialog for a Fixed LOV

3. In the dialog, select Fixed List.

4. Click the Add icon to enable adding an entry to the list of values.

5. For each entry, enter a label and a value.

When the user selects an item from the list of values, the value entry will be
entered into the input field.

6. Select the maximum number of the most recently used items that will be displayed
in the dropdown list.

7. From the No Selection Item dropdown list, select an option for how you want the
"no selection" item to be displayed.

For instance, selecting Blank Item (First of List) will display the "no selection"
item as a blank at the beginning of the list.

8. Click OK.

29.3.3.2 Configuring an Attribute to Be a Dynamic LOV
Before you begin, you should have already created another placeholder data type to
serve as the source of the dynamic LOV.

To configure an attribute to be a dynamic LOV:
1. In the Data Controls panel, right-click the placeholder data control and choose

Create Placeholder Data Type or Edit Placeholder Data Type.

2. In the Create Placeholder Data type or Edit Placeholder Data type dialog, select
the Use Lov Binding checkbox.

Creating Placeholder Data Types

Designing a Page Using Placeholder Data Controls 29-11

The Configure List of Values dialog appears, as shown in Figure 29–7.

Figure 29–7 Configure List of Values Dialog for a Dynamic LOV

3. In the dialog, select Dynamic List.

4. Select the list data type with the source attribute. You must have a source
placeholder data type for this selection to be available.

5. Select the list attribute.

6. Shuttle the attribute from the Available list to the Selected list.

7. Select the maximum number of the most recently used items that will be displayed
in the dropdown list.

8. From the No Selection Item dropdown list, select an option for how you want the
"no selection" item to be displayed. For instance, selecting Blank Item (First of
List) will display the "no selection" item as a blank at the beginning of the list.

9. Click OK.

29.3.4 How to Create Master-Detail Data Types
You create master-detail relationships between data types in the same way you create
master-detail hierarchies between tables. In a standard data control, you can use view
links to define source and target view objects that would become the master and the
detail objects. For more information about master-detail relationships, see Chapter 24,
"Displaying Master-Detail Data".

Before you create a master-detail hierarchy, you must determine the data structure of
the master data type and the data structure of the detail data type. You must also
determine which attribute in the master will be the source for the detail data type.

You first create a master data type and its attributes. Then you create a detail data type
as a child of the master data type. You define the source attribute in the master data
type that defines the relationship to the detail data type.

Creating Placeholder Data Types

29-12 Fusion Developer's Guide for Oracle Application Development Framework

To create master-detail hierarchical data types:
1. Create a placeholder data type to be the master as described in Section 29.3.1,

"How to Create a Placeholder Data Type", or select an existing data type to be the
master. For example, the ProductsByCategories data type is the master.

2. In the Data Controls panel, right-click the master placeholder data type and
choose Create Placeholder Data Type.

Figure 29–8 shows the Create Placeholder Data Type dialog for entering detail data
type attributes.

Figure 29–8 Create Placeholder Data Type Dialog

3. In the Create Placeholder Data Type dialog, enter a name for the detail data type.

4. The first attribute in the master data type appears in the Attributes section. This
attribute provides the foreign key relationship.

Add attributes for the detail data type, copy data type attributes from another data
type, or create attributes automatically by importing sample data from a CSV file.
For the procedure to add attributes, see Section 29.3.1, "How to Create a
Placeholder Data Type".

5. Click OK.

The Data Controls panel should display the detail data type as a child of the master
data type, as shown in Figure 29–9.

Creating Placeholder Data Types

Designing a Page Using Placeholder Data Controls 29-13

Figure 29–9 Master Detail Hierarchy in Placeholder Data Control

29.3.5 What Happens When You Create a Master-Detail Data Type
A master-detail relationship is implemented in the same way as is a standard
master-detail relationship, using view object and view links. When you define
placeholder data types in a master-detail hierarchy, JDeveloper creates a DTLink.xml
file that contains metadata entries for view links that define that relationship. For more
information about view links, see Section 5.6, "Working with Multiple Tables in a
Master-Detail Hierarchy". For example, in the relationship between the master data
type Video and the detail data type Brand associated with a key dvdplayer,
JDeveloper creates a DTLink.xml file in the form of a view link file to define that
relationship, as shown in Example 29–5.

Example 29–5 DTLink.xml file for Master-Detail Data Type Relationships

<?xml version='1.0' encoding='windows-1252' ?>
<ViewLink
 xmlns="http://xmlns.oracle.com/placeholder"
 Name="DTLink" >
 <ViewLinkDefEnd
 Name="sourceEnd"
 Cardinality="1"
 Owner="project1.ProductsByCategories"
 Source="true" >
 <AttrArray Name="Attributes">
 <Item Value="project1.ProductsByCategories.ProductName" />
 </AttrArray>
 </ViewLinkDefEnd>
 <ViewLinkDefEnd
 Name="destEnd"
 Cardinality="-1"
 Owner="project1.ProductCategoriesToParentProductCategories" >
 <AttrArray Name="Attributes">
 <Item
Value="project1.ProductCategoriesToParentProductCategories.ProductName" />
 </AttrArray>
 </ViewLinkDefEnd>
</ViewLink>

29.3.6 How to Add Sample Data
If you intend to run an application using the placeholder data control, you will need to
add sample data for execution. You can add sample data to the placeholder data type

Creating Placeholder Data Types

29-14 Fusion Developer's Guide for Oracle Application Development Framework

attributes manually or by importing the data from a CSV file. Although having sample
data is mandatory only at runtime, you should add sample data for a consistent design
time rendering of the components.

Before you begin to add sample data to a placeholder data type, you should have
already created a placeholder data control and a placeholder data type. If you are
entering the data manually, you should have the data ready. If you are loading the
data from a CSV file, you need to have the location of the file.

29.3.6.1 Adding Sample Data Manually
Before you begin, you should have the sample data ready.

To add sample data to placeholder data types manually:
1. In the Data Controls panel, right-click the placeholder data control and choose

Create Placeholder Data Type or Edit Placeholder Data Type.

2. In the Create Placeholder Data Type or Edit Placeholder Data Type dialog, click
the Sample Data tab.

3. For each row of data, enter a value for each attribute that was defined. Click the
Add icon to create each row.

For example, in Figure 29–10, for the first row, Plasma HD Television was
entered for the ProductName attribute, 1 was entered for the ProductID
attribute, and 4 was entered for the CategoryID attribute.

Figure 29–10 Adding Sample Data

4. Click OK.

Creating Placeholder Data Types

Designing a Page Using Placeholder Data Controls 29-15

29.3.6.2 Importing Sample Data
Before you begin, you should have the sample data file available on your system so it
can be found in the Select/Save File dialog.

To import sample data from CSV files into placeholder data types:
1. In the Data Controls panel, right-click the placeholder data control and choose

Create Placeholder Data Type or Edit Placeholder Data Type.

2. In the Create Placeholder Datatype or Edit Placeholder Datatype dialog, click the
Sample Data tab.

3. If you are also importing attributes, you must delete the default "attribute" in the
first row.

This default attribute appears when you first navigate to the Sample Data tab. If
you do not remove this default attribute, JDeveloper will assume that this is a
declaratively created attribute and will not import any other columns except for
the first column.

4. Click Import.

In the Open dialog, navigate to and select the import file, and click Open, as
shown in Figure 29–11.

The data from the CSV file, including column heading and values, should appear
as sample data.

Figure 29–11 Importing Placeholder Sample Data

5. Click OK.

29.3.7 What Happens When You Add Sample Data
Placeholder sample data, whether manually added using the dialog or from an
imported CSV file, is stored in message bundle properties files within the placeholder
data control packages. JDeveloper creates a text-based file for each data type that has
sample data. The properties file name is
placeholderdatatypenameMsgBundle.properties. Example 29–6 shows a

Tip: If you already have a CSV file for importing, you do not need to
manually create the attributes for each column. JDeveloper
automatically creates the attributes from the first row of the CSV file.
For more information, see Section 29.3.1, "How to Create a Placeholder
Data Type".

Using Placeholder Data Controls

29-16 Fusion Developer's Guide for Oracle Application Development Framework

sample data properties file for the Televisions data type that has three attributes of
brand, size, and type.

Example 29–6 Sample Data Properties File TelevisionMsgBundle.properties

SL_0_0=sony
SL_0_1=42
SL_0_2=lcd
SL_1_0=panasonic
SL_1_1=50
SL_1_2=plasma
SL_2_0=mitsubishi
SL_2_1=60
SL_2_2=projection

29.4 Using Placeholder Data Controls
You use placeholder data controls in the same way you would use standard data
controls. You can drag data types onto pages and use the context menus to drop the
data types as forms, tables, trees, graphs, and other components. You can drop
individual attributes onto pages as text, lists of values, single selections, and other
components. You can use any of the built-in operations such as Create, Execute, and
Next by dropping them as buttons, command links, and menu items.

You can work in several ways to take advantage of placeholder data controls:

■ Build a page using the placeholder data controls and rebind to real data controls
later.

■ Build a page using components, bind them to placeholder data controls, and
rebind to real data controls later.

■ Build a page using some combination of components from the Component Palette,
components from the placeholder data controls, and then bind or rebind to the
real data controls later.

29.4.1 Limitations of Placeholder Data Controls
You can use placeholder data controls in your application development in many
situations. For most UI design evaluations, placeholder data controls should be able to
fully substitute for real data controls.

There are a few limitations:

■ Because data types are not tied to an underlying data source, the Commit and
Rollback operations do not perform real transactions, nor do they update the
cache.

■ Placeholder data controls can only be created declaratively. You cannot create
custom methods like you can with a real application module or data control.

■ Placeholder data controls cannot be used when there is a need either for custom
data or for filtering or custom code to fetch data. Placeholder data controls will
disable those operations.

29.4.2 Creating Layout
Use the drag-and-drop feature to create the page using the placeholder data controls,
any available real data controls, and components from the Component Palette. If you

Using Placeholder Data Controls

Designing a Page Using Placeholder Data Controls 29-17

intend to run a page or application that requires real data, enter sample data for your
placeholder data types. If you have a large amount of sample data, you may be able to
create CSV files from the data source and load them into the data type. You may also
use spreadsheets and other tools to create CSV sample data files.

29.4.3 Creating a Search Form
In a standard data control, you can create view criteria on view objects to modify the
query. These view criteria are also used for drag-and-drop creation of query and quick
query search forms. The named view criteria items appear under the Named Criteria
node for a data collection. For more information about query and quick query search
forms, see Chapter 27, "Creating ADF Databound Search Forms".

For placeholder data controls, there is also a Named Criteria node under each data
type node. An automatically created All Queriable Attributes item appears under this
node and can be used to drag and drop onto pages to create the query or quick query
search forms.

29.4.4 Binding Components
Instead of building the page using the data controls, for instance, if you are unsure of
the shape of your data, you can lay out the page first using the Component Palette and
later bind it to the data types, attributes, or operations of the placeholder data controls.

29.4.5 Rebinding Components
After the final data controls are available, you can simply rebind the components. You
can select the component in the Structure window and use the context menu to open
the relevant rebind dialog. You can also drag and drop the data control item onto the
UI component to initiate a rebinding editor. The rebinding procedures are the same
whether the component was originally bound to a placeholder data control or a
standard data control.

For more information about rebinding components, see Chapter 22, "Creating a Basic
Databound Page" and Chapter 23, "Creating ADF Databound Tables".

29.4.6 Packaging Placeholder Data Controls to ADF Library JARs
A useful feature of placeholder data controls is that they allow parallel development
and division of labor among developers and designers. You may be able to leverage
that further by packaging placeholder data controls into reusable components as ADF
Library JARs. ADF Libraries are JARs that have been packaged to contain all the
necessary artifacts of an ADF component. For more information about reusable
components and the ADF Library, see Chapter 33, "Reusing Application Components".
You can create libraries of placeholder data controls and distribute them to multiple
designers working on the same UI project. Because they are lightweight, you can even
use them in place of available real data controls for the earlier phases of UI design.

Using Placeholder Data Controls

29-18 Fusion Developer's Guide for Oracle Application Development Framework

Part V
Part V Completing Your Application

Part V contains the following chapters:

■ Chapter 30, "Enabling ADF Security in a Fusion Web Application"

■ Chapter 31, "Testing and Debugging ADF Components"

■ Chapter 32, "Refactoring a Fusion Web Application"

■ Chapter 33, "Reusing Application Components"

■ Chapter 34, "Customizing Applications with MDS"

■ Chapter 35, "Allowing User Customizations at Runtime"

■ Chapter 36, "Deploying Fusion Web Applications"

30

Enabling ADF Security in a Fusion Web Application 30-1

30Enabling ADF Security in a Fusion Web
Application

This chapter describes how you can enable ADF Security in the Fusion web
application to define resource grants for Oracle Application Development Framework
(Oracle ADF) resources and to restrict the user’s ability to view web pages associated
those resources.

This chapter includes the following sections:

■ Section 30.1, "Introduction to ADF Security"

■ Section 30.2, "ADF Security Process Overview"

■ Section 30.3, "Enabling ADF Security"

■ Section 30.4, "Creating Application Roles"

■ Section 30.5, "Defining ADF Security Policies"

■ Section 30.6, "Creating Test Users"

■ Section 30.7, "Creating a Login Page"

■ Section 30.8, "Testing Security in JDeveloper"

■ Section 30.9, "Preparing the Secure Application for Deployment"

■ Section 30.10, "Disabling ADF Security"

■ Section 30.11, "Advanced Topics and Best Practices"

30.1 Introduction to ADF Security
The ADF Security framework is the preferred technology to provide authentication
and authorization services to the Fusion web application. ADF Security is built on top
of the Oracle Platform Security Services (OPSS) architecture, which itself is
well-integrated with Oracle WebLogic Server. While other security-aware models exist
that can handle user login and resource protection, ADF Security is ideally suited to
provide declarative, permission-based protection for ADF bounded task flows, for
top-level web pages that use ADF bindings (pages that are not contained in a bounded
task flow), and at the lowest level of granularity, for rows of data defined by ADF
entity objects and their attributes. In this document, these specific resources that the
ADF Security framework protects are known as ADF security-aware resources.

You enable ADF Security for Fusion web applications when you run the Configure
ADF Security wizard, as described in Section 30.3, "Enabling ADF Security." The
wizard configures ADF Security for the entire Fusion web application, so that any web
page associated with an ADF security-aware resource is protected by default. This

Introduction to ADF Security

30-2 Fusion Developer's Guide for Oracle Application Development Framework

means that after you enable ADF Security, your application is locked down so that the
pages are considered secure by default.

After you enable ADF Security you must grant users access rights so that they may
view the web pages of the Fusion web application. Access rights that you grant users
are known as a security policy that you specify for the page’s corresponding ADF
security-aware resource. Ultimately, it is the security policy on the ADF resource that
controls the user’s ability to enter a task flow or view a web page.

Because ADF Security is based on Java Authentication and Authorization Service
(JAAS), security policies identify the principal (the user or application role), the ADF
resource, and the permission (an operation defined by the resource’s ADF permission
class). For example, the StoreFront module of the Fusion Order Demo application
secures the web pages contained by the checkout-task-flow task flow to grant
access only to logged-in users (also known as authenticated users). At runtime, the ADF
Security framework performs authorization checking against the task flow’s security
policy to determine the user’s right to complete the view operation. In this case, the
security policy must grant the view permission to the user if they are to complete the
checkout process.

To simplify the task of defining security policies for users and ADF resources, ADF
Security defines a containment hierarchy that lets you define one security policy for
the ADF bounded task flow and its contains web pages. In other words, when you
define the security policy at the level of the bounded task flow, you protect the flow’s
entry point and then all pages within that flow are secured by the policy it defines.
Additionally, instead of granting access to individual users, you group users into
application roles and grant the view permission to the role.

Specifically, you will define security policies in the Fusion web application for the
following ADF security-aware resources to make web pages accessible to users:

■ ADF bounded task flow protects the entry point to the task flow, which in turn
controls the user’s access to the pages contained by the flow

For example, a series of web pages may guide new customers through a
registration process and the bounded task flow controls page navigation for the
process. For a description of bounded task flows, see Section 14.1.2, "Task Flow
Types."

The unbounded task flow is not an ADF security-aware component and thus does
not participate in authorization checks. When you need to protect the constituent
pages of an unbounded task flow, define grants for the page definition files
associated with the pages instead.

■ ADF page definition files associated with web pages

For example, a page may display a summary of best selling products with data
coordinated by the ADF bindings of the page’s associated ADF page definition
file. For a description of page definitions and ADF bindings, see Section 12.6,
"Working with Page Definition Files."

■ ADF entity objects and attributes of entity objects that reference rows of data and
help define collections for display in the user interface

For example, a web page may display an ADF Faces table component that
displays columns that ADF bindings map to the attributes of an entity object as its
data source. In the case of entity objects, enabling ADF Security does not
automatically secure entity objects rows. The data will remain accessible to users
until you define a security policy to explicitly protect the entity object or its
attributes. For a description of entity objects, see Section 4.1, "Introduction to
Entity Objects."

Introduction to ADF Security

Enabling ADF Security in a Fusion Web Application 30-3

JDeveloper tools support iterative development of security so you can easily create,
test, and edit security policies that you create for ADF resources. You can proceed to
create test users in JDeveloper and run the application in Integrated WebLogic Server
to simulate how end users will access the secured resources. This chapter describes
how to configure the repository of user identities and login credentials known as the
identity store.

To avoid a situation where you have enabled ADF Security but have not yet defined
security policies to grant access to test users, the Configure ADF Security wizard lets
you grant temporary view rights to all existing ADF resources (a view permission
grant will be added to the security policy for each ADF resource). This wizard option
gives you the choice to disable automatic grants and proceed to define security
policies for ADF resources as you create each resource or to enable automatic view
grants and gradually replace these grants with security policies that you define. To
understand iterative security development choices, see Section 30.2, "ADF Security
Process Overview."

30.1.1 Integration of ADF Security and Java Security
The ADF Security model for securing Fusion web application resources is not based on
the URL mapping of a security constraint as exemplified by the Java EE security
model. In actual practice, security constraints are not feasible for securing a JavaServer
Faces (JSF) web application where page navigation is not supported by specific page
URLs. For example, when the user navigates to the next page in a task flow, the URL
remains the same throughout the flow. As each new page is displayed, there is no
means to trigger a URL-based security constraint.

Instead, ADF Security implements a Java Authentication and Authorization Service
(JAAS) security model. The JAAS model is policy-based since JAAS is built on the
existing Java security model and integrates with any JAAS implementation, including
the Oracle Platform Security Services (OPSS) implementation of the JAAS service.
Whereas applications that utilize URL security constraints are security-unaware
because they rely on the Java EE container to manage security, Fusion web
applications require an explicit call to the ADF Security framework to authorize access
to resources based on user-defined policies. Thus, when you enable ADF Security and
define access policies for ADF resources, your application is security-aware.

Note: References to the identity store in this chapter are always in
the context of test user identities that you create for the purpose of
running in Integrated WebLogic Server. Typically, you would not
migrate these users to the staging environment when you deploy to
Oracle WebLogic Server, as described in Section 30.9, "Preparing the
Secure Application for Deployment."

Tip: Before you enable ADF Security and define security policies for
the ADF security-aware resources, you will want to understand the
rules that govern ADF authorization checking. Understanding these
rules will help you to implement the security you intend. For a
discussion of these rules, see Section 30.1.2, "Summary of ADF
Security."

Introduction to ADF Security

30-4 Fusion Developer's Guide for Oracle Application Development Framework

ADF Security simplifies the implementation of a JAAS authorization model. This
implementation minimizes the work needed to create a security-aware application by
exposing security policies on ADF resources in a declarative fashion and performing
authorization checks on these resources at runtime.

The policy store in JDeveloper is file-based and contains a list of entries known as
grants, which define the security policy for the ADF resource. The grant entry includes
all the permissions granted to the user to perform operations on the protected
resource, for instance, accessing a web page associated with an ADF bounded task
flow. Permissions are granted in the policy store to an application role principal.

ADF Security expands on the JAAS model by allowing you to define grants using the
actions specified by the ADF Security framework permission classes. These classes are
specific to the ADF resource and map the actions to an operation supported by the
resource. The policy store for the Fusion web application therefore contains grants that
specify:

■ One or more permissions that associate an action defined by the resource’s
permission class with an instance of the ADF resource in the application
(currently, only the view action is supported for bounded task flows and page
definitions resources)

■ The grantee, which is an application role defined by your application that you
populate with member users or, optionally, enterprise roles for whom you wish to
confer the same access rights

In the case of entity objects, the permission class defines read, delete, and update
actions.

For a description of the ADF permission classes and supported actions, see
Appendix C, "Oracle ADF Permission Grants."

30.1.2 Summary of ADF Security
The use of ADF Security enables web applications to easily adjust to real-world
business security requirements, because rather than securing paths to application
resources, you secure the view operation on ADF resources with JAAS. JAAS-based
ADF Security provides:

■ Declarative security support for ADF resources, such as the bounded task flow

Because Java EE security is URL-based or page-based, it is not possible to have a
navigation control without custom code. With ADF Security, you can control
whether or not the user can enter a task flow. Thus, a single security policy for a
task flow can control access to multiple web pages. Additionally, because
declarative security lets you secure the ADF resource, not the access path, you can
reuse the ADF resource elsewhere in the application and it will remain secured.

■ Simplified permission assignment by using application roles that allow for the
inheritance of permissions

Note: Both OPSS and ADF Security are built on the Java security
model known as the Java Authentication and Authorization Services
(JAAS), which supports the use of custom permissions to protect the
resources of the application. To understand the security features of
Oracle Platform Security Services, see the Oracle Fusion Middleware
Security Guide.

Introduction to ADF Security

Enabling ADF Security in a Fusion Web Application 30-5

While Java EE security roles that are used by Java EE security constraints are flat,
JAAS permissions are granted to application roles, which can be nested and may
be mapped to enterprise roles that the Oracle WebLogic Server domain defines.

■ Utility methods for use in EL expressions to access ADF resources in the security
context

You can use the ADF Security EL expression utility methods to determine whether
the user is allowed to perform a known operation. For example, you can
determine whether the user is allowed to view a particular task flow.

Additionally, JDeveloper enables you to quickly create test users and passwords to
test security in Integrated WebLogic Server. When you are ready to deploy to Oracle
WebLogic Server, you can migrate the application-specific authorization policies to the
server and the administrator can configure the application to use an LDAP user
repository.

Table 30–1 summarizes the effect that enabling ADF Security has on the application
and the various ADF security-aware resources. For further discussion about how you
can work most effectively with ADF Security, see Section 30.11.4, "Best Practices for
Working with ADF Security."

Table 30–1 Summary of ADF Security-Aware Resources

ADF Resource How Oracle ADF Enforces Security How to Grant Access

Bounded task
flows in all user
interface projects

Protected by default. Requires a
grant to allow users to enter the
bounded task flow.

Define the grant for the task flow.

Do not define grants for individual
page definition files associated with
the web pages of the bounded task
flow.

Page definition
files in all user
interface projects

Protected by default. Requires a
grant to allow users to view the page
associated with the page definition.

If the web page is contained by a
bounded task flow, define the grant
for the task flow.

Define the grant for the page
definition only when the web page
is not contained by a bounded task
flow or when the page is contained
by an unbounded task flow.

Note that the unbounded task flow
is not an ADF security-aware
component and allows no grants.

Entity objects in
the data model
project

Not protected by default. Requires a
grant to prevent access by users.

Define a grant on the entity object
to protect data only if you need to
control access at the level of the
entire data collection. The data
displayed by all components in the
user interface that reference the
protected entity object will be
protected.

Use entity-level security carefully.
Instead, consider defining security
at the level of the entity attribute.

Note that grants in the model
project are saved as metadata on
the entity object itself and do not
appear in the ADF policy store.

ADF Security Process Overview

30-6 Fusion Developer's Guide for Oracle Application Development Framework

30.2 ADF Security Process Overview
You work in JDeveloper when you want to secure the ADF resources of your Fusion
web application. ADF Security will protect your application’s bounded task flows and
any web pages contained in an unbounded task flow. You enable this protection by
running the Configure ADF Security wizard and later by defining ADF security
policies to define user access rights for each resource.

As you create the user interface for your application, you may run the Configure ADF
Security wizard at any time. You may choose to:

■ Iterate between creating web pages in the UI project and defining security policies
on their associated ADF resources

■ Complete all of the web pages in the UI project and then define security policies
on their associated ADF resources

The iterative design and test process is supported by a variety of design time tools.

Each time you create a new bounded task flow or ADF page definition file in your user
interface projects, the new ADF resource will be visible in the jazn-data.xml file
overview editor. You use the overview editor to define security policies for ADF
resources associated with web pages for the entire application. You can also use the
overview editor to sort ADF resources and easily view those that have no security
policy yet defined.

You use another editor to provision a few test users in the ADF identity store. The
identity store you create in JDeveloper lets you define user credentials (user ID and
password). The editor also displays the relationship between users you create and the
application roles that you assign them to for the purpose of conferring the access
rights defined by ADF security policies.

At design time, JDeveloper saves all policy store and identity store changes in a single
file for the entire application. In the development environment, this is the
jazn-data.xml file. After you configure the jazn-data.xml file using the editors,
you can run the application in Integrated WebLogic Server and the contents of the
policy store will be added to the domain-level store, the system-jazn-data.xml
file, while the test users will be migrated to the embedded LDAP server that

Entity object
attributes in the
model project

Not protected by default. Requires a
grant to prevent access by users.

Define a grant on the entity object
attribute to protect data when you
need to control access at the level of
the columns of the data collection.
The data displayed by all
components in the user interface
that reference the protected entity
attribute will be protected.

Note that grants in the model
project are saved as metadata on
the entity object itself and do not
appear in the ADF policy store.

Note: Before you proceed to secure the Fusion web application, you
should become familiar with the ADF Security model, as described in
Section 30.1.2, "Summary of ADF Security."

Table 30–1 (Cont.) Summary of ADF Security-Aware Resources

ADF Resource How Oracle ADF Enforces Security How to Grant Access

ADF Security Process Overview

Enabling ADF Security in a Fusion Web Application 30-7

Integrated WebLogic Server uses for its identity store. The domain-level store allows
you to test the security implementation by logging on as test users that you have
created.

You access all design time tools for security under the JDeveloper main menu
Application > Secure menu, as shown in Figure 30–1.

Figure 30–1 Accessing the ADF Security Design Time Tools

Design Phase

To enable ADF Security and set up the policy store in JDeveloper:

1. Enable ADF Security for the application by running the Configure ADF Security
wizard.

The wizard configures files that integrate the security framework with OPSS on
Oracle WebLogic Server.

2. Create an ADF security-aware resource, such as a bounded task flow with
constituent web pages (or regions) or a top-level web page (or region) that is
designed using ADF bindings.

Note: After you run the Configure ADF Security wizard, any web page associated
with an ADF security-aware resource will be protected. This means that you must
define security policies to make the web pages accessible before you can run the
application and test security.

3. Associate the ADF security-aware resource with one or more application roles that
you create.

Application roles you create are specific to the application and let you confer the
same level of access to a set of users (also known as member users). In the test phase
you will create some users and add them as members to the application roles you
created.

4. Grant view permission to the ADF security-aware resource and each of its
associated application roles.

The grant confers access rights to the application role’s member users. Without the
grant, the user would not be able to access the ADF security-aware resource. In the
test phase, you will create some users and add them to your application roles.

ADF Security Process Overview

30-8 Fusion Developer's Guide for Oracle Application Development Framework

Testing Phase

To provision the identity store and test security using Integrated WebLogic Server:

1. Create some users and, optionally, create their enterprise roles.

You will log in to the application using the user ID and password you define. An
enterprise role is a logical role that lets you group users and associate these groups
with application roles. The enterprise role is not needed for testing. For more
information, see Section 30.4.3, "What You May Need to Know About Enterprise
Roles and Application Roles."

2. Associate the users you created and, optionally, the enterprise roles, with one or
more application roles.

A member user may belong to more than one application role when you wish to
confer the access right granted to multiple application roles.

3. Optionally, replace the default login page with a custom login page.

The default login page generated by the Configure ADF Security wizard cannot
utilize ADF Faces components. It is provided only as a convenience for testing
ADF security policies.

4. Run the application in JDeveloper and access any ADF security-aware resource.

The first time you attempt to access an ADF security-aware resource, the security
framework will prompt you to log in.

5. Log in and check that you are able to access the page and its resources as you
intended.

After you log in, the security framework checks the user’s right to access the
resource. For example, if you receive an unexpected 401 unauthorized user error,
verify that you have created grants as suggested in Section 30.11.4, "Best Practices
for Working with ADF Security."

Preparation for Staging

To prepare the secure application for deployment to Oracle WebLogic Server in a
staging or production environment:

1. Remove any grants to the test-all role for all ADF security-aware resources
and replace with grants that you define.

Because ADF resources are secure by default, developers testing the application
will be granted view access only after security policies are defined. The Configure
ADF Security wizard gives you the option to generate grants to the test-all
role that will make all ADF resources accessible. To avoid compromising
enterprise security, you must eventually replace all temporary grants to the
test-all role with explicit grants that you define.

2. Remove all user identities that you created.

JDeveloper must not be used as an identity store provisioning tool, and you must
be careful not to deploy the application with user identities that you create for
testing purposes. Deploying user identities with the application introduces the
risk that malicious users may gain unintended access. Instead, rely on the system
administrator to configure user identities through the tools provided by the
domain-level identity management system.

3. Confirm that the application roles shown in the policy store are the ones that you
want an administrator to eventually map to domain-level groups.

Enabling ADF Security

Enabling ADF Security in a Fusion Web Application 30-9

4. Decide whether or not you what to define a security constraint to protect ADF
Faces resource files.

Resource files including images, style sheets, and JavaScript libraries are files that
the Fusion web application loads to support the individual pages of the
application. These files are not secured by ADF Security, but you can secure their
Java EE access paths if you require all users to be authenticated before they can
access the application.

5. Migrate the finalized policy store and credentials store to the target server.

Application policies and credentials can be automatically migrated to the domain
policy store when the application is deployed to a server in the Oracle WebLogic
environment. Support to automatically migrate these stores is controlled by the
target server’s configuration. If Oracle Enterprise Manager is used to perform the
deployment outside of JDeveloper, then the migration configuration settings can
be specified in that tool. For information about migrating the jazn-data.xml
security policies and the cwallet.sso credentials, see the Oracle Fusion
Middleware Security Guide.

30.3 Enabling ADF Security
To simplify the configuration process which allows ADF Security to integrate with
OPSS, JDeveloper provides the Configure ADF Security wizard. The wizard is the
starting point for securing the Fusion web application using ADF Security. The wizard
is an application-level tool that, once run, will enable ADF Security for all user
interface projects that your application contains.

30.3.1 How to Enable ADF Security
The Configure ADF Security wizard allows you to choose to enable authentication and
authorization separately. You may choose to:

■ Enable only user authentication.

Although ADF Security leverages Java EE container-managed security for
authentication, enabling only authentication means that you want to use the ADF
authentication servlet to support user login and logout, but that you intend to
define container-managed security constraints to secure web pages.

■ Enable user authentication and also enable authorization.

Enabling authorization means you intend to control access to the Fusion web
application by creating security policies on ADF resources.

The ADF Security framework supports these two choices to give you the option to
implement Java EE Security and still be able to support login and logout using the
ADF authentication servlet. The benefit of enabling the ADF authentication servlet is
that the servlet will automatically prompt the user to log in the first time the

Note: Because the Configure ADF Security wizard enables ADF
Security for all user interface projects in the application, after you run
it, users will be required to have authorization rights to view any web
page contained by a bounded task flow and all web pages associated
with an ADF page definition. Therefore, after you run the wizard, the
application is essentially locked down until you define security
policies to grant view rights to the user. For an overview of the
process, see Section 30.2, "ADF Security Process Overview."

Enabling ADF Security

30-10 Fusion Developer's Guide for Oracle Application Development Framework

application is accessed. The ADF authentication servlet also allows you to redirect the
user to a defined start page after successful authentication. You will also be able to
manage the page redirect when the user logs out of the application. These redirect
features provided by ADF Security are not available using only container-managed
security.

Note that ADF Security does not perform authentication, but relies on the Java EE
container to invoke the configured login mechanism, as described in Section 30.8.4,
"What Happens at Runtime: How ADF Security Handles Authentication."

Because ADF Security delegates authentication to the web container, when you run
the Configure ADF Security wizard, the wizard prompts you to configure the
authentication method that you want the web container to use. The most commonly
used types of authentication are HTTP Basic Authentication and Form-Based
Authentication. Basic authentication uses the browser login dialog for the user to enter
a user name and password. Note that with basic authentication, the browser caches
credentials from the user, thus preventing logout. Basic authentication is useful when
you want to test the application without requiring a custom login page. Form
authentication allows the application developer to specify a custom login UI. If you
choose Form-based authentication, you can also use the wizard to generate a simple
login page. The default login page is useful for testing your application with
Integrated WebLogic Server.

To enable ADF Security for the application:
1. From the Application menu, choose Secure > Configure ADF Security.

2. In the ADF Security page, leave the default ADF Authentication and
Authorization option selected. Click Next.

When you run the wizard with the default option selected, your application will
enforce authorization for ADF security-aware resources. Enforcing authorization
for ADF resources means that you intend to define security policies for these
resources to make the web pages of your application accessible. Until you do so,
all pages that rely on the ADF bounded task flows and ADF page definitions will
remain protected.

The other two wizard options to configure ADF Security should not be used when
you want to enable ADF Security. Those options allow you to temporarily disable
ADF Security and run your application without security protection, as described
in Section 30.10, "Disabling ADF Security."

Best Practice: Because Java EE security constraints cannot interact
with the task flow to secure the current page of a task flow,
container-managed security is not a useful solution when your
application is designed with ADF task flows. When you use ADF task
flows, select the ADF Authentication and Authorization option in the
Configure ADF Security wizard. This option will allow you to define
security policies to protect the task flows of your application.

Note: Because the generated login page is a simple JSP or HTML file,
you will not be able to modify it with ADF Faces components. For
information about replacing the default login page with a custom
login page that uses ADF Faces components, see Section 30.7,
"Creating a Login Page."

Enabling ADF Security

Enabling ADF Security in a Fusion Web Application 30-11

Specifically, the first page of the wizard lets you choose among three options, with
the default option set to enable ADF Authentication and Authorization, as shown
in Figure 30–2:

■ ADF Authentication and Authorization (default) enables the ADF
authentication servlet so that you can redirect to a configured web page when
the user logs in and logs out. This option also enables ADF authorization to
enforce authorization checking against security policies that you define for
ADF resources. This option assumes that you will define application roles and
assign explicit grants to those roles to manage access to ADF security-aware
resources.

■ ADF Authentication enables the ADF authentication servlet to require the
user to log in the first time a page in the application is accessed and supports
page redirect by mapping the Java EE application root "/" to the a Java EE
security constraint that will trigger user authentication. Since the wizard
disables ADF authorization, authorization checking is not performed, whether
or not security policies exist for ADF resources. Once the user is logged in, all
web pages containing ADF resources will be available to the user.

■ Remove ADF Security Configuration disables the ADF authentication servlet
and prevents ADF Security from checking policy grants without altering the
existing policy store. In this case, you may require users to log in, become
authenticated, and test access rights against URL security constraints using
standard Java EE security. Note that running the wizard with this option
disables fine-grained security against ADF resources.

Figure 30–2 Using the Configure ADF Security Wizard to Enable Security-Aware
Resources

3. In the Authentication Type page, select the authentication type that you want your
application to use when the user submits their login information. Click Next.

A known issue prevents the ADF authentication servlet from working with Basic
type authentication and allows a user to access resources after logout. Use
form-based authentication instead of basic authentication. For details about this

Enabling ADF Security

30-12 Fusion Developer's Guide for Oracle Application Development Framework

issue, see Section 30.7.7, "What You May Need to Know About ADF Servlet
Logout and Browser Caching."

If you select Form-based Authentication, you can also select Generate Default
Pages to allow the wizard to generate a default login and error page. By default
the wizard generates the login and error pages at the top level of the user interface
project, as shown in Figure 30–3. If you want to change the location, specify the
full path relative to the user interface project.

Figure 30–3 Using the Configure ADF Security Wizard to Generate a Simple Login Page

4. In the Automatic Policy Grants page, leave the default No Automatic Grants
option selected. Click Next.

When you select No Automatic Grants, you must define explicit grants that are
specific to your application. The test-all application role provides a convenient
way to run and test application resources without the restricted access that ADF
authorization enforces. However, it increases the risk that your application may
leave some resources unprotected.

Alternatively, you can use the wizard to grant to the test-all application role.
When you enable grants to the test-all role, you can postpone defining explicit
grants to ADF resources until you are ready to refine the access policies of your
application. If you decide to enable automatic grants, do not let application
development progress too far and the content of the application become
well-established before you replace grants to the test-all role with the your
application’s explicit grants. The explicit grant establishes the necessary privilege
(for example, view on a page) to allow users to access these resources. For more
information about the test-all role, see Section 30.8.3, "How to Use the Built-In
test-all Application Role."

5. In the Authenticated Welcome page, select Redirect Upon Successful
Authentication to direct the user to a specific web page after they log in. Click
Next.

If you leave the Redirect Upon Successful Authentication option unselected, the
user will be returned to the page from which the login was initiated. However,

Enabling ADF Security

Enabling ADF Security in a Fusion Web Application 30-13

when the user presses Ctrl-N or Ctrl-T to open a new browser window or tab,
they will receive a 403 or 404 error unless a welcome page definition appears in
the application’s web.xml file. You can use this option to specify a welcome page
so the definition appears in the application’s web.xml file.

Note that if the web page you specify contains ADF Faces components, you must
define the page in the context of /faces/. For example, the path for adffaces_
welcome.jspx would appear in the Welcome Page field as /faces/adffaces_
welcome.jspx.

For details about specifying other redirect options, see Section 30.7.5, "How to
Redirect a User After Authentication."

6. In the Summary page, review your selections and click Finish.

30.3.2 What Happens When You Enable ADF Security
After you run the Configure ADF Security wizard with the default ADF
Authentication and Authorization option selected in the ADF Security page, you will
have:

■ Enabled ADF authentication to prompt the user to log in and to allow page
redirects

■ Enabled ADF authorization checking so that only authorized users will have
access to ADF resources

The wizard updates all security-related configuration files and ensures that ADF
resources are secure by default. Table 30–2 shows which files the Configure ADF
Security wizard updates.

Enabling ADF Security

30-14 Fusion Developer's Guide for Oracle Application Development Framework

Table 30–2 Files Updated for ADF Authentication and Authorization

File File Location Wizard Configuration

web.xml /public_html/WEB-INF
 directory relative to the
user interface project

And, in JDeveloper, in the
user interface project under
the Web Content-WEB-INF
node

■ Defines the Oracle JpsFilter filter to set up the
OPSS policy provider. The filter defines settings
that indicate that your servlet has special
privileges. It is important that the JpsFilter be
the first filter definition in the web.xml file.

■ Adds the Oracle adfAuthentication servlet
definition to require the user to log in the first
time ADF resources are accessed. Note that ADF
Security does not itself perform authentication,
but leverages Java EE container-managed
security for this purpose.

■ When you select the ADF Authentication and
Authorization option in the wizard, maps the
adfAuthentication servlet to a security
constraint that will trigger user authentication
dynamically.

■ When you select the ADF Authentication option
in the wizard, maps the Java EE application root
"/" to the allPages security constraint that will
trigger user authentication dynamically.

■ Sets the authentication method for the Login
configuration to handle user login.

■ Defines required security roles, including the role
valid-users, which is used to trigger the
security constraint that enables dynamic
authentication.

adf-config.xml /.adf/META-INF
directory relative to the web
application workspace

And, in JDeveloper, in the
Application Resources panel
of the Applications window
under the Descriptors-ADF
META-INF node

■ Defines the JAAS security context.

■ Enables the use of ADF Security security policies
for authorization checking (the
authorizationEnforce parameter in the
<JaasSecurityContext> element is set to
true).

■ Enables triggering a login dialog in Java SE
applications, including ADF Swing applications
(the authenticationRequire parameter in
the <JaasSecurityContext> element is set to
true). This parameter is not used in Fusion web
applications. Fusion web applications rely on
settings in the web.xml file to enable
authentication.

Enabling ADF Security

Enabling ADF Security in a Fusion Web Application 30-15

Because authentication is delegated to the web container, the wizard updates the
web.xml file to enable authentication by the ADF authentication servlet. It defines
servlet mapping for the ADF authentication servlet and adds two Java EE security
constraints, allPages and adfAuthentication, to the web.xml file, as shown in
Example 30–1.

Example 30–1 ADF Authentication Descriptors in the web.xml FIle

<servlet>
 <servlet-name>adfAuthentication</servlet-name>
 <servlet-class>
 oracle.adf.share.security.authentication.AuthenticationServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>
...
<servlet-mapping>
 <servlet-name>adfAuthentication</servlet-name>
 <url-pattern>/adfAuthentication</url-pattern>
</servlet-mapping>
...
<security-constraint>

jps-config.xml /src/META-INF
directory relative to the web
application workspace

And, in JDeveloper, in the
Application Resources panel
of the Applications window
under the
Descriptors-META-INF
node

■ Enables OPSS security services specifically
within the JDeveloper design time.

When you test data model projects using the
Oracle ADF Model Tester or run unit tests for
security validation this workspace-specific file
must be present. Note that this file is not used in
the deployed Fusion web application. For
example, when you deploy to Integrated
WebLogic Server, OPSS security services are
enabled by the
DefaultDomain/config/fmwconfig/jps-c
onfig.xml file.

 weblogic.xml /public_html/WEB-INF
 directory relative to the
web application workspace

And, in JDeveloper, in the
user interface project under
the Web Content-WEB-INF
node

■ Maps the valid-users security role to the
Oracle Platform Security Services principal
users.

jazn-data.xml ./src/META-INF
directory relative to the web
application workspace

And, in JDeveloper, in the
Application Resources panel
of the Applications window
under the Descriptors-
META-INF node

■ Sets the default jazn.com realm name for the
XML identity store that you configure for use
with Integrated WebLogic Server.

You will use this file to store user identities, user
groups, and security policies for the ADF
Security-enabled application. This file is used
during development and enables support for
security when running the Oracle ADF Model
Tester. However, when you deploy your
application, for example, to Integrated WebLogic
Server, security policies will be migrated into the
configured policy store in the
DefaultDomain/config/fmwconfig/syste
m-jazn-data.xml file.

Table 30–2 (Cont.) Files Updated for ADF Authentication and Authorization

File File Location Wizard Configuration

Enabling ADF Security

30-16 Fusion Developer's Guide for Oracle Application Development Framework

 <web-resource-collection>
 <web-resource-name>allPages</web-resource-name>
 <url-pattern>/</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>valid-users</role-name>
 </auth-constraint>
</security-constraint>
<security-constraint>
 <web-resource-collection>
 <web-resource-name>adfAuthentication</web-resource-name>
 <url-pattern>/adfAuthentication</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>valid-users</role-name>
 </auth-constraint>
</security-constraint>

Because the allPages constraint maps to the '/' URL, it protects the Java EE
application root. This mapping enables the ADF authentication servlet to trigger user
authentication dynamically even before ADF Security is accessed. When the user first
accesses the application, it forces the container to challenge the user for the user name
and password. Then when the user accesses a page protected by ADF Security, there is
no longer a need to authenticate the user and no need to redirect to the ADF
authentication servlet.

Because every user of the application is required to be able to log in, the security
constraint defined against the adfAuthentication resource allows all users to
access this web resource. As such, the security role associated with the constraint must
encompass all users. To simplify this task, the Java EE valid-users role is defined.
The weblogic.xml file maps this role to an implicit users group defined by Oracle
WebLogic Server. This mapping ensures that every user will have this role because
Oracle WebLogic Server configures all properly authenticated users as members of the
users group, as described in Section 30.3.7, "What You May Need to Know About the
valid-users Role."

Note: You can remove the allPages constraint from the web.xml
file if you prefer to provide a login link or button to explicitly trigger
login. You could also have a link or button to perform logout. For
details about creating a custom component to perform login and
logout, see Section 30.7, "Creating a Login Page." If you keep the
constraint to allow dynamic authentication, because it covers
everything under the Java EE application root, your login page may
not display supporting resources at runtime, as described in
Section 30.7.3, "How to Ensure That the Custom Login Page’s
Resources Are Accessible for Explicit Authentication."

Enabling ADF Security

Enabling ADF Security in a Fusion Web Application 30-17

To enable authorization, the wizard updates the adf-config.xml file and sets the
authorizationEnforce parameter in the <JaasSecurityContext> element to
true, as shown in Example 30–2.

Example 30–2 AuthorizationEnforce Flag Enabled in the adf-config.xml FIle

<JaasSecurityContext
 initialContextFactoryClass="oracle.adf.share.security.JAASInitialContextFactory"
 jaasProviderClass="oracle.adf.share.security.providers.jps.JpsSecurityContext"
 authorizationEnforce="true"
 authenticationRequire="true"/>

When authorization is enabled, the ADF security context gets the user principals from
the HttpServletRequest once the user is authenticated by the container. The user
submits a user name and password and that data is compared against the data in the
identity store where user information is stored. If a match is found, the originator of
the request (the user) is authenticated. The user name is then stored in the ADF
security context, where it can be accessed to obtain other security-related information
(such as the group the user belongs to) in order to determine authorization rights. For
details about accessing the ADF security context, see Section 30.11.3, "Getting
Information from the ADF Security Context."

30.3.3 What Happens When You Generate a Default Form-Based Login Page
The wizard-generated login and error pages are simple HTML pages that are added to
the top-level folder of your user interface project. The generated login page defines an
HTML form that will submit the user’s login request with the standard j_security_
check action. This action together with form-based authentication, which is the
default option for container authentication provided by the wizard, allows the web
container to authenticate users from many different web application resources.

The wizard updates the web.xml file to specify form-based authentication and
identify the location of the pages, as shown in Example 30–3.

Example 30–3 Wizard-Generated Login Page Definition Added to in the web.xml FIle

<login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>/login.html</form-login-page>
 <form-error-page>/error.html</form-error-page>
 </form-login-config>
</login-config>

Your application will display the wizard-generated login page from a server-side
redirect in response to the unauthenticated user attempting to access a protected

Note: The adfAuthentication resource constraint provides the
definition of a single standard URL pattern against the ADF
authentication servlet. Your web pages can provide an explicit login
or logout link that references the ADF authentication servlet URL
pattern. This explicit login scenario is an alternative to generating a
simple login form in the Configure ADF Security wizard and relying
on ADF authentication to prompt the user to log in. For details about
handling the explicit login scenario, see Section 30.7, "Creating a Login
Page."

Enabling ADF Security

30-18 Fusion Developer's Guide for Oracle Application Development Framework

resource. This is known as implicit authentication because the redirect to the login
page only occurs when user navigates to a page that contains an ADF security-aware
resource.

Note that web applications also have a notion of public pages and allow for explicit, as
well as implicit authentication. This means that users should be able to log in to the
application by clicking a login link before they navigate to secured content. For
information about creating and using a login link, see Section 30.7, "Creating a Login
Page."

30.3.4 What You May Need to Know About the Configure ADF Security Wizard
The first time you run the Configure ADF Security wizard and enable authentication
and authorization, you secure ADF resources at the level of the application.
Additionally, you select specific project-level settings for the user interface project,
including the authentication type and the authentication welcome. The wizard adds
these web application settings to the web.xml file in the project you select. When your
application contains multiple user interface projects and web.xml files, you can return
to the wizard and configure these settings in the web.xml file for another user
interface project that you select.

30.3.5 What You May Need to Know About ADF Authentication
Java EE container-managed security defines a standard method for login. There is no
standard way to log out and stay within a secured application, so while the login
process is delegated to the container, the logout process is handled by the ADF
authentication servlet itself.

On the first access to a page that relies on an ADF security-aware resource, if there is
no subject defined, OPSS is configured by the JPSFilter to create a subject
containing the anonymous user principal and the anonymous-role role principal.
With this role principal, the unauthenticated user will be able to access public web
pages that are not associated with any ADF security-aware resources (including ADF
bounded task flows or page definitions).

In the case of pages associated with ADF security-aware resources, you must explicitly
grant view permission to anonymous-role to make the page accessible to the
anonymous user. For details about granting privileges to the anonymous user, see
Section 30.5.1, "How to Make an ADF Resource Public."

30.3.6 What You May Need to Know About the Built-In test-all Role
The Configure ADF Security wizard lets you enable automatic grants to the built-in
test-all application role for the purpose of granting view permission to all ADF
security-aware resources in your application. Without a permission grant, either an
automatic view grant or an explicit grant that you define, ADF Security authorization
checking enforcement would prevent you from being able to run the application and
access its resources. You can run the wizard with the test-all application role
feature enabled and then gradually replace automatic view grants with explicit grants.
Be aware that you must not deploy the application with grants to the test-all
application role in place, since this feature makes all ADF resources public. If you
choose to enable the built-in test-all application role in the wizard, see
Section 30.9.1, "How to Remove the test-all Role from the Application Policy Store,"
before deploying your application.

Creating Application Roles

Enabling ADF Security in a Fusion Web Application 30-19

30.3.7 What You May Need to Know About the valid-users Role
The valid-users role is a Java EE security role defined by ADF Security to ensure
that all users will access the adfAuthentication servlet web resource defined in the
web.xml file. The Configure ADF Security wizard updates the weblogic.xml file to
map this ADF Security role to the users principal, as shown in Example 30–4. This
mapping ensures that every user will have this role, because Oracle WebLogic Server
configures all properly authenticated users as members of the users group.

Example 30–4 valid-users Role Mapping in the weblogic.xml FIle

<security-role-assignment>
 <role-name>valid-users</role-name>
 <principal-name>users</principal-name>
</security-role-assignment>

The users principal name is a special principal defined by OPSS that serves a
purpose similar to an enterprise role. At runtime, the principal is added automatically
to a successfully authenticated subject by OPSS. From a security perspective, the
valid-users role supports ADF authentication only in the case where you need to
control access to web resources using security constraints alone. The end result of this
mapping relies entirely on Java EE security and does not involve JAAS Permissions.

30.4 Creating Application Roles
You create application roles to represent the policy requirements of the application
and to define groups of users with the same view permission rights. The application
roles that you create in the application policy store are specific to your application. For
example, in the context of the work flow, there may be application roles such as
fod-customer, fod-productSpecialist, fod-supervisor, and fod-admin,
where fod identifies these roles as specific to the Fusion Order Demo application.

At runtime, the access rights are conferred on the user through the application role for
which the user is defined as a member. Thus, before you can define security policies,
the policy store must contain the application roles that you intend to issue grants to.
This can be an application role that you define (such as fod-users) or it can be one of
the two built-in application roles defined by OPSS: authenticated-role or
anonymous-role. JDeveloper provides the built-in application roles to let you make
ADF resources public, as described in Section 30.5.1, "How to Make an ADF Resource
Public."

After you create the application role, you will:

■ Grant permissions to the application roles, as described in Section 30.5, "Defining
ADF Security Policies."

■ Associate test users with each application role, as described in Section 30.6,
"Creating Test Users."

Best Practice: The ADF Security framework enforces a role-based
access control mechanism with permissions granted either to
application roles or to individual users. Although you may only need
to test security and therefore might not need to create groups of users,
you should still create application roles (with at least one user
member). Later when you define security polices on the ADF
resources, the overview editor for the application policy store will
allow you to select an application role for the grant.

Creating Application Roles

30-20 Fusion Developer's Guide for Oracle Application Development Framework

30.4.1 How to Create Application Roles
JDeveloper lets you add application roles to the policy store of the jazn-data.xml
file, which appears in the Descriptors/META-INF node of the Application Resources
panel.

To create application roles in the policy store of the jazn-data.xml file, you use the
Application Roles page of the overview editor for the jazn-data.xml file. This
editor lets you view the relationship between identity store members and the
application roles you create.

To create application roles:
1. From the Application menu, choose Secure > Application Roles.

2. In the Application Roles page of the jazn-data.xml overview editor, select the
policy store for your application from the Security Policy dropdown list.

The policy store that JDeveloper creates in the jazn-data.xml file is
automatically based on the name of your application.

3. In the Roles list, click the New icon.

4. In the Name field, enter the name of the role and click any other field to add the
application role to the policy store.

5. If you have already set up test users in the identity store, you can map users and
roles, as described in Section 30.6.3, "How to Associate Test Users with Application
Roles."

30.4.2 What Happens When You Create Application Roles
When you add an application role to the policy store, JDeveloper updates the
jazn-data.xml file located in the src/META-INF directory relative to the
application workspace. Application roles are defined in <app-role> elements under
<policy-store>, as shown in Example 30–5. Because the policy store
<application> element names the application, at runtime all application roles that
you create will be visible to your application only. Other web applications may define
a policy store with their own set of application roles.

Example 30–5 Application Role Definition in the Policy Store

<policy-store>
 <applications>
 <application>
 <name>StoreFrontModule</name>
 <app-roles>
 <app-role>
 <name>fod-users</name>
 <display-name>FOD Users</display-name>
 <class>oracle.security.jps.service.policystore.
 ApplicationRole</class>

Note: When you create application roles, be sure to add the new
application roles to the policy store, not the identity store. Roles that
you add to the identity store define enterprise security roles and
provide a way to conveniently group users in the identity store. For
more details about enterprise roles, see Section 30.4.3, "What You May
Need to Know About Enterprise Roles and Application Roles."

Defining ADF Security Policies

Enabling ADF Security in a Fusion Web Application 30-21

 </app-role>
 ...
 </app-roles>
 <jazn-policy>
 ...
 </jazn-policy>
 </application>
 </applictions>
</policy-store>

30.4.3 What You May Need to Know About Enterprise Roles and Application Roles
An enterprise role is a role that is maintained in the domain policy store (as opposed to
an application policy store). Enterprise roles are available to every application
deployed in the domain and defined in the domain identity store, typically
represented by an ordered list of authenticators configured in the domain.

An application role is a role used by a Fusion web application. It is specific to the
application, defined by the application policy, and not necessarily known to the Java
EE container. Application roles are scoped in the sense that they can contain only users
and roles defined in the application. Application roles must be mapped to enterprise
roles.

You use the overview editor for the jazn-data.xml file to create enterprise roles to
group users that you add to the identity store. You can use this mechanism to assign
entire groups of users to application roles that you have defined for the purpose of
conferring access rights defined by ADF security policies, as described in
Section 30.6.3, "How to Associate Test Users with Application Roles."

However, Integrated WebLogic Server does not require you to create enterprise roles
to run the application within JDeveloper. For the purpose of testing the application, it
may be sufficient to create a few test users and assign them directly to application
roles. When you run the application in JDeveloper, the users and any enterprise roles
you defined will be created in the default security provider (which is embedded LDAP
for Integrated WebLogic Server).

Typically, when you deploy the application for staging, you will migrate only the
policy store to the target server. You can configure JDeveloper deployment options so
that the identity store, including test users and enterprise roles, is not migrated, as
described in Section 30.8.1, "How to Configure, Deploy, and Run a Secure Application
in JDeveloper."

After you deploy the secure application, Oracle Fusion Middleware will merge your
application’s policy store with the policies of the domain-level policy store. To
complete this task, the administrator for the Oracle WebLogic Server will eventually
map the application roles of your policy store to the existing domain-level enterprise
roles. This application role mapping at the domain level allows enterprise users to
access application resources according to the ADF security policies you have defined.
The domain-level application role mapping by the administrator also allows you to
develop the ADF security policies of your application without requiring any
knowledge of the identity store in the production environment.

30.5 Defining ADF Security Policies
Authorization relies on a policy store that is accessed at runtime and that contains
permissions that grant privileges to execute predefined actions, like view, on a
specified object. Initially, after you run the Configure ADF Security wizard, the policy

Defining ADF Security Policies

30-22 Fusion Developer's Guide for Oracle Application Development Framework

store defines no grants. And, because the default wizard option ADF Authentication
and Authorization enables authorization checking, the web pages of your application
that rely on the ADF security-aware resources will be inaccessible to users. You must
use JDeveloper to define explicit grants for the resources that you want to permit users
to access.

Before you can define security policies, the policy store for your application must
contain the application roles that you intend to issue grants to. This can be an
application role that you define (such as fod-users) or it can be one of the two
built-in application roles defined by OPSS: authenticated-role or
anonymous-role. You use application roles to classify users, so that each member of
the same role possesses the same access rights. As such, the security policy names the
application role as the principal of the grant, rather than specific users. For details
about defining application roles, see Section 30.4, "Creating Application Roles."

For the user interface project, you use the jazn-data.xml file overview editor to
secure ADF resources, including ADF task flows and ADF page definitions. In
JDeveloper, you open the editor on the jazn-data.xml file by double-clicking the
jazn-data.xml file (located in the Application Resources panel) or by choosing
Secure > Resource Grants from the Application menu in the JDeveloper main menu.

Note that when you open the jazn-data.xml file, the overview editor provides
additional editor pages that you use to create test users, enterprise roles, and
application roles.

For the data model project, you do not secure entity objects or their attributes using
the jazn-data.xml file overview editor. Instead, you set metadata directly on these
objects to manage whether or not the databound UI component displays the data. For
details about granting permissions for row-level security, see Section 30.5.10, "How to
Define Policies for Data."

30.5.1 How to Make an ADF Resource Public
It is a common requirement that some web pages be available to all users, regardless
of their specific access privileges. For example, the home page should be seen by all
visitors to the site, while a corporate site should be available only to those who have
identified themselves through authentication.

In both cases, the page may be considered public, because the ability to view the page
is not defined by the users' specific permissions. Rather, the difference is whether the
user is anonymous or a known identity.

In the ADF Security model, you differentiate between the absence of security and
public access to content by granting access privileges to the anonymous-role
principal. The anonymous role encompasses both known and anonymous users, thus
permission granted to anonymous-role allows access to a resource by
unauthenticated users, for example, guest users. To provide access to authenticated
users only, the policy must be defined for the authenticated-role principal.

Best Practice: When you run the Configure ADF Security wizard
with the default option ADF Authentication and Authorization
selected, you will lock down the web pages of your application. This
affords the most protection to the Fusion web application possible
since you will define explicit grants to allow users to access only the
pages you intend. For a discussion of this guideline and others, see
Section 30.11.4, "Best Practices for Working with ADF Security."

Defining ADF Security Policies

Enabling ADF Security in a Fusion Web Application 30-23

Before you begin:
1. Create bounded task flows as described in Section 14.2, "Creating a Task Flow."

2. Create web pages with an ADF page definition file as described in Section 12.6,
"Working with Page Definition Files."

3. Run the Configure ADF Security wizard as described in Section 30.3, "Enabling
ADF Security."

4. Create application roles as described in Section 30.4, "Creating Application Roles."

To grant public access to ADF security-aware resources:
1. From the Application menu, choose Secure > Resource Grants.

2. In the Resource Grants page of the jazn-data.xml file overview editor, select
one of the following resources from the Resource Types dropdown list:

■ Task Flow when you want to make a bounded task flow public. The
application displays the web pages under the permission you define for the
task flow itself. Thus, all constituent web pages of the bounded task flow will
become public.

■ Web Page when you want to make individual web pages public. Typically,
these pages are defined by an unbounded task flow and are top-level pages in
the application, such as a home page.

3. In the Resources column, select the ADF resource for which you want to grant
access rights.

The resource you select should display the lock icon in the first column next to the
resource name. The lock icon indicates that the resource has no security policy
defined and therefore is "locked"—which means it remains inaccessible to users
until you define a grant. For example, in Figure 30–4, the ADF resource
customer-registration-task-flow (a bounded task flow) shows the lock
icon since no grant has been made.

Tip: Click the key toggle icon in the header for the overview editor’s first column
to hide or show resources that already have grants and display only the resources
without grants. The key icon indicates that the resource has a grant that will make
the resource accessible to users with sufficient access rights.

Note: For details about creating a public home page which contains
links to other pages in the application, see Section 30.7.4, "How to
Create a Public Welcome Page."

Defining ADF Security Policies

30-24 Fusion Developer's Guide for Oracle Application Development Framework

Figure 30–4 Selecting an ADF Security-Aware Resource in the Overview Editor

4. In the Granted to column, click the Add Grantee icon and choose Add
Application Role.

5. In the Select Application Roles dialog, select one of these built-in application roles:

■ anonymous-role means the resource will be accessible to anyone who visits
the site. A grant to this role is necessary if you want to make a web page
associated with an ADF security-aware resource accessible before a user logs
in. For example, you would grant to anonymous-role for a task flow that
manages customer registration.

■ authenticated-role means the resource will be accessible only to authenticated
users (ones who visit the site and log in). For example, you would grant to
authenticated-role for an employee registration task flow.

6. In the Select Application Roles dialog, click OK.

7. In the Resource Grants page of the overview editor, in the Actions column, leave
the View action selected.

By default, the overview editor shows view selected, as shown in Figure 30–5. The
view action is the only action currently supported for Fusion web applications.
The actions customize, grant, or personalize are implemented for page definition
security in Oracle WebCenter Portal: Framework applications or custom
applications that are enabled to use Oracle WebCenter Portal’s Composer.

Figure 30–5 Granting to anonymous-role in the Overview Editor

30.5.2 What Happens When You Make an ADF Resource Public
When you define a security policy, the jazn-data.xml file overview editor updates
the jazn-data.xml file located in the /src/META-INF node relative to the web
application workspace.

Defining ADF Security Policies

Enabling ADF Security in a Fusion Web Application 30-25

The overview editor writes the policy information to the <policy-store> section of
the file. The security policy, or grant, contains both a grantee and one or more
permissions. The grantee is the application role that the policy is being defined for—in
this case, the anonymous role. Each permission defines the resource being secured and
the action that can be performed against that resource.

Example 30–6 shows a security policy in the jazn-data.xml file that makes a
customer registration task flow public. The grant to anonymous-role contains a
single view permission for a bounded task flow,
customer-registration-task-flow. With this grant, all users will be able to
enter the customer registration task flow and complete the customer registration
process. Additional grants to the anonymous role may be made and will appear in the
<permissions> section of the anonymous role grant.

Example 30–6 Grants to anonymous-role in the Application-Level Policy Store

<policy-store>
 ...
 <jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>oracle.security.jps.internal.core.
 principals.JpsAnonymousRoleImpl</class>
 <name>anonymous-role</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.adf.controller.security.TaskFlowPermission</class>
 <name>/WEB-INF/customer-registration-task-flow.xml#
 customer-registration-task-flow</name>
 <actions>view</actions>
 </permission>
 ...
 </permissions>
 ...
 </grant>
 ...
 </jazn-policy>
</policy-store>

30.5.3 What Happens at Runtime: How the Built-in Roles Are Used
The anonymous-role and authenticated-role names are special roles defined
by Oracle Platform Security Services (OPSS).

When you run the Configure ADF Security wizard, the wizard configures the
JpsFilter definition in the web.xml file to enable support for the anonymous role.
The enabled anonymous role allows ADF Security to support browsing of the site by
anonymous users—those users who have not yet logged in. In contrast, the
authenticated role is not declared and is always recognized by default. ADF Security
supports both of these roles.

When an end user first accesses an ADF security-aware resource, the system creates a
subject and populates it with the anonymous role principal. As long as the ADF

Defining ADF Security Policies

30-26 Fusion Developer's Guide for Oracle Application Development Framework

security-aware resource being accessed has the view grant to anonymous role, the user
is permitted access. If the anonymous role is not a grantee of the ADF resource, the
user is prompted to log in. After logging in, the authenticated role is added to the
subject. The wizard also adds the JpsFilter definition to the web.xml file, where
remove.anonymous.role set to false ensures that the anonymous role principal is
available even after the user logs in. With the authenticated role principal, the user
may access resources that have an explicit grant to the authenticated role.

30.5.4 How to Define Policies for ADF Bounded Task Flows
You define the access policy for an ADF bounded task flow by creating permission
grants in the Resource Grants page of the jazn-data.xml file overview editor
overview editor. The grants you create will appear as metadata in the policy store
section of the jazn-data.xml file. This metadata defines a permission target (in this
case, the bounded task flow definition name) for which you have issued grants to
authorize the members of a specific application role.

You can sort the task flows in the overview editor by clicking the toggle buttons in the
Task Flow header, as described in Table 30–3.

The list of available actions displayed by the overview editor is defined by the task
flow permission class
(oracle.adf.controller.security.TaskFlowPermission). The permission
class maps these actions to the operations supported by the task flow. Table 30–4
shows the actions displayed by JDeveloper for ADF bounded task flows.

Note that the view action is the only action currently supported for Fusion web
applications. Do not select customize, grant, or personalize actions—they are
reserved for future use in task flow security.

Best Practice: Do not create permission grants for the individual
web pages of a bounded task flow. When the user accesses the
bounded task flow, security for all pages will be managed by the
permissions you grant to the task flow. And, because the contained
web pages (with associated page definitions) will be inaccessible by
default, ADF Security prevents users from directly accessing the pages
of the task flow. This supports a well-defined security model for task
flows that enforces a single entry point for all users. For further
information about implementing security policies, see Section 30.11.4,
"Best Practices for Working with ADF Security."

Table 30–3 Resource Grant Toggle Buttons for Bounded Task Flows

Button Toggle Action Description

Shows/hides
resources with
no grants

Represents a bounded task flow with no permission grants
defined. The web pages that the task flow calls will not be
accessible to any user.

Shows/hides
resources with
grants

Represents a bounded task flow with one or more permission
grants defined. The web pages that the task flow calls will be
accessible to users who are members of the application role that
received the grant.

Defining ADF Security Policies

Enabling ADF Security in a Fusion Web Application 30-27

To define a grant for the task flow security policy, use the Resource Grants page of the
overview editor for the jazn-data.xml file.

Before you begin:
1. Create bounded task flows as described in Section 14.2, "Creating a Task Flow."

2. Run the Configure ADF Security wizard as described in Section 30.3, "Enabling
ADF Security."

3. Create application roles as described in Section 30.4, "Creating Application Roles."

To define a permission grant on an ADF bounded task flow:
1. From the Application menu, choose Secure > Resource Grants.

2. In the Resource Grants page of the jazn-data.xml file overview editor, select
Task Flow from the Resource Types dropdown list.

The overview editor displays all the task flows that your application defines. Task
flows are defined by task flow definition files (.xml) that appear in the Web
Content/Page Flows node of the user interface project.

3. In the Resources column, select the task flow for which you want to grant access
rights.

The first time you make a grant to a bounded task flow, the first column should
display the Resources without any grants icon (represented by the "lock" icon)
next to the task flow name. The overview editor displays the lock icon to indicate
that a resource has no security policy defined and therefore is "locked"—which
means it remains inaccessible to users until you define a grant.

Tip: Click the Resources with grants icon (represented by the "key" icon) in the
header for the Resources column to hide all task flows that already have grants.
This will display only task flows without grants, as shown in Figure 30–6.
Additionally, you can type a partial task flow name in the search field to display
only the task flows with character-matching names.

Table 30–4 Secured Actions of ADF Bounded Task Flows

Grantable Action Effect on the User Interface

view Controls who can read and execute a bounded task flow in a Fusion web
application.

This is the only operation that the task flow supports.

customize Reserved for future use. This action is not checked at runtime.

grant Reserved for future use. This action is not checked at runtime.

personalize Reserved for future use. This action is not checked at runtime.

Best Practice: If you are creating bounded task flows in separate UI
projects of the same application, you will want to assign unique task
flow definition names. This is necessary because a grant’s task flow
definition name is scoped in the jazn-data.xml policy store by path
(for example,
/WEB-INF/mytaskflow-definition.xml#mytaskflow-defini
tion). Therefore creating bound task flows with unique definition
names is the only way to impose project-level scoping of the grants.

Defining ADF Security Policies

30-28 Fusion Developer's Guide for Oracle Application Development Framework

Figure 30–6 Hiding Task Flows with Grants in the Overview Editor

4. In the Granted to column, click the Add Grantee icon and choose Add
Application Role.

5. In the Select Application Roles dialog, select the application role that you want to
make a grantee of the permission.

The Select Application Roles dialog displays application roles from the
jazn-data.xml file. It also displays the built-in OPSS application roles,
anonymous-role and authenticated-role, as described in Section 30.5.3, "What
Happens at Runtime: How the Built-in Roles Are Used."

If you do not see application roles that are specific to your application, create the
role as described in Section 30.4, "Creating Application Roles."

6. In the Select Application Roles dialog, click OK.

7. In the Resource Grants page of the overview editor, in the Actions column, leave
the view action selected.

By default, the overview editor shows view selected, as shown in Figure 30–7. The
view action is the only action currently supported for Fusion web applications. Do
not select customize, grant, or personalize actions—they are reserved for future
use and will not be checked by ADF Security at runtime.

The TaskFlowPermission class defines task flow—specific actions that it maps
to the task flow’s operations, as described in Table 30–4.

Figure 30–7 Granting to an Application Role for a Bounded Task Flow Definition in the
Overview Editor

8. You can repeat these steps to make additional grants as desired.

The same task flow definition can have multiple grants made for different
application roles. The grants appear in the policy store definition of the
jazn-data.xml file, as described in Section 30.5.6, "What Happens When You
Define the Security Policy."

Defining ADF Security Policies

Enabling ADF Security in a Fusion Web Application 30-29

30.5.5 How to Define Policies for Web Pages That Reference a Page Definition
You define the access policy for an ADF page definition by creating permission grants
in the Resource Grants page of the jazn-data.xml file overview editor. The grants
you create will appear as metadata in the policy store section of the jazn-data.xml
file. This metadata defines a permission target (in this case, the page definition name)
for which you have issued grants to authorize the members of a specific application
role.

You can sort the web page definition resources in the overview editor by clicking the
toggle buttons in the Resources header, as described in Table 30–5.

The list of available actions displayed by the overview editor is defined by the region
permission class
(oracle.adf.share.security.authorization.RegionPermission). The
permission class maps these actions to the operations supported by the ADF page
definition for the web page. Table 30–6 shows the actions displayed by JDeveloper for
ADF page definitions.

Note that the view action is the only action currently supported for Fusion web
applications. Do not select customize, grant, or personalize actions—they are
implemented for page definition security only in WebCenter Portal: Framework
applications.

Best Practice: Create permission grants for the individual web page
only when the page is not a constituent of a bounded task flow.
Page-level security is checked for pages that have an associated page
definition binding file only if the page is directly accessed or if it is
accessed in an unbounded task flow. For further information about
implementing security policies, see Section 30.11.4, "Best Practices for
Working with ADF Security."

Table 30–5 Resource Grant Toggle Buttons for Web Page Definitions

Button Toggle Action Description

Shows/hides
top-level pages
with no grants

Represents a page definition with no permission grants defined
for a web page that is contained in an unbounded task flow.
The web page will not be accessible to any user.

Shows/hides
top-level pages
with grants

Represents a page definition with one or more permission
grants defined for a web page that is contained in an
unbounded task flow. The web page will be accessible to users
who are members of the application role that received the grant.

Shows/hides
pages included
in a bounded
task flow

Represents a page definition associated with a web page that
also is contained in a bounded task flow. Do not grant to these
web page definitions. Instead, define a security policy for the
bounded task flow.

Shows/hides
unsecurable
pages (with no
page definition)

Represents a web page with no page definition defined that is
contained in an unbounded task flow. (Pages like this that are
contained by a bounded task flow are secured by the bounded
task flow’s permission.) The web page will be accessible to all
users since it is not secured by an associated ADF
security-aware resource. Optionally, you can secure the page by
adding an empty page definition file, as described in
Section 30.5.8, "What You May Need to Know About Defining
Policies for Pages with No ADF Bindings."

Defining ADF Security Policies

30-30 Fusion Developer's Guide for Oracle Application Development Framework

To define a grant for the page definition security policy, use the Resource Grants page
of the overview editor for the jazn-data.xml file.

Before you begin:
1. Create the top-level web pages with an ADF page definition file as described in

Section 12.6, "Working with Page Definition Files."

2. Run the Configure ADF Security wizard, as described in Section 30.3, "Enabling
ADF Security."

3. Create application roles, as described in Section 30.4, "Creating Application Roles."

To define a permission grant on an ADF page definition:
1. From the Application menu, choose Secure > Resource Grants.

2. In the Resource Grants page of the jazn-data.xml file overview editor, select
Web Page from the Resource Types dropdown list.

The Resource Grants page of the overview editor displays all web pages, including
those that have an associated ADF page definition. This includes any web page
that uses ADF data bindings or any web page for which you have created an

Table 30–6 Securable Actions of ADF Page Definitions

Grantable Action Effect on the User Interface

view Controls who can view the page.

This is the only operation that the page definition supports without the
Oracle WebCenter Portal: Framework.

customize Controls who can make implicit changes (such as minimize/restore,
delete, or move) to a WebCenter Portal customizable component (in a
Panel Customizable or Show Detail Frame) contained in a page of a
custom application (one enabled to use Oracle WebCenter Portal’s
Composer) or a WebCenter Portal: Framework application. For details,
see the Oracle Fusion Middleware Developer's Guide for Oracle WebCenter
Portal.

grant Confers the rights specified by all WebCenter Portal-specific actions
combined; it is equivalent to granting all other actions. It also controls
who can make grants to other users and who can change security
settings on the page using Oracle WebCenter Portal’s Composer. For
details, see the Oracle Fusion Middleware Developer's Guide for Oracle
WebCenter Portal.

personalize Controls who can make implicit changes (such as minimize/restore,
delete, or move) to a WebCenter Portal customizable component (in a
Panel Customizable or Show Detail Frame) contained in a page of a
custom application (one enabled to use Oracle WebCenter Portal’s
Composer) or a WebCenter Portal: Framework application. For details,
see the Oracle Fusion Middleware Developer's Guide for Oracle WebCenter
Portal.

Best Practice: If you are creating top-level web pages in separate UI
projects of the same application, you will want to assign unique page
file names. This is necessary because a grant’s page definition name is
scoped in the jazn-data.xml policy store by package (for example,
view.pageDefs.mytoppagePageDef). Therefore creating top-level
pages with unique file names is the only way to impose project-level
scoping of the grants.

Defining ADF Security Policies

Enabling ADF Security in a Fusion Web Application 30-31

empty page definition. Page definitions are defined by PageDef.xml files that
appear in the Application Sources node of the user interface project.

3. In the Resources column, select the page definition for which you want to grant
access rights.

The first time you make a grant to a page definition, the first column should
display the Resource without any grants icon (represented by the "lock" icon) next
to the page definition name. The editor displays the lock icon to indicate that a
resource has no security policy defined and therefore is "locked"—which means it
remains inaccessible to users until you define a grant. For example, the page
definition account_updateUserInfo shown in Figure 30–8 displays the lock
icon since no grant has been made. Other page definitions in Figure 30–8 show the
Page included in bounded task flow icon because they are not top-level pages
and thus are securable by the containing bounded task flow.

Do not create grants for individual web page definitions that display the Page
included in bounded task flow icon. Security policies for the associated web
pages are secured by their bounded task flow. For example, in Figure 30–8, the
page definition associated with the account_addressDetails.jsff region
will be secured by the containing bounded task flow.

Tip: You can type a partial page definition name in the search field to display only
the page definitions with character-matching names. For example, a search on the
word account would display only the page definitions that begin with the word
account, as shown in Figure 30–8.

Figure 30–8 Matching Page Definitions by Name in the Overview Editor

Tip: You can click the Resources with grants icon (represented by the "key" icon)
to hide all page definitions that already have grants. Confirm that the Show pages
included in a bounded task flow toggle button in the header for the Resources
column is toggled off to hide all page definitions that are included in a bounded
task flow (by default, it is set to hide these pages). This will display top-level pages
that have no grants (and unsecurable pages, if any), as shown in Figure 30–9.

Defining ADF Security Policies

30-32 Fusion Developer's Guide for Oracle Application Development Framework

Figure 30–9 Hiding Web Pages with Grants in the Overview Editor

4. In the the Granted to column, click the Add Grantee icon and choose Add
Application Role.

5. In the Select Application Roles dialog, select the application role that you want to
make a grantee of the permission.

The Select Application Roles dialog displays application roles from the
jazn-data.xml file. It also displays the built-in OPSS application roles,
anonymous-role and authenticated-role, as described in Section 30.5.3, "What
Happens at Runtime: How the Built-in Roles Are Used,"

If you do not see application roles that are specific to your application, create the
role, as described in Section 30.4, "Creating Application Roles."

6. In the Select Application Roles dialog, click OK.

7. In the Resource Grants page of the overview editor, in the Actions column, leave
the view action selected.

By default, the overview editor shows view selected, as shown in Figure 30–10.
The view action is the only action currently supported for Fusion web
applications. The actions customize, grant, or personalize are implemented for
use in Oracle WebCenter Portal: Framework applications or custom applications
that are enabled to use Oracle WebCenter Portal’s Composer.

The RegionPermission class defines page definition—specific actions that it
maps to the page’s operations, as described in Table 30–6.

Figure 30–10 Granting to an Application Role for an ADF Page Definition in the
Overview Editor

8. You can repeat these steps to make additional grants as desired.

Defining ADF Security Policies

Enabling ADF Security in a Fusion Web Application 30-33

The same page definition can have multiple grants made for different application
roles. The grants appear in the policy store definition of the jazn-data.xml file,
as described in Section 30.5.6, "What Happens When You Define the Security
Policy."

30.5.6 What Happens When You Define the Security Policy
When you define a security policy, the jazn-data.xml file overview editor updates
the jazn-data.xml file located in the /src/META-INF node relative to the web
application workspace.

The overview editor writes the policy information to the <policy-store> section of
the file. The security policy, or grant, contains both a grantee and one or more
permissions. The grantee is the application role that the policy is being defined for.
Each permission defines the resource being secured and the action that can be
performed against that resource.

Example 30–7 shows a security policy in the jazn-data.xml file that secures a
checkout task flow and secures a top-level web page that lets users update account
information. The grant to the fod-users application role contains a view permission
for a bounded task flow, checkout-task-flow, and a view permission on the web
page with the account_updateUserInfoPageDef page definition. With this grant,
only users who are authenticated as members of the fod-users application role will
be able to enter the checkout task flow or view the user information update page.

For the web page, notice that permission has been defined on the account_
updateUserInfoPageDef page definition created for the user information update
page (updateUserInfo.jspx). Also, note that this is a top-level web page that is not
already secured by a bounded task flow.

Example 30–7 Grants in the Application-Level Policy Store

<policy-store>
 ...
 <jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>fod-users</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.adf.controller.security.TaskFlowPermission</class>
 <name>/WEB-INF/checkout-task-flow.xml#checkout-task-flow</name>
 <actions>view</actions>
 </permission>
 <permission>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>oracle.fodemo.storefront.pageDefs.acct_updateUserInfoPageDef</name>
 <actions>view</actions>
 </permission>
 ...
 </permissions>
 </grant>
 ...

Defining ADF Security Policies

30-34 Fusion Developer's Guide for Oracle Application Development Framework

 </jazn-policy>
</policy-store>

30.5.7 What Happens at Runtime: How ADF Security Policies Are Enforced
Grants that you make for ADF resources are standard JAAS Permissions. When you
enable ADF Security in your application, Oracle Platform Security Service (OPSS)
running in Oracle WebLogic Server will utilize the grants to allow authorization. In
authorization mode, ADF Security uses fine-grained authorization, implemented with
JAAS Permissions to perform security checks for access rights to pages. The ADF
Security enforcement logic checks to see whether the user, represented by the JAAS
subject, has the right permissions to access the resource.

The subject contains the user's principals, which include a user principal that contains
their name (could be anonymous, before logging on, or some user name after logging
on), and their list of role principals, which would include authenticated-role and
some number of other roles that are obtained from the policy and identity stores. The
principal is created to represent all of the user’s memberships in application roles
defined in the policy store. In turn, each application role may have multiple
Permissions associated with them. These are the ADF security policies that are created
through the overview editor for the jazn-data.xml file.

Before you run the application using Integrated WebLogic Server, you will need to
provision the identity store with test users and add these users to the application roles
that you want to configure. The application roles can define members that are specific
users or groups of users (also known as enterprise roles), as described in Section 30.6,
"Creating Test Users."

Then at runtime, whether the current user has view permission on the page they are
trying to access will be determined by the context of the page:

■ If the page is an activity of a bounded task flow, the task flow controller
determines the permission.

■ If the page is a top-level page with an associated page definition file, the ADF
model determines the permission.

Oracle Platform Security Services then checks to see whether the subject contains the
roles that have the corresponding permissions needed to access the page. If the user is
authorized, then the task flow is entered.

In the case of a bounded task flow and top-level pages (defined by an unbounded task
flow), if the user is not authorized, ADF Controller throws an exception and passes
control to an exception handler that the task flow configuration specifies. For details
about specifying an error page, see Section 30.7.5, "How to Redirect a User After
Authentication."

Note: ADF security policies are scoped by application. This scoping
allows two applications to refer to the same permission target,
without producing unintentional results. You are not required to
name application resources to impose application scoping of the
policy store information.

Defining ADF Security Policies

Enabling ADF Security in a Fusion Web Application 30-35

30.5.8 What You May Need to Know About Defining Policies for Pages with No ADF
Bindings

The default Configure ADF Security wizard option ADF Authentication and
Authorization enables authorization checking and secures a web page whenever the
page is associated with an ADF security-aware resource. Therefore, after you run the
wizard, a web page will not be secured if both of these conditions exist:

■ The page does not display databound ADF Faces components and therefore no
ADF page definition exists for the page.

■ The page is not a constituent page of a bounded ADF task flow. (Any page that the
user accesses as a process of a bounded task flow is checked under the permission
of the task flow.)

JDeveloper will generate an ADF page definition file for you whenever you design a
web page using the Data Controls panel to create databound ADF Faces components
(for details, see Section 12.6, "Working with Page Definition Files"). However, if your
web page does not use ADF bindings, you can still create an empty page definition file
by right-clicking the web page in the user interface project and choosing Go to Page
Definition. The page definition file can remain empty because the page does not need
to work with ADF bindings to support databound ADF Faces components.

Once you associate a web page with an ADF page definition file, empty or not,
authorization checking will be enforced when the user accesses the associated web
page. You can define security policies for the page as you would any other ADF page
definition. For details about making grants to an empty ADF page definition, see
Section 30.5.5, "How to Define Policies for Web Pages That Reference a Page
Definition."

To create an empty page definition that you can define security policies for:
1. In the Application Navigator, locate the web page you want to secure, right-click

and choose Go to Page Definition.

2. In the confirmation dialog, click Yes to create a new page definition for the page.

The page definition will be added to the pageDefs package.

30.5.9 How to Use Regular Expressions to Define Policies on Groups of Resources
When you want to define a grant that applies to multiple resources at once, you can
create patterns as defined by the java.util.regex.Pattern class to form a
regular expression that gets evaluated at runtime. For example, to match a grant to a
set of resources, you can enter the expression .* (specifies any character zero or more
times) on the name of the permission. ADF Security does not support the use of
regular expressions on other security objects, such as the principal name.

You might use this feature to group bounded task flows that would have the same
permissions into their own subfolders of WEB-INF and define the grant for the entire
folder, as shown in Example 30–8. In this case, the expression uses the dot character
(defined as, any character) followed by the asterisk quantifier (defined as, zero or more
times).

Example 30–8 Task Flow Permission for an Entire Folder Defined in the
Application-Level Policy Store

...
<grant>
 <grantee>

Defining ADF Security Policies

30-36 Fusion Developer's Guide for Oracle Application Development Framework

 <principals>
 <principal>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>anonymous-role</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.adf.controller.security.TaskFlowPermission</class>
 <name>/WEB-INF/.*</name>
 <actions>view</actions>
 </permission>
 </permissions>
</grant>

As the overview editor for the jazn-data.xml file does not support the use of
regular expressions in the user interface, you must edit the file directly. Do not edit the
policy store of the system-jazn-data.xml file directly. Instead, add grants using
regular expressions to the jazn-data.xml file. These grants will then be merged to
the policy store when you run or deploy the application.

The use of more complex regular expressions enables you to define business rules in
the policy, thus creating a very targeted set of permissions. For example, you can grant
the view permission on all page definitions and deny specific page definitions at the
same time by defining an exclusion set in your regular expression. Example 30–9
shows how the view permission is granted to anonymous-role for all pages except
those for which the page definition name starts with custom.

Example 30–9 Using Regular Expressions and Metacharacters to Define a Policy Grant

<grant>
 <grantee>
 <principals>
 <principal>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>anonymous-role</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.adf.share.security.authorization.RegionPermission</class>
 <name>[^(custom)].*</name>
 <actions>view</actions>
 </permission>
 </permissions>
</grant>

Table 30–7 shows some of the basic regular expression metacharacters that you can use
in your policy definitions.

Table 30–7 Description of Metacharacters

Metacharacter Description

[abc] a, b, or c (included in list)

[^abc] Any character except a, b, or c (negation)

[a-zA-Z] a to z or A to Z, inclusive (range)

Defining ADF Security Policies

Enabling ADF Security in a Fusion Web Application 30-37

30.5.10 How to Define Policies for Data
ADF entity objects in the model project are security-aware, meaning that predefined
resource-specific permissions exist that a developer can grant. Additionally, you can
secure just the individual attributes of entity objects.

Entity objects that you secure restrict users from updating data displayed by any web
page that renders a UI component bound by an ADF binding to the data accessed by
the secured entity object. Additionally, when you secure an entity object, you
effectively secure any view object in the data model project that relies on that entity
object. As such, entity objects that you secure define an even broader access policy that
applies to all UI components bound to this set of view objects. For details about
entity-based view objects, see Section 5.2, "Populating View Object Rows from a Single
Database Table."

To secure row data using ADF entity objects:

1. Define a permission map for the specific actions of the entity object or the
attributes of the entity object that you want to secure.

2. Grant the permission to an application role that you have added to the policy
store.

30.5.10.1 Defining Permission Maps on ADF Entity Objects
You can secure operations of the entity objects or their individual attributes.

In the data model project, you use the overview editor for the entity object to define a
permission map for the specific actions allowed by the entity object. The metadata
consists of a permission class, a permission name, and a set of actions mapped to
binding operations.

The list of available operations displayed by the overview editor is defined by the
entity object permission class
(oracle.adf.share.security.authorization.EntityPermission). The
permission class maps the operations supported by the entity object to actions.
Table 30–8 shows the securable operations of the entity object.

[a-d[m-p]] a to d, or m to p ~= [a-dm-p](union)

[a-z&&[def]] d, e, or f (intersection)

[a-z&&[^bc]] a through z, without b and c: [ad-z] (subtraction)

[a-z&&[^m-p]] a through z, and not m through p

.* Any number of arbitrary characters (note this expression uses a
dot and an asterisk together)

Table 30–7 (Cont.) Description of Metacharacters

Metacharacter Description

Defining ADF Security Policies

30-38 Fusion Developer's Guide for Oracle Application Development Framework

To secure all row-level data that the entity object accesses, use the overview editor for
the entity object.

Before you begin:
Create entity objects in the model project as described in Chapter 4, "Creating a
Business Domain Layer Using Entity Objects."

To secure an operation on an entity object:
1. In the data model project displayed in the Application Navigator, double-click the

entity object that you want to secure.

2. In the overview editor, click the General navigation tab.

3. In the General page, expand the Security section and select the operations you
want to secure for the entity object.

The Security section displays the securable operations that the
EntityPermission class defines. The class maps the entity object—specific
actions to the entity object’s operations, as described in Table 30–8.

For example, to enable read permission, select it as shown in Figure 30–11. The
permissions appear in the XML definition of the entity object.

Figure 30–11 Permission Enabled on read Operation for an ADF Entity Object

To secure individual columns of data that the entity object accesses, use the Attributes
page of the overview editor for the entity object.

To secure an operation on an entity object attribute:
1. In the data model project displayed in the Application Navigator, double-click the

entity object that defines the attribute you want to secure.

2. In the overview editor, click the Attributes navigation tab.

3. In the Attributes page, select the desired attribute, and then expand the Security
section and select the operation you want to secure for the entity object attribute.

Table 30–8 Securable Operations of ADF Business Components

ADF Component Securable Operation
Expected Mapped
Action Corresponding Implementation

ADF Business Components
entity objects

read Read View the rows of a result set that
has been restricted by a WHERE
clause fragment.

update Update Update any attribute of the bound
collection.

removeCurrentRow Delete Delete a row from the bound
collection.

ADF Business Components
attributes of entity objects

update Update Update a specific attribute of the
bound collection.

Defining ADF Security Policies

Enabling ADF Security in a Fusion Web Application 30-39

The Security section displays the securable operations that the
EntityAttributePermission class defines. The class maps the entity
object-specific actions to the entity object’s operations, as described in Table 30–8.

For example, to enable update permission, select it as shown in Figure 30–12. The
permission map appears in the XML definition of the entity object.

Figure 30–12 Permission Enabled on update Operation for an ADF Entity Object
Attribute

30.5.10.2 Granting Permissions on ADF Entity Objects
Once a permission target is configured, any data that derives from entity objects or
their attributes remains unsecured until you explicitly define policy grants for the
entity object’s permission target.

To define the access policy for an existing entity object permission target, use the Edit
Authorization dialog.

Before you begin:
1. Run the Configure ADF Security wizard as described in Section 30.3, "Enabling

ADF Security."

2. Create application roles as described in Section 30.4, "Creating Application Roles."

3. Define the permission target for the entity object or the attributes of the entity
object as described in Section 30.5.10.1, "Defining Permission Maps on ADF Entity
Objects."

To define the access policy for an entity object:
1. In the data model project displayed in the Application Navigator, locate the entity

object and select it.

2. In the Structure window for the selected entity object or entity object attribute,
right-click and choose Edit Authorization.

The Edit Authorization dialog displays the available actions of the entity object (or
attribute), as described in Table 30–8. The dialog also displays the application roles
from the jazn-data.xml policy store. The built-in application roles
anonymous-role and authenticated-role will appear with application roles that
the application developer created.

3. In the dialog, select the action that you want to grant to a specific application role.

For example, to grant Update and Delete privileges to the fod-users application
role, select those actions, as shown in Figure 30–13.

The grant to the application role appears in the jazn-data.xml file.

Creating Test Users

30-40 Fusion Developer's Guide for Oracle Application Development Framework

Figure 30–13 Defining the Access Policy for an Entity Object

30.6 Creating Test Users
JDeveloper provides editors to help you create both the identity and the policy stores.
You create both repositories in an application-specific jazn-data.xml file. The
editor for the identity store section of the file lets you enter the list of valid user IDs
and their assigned passwords. The same editor lets you create application roles and
assign the test users or enterprise roles as members of the application roles. Once
defined, this information appears in the policy store section of the jazn-data.xml
file.

30.6.1 How to Create Test Users in JDeveloper
You seed the identity store of your application with a temporary set of users to
simulate the actual users’ experience in your production environment. When you run
the application in Integrated WebLogic Server, you can log in as any test user and be
conferred access rights to view the secure ADF resources of your application.

You can use the identity store to organize users into enterprise roles. Because you
typically will configure JDeveloper’s deployment options to prevent migrating the
identity store to a staging environment, enterprise roles that you create in the
jazn-data.xml file are for convenience only. For more details about the use of
enterprise roles, see Section 30.4.3, "What You May Need to Know About Enterprise
Roles and Application Roles."

Creating Test Users

Enabling ADF Security in a Fusion Web Application 30-41

To enable the user to view resources, you make grants against application roles rather
than against the users who are the members of those roles. Therefore, after you seed
the identity store with test users, you must associate each user or enterprise role group
with an application role. This association confers the access rights defined by ADF
security policies to users. For details about conferring access rights to users, see
Section 30.6.3, "How to Associate Test Users with Application Roles."

To create test users and groups:
1. From the Application menu, choose Secure > Users.

2. In the Users page of the jazn-data.xml file overview editor, select the realm for
your application from the Realm dropdown menu and perform the following
steps.

JDeveloper automatically creates the default realm jazn.com.

a. In the Users list, click the New User icon.

b. In the Name field, enter the user name.

You should avoid choosing a user name already configured for Oracle
WebLogic Server (for example, do not enter webcenter). For the list of user
names installed by Oracle WebLogic Server, see the Oracle Fusion Middleware
Securing Resources Using Roles and Policies for Oracle WebLogic Server.

c. In the Password field, enter the password for the user and click any other field
to add the password to the identity store.

The password must contain at least eight characters and at least one of the
characters must be a special character (such as !, %, ^, &, $ and so on).

3. Optionally, in the jazn-data.xml file overview editor, click the Enterprise
Roles navigation tab, and select the realm for your application from the Realm
dropdown menu and perform the following steps.

You create enterprise roles only when you want to organize users into groups that
you will add to an application role. For the purpose of creating test users to run
the application using Integrated WebLogic Server, you do not need to create
enterprise role groups.

a. In the Enterprise Roles list, click the New Role icon.

b. In the Name field, enter the name of the enterprise role and click any other
field to add the role to the identity store.

If you create enterprise role groups, you should avoid choosing a role name
that is already configured for Oracle WebLogic Server (for example, do not
enter Administrators). For a complete list of the default group names

Caution: If you choose to deploy the identity store to your
standalone server, you must not create users and enterprise roles in
your local identity store that are already configured for Oracle
WebLogic Server. For example, if you were to deploy the identity
store with the user weblogic and enterprise role Administrators,
you would overwrite the default administration configuration on the
target server. For a complete list of global roles that Oracle WebLogic
Server installs by default, see the Oracle Fusion Middleware Securing
Resources Using Roles and Policies for Oracle WebLogic Server.

Creating Test Users

30-42 Fusion Developer's Guide for Oracle Application Development Framework

installed by Oracle WebLogic Server, see the Oracle Fusion Middleware Securing
Resources Using Roles and Policies for Oracle WebLogic Server.

30.6.2 What Happens When You Create Test Users
When you provision the identity store with user identities and enterprise role groups,
JDeveloper updates the jazn-data.xml file located in the /src/META-INF node
relative to the web application workspace.

The dialog writes the user information to the <jazn-realm> section of the file
corresponding to the identity store. Each user identity has a user name and a user
login password. Each enterprise role contains one or more member users.

Example 30–10 shows the identity store in the jazn-data.xml file with two users
and two enterprise roles. The users ahunold and sking are both members of the
fod-users enterprise role, while only sking is a member of the fod-admin
enterprise role.

Example 30–10 Users and Enterprise Roles in the Application-Level Identity Store

<jazn-data>
 <jazn-realm default="jazn.com">
 <realm>
 <name>jazn.com</name>
 <users>
 <user>
 <name>sking</name>
 <guid>09FC5C61F68111DCAF1DB790A6B3BAC5</guid>
 <credentials>{903}A0VQ5ozADte7EKIJzcTi6xMZ7YDpRXY5</credentials>
 </user>
 <user>
 <name>ahunold</name>
 <guid>09FEA650F68111DCAF1DB790A6B3BAC5</guid>
 <credentials>{903}/SQSrKZYCLW068VJpHaodILd48mJI47w</credentials>
 </user>
 ...
 </users>
 <roles>
 <role>
 <name>fod-users</name>
 <guid>0A084340F68111DCAF1DB790A6B3BAC5</guid>
 <members>
 <member>
 <type>user</type>
 <name>sking</name>
 </member>
 <member>
 <type>user</type>
 <name>ahunold</name>
 </member>
 ...
 </members>
 </role>
 <role>
 <name>fod-admin</name>
 <guid>0A0CFE30F68111DCAF1DB790A6B3BAC5</guid>
 <members>
 <member>
 <type>user</type>
 <name>sking</name>

Creating Test Users

Enabling ADF Security in a Fusion Web Application 30-43

 </member>
 ...
 </members>
 </role>
 ...
 </roles>
 </realm>
 ...
 </jazn-realm>
</jazn-data>

30.6.3 How to Associate Test Users with Application Roles
Because the ADF Security framework enforces a role-based access control mechanism
with permissions granted to application roles, you define a set of roles in the policy
store that are specific to your application. For example, in the context of the work flow,
there may be roles such as customer, product specialist, supervisor, and administrator.

After you create an application role, you can proceed to associate users that you
created in the identity store with one or more roles. At runtime, users who are
members of an application role will be conferred the access rights of their application
roles. You can assign a user to more than one application role when you want to
confer the right of multiple resource grants to a particular user.

For example, one authenticated user might belong to the supervisor role and an
employee role, while another user might belong only to the employee role. The
security policy for a bounded task flow that permits customer records to be browsed
and edited may confer view permission to the supervisor role and limit view
permission to the browse page for the employee role. Thus, grants to application roles
support multiple levels of access. If the authenticated user is not a member of an
application role with a view permission grant for the target ADF resource, the security
framework will return an unauthorized user message.

Before you begin:
1. Run the Configure ADF Security wizard as described in Section 30.3, "Enabling

ADF Security."

2. Create application roles as described in Section 30.4, "Creating Application Roles."

3. Define security policies for ADF security-aware resources as described in
Section 30.5, "Defining ADF Security Policies."

4. Create test users, and, optionally, create enterprise role groups as described in
Section 30.6.1, "How to Create Test Users in JDeveloper."

To associate users with application roles:
1. From the Application menu, choose Secure > Application Roles.

2. In the Application Roles page of the jazn-data.xml file overview editor, select
the policy store for your application from the Security Policy dropdown menu.

The policy store that JDeveloper creates in the jazn-data.xml file are
automatically based on the name of your application.

3. In the Roles list, select an existing application role and complete these tasks as
appropriate:

Creating a Login Page

30-44 Fusion Developer's Guide for Oracle Application Development Framework

a. In the Mappings section, click the Add User or Role icon dropdown menu
and choose Add User, then in the Select Users dialog select the previously
created user from the list and click OK.

b. Optionally, if you have defined enterprise roles in the identity store, in the
Mappings section, click the Add User or Role icon dropdown menu and
choose Add Enterprise Role, then in the Select Enterprise Roles dialog select
the previously created enterprise role from the list and click OK.

30.6.4 What Happens When You Configure Application Roles
When you associate users with application roles, JDeveloper updates the
jazn-data.xml file located in the /src/META-INF node relative to the web
application workspace.

The dialog writes the user information to the <policy-store> section of the file.
Each application role contains one or more member users or enterprise roles.

Example 30–11 shows the policy store in the jazn-data.xml file with the
fod-users application role, which contains two members, sking and ahunold.

Example 30–11 Users Associated with Application Roles in the Application-Level Policy Store

<policy-store>
 <applications>
 <application>
 <name>StoreFrontModule</name>
 <app-roles>
 <app-role>
 <name>fod-users</name>
 <display-name>FOD Users</display-name>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <members>
 <member>
 <class>oracle.security.jps.internal.core.principals.JpsXmlUserImpl</class>
 <name>sking</name>
 </member>
 <member>
 <class>oracle.security.jps.internal.core.principals.JpsXmlUserImpl</class>
 <name>ahunold</name>
 </member>
 ...
 </members>
 </app-role>
 ...
 </app-roles>
 <jazn-policy>
 ...
 </jazn-policy>
 </application>
 </applictions>
</policy-store>

30.7 Creating a Login Page
ADF Security allows for implicit and explicit authentication:

■ In an implicit authentication scenario, if a user who is not yet authenticated tries to
access a web page associated with ADF security-aware resources that are not
granted to anonymous-role, then authentication is triggered dynamically. After

Creating a Login Page

Enabling ADF Security in a Fusion Web Application 30-45

the user successfully logs in, another check will be done to verify whether the
authenticated user has view access granted on the requested page’s ADF
security-aware resource.

■ In an explicit authentication scenario, your application has a public page that
displays a login link, which, when clicked, triggers an authentication challenge to
log in the user. The login link may optionally specify some other target page that
should be displayed (assuming the authenticated user has access) after the
successful authentication.

The implicit authentication scenario is handled for you by default when you run the
Configure ADF Security wizard, as described in Section 30.3.5, "What You May Need
to Know About ADF Authentication." However, when you customize the default,
generated login page (or supply your own page) to use ADF Faces components, you
will need to configure the container-managed deployment descriptor (web.xml file).

To handle the explicit authentication scenario, it is a best practice to use programmatic
authentication instead of Form-based authentication, as provided by the implicit
authentication scenario.

To explicitly handle user authentication:

1. Create a login link component and add it to the public home web page for your
application.

2. Create a managed bean using API specific to Oracle WebLogic Server to handle
the login attempts by the user.

3. Create a JSF login page using ADF Faces components.

4. Ensure that the login page’s resources are accessible.

For more information about implicit and explicit authentication, see Section 30.8.4,
"What Happens at Runtime: How ADF Security Handles Authentication."

30.7.1 How to Create a Login Link Component and Add it to a Public Web Page for
Explicit Authentication

You can create a standard login link component that can be added to any page in your
application to enable users to authenticate or subsequently log off. This component
keeps track of the authenticated state of the user and returns the appropriate login or
logout URLs and icons. The login link component will redirect users back to a specific
page once they are authenticated. Hence, using this login link component provides
you with a single, consistent object.

To the unauthenticated user, the login link component will look similar to
Figure 30–14.

Figure 30–14 Component Before User Logs In

Then when the user clicks the login link and logs in as a user with the appropriate
credentials, the component will look similar to Figure 30–15.

Creating a Login Page

30-46 Fusion Developer's Guide for Oracle Application Development Framework

Figure 30–15 Component After User Logs In

Before you begin:
Copy your login and logout image files (GIF, JPG, or PNG files) to the public_html
directory of your project.

To create the login link component and add it to a page:
1. In the Application Navigator, double-click the web page that will display the

component.

2. In the ADF Faces page of the Component Palette, select a Go Image Link
component and drag it onto the page.

3. In the Structure window, right-click af:goImageLink and choose Go to Properties.

4. In the Property Inspector, set the Text property of the Go Image Link component
to render the link text specified by a conditional Expression Language (EL)
expression.

For example, you can enter an EL expression similar to this:

#{securityContext.authenticated ? "Click to log out" :
 "Click to log in"}

The authenticated property of the securityContext bean will evaluate to
true and render the log out option if the current user is authenticated. Otherwise,
the link is rendered with the login option.

5. In the Property Inspector, set the Destination property of the Go Image Link
component to forward the user to the URL specified by a conditional EL
expression.

For example, you can enter an EL expression similar to this:

#{securityContext.authenticated ? "/adfAuthentication?logout=true&
 end_url=/faces/welcome" :
 "/adfAuthentication?success_url=/faces/welcome"}

When the user clicks the link, the URL parameters end_url and success_url
forward the destination of the target page to the ADF authentication servlet. Note
that the view activity name is passed on the URL parameters instead of the web
page name. This ensures control flow rules are enforced for page navigation after
login. The authenticated property of the securityContext bean will
evaluate to true and forward to the welcome page if the current user is
authenticated. When the user is not authenticated, there is no need to forward to
the login page because the ADF authentication servlet triggers log in, which is
handled by the container-managed security configuration. Note that log out is
handled by the ADF authentication servlet which invalidates the session.

Note: The images used should reference the appropriate skin image
if your application uses skins. For more information about skins, see
the "Customizing the Appearance Using Styles and Skins" chapter in
the Oracle Fusion Middleware Web User Interface Developer's Guide for
Oracle Application Development Framework.

Creating a Login Page

Enabling ADF Security in a Fusion Web Application 30-47

Although log out is handled by ADF Security, the browser cache must be cleared
to complete the process. For a description of a known issue with Basic type
authentication and browser caching, see Section 30.7.7, "What You May Need to
Know About ADF Servlet Logout and Browser Caching."

6. In the Property Inspector, to specify the link component image for the Go Image
Link component, enter an EL expression in the Icon field.

For example, this EL expression conditionally renders the link component image
as the lock GIF if the user is not authenticated; otherwise, renders the image with
the key GIF:

#{securityContext.authenticated ? "/images/lock.gif" : "/images/key.gif"}

Figure 30–16 shows how the login link component appears when added to the
global menu facet of the page.

Figure 30–16 Login Link Component on the Page

30.7.2 How to Create a Login Page Specifically for Explicit Authentication
The default login form that is generated for you when you run the Configure ADF
Security wizard is provided as a convenience for testing your application within
JDeveloper. The default form does not allow you to customize the page using ADF
Faces components to match the user interface of the application. You can replace the
default form with an ADF Faces-based login page that enables you to include
customizable components, as shown in Figure 30–17.

Figure 30–17 Login Page

However, if designing a login page with ADF Faces components is not a requirement,
then a simple JSP or HTML login page can be also used. For details about generating a
simple login page when running the Configure ADF Security wizard, see
Section 30.3.1, "How to Enable ADF Security."

30.7.2.1 Creating Login Code for the Backing Bean
Before you create the login page as an ADF Faces page, you need to create a managed
bean to handle login attempts. In this login bean sample, authentication is handled
programmatically using Oracle WebLogic Server-specific API for Basic authentication.
Consequently, there is no need to invoke the ADF authentication servlet to redirect to
a landing page upon login; the bean doLogin() method handles this task
programmatically. You will add this bean to the adfc-config.xml file and register
it with request scope.

Creating a Login Page

30-48 Fusion Developer's Guide for Oracle Application Development Framework

Note that the Oracle WebLogic Server API used in this backing bean sample can also
be used when you want to perform authentication from the user’s current page (for
example, from a home page) and do not want the application to navigate off the
current page to display a login page.

Before you begin:
It may be helpful to have an understanding of the login page. For more information,
see Section 30.7.2, "How to Create a Login Page Specifically for Explicit
Authentication."

You will need to complete this task:

■ In the user interface project where you create the backing bean for login, import
the following library into your project:

– WebLogic 10.3 Remote-Client

To import the library, double-click the user interface project node in the
Applications window. In the Project Properties dialog, select Libraries and
Classpath and then click Add Library. In the Add Library dialog, expand the
Extensions node and scroll to locate the WebLogic 10.3 Remote-Client library to
add. This library will allow the user interface project to compile and resolve the
following import statements from the backing bean code sample.

import weblogic.security.URLCallbackHandler;
import weblogic.servlet.security.ServletAuthentication;

For details about creating a library and adding it to a project, refer to the
JDeveloper online help.

To create and register a backing bean for login:
1. In the Application Navigator, under the user interface project, right-click your

application and choose New.

2. In the New Gallery, expand General, select Java and then Java Class, and click
OK.

3. In the Create Java Class dialog, enter the name for the login page backing bean
class file and disable the default options Constructors from Superclass and
Implement Abstract Methods, and click OK.

For convenience, you might name the backing bean based on the name of your
login page, for example, LoginPageName.java.

4. In the Applications Navigator, expand the Application Sources node and
double-click the new LoginPageName.java backing bean.

5. In the source editor, create two private fields by adding the following in the
declaration section of the LoginPageName.java file:

private String _username;
private String _password;

6. Generate or create public accessors for both fields.

Note: Note that the backing bean you will create in this procedure
relies on APIs that are specific to Oracle WebLogic Server and the
login process that it supports. Only use this procedure when you will
deploy the Fusion web application to Oracle WebLogic Server.

Creating a Login Page

Enabling ADF Security in a Fusion Web Application 30-49

You can right-click in the source editor and choose Generate Accessors to add the
following public accessors to the file:

public void setUsername(String _username) {
 this._username = _username;
}

public String getUsername() {
 return _username;
}

public void setPassword(String _password) {
 this._password = _password;
}

public String getPassword() {
 return _password;
}

7. Add a doLogin() method to this Java class to handle user attempts to log in:

1 public String doLogin() {
2 String un = _username;
3 byte[] pw = _password.getBytes();
4 FacesContext ctx = FacesContext.getCurrentInstance();
5 HttpServletRequest request =
6 (HttpServletRequest)ctx.getExternalContext().getRequest();
7 try {
8 CallbackHandler handler = new URLCallbackHandler(un, pw);
9 Subject mySubj =
10 weblogic.security.services.Authentication.login(handler);
11 weblogic.servlet.security.ServletAuthentication.runAs(mySubj, request);
12 ServletAuthentication.generateNewSessionID(request);
13 String loginUrl = "/faces/mylandingpage.jspx";
14 sendForward(loginURL);
15 } catch (FailedLoginException fle) {
16 FacesMessage msg = new FacesMessage(FacesMessage.SEVERITY_ERROR,
17 "Incorrect Username or Password",
18 "An incorrect Username or Password" +
19 " was specified");
20 ctx.addMessage(null, msg);
21 setPassword(null);
22 } catch (LoginException le) {
23 reportUnexpectedLoginError("LoginException", le);
24 }
25 return null;
26 }

The doLogin() method performs the following tasks:

Lines 4-6 get an object encapsulating the HTTP request from the FacesContext.

Line 8 creates a CallbackHandler, which is an object that retrieves information
for security operations. A URLCallbackHandler allows security operations to
retrieve the username and password that were passed to its constructor; other
CallbackHandler implementations can obtain the username and password
from another source.

Line 9-10 creates a Subject, which is an object that encapsulates credentials, from
the information provided by the CallbackHandler.

Creating a Login Page

30-50 Fusion Developer's Guide for Oracle Application Development Framework

Line 11 attempts to log in the user issuing the request using the credentials
encapsulated by the Subject.

Line 12 ensures that the session ID for the session is changed after the user is
successfully authenticated. This is necessary to prevent leaving the application
open to a session fixation attack, which would be a security vulnerability.

Lines 13 constructs a URL to which to forward the user after successful login.
Note that in this login bean sample, authentication is being handled entirely by
Oracle WebLogic Server. Because the sample is platform-specific, there is no need
to invoke the ADF authentication servlet to redirect after login. Enabling the ADF
Security authentication servlet is useful when you need to implement
platform-independent, Java EE container-managed login and wish to implement
implicit authentication.

Line 14 calls a method, sendForward(), which you will implement later in this
section to forward the user to the URL specified in Line 13.

Lines 15-21 handle a FailedLoginException, which is the exception thrown
when the credentials supplied are incorrect. The lines handle the exception by
adding a new message to the FacesContext.

Lines 22-23 handle a LoginException, which can be thrown by many different
problems with a login. For example, exceptions can result from incorrect
credentials or attempts to log into a locked account or uses of an expired
password. FailedLoginException is a subclass of LoginException, but
since a FailedLoginException will be caught by Line 17, these lines will only
be executed when there are login problems other than incorrect credentials.
reportUnexpectedLoginError() is a method which you will implement to
deal with miscellaneous problems with the login process.

Line 25 returns null so that ADF Controller will not attempt to follow a control
flow case.

8. Import the following classes:

javax.faces.application.FacesMessage
javax.faces.context.FacesContext
javax.security.auth.Subject
javax.security.auth.callback.CallbackHandler
javax.security.auth.login.FailedLoginException
javax.security.auth.login.LoginException
javax.servlet.http.HttpServletRequest
weblogic.security.URLCallbackHandler
weblogic.servlet.security.ServletAuthentication

9. Create stubs for the methods sendForward() and
reportUnexpectedLoginError().

10. Add a sendForward() method with its actions:

1 private void sendForward(String forwardUrl) {
2 FacesContext ctx = FacesContext.getCurrentInstance();
3 try {
4 ctx.getExternalContext().redirect(forwardUrl);
5 } catch (IOException ie) {
6 reportUnexpectedLoginError("IOException", ie);
7 }
8 ctx.responseComplete();
9 }

The sendForward() method performs the following tasks:

Creating a Login Page

Enabling ADF Security in a Fusion Web Application 30-51

Line 2 gets the ADF Faces ctx, which forwards a response to a particular URI.

Lines 3-4 uses the ctx to redirect the current HTTP response to the URL.

Lines 5-6 handle an IOException, which is thrown when the request cannot be
read or the response cannot be written to.

Line 8 marks the HTTP response as complete so that the browser can finish
rendering it.

11. Import the following classes:

javax.servlet.RequestDispatcher
javax.servlet.ServletException
java.io.IOException

12. Implement a reportUnexpectedLoginError() method:

private void reportUnexpectedLoginError(String errType, Exception e){
 FacesMessage msg =
 new FacesMessage(FacesMessage.SEVERITY_ERROR, "Unexpected error
 during login",
 "Unexpected error during login (" + errType + "),
 please consult logs for detail");
 FacesContext.getCurrentInstance().addMessage(null, msg);
 FacesContext.getCurrentInstance().renderResponse();
}

This reportUnexpectedLoginError() method adds a summary error
message to the FacesContext, and then prints the full stack trace of the
exception to the console.

13. Save the Java file.

14. In the Application Navigator, double-click the adfc-config.xml file in the
WEB-INF folder.

15. In the editor window for the adfc-config.xml file, click the Overview tab.

16. In the overview editor for task flows, click the Managed Beans navigation tab.

17. In the Managed Beans page, in the Managed Beans section click the Add icon and
enter a name for the bean, enter the fully qualified class name, and select request
scope.

For example, the class name might look like
oracle.foddemo.security.Login, as shown in Figure 30–18.

Figure 30–18 Login Bean Registered in adfc-config.xml File

18. Save all.

Creating a Login Page

30-52 Fusion Developer's Guide for Oracle Application Development Framework

30.7.2.2 Creating an ADF Faces-Based Login Page Specifically for Explicit
Authentication
A simple login page that utilizes ADF Faces layout components and ADF Faces user
interface components includes two input fields and a button. You must bind the
properties of these UI components to the login handler methods that you defined in
the managed bean for the login page.

Note that the page that you can create with this procedure does not support implicit
authentication. When you choose to implement implicit authentication, you can
customize the default, wizard-generated login form which supports
container-managed authentication. The Java EE container expects a form that relies on
the j_security_check mechanism to handle user-submitted j_username, and j_
password input. In the explicit authentication scenario documented here, Java EE
container-managed authentication is not used.

Before you begin:
Create the managed bean to handle the user’s login attempts, as described in
Section 30.7.2.1, "Creating Login Code for the Backing Bean."

To create the ADF Faces-based login page for explicit authentication:
1. In the Application Navigator, under the user interface project, right-click your

application and choose New.

2. In the New Gallery, expand Web Tier, select JSF and then JSF Page, and click OK.

3. In the Create JSF Page dialog, select Create as XML Document (*.jspx).

4. In the File Name field, specify a name for your login page. For example, enter
LoginPage.jspx.

Select no other options and do not select the option to expose UI components in a
managed bean. You will manually bind the components to the managed bean you
created for the login page.

5. Click OK.

6. Save the page.

7. In the ADF Faces page of the Component Palette, from the Layout panel, select the
Panel Box component and drag it onto the Structure window below the af:form
tag.

8. In the Property Inspector, set the Text, Horizontal, Width, and Height properties.

For example, to recreate the login page shown in the Master Price List module of
the Fusion Order Demo application, you would enter:

Text set to Login Information

Icon set to /images/key_ena.png

Width/Height set to 300/200 pixels

9. From the Component Palette, drag a Panel Form Layout component below the
af:panelBox tag in the Structure window, as shown in Figure 30–19.

Creating a Login Page

Enabling ADF Security in a Fusion Web Application 30-53

Figure 30–19 Login Page Structure with Panel Form Layout

10. From the Component Palette, in the ADF Faces page, drag an Input Text
component onto the Panel Form Layout component for the username field and
another Input Text component for the password field.

11. In the Property Inspector, set the input fields’ Label property to Username and
Password and set both fields’ Behavior - Required property to true.

12. In the Property Inspector, set the password field’s Appearance - Secret property to
true.

13. To handle processing of the values for the two input fields, perform these steps for
each field:

a. In the Structure window, select one of the input fields (for example, select the
af:inputText - Username tag), then click the Property Menu icon to the right
of the Value property in the Property Inspector and choose Expression
Builder.

b. In the Expression Builder, expand ADF Managed Beans and expand your
login bean, then select the expression value corresponding to your bean’s
handler method.

For example, if you selected the username input field in the Structure
window, then you would select username from the Expression Builder dialog,
as shown in Figure 30–20.

Figure 30–20 username Selection in Expression Builder Dialog

c. Click OK.

Creating a Login Page

30-54 Fusion Developer's Guide for Oracle Application Development Framework

The expression shown in the Property Inspector binds the field to the
managed bean you created for the login page. For example, for the username
input field, the expression is similar to #{loginPageBean.username} as
shown in Figure 30–21.

Figure 30–21 username Value in Property Inspector

14. From the Component Palette, drag a Panel Border Layout component inside the
footer folder of the af:panelBox tag, as shown in Figure 30–22.

Figure 30–22 Login Page Structure with Panel Border Layout

15. In the JSP/HTML visual editor, delete the panel border layout facets labeled End,
Top, and Bottom. Leave only the Start facet.

16. In the Structure window, expand the Panel Border Layout facets folder and select
the start folder, and then select the Button component in the Component Palette.

17. In the Property Inspector, set the button component’s Text property to Login.

18. To handle processing of the login button action, perform these steps.

a. In the Structure window, select the login af:commandButton tag in the start
folder, then click the Property Menu icon to the right of the Action property in
the Property Inspector and choose Expression Builder.

b. In the Expression Builder, expand ADF Managed Beans and expand your
login bean, then select the expression value corresponding to your login
method.

For example, if you created a method in the login bean named doLogin(),
then you would select doLogin in the Expression Builder dialog.

c. Click OK.

The expression shown in the Property Inspector binds the button to the
managed bean you created for the login page. For example, for the login
button, the expression is similar to #{loginPageBean.doLogin} as shown
in Figure 30–23.

Creating a Login Page

Enabling ADF Security in a Fusion Web Application 30-55

Figure 30–23 login Action in Property Inspector

19. Save the page.

30.7.2.3 Ensuring That the Login Page Is Public
Because the application is secured by ADF Security, all web pages defined within
bounded task flows and any web page defined by an ADF page definition will be
inaccessible by default. Since all users must be allowed to log on, the login page
should remain publicly accessible, and thus you should add no databound
components to the page. As long as the login page uses no databound components,
then it will be accessible by default.

No further steps are required to ensure that the container will always redirect to the
defined authentication point before allowing access to the page (which in this case is
the authentication page).

30.7.3 How to Ensure That the Custom Login Page’s Resources Are Accessible for
Explicit Authentication

When you run the ADF Security wizard and choose the ADF Authentication option
(because you do not want to enable ADF authorization) and your application uses a
custom login page or a custom error page, you may need to edit the default Java EE
security constraint added to the web.xml file by ADF Security. As shown in
Figure 30–12, the default URL pattern (/*) defined in the allPages security
constraint covers everything under the Java EE application root, meaning that the
resource files (such as images, style sheets, or JavaScript library) used by the login
page are also included.

Example 30–12 Java EE Security Constraint for ADF Authentication Only

<security-constraint>
 <web-resource-collection>
 <web-resource-name>allPages</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>valid-users</role-name>
 </auth-constraint>
</security-constraint>

If the pages you create use resources, such as images, CSS files, or JavaScript libraries,
the default allPages security constraint in the web.xml file will prevent those
resources from loading at runtime. To allow your application to display those
resources, you should save the resources in a folder of their own and then edit the

Creating a Login Page

30-56 Fusion Developer's Guide for Oracle Application Development Framework

allPages security constraint so that the resources folder is not contained in the URL
pattern.

Note that this resource issue does not apply when you run the ADF Security wizard
and choose the ADF Authentication and Authorization option (the default).
Specifically, in that case, the default generated constraint is on the ADF Authentication
servlet and the constraint (/adfAuthentication) excludes any resource files.

30.7.4 How to Create a Public Welcome Page
Because web applications are generally secured, there is always a need for a starting
point or home page for unauthenticated users. To create this public welcome page,
you create an ADF Faces page to act as the entry point for the application, which
contains links to other pages within the application. However, only links to public
pages should be rendered to unauthenticated users and, conversely, links to secured
pages should be rendered only after the user has logged in and has the appropriate
privileges to view the target page.

30.7.4.1 Ensuring That the Welcome Page Is Public
After you have created a regular ADF Faces page, the page will, by default, be public
and accessible by unauthenticated users. If, however, you have associated the
welcome page with an ADF resource, for example, by dropping databound ADF Faces
components into the welcome page using the Data Controls panel, then ADF Security
will secure the page by default. You can make any ADF resource publicly accessible
using the jazn-data.xml file overview editor to grant a view privilege on the
resource to the provided anonymous-role. For details about the anonymous-role
see, Section 30.5.2, "What Happens When You Make an ADF Resource Public."

30.7.4.2 Adding Login and Logout Links
You can add login and logout links to your public welcome page so that users can
explicitly log in and out while they are in the application. While Java EE
container-managed security supports the concept of authentication when accessing a
secured resource, there is no standard way to log out and stay within a secured
application. However, it is a common practice in web applications to allow the user to
stay on the same page if that page is public or to return the user to the welcome page if
that page is secured. While adding the login and logout links to each page would let
the user end their login session anywhere within the application (and return to the
welcome page), having these links on the welcome page enables users to explicitly
authenticate on entering the application.

For example, you can create an ADF Faces panel group with three components,
including an output text area, an image, and a go link. To render the appropriate login
or logout link, you can use an EL expression that evaluates the user’s authentication
status. Specifically, you can use securityContext.authenticated to access the
ADF security context, as shown in Example 30–13. The expression evaluates to true
or false and, in this example, the result determines which login/logout image and
link to display. As Example 30–13 shows, the success_url and end_url parameters

Best Practice: When the user presses Ctrl-N or Ctrl-T to open a new
browser window or tab and no welcome page is defined in the
application’s web.xml file, the browser will display a 403 or 404 error.
To prevent this error, you must specify a welcome page definition in
the application’s web.xml file. You can create this definition when
you run the Configure ADF Security wizard. For details about
running the wizard, see Section 30.3.1, "How to Enable ADF Security."

Creating a Login Page

Enabling ADF Security in a Fusion Web Application 30-57

for the ADF authentication servlet are passed as the view activity welcome associated
with the target page welcome.jspx. Passing the view activity name instead of the
web page name for the URL parameters ensures the Fusion web application uses task
flow control flow rules to handle page navigation.

Example 30–13 ADF Faces Components and EL Expressions to Render Login/Logout Link

<af:panelGroupLayout inlineStyle="width:100%; height:15px;" id="ptpgl3">
 <af:spacer width="7" height="10" id="pts2"/>
 <af:outputText value="Welcome #{securityContext.userName}!"
 inlineStyle="font-weight:bold; width:100px" id="ptot2"
 rendered="#{securityContext.authenticated}"/>
 <af:image source='#{securityContext.authenticated ? "/images/lock.gif" : "/images/key.gif"}'
 id="pti2" inlineStyle="width:16px; height:16px;"
 shortDesc="switchable icon"/>
 <af:goLink text="#{securityContext.authenticated ? "Logout" : "Login"}"
 destination="#{securityContext.authenticated ?
 "/adfAuthentication?logout=true&end_url=/faces/welcome" :
 "/adfAuthentication?success_url=/faces/welcome"}"
 inlineStyle="color:White; font-size:14px; font-weight:bold;"/>
 <f:facet name="separator">
 <af:spacer width="5" height="10" id="pts1"/>
 </f:facet>
</af:panelGroupLayout>

As an alternative to rendering the link directly within a page, you can create a login
link component with the login and logout links that you can add to a page template, as
described in Section 30.7.1, "How to Create a Login Link Component and Add it to a
Public Web Page for Explicit Authentication."

30.7.4.3 Hiding Links to Secured Pages
Since an anonymous user should not have access to any secured pages, any navigation
component on the welcome page that points to a secured page should be hidden from
view based on the following two criteria:

■ Is the user authenticated with a known user identity?

■ Does the specified user identity have permission to view the target?

If either of these criteria has not been met, the rendered attribute of any navigation
component on a public page that points to a secured resource must have its rendered
property set to false, thus hiding it from the anonymous user. To enforce these rules
within your welcome page, see Section 30.11.1, "Using Expression Language (EL) with
ADF Security."

30.7.5 How to Redirect a User After Authentication
When you have chosen to implement implicit authentication, after the user accesses a
secured web page and logs in, the ADF authentication servlet will redirect back to the
original page that initiated the login request. With ADF Security authentication
enabled, the ADF authentication servlet automatically passes the original page as the
ADF authentication success_url parameter on the URL. Typically, this is the
desired behavior. However, when you display an explicit login link in your page, the
destination of the target will typically be a secured page. You ensure the ADF
Authentication servlet redirects to the secured page after authentication by passing the
view activity name of the web page as the servlet success_url parameter, as shown
in Example 30–14.

Creating a Login Page

30-58 Fusion Developer's Guide for Oracle Application Development Framework

Example 30–14 Explicit Login Link with success_url in a Web Page

<af:goLink text="Login" destination="/adfAuthentication?success_url=/faces/viewactivityname"/>

Additionally, you can specify the success_url parameter as an <init-param>
within the web.xml file to handle any cases where it is not possible to redirect to the
original page. Thus, when the user accesses the secured web page and gets redirected
to log in, the framework automatically passes the original page as the success_url
parameter on the URL, which supersedes any web.xml setting. Therefore, in practice
the only scenario in which an <init-param> setting in web.xml takes effect is when
the user explicitly types the adfAuthentication URL into the browser.

In cases where the user is authenticated but not authorized to view a web page, you
can redirect the ADF authentication servlet to an error page in your application. Error
handling in Fusion web applications is under the control of the ADF Controller
exception handler unless you have created an application that does not use a task flow
in its design. For example, in an unbounded task flow, where you have defined an
unbounded task flow with a top-level welcome page and a browse page (secured
through its ADF page definition), you would see an error page from the application,
named authorizationErrorPage.jspx, specified in the adfc-config.xml file,
as shown in Example 30–15.

Example 30–15 Error Page Redirect for Applications That Use Task Flows

<adfc-config xmlns="http://xmlns.oracle.com/adf/controller" version="1.2">
 <exception-handler>authorizationErrorPage</exception-handler>
 <view id="welcomePage">
 <page>/welcomePage.jspx</page>
 </view>
 <view id="browse">
 <page>/browse.jspx</page>
 </view>
 <view id="authorizationErrorPage">
 <page>/authorizationErrorPage.jspx</page>
 </view>
 <control-flow-rule>
 <from-activity-id>welcomePage</from-activity-id>
 <control-flow-case>
 <from-outcome>goToSecuredPage</from-outcome>
 <to-activity-id>browse</to-activity-id>
 </control-flow-case>
 </control-flow-rule>
</adfc-config>

For details about how to specify an error page as a view activity for the ADF
Controller exception handler, see Section 18.7, "Handling Exceptions in Task Flows."

Best Practice: To ensure that the Fusion web application handles
the ADF authentication redirect as an ADF Controller navigation
event, specify the redirect target by its view activity name. If you were
to specify the web page name instead, after the user logs in, the ADF
Controller handler may not find the control flow rule associated with
the target page. Specifically, without specifying a view activity as the
redirect target, command components, such as the commandButton
component, will always return to the original page after login. Passing
the view activity name as the redirect target of the ADF authentication
servlet success_url and end_url parameters ensures the
application handles navigation using control flow rules in all cases.

Creating a Login Page

Enabling ADF Security in a Fusion Web Application 30-59

In cases where the user is not authenticated and an authorization failure occurs, the
framework redirects to the ADF authentication servlet, which in turn triggers a Java
EE constraint that prompts for login. In this case, container-managed security relies on
the login page and error page that you specify in the <login-config> element of the
web.xml file.

If you create a Fusion web application without utilizing task flows, then you can
specify an <init-param> setting in web.xml for the ADF binding filter, as shown in
Example 30–16. In this case, when no task flow is present in the application, page
authorization checking is handled by the ADF binding filter, and the
unauthorizedErrorPage parameter will be passed to the ADF binding request
handler.

Example 30–16 Error Page Redirect for Applications That Don’t Use Task Flows

<filter>
 <filter-name>adfBindings</filter-name>
 <filter-class>oracle.adf.model.servlet.ADFBindingFilter</filter-class>
 <init-param>
 <param-name>unauthorizedErrorPage</param-name>
 <param-value>faces/authorizationErrorPage.jspx</param-value>
 </init-param>
</filter>

30.7.6 How to Trigger a Custom Login Page Specifically for Implicit Authentication
When you have chosen to implement implicit authentication to allow users to access
protected resources (which may be by direct URL access or by navigating to an ADF
Security protected resource), the ADF Security authentication servlet initiates the Java
EE container to display the login form configured in the web.xml file. For implicit
authentication, when you have customized the default, wizard-generated login form
to use ADF Faces components, you must modify the URL pattern for the servlet
mapping to reference the ADF Faces servlet.

You can accomplish this in the Authentication Type page of the Configure ADF
Security wizard when you configure ADF Security, or in the web.xml file directly. If
you have already run the Configure ADF Security wizard, you can use the following
procedure to confirm that the web.xml file has been updated as described.

When you have choose to implement explicit authentication and have created a public
page to allow users to login to access protected resources, the login form you create
will not be triggered by ADF Security. In the explicit authentication scenario, you do
need to configure the web.xml file.

Note: The unauthorizedErrorPage parameter feature is
provided for compatibility with previous releases where ADF
Controller was not available. In Fusion web applications, when you
need to redirect users to an error page, you use the task flow exception
handler to specify the error page, as shown in Example 30–15.

Creating a Login Page

30-60 Fusion Developer's Guide for Oracle Application Development Framework

To reference an ADF Faces login page for implicit authentication:
1. In the Application Navigator, expand the WEB-INF node and double-click

web.xml.

2. In the overview editor, click the Security navigation tab.

3. In the Security page, expand the Login Authentication section, and set the login
page to include a reference to the ADF Faces servlet such that the login page can
be part of the ADF Faces lifecycle /faces/ADFlogin.jspx page.

When you add a page using the file browser, the path entered in the web.xml file
will not specify /faces. Modify the entry so that the path references the servlet
mapping path for the ADF Faces servlet. For example, if the URL pattern specified
by the mapping is /faces/*, then your path should look like
/faces/yourpage.jspx, as shown in Figure 30–24.

Figure 30–24 Adding a Reference to the Faces Servlet in the Login Configuration

30.7.7 What You May Need to Know About ADF Servlet Logout and Browser Caching
When basic type authentication is in effect as specified in the application’s web.xml
file, the browser caches authentication credentials. This is a known issue with basic
authentication that prevents the ADF authentication servlet from completing log out
and allows users to access resources after logout. In this scenario, in order to complete
the logout session, it is necessary to close the browser and restart a new browser
session.

To ensure the ADF authentication servlet completes logout and prevents a user from
being able to access resources after logout, use form-based authentication instead of
basic authentication. You can select form-based authentication when you run the
Configure ADF Security wizard, as described in Section 30.3.1, "How to Enable ADF
Security."

30.7.8 What You May Need to Know About IBM WebSphere Application Server
When you deploy your application to IBM WebSphere application servers and use the
same machine to log into the WebSphere administrative console, your application may
display the name of the user logged into the administrative console, instead of the
name of the user who logs into the application. Normally, an expression that tests for
the authenticated user like #{securityContext.authenticated ?
securityContext.userName : ""} should display the name of the user who logs
into the application. However, the administration user’s name is displayed on IBM

Caution: Configuring the web.xml file when your application
implements explicit authentication programmatically and you have
created a login page as described in Section 30.7.2.2, "Creating an ADF
Faces-Based Login Page Specifically for Explicit Authentication" may
produce unpredictable results and login may fail. Only modify the
web.xml file when you are implementing implicit authentication and
you have created a form that relies on the j_security_check
action, as does the default, wizard-generated login form.

Testing Security in JDeveloper

Enabling ADF Security in a Fusion Web Application 30-61

WebSphere application servers when the application is running in Mozilla Firefox,
where the session ID is shared across all browsers on the same machine. This behavior
is not observed when running on Oracle WebLogic Server or when running the
application in Microsoft Internet Explorer.

30.8 Testing Security in JDeveloper
Integrated WebLogic Server enables you to run the application directly within
JDeveloper and determine whether or not to migrate security objects, including the
application policies, users, and credentials that your application defines. By default, all
security objects are migrated to Integrated WebLogic Server each time you run the
application.

30.8.1 How to Configure, Deploy, and Run a Secure Application in JDeveloper
JDeveloper is configured by default to deploy the security objects from your
application repositories to Integrated WebLogic Server each time you run the
application. You can change this behavior by selecting security deployment options in
the Application Properties dialog to:

■ Decide whether to overwrite the domain-level policies with those from the
application jazn-data.xml file

■ Decide whether to overwrite the system credentials from the application’s
cwallet.sso file

The cwallet.sso file (located in JDeveloper in the Application Resources panel
of the Applications window under the Descriptors-META-INF node) stores
credentials as securely kept objects that are presented to the authentication
provider to be matched against identities. The file is encrypted and cannot be
browsed or edited within JDeveloper. At design-time, different components make
use of cwallet.sso file and are responsible for creating the necessary credentials
in it.

■ Decide whether to migrate the identity store portion of the jazn-data.xml file
to the domain-level identity store

If you make no changes to the deployment settings, each time you run the application,
JDeveloper will overwrite the domain-level security policies and system credentials.
Additionally, JDeveloper will migrate new user identities you create for test purposes
and update existing user passwords in the embedded LDAP server that Integrated
WebLogic Server uses for its identity store. However, if you prefer to run the
application without updating the existing security objects in Integrated WebLogic
Server, you have this option.

To configure security deployment and run the application in JDeveloper:
1. From the Application menu, choose Secure > Configure Security Deployment.

2. In the Application Properties dialog, in the Deployment page, in the Security
Deployment Options section, select the security objects that you want to deploy
to Integrated WebLogic Server.

By default, each time you run the application, JDeveloper will overwrite the
application policies and system credentials at the domain level with those from the
application. If you prefer not to overwrite either of these repositories, deselect
Application Policies or Credentials. When deselected, JDeveloper will merge
only new polices or credentials into the domain-level stores.

Testing Security in JDeveloper

30-62 Fusion Developer's Guide for Oracle Application Development Framework

By default, each time you run the application, JDeveloper will migrate new user
identities you create for test purposes and update existing user passwords in the
embedded LDAP server that Integrated WebLogic Server uses for its identity
store. You can disable migration of the application identity store by deselecting
Users and Groups.

3. Click OK.

4. In the Application Navigator, right-click the UI project that contains the secured
web pages and choose Run.

When you choose Run on the UI project, JDeveloper will run the application using
the default run target you configured for the project. For example, you can
configure a task flow activity as the run target to start your application. To
configure the default run target, see Section 14.4, "Testing ADF Task Flows."

The Configure Default Domain dialog displays the first time you run the
application and start a new domain in Integrated WebLogic Server. Use the dialog
to define an administrator password for the new domain. Passwords you enter can
be eight characters or more and must have a numeric character.

30.8.2 What Happens When You Configure Security Deployment Options
When you run the application using Integrated WebLogic Server, JDeveloper migrates
the security policies and credentials to the domain level based on security deployment
configuration settings specified in the Application Properties dialog. During the
deployment process, JDeveloper updates the weblogic-application.xml file that
it adds to the deployment archive file with the Application Properties settings, as
shown in Example 30–17. Note that these settings are not added to the
weblogic-application.xml file in the application source directory and thus are
not visible.

Example 30–17 Default Security Deployment Settings in the Archive
weblogic-application.xml File

<application-param>
 <param-name>jps.credstore.migration</param-name>
 <param-value>OVERWRITE</param-value>
</application-param>
<application-param>
 <param-name>jps.policystore.migration</param-name>
 <param-value>OVERWRITE</param-value>
</application-param>

The OVERWRITE value allows you to modify the security policies and credentials in
your application and redeploy either to Oracle WebLogic Server running in
development mode or to Integrated WebLogic Server (set up to run in development
mode by default).

Note: When you eventually deploy to a production environment, the
migration settings in the weblogic-application.xml file are
ignored; it would be considered a security vulnerability to allow
existing policies and credentials to be overwritten. For information
about deploying to a production environment, see Section 30.9,
"Preparing the Secure Application for Deployment."

Testing Security in JDeveloper

Enabling ADF Security in a Fusion Web Application 30-63

JDeveloper also updates the weblogic-application.xml file with OPSS lifecycle
listeners, as shown in Example 30–18. To initiate the migration process before the
application runs, the lifecycle listeners observe the migration settings for policies and
credentials and overwrite the security objects at the domain level.

Example 30–18 Security Migration Listeners in the Archive weblogic-application.xml File

<listener>
 <listener-class>
 oracle.security.jps.wls.listeners.JpsApplicationLifecycleListener
 </listener-class>
</listener>
<listener>
 <listener-class>
 oracle.security.jps.wls.listeners.JpsAppVersionLifecycleListener
 </listener-class>
</listener>

During the migration process, JDeveloper maps the Oracle Platform Security Services
(OPSS) application role member classes to the Integrated WebLogic Server member
classes and migrates the users to WebLogic Server identity store users and migrates
the roles to Integrated WebLogic Server identity store groups. In Oracle WebLogic
Server, users is an implicit group equivalent to OPSS authenticated-role.

Example 30–19 Application Role Fragment in the system-jazn-data.xml File

<app-roles>
 <app-role>
 <name>fod-users</name>
 <guid>FFFF394F696E786F4134485764511002</guid>
 <display-name/>
 <description/>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <members>
 <member>
 <name>fod-users</name>
 <class>weblogic.security.principal.WLSGroupImpl</class>
 </member>
 </members>
 </app-role>
</app-roles>

Identity store migration is not controlled by the application lifecycle listener settings in
the weblogic-application.xml file. Instead, an Oracle WebLogic Mbean handles
migrating the identities when running in Integrated WebLogic Server or when
deploying from JDeveloper. If the user already exists, the Mbean will not migrate the
entire user definition. Only the user password will be updated.

30.8.3 How to Use the Built-In test-all Application Role
When you run the Configure ADF Security wizard, you can enable the option to add
the test-all application role to the policy store in the jazn-data.xml file. When
you enable this option, you also specify the scope of grants to the application role for
your application:

■ Select Grant to Existing Objects Only when you want JDeveloper to grant view
rights to the test-all application role and you want this policy to apply to all
the ADF task flows and web pages that appear in your user interface project at the
time you run the wizard.

Testing Security in JDeveloper

30-64 Fusion Developer's Guide for Oracle Application Development Framework

■ Select Grant to All Objects when you want JDeveloper to grant view rights to the
test-all application role and you want this policy to apply to all existing and
future ADF task flows and web pages that developers will create in the user
interface project. Note that the wizard displays the option Grant to New Objects
after you run the wizard the first time with the Grant to All Objects option
selected.

After you run the wizard, the test-all role appears in the jazn-data.xml file and
is visible in the jazn-data.xml file overview editor. You will not need to populate
the test-all role with test users since the wizard assigns the built-in application role
anonymous-role to the test-all role. In this case, all users will automatically have
the anonymous-role principal and will be permitted to access the application.

You can rerun the wizard and disable automatic grants at any time. Once disabled,
new ADF task flows and web pages that you create will not utilize the test-all role
and will therefore require that you define explicit grants, as described in Section 30.5,
"Defining ADF Security Policies."

30.8.4 What Happens at Runtime: How ADF Security Handles Authentication
When you test the application in JDeveloper using Integrated WebLogic Server, the
identity store is migrated to the embedded LDAP server, with information stored in
Oracle Internet Directory.

Figure 30–25 illustrates the authentication process when users attempt to access an
ADF bounded task flow or any web page containing ADF bindings (such as
mypage.jspx) without first logging in. Authentication is initiated implicitly because
the user does not begin login by clicking a login link on a public page. In the case of
the secured page, no grants have been made to the anonymous user.

Note: Before you deploy the application, you must remove all
occurrences of the test-all role from the policy store, as described
in Section 30.9.1, "How to Remove the test-all Role from the
Application Policy Store." This will prevent unauthorized users from
accessing the web pages of your application.

Testing Security in JDeveloper

Enabling ADF Security in a Fusion Web Application 30-65

Figure 30–25 ADF Security Implicit Authentication

In Figure 30–25, the implicit authentication process assumes that the resource does not
have a grant to anonymous-role, that the user is not already authenticated, and that
the authentication method is Form-based authentication. In this case, the process is as
follows:

1. When the bounded task flow or web page (with ADF bindings) is requested, the
ADF bindings servlet filter redirects the request to the ADF authentication servlet
(in the figure, Step 1), storing the logical operation that triggered the login.

2. The ADF authentication servlet has a Java EE security constraint set on it, which
results in the Java EE container invoking the configured login mechanism (in the
figure, Step 2). Based on the container's login configuration, the user is prompted
to authenticate:

1. The appropriate login form is displayed for form-based authentication (in the
figure, Step 2a).

2. The user enters his credentials in the displayed login form (in the figure, Step
2b).

3. The user posts the form back to the container's j_security_check()
method (in the figure, Step 2c).

4. The Java EE container authenticates the user, using the configured pluggable
authentication module (in the figure, Step 2d).

Testing Security in JDeveloper

30-66 Fusion Developer's Guide for Oracle Application Development Framework

3. Upon successful authentication, the container redirects the user back to the servlet
that initiated the authentication challenge, in this case, the ADF authentication
servlet (in the figure, Step 3).

4. On returning to the ADF authentication servlet, the servlet subsequently redirects
to the originally requested resource (in the figure, Step 4).

Whether or not the resource is displayed will depend on the user’s access rights
and on whether authorization for ADF Security is enforced, as explained in
Section 30.8.5, "What Happens at Runtime: How ADF Security Handles
Authorization."

Figure 30–26 illustrates the explicit authentication process when the user becomes
authenticated starting with the login link on a public page.

Figure 30–26 ADF Security Explicit Authentication

In an explicit authentication scenario, an unauthenticated user (with only the
anonymous user principal and anonymous-role principal) clicks the Login link on a
public page (in the figure, Step 1). The login link is a direct request to the ADF
authentication servlet, which is secured through a Java EE security constraint in the
web.xml file.

In this scenario, the current page is passed as a parameter to the ADF authentication
servlet. As with the implicit case, the security constraint redirects the user to the login
page (in the figure, Step 2). After the container authenticates the user, as described in
Step a through Step d in the implicit authentication case, the request is returned to the
ADF authentication servlet (in the figure, Step 3), which subsequently returns the user
to the public page, but now with new user and role principals in place.

30.8.5 What Happens at Runtime: How ADF Security Handles Authorization
When ADF authorization is enabled, the ADF bounded task flows and web pages
outside of a task flow that have an ADF page definition will be secure by default.
When a user attempts to access these web pages, ADF Security checks to determine

Testing Security in JDeveloper

Enabling ADF Security in a Fusion Web Application 30-67

whether the user has been granted access in the policy store. If the user is not yet
authenticated, and the page is not granted to the anonymous-role, then the
application displays the login page or form. If the user has been authenticated, but
does not have permission, a security error is displayed. If you do not configure the
policy store with appropriate grants, the pages will remain protected and therefore
stay unavailable to the authenticated user.

Figure 30–27 illustrates the authorization process.

Figure 30–27 ADF Security Authorization

The user is a member of the application role staff defined in the policy store. Because
the user has not yet logged in, the security context does not have a subject (a container
object that represents the user). Instead, Oracle Platform Security Services provides
ADF Security with a subject with the anonymous user principal (a unique definition
of the user) and the anonymous-role principal.

With the anonymous-role principal, typically the user would be able to access only
pages not defined by ADF resources, such as the public.jsp page, whereas all pages
that are defined either by an ADF task flow or outside of a task flow using an ADF
page definition file are secure by default and unavailable to the user. An exception to
this security policy would be if you were to grant anonymous-role access to ADF
resources in the policy store. In this case, the user would not be allowed immediate
access to the page defined by an ADF resource.

When the user tries to access a web page defined by an ADF resource, such as
mypage.jspx (which is specified by an ADF page definition, for example), the ADF
Security enforcement logic intercepts the request and because all ADF resources are
secured by default, the user is automatically challenged to authenticate (assuming that
the anonymous-role is not granted access to the ADF resource).

After successful authentication, the user will have a specific subject. The security
enforcement logic now checks the policy store to determine which role is allowed to
view mypage.jspx and whether the user is a member of that role. In this example for
mypage.jspx, the view privilege has been granted to the staff role and because the
user is a member of this role, they are allowed to navigate to mypage.jspx.

Preparing the Secure Application for Deployment

30-68 Fusion Developer's Guide for Oracle Application Development Framework

Similarly, when the user tries to access secpage.jsp, another page defined by ADF
resources, for which the user does not have the necessary view privilege, access is
denied.

Users and roles are those already defined in the identity store of the resource provider.
Application roles are defined in the policy store of the jazn-data.xml file.

30.9 Preparing the Secure Application for Deployment
After testing in JDeveloper using Integrated WebLogic Server, you will eventually
want to deploy the application to a standalone server. Initially, the server you target
will be your staging environment where you can continue development testing using
that server’s identity store before deploying to the production environment. Thus, you
will typically not migrate the test users you created to run with Integrated WebLogic
Server. The steps you perform to migrate security policies and system credentials
(from the cwallet.sso file) to standalone Oracle WebLogic Server will depend on
the configured mode of the target server and whether you deploy using JDeveloper or
a tool outside of JDeveloper.

When the target server is configured for development mode, you can deploy directly
from JDeveloper. In this case, JDeveloper automatically handles the migration of the
policy store, system credentials, and identity store (users and groups) as part of the
deployment process. Application security deployment properties are configured by
default to allow the deployment process to overwrite the domain-level policy store
and the system credentials. Additionally, the identity store deployment property is
configured by default to migrate the identity store consisting of your test users. You
can change this default deployment behavior in the Application Properties dialog, as
described in Section 30.8.1, "How to Configure, Deploy, and Run a Secure Application
in JDeveloper."

When the target server is configured for production mode, you typically handle the
migration task outside of JDeveloper using tools like Oracle Enterprise Manager. For
details about using tools outside of JDeveloper to migrate the policy store to the
domain-level in a production environment, see the Oracle Fusion Middleware
Application Security Guide. Note that Oracle WebLogic Server running in production
mode does not support the overwriting of system credentials under any
circumstances.

Before you deploy the application, you will want to remove the test-all application
role if you enabled the automatic grants feature in the Configure ADF Security wizard.
Because the test-all role makes all ADF resources public, its presence increases the

Note: For details about deploying from JDeveloper to a
development environment, see Section 36, "Deploying Fusion Web
Applications."

Note: Note that migration of system credentials to Oracle WebLogic
Server running in development mode will be performed only if the
target server is configured to permit credential overwrite. For details
about configuring Oracle WebLogic Server to support overwriting of
system credentials, see the Oracle Fusion Middleware Application
Security Guide.

Preparing the Secure Application for Deployment

Enabling ADF Security in a Fusion Web Application 30-69

risk that your application may leave some resources unprotected. You must therefore
remove the role before you migrate application-level policy store.

Additionally, when you prepare to deploy the application to Oracle WebLogic Server,
you will want to remove the test identities that you created in the jazn-data.xml
file. This will ensure that users you created to test security policies are not migrated to
the domain-level identity store.

30.9.1 How to Remove the test-all Role from the Application Policy Store
The jazn-data.xml file overview editor provides the facility to display all resources
with view grants made to ADF Security’s built-in test-all role. You can use this
feature in the overview editor to delete the test-all role grant and replace it with a
grant to the roles that your application defines.

Alternatively, you could delete the test-all role using the overview editor for the
jazn-data.xml file, by selecting the test-all role in the Application Roles page of
the editor and clicking the Delete Application Role button. However, when you
remove the test-all role this way, you will still need to create a grant to replace the
ones that you delete. Because the overview editor lets you combine both of these tasks,
the following procedure describes its usage.

To remove the test-all application role and substitute custom application roles:
1. From the Application menu, choose Secure > Resource Grants.

2. In the Resource Grants page of the jazn-data.xml file overview editor, select
Task Flow from the Resource Types dropdown list and then select the Show task
flows with test-all grants only checkbox to view the list of task flows with grants
to this built-in role.

If no grant exists for the test-all role, then the Resources list in the overview
editor will appear empty. The test-all role is defined only when enabled in the
Configure ADF Security wizard. If it is enabled, you will see those task flows with
test-all grants listed, as shown in Figure 30–28.

Best Practice: If you deploy your application to the standalone
environment, you must not migrate users and enterprise roles in your
local identity store that are already configured for Oracle WebLogic
Server. For example, if you were to deploy the identity store with the
user weblogic and enterprise role Administrators, you would
overwrite the default administration configuration on the target
server. To ensure you avoid all possible conflicts, you can disable
migration of the identity store as described in Section 30.9.2, "How to
Remove Test Users from the Application Identity Store."

Preparing the Secure Application for Deployment

30-70 Fusion Developer's Guide for Oracle Application Development Framework

Figure 30–28 Showing Task Flows with test-all Grants in the Overview Editor

3. In the Resources column, select the first task flow in the list.

4. In the Granted to column, select test-all and click the Remove Grantee icon.

5. In the Granted to column, click the Add Grantee icon and choose Add
Application Role and then use the Select Application Roles dialog to add the
desired role.

6. Repeat these steps to remove the test-all role and substitute your own
application role for all remaining task flows.

7. In the Resource Grants page of the overview editor, select Web Page from the
Resource Types dropdown list and repeat these steps to remove the test-all
role for all web pages and their ADF page definitions.

8. With the Show task flows/web pages with test-all grants only checkbox selected,
verify that the overview editor displays no resources with test-all grants.

30.9.2 How to Remove Test Users from the Application Identity Store
The standalone Oracle WebLogic Server that you will deploy to will have its own
identity stored already configured. To ensure that you do not migrate test users and
enterprise role groups you created in JDeveloper to the domain level, you should
remove the test user realm from the jazn-data.xml file.

Alternatively, if you are deploying from JDeveloper, you can disable the migration of
users and groups by deselecting the Users and Groups option in the Application
Properties dialog, as described in Section 30.8.1, "How to Configure, Deploy, and Run
a Secure Application in JDeveloper."

To remove test users and enterprise role groups from the identity store:
1. From the Application menu, choose Secure > Users.

2. In the editor window for the jazn-data.xml file, click the Source tab.

3. In the source for the jazn-data.xml file, click the - icon to the left of the
<jazn-realm> element so the entire element appears collapsed as shown in
Figure 30–29.

Disabling ADF Security

Enabling ADF Security in a Fusion Web Application 30-71

Figure 30–29 Selecting the <jazn-realm> Element in the XML Editor

4. With the element selected, press Delete and save the file.

30.10 Disabling ADF Security
JDeveloper allows you to disable ADF Security when you want to temporarily run the
application without enforcing authorization checks against the application policy
store. This will allow you to run the application and access all resources without the
protection provided by existing security policies.

30.10.1 How to Disable ADF Security
To disable ADF Security at the level of your application, run the wizard and choose
one of these options:

■ ADF Authentication disables ADF authorization but leaves the ADF
authentication servlet enabled. For example, you may want to run your
application in JDeveloper with authorization checking against security policies
temporarily disabled. This option will require the user to log in the first time a
page in the application is accessed by mapping the Java EE application root "/" to
the allPages Java EE security constraint that will trigger user authentication.
ADF resources will not be security-aware because authorization checking is not
enforced. Thus, once the user is logged in, all web pages containing ADF resources
will be available to the user.

■ Remove ADF Security Configuration disables the ADF authentication servlet and
disables authorization checking on ADF resources. In this case, you can run the
application with no user authentication and no security for ADF resources in
place.

You may select either option with the intention of reenabling ADF Security at any
time. The wizard specifically does not alter the application policy store that contains
the security policies that application developers defined for ADF resources. This
means that you can return to the wizard at any time, select the ADF Authentication
and Authorization option, and reenable ADF Security against your application’s
existing policy store and identity store.

To disable Oracle ADF authorization checking:
1. From the Application menu, choose Secure > Configure ADF Security.

2. In the ADF Security page, select either the ADF Authentication option or the
Disable ADF Security Configuration option. Click Next.

Advanced Topics and Best Practices

30-72 Fusion Developer's Guide for Oracle Application Development Framework

After you run the wizard with either of these options, the ADF resources of your
user interface projects will no longer be security-aware.

3. Click Finish.

30.10.2 What Happens When You Disable ADF Security
If you run the Configure ADF Security wizard with the Remove ADF Security
Configuration option selected, it removes the ADF-specific metadata in the web.xml
file and adf-config.xml file, as described in Table 30–2.

Similarly, running the wizard with the ADF Authentication option selected to disable
only authorization checking performs the following updates:

■ Leaves the ADF-specific metadata in the web.xml file unchanged and adds the
allPages security constraint.

With the allPages security constraint present, users will be expected to
authenticate when they first access the application.

■ Sets the authorizationEnforce parameter in the <JaasSecurityContext>
element of the adf-config.xml file to false, as shown in Example 30–20.

Example 30–20 AuthorizationEnforce Flag Disabled in the adf-config.xml FIle

<JaasSecurityContext
 initialContextFactoryClass="oracle.adf.share.security.JAASInitialContextFactory"
 jaasProviderClass="oracle.adf.share.security.providers.jps.JpsSecurityContext"
 authorizationEnforce="false"
 authenticationRequire="true"/>

The adf-config.xml file is located in the /.adf/META_INF folder of your
workspace. In JDeveloper, you can locate the file in the Application Resources panel of
the Application Navigator by expanding the Descriptors-ADF META-INF node. Note
that if you view the adf-config.xml file in an editor outside of JDeveloper, you
must save the workspace to see the wizard-applied changes in the file.

30.11 Advanced Topics and Best Practices
After you have completed the process of enabling ADF Security, you may want to
customize your application to work with ADF Security in the user interface. For
example, you can use Expression Language (EL) to render UI components in the web
page based on evaluation of custom permissions that you define just for a group of UI
components. Additionally, you can define methods within a managed bean to expose
information, such as the user name and role membership, in your application.

30.11.1 Using Expression Language (EL) with ADF Security
You can use Expression Language (EL) to evaluate the policy directly in the UI, while
the use of Java enables you to evaluate the policy from within a managed bean. ADF
Security implements several convenience methods for use in EL expressions to access
ADF resources in the security context. For example, you can use the EL expression
convenience methods to determine whether the user is allowed to access a particular
task flow. Good security practice dictates that your application should hide resources
and capabilities for which the user does not have access. And for this reason, if the
user is not allowed access to a particular task flow, you would evaluate the user’s
permission grant to determine whether or not to render the navigation components
that initiate the task flow.

Advanced Topics and Best Practices

Enabling ADF Security in a Fusion Web Application 30-73

30.11.1.1 How to Evaluate Policies Using EL
The use of EL within a UI element allows for properties to be defined dynamically,
resulting in modification of the UI component at runtime. In the case of securing
resources, the UI property of interest is the Rendered property, which allows you to
show and hide components based on available permissions. By default, the Rendered
property is set to true. By dynamically changing this value based on the permission,
you can set the UI component to be shown or hidden. For example, if the user has the
appropriate permission, the Rendered property should be set to true so that the UI
component is shown. If they do not have permission, the property should be set to
false and the UI component hidden from view.

To evaluate a policy using EL, you must use the ADF Security methods in the
securityContext EL namespace. These methods let you access information in the
ADF security context for a particular user or ADF resource.

Table 30–9 shows the EL expression that is required to determine whether a user has
the associated permission. If the user has the appropriate permission, the EL
expression evaluates to true; otherwise, it returns false.

Table 30–10 shows the EL expression that lets you get general information from the
ADF security context not related to a particular ADF resource. For example, you can
access the current user name when you want to display the user’s name in the user
interface. You can also check whether the current user is a member of certain roles or
granted certain privileges. Your application may use this result to dynamically hide or
show menus.

Note: The ability to evaluate a policy is limited to the current
request. For this reason, it is important to understand where the policy
evaluation occurs, because evaluating the policy at anything other
than the request scope can lead to unexpected results.

Table 30–9 EL Expression to Determine View Permissions on ADF Resources

Expression Expression action

#{securityContext.taskflowViewable[’MyTaskFlow’]}

For example:

#{securityContext.taskflowViewable
 [’/WEB-INF/audit-expense-report.xml#audit-expense-report’]}

Where MyTaskFlow is the WEB-INF
node-qualified name of the task flow
being accessed. Returns true if the user
has access rights. Returns false if the
user does not have sufficient access rights.

#{securityContext.regionViewable[’MyPagePageDef’]} Where MyPagePageDef is the qualified
name of the page definition file associated
with the web page being accessed.
Returns true if the user has access rights.
Returns false if the user does not have
sufficient access rights.

Note: In the case of page permission, the value of the page definition
can be specified dynamically by using late-binding EL within a
managed bean, as described in Section 30.3.7, "What You May Need to
Know About the valid-users Role."

Advanced Topics and Best Practices

30-74 Fusion Developer's Guide for Oracle Application Development Framework

Table 30–10 EL Expression to Determine User Information in the ADF Security Context

Expression Expression Action

#{securityContext.userName} Returns the user name of the authenticated user.

#{data.adfContext.enterpriseName} Returns the enterprise name of the authenticated
user. The enterprise name is an alias that the user
knows for themselves and can use to login.

#{data.adfContext.enterpriseId} Returns the enterprise ID of the authenticated
user.

#{securityContext.authenticated} Returns true if the user is logged in. Returns
false if the user is not logged in. This is useful
for rendering a dynamic link for login/logout, or
for rendering a "Welcome, username" message
when the user has been authenticated. For an
example that uses this expression, see
Section 30.7.4.2, "Adding Login and Logout
Links."

#{securityContext.userInRole[’roleList’]} Where roleList is a comma-separated list of
role names. Returns true if the user is in at least
one of the roles. Returns false if the user is in
none of the roles, or if the user is not currently
authenticated.

Advanced Topics and Best Practices

Enabling ADF Security in a Fusion Web Application 30-75

To associate the rendering of a navigation component with a user's granted
permissions on a target task flow or page definition:
1. In the Application Navigator, double-click the page.

2. Select the component that is used to navigate to the secured page.

3. In the Property Inspector, select Expression Builder from the dropdown menu
displayed to the right of the Rendered property, as shown in Figure 30–30.

#{securityContext.userInAllRoles[’roleList’]} Where roleList is a comma-separated list of
role names. Returns true if the user is in all of
the roles. Returns false if the user is not in all of
the roles, or if the user is not currently
authenticated.

#{securityContext.userGrantedPermission[’permission’]} Where permission is a string containing a
semicolon-separated concatenation of
permissionClass=<class>;target=<arti
fact_name>;action=<action>. Returns
true if the user has access rights. Returns false
if the user does not have sufficient access rights.

Note that the convenience methods
taskflowViewable and regionViewable
shown in Table 30–9 provide the same
functionality.

#{securityContext.userGrantedResource[’resource’]} Where resource is a string containing a
semicolon-separated concatenation of
resourceName=<name>;resourceType=<ty
pe>;action=<action>. Returns true if the
user has access rights. Returns false if the user
does not have sufficient access rights.

You can use this expression to test the permission
grant in the rendered property of a resource
that is not contained in a task flow (like an ADF
Faces panel). This provides an alternative to
creating a custom permission class that must be
packaged with the application.

For example, when you want to show or hide a
panel in a page based on the permission granted
to that resource, the expression might look like:

#{securityContext.userGrantedResource
 ['resourceName=myPanel1;
 resourceType=myLayoutPanel;
 action=myAction']}

In the policy store, a grant to the resource has a
<permission> definition like:

<permission>
 <class>oracle.security.jps.
 ResourcePermission</class>
 <name>resourceType=myLayoutPanel,
 resourceName=myPanel1</name>
 <actions>myAction</actions>
</permission>

Table 30–10 (Cont.) EL Expression to Determine User Information in the ADF Security Context

Expression Expression Action

Advanced Topics and Best Practices

30-76 Fusion Developer's Guide for Oracle Application Development Framework

Figure 30–30 Binding the Rendered Property to Data

4. In the Expression Builder, expand the ADF Bindings - securityContext node and
select the appropriate EL value, then in the Expression field, enter the qualified
name of the ADF resource that the user will attempt to access.

For example, as shown in Figure 30–31, to limit access to a task flow that your
application displays, you would create an expression like:

#{securityContext.taskflowViewable
 ['/WEB-INF/audit-expense-report.xml#audit-expense-report']}

In this example, the expression determines the user’s access rights to view the
target task flow audit-expense-report. If the user has the access rights, then
the expression evaluates to true and the rendered property receives the value
true.

Figure 30–31 Defining EL in the Expression Builder Dialog

5. Click OK.

Advanced Topics and Best Practices

Enabling ADF Security in a Fusion Web Application 30-77

When you run the application, the component will be rendered or hidden based on the
user's ability to view the target page.

30.11.1.2 What Happens When You Use the Expression Builder Dialog
When you use the Expression Builder to define an expression for the Rendered
property in the Property Inspector, JDeveloper updates the component definition in
the open .jspx file. The component’s rendered property appears with an expression
that should evaluate to either true or false, as shown in Example 30–21. In this
example, the component is a navigation link with the link text Checkout defined by
another expression. The page that contains the navigation link renders the component
only when the user has sufficient rights to access the checkout task flow.

Example 30–21 EL Expression in Source for .jspx File

<af:commandNavigationItem
 text="#{res['global.nav.checkout']}"
 action="globalCheckout"
 id="cni3"
 rendered="#{securityContext.taskflowViewable
 ['/WEB-INF/checkout-task-flow.xml#checkout-task-flow']}"
/>

30.11.1.3 What You May Need to Know About Delayed Evaluation of EL
The ability to evaluate a security permission is scoped to the request. If you want to
evaluate permissions to access a target page from a managed bean that is scoped to a
higher level than request (for example, a global menu that is backed by a managed
bean), you must implement delayed EL evaluation (late-binding). By passing in the
target page as a managed property of the bean, you ensure that the EL expression is
evaluated only after the required binding information is available to the managed
bean. Because EL is evaluated immediately when the page is executed, placing the EL
expression directly in the properties of a UI component, backed by a managed bean,
would result in an out-of-scope error.

Example 30–22 shows a property (authorized) of a managed bean that returns true
or false based on a user's ability to view a named target page. In this case, the _
targetPageDef variable is a managed property containing the name of the target
page. Within the UI, the EL expression would reference the authorized property.

Example 30–22 Delayed EL Evaluation in a Managed Bean

public boolean isAuthorized()
{
 if (_targetPageDef != null) {
 FacesContext fctx = FacesContext.getCurrentInstance();
 ADFContext adfCtx = ADFContext.getCurrent();
 SecurityContext secCtx = adfCtx.getSecurityContext();
 boolean hasPermission = secCtx.hasPermission(new RegionPermission
 (_targetPageDef, RegionPermission.VIEW_ACTION));
 if (hasPermission) {
 return hasPermission;
 }
 else {
 fctx.addMessage(null, new FacesMessage (
 FacesMessage.SEVERITY_WARN, "Access Permission not defined! " , null));
 return false;
 }
}

Advanced Topics and Best Practices

30-78 Fusion Developer's Guide for Oracle Application Development Framework

30.11.2 How to Evaluate Policies Using Custom JAAS Permissions and EL
You can use the value userGrantedPermission in the ADF Security EL namespace
described in Table 30–9 to determine whether to render UI elements in your page. The
expression you create can evaluate custom permission grants for the authenticated
user. A custom permission is a JAAS Permission class that you create using the Create
JAAS Permission dialog. The dialog helps you create a class that extends the
oracle.adf.share.security.authorization.ADFPermission class to
ensure that the permission can be used by ADF Security.

Custom permissions in the Fusion web application give you additional flexibility to
define security policies. For example, you might name a custom permission to
correspond to the UI element you want to protect. Once you create the permission,
you use the jazn-data.xml file overview editor to create a security policy for the
ADF resource by granting permission to the application roles that your
jazn-data.xml policy store defines.

To create the custom JAAS Permission class:
1. In the Application Navigator, right-click the project where you want to create the

custom JAAS Permission class and choose New.

2. In the New Gallery, select All Items and then JAAS Permission, and click OK.

3. In the Create JAAS Permission dialog, enter the name of the permission and the
fully qualified package name.

The permission name you choose can be a generic name.

4. In the Actions list, enter the name that you want to use for the action grant.

The action name can be a specific name that helps you to identify the permission’s
purpose. You can add more than one action to the list when you want the
permission to apply to the same component, but for different purposes. For
example, you might allow a manager and an employee to both view a page menu,
but you might want the manager to also be able to choose specific menu items.

5. In the Targets list, leave the selection Attribute unchanged.

You will specify the actual target name when you create the policy in the policy
store using the custom JAAS Permission’s action.

6. Click OK.

JDeveloper adds to the class to the package you specified. For example, the
oracle.fodemo.storefront.store.view package of the Fusion Order
Demo application defines a custom permission class AccountPermission.java
that looks like this:

package oracle.fodemo.storefront.store.view;

import oracle.adf.share.security.authorization.ADFPermission;

Best Practice: Custom ADF permission classes let you extend ADF
Security to define custom actions for use in grants. This gives you the
flexibility to define security policies to manage the user’s ability to
view UI components without having to overload the built-in actions
defined by the ADF resources’ permission classes. Be aware that you
do not need to create custom permissions to manage access to web
pages. This level of access is provided by the default ADF Security
view permission that you work with in the jazn-data.xml file
overview editor.

Advanced Topics and Best Practices

Enabling ADF Security in a Fusion Web Application 30-79

import oracle.adf.share.security.authorization.PermissionActionDescriptor;
import oracle.adf.share.security.authorization.PermissionTargetDescriptor;

public class AccountPermission extends ADFPermission {
 private static final PermissionActionDescriptor[] actions =
 {new PermissionActionDescriptor("view", "view")};
 private static final PermissionTargetDescriptor[] targets =
 {new PermissionTargetDescriptor("attributeValue", "Attribute")};

 public AccountPermission(String name, String actions) {
 super(name, actions);
 }

 public static PermissionActionDescriptor[] getPermissionActionDescriptors() {
 return actions;
 }

 public static PermissionTargetDescriptor[] getPermissionTargetDescriptors() {
 return targets;
 }
}

To create the ADF security policy using the custom permission:
1. In the main menu, choose Application and then Secure > Resource Grants.

2. In the Resource Grants page of the jazn-data.xml file overview editor, select
the custom resource from the Resource Types dropdown list.

The overview editor displays all custom resources. Initially, the custom resource
will not have a resource type associated with it and the editor highlights this, as
shown in Figure 30–32.

Figure 30–32 Displaying a Custom Resource in the Overview Editor

3. Next to the Resource Type field, click the New Resource Type icon.

4. In the Create Resource Type dialog, enter the name and action and click OK.

5. In Resource Grants page of the overview editor, in the Granted to column, click
the Add Grantee icon and choose Add Application Role.

6. In the Select Application Roles dialog, select the application role and click OK.

7. In the Resource Grants page of the overview editor, in the Actions column, select
desired action.

The overview editor displays the custom permission grant, as shown in
Figure 30–33.

Advanced Topics and Best Practices

30-80 Fusion Developer's Guide for Oracle Application Development Framework

Figure 30–33 Creating a Custom Permission Grant in the Overview Editor

To associate the rendering of a UI component with a user's granted custom
permission:
1. In the Application Navigator, double-click the page.

2. Select the component that is used to navigate to the secured page.

3. In the Property Inspector, select Expression Builder from the dropdown menu
displayed to the right of the Rendered property.

4. In the Expression Builder, expand the ADF Bindings - securityContext node and
select the userGrantedPermission value, then, in the Expression field, enter a
concatenated string that defines the permission.

Enter the permission string as a semicolon-separated concatenation of
permissionClass=qualifiedClassName;target=artifactName;action
=actionName. For example, to protect an account number that a text field
displays in a page, you would enter an expression like the following, where the
permission for userGrantedPermission is the same name as the custom JAAS
permission grant:

#{securityContext.userGrantedPermission
 ['permissionClass=oracle.fodemo.storefront.store.view.AccountPermission;
 target=AccountPermission;action=view']}

In this example, the expression evaluates the permission based on the custom
JAAS permission definition named AccountPermission that you added to the
application policy store.

In the Fusion Order Demo application, the page myOrders.jpx defines the
userGrantedPermission expression on the Value property of the
af:outputText#ot18 text field, as shown in Figure 30–34. In this case, the
expression tests whether the user has permission then either displays the account
number (through bindings.AccountNumber.inputValue) or, when the user
does not have permission, displays XXXXXXXXXXXX in place of the account
number. Because the expression is not defined on the text field’s Rendered
property, the page always displays the field.

#{securityContext.userGrantedPermission
 ['permissionClass=oracle.fodemo.storefront.store.view.AccountPermission;
 target=AccountPermission;action=view']
 ? bindings.AccountNumber.inputValue : 'XXXXXXXXXXXX'}

Advanced Topics and Best Practices

Enabling ADF Security in a Fusion Web Application 30-81

Figure 30–34 Defining EL in the Expression Builder Dialog

5. Click OK.

When you run the application, the component will be rendered or hidden based on the
user's ability to view the target page.

30.11.3 Getting Information from the ADF Security Context
The implementation of security in a Fusion web application is by definition an
implementation of the security infrastructure of the ADF Security framework. As such,
the security context of the framework allows access to information that is required as
you define the policies and the overall security for your application.

30.11.3.1 How to Determine Whether Security Is Enabled
Because the enforcement of ADF Security can be turned on and off at the container
level independent of the application, you should determine whether ADF Security is
enabled prior to making authorization checks. You can achieve this by calling the
isAuthorizationEnabled() method of the ADF security context, as shown in
Example 30–23.

Example 30–23 Using the isAuthorizationEnabled() Method of the ADF Security Context

if (ADFContext.getCurrent().getSecurityContext().isAuthorizationEnabled()){
 //Authorization checks are performed here.
}

30.11.3.2 How to Determine Whether the User Is Authenticated
As the user principal in a Fusion web application is never null (that is, it is either
anonymous for unauthenticated users or the actual user name for authenticated

Advanced Topics and Best Practices

30-82 Fusion Developer's Guide for Oracle Application Development Framework

users), it is not possible to simply check whether the user principal is null to
determine if the user has logged on or not. As such, you must use a method to take
into account that a user principal of anonymous indicates that the user has not
authenticated. You can achieve this by calling the isAuthenticated() method of
the ADF security context, as shown in Example 30–24.

Example 30–24 Using the isAuthenticated() Method of the ADF Security Context

// ============ User's Authenticated Status =============
private boolean _authenticated;
public boolean isAuthenticated() {
_authenticated = ADFContext.getCurrent().getSecurityContext().isAuthenticated();
 return _authenticated;
}

30.11.3.3 How to Determine the Current User Name, Enterprise Name, or Enterprise
ID
Fusion web applications support the concept of public pages that, while secured, are
available to all users. Furthermore, components on the web pages, such as portlets,
require knowledge of the current user identity. As such, the user name in a Fusion
web application will never be null. If an unauthenticated user accesses the page, the
user name anonymous will be passed to page components. When the Fusion web
application registers an enterprise name for the user, the enterprise name may also be
obtained. The enterprise name is an alias that the user knows for themselves and can
use to login.

You can determine the current user's name by evaluating the getUserName()
method of the ADF security context, as shown in Example 30–25. This method returns
the string anonymous for all unauthenticated users and the actual authenticated user's
name for authenticated users.

Example 30–25 Using the getUserName() Method of the ADF Security Context

// ============ Current User's Name/PrincipalName =============
public String getCurrentUser() {
 _currentUser = ADFContext.getCurrent().getSecurityContext().getUserName();
 return _currentUser;
}

Because the traditional method for determining a user name in a Faces-based
application
(FacesContext.getCurrentInstance().getExternalContext().getRemot
eUser()) returns null for unauthenticated users, you need to use additional logic to
handle the public user case if you use that method.

You can determine the current user's enterprise name by evaluating the
getEnterpriseName() method of the ADF security context, as shown in
Example 30–26.

Example 30–26 Using the getEnterpriseName() Method of the ADF Security Context

// ============ Current User's Enterprise Name =============
public String getEnterpriseName() {
 _enterpriseName = ADFContext.getCurrent().getEnterpriseName();
 return _enterpriseName;
}

Advanced Topics and Best Practices

Enabling ADF Security in a Fusion Web Application 30-83

You can determine the current user's enterprise ID by evaluating the
getEnterpriseId() method of the ADF security context, as shown in
Example 30–27. This method returns the string anonymous for all unauthenticated
users and the actual authenticated user's name for authenticated users.

Example 30–27 Using the getEnterpriseId() Method of the ADF Security Context

// ============ Current User's Enterprise ID =============
public String getEnterpriseId() {
 _enterpriseId = ADFContext.getCurrent().getEnterpriseId();
 return _enterpriseId;
}

30.11.3.4 How to Determine Membership of a Java EE Security Role
As Fusion web applications are JavaServer Faces-based applications, you can use the
isUserInRole(roleName) method of the Faces external context, as shown in
Example 30–28, to determine whether a user is in a specified role. Because ADF
Security is based around JAAS policies, you should not need to use Java EE security
roles to secure pages associated with ADF security-aware resources based on role
membership. However, you might use the method to check the role for a page that is
not associated with an ADF security-aware resource.

In this example, a convenience method (checkIsUserInRole) is defined. The use of
this method within a managed bean enables you to expose membership of a named
role as an attribute, which can then be used in EL.

Example 30–28 Using the isUserInRole(roleName)) Method of the Faces Context

public boolean checkIsUserInRole(String roleName){
 return
(FacesContext.getCurrentInstance().getExternalContext().isUserInRole(roleName));
}

public boolean isCustomer() {
 return (checkIsUserInRole("fod-users"));
}

30.11.3.5 How to Determine Permission Using Java
To evaluate the security policies from within Java, you can use the hasPermission
method of the ADF security context. This method takes a permission object (defined
by the resource and action combination) and returns true if the user has the
corresponding permission.

In Example 30–29, a convenience function is defined to enable you to pass in the name
of the page and the desired action, returning true or false based on the user's
permissions. Because this convenience function is checking page permissions, the
RegionPermission class is used to define the permission object that is passed to the
hasPermission method.

Example 30–29 Using the hasPermission() Method to Evaluate Access Policies

private boolean TestPermission (String PageName, String Action) {
 Permission p = new RegionPermission("view.pageDefs." + PageName + "PageDef",
 Action);
 if (p != null) {
 return ADFContext.getCurrent().getSecurityContext().hasPermission(p);
 }
 else {

Advanced Topics and Best Practices

30-84 Fusion Developer's Guide for Oracle Application Development Framework

 return (true);
 }

As it is possible to determine the user's permission for a target page from within a
backing bean, you can use this convenience method to dynamically alter the result of a
Faces navigation action. In Example 30–30, you can see that a single command button
can point to different target pages depending on the user's permission. By checking the
view permission from the most secured page (the manager page) to the least secured
page (the public welcome page), the command button’s backing bean will apply the
appropriate action to direct the user to the page that corresponds to their permission
level. The backing bean that returns the appropriate action is using the convenience
method defined in Example 30–29.

Example 30–30 Altering a Page Navigation Result Based on an Authorization Check

//CommandButton Definition
<af:commandButton text="Goto Your Group Home page"
 binding="#{backing_content.commandButton1}"
 id="commandButton1"

 action="#{backing_content.getSecureNavigationAction}"/>

//Backing Bean Code
 public String getSecureNavigationAction() {
 String ActionName;
 if (TestPermission("ManagerPage", "view"))
 ActionName = "goToManagerPage";
 else if (TestPermission("EmployeePage", "view"))
 ActionName = "goToEmployeePage";
 else
 ActionName = "goToWelcomePage";
 return (ActionName);
 }

30.11.4 Best Practices for Working with ADF Security
These best practices summarize the rules that govern enforcement of security by the
ADF Security framework. Understanding these best practices will help you to secure
the application to allow users to access the web pages you intend.

Do build your application with ADF Security enabled from the start.
When you enable security, you essentially lock down the application and you will be
required to make explicit permission grants to specific ADF security-aware resources
you create. Knowing about these resources and making grants on them as you build
the application will enable you to iteratively test security to ensure that you structure
your application in a way that achieves the desired result.

Do define permission grants for bounded task flows.
Pages that the user accesses within the process of executing a bounded task flow will
not be individually permission-checked and will run under the permission grants of
the task flow. This means that any page that you add to the task flow should not have
its own page definition-level security defined. Upon requesting a flow, the user will be
allowed either to view all the pages of the task flow or to view none of the pages,
depending on their level of access.

Advanced Topics and Best Practices

Enabling ADF Security in a Fusion Web Application 30-85

Do not define permission grants for individual pages of a bounded task flow.
It is important to realize that task flows do not prevent users from accessing pages
directly. Any web page that is located in a directory that is publicly accessible can be
reached from a browser using a URL. To ensure that pages referenced by a bounded
task flow cannot be accessed directly, remove all permission grants that exist for their
associated page definition file. When pages require additional security within the
context of a bounded task flow, wrap those pages in a sub-task flow with additional
grants defined on the nested task flow.

Do use task flows to reduce the number of access points exposed to end users.
When you use task flows you can reduce the number of access points that you expose
to end users. For example, configure an unbounded task flow to display one page that
provides navigation to the remaining pages in your application. Use bounded task
flows for the remaining pages in the application. By setting the URL Invoke property
of these bounded task flows to url-invoke-disallowed, your application has one
access point (the page on the unbounded task flow). For more information about the
URL Invoke property, see Section 15.6.1, "How to Call a Bounded Task Flow Using a
Task Flow Call Activity."

Do define permission grants for individual pages outside of a bounded task
flow.
Page-level security is checked for pages that have an associated page definition
binding file only if the page is directly accessed or if the page is accessed in an
unbounded task flow. There is a one-to-one relationship between the page definition file
and the web page it secures.

If you want to secure a page that uses no ADF bindings, you can create an empty page
definition binding file for the page.

Do define custom permissions to render UI component based on the user’s
access rights.
Custom ADF permission classes let you extend ADF Security to define custom actions
for use in grants. This gives you the flexibility to define security policies to manage the
user’s ability to view UI components without having to overload the built-in actions
defined by the ADF resources’ permission classes.

Do define entity object attribute permissions to manage the user’s access rights
to row-level data displayed by UI components.
Entity objects and entity object attributes both define permission classes that let you
define permissions for the read, update, and delete operations that the entity object
initiates on its data source. In the case of these model project components, you must
explicitly grant permissions to an application role in order to opt into ADF Security
authorization. However, once you enable authorization for an entity object, all rows of
data defined by the entity object will be protected by the grant. At this level of
granularity, your table component would render in the web page either with all data
visible or with no data visible—depending on the user’s access rights. As an
alternative to securing the entire collection, you can secure individual columns of data.
This level of granularity is supported by permissions you set on the individual
attributes of entity objects. When entity objects are secured, users may see only
portions of the data that the table component displays.

Advanced Topics and Best Practices

30-86 Fusion Developer's Guide for Oracle Application Development Framework

Do use task flow or page-level permission grants to avoid exposing row-level
create/insert operations to users with view-only permission.
The correct way to control access to a page that should allow only certain users to
update new rows in a table is to use task flow or page-level permission grants.
However, as an alternative, it is possible to secure table buttons corresponding to
particular operations by specifying an EL expression to test the user’s access rights to
view the button. When the custom permission is defined and the
userGrantedPermission expression is set on the Rendered property of the
button, only users with sufficient privileges will see the button. This may be useful in a
case where the user interface displays a page that is not restricted and view-only
permission for row-level data is defined for the entity object. In this case, when viewed
by the user, the Delete button for the editable table associated with the entity object
will appear disabled. However, in the case of an input table, the user interface does
not disable the button for the CreateInsert operation even though the user may not
have update permission.

Do not use JDeveloper as a user identity provisioning tool.
JDeveloper must not be used as an identity store provisioning tool, and you must be
careful not to deploy the application with user identities that you create for testing
purposes. Deploying user identities with the application introduces the risk that
malicious users may gain unintended access. Instead, always rely on the system
administrator to configure user identities through the tools provided by the
domain-level identity management system. You should delete all users and groups
that you create in the jazn-data.xml file before deploying the application.

Do not allow users to access a web page by its file name.
When you deploy the Fusion web application, you should always permit users to
access the web page from a view activity defined in the ADF Controller configuration
file. Do not allow users to access the JSPX file directly by its physical name (for
example, similar to the file name AllDepartments.jspx.

Assuming the view activity is named AllDepartments, then there are two ways to
call the page:

1. localhost:7101/myapp/faces/AllDepartments

2. localhost:7101/myapp/faces/AllDepartments.jspx

The difference is that the call 1) is in the context of the ADF Controller task flow,
which means that navigation on the page will work and any managed beans that are
referenced by the page will be properly instantiated. The call in 2) also serves the page,
however, the page may not function fully. This may be considered a security breach.

To prevent direct JSPX file access, move the JSPX file under the /public_
html/WEB-INF directory so that direct file access is no longer possible. To access a
document, users will have to call its view activity name.

Note that this suggestion does not protect documents that are unprotected in ADF
Security. It only helps to lock down access to the physical file itself.

Thus, the following security guidelines still apply:

1. Apply ADF Security permissions to all JSPX documents associated with view
activities defined in the adfc-config.xml file.

2. Move all JSPX documents in the user interface project under the /public_
html/WEB-INF directory to prevent direct file access.

Advanced Topics and Best Practices

Enabling ADF Security in a Fusion Web Application 30-87

3. Limit the pages in the adfc-config.xml to the absolute minimum and place all
other pages into bounded task flows.

4. Make bounded task flows inaccessible from direct URL access (which is the
default configuration setting for new task flows).

5. Apply ADF Security permissions to bounded task flows.

Advanced Topics and Best Practices

30-88 Fusion Developer's Guide for Oracle Application Development Framework

31

Testing and Debugging ADF Components 31-1

31Testing and Debugging ADF Components

This chapter describes the tools for logging and testing an application that uses Oracle
Application Development Framework (Oracle ADF). It contains debugging
procedures for setting breakpoints using the ADF Declarative Debugger. Finally, it
explains how to write and run regression tests for your ADF Business
Components-based business services.

This chapter includes the following sections:

■ Section 31.1, "Introduction to ADF Debugging"

■ Section 31.2, "Correcting Simple Oracle ADF Compilation Errors"

■ Section 31.3, "Correcting Simple Oracle ADF Runtime Errors"

■ Section 31.4, "Validating ADF Controller Metadata"

■ Section 31.5, "Using the ADF Logger"

■ Section 31.6, "Using the Business Component Browser for Testing and Debugging"

■ Section 31.7, "Using the ADF Declarative Debugger"

■ Section 31.8, "Setting ADF Declarative Breakpoints"

■ Section 31.9, "Setting Java Code Breakpoints"

■ Section 31.10, "Regression Testing with JUnit"

31.1 Introduction to ADF Debugging
Like any debugging task, debugging the web application’s interaction with Oracle
Application Development Framework (Oracle ADF) is a process of isolating specific
contributing factors. However, in the case of web applications, generally this process
does not involve compiling Java source code. Your web pages contain no Java source
code, as such, to compile. In fact, you may not realize that a problem exists until you
run and attempt to use the application. For example, these failures are only visible at
runtime:

■ A page not found servlet error

■ The page is found, but the components display without data

■ The page fails to display data after executing a method call or built-in operation
(like Next or Previous)

■ The page displays, but a method call or built-in operation fails to execute at all

■ The page displays, but unexpected validation errors occur

Correcting Simple Oracle ADF Compilation Errors

31-2 Fusion Developer's Guide for Oracle Application Development Framework

The failure to display data or to execute a method call arises from the interaction
between the web page’s components and the ADF Model layer. When a runtime
failure is observed during ADF lifecycle processing, the sequence of preparing the
model, updating the values, invoking the actions, and, finally, rendering the data
failed to complete.

Fortunately, most failures in the web application’s interaction with Oracle ADF result
from simple and easy-to-fix errors in the declarative information that the application
defines or in the EL expressions that access the runtime objects of the page’s ADF
binding container.

In your databound Fusion web application, you should examine the declarative
information and EL expressions as likely contributing factors when runtime failures
are observed. To understand editing the declarative files, see Section 31.2, "Correcting
Simple Oracle ADF Compilation Errors," and Section 31.3, "Correcting Simple Oracle
ADF Runtime Errors."

One of the most useful diagnostic tools is the ADF Logger. You use this logging
mechanism in JDeveloper to capture runtime traces messages. With ADF logging
enabled, JDeveloper displays the application trace in the Message Log window. The
trace includes runtime messages that may help you to quickly identify the origin of an
application error. Read Section 31.5, "Using the ADF Logger," to configure the ADF
Logger to display detailed trace messages.

Supported Oracle ADF customers can request Oracle ADF source code from Oracle
Worldwide Support. This can make debugging ADF Business Components framework
code a lot easier. Read Section 31.7.1, "Using ADF Source Code with the Debugger," to
understand how to configure JDeveloper to use the Oracle ADF source code.

If the error cannot be easily identified, you can utilize the ADF Declarative Debugger
in JDeveloper to set breakpoints. When a breakpoint is reached, the execution of the
application is paused and you can examine the data that the ADF binding container
has to work with, and compare it to what you expect the data to be. Depending on the
types of breakpoints, you may be able to use the step functions to move from one
breakpoint to another. For more information about the debugger, read Section 31.7,
"Using the ADF Declarative Debugger."

JDeveloper provides integration with JUnit for your Fusion web application through a
wizard that generates regression test cases. Read Section 31.10, "Regression Testing
with JUnit," to understand how to write test suites for your application.

31.2 Correcting Simple Oracle ADF Compilation Errors
When you create web pages and work with the ADF data controls to create the ADF
binding definitions in JDeveloper, the Oracle ADF declarative files you edit must
conform to the XML schema defined by Oracle ADF. When an XML syntax error
occurs, the JDeveloper XML compiler immediately displays the error in the Structure
window.

Although there is some syntax checking during design time, the JDeveloper compiler
is currently limited by an inability to resolve EL expressions. EL expressions in your
web pages interact directly with various runtime objects in the web environment,
including the web page’s ADF binding container. At present, errors in EL expressions
can be observed only at runtime. Thus, the presence of a single typing error in an
object-access expression will not be detected by the compiler, but will manifest at
runtime as a failure to interact with the binding container and a failure to display data
in the page. For information about debugging runtime errors, see Section 31.3,
"Correcting Simple Oracle ADF Runtime Errors."

Correcting Simple Oracle ADF Compilation Errors

Testing and Debugging ADF Components 31-3

Example 31–1 illustrates two simple compilation errors contained in a page definition
file: tru instead of true and id="CountryCodesView1Iterator"/ instead of
id="CountryCodesView1Iterator"/> (that is, the ID is missing a closing angle
bracket).

Example 31–1 Sample Page Definition File with Two Errors

<?xml version="1.0" encoding="UTF-8" ?>
<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
 version="11.1.1.42.54" id="app1page_2PageDef"
 Package="project1.pageDefs">
 <parameters/>
 <executables>
 <iterator Binds="CountryCodesView1" RangeSize="10"
 DataControl="AppModuleDataControl"
 id="CountryCodesView1Iterator"/
 </executables>
 <bindings>
 <action id="Find" RequiresUpdateModel="tru" Action="3"
 IterBinding="CountryCodesView1Iterator"/>

During compilation, the Structure window displays the XML errors in the page, as
shown in Figure 31–1.

Figure 31–1 The Structure Window Displays XML Errors

The Compiler-Log window also displays the compilation errors in the page, as shown
in Figure 31–2.

Tip: The JDeveloper Expression Builder is a dialog that helps you
build EL expressions by providing lists of objects, managed beans,
and properties. It is particularly useful when creating or editing ADF
databound EL expressions because it provides a hierarchical list of
ADF binding objects and their valid properties from which you can
select. You should use the Expression Builder to avoid introducing
typing errors. For details, see Section 12.7, "Creating ADF Data
Binding EL Expressions."

Correcting Simple Oracle ADF Runtime Errors

31-4 Fusion Developer's Guide for Oracle Application Development Framework

Figure 31–2 The Compiler Window Displays XML Compile Errors

To view and correct schema validation errors:
1. From the main menu, choose View > Structure to open the Structure window or

View > Log to open the Log Window.

2. In either window, double-click the error message to open the file in the XML
editor.

3. In the XML editor, locate the highlighted lines.

The highlighted lines will be lines with errors.

4. Correct any errors.

After an error has been corrected, the corresponding error message will be
automatically removed from the Structure window.

5. Optionally, you can recompile the project by choosing Run > Make and checking
to see whether the compiler still produces the error message.

31.3 Correcting Simple Oracle ADF Runtime Errors
Failures of the ADF Model layer cannot be detected by the JDeveloper compiler, in
part because the page’s data-display and method-execution behavior relies on the
declarative ADF page definition files. The ADF Model layer utilizes those declarative
files at runtime to create the objects of the ADF binding container.

To go beyond simple schema validation, you will want to routinely run and test your
web pages to ensure that none of the following conditions exists:

■ The project dependency between the data model project and the user interface
project is disabled.

By default, the dependency between projects is enabled whenever you create a
web page that accesses a data control in the data model project. However, if the
dependency is disabled and remains disabled when you attempt to run the
application, an internal servlet error will be generated at runtime:

oracle.jbo.NoDefException: JBO-25002: Definition
model.DataControls.dcx of type null not found

To correct the error, double-click the user interface project, and select the
Dependencies node in the dialog. Make sure that the ModelProjectName.jpr
option appears selected in the panel.

■ Page definition files have been renamed, but the DataBindings.cpx file still
references the original page definition file names.

While JDeveloper does not permit these files to be renamed within the IDE, if a
page definition file is renamed outside of JDeveloper and the references in the

Correcting Simple Oracle ADF Runtime Errors

Testing and Debugging ADF Components 31-5

DataBindings.cpx file are not also updated, an internal servlet error will be
generated at runtime:

oracle.jbo.NoDefException: JBO-25002: Definition
oracle.<path>.pageDefs.<pagedefinitionName> of type Form
Binding Definition not found

To correct the error, open the DataBindings.cpx file and use the source editor
to edit the page definition file names that appear in the <pageMap> and
<pageDefinitionUsages> elements.

■ The web page file (.jsp or.jspx) has been renamed, but the
DataBindings.cpx file still references the original file name of the same web
page.

The page controller uses the page’s URL to determine the correct page definition
to use to create the ADF binding container for the web page. If the page’s name
from the URL does not match the <pageMap> element of the
DataBindings.cpx file, an internal servlet error will be generated at runtime:

javax.faces.el.PropertyNotFoundException: Error testing
property <propertyname>

To correct the error, open the DataBindings.cpx file and use the source editor
to edit the web page file names that appear in the <pageMap> element.

■ Bindings have been renamed in the web page EL expressions, but the page
definition file still references the original binding object names.

The web page may fail to display information that you expect to see. To correct the
error, compare the binding names in the page definition file and the EL expression
responsible for displaying the missing part of the page. Most likely the mismatch
will occur on a value binding, with the consequence that the component will
appear but without data. Should the mismatch occur on an iterator binding name,
the error may be more subtle and may require deep debugging to isolate the
source of the mismatch.

■ Bindings in the page definition file have been renamed or deleted, and the EL
expressions still reference the original binding object names.

Because the default error-handling mechanism will catch some runtime errors
from the ADF binding container, this type of error can be very easy to find. For
example, if an iterator binding named findUsersByNameIter was renamed in
the page definition file, yet the page still refers to the original name, this error will
display in the web page:

JBO-25005: Object name <iterator> for type Iterator Binding
Definition is invalid

To correct the error, right-click the name in the web page and choose Go to Page
Definition to locate the correct binding name to use in the EL expression.

■ EL expressions were written manually instead of using the expression picker
dialog and invalid object names or property names were introduced.

This error may not be easy to find. Depending on which EL expression contains
the error, you may or may not see a servlet error message. For example, if the error
occurs in a binding property with no runtime consequence, such as displaying a
label name, the page will function normally but the label will not be displayed.
However, if the error occurs in a binding that executes a method, an internal
servlet error javax.faces.el.MethodNotFoundException: methodname
will display. Or, in the case of an incorrectly typed property name on the method

Validating ADF Controller Metadata

31-6 Fusion Developer's Guide for Oracle Application Development Framework

expression, the servlet error
javax.faces.el.PropertyNotFoundException: propertyname will
display.

If this list of typical errors does not help you to find and fix a runtime error, you can
initiate debugging within JDeveloper to find the contributing factor. For an ADF
application, start setting ADF declarative breakpoints to find the problem. Using the
ADF Declarative Debugger to set ADF declarative breakpoints is described in
Section 31.7, "Using the ADF Declarative Debugger," and Section 31.8, "Setting ADF
Declarative Breakpoints." This process involves pausing the execution of the
application as it proceeds through the application and examining data. You can also
use the ADF Declarative Debugger to set Java code breakpoints, as described in
Section 31.9, "Setting Java Code Breakpoints."

31.4 Validating ADF Controller Metadata
Basic validation is performed when ADF Controller retrieves metadata. The most
serious errors, for example, a task flow that is missing a default activity, result in
parsing exceptions.

The enable-grammar-validation setting in adf-config.xml allows you to
validate the grammar in ADF Controller metadata before deploying an application.
When enable-grammar-validation is set to true, ADF Controller metadata is
validated against ADF Controller XSDs. For example, invalid characters in ADF
Controller metadata, such as a slash (/) in a view activity ID, are flagged as exceptions.

By default, enable-grammar-validation is set to false. For performance
reasons, it should be set to true only during application development or when
troubleshooting an application.

31.5 Using the ADF Logger
If you are not able to easily find the error in either your web page or its corresponding
page definition file, you can use the JDeveloper debugging tools to investigate where
your application failure occurs.

Oracle Fusion Middleware components create diagnostic log files in the Oracle
Diagnostic Logging (ODL) format. Log file naming and the format of the contents of
log files conform to an Oracle standard. By default, the diagnostic messages are in text
format. For more information about the ODL format, see the Oracle Fusion Middleware
Administrator's Guide.

You can also set up the Java Logger to display Java diagnostic messages. Whichever
logging format you choose, you can set several levels of logging to control the level
and number of messages that are displayed.

You configure the logging session by editing the logging.xml file using the
overview editor for Oracle Diagnostic Logging Configuration. You can set the logging
level for both persistent and transient loggers and declare handlers for each logger.
Logging configuration can be set at any time, even while the application is running in
JDeveloper.

After you have created a log, you can view and filter the log messages with Oracle
Diagnostic Log Analyzer. This tool allows you to set filters for different log levels,
define message time frames, and search on message text.

You can then use the ADF Declarative Debugger to set breakpoints and examine the
the application. For more information, see Section 31.8, "Setting ADF Declarative
Breakpoints," and Section 31.9, "Setting Java Code Breakpoints."

Using the ADF Logger

Testing and Debugging ADF Components 31-7

31.5.1 How to Turn On Diagnostic Logging
Even before you use the actual debugger, running the application with framework
diagnostics logging turned on can be helpful to see what happens when the problem
occurs. To turn on diagnostic logging, set the Java system property named
jbo.debugoutput to the value console. Additionally, the value ADFLogger lets
you route diagnostics through the standard Logger implementation, which can be
controlled in a standard way through the logging.xml file.

The easiest way to set this system property while running your application inside
JDeveloper is to edit your project properties and in the Run/Debug page, select a run
configuration and click Edit. Then add the string -Djbo.debugoutput=console to
the Java Options field.

31.5.2 How to Create an Oracle ADF Debugging Configuration
ADF Faces leverages the Java Logging API (java.util.logging.Logger) to
provide logging functionality when you run a debugging session. Java Logging is a
standard API that is available in the Java platform at
http://download.oracle.com/javase/1.4.2/docs/guide/util/logging/
overview.html.

To create an ADF Model debugging configuration:
1. In the Application Navigator, double-click the user interface project.

2. In the Project Properties dialog, click the Run/Debug/Profile node and create a
new run configuration.

3. In the Run Configurations list, double-click the new run configuration to edit its
properties.

4. In the Edit Run Configuration dialog, for Launch Settings, enter the following
Java options for the default virtual machine:

-Djbo.debugoutput=adflogger -Djbo.adflogger.level=FINE

Set the level=FINE for detailed diagnostic messages.

To create an ADF view Javascript logging configuration:
1. In the Application Navigator, double-click the application or project web.xml file.

2. In the source editor, add the following elements to the file:

<context-param>
 <param-name>
 oracle.adf.view.rich.LOGGER_LEVEL
 </param-name>
 <param-value>
 FINE
 </param-value>
</context-param>

31.5.3 How to Set ADF Logging Levels
You can use the overview editor for Oracle Diagnostic Logging Configuration to
configure the logging levels specified in the logging.xml file. The file can be
configured before and while the application is running in Integrated WebLogic Server.
The changes will apply without the need to restart the server.

Using the ADF Logger

31-8 Fusion Developer's Guide for Oracle Application Development Framework

When Integrated WebLogic Server is running, you can define both persistent and
transient loggers. When Integrated WebLogic Server is not running, you can only
define persistent loggers. The transient loggers will last only for the session and will
not be entered in logging.xml. If the server is not running, you must explicitly save
the configuration changes to logging.xml for the updates to take effect in the next
server run.

You can access the overview editor for Oracle Diagnostic Logging Configuration from
the Application Server Navigator or from the Log window, which is shown in
Figure 31–3.

Figure 31–3 Log Window with Toolbar

However, while the server is running, when you access the editor via the Log window
menu, then the editor has the ability to add transient loggers.

Figure 31–4 shows the Oracle Diagnostic Logging Configuration while the server is
running.

Using the ADF Logger

Testing and Debugging ADF Components 31-9

Figure 31–4 Overview Editor for Oracle Diagnostic Logging Configuration

You use JDeveloper menu commands to open the logging.xml file and launch the
overview editor for Oracle Diagnostic Logging Configuration. However, you may find
the following information about the location of the file useful.

If you are using Integrated WebLogic Server in JDeveloper on the Windows platform,
you can find the logging.xml file in a location similar to:

C:\Documents and
Settings\username\ApplicationData\JDeveloper\latest_system_
folder\DefaultDomain\config\fmwconfig\servers\DefaultServer

The log files for Integrated WebLogic Server are in a location similar to:

C:\Documents and
Settings\username\ApplicationData\JDeveloper\latest_system_
folder\DefaultDomain\servers\DefaultServer\logs

The log files for a standalone WebLogic Server instance are in a location similar to:

$domain_home/servers/your_servername/logs

Note: You can declare and add log handler definitions by clicking
the Source tab and entering them in the XML editor.

Using the ADF Logger

31-10 Fusion Developer's Guide for Oracle Application Development Framework

You can configure logging levels before a test run from the Application Server
Navigator or during a debug session from the Log window toolbar.

To configure the log levels:
1. In the Application Server Navigator, right-click IntegratedWebLogicServer and

choose Configure Oracle Diagnostic Logging for server name.

Or, from the Log window Action menu, choose Configure Oracle Diagnostic
Logging.

2. In the editor for Oracle Diagnostics Logging Configuration, click the Overview
tab, and select ODL Log Levels or Java Log Levels for the logger type you want to
view.

3. If you want to see persistent loggers only, select Hide Transient Loggers.

4. To add a logger:

a. If the server is running, click the Add icon dropdown menu and choose Add
Persistent Logger or Add Transient Logger. If the server is not running, click
Add to add a persistent logger. You cannot add a transient logger.

b. In the Add Logger dialog, enter a logger name.

c. Select the logging level.

d. Click OK.

5. For any logger, including a newly created logger, you can specify its handlers by
selecting from a list of available handlers by clicking the Add icon in the Handler
Declarations section.

Or, you can select Use Parent Handlers to assign its parent’s handler to the logger.
By default, a logger uses its parent’s handler.

31.5.4 How to Use the Log Analyzer to View Log Messages
You can use Oracle Diagnostic Log Analyzer to view the log entries of a log file. The
log analyzer allows you to filter the entries by log level, entry type, log time, and entry
content (using a query panel). You can also order the messages and show and hide
columns for better viewing.

Figure 31–5 shows Oracle Diagnostic Log Analyzer set to view ODL Log levels.

Note: You can declare and add log handler definitions by clicking
the Source tab and entering them in the XML editor.

Using the ADF Logger

Testing and Debugging ADF Components 31-11

Figure 31–5 Oracle Diagnostic Log Analyzer Displays ODL Log Messages

You can also use the log analyzer on log files created in other test runs. For instance,
you can analyze the log sent to you by another developer for another application.

31.5.4.1 Viewing Diagnostic Messages in the Log Analyzer
You can configure logging levels before a test run from the Application Server
Navigator or during a debug session from the Log window toolbar. The level you
specify will determine the type and quantity of log messages.

In the case of ADF events, all messages are generated for the ODL log at the level
Notification or for the Java log at the level Info. Fewer ADF messages will be
generated at the Incident Error/Severe and Error/Warning levels.

After you select the log level for the messages you wish to view, you can use the
Search panel of the By Log Message page to filter the messages to display from the log
file.

You can start the log analyzer before a test run from the Tools menu or during a
debug session from the log window toolbar.

Before you begin:
It may be helpful to have an understanding of logging. For more information, see
Section 31.5, "Using the ADF Logger."

Complete these tasks:

1. Enable logging, as described in Section 31.5.1, "How to Turn On Diagnostic
Logging."

2. Set logging levels, as described in Section 31.5.3, "How to Set ADF Logging
Levels."

3. Create a log file, either from your test run or from another source.

Note: For further details about search criteria that you can specify to
search on ADF-specific messages, see Section 31.5.4.3, "Sorting
Diagnostic Messages By ADF Events."

Using the ADF Logger

31-12 Fusion Developer's Guide for Oracle Application Development Framework

To start the log analyzer:
1. From the main menu, choose Tools > Oracle Diagnostic Log Analyzer.

Or, from the Log window Action menu, choose Analyze Log and then either
Current in Console or Open Selected (to browse log files in the server log
directory).

2. In the editor for Oracle Diagnostic Log Analyzer, click the By Log Message tab.

3. In the By Log Message page, navigate to the log file or enter the path and name of
the log file.

4. From the dropdown list, select either ODL Log Level or Java Log Level.

5. Select the corresponding checkbox for each type of log entry you want to view.
You must select at least one type.

The available ODL log level types are:

■ Incident Error

■ Error

■ Warning

■ Notification - corresponds to ADF event messages

■ Trace

■ Unknown.

The available Java log level types are:

■ Severe

■ Warning

■ Info - corresponds to ADF event messages

■ Config

■ Fine

■ Finer

■ Finest

■ Unknown

6. Specify a time period for the entries you want to view. You can select the most
recent period or a range.

7. To filter the results, use the Search panel to query the log for a text pattern. For
additional Search panels, click Add. The supported search criteria include:

■ Detail: Filters text in statements from the stack where the method was
invoked.

■ Message: Filters text in the logged messages.

■ ADF Context Data: Filters the log for data related to ADF lifecycle phase
names, view object names, view object query statements, data control names,

Tip: The Choose Log File dialog helps you to navigate to the
directory that contains the log files generated by JDeveloper. Click the
Browse Log Files icon next to the Log text field, and then click the
Server Logs icon from the scroll list.

Using the ADF Logger

Testing and Debugging ADF Components 31-13

binding container names, and iterator binding names logged during the
execution of ADF events.

■ Source Method: Filters the log by the method where the message is logged.
For example, you can filter on the method execute to view all messages
logged for view object query execution or ADF lifecycle phase execution.

■ Application: Filters the log by the application name where the message is
logged. This is useful when the application is running in a composite
application and you want to view messages for a specific application.

■ Source Class: Filters the log by the fully qualified class name of the method
where the message is logged. To see more messages, enter a partial package
name. For example, you can enter the partial package name oracle.adf or
the full package name oracle.jbo to filter for all classes related to Oracle
ADF.

■ Module: Filters the log by the fully qualified package name of the class where
the message is logged. This is same package as the source class.

■ Message Id: Filters the log by the ID of the logged messages. Many messages
share the same ID. For example, message ID ADFC-52008 might have four
INFO messages and one Warning message. You can select Group by Id in the
log analyzer Results panel to group messages by their common ID.

8. To initiate the filters and display the log messages, click Search.

9. To order the results by the message ID, select the Group by Id checkbox.

10. To group the messages by time period or by request, in the Related column, select
either Related by Time or Related by Request.

11. To show or hide columns in the Results section, click the dropdown list to the
right of the column headers and select among the list of displayed columns to
change the visibility of a column.

31.5.4.2 Using the Log Analyzer to Analyze the ADF Request
Because Oracle instrumented the Oracle ADF source code to generate log messages
during the execution of the ADF lifecycle phases, you can use the log analyzer to
investigate the details of the active (or previous) page request in your running
application. Specifically, the By ADF Request page of the log analyzer lets you view
ADF event messages in a hierarchical list, organized by the sequence of their
execution. It also provides a graphical representation of the duration of each event.
When you run your application and start the log analyzer with ADF logging
configured, you can use this page to quickly identify whether a component of your
application is contributing to a performance bottleneck due to unusually long
execution times.

Note: In contrast to the By Log Message page, the By ADF Request
page of the log analyzer displays a hierarchical view of ADF event
messages. The difference between these two pages is that the By ADF
Request page focuses only on ADF page requests made when a page
or region is submitted, and it provides the option to examine logged
messages from multiple ADF requests. For details about the ADF page
lifecycle, see Chapter 21, "Understanding the Fusion Page Lifecycle."

Using the ADF Logger

31-14 Fusion Developer's Guide for Oracle Application Development Framework

You can use the Search panel of the By ADF Request page to display one or more
specific requests from the log file. The Search panel lets you combine any of the
following search criteria:

■ The number of requests to display

■ The timestamp for the request recorded in the log

■ The logged-in user name, application name in a composite application, or page
name as displayed in the request header

If you search on any of these criteria before the page request is complete, the ADF Web
Request panel in the log analyzer displays a yellow triangle symbol to indicate that the
phase has not yet completed. Figure 31–6 shows the icon for the JSF lifecycle Render
Response phase and the root node for the overall request. To update the ADF Web
Request panel with the latest information from the log, you can click on the refresh
icon in the panel header.

Figure 31–6 Oracle Diagnostic Log Analyzer Displays ADF Web Request in Progress

After the request is completed, the log analyzer displays duration bar graphs for each
phase to show the percentages of request time that each event contributed to the
overall page request. Figure 31–7 shows the ADF Web Request panel with the JSF
lifecycle Render Response phase displaying 34015 milliseconds (34 seconds) for the
duration of this portion of the overall page request. This example depicts an usually
long duration for the render phase to illustrate how the bar graph can help you to
identify a performance bottleneck that may occur during the execution of a page
request. The bar graph for the root node of the request event hierarchy (ADF web
request) displays the total execution time.

Note: The two colors present in the Percentage Request Time bar
graph (green and orange) indicate which portion of the request’s
execution time resulted from ADF source code that was instrumented
to generate ADF event messages and which portion resulted from
ADF source code that is uninstrumented (and therefore cannot
generate ADF event messages). Additionally, note that the individual
phases of the request do not sum to equal the total request time. This
is due to the fact that only the useful phases of the lifecycle are
represented in the log analyzer.

Using the ADF Logger

Testing and Debugging ADF Components 31-15

Figure 31–7 Oracle Diagnostic Log Analyzer Displays Completed ADF Web Request

To examine the request in more detail, you can expand the tree for any ADF lifecycle
node to further investigate where in the application the performance bottleneck
occurred. Drilling down and then selecting the ADF event node in the ADF Web
Request panel gives you details about the component associated with each ADF event.
For instance, expanding the JSF lifecycle render response phase node displays all
ADF events generated during that phase. Figure 31–8 shows the JSF lifecycle render
response phase node expanded with a long request duration bar graph for the Execute
iterator binding node and the Execute query node. The Execute query node has been
selected to reveal detailed ADF data in the bottom portion of the panel, including the
view object’s name and query statement. By drilling down and selecting the ADF
event with the long execution time as indicated by the bar graph, you can obtain, for
example, the name of the view object in the data model project that should be tuned
for improved performance.

Figure 31–8 Oracle Diagnostic Log Analyzer Displays ADF Event Messages with ADF
Data

Using the ADF Logger

31-16 Fusion Developer's Guide for Oracle Application Development Framework

Before you begin:
It may be helpful to have an understanding of logging. For more information, see
Section 31.5, "Using the ADF Logger."

Complete these tasks:

1. Enable logging, as described in Section 31.5.1, "How to Turn On Diagnostic
Logging."

2. Set logging levels, as described in Section 31.5.3, "How to Set ADF Logging
Levels."

To log ADF event messages, do not configure an ODL log level that is more
restrictive than Notification or a Java log level that is more restrictive than
Info for the following packages:

■ oracle.adf will log events generated by source code for the ADF Model
data binding layer and ADF Controller source code.

■ oracle.jbo will log events generated by source code executed for ADF
Business Components.

■ oracle.adfinternal will log events generated by source code executed
from Oracle ADF internal classes.

3. Create a log file, either from your test run or from another source.

To display ADF request messages in the log analyzer:
1. From the main menu, choose Tools > Oracle Diagnostic Log Analyzer.

Or, from the Log window Action menu, choose Analyze Log and then either
Current in Console or Open Selected (to browse log files in the server log
directory).

2. In the editor for Oracle Diagnostic Log Analyzer, click the By ADF Request tab.

3. In the By ADF Request page, specify how many of the most recent request you
want to display.

The default displays only the most recent request.

4. Specify a time period for the entries you want to view. You can select the most
recent period or a range.

5. To filter the request to display, use the Search panel to query the log for a text
pattern. For additional Search panels, click Add. The supported search criteria
include:

■ The logged-in user name. This can be a specific user or anonymous for
unauthenticated users.

■ The application name. This is useful when the application is running in a
composite application and you want to view messages for a specific
application.

■ A JSF page name without the file name extension. The log records the page
name in the request header. If the submitted page is orderSummary.jspx,
the logger records orderSummary in the request header. The request header

Tip: The default log level for the Root Logger displayed by the
overview editor for Oracle Diagnostics Logging Configuration
ensures that ADF event messages are logged.

Using the ADF Logger

Testing and Debugging ADF Components 31-17

also appears in the collapsible ADF Web Request panel header of the By ADF
Request page.

6. To initiate the filters and display the ADF event messages for the ADF request,
click Search.

7. In the ADF Web Request panel, expand the completed ADF request and look for
ADF events that display long execution times as indicated by the Request Time
bar graphs.

If the page request has not completed, the yellow triangle symbols are displayed
in the ADF Web Request panel. Wait a moment and then click the Refresh icon in
the ADF Web Request panel.

8. Select the desired ADF event and examine the ADF Data panel for details about
the ADF component associated with the ADF event.

9. Examine the component in your application and determine whether optimization
is possible.

31.5.4.3 Sorting Diagnostic Messages By ADF Events
Oracle instrumented the Oracle ADF source code to generate log messages during the
execution of the ADF lifecycle phases and during operations executed in the ADF
Model data binding layer, ADF Controller source, and ADF Business Components
source. Combined, the log analyzer refers to these messages as ADF events. You can
use the log analyzer to investigate ADF events in your running application. The By
Log Message page of the log analyzer lets you view ADF event messages in a flat list,
organized by time of execution, with the option to switch to the By ADF Request page
to view the ADF events in a hierarchical list, organized by the sequence of their
execution.

ADF event messages contain useful information that helps you identify which ADF
components in your application generated the event. For example, you can search the
log for ADF event messages to identify the components related to displaying data in
the page, executing queries, or initiating actions:

■ Executing iterator binding: Displays the names of the iterators executed to manage
displaying data in the page. This can be useful for diagnosing slow query updates.

■ Execute query: Displays the name of the view object associated with the executed
query. This can be useful when you want to view the query statement, bind
parameters, and name of the view object.

■ Executing method binding: Displays the names of the Java methods executed on
the bound data source. This can be useful for diagnosing slow method execution.

After you display an ADF event message in the log analyzer, you can organize the
event in the context of other logged messages. You can select options from the Related
column to display:

■ All messages leading up to the ADF event (related by time)

■ All messages in the same web request as the ADF event (related by request)

■ Only ADF event messages in the same web request (related by ADF request)

Tip: The Related by ADF Request view displays detailed ADF data
for the ADF event messages. This is the view to use, for example,
when you want to display the query statement associated with the
Execute query message.

Using the ADF Logger

31-18 Fusion Developer's Guide for Oracle Application Development Framework

Figure 31–9 shows the log analyzer search result for the ADF event message Create
Application Module. The Results panel displays all messages that match the
search criteria and the bottom panel displays detailed information about the
component.

Figure 31–9 Oracle Diagnostic Log Analyzer Displays ADF Event Messages

When you select Related by ADF Request in the Related column of the Results panel,
the log analyzer switches to display the By ADF Request page with the ADF event
messages arranged hierarchically to show their execution dependencies. The By ADF
Request page of the log analyzer is the preferred way to diagnose performance issues.
For details about the By ADF Request page, see Section 31.5.4.2, "Using the Log
Analyzer to Analyze the ADF Request." In the By Log Message page, the elapsed time
is information that you can leave visible or hide from the Results panel.

Before you begin:
It may be helpful to have an understanding of logging. For more information, see
Section 31.5, "Using the ADF Logger."

Complete these tasks:

1. Enable logging, as described in Section 31.5.1, "How to Turn On Diagnostic
Logging."

2. Set logging levels, as described in Section 31.5.3, "How to Set ADF Logging
Levels."

To log ADF event messages, do not configure an ODL log level that is more
restrictive than Notification or a Java log level that is more restrictive than
Info for the following packages:

■ oracle.adf will log events generated by source code for ADF Model data
binding layer and ADF Controller source code.

■ oracle.jbo will log events generated by source code executed for ADF
Business Components.

Using the ADF Logger

Testing and Debugging ADF Components 31-19

■ oracle.adfinternal will log events generated by source code executed
from Oracle ADF internal classes.

3. Create a log file, either from your test run or from another source.

To display messages related by ADF events:
1. From the main menu, choose Tools > Oracle Diagnostic Log Analyzer.

Or, from the Log window Action menu, choose Analyze Log and then either
Current in Console or Open Selected (to browse log files in the server log
directory).

2. In the editor for Oracle Diagnostic Log Analyzer, click the By Log Message tab.

3. In the By Log Message page, select the desired logger type, log levels, and log
time.

To search the log for ADF event messages, you must minimally select log level
Notification (for ODL log level) or Info (for Java log level).

4. Choose the search criteria Message and Contains, and then enter any of the
following ADF event messages and click Search.

You can also filter the log on these additional ADF event messages:

■ Executing iterator binding - this can be useful for diagnosing slow query
updates.

■ Executing method binding - this can be useful for diagnosing slow method
execution.

■ Execute query - this can be useful when you want to view the query statement,
bind parameters, and name of the view object.

■ Refreshing binding container

■ Attaching an iterator binding to a datasource

■ Converting rows into hierarchical nodes

■ Estimated row count

■ Get LOV list

■ Filter LOV list

■ Validate Entity

■ Lock Entity's Parent

■ Lock Entity

■ Before posting the entity's changes

■ Posting the entity's changes

■ Posting in batches

■ Before committing the entity's changes

■ After committing the entity's changes

■ Before rolling back the entity's changes

Tip: The default log level for the Root Logger displayed by the
overview editor for Oracle Diagnostics Logging Configuration
ensures ADF event messages are logged.

Using the ADF Logger

31-20 Fusion Developer's Guide for Oracle Application Development Framework

■ After rolling back the entity's changes

■ Entity notifying an event

■ Entity notification name

■ Removing Entity

■ Updating audit columns

■ Applying Effective Date change

■ Entity DML

■ Entity read all attributes

■ Create Application Module

■ Create nested Application Module

■ Passivating Application Module

■ Activating Application Module

■ Establish database connection

■ Commit transaction

■ Rollback transaction

■ Validate transaction

■ Validate value

Examine the bottom portion of the Results panel for the ADF event information.

5. To view a hierarchical sequence of ADF events, with the desired ADF event
message selected in the Results panel, choose Related - Related By ADF Request.

The editor for Oracle Diagnostic Log Analyzer displays the By ADF Request page
for the selected ADF event. Examine the bottom portion of the Results panel for
additional ADF data for the ADF event. For example, you can see the query
statement associated with the Execute query message in the ADF Data area of
the Results panel.

31.5.5 What You May Need to Know About the Logging.xml File
By default, the level is set to INFO for all packages of Oracle ADF. Set level="FINE"
for detailed logging diagnostics.

For the ADF view layer packages oracle.adf.view.faces and
oracle.adfinternal.view.faces, edit these elements:

<logger name="oracle.adf" level="FINE"/>
<logger name="oracle.adfinternal" level="FINE"/>

For the ADF Model layer packages, edit these elements:

<logger name="oracle.adf" level="FINE"/>
<logger name="oracle.jbo" level="FINE"/>

For the ADF Controller layer packages, edit these elements:

<logger name="oracle.adf.controller" level="FINE"/>
<logger name="oracle.adfinternal.controller" level="FINE"/>

Alternatively, you can create a debug configuration in JDeveloper that you can choose
when you start a debugging session.

Using the ADF Logger

Testing and Debugging ADF Components 31-21

Example 31–2 shows the portion of the logging.xml file where you can change the
granularity of the log messages. Note in the example that the log for
oracle.adf.faces has been changed to FINE to display more messages.

Example 31–2 Sample Section of the logging.xml Configuration File

</logging_configuration>
...
 <loggers>
 <logger name="oracle.adf" level="INFO"/>
 <logger name="oracle.adf.faces" level="FINE"/>
 <logger name="oracle.adf.controller" level="INFO"/>
 <logger name="oracle.bc4j" level="INFO"/>
 <logger name="oracle.adf.portal" level="INFO"/>
 <logger name="oracle.vcr" level="INFO"/>
 <logger name="oracle.portlet" level="INFO"/>
 <logger name="oracle.adfinternal" level="INFO"/>
 <logger name="oracle.adfdt" level="INFO"/>
 <logger name="oracle.adfdtinternal" level="INFO"/>
 </loggers>
</logging_configuration>

For the latest information about the different levels of the Java Logging system, go to
http://www.oracle.com/technetwork/java/index.html. Normally, the Java
logging system supports the following levels:

■ SEVERE

■ WARNING

■ INFO

■ CONFIG

■ FINE

■ FINER

■ FINEST

31.5.6 What You May Need to Know About ADF Logging and Oracle WebLogic Server
After you have deployed the Fusion web application to Oracle WebLogic Server, the
operations performed by the application are logged directly to the Managed Server
where the application is running:

DOMAIN_HOME/servers/server_name/logs/server_name-diagnostic.log

The log files for the different Managed Servers are also available from the Oracle
WebLogic Server Administration Console. To verify the logs, access the Oracle
WebLogic Server Administration Console http://<admin_server_
host>:<port>/console and click Diagnostics-Log Files.

This log's granularity and logging properties can be changed using Oracle Enterprise
Manager Fusion Middleware Control (Fusion Middleware Control). Fusion
Middleware Control is a web browser-based, graphical user interface that you can use
to monitor and administer a farm.

When the Fusion web application is deployed to a high availability environment, you
can receive warning diagnostic messages specific to high availability by setting the
level to FINE.

Using the Business Component Browser for Testing and Debugging

31-22 Fusion Developer's Guide for Oracle Application Development Framework

For details about using Fusion Middleware Control to change the log settings of
Managed Servers and Oracle ADF, see the Oracle Fusion Middleware Administrator's
Guide.

31.6 Using the Business Component Browser for Testing and Debugging
The Business Component Browser (also referred to as the Browser) is a Java
application that you launch from JDeveloper when you want to interact with the
business objects of the ADF Business Components data model project. The Business
Component Browser runs outside of JDeveloper and provides a full UI for testing and
examining the data model project. You can run the Browser to examine the view
instances of the ADF application module, navigate the hierarchical relationship of
view links, and execute custom methods from the application module’s client
interface, view object interface, and view row interface. The Browser also interacts
with the ADF Declarative Debugger to allow you to set breakpoints on the custom
methods of these interfaces.

Additionally, the Browser simulates many features that the user interface might
expose by allowing you to view, insert, and update the contents of business objects in
the database specified by the application module’s configuration file (bc4j.xcfg).
Specifically, you can use the Browser to verify many aspects of the data model design,
including master-detail relationships between view instance, view instances and their
attributes, view instance query result sets, search forms using view criteria, validation
rules defined for attribute values, and dropdown lists on LOV-defined attributes (list
of values). For more information about ways to interact with the Browser to test your
business objects, see Section 6.3, "Testing View Object Instances Using the Business
Component Browser." Additional information about testing with the Business
Component Browser also appears in sections specific to each business object
throughout the chapters in the "Building Your Business Services" part of this book.

31.6.1 How to Run in Debug Mode and Test with the Business Component Browser
Often you will find it useful to analyze and debug custom code in the service methods
of your client interface implementation classes. When you use the Business
Component Browser, you can do this without needing to run the application with the
user interface. You can use the Business Component Browser as a testing tool to
complement your debugging process.

Before you begin:
Set breakpoints in the custom methods of your client interface, as described in
Section 31.8, "Setting ADF Declarative Breakpoints."

To launch the Business Component Browser and go into debug mode:
1. In the Application Navigator, right-click the desired application module and

choose Debug.

2. In the Business Component Browser, open the method testing panel for the
desired client interface, as described in Section 9.9.4, "How to Test Custom Service
Methods Using the Business Component Browser."

3. In the method panel, select the desired method from the dropdown list, enter
values to pass as method parameters, and click Execute.

Return to JDeveloper to step through your code using the ADF Declarative
Debugger. When you complete method execution, the method panel displays the
return value (if any) and test result. The result displayed in the Business

Using the Business Component Browser for Testing and Debugging

Testing and Debugging ADF Components 31-23

Component Browser will indicate whether or not the method executed
successfully.

31.6.2 How to Run the Business Component Browser and Test with a Specific
Configuration

When you right-click the application module in the Application Navigator and choose
Run or Debug, JDeveloper will run the Business Component Browser using the
default configuration defined for the application module. If you want to test your
business components with a different application module configuration (which can
specify a different data source and its own set of runtime parameters), you can do so
from the Configurations page in the overview editor for the application module.

To run the Business Component Browser with a specific configuration:
1. In the Application Navigator, double-click the application module that you want

to test.

2. In the overview editor, click the Configurations navigation tab, and select the
configuration from the list.

Although the metadata changes that you make are not involved in compiling the
project, the compile step is necessary to copy the metadata to the class path and to
allow the Business Component Browser to reload it.

3. Right-click the selected configuration and choose Run or Debug to launch the
Business Component Browser.

31.6.3 What Happens When You Run the Business Component Browser in Debug
Mode

JDeveloper lets you run the Business Component Browser in two modes: either in
debug mode or non-debug mode. When run in debug mode, the Browser interacts
with the ADF Declarative Debugger so that you execute custom methods using
breakpoints you insert in custom code of the client interfaces. For instance, if you set a
breakpoint on a method in the client interface and execute that method in the Browser,
then in debug mode, you can step through the code before the Browser returns a
success/fail result. In non-debug mode, the Browser will immediately return a result
to indicate whether the method executed successfully. Additionally, in either debug or
non-debug mode, the Browser can display runtime artifacts from the system catalog
created at runtime for the application module.

31.6.4 How to Verify Runtime Artifacts in the Business Component Browser
When you want to run the Business Component Browser, but do not require the use of
the ADF Declarative Debugger you can display information about the runtime
artifacts from the application module’s system catalog. The system catalog displays
business object metadata and other information that you may find useful when you
need to compare business objects.

To launch the Business Component Browser without debugging:
1. In the Application Navigator, right-click the desired application module and

choose Run.

2. In the Business Component Browser, choose Create - Create SysCat AM.

3. In the data model tree, expand the SysCatAMDefs, right-click ViewDefs, and
choose Show Table.

Using the ADF Declarative Debugger

31-24 Fusion Developer's Guide for Oracle Application Development Framework

4. In the data viewer, scroll vertically to locate the desired view instance in the
SCName (system catalog name) field.

Exposing the system catalog in the Browser allows access to metadata and other
information specific to the runtime objects without running the debugger. For
example, you can check whether a view instance has a custom Java
implementation class or not.

31.6.5 How to Refresh the Business Component Browser with Application Changes
The Business Component Browser is a highly interactive tool. When you run the
Browser and determine a change is needed in the data model project, you can return to
JDeveloper to edit the desired application module instances and refresh the Business
Component Browser data model to display the changes. This way you can verify your
changes without needing to rerun the Browser.

To reload application metadata in the Business Component Browser:
1. In the data model project, edit your business objects and save the changes in the

JDeveloper.

2. In the Application Navigator, recompile the data model project. For example, you
can right-click the data model project in the Application Navigator and choose
Make to complete the recompile step.

Although the metadata changes that you make are not involved in compiling the
project, the compile step is necessary to copy the metadata to the class path and to
allow the Business Component Browser to reload it.

3. In the Business Component Browser, in the toolbar, click Reload application
metadata.

Alternatively, you can choose Reload Application from the File menu of the
Business Component Browser.

31.7 Using the ADF Declarative Debugger
The ADF Declarative Debugger provides declarative breakpoints that you can set at
the ADF object level (such as task flows, page definition executables, method and
action bindings, ADF lifecycle phases), as well as standard Java breakpoints. ADF
declarative breakpoints provide a high-level object view for debugging ADF
applications. For example, you can break before a task flow activity to see what
parameters would be passed to the task flow, as shown in Figure 31–10. To perform the
same function using only Java breakpoints would require you to know which class or
method to place the breakpoint in. ADF declarative breakpoints should be the first
choice for ADF applications.

Using the ADF Declarative Debugger

Testing and Debugging ADF Components 31-25

Figure 31–10 ADF Declarative Breakpoint on a Task Flow Activity

The ADF Declarative Debugger also supports standard Java code breakpoints. You
can set Java code breakpoints in any ADF application. You may be able to use Java
code breakpoints when an ADF declarative breakpoint does not break in the place you
want.

The ADF Declarative Debugger is built on top of the Java debugger, so it has the
features and behaviors of the Java debugger. But instead of needing to know the Java
class or method, you can set ADF declarative breakpoints in visual editors.

The ADF Declarative Debugger provides standard debugging features such as the
ability to examine variable and stack data. When an application pauses at any
breakpoint (ADF Declarative or Java code breakpoint), you can examine the
application status using a variety of windows. You can check where the break occurs
in the Breakpoints window. You can check the call stack for the current thread using
the Stack window. When you select a line in the Stack window, information in the
Data window, Watches window, and all Inspector windows is updated to show
relevant data. You can use the Data window to display information about arguments,
local variables, and static fields in your application.

The ADF Structure window displays the runtime structure of the project. The ADF
Data window automatically changes its display information based on the selection in
the ADF Structure window. For example, if a task flow node is selected, the ADF Data
window displays the relevant debugging information for task flows, as shown in
Figure 31–11.

Figure 31–11 ADF Structure Window and ADF Data Window for a Task Flow Selection

You can mix ADF declarative breakpoints with Java code breakpoints as needed in
your debugging session. Although you can use step functions to advance the
application from Java code breakpoint to Java code breakpoint, the step functions for

Using the ADF Declarative Debugger

31-26 Fusion Developer's Guide for Oracle Application Development Framework

ADF declarative breakpoints have more constraints and limitations. For more
information about using step functions on ADF declarative breakpoints, see
Table 31–3.

For information on how to use ADF declarative breakpoints, see Section 31.8, "Setting
ADF Declarative Breakpoints."

For information on how to use Java breakpoints on classes and methods, see
Section 31.9, "Setting Java Code Breakpoints."

In a JSF application (including Fusion web applications), when a breakpoint breaks,
you can use the EL Evaluator to examine the value of an EL expression. The EL
Evaluator has the browse function that helps you select the correct expression to
evaluate. For more information, see Section 31.7.4, "How to Use the EL Expression
Evaluator."

Whether you plan to use ADF declarative breakpoints or Java breakpoints, you can
use the ADF Declarative Debugger with Oracle ADF source code. You can obtain
Oracle ADF source code with Debug libraries. For more information about loading
source code. see Section 31.7.1, "Using ADF Source Code with the Debugger."

31.7.1 Using ADF Source Code with the Debugger
If you have valid Oracle ADF support, you can obtain complete source code for Oracle
ADF by opening a service request with Oracle Worldwide Support. You can request a
specific version of the Oracle ADF source code. You may be given download and
password information to decrypt the source code ZIP file. Contact Oracle Worldwide
Support for more information.

Adding Oracle ADF source code access to your application debugging session will:

■ Provide access to the JDeveloper Quick Javadoc feature in the source editor.
Without the source code, you will have only standard Javadoc.

■ Enhance the use of Java code breakpoints by displaying the Oracle source code
that’s being executed when the breakpoint is encountered. You can also set
breakpoints easier by clicking on the margin in the source code line you want to
break on. Without the source code, you will have to know the class, method, or
line number in order to set a breakpoint within Oracle code.

■ For Java code breakpoints set within the source code, you will be able to see the
values of all local variables and member fields in the debugger.

The ADF source code ZIP file may be delivered within an encrypted "outer" ZIP file to
protect its contents during delivery. The "outer" ZIP name is sometimes a variant of
the service request number.

After you have received or downloaded the "outer" ZIP, unzip it with the provided
password to access the actual source code ZIP file. The ADF source code ZIP name
should be a variant of the ADF version number and build number. For example, the
ADF source ZIP may have a format similar to adf_vvvv_nnnn_source.zip, where
vvvv is the version number and nnnn is the build number.

After you have access to the source code ZIP, extract its contents to a working
directory.

31.7.2 How to Set Up the ADF Source User Library
You create a name for the source user library and then associate that name with the
source zip file.

Using the ADF Declarative Debugger

Testing and Debugging ADF Components 31-27

To add the ADF source zip file to the user library
1. From the main menu, choose Tools > Manage Libraries.

2. In the Manage Libraries dialog, with the Libraries tab selected, click New.

3. In the Create Library window, enter a library name for the source that identifies
the type of library.

4. Select the Source Path node in the tree structure. Click Add Entry.

5. In the Select Path Entry window, browse to the directory where the file was
extracted and select the source zip file. Click Select.

6. In the Create Library window, verify that the source path entry has the correct
path to the source zip file, and deselect Deployed by Default. Click OK.

7. Click OK.

31.7.3 How to Add the ADF Source Library to a Project
After the source library has been added to the list of available user libraries, add it to
the project you want to debug.

To add the ADF source zip file to the project:
1. In the Application Navigator, double-click the project or right-click the project and

select Project Properties.

2. In the Project Properties dialog, select Libraries and Classpaths.

3. Click Add Library.

4. In the Add Library dialog, under the Users node, select the source library you
want to add and click OK.

The source library should appear in the Classpath Entries section in the Project
Properties dialog.

5. Click OK.

31.7.4 How to Use the EL Expression Evaluator
When the application is paused at a breakpoint, you can use the EL expression
evaluator to enter an EL expression for evaluation. You can enter arbitrary EL
expressions for evaluation within the current context. If the EL expression no longer
applies within the current context, the value will be evaluated to null.

The EL Evaluator is different from the Watches window in that EL evaluation occurs
only when stopped at a breakpoint, not when stopped at subsequent debugging steps.

The EL Evaluator is available for debugging any JSF application.

Note: Do not enter a value for the class path. You need to provide a
value only for the source path.

Caution: Be wary when you are evaluating EL expressions that you
do not indirectly change application data and therefore the behavior
of the application. For example, if you evaluate #{foo.bar}, the
corresponding getBar() method modifies application data.

Using the ADF Declarative Debugger

31-28 Fusion Developer's Guide for Oracle Application Development Framework

To use the EL Evaluator:
1. Set a breakpoint in the application.

The application must be a JSF application. It does not need to be an ADF
application.

2. Start the debugging process.

You can:

■ From the main menu, choose Run > Debug.

■ From the Application Navigator, right-click the project, adfc-config.xml,
faces-config.xml, task flow, or page and choose Debug.

■ From the task flow diagrammer, right-click an activity and choose Debug.
Only task flows that do not use page fragments can be run.

3. When the breakpoint is reached, the EL Evaluator should appear as a tab in the
debugger window area. Click the EL Evaluator tab to bring it forward. If it does
not appear, choose View > Debugger > EL Evaluator from the main menu.

4. Enter an EL expression in the input field.

When you click in the field after entering #{ or after a period, a discovery function
provides a selectable list of expression items, as shown in Figure 31–12.
Auto-completion will be provided for easy entry. You can evaluate several EL
expressions at the same time by separating them with semicolons.

Figure 31–12 Using the Discovery Function of the EL Evaluator

5. When you finish entering the EL expression, click Evaluate and the expression is
evaluated, as shown in Figure 31–13.

Note: Be sure that the application has actually hit a breakpoint by
checking the Breakpoints window or checking that there is an
Execution Point icon (red right arrow) next to the breakpoint.
Depending on where you set the breakpoint, an application may
appear to be stopped when in fact it is waiting for user input at the
page.

Setting ADF Declarative Breakpoints

Testing and Debugging ADF Components 31-29

Figure 31–13 EL Expression Evaluated

31.7.5 How to View and Export Stack Trace Information
If you are unable to determine what the problem is and to resolve it yourself, typically
your next step is to ask someone else for assistance. Whether you post a question in
the OTN JDeveloper Discussion Forum or open a service request on Metalink,
including the stack trace information in your posting is extremely useful to anyone
who will need to assist you further to understand exactly where the problem is
occurring.

JDeveloper's Stack window makes communicating this information easy. Whenever
the debugger is paused, you can view the Stack window to see the program flow as a
stack of method calls that got you to the current line. Right-click the Stack window
background and choose Preferences. You can set the Stack window preference to
include the line number information, as well as the class and method name that will be
there by default. Finally, the context menu option Export lets you save the current
stack information to an external text file whose contents you can then post or send to
whomever might need to help you diagnose the problem.

31.8 Setting ADF Declarative Breakpoints
You use the ADF Declarative Debugger features in JDeveloper to declaratively set
breakpoints on ADF task flow activities, page definition executables, method, action,
and value bindings, and ADF Lifecycle phases. Instead of needing to know all the
internal constructs of the ADF code, such as method names and class names, you can
set breakpoints at the highest level of object abstraction.

You can add breakpoints to task flow activities in the task flow diagrammer or you can
launch the Create ADF Task Flow Activity Breakpoint dialog from the Breakpoints
window. In the task flow diagrammer, you can select a task flow activity and use the
context menu to toggle or disable breakpoints on that activity, or press the F5 button.
After the application pauses at the breakpoint, you can view the runtime structure of
the objects in the ADF Structure window as a tree structure. The ADF Data window
displays a list of data for a given object selected in the ADF Structure window.

For example, when you set a breakpoint on a task flow call activity in the Browse
Orders task flow, a red dot icon appears in the call activity, as shown in Figure 31–14.

Setting ADF Declarative Breakpoints

31-30 Fusion Developer's Guide for Oracle Application Development Framework

Figure 31–14 ADF Declarative Breakpoint on a Task Flow Activity

When the breakpoint is reached, the application is paused and the icon changes, as
shown in Figure 31–15.

Figure 31–15 Application Paused at an ADF Declarative Breakpoint

Similarly, you can set Before and After breakpoints in the page definition file. You set
breakpoints for items in the bindings and executables lists by clicking on the left or
right margin next to the item or by selecting from the context menu. Clicking on the
left margin adds a Before page definition breakpoint, and clicking on the right margin
adds an After page definition breakpoint. Again, a red dot icon that indicates the
breakpoint is set, as shown in Figure 31–16.

Figure 31–16 ADF Declarative Breakpoints on ADF BIndings in the Page Definition File

Setting ADF Declarative Breakpoints

Testing and Debugging ADF Components 31-31

You can also set Before and After breakpoints on all the ADF lifecycle phases. You can
launch the Create ADF Lifecycle Phase Breakpoint dialog from the Breakpoints
window, as shown in Figure 31–17.

Figure 31–17 Breakpoints Window Add Breakpoint Icon Dropdown Menu

The Create ADF Lifecycle Phase Breakpoint dialog allows you to select different
lifecycle breakpoint options, as shown in Figure 31–18.

Figure 31–18 Create ADF Lifecycle Phase Breakpoint Dialog

Alternatively, you can use the ADF Lifecycle Breakpoints dialog from the ADF
Structure window or the task flow diagrammer to set ADF lifecycle phase breakpoints.
For more information about ADF lifecycle phases, see Chapter 21, "Understanding the
Fusion Page Lifecycle."

You can define both ADF declarative breakpoints and standard Java code breakpoints
when using the ADF Declarative Debugger. Depending on your debugging scenario,
you may only need to use the declarative breakpoints to debug the application. Or you
may find it necessary to add additional breakpoints in Java code that are not available
declaratively. For information on Java code breakpoints, see Section 31.9.1, "How to Set
Java Breakpoints on Classes and Methods." Table 31–1 lists the available ADF
Declarative Debugger breakpoint locations.

Setting ADF Declarative Breakpoints

31-32 Fusion Developer's Guide for Oracle Application Development Framework

Table 31–1 ADF Declarative Debugger Breakpoints

ADF Area
Declarative
Breakpoint

JDeveloper
Editor

JDeveloper
Location

JDeveloper
Context
Menu
Command Description

Page
definition

Before/After
executable:

■ Iterator

■ invokeAction

■ Region
instantiation

Overview
editor for
page
definition
files

Page
Definition
Overview
tab,
Executables
section

Toggle
Breakpoint
or F5

Pauses debugging before or after
executable is refreshed. For task
flow bindings, this represents two
times per lifecycle: first, during
prepareModel (initial region
creation), and then again during
prepareRender (where dynamic
regions swap their corresponding
task flow ID).

Before/After
action binding:

■ methodAction

■ Built-in
operations

Page
Definition
Overview
tab, Bindings
section

Toggle
Breakpoint
or F5

Pauses debugging before or after
binding is executed.

Before/After
attribute value
binding

Page
Definition
Overview
tab, Bindings
section

Toggle
Breakpoint
or F5

Pauses debugging before or after
the attribute’s setInputValue()
ADF source code method is
executed. New values will be the
parameters to setInputValue().

ADF task flow Before activity Task flow
diagrammer

Task flow
diagrammer

Breakpoints
window Add
button

Toggle
Breakpoint
or F5

Pauses debugging before the
activity executes within the JSF
Invoke Application phase. The
activity where the declarative
breakpoint is defined has not yet
been executed. An exception are
view activities; they pause within
the JSF Render Response phase
after the view activity is executed,
but before the new page is
rendered. By pausing at that point,
the view activity values can be
inspected using the ADF Structure
and ADF Data windows.

ADF lifecycle
phase

Before ADF
lifecycle phase

After ADF
lifecycle phase

ADF
Structure
window

Task flow
diagrammer

Breakpoints
window

ADF
Structure
window
toolbar button

Task flow
diagrammer

Breakpoints
window Add
button

A Before breakpoint pauses
debugging before the ADF
lifecycle phase.

An After breakpoint pauses
debugging after the ADF lifecycle
phase.

The ADF lifecycle JSF Render
Response and Prepare Render
phase Before and After
breakpoints are executed in the
following order:

■ Before jsfRenderResponse.

■ Before prepareRender.
(prepareRender phase
executes).

■ After prepareRender.
(jsfRenderResponse phase
executes).

■ After jsfRenderResponse.

Setting ADF Declarative Breakpoints

Testing and Debugging ADF Components 31-33

The Breakpoints window has a toolbar that includes buttons to add, edit, delete,
enable, and disable breakpoints, as shown in Figure 31–17. The add breakpoint
dropdown menu includes functions to add Java code breakpoints, ADF lifecycle phase
breakpoints, and ADF task flow activity breakpoints. ADF task flow activity
breakpoints and page definition declarative breakpoints can also be set in the task flow
diagrammer or overview editor for page definition files, respectively.

You can edit the ADF task flow and page definition declarative breakpoints using the
edit command from the Breakpoints window on common fields except for the
condition and method name.

Table 31–2 lists how an ADF declarative breakpoint will appear in the Breakpoints
window under the Description and Type columns. When you double-click an ADF
declarative breakpoint in the Breakpoints window, the task flow diagrammer for the
corresponding task flow or the overview editor for the corresponding page definition
file will appear in the workspace showing the breakpoint location.

Table 31–3 lists the step commands that can be used with ADF declarative breakpoints.

Table 31–2 Breakpoints Window Display of ADF Declarative Breakpoints

Declarative Breakpoint Type Description Column Type Column

Before/After page definition
executable:

■ Iterator

■ invokeAction

Before page definition@executable
id

After page definition@executable id

Page definition executable
breakpoint

Before/After page definition
action binding:

■ methodAction

■ Built-in Operations

Before page definition@binding id

After page definition@binding id

Page definition binding
breakpoint

Before/After page definition
attribute value binding

Before page definition@binding id

After page definition@binding id

Page definition binding
breakpoint

Before ADF task flow activity Before task flow document#task
flow id@activity id

Task flow activity
breakpoint

Before ADF lifecycle phase Before adf lifecycle phase ADF lifecycle phase
breakpoint

After ADF lifecycle phase After adf lifecycle phase ADF lifecycle phase
breakpoint

Table 31–3 ADF Declarative Debugger Step Commands

ADF Debugger Step
Commands Description

Find Execution Point Supported for declarative breakpoints to display the current
execution point open and active within the corresponding
editor.

Setting ADF Declarative Breakpoints

31-34 Fusion Developer's Guide for Oracle Application Development Framework

The ADF Declarative Debugger uses the standard debugger icons and notations for
setting, toggling, and indicating the status of ADF declarative breakpoints.

The Breakpoints window list all breakpoints, including ADF declarative breakpoints,
as shown in Figure 31–19.

Figure 31–19 Breakpoints window Showing ADF Declarative and Java Code Breakpoints

When an ADF declarative breakpoint is set, it appears as a red dot icon in the task
flow activity, in the page definition breakpoint margins, or in the ADF Lifecycle
Breakpoints window, as shown in Figure 31–20, Figure 31–21, and Figure 31–22.

Step Over (F8) Supported for task flow activity declarative breakpoints to step
from activity to activity within a task flow. If user interaction is
required (for example, page displayed), once it is received (for
example, button selected), processing will resume and then will
pause before the next task flow activity.

supported for page definition executable breakpoints. The
application will step to the next page definition executable
breakpoint.

Supported for ADF lifecycle phase declarative breakpoints to
step to the next Before or After ADF lifecycle phase location.

Step Into (F7) Supported only for task flow activity declarative breakpoints
defined on task flow call activities. Task flow activity declarative
breakpoints pause the application just before the activity is
executed. The Step Into function provides the ability to pause
debugging just prior to executing the called task flow default
activity. This action would be the same as placing a task flow
activity declarative breakpoint on the called task flow default
activity.

Step Out (Shift F7) Supported for task flow activity declarative breakpoints to step
out of the current called task flow and back into the caller (if
any). If user interaction is required (for example, page
displayed) once user interaction received (for example, button
selected), processing will resume and will pause before the next
user interaction or activity within the calling task flow.

Continue Step (Shift F8) Not supported for declarative breakpoints.

Step to End of Method Not supported for declarative breakpoints.

Run to Cursor Not supported for declarative breakpoints.

Pop Frame Not supported for declarative breakpoints, as it is for Java code,
to return to a previous point of execution.

Table 31–3 (Cont.) ADF Declarative Debugger Step Commands

ADF Debugger Step
Commands Description

Setting ADF Declarative Breakpoints

Testing and Debugging ADF Components 31-35

Figure 31–20 ADF Declarative Breakpoint Enabled on a Task Flow Activity

Figure 31–21 ADF Declarative Breakpoints Enabled in the Page Definition Executables

Figure 31–22 ADF Lifecycle Phase Breakpoints Enabled in the ADF Lifecycle
Breakpoints Window

When an ADF task flow or page definition declarative breakpoint is disabled, the red
icon becomes a gray icon, as shown in Figure 31–23.

Figure 31–23 ADF Declarative Breakpoint Disabled

When an ADF task flow declarative breakpoint is active, the red dot icon has a green
checkmark, as shown in Figure 31–24.

Figure 31–24 ADF Declarative Breakpoint Active

When the application is paused at an ADF declarative breakpoint, an Execution Point
icon appears, as shown in Figure 31–25.

Setting ADF Declarative Breakpoints

31-36 Fusion Developer's Guide for Oracle Application Development Framework

Figure 31–25 Application Paused at an Execution Point on a Task Flow

When the application is paused at an ADF lifecycle declarative breakpoint, an
Execution Point icon appears next to the lifecycle phase in the ADF Lifecycle
Breakpoints window, as shown in Figure 31–26. The name of the current ADF lifecycle
phase is also displayed in the ADF Structure window.

Figure 31–26 Application Paused at an Execution Point on an ADF Lifecycle Phase

31.8.1 How to Set and Use Task Flow Activity Breakpoints
After you have created a task flow diagram, you can set ADF declarative breakpoints
on task flow activities.

To set a breakpoint on a task flow activity:
1. Open the task flow in the task flow diagrammer, or from the Breakpoints window,

click the Add icon and select ADF Task Flow Activity Breakpoint.

2. Set the task flow activity breakpoint.

■ If you use the task flow diagrammer, right-click and choose Toggle
Breakpoint from the context menu, or press F5.

A breakpoint icon appears on the task flow activity.

■ If you launched the Create ADF Task Flow Activity Breakpoint dialog from
the Breakpoints window, click Browse to select a task flow definition, select
the task flow from the Task Flow dropdown list, select the task flow activity
from the Activity dropdown list, and click OK.

3. Optionally, configure a breakpoint’s settings to manage the debugger:

a. Choose View > Breakpoints to open the Breakpoints window.

b. Select the task flow activity breakpoint you want to configure and click the
Edit icon.

c. In the Edit ADF Task Flow Activity Breakpoint dialog, click the Conditions
tab, specify the conditions which apply to the breakpoint. The conditions must
be valid for the breakpoint to occur.

d. Click the Actions tab, specify the actions that you want the debugger to take
when the breakpoint occurs and click OK.

Setting ADF Declarative Breakpoints

Testing and Debugging ADF Components 31-37

For example, the usual action for a breakpoint is to halt the program you are
debugging, but you may want the debugger to beep and log information to
the Log window without halting the program.

4. Start the debugging process.

You can:

■ From the main menu, choose Run > Debug.

■ From the Application Navigator, right-click the project, adfc-config.xml,
faces-config.xml, task flow, or page and choose Debug.

■ From the task flow diagrammer, right-click an activity and choose Debug.
Only task flows that do not use page fragments can be run.

5. When the application is paused at a breakpoint, an Execution Point icon appears
next to the breakpoint icon on the task flow activity. You can examine the
application using different debugger windows.

The application is paused before the task flow activity executes (except for view
activities).

6. The ADF Structure window and the ADF Data window appear by default, as well
as several debugger windows. You can examine the runtime structure in the ADF
Structure window and its corresponding data in the ADF Data window. See
Section 31.8.6, "How to Use the ADF Structure Window," and Section 31.8.7, "How
to Use the ADF Data Window."

7. Select a node in the ADF Structure window and view pertinent information in the
ADF Data window. Task flow activity declarative breakpoints pause the
application just before the task flow activity is executed. You can use the Step Into
(F7) function to pause the application just prior to executing the called task flow
default activity.

8. Continue debugging the application as required, using the step functions as
described in Table 31–3. The key step function is Step Into (F7).

When the application is paused, you can remove or disable existing breakpoints
and set new breakpoints.

31.8.2 How to Set and Use Page Definition Executable Breakpoints
If your page definition has executables, you can set breakpoints to pause the
application before or after these executables. For example, you can set breakpoints to
pause the application when iterators are refreshed or when invokeAction methods
are performed.

Note: Be sure that the application has actually hit a breakpoint by
checking the Breakpoints window or checking that there is an
Execution Point icon (red right arrow) next to the breakpoint.
Depending on where you set the breakpoint, an application may
appear to be stopped when in fact it is waiting for user input at the
page.

Setting ADF Declarative Breakpoints

31-38 Fusion Developer's Guide for Oracle Application Development Framework

To set a breakpoint on an executable in the page definition file:
1. In the Application Navigator, double-click the page definition file that contains the

executable in which you want to set a breakpoint.

2. In the overview editor, click the Bindings and Executables tab, select an
executable from the Executables list, and click in the breakpoint margin to the left
of the item.

A breakpoint icon appears in the margin next to the item.

3. Optionally, configure a breakpoint’s settings to manage the debugger:

a. Choose View > Breakpoints to open the Breakpoints window.

b. Select the executable breakpoint you want to configure and click the Edit icon.

c. In the Edit ADF Page Definition Binding Breakpoint dialog, click the
Conditions tab, specify the conditions which apply to the breakpoint. The
conditions must be valid for the breakpoint to occur.

d. Click the Actions tab, specify the actions that you want the debugger to take
when the breakpoint occurs and click OK.

For example, the usual action for a breakpoint is to halt the program you are
debugging, but you may want the debugger to beep and log information to
the Log window without halting the program.

4. Start the debugging process.

You can:

■ From the main menu, choose Run > Debug.

■ From the Application Navigator, right-click the project, adfc-config.xml,
faces-config.xml, task flow, or page and choose Debug.

■ From the task flow diagrammer, right-click an activity and choose Debug.
Only task flows that do not use page fragments can be run.

5. When the application is paused at a breakpoint, an Execution Point icon appears
in the margin next to the breakpoint icon of the executable item. You can examine
the application using several debugger windows.

The application pauses when the executable binding is refreshed. If this is a
taskFlow executable, the pause occurs in the prepareModel and the
prepareRender lifecycles.

Note: If you are setting an After iterator breakpoint to pause the
application after a view object query has been executed, be aware that
the application may pause at this breakpoint multiple times. Also be
aware that it may pause at this breakpoint even when the query has
not been executed. If you need to know whether the query has been
executed, select the relevant ADF Business Components in the ADF
Structure window and view their corresponding data in the ADF Data
window. For more information on how to use these windows, see
Section 31.8.6, "How to Use the ADF Structure Window," and
Section 31.8.7, "How to Use the ADF Data Window."

For more information about using Java code breakpoints on view
object query execution, see Section 31.9.8, "How to Use Common
Oracle ADF Breakpoints."

Setting ADF Declarative Breakpoints

Testing and Debugging ADF Components 31-39

6. The ADF Structure window and the ADF Data window appear by default, as well
as several debugger windows. You can examine the runtime structure in the ADF
Structure window and its corresponding data in the ADF Data window. See
Section 31.8.6, "How to Use the ADF Structure Window," and Section 31.8.7, "How
to Use the ADF Data Window."

7. Select a node in the ADF Structure window and view pertinent information in the
ADF Data window.

8. When the application is paused, you can remove or disable existing breakpoints
and set new breakpoints.

31.8.3 How to Set and Use Page Definition Action Binding Breakpoints
You can set breakpoints in the page definition file on action bindings and
methodAction bindings. The application pauses when the binding is executed.

To set a breakpoint on an action binding in the page definition file:
1. In the Application Navigator, double-click the page definition file that contains the

binding in which you want to set a breakpoint.

2. In the overview editor, click the Bindings and Executables tab, select a
methodAction binding or built-in operation item from the Bindings list, and
click in the breakpoint margin to the left of the item.

A breakpoint icon appears next to the item.

3. Optionally, configure a breakpoint’s settings to manage the debugger:

a. Choose View > Breakpoints to open the Breakpoints window.

b. Select the action binding breakpoint you want to configure and click the Edit
icon.

c. In the Edit ADF Page Definition Binding Breakpoint dialog, click the
Conditions tab, specify the conditions which apply to the breakpoint. The
conditions must be valid for the breakpoint to occur.

d. Click the Actions tab, specify the actions that you want the debugger to take
when the breakpoint occurs and click OK.

For example, the usual action for a breakpoint is to halt the program you are
debugging, but you may want the debugger to beep and log information to
the Log window without halting the program.

4. Start the debugging process.

You can:

■ From the main menu, choose Run > Debug.

■ From the Application Navigator, right-click the project, adfc-config.xml,
faces-config.xml, task flow, or page and choose Debug.

Note: Be sure that the application has actually hit a breakpoint by
checking the Breakpoints window or checking that there is an
Executable Point icon (red right arrow) next to the breakpoint.
Depending on where you set the breakpoint, an application may
appear to be stopped when in fact it is waiting for user input at the
page.

Setting ADF Declarative Breakpoints

31-40 Fusion Developer's Guide for Oracle Application Development Framework

■ From the task flow diagrammer, right-click an activity and choose Debug.
Only task flows that do not use page fragments can be run.

5. When the application is paused at a breakpoint, an Execution Point icon appears
next to the breakpoint icon on the action binding item. You can examine the
application using several debugger windows.

The application is paused when the binding is executed.

6. The ADF Structure window and the ADF Data window appear by default, as well
as several debugger windows. You can examine the runtime structure in the ADF
Structure window and its corresponding data in the ADF Data window. See
Section 31.8.6, "How to Use the ADF Structure Window," and Section 31.8.7, "How
to Use the ADF Data Window."

7. Select a node in the ADF Structure window and view pertinent information in the
ADF Data window.

8. When the application is paused, you can remove or disable existing breakpoints
and set new breakpoints.

31.8.4 How to Set and Use Page Definition Attribute Value Binding Breakpoints
If the page definition has attribute values bindings, you can set breakpoints on the
attribute value bindings to pause the application.

To set a breakpoint on an attribute value binding in the page definition file:
1. In the Application Navigator, double-click the page definition file that contains the

binding in which you want to set a breakpoint.

2. In the overview editor, click the Bindings and Executables tab, select an attribute
value from the Bindings list, and click on the breakpoint margin to the left of the
item. A breakpoint icon appears next to the attribute value binding.

3. Optionally, configure a breakpoint’s settings to manage the debugger:

a. Choose View > Breakpoints to open the Breakpoints window.

b. Select the binding breakpoint you want to configure and click the Edit icon.

c. In the Edit ADF Page Definition Binding Breakpoint dialog, click the
Conditions tab, specify the conditions which apply to the breakpoint. The
conditions must be valid for the breakpoint to occur.

d. Click the Actions tab, specify the actions that you want the debugger to take
when the breakpoint occurs and click OK.

For example, the usual action for a breakpoint is to halt the program you are
debugging, but you may want the debugger to beep and log information to
the Log window without halting the program.

4. Start the debugging process.

Note: Be sure that the application has actually hit a breakpoint by
checking the Breakpoints window or checking that there is an
Execution Point icon (red right arrow) next to the breakpoint.
Depending on where you set the breakpoint, an application may
appear to be stopped when in fact it is waiting for user input at the
page.

Setting ADF Declarative Breakpoints

Testing and Debugging ADF Components 31-41

You can:

■ From the main menu, choose Run > Debug.

■ From the Application Navigator, right-click the project, adfc-config.xml,
faces-config.xml, task flow, or page and choose Debug.

■ From the task flow diagrammer, right-click an activity and choose Debug.
Only task flows that do not use page fragments can be run.

5. When the application is paused at a breakpoint, an Execution Point icon appears
next to the breakpoint icon on the attribute value binding. You can examine the
application using several debugger windows.

The application is paused before the setInputValue() method of the ADF
source code. New values will be the parameters that go into this method.

6. The ADF Structure window and the ADF Data window appear by default, as well
as several debugger windows. You can examine the runtime structure in the ADF
Structure window and its corresponding data in the ADF Data window. See
Section 31.8.6, "How to Use the ADF Structure Window," and Section 31.8.7, "How
to Use the ADF Data Window."

7. Select a node in the ADF Structure window and view pertinent information in the
ADF Data window.

8. Continue debugging the application as required, using the step functions as
described in Table 31–3. The key step function is Step Over (F8).

When the application is paused, you can remove or disable existing breakpoints
and set new breakpoints.

31.8.5 How to Set and Use ADF Lifecycle Phase Breakpoints
You can set both Before and After ADF lifecycle phase breakpoints on any of the ADF
lifecycle phases. For each phase, you can set Before only, After only, or both. You can
set breakpoints on as many phases as you want.

You can create the breakpoint and customize the options using the Create ADF
Lifecycle Phase Breakpoint dialog from the Breakpoints window menu. Or You can
create breakpoints with the default options using the ADF Lifecycle Breakpoints
window. After a lifecycle breakpoint has been set, you can edit the options using the
Edit ADF Lifecycle Phase Breakpoint dialog, which is also launched from the
Breakpoints window.

You can set ADF lifecycle breakpoints on any of the ADF lifecycle phases:

■ JSF Restore View

■ Initialize Content

■ Prepare Model

■ JSF Apply Request Values

Note: Be sure that the application has actually hit a breakpoint by
checking the Breakpoints window or checking that there is an
Execution Point icon (red right arrow) next to the breakpoint.
Depending on where you set the breakpoint, an application may
appear to be stopped when in fact it is waiting for user input at the
page.

Setting ADF Declarative Breakpoints

31-42 Fusion Developer's Guide for Oracle Application Development Framework

■ JSF Process Validations

■ JSF Update Model Values

■ Validate Model Updates

■ JSF Invoke Application

■ Metadata Commit

■ Prepare Render

■ JSF Render Response

To set or manage an ADF lifecycle phase breakpoint from the Breakpoints
window:
1. Choose View > Breakpoints to open the Breakpoints window.

2. Click the Add icon and choose ADF Lifecycle Phase Breakpoint.

3. In the Create ADF Lifecycle Phase Breakpoint dialog Definition tab:

■ Select the ADF lifecycle phase where you want to set a breakpoint

■ Select Before Phase or After Phase breakpoint

4. In the Conditions tab, select the options you want and click OK.

5. In the Actions tab, select the options you want and click OK.

To set an ADF Lifecycle Phase Breakpoint using the breakpoint icon:
1. In the task flow diagrammer or in the ADF Structure window, click the ADF

Lifecycle Breakpoints icon, as shown in Figure 31–27.

Figure 31–27 ADF Lifecycle Breakpoints Icon

2. In the ADF Lifecycle Breakpoints window, click on the left margin next to the ADF
lifecycle phase to set a Before breakpoint, and on the right margin to set an After
breakpoint. A red dot icon appears to indicate the breakpoint is set, as shown in
Figure 31–28. The breakpoint will be set with the default breakpoint options. To
remove the breakpoint, click the red dot icon.

Figure 31–28 Setting Breakpoints in the ADF Lifecycle Breakpoints Window

3. If you want to edit breakpoint options, select the breakpoint in the Breakpoints
window and choose the Edit icon.

Setting ADF Declarative Breakpoints

Testing and Debugging ADF Components 31-43

To debug an application using ADF Lifecycle Phase Breakpoints:
1. Start the debugging process.

You can:

■ From the main menu, choose Run > Debug.

■ From the Application Navigator, right-click the project, adfc-config.xml,
faces-config.xml, task flow, or page and choose Debug.

■ From the task flow diagrammer, right-click an activity and choose Debug.
Only task flows that do not use page fragments can be run.

2. When the application is paused at an ADF lifecycle phase breakpoint, an
Execution Point icon appears next to the breakpoint icon and the ADF lifecycle
phase is in bold in the ADF Lifecycle Breakpoints window, as shown in
Figure 31–29. You can examine the application using several debugger windows.

Figure 31–29 Execution Point Displayed in the ADF Lifecycle Breakpoints Window

3. The ADF Structure window and the ADF Data window appear by default, as well
as several debugger windows. You can examine the runtime structure in the ADF
Structure window and its corresponding data in the ADF Data window. The
current ADF lifecycle phase is displayed at the top of the ADF Structure window.
For more information, see Section 31.8.6, "How to Use the ADF Structure
Window," and Section 31.8.7, "How to Use the ADF Data Window."

4. Select a node in the ADF Structure window and view pertinent information in the
ADF Data window.

5. Continue debugging the application as required, using the step functions as
described in Table 31–3. The key step function is Step Over (F8).

When the application is paused, you can remove or disable existing breakpoints
and set new breakpoints.

31.8.6 How to Use the ADF Structure Window
When the application is paused at a breakpoint, the ADF Structure window displays a
tree structure of the ADF runtime objects and their relationships within the

Note: Be sure that the application has actually hit a breakpoint by
checking the Breakpoints window for an breakpoint encounter or
checking that there is an Execution Point icon (red right arrow) next
to the breakpoint. Depending on where you set the breakpoint, an
application may appear to be stopped when in fact it is waiting for
user input at the page.

Setting ADF Declarative Breakpoints

31-44 Fusion Developer's Guide for Oracle Application Development Framework

application. In particular, it shows the hierarchy of view ports, which represent either
the main browser window or contained regions and portlets. When you select
different items in the ADF Structure window, the data display in the accompanying
ADF Data window changes. For more information about the ADF Data window, see
Section 31.8.7, "How to Use the ADF Data Window."

The ADF Structure window and the ADF Data window are shown by default during a
debugging session when either of the following is true:

■ The project being debugged contains a WEB-INF/adfc-config.xml file.

■ The project being debugged contains any ADF Faces tag libraries.

You can launch the ADF Structure window by choosing View > Debugger > ADF
Structure from the main menu. From the ADF Structure window, you can launch the
ADF Lifecycle Breakpoints window using the ADF Lifecycle Breakpoints icon.

When a breakpoint is encountered, the ADF Structure window displays the ADF
lifecycle phase and a tree structure of the runtime objects, as shown in Figure 31–30.

Figure 31–30 ADF Structure Window Showing the Runtime Objects

When you select an item in the ADF Structure window, the data and values associated
with that item are displayed in the ADF Data window. Figure 31–31 shows a task flow
selected in the ADF Structure window, with its corresponding information displayed
in the ADF Data window.

Figure 31–31 ADF Structure Window Selection and ADF Data Window Data

Setting ADF Declarative Breakpoints

Testing and Debugging ADF Components 31-45

The roots of the hierarchy are the sibling nodes Scopes and ADF Context. The current
view port where processing has stopped appears in bold. Default selections within the
tree will be retained from the previous breakpoint, so you can monitor any changes
between breakpoints. The ADF object where the ADF declarative breakpoint was
defined will be opened in the corresponding JDeveloper editor, either the task flow
diagrammer or the overview editor for page definition files.

The ADF Structure tree will be rebuilt each time the application breaks and at
subsequent steps to reflect the changed state of the objects. Although the entire tree
hierarchy will be displayed, only items within the current view port and its parent
view port(s) will be available for selection and further inspection. All other items in
the tree hierarchy not in the current context will be dimmed and disabled. You can still
use the hierarchy to identify runtime object relationships within the application, but it
will be limited to the current context (and its parent view ports).

Table 31–4 lists the different types of items that can be displayed in the ADF Structure
window hierarchy tree.

Table 31–4 ADF Structure Window Items

ADF Structure
Tree Item Description

Scopes Displayed at the top of the ADF Structure hierarchy above its sibling ADF Context node. There
is only one Scopes node in the ADF Structure hierarchy. You can expand the Scopes node to
show a list of child scope nodes (such as viewScope and pageFlowScope). If you select a child
scope node, the ADF Data window displays the variables and values for that scope.

ADF context Displayed as the root node of the ADF Structure hierarchy below its sibling Scopes node. There
will only be one ADF Context within the ADF Structure hierarchy.

View port View ports are an ADF Controller concept. For this reason, view ports appear within the ADF
Structure hierarchy only when the application being debugged utilizes ADF Controller.

View ports can represent one of the following:

■ Browser: Main browser view ports, also known as root view ports, appear as children of the
root ADF Context. If multiple browser windows are open during the debugging runtime
session, multiple browser view ports are presented within the hierarchy. The label of each
browser view port displays the text "Browser". The view port also provides a tooltip for the
view port ID similar to the following example: "Root View Port: 999999".

■ Region: Region view ports appear as the children of page or page fragments. They are also
known as child view ports. The label of each region view port displays the text "Region".
The region also provides a tooltip for the view port ID similar to the following example:
"Child View Port: 999999".

ADF task flows The page flow stack corresponding to each view port appears as a hierarchy of ADF task flows.
The initial ADF task flow called for the stack is a direct child of its corresponding view port. The
label of each ADF task flow reflects the corresponding ADF task flow display name (if any) or its
task flow ID. Region view ports will not display the item in their page flow stack hierarchy for
their implied unbounded task flow. The task flow also provides a tooltip displaying the ADF
task flow path, and a context menu item to open to the corresponding ADF task flow within the
editor workspace.

If ADF Controller is not utilized in the application (or if the page is run outside the context of an
ADF task flow), ADF task flows will not appear within the hierarchy.

Page Represents the page (view) currently displayed within a browser view port. Presented along
with its associated binding container (if any) as a child. If the application being debugged
utilizes ADF Controller, pages will be children of each browser view port. The label of each page
reflects its corresponding runtime view ID. The page also provides a tooltip displaying the page
path, and a context menu item to open to the corresponding page within the editor workspace. If
a visual user interface in not implemented for the application, the page will not appear within
the hierarchy.

Setting ADF Declarative Breakpoints

31-46 Fusion Developer's Guide for Oracle Application Development Framework

31.8.7 How to Use the ADF Data Window
When an application is paused at an ADF declarative breakpoint, the ADF Data
window displays relevant data based on the selection in the ADF Structure window.
You can launch the ADF Data window by choosing View > Debugger > ADF Data
from the main menu. The content of the ADF Data window based on the selection in
the ADF Structure window is summarized in Table 31–5.

Page fragment Represents the page fragment currently displayed within a region view port. Presented along
with its associated binding container (if any) as a child. If the application being debugged
utilizes ADF Controller, page fragments will be children of each region view port. The label of
each page fragment node reflects its corresponding runtime view ID. The page fragment also
provides a tooltip displaying the source file page definition path, and a context menu item to
open to the corresponding page fragment within the editor workspace.

Binding
container

Represents the binding container for the corresponding page or page fragment. The label of each
binding container reflects its corresponding file name (page definition file) without the
extension. The binding container node will also provide a tooltip displaying the page fragment
path. The binding container also appears under current task flows when used to represent task
flow activity bindings (for example, method call activity bindings).

If ADF Model is not utilized for the application, binding containers will not appear.

Application
data

Represents the application data objects (for example, ADF Business Components objects or ADF
Business Components business service objects) instantiated within the data control frame for the
corresponding view port (or binding container if ADF Controller is not used). Application data
objects don't need to be currently instantiated for the Application Data node to appear.

Table 31–5 ADF Data Window Content for an ADF Structure Window Selection

ADF Structure Window ADF Data Content

Scopes Displays memory scope values based on the current context.
pageFlowScope will also appear within ADF task flow
content for the pageFlowScope values specific to a selected
ADF task flow (not necessarily the current context).
viewScope will also appear within the view port content for
the viewScope values specific to a selected view port (not
necessarily the current context).

ADF context Displays the ADF context variables and values hierarchy. ADF
context variables and values can be inspected by evaluating
the #(data.adfContext) EL expression in the EL
Evaluator.

View port Displays view port details, including the viewScope contents.

Page flow stack entry Displays information for the selected page flow stack entry,
including current transaction status and ADF Model save
point status.

Page/page fragment Displays the page or page fragment UI component tree
hierarchy for the selected page or page fragment if the page or
page fragment has been rendered.

Binding container Displays the binding container runtime values, including
parameters, bindings, and executables.

Application data Displays application data objects (for example, ADF Business
Components objects) instantiated within the current binding
context. If the business service layer is implemented with a
technology other than ADF Business Components objects (for
example, EJB) the application data objects will be displayed in
a more generic form.

Table 31–4 (Cont.) ADF Structure Window Items

ADF Structure
Tree Item Description

Setting ADF Declarative Breakpoints

Testing and Debugging ADF Components 31-47

The Scopes node in the ADF Structure window can be expanded to show a list of child
scope nodes. When a child scope node is selected in the ADF Structure window, the
ADF Data window displays the current context values for the selected memory scope,
as shown in Figure 31–32.

Figure 31–32 Child Scope Selected in the ADF Structure Window

If the Scopes node itself is selected, then the full list of memory scopes appears also in
the ADF Data windows, which can also be expanded for inspection. Figure 31–33
shows the Scopes node selected in the ADF Structure window, and the viewScope
child node being selected with its values displayed in the ADF Data window. You can
inspect the values of requestScope, viewScope, pageFlowScope,
applicationScope, and sessionScope by expanding each corresponding node.
pageFlowScope will also appear within the ADF Task Flow content to reflect the
values of the specific ADF task flow currently selected in the ADF Structure window.
viewScope will also appear within the view port content to reflect the values of the
specific view port currently selected in the ADF Structure window.

Figure 31–33 Scopes Node Selected in the ADF Structure Window

When the ADF context is selected in the ADF Structure window, as shown in
Figure 31–34, the current value of the ADF context variables will be displayed in the
ADF Data window. You can also inspect ADF context variables and values by
evaluating the #(data.adfContext) EL expression in the EL Evaluator. For more
information, see Section 31.7.4, "How to Use the EL Expression Evaluator."

Setting ADF Declarative Breakpoints

31-48 Fusion Developer's Guide for Oracle Application Development Framework

Figure 31–34 ADF Context Selected for the ADF Data Window

Selecting a view port within the ADF Structure hierarchy will display the view port's
current view port details in the ADF Data window, as shown in Figure 31–35. Values
displayed for each view port are summarized in Table 31–6.

Figure 31–35 View Port Selected for the ADF Data Window

Table 31–6 ADF Data Window Content for View Port

View Port Description

View port ID It is displayed

Client ID It is displayed

Initial task flow ID Initial ADF task flow on the view ports page flow stack. Not
displayed for unbounded task flows. Appears as a link to
open the corresponding task flow definition in the editor
workspace.

Current task flow ID Displayed for bounded task flows and not displayed for
unbounded task flows. Current ADF task flow on the view
port’s page flow stack. Appears as a link to open the
corresponding task flow definition in the editor workspace.

View activity ID Current ADF task flow view activity ID. Applicable only if the
current ADF task flow activity is a view activity.

Submitted activity ID ADF task flow activity submitting the current request.

Final activity ID ADF task flow activity receiving the current request.

Bookmark redirect
outstanding

(Boolean)

Setting ADF Declarative Breakpoints

Testing and Debugging ADF Components 31-49

In the ADF Structure window, each individual ADF task flow within a page flow stack
hierarchy is selectable. An ADF task flow selected in the ADF Structure window will
display the current task flow information in the ADF Data window, as shown in
Figure 31–36. Task flow templates utilized by the selected ADF task flow will be
determined by manually navigating to the ADF task flow source file. This is the same
way similar functionalities are handled for Java source files. Current information for a
selected ADF task flow is summarized in Table 31–7.

Figure 31–36 Task Flow Selected for the ADF Data Window

Exception (If any)

View memory scope View memory scope variables and values for the selected view
port.

Table 31–7 ADF Data Window Content for Task Flow

Task Flow Description

ADF task flow reference ADF task flow reference

Task flow call activity ID Task flow activity ID for the calling task flow. Will be null for
the first ADF task flow within each view port task flow call
hierarchy.

Calling view activity ID The calling view activity of the current view activity displayed
by the ADF task flow, if any.

View reached (Boolean)

Train model Only applicable if the ADF task flow is created as a train.

Transaction started (Boolean) Identifies the current status of the ADF task flow
transactional state. For example, did the ADF task flow begin a
new transaction?

Transaction shared (Boolean) Identifies the current status of the ADF task flow
transactional state. For example, did the ADF task flow join an
existing transaction?

Save point Identifies the current status of the ADF task flow’s ADF Model
save point creation state. For example, was a model save point
created upon ADF task flow entry?.

Remote task flow called (Boolean)

Table 31–6 (Cont.) ADF Data Window Content for View Port

View Port Description

Setting ADF Declarative Breakpoints

31-50 Fusion Developer's Guide for Oracle Application Development Framework

When you select a page or page fragment node in the ADF Structure hierarchy, the
corresponding UI component tree is displayed within the ADF Data window, as
shown in Figure 31–37. If a page or page fragment is based on a page template, you
can include the content coming from the page template outside any facet reference
elements by selecting the Include Page Template Content checkbox at the top of the
ADF Data window. If the page template content is not included, the page or page
fragment UI component tree will appear structurally similar to its source file.

Figure 31–37 Page Selected for the ADF Data Window

When you select a binding container in the ADF Structure hierarchy, it displays within
the ADF Data window the node selection listed in Table 31–8.

Remote task flow return URL Applies only when calling an ADF task flow remotely.
Identifies the URL for return once the task flow called
remotely completes.

Data control frame created (Boolean)

Data control frame Name of data control frame associated with the ADF task
flow.

Page flow memory scopes Appears as an expandable node to allow inspection of the
values of the page flow memory scopes for the task flow
selected in the ADF Structure window.

The page flow memory scopes will also be displayed within
the ADF Structure window’s Scopes node. However, the page
flow memory scope for the Scopes node will always be based
on the application's current context, not the selected task flow.

Table 31–8 ADF Data Window Content for Binding Container

Binding Container Description

Page definition link Navigates to the corresponding page definition source file and
opens it within the editor workspace.

Table 31–7 (Cont.) ADF Data Window Content for Task Flow

Task Flow Description

Setting ADF Declarative Breakpoints

Testing and Debugging ADF Components 31-51

Data Controls Displays the binding container's data controls.

Data controls implemented by ADF Business Components
objects and non-ADF Business Components objects will be
presented slightly different. ADF Business Components-based
data controls will appear similar to the actual business service
implementation using row collections. Non-ADF Business
Components-based data controls will typically appear as raw
member variables similar to what is displayed in the ADF
Declarative Debugger Data window. The ADF Data window
shows only cached information such as member variables and
arrays. Standard debugger functionality can also be used to
customize each element.

Each ADF Business Components data control will display the
following information:

■ Row collections

■ Query string for each row collection

■ Query string with variable substitution for each row
collection

■ Application data rows

■ Current row indicator

■ Change indicator

■ Current and original values (if changed within the same
request)

Parameters Current values of all binding container parameters.

Executables Displays executables showing current row indicators, and
current and original values (if changed within the same request).
This includes the following types of executables:

■ Iterator - presents corresponding attribute bindings along
with their Refresh and RefreshCondition properties.

■ task flow - current value of the task flow ID assigned to the
task flow binding and all of its associated parameter values.
Task flow IDs will appear as links navigating to open the
corresponding task flow definition source file within the
editor workspace. Link text consists of <task flow
source document>#<task flow id>.

■ Search region - presented similar to iterators, but also
displays criteria and criteria with substitution information.

Bindings Displays value, table, tree, and method bindings. Each binding
will display the following information:

■ Associated executables

■ Change indicator

■ Current and original values (if changed within the same
request)

Binding container of page
template

If the corresponding page or page fragment utilized a page
template, the binding container of the page template will appear
as a child of page or page fragment binding container content.

Table 31–8 (Cont.) ADF Data Window Content for Binding Container

Binding Container Description

Setting ADF Declarative Breakpoints

31-52 Fusion Developer's Guide for Oracle Application Development Framework

When you select a binding container for an application based on non-ADF Business
Components objects, the ADF Data window displays the binding container content, as
shown in Figure 31–1.

Figure 31–38 Binding Container (Non-Business Components) Selected for the ADF Data
Window

When you select a binding container for an application based on ADF Business
Components objects, the ADF Data window displays standard row collection icons, as
shown in Figure 31–2.

Figure 31–39 Binding Container (Business Components) Selected for the ADF Data
Window

Expanding the Parameters node in the ADF Data window displays information similar
to that shown in Figure 31–40.

Setting ADF Declarative Breakpoints

Testing and Debugging ADF Components 31-53

Figure 31–40 Parameters Selected for the ADF Data Window

Expanding the Executables node in the ADF Data window displays information
similar to that shown in Figure 31–41.

Figure 31–41 Executables Selected for the ADF Data Window

If a value has changed, the changed item will be marked with a blue dot to its left and
the previous value is displayed in parenthesis. For instance, suppose the OrderTotal
value has changed from 7895.81 to 7670.11. The ADF Data window places a blue dot
next to OrderTotal and its parent OrdersView1Iterator and displays the current
and previous values in the Value column, as shown in Figure 31–42.

Setting ADF Declarative Breakpoints

31-54 Fusion Developer's Guide for Oracle Application Development Framework

Figure 31–42 A Value Change Is Indicated by a Blue Dot in the ADF Data Window

Method binding information is displayed in the ADF Data window similar to what is
shown in Figure 31–43.

Figure 31–43 Method Bindings Selected for the ADF Data Window

When you select an Application Data node from the ADF Structure window, the ADF
Data window displays the application objects, such as ADF Business Components
objects, instantiated within the current data control frame for the corresponding view
port (or binding context if ADF Controller is not used).

Business services implemented by ADF Business Components objects display the
application data content, as shown in Figure 31–44 and described in Table 31–9.

Setting ADF Declarative Breakpoints

Testing and Debugging ADF Components 31-55

Figure 31–44 Application Data for ADF Business Components Business Services

Table 31–9 ADF Data Window Content for Application Data

Binding Container Description

Application module The application module(s) of the corresponding view port data
control frame will appear within the application data hierarchy
as the root node(s). An application module design time icon will
be used to identify the node(s). The application module node(s)
will provide the following information:

■ Application module link - link to open the corresponding
application module source file within the editor workspace.

■ Transaction - the application module current transaction
status, if applicable.

■ View objects

■ Entity objects

Setting ADF Declarative Breakpoints

31-56 Fusion Developer's Guide for Oracle Application Development Framework

Business services implemented by non-ADF Business Components objects display
application data content using raw member variables. The format is similar to the
display of non-ADF Business Components content for the binding container, as shown
in Figure 31–38.

View object View objects instantiated within the corresponding view port
data control frame will appear underneath the corresponding
application module root node as subordinate nodes. Design time
icons will be used to identify them. Child view objects will
appear subordinate to their parent view objects within the
hierarchy. Named row sets will appear similar to view objects.
Named iterators for a view object will appear similar to child
view objects. Each view object node will provide the following
information:

■ View object link - link to open the corresponding view
object source file within the editor workspace.

■ Query - last executed view object SQL statement. Displays
bind variables without value substitution.

■ Query with substitution - last executed view object SQL
statement. Displays bind variables with value substitution.

■ Bind variables - last executed view object SQL statement
bind variables and their values.

■ View object rows - each row displayed will be identified by
its concatenated key values. The current row will be
identified with a special icon.

■ Attributes - attributes contained on each row will display
their current values along with their originating entity
object. Transient attributes will also be displayed.

■ Modifications - changes made within the same request will
be identified by a blue dot to left of attribute, row, and view
objects node labels. Both the old and new value of the
modification will be displayed.

Entity object Entity objects instantiated within the corresponding view port
data control frame will appear underneath the application
module root node as subordinate nodes. Design time icons will
be used to identify them. Each entity object node will provide
the following information:

■ Entity object link - link to open the corresponding entity
object source file within the editor workspace.

■ Entity object rows - each row displayed will be identified by
its concatenated key values. The current entity-state and
post-state of the row (e.g., STATUS_MODIFIED) will also be
presented.

■ Attributes - attributes contained on each row will display
their current values.

■ Modifications - changes made within the same request will
be identified by a blue dot to left of attribute, row, and
entity objects node labels. Both the old and new value of the
modification will be displayed.

Table 31–9 (Cont.) ADF Data Window Content for Application Data

Binding Container Description

Setting Java Code Breakpoints

Testing and Debugging ADF Components 31-57

31.8.8 What Happens When You Set an ADF Declarative Breakpoint
When you set an ADF declarative breakpoint, JDeveloper adds the breakpoint to the
appropriate class, method, or other construct in the ADF source Java code that
corresponds to the breakpoint. Once the breakpoint is set in the code, the standard
Java debugger mechanism pauses application execution when the breakpoint is
reached. When the breakpoint is reached, it will be identified by a red dot icon in the
Breakpoints window. Depending on the type of declarative breakpoint that was
reached, it will also appear as a red dot icon in the task flow activity, in the page
definition breakpoint margins, or in the ADF Lifecycle Breakpoints window.

For task flow activity breakpoints, the debugger pauses the application within the JSF
Invoke Application phase before the activity where the breakpoint is set. In other
words, the activity where the breakpoint is set is not executed.

For task flow view activities, however, the application is paused within the JSF Render
Response phase after the view activity is executed, but before the new page is
rendered.

For a page definition Before executable breakpoint, the debugger pauses the
application when the executable is refreshed. For a page definition Before action
binding breakpoint, the debugger pauses the application when the binding is
executed. For a page definition Before attribute value binding breakpoint, the
debugger pauses the application before the attribute’s setInputValue() method in
the ADF source code is executed.

For a Before lifecycle breakpoint, the debugger pauses the application before it enters
the next lifecycle phase. For an After lifecycle breakpoint, the debugger pauses the
application after the lifecycle phase and before the next phase.

31.9 Setting Java Code Breakpoints
You can use the ADF Declarative Debugger to set breakpoints on Java classes and
methods, as in any standard Java code debugger. You can use Java code breakpoints in
combination with ADF declarative breakpoints or by themselves. For most ADF
applications, ADF declarative breakpoints will provide enough debugging
information to troubleshoot the application. For information about using ADF
declarative breakpoints, see Section 31.8, "Setting ADF Declarative Breakpoints."
However, you may need to set breakpoints on specific classes or methods for further
inspection. Or, you may be debugging a non-ADF application, in which case, you can
use Java code breakpoints.

JDeveloper provides a class locator feature that assists you in finding the class you
want to break on. If you can obtain Oracle ADF source code, you can enhance your
debugging by having access to various ADF classes and methods. For more
information about getting ADF source code, see Section 31.7.1, "Using ADF Source
Code with the Debugger." If you obtained the ADF source, you can further enhance
the debugging experience by using the debug library version of the ADF source, as
described in Section 31.9.4, "How to Use Debug Libraries for Symbolic Debugging."

31.9.1 How to Set Java Breakpoints on Classes and Methods
You can set Java breakpoints on your classes and methods. If you have ADF source
code, you can set Java breakpoints in the source as well. If you are debugging an ADF
application, you should check to see whether ADF declarative breakpoints can be used
instead of Java code breakpoints. For more information, see Section 31.8, "Setting ADF
Declarative Breakpoints."

Setting Java Code Breakpoints

31-58 Fusion Developer's Guide for Oracle Application Development Framework

Before you attempt to use breakpoints, you should try to run the application and look
for missing or incomplete data, actions and methods that are ignored or incorrectly
executed, or other unexpected results. If you did not find the problem, create a
debugging configuration that will enable the ADF Log and send Oracle ADF messages
to the Log window. For more information, see Section 31.5.2, "How to Create an Oracle
ADF Debugging Configuration."

To set Java breakpoints to debug an application:
1. From the main menu, choose Navigate > Go to Java Type (or press Ctrl+Minus)

and use the dialog to locate the Oracle ADF class that represents the entry point
for the processing failure.

2. Open the class file in the source editor and find the Oracle ADF method call that
will enable you to step into the statements of the method.

3. Set a breakpoint on the desired method and run the debugger.

4. When the application stops on the breakpoint, use the Data window to examine
the local variables and arguments of the current context.

Once you have set breakpoints to pause the application at key points, you can proceed
to view data in the Data window. To effectively debug your web page’s interaction
with the ADF Model layer, you need to understand:

■ The ADF page lifecycle and the method calls that get invoked

■ The local variables and arguments that the ADF Model layer should contain
during the course of application processing

Awareness of Oracle ADF processing will give you the means to selectively set
breakpoints, examine the data loaded by the application, and isolate the contributing
factors.

31.9.2 How to Optimize Use of the Source Editor
Once you have added the ADF source library to your project, you have access to the
helpful Quick Javadoc feature (Ctrl+D) that the source editor makes available.
Figure 31–45 shows Quick Javadoc for a method like findSessionCookie().

Note: JDeveloper will locate the class from the user interface project
with current focus in the Application Navigator. If your workspace
contains more than one user interface project, be sure that the one
with the current focus is the one you want to debug.

Tip: If you are using the Go to source context menu command in the
Data, Watches, or Smart Data window, you can go back to the
execution point by using the back button. You can also access the back
button through the Navigate menu.

Note: JSF web pages may also use backing beans to manage the
interaction between the page’s components and the data. Debug
backing beans by setting breakpoints for them as you would with any
other Java class file.

Setting Java Code Breakpoints

Testing and Debugging ADF Components 31-59

Figure 31–45 Using Quick Javadoc on ADF API in the Source Editor

31.9.3 How to Set Breakpoints and Debug Using ADF Source Code
After loading the ADF source code, you can debug any Oracle ADF code for the
current project the same way that you do your own Java code. This means that you
can press Ctrl+Minus to type in any class name in Oracle ADF, and JDeveloper will
open its source file automatically so that you can set breakpoints as desired.

31.9.4 How to Use Debug Libraries for Symbolic Debugging
When debugging Oracle ADF source code, by default you will not see symbol
information for parameters or member variables of the currently executing method.

For example, in a debugging session without ADF source code debug libraries, you
may see unrecognizable names such as "_slot", as shown in Figure 31–46.

Figure 31–46 Local Symbols Are Hard to Understand Without Debug Libraries

These names are hard to decipher and make debugging more difficult. You can make
debugging easier by using the debug versions of the ADF JAR files supplied along
with the source while debugging in your development environment.

Setting Java Code Breakpoints

31-60 Fusion Developer's Guide for Oracle Application Development Framework

The debug library JARs are versions of Oracle ADF JARs that have been compiled
with additional debug information. When you use these debug JAR files instead of the
default optimized JARs, you will see all of the information in the debugger. For
example, the variable evid is now identified by its name in the debugger, as shown in
Figure 31–47.

Figure 31–47 Symbol Information Displayed in the Debugger

Before you replace the standard library JAR, make sure that JDeveloper is not running.
If it's currently running, exit from the product before proceeding.

To replace the standard library JARs with the debug library JARs:
1. With JDeveloper closed, make a backup subdirectory of all existing optimized

JAR files in the ./BC4J/lib directory of your JDeveloper installation. For
example, assuming jdev11 is the JDeveloper home directory:

C:\jdev11\BC4J\lib> mkdir backup
C:\jdev11\BC4J\lib> copy *.jar backup

2. For each ADF library that you want debug symbols for while debugging, copy the
_g.jar version of the matching library over the existing, corresponding library in
the C:\jdev11\BC4J\lib directory.

This is safe to do since you made a backup of the optimized JAR files in the
backup directory in Step 2.

Since debug libraries typically run a little slower than libraries compiled without
debug information, this diagnostic message is to remind you not to use debug
libraries for performance timing:

**
*** WARNING: Oracle BC4J debug build executing - do not use for timing ***
**

3. To change back to the optimized libraries, simply copy the JAR file(s) in question
from the ./BC4J/lib/backup directory back to the ./BC4J/lib directory.

Note: The supplied debug libraries should not be used in a test or
production environment, since they typically have slightly slower
runtime performance than the optimized JAR files shipped with
JDeveloper.

Setting Java Code Breakpoints

Testing and Debugging ADF Components 31-61

31.9.5 How to Use Different Kinds of Java Code Breakpoints
You first need to understand the different kinds of Java code breakpoints and where to
create them.

To see the debugger Breakpoints window, choose View > Breakpoints from the main
menu or press Ctrl+Shift+R.

You can create a new Java code breakpoint by choosing Create Breakpoint from the
context menu in the Breakpoints window. The Breakpoint Type dropdown list
controls what kind of breakpoint you will create, as shown in Table 31–10.

Note: You can also use the Create Breakpoint dialog to create an
ADF lifecycle phase declarative breakpoint. For information about
creating ADF declarative breakpoints, see Section 31.8.5, "How to Set
and Use ADF Lifecycle Phase Breakpoints."

Table 31–10 Different Types of Java Breakpoints

Breakpoint
Type

The Breakpoint Occurs
Whenever Usage

Exception An exception of this class
(or a subclass) is thrown.

An Exception breakpoint is useful when you
don't know where the exception occurs, but
you know what kind of exception it is (for
example,
java.lang.NullPointerException,
java.lang.ArrayIndexOutOfBoundsExc
eption, oracle.jbo.JboException). The
checkbox options allow you to control
whether to break on caught or uncaught
exceptions of this class. The Browse button
helps you find the fully qualified class name
of the exception. The Exception Class
combobox remembers the most recently used
exception breakpoint classes. Note that this is
the default breakpoint type when you create a
breakpoint in the breakpoints window.

Source A particular source line in a
particular class in a
particular package is run.

You rarely create a source breakpoint in the
Create Breakpoint dialog, because it's much
easier to create it by first using the Navigate >
Go to Java Type menu (accelerator
Ctrl+Minus), then scrolling to the line number
you want — or using Navigate > Go to Line
(accelerator Ctrl+G) — and finally clicking in
the breakpoint margin at the left of the line
you want to break on. This is equivalent to
creating a new source breakpoint, but it means
you don't have to type in the package, class,
and line number by hand.

Method A method in a given class is
invoked.

The Method breakpoint is useful for setting
breakpoints on a particular method you might
have seen in the call stack while debugging a
problem. If you have the source, you can set a
source breakpoint wherever you want in that
class, but this kind of breakpoint lets you stop
in the debugger even when you don't have
source for a class.

Setting Java Code Breakpoints

31-62 Fusion Developer's Guide for Oracle Application Development Framework

31.9.6 How to Edit Breakpoints for Improved Control
After creating a Java code breakpoint you can edit the breakpoint in the Breakpoints
window by right-clicking it and choosing Edit in the context menu.

Some of the features you can use by editing your breakpoint are:

■ Associate a logical "breakpoint group" name to group this breakpoint with others
of the same group name. Breakpoint groups make it easy to enable/disable an
entire set of breakpoints in one operation.

■ Associate a debugger action to a breakpoint when the breakpoint is hit. The
default action is to stop the debugger so that you can inspect the application states,
but you can add a sound alert, write information to a log file, and enable or disable
group of breakpoints.

■ Associate a conditional expression with the breakpoint so that the debugger stops
only when that condition is met. The expressions can be virtually any boolean
expression, including:

■ expr ==value

■ expr.equals("value")

■ expr instanceof.fully.qualified.ClassName

Class Any method in a given class
is invoked.

The Class breakpoint can be used when you
might know the class involved in the problem,
but not the exact method you want to stop on.
This kind of breakpoint does not require
source. The Browse button helps you quickly
find the fully qualified class name you want to
break on.

Watchpoint A given field is accessed or
modified.

The Watchpoint breakpoint can be used to
find a problem if the code inside a class
modifies a member field directly from several
different places (instead of going through
setter or getter methods each time). You can
pause the debugger when any field is
modified. You can create a breakpoint of this
type by using the Toggle Watchpoint menu
item on the context menu when pointing at a
member field in your class's source.

Note: You can use the Edit Breakpoint dialog to edit an ADF
declarative breakpoint. However, you cannot edit some of the other
information such as the information in the Definition tab. You can
launch the Edit Breakpoint dialog by choosing Edit from the context
menu in the Breakpoints window. For information about creating
ADF declarative breakpoints, see Section 31.8, "Setting ADF
Declarative Breakpoints."

Note: Use the debugger Watches window to evaluate the
expression first to make sure it’s valid.

Table 31–10 (Cont.) Different Types of Java Breakpoints

Breakpoint
Type

The Breakpoint Occurs
Whenever Usage

Setting Java Code Breakpoints

Testing and Debugging ADF Components 31-63

31.9.7 How to Filter Your View of Class Members
You can use the debugger to filter the members that are displayed in the debugger
window for any class. In the debugger's Data window, selecting any item and
choosing Preferences from the context menu brings up a dialog that lets you
customize which members appear in the debugger and (more importantly sometimes)
which members don't appear. You can filter by class type to simplify the amount of
scrolling you need to do in the debugger Data window. This is especially useful when
you might be interested only in a handful of a class's members.

31.9.8 How to Use Common Oracle ADF Breakpoints
If you loaded Oracle ADF source code, you can use the breakpoints listed in
Table 31–11 to debug your application.

By looking at the Stack window when you hit these breakpoints, and stepping through
the source, you can get a better idea of what's going on.

Table 31–11 Commonly Used ADF Breakpoints

Breakpoint Breakpoint Type Usage

oracle.jbo.JboException Exception This breakpoint useful for setting a breakpoint
on the base class of all ADF Business
Components runtime exceptions.

oracle.jbo.DMLException Exception This is the base class for exceptions originating
from the database, like a failed DML operation
due to an exception raised by a trigger or by a
constraint violation.

doIt() Method You can also perform the same debugging
function by setting an ADF declarative
breakpoint on the page definition action
binding. See Section 31.8.3, "How to Set and
Use Page Definition Action Binding
Breakpoints."

If you prefer to use this Java breakpoint, you
can find it in the JUCtrlActionBinding
class (oracle.jbo.uicli.binding
package).

This is the method that will execute when any
ADF action binding is invoked, and you can
step into the logic and look at parameters if
relevant.

oracle.jbo.server.ViewObjectImpl.
executeQueryForCollection

Method This is the method that will be called when a
view object executes its SQL query.

oracle.jbo.server.ViewRowImpl.set
AttributeInternal

Method This is the method that will be called when
any view row attribute is set.

oracle.jbo.server.EntityImpl.setA
ttributeInternal

Method You can also perform the same debugging
function by setting an ADF declarative
breakpoint on the page definition attribute
value binding. See Section 31.8.4, "How to Set
and Use Page Definition Attribute Value
Binding Breakpoints."

This is the method that will be called when
any entity object attribute is set.

Regression Testing with JUnit

31-64 Fusion Developer's Guide for Oracle Application Development Framework

31.10 Regression Testing with JUnit
Testing your business services is an important part of your application development
process. By creating a set of JUnit regression tests that exercise the functionality
provided by your application module, you can ensure that new features, bug fixes, or
refactorings do not destabilize your application. JDeveloper’s integrated support for
creating JUnit regression tests makes it easy test your application. Its integrated
support for running JUnit tests means that any developer on the team can run the test
suite with a single mouse click, greatly increasing the chances that every team member
can run the tests to verify their own changes to the system. Furthermore, by using
JDeveloper’s integrated support for creating and running Apache Ant build scripts,
you can easily incorporate running the tests into your automated build process as
well. You can create a JUnit test for your application module, run it, and integrate the
tests into an Ant build script.

JDeveloper provides the ability to generate JUnit test cases, test fixtures, and test
suites. You can create test cases to test individual Java files containing single or
multiple Java classes. You can create JUnit test fixtures that can be reused by JUnit test
cases. You can group all these test cases into a JUnit test suite, which you can run
together as a unit.

You can also use the JUnit BC4J Test Suite wizard to generate a test suite when there is
an application module in the project. The wizard generates a test suite, test fixture, and
a test case for each view object in the application module.

You can create a separate project to contain your regression tests or to integrate the
test files into an existing project. If you are creating an ADF Business Components test,
you should create a separate project for testing.

Creating separate projects for testing has the following advantages:

■ The ability to compile the base project without having a dependency on JUnit

■ The ability to package the base project for deployment without having to exclude
the test classes.

If you are creating separate projects for JUnit testing, you should create directory
structures that mirror the structure of the packages being tested. You may want to
name the test classes using a naming convention that can easily identify the package
being tested. For example, if you are testing myClass.java, you can name the test
class myClassTest.java.

Although having separate projects has many advantages, in certain cases it may be
easier to include the tests within the project. For example, the Fusion Order Demo
application has a JUnit regression test suite in the FODCustomization workspace
Customization Extension project.

You can use the Create Test wizards in the context of the project to create a JUnit test
case, test fixture, or test suite. However, if you do not want to include these tests as
part of the deployment, you may want to separate the tests out in their own project.

Each test case class contains a setUp() and tearDown() method that JUnit invokes
to allow initializing resources required by the test case and to later clean them up.
These test case methods invoke the corresponding setUp() and tearDown()
methods to prepare and clean up the test fixture for each test case execution. Any time
a test in the test case needs access to the application module, it uses the test fixture’s

Tip: If you don’t see the Create Test wizards, use JDeveloper’s Help
> Check for Updates feature to install the JUnit Integration extension
before continuing.

Regression Testing with JUnit

Testing and Debugging ADF Components 31-65

getApplicationModule() method. The method returns the same application
module instance, saved in a member field of the test fixture class, between the initial
call to setUp() and the final call to tearDown() at the end of the test case.

JDeveloper supports JUnit 4, which allows annotations to be used instead of explicitly
having to name the methods setUp() and tearDown().These annotations —
@Before, @After — allow you to have multiple setup and teardown methods,
including inherited ones if required.

The generated ExampleModuleConnectFixture is a JUnit test fixture that
encapsulates the details of acquiring and releasing an application. It contains a
setUp() method that uses the createRootApplicationModule() method of the
Configuration class to create an instance of an application module. Its
tearDown() method calls the matching releaseRootApplicationModule()
method to release the application module instance.

Your own testing methods can use any of the programmatic APIs available in the
oracle.jbo package to work with the application module and view object instances
in its data model. You can also cast the ApplicationModule interface to a custom
interface to have your tests invoke your custom service methods as part of their job.
During each test, you will call one or more assertXxx() methods provided by the
JUnit framework to assert what the expected outcome of a particular expression
should be. When you run the test suite, if any of the tests in any of the test cases
contains assertions that fail, the JUnit Test Runner window displays the failing tests
with a red failure icon.

The JUnit test generation wizard generates skeleton test case classes for each view
object instance in the data model, each of which contains a single test method named
testAccess(). This method contains a call to the assertNotNull() method to test
that the view object instance exists.

// In ViewInstanceNameTest.java test case class
 public void testSomeMeaningfulName() {
 // test assertions here
 }

Each generated test case can contain one or more test methods that the JUnit
framework will execute as part of executing that test case. You can add a test to the
test case simply by creating a public void method in the class whose name begins with
the prefix test or use the annotation @Test.

31.10.1 How to Obtain the JUnit Extension
JUnit must be loaded as an extension to JDeveloper before it becomes available and
appears in the menu system.

To load the JUnit extension:
1. From the main menu, choose Help > Check for Updates.

2. In the Source page of the Check for Updates dialog, select Search Update Centers
and Official Oracle Extensions and Updates and click Next.

If you have the JUnit zip file or if the JUnit selection does not appear in the
Available Updates list, select Install From Local File to load the JUnit zip file.

3. In the Updates page, select JUnit Integration and click Next, as shown in
Figure 31–48.

Regression Testing with JUnit

31-66 Fusion Developer's Guide for Oracle Application Development Framework

Figure 31–48 Check for Updates Dialog for Adding JUnit Extension

4. On the License Agreements page, click I Accept and click Finish.

31.10.2 How to Create a JUnit Test Case
Before you create a JUnit test case, you must have created a project that is to be tested.

To generate a JUnit test case:
1. In the Application Navigator, select the project you want to generate a test case

for, right-click and choose New.

2. In the New Gallery, expand General, select Unit Tests(JUnit) and then Test Case,
and click OK.

3. In the Select the Class to Test page of the Create Test Case dialog, enter the class
under test or click Browse.

4. In the Class Browser dialog, locate the class you want to test or enter the
beginning letters in the Match Class Name field. The Match Class list will be
filtered for easier identification.

For example, entering FOD filters the list down to three items, as shown in
Figure 31–49.

Regression Testing with JUnit

Testing and Debugging ADF Components 31-67

Figure 31–49 Class Browser for Selecting Class Files to Test

Select the class and click OK to close the dialog. Click Next.

5. Select the individual methods you want to test, and click Next.

For example, in Figure 31–50, the four methods that are checked are to be tested.

Figure 31–50 Create Test Case Dialog for Selecting Methods to Test

6. In the Setup Test Case Class page, enter the name of the test case, the package, and
the class it extends and select the list of built-in functions JUnit will create stubs
for. Click Next.

For example, in Figure 31–51, JUnit will create a stub for the setUp() method for
the FodCompanyCustomizationLayerTest test case in the
oracle.fodemo.customization package.

Regression Testing with JUnit

31-68 Fusion Developer's Guide for Oracle Application Development Framework

Figure 31–51 Create Test Case Dialog for Setting Up Classes to Test

7. In the Select Test Fixtures page, select any test fixtures you want to add to the test
case or click Browse.

8. Make sure that all the test fixtures you want to add to the test case are selected in
the list and click Finish.

31.10.3 How to Create a JUnit Test Fixture
You should create a JUnit test fixture if you require more than one test for a class or
method. A JUnit text fixture allows you to avoid duplicating test code that is needed to
initialize testing.

To generate a JUnit test fixture:
1. In the Application Navigator, select the project you want to generate a test fixture

for, right-click and choose New.

2. In the New Gallery, expand General, select Unit Tests(JUnit) and then Test
Fixture, and click OK.

3. In the Create Test Fixture dialog, enter the name of the test fixture, the package,
and any class it extends.

4. Click OK.

31.10.4 How to Create a JUnit Test Suite
Before you create a JUnit test suite, you should have already created JUnit test cases
that can be added to the test suite.

To generate a JUnit test suite:
1. In the Application Navigator, select the project you want to generate a test fixture

for, right-click and select New.

2. In the New Gallery, expand General, select General and then Test Suite, and click
OK.

Regression Testing with JUnit

Testing and Debugging ADF Components 31-69

3. In the Setup Test Suite Class page of the Create Test Suite dialog, enter the name
of the test suite, the package, and the class it extends. Click Next.

For example, in Figure 31–52, an AllTests test suite is created that extends the
java.lang.Object class.

Figure 31–52 Create Test Suite Wizard

4. In the Select Test Cases page of the Create Test Suite dialog, check that all the test
cases you want included in the test suite have been selected. The test cases you
have created will populate the list. Deselect any test cases that you do not want
included. Click Finish.

For example, in Figure 31–53, both test cases are selected to be in the test suite.

Figure 31–53 Selecting Test Cases for a Test Suite

31.10.5 How to Create a Business Components Test Suite
The test fixture that is created is a singleton class to reduce the number of connections.
If you want to connect or disconnect for each test case, customize the test case using
the JUnit 4 annotations @Before and @After.

The JUnit BC4J Test Suite wizard will generate tests for each view object in the
application module. If the application module does not have exported methods, the

Regression Testing with JUnit

31-70 Fusion Developer's Guide for Oracle Application Development Framework

wizard will also generate a test for the application module itself. A generated view
object class has the format view_objectVOTest.java and is placed into a package
with the format package.view.viewobjectVO, where package is the application
module package. A generated application module test has the format application_
moduleAMTest.java and is placed into a package with the format
package.applicationModule. A generated test fixture class has the format
applicationmoduleAMFixture.java and is placed in the same package as the
application module test.

The generated all test suite class has the format
AllapplicationmoduleTest.java and is placed into the package with the same
name as the application module package name.

A test case XML file is also generated for each application module or view object test.
The XML file contains test methods defined in the application module or view object
test cases. It does not include the test methods from the base classes (if any) because
there may be too many duplicates.

For instance, after you created a test suite for an application module named
StoreAAppModule with view objects Employees1View1 and Employees1View2
in the package StoreAPack, the Application Navigator displays the test hierarchy as
shown in Figure 31–17.

Figure 31–54 Business Components Test Suite in the Application Navigator

Before you begin:
Create application modules in the project.

To create a business components test suite:
1. In the Application Navigator, click New.

You will create a separate project for the business components tests.

2. In the New Gallery, expand General, select Projects and then Java Projects, and
click OK.

3. In the Project Name page of the Create Java Project wizard, enter a name and the
directory path for the test project, and click Next.

4. In the Project Java Settings page, enter the package name, the directory of the Java
source code in your project, and output directory where output class files will be
placed, and click Finish.

5. In the Application Navigator, double-click the application module you want to
test.

6. In the overview editor, click the Java navigation tab.

Regression Testing with JUnit

Testing and Debugging ADF Components 31-71

7. In the Java page, click the Edit icon for the Java Class section.

8. In the Select Java Options dialog, select Generate Application Module Class and
click OK.

9. In the overview editor Java tab, click the Edit icon in the Class Interface section.

10. In the Edit Client Interface dialog, shuttle the methods you want to test to the
Selected pane, and click OK.

11. In the Application Navigator, right-click the test project you have created and
choose New.

12. In the New Gallery, expand General, select Unit Tests and then Business
Components Test Suite, and click OK.

13. In the Configure Tests page of the JUnit BC4J Test Suite wizard, select values for
the following and click Next:

■ Business Component Project: Select the project that has the application
module you want to test.

■ Application Module: Select the application module you want to test.

■ Configuration: Choose a local or shared application module.

■ Test Base Class-Application Module Extends: You can specify different base
cases. The generated test case classes will extend from that base class where all
public abstract methods in the base class will have simple and default
implementation method bodies.

■ Test Base Class-View Object Extends: You can specify which class the view
object extends. The generated test case classes will extend from that base class
where all public abstract methods in the base class will have simple and
default implementation method bodies.

14. In the Summary page, verify the selections and click Finish.

31.10.6 How to a Create Business Components Test Fixture
When you create a business components test suite, a business components test fixture
is created with it. You can also create Business Components test fixtures
independently.

A generated test fixture class has the format applicationmoduleAMFixture.java
and put into a package with the format package.applicationModule, where
package is the application module package.

Before you begin:
Create application modules in the project.

To create a business components test fixture:
1. In the Application Navigator, click New.

You will create a separate project for the business components tests.

2. In the New Gallery, expand General, select Projects and then Java Projects, and
click OK.

3. In the Project Name page of the Create Java Project dialog, enter a name and the
directory path for the test project, and click Next.

Regression Testing with JUnit

31-72 Fusion Developer's Guide for Oracle Application Development Framework

4. In the Project Java Settings page, enter the package name and the source and
output directories, and click Finish.

5. In the Application Navigator, double-click the application module you want to
test.

6. In the overview editor, click the Java navigation tab and click the Edit icon of the
Java Class section.

7. In the Select Java Options dialog, select Generate Application Module Class, and
click OK.

8. In the overview editor, click the Edit icon of the Class Interface section.

9. In the Edit Client Interface dialog, shuttle the methods you want to test to the
Selected pane, and click OK.

10. In the Application Navigator, right-click the test project you have created and
choose New.

11. In the New Gallery, expand General, select Unit Tests and then Business
Components Test Fixture, and click OK.

12. In the Configure Tests page of the JUnit BC4J Test Fixture wizard, select values for
the following and click Next:

■ Business Component Project: Select the project that has the application
module you want to test.

■ Application Module: Select the application module you want to test.

■ Configuration: Choose a local or shared application module.

13. In the Summary page, verify the test fixture class and click Finish.

31.10.7 How to Run a JUnit Test Suite as Part of an Ant Build Script
Apache Ant is a popular, cross-platform build utility for which JDeveloper offers
design time support. You can incorporate the automatic execution of JUnit tests and
test output report generation by using Ant’s built-in junit and junitreport tasks.
Example 31–3 shows a task called tests from the FODCustomizations Ant
build.xml file in the CustomizationExtension project. It depends on the build
and buildTests targets that Ant ensures have been executed before running the
tests target.

Example 31–3 Ant Build Target Runs JUnit Test Suite

 <target name="testCustomizations" depends="compileExtensionClasses">
 <junit printsummary="yes" haltonfailure="yes">
 <classpath refid="customization.classpath">
 <pathelement location="${customization.build.dir}"/>
 </classpath>
 <formatter type="plain"/>
 <test name="oracle.fodemo.customization.tests.AllTests"/>
 </junit>
 </target>

The junit tag contains a nested test tag that identifies the test suite class to execute
and specifies a directory in which to report the results. The junitreport tag allows
you to format the test results into a collection of HTML pages that resemble the format
of Javadoc.

Regression Testing with JUnit

Testing and Debugging ADF Components 31-73

To try running the JUnit test from Ant, select the build.xml file in the Application
Navigator, and choose Run Ant Target > tests from the context menu.

Regression Testing with JUnit

31-74 Fusion Developer's Guide for Oracle Application Development Framework

32

Refactoring a Fusion Web Application 32-1

32Refactoring a Fusion Web Application

This chapter describes considerations for renaming, moving, and deleting files,
configuration files, objects, attributes, and elements in a Fusion web application. In
most cases, JDeveloper automatically performs refactoring. However, you may need to
complete some manual steps to refactor.

This chapter includes the following sections:

■ Section 32.1, "Introduction to Refactoring a Fusion Web Application"

■ Section 32.2, "Renaming Files"

■ Section 32.3, "Moving JSF Pages"

■ Section 32.4, "Refactoring pagedef.xml Bindings Objects"

■ Section 32.5, "Refactoring ADF Business Components"

■ Section 32.6, "Refactoring ADF Business Component Object Attributes"

■ Section 32.7, "Refactoring Named Elements"

■ Section 32.8, "Refactoring ADF Task Flows"

■ Section 32.9, "Refactoring the DataBindings.cpx File"

■ Section 32.10, "Refactoring Across Abstraction Layers"

■ Section 32.11, "Refactoring Limitations"

■ Section 32.12, "Refactoring the .jpx Project File"

32.1 Introduction to Refactoring a Fusion Web Application
JDeveloper provides refactoring options to rename, move, and delete the ADF
Business Components objects, attributes, and named elements that your application
uses. These refactoring options synchronize your changes with other parts of the
application that are dependent on the changes. For example, renaming an ADF
Business Components object such as a view using the Rename option renames any
references to it in other XML source files.

32.2 Renaming Files
You can rename files such as configuration files using the following methods:

■ In the Application Navigator, select the file and choose File > Rename from the
main menu.

■ In the Application Navigator, right-click the file and choose Refactor > Rename.

Moving JSF Pages

32-2 Fusion Developer's Guide for Oracle Application Development Framework

■ In the source editor, select a class name, right-click it, and choose Rename.

32.3 Moving JSF Pages
In the Application Navigator, you can right-click a JSF page and choose Refactor >
Move to Package to move the page to another package.

Moving the JSF page to another package updates:

■ faces-config.xml files that reference the page and its package

■ ADF task flows containing views associated with the page

■ DataBindings.cpx mappings to the page

32.4 Refactoring pagedef.xml Bindings Objects
The pagedef.xml binding objects that you can refactor include bindings and
executables. For more information, see Section 12.6, "Working with Page Definition
Files."

To refactor pagedef.xml binding objects:
1. In the Application Navigator, select the page node on which you have added a

bound object such as an ADF Form or selection list.

2. Right-click the page node and choose Go to Page Definition.

If the page does not already have a page definition, the Create Page Definition
dialog displays. Click OK to create a page definition for the page.

3. In the overview editor, expand the Model section.

Data bindings such as list bindings and iterator bindings defined for the page
display under Bindings and Executables, as shown in Figure 32–1.

Figure 32–1 Page Data Binding Definition Overview Tab

Refactoring ADF Business Component Object Attributes

Refactoring a Fusion Web Application 32-3

4. Right-click a data binding or executable, choose Refactor and a refactoring option
such as Rename or Delete.

5. To display the usages between bindings, executables, and data controls, right-click
a binding or executable and choose Find Usages.

32.5 Refactoring ADF Business Components
ADF Business Components includes objects such as view objects and entity objects.
Table 32–1 shows support for refactoring ADF Business Components.

To refactor ADF Business Components objects:
1. In the Application Navigator, expand the Projects node containing the object you

want to refactor.

2. Within the project, expand the Application Sources node and then the package
containing the object you want to refactor.

3. Right-click the object and choose Refactor > Rename or Refactor > Move.

4. To delete the object, choose Delete.

If the object is used elsewhere in the application, a dialog displays with the
following options:

■ Ignore: Unresolved usages will remain in the code as undefined references.

■ View Usages: Display a preview of the usages of the element in the Compiler
log. You can use the log to inspect and resolve the remaining usages.

32.6 Refactoring ADF Business Component Object Attributes
Table 32–1 shows support for refactoring attributes of ADF Business Component entity
objects and view objects.

Table 32–1 Refactoring ADF Business Components

Action Result

Move Moves the object to a different package or directory and updates
all references.

Delete JDeveloper shows all dependencies on the object and permits a
forced delete. The application may not work at this point. You
may need to resolve broken references.

Rename ADF Business Components objects are defined by an XML file.
The XML file has a file name identical to the object name. For
example, the name of the XML file for a view object named
Persons1View is Persons1View.xml. Renaming results in
changing the Name attribute, renaming the XML file, and
updating all references.

For example, the name of an entity (Customer) is stored as an
attribute in the XML file (name=Customer). The XML file has
the same name the entity name (Customer.xml).

Find Usages JDeveloper shows all dependencies on the object.

Table 32–2 Refactoring Attributes

Action Result

Move Not supported.

Refactoring Named Elements

32-4 Fusion Developer's Guide for Oracle Application Development Framework

To refactor attributes:
1. In the Application Navigator, expand the Projects node containing the object you

want to refactor.

2. Within the project, expand the Application Sources node and then the package
containing the object you want to refactor.

3. Double-click the object.

4. In the overview editor, select Attributes.

5. In the Name column, select an attribute.

6. Right-click and choose Rename or Delete.

7. To delete the attribute, choose Delete.

If the attribute is used elsewhere in the application, a dialog displays with the
following options:

■ Ignore: Unresolved usages will remain in the code as undefined references.

■ View Usages: Display a preview of the usages of the attribute in the Compiler
log. You can use the log to inspect and resolve the remaining usages.

32.7 Refactoring Named Elements
Table 32–3 shows support for refactoring named elements in an XML schema. Named
elements are any elements in the XML schema that can be referenced by a Name
attribute. A named element is not an object or an attribute.

Delete JDeveloper shows all dependencies on the attribute and permits
a forced delete. The application may not work at this point. You
may need to resolve broken references.

Rename Attributes share data elements represented in entity and view
objects (see Section 4.1, "Introduction to Entity Objects" for more
information). References to the attribute are updated when you
rename the attribute. Renaming results in changing the Name
attribute, renaming the XML file, and updating all references.

Renaming an attribute does not change the data it represents,
nor does it rename the underlying table column.

Find Usages JDeveloper shows all dependencies on the attribute.

Table 32–3 Refactoring Named Elements

Action Result

Move Not supported.

Delete Not supported.

Rename One exception to the definition of named elements is the design
time element Attr, which does have a Name attribute. Attr is
a name-value pair, is not accessible from the code editor, and
should not be renamed.

Find Usages JDeveloper shows all dependencies on the named element.

Table 32–2 (Cont.) Refactoring Attributes

Action Result

Refactoring the DataBindings.cpx File

Refactoring a Fusion Web Application 32-5

To refactor named elements:
1. In the Application Navigator, expand the Projects node containing the object you

want to refactor.

2. Within the project, expand the Application Sources node and then the package
containing the object you want to refactor.

3. Double-click the object.

4. In the overview editor, click the Source tab.

5. Scroll down to a named element.

Named elements are indicated by Name="<element>" in the source code, for
example:

<Key Name="PersonsAffContactChk">

A named element is not an object or attribute.

6. To rename the element, right-click the element and choose Rename.

7. To delete the element, choose Delete.

If the element is used elsewhere in the application, a dialog displays with the
following options:

■ Ignore: Unresolved usages will remain in the code as undefined references.

■ View Usages: Display a preview of the usages of the element in the Compiler
log. You can use the log to inspect and resolve the remaining usages.

32.8 Refactoring ADF Task Flows
For more information, see Section 14.5, "Refactoring to Create New ADF Task Flows
and Templates."

32.9 Refactoring the DataBindings.cpx File
The DataBindings.cpx file defines the Oracle ADF binding context for the entire
application and provides the metadata from which the Oracle ADF binding objects are
created at runtime (see Section A.7.1, "DataBindings.cpx Syntax" for more
information). This file is a registry used to quickly find all .cpx, .dcx, .jpx, and
.xcfg files, which are themselves registries of metadata.

If you rename the DataBindings.cpx file to a new name, such as
DataBindingsNew.cpx, the change is added to the adfm.xml file.

Example 32–1 shows the contents of the adfm.xml file after DataBindings.cpx is
refactored to DataBindingsNew.cpx.

Example 32–1 Renamed DataBindings.cpx file in adfm.xml

<?xml version="1.0" encoding="UTF-8" ?>
<MetadataDirectory xmlns="http://xmlns.oracle.com/adfm/metainf"
version="11.1.1.0.0">
<DataBindingRegistry path="adf/sample/view/DataBindingsNew.cpx"/>
</MetadataDirectory>

After this change, the application won’t run because the data control cannot be found.
Example 32–2 shows the old ID in the DataBindingsNew.cpx file. To enable the

Refactoring Across Abstraction Layers

32-6 Fusion Developer's Guide for Oracle Application Development Framework

application to access the correct bindings file, update the ID value in the
DataBindingsNew.cpx file to the new file.

Example 32–2 DataBindingsNew.cpx ID

<Application xmlns="http://xmlns.oracle.com/adfm/application"
version="11.1.1.49.28" id="DataBinding" SeparateXMLFiles="false"
Package="adf.sample.view" ClientType="Generic">

This should be changed to an ID similar to the one shown in Example 32–3.

Example 32–3 Updated DatabindingNew.cpx ID

<Application xmlns="http://xmlns.oracle.com/adfm/application"
version="11.1.1.49.28" id="DataBindingNew" SeparateXMLFiles="false"
Package="adf.sample.view" ClientType="Generic">

32.10 Refactoring Across Abstraction Layers
Refactoring does not cross abstraction layers. For example, when a view object is
created based on the entity Dept, it is named DeptView by default. Renaming Dept
updates the entity usage in DeptView, but does not change the name of the view
object.

32.11 Refactoring Limitations
Table 32–4 summarizes the limitations of JDeveloper’s refactoring support.

Table 32–4 Refactoring Limitations

Area Limitation

Database When a database artifact used in an ADF Business Components object is
renamed, the object needs to be updated. This type of refactoring is
currently not supported.

Service interface A service interface defines a contract between two separate pieces of
software. For example, the ADF Business Components service interface
is responsible for exposing business components to the view and model
layers. Changing the name of a service interface can cause a conflict.
While developing the application, consider removing the service
interface, refactoring the object, and regenerating the service interface.
Additionally, if your service interface defines a find operation based on
a view criteria that specifies bind variables, changing the number or
order of the bind variables in the underlying view criteria will require
that you regenerate the service interface.

For more information, see Chapter 11, "Integrating Service-Enabled
Application Modules."

Java literal
references

The Java code generated by ADF Business Components has literal
references to the XML metadata. These literal references are updated
during refactoring operations. Generated (type safe) methods are also
updated. However, if the application directly refers to the metadata,
these references are not updated.

Refactoring the .jpx Project File

Refactoring a Fusion Web Application 32-7

32.12 Refactoring the .jpx Project File
JDeveloper supports refactoring ADF Business Components.

To manually move the .jpx project file:
1. Move the.jpx file to the new source tree location.

For example, you can move the Model.jpx file from src/Model.jpx to
src/packagenames/go/here/Model.jpx.

2. Change the .jpx file contents. The PackageName attribute of the root element
JboProject needs to have the correct value.

For example, you can specify PackageName="packagenames.go.here".

3. Change the jbo.project attributes in all common/bc4j.xcfg files that contain
elements referred to in the.jpx file to include the new package name.

Domain If a domain needs to be renamed or moved, you must create the new
domain, then change the type of existing domain usages.

For example, you might rename a domain called EmployeeID to
EmployeeNumber. In addition, the entity Emp has an attribute called
Empno that is of type EmployeeID.

After creating the new domain EmployeeNumber, go to the attributes
page for the entity, right-click Empno and choose Change Type. This
switches Empno from EmployeeID to EmployeeNumber.

Security Entity object and attribute security policies in the policy store may
reference the name of an entity object or attribute. These policy
definitions are not updated in response to the refactoring of an entity
object or attribute.

Resource Bundles Entity object definitions can reference a resource in one or more
arbitrary resource bundle (.properties) files that you create. You can
use this file to define labels for the attributes of entity objects. However,
if you rename the .properties file you created, JDeveloper will not
update the entity object definitions to reflect the new file name. As an
alternative to resource bundle files that you create, you can specify a
project setting to generate a single, default resource bundle file for the
ADF Business Components project. In this case, JDeveloper will not
allow you to rename this generated file. However, if you attempt to
change the project-level default resource bundle file, JDeveloper will
warn you about the change. The data model project will honor the new
ADF Business Components project-level setting for any objects that
have not yet been linked to the default resource bundle file; all existing
Business Components that have already been linked to the original
default file will continue to use it instead.

.jpx project file Renaming the ADF Business Components (.jpx) project file is not
supported.

In previous versions of JDeveloper, ADF Business Components .jpx
files were created only in the root package of the src directory of a
project and were named with the same base name as the project. The
ADF Business Components objects (entities, views, and application
modules) were all created in the model package (for example,
/model/AppModule.xml), but the /Model.jpx is not.

This may cause a reusability problem when attempting to package them
in ADF JAR files for use on the class path. There may be name conflicts
because several projects are named Model.

Table 32–4 (Cont.) Refactoring Limitations

Area Limitation

Refactoring the .jpx Project File

32-8 Fusion Developer's Guide for Oracle Application Development Framework

For example:

<AppModuleConfig name="ScottDeptAMLocal"
ApplicationName="packagenames.go.here.ScottDeptAM"
DeployPlatform="LOCAL" JDBCName="scottdb"
jbo.project="packagenames.go.here.Model">

4. Change the JDeveloper project file (the.jpr file) contents:

■ Set the new.jpx package location. If you later change the default package in
the project properties, you will again raise a NotFound error for the.jpx file.

For example:

<value n="defaultPackage" v="packagenames.go.here"/>

■ Fix any ownerURL elements in the ownerMap that contain references to the
old location of the.jpx file.

For example:

<url n="ownerURL"
path="src/packagenames/go/here/Model.jpx"/>

33

Reusing Application Components 33-1

33Reusing Application Components

This chapter describes how to package certain ADF components into the ADF Library
for reuse in ADF applications. Reusable ADF components are application modules,
business components (entity objects, view objects, associations), data controls, task
flows, page templates, and declarative components.

This chapter includes the following sections:

■ Section 33.1, "Introduction to Reusable Components"

■ Section 33.2, "Packaging a Reusable ADF Component into an ADF Library"

■ Section 33.3, "Adding ADF Library Components into Projects"

■ Section 33.4, "Removing an ADF Library JAR from a Project"

33.1 Introduction to Reusable Components
In the course of application development, certain components will often be used more
than once. Whether the reuse happens within the same application, or across different
applications, it is often advantageous to package these reusable components into a
library that can be shared between different developers, across different teams, and
even across departments within an organization.

In the world of Java object-oriented programming, reusing classes and objects is just
standard procedure. With the introduction of the model-view-controller (MVC)
architecture, applications can be further modularized into separate model, view, and
controller layers. By separating the data (model and business services layers) from the
presentation (view and controller layers), changes to any one layer do not affect the
integrity of the other layers. You can change business logic without having to change
the UI, or redesign the web pages or front end without having to recode domain logic.

Oracle ADF and JDeveloper support the MVC design pattern. When you create an
application in JDeveloper, you can choose many application templates that
automatically set up model and view-controller projects. Because the different MVC
layers are decoupled from each other, development can proceed on different projects
in parallel and with a certain amount of independence.

ADF Library further extends this modularity of design by providing a convenient and
practical way to create, deploy, and reuse high-level components. When you first
design your application, you design it with component reusability in mind. If you
created components that can be reused, you can package them into JAR files and add
them to a reusable component repository. If you need a component, you may look into
the repository for those components and then add them into your project or
application.

Introduction to Reusable Components

33-2 Fusion Developer's Guide for Oracle Application Development Framework

For example, you can create an application module for a domain and package it to be
used as the data model project in several different applications. Or, if your application
will be consuming components, you may be able to load a page template component
from a repository of ADF Library JARs to create common look and feel pages. Then
you can put your page flow together by stringing together several task flow
components pulled from the library.

An ADF Library JAR contains ADF components and does not and cannot contain
other JARs. It should not be confused with JDeveloper library, Java EE library or
Oracle WebLogic shared library.

Table 33–1 lists the reusable components supported by ADF.

You can also package up projects that have several different reusable components if
you expect that more than one component will be consumed. For example, you can
create a project that has both an application module and a bounded task flow. When
this ADF Library JAR file is consumed, the application will have both the application
module and the task flow available for use. You can package multiple components
into one JAR file, or you can package a single component into a JAR file. Oracle ADF
and JDeveloper give you the option and flexibility to create reusable components that
best suit you and your organization.

You create a reusable component by using JDeveloper to package and deploy the
project that contains the components into a ADF Library JAR file. You use the

Table 33–1 Oracle ADF Reusable Components

Reusable Component Description

Data control Any data control can be packaged into an ADF Library JAR. Some of the data controls
supported by Oracle ADF include application modules, Enterprise JavaBeans, web
services, URL services, JavaBeans, and placeholder data controls.

Application module When you are using ADF Business Components and you generate an application
module, an associated application module data control is also generated. When you
package an application module data control, you also package up the Business
Components associated with that application module. The relevant entity objects,
view objects, and associations will be a part of the ADF Library JAR and available for
reuse.

Business components Business components are the entity objects, view objects, and associations used in the
ADF Business Components data model project. You can package business
components by themselves or together with an application module.

Task flows and taskflow
templates

Task flows can be packaged into an ADF Library JAR for reuse.

ADF bounded task flows built using pages can be dropped onto pages. The drop will
create a link to call the bounded task flow. A task flow call activity and control flow
will automatically be added to the task flow, with the view activity referencing the
page. If there is more than one existing task flow with a view activity referencing the
page, it will prompt for the application developer to select the one to automatically
add a task flow call activity and control flow. If you drop a bounded task flow that
uses page fragments, JDeveloper adds a region to the page and binds it to the
dropped task flow.

If an ADF task flow template was created in the same project as the task flow, the
ADF task flow template will be included in the ADF Library JAR and will be
reusable.

Page templates You can package a page template and its artifacts into an ADF Library JAR. If the
template uses image files and they are included in a directory within your project,
these files will also be available for the template during reuse.

Declarative components You can create declarative components and package them for reuse. The tag libraries
associated with the component will be included and loaded into the consuming
project.

Introduction to Reusable Components

Reusing Application Components 33-3

components by adding that JAR to the consuming project. At design time, the JAR is
added to the consuming project’s class path and so is available for reuse. At runtime,
the reused component runs from the JAR file by reference. For the procedure to add
the JAR manually, see Section 33.3.2, "How to Add an ADF Library JAR into a Project
Manually." For the procedure to add the JAR using the JDeveloper Resource Catalog,
see Section 33.3.1, "How to Add an ADF Library JAR into a Project using the Resource
Palette".

Before you proceed to create reusable components, you should review the guidelines
for creating reusable components.

33.1.1 Creating Reusable Components
Creating and consuming reusable components should be included in the early design
and architectural phases of software projects. You and your development team should
consider which components are candidates for reuse, not only in the current
applications but also for future applications and including those applications being
developed in other departments.

You and your team should decide on the type of repository needed to store the library
JARs, where to store them and how to access them. You should consider how to
organize and group the library JARs in a structure that fits your organizational needs.
You should also consider creating standardized naming conventions so that both
creators and consumers of ADF Library JARs can readily identify the component
functionality.

33.1.1.1 Naming Conventions
When you create reusable components, you should try to create unique and relevant
names for the application, project, application module, task flow, connection, or any
other file or component. Do not accept the JDeveloper wizard default names such as
Application, Project, ViewController, AppModule, task-flow-defintion.xml, or
Connection. You want to try to have unique names to avoid naming conflicts with
other projects, components, or connections in the application. Naming conflicts could
arise from components created in the consuming application and those loaded from
other JAR files. Table 33–2 lists the objects that you may be required to rename.

Tip: If, in the midst of development, you and your team find a
module that would be a good candidate for reuse, you can use the
extensive refactoring capabilities of JDeveloper to help eliminate
possible naming conflicts and adhere to reusable component naming
conventions.

Table 33–2 Example Unique and Relevant Names for Reusable Components

Type JDeveloper Default Example

Application Application FusionOrderDemo

Project Model

ViewController

Project

OrderBookingService

StoreFrontUI

Package Various possibilities. For more
information, see
Section 33.1.1.1.1.

oracle.foddemo.storefront

Application module AppModule StoreServiceAMDataControl

Introduction to Reusable Components

33-4 Fusion Developer's Guide for Oracle Application Development Framework

33.1.1.1.1 Naming Considerations for Packages

Be aware that some components use the default package name of the project without
allowing the name to be explicitly set. In this situation, you must take extra care to
avoid package name collisions. You can set the package name in the application
creation wizard and you should check the names in the Project Properties dialog
afterwards. If you don’t set the package name, it will default to a variant of the project
name, typically with the first letter being lowercase. For example, a project with the
name Project1 will have a default package name of project1. You should
manually change the package name to a more unique name before you proceed to
build the project.

When you are creating a reusable component’s web resources files, such as JSPs,
HTMLs, and task flows, you should create them in their own relative directories.
When the JAR is deployed into another application, there will be less chance for
conflict between the reusable component’s files and the consuming application’s files.

33.1.1.1.2 Naming Considerations for Connections

Oftentimes, several modules in an application will connect to the same data source.
You should standardize the connection name to the same data source to avoid
confusion because there is only one namespace for connections across the application.
This would require coordination with other developers, component producers, and
component consumers. For example, if module1 and module2 both have a
connection to the same database, the connection name should be standardized to an
agreed upon name, such as orders_db.

ADF Library JARs (with connections) may be used in different applications with
different connection requirements. ADF Library JAR producers should choose
connection names that are at least representative of the connection source, if not the
actual standardized connection name. Be aware that consumers of the JAR that was
created with connections will be required to satisfy the connection requirements when
they add the component to the application.

Connection Connection1 oracle_apps_foddb

Task flow task-flow-defintion.xml checkout-task-flow.xml

Page template templateDef.jspx StoreFrontTemplate.jspx

Declarative
Component

componentDef

componentDef.jspx

FODsuperwidgetDef

FODsuperwidgetDef.jspx

ADF Library JAR file adflib<string or 3-digit random
number>N

For more information, see
Section 33.1.1.2.

adflibStoreFrontService

Note: The basic package naming requirement is that ADF metadata
registries (.dcx,.cpx, and so on) are generated based on the project's
package name, and you should avoid metadata naming conflicts
between projects that will be combined at runtime.

Table 33–2 (Cont.) Example Unique and Relevant Names for Reusable Components

Type JDeveloper Default Example

Introduction to Reusable Components

Reusing Application Components 33-5

For example, for a database connection, choosing an endpoint host name is usually not
appropriate. The most appropriate name is a complete representative for the schema.
Acceptable names for connections are oracle-appsdb and oracle-scottdb. You
should realize that if many reusable components use different names for the same
logical connection, then the customer of the component will have to satisfy each one
individually with duplicate information. The consumer will have to supply connection
details for several different connection names, when in fact they all refer to the same
instance.

33.1.1.1.3 Naming Considerations for Applications with EJB Projects

If an application has both EJB projects and a web application project with data
binding, you should check to see that the EJB component names are not in conflict
with any other web application project component names. The EJB project components
may have global scope because the project is automatically added to the global class
path of all web projects in the application. Web application projects may mistakenly
access a component with the same name in the EJB project rather than within its own
project.

For example, if both an EJB project and a web-based project have a test1.jspx page,
when the web-based project is run, it may try to run the EJB project test1.jspx
page.

At runtime, JDeveloper detects if there are EJB projects and web application projects
with data binding in the same application. If there are both types in the application,
when the project is run and the server starts up, a warning message will appear in the
Log window.

33.1.1.2 The Naming Process for the ADF Library JAR Deployment Profile
Before you package the project, you must create a deployment profile with the name
and path for the JAR file. You should choose a name that follows you and your
development team’s naming convention and that is descriptive of the function of the
component. You should realize that the consuming project may also include other JAR
files from other software authors.

For example, if the component is a task flow for self-service paying, you might name it
mycompany.hcm.pay.selfservice.taskflows.jar. Other examples are
oracle.apps.hcm.pay.model.jar and
mycompany.hcm.pay.model.overrides.jar.

If you do not enter a name, JDeveloper will present a default name with the following
format:

adflibidentifiern

Where identifier is created with the following order of precedence:

1. Name of the project, other than Model, ViewController, or Project.

2. Name of the application, other than application.

3. A random three-digit number.

And n is a number that starts with 1 and increments by 1 for each iteration of the
profile.

For example, if the project name were StoreFrontService, the profile name would
be adflibStoreFrontService1. If the project name were Model, JDeveloper
would reject this name and move to the second order of precedence, application name.
If the application name were FusionOrderDemoShared, then the project name
would be adflibFusionOrderDemoShared1. If neither the model nor the

Introduction to Reusable Components

33-6 Fusion Developer's Guide for Oracle Application Development Framework

application name is usable, then a random three-digit number would be used instead,
for example, adflib7491.

33.1.1.3 Keeping the Relevant Project
When you are creating reusable components, you should eliminate any projects that
are not relevant to the reusable component. For example, if you want to create a
reusable application module, you would need a data model project, but you would not
need a view-controller project. In this instance, if you had created an application with
both a data model and a view-controller project, you could delete the view-controller
project. Of course, you should rename the default name Model to something more
relevant, such as StoreFrontService. Similarly, if you are creating a reusable task
flow that is not databound, you can delete any data model project from the
application.

33.1.1.4 Selecting the Relevant Technology Scope
If you know the technology scope of your consuming projects, you can design your
component with technologies that will be compatible. For example, if the consuming
application uses only standard JSF Faces, then it may not be compatible with a
declarative component that is built with ADF Faces.

When you create your application, you can define the technology scope using the
Create Application Wizard by selecting from the application template.

After the project has been created, you can define the technology using the Technology
Scope page of the Project Properties dialog.

33.1.1.5 Selecting Paths and Folders
If you are using the file system to store your ADF Library JARs, you should select file
system locations that can function as repositories. You may want to put groups of
JARs into a common directory folder, for example,
C:\ADF11\jdev\DevTeamADFRepository. If your team or organization plans to
share ADF Library JARs, you should consider setting up network accessible repository
folders, directories, or services. The Resource Palette has provisions to connect to
different repository sources and make multiple connections. For more information
about accessing ADF Library JARs using the Resource Palette, see Section 33.1.2,
"Using the Resource Palette."

33.1.1.6 Including Connections Within Reusable Components
If the project you are packaging into an ADF Library JAR includes a connection, that
information can be included in the JAR and may be available to the consuming project.
Oracle ADF uses connection architecture which defines a connection as two parts, the
connection name and the connection details (or endpoint definition). JDeveloper will
present the producer of the JAR the option to package the connection name only or to
include connection details with the connection name.

If a connection is present in the project, the packaged ADF Library JAR will contain a
jar-connections.xml file and a jar-adf-config.xml file. They will be added
to the META-INF directory. The jar-connections.xml file contains the connection
name and other relevant connection information. The jar-adf-config.xml file
stores the information about the credentials used for the connections. If connection
credentials were also specified, then a jar-credential-jazn-data.xml will also
be included for the credential store. You can select the individual connections or
connection types that you want to be packaged with the ADF Library JAR when you
create the ADF Library JAR deployment profile. You make connection selections in the

Introduction to Reusable Components

Reusing Application Components 33-7

Create or Edit ADF Library Deployment Profile Properties dialog Connections page as
described in Section 33.2.1, "How to Package a Component into an ADF Library JAR."

When an ADF Library JAR is being added to a project, JDeveloper checks for conflicts
between the application’s connections and the JAR’s connections. A dialog will be
presented to allow you to decide whether to proceed with adding the JAR to the
project. Connections defined in the ADF Library JAR may be added to the consuming
project, depending on the following conditions:

■ If the connection defined in the JAR is fully configured and there are no
connection name conflicts with the consuming project, a new connection will be
added.

■ If the connection defined in the JAR is partially configured, a new connection will
be added to the consuming project but it must be configured before use.
Connection dialogs may appear to allow the user to enter connection information.
This partially configured connection may be indicated by an incomplete icon.

■ If the connection defined in the JAR has the same name as the application’s
connection, it will not be added to the project. The application’s existing
connection will be used.

■ If the connection defined in the JAR has the same name as the application’s
connection but is of different type, the JAR’s connection will not be added to the
project. For example, if a database connection in the JAR and a URL connection in
the application have the same name, the database connection will not be added to
the application.

For instructions on how to add an ADF Library to a project that includes connections,
see Section 33.3.1, "How to Add an ADF Library JAR into a Project using the Resource
Palette."

33.1.2 Using the Resource Palette
ADF Library JARs can be packaged, deployed, discovered, and consumed like any
other Oracle Library component. Creating an ADF Library JAR is the action of
packaging all the artifacts (and additional control files) of a project into a JAR.
Consuming a reusable component from an ADF Library JAR is the action of loading
that ADF Library JAR into the project’s set of libraries.

However, the easiest way to manage and use ADF Library JAR components is by
using JDeveloper’s Resource Palette. With the Resource Palette, developers who want
to consume reusable components can easily find and discover available components
and add them to their projects. The Resource Palette provides search and browse
functions across different data management systems to locate the component. It
provides multiple connections to access different sources. It has a structure tree view
for displaying different connections and the ADF Library JAR component types.
Figure 33–1 shows the Resource Palette window with three file system connections,
RCconnect, rcconnect2, and StoreFront. In this example, StoreFront contains
the ADF Library component, adflibStorFrontService.jar.

The Resource Palette tree structure displays each JAR as subcategories. Separate nodes
are created for each type of reusable component. For example, application modules are
under the Data Controls node, and task flows are under the ADF Task Flows node.

The tree structure for the ADF Library JAR lists any connection information under a
Library Connections node and lists all the producing project’s extension libraries
under the Library Dependencies node.

Introduction to Reusable Components

33-8 Fusion Developer's Guide for Oracle Application Development Framework

Figure 33–1 Resource Palette Showing ADF Library Structure

33.1.3 Extension Libraries
An ADF project usually includes a list of extension libraries that it needs to run. These
libraries are loaded in the class path of the project. You can view a project’s dependent
libraries by selecting the Libraries and Classpath node of the Project Properties dialog.
Some of the libraries that may appear are JSP Runtime, ADF Page Flow Runtime,
Connection Manager, and Oracle JDBC.

When a project is packaged into an ADF Library JAR, its extension libraries are
packaged with it. And when an ADF Library JAR is being consumed by another
project, JDeveloper automatically resolves any extension library conflicts between
them. During the consuming process, JDeveloper checks to see whether the
consuming project already has the extension libraries of the ADF Library JAR in its
class path and loads only those libraries that it does not have. For example, if JSP
Runtime already exists in the consuming project, it will not be loaded again if the ADF
Library JAR also includes it. The consuming project’s extension libraries will be a
union of its own libraries and the libraries in the ADF Library JAR.

If the project you want to package into an ADF Library has a dependent project, you
can include the dependent project’s extension libraries directly in the JAR or, if the
dependent project has a deployment profile, you can add the dependent project’s JAR
to the ADF Library. For more information about setting up the deployment process,
see Section 33.2.1, "How to Package a Component into an ADF Library JAR."

For example, project View is being packaged into ADF Library adflibView1.jar.
It has a dependency on the Model project. For project View, the Model project is a
dependent project with the deployment profile option (adflibmodel1) selected, as
shown in Figure 33–2.

Introduction to Reusable Components

Reusing Application Components 33-9

Figure 33–2 Edit Dependencies Dialog with Deployment Profile Option

When the deployment profile is selected, the dependent project’s JAR file will be
added to the ADF Library JAR. As a result, the extension libraries of the dependent
project will also be made available to any consuming project. In Figure 33–3, the ADF
Library being packaged, adflibView1.jar, includes the dependent
adflibModel.jar as listed under the Library Dependencies node.

Figure 33–3 Resource Palette Showing adflibView1.jar and adflibModel.jar Extension
Libraries

Introduction to Reusable Components

33-10 Fusion Developer's Guide for Oracle Application Development Framework

When you select adflibView1.jar in the Resource Palette and choose Add to
Project from the context menu, both adflibView1.jar and adflibModel.jar will
be added to the consuming project’s class path.

Figure 33–4 Class path of Consuming Project Showing ADF Library JAR and Dependent
Project Library JAR

Alternately, you can include the dependent project’s artifacts and extension libraries
directly into the ADF Library JAR.

For example, project View can also be packaged into ADF Library
adflibView2.jar. It also has a dependency on the Model project. But in this second
deployment profile, the Model project is a dependent project with the Build Output
option selected (as opposed to the deployment profile (adflibmodel1) being
selected), as shown in Figure 33–5.

Introduction to Reusable Components

Reusing Application Components 33-11

Figure 33–5 Edit Dependencies Dialog Used to Built adflibview2.jar

When Build Output is selected, the dependent project’s classes and extension libraries
will be added directly to the ADF Library JAR. Figure 33–6 shows the ADF Library
adflibView2.jar, which includes artifacts of the Model project and its extension
libraries. Note that the extension libraries under the adflibView2.jar Library
Dependencies node are the same as the combined extension libraries under the
adflibView1.jar and adflibModel.jar shown in Figure 33–3.

Figure 33–6 Resource Palette Showing adflibView2.jar Extension Libraries

How you decide to package the dependent project depends on how you intend the
ADF Library to be used. Including the dependent project as a JAR may be
advantageous when the dependent project is itself a reusable component, or when it is
a dependent project for several projects that will be packaged into an ADF Library
JAR. In the example, the dependent project Model may be a dependent project for
several view projects. On the other hand, packaging the dependent project as Build
Output is straightforward and eliminates the need for multiple JARs.

Packaging a Reusable ADF Component into an ADF Library

33-12 Fusion Developer's Guide for Oracle Application Development Framework

33.2 Packaging a Reusable ADF Component into an ADF Library
Once you have decided that a certain component or components can be reused, create
an application and a project to develop that component. Follow the guidelines in
Section 33.1.1, "Creating Reusable Components" to name your application, project,
package, and other objects and files. A project corresponds to one ADF Library JAR. If
you create multiple projects and want to reuse components from each of the projects,
you may need to create an ADF Library JAR for each project. In other situations, you
may be able to involve multiple components under one project to create a single ADF
Library JAR. For example, you may be able to create application modules, business
components (entity object, view objects, associations), task flows, and page templates
all under one project and create one ADF Library JAR.

Creating an ADF Library JAR involves compiling the project and validating the
components, creating a resource service file, control files, an adflibREADME.txt,
and adding the relevant project files into a JAR. For more information about the ADF
Library JAR, see Section 33.2.2, "What Happens When You Package a Project to an
ADF Library JAR."

If you are packaging a component that itself uses another ADF Library component, the
final consuming project must have both ADF Library JARs added to the project. For
example, say you created a reusable task flow that contains tables dropped from a data
control in another ADF Library JAR. When you add the task flow from an ADF
Library JAR into a consuming project, that project will also require the data control
ADF Library JAR.

If you are packaging a component that has dependent JARs, such as third-party JARs,
you have two options:

■ If the consuming environment has control over the placement of JARs, you can
place the ADF Library JAR and its dependent JARs in a JDeveloper Extension
Library. The advantage of using a JDeveloper Extension Library is that it does not
clutter the consuming project with specific references to the dependent JARs.

■ If using JDeveloper Extension Library is not possible, you can place the dependent
JARs in the same location as the ADF Library JAR and include a manifest
classpath entry for each dependent JAR.

33.2.1 How to Package a Component into an ADF Library JAR
To package up a reusable component, you first create a deployment profile that
specifies the archive type, the name of the JAR file, and the directory path where the
JAR will be created. Then you deploy the project using the deployment profile.

Note: If you are creating an ADF Library JAR that is included in a
JDeveloper extension library, you should include the additional
manifest JDevLibrary: extension_library_name entry in the
JAR. When you use Add to Project from the Resource Palette to add a
ADF Library JAR that has a JDevLibrary manifest entry, the
JDeveloper extension library containing this JAR will be added
instead of the ADF Library JAR itself.

Packaging a Reusable ADF Component into an ADF Library

Reusing Application Components 33-13

Before you begin:
You should already created a project and determine whether it has dependent projects
and JAR that need to be packaged.

To package and deploy a project into the ADF Library JAR:
1. In the Application Navigator, double-click the project that contains the component

you want to make reusable.

2. In the Project Properties dialog’s left pane, select Deployment and then click New.

3. In the Create Deployment Profile dialog, select ADF Library JAR file for archive
type, enter a name for the deployment profile, and click OK.

Figure 33–7 Create Deployment Profile Dialog

4. In the Project Properties dialog, select the deployment profile and click Edit.

5. In the Edit ADF Library JAR Deployment Profile Properties dialog, select the
Library Dependencies node, as shown in Figure 33–8.

Figure 33–8 ADF Library JAR Deployment Profile Properties Dialog

The Library Dependencies pane shows a list of dependent projects for the project
being packaged. You can add the dependent project’s build output directly into
the packaging project’s library, or you can add selected deployment profile
archives to the class path.

Packaging a Reusable ADF Component into an ADF Library

33-14 Fusion Developer's Guide for Oracle Application Development Framework

a. To add dependent projects, click the Edit icon to bring up the Edit
Dependencies dialog, as shown in Figure 33–9.

If you select Build Output, the dependent project’s extension libraries will be
added directly to the ADF Library JAR. If you select deployment profile, the
dependent project’s JAR file (which includes its own extension libraries) will
be added to the ADF Library JAR. For more information about library
dependencies, see Section 33.1.3, "Extension Libraries."

In this example, the OrderBookingService project can be set as a
dependency only as Build Output. However, the StoreFrontUI project can
be set as a dependency either as Build Output, or as a deployment profile
(FOD_webapp).

Figure 33–9 ADF Library Deployment Edit Dependencies Dialog

b. For each dependent project, select the Build Output node for the project or
select the dependent profile and click OK.

6. In the Edit ADF Library JAR Deployment Profile Properties dialog, select the
Connections node, as shown in Figure 33–10.

You can select:

■ Connection Details (excluding secure content): If the project has a
connection, select this checkbox if you want to add any available connection
details in addition to the connection name. For more information, see
Section 33.1.1.6, "Including Connections Within Reusable Components."

■ Connection Name Only: Select this checkbox if you want to add the
connection name without any connection details such as security.

Note: The connection options available depends on the JDeveloper
role. Connection Details (excluding secure content) and Connection
Name Only are the selections available for the Default Role. If your
JDeveloper is set to a different role, you may have different options
and defaults.

Packaging a Reusable ADF Component into an ADF Library

Reusing Application Components 33-15

In the Applications Connections tree structure, select the checkbox for the level of
connection you want to include.

Figure 33–10 Connections Page of the Edit ADF Library JAR Deployment Profile
Properties Dialog

7. In the Edit ADF Library JAR Deployment Profile Properties dialog JAR Options
node, as shown in Figure 33–11, verify the default directory path or enter a new
path to store your ADF Library JAR file.

If the ADF Library JAR is to be included in a JDeveloper extension library, create a
text file with a JDevLibrary: extension_library_name entry and place the
file in the project root directory. Click Add to locate and merge that file into the
Manifest.mf file.

When you create your manifest text file, make sure the JDevLibrary entry starts
in column 1 with a space after the colon, and that there is a blank line at the end of
the file.

Packaging a Reusable ADF Component into an ADF Library

33-16 Fusion Developer's Guide for Oracle Application Development Framework

Figure 33–11 ADF Library JAR Deployment Profile Properties Dialog JAR Option

8. In the Edit ADF Library JAR Deployment Profile Properties dialog ADF
Validation node, select:

■ Ignore Errors: Select this option to create the JAR file even when validation
fails. This is the default option.

■ Stop Processing: Select this option to stop processing when validation fails.

Figure 33–12 ADF Library JAR Deployment Profile Properties Dialog ADF Validation

9. Click OK to finish setting up the deployment profile.

Packaging a Reusable ADF Component into an ADF Library

Reusing Application Components 33-17

10. In the Application Navigator, right-click the project and choose Deploy >
deployment, where deployment is the name of the deployment profile.

11. In the Deploy dialog Deployment Action page, click Next and then click Finish.

JDeveloper will create the ADF Library JAR in the directory specified in Step 7.
You can check that directory to see whether the JAR was created.

33.2.2 What Happens When You Package a Project to an ADF Library JAR
When you deploy the library JAR, JDeveloper packages up all the necessary artifacts,
adds the appropriate control files, generates the JAR file, and places it in the directory
specified in the deployment profile. During deployment, you will see compilation
messages in the Log window.

When you deploy a project into an ADF Library JAR, JDeveloper performs the
following actions:

■ Package the HTML root directory artifacts into the JAR. When the JAR is added to
the consuming project, JDeveloper will make the reusable component’s public_
html resources available by adding it to the class path.

■ Add the adfm.xml file to the JAR. If there are multiple META-INF/adfm.xml
files in the workspace, only the adfm.xml in the project being deployed is added.
JDeveloper modifies this file to include relevant content from any dependent
project’s adfm.xml file.

■ Add a service resources file,
oracle.adf.common.services.ResourceService.sva, into the META-INF
directory of the JAR. The addition of this file differentiates an ADF Library JAR
file from standard JAR files. This file defines the service strategies of the JAR and
allows the Resource Palette to properly discover and display the contents of the
JAR.

■ Add a Manifest.mf file to the JAR. The Manifest.mf file is used to specify
dependencies between JAR files, and whether to copy and include the contents of
a JAR file or to reference it. JDeveloper will create a default manifest file. For
example:

Manifest-Version: 1.0

■ Adds a jar-connections.xml file to the JAR for components that require a
connection and that use the connections architecture. Note that in the consuming
application, connection information in configuration files that are defined in the
class path and accessible at runtime may be merged together. If the same
connection is named multiple times in the class path, the connection in the main
application will be given priority.

Different types of reusable components have different artifact files and different
entries in the service resource file.

33.2.2.1 Application Modules
For application modules, JDeveloper adds three control files to the JAR:
oracle.adf.common.services.ResourceService.sva, Manifest.mf,and
adfm.xml. The service resource file for an application module includes entries for the
business components associated with the application module, as well as an entry for
the application module data control.

The jar-connections.xml file may appear for components that use the connection
architecture and that contain connection information regarding the data source.

Packaging a Reusable ADF Component into an ADF Library

33-18 Fusion Developer's Guide for Oracle Application Development Framework

33.2.2.2 Data Controls
For data controls such as placeholder data controls, JDeveloper includes three control
files in the JAR: oracle.adf.common.services.ResourceService.sva,
Manifest.mf, and DataControl.dcx file. Data controls are used when the data
source is not based on ADF Business Components, and so business components are
not included in the JAR file, as is the case in an application module JAR file. The
service resource file for a standard data control has an entry for the data control.

The JAR also includes the Datacontrol.dcx file from the project to describe the data
control type.

33.2.2.3 Task Flows
For task flows, JDeveloper includes three control files in the JAR:
oracle.adf.common.services.ResourceService.sva, Manifest.mf, and
task-flow-registry.xml. The service resource file for a task flow includes an
entry that indicates that one or more task flows are in the JAR.

33.2.2.4 Page Templates
For page templates, JDeveloper includes two control files in the JAR:
oracle.adf.common.services.ResourceService.sva and Manifest.mf.

33.2.2.5 Declarative Components
For declarative components, JDeveloper includes two control files in the JAR:
oracle.adf.common.services.ResourceService.sva and Manifest.mf.

33.2.3 How to Place and Access JDeveloper JAR Files
If you have JAR files that can be reused by other projects, such as third-part JAR files,
you can use JDeveloper to place them in an accessible location and create a library file
(.library) to designate them. The consumer can use JDeveloper to navigate to this
location and add the JAR to the project.

An ADF Library JAR contains ADF components and does not and cannot contain
other JARs.

Before you begin:
Place the JAR files in a accessible location for both the producer and the consumer of
these JAR files. For example, the directory may be on a network drive where other
shared files are located.

To place and access a JDeveloper LIbrary JAR:
1. From the main menu, choose Tools > Manage Libraries.

2. In the Manage Libraries dialog, click Load Dir.

3. In the Load Directory dialog, select the directory where the secondary JAR files are
located.

4. In the Manage Libraries dialog, click New.

5. In the Create Library dialog, enter a library name and click Add Entry.

You have created a library file (with a .library extension). You should place
library files in source control systems.

6. In the Select Path Entry dialog, select the JARs you want to add and click Select.

Adding ADF Library Components into Projects

Reusing Application Components 33-19

7. In the Create Library dialog, be sure that the Deployed by Default option is set
correctly for your JAR, click OK and click OK again.

8. In the JDeveloper of the consuming project.

a. From the main menu, choose Tools > Manage Libraries.

b. In the Manage Libraries dialog, click Load Dir.

c. In the Load Directory dialog, select the directory where the secondary JAR
files are located and click OK. This should be the same location specified by
the producer in step 3.

d. Right-click the project and select Project Properties.

e. In the Project Properties window, select Libraries and Classpath and click
Add Library.

f. In the Add Library dialog, select the library, click OK and click OK again.

33.3 Adding ADF Library Components into Projects
After ADF Library JARs are created, they must be distributed to the developers who
will use these JARs. Distributing the ADF Library JARs may include putting the JARs
into network file system to be searched, browsed, and discovered. It may include
using other forms of data store or services to access and retrieve these JARs. Since ADF
Library JARs are simply binary files, they can distributed like any other file such as ftp
and email.

Once you have access to the ADF Library JARs, you can use JDeveloper to access them
and add them to your consuming projects. Using the JDeveloper Resource Palette is
the easiest and most efficient way. You can also use JDeveloper to manually add the
JARs into the project by entering them into the class path.

When a project is packaged into an ADF Library JAR, it captures the list of dependent
JARs the project needs for deployment and run time. This list is based on the project’s
dependent profiles and the information in the project’s Libraries and Classpath with
Deployed By Default selected. When the ADF Library JAR is added to the consuming
project, this list of dependent JARs is placed in a library called ADF Library
Dependencies. This is a locked library in the consuming project and its content will not
be shown in the Data Control panel, Component Palette, or other places in JDeveloper.
The library is maintained and updated as different ADF Library JARs are added and
deleted from the project. If the dependencies changed, (for example, the producer
project was rebuilt), then you can refresh the dependencies in the consuming project
using a JDeveloper menu command.

Once reusable components have been added, how they are used depends on the type
of component.

33.3.1 How to Add an ADF Library JAR into a Project using the Resource Palette
You can use the Resource Palette to search, discover, and add the ADF Library JAR to
your project.

Before you begin:
You should already have an ADF Library JAR in a repository folder. If you do not
already have a Resource Palette connection to this repository, you must know the
location of this folder.

Adding ADF Library Components into Projects

33-20 Fusion Developer's Guide for Oracle Application Development Framework

To add a component to the project using the Resource Palette:
1. From the View menu, choose Resource Palette.

2. In the Resource Palette, click the New icon, and then choose New Connection >
File System.

3. In the Create File System Connection dialog, enter a name and the path of the
folder that contains the JAR. For file path guidelines, see Section 33.1.1.5,
"Selecting Paths and Folders."

4. Click OK.

The new ADF Library JAR appears under the connection name in the Resource
Palette.

5. To examine each item in the JAR structure tree, use tooltips. The tooltip shows
pertinent information such as the source of the selected item.

Figure 33–13 shows a Resource Palette with a tooltip message that shows package
information for a business component.

Figure 33–13 Tooltip Message for a Connection in the Resource Palette

6. To add the ADF Library JAR or one of its items to the project, right-click the item
and choose Add to Project. In the confirmation dialog that appears, click Add
Library, as shown in Figure 33–14.

Figure 33–14 Confirm Add ADF Library Dialog

Adding ADF Library Components into Projects

Reusing Application Components 33-21

If you had previously added that library JAR, you will get a Confirm Refresh ADF
Library dialog asking you whether you want to refresh the library.

7. If the ADF Library JAR has changes to its dependencies, you can refresh the
project with the new changes. From the Application Navigator, right-click the
project and select Refresh ADF Library Dependencies in project.jpr.

For application modules and data controls, you have the option to drag and drop the
application module or data control from the Resource Palette into the Data Controls
panel.

33.3.2 How to Add an ADF Library JAR into a Project Manually
You can add an ADF Library JAR in the same way as you would other library JARs.

Before you begin:
You should already have an ADF Library JAR.

To add a component to a project manually:
1. In the Application Navigator, double-click the project to which the component is

to be added.

2. In the Project Properties dialog, select the Libraries and Classpath node and then
click Add Library.

3. In the Add Library dialog, click New.

4. In the Create Library dialog, select Project in the Location dropdown list and enter
a name for the ADF Library. The preferable name is "ADF Library". Select Deploy
by Default, and click Add Entry.

5. In the Select Path Entry dialog, enter or browse to the ADF Library JAR file and
click Select.

6. The Create Library dialog reappears with the path of the JAR file filled in under
the Class Path node. Click OK.

7. The Add Library dialog reappears with the ADF Library entry filled in under the
Project node. Click OK.

Note: JDeveloper will load whichever ADF Library JAR extension
libraries are not already in the consuming project. Extension libraries
from the ADF Library’s dependent JARs will also be checked and
loaded if not already part of the consuming project. For more
information, see Section 33.1.3, "Extension Libraries"

Adding ADF Library Components into Projects

33-22 Fusion Developer's Guide for Oracle Application Development Framework

Figure 33–15 Add Library Dialog

8. The Project Properties dialog reappears with the JAR file added to the list of
libraries. Click OK.

33.3.3 What Happens When You Add an ADF Library JAR to a Project
When you add an ADF Library JAR to a project, either by using the Resource Palette
or by manually adding the JAR, an ADF Library definition is created in the project.
The ADF Library JAR file will be added to the class path of the project. The project will
access and consume the components in the JAR by reference.

By default, the ADF Library Deployed by Default option in the Create Library dialog
is set to true. If this option is set, when the application or module is further archived or
built into a WAR file, the contents of the ADF Library JAR will be copied to that
archive or WAR file. If the Deploy by Default option is not set, then the JARs in the
ADF Library must be loaded in some other way, such as by deploying them in a
shared library.

Figure 33–16 shows the empty Data Controls panel for a consuming project before the
ADF Library was added.

Adding ADF Library Components into Projects

Reusing Application Components 33-23

Figure 33–16 Data Controls Panel of the Consuming Project

Figure 33–17 shows the adflibStoreFrontService ADF Library being added to
the consuming project.

Figure 33–17 Adding the ADF Library JAR to the Project

Figure 33–18 shows several data controls from the ADF Library added to the Data
Controls panel in the consuming project.

Adding ADF Library Components into Projects

33-24 Fusion Developer's Guide for Oracle Application Development Framework

Figure 33–18 Consuming Project Data Controls Panel with Added Application Modules

After adding the ADF Library JAR, you may notice some changes to some of the
JDeveloper windows. These changes are different depending on the type of
components being added. Table 33–3 lists the effects on several JDeveloper windows.

33.3.4 What You May Need to Know About Using ADF Library Components
Although the procedure to add an ADF Library JAR to a project is standardized, the
component type determines where it appears in JDeveloper and how it can be reused.

Table 33–3 JDeveloper Window After Adding an ADF Library

Added Component
Data Controls
Panel

Creation
Wizards

Component
Palette

Data controls Data control
appears.

Application module Application
module appears.

Business components Entity objects
available in
view object
creation wizard.
View objects in
JAR also
available for
use.

Task flows Task flows
appear in
Component
Palette.

Page template Page template
available during
JSF creation
wizard.

Declarative components Tag library
appears in
Component
Palette.
Declarative
component
appears in the
list.

Adding ADF Library Components into Projects

Reusing Application Components 33-25

33.3.4.1 Using Data Controls
When you add a data control to a project, the data control appears in the Data Controls
panel. If you are using the Resource Palette, you have the option of dragging and
dropping the data control from the Resource Palette onto the Data Controls panel, and
then dragging and dropping from the Data Controls panel onto the page.

33.3.4.2 Using Application Modules
When you add an application module to a project, the application module appears in
the Data Controls panel. If you are using the Resource Palette, you have the option of
dragging and dropping the application module item from the Resource Palette onto
the Data Controls panel, and then dragging and dropping from the Data Controls
panel onto the page.

Application modules are associated with business components. When the reusable
application module was packaged, the JAR includes the business components used to
create the application module. These components will be available for reuse.

33.3.4.3 Using Business Components
Business components can also be packaged and reused. The entity objects, view
objects, and associations can be packaged together and added to a consuming project.
By default, packaged application modules will include the business components in the
JAR, but business components can be reused by themselves without the
accompanying application module.

One way to reuse business components is to create new view objects using the entity
objects from an ADF Library JAR. When you add view objects using the wizard, the
entity objects will become available within the wizard to support view object
generation. For instructions on creating view objects, see Section 5.2.1, "How to Create
an Entity-Based View Object." When the wizard presents a screen for entity objects
used to create view objects, the entity objects from the ADF Library will be available in
the shuttle window, as shown in Figure 33–19.

Figure 33–19 Creating View Object Using Entity Objects from ADF Library

If the consuming project has the Initialize Project for Business Component option
selected (in the Project Properties dialog Business Components page) before the ADF
Library JAR is added, the business components within the JAR will automatically be
made available to the project.

Adding ADF Library Components into Projects

33-26 Fusion Developer's Guide for Oracle Application Development Framework

If you add the ADF Library JAR first, and then select Initialize Project for Business
Component, JDeveloper will automatically load the business components.

33.3.4.4 Using Task Flows
Task flows added to a project will appear in the Component Palette when you are
adding components to a JSF page. If you are using the Resource Palette, you can also
drag and drop the task flow directly from the Resource Palette onto another task flow
or page, as shown in Figure 33–20.

Figure 33–20 Using the Resource Palette to Drag and Drop Task Flows

For more information about creating task flows, see Chapter 14, "Getting Started with
ADF Task Flows."

33.3.4.5 Using Page Templates
When you add a page template to a project, the template will not be exposed in the
Application Navigator. You will not have direct access to individual supporting files,
such as image files. However, the template retains its access to its supporting files
inside the JAR and is fully reusable within the project. When you apply the template, it
will retain all the images that were loaded with the template.

The page template is exposed and accessible when you create a new JSF JSP page
using the wizard. When the wizard presents you with the option to use a page
template, the ADF Library template will appear in the dropdown list. For example, if
you loaded a page template called FODTemplate from an ADF Library, when you use
the wizard to create a JSF JSP page, FODTemplate will appear in the wizard, as
shown in Figure 33–21. For information on how to use page templates and create a JSF
JSP page, see Section 20.2, "Using Page Templates" and the Oracle Fusion Middleware
Web User Interface Developer's Guide for Oracle Application Development Framework.

Adding ADF Library Components into Projects

Reusing Application Components 33-27

Figure 33–21 Using a Page Template from ADF Library

33.3.4.6 Using Declarative Components
When you add a declarative component to a project, the JSP tag libraries that contain
the component will be added to the project. The tag libraries will appear in the
Component Palette, and the declarative components will be available for selection. For
information about creating and using declarative components, see the Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application Development
Framework.

33.3.5 What You May Need to Know About Differentiating ADF Library Components
If you mix components created during application development with components
imported from the ADF Library, you may be able to differentiate between them by
using the tooltips feature of JDeveloper.

Move the cursor over an application module or data control and you will see the full
path of the source. If you see the ADF Library JAR file in the path, that means the
component source is the ADF Library.

33.3.6 What Happens at Runtime: Adding ADF Libraries
After an ADF Library JAR has been added to a project and to the class path, it behaves
like any other library file. During runtime, any component that uses the component in
the ADF Library JAR will reference that object. The process is transparent and there is
no need to distinguish between components that were developed for the project and
those that are in ADF Library JARs. Figure 33–22 shows the ADF Library and the path
to the JAR as defined for a project.

Removing an ADF Library JAR from a Project

33-28 Fusion Developer's Guide for Oracle Application Development Framework

Figure 33–22 Edit Library Definition dialog showing the ADF Library in the Class Path

33.4 Removing an ADF Library JAR from a Project
You can use the Resource Palette to remove an ADF Library JAR from a project, or you
can manually remove the JAR using the Project Properties dialog. You can remove an
ADF Library JAR only if the components in the project do not have any dependencies
on the components in the ADF Library JAR.

When you remove a JAR, it will no longer be in the project class path and its
components will no longer be available for use.

33.4.1 How to Remove an ADF Library JAR from a Project Using the Resource Palette
The Resource Palette allows you to remove previously added ADF Library JARs from
a project using a simple command.

To remove an ADF Library JAR from the project using the Resource Palette:
1. From the View menu, choose Resource Palette.

2. In the Application Navigator, select the project that has the ADF Library JAR you
want to remove.

3. In the Resource Palette, locate the ADF Library JAR you want to remove from the
current project.

4. Right-click the JAR and choose Remove from Project.

33.4.2 How to Remove an ADF Library JAR from a Project Manually
When you remove an ADF Library JAR manually, be sure to remove the correct
library. Be aware of other libraries that are critical to the operation of the project.

To remove an ADF Library JAR from the project manually:
1. In the Application Navigator, double-click the project.

2. In the Project Properties dialog, select the Libraries and Classpath node.

3. In the Classpath Entries list, select ADF Library and click Edit.

4. In the Edit Library Definition dialog, select the ADF Library JAR you want to
remove under the Class Path node, and click Remove.

5. Click OK to accept the deletion, and click OK again to exit the dialog.

34

Customizing Applications with MDS 34-1

34Customizing Applications with MDS

This chapter describes how to develop ADF applications that can be customized and
subsequently deployed by a customer based on the Oracle Metadata Services (MDS)
framework. It also covers how to implement customizations on such applications.

This chapter includes the following sections:

■ Section 34.1, "Introduction to Customization and MDS"

■ Section 34.2, "Developing a Customizable Application"

■ Section 34.3, "Customizing an Application"

■ Section 34.4, "Extended Metadata Properties"

■ Section 34.5, "Enabling Runtime Modification of Customization Configuration"

For information on how to deploy customized applications, see Section 36.4,
"Deploying the Application."

34.1 Introduction to Customization and MDS
Using the customization features provided by MDS, you can create applications that
fall into the following customization patterns:

■ Seeded customization

Seeded customization of an application is the process of taking a generalized
application and making modifications to suit the needs of a particular group, such
as a specific industry or site. Seeded customizations exist as part of the deployed
application, and endure for the life of a given deployment. This chapter describes
how to create a customizable application, and then customize the application
using JDeveloper.

■ User customization (change persistence)

User customization allows an end user to change the content of the application at
runtime to suit individual preferences (for example, which columns are visible in a
table), and have those changes "remembered" the next time the user opens the
application. For information about user customization, see Chapter 35, "Allowing
User Customizations at Runtime."

■ Design time at runtime

Using the features of Oracle WebCenter Portal, you can create applications that are
customizable at runtime. This allows business analysts or administrators, using a
Web browser interface, to customize the application for their end users. For
information about runtime customization, refer to the Oracle Fusion Middleware
Developer's Guide for Oracle WebCenter Portal.

Introduction to Customization and MDS

34-2 Fusion Developer's Guide for Oracle Application Development Framework

For more information about the MDS architecture and metadata repositories (database
and file-based) and archives (EAR, MAR), refer to the section about managing the
MDS repository in the Oracle Fusion Middleware Administrator's Guide.

34.1.1 Customizations and Layers
A customized application contains a base application and one or more layers
containing customizations. MDS stores the customizations in a metadata repository
and retrieves them at runtime to merge the customizations with the base metadata to
reveal the customized application. Since the customizations are saved separately from
the base, the customizations are upgrade safe; a new patch to base can be applied
without breaking customizations. When a customized application is launched, the
customization content is applied over the base application.

For example, say you have a generalized payroll application with a validation rule that
limits the salary field to 4000. Then you create a customization of that validation rule
that limits the salary field to 3300. At runtime, the customization is applied to the base
application and the validation rule for the salary field limits it to 3300.

A customizable application can have multiple customization layers. Examples of
customization layers are industry and site. Each layer can have multiple
customization layer values, but typically only one such layer value from each layer is
applied at runtime. For example, the industry layer for a customizable application
can contain values for healthcare and financial industries; but in the deployed
customized application, only one of the values from this layer is used at a time.

Layer values from multiple customization layers can be applied, in a specified order of
precedence, on top of the base metadata. For example, a customized application can
contain customizations in the financial layer value of the industry layer and the
Financial Company #1 layer value of the site layer. Each customization layer
corresponds to a customization document that contains a set of instructions that
change the underlying metadata.

The customization context of a customized application is defined by the set of
customization layer values applied to it.

Figure 34–1 illustrates how layers are applied in a customized application.

Introduction to Customization and MDS

Customizing Applications with MDS 34-3

Figure 34–1 Example of Layered Customization

To support this, you use JDeveloper to create customization classes, define layers and
values, and specify the order of precedence. These processes are described in
Section 34.2, "Developing a Customizable Application."

34.1.2 Static and Dynamic Customization Content
Customizations can be categorized as either static or dynamic. Static customizations
have only one layer value in effect for all executions of the application, while dynamic
customizations can have values that vary based on the execution context of the
application. If a customization can vary for different users executing the application,
then it is dynamic. If a customization has the same value for all users executing the
application then it is static.

When you implement customizations in ADF Business Components objects, the
customizations remain the same for entire runtime of the application. This is because
these objects are loaded only once for an application and reused for the duration of the
application. For example, you can have a customized validation rule in the Healthcare
Company #1 value of the site layer that limits salaries for that site to 3300. This is static
customization content.

However, you can also implement customizations at the controller or view level that
allow the layer value to be determined at runtime, based on user roles
(responsibilities) or other application-specific criteria. For example, you can design an
application so that users from different organizations see different sets of fields on a
given screen. This is dynamic customization content.

The determination of whether a customization is static or dynamic is made in the
customization class. In the customization class, if the getCacheHint() method
returns ALL_USERS, then the customization layer is static. For more information about
CacheHint values, see Section 34.2.2, "What You May Need to Know About
Customization Classes."

All objects could have a static customization layer, depending on how the
customization classes are implemented. But for ADF Business Components objects,
customizations can only be static.

Developing a Customizable Application

34-4 Fusion Developer's Guide for Oracle Application Development Framework

34.2 Developing a Customizable Application
To create a customizable application, create the base application and perform the
following procedures:

To prepare an application for customization:
1. Create the customization classes that will be used, as described in Section 34.2.1,

"How to Create Customization Classes."

2. Enable seeded customization in the application, as described in Section 34.2.4,
"How to Enable Seeded Customizations for View Projects."

3. Specify the customization classes in the adf-config.xml file, as described in
Section 34.2.7, "How to Configure the adf-config.xml file."

4. You can optionally restrict runtime customizations on the application, as
described in Section 34.4.1, "How to Edit Extended Metadata Properties."

5. After you have prepared the application for customization, you must prepare
JDeveloper so you can use it to implement the customizations, as described in
Section 34.3.4, "How to Configure Customization Layers."

34.2.1 How to Create Customization Classes
A customization class is the interface that MDS uses to define which customization
applies to the base definition metadata. Each customization class defines a
customization layer (for example, industry or site) and can contain multiple layer
values. The customization classes that are used in the application must be available to
JDeveloper when customizing the application, and included in the deployed
application.

34.2.1.1 Customization Classes
A customization class evaluates the current context and returns a String result. This
String result is used to locate the customization layer.

The customization class provides the following information:

■ A name, that represents the name of the layer.

■ An array of values, that represent the customization layer values. Typically, each
layer returns a single value. If multiple values are returned, the customizations
available in the MDS repository for those values are applied in the order in which
they appear in the array. For more information, see Section 34.2.1.2, "Implementing
the getValue() Method in Your Customization Class."

■ An IDPrefix, for objects created in the layer. When new objects are created in a
customization layer they need a unique ID. The IDPrefix is added to the
autogenerated identifier for the object to create an ID for the newly added object.
Each layer needs a unique IDPrefix so that objects created at different
customization layers will have unique IDs.

■ A cache hint, for the layer defined by the customization class. The cache hint
defines whether a layer is static or dynamic. If the getCacheHint() method
returns ALL_USERS, then the customization layer is static. For more information
about dynamic customizations, see Section 34.1.2, "Static and Dynamic
Customization Content." For more information about CacheHint values, see
Section 34.2.2, "What You May Need to Know About Customization Classes."

Developing a Customizable Application

Customizing Applications with MDS 34-5

Customizations can be used to tailor an application to suit a specific industry domain
(verticalization). Each such domain denotes a customization layer and is depicted
using a customization class.

To implement seeded customizations using your customization classes:

■ The cust-config section (under mds-config) in the adf-config.xml must
contain a reference to the customization classes (as shown in Example 34–6).

The customization configuration (cust-config) section provides the
customization classes and their precedence for a customized application. See
Section 34.2.7, "How to Configure the adf-config.xml file."

■ The customization classes must be available on JDeveloper’s class path to support
seeded customizations.

After creating your customization classes, you can create an extension library that
is included in JDeveloper’s class path. (For more information, see Section 34.2.3.1,
"Making Customization Classes Available to JDeveloper.") At runtime, your
customization classes must be available in the EAR-level application class loader.

■ The layer values must be listed in the CustomizationLayerValues.xml file.

This file is located in the jdev_install\jdev directory. The names of the layers
in this file must be consistent with the customization classes. (For more
information, see Section 34.3.4, "How to Configure Customization Layers.")
JDeveloper uses this file to retrieve layer values at design time.

When JDeveloper is launched in the Customization Developer role, the Customization
Context window displays the available customization layers and layer values. You can
select the layer and value to which you want to apply customizations in the
Customization Context window. For more information about working in the
Customization Developer role, see Section 34.3.1, "Introducing the Customization
Developer Role." The layer you choose to customize is called the tip layer. For more
information, see Section 34.3.3, "Introducing the Tip Layer."

Example 34–1 shows a sample customization class. Note that all customization classes
should have a single, no-argument constructor.

Example 34–1 Sample IndustryCC customization class in the mycompany package

package mycompany;

import java.io.IOException;
import java.io.InputStream;
import java.util.Properties;
import oracle.mds.core.MetadataObject;
import oracle.mds.core.RestrictedSession;
import oracle.mds.cust.CacheHint;
import oracle.mds.cust.CustomizationClass;

public class IndustryCC extends CustomizationClass {
 private static final String DEFAULT_LAYER_NAME = "industry";
 private String mLayerName = DEFAULT_LAYER_NAME;

 public IndustryCC() {
 }
 public CacheHint getCacheHint() {
 return CacheHint.ALL_USERS;
 }
 public String getName() {
 return mLayerName;

Developing a Customizable Application

34-6 Fusion Developer's Guide for Oracle Application Development Framework

 }

 public String generateIDPrefix(RestrictedSession sess, MetadataObject mo) {
 return new String ("I");
 }

 public String[] getValue(RestrictedSession sess, MetadataObject mo) {
 // This needs to return the appropriate value at runtime.
 return new String[] {"financial"};
 }
}

This example shows the four methods that define how the customization class will
work: getCacheHint(), getName(), generateIDPrefix(), and getValue().

The return value for getCacheHint() indicates to MDS how widely visible a
metadata object with this customization is, and therefore its likely duration in
memory. It also defines whether or not a layer is static or dynamic. In this example, the
getCacheHint() method returns ALL_USERS, which means the customization layer
is static. For more information about CacheHint values, see Section 34.2.2, "What You
May Need to Know About Customization Classes."

The getName() method returns the name of the customization layer. A SiteCC
customization class, for example, might return "site." In this example, the getName()
method returns "industry."

The generateIDPrefix() method creates an IDPrefix. The IDPrefix is a unique,
abbreviated string that identifies the name and value of the layer. It is used as the
prefix of the ID for objects created in the customization layer. The default
implementation (if no IDPrefix is specified) returns name of the layer concatenated
with customization value. For performance reasons, the IDPrefix should be kept short
(4 characters or less). Therefore, the default implementation should be overridden. The
related getIDPrefix() method returns the IDPrefix of the customization layer. In
this example, the getIDPrefix() method would return "I" (for "industry").

The getValue() method returns the customization value (or values) for the
customization class. In this example, the getValue() method returns a single value,
"financial," that defines the customization context when combined with the layer
name. There are additional techniques for using the getValue() method described in
Section 34.2.1.2, "Implementing the getValue() Method in Your Customization Class."

34.2.1.2 Implementing the getValue() Method in Your Customization Class
The getValue() method is used to retrieve the layer value(s) of the customization
class based on the application context and the metadata. For example, calling
getValue() on a SiteCC customization class might return an array with single entry
"headquarters." Typically, the getValue() method returns an array with a single
value, as shown in Example 34–1.

You can also return multiple values from the getValue() method, as shown in
Example 34–2.

Note: The possible layer values corresponding to a layer name are
retrieved by JDeveloper in the Customization Developer role from the
CustomizationLayerValues.xml file. The precedence of layers is
defined by the order of the customization classes specified in the
adf-config.xml file. The names of the layers must be consistent in
these files and in the customization classes.

Developing a Customizable Application

Customizing Applications with MDS 34-7

Example 34–2 The getValue() Method Returning Multiple Values

public String[] getValue(RestrictedSession sess, MetadataObject mo) {
 return new String[]{"North America", "US", "CA"}
}

When multiple values are returned, customizations applicable to all values are
applied. Customizations are applied in the order in which they appear in the array. In
this example, North America customizations are applied over the base application,
then US customizations are applied, and finally CA.

The getValue() method can return a layer value based on the current execution
context for the current user, pulled either from static or thread local state maintained
by the client, or from properties set by the client on the MDS session and based on the
metadata object name. Example 34–3 shows this type of implementation.

Example 34–3 The getValue() Method Returning a Layer Value Based on the Current
Execution Context

public String[] getValue(RestrictedSession sess, MetadataObject mo) {
 if (mo.getName().equals("/sample/abc.jspx"))
 {
 return new String[]{"Headquarters"};
 }
 else
 {
 return new String[]{"RemoteSite"};
 }
}

In this example, the getValue() method uses the getName() method on the
metadata object to determine if the name of the metadata document is
"/sample/abc.jspx". If so, getValue() returns Headquarters to apply
headquarters customizations. If not, it returns RemoteSite to apply customizations
for remote sites.

An additional technique that can be useful during the development cycle is to use an
external properties file to specify layer values. Example 34–4 references a properties
file (customization.properties) that stores the layer values.

Example 34–4 The getValue() Method Using a Properties File to Specify Layer Values

public String[] getValue(RestrictedSession sess, MetadataObject mo) {
 Properties properties = new Properties();
 String configuredValue = null;
 Class clazz = IndustryCC.class;
 InputStream is = clazz.getResourceAsStream("/customization.properties");

Note: Returning multiple values for a customization layer is an
advanced concept that is typically unnecessary.

Note: Coding the getValue() method to return a value based on
the metadata object is an advanced concept that is typically
unnecessary. Customization context for dynamic layers is typically
determined through facets of the application context, such as user
name or responsibility.

Developing a Customizable Application

34-8 Fusion Developer's Guide for Oracle Application Development Framework

 if (is != null){
 try {
 properties.load(is);
 String propValue = properties.getProperty(mLayerName);
 if (propValue != null){
 configuredValue = propValue;
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 finally {
 try {
 is.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 return new String[] {configuredValue};
}

When an application using this technique is run in JDeveloper, you can change the
layer value in the properties file and refresh the browser to see new customizations
being applied. This customization class and properties file combination allows you to
maintain the layer value in a separate file so you don't need to modify and recompile
Java code to change it for a particular deployment. If you use a
customization.properties file, it must be packaged with the customization
classes so that they are loaded from the same class loader.

Example 34–5 shows a sample customization.properties file. When the
IndustryCC class is loaded with this properties file, the layer value healthcare is
applied.

Example 34–5 Sample Contents of a customization.properties File

#Configured values for the default layer values
industry=healthcare
site=headquarters

34.2.1.3 Creating a Customization Class
When creating customization classes, put them in a separate extension project. This
allows you to deploy them to a JAR and import the JAR into your lowest level project
(which is typically the model project). This approach increases modularity, making it
easier to include them in multiple applications across your company, and easier to
patch them centrally. For more information about this approach, see Section 34.2.3,
"How to Consume Customization Classes."

Alternatively, if you are creating customization classes that will be used in a single
application only, you can put the customization classes in the model project.

Make sure that there is only one copy of the customization classes in the application
and that they are packaged in a JAR so that they are loaded at the EAR level
application class loader. By default, adding project dependencies will add the
customization classes to the WAR, which will not work correctly after the application
is packaged and deployed. For more information about packaging your application for
deployment, see Section 36.3.2, "How to Create Deployment Profiles."

Use the following procedure to create a customization class.

Developing a Customizable Application

Customizing Applications with MDS 34-9

To create a customization class in an extension project:
1. Launch JDeveloper using the Default role, and open (or create) the application that

will hold the customization classes.

2. From the File menu, choose New.

3. In the New Gallery, select Projects and then Extension Project, and click OK.

This opens the Create Extension Project dialog. For more information about the
options in this dialog, see the online help.

4. Specify the appropriate settings for your extension project, and click OK.

5. In the Application Navigator, right-click your extension project and choose Project
Properties.

6. In the Project Properties dialog, click Libraries and Classpath, and then click Add
Library.

7. In the Add Library dialog, select MDS Runtime, and click OK.

8. In the Application Navigator, right-click the extension project and choose New.

9. In the New Gallery, expand General, select Java and then Java Class, and
click OK.

10. In the Create Java Class dialog, enter a name for the class and the appropriate
package.

11. In the Extends field, enter oracle.mds.cust.CustomizationClass.

12. Make sure Implement Abstract Methods is checked and click OK.

13. Replace the code in the generated file with code like that shown in Example 34–1.

14. Save your changes and rebuild the project.

This creates the customization class. The sample code uses the package name
mycompany and the class name IndustryCC. You will need to change these as
appropriate for your application.

34.2.2 What You May Need to Know About Customization Classes
As described in Section 34.2.1.1, "Customization Classes," the customization class
defines a CacheHint which specifies the visibility of metadata objects in a
customization layer, and therefore its likely duration in memory. This information is
used by MDS to decide whether or not to cache a customization, and where to cache it.

Note: If you don’t see Extension Project, click the All Technologies
tab.

Note: You should use a single extension project to hold all of your
customization classes.

Note: Customization classes are typically named for the layer name
they return. For example, a customization class that returns the layer
name industry would be named IndustryCC.

Developing a Customizable Application

34-10 Fusion Developer's Guide for Oracle Application Development Framework

Any customization layers constructed using a given customization class have the same
cache hint.

The following constants are supported values of CacheHint:

■ ALL_USERS -- The customization is applied globally (non-conditionally) for a
given deployment. This constant is used for static customization layers.

■ MULTI_USER -- The customization is applied to multiple users.

■ REQUEST -- The customization is applied for the duration of the request only.

■ USER -- The customization is applied for a single user to documents which are
accessed throughout the user's application session. (In web applications the
application session is typically a servlet session.)

34.2.3 How to Consume Customization Classes
After you have created your customization classes, you can use them at design time in
the Customization Developer role, and at run time in the application. To be consumed
in an application or in JDeveloper, the classes must be packaged appropriately.

When you define the deployment profiles for your application, you will need to add
the customization classes JAR to the EAR assembly, and to avoid duplication make
sure the WAR does not include the customization classes JAR. For more information,
see Section 36.3.2, "How to Create Deployment Profiles."

34.2.3.1 Making Customization Classes Available to JDeveloper
After you create the customization classes, you must make them available to
JDeveloper so that you can use them when implementing customizations. When
working in the Customization Developer role, your customization classes must be
available on JDeveloper’s class path.

Because the customization classes are reusable components, you can create a
JDeveloper extension to contain them and make them available to JDeveloper. For
information about creating and using JDeveloper extensions, see the Writing
JDeveloper Extensions topic in JDeveloper Online Help.

However, when you package and deploy your customized application or run it from
JDeveloper, the customization classes must be available at the application level on the
application’s class path. Therefore it is important to include them in the consuming
application (for example, in the model project), and not just as a JDeveloper extension.
For more information about making your customization classes available at runtime,
see Section 34.2.3.2, "Consuming Customization Classes from an Extension Project."

To package your customization classes as a JDeveloper extension:
1. Create your customization classes in the extension project, as described in

Section 34.2.1.3, "Creating a Customization Class."

2. In the Application Navigator, right-click your extension project and choose
Rebuild project.jpr.

3. In the Application Navigator, right-click your extension project and choose
Deploy to Target Platform.

Note: Customization classes can be executed frequently, once for
each document being accessed to get the layer name and layer value,
so take care to ensure their efficiency.

Developing a Customizable Application

Customizing Applications with MDS 34-11

This deploys the customization classes to JDeveloper, so they can be used in the
Customization Developer role.

34.2.3.2 Consuming Customization Classes from an Extension Project
When you package and deploy your customized application or run it from
JDeveloper, the customization classes must be available in the EAR level application
class loader.

Before you begin:
With the application containing the customization classes open in JDeveloper in the
Default role, create a JAR using the procedure described in Section 36.3.2.1, "Adding
Customization Classes into a JAR."

Use the following procedure to make the customization classes visible to the
application, and then add the customization classes to the cust-config section of
the adf-config.xml file, as described in Section 34.2.7, "How to Configure the
adf-config.xml file." This makes the customization classes available to the application
when you run it locally from JDeveloper.

To use customization classes from an extension project:
1. Open the application you want to customize in JDeveloper in the Default role.

2. In the Application Navigator, right-click the model project and choose Project
Properties.

3. In the Project Properties dialog, click Libraries and Classpath.

4. Click Add JAR/Directory.

5. In the Add Archive or Directory dialog, select the JAR you created that contains
the customization classes, and click Select.

6. Click OK to close the Project Properties dialog.

Now the customization classes are available if you are running your project locally
in JDeveloper. However, if you are deploying your application remotely, you must
also add the customization classes JAR to the EAR class path, as described in
Section 36.3.2.4, "Creating an Application-Level EAR Deployment Profile."

34.2.4 How to Enable Seeded Customizations for View Projects
Like all customizable components, the XML elements of a customizable metadata
object must be uniquely identifiable by MDS, and therefore must have a unique,
non-null identifier. The component’s identifier is used to refer to the element in the
customization instructions in the customization layer. The ID property is the identifier
for each type of component in an ADF Faces .jspx or .jsff file.

To allow for customizations on your JSF and JSP pages, you must enable seeded
customizations in the application’s view project, which drives some defaults for your
pages. This is not necessary for your model and controller projects.

Note: This procedure is not required if you created your
customization classes in model project of the consuming application.

Developing a Customizable Application

34-12 Fusion Developer's Guide for Oracle Application Development Framework

To enable seeded customizations in your view project:
1. Launch JDeveloper using the Default role, and open the application that you want

to make customizable.

2. In the Application Navigator, right-click the view project and choose Project
Properties.

3. In the Project Properties dialog, click ADF View.

4. Select the Enable Seeded Customizations checkbox, as shown in Figure 34–2.

5. Click OK.

6. Save the changes to your project.

Figure 34–2 Project Properties - Enable Seeded Customizations

34.2.5 How to Enable Seeded Customizations in Existing Pages
If you have pages in your project that were created in an earlier version of JDeveloper,
you must make sure that these pre-existing pages are also enabled for seeded
customizations. This is only necessary if you migrated the application from an earlier
version of JDeveloper and did not generate ids during migration.

To enable seeded customizations in an existing page:
1. Launch JDeveloper using the Default role, and open the application that you want

to make customizable.

2. Create an audit profile to implement ID tokens for all XML objects in your page.

a. From the Tools menu, choose Preferences.

Note: MDS requires that pages be XML-based to be customized.
Therefore, customizations are not allowed on .jsp files; use .jspx
files instead.

Developing a Customizable Application

Customizing Applications with MDS 34-13

b. In the Preferences dialog, select Audit > Profiles.

c. In the Rules tab on the Profiles page, deselect all rules.

d. Select the rule ADF Faces > Component ID Rules > Check for ID When ADF
Faces is Present.

e. From the Default Fix dropdown list, select Generate a unique ID.

f. Click Save As, then enter an identifiable name for the profile (such as
Generate Unique IDs). and click Save.

g. Click OK to close the Preferences dialog.

3. In the Application Navigator, select the page for which you want to enable seeded
customizations. Alternatively, you can select a project to run the audit on all the
files it contains.

4. From the Build menu, choose Audit filename.

5. In the Audit dialog, select the profile you created to generate ids and click Run.

6. Use the Log window to review issues and apply fixes.

7. When the audit is complete, save your changes.

34.2.6 How to Enable Customizations in Resource Bundles
If you plan to create new resource keys when implementing customizations, you can
specify the affected resource bundles using the Application Properties dialog.

To enable customizations in resource bundles:
1. From the application context menu, choose Application Properties.

2. In the Application Properties dialog, click Resource Bundles.

3. Click Add.

4. In the Select Resource Bundle dialog, navigate to and select the resource bundles
for which you want to enable customization.

5. Click Open.

6. In the Application Properties dialog, select the checkbox in the Overridden
column of the Bundle table.

7. Click OK.

34.2.7 How to Configure the adf-config.xml file
The application’s adf-config.xml file must have an appropriate cust-config
element in the mds-config section. The cust-config element allows clients to
define an ordered and named list of customization classes. You use the overview
editor for the adf-config.xml file to add customization classes (see Figure 34–3).

To identify customization classes in the adf-config.xml file:
1. With the application you want to customize open in JDeveloper, open the

Application Resources panel in the Application Navigator.

2. Expand Descriptors, then expand ADF META-INF.

3. Right-click adf-config.xml, and choose Open.

Developing a Customizable Application

34-14 Fusion Developer's Guide for Oracle Application Development Framework

4. In the overview editor, click the MDS Configuration navigation tab, and then
click the Add icon.

5. In the Edit Customization Classes dialog, search for or navigate to the
customization class you have already created.

6. Select the appropriate class and click OK.

7. After you have added all of the customization classes, you can use the arrow icons
to put them in the appropriate order.

Figure 34–3 shows the overview editor for the adf-config.xml file with two
customization classes added.

Figure 34–3 adf-config.xml Overview Editor

The order of the customization-class elements defines the precedence of customization
layers. For example, in the code shown in Example 34–6, the IndustryCC class is
listed before the SiteCC class. This means that customizations at the industry layer
are applied to the base application, and then customizations at the site layer are
applied.

Example 34–6 Customization Class Order in the adf-config.xml File

<adf-config xmlns="http://xmlns.oracle.com/adf/config">
 <adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
 <mds-config xmlns="http://xmlns.oracle.com/mds/config" version="11.1.1.000">
 <cust-config>
 <match path="/">
 <customization-class name="com.mycompany.IndustryCC"/>
 <customization-class name="com.mycompany.SiteCC"/>
 </match>
 </cust-config>
 </mds-config>
 </adf-mds-config>
</adf-config>

34.2.8 What Happens When You Create a Customizable Application
When you create a customizable application, you have a base application that includes
the pieces necessary for you or someone else to use as the basis for a customized
application.

Customizing an Application

Customizing Applications with MDS 34-15

To perform the customization, you must open the application in JDeveloper using the
Customization Developer role, as described in Section 34.3, "Customizing an
Application."

34.2.9 What You May Need to Know About Customizable Objects and Applications
Oracle ADF components (such as controller, model, and business components objects)
must have a unique identifier so that they can be customized. ADF components
generated by JDeveloper are created with identifiers by default, with the exception of
JSP and JSF pages in your view controller projects. To cause JDeveloper to generate
identifiers for components on pages in your view controller projects, you must
explicitly specify this at the project level (as explained in Section 34.2.4, "How to
Enable Seeded Customizations for View Projects").

Before you implement customizations in an application, make sure that all objects that
you intend to customize have the necessary identifiers. In many cases, you can run an
audit rule to catch and fix any omissions (as explained in Section 34.2.5, "How to
Enable Seeded Customizations in Existing Pages").

Also, take care to ensure the efficiency of your customization classes, because they can
be executed frequently, once for each document being accessed to get the layer name
and layer value.

34.3 Customizing an Application
Using the Customization Developer role, you can create customizations in a
customizable application.

34.3.1 Introducing the Customization Developer Role
The Customization Developer role is used to customize the metadata in a project.
Customization features are available only in this role. When you are in the
Customization Developer role, you can do the following:

■ Create and update customizations

■ Select and edit the tip layer of a customized application

■ Remove existing customizations

When you are in the Customization Developer role, the source editor is read-only and
the following JDeveloper features are disabled:

■ Workspace migration

■ Creation, deletion, and modification of application and IDE connections. You must
configure connections in Default role before opening an application in
Customization Developer role.

When working with an application in the Customization Developer role, new objects
cannot be created, and noncustomizable objects cannot be modified. However, the
following content types are customizable:

■ WebCenter Portal modules

■ ADF modules, including ADF Faces, ADF Model, ADF Business Components, and
ADF Controller

Customizing an Application

34-16 Fusion Developer's Guide for Oracle Application Development Framework

When working in the Customization Developer role, you cannot edit noncustomizable
files, such as Java classes, resource bundles, security policies, deployment descriptors,
and configuration files. Noncustomizable files are indicated by a lock icon when you
are working in the Customization Developer role.

You are also restricted from modifying project settings and customizing certain ADF
Business Components features, including service interfaces and business event
definitions. Additionally, you cannot refactor, or make changes to customizable files
that would, in turn, necessitate changes in noncustomizable files.

34.3.2 How to Switch to the Customization Developer Role in JDeveloper
The customization features of JDeveloper are available to you in the Customization
Developer role. To work in this role, you can either choose it when you start
JDeveloper or, if JDeveloper is already running, you can use the Preferences dialog to
switch to the Customization Developer role.

To switch to the Customization Developer role in JDeveloper:
1. From the Tools menu, choose Preferences.

2. In the Preferences dialog, click the Roles node.

The Roles page of the Preferences dialog displays the different roles that are
available to you.

3. Select Customization Developer, and click OK.

34.3.3 Introducing the Tip Layer
When working in the Customization Developer role, the layer and layer value
combination that is selected in the Customization Context window is called the tip
layer. The changes you make while in the Customization Developer role are applied to
this layer.

The metadata displayed in the JDeveloper editors is a combination of the base
metadata and the customization layers up to and including the tip layer, according to
the precedence set in adf-config.xml, with the values specified in the
Customization Context window for each layer.

When working in the Customization Developer role, you can also see the
noncustomized state of the application. When you select View without
Customizations in the Customization Context window, there is no current tip layer.
Therefore, what you see is the noncustomized state. While you are in this view, all
customizable files show the lock icon (in the Application Navigator), indicating that
these files are read-only.

When you make customizations in a tip layer, these customizations are indicated by
an orange icon in the Property Inspector. A green icon indicates non-tip layer
customizations. When you see an orange icon beside a property, you have the option
of deleting that customization by choosing Remove Customization from the
dropdown menu for that property.

Note: ADF Business Components objects are customizable only if a
static customization class is selected in the Customization Context
window. Otherwise, business components objects are read-only.

Customizing an Application

Customizing Applications with MDS 34-17

34.3.4 How to Configure Customization Layers
To customize an application, you must specify the customization layers and their
values in the CustomizationLayerValues.xml file so that they are recognized by
JDeveloper.

You can define the customization layers either globally for JDeveloper or in an
application-specific file. If you use an application-specific file, it takes precedence over
the global file. For more information on configuring layer values globally for
JDeveloper, see Section 34.3.4.1, "Configuring Layer Values Globally." For more
information on configuring application-specific layer values, see Section 34.3.4.2,
"Configuring Workspace-Level Layer Values from the adf-config Editor."

When you open a customizable application in the Customization Developer role,
JDeveloper reads the adf-config.xml file to determine the customization classes to
use and their order of precedence. JDeveloper also reads the
CustomizationLayerValues.xml file to determine the layer values to make
available in the Customization Context window. If there are layers included in the
CustomizationLayerValues.xml file that are not defined in the customization
classes listed in the adf-config.xml file, they are not displayed in the
Customization Context window.

Therefore, when you specify the customization layers globally for JDeveloper, you can
have a comprehensive list of layer values for all of your customization applications in
the CustomizationLayerValues.xml file, and only those appropriate for the
current application are available in the Customization Context window. Conversely,
you could have a comprehensive list of customization classes for an application in the
adf-config.xml file, and only the subset of layer values that you will work on in
your CustomizationLayerValues.xml file.

The names of the layers that you enter in the CustomizationLayerValues.xml file
must be consistent with those specified in your customization classes. Section 34–7,
"Layers and Layer Values Defined in CustomizationLayerValues.xml" shows the
contents of a sample CustomizationLayerValues.xml file.

Example 34–7 Layers and Layer Values Defined in CustomizationLayerValues.xml

<cust-layers xmlns="http://xmlns.oracle.com/mds/dt">
 <cust-layer name="industry" id-prefix="i">
 <cust-layer-value value="financial" display-name="Financial" id-prefix="f"/>
 <cust-layer-value value="healthcare" display-name="Healthcare" id-prefix="h"/>
 </cust-layer>
 <cust-layer name="site" id-prefix="s">
 <cust-layer-value value="headquarters" display-name="HQ" id-prefix="hq"/>
 <cust-layer-value value="remoteoffices" display-name="Remote" id-prefix="rm"/>
 </cust-layer>
</cust-layers>

For each layer and layer value, you can add an id-prefix token. This helps to ensure
the uniqueness of the id, so that customizations are applied accurately. When you add
a new element (such as a command button) to a page during customization,
JDeveloper adds the id-prefix of the layer and layer value (determined by the
selected tip layer) to the autogenerated identifier for the element to create an id for the

Note: At design time, JDeveloper retrieves customization layer
values from the CustomizationLayerValues.xml file. But at
runtime, the layer values are retrieved from the customization class.

Customizing an Application

34-18 Fusion Developer's Guide for Oracle Application Development Framework

newly added element in the customization metadata file. For example, in
Example 34–7, the site layer has an id-prefix of "s" and the headquarters layer
value has an id-prefix of "hq". So, when you select site/headquarters as the
tip layer and add a command button to a page, the command button will have an id
of "shqcb1" in the metadata customization file.

For each layer value, you can also add a display-name token to provide a
human-readable name for the layer value. When you are working in the
Customization Developer role, the value of the display-name token is shown in the
Customization Context window for that layer value.

34.3.4.1 Configuring Layer Values Globally
The following procedure describes how to configure the
CustomizationLayerValues.xml file globally for JDeveloper.

To configure design time customization layer values globally for JDeveloper:
1. Locate and open the CustomizationLayerValues.xml file.

You can find this file in the jdev subdirectory of your JDeveloper installation
directory (jdev_install\jdev\CustomizationLayerValues.xml).

2. For each layer, enter a cust-layer element, as shown in Example 34–7.

3. For each layer value, enter a cust-layer-value element, as shown in
Example 34–7.

4. Save and close the CustomizationLayerValues.xml file.

5. Make sure that the customization class JARs (created in Section 34.2.3.1, "Making
Customization Classes Available to JDeveloper") are available in the JDeveloper
class path.

6. After you have made changes to the global CustomizationLayerValues.xml
file, you must restart JDeveloper.

34.3.4.2 Configuring Workspace-Level Layer Values from the adf-config Editor
When configuring layer values for an application, you can use either the adf-config
editor (in the Default role or the Customization Developer role) or the Customization
Context window (in the Customization Developer role). For information on how to do
this from the Customization Context window, see Section 34.3.4.3, "Configuring
Workspace-Level Layer Values from the Customization Context Window."

When you create an application-specific CustomizationLayerValues.xml file,
JDeveloper stores it in an application-level directory (for example,
workspace-directory\.mds\dt\customizationLayerValues\Customizati
onLayerValues.xml). You can access this file in the Application Resources section
of the Application Navigator, under the MDS DT folder.

The following procedure describes how to configure the
CustomizationLayerValues.xml file for a specific application from the adf-config
editor.

To configure design time customization layer values at the workspace level from
the adf-config editor:
1. In the Application Navigator, double-click the adf-config.xml file.

The adf-config.xml file is in the Application Resources panel of the
Application Navigator, under ADF META-INF in the Descriptors node.

Customizing an Application

Customizing Applications with MDS 34-19

2. In the overview editor, click the MDS Configuration tab.

3. Below the table of customization classes, click the Configure Design Time
Customization Layer Values link to open the workspace-level
CustomizationLayerValues.xml file.

When you click the link, JDeveloper opens the file in the editor. If the
workspace-level CustomizationLayerValues.xml file doesn’t already exist,
JDeveloper displays a confirmation dialog. Click yes to create and open a copy of
the global file.

4. Specify layer values as necessary, as described in Section 34.3.4, "How to Configure
Customization Layers."

5. Save your changes.

Unlike the global CustomizationLayerValues.xml file, the layer values of
workspace-level CustomizationLayerValues.xml file can be changed in
Customization Developer role. Additionally, when you save your changes, the
modified values are reflected in the Customization Context window without restarting
the JDeveloper. If the customization context that was active prior to modifying the file
becomes invalid with the modified customization layer values, the customization
context is deselected. You will need to select the customization context from the
updated customization layer values.

34.3.4.3 Configuring Workspace-Level Layer Values from the Customization
Context Window
When configuring layer values for an application, you can use either the
Customization Context window (in the Customization Developer role) or the
adf-config editor (in the Default role or the Customization Developer role). For
information on how to do this from the adf-config editor, see Section 34.3.4.2,
"Configuring Workspace-Level Layer Values from the adf-config Editor."

When you create an application-specific CustomizationLayerValues.xml file,
JDeveloper stores it in an application-level directory (for example,
workspace-directory\.mds\dt\customizationLayerValues\Customizati
onLayerValues.xml). You can access this file in the Application Resources section
of the Application Navigator, under the MDS DT folder.

The following procedure describes how to configure the
CustomizationLayerValues.xml file for a specific application from the
Customization Context window in the Customization Developer role.

To configure design time customization layer values at the workspace level from
the Customization Context window:
1. Click the Override global layer values link in the Customizations window.

When you click the link, JDeveloper opens the
CustomizationLayerValues.xml file in the overview editor. If the
workspace-level CustomizationLayerValues.xml file doesn’t already exist,
JDeveloper displays a confirmation dialog. Click yes to create and open a copy of
the global file.

2. Specify layer values as necessary, as described in Section 34.3.4, "How to Configure
Customization Layers."

3. Save your changes.

Unlike the global CustomizationLayerValues.xml file, the layer values of
workspace-level CustomizationLayerValues.xml file can be changed in

Customizing an Application

34-20 Fusion Developer's Guide for Oracle Application Development Framework

Customization Developer role. Additionally, when you save your changes, the
modified values are reflected in the Customization Context window without restarting
the JDeveloper. If the customization context that was active prior to modifying the file
becomes invalid with the modified customization layer values, the customization
context is deselected. You will need to select the customization context from the
updated customization layer values.

34.3.5 How to Customize Metadata in JDeveloper
You use the same development procedures and techniques to customize metadata that
you use when developing the base application. To implement customizations,
however, you must be working in the Customization Developer role and specify the
customization context by selecting a tip layer and layer value before editing the
metadata. For an application to be customizable, customizations must be enabled in
your project. For more information, see Section 34.2, "Developing a Customizable
Application."

To customize metadata in JDeveloper:
1. Launch JDeveloper using the Customization Developer role.

2. Open the customizable application.

3. In the Customization Context window, select the layer and value for which you
want to implement customizations.

The Customization Context (displayed at the bottom of the Customization
Context window) changes to reflect your selection, as shown in Figure 34–4.

Figure 34–4 Customization Context Window with site/headquarters Selected as the Tip
Layer

4. Edit the metadata as you typically would during development. For example,
right-click an entity object and choose Open. Then edit the object using the
overview editor.

While you use the same techniques for editing metadata during customization that
you would during development, certain restrictions apply. For example, some

Note: The selection you make in the Customization Context window
indicates the context for the customizations that you will implement
in JDeveloper. This selection does not directly impact the runtime for
the application. At runtime, the customization context is returned
from your customization classes. For more information, see
Section 34.2.1, "How to Create Customization Classes."

Customizing an Application

Customizing Applications with MDS 34-21

string properties, such as button labels, cannot be edited directly in the Property
Inspector: they must be edited using the Select Text Resource dialog or the
Expression Builder. For more information about restrictions to editing during
customization, see Section 34.3.1, "Introducing the Customization Developer Role."
For information about using the Expression Builder, see Section 12.7.1.1, "Opening
the Expression Builder from the Property Inspector."

Even though you use the overview editor to implement customizations, you do
not make changes to the base metadata file. Your changes are stored separately in
a customization metadata file.

5. You can optionally choose Remove Customization from the dropdown menu for
a property (in the Property Inspector) to clear the existing customization.

6. Choose Save from the File menu to save your changes.

After you have completed your customizations, you can run and test the customized
application.

34.3.6 How to Fix Incongruencies Between the Tip Layer and Base Metadata
If a base metadata document is upgraded or if the base document type definition is
changed (for backward compatibility, type definition changes should be avoided), it is
possible for customizations on that document to become invalid.

For example, say an element in the XSD has minOccurs=0, maxOccurs=1 and the
base document initially has no occurrences of the element. So you insert an occurrence
of the element as a customization. Then the base document is upgraded to add an
occurrence of the same element. In this situation, applying the customization results in
two occurrences of the element, violating the maxOccurs rule of the XSD.

If this happens, JDeveloper alerts you to such tip customization issues in Structure
window when you open the document in the Customization Developer role. When a
document is opened in JDeveloper, any errors (for example, errors due to schema
validation) are displayed in the Structure window. For some error conditions, audit fix
actions are provided. You can double-click the error to go to the source of the problem
in the document. Note that the Structure window reports only the validation errors
introduced by customizations in the current tip layer. If there are validation errors in
layers other than the tip layer, they are not reported.

To fix tip layer customization errors, the JDeveloper Customization Developer role
provides a default audit action named Fix all tip customization validation errors. This
action fixes validation violations on the merged document by removing the tip layer
customizations.

Note: To see the uncustomized base metadata, you can select View
without Customizations in the Customization Context window.

Note: In the Property Inspector, tip layer customizations are
indicated by an orange icon, while non-tip layer changes are indicated
by a green icon. Remove customization can only be performed in the
context in which the customization was added. So you can remove
only those customizations that have an orange indicator in the
Property Inspector.

Customizing an Application

34-22 Fusion Developer's Guide for Oracle Application Development Framework

34.3.7 What Happens When You Customize an Application
When you implement customizations in an application, JDeveloper creates a metadata
file for the customizations and a subpackage to store them in.

The metadata file contains the customizations for the customized object, which are
applied over the base metadata at runtime. The new metadata file is named the same
as the base file for the object with an additional .xml extension. For example, if you
implement customizations for the browseOrders.jsff page, the customization
metadata file is named browseOrders.jsff.xml. Or if you implement
customizations on the OrderItems entity object, the base metadata file is named
OrderItems.xml and the customization metadata file is named
OrderItems.xml.xml.

The customization metadata files are stored in a subpackage hierarchy that is created
at the same level as the object you customize. The first-level package is named
mdssys, and it contains a package named cust. The cust package contains a
package for each customization layer for which you have implemented
customizations.

For example, say you have a base application that has a package called
oracle.fod.model containing your entity objects, and you have a customization
layer named site with two layer values: headquarters and remoteoffices.
Then you implement customizations for the OrderItems entity object at the
headquarters layer value. When you implement these customizations, JDeveloper
creates the subpackage hierarchy
oracle.fod.model.mdssys.cust.site.headquarters and stores the
customization metadata files there.

Similarly, for pages in your view controller project, JDeveloper creates a directory
structure to store the customization metadata files. For example, if you customize the
BrowseOrders.jsff page in the Web Content folder of your view controller project,
JDeveloper creates the directory structure mdssys/cust/site/headquarters
under Web Content and stores the customization metadata file there.

34.3.8 How to Customize Business Logic using Groovy Triggers
In the Customization Developer role, you can use JDeveloper to implement Groovy
script to respond to the following predefined trigger points for an entity object:

■ After Create

■ Before Modify

■ Before Invalidate

■ Before Remove

■ Before Insert in Database

■ After Insert in Database

■ Before Update in Database

■ After Update in Database

■ Before Delete in Database

■ After Delete in Database

■ Before Commit in Database

■ After Commit in Database

Customizing an Application

Customizing Applications with MDS 34-23

■ Before Rollback in Database

■ After Rollback in Database

These trigger points are available on the Business Rules tab of the overview editor for
entity objects.

To add a trigger for an entity object
1. In the Application Navigator, right-click an entity object and choose Open.

2. In the overview editor, click the Business Rules navigation tab.

3. Click the Add icon and choose Trigger.

4. In the Add Trigger dialog, select the trigger point to use and enter an expression
that will be executed in response to the trigger point.

5. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the trigger fails.

6. Click OK.

34.3.9 How to Customize ADF Library Artifacts in JDeveloper
In the Customization Developer role, you can use JDeveloper to customize artifacts in
an ADF library. This need can arise when, for example, one development team
produces task flows as part of a framework service and makes them available to other
teams as an ADF library. Then another development team uses one of the task flows in
a consuming application, and needs to fine-tune it to fit the requirements of the
application.

You can add an ADF library to your project in the Customization Developer role just
as you would add it in the Default role. However, in the Customization Developer
role, content from an ADF library appears as editable to allow you to implement
customizations, whereas in the Default role it is read-only. For more information about
working with ADF libraries, see Chapter 33, "Reusing Application Components."

To customize an ADF library artifact:
1. Open your customizable application in the Customization Developer role.

2. In the Application Navigator, click the Navigator Display Options icon and
choose Show Libraries.

This displays the libraries in the Application Navigator, so that you can explore
them and access their artifacts.

3. Add the desired library to your project if it is not already shown among the
libraries in the Application Navigator.

For information about how to do this, see Section 33.3, "Adding ADF Library
Components into Projects."

4. Customize the artifacts just as you would customize other content in your project.

For example, you can drag and drop taskflows from a library to .jspx or .jsff
pages in a consuming project, drag and drop taskflows from a library to a page or
fragment in another library, drag and drop library content or taskflows from the
Resource catalog, drag and drop data controls from Data Controls panel to .jspx
or .jsff pages in a library, edit business components, and drag and drop a data
control from a library to the Data Controls panel and then drop to a page in
another palette. All these actions would result in customizations of the library.

Customizing an Application

34-24 Fusion Developer's Guide for Oracle Application Development Framework

34.3.9.1 Specifying a Location for ADF Library Customizations
The location where ADF library customizations are stored is
project-dir\libraryCustomizations by default. If your workspace contains
multiple projects, you should change this to an workspace-level location for each
project (for example, workspace-dir\.mds\ADFLibraryCustomizations).

You can change the location of ADF library customizations on the Project Source
Paths > ADF Library Customizations page of the Project Properties dialog. If you
change this location after you have implemented customizations on an ADF library,
you must move the customization metadata files to the new location. To do this, use
the file system to move the customization metadata (XML) files from the old directory
to the new one.

If you have more than one project in the workspace with existing ADF library
customizations that need to be moved to the common location, move the
customizations to the new location one project at a time. For each project, change the
location of ADF library customizations in the Project Properties dialog, and then move
the customization metadata files from the old location to the new location. To mitigate
conflicts where an ADF library artifact has customizations in more than one project,
you have following options:

■ From both projects, open the ADF Library artifact for which there are conflicting
customizations, and decide upon which customizations you want. Preserve the
customizations you want to keep and delete the others.

■ If both customizations are important, open the ADF library artifact from the first
project and implement the customizations that were previously done in second
project. Then save the customizations in the first project and remove the
customizations from the second project.

Do not open ADF library customization metadata files from multiple projects in a text
editor and merge their contents. This can corrupt the customization metadata file.

Additionally, the location where ADF library customizations are stored is
automatically included when you create a MAR deployment profile. If you change this
location after you have created a MAR profile, you must also change the
corresponding entry in the contributors list on the User Metadata file group page of
the Edit MAR Deployment Profile Properties dialog before packaging. Alternatively,
you can re-create the MAR profile to pick up this change. For more information about
creating a MAR deployment profile, see Section 36.3.2, "How to Create Deployment
Profiles."

34.3.9.2 Viewing ADF Library Runtime Customizations from Exported JARs
When working in the JDeveloper Customization Developer role, you can view runtime
customizations implemented on ADF library artifacts contained in an exported JAR.

To make runtime customizations viewable from JDeveloper:
1. Open the customized application in the Customization Developer role.

2. From the Application Navigator popup menu, choose Application Properties.

3. In the Application Properties dialog, click Customization Libraries.

4. Click Browse, and navigate to the location of the exported JAR.

5. Select the JAR file and click Select.

6. Click OK to close the Application Properties dialog.

Customizing an Application

Customizing Applications with MDS 34-25

Now the JAR is available so that JDeveloper can look up customizations on ADF
library artifacts. When you open an object that contains ADF library artifacts,
JDeveloper looks for customizations in this JAR and displays them if appropriate.
JDeveloper decides what to display for a given artifact in a given customization
context as follows:

■ If the artifact has no runtime customizations or seeded customizations associated
with it, the artifact from the ADF library is displayed.

■ If the artifact has only runtime customizations or seeded customizations
associated with it (but not both), the customized artifact is displayed.

■ If the artifact has both runtime customizations and seeded customizations
associated with it, the seeded customization takes precedence and is displayed.

Additionally, when you run the application locally from JDeveloper, the runtime
customizations are displayed. However, the runtime customizations are not included
in any packaging of the application for deployment.

34.3.10 What Happens When You Customize ADF Library Artifacts
During the development of enterprise applications, there might be artifacts (such as
task flows) that can be reused in multiple applications. To facilitate reuse of these
common artifacts they are usually packaged into an ADF library and distributed. This
allows you to add the ADF library to the list of libraries on which the consuming
application depends on. Then when the application is packaged, the customizations
from all such ADF libraries are included in the MAR, which is later deployed to the
MDS repository.

When you implement customizations on objects from an ADF library, the
customization metadata is stored by default in a subdirectory of the project called
libraryCustomizations. And although you create ADF library customizations at
the project level, they are merged together during packaging to be available at the
application level at runtime. Essentially, ADF libraries are JARs that are added at the
project level, which map to library customizations being created at the project level.
However, although projects map to web applications at runtime, the MAR (which
contains the library customizations) is at the EAR level, so the library customizations
are seen from all web applications.

Therefore, you can customize an ADF library artifact in only one place in an
application for a given customization context (customization layer and layer value).
Customizing the same library content in different projects for the same customization
context would result in duplication in MAR packaging. To avoid duplicates that
would cause packaging to fail, implement customizations for a given library in only
one project in your application.

For example, say the ADF library you are using contains a page fragment text.jsff.
In the consuming application, customize this library page in only one project. By doing
so, customizations are available for all projects in the application that consume this
library at runtime.

Note: The ADF library provider should take care to ensure that no
name conflicts arise due to customizations in the library. In the event
that name conflicts arise between customizations packaged in an ADF
library and the customizations from the consuming project, the
customizations from the ADF library are ignored.

Customizing an Application

34-26 Fusion Developer's Guide for Oracle Application Development Framework

You are also restricted from customizing an object from an ADF library when your
project already contains an object with the same name. In case of duplication, you
must fix the projects by deleting one of the duplicate documents or deleting one and
merging the differences into the other.

Similarly, if the ADF library contains seeded customizations for an artifact within a
given customization context (customization layer and layer value), you cannot
implement customizations for that artifact within the same customization context. In
this situation, the ADF library artifact is read-only. You can, however, implement
customizations for the artifact within other customization contexts.

For example, say the ADF library you are using contains seeded customizations for the
Headquarters layer value in the Site layer. When you select this as your tip layer
in the Customization Context window, the customized objects in that ADF library are
read-only. However, if you select Site/Remote Site 1 as your tip layer, then the
objects are customizable.

34.3.11 How to Package and Deploy Customized Applications
After you customize the application, you will want to deploy it. Before you deploy the
customized application, you must follow the configuration procedures for setting up
your MDS repository, as described in the Oracle Fusion Middleware Administrator's
Guide.

An enterprise application can contain model and user interface projects, and both
types of projects can contain customized metadata. The customized metadata is
packaged into a MAR for deployment. By default, the customizations from both types
of projects are added to a single MAR. For information about how to create a MAR
profile, see Section 36.3.2.3, "Creating a MAR Deployment Profile."

34.3.11.1 Implicitly Creating a MAR
When you use JDeveloper to package an ADF application, JDeveloper creates an
auto-MAR that includes default metadata (such as customizations), when either of the
following conditions are met.

■ The Enable User Customizations > Across Sessions using MDS checkbox is
selected on the ADF View settings page of the Project Properties dialog for the
user interface project.

■ The MDS configuration section of the adf-config.xml file contains a
<metadata-store-usage> element that is marked as
deploy-target="true", as shown in Example 34–8.

Example 34–8 metadata-store-usage Element in adf-config.xml

< . . . >
 <persistence-config>
 <metadata-namespaces>
 <namespace path="/oracle/apps" metadata-store-usage="repos1"/>
 </metadata-namespaces>
 <metadata-store-usages>

Note: When the consuming application implements customizations
on content from an ADF library, the customizations are written to the
local project directories, but they are not automatically injected with
the web-app-root during packaging. For more information, see
Section 36.3.2.3, "Creating a MAR Deployment Profile."

Customizing an Application

Customizing Applications with MDS 34-27

 <metadata-store-usage id="repos1" deploy-target="true">
 . . .
 </metadata-store-usage>
 </metadata-store-usages>
 </persistence-config>
< . . . >

34.3.11.2 Explicitly Creating a MAR
For customizations created in JDeveloper to take effect in the application when it is
deployed, these customizations need to be made available to the application at
runtime. There are two techniques you can use to accomplish this:

■ Package the customizations along with the application using a MAR.

Create a MAR profile that includes the customization metadata. The MAR profile
should be included in the deployed EAR to ensure that the customizations are
available at runtime. Your customization classes must be packaged in the EAR file
such that they are in the application-level class loader.

■ Import the customizations to the runtime repository used by the application.

You typically use this approach if customizations to library metadata need to be
applied to an application that is deployed separately. Using this approach, you
package the customizations into a JAR and then use the command
importMetadata with Oracle WebLogic Scripting Tool (WLST) to import them
to the MDS runtime repository. For more information about this and other WLST
commands, see the Oracle Fusion Middleware WebLogic Scripting Tool Command
Reference.

If your application has customizations on objects from an ADF library, the
customization metadata is implicitly included when you create the MAR profile. If
you change the location of ADF library customizations in the Project Properties dialog,
you must re-create the MAR profile before packaging.

If you plan to use design time at runtime capabilities to add or edit resource keys in
the override bundle at runtime, the override bundle must be packaged as part of the
MAR. By default, the override bundle is packaged as part of the autogenerated MAR if
the application contains seeded customizations. However, if the application doesn't
contain seeded customizations, you must explicitly create the MAR deployment
profile to package the override bundle. When the MAR profile is created explicitly, the
override bundle is added and included by default as part of the user metadata.

When you package and deploy the completed customized application, you should do
so from the Default role, rather than from the Customization Developer role. For
information about how to create a MAR profile, see Section 36.3.2, "How to Create
Deployment Profiles."

Note: If you have seeded customizations only, you do not need to
create a MAR to import them into the MDS repository unless you also
want to support runtime customizations. If you have seeded
customizations and do not have cross-session persistence enabled, the
seeded customizations will be packaged in the EAR, by default, and
loaded from the class path.

Customizing an Application

34-28 Fusion Developer's Guide for Oracle Application Development Framework

34.3.12 What Happens at Runtime in a Customized Application
At runtime, the application applies the customization metadata files over the base
application in the order of precedence defined in the cust-config section of the
adf-config.xml file.

The layer value is retrieved from the customization class at runtime and evaluated in
the context the application is running, and the appropriate customizations for that
layer value are applied.

34.3.13 What You May Need to Know About Customized Applications
When you are customizing an application, you might be using integrated source
control or customizing resource strings. When you use these features, there is
additional information you need to know.

34.3.13.1 Customization and Integrated Source Control
When working in the Customization Developer role, your source control integration
complements the process of customization. If JDeveloper is configured to
automatically check out and add new files to source control and you attempt to
customize a base document that is available from a source control system, JDeveloper
behaves in the following way:

■ If the corresponding customization file is not already available, then a new
customization file is created in source control and the customizations are written
to it.

■ If the corresponding customization file exists, it is checked out and customizations
are written to it.

■ If the corresponding customization file exists and it is already checked out or not
yet in version control, customizations are written to it without any further version
control operation.

Since the base document is not modified in the Customization Developer role, the base
document is not checked out.

If JDeveloper is not configured to automatically check out or add new files to source
control, you must manually make the customization files editable and check in newly
created customization files to source control. For more information about using source
control in JDeveloper, see section Section 1.4.2, "Using a Source Control System."

34.3.13.2 Editing Resource Bundles in Customized Applications
During the course of customizing your application, you might want to customize the
content to use different resource bundle keys or define and use new resource keys.

You can open a customizable application in the Customization Developer role and use
the Property Inspector to customize the usages of resource bundle strings. You can
change a document to use another already existing resource key in a resource bundle,
or create a new resource. For more information about resource bundles, see Section 4.7,
"Working with Resource Bundles."

New resource keys (created in the Customization Developer role) are saved to an
application-level override bundle (in XLIFF format), and JDeveloper adds an entry to
the adf-config.xml file like the one shown in Example 34–9 to configure the
application-level override bundle.

You must also configure the adf-config.xml file to support the overriding of the
base resource bundle. As shown in Example 34–9, you must tag the bundleId

Extended Metadata Properties

Customizing Applications with MDS 34-29

element with override="true" to make it overrideable. After it is marked as
overridden, customizations of that bundle are stored in the application's override
bundle.

Example 34–9 adf-resourcebundle-config Section in adf-config.xml

<adf-resourcebundle-config
xmlns="http://xmlns.oracle.com/adf/resourcebundle/config">
 <applicationBundleName>
 path-to-resource-bundle/bundle-name
 </applicationBundleName>
 <bundleList>
 <bundleId override="true">
 package.BundleID
 </bundleId>
 </bundleList>
</adf-resourcebundle-config>

34.4 Extended Metadata Properties
Extended metadata is data that describes the metadata content. The extended
metadata file contains additional information about the metadata file. One use of this
extended information is to identify which parts of the metadata can be customized at
runtime (design time at runtime customizations) and who can customize them. For
more information about this use of extended metadata properties, see Section 34.4.2,
"How to Enable Customization for Design Time at Runtime."

You can open a metadata file (such as a .jspx file) in JDeveloper and use the Property
Inspector to view and edit its extended metadata properties. When you open a
metadata file, its extended metadata properties are displayed in the Property
Inspector. These properties can be edited to add metadata information at either of the
following levels:

■ File-level: These properties are displayed in the Property Inspector when the root
element is selected in the Structure window.

■ Element-level: These properties are displayed in the Property Inspector when an
element is selected in the Structure window. The selected element should have a
non-null identifier.

Extended metadata properties are supported for file types that support customizations
and can be packaged in a MAR, such as .jsff and .jspx files.

Extended metadata for a metadata document is stored in an associated resource
description framework (RDF) file. RDF is a W3C standard used to define an XML
framework for defining metadata. The RDF file associated with the metadata
document is created when the first property value is specified using the Property
Inspector. Extended metadata properties are editable only when JDeveloper is in the
Default role. RDF files are read-only in the Customization Developer role.

The RDF file is stored in the mdssys directory. For example, if the metadata being
described is stored in the file system as /myapp/data/page1.jspx, the

Note: If an application is not configured for customization, you can
open it in the Customization Developer role and define new resource
keys by choosing Edit Resource Bundles from the Application menu.
However, you cannot change a document to use the new resource
keys if it is not configured for customization.

Extended Metadata Properties

34-30 Fusion Developer's Guide for Oracle Application Development Framework

corresponding extended metadata document would be stored as
/myapp/data/mdssys/mdx/page1.jspx.rdf. The extended metadata document
must then be packaged with the corresponding metadata base file and added to the
same deployment profile. For more information about creating a MAR deployment
profile, see Section 36.3.2, "How to Create Deployment Profiles."

34.4.1 How to Edit Extended Metadata Properties
You can use extended metadata properties to provide additional metadata information
that is not covered in the metadata file (such as a .jspx file). When you open the
metadata file in JDeveloper, extended metadata properties are displayed in the
Property Inspector, which you can use to edit these properties when you are using
JDeveloper in the Default role.

For example, suppose you want to deliver a metadata file in some form to external
customers. Along with metadata file, you need to provide additional information
about the file, such as the creator, subject, description, format, and rights. You can
accomplish this by creating an extended metadata property file for your metadata file.

To edit extended metadata properties:
1. Launch JDeveloper using the Default role.

2. In JDeveloper, open the appropriate application and project.

3. In the Application Navigator, select the object for which you want to edit extended
metadata properties.

4. In the Structure window, select the appropriate element (typically the root
element).

5. In the Property Inspector, expand the appropriate node to edit the properties.

To display the Property Inspector with the values for the selected component,
choose Property Inspector from the View menu.

6. Edit the value for the desired property and press Enter.

7. Choose Save from the File menu to save your work.

If you have edited extended metadata properties for a metadata file, you must package
your extended metadata (or RDF) files with the metadata files when you deploy the
application.

34.4.2 How to Enable Customization for Design Time at Runtime
You can also use extended metadata properties to provide information about which
parts of the metadata can be customized at runtime and who can customize the
metadata content.

By default, many components (such as tables and panelSplitters) that you can add to a
.jspx page are preconfigured to allow runtime customization to support implicit user
personalization (such as changing the order of columns in a table). Some WebCenter
Portal components (such as panelCustomizable) also allow customization in their
type definition. For more information about user customization, see Chapter 35,
"Allowing User Customizations at Runtime." For more information about WebCenter

Note: Don’t edit the extended metadata documents directly. Use the
Property Inspector.

Extended Metadata Properties

Customizing Applications with MDS 34-31

Portal components, see the Oracle Fusion Middleware Developer's Guide for Oracle
WebCenter Portal.

Components that are preconfigured to allow customization need no further
modification to enable design time at runtime customizations. If you use them in a
.jspx page, then they are customizable by default. However, the root elements of
metadata objects (such as .jspx pages and page definition files) and other
components (such as buttons) that you can add to a .jspx page are not preconfigured
to be customizable at runtime, and must be explicitly configured to allow runtime
customizations.

Therefore, depending on the requirements of your application, you will need to
modify Customization properties in the following situations:

■ For components that are preconfigured to allow customization, you can override
the default settings to disallow customization.

■ For components that are not preconfigured to allow customization and metadata
objects (such as .jspx pages), you can override the default settings to allow
customization.

■ For components that are configured to allow customization, you can optionally
restrict who is allowed to perform customizations at runtime.

In the Customization group in the Property Inspector, there are two properties that
allow you to specify whether customizations for an object are permitted at runtime
and who is permitted to do them. The CustomizationAllowed property can be set on
any element to specify whether or not it can be customized. The
CustomizationAllowedBy property controls which users can customize the element.
These settings are not enforced when implementing seeded customizations using
JDeveloper, but are instead enforced when customizing the application at runtime
(design time at runtime customizations).

For example, say you have a .jspx page with a form that contains two panels, and
you need to allow runtime customization for content in Panel1, but not Panel2. You
would set CustomizationAllowed to true for Panel1, and set it to false for Panel2.
If you need to allow runtime customization on an entire page, you would set
CustomizationAllowed to true for the .jspx page root.

To edit customization properties:
1. Launch JDeveloper using the Default role.

2. In JDeveloper, open the appropriate application and project.

3. In the Application Navigator, select the object for which you want to edit
customization properties.

4. In the Structure window, select the appropriate element.

5. In the Property Inspector, expand the Customization node to edit the
customization properties.

To display the Property Inspector with the values for the selected component,
choose Property Inspector from the View menu.

6. Edit the property value and press Enter.

For example, to allow runtime customizations on a .jspx file, select the file and
set the CustomizationAllowed property to true.

7. Choose Save from the File menu to save your work.

Enabling Runtime Modification of Customization Configuration

34-32 Fusion Developer's Guide for Oracle Application Development Framework

If you have edited customization properties, you must package your extended
metadata (RDF) files with the metadata files when you deploy the application.

34.5 Enabling Runtime Modification of Customization Configuration
You can prepare your customized application to accept overrides to the customization
configuration (the cust-config section of the adf-config.xml file) at runtime on
a per-session basis, thus allowing the user to change the way customizations are
applied for a given session (or web request).

Consider a scenario where an application is configured with a site layer and a user
layer and you want to make design time at runtime customizations to the site layer.
If you use the application’s customization configuration (defined in the
adf-config.xml file), any customizations that you implement are applied to the
user layer. So, you need to be able to adjust the customization configuration for a
given session to allow your customizations to be applied to the site layer.

Or you have a requirement that an administrator wants to see the base metadata
document with the site layer customizations alone. For cases like this, you need to
specify a modified customization configuration, other than what was originally
specified in application’s adf-config.xml file.

For each web request, Oracle ADF creates an MDS session. For any MDS
customization configuration modifications that apply to a session (web request), the
user could programmatically provide modified MDS session options with a new
customization configuration to Oracle ADF that would be applied on top of the
original MDS configuration while creating a MDS session.

To implement this functionality, use the following ADF interfaces for
sessionOptionsFactory:

■ oracle.adf.share.mds.SessionOptionsFactory is the interface you use
to specify modified MDS session options for a web request in an ADF application.

SessionOptionsFactory :: oracle.mds.core.SessionOptions
createSessionOptions(oracle.mds.core.SessionOptions defaultOptions)

You implement this method to return the modified MDS sessionOptions to
ADF.

■ oracle.adf.share.config.ConfigUtils is the public class you can use to
register your session options factory with ADF.

ConfigUtils :: public static void setSessionOptionsFactory(ADFContext context,
SessionOptionsFactory factory)

See your ADF API documentation for further detail on these interfaces.

Enabling Runtime Modification of Customization Configuration

Customizing Applications with MDS 34-33

You register your sessionOptionsFactory with Oracle ADF or Oracle WebCenter
Portal’s Composer in a filter implementation so that Oracle ADF can get modified
session options from your implementation before the MDS session is created in
request lifecycle.

Example 34–10 shows how you can implement sessionOptionsFactory. This
example sets a modified customization configuration for the session to use the site
customization layer alone regardless of the customization configuration specified in
the adf-config.xml file. See the Javadoc for oracle.mds for more information.

Example 34–10 Sample sessionOptionsFactory Class

package mycompany;

import oracle.adf.share.mds.SessionOptionsFactory;
import oracle.mds.config.CustClassListMapping;
import oracle.mds.config.CustConfig;
import oracle.mds.config.MDSConfigurationException;
import oracle.mds.core.SessionOptions;
import oracle.mds.cust.CustClassList;
import oracle.mds.cust.CustomizationClass;

public class MySessionOptionsFactory implements SessionOptionsFactory {
 public MySessionOptionsFactory() {
 super();
 }
 /**
 * Called to allow the application code to create a new SessionOptions object.
 * The application code should make sure to read the values from the
 * defaultOptions object as part of contruction of their new object and make
 * sure they only override the intended values.
 * @param defaultOptions
 * @return modified MDS session options
 */
 public SessionOptions createSessionOptions(SessionOptions defaultOptions) {
 // create new mds Customization configuration
 CustConfig custconfig = null;

 // create customization class array. Just put SiteCC implementation as we
 // wish to apply site customizations alone.
 CustomizationClass[] custclassarray = new CustomizationClass[] {new SiteCC()};

 CustClassList custclasslist = new CustClassList(custclassarray);

 // specify the base metdata package namespace mapping on which site

Note: If you are using Oracle WebCenter Portal’s Composer
components, you can use the ComposerSessionOptionsFactory
interface to specify modified MDS session options with Composer.

ComposerSessionOptionsFactory :: public SessionOptions
createSessionOptions(SessionOptions defaultOptions, String mode);

oracle.adf.view.page.editor.webapp.WebCenterComposer
Filter loads your ComposerSessionOptionsFactory
implementation from the current thread context class loader. See the
Oracle Fusion Middleware Developer's Guide for Oracle WebCenter Portal
for more information.

Enabling Runtime Modification of Customization Configuration

34-34 Fusion Developer's Guide for Oracle Application Development Framework

 // customizations would apply
 CustClassListMapping[] mappings =
 new CustClassListMapping[] {new CustClassListMapping("mycompany/package",
 null, null, custclasslist)};
 // create new customization configuration
 try{
 custconfig = new CustConfig(mappings);
 }
 catch (Exception ex){
 //do nothing
 }

 // now return modified sessionOptions to ADF with new mds customization
 // configuration. Only use newly created customization configuration in here.
 // For rest of option, use whatever available in defaultOptions.
 return new SessionOptions(defaultOptions.getIsolationLevel(),
 defaultOptions.getLocale(),
 custconfig,
 defaultOptions.getVersionContext(),
 defaultOptions.getVersionCreatorName(),
 defaultOptions.getCustomizationPolicy(),
 defaultOptions.getServletContextAsObject());
 }
}

35

Allowing User Customizations at Runtime 35-1

35Allowing User Customizations at Runtime

This chapter describes how to use the ADF Faces change persistence framework to
create JSF pages that users can customize at runtime.

This chapter includes the following sections:

■ Section 35.1, "Introduction to Allowing User Customizations"

■ Section 35.2, "Enabling Runtime User Customizations for a Fusion Web
Application"

■ Section 35.3, "Configuring User Customizations"

■ Section 35.4, "Controlling User Customizations in Individual JSF Pages"

■ Section 35.5, "Implementing Custom User Customizations"

■ Section 35.6, "Creating Implicit Change Persistence in Custom Components"

35.1 Introduction to Allowing User Customizations
Certain ADF Faces components have attributes that can be saved for a specific user.
For example, the value of the disclosed attribute on a panelBox component can be
saved for a specific user during the current session. The myOrders page in the
StoreFront module application contains four panelBox components that display
order information. By default, they are expanded, as shown in Figure 35–1.

Note: The query component, which is not discussed in this chapter,
can be used to implement saved searches, another type of user
customization. For information about the query component, see
Chapter 27, "Creating ADF Databound Search Forms." The
configuration required for using MDS to store saved searches is
discussed in Section 27.2.3, "How to Persist Saved Searches into MDS."

Introduction to Allowing User Customizations

35-2 Fusion Developer's Guide for Oracle Application Development Framework

Figure 35–1 panelBox Components are Expanded by Default

However, suppose a user decides to collapse one of the boxes, as shown in
Figure 35–2.

Figure 35–2 panelBox Component Remains Collapsed

Introduction to Allowing User Customizations

Allowing User Customizations at Runtime 35-3

Because this application is configured to allow user customizations, then during the
user’s session, anytime that user returns to the page, the Payment Information box
remains collapsed. You need only to enable user customizations for the project in
order for these changes to be persisted to the user’s session.

Table 35–1 shows the attribute value changes persisted by an ADF Faces application,
after you configure the application to allow user customizations.

Note: The user session begins when the user logs in to the
application, and ends when the user leaves the application. It is
possible that while using an application, the user could navigate
across application boundaries (for example, to a peer application) and
thereby leave the application, at which point the user session would
end.

Table 35–1 Implicitly Persisted Attribute Values

Component Attribute Affect at Runtime

panelBox

showDetail

showDetailHeader

showDetailItem

disclosed Users can display or hide content
using an icon in the header. Detail
content will either display or be
hidden, based on the last action of
the user.

showDetailItem (used in
a panelAccordion
component)

flex The height of multiple
showDetailItem components are
determined by their relative value
of the flex attribute. The
showDetailItem components
with larger flex values will be
taller than those with smaller
values. Users can change these
proportions, and the new values
will be persisted.

showDetailItem (used in
a panelAccordion
component)

inflexibleHeight Users can change the size of a
panel, and that size will remain.

panelSplitter collapsed Users can collapse either side of the
splitter. The collapsed state will
remain as last configured by the
user.

panelSplitter splitterPosition The position of the splitter in the
panel will remain where last
moved by the user.

richTextEditor editMode The editor will display using the
mode (either WYSIWYG or source)
last selected by the user.

calendar activeDay The day considered active in the
current display will remain the
active day.

calendar view The view (either day, week, month,
or list), that currently displays
activities will be retained

Introduction to Allowing User Customizations

35-4 Fusion Developer's Guide for Oracle Application Development Framework

panelWindow

dialog

contentHeight Users can change the height of a
panelWindow or dialog popup
component, and that height will
remain.

panelWindow

dialog

contentWidth Users can change the width of a
panelWindow or dialog popup
component, and that width will
remain.

activeCommandToolbar
Button

commandButton

commandImageLink

commandLink

commandMenuItem

commandNavigationItem

commandToolbarButton

windowHeight When users change the
contentHeight attribute value of
a panelWindow or dialog
component, any associated
windowHeight value on a
command component is also
changed and will remain.

activeCommandToolbar
Button

commandButton

commandImageLink

commandLink

commandMenuItem

commandNavigationItem

commandToolbarButton

windowWidth When users change the
contentWidth attribute value of a
panelWindow or dialog
component, any associated
windowWidth value on a
command component is also
changed and will remain.

column displayIndex ADF Faces columns can be
reordered by the user at runtime.
The displayIndex attribute
determines the order of the
columns. (By default, the value is
set to -1 for each column, which
means that the columns will
display in the same order as the
data source). When a user moves a
column, the value on each column
is changed to reflect the new order.
These new values will be persisted.

column frozen ADF Faces columns can be frozen
so that they will not scroll. When a
column’s frozen attribute is set to
true, all columns before that
column (based on the
displayIndex value) will not
scroll. When you use the table with
a panelCollection component,
you can configure the table so that
a button appears that allows the
user to freeze a column. For more
information, see the "Displaying
Table Menus, Toolbars, and Status
Bars" section of the Oracle Fusion
Middleware Web User Interface
Developer's Guide for Oracle
Application Development Framework.

Table 35–1 (Cont.) Implicitly Persisted Attribute Values

Component Attribute Affect at Runtime

Introduction to Allowing User Customizations

Allowing User Customizations at Runtime 35-5

You can also configure an application so that the value of these attributes can be
persisted across sessions using the MDS repository. For example, if the StoreFront
module allowed persistence to the MDS repository, then anytime that user entered the
application, the Payment Information box would be collapsed.

Along with the automatic persistence available through ADF Faces, you can create
your own custom user customization capabilities for the following types of changes:

■ Changing an attribute value

■ Adding or removing a facet

■ Adding or removing a child component

■ Reordering child components

■ Moving a child component to a different parent

column noWrap The content of the column will
either wrap or not. You need to
create code that allows the user to
change this attribute value. For
example, you might create a
context menu that allows a user to
toggle the value from true to
false.

column selected The selected column is based on the
column last selected by the user.

column visible The column will either be visible or
not, based on the last action of the
user. You will need to write code
that allows the user to change this
attribute value. For example, you
might create a context menu that
allows a user to toggle the value
from true to false.

column width The width of the column will
remain the same size as the user
last set it.

table filterVisible ADF Faces tables can contain a
component that allows users to
filter the table rows by an attribute
value. For a table that is configured
to use a filter, the filter will either
be visible or not, based on the last
action of the user. You will need to
write code that allows the user to
change this attribute value. For
example, you might create a button
that allows a user to toggle the
value from true to false.

Note: Before you can enable persistence to the repository, you must
first follow all MDS configuration procedures as documented in the
Oracle Fusion Middleware Administrator's Guide.

Table 35–1 (Cont.) Implicitly Persisted Attribute Values

Component Attribute Affect at Runtime

Enabling Runtime User Customizations for a Fusion Web Application

35-6 Fusion Developer's Guide for Oracle Application Development Framework

If you want to create these types of custom user customizations, you need to add code
(for example, in an event handler) that will call the APIs to handle the persistence.

Enabling an application to use the change persistence framework requires that you
first enable your application to allow user customizations. Part of this process is
determining where those changes should be persisted, either to the session or the MDS
repository.

If you choose to persist changes to the session, by default all values as shown in
Table 35–1 will be saved for the user’s session. However if you choose to persist
changes to a repository, you must explicitly configure which of these attribute values
will be persisted to the repository. Instead of persisting all these attribute values, you
can restrict changes so that only certain attribute value changes for a component are
persisted, or so that only specific instances of the components persist changes.

For any applications that persist changes to an MDS repository, when you deploy your
application, you must create a metadata archive (MAR) profile in the application’s
EAR assembly. For more information, see Section 36.3.2, "How to Create Deployment
Profiles."

35.2 Enabling Runtime User Customizations for a Fusion Web
Application

Enabling an application to allow user customizations (whether for the default changes
that some ADF Faces components provide, or for custom capabilities that you create)
requires that you configure your application to use the change persistence framework
and that you also determine where those changes should be persisted (either the
session or the MDS repository).

35.2.1 How to Enable User Customizations
You enable your application to use the change persistence framework by editing the
web.xml and adf-config.xml files.

To enable user customizations:
1. Double-click the web project in your application to open the Project Properties

dialog. In the tree on the left, select the ADF View node.

2. On the ADF View page, select the Enable User Customizations checkbox. If you
want the changes to be persisted to only the session, select the For Duration of
Session radio button. If you want the changes to persist to the MDS repository,
select Across Sessions Using MDS.

Note: You cannot persist changes to a component that is contained
inside (anywhere in the subtree) of af:forEach or af:iterator
tags. While such structure results in multiple copies of a component in
the view tree, each component has only a single representation in the
JSP document. Therefore, customizations of the component cannot be
persisted in MDS.

Note: If you are planning on persisting changes to the MDS
repository, before configuring an ADF Faces application to use change
persistence, you must first follow all MDS configuration procedures as
documented in the Oracle Fusion Middleware Administrator's Guide.

Enabling Runtime User Customizations for a Fusion Web Application

Allowing User Customizations at Runtime 35-7

3. If you chose to persist to the repository, you now need to declare each component
tag and associated attribute values that you want persisted to the repository (if
you chose to persist only to the session, all values will be persisted). For
procedures, see Section 35.3, "Configuring User Customizations." After that
configuration is complete, you can override those settings on a per component
instance basis. For procedures, see Section 35.4, "Controlling User Customizations
in Individual JSF Pages."

35.2.2 What Happens When You Enable User Customizations
When you elect to save changes only to the session, JDeveloper adds the CHANGE_
PERSISTENCE context parameter to the web.xml file, and sets the value to
session. This context parameter registers the ChangeManager class that will be
used to handle persistence. If you instead elect to save the changes to the MDS
repository, the value is set to
oracle.adf.view.rich.change.FilteredPersistenceChangeManager, as
shown in Example 35–1.

Example 35–1 Context Parameter in web.xml Used For Change Persistence

<context-param>
 <param-name>org.apache.myfaces.trinidad.CHANGE_PERSISTENCE</param-name>
 <param-value>
 oracle.adf.view.rich.change.FilteredPersistenceChangeManager
 </param-value>
</context-param>

When you elect to persist to the repository, JDeveloper also does the following:

■ Adds the following JARs to the class path if they don’t exist:

– javatools-nodep.jar

– facesconfigmodel.jar

– taglib.jar

■ Ensures the ADFBindingFilter is registered. If not, it adds the following entry
to the web.xml file.

<filter>
 <filter-name>adfBindings</filter-name>
 <filter-class>oracle.adf.model.servlet.ADFBindingFilter</filter-class>
</filter>

Note: If you have created custom user customization capabilities as
documented in Section 35.5, "Implementing Custom User
Customizations," then you also need to declare those attribute values
or operations.

Tip: If needed, you can manually set this value to
oracle.adf.view.rich.change.MDSDocumentChangeManager
, if you do not want any customizations to be restricted based on
configurations in the adf-config.xml file or on the individual JSF
pages, and you always want the changes to be persisted to the MDS
repository and not the session.

Configuring User Customizations

35-8 Fusion Developer's Guide for Oracle Application Development Framework

■ Adds another context parameter to web.xml to register the
MDSJSPProviderHelper class to handle merging MDS customization
documents with the base JSP document, as shown in Example 35–2

Example 35–2 Context Parameter in web.xml Used For Merging Changes

<context-param>
 <param-name>oracle.adf.jsp.provider.0</param-name>
 <param-value>oracle.mds.jsp.MDSJSPProviderHelper</param-value>
</context-param>

■ Adds the ADF Faces Change Manager Runtime 11 library to the project.

■ In the adf-config.xml descriptor file, sets the
persistent-change-manager element to the MDSDocumentChangeManager,
which is the class that will be used to persist the changes. Example 35–3 shows the
configuration for persisting to the MDS repository.

Example 35–3 Registered ChangeManager Class for Restricted Change Persistence

<persistent-change-manager>
 <persistent-change-manager-class>
 oracle.adf.view.rich.change.MDSDocumentChangeManager
 </persistent-change-manager-class>
</persistent-change-manager>

■ Creates JSF JSP pages as XML documents. For more information, see Section 35.4,
"Controlling User Customizations in Individual JSF Pages."

35.3 Configuring User Customizations
If you choose to persist changes to an MDS repository, you must decide which of the
attribute values that are by default persisted to the session (as shown in Table 35–1)
should also be persisted to the repository. Alternatively, you can configure which
changes you do not want persisted.

For example, suppose you decide that you don’t want the value for the width
attribute on columns to be persisted to the repository, but you do want all other
default attribute changes for columns to be persisted. You must explicitly set the other
default column values that you want to be persisted, and you also must explicitly
configure the application to NOT persist the width attribute.

You set (and unset) these values using the overview editor for the adf-config.xml
file. Figure 35–3 shows the overview editor where only certain attribute values for the
column component will be persisted.

Tip: Often, a system administrator is the one to set the
configurations in the adf-config.xml. The persist and
dontPersist attributes on a component allow page authors to
override that setting as needed.

Note: If you have created custom user customization capabilities as
documented in Section 35.5, "Implementing Custom User
Customizations," then you must explicitly declare those attribute
values or operations as well.

Configuring User Customizations

Allowing User Customizations at Runtime 35-9

Figure 35–3 Overview Editor for the adf-config.xml File

Once set, you can override persistence for a specific component on a page. For
example, suppose you want to disallow change on the width attribute on only one
table’s columns. You want the rest of the tables in the application to persist changes to
that attribute. You would configure the columns to globally persist changes to the
width attribute, but then for that one table, you would override the global
configuration directly on the JSF page. For more information, see Section 35.4,
"Controlling User Customizations in Individual JSF Pages."

35.3.1 How to Configure Change Persistence
By default, when you configure your application to use any type of change persistence
(that is, to either the session or a repository), the values of all attributes shown in
Table 35–1 will always be persisted to the user’s session. If you configured your
changes to be persisted to a repository, then you must declare the attributes whose
values should be persisted to that repository. If there are any values that you don’t
want persisted, then you need to configure those values as well.

To declare attribute value persistence to a repository:
1. In the Application Navigator, expand the Application Resources pane, expand

the Descriptor > ADF META-INF node, and double-click adf-config.xml to open
that file.

2. In the overview editor, click the View tab.

3. In the Tags table, select the component whose changes you want to persist (or not
persist) to the repository. If the component does not appear in the table, click the
Add icon, and select and add it.

Note: If you’ve enabled just session persistence, then all attribute
values shown in Table 35–1 will be persisted to the session. There is no
way to override this either globally or on an instance.

Controlling User Customizations in Individual JSF Pages

35-10 Fusion Developer's Guide for Oracle Application Development Framework

4. The Tag Attributes table displays all the attributes for the selected component
whose values can be persisted. Select Persist Changes for all attributes whose
values you want persisted. Deselect any if you do not want the values persisted.

35.3.2 What Happens When You Configure Change Persistence
When you select the component tags and attribute values to be persisted in the
adf-config.xml file, JDeveloper enters tag library information for the components
and attributes that are to be persisted. Example 35–4 shows the entry for persisting the
value of the disclosed attribute on the panelBox component.

Example 35–4 Registration of Attribute Changes in adf-config.xml

<taglib-config>
 <taglib uri="http://xmlns.oracle.com/adf/faces/rich">
 <tag name="panelBox">
 <attribute name="disclosed">
 <persist-changes>
 true
 </persist-changes>
 </attribute>
...
 </tag>
 </taglib>
</taglib-config>

35.4 Controlling User Customizations in Individual JSF Pages
Once you have enabled your application to use user customizations, you can control
user customizations for specific components on the page.

By default, the framework persists changes for all component instances, based on the
configuration in the adf-config.xml file. You can override this default behavior by
explicitly setting what should be persisted and what should not be persisted on each
component instance using the persist and dontPersist attributes.

Note: The filter rules specified in the adf-config.xml file are
applicable only when you have chosen to persist to the MDS
repository (see Section 35.2.1, "How to Enable User Customizations").
These rules do not apply for persistence within session scope.

If persistence fails for any reason, (for example if one of the filter rules
fails or the MDS repository errors), then the values will be stored only
within the session scope.

Note: If you are implementing custom user customizations (see
Section 35.5, "Implementing Custom User Customizations"), then you
will need to edit the adf-config.xml manually to add the
configuration. See Example 35–4 for an example on how to configure
user customizations.

Controlling User Customizations in Individual JSF Pages

Allowing User Customizations at Runtime 35-11

The following components support the persist and dontPersist attributes:

■ panelBox

■ showDetail

■ showDetailHeader

■ showDetailItem

■ column

■ tree

■ treeTable

■ panelSplitter

■ calendar

35.4.1 How to Implement User Customizations on a JSF Page
You can override any globally set persistence configuration for a component using its
persist and dontPersist attributes.

To implement user customizations on a JSF Page:
1. Add components to the page, as needed, including components that will be

persisting changes.

2. If you want to persist all persistable attributes for a component:

a. In the Property Inspector, expand the Advanced section.

b. Click the drop-down list for the Persist field and choose All Available.

3. If you do not want to persist any attributes, repeat Step 2 for the Don’tPersist
field.

4. If more than one attribute can be persisted for the component, and you do not
want to persist all of them:

a. Click the drop-down menu to the right of the Persist field and choose Edit to
open the Edit Property dialog.

b. Shuttle any attributes to be persisted from Available to Selected.

Note: The filter rules specified using the persist and
dontPersist attributes are applicable only when you have chosen to
persist to the MDS repository (see Section 35.2.1, "How to Enable User
Customizations"). These rules do not apply for persistence within
session scope.

If persistence fails for any reason, (for example if one of the filter rules
fails or the MDS repository errors), then the values will be stored only
within the session scope.

Tip: Often, a system administrator is the one to set the
configurations in the adf-config.xml. The persist and
dontPersist attributes allow page authors to override that setting
as needed.

Controlling User Customizations in Individual JSF Pages

35-12 Fusion Developer's Guide for Oracle Application Development Framework

5. If you do not want to persist an attribute value, repeat Step 4 for the Don’t Persist
field.

35.4.2 What Happens at Runtime: How Changes Are Persisted and Restored
When an application is configured to persist changes to the session, any changes made
during the session are recorded in a session variable in a data structure that is indexed
according to the view ID and the component’s ID attribute value. Every time the page
is requested, in the subsequent create View or Restore View phase, all changes are
applied in the same order as they were added. This means that the changes registered
through the session will be applied only during subsequent requests in the same
session.

When an application is configured to persist changes to the MDS repository, any
changes made during the session are recorded by mutating the Document Object
Model that MDS maintains for the JSP document behind the view. A JSF phase listener
registered by ADF controller triggers a commit on the MDS session during the
appropriate lifecycle phase, resulting in the change document being persisted in the
MDS store. Every time the page is requested, Oracle's JSP engine seeks the JSP
document from an MDS JSP provider, which provides a flattened document after
merging the stored changes to the base document. MDS records the change against the
unique value of the component’s ID attribute.

Additionally, be aware that when you run the application from JDeveloper in the
Integrated WebLogic Server, MDS creates a local file-based repository to persist
metadata customizations. Whereas when the application is deployed to a test or
production environment, customizations are persisted to the configured MDS
repository. For more information about MDS repository configuration, see the Oracle
Fusion Middleware Administrator's Guide. For more information about deploying an
application, see Section 36.4, "Deploying the Application."

35.4.3 What You May Need to Know About Using Change Persistence on Templates,
Regions, and Declarative Components

The way that changes are persisted for components in templates, regions, and
declarative components is handled differently, depending on whether the changes are

Note: The filter rules specified using the persist and
dontPersist attributes take precedence over any adf-config.xml
configuration set for global component-level restrictions.

Values specified for the dontPersist attribute take precedence over
values specified for the persist attribute. For example, if for a
panelBox component you set disclosed as the value for both the
persist and dontPersist attributes, the value of the disclosed
attribute will not be persisted.

If you set the value of the persist or dontPersist attribute to All
Available, then any values entered as choices using the Edit dialog
and the shuttle will be ignored and all available attribute values will
be persisted or not persisted.

Tip: If changes are applied in response to a partial submit of the
page (for example, a commandButton with the partialSubmit
attribute set to true), the component for which changes are applied
must be set as the value for the partialTarget attribute.

Implementing Custom User Customizations

Allowing User Customizations at Runtime 35-13

persisted to the session or to the MDS repository. With session persistence, changes
are recorded and restored on components against the viewId for the given session. As
a result, when the change is applied on a component that belongs to one of these
objects (region, page template, or declarative component), that change is applicable
only in the scope of the page that uses the object. It does not span all pages that
consume the object.

For example, suppose you have pageOne.jspx and pageTwo.jspx, and they both
contain the region defined in region.jsff, which in turn contains a showDetail
component. When pageOne.jspx is rendered and the disclosed attribute on the
showDetail component changes, the implicit attribute change is recorded and will be
applied only for pageOne.jspx. If the user navigates to pageTwo.jspx, no attribute
change is applied.

When you persist changes to the MDS repository, MDS records and restores
customizations for a document identified by a combination of the JSP page path and
customization name/value configuration setting as set on the customization class (for
more information, see Section 34.2.1.1, "Customization Classes"). As a result, for a
given page that is rendered, when MDS applies a change on a component withinone of
these objects (region, template, or declarative object), it is applicable for all pages that
consume the object and that have the same customization name and value as the
source page.

In the previous example, assume that the showDetail component uses the ID of
myShowDetail. When pageOne.jspx is rendered and the disclosed attribute on
the showDetail component changes, the attribute change is recorded for
region.jsff (and not the page that consumes it). This change is applied when any
page that contains the region is rendered, as long as the ID remains the same.

Additionally, user customizations are allowed through the persistence change
manager on components that are direct children of a page template or a declarative
component only if the definition of the page template or declarative component is not
private. If it is private, the customization is written into the session store.

35.5 Implementing Custom User Customizations
In addition to the user customization capabilities built in to certain ADF Faces
components, you can create your own custom user customization capabilities. The
change persistence framework supports the following types of user customizations:

■ Changing an attribute value

■ Adding or removing a facet

■ Adding or removing a child component

■ Reordering child components

■ Moving a child component to a different parent

To create custom user customizations, you must create a customization class for each
type of user customization and then configure your application to use that class. You
also need to set up the layers of customization for your application. For more

Note: The definition of the page template or declarative component
is a tag-only, nonbindable attribute. For declarative components, it is
af:componentDef. For page templates, it is
af:pageTemplateDef.

Implementing Custom User Customizations

35-14 Fusion Developer's Guide for Oracle Application Development Framework

information about both of these procedures, see Section 34.2, "Developing a
Customizable Application."

Once those prerequisites are satisfied, you add logic that calls methods on the ADF
Faces classes that handle persisting change either to the session or the MDS repository.
To handle the change, you create code that uses the APIs from one of the ADF Faces
specialized component change classes. For most cases, you add this code to the event
handler method on a managed bean associated with the page the persisting
component is on. If you want all instances of a component to persist the same change,
you need to add this code for each page on which that component appears.

If you are creating a custom component, you can implement user customizations for
the component by adding code directly to the custom component class. In that case,
you will need to add the code only to the component class, and not once for each
instance of the component. For more information, see Section 35.6, "Creating Implicit
Change Persistence in Custom Components."

35.5.1 Change Persistence Framework API
To better understand what you need to do to create custom user customizations, it
may help to have a deeper understanding of the change persistence and MDS
frameworks. When you elect to persist changes to the MDS repository, the change
persistence framework works in conjunction with the MDS framework. Where and
how the customizations are saved are determined by how you set up your MDS
repository, your customization layers, and your customization classes. Details about
the MDS framework and the repository and how to use it are covered in Chapter 34,
"Customizing Applications with MDS."

The change persistence framework uses the underlying change manager classes from
Apache MyFaces Trinidad (in the org.apache.myfaces.trinidad.change
package) along with a few ADF Faces-specific classes (in the
oracle.adf.view.rich.change package). The instance of the registered
ChangeManager class is accessible through the RequestContext object. It is
responsible for gathering changes as they are created and added during a request, and
then persisting them. The SessionChangeManager class is an implementation of
ChangeManager which handles persistence within a session only, while the
MDSDocumentChangeManager class is an implementation that persists to the MDS
repository only. The FilteredPersistenceChangeManager class is an
implementation of ChangeManager that stores the changes that pass the filter rules
into the repository using the registered persistence change manager. Any change that
does not get persisted to the repository will be persisted to the session when
FilteredPersistenceChangeManager is used.

Additional classes are used to describe the changes to a component. You use these
APIs to handle persisting any changes to components other than the implicit value
changes the ADF Faces framework provides (as shown in Table 35–1).
ComponentChange is the base class for all classes used to implement specific changes
that act on the JSF component hierarchy, such as adding or removing a facet or a child
component. These changes are automatically applied during subsequent creation of
the view, in the same order in which they were added. Classes that extend the
ComponentChange class and that also implement the DocumentChange interface
can directly persist changes to the MDS repository. Classes that do not implement the
DocumentChange interface can persist changes only to the session.

Table 35–2 describes the specialized classes that handle specific customizations. If "yes"
appears in the Repository column, then the class implements the DocumentChange
interface and it can persist changes to the MDS repository.

Implementing Custom User Customizations

Allowing User Customizations at Runtime 35-15

Aside from a ChangeManager class, you may also need to implement and register the
DocumentChangeFactory interface with the ChangeManager class. If the
DocumentChangeFactory implementation can provide an equivalent
DocumentChange for a ComponentChange, the ChangeManager will use it to
persist the DocumentChange to the repository.

35.5.2 How to Create Code for Custom User Customizations
You need to add code to handle any explicit changes you want to create, and to
configure the components on the JSF page to handle customization. As with the
default user customizations, you also must register the custom changes in the
adf-config.xml file.

Table 35–2 Classes Used to Handle Change Persistence

Class Name Repository Description

AddChildDocumentChange Yes Adds a child component using
document mark up. While applying
this change, the child component is
created and added to the document.

AttributeComponentChange No Changes the value of an attribute.

AttributeDocumentChange Yes Changes the value of an attribute.

MoveChildComponentChange Yes Moves a child from one container to
another.

RemoveChildComponentChange Yes Removes a child component.

SetFacetChildComponentChange No Adds a child component to the facet
using a document markup. While
applying this change, the markup will
be added to the document.

SetFacetChildDocumentChange Yes Adds a child component to a facet.
While applying this change, the DOM
element corresponding to the child
component is added to the document.
If the facet doesn't exist, it will be
created. If the facet does exist, all of its
content will be removed and the new
content added.

RemoveFacetComponentChange Yes Removes a facet.

ReorderChildrenComponentChange Yes Reorders children of a component.

Implementing Custom User Customizations

35-16 Fusion Developer's Guide for Oracle Application Development Framework

To create custom user customizations:
1. Create a managed bean for the page that contains the component.

2. Add code to the event handler method for the component that will be used to
make the change. This code should obtain the component that contains the
change. It should then use the component and the appropriate APIs to create,
record, and persist the change.

Example 35–5 shows the code on the action event handler for a command button
for a change that will be persisted to the MDS repository. When a user clicks the
button, that source graphic file changes. The event handler method accesses the
component and changes the source attribute for the graphic. It then calls the
private addAttributeChange method, which first uses the component API to
record the change, and then uses the AttributeComponentChange class to set
the new source attribute value.

Example 35–5 Persisting Change to the Repository from an Event Handler on a
Managed Bean

public void modifyObjectImage(ActionEvent event) {
 UIComponent uic = event.getComponent().findComponent("oi1");
 String source = "/images/mediumAd.gif";
 uic.getAttributes().put("source", source);
 _addAttributeChange(uic, "source", source);
 }
.
.
.
 private static void _addAttributeChange(UIComponent uic, String attribName,
 Object attribValue) {
 FacesContext fc = FacesContext.getCurrentInstance();
 ChangeManager cm =
 RequestContext.getCurrentInstance().getChangeManager();
 ComponentChange cc =
 new AttributeComponentChange(attribName, attribValue);
 apm.addComponentChange(fc, uic, cc);
 }

Note: When the changes are expressible in more than one form, the
change must be recorded in the form with highest precedence. For
example:

■ Attribute change for a component: The attribute can be specified
on the component tag or it can be expressed using the
<f:attribute> tag. In a JSF JSP document, <f:attribute>
takes lesser precedence over the attribute specified on the
component tag. Therefore, the attribute change on the component
tag will be recorded for customization.

■ Column header text in a column component: The header text for
the column can be specified using either the headerText
attribute or using header facet. In this case, the facet component
will have precedence.

Implementing Custom User Customizations

Allowing User Customizations at Runtime 35-17

3. The ChangeManager class provides support for automatically converting an
AttributeComponentChange into an AttributeDocumentChange, thereby
allowing persistence to a repository. However, if you need to convert another type
of change and you use a specialized change manager class that does not
implement the DocumentChange class, you need to create a custom
DocumentFactory implementation that converts the component change to a
document change.

4. If you create a custom DocumentFactory implementation, you need to register it
with the appropriate change manager class using the following method in your
bean:

public static void registerDocumentFactory(String targetClassName,
 String converterClassName)

Where targetClassName is the name of the ComponentChange class and
converterClassName is the name of your DocumentChangeFactory
extension that is capable of converting the target ComponentChange into a
DocumentChange. The semantics of name for these classes is same as that of
getName() in the java.lang.Class class.

5. If the class you use to create the component change adds a child that has a subtree
of components, and you want to persist the changes to the repository, you must
create a DocumentFragment to represent the change.

Note: When you persist changes, in addition to explicitly recording a
change on the component (which is done in Example 35–5 using
uic.getAttributes().put("source", source) method), you
must also directly apply the change using the component API, as was
done using the private _addAttributeChange(uic, "source",
source) method. Applying the change in this way allows the user to
see the change in response to the same request. If the change is
recorded on the component, then the change will not be seen until a
subsequent request.

Additionally, if you know that the component will always persist to
the repository regardless of any restricted change persistence settings,
you can instead call the
AdfFacesContext.getCurrentInstance().
getPersistentChangeManager() method.

Note: Automatic conversion of AttributeComponentChange into
an AttributeDocumentChange assumes that the component
attribute is represented as an attribute of the same name on the
associated element in the JSPX document.

Only those attribute values that are expressible in the JSPX document
can be persisted using AttributeDocumentChange. In other words,
CharSequence, Number, Boolean and ValueExpression are the
only supported data types.

Only values that implement java.io.Serializable can be
persisted using AttributeComponentChange.

Implementing Custom User Customizations

35-18 Fusion Developer's Guide for Oracle Application Development Framework

Example 35–6 shows how to use the AddComponentDocumentChange
specialized class to create a DocumentChange object and use a
DocumentFragment to represent the change.

Example 35–6 Converting a ComponentChange Object to a DocumentChange Object

public void appendChildToDocument(ActionEvent event)
{
 UIComponent eventSource = event.getComponent();
 UIComponent uic = eventSource.findComponent("pg1");
 // only allow the image to be added once
 if (_findChildById(uic,"oi3") != null)
 return;
 FacesContext fc = FacesContext.getCurrentInstance();
 DocumentFragment imageFragment = _createDocumentFragment(_IMAGE_MARK_UP);
 DocumentChange change = new AddChildDocumentChange(imageFragment);
 ChangeManager apm = AdfFacesContext.getCurrentInstance().getChangeManager();
 apm.addDocumentChange(fc, uic, change);
}
 private static final String _IMAGE_MARK_UP =
 "<af:objectImage id='oi3' height='100' width='120' " +
 "source='http://www.somewhere.com/someimage.jpg' " +
 "xmlns:af='http://xmlns.oracle.com/adf/faces'/>";

private static DocumentFragment _createDocumentFragment(
 String markUp)
{
 // prepend XML declaration
 markUp = "<?xml version = '1.0' encoding = 'ISO-8859-1'?>" + markUp;
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 factory.setNamespaceAware(true);
 factory.setValidating(false);
 DocumentBuilder builder;
 try
 {
 builder = factory.newDocumentBuilder();
 }
 catch (ParserConfigurationException pce)
 {
 _LOG.log(Level.WARNING, "Unable to get XML Parser:", pce);
 return null;
 }
 try
 {
 // use a version explicitly with ISO-8859-1 instead
 byte[] markupBytes = markUp.getBytes();
 Document newDoc = builder.parse(new ByteArrayInputStream(markupBytes));
 DocumentFragment fragment = newDoc.createDocumentFragment();
 // add the document's root element to the fragment
 fragment.appendChild(newDoc.getDocumentElement());
 return fragment;
 }
 catch (SAXException se)
 {
 _LOG.log(Level.WARNING, "Unable to parse markup:" + markUp, se);
 return null;
 }
 catch (IOException ioe)
 {
 _LOG.log(Level.WARNING, "IO Problem with markup:" + markUp, ioe);

Creating Implicit Change Persistence in Custom Components

Allowing User Customizations at Runtime 35-19

 return null;
 }
}

6. Register the user customizations in the adf-config.xml file, as documented in
Section 35.3, "Configuring User Customizations." If the custom changes are of any
type other than AttributeDocumentChange, you will need to manually edit the
adf-config.xml file and indicate that all changes are allowed for the
component, as shown in Example 35–7.

Example 35–7 Custom Registration in adf-config.xml

<tag name="inputText">
 <attribute name="label">
 <persist-changes>true</persist-changes>
 </attribute>
 <persist-operations>ALL</persist-operations>
</tag>

35.6 Creating Implicit Change Persistence in Custom Components
When you create a custom component, you may decide that you want certain attribute
values on that component to be persisted whenever change persistence is enabled in
an application. Setting implicit change on a custom component is similar to setting
explicit change persistence on existing components. You add code that executes the
actual persistence, but instead of you placing that code on a managed bean, that code
can be handled directly by the component class. If your component’s attribute values
are synchronized with the server using events, then you can use the broadcast method
to persist the changes. If the attribute value that you want to persist does not use
events, then you need to add code in the renderer and component class.

35.6.1 How to Set Implicit Change Persistence For Attribute Values that Use Events
When an attribute value uses events, you need to add code to the component class.

To set implicit change persistence for attribute values that use events:
1. Open the custom component class java file.

2. Add code to the broadcast method that will use the specialized class to create a
new ComponentChange object and then call the ChangeManager to add the
change.

Example 35–8 shows the code added to the UIXShowDetail class that persists a
change to the disclosed attribute. In this case, the
AttributeComponentChange class is used.

Example 35–8 Persisting Change from a Component Class

public class UIXShowDetail extends UIXComponentBase
{
 ...
 public void broadcast(FacesEvent event) throws AbortProcessingException
 {
 super.broadcast(event);
 ...
 if (event instanceof DisclosureEvent)
 {

Creating Implicit Change Persistence in Custom Components

35-20 Fusion Developer's Guide for Oracle Application Development Framework

 boolean isDisclosed = ((DisclosureEvent) event).isExpanded();
 setDisclosed(isDisclosed);
 //Record a Change for 'disclosed' attribute
 AttributeComponentChange aa =
 new AttributeComponentChange('disclosed', isDisclosed ? Boolean.TRUE :
Boolean.FALSE);
 AdfFacesContext adfContext = AdfFacesContext.getCurrentInstance();
 adfContext.getChangeManager().addComponentChange(getFacesContext(), this,
aa);
 ...
 }
 }
 ...

35.6.2 How to Set Implicit Change Persistence For Other Attribute Values
When an attribute does not use events, you need to place code in the component’s
renderer class.

To set implicit change persistence for other attribute values:
1. Open the custom component’s render class java file.

2. Use the findTypeConstants method, which takes a ClientMetadata instance
and use the addPersistedProperty method to mark certain properties as
persisted. Example 35–9 shows a code snippet from the renderer class used for the
ADF Faces PanelSplitter component, which implicitly persists the
splitterPosition attribute value.

Example 35–9 Method in Component Renderer Class to Implicitly Persist Changes

// Code snippet from PanelSplitterRenderer.java
protected void findTypeConstants(
 FacesBean.Type type,
 ClientMetadata metadata)
 {
 super.findTypeConstants(type, metadata);
 metadata.addRequiredProperty(
 _orientationKey = type.findKey("orientation"));
 metadata.addRequiredProperty(
 _positionedFromEndKey = type.findKey("positionedFromEnd"));
 metadata.addRequiredProperty(
 _disabledKey = type.findKey("disabled"));
 metadata.addRequiredProperty(
 _splitterPositionKey = type.findKey("splitterPosition"));
 metadata.addPersistedProperty(_splitterPositionKey);
 }

3. In the JavaScript component peer class, define the attribute value to be persisted,
using the setProperty function. This function needs to be invoked with the
attribute name (as defined in the renderer in the previous step), the value, and
"true", meaning the value of the attribute will be set. Example 35–10 shows a
code snippet from the panelSplitter class that sets the splitter position.

Example 35–10 Method in Component Class to Implicitly Persist Changes

// Code snippet from AdfDhtmlPanelSplitterPeer.js file where we set the
 splitter position

Creating Implicit Change Persistence in Custom Components

Allowing User Customizations at Runtime 35-21

 var component = this.getComponent();
 component.setProperty("splitterPosition",position, true);
// position is the value to be set

Creating Implicit Change Persistence in Custom Components

35-22 Fusion Developer's Guide for Oracle Application Development Framework

36

Deploying Fusion Web Applications 36-1

36Deploying Fusion Web Applications

This chapter describes how to deploy ADF applications to a target application server.
It describes how to create deployment profiles, how to create deployment descriptors,
and how to load ADF runtime libraries. It includes instructions for running an
application in JDeveloper using the Integrated WebLogic Server, as well as deploying
to a standalone Oracle WebLogic Server or IBM WebSphere Application Server.

This chapter includes the following sections:

■ Section 36.1, "Introduction to Deploying Fusion Web Applications"

■ Section 36.2, "Running an ADF Application in Integrated WebLogic Server"

■ Section 36.3, "Preparing the Application"

■ Section 36.4, "Deploying the Application"

■ Section 36.5, "Postdeployment Configuration"

■ Section 36.6, "Testing the Application and Verifying Deployment"

36.1 Introduction to Deploying Fusion Web Applications
Deployment is the process of packaging application files as an archive file and
transferring this file to a target application server. You can use JDeveloper to deploy
ADF applications directly to the application server (such as Oracle WebLogic Server or
IBM WebSphere Application Server), or indirectly to an archive file as the deployment
target, and then install this archive file to the target server. For application
development, you can also use JDeveloper to run an application in Integrated
WebLogic Server. JDeveloper supports deploying to server clusters. You cannot use
JDeveloper to deploy to individual Managed Servers within a cluster.

Figure 36–1 shows the flow diagram that describes the overall deployment process.
Note that preparing the target application server for deployment by installing the ADF
runtime is described in the Oracle Fusion Middleware Administrator's Guide for Oracle
Application Development Framework.

Introduction to Deploying Fusion Web Applications

36-2 Fusion Developer's Guide for Oracle Application Development Framework

Figure 36–1 Deployment Overview Flow Diagram

ADF Java EE applications are based on standardized, modular components and can be
deployed to the following application servers:

■ Oracle WebLogic Server

Oracle WebLogic Server provides a complete set of services for those modules and
handles many details of application behavior automatically, without requiring
programming. For information about which versions of Oracle WebLogic Server
are compatible with JDeveloper, see the certification information website at
http://www.oracle.com/technetwork/developer-tools/jdev/docume
ntation/index.html.

■ IBM WebSphere Application Server

Note: Normally, you use JDeveloper to deploy applications for
development and testing purposes. If you are deploying ADF
applications for production purposes, you can use Enterprise Manager
or scripts to deploy to production-level application servers.

For more information about deployment to later-stage testing or
production environments, see the Oracle Fusion Middleware
Administrator's Guide for Oracle Application Development Framework.

Introduction to Deploying Fusion Web Applications

Deploying Fusion Web Applications 36-3

For information about which versions of IBM WebSphere are compatible, see the
Oracle Fusion Middleware Third-Party Application Server Guide.

Deploying a Fusion web application is slightly different from deploying a standard
Java EE application. JSF applications that contain ADF Faces components have a few
additional deployment requirements:

■ ADF Faces requires Sun’s JSF Reference Implementation 1.2 and MyFaces 1.0.8 (or
later).

You can use JDeveloper to:

■ Run applications in Integrated WebLogic Server

You can run and debug applications using Integrated WebLogic Server and then
deploy to a standalone WebLogic Server or to WebSphere.

Integrated IBM WebSphere Application Server is not supported for this release.

■ Deploy directly to the standalone application server

You can deploy applications directly to the standalone application server by
creating a connection to the server and choosing the name of that server as the
deployment target.

■ Deploy to an archive file

You can deploy applications indirectly by choosing an EAR file as the deployment
target. The archive file can subsequently be installed on a target application server.

The StoreFront module of the Fusion Order Demo application demonstrates the use of
the Fusion web application technology stack to create transaction-based web
applications. You can run the StoreFront module of the Fusion Order Demo
application in JDeveloper using Integrated WebLogic Server. You cannot run the
Fusion Order Demo module in JDeveloper. You must deploy the Fusion Order Demo
application to a SOA-enabled Oracle WebLogic Server. For more information about
the StoreFront module and the Fusion Order Demo application, see Section 2.3,
"Running the Fusion Order Demo Application StoreFront Module."

36.1.1 Developing Applications with Integrated WebLogic Server
If you are developing an application in JDeveloper and you want to run the
application in Integrated WebLogic Server, you do not need to perform the tasks
required for deploying directly to Oracle WebLogic Server or to an archive file.
JDeveloper has a default connection to Integrated WebLogic Server and does not
require any deployment profiles or descriptors. Integrated WebLogic Server has a
preconfigured domain that includes the ADF libraries, as well as the
-Djps.app.credential.overwrite.allowed=true setting, both of these are
required to run ADF applications. You can run an application by choosing Run from
the JDeveloper main menu.

You debug the application using the features described in Chapter 31, "Testing and
Debugging ADF Components."

36.1.2 Developing Applications to Deploy to Standalone Application Servers
Typically, for deployment to standalone application servers, you test and develop
your application by running it in Integrated WebLogic Server. You can then test the
application further by deploying it to testing Oracle WebLogic Server (in development
mode) or to IBM WebSphere Application Server to more closely simulate the
production environment.

Introduction to Deploying Fusion Web Applications

36-4 Fusion Developer's Guide for Oracle Application Development Framework

In general, you use JDeveloper to prepare the application or project for deployment
by:

■ Creating a connection to the target application server

■ Creating deployment profiles (if necessary)

■ Creating deployment descriptors (if necessary, and that are specific to the
application server)

■ Updating application.xml and web.xml to be compatible with the application
(if required)

■ Enabling the application for Real User Experience Insight (RUEI) in web.xml (if
desired)

■ Migrating application-level security policy data to a domain-level security policy
store

■ Configuring the Oracle Single Sign-On (Oracle SSO) service and properties in the
domain jps-config.xml file when you intend the web application to run using
Oracle SSO

You must already have an installed application server. For Oracle WebLogic Server,
you can use the Oracle 11g Installer or the Oracle Fusion Middleware 11g Application
Developer Installer to install one. For other applications servers, follow the
instructions in the applications server documentation to obtain and install the server.

You also must prepare the application server for ADF application deployment. For
more information, see the "Preparing the Standalone Application Server for
Deployment" section of the Oracle Fusion Middleware Administrator's Guide for Oracle
Application Development Framework.

■ Installing the ADF runtime into the application server installation:

– For WebLogic Server

– If you installed Oracle WebLogic Server together with JDeveloper using
the Oracle 11g Installer for JDeveloper, the ADF runtime should already
be installed.

– If the ADF runtime is not installed and you want to use Oracle Enterprise
Manager to manage standalone ADF applications (which are applications
without Oracle SOA Suite or Oracle WebCenter Portal components), use
the Oracle Fusion Middleware 11g Application Developer Installer. This
installer will install the necessary Oracle Enterprise Manager components
into the Oracle WebLogic installation.

– If the ADF runtime is not installed and you do not need to install
Enterprise Manager, use the Oracle 11g Installer for JDeveloper.

– For WebSphere

* Use the Oracle Fusion Middleware 11g Application Developer Installer to
install the ADF runtime and the necessary Oracle Enterprise Manager
components into the WebSphere installation. For information about
installing WebSphere, see the Oracle Fusion Middleware Third-Party
Application Server Guide.

■ Extending Oracle WebLogic Server domains or WebSphere Cells to be
ADF-compatible using the ADF runtime

Running an ADF Application in Integrated WebLogic Server

Deploying Fusion Web Applications 36-5

■ For WebLogic, setting the Oracle WebLogic Server credential store overwrite
setting as required (-Djps.app.credential.overwrite.allowed=true
setting)

■ Creating a global JDBC data source for applications that require a connection to a
data source

After the application and application server have been prepared, you can:

■ Use JDeveloper to:

– Directly deploy to the application server using the deployment profile and the
application server connection.

– Deploy to an EAR file using the deployment profile. For ADF applications,
WAR and MAR files can be deployed only as part of an EAR file.

■ Use Enterprise Manager, scripts, or the application’s administration tool to deploy
the EAR file created in JDeveloper. For more information, see the Oracle Fusion
Middleware Administrator's Guide for Oracle Application Development Framework.

36.2 Running an ADF Application in Integrated WebLogic Server
JDeveloper is installed with Integrated WebLogic Server which you can use to test and
develop your application. For most development purposes, Integrated WebLogic
Server will suffice. When your application is ready to be tested, you can select the run
target and then choose the Run command from the main menu.

When you run the application target, JDeveloper detects the type of Java EE module to
deploy based on artifacts in the projects and workspace. JDeveloper then creates an
in-memory deployment profile for deploying the application to Integrated WebLogic
Server. JDeveloper copies project and application workspace files to an "exploded
EAR" directory structure. This file structure closely resembles the EAR file structure
that you would have if you were to deploy the application to an EAR file. JDeveloper
then follows the standard deployment procedures to register and deploy the
"exploded EAR" files into Integrated WebLogic Server. The "exploded EAR" strategy
reduces the performance overhead of packaging and unpackaging an actual EAR file.

In summary, when you select the run target and run the application in Integrated
WebLogic Server, JDeveloper:

■ Detects the type of Java EE module to deploy based on the artifacts in the project
and application

■ Creates a deployment profile in memory

■ Copies project and application files into a working directory with a file structure
that would simulate the "exploded EAR" file of the application.

■ Performs the deployment tasks to register and deploy the simulated EAR into
Integrated WebLogic Server

■ Automatically migrates identities, credentials, and policies

Note: The first time you run an application in Integrated WebLogic
Server, the Configure Default Domain dialog appears for you to
define an administrative password for the new domain.

Running an ADF Application in Integrated WebLogic Server

36-6 Fusion Developer's Guide for Oracle Application Development Framework

Later on, if you plan to deploy the application to a standalone WebLogic Server
instance, you will need to migrate this security information. For more information,
see Section 36.3.4, "How to Deploy Applications with ADF Security Enabled."

The application will run in the base domain in Integrated WebLogic Server. This base
domain has the same configuration as a base domain in a standalone WebLogic Server
instance. In other words, this base domain will be the same as if you had used the
Oracle Fusion Middleware Configuration Wizard to create a base domain with the
default options in a standalone WebLogic Server instance.

JDeveloper will extend this base domain with the necessary domain extension
templates, based on the JDeveloper technology extensions. For example, if you have
installed JDeveloper Studio, JDeveloper will automatically configure the Integrated
WebLogic Server environment with the ADF runtime template (JRF Fusion
Middleware runtime domain extension template).

You can explicitly create a default domain for Integrated WebLogic Server. You can
use the default domain to run and test your applications. Open the Application Server
Navigator, right-click IntegratedWebLogicServer and choose Create Default
Domain.

36.2.1 How to Run an Application in Integrated WebLogic Server
You can test an application by running it in Integrated WebLogic Server. You can also
set breakpoints and then run the application within the ADF Declarative Debugger.

To run an application in Integrated WebLogic Server:
1. In the Application Navigator, select the project, unbounded task flow, JSF page, or

file as the run target.

2. Right-click the run target and choose Run or Debug.

The Configure Default Domain dialog displays the first time you run the
application and start a new domain in Integrated WebLogic Server. Use the dialog
to define an administrator password for the new domain. Passwords you enter can
be eight characters or more and must have a numeric character.

36.2.2 How to Run an Application with Metadata in Integrated WebLogic Server
When an application is running in Integrated WebLogic Server, the Metadata Archive
(MAR) profile itself will not be deployed to a repository, but a simulated MDS
repository will be configured for the application that reflects the metadata information
contained in the MAR. This metadata information is simulated, and the application
runs based on this location in source control.

Any customizations or documents created by the application that are not configured to
be stored in other MDS repositories are written to this simulated MDS repository
directory. For example, if you customize an object, the customization is written to the
simulated MDS repository. If you execute code that creates a new metadata object,
then this new metadata object is also written to the same location in the simulated
MDS repository. You can keep the default location for this directory (ORACLE_
HOME\jdeveloper\systemXX.XX\o.mds.dt\adrs\Application\AutoGenera

Note: JDeveloper ignores the deployment profiles that were created
for the application when you run the application in Integrated
WebLogic Server.

Running an ADF Application in Integrated WebLogic Server

Deploying Fusion Web Applications 36-7

tedMar\mds_adrs_writedir), or you can set it to a different directory. You also
have the option to preserve this directory across different application runs, or to delete
this directory before each application run.

If your workspace has different working sets, only the metadata from the projects
defined in the working set and their dependent projects will be included in the MAR.
You can view and change a project’s dependencies by right-clicking the project in the
Application Navigator, choosing Project Properties, and then selecting Dependencies.
For instance, an application may have several projects but workingsetA is defined to
be viewcontroller2 and viewcontroller5; and viewcontroller5 has a
dependency on modelproject1. When you run or debug workingsetA, only the
metadata for viewcontroller2, viewcontroller5, and modelproject1 will be
included in the MAR for deployment.

Before you begin:
There should already be a MAR profile, either generated automatically by JDeveloper,
or manually generated by a user.

To deploy the MAR profile to Integrated WebLogic Server:
1. In the Application Navigator, right-click the application and choose Application

Properties.

2. In the Application Properties dialog, expand Run and choose MDS.

3. In the Run MDS page:

■ Select the MAR profile from the MAR Profile dropdown list

■ Enter a directory path in Override Location if you want to customize the
location of the simulated MDS repository.

■ Select the Directory Content option. You can chose to preserve the
customizations across application runs or delete customizations before each
run.

Select the MAR profile from the MAR Profile dropdown list. Figure 36–2 shows
Demometadata1 selected as the MAR profile.

Preparing the Application

36-8 Fusion Developer's Guide for Oracle Application Development Framework

Figure 36–2 Setting the Run MDS options

36.3 Preparing the Application
Before you deploy an ADF application to a standalone application server, you must
perform prerequisite tasks within JDeveloper to prepare the application for
deployment.

Figure 36–3 shows the process flow to prepare the application for deployment. After
the application has been prepared and the application server has been prepared as
described in the Oracle Fusion Middleware Administrator's Guide for Oracle Application
Development Framework, you can proceed to deploy the application as described in
Section 36.4, "Deploying the Application."

Preparing the Application

Deploying Fusion Web Applications 36-9

Figure 36–3 Preparing the Application for Deployment Flow Diagram

36.3.1 How to Create a Connection to the Target Application Server
You can deploy applications to the application server via JDeveloper application
server connections.

If your application involves customization using MDS, you should register your MDS
repository with the application server:

■ WebLogic: register the MDS into the WebLogic Domain

For more information about registering MDS in WebSphere, see the Oracle Fusion
Middleware Administrator's Guide.

■ WebSphere: register the MDS into the WebSphere Cell

For more information about registering MDS in WebSphere, see the Oracle Fusion
Middleware Third-Party Application Server Guide.

To create a connection to an application server:
1. Launch the Application Server Connection wizard.

You can:

■ In the Application Server Navigator, right-click Application Servers and
choose New Application Server Connection.

■ In the New Gallery, expand General, select Connections and then
Application Server Connection, and click OK.

Preparing the Application

36-10 Fusion Developer's Guide for Oracle Application Development Framework

■ In the Resource Palette, choose New > New Connections > Application
Server.

2. In the Create AppServer Connection dialog Usage page, select Standalone Server.

3. In the Name and Type page, enter a connection name.

4. In the Connection Type dropdown list, choose:

■ WebLogic 10.3 to create a connection to Oracle WebLogic Server

■ WebSphere Server 7.x to create a connection to IBM WebSphere Server

5. Click Next.

6. On the Authentication page, enter a user name and password for the
administrative user authorized to access the application server.

7. Click Next.

8. On the Configuration page, enter the information for your server:

For WebLogic:

■ The Oracle WebLogic host name is the name of the WebLogic Server instance
containing the TCP/IP DNS where your application (.jar,.war,.ear) will
be deployed.

■ In the Port field, enter a port number for the Oracle WebLogic Server instance
on which your application (.jar,.war,.ear) will be deployed.

If you don’t specify a port, the port number defaults to 7001.

■ In the SSL Port field, enter an SSL port number for the Oracle WebLogic
Server instance on which your application (.jar,.war,.ear) will be
deployed.

Specifying an SSL port is optional. It is required only if you want to ensure a
secure connection for deployment.

If you don’t specify an SSL port, the port number defaults to 7002.

■ Select Always Use SSL to connect to the Oracle WebLogic Server instance
using the SSL port.

■ Optionally enter a WebLogic Domain only if Oracle WebLogic Server is
configured to distinguish nonadministrative server nodes by name.

For WebSphere:

■ In the Host Name field, enter the name of the WebSphere server containing
the TCP/IP DNS where your Java EE applications (.jar, .war, .ear) are
deployed. If no name is entered, the name defaults to localhost.

■ In the SOAP Connector Port field, enter the port number. The host name and
port are used to connect to the server for deployment. The default SOAP
connector port is 8879.

■ In the Server Name field, enter the name assigned to the target application
server for this connection.

■ In the Target Node field, enter the name of the target node for this connection.
A node is a grouping of Managed Servers. The default is machineNode01,
where machine is the name of the machine the node resides on

■ In the Target Cell field, enter the name of the target cell for this connection. A
cell is a group of processes that host runtime components. The default is

Preparing the Application

Deploying Fusion Web Applications 36-11

machineNode01Cell, where machine is the name of the machine the node
resides on.

■ In the Wsadmin script location field, enter, or browse to, the location of the
wsadmin script file to be used to define the system login configuration for
your IBM WebSphere application server connection. Note that you should not
use the wsadmin files from the ORACLE_HOME/oracle_
common/common/bin directory, which are not the correct version. The
default location is websphere-home/bin/wsadmin.sh for Unix/Linux and
websphere-home/bin/wsadmin.bat for Windows.

9. Click Next.

10. If you have chosen WebSphere, the JMX page appears. On the JMX page, enter the
JMX information (optional):

■ Select Enable JMX for this connection to enable JMX.

■ In the RMI Port field, enter the port number of WebSphere's RMI connector
port. The default is 2809.

■ In the WebSphere Runtime Jars Location field, enter or browse to the location
of the WebSphere runtime JARs.

■ In the WebSphere Properties Location (for secure MBEAN access) field, enter
or browse to the location of the file that contains the properties for the security
configuration and the mbeans that are enabled. This field is optional.

11. Click Next.

12. If the SSl Signer Exchange Prompt dialog appears, click Y.

13. On the Test page, click Test Connection to test the connection.

JDeveloper performs several types of connections tests. The JSR-88 test must pass
for the application to be deployable. If the test fails, return to the previous pages of
the wizard to fix the configuration.

14. Click Finish.

36.3.2 How to Create Deployment Profiles
A deployment profile defines the way the application is packaged into the archive that
will be deployed to the target environment. The deployment profile:

■ Specifies the format and contents of the archive file that will be created

■ Lists the source files, deployment descriptors, and other auxiliary files that will be
packaged

■ Describes the type and name of the archive file to be created

■ Highlights dependency information, platform-specific instructions, and other
information

You need a WAR deployment profile for each web view-controller project that you
want to deploy in your application. If you want to package seeded customizations or
place base metadata in the MDS repository, you need an application-level metadata
archive (MAR) deployment profile as well. For more information about seeded

Note: JMX configuration is optional and is not required for
connecting to the WebSphere Application Server.

Preparing the Application

36-12 Fusion Developer's Guide for Oracle Application Development Framework

customizations, see Chapter 34, "Customizing Applications with MDS." If the
application has customization classes, you need a JAR file for those classes and you
need to add that JAR when you create the EAR file. Finally, you need an
application-level EAR deployment profile and you must select the projects you want
to include from a list, such as WAR and MAR profiles and customization classes JAR
files. When the application is deployed, the EAR file will include all the projects that
were selected in the deployment profile.

For ADF applications, you can deploy the application only as an EAR file. The WAR
and MAR files that are part of the application should be included in the EAR file when
you create the deployment profile.

36.3.2.1 Adding Customization Classes into a JAR
If your application has customization classes, create a JAR that contains only these
customization classes. When you create your EAR, you can add the JAR to the EAR
assembly. And when you create WAR profiles for your web projects, you must make
sure they don’t include the customization classes JAR.

Before you begin:
Make sure that your project has customization classes. You do not need to perform
this procedure if the application does not have customization classes. For more
information about customization classes, see Section 34.2.1, "How to Create
Customization Classes."

To add customization classes into a JAR:
1. In the Application Navigator, right-click the data model project that contains the

customization classes you want to create a JAR for, and choose New.

2. In the New Gallery, expand General, select Deployment Profiles and then JAR
File, and click OK.

Alternatively, if you want to create a shared library, select Shared Library JAR
File from the list of profile types, and click OK.

3. In the Create Deployment Profile -- JAR File dialog, enter a name for the project
deployment profile (for example, CCArchive) and click OK.

4. In the Edit JAR Deployment Profile Properties dialog, select JAR Options.

Note: If you create your project or application using the Fusion Web
Application (ADF) template, JDeveloper automatically creates default
WAR, EAR, MAR, and JAR deployment profiles. Typically, you
would not need to edit or create deployment profiles manually.

Note: If your ADF application has business services that you want to
deploy, you will need to create a Business Component Service
Interface deployment profile and deploy it. For more information
about business services, see Section 11.2.20, "How to Deploy Web
Services to Oracle WebLogic Server."

Note: If you don’t see Deployment Profiles in the Categories tree,
click the All Technologies tab.

Preparing the Application

Deploying Fusion Web Applications 36-13

5. Enter the location for the JAR file.

6. Expand Files Groups > Project Output > Filters.

7. In the Files tab, select the customization classes you want to add to the JAR file. If
you are using a customization.properties file, it needs to be in the same
class loader as the JAR file. You can select the customization.properties file
to package it along with the customization classes in the same JAR.

8. Click OK to exit the Edit JAR Deployment Profile Properties dialog.

9. Click OK again to exit the Project Properties dialog.

10. In the Application Navigator, right-click the project containing the JAR
deployment profile, and choose Deploy > deployment profile > to JAR file.

36.3.2.2 Creating a WAR Deployment Profile
You will need to create a WAR deployment profile for each web-based project you
want to package into the application. Typically, the WAR profile will include the
dependent model projects it requires.

Before you begin:
Create web-based projects. If you used the Fusion Web Application (ADF) template,
you should already have a default WAR deployment profile.

To create WAR deployment profiles for an application:
1. In the Application Navigator, right-click the web project that you want to deploy

and choose New.

You will create a WAR profile for each web project.

2. In the New Gallery, expand General, select Deployment Profiles and then WAR
File, and click OK.

If you don’t see Deployment Profiles in the Categories tree, click the All
Technologies tab.

3. In the Create Deployment Profile -- WAR File dialog, enter a name for the project
deployment profile and click OK.

4. In the Edit WAR Deployment Profile Properties dialog, choose items in the left
pane to open dialog pages in the right pane. Configure the profile by setting
property values in the pages of the dialog.

■ If you have customization classes in your application, they must be loaded
from the EAR-level application class loader and not from the WAR. You will
later add these customization classes to the EAR.

By default, customization classes are added to the model project's WAR class
path. So for each WAR, you must exclude the customization classes.

If you created your customization classes in an extension project of the
application, be sure to deselect any customization class archive on the Library
Dependencies page of the WAR deployment profile for each view controller
project.

Note: If this is the first time you deploy to a JAR from this
deployment profile, you choose Deploy > deployment profile and
select Deploy to JAR in the wizard.

Preparing the Application

36-14 Fusion Developer's Guide for Oracle Application Development Framework

If you created your customization classes in the model project of the
application, deselect any customization classes on the File Groups >
WEB-INF/classes > Filters page of the WAR deployment profile for each view
controller project. If you are using a customization.properties file, it
should also be deselected.

■ You might also want to change the Java EE web context root setting (choose
General in the left pane).

By default, when Use Project’s Java EE Web Context Root is selected, the
associated value is set to the project name, for example,
Application1-Project1-context-root. You need to change this if you
want users to use a different name to access the application.

If you are using custom JAAS LoginModule for authentication with JAZN, the
context root name also defines the application name that is used to look up the
JAAS LoginModule.

5. Click OK to exit the Deployment Profile Properties dialog.

6. Click OK again to exit the Project Properties dialog.

7. Repeat Steps 1 through 7 for all web projects that you want to deploy.

36.3.2.3 Creating a MAR Deployment Profile
If you have seeded customizations or base metadata that you want to place in the MDS
repository, you need to create a MAR deployment profile.

The namespace configuration under <mds-config> for MAR content in the
adf-config.xml file is generated based on your selections in the MAR Deployment
Profile Properties dialog.

Although uncommon, an enterprise application (packaged in an EAR) can contain
multiple web application projects (packaged in multiple WARs), but the metadata for
all these web applications will be packaged into a single metadata archive (MAR). The
metadata contributed by each of these individual web applications can be global
(available for all the web applications) or local to that particular web application.

To avoid name conflicts for metadata with global scope, make sure that all metadata
objects and elements have unique names across all the web application projects that
forms part of the enterprise application.

To avoid name conflicts and to ensure that the metadata for a particular web
application remains local to that application, you can define a web-app-root for that
web application project.

The web-app-root is an element in the adf-settings.xml file for a web
application project. The adf-settings.xml file should be kept in the META-INF
directory under the public_html directory for the web project. Example 36–1 shows
the contents of a sample adf-settings.xml file.

Example 36–1 web-app-root Element in the adf-settings.xml File

<?xml version="1.0" encoding="UTF-8" ?>
 <adf-settings xmlns="http://xmlns.oracle.com/adf/settings"
 xmlns:wap="http://xmlns.oracle.com/adf/share/http/config">
 <wap:adf-web-config xmlns="http://xmlns.oracle.com/adf/share/http/config">
 <web-app-root rootName="order"/>
 </wap:adf-web-config>
</adf-settings>

Preparing the Application

Deploying Fusion Web Applications 36-15

In this example, the adf-settings.xml file has a web-app-root element that
defines the rootName as order.

If your enterprise application has only one web application project then there is no
need to define a web-app-root element. If your enterprise application has multiple
web application projects, then you should supply a web-app-root for all the web
applications except one, without which the deployment would fail. For example, if
you have web-application1, web-application2, and web-application3, two
of these web application projects must define a web-app-root to preclude any name
conflicts.

JDeveloper creates an auto-generated MAR when the Enable User Customizations
and Across Sessions using MDS options are selected in the ADF View page of the
Project Properties dialog or when you explicitly specify the deployment target
directory in the adf-config.xml file.

Before you begin:
Create an MDS repository for your customization requirements to deploy metadata
using the MAR deployment profile. If you used the Fusion Web Application (ADF)
template, you should already have a default MAR deployment profile.

To create a MAR deployment profile:
1. In the Application Navigator, right-click the application and choose New.

You will create a MAR profile if you want to include customizations.

2. In the New Gallery, expand General, select Deployment Profiles and then MAR
File, and click OK.

If you don’t see Deployment Profiles in the Categories tree, click the All
Technologies tab.

3. In the Create Deployment Profile -- MAR File dialog, enter a name for the MAR
deployment profile and click OK.

4. In the Edit MAR Deployment Profile Properties dialog, choose items in the left
pane to open dialog pages in the right pane.

Figure 36–4 shows a sample User Metadata directory tree.

Preparing the Application

36-16 Fusion Developer's Guide for Oracle Application Development Framework

Figure 36–4 Selecting Items for the MAR Deployment Profiles

Note the following important points:

■ To include all customizations, you need only create a file group with the
desired directories.

■ ADF Model and ADF view directories are added by default. No further action
is required to package the ADF Model and ADF view customizations into the
MAR. ADF view content is added to HTML Root dir, while ADF Model and
Business Components content is added to User Metadata.

■ To include the base metadata in the MDS repository, you need to explicitly
select these directories in the dialog.

When you select the base document to be included in the MAR, you also select
specific packages. When you select one package, all the documents (including
subpackages) under that package will be used. When you select a package,
you cannot deselect individual items under that package.

■ To include files from other than ADF Model and ADF view, users should
create a new file group under User Metadata with the desired directories and
explicitly select the required content in the Directories page.

■ If a dependent ADF library JAR for the project contains seeded
customizations, they will automatically be added to the MAR during MAR
packaging. They will not appear in the MAR profile.

■ If ADF Library customizations were created in the context of the consuming
project, those customizations would appear in the MAR profile dialog by
default.

5. Click OK to exit the Deployment Profile Properties dialog.

6. Click OK again to exit the Application Properties dialog.

Preparing the Application

Deploying Fusion Web Applications 36-17

36.3.2.4 Creating an Application-Level EAR Deployment Profile
The EAR file contains all the necessary application artifacts for the application to run
in the application server. For more information about the EAR file, see Section 36.4.3,
"What You May Need to Know About EAR Files and Packaging."

Before you begin:
Add classes into a JAR file, as described in Section 36.3.2.1, "Adding Customization
Classes into a JAR." Create the WAR deployment profiles, as described in
Section 36.3.2.2, "Creating a WAR Deployment Profile."

If you used the Fusion Web Application (ADF) template, you should already have a
default EAR deployment profile.

To create an EAR deployment profile for an application:
1. In the Application Navigator, right-click the application and choose New.

You will create an EAR profile for the application.

2. In the New Gallery, expand General, select Deployment Profiles and then EAR
File, and click OK.

If you don’t see Deployment Profiles in the Categories tree, click the All
Technologies tab.

3. In the Create Deployment Profile -- EAR File dialog, enter a name for the
application deployment profile and click OK.

4. In the Edit EAR Deployment Profile Properties dialog, choose items in the left
pane to open dialog pages in the right pane. Configure the profile by setting
property values in the pages of the dialog.

Be sure that you:

■ Select Application Assembly and then in the Java EE Modules list, select all
the project profiles that you want to include in the deployment, including any
WAR or MAR profiles.

■ Select Platform, and select the application server you are deploying to, and
then select the target application connection from the Target Connection
dropdown list.

5. If you have customization classes in your application, configure these classes so
that they load from the EAR-level application class loader.

a. In the Edit EAR Deployment Profile Properties dialog, select Application
Assembly.

b. Select the JAR deployment profile that contains the customization classes, and
enter lib in the Path in EAR field at the bottom of the dialog.

Note: If you are using custom JAAS LoginModule for authentication
with JAZN, the context root name also defines the application name
that is used to look up the JAAS LoginModule.

Note: You should have created this JAR as described in
Section 36.3.2.1, "Adding Customization Classes into a JAR."

Preparing the Application

36-18 Fusion Developer's Guide for Oracle Application Development Framework

The JAR file containing the customization classes is added to the EAR file’s lib
directory.

6. Click OK to exit the Deployment Profile Properties dialog.

7. Click OK again to exit the Application Properties dialog.

36.3.2.5 Delivering Customization Classes as a Shared Library
As an alternative to adding your customization classes to the EAR, as described in
Section 36.3.2.4, "Creating an Application-Level EAR Deployment Profile," you can
also include the customization classes in the consuming application as a shared library.

Before you begin:
With the application containing the customization classes open in JDeveloper in the
Default role, use the procedure described in Section 36.3.2.1, "Adding Customization
Classes into a JAR," making sure that you select Shared Library JAR File as the type of
archive to create.

To create and use a shared library for your customization classes:
1. In the Application Navigator, right-click the customization classes project, and

choose Deploy > deployment-profile.

2. In the Deploy wizard, select Deploy to a Weblogic Application Server and click
Next.

3. Select the appropriate application server, and click Finish.

This makes the shared library available on the application server. You must now
add a reference to the shared library from the consuming application.

4. Open the application you want to customize in JDeveloper in the Default role.

Note: If you have customization classes in your application, you
must also make sure they are not loaded from the WAR. By default,
customization classes that are added to the model project's Libraries &
Classpath are packaged to the WAR class path.

To make sure customization classes from an extension project are not
duplicated in the WAR, be sure to deselect any customization class
archive on the Library Dependencies page for the WAR.

If you created your customization classes in the model project of the
consuming application, deselect any customization classes on the File
Groups > WEB-INF/classes > Filters page for the WAR.

Note: To verify that your customization classes are put correctly in
the EAR class path, you can deploy the EAR profile to file system.
Then you can examine the EAR to make sure that the customization
class JAR is available in the EAR class path (the EAR/lib directory)
and not available in the WAR class path (the WEB-INF/lib and
WEB-INF/classes directories).

Note: This procedure describes how to create and use a shared
library if you are deploying to Oracle Weblogic Server.

Preparing the Application

Deploying Fusion Web Applications 36-19

5. In the Application Resources panel of the Application Navigator, double-click the
weblogic-application.xml file to open it.

6. In the overview editor, click the Libraries tab.

7. In the Shared Library References section, click the add icon.

8. In the Library Name field of the newly created row in the Shared Library
References table, enter the name of the customization classes shared library you
deployed, and save your changes.

36.3.2.6 Viewing and Changing Deployment Profile Properties
After you have created a deployment profile, you can view and change its properties.

To view, edit, or delete a project’s deployment profile:
1. In the Application Navigator, right-click the project and choose Project Properties.

2. In the Project Properties dialog, click Deployment.

The Deployment Profiles list displays all profiles currently defined for the project.

3. In the list, select a deployment profile.

4. To edit or delete a deployment profile, click Edit or Delete.

36.3.3 How to Create and Edit Deployment Descriptors
Deployment descriptors are server configuration files that define the configuration of an
application for deployment and that are deployed with the Java EE application as
needed. The deployment descriptors that a project requires depend on the
technologies the project uses and on the type of the target application server.
Deployment descriptors are XML files that can be created and edited as source files,
but for most descriptor types, JDeveloper provides dialogs or an overview editor that
you can use to view and set properties. If you cannot edit these files declaratively,
JDeveloper opens the XML file in the source editor for you to edit its contents.

In addition to the standard Java EE deployment descriptors (for example,
application.xml and web.xml), you can also have deployment descriptors that
are specific to your target application server. For example, if you are deploying to
Oracle WebLogic Server, you can also have weblogic.xml,
weblogic-application.xml, and weblogic-ejb-jar.xml.

For WebLogic Server, make sure that the application EAR file includes a
weblogic-application.xml file that contains a reference to
adf.oracle.domain, and that it includes an
ADFApplicationLifecycleListener to clean up application resources between
deployment and undeployment actions. Example 36–2 shows a sample
weblogic-application.xml file.

Example 36–2 Sample weblogic-application.xml

<weblogic-application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.bea.com/ns/weblogic/weblogic-application.xsd"
 xmlns="http://www.bea.com/ns/weblogic/weblogic-application">
 <listener>
 <listener-class>oracle.adf.share.weblogic.listeners.
 ADFApplicationLifecycleListener</listener-class>
 </listener>
 <listener>
 <listener-class>oracle.mds.lcm.weblogic.WLLifecycleListener</listener-class>

Preparing the Application

36-20 Fusion Developer's Guide for Oracle Application Development Framework

 </listener>
 <library-ref>
 <library-name>adf.oracle.domain</library-name>
 </library-ref>
</weblogic-application>

If you are deploying web services, you may need to modify your
weblogic-application.xml and web.xml files as described in Section 11.2.20,
"How to Deploy Web Services to Oracle WebLogic Server."

If you want to enable the application for Real User Experience Insight (RUEI)
monitoring, you must add a parameter to the web.xml file, as described in
Section 36.3.3.5, "Enabling the Application for Real User Experience Insight and End
User Monitoring."

During deployment to WebLogic, the application’s security properties are written to
the weblogic-application.xml file to be deployed with the application in the
EAR file. For more information, see Section 30.8.2, "What Happens When You
Configure Security Deployment Options."

Because the application server runs on Java EE 5, you may need to modify the
application.xml and web.xml files to be compatible with the application server.

For IBM WebSphere, the deployment descriptors are created at runtime and cannot be
edited. Some of the relevant descriptors are shown in Table 36–1.

36.3.3.1 Creating Deployment Descriptors
JDeveloper automatically creates many of the required deployment descriptors for
you. If they are not present, or if you need to create additional descriptors, you can use
JDeveloper to create them.

Before you begin:
Check to see whether JDeveloper has already generated deployment descriptors.

To create a deployment descriptor:
1. In the Application Navigator, right-click the project for which you want to create a

descriptor and choose New.

Table 36–1 IBM WebSphere Deployment Descriptors

WebSphere Action

ibm-application-bnd.xml This references the security role just
mapped in application.xml and maps it
to the well-known name
"AllAuthenticatedUsers". Similar to
weblogic.xml for WebLogic Server. Maps
the "valid-users" JEE security role to the
well-known name "Users".

application.xml A standard Java EE deployment description,
but it is also used to populate a security
mapping for the "valid-users" role (which is
defined in web.xml when using ADF
Security).

<EAR_ROOT>/META-INF/manifest.mf References application-shared libraries such
as adf.oracle.domain.

<EAR_ROOT>/META-INF/deployment.xml References WAR-shared libraries such as
adf.oracle.domain.webapp.

Preparing the Application

Deploying Fusion Web Applications 36-21

2. In the New Gallery, expand General, select Deployment Descriptors and then a
descriptor type, and click OK.

If you can’t find the item you want, make sure that you chose the correct project,
and then choose the All Technologies tab or use the Search field to find the
descriptor. If the item is not enabled, check to make sure that the project does not
already have a descriptor of that type. A project is allowed only one instance of a
descriptor.

JDeveloper starts the Create Deployment Descriptor wizard and then opens the
file in the overview or source editor, depending on the type of deployment
descriptor you choose.

36.3.3.2 Viewing or Modifying Deployment Descriptor Properties
After you have created a deployment descriptor, you can change its properties by
using JDeveloper dialogs or by editing the file in the source editor. The deployment
descriptor is an XML file (for example, application.xml) typically located under
the Application Sources node.

To view or change deployment descriptor properties:
1. In the Application Navigator or in the Application Resources panel, double-click

the deployment descriptor.

2. In the overview editor, select either the Overview tab or the Source tab, and
configure the descriptor by setting property values.

If the overview editor is not available, JDeveloper opens the file in the source
editor.

36.3.3.3 Configuring the application.xml File for Application Server Compatibility
You may need to configure your application.xml file to be compliant with Java EE
5.

Note: For EAR files, do not create more than one deployment
descriptor file of the same type per application or workspace. These
files can be assigned to projects, but have application workspace
scope. If multiple projects in an application have the same deployment
descriptor, the one belonging to the launched project will supersede
the others. This restriction applies to application.xml,
weblogic-jdbc.xml, -data.xml, and weblogic.xml.

The best place to create an application-level descriptor is in the
Descriptors node of the Application Resources panel in the
Application Navigator. This ensures that the application is created
with the correct descriptors.

Application-level descriptors created in the project will be ignored by
the runtime. Only the application resources descriptors or descriptors
generated at the EAR level will be used by the runtime.

Note: Typically, your project has an application.xml file that is
compatible and you would not need to perform this procedure.

Preparing the Application

36-22 Fusion Developer's Guide for Oracle Application Development Framework

To configure the application.xml file:
1. In the Application Navigator, right-click the application and choose New.

2. In the New Gallery, expand General, select Deployment Descriptors and then
Java EE Deployment Descriptor, and click OK.

3. In the Select Descriptor page of the Create Java EE Deployment Descriptor dialog,
select application.xml and click Next.

4. In the Select Version page, select 5.0 and click Next.

5. In the Summary page, click Finish.

6. Edit the application.xml file with the appropriate values.

36.3.3.4 Configuring the web.xml File for Application Server Compatibility
You may need to configure your web.xml file to be compliant with Java EE 5 (which
corresponds to servlet 2.5 and JSP 1.2). For more information, see Section A.13,
"web.xml."

To configure the web.xml file:
1. In the Application Navigator, right-click the project and choose New.

2. In the New Gallery, expand General, select Deployment Descriptors and then
Java EE Deployment Descriptor Wizard, and click OK.

3. In the Select Descriptor page of the Create Java EE Deployment Descriptor dialog,
select web.xml and click Next.

4. In the Select Version page, select 2.5 and click Next.

5. In the Summary page, click Finish.

36.3.3.5 Enabling the Application for Real User Experience Insight and End User
Monitoring
Real User Experience Insight (RUEI) is a web-based utility to report on real-user traffic
requested by, and generated from, your network. It measures the response times of
pages and transactions at the most critical points in the network infrastructure. Session
diagnostics allow you to perform root-cause analysis.

RUEI enables you to view server and network times based on the real-user experience,
to monitor your Key Performance Indicators (KPIs) and Service Level Agreements
(SLAs), and to trigger alert notifications on incidents that violate their defined targets.
You can implement checks on page content, site errors, and the functional
requirements of transactions. Using this information, you can verify your business and
technical operations. You can also set custom alerts on the availability, throughput,
and traffic of all items identified in RUEI.

Note: Typically, your project has a web.xml file that is compatible
and you would not need to perform this procedure. JDeveloper
creates a starter web.xml file when you create a project.

If the application uses ADF Security and will be deployed to
WebSphere, you need to manual edit the web.xml file. For more
information, see Section 36.3.4.3.3, "Editing the web.xml File to Protect
the Application Root for WebSphere."

Preparing the Application

Deploying Fusion Web Applications 36-23

For more information about RUEI, see the Oracle Real User Experience Insight
documentation at
http://www.oracle.com/technetwork/documentation/realuserei-09145
5.html

To enable RUEI:
1. In the Applications window, expand WEB-INF and double-click web.xml.

2. In the overview editor, add the context-param tag to the web.xml file, as
shown in Example 36–3.

Example 36–3 Enabling RUEI Monitoring for an Application in web.xml

<context-param>
 <description>This parameter notifies ADF Faces that the
 ExecutionContextProvider service provider is enabled.
 When enabled, this will start monitoring and aggregating
 user activity information for the client initiated
 requests. By default this param is not set or is false.
 </description>
 <param-name>
 oracle.adf.view.faces.context.ENABLE_ADF_EXECUTION_CONTEXT_PROVIDER
 </param-name>
 <param-value>true</param-value>
</context-param>

If there is an EndUserMonitoringService service provider available, you can use it
to log performance metrics and data by registering it in your application. The service
provider should have been implemented by extending the
EndUserMonitoringService class. For more information about this class, see the
Javadoc.

Note that the context parameter oracle.adf.view.faces.context.ENABLE_
ADF_EXECUTION_CONTEXT_PROVIDER needs to be set when an
EndUserMonitoringServive provider is used within an ADF application.

To enable End User Monitoring in an application:
1. Verify that an EndUserMonitoringService service provider has been

implemented.

2. Navigate to the application’s <application_
home>/src/META-INF/services folder using your operating system tools.

If the services folder does not exist, create one.

3. In the <application_home>/src/META-INF/services folder, create a file
named
oracle.adf.view.rich.monitoring.EndUserMonitoringService

where EndUserMonitoringService is the name of the service interface.

4. Open the file in an editor and add this entry:
<package>.MyEndUserMonitoringService

where package is the Java package name where the service provider resides and
MyEndUserMonitoringService is the name of the
EndUserMonitoringService service provider.

Preparing the Application

36-24 Fusion Developer's Guide for Oracle Application Development Framework

36.3.4 How to Deploy Applications with ADF Security Enabled
If you are developing an application in JDeveloper using Integrated WebLogic Server,
application security deployment properties are configured by default, which means
that the application and security credentials and policies will be overwritten each time
you redeploy for development purposes. You can change the default behavior in the
Application Properties dialog, as described in Section 30.8.1, "How to Configure,
Deploy, and Run a Secure Application in JDeveloper."

36.3.4.1 Applications That Will Run Using Oracle Single Sign-On (SSO)
Before you can deploy and run the web application with ADF Security enabled on the
application server, the administrator of the target server must configure the
domain-level jps-config.xml file for the Oracle Access Manager (OAM) security
provider. To complete this configuration task, you use Oracle WebLogic Scripting Tool
(WLST) provided with the JDeveloper install. You can also use this command for
configuring WebSphere for OAM. For details about running WLST (with command
addOAMSSOProvider(loginuri, logouturi, autologinuri)), see the
procedure for configuring Oracle WebLogic Server for a web application using ADF
Security, OAM SSO, and OPSS SSO in the Oracle Fusion Middleware Security Guide.

Running the addOAMSSOProvider() command ensures that the ADF Security
framework defers to the OAM service provider to clear the SSO cookie token. OAM
uses this token to save the identity of authenticated users and, unless it is cleared
during logout, the user will be unable to log out.

After the system administrator runs the script on the target server, the domain
jps-config.xml file will contain the following security provider definition that is
specific for ADF Security:

<propertySet name="props.auth.uri">
 <property name="login.url.FORM" value="/${app.context}/adfAuthentication"/>
 <property name="logout.url" value=""/>
</propertySet>

Additionally, the authentication type required by SSO is CLIENT-CERT. The web.xml
authentication configuration for the deployed application must specify the
<auth-method> element as one of the following CLIENT-CERT types.

WebLogic supports two types of authentication methods:

■ For FORM-type authentication method, specify the elements like this:

<login-config>
 <auth-method>CLIENT-CERT,FORM</auth-method>
 <realm-name>myrealm</realm-name>
 <form-login-config>
 <form-login-page>/login.html</form-login-page>
 <form-error-page>/error.html</form-error-page>
 </form-login-config>
</login-config>

■ For BASIC-type authentication method, specify the elements like this:

<login-config>
 <auth-method>CLIENT-CERT,BASIC</auth-method>
 <realm-name>myrealm</realm-name>
</login-config>

WebSphere supports a single authentication method. Specify the elements like this:

<login-config>

Preparing the Application

Deploying Fusion Web Applications 36-25

 <auth-method>CLIENT-CERT</auth-method>
 <realm-name>myrealm</realm-name>
 <form-login-config>
 <form-login-page>/login.html</form-login-page>
 <form-error-page>/error.html</form-error-page>
 </form-login-config>
</login-config>

You can configure the web.xml file either before or after deploying the web
application. For further details about setting up the authentication method for Single
Sign-On, see the Oracle Fusion Middleware Security Guide.

36.3.4.2 Configuring Security for WebLogic Server
In a development environment, JDeveloper will automatically migrate
application-level credentials, identities, and policies to the standalone WebLogic
Server instance only if the server is set up to be in development mode. Integrated
WebLogic Server is set up in development mode by default. You can set up a
standalone WebLogic Server to be in development mode during Oracle WebLogic
Server domain creation using the Oracle Fusion Middleware Configuration Wizard.
For more information about configuring Oracle WebLogic Server domains, see Oracle
Fusion Middleware Creating Domains Using the Configuration Wizard.

JDeveloper will not migrate application-level security credentials to WebLogic Server
set up in production mode. Typically, in a production environment, administrators
will use Enterprise Manager or WLST to deploy an application, including its security
requirements.

When you deploy an application to WebLogic Server, credentials (in the
cwallet.sso file) and security policies (in the jazn-data.xml file) will either
overwrite or merge with the WebLogic Server domain-level credential store,
depending on whether OVERWRITE or MERGE is set in
weblogic-application.xml. In production-mode WebLogic Server, to avoid
security risks, only MERGE is allowed. For development-mode WebLogic Server, you
can set to OVERWRITE to test user names and passwords. You can set the property by
running setDomainEnv.cmd or setDomainEnv.sh with the following option
added to the command (usually located in ORACLE_HOME/user_
projects/domains/MyDomain/bin).

For setDomainEnv.cmd:

set EXTRA_JAVA_PROPERTIES=-Djps.app.credential.overwrite.allowed=true
 %EXTRA_JAVA_PROPERTIES%

For setDomainEnv.sh:

EXTRA_JAVA_PROPERTIES="-Djps.app.credential.overwrite.allowed=true
 ${EXTRA_JAVA_PROPERTIES}"
export EXTRA_JAVA_PROPERTIES

If the Administration Server is already running, you must restart it for this setting to
take effect.

You can check to see whether WebLogic Server is in production mode by using the
Oracle WebLogic Server Administration Console or by verifying the following line in
the WebLogic Server config.xml file:

<production-mode-enabled>true</production-mode-enabled>

By default, JDeveloper sets the application’s credentials, identities, and policies to
OVERWRITE. That is, the Application Policies, Credentials, and Users and Groups

Preparing the Application

36-26 Fusion Developer's Guide for Oracle Application Development Framework

options are selected by default in the Application Properties dialog Deployment page.
However, an application’s credentials will be migrated only if the target WebLogic
Server instance is set to development mode with
-Djps.app.credential.overwrite.allowed=true

When your application is ready for deployment to a production environment, you
should remove the identities from the jazn-data.xml file or disable the migration of
identities by deselecting Users and Groups from the Application Properties dialog.
Application credentials must be manually migrated outside of JDeveloper.

For more information about migrating application credentials and jazn-data
policies, see the Oracle Fusion Middleware Application Security Guide.

36.3.4.2.1 Applications with JDBC URL for WebLogic

If your application has components that use JDBC URL connections, the connection
user names and passwords are also stored in the application-level credential and
policy stores. For the deployed application to be able to connect to the database using
the JDBC URL, these credentials and policies must be migrated. That is, if WebLogic
Server is in production mode, system administrators must migrate this security
information. If WebLogic Server is in development mode, it must have domain-level
credential and policy stores set to OVERWRITE to allow the migration of security
information.

36.3.4.2.2 Applications with JDBC Data Source for WebLogic

If your application uses application-level JDBC data sources with password
indirection for database connections, you may need to create credential maps in
WebLogic Server to enable the database connection. For more information, see the
Oracle Fusion Middleware Administrator's Guide for Oracle Application Development
Framework.

36.3.4.3 Configuring Security for WebSphere Server
Applications with credentials (in the cwallet.sso file) and security policies (in the
jazn-data.xml file) can be migrated to WebSphere. You will need to perform
additional tasks in WebSphere Be aware that the opss-application.xml file is not
included in the application EAR file if it is intended for WebSphere.

Note: Before you migrate the jazn-data.xml file to a production
environment, check that the policy store does not contain duplicate
permissions for a grant. If a duplicate permission (one that has the
same name and class) appears in the file, the administrator migrating
the policy store will receive an error and the migration of the policies
will be halted. You should manually edit the jazn-data.xml file to
remove any duplicate permissions from a grant definition.

Note: Before you migrate the jazn-data.xml file to a production
environment, check that the policy store does not contain duplicate
permissions for a grant. If a duplicate permission (one that has the
same name and class) appears in the file, the administrator migrating
the policy store will receive an error and the migration of the policies
will be halted. You should manually edit the jazn-data.xml file to
remove any duplicate permissions from a grant definition.

Preparing the Application

Deploying Fusion Web Applications 36-27

For more information about setting up WebSphere to accept credentials and policies,
see the Oracle Fusion Middleware Third-Party Application Server Guide.

36.3.4.3.1 Applications with JDBC URL for WebSphere

If your application has components that use JDBC URL connections, the connection
user names and passwords are also stored in the application-level credential and
policy stores. For the deployed application to be able to connect to the database using
the JDBC URL, OPSS migration must be enabled.

36.3.4.3.2 Applications with JDBC Data Source for WebSphere

If your application uses application-level JDBC data sources with password
indirection for database connections, you will need to create a JDBC data source in
WebSphere. For more information, see the IBM WebSphere documentation.

36.3.4.3.3 Editing the web.xml File to Protect the Application Root for WebSphere

When you enable ADF Security for your web application, the web.xml file includes
the Java EE security constraint allPages to protect the Java EE application root. By
default, to support deploying to Oracle WebLogic Server, JDeveloper specifies the
URL pattern for the security constraint as / (backslash). If you intend to deploy the
application to IBM WebSphere, the correct URL pattern is /* (backslash-asterisk).
Before you deploy the application to WebSphere, manually edit the web.xml file for
your application to change the allPages security constraint as follows:

<security-constraint>
 <web-resource-collection>
 <web-resource-name>allPages</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 . . .
</security-constraint>

36.3.5 How to Replicate Memory Scopes in a Clustered Environment
If you are deploying an application that is intended to run in a clustered environment,
you need to ensure that all managed beans with a lifespan longer than one request are
serializable, and that the ADF framework is aware of changes to managed beans
stored in ADF scopes (view scope and page flow scope).

For more information, see Section 20.4.3, "How to Set Managed Bean Memory Scopes
in a Server-Cluster Environment."

36.3.6 How to Enable the Application for ADF MBeans
An ADF application uses many XML files for setting configuration information. Three
of these configuration files have ADF MBean counterparts that are deployed with the
application. After the application has been deployed, you can change configuration
properties by accessing the ADF MBeans using the Enterprise Manager Fusion
Middleware Control MBean browser.

To enable ADF MBeans, you must register them in the web.xml file. Example 36–4
shows a web.xml file with listener entries for connections, configuration, and business
components.

Example 36–4 Enabling ADF MBeans in the web.xml File

<listener>

Preparing the Application

36-28 Fusion Developer's Guide for Oracle Application Development Framework

 <listener-class>
 oracle.adf.mbean.share.connection.ADFConnectionLifeCycleCallBack
 </listener-class>
</listener>
<listener>
 <listener-class>
 oracle.adf.mbean.share.config.ADFConfigLifeCycleCallBack</listener-class>
</listener>
<listener>
 <listener-class>
 oracle.bc4j.mbean.BC4JConfigLifeCycleCallBack</listener-class>
</listener>

Additionally, ADF connection MBeans require the application to be configured with
an MDS repository. ADF Business Components MBeans do not require MDS, but
business components configuration is limited to updating the underlying bc4j.xcfg
file in the exploded EAR location. MDS configuration entries in the adf-config.xml
file for a file-based MDS are shown in Example 36–5. For more information about
configuring MDS, see the Oracle Fusion Middleware Administrator's Guide.

Example 36–5 MDS Configuration Entries in the adf-config.xml File

<adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
 <mds-config xmlns="http://xmlns.oracle.com/mds/config" version="11.1.1.000">
 <persistence-config>
 <metadata-store-usages>
 <metadata-store-usage
 default-cust-store="true" deploy-target="true" id="myStore">
 </metadata-store-usage>
 </metadata-store-usages>
 </persistence-config>
 </mds-config>
</adf-mds-config>

In a production environment, an MDS repository that uses a database is required. You
can use JDeveloper, Enterprise Manager Fusion Middleware Control, or WLST /
wsadmin commands to switch from a file-based repository to a database MDS
repository.

Additionally, if several applications are sharing the same MDS configuration, each
application can achieve distinct customization layers by defining a
adf:adf-properties-child property in the adf-config.xml file. JDeveloper
automatically generates this entry when creating applications. If your
adf-config.xml file does not have this entry, add it to the file with code similar to
that of Example 36–6.

Example 36–6 Adding MDS Partition Code to the adf-config.xml File

<adf:adf-properties-child xmlns="http://xmlns.oracle.com/adf/config/properties">
 <adf-property name="adfAppUID" value="Application3-4434"/>
 <adf-property name="partition_customizations_by_application_id"
 value="true"/>
</adf:adf-properties-child>

The value attribute is either generated by JDeveloper or you can set it to any unique
identifier within the server farm where the application is deployed. This value can be
set to the value attribute of the adfAppUID property.

When adf-property name is set to adfAppUid, then the corresponding value
property should be set to the name of the application. By default, JDeveloper generates

Preparing the Application

Deploying Fusion Web Applications 36-29

the value property using the application’s package name. If the package name is not
specified, JDeveloper generates the value property by using the workspace name and
a four digit random number.

For more information about configuring ADF applications using ADF MBeans, see the
Oracle Fusion Middleware Administrator's Guide for Oracle Application Development
Framework.

36.3.7 What You May Need to Know About JDBC Data Source for Oracle WebLogic
Server

ADF applications can use either a JDBC data source or a JDBC URL for database
connections. You use the Oracle WebLogic Server Administration Console to configure
a JDBC data source. For more information about database access, see Section 9.3,
"Configuring Your Application Module Database Connection."

The ADF application module in the data model project can be configured to use a
JDBC URL connection type, a JDBC data source connection type, or a combination of
both types. By default, ADF application modules use a JDBC URL connection. A
component that uses a JDBC URL will attempt to connect directly to the database
using the JDBC URL, and it will ignore any JDBC data sources (global or
application-level) that are available in WebLogic Server. For more information about
migrating JDBC URL security information (user names and passwords) from the
application to WebLogic Server, see Section 36.3.4, "How to Deploy Applications with
ADF Security Enabled."

An ADF application can use a JDBC data source to connect to the database. A JDBC
data source has three types: global, application level, and application level with
password indirection. You generally set up a global JDBC data source in WebLogic
Server. Any application that requires access to that database can use that JDBC data
source. An application can also include application-level JDBC data sources. When the
application is packaged for deployment, if the Auto Generate and Synchronize
weblogic-jdbc.xml Descriptor During Deployment option is selected, JDeveloper
creates a connection_name-jdbc.xml file for each connection that was defined.
Each connection’s information is written to the corresponding connection_
name-jdbc.xml file (entries are also changed in weblogic-application.xml and
web.xml). When the application is deployed to WebLogic Server, the server looks for
application-level data source information before it looks for the global data source.

If the application is deployed with password indirection set to true, WebLogic Server
will look for the connection_name-jdbc.xml file for user name information and it
will then attempt to locate application-level credential maps for these user names to
obtain the password. If you are using JDeveloper to directly deploy the application to
WebLogic Server, JDeveloper automatically creates the credential map and populates
the map to the server using an MBean call.

Best Practice: Fusion web applications are not compatible with data
sources defined with the JDBC XA driver. When creating a data
source on Oracle WebLogic Server, be sure to change the Fusion web
application data source's JDBC driver from “Oracle’s Driver (Thin
XA)” to “Oracle’s Driver (Thin)”. Because XA data sources close all
cursors upon commit, random JBO-27122 and closed statement errors
may result when running the the Fusion web application with an XA
data source.

Deploying the Application

36-30 Fusion Developer's Guide for Oracle Application Development Framework

However, if you are deploying to an EAR file, JDeveloper will not be able to make the
MBean call to WebLogic Server. You must set up the credential maps using the Oracle
WebLogic Administration Console. Even if you have a global JDBC data source set up,
if you do not also have credential mapping set up, WebLogic Server will not be able to
map the credentials with passwords and the connection will fail. For more information
about JDBC data sources, password indirection, and how to set up application
credential mappings, see "JDBC Data Sources" in the "Deploying Applications" section
of the JDeveloper online help.

Once the data source has been created in Oracle WebLogic Server, it can be used by an
application module. For more information, see the "Preparing the Standalone
Application Server for Deployment" section of the Oracle Fusion Middleware
Administrator's Guide for Oracle Application Development Framework.

36.4 Deploying the Application
You can use JDeveloper to deploy ADF applications directly to the standalone
application server or create an archive file and use other tools to deploy to the
application server.

Figure 36–5 shows the process flow for deploying an application and also for
deploying customizations to the target standalone application server.

Note: Before you begin to deploy applications that use Oracle ADF
to the standalone application server, you need to prepare the
application server environment by performing tasks such as installing
the ADF runtime and creating and extending domains or cells. For
more information, see the "Preparing the Standalone Application
Server for Deployment" section of the Oracle Fusion Middleware
Administrator's Guide for Oracle Application Development Framework.

Deploying the Application

Deploying Fusion Web Applications 36-31

Figure 36–5 Application Deployment Flow Diagram

Table 36–2 describes some common deployment techniques that you can use during
the application development and deployment cycle. The deployment techniques are
listed in order from deploying on development environments to deploying on
production environments. It is likely that in the production environment, the system
administrators deploy applications by using Enterprise Manager Fusion Middleware
Control or scripts.

Deploying the Application

36-32 Fusion Developer's Guide for Oracle Application Development Framework

Any necessary MDS repositories must be registered with the application server. If the
MDS repository is a database, the repository maps to a data source with MDS-specific
requirements.

If you are deploying the application to Oracle WebLogic Server, make sure to target
this data source to the WebLogic Administration Server and to all Managed Servers to
which you are deploying the application. For more information about registering
MDS, see the Oracle Fusion Middleware Administrator's Guide.

If you are using the application server’s administrative consoles or scripts to deploy an
application packaged as an EAR file that requires MDS repository configuration in
adf-config.xml, you must run the getMDSArchiveConfig command to
configure MDS before deploying the EAR file. MDS configuration is required if the
EAR file contains a MAR file or if the application is enabled for DT@RT (Design Time
At Run Time).

For more information about WLST commands, see the Oracle Fusion Middleware
WebLogic Scripting Tool Command Reference. For more information about wsadmin
commands, see the Oracle Fusion Middleware Third-Party Application Server Guide and
the Oracle Fusion Middleware Configuration Guide for IBM WebSphere Application Server.

Table 36–2 Deployment Techniques for Development or Production Environments

Deployment Technique Environment When to Use

Run directly from JDeveloper Test or
Development

When you are developing your application. You want
deployment to be quick because you will be repeating
the editing and deploying process many times.

JDeveloper contains Integrated WebLogic Server, on
which you can run and test your application.

Use JDeveloper to directly deploy to the
target application server

Test or
Development

When you are ready to deploy and test your
application on an application server in a test
environment.

On the test server, you can test features (such as LDAP
and Oracle Single Sign-On) that are not available on the
development server.

You can also use the test environment to develop your
deployment scripts, for example, using Ant.

Use JDeveloper to deploy to EAR file,
then use the target application server’s
tools for deployment

Test or
Development

When you are ready to deploy and test your
application on an application server in a test
environment. As an alternative to deploying directly
from JDeveloper, you can deploy to an EAR file. and
then use other tools to deploy to the application server.

On the test server, you can test features (such as LDAP
and Oracle Single Sign-On) that are not available on the
development server.

You can also use the test environment to develop your
deployment scripts, for example, using Ant.

Use Enterprise Manager or WLST to
deploy applications

Production When your application is in a test and production
environment. In production environments, system
administrators usually use Enterprise Manager or run
scripts to deploy applications.

Deploying the Application

Deploying Fusion Web Applications 36-33

If you plan to configure ADF connection information, ADF Business Components
information, or adf-config.xml using ADF MBeans after the application has been
deployed, make sure that the application is configured with MDS and have the MBean
listeners enabled in the web.xml file. For more information, see Section 36.3.6, "How
to Enable the Application for ADF MBeans."

36.4.1 How to Deploy to the Application Server from JDeveloper

Before you begin:
Create an application-level deployment profile that deploys to an EAR file.

To deploy to the target application server from JDeveloper:
1. In the Application Navigator, right-click the application and choose Deploy >

deployment profile.

2. In the Deploy wizard Deployment Action page, select Deploy to Application
Server and click Next.

Note: For IBM WebSphere Application Server, after you have
deployed the application, you need to perform additional tasks such
as starting the server.

For more information about IBM WebSphere Application Server,
wsadmin commands, and using the WebSphere Administrative
Console, see the Oracle Fusion Middleware Third-Party Application Server
Guide.

For more information about ADF-specific wsadmin commands and
installing the ADF runtime into the IBM WebSphere Application
Server, see the Oracle Fusion Middleware Administrator's Guide for Oracle
Application Development Framework.

Note: If your ADF application has business services that you want to
deploy to WebLogic Server, see Section 11.2.20, "How to Deploy Web
Services to Oracle WebLogic Server."

Note: When you are deploying to Oracle WebLogic Server from
JDeveloper, ensure that the HTTP Tunneling property is enabled in
the Oracle WebLogic Server Administration Console. This property is
located under Servers > ServerName > Protocols. ServerName refers
to the name of Oracle WebLogic Server.

Note: For WebLogic Server, JDeveloper does not support deploying
applications to individual Managed Servers that are members of a
cluster. You may be able to target one or more Managed Servers
within a cluster using the Oracle WebLogic Server Administration
Console or other Oracle WebLogic tools; however, the cluster can be
negatively affected. For more information about deploying to Oracle
WebLogic Server clusters, see the Oracle Fusion Middleware
Administrator's Guide.

Deploying the Application

36-34 Fusion Developer's Guide for Oracle Application Development Framework

3. In the Select Server page, select the application server connection, and click Next.

4. If you are deploying to a WebLogic Server instance, the WebLogic Options page
appears. Select a deploy option and click Next.

5. Click Finish.

During deployment, you can see the process steps displayed in the deployment
Log window. You can inspect the contents of the modules (archives or exploded
EAR) being created by clicking on the links that are provided in the log window.
The archive or exploded EAR file will open in the appropriate editor or directory
window for inspection.

If the adf-config.xml file in the EAR file requires MDS repository
configuration, the Deployment Configuration dialog appears for you to choose the
target metadata repository or shared metadata repositories, as shown in
Figure 36–6. The Repository Name dropdown list allows you to choose a target
metadata repository from a list of metadata repositories registered with the
Administration Server. The Partition Name dropdown list allows you to choose
the metadata repository partition to which the application's metadata will be
imported during deployment. You can use Oracle WebLogic Scripting Tool
(WLST) / wsadmin commands and the Oracle WebLogic Server Administration
Tool / WebSphere Administrative Tool, respectively, to configure and register
MDS. For more information about managing the MDS repository, see the Oracle
Fusion Middleware Administrator's Guide.

Note: If you are deploying an ADF application, do not use the
Deploy to all instances in the domain option.

Deploying the Application

Deploying Fusion Web Applications 36-35

Figure 36–6 MDS Configuration and Customization for Deployment

For more information on creating application server connections, see
Section 36.3.1, "How to Create a Connection to the Target Application Server."

36.4.2 How to Create an EAR File for Deployment
You can also use the deployment profile to create an archive file (EAR file). You can
then deploy the archive file using Enterprise Manager, Oracle WebLogic Scripting
Tool (WLST) / WebSphere wsadmin tool, Oracle WebLogic Server Administration
Console / WebSphere Administrative Console, respectively.

Although an ADF application is encapsulated in an EAR file (which usually includes
WAR, MAR, and JAR components), it may have parts that are not deployed with the
EAR. For instance, ADF Business Services can be deployed as a JAR. For more
information about business services, see Section 11.2.20, "How to Deploy Web Services
to Oracle WebLogic Server."

To create an EAR archive file:
■ In the Application Navigator, right-click the application containing the

deployment profile, and choose Deploy > deployment profile > to EAR file.

If an EAR file is deployed at the application level, and it has dependencies on a
JAR file in the data model project and dependencies on a WAR file in the

Note: If you are deploying a Java EE application, click the
application menu next to the Java EE application in the Application
Navigator.

Deploying the Application

36-36 Fusion Developer's Guide for Oracle Application Development Framework

view-controller project, then the files will be located in the following directories by
default:

– ApplicationDirectory/deploy/EARdeploymentprofile.EAR

– ApplicationDirectory/ModelProject/deploy/JARdeploymentprofil
e.JAR

– ApplicationDirectory/ViewControllerProject/deploy/WARdeployme
ntprofile.WAR

36.4.3 What You May Need to Know About EAR Files and Packaging
When you package an ADF application into an EAR file, it can contain the following:

■ WAR files: Each web-based view controller project should be packaged into a
WAR file.

■ MAR file: If the application has customizations that are deployed with the
application, it should be packaged into a MAR.

■ ADF Library JAR files: If the application consumes ADF Library JARs, these JAR
files may be packaged within the EAR.

■ Other JAR files: The application may have other dependent JAR files that are
required. They can be packaged within the EAR.

36.4.4 How to Deploy the Application Using Scripts and Ant
You can deploy the application using commands and automate the process by putting
those commands in scripts. The ojdeploy command can be used to deploy an
application without JDeveloper. You can also use Ant scripts to deploy the
application. JDeveloper has a feature to help you build Ant scripts. Depending on
your requirements, you may be able to integrate regular scripts with Ant scripts.

You can also use the application server commands for deployment. For WebLogic
Server, you can use WLST commands and for IBM WebSphere Application Server,
you can use wsadmin commands.

For more information about WLST and wsadmin commands, scripts, and Ant, see the
Oracle Fusion Middleware Administrator's Guide for Oracle Application Development
Framework.

36.4.5 How to Deploy New Customizations Applied to ADF LIbrary
If you have created new customizations for an ADF Library, you can use the MAR
profile to deploy these customizations to any deployed application that consumes that
ADF Library. For instance, applicationA, which consumes ADFLibraryB, was
deployed to a standalone application server. Later on, when new customizations are
added to ADFLibraryB, you only need to deploy the updated customizations into
applicationA. You do not need to repackage and redeploy the whole application,
nor do you need to manually patch the MDS repository.

Tip: Choose View >Log to see messages generated during creation
of the archive file.

Deploying the Application

Deploying Fusion Web Applications 36-37

To deploy ADF Library customizations, create a new MAR profile that includes only
the customizations to be deployed and then use JDeveloper to:

■ Deploy the customizations directly into the MDS repository in the standalone
application server.

■ Deploy the customizations to a JAR. And then import the JAR into the MDS
repository using tools such as the Fusion Middleware Control.

36.4.5.1 Exporting Customization to a Deployed Application
You can export the customizations directly from JDeveloper into the MDS repository
for the deployed application on the standalone application server.

Before you begin:
Create new customizations to the ADF Library using the customization developer role
in JDeveloper.

To export the customizations directly into the application server:
1. In the Application Navigator, right-click the application and choose Deploy >

metadata.

2. In the Deploy Metadata dialog Deployment Action page, select Export to a
Deployed Application and click Next.

If the MAR profile is included in any of the application’s EAR profiles, Export to a
Deployed Application will be dimmed and disabled.

3. In the Application Server page, select the application server connection and click
Next.

4. For WebLogic Server, the Server Instance page appears. In this page, select the
server instance where the deployed application is located and click Next.

5. In the Deployed Application page, select the application you want to apply the
customizations to and click Next.

6. In the Sandbox Instance page, if you want to deploy to a sandbox, select Deploy to
an associated sandbox, choose the sandbox instance and click Next.

7. In the Summary page, verify the information and click Finish.

36.4.5.2 Deploying Customizations to a JAR
When you deploy the ADF Library customizations to a JAR, you are packaging the
contents as defined by the MAR profile.

Before you begin:
Create new customizations to the ADF Library using the customization developer role
in JDeveloper.

Note: This procedure is for applying ADF Library customization
changes to an application that has already been deployed to a
standalone application server. It is not for the initial packaging of
customizations into a MAR that will eventually be a part of an EAR.
For information about the initial packaging of the customization using
a MAR, see Section 36.3.2.3, "Creating a MAR Deployment Profile."

Postdeployment Configuration

36-38 Fusion Developer's Guide for Oracle Application Development Framework

To deploy the customizations as a JAR
1. In the Application Navigator, right-click the application and choose Deploy >

metadata.

2. In the Deploy Metadata dialog Deployment Action page, select Deploy to MAR.

3. In the Summary page, click Finish.

4. Use Enterprise Manager Fusion Middleware Control or the application server’s
administration tool to import the JAR into the MDS repository.

36.4.6 What You May Need to Know About ADF Libraries
An ADF Library is a JAR file that contains JAR services registered for ADF
components such as ADF task flows, pages, or application modules. If you want the
ADF components in a project to be reusable, you create an ADF Library deployment
profile for the project and then create an ADF Library JAR based on that profile.

An application or project can consume the ADF Library JAR when you add it using
the Resource Palette or manually by adding it to the library classpath. When the ADF
Library JAR is added to a project, it will be included in the project’s WAR file if the
Deployed by Default option is selected.

For more information, see Chapter 33, "Reusing Application Components."

36.4.7 What You May Need to Know About JDeveloper Runtime Libraries
When an application is deployed, it includes some of its required libraries with the
application. The application may also require shared libraries that have already been
loaded to WebLogic Server as JDeveloper runtime libraries. It may be useful to know
which JDeveloper libraries are packaged within which WebLogic Server shared
library. For a listing of the contents of the JDeveloper runtime libraries, see the Oracle
Fusion Middleware Administrator's Guide for Oracle Application Development Framework.

36.5 Postdeployment Configuration
After you have deployed your application to WebLogic Server, you can perform
configuration tasks.

36.5.1 How to Migrate an Application
If you want to migrate an ADF application from one application server to another
application server, you may need to perform some of the same steps you did for a first
time deployment.

In general, to migrate an application, you would:

■ Load the ADF runtime (if it is not already installed) to the target application
server. For more information, see the "Preparing the Standalone Application
Server for Deployment" section of the Oracle Fusion Middleware Administrator's
Guide for Oracle Application Development Framework.

■ Configure the target application server with the correct database or URL
connection information.

■ Migrate security information from the source to the target. For instructions, see
Section 36.3.4, "How to Deploy Applications with ADF Security Enabled."

Testing the Application and Verifying Deployment

Deploying Fusion Web Applications 36-39

■ Deploy the application using Enterprise Manager, administration console, or
scripts. For more information, see the Oracle Fusion Middleware Administrator's
Guide for Oracle Application Development Framework.

36.5.2 How to Configure the Application Using ADF MBeans
If ADF MBeans were enabled and packaged with the deployed application, you can
configure ADF properties using the Enterprise Manager MBean Browser. For
instructions to enable an application for MBeans, see Section 36.3.6, "How to Enable
the Application for ADF MBeans."

For information on how to configure ADF applications using ADF MBeans, see the
Oracle Fusion Middleware Administrator's Guide for Oracle Application Development
Framework.

36.6 Testing the Application and Verifying Deployment
After you deploy the application, you can test it from Oracle WebLogic Server. To
test-run your ADF application, open a browser window and enter a URL:

■ For non-Faces pages: http://<host>:port/<context root>/<page>

■ For Faces pages: http://<host>:port/<context root>/faces/<view_
id>

where <view_id> is the view ID of the ADF task flow view activity.

Tip: The context root for an application is specified in the
view-controller project settings by default as
ApplicationName/ProjectName/context-root. You can
shorten this name by specifying a name that is unique across the
target application server. Right-click the view-controller project, and
choose Project Properties. In the Project Properties dialog, select Java
EE Application and enter a unique name for the context root.

Note: /faces has to be in the URL for Faces pages. This is because
JDeveloper configures your web.xml file to use the URL pattern of
/faces in order to be associated with the Faces Servlet. The Faces
Servlet does its per-request processing, strips out /faces part in the
URL, then forwards the URL to the JSP. If you do not include the
/faces in the URL, then the Faces Servlet is not engaged (since the
URL pattern doesn't match). Your JSP is run without the necessary JSF
per-request processing.

Testing the Application and Verifying Deployment

36-40 Fusion Developer's Guide for Oracle Application Development Framework

Part VI
Part VI Advanced Topics

Part VI contains the following chapters:

■ Chapter 37, "Advanced Business Components Techniques"

■ Chapter 38, "Advanced Entity Object Techniques"

■ Chapter 39, "Advanced View Object Techniques"

■ Chapter 40, "Application State Management"

■ Chapter 41, "Tuning Application Module Pools and Connection Pools"

■ Chapter 42, "Using the Active Data Service"

37

Advanced Business Components Techniques 37-1

37Advanced Business Components
Techniques

This chapter describes advanced techniques that you can use to incorporate custom
code with all types of ADF Business Components and to extend the ADF Business
Components framework behavior.

This chapter includes the following sections:

■ Section 37.1, "Globally Extending ADF Business Components Functionality"

■ Section 37.2, "Creating a Layer of Framework Extensions"

■ Section 37.3, "Customizing Framework Behavior with Extension Classes"

■ Section 37.4, "Creating Generic Extension Interfaces"

■ Section 37.5, "Invoking Stored Procedures and Functions"

■ Section 37.6, "Accessing the Current Database Transaction"

■ Section 37.7, "Working with Libraries of Reusable Business Components"

■ Section 37.8, "Customizing Business Components Error Messages"

■ Section 37.9, "Creating Extended Components Using Inheritance"

■ Section 37.10, "Substituting Extended Components in a Delivered Application"

37.1 Globally Extending ADF Business Components Functionality
One of the powerful features of framework-based development is the ability to extend
the base framework to change a built-in feature to behave differently or to add a new
feature that can be used by all of your applications.

37.1.1 How To Create a Framework Extension Class
An ADF Business Components framework extension class is Java class you write that
extends one of the framework's base classes to:

Note: To experiment with the examples in this chapter, use the
AdvancedExamples workspace in the StandaloneExamples
module of the Fusion Order Demo application, as described in
Section 2.4.3, "Standalone Applications in the AdvancedExamples
Application Workspace." For information about how to obtain and
install the Fusion Order Demo, see Section 2.2, "Setting Up the Fusion
Order Demo Application."

Globally Extending ADF Business Components Functionality

37-2 Fusion Developer's Guide for Oracle Application Development Framework

■ Augment a built-in feature works with additional, generic functionality

■ Change how a built-in feature works, or even to

■ Workaround a bug you encounter in a generic way

Once you've created a framework extension class, any new ADF components you
create can be based on your customized framework class instead of the base one. Of
course, you can also update the definitions of existing components to use the new
framework extension class as well.

To create a framework extension class:
1. Identify a project to contain the framework extension class.

You can create it in the same project as your business service components if you
believe it will only be used by components in that project. Alternatively, if you
believe you might like to reuse the framework extension class across multiple
Fusion web applications, create a separate FrameworkExtensions project to
contain the framework extension classes.

2. Ensure the BC4J Runtime library is in the project's libraries list.

Use the Libraries page of the Project Properties dialog to verify this and to add
the library if missing.

3. In the New Gallery, in the General category, select Java Class to create the new
class.

4. In the Create Java Class dialog, specify the appropriate framework base class from
the oracle.jbo.server package in the Extends field.

Figure 37–1 illustrates what it would look like to create a custom framework
extension class named CustomAppModuleImpl in the
com.yourcompany.fwkext package to customize the functionality of the base
application module component. To quickly find the base class you're looking for,
use the Browse button next to the Extends field that launches the JDeveloper
Class Browser. Using its Search tab, you can type in part of the class name
(including using * as a wildcard) to quickly subset the list of classes to find the
one you're looking for.

Globally Extending ADF Business Components Functionality

Advanced Business Components Techniques 37-3

Figure 37–1 Creating a Framework Extension Class for an Application Module

When you click OK, JDeveloper creates the custom framework extension class for you
in the directory of the project's source path corresponding to the package name you've
chosen.

37.1.2 What Happens When You Create a Framework Extension Class
After creating a new framework extension class, it will not automatically be used by
your application. You must decide which components in your project should make use
of it. The following sections describe the available approaches for basing your ADF
components on your own framework extension classes.

37.1.3 How to Base an ADF Component on a Framework Extension Class
You can set the base classes for any ADF component using the Java page of any ADF
Business Components wizard or editor.

Before you begin:
■ Create the framework extension class as described in Section 37.1.1, "How To

Create a Framework Extension Class."

Note: Some ADF Business Components component classes exist in
both a server-side and a remote-client version. For example, if you use
the JDeveloper Class Browser and type ApplicationModuleImpl
into the Match Class Name field on the Search tab, the list will show
two ApplicationModuleImpl classes: one in the
oracle.jbo.server package and the other in the
oracle.jbo.client.remote package. When creating framework
extension classes, use the base ADF classes in the
oracle.jbo.server package.

Globally Extending ADF Business Components Functionality

37-4 Fusion Developer's Guide for Oracle Application Development Framework

■ If you created your framework extension classes in a separate project, visit the
Dependencies page of the Project Properties dialog for the project containing your
business components and mark the FrameworkExtension project as a project
dependency.

■ If you have packaged your framework extension classes in a Java archive (JAR)
file, create a named library definition to reference its JAR file and also list that
library in the library list of the project containing your business components. To
create a library if missing, use the Manage Libraries dialog available from the
Tools > Manage Libraries main menu item. To verify or adjust the project's
library list, use the Libraries page of the Project Properties dialog.

 After you ensure the framework classes are available to reference, you can create the
ADF component. Every ADF Business Components wizard and editor displays the
same Class Extends button on the Java page so you can use the technique to choose
your desired framework extension base class(es) both for new components or existing
ones.

There is no fixed limit on how many levels of framework extension classes you create.
For example, after creating a company-level CustomAppModuleImpl to use for all
application modules in all Fusion web applications that your company creates, some
later project team might encounter the need to further customize that framework
extension class. That team could create a SomeProjectCustomAppModuleImpl
class that extends the CustomAppModuleImpl and then include the project-specific
custom application module code in there as shown in Example 37–1.

Example 37–1 Extending a Custom Class

public class SomeProjectCustomAppModuleImpl
extends CustomAppModuleImpl {

/*
* Custom application module code specific to the
* "SomeProject" project goes here.
*/

}

Then, any application modules created as part of the implementation of this specific
project can use the SomeProjectCustomAppModuleImpl as their base class instead
of the CustomAppModuleImpl.

To create an ADF component based on a framework extension class:
1. In the Application Navigator, double-click the desired component.

2. In the overview editor, click the Java navigation tab and click the Edit Java
options button.

3. In the Select Java Options dialog, click Classes Extends.

4. In the Override Base Classes dialog, enter the fully-qualified name of the
framework base classes you wish to override. You can also use the Browse button
to use the JDeveloper Class Browser to find the classes quickly.

When you use the Class Browser to select a custom base class for the component,
the list of available classes is automatically filtered to show only classes that are
appropriate. For example, when clicking Browse in Figure 37–2 to select an
application module Object base class, the list will only show classes available in
the current project's library list which extend the
oracle.jbo.server.ApplicationModule class either directly or indirectly.

Globally Extending ADF Business Components Functionality

Advanced Business Components Techniques 37-5

If you don't see the class you're looking for, either you extended the incorrect base
class or you have chosen the wrong component class name to override.

Figure 37–2 Specifying a Custom Base Class for a New Application Module

37.1.4 How to Define Framework Extension Classes for All New Components
If you decide to use a specific set of framework extension classes as a standard for a
given project, you can use the Project Properties dialog to define your preferred base
classes for each component type. Setting these preferences for base classes does not
affect any existing components in the project, but the component wizards will use the
preferences for any new components created.

To define project-level preferences for framework extension classes:
1. In the Application Navigator, right-click the model project that will contain the

extension classes and choose Project Properties.

2. In the Project Properties dialog, expand Business Components > Base Classes in
the tree.

3. On the Business Components page, enter the fully-qualified name of that class in
the Application Module Object class name field.

For example, to indicate that any new application modules created in the project
should use the CustomAppModuleImpl class by default, enter the fully-qualified
name of that class in the componentName Object class name field as shown in
Figure 37–3.

Globally Extending ADF Business Components Functionality

37-6 Fusion Developer's Guide for Oracle Application Development Framework

Figure 37–3 Setting Project-Level Preferences for ADF Component Base Classes

37.1.5 How to Define Framework Extension Classes for All New Projects
When you want to apply the same base class preferences to each new project that you
create in JDeveloper, you can define the preferences at a global level using the
Preferences dialog. Base classes that you specify at the global level will not alter your
existing projects containing ADF components.

To define global preferences for framework extension classes:
1. In the Tools menu, choose Preferences.

2. In the Preferences dialog, expand Business Components > Base Classes in the
tree.

3. On the Business Components page, enter the fully-qualified name of that class in
componentName Object class name field.

The page displays the same options for specifying the preferred base classes for
each component type as shown in Figure 37–3.

37.1.6 What Happens When You Base a Component on a Framework Extension Class
When an ADF component you create extends a custom framework extension class,
JDeveloper updates its XML component definition to reflect the custom class name
you've chosen.

37.1.6.1 XML-Only Components
For example, assume you've created the YourService application module in the
com.yourcompany.yourapp package, with a custom application module base class
of CustomAppModuleImpl. If you have opted to leave the component as an
XML-only component with no custom Java file, its XML component definition
(YourService.xml) will look like what you see in Example 37–2. The value of the

Globally Extending ADF Business Components Functionality

Advanced Business Components Techniques 37-7

ComponentClass attribute of the <AppModule> tag is read at runtime to identify the
Java class to use to represent the component.

Example 37–2 Custom Base Class Names Are Recorded in XML Component Definition

<AppModule
Name="YourService"
ComponentClass="com.yourcompany.fwkext.CustomAppModuleImpl" >

<!-- etc. -->
</AppModule>

Figure 37–4 illustrates how the XML-only YourService application module relates to
your custom extension class. At runtime, it uses the CustomAppModuleImpl class
which inherits its base behavior from the ApplicationModuleImpl class.

Figure 37–4 XML-Only Component Reference an Extended Framework Base Class

37.1.6.2 Components with Custom Java Classes
If your component requires a custom Java class, as you've seen in previous chapters
you open the Java page of the component editor and check the appropriate checkbox
to enable it. For example, when you enable a custom application module class for the
YourServer application module, JDeveloper creates the appropriate
YourServiceImpl.java class. As shown in Example 37–3, it also updates the
component's XML component definition to reflect the name of the custom component
class.

Example 37–3 Custom Component Class Recorded in XML Component Definition

<AppModule
Name="YourService"
ComponentClass="com.yourcompany.yourapp.YourServiceImpl" >

<!-- etc. -->
</AppModule>

JDeveloper also updates the component's custom Java class to modify its extends
clause to reflect the new custom framework base class, as shown in Example 37–4.

Example 37–4 Component's Custom Java Class Updates to Reflect New Base Class

package com.yourcompany.yourapp;
import com.yourcompany.fwkext.CustomAppModuleImpl;
// ---
// --- File generated by Oracle ADF Business Components Design Time.
// --- Custom code may be added to this class.
// --- Warning: Do not modify method signatures of generated methods.
// ---

Creating a Layer of Framework Extensions

37-8 Fusion Developer's Guide for Oracle Application Development Framework

public class YourServiceImpl extends CustomAppModuleImpl {
/**This is the default constructor (do not remove) */
public YourServiceImpl() {}
// etc.

}

Figure 37–5 illustrates how the YourService application module with its custom
YourServiceImpl class is related to your framework extension class. At runtime, it
uses the YourServiceImpl class which inherits its base behavior from the
CustomAppModuleImpl framework extension class which, in turn, extends the base
ApplicationModuleImpl class.

Figure 37–5 Component with Custom Java Extending Customized Framework Base
Class

37.1.7 What You May Need to Know About Updating the Extends Clause in Custom
Component Java Files

If you have an ADF component with a custom Java class and later decide to base the
component on a framework extension class, use the Class Extends button on the Java
page of the component’s overview editor to change the component's base class. Doing
this updates the component's XML component definition to reflect the new base class,
and also modifies the extends clause in the component's custom Java class. If you
manually update the extends clause without using the component editor, the
component's XML component definition will not reflect the new inheritance and the
next time you open the editor, your manually modified extends clause will be
overwritten with what the component editor believes is the correct component base
class.

37.2 Creating a Layer of Framework Extensions
Before you begin to develop application-specific business components, Oracle
recommends that you consider creating a complete layer of framework extension
classes and setting up your project-level preferences to use that layer by default. You
might not have any custom code in mind to put in these framework extension classes
yet, but you will be glad you heeded this recommendation the first time you encounter
a need to:

■ Add a generic feature that all your company's application modules require

■ Augment a built-in feature with some custom, generic processing

Creating a Layer of Framework Extensions

Advanced Business Components Techniques 37-9

■ Workaround a bug you encounter in a generic way

Failure to set up these preferences at the outset can present your team with a
substantial inconvenience if you discover mid-project that all of your entity objects, for
example, require a new generic feature, augmented built-in feature, or a generic bug
workaround. Putting a complete layer of framework classes in place at the start of
your project is an insurance policy against this inconvenience and the wasted time
related to dealing with it later in the project. JDeveloper will automatically use
framework classes when you create them.

37.2.1 How to Create Your Layer of Framework Extension Layer Classes
A common set of customized framework base classes in a package name of your own
choosing like com.yourcompany.adfextensions, each importing the
oracle.jbo.server.* package, would consist of the following classes:

■ public class CustomEntityImpl extends EntityImpl

■ public class CustomEntityDefImpl extends EntityDefImpl

■ public class CustomViewObjectImpl extends ViewObjectImpl

■ public class CustomViewRowImpl extends ViewRowImpl

■ public class CustomApplicationModuleImpl extends
ApplicationModuleImpl

■ public class CustomDBTransactionImpl extends
DBTransactionImpl2

■ public class CustomDatabaseTransactionFactory extends
DatabaseTransactionFactory

To make your framework extension layer classes easier to package as a reusable
library, create them in a separate project from the projects that use them.

For details about using the custom DBTransactionImpl class, see Section 37.8.5.2,
"Configuring an Application Module to Use a Custom Database Transaction Class."

For completeness, you may also want to create customized framework classes for the
following classes as well, note however that overriding anything in these classes
would be a fairly rare requirement.

■ public class CustomViewDefImpl extends ViewDefImpl

■ public class CustomEntityCache extends EntityCache

■ public class CustomApplicationModuleDefImpl extends
ApplicationModuleDefImpl

Note: For your convenience, the FrameworkExtensions project of
the AdvancedExamples workspace in the StandaloneExamples
module of the Fusion Order Demo application contains a set of these
classes. You can select the com.yourcompany.adfextensions
package in the Application Navigator and choose the Refactor >
Rename option from the context menu to change the package name of
all the classes to a name you prefer.

Creating a Layer of Framework Extensions

37-10 Fusion Developer's Guide for Oracle Application Development Framework

37.2.2 How to Package Your Framework Extension Layer in a JAR File
Use the Create Deployment Profile: JAR File dialog to create a JAR file containing the
classes in your framework extension layer. This is available in the New Gallery in the
General > Deployment Files category.

Give the deployment profile a name like FrameworkExtensions and click OK. By
default the JAR file will include all class files in the project. Since this is exactly what
you want, when the JAR Deployment Profile Properties dialog appears, you can just
click OK to finish.

Finally, to create the JAR file, right-click the project folder in the Application
Navigator and choose Deploy - YourProfileName - to JAR File on the context menu. A
Deployment tab appears in the JDeveloper Log window that should display feedback
like:

---- Deployment started. ---- Feb 14, 2008 1:42:39 PM
Running dependency analysis...
Wrote JAR file to ...\FrameworkExtensions\deploy\FrameworkExtensions.jar
Elapsed time for deployment: 2 seconds
---- Deployment finished. ---- Reb 14, 2008 1:42:41 PM

37.2.3 How to Create a Library Definition for Your Framework Extension JAR File
JDeveloper uses named libraries as a convenient way to organize the one or more JAR
files that comprise reusable component libraries.

To define a library for your framework extensions JAR file:
1. Choose Tools > Manage Libraries from the JDeveloper main menu.

2. In the Manage Libraries dialog, select the Libraries tab.

3. Select the User folder in the tree and click the New button.

4. In the Create Library dialog that appears, name the library "Framework Extension
Layer" and select the Class Path node and click Add Entry.

5. Use the Select Path Entry dialog that appears to select the
FrameworkExtensions.jar file that contains the class files for the framework
extension components, then click Select.

6. Select the Source Path node and click Add Entry.

7. Use the Select Path Entry dialog that appears to select the
..\FrameworkExtensions\src directory where the source files for the
framework extension classes reside, then click Select.

8. Click OK to dismiss the Create Library dialog and define the new library.

When finished, you will see your new "Framework Extension Layer" user-defined
library, as shown in Figure 37–6. You can then add this library to the library list of any
project where you will be building business services, and your custom framework

Note: Do not use the ADF Library JAR archive type to package your
framework extension layer. You create the ADF Library JAR file when
you want to package reusable components to share in the JDeveloper
Resource Catalog. For details about working with ADF components
and the ADF Library JAR archive type, see Section 33.2, "Packaging a
Reusable ADF Component into an ADF Library."

Customizing Framework Behavior with Extension Classes

Advanced Business Components Techniques 37-11

extension classes will be available to reference as the preferred component base
classes.

Figure 37–6 New User-Defined Library for Your Framework Extensions Layer

37.3 Customizing Framework Behavior with Extension Classes
One of the common tasks you'll perform in your framework extension classes is
implementing custom application functionality. Since framework extension code is
written to be used by all components of a specific type, the code you write in these
classes often needs to work with component attributes in a generic way. To address
this need, ADF provides API's that allow you to access component metadata at
runtime. It also provides the ability to associate custom metadata properties with any
component or attribute. You can write your generic framework extension code to
leverage runtime metadata and custom properties to build generic functionality,
which if necessary, only is used in the presence of certain custom properties.

37.3.1 How to Access Runtime Metadata For View Objects and Entity Objects
Figure 37–7 illustrates the three primary interfaces ADF provides for accessing
runtime metadata about view objects and entity objects. The ViewObject interface
extends the StructureDef interface. The class representing the entity definition
(EntityDefImpl) also implements this interface. As its name implies, the
StructureDef defines the structure and the component and provides access to a
collection of AttributeDef objects that offer runtime metadata about each attribute
in the view object row or entity row. Using an AttributeDef, you can access its
companion AttributeHints object to reference hints like the display label, format
mask, tooltip, etc.

Note: The example in this section refers to the
ProgrammaticallySetProperties project of the
AdvancedExamples application workspace in the
StandaloneExamples module of the Fusion Order Demo
application.

Customizing Framework Behavior with Extension Classes

37-12 Fusion Developer's Guide for Oracle Application Development Framework

Figure 37–7 Runtime Metadata Available for View Objects and Entity Objects

37.3.2 How to Implement Generic Functionality Using Runtime Metadata
In Section 6.4.1, "ViewObject Interface Methods for Working with the View Object’s
Default RowSet" you learned that for read-only view objects the findByKey()
method and the setCurrentRowWithKey builtin operation only work if you
override the create() method on the view object to call
setManageRowsByKey(true). This can be a tedious detail to remember if you
create a lot of read-only view objects, so it is a great candidate for automating in a
framework extension class for view objects.

Assume a FrameworkExtensions project contains a FODViewObjectImpl class
that is the base class for all view objects in the application. This framework extension
class for view objects extends the base ViewObjectImpl class and overrides the
create() method as shown in Example 37–5 to automate this task. After calling the
super.create() to perform the default framework functionality when a view object
instance is created at runtime, the code tests whether the view object is a read-only
view object with at least one attribute marked as a key attribute. If this is the case, it
invokes setManageRowsByKey(true).

The isReadOnlyNonEntitySQLViewWithAtLeastOneKeyAttribute() helper
method determines whether the view object is read-only by testing the combination of
the following conditions:

■ isFullSql() is true

This method returns true if the view object's SQL query is completely specified by
the developer, as opposed to having the select list derived automatically based on
the participating entity usages.

■ getEntityDefs() is null

This method returns an array of EntityDefImpl objects representing the view
object's entity usages. If it returns null, then the view object has no entity usages.

It goes on to determine whether the view object has any key attributes by looping over
the AttributeDef array returned by the getAttributeDefs() method. If the
isPrimaryKey() method returns true for any attribute definition in the list, then you
know the view object has a key.

Example 37–5 Automating Setting Manage Rows By Key

public class FODViewObjectImpl extends ViewObjectImpl {
protected void create() {
super.create();
if (isReadOnlyNonEntitySQLViewWithAtLeastOneKeyAttribute()) {

Customizing Framework Behavior with Extension Classes

Advanced Business Components Techniques 37-13

setManageRowsByKey(true);
}

}
boolean isReadOnlyNonEntitySQLViewWithAtLeastOneKeyAttribute() {
if (getViewDef().isFullSql() && getEntityDefs() == null) {
for (AttributeDef attrDef : getAttributeDefs()) {
if (attrDef.isPrimaryKey()) {
return true;

}
}

}
return false;

}
// etc.

}

37.3.3 How to Implement Generic Functionality Driven by Custom Properties
In JDeveloper, when you create application modules, view objects, and entity objects
you can select the General navigation tab in the overview editor for these business
components and expand the Custom Properties section to define custom metadata
properties for any component. These are name/value pairs that you can use to
communicate additional declarative information about the component to the generic
code that you write in framework extension classes. You can use the getProperty()
method in your code to conditionalize generic functionality based on the presence of,
or the specific value of, one of these custom metadata properties.

For example, the FODViewObjectImpl framework extension class overrides the view
object's insertRow() method as shown in Example 37–6 to conditionally force a row
to be inserted and to appear as the last row in the row set. If any view object extending
this framework extension class defines a custom metadata property named
InsertNewRowsAtEnd, then this generic code executes to insert new rows at the end.
If a view object does not define this property, it will have the default insertRow()
behavior.

Example 37–6 Conditionally Inserting New Rows at the End of a View Object's Default
RowSet

public class FODViewObjectImpl extends ViewObjectImpl {
private static final String INSERT_NEW_ROWS_AT_END = "InsertNewRowsAtEnd";
public void insertRow(Row row) {
super.insertRow(row);
if (getProperty(INSERT_NEW_ROWS_AT_END) != null) {
row.removeAndRetain();
last();
next();
getDefaultRowSet().insertRow(row);

}
}
// etc.

}

In addition to defining component-level custom properties, you can also define
properties on view object attributes, entity object attributes, and domains. At runtime,
you access them using the getProperty() method on the AttributeDef interface
for a given attribute.

Creating Generic Extension Interfaces

37-14 Fusion Developer's Guide for Oracle Application Development Framework

37.3.4 How to Configure Design Time Custom Property Names
Once you have written framework extension classes that depend on custom
properties, you can set a JDeveloper preference so that your custom property names
show in the list on the Custom Properties section of the corresponding component
editor. To set up these pre-defined custom property names, choose Tools > Preferences
from the JDeveloper main menu and open the Business Components > Property
Names tab in the Preferences dialog.

37.3.5 What You May Need to Know About the Kinds of Attributes
In addition to providing information about an attribute’s name, Java type, SQL type,
and many other useful pieces of information, the AttributeDef interface contains
the getAttributeKind() method that you can use to determine the kind of
attribute it represents. This method returns a byte value corresponding to one of the
public constants in the AttributeDef interface listed in Table 37–1.

37.3.6 What You May Need to Know About Custom Properties
You may find it handy to programmatically set custom property values at runtime.
While the setProperty() API to perform this function is by design not available to
clients on the ViewObject, ApplicationModule, or AttributeDef interfaces in
the oracle.jbo package, code you write inside your ADF components' custom Java
classes can use it.

37.4 Creating Generic Extension Interfaces
In addition to creating framework extension classes, you can create custom interfaces
that all of your components can implement by default. The client interface is very
useful for exposing methods from your application module that might be invoked by
UI clients, for example. This section considers an example for an application module,
however, the same functionality is possible for a custom extended view object and
view row interface as well. For more information about client interfaces, see also
Section 9.9, "Publishing Custom Service Methods to UI Clients" and Section 9.10,
"Working Programmatically with an Application Module's Client Interface."

Assume that you have a CustomApplicationModuleImpl class that extends
ApplicationModuleImpl and that you want to expose two custom methods like
this:

public void doFeatureOne(String arg);
public int anotherFeature(String arg);

Table 37–1 Entity Object and View Object Attribute Kinds

Public AttributeDef Constant Attribute Kind Description

ATTR_PERSISTENT Persistent attribute

ATTR_TRANSIENT Transient attribute

ATTR_ENTITY_DERIVED View object attribute mapped to an entity-level
transient attribute

ATTR_SQL_DERIVED SQL-Calculated attribute

ATTR_DYNAMIC Dynamic attribute

ATTR_ASSOCIATED_ROWITERATOR Accessor attribute returning a RowSet of set of zero
or more Rows

ATTR_ASSOCIATED_ROW Accessor attribute returning a single Row

Creating Generic Extension Interfaces

Advanced Business Components Techniques 37-15

Perform the following steps to create a custom extension interface
CustomApplicationModule and have your CustomApplicationModuleImpl
class implement it.

1. Create a custom interface that contains the methods you would like to expose
globally on your application module components. For this scenario, that interface
would look like this:

package devguide.advanced.customintf.fwkext;
/**
* NOTE: This does not extend the
* ==== oracle.jbo.ApplicationModule interface.
*/
public interface CustomApplicationModule {
public void doFeatureOne(String arg);
public int anotherFeature(String arg);

}

Notice that the interface does not extend the oracle.jbo.ApplicationModule
interface.

2. Modify your CustomApplicationModuleImpl application module framework
extension class to implement this new CustomApplicationModule interface.

package devguide.advanced.customintf.fwkext;
import oracle.jbo.server.ApplicationModuleImpl;
public class CustomApplicationModuleImpl

extends ApplicationModuleImpl
implements CustomApplicationModule {

public void doFeatureOne(String arg) {
System.out.println(arg);

}
public int anotherFeature(String arg) {
return arg == null ? 0 : arg.length();

}
}

3. Rebuild your project.

The ADF wizards will only "see" your interfaces after they have been successfully
compiled.

After your have implemented your CustomApplicationModuleImpl class, you can
create a new application module which exposes the global extension interface and is
based on your custom framework extension class. For this purpose you use the
overview editor for application modules.

To create a custom application module interface:
1. In the Application Navigator, double-click the application module for which you

want to create the custom interface.

For example, you might create a new ProductModule application module which
exposes the global extension interface CustomApplicationModule and is based
on the CustomApplicationModuleImpl framework extension class.

2. In the overview editor, select the Java navigation tab and click the Edit Java
options icon.

The Java Classes page should show an existing Java class for the application
module identified as Application Module Class.

Creating Generic Extension Interfaces

37-16 Fusion Developer's Guide for Oracle Application Development Framework

By default, JDeveloper generates the Java class for application modules you create.
However, if you disabled this feature, click the Edit Java options button in the
Java Classes section and select Generate Application Module Class. Click OK to
add a Java class to the project from which you will create the custom interface.

3. In the Select Java Options dialog, click Class Extends.

4. In the Override Base Classes dialog, specify the name of the framework base class
you want to override and click OK.

For example, you might select CustomApplicationModuleImpl as the base
class for the application module.

5. In the Java Classes page of the overview editor, expand the Client Interface
section and click the Edit application module client interface button.

6. In the Edit Client Interface dialog, click the Interfaces button.

7. In the Select Interfaces to Extend dialog, select the desired custom application
module interface from the available list and click OK.

For example, you might shuttle the CustomApplicationModule interface to the
Selected list to be one of the custom interfaces that clients can use with your
component.

8. In the Edit Client Interfaces dialog, ensure that at least one method appears in the
Selected list.

9. Click OK.

The Java Classes page displays the new custom interface for the application
module identified as Application Module Client Interface.

When you dismiss the Edit Client Interfaces dialog and return to the application
module overview editor, JDeveloper generates the application module custom
interface. For example, the custom interface ProductModule automatically extends
both the base ApplicationModule interface and your
CustomApplicationModule extension interface like this:

package devguide.advanced.customintf.common;
import devguide.advanced.customintf.fwkext.CustomApplicationModule;

import oracle.jbo.ApplicationModule;
// ---
// --- File generated by Oracle ADF Business Components Design Time.
// ---
public interface ProductModule

extends CustomApplicationModule, ApplicationModule {
void doSomethingProductRelated();

}

Once you've done this, then client code can cast your ProductModule application
module to a CustomApplicationModule interface and invoke the generic extension
methods it contains in a strongly-typed way.

Note: You need to select at least one method in the Selected list in
the Edit Client Interfaces dialog, even if it means redundantly
selecting one of the methods on the global extension interface. Any
method will do in order to get JDeveloper to generate the custom
interface.

Invoking Stored Procedures and Functions

Advanced Business Components Techniques 37-17

37.5 Invoking Stored Procedures and Functions
You can write code in the custom Java classes for your business components to invoke
database stored procedures and functions. Here you'll consider some simple examples
based on procedures and functions in a PL/SQL package; however, using the same
techniques, you also can invoke procedures and functions that are not part of a
package.

Consider the PL/SQL package shown in Example 37–7.

Example 37–7 PL/SQL Package with Example Procedures

create or replace package devguidepkg as
procedure proc_with_no_args;
procedure proc_with_three_args(n number, d date, v varchar2);
function func_with_three_args(n number, d date, v varchar2) return varchar2;
procedure proc_with_out_args(n number, d out date, v in out varchar2);

end devguidepkg;

The following sections explain how to invoke each of the example procedures and
functions in this package.

37.5.1 How to Invoke Stored Procedures with No Arguments
If you need to invoke a stored procedure that takes no arguments, you can use the
executeCommand() method on the DBTransaction interface (in the
oracle.jbo.server package as shown in Example 37–8.

Example 37–8 Executing a Stored Procedure with No Arguments

// In StoredProcTestModuleImpl.java
public void callProcWithNoArgs() {
getDBTransaction().executeCommand(
"begin devguidepkg.proc_with_no_args; end;");

}

37.5.2 How to Invoke Stored Procedure with Only IN Arguments
Invoking stored procedures that accept only IN-mode arguments — which is the
default PL/SQL parameter mode if not specified — requires using a JDBC
PreparedStatement object. The DBTransaction interface provides a
createPreparedStatement() method to create this object for you in the context of
the current database connection. You could use a helper method like the one shown in
Example 37–9 to simplify the job of invoking a stored procedure of this kind using a
PreparedStatement. Importantly, by using a helper method, you can encapsulate

Note: The basic steps are the same for exposing methods on a
ViewObjectImpl framework extension class, as well as for a
ViewRowImpl extension class.

Note: The example in this section refers to the
StoredProcedureInvocation project of the AdvancedExamples
application workspace in the StandaloneExamples module of the
Fusion Order Demo application.

Invoking Stored Procedures and Functions

37-18 Fusion Developer's Guide for Oracle Application Development Framework

the code that closes the JDBC PreparedStatement after executing it. The code
performs the following basic tasks:

1. Creates a JDBC PreparedStatement for the statement passed in, wrapping it in
a PL/SQL begin...end block.

2. Loops over values for the bind variables passed in, if any.

3. Sets the value of each bind variable in the statement.

Notice that since JDBC bind variable API's use one-based numbering, the code
adds one to the zero-based for loop index variable to account for this.

4. Executes the statement.

5. Closes the statement.

Example 37–9 Helper Method to Simplify Invoking Stored Procedures with Only IN
Arguments

protected void callStoredProcedure(String stmt, Object[] bindVars) {
PreparedStatement st = null;
try {
// 1. Create a JDBC PreparedStatement for
st = getDBTransaction().createPreparedStatement("begin "+stmt+";end;",0);
if (bindVars != null) {
// 2. Loop over values for the bind variables passed in, if any
for (int z = 0; z < bindVars.length; z++) {
// 3. Set the value of each bind variable in the statement
st.setObject(z + 1, bindVars[z]);

}
}
// 4. Execute the statement
st.executeUpdate();

}
catch (SQLException e) {
throw new JboException(e);

}
finally {
if (st != null) {
try {
// 5. Close the statement
st.close();

}
catch (SQLException e) {}

}
}

}

With a helper method like this in place, calling the proc_with_three_args
procedure shown in Example 37–7 would look like this:

// In StoredProcTestModuleImpl.java
public void callProcWithThreeArgs(Number n, Date d, String v) {
callStoredProcedure("devguidepkg.proc_with_three_args(?,?,?)",

new Object[]{n,d,v});
}

Notice the question marks used as JDBC bind variable placeholders for the arguments
passed to the function. JDBC also supports using named bind variables, but using
these simpler positional bind variables is also fine since the helper method is just
setting the bind variable values positionally.

Invoking Stored Procedures and Functions

Advanced Business Components Techniques 37-19

37.5.3 How to Invoke Stored Function with Only IN Arguments
Invoking stored functions that accept only IN-mode arguments requires using a JDBC
CallableStatement object in order to access the value of the function result after
executing the statement. The DBTransaction interface provides a
createCallableStatement() method to create this object for you in the context of
the current database connection. You could use a helper method like the one shown in
Example 37–10 to simplify the job of invoking a stored function of this kind using a
CallableStatement. The helper method encapsulates both the creation and clean
up of the JDBC statement being used.

The code performs the following basic tasks:

1. Creates a JDBC CallableStatement for the statement passed in, wrapping it in
a PL/SQL begin...end block.

2. Registers the first bind variable for the function return value.

3. Loops over values for the bind variables passed in, if any.

4. Sets the value of each bind user-supplied bind variable in the statement.

Notice that since JDBC bind variable API's use one-based numbering, and since
the function return value is already the first bind variable in the statement, the
code adds two to the zero-based for loop index variable to account for these.

5. Executes the statement.

6. Returns the value of the first bind variable.

7. Closes the statement.

Example 37–10 Helper Method to Simplify Invoking Stored Functions with Only IN
Arguments

// Some constants
public static int NUMBER = Types.NUMERIC;
public static int DATE = Types.DATE;
public static int VARCHAR2 = Types.VARCHAR;

protected Object callStoredFunction(int sqlReturnType, String stmt,
Object[] bindVars) {

CallableStatement st = null;
try {
// 1. Create a JDBC CallabledStatement
st = getDBTransaction().createCallableStatement(

"begin ? := "+stmt+";end;",0);
// 2. Register the first bind variable for the return value
st.registerOutParameter(1, sqlReturnType);
if (bindVars != null) {
// 3. Loop over values for the bind variables passed in, if any
for (int z = 0; z < bindVars.length; z++) {
// 4. Set the value of user-supplied bind vars in the stmt
st.setObject(z + 2, bindVars[z]);

}
}
// 5. Set the value of user-supplied bind vars in the stmt
st.executeUpdate();
// 6. Return the value of the first bind variable
return st.getObject(1);

}
catch (SQLException e) {
throw new JboException(e);

Invoking Stored Procedures and Functions

37-20 Fusion Developer's Guide for Oracle Application Development Framework

}
finally {
if (st != null) {
try {
// 7. Close the statement
st.close();

}
catch (SQLException e) {}

}
}

}

With a helper method like this in place, calling the func_with_three_args
procedure shown in Example 37–7 would look like this:

// In StoredProcTestModuleImpl.java
public String callFuncWithThreeArgs(Number n, Date d, String v) {
return (String)callStoredFunction(VARCHAR2,

"devguidepkg.func_with_three_args(?,?,?)",
new Object[]{n,d,v});

}

Notice the question marks are used as JDBC bind variable placeholders for the
arguments passed to the function. JDBC also supports using named bind variables, but
using these simpler positional bind variables is also fine since the helper method is just
setting the bind variable values positionally.

37.5.4 How to Call Other Types of Stored Procedures
Calling a stored procedure or function like devguidepkg.proc_with_out_args
that includes arguments of OUT or IN OUT mode requires using a
CallableStatement as in the previous section, but is a little more challenging to
generalize into a helper method. Example 37–11 illustrates the JDBC code necessary to
invoke the devguidepkg.proc_with_out_args procedure.

The code performs the following basic tasks:

1. Defines a PL/SQL block for the statement to invoke.

2. Creates the CallableStatement for the PL/SQL block.

3. Registers the positions and types of the OUT parameters.

4. Sets the bind values of the IN parameters.

5. Executes the statement.

6. Creates a JavaBean to hold the multiple return values

The DateAndStringBean class contains bean properties named dateVal and
stringVal.

7. Sets the value of its dateVal property using the first OUT param.

8. Sets value of its stringVal property using second OUT param.

9. Returns the result.

10. Closes the JDBC CallableStatement.

Example 37–11 Calling a Stored Procedure with Multiple OUT Arguments

public Date callProcWithOutArgs(Number n, String v) {
CallableStatement st = null;

Invoking Stored Procedures and Functions

Advanced Business Components Techniques 37-21

try {
// 1. Define the PL/SQL block for the statement to invoke
String stmt = "begin devguidepkg.proc_with_out_args(?,?,?); end;";
// 2. Create the CallableStatement for the PL/SQL block
st = getDBTransaction().createCallableStatement(stmt,0);
// 3. Register the positions and types of the OUT parameters
st.registerOutParameter(2,Types.DATE);
st.registerOutParameter(3,Types.VARCHAR);
// 4. Set the bind values of the IN parameters
st.setObject(1,n);
st.setObject(3,v);
// 5. Execute the statement
st.executeUpdate();
// 6. Create a bean to hold the multiple return values
DateAndStringBean result = new DateAndStringBean();
// 7. Set value of dateValue property using first OUT param
result.setDateVal(new Date(st.getDate(2)));
// 8. Set value of stringValue property using 2nd OUT param
result.setStringVal(st.getString(3));
// 9. Return the result
return result;

} catch (SQLException e) {
throw new JboException(e);

} finally {
if (st != null) {
try {
// 10. Close the JDBC CallableStatement
st.close();

}
catch (SQLException e) {}

}
}

}

The DateAndString bean used in Example 37–11 is a simple JavaBean with two bean
properties like this:

package devguide.advanced.storedproc;
import java.io.Serializable;
import oracle.jbo.domain.Date;
public class DateAndStringBean implements Serializable {
Date dateVal;
String stringVal;
public void setDateVal(Date dateVal) {this.dateVal=dateVal;}
public Date getDateVal() {return dateVal;}
public void setStringVal(String stringVal) {this.stringVal=stringVal;}
public String getStringVal() {return stringVal;}

}

Note: In order to allow the custom method to be a legal candidate
for inclusion in an application module's custom service interface (if
desired), the bean needs to implement the java.io.Serializable.
interface. Since this is a "marker" interface, this involves simply
adding the implements Serializable keywords without needing
to code the implementation of any interface methods.

Accessing the Current Database Transaction

37-22 Fusion Developer's Guide for Oracle Application Development Framework

37.6 Accessing the Current Database Transaction
Since the ADF Business Components components abstract all of the lower-level
database programming details for you, you typically won't need direct access to the
JDBC Connection object. Unless you use the reserved release mode described in
Section 40.2.2.3.3, "About Reserved Release Level," there is no guarantee at runtime
that your application will use the exact same application module instance or JDBC
Connection instance across different web page requests. Since inadvertently holding
a reference to the JDBC Connection object in this type of pooled services environment
can cause unpredictable behavior at runtime, by design, the ADF Business
Components layer has no direct API to obtain the JDBC Connection. This is an
intentional attempt to discourage its direct use and inadvertent abuse.

However, on occasion it may come in handy when you're trying to integrate
third-party code with ADF Business Components, so you can use a helper method like
the one shown in Example 37–12 to access the connection.

Example 37–12 Helper Method to Access the Current JDBC Connection

/**
* Put this method in your XXXXImpl.java class where you need
* to access the current JDBC connection
*/
private Connection getCurrentConnection() throws SQLException {
/* Note that we never execute this statement, so no commit really happens */
PreparedStatement st = getDBTransaction().createPreparedStatement("commit",1);
Connection conn = st.getConnection();
st.close();
return conn;
}

37.7 Working with Libraries of Reusable Business Components
As with other Java components, you can create a JAR file containing one of more
packages of reusable ADF components. Then, in other projects you can import one or
more packages of components from this component library to reference those in a new
application.

37.7.1 How To Create a Reusable Library of Business Components
Use the Create Business Components Archive Profile dialog to create a JAR file
containing the Java classes and XML component definitions that comprise your
business components library. This is available in the New Gallery in the General >
Deployment Profiles category.

Caution: Never cache the JDBC connection obtained using the helper
method from Example 37–12 in your own code anywhere. Instead, call
the helper method each time you need it to avoid inadvertently
holding a reference to a JDBC Connection that might be used in
another request by another user at a later time do to the pooled
services nature of the ADF runtime environment.

Note: If you don't see the Deployment Profiles category in the New
Gallery, set the Filter By dropdown list at the top of the dialog to the
All Technologies choice to make it visible.

Working with Libraries of Reusable Business Components

Advanced Business Components Techniques 37-23

Give the deployment profile a name like ReusableComponents and click OK. As the
Project Properties dialog shows in Figure 37–8, the ReusableComponents business
components deployment archive profile contains two nested JAR deployment profiles:

■ Common.deploy

■ MiddleTier.deploy

These two nested profiles are standard JAR deployment profiles that are
pre-configured to bundle:

■ All of the business components custom java classes and XML component
definitions into a ReusableComponentsCSMT.jar archive

■ All of the client interfaces, message bundle classes, and custom domains into a
ReusableComponentsCSCommon.jar

They are partitioned this way in order to simplify deployment of ADF Business
Components-based applications. The *CSMT.jar is an archive of components
designed to be deployed only on the middle tier application server. The
*CSCommon.jar is common both to the application server and to the remote client
tier in the deployment scenario when the client interacting with the application
module is running in a different physical server from the application module with
which it is working.

Figure 37–8 Business Components Archive Deployment Profile Contains Nested
Profiles

To create the JAR files, in the Application Navigator right-click the Business
Components project folder and choose Deploy and the ReusableComponents
profile. A Deployment tab appears in the JDeveloper Log window that should display
feedback like:

---- Deployment started. ---- Apr 28, 2009 7:04:02 PM
Running dependency analysis...
Wrote JAR file to ...\ReuseableComponents\deploy\ReuseableComponentsCSMT.jar
Running dependency analysis...

Working with Libraries of Reusable Business Components

37-24 Fusion Developer's Guide for Oracle Application Development Framework

Wrote JAR file to ...\ReuseableComponents\deploy\ReuseableComponentsCSCommon.jar
Elapsed time for deployment: less than one second
---- Deployment finished. ---- Apr 28, 2009 7:04:02 PM

37.7.2 How To Import a Package of Reusable Components from a Library
Once you have created a reusable library of business components, you can import one
or more packages of components from that library in other projects to reference them.
When you import a package of business components from a library, the components in
that package are available in the various Available lists of the ADF Business
Components component wizards and editor, however they do not display in the
Application Navigator nor are they editable. The only components that appear in the
Application Navigator are the ones in the source path for the current project.

To import a package of business components from a library:
1. Define a library for your JAR file on the Libraries tab of the Project Properties

dialog of the importing project.

You can define the library as a project-level library or a user-level library. Be sure
to include both the *CSMT.jar and the *CSCommon.jar in the class path of the
library definition.

2. Include the new library in your importing project's library list.

3. With the importing project selected in the Application Navigator, choose Import
from the File menu.

4. In the Import dialog, select Business Components from the list.

5. Use the file open dialog to navigate into your library's *CSMT.jar file — as if it
were a directory — and select the XML component definition file from any
components in the package whose components you want to import.

6. Acknowledge the alert that confirms the successful importing of the package.

7. Repeat steps 3-6 again for each package of components you want to import.

Assuming that there was an entity object like Product in the package(s) of
components you imported, you could then create a new view object in the importing
project using the imported Product component as its entity usage. This is just one
example. You can reference any of the imported components as if they were in the
source path of your project. The only difference is that you cannot edit the imported
components. In fact, the reusable component library JAR file might only contain the
XML component definition files and the Java *.class files for the components
without any source code.

Tip: If you require components that are editable and display in the
Application Navigator. Add additional business components from a
directory that is not currently part of your project's source path, then
open the Project Content page of the Project Properties dialog and
add the parent directory for these other components as one of the
directories in the Java Content list. In contrast to imported packages
of components, additional components added to your project's source
path will be fully editable and will appear in the Application
Navigator.

Working with Libraries of Reusable Business Components

Advanced Business Components Techniques 37-25

37.7.3 How to Remove an Imported Package from a Project
If you mistakenly import a package of components, or wish to remove an imported
package of components that you are not using, you can use the Project Properties
dialog to do this.

To unimport a package:
1. In the Application Navigator, right-click the model project that contains the

package you want to unimport and choose Project Properties.

2. In the Project Properties dialog, select Business Components > Imports.

3. Select the project from the list of imported projects and click Delete.

4. Click OK to save the changes to the workspace in JDeveloper.

37.7.4 What Happens When You Import a Package of Reusable Components from a
Library

When you import a package of components into a project named
YourImportingProjectName, JDeveloper adds a reference to that package in the
YourImportingProjectName.jpx file in the root directory of your importing
project's source path. As part of this entry, it includes a design time project named _
LocationURL whose value points to the JAR file in which the imported components
reside.

37.7.5 What You May Need to Know About Imported Projects
Components in imported libraries are not editable. If a project imports a package
containing business components, the importing project cannot add new components to
that same package. The importing project can reference the imported components in
new components created in any other package, but cannot add new components to the
imported package

Additionally, if you make changes to your imported components and update the JAR
file that contains them, you need to close and reopen any importing projects in order
to pickup the changes. This does not require exiting out of JDeveloper. You can select
your importing project in the Application Navigator, choose Close from the File
menu, and then re-expand the project's nodes to close and reopen the project. When
you do this, JDeveloper will reread the components from the updated version of the
imported JAR file.

Caution: Do not remove an imported package if your project still has
components that reference it. If you do, JDeveloper will throw
exceptions when the project is opened, or your application may have
unpredictable behavior. In the Business Components: Imports page of
the Project Properties dialog, click the Show Usages button to ensure
that there are no references to any of the components in the imported
package before manually removing the package entry from the *.jpx
file.

Customizing Business Components Error Messages

37-26 Fusion Developer's Guide for Oracle Application Development Framework

37.8 Customizing Business Components Error Messages

You can customize any of the builtin ADF Business Components error messages by
providing an alternative message string for the error code in a custom message
bundle.

37.8.1 How to Customize Base ADF Business Components Error Messages
Assume you want to customize the builtin error message:

JBO-27014: Attribute Name is Product is required

If you have requested the Oracle Application Development Framework (Oracle ADF)
source code from Oracle Worldwide Support, you can look in the
CSMessageBundle.java file in the oracle.jbo package to see that this error
message is related to the combination of the following lines in that message bundle
file:

public class CSMessageBundle extends CheckedListResourceBundle {
// etc.
public static final String EXC_VAL_ATTR_MANDATORY = "27014";
// etc.
private static final Object[][] sMessageStrings = {
// etc.
{EXC_VAL_ATTR_MANDATORY, "Attribute {2} in {1} is required"},
// etc.

}
}

The numbered tokens {2} and {1} are error message placeholders. In this example
the {l} is replaced at runtime with the name of the entity object and the {2} with the
name of the attribute.

Note: The example in this section refers to the
CustomizedErrorMessages project of the AdvancedExamples
application workspace in the StandaloneExamples module of the
Fusion Order Demo application.

Note: For your convenience, the CustomizedErrorMessages
project in the AdvancedExamples workspace of the Fusion Order
Demo lets you test the custom message bundle sample described in
this section. Before you run the ProductModule, you will need to
run the addProductsTableConstraint.sql script to set up the
sample with the corresponding database constraint. When you run the
ProductModule application module in the Business Component
Browser, you can blank out the ProductId attribute and click the
Validate button. This will show the custom error message for the JBO
error. Rollback the change and then enter undefined in the
ProductName attribute. You can view the custom error message for
the database error by clicking Commit (clicking Validate won’t
perform a commit to the database, so the database error is not
generated in that case).

Customizing Business Components Error Messages

Advanced Business Components Techniques 37-27

To create a custom message bundle file:
1. In the Application Navigator, right-click the model project that you want to add

the message bundle file to and choose Project Properties.

2. In the Project Properties dialog, select Business Components > Options.

The Custom Message Bundles to use in this Project list displays at the bottom of
the dialog.

3. Click New.

4. Enter a name and package for the custom message bundle in the Create
MessageBundle class dialog and click OK.

Figure 37–9 Project Properties Displays Message Resource Bundles

5. Click OK to dismiss the Project Properties dialog and open the new custom
message bundle class in the source editor.

6. Edit the two-dimensional String array in the custom message bundle class to
contain any customized messages you'd like to use.

Example 37–13 illustrates a custom message bundle class that overrides the error
message string for the JBO-27014 error.

Example 37–13 Custom ADF Business Components Message Bundle

package devguide.advanced.customerrors;
import java.util.ListResourceBundle;

Note: If the fully-qualified name of your custom message bundle file
does not appear in the Custom Message Bundles to use in this
Project list, click the Remove button, then click the Add button to add
the new message bundle file created. When the custom message
bundle file is correctly registered, it's fully-qualified class name
should appear in the list, as shown in Figure 37–9.

Customizing Business Components Error Messages

37-28 Fusion Developer's Guide for Oracle Application Development Framework

public class CustomMessageBundle extends ListResourceBundle {
private static final Object[][] sMessageStrings
= new String[][] {

{"27014","You must provide a value for {2}"}
};

protected Object[][] getContents() {
return sMessageStrings;

}
}

37.8.2 What Happens When You Customize Base ADF Business Components Error
Messages

After adding this message to your custom message bundle file, if you test the
application using the Business Component Browser and try to blank out the value of a
mandatory attribute, you'll now see your custom error message instead of the default
one:

JBO-27014: You must provide a value for Name

You can add as many messages to the message bundle as you want. Any message
whose error code key matches one of the built-in error message codes will be used at
runtime instead of the default one in the oracle.jbo.CSMessageBundle message
bundle.

37.8.3 How to Display Customize Error Messages as Nested Exceptions
When you customize ADF Business Components error messages, you will also need to
customize the display of nested error messages. To accomplish this, you must create
and register a custom error handler class.

When your business method throws an error, the ADF binding layer intercepts the
error and invokes the registered custom error handler class. In general, the error
handler class is responsible for formatting the exception to be readable. During this
process, the default error handler DCErrorHandlerImpl normally skips the
top-level JboException, as this object is a wrapper over other business exceptions
and does not have any business significance.

Although skipping the top-level exception is the desired behavior in the case of ADF
Business Components errors, the default behavior will result in skipping the custom
message you set for replacing the SQLException. To avoid this situation, While
displaying each item in a nested exception, your custom error handler class must
override DCErrorHandlerImpl::skipException(Exception ex) to decide
whether to display the corresponding exception to the user in the final list or not.

Before you begin:
It may be helpful to have an understanding of application modules. For more
information, see Section 37.10, "Substituting Extended Components in a Delivered
Application."

You will need to complete this task:

Create the error message in the resource bundle, as described in Section 37.8.1,
"How to Customize Base ADF Business Components Error Messages."

To provide custom messages for SQLExceptions in your project:
1. Create an error handler class that extends the default error handler

DCErrorHandlerImpl interface provided by the ADF binding layer.

Customizing Business Components Error Messages

Advanced Business Components Techniques 37-29

2. In the error handler class, override the default error handler behavior for the
DCErrorHandlerImpl::skipException(Exception ex) method, as shown
in Example 37–14.

This overridden method is necessary to display each item in a nested exception,
such as the ones returned for database-level error messages. You must implement
logic to check for specifics exception types and, based on the business scenario,
determine whether to display it in the list.

3. You can then register the custom error handler in your project’s
DataBindings.cpx file, as described in Section 28.10, "Customizing Error
Handling."

Example 37–14 shows a custom implementation of the error handler that skips the
SQLIntegrityConstraintViolationException from displaying in the error
final list displayed to the user. You can choose to skip other database-level error
message resulting from errors, such as unique constraint violations or foreign key
constraint violations.

Example 37–14 DDL Statement Specifies Constraint Name

package view;

import java.sql.SQLIntegrityConstraintViolationException;

import oracle.adf.model.BindingContext;
import oracle.adf.model.RegionBinding;
import oracle.adf.model.binding.DCBindingContainer;
import oracle.adf.model.binding.DCErrorHandlerImpl;

import oracle.adf.model.binding.DCErrorMessage;

import oracle.jbo.DMLConstraintException;
import oracle.jbo.JboException;

public class CustomErrorHandler extends DCErrorHandlerImpl {

 public CustomErrorHandler() {
 super(false);
 }

 public CustomErrorHandler(boolean b) {
 super(b);
 }

 /**
 * If an exception is a RowValException or a TxnValException
 * and they have nested exceptions, then do not display
 * it.
 */
 @Override
 protected boolean skipException(Exception ex) {

 if (ex instanceof DMLConstraintException) {
 return false;
 } else if (ex instanceof SQLIntegrityConstraintViolationException) {
 return true;
 }
 return super.skipException(ex);
 }

Customizing Business Components Error Messages

37-30 Fusion Developer's Guide for Oracle Application Development Framework

)

37.8.4 How to Customize Error Messages for Database Constraint Violations
If you enforce constraints in the database, you might want to provide a custom error
message in your Fusion web application to display to the end user when one of those
constraints is violated. For example, assume a constraint called NAME_CANNOT_
BEGIN_WITH_U gets added to the application’s PRODUCTS_BASE table using the
following DDL statement shown in Example 37–15.

Example 37–15 DDL Statement Specifies Constraint Name

alter table products_base add (
constraint name_cannot_begin_with_u

check (upper(substr(product_name,1,1)) != 'U')
);

To define a custom error message in your application, you add a message to a custom
message bundle with the constraint name as the message key. Example 37–16 shows
the CustomMessageBundle.java class when it defines a message with the key
NAME_CANNOT_BEGIN_WITH_U which matches the name of the database constraint
name defined in Example 37–15.

Example 37–16 Customizing Error Message for Database Constraint Violation

package devguide.advanced.customerrors;
import java.util.ListResourceBundle;
public class CustomMessageBundle extends ListResourceBundle {
private static final Object[][] sMessageStrings
= new String[][] {

{"NAME_CANNOT_BEGIN_WITH_U",
"The name cannot begin with the letter u!"}

};
protected Object[][] getContents() {
return sMessageStrings;

}
}

37.8.5 How to Implement a Custom Constraint Error Handling Routine
If the default facility for assigning a custom message to a database constraint violation
does not meet your needs, you can implement your own custom constraint error
handling routine. Doing this requires creating a custom framework extension class for
the ADF transaction class, which you then configure your application module to use at
runtime.

37.8.5.1 Creating a Custom Database Transaction Framework Extension Class
To write a custom framework extension class for the ADF transaction, create a class
like the CustomDBTransactionImpl shown in Example 37–17. This example
overrides the transaction object's postChanges() method to wrap the call to
super.postChanges() with a try/catch block in order to perform custom
processing on any DMLConstraintException errors that might be thrown. In this
simple example, the only custom processing being performed is a call to
ex.setExceptions(null) to clear out any nested detail exceptions that the
DMLConstraintException might have. Instead of this, you could perform any
other kind of custom exception processing required by your application, including

Customizing Business Components Error Messages

Advanced Business Components Techniques 37-31

throwing a custom exception, provided your custom exception extends
JboException directly or indirectly.

Example 37–17 Custom Database Transaction Framework Extension Class

package devguide.advanced.customerrors;
import oracle.jbo.DMLConstraintException;
import oracle.jbo.server.DBTransactionImpl2;
import oracle.jbo.server.TransactionEvent;
public class CustomDBTransactionImpl extends DBTransactionImpl2 {
public void postChanges(TransactionEvent te) {
try {
super.postChanges(te);

}
/*
* Catch the DML constraint exception
* and perform custom error handling here
*/
catch (DMLConstraintException ex) {
ex.setExceptions(null);
throw ex;

}
}

}

37.8.5.2 Configuring an Application Module to Use a Custom Database Transaction
Class
In order for your application module to use a custom database transaction class at
runtime, you must:

1. Provide a custom implementation of the DatabaseTransactionFactory class
that overrides the create() method to return an instance of the customized
transaction class.

2. Configure the value of the TransactionFactory property to be the
fully-qualified name of this custom transaction factory class.

Example 37–18 shows a custom database transaction factory class that does this. It
returns a new instance of the CustomDBTransactionImpl class when the
framework calls the create() method on the database transaction factory.

Example 37–18 Custom Database Transaction Factory Class

package devguide.advanced.customerrors;
import oracle.jbo.server.DBTransactionImpl2;
import oracle.jbo.server.DatabaseTransactionFactory;
public class CustomDatabaseTransactionFactory

extends DatabaseTransactionFactory {
public CustomDatabaseTransactionFactory() {
}
/**
* Return an instance of our custom ToyStoreDBTransactionImpl class
* instead of the default implementation.
*
* @return instance of custom CustomDBTransactionImpl implementation.
*/
public DBTransactionImpl2 create() {
return new CustomDBTransactionImpl();

}
}

Creating Extended Components Using Inheritance

37-32 Fusion Developer's Guide for Oracle Application Development Framework

To complete the job, use the Properties tab of the Create Business Components
Configuration dialog to assign the value
devguide.advanced.customerrors.CustomDatabaseTransactionFactory
to the TransactionFactory property, as shown in Figure 37–10. You can open the
Create Business Components Configuration dialog from the Configuration page of the
overview editor for the application module by clicking the Create new configuration
objects button. When you run the application using this configuration, your custom
transaction class will be used.

Figure 37–10 ADF Business Components Can Use Custom Database Transaction Class

37.9 Creating Extended Components Using Inheritance
Whenever you create a new business component, if necessary, you can extend an
existing one to create a customized version of the original. As shown in Figure 37–11,
the ProductsByName view object extends the Products view object to add a named
bind variable named TheStatus and to customize the WHERE clause to reference that
bind variable.

Figure 37–11 ADF Business Components Can Extend Another Component

Creating Extended Components Using Inheritance

Advanced Business Components Techniques 37-33

While the figure shows a view object example, this component inheritance facility is
available for all component types. When one component extends another, the
extended component inherits all of the metadata and behavior from the parent it
extends. In the extended component, you can add new features or customize existing
features of its parent component both through metadata and Java code.

37.9.1 How To Create a Component That Extends Another
To create an extended component, use the component wizard in the New Gallery for
the type of component you want to create. For example, to create an extended view
object, you use the Create View Object wizard. On the Name page of the wizard — in
addition to specifying a name and a package for the new component — provide the
fully-qualified name of the component that you want to extend in the Extends field. To
pick the component name from a list, use the Browse button next to the Extends field.
Then, continue to create the extended component in the normal way using the
remaining panels of the wizard.

37.9.2 How To Extend a Component After Creation
After you define an extended component, JDeveloper lets you change the parent
component from which an extended component inherits. You can use the overview
editor for the component to accomplish this.

To change the parent component after creation:
1. Double-click the component.

2. In the overview editor for the component, click the General navigation tab and
click the Refactor object extends button next to the Extends field.

3. In the Select Parent dialog, choose the desired component to extend from the
package list.

To change the extended component to not inherit from any parent, select the None
checkbox in the Select Parent dialog. This has the same effect as if you deleted the
component and recreated to accomplish this.

37.9.3 What Happens When You Create a Component That Extends Another
ADF business components you create are comprised of an XML component definition
and an optional Java class. When you create a component that extends another,
JDeveloper reflects this component inheritance in both the XML component definition
and in any generated Java code for the extended component.

37.9.3.1 Understanding an Extended Component's XML Descriptor
JDeveloper notes the name of the parent component in the new component's XML
component definition by adding an Extends attribute to the root component element.
Any new declarative features you add or any aspects of the parent component's
definition you've overridden appear in the extended component's XML component
definition. In contrast, metadata that is purely inherited from the parent component is
not repeated for the extended component.

Note: The example in this section refers to the BaseProject project
of the AdvancedExamples workspace in the StandaloneExamples
module of the Fusion Order Demo application.

Creating Extended Components Using Inheritance

37-34 Fusion Developer's Guide for Oracle Application Development Framework

Example 37–19 shows what the ProductsByName.xml XML component definition
for the ProductsByName view object looks like. Notice the Extends attribute on the
<ViewObject> element, the <Variable> element related to the additional bind variable
added in the extended view object, and the overridden value of the Where attribute
for the WHERE clause that was modified to reference the theProductName bind
variable.

Example 37–19 Extended Component Reflects Parent in Its XML Descriptor

<ViewObject
xmlns="http://xmlns.oracle.com/bc4j"
Name="ProductsByName"
Extends="devguide.advanced.baseproject.extsub.Products"
Where="UPPER(PRODUCT_NAME) LIKE UPPER(:theProductName)||'%'"
BindingStyle="OracleName"
CustomQuery="false"
RowClass="devguide.advanced.baseproject.extsub.ProductsByNameRowImpl"
ComponentClass="devguide.advanced.baseproject.extsub.ProductsByNameImpl"

...
<Variable

Name="theProductName"
Kind="where"
Type="java.lang.String"/>

...
</ViewObject>

37.9.3.2 Understanding Java Code Generation for an Extended Component
If you enable custom Java code for an extended component, JDeveloper automatically
generates the Java classes to extend the respective Java classes of its parent component.
In this way, the extended component can override any aspect of the parent
component's programmatic behavior as necessary. If the parent component is an
XML-only component with no custom Java class of its own, the extended component's
Java class extends whatever base Java class the parent would use at runtime. This
could be the default ADF Business Components framework class in the
oracle.jbo.server package, or could be your own framework extension class if
you have specified that in the Extends dialog of the parent component.

In addition, if the extended component is an application module or view object and
you enable client interfaces on it, JDeveloper automatically generates the extended
component's client interfaces to extend the respective client interfaces of the parent
component. If the respective client interface of the parent component does not exist,
then the extended component's client interface directly extends the appropriate base
ADF Business Components interface in the oracle.jbo package.

37.9.4 What You May Need to Know

37.9.4.1 You Can Use Parent Classes and Interfaces to Work with Extended
Components
Since an extended component is a customized version of its parent, code you write
that works with the parent component's Java classes or its client interfaces works
without incident for either the parent component or any customized version of that
parent component.

Creating Extended Components Using Inheritance

Advanced Business Components Techniques 37-35

For example, assume you have a base Products view object with custom Java classes
and client interfaces like:

■ class ProductsImpl

■ row class ProductsRowImpl

■ interface Products

■ row interface ProductsRow

If you create a ProductsByName view object that extends Products, then you can
use the base component's classes and interface to work both with Products and
ProductsByName.

Example 37–20 illustrates a test client program that works with the Products,
ProductsRow, ProductsByName, and ProductsByNameRow client interfaces. A
few interesting things to note about the example are the following:

1. You can use parent Products interface for working with the ProductsByName
view object that extends it.

2. Alternatively, you can cast an instance of the ProductsByName view object to its
own more specific ProductsByName client interface.

3. You can test if row ProductsRow is actually an instance of the more specific
ProductsByNameRow before casting it and invoking a method specific to the
ProductsByNameRow interface.

Example 37–20 Working with Parent and Extended Components

package devguide.advanced.baseproject.extsub;
/* imports omitted */
public class TestClient {
public static void main(String[] args) {
String amDef = "devguide.advanced.baseproject.extsub.ProductModule";
String config = "ProductModuleLocal";
ApplicationModule am =
Configuration.createRootApplicationModule(amDef,config);
Products products = (Products)am.findViewObject("Products");
products.executeQuery();
ProductsRow product = (ProductsRow)products.first();
printAllAttributes(products,product);
testSomethingOnProductsRow(product);
// 1. You can use parent Products interface for ProductsByName
products = (Products)am.findViewObject("ProductsById");
// 2. Or cast it to its more specific ProductsByName interface
ProductsByName productsById = (ProductsByName)products;
productsById.setProductName("Ice");
productsById.executeQuery();
product = (ProductsRow)productsById.first();
printAllAttributes(productsById,product);
testSomethingOnProductsRow(product);
am.getTransaction().rollback();
Configuration.releaseRootApplicationModule(am,true);

}
private static void testSomethingOnProductsRow(ProductsRow product) {
try {
// 3. Test if row is a ProductsByNameRow before casting
if (product instanceof ProductsByNameRow) {
ProductsByNameRow productByName = (ProductsByNameRow)product;
productByName.someExtraFeature("Test");

}

Creating Extended Components Using Inheritance

37-36 Fusion Developer's Guide for Oracle Application Development Framework

product.setName("Q");
System.out.println("Setting the Name attribute to 'Q' succeeded.");

}
catch (ValidationException v) {
System.out.println(v.getLocalizedMessage());

}
}
private static void printAllAttributes(ViewObject vo, Row r) {
String viewObjName = vo.getName();
System.out.println("Printing attribute for a row in VO '"+

viewObjName+"'");
StructureDef def = r.getStructureDef();
StringBuilder sb = new StringBuilder();
int numAttrs = def.getAttributeCount();
AttributeDef[] attrDefs = def.getAttributeDefs();
for (int z = 0; z < numAttrs; z++) {
Object value = r.getAttribute(z);
sb.append(z > 0 ? " " : "")
.append(attrDefs[z].getName())
.append("=")
.append(value == null ? "<null>" : value)
.append(z < numAttrs - 1 ? "\n" : "");

}
System.out.println(sb.toString());

}
}

Running the test client produces the results shown in Example 37–21.

Example 37–21 Results of Running TestClient.java

Printing attribute for a row in VO 'Products'
ProdId=100
Name=Washing Machine W001
Checksum=I am the Product Class

Setting the Name attribute to 'Q' succeeded.
Printing attribute for a row in VO 'ProductsById'
ProdId=119
Name=Ice Maker I012
Checksum=I am the Product Class
SomeExtraAttr=SomeExtraAttrValue

Called someExtraFeature of ProductsByNameRowImpl
Setting the Name attribute to 'Q' succeeded.

37.9.4.2 Class Extends is Disabled for Extended Components
When you create an extended component, the Class Extends button on the Java page
of the extended component’s wizard is disabled. Additionally, in the application
module editor’s Java page, when you click Edit java options, the Class Extends button
in the Java dialog appears disabled. This is due to the fact that JDeveloper

Note: In this example, Products is an entity-based view object based
on the Product entity object. The Product entity object includes a
transient Checksum attribute that returns the string "I am the Product
class". You'll learn more about why this was included in the example
in Section 37.10, "Substituting Extended Components in a Delivered
Application."

Substituting Extended Components in a Delivered Application

Advanced Business Components Techniques 37-37

automatically extends the appropriate class of its parent component, so it does not
make sense to allow you to select a different class.

37.9.4.3 Interesting Aspects You Can Extend for Key Component Types

Entity Objects
When you create an extended entity object, you can introduce new attributes, new
associations, new validators, and new custom code. You can override certain
declarative aspects of existing attributes as well as overriding any method from the
parent component's class.

View Objects
When you create an extended view object, you can introduce new attributes, new view
links, new bind variables, and new custom code. You can override certain declarative
aspects of existing attributes as well as overriding any method from the parent
component's class.

Application Modules
When you create an extended application module, you can introduce new view object
instances or new nested application module instance and new custom code. You can
also override any method from the parent component's class.

37.9.4.4 Extended Components Have Attribute Indices Relative to Parent
If you add new attributes in an extended entity object or view object, the attribute
index numbers are computed relative to the parent component. For example, consider
the Products view object mentioned in Section 37.9.4.1, "You Can Use Parent Classes
and Interfaces to Work with Extended Components." If you enable a custom view row
class, it might have attribute index constants defined in the ProductsRowImpl.java
class like this:

public class ProductsRowImpl extends ViewRowImpl
implements ProductsRow {

public static final int PRODID = 0;
public static final int NAME = 1;
public static final int CHECKSUM = 2;
//etc.

}

When you create an extended view object like ProductsByName, if that view object
adds an addition attribute like SomeExtraAttr and has a custom view row class
enabled, then its attribute constants will be computed relative to the maximum value
of the attribute constants in the parent component:

public class ProductsByNameRowImpl extends ProductsRowImpl
implements ProductsByNameRow {

public static final int MAXATTRCONST =
ViewDefImpl.getMaxAttrConst("devguide.advanced.baseproject.extsub.Products");

public static final int SOMEEXTRAATTR = MAXATTRCONST;

Additional attributes would have index values of MAXATTRCONST+1,
MAXATTRCONST+2, etc.

37.10 Substituting Extended Components in a Delivered Application
If you deliver packaged applications that can require on-site customization for each
potential client of your solution, ADF Business Components offers a useful feature to
simplify that task.

Substituting Extended Components in a Delivered Application

37-38 Fusion Developer's Guide for Oracle Application Development Framework

All too often, on-site application customization is performed by making direct changes
to the source code of the delivered application. This approach demonstrates its
weaknesses whenever you deliver patches or new feature releases of your original
application to your clients. Any customizations they had been applied to the base
application's source code need to be painstakingly re-applied to the patched or
updated version of the base application. Not only does this render the application
customization a costly, ongoing maintenance expense, it can introduce subtle bugs due
to human errors that occur when reapplying previous customizations to new releases.

ADF Business Components offers a superior, component-based approach to support
application customization that doesn't require changing — or even having access to —
the base application's source code. To customize your delivered application, your
customers can:

1. Import one or more packages of components from the base application into a new
project.

2. Create new components to effect the application customization, extending
appropriate parent components from the base application as necessary.

3. Define a list of global component substitutions, naming their customized
components to substitute for your base application's appropriate parent
components.

When the customer runs your delivered application with a global component
substitution list defined, their customized application components are used by your
delivered application without changing any of its code. When you deliver a patched or
updated version of the original application, their component customizations apply to
the updated version the next time they restart the application without needing to
re-apply any customizations.

37.10.1 How To Substitute an Extended Component
To define global component substitutions, use the Project Properties dialog in the
project where you have created extended components based on the imported
components from the base application.

To substitute an extended component:
1. In the Application Navigator, right-click the model project that you want to add

the extended component to and choose Project Properties.

2. In the Project Properties dialog, select Business Components > Substitutions.

3. In the Substitutions page, select the base application's component in the Available
list.

4. Select the customized, extended component to substitute in the Substitute list.

Note: The example in this section refers to the BaseProject project
and the ExtendAndSubstitute project of the AdvancedExamples
workspace in the StandaloneExamples module of the Fusion Order
Demo application.

Note: You can only substitute a component in the base application
with an extended component that inherits directly or indirectly from
the base one.

Substituting Extended Components in a Delivered Application

Advanced Business Components Techniques 37-39

5. Click Add.

For example, assume that you have created the view object
CustomizedProducts in a package that extends the base view object Products.
To substitute the CustomizedProducts view object for the legacy Products
view object, you would select these view objects as shown in Figure 37–12 to
define the component substitution.

Figure 37–12 Defining Business Components Substitutions

37.10.2 What Happens When You Substitute
When you define a list of global component substitutions in a project named
YourExtendsAndSubstitutesProject, the substitution list is saved in the
YourExtendsAndSubstitutesProject.jpx in the root directory of the source
path.

The file will contain <Substitute> elements as shown in Example 37–22, one for each
component to be substituted.

Example 37–22 Component Substitution List Saved in the Project's JPX File

<JboProject
Name="ExtendAndSubstitute"
SeparateXMLFiles="true"
PackageName="" >
<Containee

Name="anotherpkg"
FullName="devguide.advanced.anotherpkg.anotherpkg"
ObjectType="JboPackage" >

</Containee>
<Containee

Name="extsub"
FullName="devguide.advanced.extsub"
ObjectType="JboPackage" >
<DesignTime>

<Attr Name="_LocationURL"
Value="../../BaseProject/deploy/BaseProjectCSMT.jar" />

</DesignTime>
</Containee>
<Substitutes>

<Substitute OldName="devguide.advanced.extsub.Product"
NewName="devguide.advanced.anotherpkg.CustomizedProduct" />

<Substitute OldName="devguide.advanced.extsub.Products"
NewName="devguide.advanced.anotherpkg.CustomizedProducts" />

Substituting Extended Components in a Delivered Application

37-40 Fusion Developer's Guide for Oracle Application Development Framework

</Substitutes>
</JboProject>

37.10.3 How to Enable the Substituted Components in the Base Application
To have the original application use the set of substituted components, define the Java
system property Factory-Substitution-List and set its value to the name of the
project whose *.jpx file contains the substitution list. The value should be just the
project name without any *.jpr or *.jpx extension.

Consider a simple example that customizes the Product entity object and the
Products view object described in Section 37.9.4.1, "You Can Use Parent Classes and
Interfaces to Work with Extended Components." To perform the customization,
assume you create new project named ExtendsAndSubstitutes that:

■ Defines a library for the JAR file containing the base components

■ Imports the package containing Product and Products

■ Creates new extended components in a distinct package name called
CustomizedProduct and CustomizedProducts

■ Defines a component substitution list to use the extended components.

When creating the extended components, assume that you:

■ Added an extra view attribute named ExtraViewAttribute to the
CustomizedProducts view object.

■ Added a new validation rule to the CustomizedProduct entity object to enforce
that the product name cannot be the letter "Q".

■ Overrode the getChecksum() method in the CustomizedProduct.java class
to return "I am the CustomizedProduct Class".

If you define the Factory-Substitution-List Java system property set to the
value ExtendsAndSubstitutes, then when you run the exact same test client class
shown in Example 37–20 the output of the sample will change to reflect the use of the
substituted components as shown in Example 37–23.

Example 37–23 Results of Running TestClient.java with System Property Set

Printing attribute for a row in VO 'Products'
ProdId=100
Name=Washing Machine W001
Checksum=I am the CustomizedProduct Class
ExtraViewAttribute=Extra Attr Value

The name cannot be Q!
Printing attribute for a row in VO 'ProductsById'
ProdId=119
Name=Ice Maker I012
Checksum=I am the CustomizedProduct Class
SomeExtraAttr=SomeExtraAttrValue

Called someExtraFeature of ProductsByNameRowImpl
The name cannot be Q!

Compared to the output from Example 37–20, notice that in the presence of the factory
substitution list, the Products view object in the original test program now has the
additional ExtraViewAttribute, now reports a Checksum attribute value of "I am
the CustomizedProduct Class", and now disallows the assignment of the product
name to have the value "Q". These component behavior changes were performed

Substituting Extended Components in a Delivered Application

Advanced Business Components Techniques 37-41

without needing to modify the original Java or XML source code of the delivered
components.

Substituting Extended Components in a Delivered Application

37-42 Fusion Developer's Guide for Oracle Application Development Framework

38

Advanced Entity Object Techniques 38-1

38Advanced Entity Object Techniques

This chapter describes advanced techniques for use in ADF entity objects in an ADF
Business Components data model project.

This chapter includes the following sections:

■ Section 38.1, "Creating Custom, Validated Data Types Using Domains"

■ Section 38.2, "Updating a Deleted Flag Instead of Deleting Rows"

■ Section 38.3, "Using Update Batching"

■ Section 38.4, "Advanced Entity Association Techniques"

■ Section 38.5, "Basing an Entity Object on a PL/SQL Package API"

■ Section 38.6, "Basing an Entity Object on a Join View or Remote DBLink"

■ Section 38.7, "Using Inheritance in Your Business Domain Layer"

■ Section 38.8, "Controlling Entity Posting Order to Avoid Constraint Violations"

■ Section 38.9, "Implementing Custom Validation Rules"

■ Section 38.10, "Creating New History Types"

38.1 Creating Custom, Validated Data Types Using Domains
When you find yourself repeating the same sanity-checking validations on the values
of similar attributes across multiple entity objects, you can save yourself time and
effort by creating your own data types that encapsulate this validation. For example,
imagine that across your business domain layer there are numerous entity object
attributes that store strings that represent email addresses. One technique you could
use to ensure that end users always enter a valid email address everywhere one
appears in your business domain layer is to:

■ Use a basic String data type for each of these attributes

■ Add an attribute-level method validator with Java code that ensures that the
String value has the format of a valid email address for each attribute

Note: To experiment with the examples in this chapter, use the
AdvancedEntityExamples workspace in the
StandaloneExamples module of the Fusion Order Demo
application, as described in Section 2.4.4, "Standalone Applications in
the AdvancedEntityExamples Application Workspace." For
information about how to obtain and install the Fusion Order Demo,
see Section 2.2, "Setting Up the Fusion Order Demo Application."

Creating Custom, Validated Data Types Using Domains

38-2 Fusion Developer's Guide for Oracle Application Development Framework

However, these approaches can become tedious quickly in a large application.
Fortunately, ADF Business Components offers an alternative that allows you to create
your own EmailAddress data type that represents an email address. After
centralizing all of the sanity-checking regarding email address values into this new
custom data type, you can use the EmailAddress as the type of every attribute in
your application that represents an email address. By doing this, you make the
intention of the attribute values more clear to other developers and simplify
application maintenance by putting the validation in a single place. ADF Business
Components calls these developer-created data types domains.

Domains are Java classes that extend the basic data types like String, Number, and
Date to add constructor-time validation to insure the candidate value passes relevant
sanity checks. They offer you a way to define custom data types with cross-cutting
behavior such as basic data type validation, formatting, and custom metadata
properties in a way that are inherited by any entity objects or view objects that use the
domain as the Java type of any of their attributes.

38.1.1 How to Create a Domain
To create a domain, use the Create Domain wizard. This is available in the New
Gallery in the ADF Business Components category.

To create a domain:
1. In the Application Navigator, right-click the project for which you want to create a

domain and choose New.

2. In the New Gallery, expand Business Tier, select ADF Business Components,
and then select Domain and click OK.

This launches the Create Domain wizard.

3. On the Name page, specify a name for the domain and a package in which it will
reside. To create a domain based on a simple Java type, leave Domain for an
Oracle Object Type unchecked.

4. Click Next.

5. On the Settings page, indicate the base type for the domain and the database
column type to which it will map. For example, if you were creating a domain
called ShortEmailAddress to hold eight-character short email addresses, you
would set the base type to String and the Database Column Type to
VARCHAR2(8). You can set other common attribute settings on this panel as well.

6. Click Finish to create your domain.

38.1.2 What Happens When You Create a Domain
When you create a domain, JDeveloper creates its XML component definition in the
subdirectory of your project's source path that corresponds to the package name you
chose. For example, if you created the ShortEmailAddress domain in the
devguide.advanced.domains package, JDeveloper would create the
ShortEmailAddress.xml file in the ./devguide/advanced/domains
subdirectory. A domain always has a corresponding Java class, which JDeveloper

Note: The example in this section refers to the SimpleDomains
project in the AdvancedEntityExamples application workspace in
the StandaloneExamples module of the Fusion Order Demo
application.

Creating Custom, Validated Data Types Using Domains

Advanced Entity Object Techniques 38-3

creates in the common subpackage of the package where the domain resides. This
means it would create the ShortEmailAddress.java class in the
devguide.advanced.domains.common package. The domain's Java class is
automatically generated with the appropriate code to behave in a way that is identical
to one of the built-in data types.

38.1.3 What You May Need to Know About Domains
The sections that follow describe some of the things you may need to know about
when working with domains.

38.1.3.1 Using Domains for Entity and View Object Attributes
After you've created a domain in a project, it appears among the list of available data
types in the Attribute Type dropdown list in the entity object and view object wizards
and dialogs. To use the domain as the type of a given attribute, just pick it from the
list.

38.1.3.2 Validate Method Should Throw DataCreationException If Sanity Checks
Fail
Typically, the only coding task you need to do for a domain is to write custom code
inside the generated validate() method. Your implementation of the validate()
method should perform your sanity checks on the candidate value being constructed,
and throw a DataCreationException in the oracle.jbo package if the validation
fails.

In order to throw an exception message that is translatable, you can create a message
bundle class similar to the one shown in Example 38–1. Create it in the same common
package as your domain classes themselves. The message bundle returns an array of
{MessageKeyString,TranslatableMessageString} pairs.

Example 38–1 Custom Message Bundle Class for Domain Exception Messages

package devguide.advanced.simpledomains.common;

import java.util.ListResourceBundle;

public class ErrorMessages extends ListResourceBundle {
public static final String INVALID_SHORTEMAIL = "30002";
public static final String INVALID_EVENNUMBER = "30003";
private static final Object[][] sMessageStrings = new String[][] {

{ INVALID_SHORTEMAIL,
"A valid short email address has no @-sign or dot."},

{ INVALID_EVENNUMBER,
"Number must be even."}

};

/**
* Return String Identifiers and corresponding Messages

Note: The entity-mapped attributes in an entity-based view object
inherit their data type from their corresponding underlying entity
object attribute, so if the entity attribute uses a domain type, so will
the matching view object attribute. For transient or SQL-derived view
object attributes, you can directly set the type to use a domain since it
is not inherited from any underlying entity.

Creating Custom, Validated Data Types Using Domains

38-4 Fusion Developer's Guide for Oracle Application Development Framework

* in a two-dimensional array.
*/

protected Object[][] getContents() {
return sMessageStrings;

}
}

38.1.3.3 String Domains Aggregate a String Value
Since String is a base JDK type, a domain based on a String aggregates a private
mData String member field to hold the value that the domain represents. Then, the
class implements the DomainInterface expected by the ADF runtime, as well as the
Serializable interface, so the domain can be used in method arguments or returns
types of ADF components custom client interfaces.

Example 38–2 shows the validate() method for a simple ShortEmailAddress
domain class. It tests to make sure that the mData value does not contains an at-sign or
a dot, and if it does, then the method throws DataCreationException referencing
an appropriate message bundle and message key for the translatable error message.

Example 38–2 Simple ShortEmailAddress String-Based Domain Type with Custom
Validation

public class ShortEmailAddress
extends Object implements DomainInterface, Serializable {

private String mData;
// . . .
/**Implements domain validation logic and throws a JboException on error. */
protected void validate() {
int atpos = mData.indexOf('@');
int dotpos = mData.lastIndexOf('.');
if (atpos > -1 || dotpos > -1) {
throw new DataCreationException(ErrorMessages.class,
ErrorMessages.INVALID_SHORTEMAIL,null,null);

}
}
// . . .

}

38.1.3.4 Other Domains Extend Existing Domain Type
Other simple domains based on a built-in type in the oracle.jbo.domain package
extend the base type as shown in Example 38–3. It illustrates the validate() method
for a simple Number-based domain called EvenNumber that represents even
numbers.

Example 38–3 Simple EvenNumber Number-Based Domain Type with Custom Validation

public class EvenNumber extends Number {
// . . .
/**
* Validates that value is an even number, or else
* throws a DataCreationException with a custom
* error message.
*/
protected void validate() {
if (getValue() % 2 == 1) {
throw new DataCreationException(ErrorMessages.class,
ErrorMessages.INVALID_EVENNUMBER,null,null);

}

Creating Custom, Validated Data Types Using Domains

Advanced Entity Object Techniques 38-5

}
// . . .

}

38.1.3.5 Simple Domains Are Immutable Java Classes
When you create a simple domain based on one of the basic data types, it is an
immutable class. This just means that once you've constructed a new instance of it like
this:

ShortEmailAddress email = new ShortEmailAddress("emailaddress1");

You cannot change its value. If you want to reference a different short email address,
you just construct another one:

ShortEmailAddress email = new ShortEmailAddress("emailaddress2");

This is not a new concept since it's the same way that String, Number, and Date
classes behave, among others.

38.1.3.6 Creating Domains for Oracle Object Types When Useful
The Oracle database supports the ability to create user-defined types in the database.
For example, you could create a type called POINT_TYPE using the following DDL
statement:

create type point_type as object (
x_coord number,
y_coord number

);

If you use user-defined types like POINT_TYPE, you can create domains based on
them, or you can reverse-engineer tables containing columns of object type to have
JDeveloper create the domain for you.

Manually Creating Oracle Object Type Domains
To create a domain yourself, perform the following steps in the Create Domain
wizard:

1. In the Application Navigator, right-click the project for which you want to create a
domain and choose New.

2. In the New Gallery, expand Business Tier, select ADF Business Components,
and then select Domain and click OK.

This launches the Create Domain wizard.

3. On the Name page, check the Domain for an Oracle Object Type checkbox, then
select the object type for which you want to create a domain from the Available
Types list.

4. Click Next.

5. On the Settings page, use the Attribute dropdown list to switch between the
multiple domain properties to adjust the settings as appropriate.

6. Click Finish to create the domain.

Reverse-Engineering Oracle Object Type Domains
In addition to manually creating object type domains, when you use the Business
Components from Tables wizard and select a table containing columns of an Oracle
object type, JDeveloper creates domains for those object types as part of the

Creating Custom, Validated Data Types Using Domains

38-6 Fusion Developer's Guide for Oracle Application Development Framework

reverse-engineering process. For example, imagine you created a table like this with a
column of type POINT_TYPE:

create table interesting_points(
id number primary key,
coordinates point_type,
description varchar2(20)

);

If you create an entity object for the INTERESTING_POINTS table in the Business
Components from Tables wizard, then you will get both an InterestingPoints
entity object and a PointType domain. The latter will have been automatically created,
based on the POINT_TYPE object type, since it was required as the data type of the
Coordinates attribute of the InterestingPoints entity object.

Unlike simple domains, object type domains are mutable. JDeveloper generates getter
and setter methods into the domain class for each of the elements in the object type's
structure. After changing any domain properties, when you set that domain as the
value of a view object or entity object attribute, it is treated as a single unit. ADF does
not track which domain properties have changed, only that a domain-valued attribute
value has changed.

38.1.3.7 Quickly Navigating to the Domain Class
After selecting a domain in the Application Navigator, you can quickly navigate to its
implementation class using one of the following methods:

■ In the Application Navigator, right-click the domain and choose Go to Domain
Class from the context menu.

■ In the Structure window, double-click the domain class.

38.1.3.8 Domains Get Packaged in the Common JAR
When you create a business components archive, as described in Section 37.7,
"Working with Libraries of Reusable Business Components," the domain classes and
message bundle files in the *.common subdirectories of your project's source path get
packaged into the *CSCommon.jar. They are classes that are common to both the
middle-tier application server and to an eventual remote-client you might need to
support.

38.1.3.9 Entity and View Object Attributes Inherit Custom Domain Properties
You can define custom metadata properties on a domain. Any entity object or view
object attribute based on that domain inherits those custom properties as if they had
been defined on the attribute itself. If the entity object or view object attribute defines
the same custom property, its setting takes precedence over the value inherited from
the domain.

Note: Domains based on Oracle object types are useful for working
programmatically with data whose underlying type is an oracle object
type. They also can simplify passing and receiving structure
information to stored procedures. However, support for working with
object type domains in the ADF binding layer is complete, so it's not
straightforward to use object domain-valued attributes in
declaratively-databound user interfaces.

Updating a Deleted Flag Instead of Deleting Rows

Advanced Entity Object Techniques 38-7

38.1.3.10 Domain Settings Cannot Be Less Restrictive at Entity or View Level
JDeveloper enforces the declarative settings you impose at the domain definition level;
they cannot be made less restrictive for the entity object or view object for an attribute
based on the domain type. For example, if you define a domain to have its Updatable
property set to While New, then when you use your domain as the Java type of an
entity object attribute, you can set Updatable to be Never (more restrictive) but you
cannot set it to be Always. Similarly, if you define a domain to be Persistent, you
cannot make it transient later. When sensible for your application, set declarative
properties for a domain to be as lenient as possible so you can later make them more
restrictive as needed.

38.2 Updating a Deleted Flag Instead of Deleting Rows
For auditing purposes, once a row is added to a table, sometimes your requirements
may demand that rows are never physically deleted from the table. Instead, when the
end user deletes the row in the user interface, the value of a DELETED column should
be updated from "N" to "Y" to mark it as deleted. You can use two method overrides to
alter an entity object’s default behavior to achieve this effect. For example, say you
want to change the Products entity from the Fusion Order Demo application to
behave in this way.

38.2.1 How to Update a Deleted Flag When a Row Is Removed
To update a deleted flag when a row is removed, enable a custom Java class for your
entity object and override the remove() method to set the deleted flag before calling
the super.remove() method. Example 38–4 shows what this would look like in the
custom Java class of an entity object. It is important to set the attribute before calling
super.remove() since an attempt to set the attribute of a deleted row will encounter
the DeadEntityAccessException.

This example presumes that you’ve altered the PRODUCTS table to have an additional
DELETED column, and synchronized the Products entity with the database to add
the corresponding Deleted attribute.

Example 38–4 Updating a Deleted Flag When a Products Entity Row Is Removed

// In your custom Java entity class
public void remove() {
 setDeleted("Y");
 super.remove();
}

The row will still be removed from the row set, but it will have the value of its
Deleted flag modified to "Y" in the entity cache. The second part of implementing
this behavior involves forcing the entity to perform an UPDATE instead of an DELETE
when it is asked to perform its DML operation. You need to implement both parts for
a complete solution.

38.2.2 Forcing an Update DML Operation Instead of a Delete
To force an entity object to be updated instead of deleted, override the doDML()
method and write code that conditionally changes the operation flag. When the
operation flag equals DML_DELETE, your code will change it to DML_UPDATE instead.
Example 38–5 shows what this would look like in the custom Java class of an entity
object.

Using Update Batching

38-8 Fusion Developer's Guide for Oracle Application Development Framework

This example presumes that you’ve altered the PRODUCTS table to have an additional
DELETED column, and synchronized the Products entity with the database to add
the corresponding Deleted attribute.

Example 38–5 Forcing an Update DML Operation Instead of a Delete

// In your custom Java entity class
protected void doDML(int operation, TransactionEvent e) {
 if (operation == DML_DELETE) {
 operation = DML_UPDATE;
 }
 super.doDML(operation, e);
 }

With this overridden doDML() method in place to complement the overridden
remove() method described in Section 38.2.1, any attempt to remove an entity
through any view object with a corresponding entity usage will update the DELETED
column instead of physically deleting the row. Of course, in order to prevent "deleted"
products from appearing in your view object query results, you will need to
appropriately modify their WHERE clauses to include only products WHERE
DELETED = ’N’.

38.3 Using Update Batching
You can use update batching to reduce the number of DML statements issued with
multiple entity modifications.

By default, the ADF Business Components framework performs a single DML
statement (INSERT, UPDATE, DELETE) for each modified entity of a given entity
definition type. For example, say you have an Employee entity object type for which
multiple instances are modified during typical use of the application. If two instances
were created, three existing instances modified, and four existing instances deleted,
then at transaction commit time the framework issues nine DML statements (2
INSERTs, 3 UPDATEs, and 4 DELETEs) to save these changes.

If you will frequently be updating more than one entity of a given type in a
transaction, consider using the update batching feature for that entity definition type.
In the example, update batching (with a threshold of 1) causes the framework to issue
just three DML statements: one bulk INSERT statement processing two inserts, one
bulk UPDATE statement processing three updates, and one bulk DELETE statement
processing four deletes.

Advanced Entity Association Techniques

Advanced Entity Object Techniques 38-9

To enable update batching for an entity
1. Open the appropriate entity object in the overview editor.

2. In the Application Navigator, double-click the appropriate entity to open it in the
overview editor.

3. On the General page of the overview editor, expand the Tuning section, select the
Use Update Batching checkbox, and specify the appropriate threshold.

This establishes a batch processing threshold beyond which ADF will process the
modifications in a bulk DML operation.

38.4 Advanced Entity Association Techniques
This section describes several advanced techniques for working with associations
between entity objects.

38.4.1 Modifying Association SQL Clause to Implement Complex Associations
When you need to represent a more complex relationship between entities than one
based only on the equality of matching attributes, you can modify the association’s
SQL clause to include more complex criteria. For example, sometimes the relationship
between two entities depends on effective dates. A Product may be related to a
Supplier, however if the name of the supplier changes over time, each row in the
SUPPLIERS table might include additional EFFECTIVE_FROM and EFFECTIVE_
UNTIL columns that track the range of dates in which that product row is (or was) in
use. The relationship between a Product and the Supplier with which it is
associated might then be described by a combination of the matching SupplierId
attributes and a condition that the product’s RequestDate lie between the supplier’s
EffectiveFrom and EffectiveUntil dates.

You can setup this more complex relationship in the overview editor for the
association. First add any additional necessary attribute pairs on the Relationship
page, which in this example would include one (EffectiveFrom, RequestDate)
pair and one (EffectiveUntil, RequestDate) pair. Then on the Query page you
can edit the Where field to change the WHERE clause to be:

(:Bind_SupplierId = Product.SUPPLIER_ID) AND
(Product.REQUEST_DATE BETWEEN :Bind_EffectiveFrom

Note: The batch update feature is disabled if any of following
conditions are present:

■ The entity object has attributes of BLOB or CLOB type. Batch
DML with streaming data types is not supported.

■ The entity object has attributes that are set to Refresh After Insert
or Refresh After Update. There is no method to bulk-return all of
the trigger-assigned values in a single round trip, so retrieving
and updating attributes doesn't work with batch DML.

■ The entity object was created from a table that did not have a
primary key. If an entity object is reverse-engineered from a table
that does not have a primary key, a ROWID-valued attribute is
created and assigned as the primary key instead. The ROWID
value is managed as a Retrieve-on-Insert value, so it will not work
with batch DML.

Advanced Entity Association Techniques

38-10 Fusion Developer's Guide for Oracle Application Development Framework

 AND :Bind_EffectiveUntil)

For more information about creating associations, see Section 4.3, "Creating and
Configuring Associations."

38.4.2 Exposing View Link Accessor Attributes at the Entity Level
When you create a view link between two entity-based view objects, on the View Link
Properties page, you have the option to expose view link accessor attributes both at
the view object level as well as at the entity object level. By default, a view link
accessor is only exposed at the view object level of the destination view object. By
checking the appropriate In Entity Object: SourceEntityName or In Entity
Object:DestinationEntityName checkbox, you can opt to have JDeveloper include a
view link attribute in either or both of the source or destination entity objects. This can
provide a handy way for an entity object to access a related set of related view rows,
especially when the query to produce the rows only depends on attributes of the
current row.

38.4.3 Optimizing Entity Accessor Access by Retaining the Row Set
 Each time you retrieve an entity association accessor row set, by default the entity
object creates a new RowSet object to allow you to work with the rows. This does not
imply re-executing the query to produce the results each time, only creating a new
instance of a RowSet object with its default iterator reset to the "slot" before the first
row. To force the row set to refresh its rows from the database, you can call its
executeQuery() method.

Since there is a small amount of overhead associated with creating the row set, if your
code makes numerous calls to the same association accessor attributes, you can
consider enabling the association accessor row set retention for the source entity object
in the association. You can enable retention of the association accessor row set using
the overview editor for the entity object that is the source for the association accessor.
Select Retain Association Accessor Rowset in the Tuning section of the General page
of the overview editor for the entity object.

Alternatively, you can enable a custom Java entity collection class for your entity object.
As with other custom entity Java classes you’ve seen, you do this on the Select Java
Options dialog that you open from the Java page of the overview editor for the entity
object. In the dialog, select Generate Entity Collection Class. Then, in the
YourEntityCollImpl class that JDeveloper creates for you, override the init()
method, and add a line after super.init() that calls the
setAssociationAccessorRetained() method passing true as the parameter. It
affects all association accessor attributes for that entity object.

When this feature is enabled for an entity object, since the association accessor row set
it not recreated each time, the current row of its default row set iterator is also retained
as a side-effect. This means that your code will need to explicitly call the reset()
method on the row set you retrieve from the association accessor to reset the current
row in its default row set iterator back to the "slot" before the first row.

Note, however, that with accessor retention enabled, your failure to call reset() each
time before you iterate through the rows in the accessor row set can result in a subtle,
hard-to-detect error in your application. For example, say you iterate over the rows in
an association accessor row set as shown in Example 38–6 to calculate some aggregate
total.

Basing an Entity Object on a PL/SQL Package API

Advanced Entity Object Techniques 38-11

Example 38–6 Iterating Over a Row Set Incorrectly

// In your custom Java entity class
RowSet rs = (RowSet)getProducts();
while (rs.hasNext()) {
 ProductImpl r = (ProductImpl)rs.next();
 // Do something important with attributes in each row
}

The first time you work with the accessor row set, the code will work. However, since
the row set (and its default row set iterator) are retained, the second and any
subsequent time you access the row set, the current row will already be at the end of
the row set and the while loop will be skipped because rs.hasNext() will be false.
Instead, with this feature enabled, write your accessor iteration code as shown in
Example 38–7.

Example 38–7 Iterating Over a Row Set and Resetting to the First Row

// In your custom Java entity class
RowSet rs = (RowSet)getProducts();
rs.reset(); // Reset default row set iterator to slot before first row!
while (rs.hasNext()) {
 ProductImpl r = (ProductImpl)rs.next();
 // Do something important with attributes in each row
}

38.5 Basing an Entity Object on a PL/SQL Package API
If you have a PL/SQL package that encapsulates insert, update, and delete access to an
underlying table, you can override the default DML processing event for the entity
object that represents that table to invoke the procedures in your PL/SQL API instead.
Often, such PL/SQL packages are used in combination with a companion database
view. Client programs read data from the underlying table using the database view,
and "write" data back to the table using the procedures in the PL/SQL package.

For example, say you want to create a Product entity object based on such a
combination of a view and a package.

Given the PRODUCTS table in the Fusion Order Demo schema, consider a database
view named PRODUCTS_V, created using the following DDL statement:

create or replace view products_v
as select product_id,name,image,description from products;

In addition, consider the simple PRODUCTS_API package shown in Example 38–8 that
encapsulates insert, update, and delete access to the underlying PRODUCTS table.

Example 38–8 Simple PL/SQL Package API for the PRODUCTS Table

create or replace package products_api is
 procedure insert_product(p_prod_id number,
 p_name varchar2,
 p_supplier_id number,
 p_list_price number,
 p_min_price number,
 p_ship_code varchar2);
 procedure update_product(p_prod_id number,
 p_name varchar2,
 p_supplier_id number,

Basing an Entity Object on a PL/SQL Package API

38-12 Fusion Developer's Guide for Oracle Application Development Framework

 p_list_price number,
 p_min_price number,
 p_ship_code varchar2);
 procedure delete_product(p_prod_id number);
end products_api;

To create an entity object based on this combination of database view and PL/SQL
package, you would perform the following tasks:

■ Create a view-based entity object, as described in Section 38.5.1, "How to Create an
Entity Object Based on a View."

■ Create a base class for the entity, as described in Section 38.5.3, "Centralizing
Details for PL/SQL-Based Entities into a Base Class."

■ Implement the appropriate stored procedure calls, as described in Section 38.5.4,
"Implementing the Stored Procedure Calls for DML Operations."

■ Handle selecting and locking functionality, if necessary, as described in
Section 38.5.5, "Adding Select and Lock Handling."

38.5.1 How to Create an Entity Object Based on a View
To create an entity object based on a view, you use the Create Entity Object wizard as
described in Section 4.2.2, "How to Create Single Entity Objects Using the Create Entity
Wizard," with the following exceptions:

■ On the Name page, give the entity a name like Product and check the Views
checkbox at the bottom of the Database Objects section.

This enables the display of the available database views in the current schema in
the Schema Object list.

■ Select the desired database view in the Schema Object list.

■ On the Attribute Settings page, use the Select Attribute dropdown list to choose
the attribute that will act as the primary key, then enable the Primary Key setting
for that property.

38.5.2 What Happens When You Create an Entity Object Based on a View
By default, an entity object based on a view performs all of the following directly
against the underlying database view:

■ SELECT statement (for findByPrimaryKey())

■ SELECT FOR UPDATE statement (for lock()), and

■ INSERT, UPDATE, DELETE statements (for doDML())

Note: The example in these sections refers to the
EntityWrappingPLSQLPackage project of the
AdvancedEntityExamples application workspace in the
StandaloneExamples module of the Fusion Order Demo
application.

Note: When defining the entity based on a view, JDeveloper cannot
automatically determine the primary key attribute since database
views do not have related constraints in the database data dictionary.

Basing an Entity Object on a PL/SQL Package API

Advanced Entity Object Techniques 38-13

To use stored procedure calls, you will need to override the doDML() operations (as
described in Section 38.5.3, "Centralizing Details for PL/SQL-Based Entities into a Base
Class"), and possibly override the lock()and findByPrimaryKey()handling (as
described in Section 38.5.4, "Implementing the Stored Procedure Calls for DML
Operations").

38.5.3 Centralizing Details for PL/SQL-Based Entities into a Base Class
If you plan to have more than one entity object based on a PL/SQL API, it's a smart
idea to abstract the generic details into a base framework extension class. In doing this,
you'll be using several of the concepts described in Chapter 37, "Advanced Business
Components Techniques." Start by creating a PLSQLEntityImpl class that extends
the base EntityImpl class that each one of your PL/SQL-based entities can use as
their base class. As shown in Example 38–9, you'll override the doDML() method of
the base class to invoke a different helper method based on the operation.

Example 38–9 Overriding doDML() to Call Different Procedures Based on the Operation

// In PLSQLEntityImpl.java
protected void doDML(int operation, TransactionEvent e) {
// super.doDML(operation, e);
if (operation == DML_INSERT)
callInsertProcedure(e);

else if (operation == DML_UPDATE)
callUpdateProcedure(e);

else if (operation == DML_DELETE)
callDeleteProcedure(e);

}

In the PLSQLEntityImpl.java base class, you can write the helper methods so that
they perform the default processing like this:

// In PLSQLEntityImpl.java
/* Override in a subclass to perform non-default processing */
protected void callInsertProcedure(TransactionEvent e) {
super.doDML(DML_INSERT, e);

}
/* Override in a subclass to perform non-default processing */
protected void callUpdateProcedure(TransactionEvent e) {
super.doDML(DML_UPDATE, e);

}
/* Override in a subclass to perform non-default processing */
protected void callDeleteProcedure(TransactionEvent e) {
super.doDML(DML_DELETE, e);

}

After putting this infrastructure in place, when you base an entity object on the
PLSQLEntityImpl class, you can use the Source > Override Methods menu item to
override the callInsertProcedure(), callUpdateProcedure(), and
callDeleteProcedure() helper methods and perform the appropriate stored
procedure calls for that particular entity.

Note: If you are already using an extended entity implementation
class for your entity, you can extend it further with the
PLSQLEntityImpl class. For example, if you have a framework
extension class named zzEntityImpl, you would create a
PLSQLEntityImpl class that extends the zzEntityImpl class.

Basing an Entity Object on a PL/SQL Package API

38-14 Fusion Developer's Guide for Oracle Application Development Framework

To simplify the task of implementing these calls, you could add the
callStoredProcedure() helper method (described in Chapter 37.5, "Invoking
Stored Procedures and Functions") to the PLSQLEntityImpl class as well. This way,
any PL/SQL-based entity objects that extend this class can leverage the helper
method.

38.5.4 Implementing the Stored Procedure Calls for DML Operations
To implement the stored procedure calls for DML operations, you will need to create a
custom Java class for the entity object and override the operations in it.

To create the custom Java class with the override methods:
1. In the Application Navigator, double-click the Product entity object to open it in

the overview editor.

2. On the Java page of the overview editor, click the Edit Java options icon.

3. In the Select Java Options dialog, click Classes Extend.

4. In the Override Base Classes dialog, in the Row field, enter the package and class
of the PLSQLEntityImpl class, or click Browse to search and select it.

5. Then select Generate Entity Object Class, and click OK.

6. In the Application Navigator, double-click ProductsImpl.java to open it in the
overview editor.

7. From the Source menu, choose Override Methods.

8. In the Override Methods dialog, select the callInsertProcedure(),
callUpdateProcedure(), and callDeleteProcedure() methods, and click
OK.

9. Then enter the necessary code to override these procedures.

Example 38–10 shows the code you would write in these overridden helper methods.

Example 38–10 Leveraging a Helper Method to Invoke Insert, Update, and Delete
Procedures

// In ProductsImpl.java
protected void callInsertProcedure(TransactionEvent e) {
 callStoredProcedure("products_api.insert_product(?,?,?,?,?,?)",
 new Object[] { getProductId(), getProductName(), getSupplierId(),
 getListPrice(), getMinPrice(), getShippingClassCode() });
}
protected void callUpdateProcedure(TransactionEvent e) {
 callStoredProcedure("products_api.update_product(?,?,?,?,?,?)",
 new Object[] { getProductId(), getProductName(), getSupplierId(),
 getListPrice(), getMinPrice(), getShippingClassCode() });
}
protected void callDeleteProcedure(TransactionEvent e) {
 callStoredProcedure("products_api.delete_product(?)",
 new Object[] { getProductId() });
}

Note: If you do not override these helper methods in a subclass, they
will perform the default processing as defined in the superclass. You
only need to override the operations in the doDML() method that you
want to provide alternative processing for.

Basing an Entity Object on a PL/SQL Package API

Advanced Entity Object Techniques 38-15

At this point, if you create a default entity-based view object called Products for the
Products entity object and add an instance of it to a ProductsModule application
module you can quickly test inserting, updating, and deleting rows from the
Products view object instance in the Business Component Browser.

Often, overriding just the insert, update, and delete operations will be enough. The
default behavior that performs the SELECT statement for findByPrimaryKey() and
the SELECT FOR UPDATE statement for the lock() against the database view works
for most basic kinds of views.

However, if the view is complex and does not support SELECT FOR UPDATE or if
you need to perform the findByPrimaryKey() and lock() functionality using
additional stored procedures API's, then you can use the technique described in
Section 38.5.5, "Adding Select and Lock Handling.".

38.5.5 Adding Select and Lock Handling
You can handle the lock() and findByPrimaryKey() functionality of an entity
object by invoking stored procedures if necessary. Imagine that the PRODUCTS_API
package were updated to contain the two additional procedures shown in
Example 38–11. Both the lock_product and select_product procedures accept a
primary key attribute as an IN parameter and return values for the remaining
attributes using OUT parameters.

Example 38–11 Additional Locking and Select Procedures for the PRODUCTS Table

/* Added to PRODUCTS_API package */
 procedure lock_product(p_prod_id number,
 p_name OUT varchar2,
 p_supplier_id OUT number,
 p_list_price OUT number,
 p_min_price OUT number,
 p_ship_code OUT varchar2);
 procedure select_product(p_prod_id number,
 p_name OUT varchar2,
 p_supplier_id OUT number,
 p_list_price OUT number,
 p_min_price OUT number,
 p_ship_code OUT varchar2);

38.5.5.1 Updating PLSQLEntityImpl Base Class to Handle Lock and Select
You can extend the PLSQLEntityImpl base class to handle the lock() and
findByPrimaryKey() overrides using helper methods similar to the ones you
added for insert, update, delete. At runtime, both the lock() and
findByPrimaryKey() operations end up invoking the lower-level entity object
method called doSelect(boolean lock). The lock() operation calls
doSelect() with a true value for the parameter, while the findByPrimaryKey()
operation calls it passing false instead.

Example 38–12 shows the overridden doSelect() method in PLSQLEntityImpl to
delegate as appropriate to two helper methods that subclasses can override as
necessary.

Example 38–12 Overriding doSelect() to Call Different Procedures Based on the Lock
Parameter

// In PLSQLEntityImpl.java

Basing an Entity Object on a PL/SQL Package API

38-16 Fusion Developer's Guide for Oracle Application Development Framework

protected void doSelect(boolean lock) {
if (lock) {
callLockProcedureAndCheckForRowInconsistency();

} else {
callSelectProcedure();

}
}

The two helper methods are written to just perform the default functionality in the
base PLSQLEntityImpl class:

// In PLSQLEntityImpl.java
/* Override in a subclass to perform non-default processing */
protected void callLockProcedureAndCheckForRowInconsistency() {
super.doSelect(true);

}
/* Override in a subclass to perform non-default processing */
protected void callSelectProcedure() {
super.doSelect(false);

}

Notice that the helper method that performs locking has the name
callLockProcedureAndCheckForRowInconsistency(). This reminds
developers that it is their responsibility to perform a check to detect at the time of
locking the row whether the newly-selected row values are the same as the ones the
entity object in the entity cache believes are the current database values.

To assist subclasses in performing this old-value versus new-value attribute
comparison, you can add one final helper method to the PLSQLEntityImpl class like
this:

// In PLSQLEntityImpl
protected void compareOldAttrTo(int attrIndex, Object newVal) {
if ((getPostedAttribute(attrIndex) == null && newVal != null) ||

(getPostedAttribute(attrIndex) != null && newVal == null) ||
(getPostedAttribute(attrIndex) != null && newVal != null &&
!getPostedAttribute(attrIndex).equals(newVal))) {

throw new RowInconsistentException(getKey());
}

}

38.5.5.2 Implementing Lock and Select for the Product Entity
With the additional infrastructure in place in the base PLSQLEntityImpl class, you
can override the callSelectProcedure() and
callLockProcedureAndCheckForRowInconsistency() helper methods in the
Product entity object's ProductImpl class. Since the select_product and lock_
product procedures have OUT arguments, as described in Section 37.5.4, "How to Call
Other Types of Stored Procedures," you need to use a JDBC CallableStatement
object to perform these invocations.

Example 38–13 shows the code required to invoke the select_product procedure.
It's performing the following basic steps:

1. Creating a CallableStatement for the PLSQL block to invoke.

2. Registering the OUT parameters and types, by one-based bind variable position.

3. Setting the IN parameter value.

4. Executing the statement.

Basing an Entity Object on a PL/SQL Package API

Advanced Entity Object Techniques 38-17

5. Retrieving the possibly updated column values.

6. Populating the possibly updated attribute values in the row.

7. Closing the statement.

Example 38–13 Invoking the Stored Procedure to Select a Row by Primary Key

// In ProductsImpl.java
protected void callSelectProcedure() {

String stmt = "begin products_api.select_product(?,?,?,?,?,?);end;";
// 1. Create a CallableStatement for the PLSQL block to invoke
CallableStatement st =

getDBTransaction().createCallableStatement(stmt, 0);
try {

// 2. Register the OUT parameters and types
st.registerOutParameter(2, VARCHAR2);
st.registerOutParameter(3, NUMBER);
st.registerOutParameter(4, NUMBER);
st.registerOutParameter(5, NUMBER);
st.registerOutParameter(6, VARCHAR2);

// 3. Set the IN parameter value
st.setObject(1, getProductId());
// 4. Execute the statement
st.executeUpdate();
// 5. Retrieve the possibly updated column values
String possiblyUpdatedName = st.getString(2);
String possiblyUpdatedSupplierId = st.getString(3);
String possiblyUpdatedListPrice = st.getString(4);
String possiblyUpdatedMinPrice = st.getString(5);
String possiblyUpdatedShipCode = st.getString(6);

// 6. Populate the possibly updated attribute values in the row
populateAttribute(PRODUCTNAME, possiblyUpdatedName, true, false,

false);
populateAttribute(SUPPLIERID, possiblyUpdatedSupplierId, true,

false, false);
populateAttribute(LISTPRICE, possiblyUpdatedListPrice, true, false,

false);
populateAttribute(MINPRICE, possiblyUpdatedMinPrice, true, false,

false);
populateAttribute(SHIPPINGCLASSCODE, possiblyUpdatedShipCode, true,

false, false);
} catch (SQLException e) {

throw new JboException(e);
} finally {

if (st != null) {
try {

// 7. Closing the statement
st.close();

} catch (SQLException e) {
}

}
}

}

Example 38–14 shows the code to invoke the lock_product procedure. It's doing
basically the same steps as those in Example 38–13, with just the following two
interesting differences:

Basing an Entity Object on a PL/SQL Package API

38-18 Fusion Developer's Guide for Oracle Application Development Framework

■ After retrieving the possibly updated column values from the OUT parameters, it
uses the compareOldAttrTo() helper method inherited from the
PLSQLEntityImpl to detect whether or not a RowInconsistentException
should be thrown as a result of the row lock attempt.

■ In the catch (SQLException e) block, it is testing to see whether the database
has thrown the error:

ORA-00054: resource busy and acquire with NOWAIT specified

and if so, it again throws the ADF Business Components
AlreadyLockedException just as the default entity object implementation of
the lock() functionality would do in this situation.

Example 38–14 Invoking the Stored Procedure to Lock a Row by Primary Key

// In ProductsImpl.java
protected void callLockProcedureAndCheckForRowInconsistency() {

String stmt = "begin products_api.lock_product(?,?,?,?,?,?);end;";
CallableStatement st =

getDBTransaction().createCallableStatement(stmt, 0);
try {

st.registerOutParameter(2, VARCHAR2);
st.registerOutParameter(3, NUMBER);
st.registerOutParameter(4, NUMBER);
st.registerOutParameter(5, NUMBER);
st.registerOutParameter(6, VARCHAR2);
st.setObject(1, getProductId());
st.executeUpdate();
String possiblyUpdatedName = st.getString(2);
String possiblyUpdatedSupplierId = st.getString(3);
String possiblyUpdatedListPrice = st.getString(4);
String possiblyUpdatedMinPrice = st.getString(5);
String possiblyUpdatedShipCode = st.getString(6);
compareOldAttrTo(PRODUCTNAME, possiblyUpdatedName);
compareOldAttrTo(SUPPLIERID, possiblyUpdatedSupplierId);
compareOldAttrTo(LISTPRICE, possiblyUpdatedListPrice);
compareOldAttrTo(MINPRICE, possiblyUpdatedMinPrice);
compareOldAttrTo(SHIPPINGCLASSCODE, possiblyUpdatedShipCode);

} catch (SQLException e) {
if (Math.abs(e.getErrorCode()) == 54) {
throw new AlreadyLockedException(e);

} else {
throw new JboException(e);

}
} finally {

if (st != null) {
try {

st.close();
} catch (SQLException e) {
}

}
}

}

With these methods in place, you have a Products entity object that wraps the
PRODUCTS_API package for all of its database operations. Due to the clean separation
of the data querying functionality of view objects and the data validation and saving
functionality of entity objects, you can now leverage this Products entity object in

Basing an Entity Object on a Join View or Remote DBLink

Advanced Entity Object Techniques 38-19

any way you would use a normal entity object. You can build as many different view
objects that use Products as their entity usage as necessary.

38.5.5.3 Refreshing the Entity Object After RowInconsistentException
You can override the lock() method to refresh the entity object after a
RowInconsistentException has occurred. Example 38–15 shows code that can be
added to the entity object implementation class to catch the RowInconsistentException
and refresh the entity object.

Example 38–15 Overridden lock() Method to Refresh Entity Object on
RowInconsistentException

// In the entity object implementation class
@Override
public void lock() {
 try {
 super.lock();
 }
 catch (RowInconsistentException ex) {
 this.refresh(REFRESH_UNDO_CHANGES);
 throw ex;
 }
}

38.6 Basing an Entity Object on a Join View or Remote DBLink
If you need to create an entity object based on either of the following:

■ Synonym that resolves to a remote table over a DBLINK

■ View with INSTEAD OF triggers

Then you will encounter the following error if any of its attributes are marked as
Refresh on Insert or Refresh on Update:

JBO-26041: Failed to post data to database during "Update"
Detail 0
ORA-22816: unsupported feature with RETURNING clause

These types of schema objects do not support the RETURNING clause, which by default
the entity object uses to more efficiently return the refreshed values in the same
database roundtrip in which the INSERT or UPDATE operation was executed.

To disable the use of the RETURNING clause for an entity object of this type:
1. Enable a custom entity definition class for the entity object.

2. In the custom entity definition class, override the createDef() method to call:

setUseReturningClause(false)

3. If the Refresh on Insert attribute is the primary key of the entity object, you must
specify some other attribute in the entity as an alternate unique key by setting the
Unique Key property on it.

At runtime, when you have disabled the use of the RETURNING clause in this way, the
entity object implements the Refresh on Insert and Refresh on Update behavior using
a separate SELECT statement to retrieve the values to refresh after insert or update as
appropriate.

Using Inheritance in Your Business Domain Layer

38-20 Fusion Developer's Guide for Oracle Application Development Framework

38.7 Using Inheritance in Your Business Domain Layer
Inheritance is a powerful feature of object-oriented development that can simplify
development and maintenance when used appropriately. As shown in Section 37.9,
"Creating Extended Components Using Inheritance," ADF Business Components
supports using inheritance to create new components that extend existing ones in
order to add additional properties or behavior or modify the behavior of the parent
component. Inheritance can be useful in modeling the different kinds of entities in
your reusable business domain layer.

38.7.1 Understanding When Inheritance Can Be Useful
Your application's database schema might contain tables where different logical kinds
of business information are stored in rows of the same table. These tables will typically
have one column whose value determines the kind of information stored in each row.
For example, the Fusion Order Demo's PERSONS table stores information about
customers, suppliers, and staff in the same table. It contains a PERSON_TYPE_CODE
column whose value — STAFF, CUST, or SUPP — determines what kind of PERSON
the row represents.

While the Fusion Order Demo implementation doesn't yet contain this differentiation
in this release, it's reasonable to assume that a future release of the application might
require:

■ Managing additional database-backed attributes that are specific to suppliers or
specific to staff

■ Implementing common behavior for all users that is different for suppliers or staff

■ Implementing new functionality that is specific to only suppliers or only staff

Figure 38–1 shows what the business domain layer would look like if you created
distinct Persons, Staff, and Supplier entity objects to allow distinguishing the
different kinds of business information in a more formal way inside your application.
Since suppliers and staff are special kinds of persons, their corresponding entity objects
would extend the base Persons entity object. This base Persons entity object
contains all of the attributes and methods that are common to all types of users. The
performPersonFunction() method in the figure represents one of these common
methods.

Then, for the Supplier and Staff entity objects you can add specific additional
attributes and methods that are unique to that kind of user. For example, Supplier
has an additional ContractExpires attribute of type Date to track when the
supplier’s current contract expires. There is also a performSupplierFunction()
method that is specific to suppliers. Similarly, the Staff entity object has an
additional DiscountEligible attribute to track whether the person qualifies for a
staff discount. The performStaffFunction() is a method that is specific to staff.

Note: The example in this section refers to the
InheritanceAndPolymorphicQueries project of the
AdvancedEntityExamples application workspace in the
StandaloneExamples module of the Fusion Order Demo
application.

Using Inheritance in Your Business Domain Layer

Advanced Entity Object Techniques 38-21

Figure 38–1 Distinguishing Persons, Suppliers, and Staff Using Inheritance

By modeling these different kinds of persons as distinct entity objects in an inheritance
hierarchy in your domain business layer, you can simplify having them share common
data and behavior and implement the aspects of the application that make them
distinct.

38.7.2 How to Create Entity Objects in an Inheritance Hierarchy
To create entity objects in an inheritance hierarchy, you use the Create Entity Object
wizard to create each entity. The example described here assumes that you've altered
the FOD application's PERSONS table by executing the following DDL statement to
add two new columns to it:

alter table persons add (
 discount_eligible varchar2(1),
 contract_expires date
);

38.7.2.1 Start by Identifying the Discriminator Column and Distinct Values
Before creating entity objects in an inheritance hierarchy based on a table containing
different kinds of information, you should first identify which column in the table is
used to distinguish the kind of row it is. In the FOD application's PERSONS table, this
is the PERSON_TYPE_CODE column. Since it helps partition or "discriminate" the rows
in the table into separate groups, this column is known as the discriminator column.

Next, determine the valid values that the descriminator column takes on in your table.
You might know this off the top of your head, or you could execute a simple SQL
statement in the JDeveloper SQL Worksheet to determine the answer. To access the
worksheet:

1. Choose Database Navigator from the View menu.

2. Expand the AdvancedEntityExamples folder and select the FOD connection.

3. Right-click FOD, and choose Open SQL Worksheet from the context menu.

Figure 38–2 shows the results of performing a SELECT DISTINCT query in the SQL
Worksheet on the PERSON_TYPE_CODE column in the PERSONS table. It confirms that

Using Inheritance in Your Business Domain Layer

38-22 Fusion Developer's Guide for Oracle Application Development Framework

the rows are partitioned into three groups based on the PERSON_TYPE_CODE
discriminator values: SUPP, STAFF, and CUST.

Figure 38–2 Using the SQL Worksheet to Find Distinct Discriminator Column Values

38.7.2.2 Identify the Subset of Attributes Relevant to Each Kind of Entity
Once you know how many different kinds of business entities are stored in the table,
you will also know how many entity objects to create to model these distinct items.
You'll typically create one entity object per kind of item. Next, in order to help
determine which entity should act as the base of the hierarchy, you need to determine
which subset of attributes is relevant to each kind of item.

For example, assume you determine that all of the attributes except
ContractExpires and DiscountEligible are relevant to all users, that
ContractExpires is specific to suppliers, and that DiscountEligible is specific
to staff. This information leads you to determine that the Persons entity object should
be the base of the hierarchy, with the Supplier and Staff entity objects each
extending Persons to add their specific attributes.

38.7.2.3 Creating the Base Entity Object in an Inheritance Hierarchy
To create the base entity object in an inheritance hierarchy, use the Create Entity
Object wizard.

To create the base entity object
1. In the Application Navigator, right-click the project you want to add the entity

object to, and choose New.

2. In the New Gallery, expand Business Tier, click ADF Business Components,
select Entity Object, and click OK.

3. In the Create Entity Object wizard, on the Name Page, provide a name and
package for the entity, and select the schema object on which the entity will be
based.

For example, name the entity object Persons and base it on the PERSONS table.

4. On the Attributes page, select the attributes in the Entity Attributes list that are
not relevant to the base entity object (if any) and click Remove to remove them.

For example, remove the DiscountEligible and ContractExpires attributes
from the list.

Using Inheritance in Your Business Domain Layer

Advanced Entity Object Techniques 38-23

5. On the Attribute Settings page, use the Select Attribute dropdown list to choose
the attribute that will act as the discriminator for the family of inherited entity
objects and check the Discriminator checkbox to identify it as such. Importantly,
you must also supply a Default Value for this discriminator attribute to identify
rows of this base entity type.

For example, select the PersonTypeCode attribute, mark it as a discriminator
attribute, and set its Default Value to the value "cust".

6. Then click Finish to create the entity object.

38.7.2.4 Creating a Subtype Entity Object in an Inheritance Hierarchy
To create a subtype entity object in an inheritance hierarchy, you use the Create Entity
Object wizard.

Before you begin:
1. Determine the entity object that will be the parent entity object from which your

new entity object will extend.

For example, the parent entity for a new Manager entity object will be the User
entity.

2. Ensure that the parent entity has a discriminator attribute already identified.

If it does not, use the overview editor to set the Discriminator property on the
appropriate attribute of the parent entity before creating the inherited child.

To create the new subtype entity object in the hierarchy:
1. In the Application Navigator, right-click the project you want to add the entity

object to, and choose New.

2. In the New Gallery, expand Business Tier, click ADF Business Components,
select Entity Object, and click OK.

3. In the Create Entity Object wizard, on the Name Page, provide a name and
package for the entity, and click the Browse button next to the Extends field to
select the parent entity from which the entity being created will extend.

For example, name the new entity Staff and select the Persons entity object in
the Extends field.

4. On the Attributes page, the Entity Attributes list displays the attributes from the
underlying table that are not included in the base entity object. Select the attributes
you do not want to include in this entity object and click Remove.

For example, since you are creating the Staff entity remove the
ContractExpires attribute and leave the DiscountEligible attribute.

5. Click Override to select the discriminator attribute so that you can customize the
attribute metadata to supply a distinct Default Value for the Staff subtype.

For example, override the PersonTypeCode attribute.

6. On the Attribute Settings page, use the Select Attribute dropdown list to select
the discriminator attribute. Change the Default Value field to supply a distinct

Note: Leaving the Default Value blank for a discriminator attribute
is legal. A blank default value means that a row with the discriminator
column value IS NULL will be treated as this base entity type.

Using Inheritance in Your Business Domain Layer

38-24 Fusion Developer's Guide for Oracle Application Development Framework

default value for the discriminator attribute that defines the entity subtype being
created.

For example, select the PersonTypeCode attribute and change its Default Value
to the value "staff".

7. Click Finish to create the subtype entity object.

38.7.3 How to Add Methods to Entity Objects in an Inheritance Hierarchy
To add methods to entity objects in an inheritance hierarchy, enable the custom Java
class for the entity object and use the source editor to add the method.

38.7.3.1 Adding Methods Common to All Entity Objects in the Hierarchy
To add a method that is common to all entity objects in the hierarchy, enable a custom
Java class for the base entity object in the hierarchy and add the method in the source
editor. For example, if you add the following method to the PersonsImpl class for
the base User entity object, it will be inherited by all entity objects in the hierarchy:

// In PersonsImpl.java
public void performPersonFunction() {
System.out.println("## performPersonFunction as Customer");

}

38.7.3.2 Overriding Common Methods in a Subtype Entity
To override a method in a subtype entity that is common to all entity objects in the
hierarchy, enable a custom Java class for the subtype entity and choose Override
Methods from the Source menu to launch the Override Methods dialog. Select the
method you want to override, and click OK. Then, customize the overridden method's
implementation in the source editor. For example, imagine overriding the
performPersonFunction() method in the StaffImpl class for the Staff
subtype entity object and change the implementation to look like this:

// In StaffImpl.java
public void performPersonFunction() {
System.out.println("## performPersonFunction as Staff");

}

When working with instances of entity objects in a subtype hierarchy, sometimes you
will process instances of multiple different subtypes. Since Staff and Supplier
entities are special kinds of Persons, you can write code that works with all of them
using the more generic PersonsImpl type that they all have in common. When doing
this generic kind of processing of classes that might be one of a family of subtypes in a
hierarchy, Java will always invoke the most specific override of a method available.

This means that invoking the performPersonFunction() method on an instance of
PersonsImpl that happens to really be the more specific StaffImpl subtype, will
the result in printing out the following:

performPersonFunction as Staff

instead of the default result that regular PersonsImpl instances would get:

Note: You can repeat the same steps to define the Supplier entity
object that extends Persons to add the additional
ContractExpires attribute and overrides the Default Value of the
UserRole discriminator attribute to have the value "supp".

Using Inheritance in Your Business Domain Layer

Advanced Entity Object Techniques 38-25

performPersonFunction as Customer

38.7.3.3 Adding Methods Specific to a Subtype Entity
To add a method that is specific to a subtype entity object in the hierarchy, enable a
custom Java class for that entity and add the method in the source editor. For example,
you could add the following method to the SupplierImpl class for the Supplier
subtype entity object:

// In SupplierImpl.java
public void performSupplierFunction() {
System.out.println("## performSupplierFunction called");

}

38.7.4 What You May Need to Know About Using Inheritance
When using inheritance, you can also introduce a new base entity, find subtype
entities using a primary key, and create view objects with polymorphic entity usages.

38.7.4.1 Sometimes You Need to Introduce a New Base Entity
In the InheritanceAndPolymorphicQueries example project, the Persons
entity object corresponded to a concrete kind of row in the PERSONS table and it also
played the role of the base entity in the hierarchy. In other words, all of its attributes
were common to all entity objects in the hierarchy. You might wonder what would
happen, however, if the Persons entity required a property that was specific to
customers, but not common to staff or suppliers. Imagine that customers can
participate in customer satisfaction surveys, but that staff and suppliers do not. The
Persons entity would require a LastSurveyDate attribute to handle this
requirement, but it wouldn't make sense to have Staff and Supplier entity objects
inherit it.

In this case, you can introduce a new entity object called BasePersons to act as the
base entity in the hierarchy. It would have all of the attributes common to all
Persons, Staff, and Supplier entity objects. Then each of the three entities the
correspond to concrete rows that appear in the table could have some attributes that
are inherited from BasePersons and some that are specific to its subtype. In the
BasePersons type, so long as you mark the PersonTypeCode attribute as a
discriminator attribute, you can just leave the Default Value blank (or some other
value that does not occur in the PERSON_TYPE_CODE column in the table). Because at
runtime you'll never be using instances of the BasePersons entity, it doesn't really
matter what its discriminator default value is.

38.7.4.2 Finding Subtype Entities by Primary Key
When you use the findByPrimaryKey() method on an entity definition, it only
searches the entity cache for the entity object type on which you call it. In the
InheritanceAndPolymorphicQueries example project, this means that if you call
PersonsImpl.getDefinitionObject() to access the entity definition for the
Persons entity object when you call findByPrimaryKey() on it, you will only find
entities in the cache that happen to be customers. Sometimes this is exactly the
behavior you want. However, if you want to find an entity object by primary key
allowing the possibility that it might be a subtype in an inheritance hierarchy, then
you can use the EntityDefImpl class’ findByPKExtended() method instead. In
the Persons example described here, this alternative finder method would find an
entity object by primary key whether it is a customer, supplier, or staff. You can then
use the Java instanceof operator to test which type you found, and then cast the

Controlling Entity Posting Order to Avoid Constraint Violations

38-26 Fusion Developer's Guide for Oracle Application Development Framework

PersonsImpl object to the more specific entity object type in order to work with
features specific to that subtype.

38.7.4.3 You Can Create View Objects with Polymorphic Entity Usages
When you create an entity-based view object with an entity usage corresponding to a
base entity object in an inheritance hierarchy, you can configure the view object to
query rows corresponding to multiple different subtypes in the base entity's subtype
hierarchy. Each row in the view object will use the appropriate subtype entity object as
the entity row part, based on matching the value of the discriminator attribute. See
Section 39.6.2, "How To Create a View Object with a Polymorphic Entity Usage," for
specific instructions on setting up and using these view objects.

38.8 Controlling Entity Posting Order to Avoid Constraint Violations
Due to database constraints, when you perform DML operations to save changes to a
number of related entity objects in the same transaction, the order in which the
operations are performed can be significant. If you try to insert a new row containing
foreign key references before inserting the row being referenced, the database can
complain with a constraint violation. You must understand the default order for
processing of entity objects during commit time and how to programmatically
influence that order when necessary.

38.8.1 Understanding the Default Post Processing Order
By default, when you commit the transaction the entity objects in the pending changes
list are processed in chronological order, in other words, the order in which the
entities were added to the list. This means that, for example, if you create a new
Product and then a new Supplier related to that product, the new Product will be
inserted first and the new Supplier second.

38.8.2 How Compositions Change the Default Processing Ordering
When two entity objects are related by a composition, the strict chronological ordering
is modified automatically to ensure that composed parent and child entity rows are
saved in an order that avoids violating any constraints. This means, for example, that a
new parent entity row is inserted before any new composed children entity rows.

38.8.3 Overriding postChanges() to Control Post Order
If your related entities are associated but not composed, then you need to write a bit of
code to ensure that the related entities get saved in the appropriate order.

38.8.3.1 Observing the Post Ordering Problem First Hand
Consider the newProductForNewSupplier() custom method from an
PostModule application module in Example 38–16. It accepts a set of parameters and:

1. Creates a new Product.

Note: The example in this section refers to the
ControllingPostingOrder project of the
AdvancedEntityExamples application workspace in the
StandaloneExamples module of the Fusion Order Demo
application.

Controlling Entity Posting Order to Avoid Constraint Violations

Advanced Entity Object Techniques 38-27

2. Creates a new Supplier.

3. Sets the product ID to which the server request pertains.

4. Commits the transaction.

5. Constructs a Result Java bean to hold new product ID and supplier ID.

6. Returns the result.

Example 38–16 Creating a New Product, Then a New Supplier, and Returning the New
IDs

// In PostModuleImpl.java
public Result newProductForNewSupplier(String supplierName,
 String supplierStatus,
 String productName,
 String productStatus,
 Number listPrice,
 Number minPrice,
 String shipCode) {

oracle.jbo.domain.Date today = new Date(Date.getCurrentDate());
Number objectId = new Number(0);
// 1. Create a new product
ProductsBaseImpl newProduct = createNewProduct();
// 2. Create a new supplier
SuppliersImpl newSupplier = createNewSupplier();
newSupplier.setSupplierName(supplierName);
newSupplier.setSupplierStatus(supplierStatus);
newSupplier.setCreatedBy("PostingModule");
newSupplier.setCreationDate(today);
newSupplier.setLastUpdatedBy("PostingModule");
newSupplier.setLastUpdateDate(today);
newSupplier.setObjectVersionId(objectId);
// 3. Set the supplier id to which the product pertains
newProduct.setSupplierId(newSupplier.getSupplierId().getSequenceNumber());
newProduct.setProductName(productName);
newProduct.setProductStatus(productStatus);
newProduct.setListPrice(listPrice);
newProduct.setMinPrice(minPrice);
newProduct.setShippingClassCode(shipCode);
newProduct.setCreatedBy("PostingModule");
newProduct.setCreationDate(today);
newProduct.setLastUpdatedBy("PostingModule");
newProduct.setLastUpdateDate(today);
newProduct.setObjectVersionId(objectId);
// 4. Commit the transaction
getDBTransaction().commit();
// 5. Construct a bean to hold new supplier id and product id
Result result = new Result();
result.setProductId(newProduct.getProductId().getSequenceNumber());
result.setSupplierId(newSupplier.getSupplierId().getSequenceNumber());
// 6. Return the result
return result;

}

Note: The code makes the assumption that both
Products.ProductId and Suppliers.SupplierId have been set
to have DBSequence data type to populate their primary keys based
on a sequence.

Controlling Entity Posting Order to Avoid Constraint Violations

38-28 Fusion Developer's Guide for Oracle Application Development Framework

private ProductsBaseImpl createNewProduct(){
EntityDefImpl productDef = ProductsBaseImpl.getDefinitionObject();
return (ProductsBaseImpl) productDef.createInstance2(getDBTransaction(), null);

}

private SuppliersImpl createNewSupplier(){
EntityDefImpl supplierDef = SuppliersImpl.getDefinitionObject();
return (SuppliersImpl) supplierDef.createInstance2(getDBTransaction(), null);

}

If you add this method to the application module's client interface and test it from a
test client program, you get an error:

oracle.jbo.DMLConstraintException:
JBO-26048: Constraint "PRODUCT_SUPPLIER_FK" violated during post operation:
"Insert" using SQL Statement
"BEGIN
INSERT INTO PRODUCTS(
SUPPLIER_NAME,SUPPLIER_STATUS,PRODUCT_NAME,
PRODUCT_STATUS,LIST_PRICE,MIN_PRICE, SHIPPING_CLASS_CODE)
VALUES (?,?,?,?,?,?,?)
RETURNING PRODUCT_ID INTO ?;

END;".
Detail 0
java.sql.SQLException:
ORA-02291: integrity constraint (FOD.PRODUCT_SUPPILER_FK) violated

- parent key not found

When the PRODUCTS row is inserted, the database complains that the value of its
SUPPLIER_ID foreign key doesn't correspond to any row in the SUPPLIERS table.
This occurred because:

■ The code created the Product before the Supplier

■ Products and Suppliers entity objects are associated but not composed

■ The DML operations to save the new entity rows is done in chronological order, so
the new Product gets inserted before the new Supplier.

38.8.3.2 Forcing the Supplier to Post Before the Product
To remedy the problem of attempting to add a product with a not-yet-valid supplier
ID, you could reorder the lines of code in the example to create the Supplier first,
then the Product. While this would address the immediate problem, it still leaves the
chance that another application developer could create things in an incorrect order.

The better solution is to make the entity objects themselves handle the posting order so
it will work correctly regardless of the order of creation. To do this you need to
override the postChanges() method in the entity that contains the foreign key
attribute referencing the associated entity object and write code as shown in
Example 38–17. In this example, since it is the Product that contains the foreign key
to the Supplier entity, you need to update the Product to conditionally force a
related, new Supplier to post before the service request posts itself.

The code tests whether the entity being posted is in the STATUS_NEW or STATUS_
MODIFIED state. If it is, it retrieves the related product using the getSupplier()
association accessor. If the related Supplier also has a post-state of STATUS_NEW,
then first it calls postChanges() on the related parent row before calling
super.postChanges() to perform its own DML.

Controlling Entity Posting Order to Avoid Constraint Violations

Advanced Entity Object Techniques 38-29

Example 38–17 Overriding postChanges() in ProductsBaseImpl to Post Supplier First

// In ProductsBaseImpl.java
public void postChanges(TransactionEvent e) {
/* If current entity is new or modified */
if (getPostState() == STATUS_NEW ||

getPostState() == STATUS_MODIFIED) {
/* Get the associated supplier for the product */
SuppliersImpl supplier = getSupplier();
/* If there is an associated supplier */
if (supplier != null) {
/* And if it's post-status is NEW */
if (supplier.getPostState() == STATUS_NEW) {
/*
* Post the supplier first, before posting this
* entity by calling super below
*/
supplier.postChanges(e);

}
}

}
super.postChanges(e);

}

If you were to re-run the example now, you would see that without changing the
creation order in the newProductForNewSupplier() method's code, entities now
post in the correct order — first new Supplier, then new Product. Yet, there is still
a problem. The constraint violation still appears, but now for a different reason!

If the primary key for the Suppliers entity object were user-assigned, then the code
in Example 38–17 would be all that is required to address the constraint violation by
correcting the post ordering.

In this example, however, the Suppliers.SupplierId is assigned from a database
sequence, and not user-assigned in this example. So when a new Suppliers entity
row gets posted its SupplierId attribute is refreshed to reflect the database-assigned
sequence value. The foreign key value in the Products.SupplierId attribute
referencing the new supplier is "orphaned" by this refreshing of the supplier’s ID
value. When the product’s row is saved, its SUPPLIER_ID value still doesn't match a
row in the SUPPLIERS table, and the constraint violation occurs again. The next two
sections discuss the solution to address this "orphaning" problem.

Note: An alternative to the programmatic technique discussed here,
which solves the problem at the Java EE application layer, is the use of
deferrable constraints at the database layer. If you have control over
your database schema, consider defining (or altering) your foreign key
constraints to be DEFERRABLE INITIALLY DEFERRED. This causes
the database to defer checking the constraint until transaction commit
time. This allows the application to perform DML operations in any
order, provided that by COMMIT time all appropriate related rows
have been saved and would alleviate the parent/child ordering.
However, you would still need to write the code to cascade-update
the foreign key values if the parent’s primary key is assigned from a
sequence, as described in Section 38.8.3.3, "Understanding
Associations Based on DBSequence-Valued Primary Keys" and
Section 38.8.3.4, "Refreshing References to DBSequence-Assigned
Foreign Keys."

Controlling Entity Posting Order to Avoid Constraint Violations

38-30 Fusion Developer's Guide for Oracle Application Development Framework

38.8.3.3 Understanding Associations Based on DBSequence-Valued Primary Keys
Recall from Section 4.10.10, "How to Get Trigger-Assigned Primary Key Values from a
Database Sequence" that when an entity object's primary key attribute is of
DBSequence type, during the transaction in which it is created, its numerical value is
a unique, temporary negative number. If you create a number of associated entities in
the same transaction, the relationships between them are based on this temporary
negative key value. When the entity objects with DBSequence-value primary keys are
posted, their primary key is refreshed to reflect the correct database-assigned sequence
number, leaving the associated entities that are still holding onto the temporary
negative foreign key value "orphaned".

For entity objects based on a composition, when the parent entity object's
DBSequence-valued primary key is refreshed, the composed children entity rows
automatically have their temporary negative foreign key value updated to reflect the
owning parent's refreshed, database-assigned primary key. This means that for
composed entities, the "orphaning" problem does not occur.

However, when entity objects are related by an association that is not a composition,
you need to write a little code to insure that related entity rows referencing the
temporary negative number get updated to have the refreshed, database-assigned
primary key value. The next section outlines the code required.

38.8.3.4 Refreshing References to DBSequence-Assigned Foreign Keys
When an entity like Suppliers in this example has a DBSequence-valued primary
key, and it is referenced as a foreign key by other entities that are associated with (but
not composed by) it, you need to override the postChanges() method as shown in
Example 38–18 to save a reference to the row set of entity rows that might be
referencing this new Suppliers row. If the status of the current Suppliers row is
New, then the code assigns the RowSet-valued return of the getProduct()
association accessor to the newProductsBeforePost member field before calling
super.postChanges().

Example 38–18 Saving Reference to Entity Rows Referencing This New Supplier

// In SuppliersImpl.java
RowSet newProductsBeforePost = null;
public void postChanges(TransactionEvent TransactionEvent) {
 /* Only bother to update references if Product is a NEW one */
 if (getPostState() == STATUS_NEW) {
 /*
 * Get a rowset of products related
 * to this new supplier before calling super
 */
 newProductsBeforePost = (RowSet)getProductsBase();
 }
 super.postChanges(TransactionEvent);
}

This saved RowSet object is then used by the overridden
refreshFKInNewContainees() method shown in Example 38–19. It gets called to
allow a new entity row to cascade update its refreshed primary key value to any other
entity rows that were referencing it before the call to postChanges(). It iterates over
the ProductsBaseImpl rows in the newProductsBaseBeforePost row set (if
non-null) and sets the new supplier ID value of each one to the new sequence-assigned
supplier value of the newly posted Suppliers entity.

Implementing Custom Validation Rules

Advanced Entity Object Techniques 38-31

Example 38–19 Cascade-Updating Entity Rows with New SupplierId Value

// In SuppliersImpl.java
protected void refreshFKInNewContainees() {
 if (newProductsBeforePost != null) {
 Number newSupplierId = getSupplierId().getSequenceNumber();
 /*
 * Process the rowset of products that referenced
 * the new supplier prior to posting, and update their
 * SupplierId attribute to reflect the refreshed SupplierId value
 * that was assigned by a database sequence during posting.
 */
 while (newProductsBeforePost.hasNext()) {
 ProductsBaseImpl svrReq =
 (ProductsBaseImpl)newProductsBeforePost.next();
 product.setSupplierId(newSupplierId);
 }
 closeNewProductRowSet();
 }
}
After implementing this change, the code in Example 38–16 runs without encountering
any database constraint violations.

38.9 Implementing Custom Validation Rules
ADF Business Components comes with a base set of built-in declarative validation
rules that you can use. However, a powerful feature of the validator architecture for
entity objects is that you can create your own custom validation rules. When you
notice that you or your team are writing the same kind of validation code over and
over, you can build a custom validation rule class that captures this common
validation "pattern" in a parameterized way.

After you've defined a custom validation rule class, you can register it in JDeveloper
so that it is as simple to use as any of the built-in rules. In fact, you can even bundle
your custom validation rule with a custom UI panel that JDeveloper leverages to
facilitate developers' using and configuring the parameters your validation rule might
require.

38.9.1 How to Create a Custom Validation Rule
To write a custom validation rule for entity objects, you need a Java class that
implements the JboValidatorInterface in the oracle.jbo.rules package.
You can create a skeleton class from the New Gallery.

To create a custom validator:
1. In the Application Navigator, right-click the project where you want to create the

validator, and choose New from the context menu.

2. In the New Gallery, expand Business Tier, click ADF Business Components,
select Validation Rule and click OK.

As shown in Example 38–20, JBOValidatorInterface contains one main
validate() method, and a getter and setter method for a Description property.

Example 38–20 All Validation Rules Must Implement the JboValidatorInterface

package oracle.jbo.rules;
public interface JboValidatorInterface {
 void validate(JboValidatorContext valCtx) { }

Implementing Custom Validation Rules

38-32 Fusion Developer's Guide for Oracle Application Development Framework

 java.lang.String getDescription() { }
 void setDescription(String description) { }
}

If the behavior of your validation rule will be parameterized to make it more flexible,
then add additional bean properties to your validator class for each parameter. For
example, the code in Example 38–21 implements a custom validation rule called
DateMustComeAfterRule which validates that one date attribute must come after
another date attribute. To allow the developer using the rule to configure the names of
the date attributes to use as the initial and later dates for validation, this class defines
two properties initialDateAttrName and laterDateAttrName.

Example 38–21 shows the code that implements the custom validation rule. It extends
the AbstractValidator to inherit support for working with the entity object's
custom message bundle, where JDeveloper saves the validation error message when a
developer uses the rule in an entity object.

The validate() method of the validation rule gets invoked at runtime whenever the
rule class should perform its functionality. The code performs the following basic
steps:

1. Ensures validator is correctly attached at the entity level.

2. Gets the entity row being validated.

3. Gets the values of the initial and later date attributes.

4. Validate that initial date is before later date.

5. Throws an exception if the validation fails.

Example 38–21 Custom DateMustComeAfterRule

// NOTE: package and imports omitted
public class DateMustComeAfterRule extends AbstractValidator

implements JboValidatorInterface {
/**
* This method is invoked by the framework when the validator should do its job
*/
public void validate(JboValidatorContext valCtx) {
// 1. If validator is correctly attached at the entity level...
if (validatorAttachedAtEntityLevel(valCtx)) {
// 2. Get the entity row being validated
EntityImpl eo = (EntityImpl)valCtx.getSource();
// 3. Get the values of the initial and later date attributes
Date initialDate = (Date) eo.getAttribute(getInitialDateAttrName());
Date laterDate = (Date) eo.getAttribute(getLaterDateAttrName());
// 4. Validate that initial date is before later date
if (!validateValue(initialDate,laterDate)) {
// 5. Throw the validation exception
RulesBeanUtils.raiseException(getErrorMessageClass(),

getErrorMsgId(),
valCtx.getSource(),
valCtx.getSourceType(),
valCtx.getSourceFullName(),
valCtx.getAttributeDef(),
valCtx.getNewValue(),
null, null);

}
}
else {
throw new RuntimeException("Rule must be at entity level");

Implementing Custom Validation Rules

Advanced Entity Object Techniques 38-33

}
}
/**
* Validate that the initialDate comes before the laterDate.
*/
private boolean validateValue(Date initialDate, Date laterDate) {
return (initialDate == null) || (laterDate == null) ||
(initialDate.compareTo(laterDate) < 0);

}
/**
* Return true if validator is attached to entity object
* level at runtime.
*/
private boolean validatorAttachedAtEntityLevel(JboValidatorContext ctx) {
return ctx.getOldValue() instanceof EntityImpl;

}
// NOTE: Getter/Setter Methods omitted
private String description;
private String initialDateAttrName;
private String laterDateAttrName;

}

For easier reuse of your custom validation rules, you would typically package them
into a JAR file for reference by applications that make use of the rules.

38.9.2 Adding a Design Time Bean Customizer for Your Rule
Since a validation rule class is a bean, you can implement a standard JavaBean
customizer class to improve the design time experience of setting the bean properties.
In the example of the DateMustComeAfter rule (in Example 38–21), the two
properties that the developers must configure are the initialDateAttrName and
laterDateAttrName properties.

Figure 38–3 illustrates using JDeveloper's visual designer for Swing to create a
DateMustComeAfterRuleCustomizer using a JPanel with a titled border
containing two JLabel prompts and two JComboBox controls for the dropdown lists.
The code in the class populates the dropdown lists with the names of the Date-valued
attributes of the current entity object being edited in the IDE. This will allow a
developer who adds a DateMustComeAfterRule validation to their entity object to
easily pick which date attributes should be used for the starting and ending dates for
validation.

Figure 38–3 Using JDeveloper's Swing Visual Designer to Create a Validation Rule
Customizer

Creating New History Types

38-34 Fusion Developer's Guide for Oracle Application Development Framework

To associate a customizer with your DateMustComeAfterRule Java Bean, you
follow the standard practice of creating a BeanInfo class. As shown in
Example 38–22, the DateMustComeAfterRuleBeanInfo returns a BeanDescriptor
that associates the customizer class with the DateMustComeAfter bean class.

You would typically package your customizer class and this bean info in a separate
JAR file for design-time-only use.

Example 38–22 BeanInfo to Associate a Customizer with a Custom Validation Rule

package oracle.fodemo...frameworkExt.rules;
import java.beans.BeanDescriptor;
import java.beans.SimpleBeanInfo;
public class DateMustComeAfterRuleBeanInfo extends SimpleBeanInfo {
public BeanDescriptor getBeanDescriptor() {
return new BeanDescriptor(DateMustComeAfterRule.class,

DateMustComeAfterRuleCustomizer.class);
}

}

38.9.3 Registering and Using a Custom Rule in JDeveloper
After you’ve created a custom validation rule, you can add it to the project or
application level in the JDeveloper IDE so that other developers can use the rule
declaratively.

To register a custom validation rule in a project containing entity objects:
1. In the Application Navigator, right-click the desired project, and choose Project

Properties from the context menu.

2. In the Project Properties dialog, expand Business Components, and select
Registered Rules.

3. On the Registered Rules page, click Add.

4. In the Register Validation Rule dialog, browse to find the validation rule you have
created (such as the one created in Section 38.9.1, "How to Create a Custom
Validation Rule"), and click OK.

To register a custom validator at the IDE level:
1. From the Tools menu, choose Preferences.

2. From the Business Components > Register Rules page, you can add a one or
more validation rules.

When adding a validation rule, provide the fully-qualified name of the validation
rule class, and supply a validation rule name that will appear in JDeveloper's list
of available validators.

38.10 Creating New History Types
History types are used to track data specific to a point in time. JDeveloper ships with a
number of history types, but you can also create your own. For more information on
the standard history types and how to use them, see Section 4.10.12, "How to Track
Created and Modified Dates Using the History Column."

Creating New History Types

Advanced Entity Object Techniques 38-35

38.10.1 How to Create New History Types
You are not limited to the history types provided, you can add or remove custom
history types using the History Types page in the Preferences dialog, and then write
custom Java code to implement the desired behavior. The code to handle custom
history types should be written in your application-wide entity base class for reuse.

Figure 38–5 shows a custom type called last update login with type Id of 11.
Assume that last_update_login is a foreign key in the FND_LOGINS table.

Figure 38–4 New History Types in the New Entity Attribute Dialog

To create a custom history type:
1. From the Tools menu, choose Preferences.

2. In the Preferences dialog, expand Business Components, and click History Types.

3. On the History Types page, click New.

4. In the Create History Type dialog, enter a string value for the name (spaces are
allowed) and a numerical Id.

The Type Id must be an integer between 11 and 126. The numerical values 0-10 are
reserved for internal use. The display string is displayed in the History Column
dropdown list the next time you use the Edit Attribute dialog.

Creating New History Types

38-36 Fusion Developer's Guide for Oracle Application Development Framework

Figure 38–5 Creating New History Types

5. Open the EntityImpl.java file and add a definition similar to the one in
Example 38–23.

Example 38–23 History Type Definition

private static final byte LASTUPDATELOGIN_HISTORY_TYPE = 11;

6. Override the getHistoryContextForAttribute(AttributeDefImpl
attr) method in the EntityImpl base class with code similar to Example 38–24.

Example 38–24 Overriding getHistoryContextForAttribute()

@Override
protected Object getHistoryContextForAttribute(AttributeDefImpl attr) {
 if (attr.getHistoryKind() == LASTUPDATELOGIN_HISTORY_TYPE) {
 // Custom History type logic goes here
 }
 else {
 return super.getHistoryContextForAttribute(attr);
 }
}

38.10.2 How to Remove a History Type
Because they are typically used for auditing values over the life of an application, it is
rare that you would want to remove a history type. However, in the event that you
need to do so, perform the following tasks:

1. Remove the history type from the JDeveloper history types list in the Preferences
dialog.

2. Remove any custom code you implemented to support the history type in the base
EntityImpl.getHistoryContextForAttribute method.

Creating New History Types

Advanced Entity Object Techniques 38-37

3. Remove all usages of the history type in the entity attribute metadata. Any
attribute that you have defined to use this history type must be edited.

To remove a history type from the JDeveloper history types list:
1. From the Tools menu, choose Preferences.

2. In the Preferences dialog, expand Business Components, and click History Types.

3. On the History Types page, select the history type that you want to remove and
click Delete.

Creating New History Types

38-38 Fusion Developer's Guide for Oracle Application Development Framework

39

Advanced View Object Techniques 39-1

39Advanced View Object Techniques

This chapter describes advanced techniques you can use while designing and working
with ADF view objects in an ADF Business Components data model project.

This chapter includes the following sections:

■ Section 39.1, "Advanced View Object Concepts and Features"

■ Section 39.2, "Tuning Your View Objects for Best Performance"

■ Section 39.3, "Generating Custom Java Classes for a View Object"

■ Section 39.4, "Working Programmatically with Multiple Named View Criteria"

■ Section 39.5, "Performing In-Memory Sorting and Filtering of Row Sets"

■ Section 39.6, "Using View Objects to Work with Multiple Row Types"

■ Section 39.7, "Reading and Writing XML"

■ Section 39.8, "Using Programmatic View Objects for Alternative Data Sources"

■ Section 39.9, "Creating a View Object with Multiple Updatable Entities"

■ Section 39.10, "Programmatically Creating View Definitions and View Objects"

■ Section 39.11, "Declaratively Preventing Insert, Update, and Delete"

39.1 Advanced View Object Concepts and Features
This section describes a number of interesting view object concepts and features that
have not been discussed in previous chapters.

39.1.1 Limiting the View Object Max Fetch Size to Fetch the First n Rows
The default maximum fetch size of a view object is minus one (-1), which indicates
there should be no limit to the number of rows that can be fetched. Keep in mind that
by default, rows are fetched as needed, so -1 does not imply a view object will

Note: To experiment with the examples in this chapter, use the
AdvancedViewObjectsExamples workspace in the
StandaloneExamples module of the Fusion Order Demo
application, as described in Section 2.4.5, "Standalone Applications in
the AdvancedViewObjectExamples Application Workspace." For
information about how to obtain and install the Fusion Order Demo,
see Section 2.2, "Setting Up the Fusion Order Demo Application."

Advanced View Object Concepts and Features

39-2 Fusion Developer's Guide for Oracle Application Development Framework

necessarily fetch all the rows. It simply means that if you attempt to iterate through all
the rows in the query result, you will get them all.

However, you might want to put an upper bound on the maximum number of rows
that a view object will retrieve. You can use the following settings:

■ You can configure a global threshold for all view objects queries using the Row
Fetch Limit property on the Business Components page of the overview editor for
the adf-config.xml file. You can locate the file in the Application Resources
pane by expanding the Descriptors-ADF META-INF folder.

Note: Since Row Fetch Limit specifies a global threshold for all query operations
in the application (including iterator binding property RowCountThreshold used
to determine an estimated row count for the iterator result set), using this property
means you can avoid changing settings for individual query operations where that
operation's default behavior allows all rows to be fetched. If you do specify a fetch
limit for individual view objects, the Row Fetch Limit setting will be ignored in
those cases.

■ You can configure a local threshold for specific view object queries using the Max
Fetch Size with the Only up to row number field selected in the Tuning section of
the General page of the overview editor for the view object.

For example, if you write a query containing an ORDER BY clause and only want to
return the first n rows to display the "Top-N" entries in a page, you can use the
overview editor for the view object to specify a value for the Only up to row number
field in the Tuning section of the General page. For example, to fetch only the first five
rows, you would enter "5" in this field. This is equivalent to calling the
setMaxFetchSize() method on your view object to set the maximum fetch size to
5. The view object will stop fetching rows when it hits the maximum fetch size. Often
you will combine this technique with specifying a Query Optimizer Hint of FIRST_
ROWS also on the Tuning section of the General page of the overview editor. This gives
a hint to the database that you want to retrieve the first rows as quickly as possible,
rather than trying to optimize the retrieval of all rows.

39.1.2 Maintaining New Row Consistency in View Objects Based on the Same Entity
When multiple instances of entity-based view objects in an application module are
based on the same underlying entity object, a new row created in one of them can be
automatically added (without having to re-query) to the row sets of the others to keep
your user interface consistent or simply to consistently reflect new rows in different
application pages for a pending transaction. Consider the Fusion Order Demo
application’s orderSummary.jspx page that displays a customers list of orders. If
the customer goes to create a new order, this task is performed through a different
view object and handled by a custom application module method. Using this view
object new row consistency feature, the newly created order automatically appears in
the customer’s list of open orders on the orderSummary.jspx page without having
to re-query the database.

For historical reasons, this capability is known as the view link consistency feature
because in prior releases of Oracle Application Development Framework (Oracle ADF)
the addition of new rows to other relevant row sets only was supported for detail view

Tip: If you want to set the global threshold for query operations
using Row Fetch Limit and you still need to allow specific view object
queries to return all available rows, then you can set the Max Fetch
Size with the Only up to row number field for those view objects to a
very large number.

Advanced View Object Concepts and Features

Advanced View Object Techniques 39-3

object instances in a view link based on an association. Now this view link consistency
feature works for any view objects for which it is enabled, regardless of whether they
are involved in a view link or not.

39.1.2.1 What Happens at Runtime When View Link Consistency is Enabled
Consider two entity-based view objects OrdersViewSummary and OrdersView both
based on the same underlying Orders entity object. When a new row is created in a
row set for one of these view objects (like OrdersView) and the row's primary key is
set, any of the other row sets for view objects based on the same Orders entity object
(like OrdersViewSummary) receive an event indicating a new row has been created.
If their view link consistency flag is enabled, then a copy of the new row is inserted
into their row set as well.

39.1.2.2 How to Change the Default View Link Consistency Setting
You can use the Edit Business Components Configuration dialog to control the default
setting for the view link consistency feature using the jbo.viewlink.consistent
configuration parameter, as shown in Figure 39–1.

Figure 39–1 jbo.viewlink.consistent Property Setting

To display the configuration editor, right-click the application module in the
Application Navigator and choose Configurations. Then, in the Manage
Configurations dialog, select the configuration and click Edit. In the Edit Business
Components Configuration dialog, select the Properties tab. The default setting for
this parameter is the word "DEFAULT" which has the following meaning. If your view
object has:

■ A single entity usage, view link consistency is enabled

■ Multiple entity usages, and:

■ If all secondary entity usages are marked as contributing reference
information, then view link consistency is enabled

Advanced View Object Concepts and Features

39-4 Fusion Developer's Guide for Oracle Application Development Framework

■ If any secondary entity usage marked as not being a reference view link
consistency is disabled.

You can globally disable this feature by setting the jbo.viewlink.consistent to
the value false in your configuration. Conversely, you could globally enable this
feature by setting jbo.viewlink.consistent to the value true, but Oracle does
not recommend doing this. Doing so would force view link consistency to be set on for
view objects with secondary entity usages that are not marked as a reference which
presently do not support the view link consistency feature well.

To set the feature programmatically, use the setAssociationConsistent() API
on any RowSet. When you call this method on a view object, it affects its default row
set.

39.1.2.3 How to Use a RowMatch to Qualify Which New, Unposted Rows Get Added
to a Row Set
If a view object has view link consistency enabled, any new row created by another
view object based on the same entity object is added to its row set. By default the
mechanism adds new rows in an unqualified way. If your view object has a
design-time WHERE clause that queries only a certain subset of rows, you can apply a
RowMatch object to your view object to perform the same filtering in-memory. The
filtering expression of the RowMatch object you specify prevents new rows from being
added that wouldn't make sense to appear in that view object.

For example, an OrdersByStatus view object might include a design time WHERE
clause like this:

WHERE /* ... */ AND STATUS LIKE NVL(:StatusCode,'%')

Its custom Java class overrides the create() method as shown in Example 39–1 to
force view link consistency to be enabled. It also applies a RowMatch object whose
filtering expression matches rows whose Status attribute matches the value of the
:StatusCode named bind variable (or matches any row if :StatusCode = '%'). This
RowMatch filter is used by the view link consistency mechanism to qualify the row
that is a candidate to add to the row set. If the row qualifies by the RowMatch, it is
added. Otherwise, it is not.

Example 39–1 Providing a Custom RowMatch to Control Which New Rows are Added

// In OrdersByStatusImpl.java
protected void create() {
super.create();
setAssociationConsistent(true);
setRowMatch(new RowMatch("Status = :StatusCode or :StatusCode = '%'"));

}

See Section 39.5.4, "Performing In-Memory Filtering with RowMatch" for more
information on creating and using a RowMatch object. For a list of supported SQL
operators see Table 39–2. For a list of supported SQL function, see Table 39–3.

Note: If the RowMatch facility does not provide enough control, you
can override the view object's rowQualifies() method to
implement a custom filtering solution. Your code can determine
whether a new row qualifies to be added by the view link consistency
mechanism or not.

Advanced View Object Concepts and Features

Advanced View Object Techniques 39-5

39.1.2.4 What You May Need to Know About the Dynamic WHERE Clause and View
Link Consistency
If you call setWhereClause() on a view object to set a dynamic WHERE clause, the
view link consistency feature is disabled on that view object. If you have provided an
appropriate custom RowMatch object to qualify new rows for adding to the row set,
you can call setAssociationConsistent(true) after setWhereClause() to
reenable view link consistency.

If a row set has view link consistency enabled, then new rows added due to creation
by other row sets are added to the bottom of the row set.

If a row set has view link consistency enabled, then when you call the
executeQuery() method, any qualifying new, unposted rows are added to the top
of the row set before the queried rows from the database are added.

39.1.3 Understanding View Link Accessors Versus Data Model View Link Instances
View objects support two different styles of master-detail coordination:

■ View link instances for data model master-detail coordination, as described in
Section 39.1.3.1, "Enabling a Dynamic Detail Row Set with Active Master-Detail
Coordination."

■ View link accessor attributes for programmatically accessing detail row sets on
demand, as described in Section 39.1.3.2, "Accessing a Stable Detail Row Set Using
View Link Accessor Attributes."

■ You can combine both styles, as described in Section 39.1.3.3, "Accessor Attributes
Create Distinct Row Sets Based on an Internal View Object."

39.1.3.1 Enabling a Dynamic Detail Row Set with Active Master-Detail Coordination
When you add a view link instance to your application module's data model, you
connect two specific view object instances. The use of the view link instance indicates
that you want active master-detail coordination between the two. At runtime the view
link instance in the data model facilitates the eventing that enables this coordination.
Whenever the current row is changed on the master view object instance, an event
causes the detail view object to be refreshed by automatically invoking
executeQuery() with a new set of bind parameters for the new current row in the
master view object.

A key feature of this data model master-detail is that the master and detail view object
instances are stable objects to which client user interfaces can establish bindings. When
the current row changes in the master — instead of producing a new detail view object
instance — the existing detail view object instance updates its default row set to
contain the set of rows related to the new current master row. In addition, the user
interface binding objects receive events that allow the display to update to show the
detail view object's refreshed row set.

Another key feature that is exclusive to data model hierarchy is that a detail view
object instance can have multiple master view object instances. For example, an
PaymentOptions view object instance may be a detail of both a Customers and a
Orders view object instance. Whenever the current row in either the Customers or
Orders view object instance changes, the default row set of the detail
PaymentOptions view object instance is refreshed to include the row of payment
information for the current customer and the current order. See Section 39.1.6, "Setting
Up a Data Model with Multiple Masters" for details on setting up a detail view object
instance with multiple-masters.

Advanced View Object Concepts and Features

39-6 Fusion Developer's Guide for Oracle Application Development Framework

39.1.3.2 Accessing a Stable Detail Row Set Using View Link Accessor Attributes
When you need to programmatically access the detail row set related to a view object
row by virtue of a view link, you can use the view link accessor attribute. You specify
the finder name of the view link accessor attribute from the overview editor for the
view link. Click the Edit icon in the Accessors section of the Relationship page and in
the Edit View Link Properties dialog, edit the name of the view link accessor attribute.

Example 39–2 shows the XML for the view link that defines the _findername value
of the <Attr> element.

Example 39–2 View Link Accessor Attribute Name

<ViewLinkDefEnd
 Name="Orders"
 Cardinality="1"
 Owner="devguide.advanced.multiplemasters.Orders"
 Source="true">
 <AttrArray Name="Attributes">
 <Item Value="devguide.advanced.multiplemasters.Orders.PaymentOptionId"/>
 </AttrArray>
 <DesignTime>
 <Attr Name="_minCardinality" Value="1"/>
 <Attr Name="_isUpdateable" Value="true"/>
 <Attr Name="_finderName" Value="Orders"/>
 </DesignTime>
</ViewLinkDefEnd>

Assuming you've named your accessor attribute AccessorAttrName, you can access
the detail row set using the generic getAttribute() API like:

RowSet detail = (RowSet)currentRow.getAttribute("AccessorAttrName");

If you've generated a custom view row class for the master view object and exposed
the getter method for the view link accessor attribute on the client view row interface,
you can write strongly-typed code to access the detail row set like this:

RowSet detail = (RowSet)currentRow.getAccessorAttrName();

Unlike the data model master-detail, programmatic access of view link accessor
attributes does not require a detail view object instance in the application module's
data model. Each time you invoke the view link accessor attribute, it returns a RowSet
containing the set of detail rows related to the master row on which you invoke it.

Using the view link accessor attribute, the detail data rows are stable. As long as the
attribute value(s) involved in the view link definition in the master row remain
unchanged, the detail data rows will not change. Changing of the current row in the
master does not affect the detail row set which is "attached" to a given master row. For
this reason, in addition to being useful for general programmatic access of detail rows,
view link accessor attributes are appropriate for UI objects like the tree control, where
data for each master node in a tree needs to retain its distinct set of detail rows.

39.1.3.3 Accessor Attributes Create Distinct Row Sets Based on an Internal View
Object
When you combine the use of data model master-detail with programmatic access of
detail row sets using view link accessor, it is even more important to understand that
they are distinct mechanisms. For example, imagine that you:

■ Define PersonsVO and OrdersVO view objects

Advanced View Object Concepts and Features

Advanced View Object Techniques 39-7

■ Define a view link between them, naming the view link accessor
PersonsToOrders

■ Add instances of them to an application module's data model named master (of
type PersonsVO) and detail (of type OrdersVO) coordinated actively by a view
link instance.

If you find a person in the master view object instance, the detail view object
instance updates as expected to show the corresponding orders. At this point, if you
invoke a custom method that programmatically accesses the PersonsToOrders view
link accessor attribute of the current PersonsVO row, you get a RowSet containing
the set of OrdersVO rows. You might reasonably expect this programmatically
accessed RowSet to have come from the detail view object instance in the data
model, but this is not the case.

The RowSet returned by a view link accessor always originates from an internally
created view object instance, not one you that added to the data model. This internal
view object instance is created as needed and added with a system-defined name to
the root application module.

The principal reason a distinct, internally-created view object instance is used is to
guarantee that it remains unaffected by developer-related changes to their own view
objects instances in the data model. For example, if the view row were to use the detail
view object in the data model for view link accessor RowSet, the resulting row set
could be inadvertently affected when the developer dynamically:

1. Adds a WHERE clause with new named bind parameters

If such a view object instance were used for the view link accessor result,
unexpected results or an error could ensue because the dynamically-added WHERE
clause bind parameter values have not been supplied for the view link accessor's
RowSet: they were only supplied for the default row set of the detail view object
instance in the data model.

2. Adds an additional master view object instance for the detail view object instance
in the data model.

In this scenario, the semantics of the accessor would be changed. Instead of the
accessor returning OrdersVO rows for the current PersonsVO row, it could all of
a sudden start returning only the OrdersVO rows for the current PersonsVO that
were created by a current logged in customer, for example.

3. Removes the detail view object instance or its containing application module
instance.

In this scenario, all rows in the programmatically-accessed detail RowSet would
become invalid.

Furthermore, Oracle ADF needs to distinguish between the data model master-detail
and view link accessor row sets for certain operations. For example, when you create a
new row in a detail view object, the framework automatically populates the attributes
involved in the view link with corresponding values of the master. In the data model
master-detail case, it gets these values from the current row(s) of the possibly multiple
master view object instances in the data model. In the case of creating a new row in a
RowSet returned by a view link accessor, it populates these values from the master
row on which the accessor was called.

39.1.4 Presenting and Scrolling Data a Page at a Time Using the Range
To present and scroll through data a page at a time, you can configure a view object to
manage for you an appropriately-sized range of rows. The range facility allows a client

Advanced View Object Concepts and Features

39-8 Fusion Developer's Guide for Oracle Application Development Framework

to easily display and update a subset of the rows in a row set, as well as easily scroll to
subsequent pages, n rows as a time. You call setRangeSize() to define how many
rows of data should appear on each page. The default range size is one (1) row. A
range size of minus one (-1) indicates the range should include all rows in the row set.

When you set a range size greater than one, you control the row set paging behavior
using the iterator mode. The two iterator mode flags you can pass to the
setIterMode() method are:

■ RowIterator.ITER_MODE_LAST_PAGE_PARTIAL

In this mode, the last page of rows may contain fewer rows than the range size.
For example, if you set the range size to 10 and your row set contains 23 rows, the
third page of rows will contain only three rows. This is the style that works best
for Fusion web applications.

■ RowIterator.ITER_MODE_LAST_PAGE_FULL

In this mode, the last page of rows is kept full, possibly including rows at the top
of the page that had appeared at the bottom of the previous page. For example, if
you set the range size to 10 and your row set contains 23 rows, the third page of
rows will contain 10 rows, the first seven of which appeared as the last seven rows
of page two. This is the style that works best for desktop-fidelity applications
using Swing.

39.1.5 Efficiently Scrolling Through Large Result Sets Using Range Paging
As a general rule, for highest performance, Oracle recommends building your
application in a way that avoids giving the end user the opportunity to scroll through
very large query results. To enforce this recommendation, call the
getEstimatedRowCount() method on a view object to determine how many rows
would be returned by the user’s query before actually executing the query and
allowing the user to proceed. If the estimated row count is unreasonably large, your
application can demand that the end-user provide additional search criteria.

However, when you must work with very large result sets, typically over 100 rows,
you can use the view object's access mode called "range paging" to improve
performance. The feature allows your applications to page back and forth through
data, a range of rows at a time, in a way that is more efficient for large data sets than
the default "scrollable" access mode.

The range paging access mode is typically used for paging through read-only row sets,
and often is used with read-only view objects. You allow the user to find the row they
are looking for by paging through a large row set with range paging access mode, then
you use the Key of that row to find the selected row in a different view object for
editing.

Note: When using the ADF Model layer's declarative data binding,
the iterator binding in the page definition has a RangeSize property.
At runtime, the iterator binding invokes the setRangeSize()
method on its corresponding row set iterator, passing the value of this
RangeSize property. The ADF design time by default sets this
RangeSize property to 10 rows for most iterator bindings. An
exception is the range size specified for a List binding to supply the
set of valid values for a UI component like a dropdown list. In this
case, the default range size is minus one (-1) to allow the range to
include all rows in the row set.

Advanced View Object Concepts and Features

Advanced View Object Techniques 39-9

Range paging for view objects supports a standard access mode and a variation of the
standard access mode that combines the benefits of range paging and result set
scrolling with a minimum number of visits to the database. These modes for the view
object range paging feature include:

■ RANGE_PAGING, standard access mode fetches the number of rows specified by a
range size. In this mode, the number of rows that may be scrolled without
requerying the database is determined by a range size that you set. The default is
to fetch a single row, but it is expected that you will set a range size equal to the
number of rows you want to be able to display to the user before they scroll to the
next result set. The application requeries the database each time a row outside of
the range is accessed by the end user. Thus, scrolling backward and forward
through the row set will requery the database. For clarification about this
database-centric paging strategy, see Section 39.1.5.1, "Understanding How to
Oracle Supports "TOP-N" Queries."

■ RANGE_PAGING_INCR, incremental access mode gives the UI designer more
flexibility for the number of rows to display at a time while keeping database
queries to a minimum. In this mode, the UI incrementally displays the result set
from the memory cache and thus supports scrolling within a single database
query. The number of rows that the end user can scroll though in a single query is
determined by the range size and a range paging cache factor that you set. For
example, suppose that you set the range size to 4 and the cache factor to 5. Then,
the maximum number of rows to cache in memory will be 4*5 = 20. For further
explanation of the caching behavior, see Section 39.1.5.4, "What Happens When
View Rows are Cached When Using Range Paging."

39.1.5.1 Understanding How to Oracle Supports "TOP-N" Queries
The Oracle database supports a feature called a "Top-N" query to efficiently return the
first n ordered rows in a query. For example, if you have a query like:

SELECT EMPNO, ENAME,SAL FROM EMP ORDER BY SAL DESC

If you want to retrieve the top 5 employees by salary, you can write a query like:

SELECT * FROM (
SELECT X.*,ROWNUM AS RN FROM (

SELECT EMPNO,ENAME,SAL FROM EMP ORDER BY SAL DESC
) X

) WHERE RN <= 5

which gives you results like:

 EMPNO ENAME SAL RN

Caution: Additionally, the view object supports a RANGE_PAGING_
AUTO_POST access mode to accommodate the inserting and deleting
of rows from the row set. This mode behaves like the RANGE_PAGING
mode, except that it eagerly calls postChanges() on the database
transaction whenever any changes are made to the row set. However,
this mode is typically not appropriate for use in Fusion web
applications unless you can guarantee that the transaction will
definitely be committed or rolled-back during the same HTTP request.
Failure to heed this advice can lead to strange results in an
environment where both application modules and database
connections can be pooled and shared serially by multiple different
clients.

Advanced View Object Concepts and Features

39-10 Fusion Developer's Guide for Oracle Application Development Framework

---------- -------- ------ ----
7839 KING 5000 1
7788 SCOTT 3000 2
7902 FORD 3000 3
7566 JONES 2975 4
7698 BLAKE 2850 5

The feature is not only limited to retrieving the first n rows in order. By adjusting the
criteria in the outermost WHERE clause you can efficiently retrieve any range of rows in
the query's sorted order. For example, to retrieve rows 6 through 10 you could alter
the query this way:

SELECT * FROM (
SELECT X.*,ROWNUM AS RN FROM (

SELECT EMPNO,ENAME,SAL FROM EMP ORDER BY SAL DESC
) X

) WHERE RN BETWEEN 6 AND 10

Generalizing this idea, if you want to see page number P of the query results, where
each page contains R rows, then you would write a query like:

SELECT * FROM (
SELECT X.*,ROWNUM AS RN FROM (
SELECT EMPNO,ENAME,SAL FROM EMP ORDER BY SAL DESC

) X
) WHERE RN BETWEEN ((:P - 1) * :R) + 1 AND (:P) * :R

As the result set you consider grows larger and larger, it becomes more and more
efficient to use this technique to page through the rows. Rather than retrieving
hundreds or thousands of rows over the network from the database, only to display
ten of them on the page, instead you can produce a clever query to retrieve only the R
rows on page number P from the database. No more than a handful of rows at a time
needs to be returned over the network when you adopt this strategy.

To implement this database-centric paging strategy in your application, you could
handcraft the clever query yourself and write code to manage the appropriate values
of the :R and :P bind variables. Alternatively, you can use the view object's range
paging access mode, which implements it automatically for you.

39.1.5.2 How to Enable Range Paging for a View Object
You can use the Tuning panel of the overview editor for the view object to set the
access mode to either standard range paging or incremental range paging. The Range
Paging Cache Factor field is only editable when you select Range Paging Incremental.
Figure 39–2 shows the view object’s Access Mode set to Range Paging (standard
mode) with the default range size of 1. To understand the row set caching behavior of
both access modes, see Section 39.1.5.4, "What Happens When View Rows are Cached
When Using Range Paging."

Advanced View Object Concepts and Features

Advanced View Object Techniques 39-11

Figure 39–2 Access Mode in the Overview Editor for the View Object

To programmatically enable standard range paging for your view object, first call
setRangeSize() to define the number of rows per page, then call the following
method with the desired mode:

yourViewObject.setAccessMode(RowSet.RANGE_PAGING | RANGE_PAGING_INCR);

If you set RANGE_PAGING_INCR, then you must also call the following method to set
the cache factor for your defined range size:

yourViewObject.setRangePagingCacheFactor(int f);

39.1.5.3 What Happens When You Enable Range Paging
When a view object's access mode is set to RANGE_PAGING, the view object takes its
default query like:

SELECT EMPNO, ENAME, SAL FROM EMP ORDER BY SAL DESC

and automatically "wraps" it to produce a Top-N query.

For best performance, the statement uses a combination of greater than and less than
conditions instead of the BETWEEN operator, but the logical outcome is the same as the
Top-N wrapping query you saw above. The actual query produced to wrap a base
query of:

SELECT EMPNO, ENAME, SAL FROM EMP ORDER BY SAL DESC

Advanced View Object Concepts and Features

39-12 Fusion Developer's Guide for Oracle Application Development Framework

looks like this:

SELECT * FROM (
SELECT /*+ FIRST_ROWS */ IQ.*, ROWNUM AS Z_R_N FROM (
SELECT EMPNO, ENAME, SAL FROM EMP ORDER BY SAL DESC

) IQ WHERE ROWNUM < :0)
WHERE Z_R_N > :1

The two bind variables are bound as follows:

■ :1 index of the first row in the current page

■ :0 is bound to the last row in the current page

39.1.5.4 What Happens When View Rows are Cached When Using Range Paging
When a view object operates in RANGE_PAGING access mode, it only keeps the current
range (or "page") of rows in memory in the view row cache at a time. That is, if you are
paging through results ten at a time, then on the first page, you'll have rows 1 through
10 in the view row cache. When you navigate to page two, you'll have rows 11
through 20 in the cache. This also can help make sure for large row sets that you don't
end up with tons of rows cached just because you want to preserve the ability to scroll
backwards and forwards.

When a view object operates in RANGE_PAGING_INCR access mode, the cache factor
determines the number of rows to cache in memory for a specific range size. For
example, suppose the range size is set to 4 and cache factor to 5. Then, the memory
will keep at most 4*5 = 20 rows in its collection. In this example, when the range is
refreshed for the first time, the memory will have just four rows even though the range
paging query is bound to retrieve rows 0 to 19 (for a total of twenty rows). When the
range is scrolled past the forth row, more rows will be read in from the current result
set. This will continue until all twenty rows from the query result are read. If the user's
action causes the next set of rows to be retrieve, the query will be re-executed with the
new row number bind values. The exact row number bind values are determined by
the new range-start and the number of rows that can be retained from the cache. For
example, suppose all twenty rows have been filled up and the user asks to move the
range-start to 18 (0-based). This means that memory can retain row 18 and row 19 and
will need two more rows to fill the range. The query is re-executed for rows 20 and 21.

39.1.5.5 How to Scroll to a Given Page Number Using Range Paging
When a view object operates in RANGE_PAGING access mode, to scroll to page number
n call its scrollToRangePage() method, passing n as the parameter value.

39.1.5.6 Estimating the Number of Pages in the Row Set Using Range Paging
When a view object operates in RANGE_PAGING access mode, you can access an
estimate of the total number of pages the entire query result would produce using the
getEstimatedRangePageCount() method.

39.1.5.7 Understanding the Tradeoffs of Using a Range Paging Mode
You might ask yourself, "Why wouldn't I always want to use RANGE_PAGING or
RANGE_PAGING_INCR mode?" The answer is that using range paging potentially
causes more overall queries to be executed as you are navigating forward and
backward through your view object rows. You would want to avoid using RANGE_
PAGING mode in these situations:

Advanced View Object Concepts and Features

Advanced View Object Techniques 39-13

■ You plan to read all the rows in the row set immediately (for example, to populate
a dropdown list).

In this case your range size would be set to -1 and there really is only a single
"page" of all rows, so range paging does not add value.

■ You need to page back and forth through a small-sized row set.

If you have 100 rows or fewer, and are paging through them 10 at a time, with
RANGE_PAGING mode you will execute a query each time you go forward and
backward to a new page. Otherwise, in the default scrollable mode, you will cache
the view object rows as you read them in, and paging backwards through the
previous pages will not re-execute queries to show those already-seen rows.
Alternatively, you can use RANGE_PAGING_INCR mode to allow scrolling through
in-memory results based on a row set cache factor that you determine.

In the case of a very large (or unpredictably large) row set, the trade off of potentially
doing a few more queries — each of which only returns up to the RangeSize number
of rows from the database — is more efficient then trying to cache all of the
previously-viewed rows. This is especially true if you allow the user to jump to an
arbitrary page in the list of results. Doing so in default, scrollable mode requires
fetching and caching all of the rows between the current page and the page the users
jumps to. In RANGE_PAGING mode, it will ask the database just for the rows on that
page. Then, if the user jumps back to a page of rows that they have already visited, in
RANGE_PAGING mode, those rows get re-queried again since only the current page of
rows is held in memory in this mode. The incremental range paging access mode
RANGE_PAGING_INCR combines aspects of both standard range paging and scrollable
access mode since it allows the application to cache more rows in memory and permits
the user to jump to any combination of those rows without needing to requery.

39.1.6 Setting Up a Data Model with Multiple Masters
When useful, you can set up your data model to have multiple master view object
instances for the same detail view object instance. Consider view objects named
Customers, Orders, and PaymentOptions with view links defined between:

■ Customers and PaymentOptions

■ Orders and PaymentOptions

Figure 39–3 shows what the data model panel looks like when you've configured both
Customers and Orders view object instances to be masters of the same
PaymentOptions view object instance.

Note: The examples in this section are not based on the Fusion Order
Demo application. They currently refer to the MultipleMasters
project in the AdvancedViewObjectExamples workspace, available
as noted at the beginning of this chapter for download.

Advanced View Object Concepts and Features

39-14 Fusion Developer's Guide for Oracle Application Development Framework

Figure 39–3 Multiple Master View Object Instances for the Same Detail

To set up the data model as shown in Figure 39–3 open the overview editor for the
application module and follow these steps in the Data Model Components section of
the Data Model page:

1. Add an instance of the Customers view object to the data model.

Assume you name it Customers.

2. Add an instance of the Orders view object to the data model

Assume you name it Orders.

3. Select the Customers view object instance in the Data Model list

4. In the Available View Objects list, select the PaymentOptions view object
indented beneath the Customers view object and enter the view object instance
name of PaymentOptions in the New Instance Name field. Click > to shuttle it
into data model as a detail of the existing Customers view object instance.

5. Select the Orders view object instance in the Data Model list

6. In the Available View Objects list, select the PaymentOptions view object
indented beneath the Orders view object and enter the view object instance name
of PaymentOptions in the New Instance Name field. Click > to shuttle it into
data model as a detail of the existing Orders view object instance.

An alert will appear: An instance of a View Object with the name
PaymentOptions has already been used in the data model. Would you like to
use the same instance?

7. Click Yes to confirm you want the PaymentOptions view object instance to also
be the detail of the Orders view object instance.

39.1.7 Understanding When You Can Use Partial Keys with findByKey()
View objects based on multiple entity usages support the ability to find view rows by
specifying a partially populated key. A partial key is a multi-attribute Key object with
some of its attributes set to null. However, there are strict rules about what kinds of
partial keys can be used to perform the findByKey().

If a view object is based on n entity usages, where n > 1, then the view row key is by
default comprised of all of the primary key attributes from all of the participating
entity usages. Only the ones from the first entity object are required to participate in the
view row key, but by default all of them do.

If you allow the key attributes from some secondary entity usages to remain as key
attributes at the view row level, then you should leave all of the attributes that form

Advanced View Object Concepts and Features

Advanced View Object Techniques 39-15

the primary key for that entity object as part of the view row key. Assuming you have
left the one or more key attributes in the view row for m of the n entity usages, where
(m <= n), then you can use findByKey() to find rows based on any subset of these m
entity usages. Each entity usage for which you provide values in the Key object,
requires that you must provide non-null values for all of the attributes in that entity's
primary key.

You have to follow this rule because when a view object is based on at least one or
more entity usages, its findByKey() method finds rows by delegating to the
findByPrimaryKey() method on the entity definition corresponding to the first
entity usage whose attributes in the view row key are non-null. The entity definition's
findByPrimaryKey() method requires all key attributes for any given entity object
to be non-null in order to find the entity row in the cache.

As a concrete example, imagine that you have a OrderInfoVO view object with a
OrderEO entity object as its primary entity usage, and an AddressEO entity as
secondary reference entity usage. Furthermore, assume that you leave the Key
Attribute property of both of the following view row attributes set to true:

■ OrderId — primary key for the OrderEO entity

■ AddressId — primary key for the AddressEO entity

The view row key will therefore be the (OrderId, AddressId) combination. When
you do a findByKey(), you can provide a Key object that provides:

■ A completely specified key for the underlying OrderEO entity

Key k = new Key(new Object[]{new Number(200), null});

■ A completely specified key for the underlying AddressEO entity

Key k = new Key(new Object[]{null, new Number(118)});

■ A completely specified key for both entities

Key k = new Key(new Object[]{new Number(200), new Number(118)});

When a valid partial key is specified, the findByKey() method can return multiple
rows as a result, treating the missing entity usage attributes in the Key object as a
wildcard.

39.1.8 Creating Dynamic Attributes to Store UI State
You can add one or more dynamic attributes to a view object at runtime using the
addDynamicAttribute() method. Dynamic attributes can hold any serializable
object as their value. Typically, you will consider using dynamic attributes when
writing generic framework extension code that requires storing some additional
per-row transient state to implement a feature you want to add to the framework in a
global, generic way.

39.1.9 Working with Multiple Row Sets and Row Set Iterators
While you typically work with a view object's default row set, you can call the
createRowSet() method on the ViewObject interface to create secondary, named
row sets based on the same view object's query. One situation where this could make
sense is when your view object's SQL query contains named bind variables. Since each
RowSet object stores its own copy of bind variable values, you could use a single view
object to produce and process multiple row sets based on different combinations of
bind variable values. You can find a named row set you've created using the

Advanced View Object Concepts and Features

39-16 Fusion Developer's Guide for Oracle Application Development Framework

findRowSet() method. When you're done using a secondary row set, call its
closeRowSet() method.

For any RowSet, while you typically work with its default row set iterator, you can call
the createRowSetIterator() method of the RowSet interface to create secondary,
named row set iterators. You can find a named row set iterator you've created using
the findRowSetIterator() method. When you're done using a secondary row set
iterator, call its closeRowSetIterator() method.

39.1.10 Optimizing View Link Accessor Access By Retaining the Row Set
Each time you retrieve a view link accessor row set, by default the view object creates
a new RowSet object to allow you to work with the rows. This does not imply
re-executing the query to produce the results each time, only creating a new instance of
a RowSet object with its default iterator reset to the "slot" before the first row. To force
the row set to refresh its rows from the database, you can call its executeQuery()
method.

You can enable caching of the view link accessor row set when you do not want the
application to incur the small amount of overhead associated with creating new detail
row sets. For example, because view accessor row sets remain stable as long as the
master row view accessor attribute remains unchanged, it would not be necessary to
recreate a new row set for UI components, like the tree control, where data for each
master node in a tree needs to retain its distinct set of detail rows. The view link
accessor’s detail row set can also be accessed programmatically. In this case, if your
application makes numerous calls to the same view link accessor attributes, you can
consider caching the view link accessor row set. This style of managing master-detail
coordination differs from creating view link instances in the data model, as explained
in Section 39.1.3, "Understanding View Link Accessors Versus Data Model View Link
Instances."

You can enable retention of the view link accessor row set using the overview editor
for the view object that is the source for the view link accessor. Select Retain View
Link Accessor Row Set in the Tuning section of the General page of the overview
editor for the view object.

Alternatively, you can enable a custom Java class for your view object, override the
create() method, and add a line after super.create() that calls the
setViewLinkAccessorRetained() method passing true as the parameter. It
affects all view link accessor attributes for that view object.

When this feature is enabled for a view object, since the view link accessor row set is
not recreated each time, the current row of its default row set iterator is also retained
as a side-effect. This means that your code will need to explicitly call the reset()
method on the row set you retrieve from the view link accessor to reset the current
row in its default row set iterator back to the "slot" before the first row.

Performance Tip: When you need to perform programmatic
iteration over a result set, create a secondary iterator to avoid
disturbing the current row of the default row set iterator. For example,
through the ADF Model declarative data binding layer, user interface
pages in your application work with the default row set iterator of the
default row set of view objects in the application module's data
model. In this scenario, if you did not create a secondary row set
iterator for the business logic you write to iterate over a view object's
default row set, you would consequently change the current row of
the default row set iterator used by the user interface layer.

Tuning Your View Objects for Best Performance

Advanced View Object Techniques 39-17

Note, however, that with accessor retention enabled, your failure to call reset() each
time before you iterate through the rows in the accessor row set can result in a subtle,
hard-to-detect error in your application. For example, if you iterate over the rows in a
view link accessor row set like this, for example to calculate some aggregate total:

RowSet rs = (RowSet)row.getAttribute("OrdersShippedToPurchaser");
while (rs.hasNext()) {
 Row r = rs.next();
 // Do something important with attributes in each row
}
The first time you work with the accessor row set the code will work. However, since
the row set (and its default row set iterator) are retained, the second and subsequent
times you access the row set the current row will already be at the end of the row set
and the while loop will be skipped since rs.hasNext() will be false. Instead, with
this feature enabled, write your accessor iteration code like this:

RowSet rs = (RowSet)row.getAttribute("OrdersShippedToPurchaser");
rs.reset(); // Reset default row set iterator to slot before first row!
while (rs.hasNext()) {
 Row r = rs.next();
 // Do something important with attributes in each row
}

Recall that if view link consistency is on, when the accessor is retained the new
unposted rows will show up at the end of the row set. This is slightly different from
when the accessor is not retained (the default), where new unposted rows will appear
at the beginning of the accessor row set.

39.2 Tuning Your View Objects for Best Performance
You can use view objects to read rows of data, create and store rows of transient data,
as well as automatically coordinate inserts, updates, and deletes made by end users
with your underlying business objects. How you design and use your view objects can
definitely affect their performance at runtime. This section provides guidance on
configuring your view objects to get the best possible performance.

39.2.1 Use Bind Variables for Parameterized Queries
Whenever the WHERE clause of your query includes values that might change from
execution to execution, you should use named bind variables. The Create View
Criteria dialog that you display from the Query page of the view object overview
editor makes this an easy task. Their use also protects your application against abuse
through SQL injection attacks by malicious end-users. For information about defining
view criteria with bind variables, see Section 5.11.1, "How to Create Named View
Criteria Declaratively."

39.2.1.1 Use Bind Variables to Avoid Re-parsing of Queries
Bind variables are place holders in the SQL string whose value you can easily change
at runtime without altering the text of the SQL string itself. Since the query text doesn't
change from execution to execution, the database can efficiently reuse the same parsed
statement each time. Avoiding re-parsing of your statement alleviates the database
from having to continually re-determine its query optimization plan and eliminates
contention by multiple end-users on other costly database resources used during this
parsing operation. This savings leads to higher runtime performance of your
application. See Section 5.10.1, "How to Add Bind Variables to a View Object
Definition" for details on how to use named bind variables.

Tuning Your View Objects for Best Performance

39-18 Fusion Developer's Guide for Oracle Application Development Framework

39.2.1.2 Use Bind Variables to Prevent SQL-Injection Attacks
Using bind variables for parameterized WHERE clause values is especially important if
their values will be supplied by end-users of your application. Consider the example
shown in Example 39–3. It adds a dynamic WHERE clause formed by concatenating a
user-supplied parameter value into the statement.

Example 39–3 Using String Concatenation Instead of Bind Variables is Vulnerable to
SQL-Injection Attacks

// EXAMPLE OF BAD PRACTICE, Do not follow this approach!
String userSuppliedValue = ... ;
yourViewObject.setWhereClause("BANK_ACCOUNT_ID = "+userSuppliedValue);

A user with malicious intentions — if able to learn any details about your application's
underlying database schema — could supply a carefully-constructed "bank account
number" as a field value or URL parameter like:

BANK_ACCOUNT_ID

When the code in Example 39–3 concatenates this value into the dynamically-applied
where clause, what the database sees is a query predicate like this:

WHERE (BANK_ACCOUNT_ID = BANK_ACCOUNT_ID)

This WHERE clause retrieves all bank accounts instead of just the current user's,
perhaps allowing the hacker to view private information of another person's account.
This technique of short-circuiting an application's WHERE clause by trying to supply a
maliciously-constructed parameter value into a SQL statement is called a SQL injection
attack. Using named bind variables instead for these situations as shown in
Example 39–4 prevents the vulnerability.

Example 39–4 Use Named Bind Variables Instead of String Concatenation

// Best practice using named bind variables
String userSuppliedValue = ... ;
yourViewObject.setWhereClause("BANK_ACCOUNT_ID = :BankAcccountId");
yourViewObject.defineNamedWhereClauseParam("BankAcccountId", null, null);
yourViewObject.setNamedWhereClauseParam("BankAcccountId",userSuppliedValue);

If a malicious user supplies an illegal value in this case, they receive an error your
application can handle instead of obtaining data they are not suppose to see.

39.2.2 Consider Using Entity-Based View Objects for Read-Only Data
Typically view objects used for SQL-based validation purposes, as well as for
displaying the list of valid selections in a dropdown list, can be read-only. You need to
decide what kind of functionality your application requires and design the view object
accordingly.

Best Practice: When you need to create a read-only view object for
data lookup, you should use the entity-based view object and deselect
the Updatable option in the Entity Objects page of the view object
overview editor. The approach benefits from the design time editors
which aid in generating the SQL query. The alternative of creating an
expert-mode view object requires writing a SQL query. Expert mode
queries are still useful for cases where Unions and Group By queries
cannot be expressed using entity objects.

Tuning Your View Objects for Best Performance

Advanced View Object Techniques 39-19

View objects can either be related to underlying entity objects or not. When a view
object is related to one or more underlying entity objects the default behavior supports
creating new rows and modifying or removing queried rows. However, the update
feature can be disabled by deselecting Updatable in the overview editor for the
entity-based view object, as shown in Figure 39–4.

Figure 39–4 Deselecting the Updatable Option for an Entity-based View Object

The alternative is to create a read-only view object and define the SQL query using
Expert Mode in the Edit Query dialog. For the Business Components developer not
comfortable with constructing a complex SQL statement, it will always be more
convenient to create a non-updatable view object based on an entity object since the
editor simplifies the task of creating the query. Entity-based view objects that you set
to non-updatable compare favorably to read-only, expert mode-based view objects:

■ There is the ability to optimize the select list at runtime to include only those
attributes that are required by the user interface

■ There is no significant performance degradation incurred by using the entity
object to create the local cache

■ The data in the view object will reflect the state of the local cache rather than need
to return to the database for each read operation

■ The data in the local cache will stay consistent should another view object you
define need to perform an update on the non-updatable view object’s base entity
object.

So, while there is a small amount of runtime overhead associated with the
coordination between view object rows and entity object rows (estimates show less
than 5% overhead), weigh this against the ability to keep the view object definition
entirely declarative and maintain a customizable view object. Expert mode-based view
objects are not customizable but they can be used to perform Unions and Group By
queries that cannot be expressed in entity objects. Expert mode-based view objects are

Tuning Your View Objects for Best Performance

39-20 Fusion Developer's Guide for Oracle Application Development Framework

also useful in SQL-based validation queries used by the view object-based Key Exists
validator.

When data is not read-only, the best (and only) choice is to create entity-based view
objects. Entity-based view objects that are updatable (default behavior) are the only
way to pickup entity-derived attribute default values, reflect pending changes made to
relevant entity object attributes through other view objects in the same transaction,
and reflect updated reference information when foreign key attribute values are
changed is to use an entity-based view object.

39.2.3 Use SQL Tracing to Identify Ill-Performing Queries
After deciding whether your view object should be mapped to entities or not, your
attention should turn to the query itself. On the Query page of the view object
overview editor, click the Edit SQL Query icon to display the Edit Query dialog. Click
the Explain Plan button on the Query page of the Edit Query dialog to see the query
plan that the database query optimizer will use. If you see that it is doing a full table
scan, you should consider adding indexes or providing a value for the Query
Optimizer Hint field on the Tuning section of the overview editor’s General page.
This will let you explicitly control which query plan will be used. These facilities
provide some useful tools to the developer to evaluate the query plans for individual
view object SQL statements. However, their use is not a substitute for tracing the SQL
of the entire application to identify poorly performing queries in the presence of a
production environment's amount of data and number of end users.

You can use the Oracle database's SQL Tracing facilities to produce a complete log of
all SQL statements your application performs. The approach that works in all versions
of the Oracle database is to issue the command:

ALTER SESSION SET SQL_TRACE TRUE

Specifically in version 10g of Oracle, the DBA would need to grant ALTER SESSION
privilege in order to execute this command.

This command enables tracing of the current database session and logs all SQL
statements to a server-side trace file until you either enter ALTER SESSION SET
SQL_TRACE FALSE or close the connection. To simplify enabling this option to trace
your Fusion web applications, override the afterConnect() method of your
application module (or custom application module framework extension class) to
conditionally perform the ALTER SESSION command to enable SQL tracing based on
the presence of a Java system property as shown in Example 39–5.

Example 39–5 Conditionally Enabling SQL Tracing in an Application Module

// In YourCustomApplicationModuleImpl.java
protected void afterConnect() {
super.afterConnect();
if (System.getProperty("enableTrace") != null) {
getDBTransaction().executeCommand("ALTER SESSION SET SQL_TRACE TRUE");

}
}

After producing a trace file, you use the TKPROF utility supplied with the database to
format the information and to better understand information about each query
executed like:

■ The number of times it was (re)parsed

■ The number of times it was executed

Tuning Your View Objects for Best Performance

Advanced View Object Techniques 39-21

■ How many round-trips were made between application server and the database

■ Various quantitative measurements of query execution time

Using these techniques, you can decide which additional indexes might be required to
speed up particular queries your application performs, or which queries could be
changed to improve their query optimization plan. For details about working with the
TKPROF utility, see sections "Understanding SQL Trace and TKPROF" and "Using the
SQL Trace Facility and TKPROF" in the Oracle Database Performance Tuning Guide.

39.2.4 Consider the Appropriate Tuning Settings for Every View Object
The Tuning section on the General page of the view object overview editor lets you set
various options that can dramatically effect your query's performance. Figure 39–5
shows the default options that the new view object defines.

Figure 39–5 View Object Default Tuning Options

Note: The Oracle database provides the DBMS_MONITOR package
that further simplifies SQL tracing and integrates it with Oracle
Enterprise Manager for visually monitoring the most frequently
performed query statements your applications perform.

Tuning Your View Objects for Best Performance

39-22 Fusion Developer's Guide for Oracle Application Development Framework

39.2.4.1 Set the Database Retrieval Options Appropriately
The Retrieve from the Database group box, controls how the view object retrieves
rows from the database server. The options for the fetch mode are All Rows, Only Up
To Row Number, At Most One Row, and No Rows. Most view objects will stick with
the default All Rows option, which will be retrieved As Needed (default) or All at
Once depending on which option you choose.

The As Needed option ensures that an executeQuery() operation on the view
object initially retrieves only as many rows as necessary to fill the first page of a
display, whose number of rows is set based on the view object's range size. If you use
As Needed, then you will require only as many database round trips as necessary to
deliver the number of rows specified by the initial range size. Whereas, if you use All
at Once, then the application will perform as many round trips as necessary to deliver
all the rows based on the value of in Batches of (fetch size) and the number of rows
identified by the query.

For view objects whose WHERE clause expects to retrieve a single row, set the option to
At Most One Row for best performance. This way, the view object knows you don't
expect any more rows and will skip its normal test for that situation. Finally, if you use
the view object only for creating new rows, set the option to No Rows so no query will
ever be performed.

39.2.4.2 Consider Whether Fetching One Row at a Time is Appropriate
The fetch size controls how many rows will be returned in each round trip to the
database. By default, the framework will fetch rows in batches of one row at a time. If
you are fetching any more than one row, you will gain efficiency by setting this in
Batches of value.

However the higher the number, the larger the client-side buffer required, so avoid
setting this number arbitrarily high. If you are displaying results n rows at a time in
the user interface, it's good to set the fetch size to at least n+1 so that each page of
results can be retrieved in a single round trip to the database.

39.2.4.3 Specify a Query Optimizer Hint if Necessary
The Query Optimizer Hint field allows you to specify an optional hint to the Oracle
query optimizer to influence what execution plan it will use. You can set this hint in
the Tuning page of the overview editor for the view object, as shown in Figure 39–5.

Note: The All at Once option does not enforce a single database
round trip to fetch the rows specified by the view object query. The As
Needed and All at Once options work in conjunction with the value
of in Batches of (also known as fetch size) to determine the number of
round trips. For best database access performance, you should
consider changing the fetch size as described in Section 39.2.4.2,
"Consider Whether Fetching One Row at a Time is Appropriate."

Caution: Unless your query really fetches just one row, leaving the
default fetch size of one (1) in the in Batches of field on the Tuning
section of the General page of the view object overview editor is a
recipe for bad performance due to many unnecessary round trips
between the application server and the database. Oracle strongly
recommends considering the appropriate value for each view object's
fetch size.

Tuning Your View Objects for Best Performance

Advanced View Object Techniques 39-23

At runtime, the hint you provide is added immediately after the SELECT keyword in
the query, wrapped by the special comment syntax /*+ YOUR_HINT */. Two
common optimizer hints are:

■ FIRST_ROWS — to hint that you want the first rows as quickly as possible

■ ALL_ROWS — to hint that you want all rows as quickly as possible

There are many other optimizer hints that are beyond the scope of this manual to
document. Reference the Oracle database reference manuals for more information on
available hints.

39.2.5 Creating View Objects at Design Time
It's important to understand the overhead associated with creating view objects at
runtime. Avoid the temptation to do this without a compelling business requirement.
For example, if your application issues a query against a table whose name you know
at design time and if the list of columns to retrieve is also fixed, then create a view
object at design time. When you do this, your SQL statements are neatly encapsulated,
can be easily explained and tuned during development, and incur no runtime
overhead to discover the structure and data types of the resulting rows.

In contrast, when you use the createViewObjectFromQueryStmt() API on the
ApplicationModule interface at runtime, your query is buried in code, it's more
complicated to proactively tune your SQL, and you pay a performance penalty each
time the view object is created. Since the SQL query statement for a
dynamically-created view object could theoretically be different each time a new
instance is created using this API, an extra database round trip is required to discover
the "shape" of the query results on-the-fly. Only create queries dynamically if you
cannot know the name of the table to query until runtime. Most other needs can be
addressed using a design-time created view object in combination with runtime API's
to set bind variables in a fixed where clause, or to add an additional WHERE clause
(with optional bind variables) at runtime.

39.2.6 Use Forward Only Mode to Avoid Caching View Rows
 Often you will write code that programmatically iterates through the results of a view
object. A typical situation will be custom validation code that must process multiple
rows of query results to determine whether an attribute or an entity is valid or not. In
these cases, if you intend to read each row in the row set a single time and never
require scrolling backward or re-iterating the row set a subsequent time, then you can
use "forward only" mode to avoid caching the retrieved rows. To enable forward only
mode, call setForwardOnly(true) on the view object.

You can also use forward-only mode to avoid caching rows when inserting, updating,
or deleting data as long as you never scroll backward through the row set and never
call reset() to set the iterator back to the first row. Forward only mode only works
with a range size of one (1).

Note: Using a read-only view object (with no entity usages) in
forward-only mode with an appropriately tuned fetch size is the most
efficient way to programmatically read data.

Generating Custom Java Classes for a View Object

39-24 Fusion Developer's Guide for Oracle Application Development Framework

39.3 Generating Custom Java Classes for a View Object
As you've seen, all of the basic querying functionality of a view object can be achieved
without using custom Java code. Clients can retrieve and iterate through the data of
any SQL query without resorting to any custom code on the view object developer's
part. In short, for many read-only view objects, once you have defined the SQL
statement, you're done. However, it's important to understand how to enable custom
Java generation for a view object when your needs might require it. For example,
reasons you might write code in a custom Java class include:

■ To add validation methods (although Groovy Script expressions can provide this
support without needing Java)

■ To add custom logic

■ To augment built-in behavior

Appendix E, "Most Commonly Used ADF Business Components Methods" provides a
quick reference to the most common code that you will typically write, use, and
override in your custom view object and view row classes.

39.3.1 How To Generate Custom Classes
To enable the generation of custom Java classes for a view object, use the Java page of
the view object overview editor. As shown in Figure 39–6, there are three optional Java
classes that can be related to a view object. The first two in the list are the most
commonly used:

■ View object class, which represents the component that performs the query

■ View row class, which represents each row in the query result

Figure 39–6 View Object Custom Java Generation Options

Generating Custom Java Classes for a View Object

Advanced View Object Techniques 39-25

39.3.1.1 Generating Bind Variable Accessors
When you enable the generation of a custom view object class, if you also select the
Bind Variable Accessors checkbox, then JDeveloper generates getter and setter
methods in your view object class. Since the Users view object had three named bind
variables (TheName, LowUserId, and HighUserId), the custom
PersonsImpl.java view object class would have corresponding methods like this:

public String getTheName() {...}
public void setTheName(String value){...}
public Number getHighUserId(){...}
public void setHighUserId(Number value) {...}
public Number getLowUserId() {...}
public void setLowUserId(Number value) {...}

These methods allow you to set a bind variable with compile-time type-checking to
ensure you are setting a value of the appropriate type. That is, instead of writing a line
like this to set the value of the LowUserId:

vo.setNamedWhereClauseParam("LowUserId",new Number(150));

You can write the code like:

vo.setLowUserId(new Number(150));

You can see that with the latter approach, the Java compiler would catch a
typographical error had you accidentally typed setLowUserName instead of
setLowUserId:

// spelling name wrong gives compile error
vo.setLowUserName(new Number(150));

Or if you were to incorrectly pass a value of the wrong data type, like "ABC" instead of
Number value:

// passing String where number expected gives compile error
vo.setLowUserId("ABC");

Without the generated bind variable accessors, an incorrect line of code like the
following cannot be caught by the compiler:

// Both variable name and value wrong, but compiler cannot catch it
vo.setNamedWhereClauseParam("LowUserName","ABC");

It contains both an incorrectly spelled bind variable name, as well as a bind variable
value of the wrong datatype. If you use the generic APIs on the ViewObject
interface, errors of this sort will raise exceptions at runtime instead of being caught at
compile time.

39.3.1.2 Generating View Row Attribute Accessors
When you enable the generation of a custom view row class, if you also select the
Accessors checkbox, then JDeveloper generates getter and setter methods for each
attribute in the view row. For example, for the Persons view object, the
corresponding custom PersonsRowImpl.java class might have methods like this
generated in it:

public Number getPersonId() {...}
public void setPersonId(Number value) {...}
public String getEmail() {...}
public void setEmail(String value) {...}
public String getFirstName() {...}

Generating Custom Java Classes for a View Object

39-26 Fusion Developer's Guide for Oracle Application Development Framework

public void setFirstName(String value) {...}
public String getLastName() {...}
public void setLastName(String value) {...}

These methods allow you to work with the row data with compile-time checking of
the correct datatype usage. That is, instead of writing a line like this one that gets the
value of the PersonId attribute:

Number personId = (Number)row.getAttribute("PersonId");

you can write the code like:

Number personId = row.getPersonId();

You can see that with the latter approach, the Java compiler would catch a
typographical error had you accidentally typed PersonIdentifier instead of
PersonId:

// spelling name wrong gives compile error
Number personId = row.getPersonIdentifier();

Without the generated view row accessor methods, an incorrect line of code like the
following cannot be caught by the compiler:

// Both attribute name and type cast are wrong, but compiler cannot catch it
String personId = (String)row.getAttribute("PersonIdentifier");

It contains both an incorrectly spelled attribute name, as well as an incorrectly-typed
cast of the getAttribute() return value. Using the generic APIs on the Row
interface, errors of this kind will raise exceptions at runtime instead of being caught at
compile time.

39.3.1.3 Exposing View Row Accessors to Clients
When enabling the generation of a custom view row class, if you choose to generate
the view row attribute accessor, you can also optionally select the Expose Accessor to
the Client checkbox. This causes an additional custom row interface to be generated
which application clients can use to access custom methods on the row without
depending directly on the implementation class.

For example, in the case of the Persons view object, exposing the accessors to the
client will generate a custom row interface named PersonsRow. This interface is
created in the common subpackage of the package in which the view object resides.
Having the row interface allows clients to write code that accesses the attributes of
query results in a strongly typed manner. Example 39–6 shows a TestClient3
sample client program that casts the results of the next() method to the PersonsRow
interface so that it can call accessors like getPersonId() and getEmail().

Example 39–6 Simple Example of Using Client Row Interface with Accessors

package devguide.examples.readonlyvo.client;

Best Practice: When you create client code for business components,
you should use business service interfaces rather than concrete
classes. Using the interface instead of the implementation class,
ensures that client code does not need to change when your
server-side implementation does. For more details working with client
code, see in Section 3.5.9, "Custom Interface Support for
Client-Accessible Components."

Generating Custom Java Classes for a View Object

Advanced View Object Techniques 39-27

import devguide.examples.readonlyvo.queries.common.PersonsRow;
import oracle.jbo.*;
import oracle.jbo.client.Configuration;
import oracle.jbo.domain.Number;

public class TestClient3 {
public static void main(String[] args) {
String amDef = "devguide.examples.PersonService";
String config = "PersonServiceLocal";
ApplicationModule am =
Configuration.createRootApplicationModule(amDef, config);

ViewObject vo = am.findViewObject("PersonList");
vo.executeQuery();
while (vo.hasNext()) {
// Cast next() to a strongly-typed PersonsRow interface
PersonsRow curPerson = (PersonsRow)vo.next();
Number personId = curPerson.getPersonId();
String email = curPerson.getEmail();
System.out.println(personId+ " " + email);

}
Configuration.releaseRootApplicationModule(am, true);

}
}

39.3.1.4 Configuring Default Java Generation Preferences
You've seen how to generate custom Java classes for your view objects when you need
to customize their runtime behavior, or if you simply prefer to have strongly typed
access to bind variables or view row attributes.

To change the default settings that control how JDeveloper generates Java classes,
choose Tools | Preferences and open the Business Components page. The settings
you choose will apply to all future business components you create.

Oracle recommends that developers getting started with ADF Business Components
set their preference to generate no custom Java classes by default. As you run into
specific needs, you can enable just the bit of custom Java you need for that one
component. Over time, you'll discover which set of defaults works best for you.

39.3.2 What Happens When You Generate Custom Classes
When you choose to generate one or more custom Java classes, JDeveloper creates the
Java file(s) you've indicated.

For example, in the case of a view object named devguide.examples.Persons, the
default names for its custom Java files will be PersonsImpl.java for the view object
class and PersonsRowImpl.java for the view row class. Both files get created in the
same ./devguide/examples directory as the component's XML component
definition file.

The Java generation options for the view object continue to be reflected on the Java
page on subsequent visits to the view object overview editor. Just as with the XML
definition file, JDeveloper keeps the generated code in your custom Java classes up to
date with any changes you make in the editor. If later you decide you didn't require a
custom Java file for any reason, unchecking the relevant options in the Java page
causes the custom Java files to be removed.

Generating Custom Java Classes for a View Object

39-28 Fusion Developer's Guide for Oracle Application Development Framework

39.3.2.1 Seeing and Navigating to Custom Java Files
As shown in Figure 39–7, when you've enabled generation of custom Java classes, they
also appear under the node for the view object. When you need to see or work with
the source code for a custom Java file, there are two ways to open the file in the source
editor:

■ Choose Open in the context menu as shown in Figure 39–7

■ With the Java file node selected in the Application Navigator, double-click a node
in the Structure window

Figure 39–7 Seeing and Navigating to Custom Java Classes for a View Object

39.3.3 What You May Need to Know About Custom Classes
This section provides additional information to help you use custom Java classes.

39.3.3.1 About the Framework Base Classes for a View Object
When you use an "XML-only" view object, at runtime its functionality is provided by
the default ADF Business Components implementation classes. Each custom Java class
that gets generated will automatically extend the appropriate ADF Business
Components base class so that your code inherits the default behavior and can easily
add or customize it. A view object class will extend ViewObjectImpl, while the view
row class will extend ViewRowImpl (both in the oracle.jbo.server package).

39.3.3.2 You Can Safely Add Code to the Custom Component File
Based perhaps on previous negative experiences, some developers are hesitant to add
their own code to generated Java source files. Each custom Java source code file that
JDeveloper creates and maintains for you includes the following comment at the top of
the file to clarify that it is safe to add your own custom code to this file:

// ---
// --- File generated by Oracle ADF Business Components Design Time.
// --- Custom code may be added to this class.

Generating Custom Java Classes for a View Object

Advanced View Object Techniques 39-29

// --- Warning: Do not modify method signatures of generated methods.
// ---

JDeveloper does not blindly regenerate the file when you click the OK or Apply
button in the component dialogs. Instead, it performs a smart update to the methods
that it needs to maintain, leaving your own custom code intact.

39.3.3.3 Attribute Indexes and InvokeAccessor Generated Code
The view object is designed to function either in an XML-only mode or using a
combination of an XML component definition and a custom Java class. Since attribute
values are not stored in private member fields of a view row class, such a class is not
present in the XML-only situation. Instead, in addition to a name, attributes are also
assigned a numerical index in the view object's XML component definition, on a
zero-based, sequential order of the <ViewAttribute> and association-related
<ViewLinkAccessor> tags in that file. At runtime, the attribute values in an view row
are stored in a structure that is managed by the base ViewRowImpl class, indexed by
the attribute's numerical position in the view object's attribute list.

For the most part this private implementation detail is unimportant. However, when
you enable a custom Java class for your view row, this implementation detail is related
to some of the generated code that JDeveloper automatically maintains in your view
row class, and you may want to understand what that code is used for. For example,
in the custom Java class for the Users view row, Example 39–7 shows that each
attribute or view link accessor attribute has a corresponding generated integer
constant. JDeveloper ensures that the values of these constants correctly reflect the
ordering of the attributes in the XML component definition.

Example 39–7 Attribute Constants Are Automatically Maintained in the Custom View
Row Java Class

public class PersonsRowImpl extends ViewRowImpl implements PersonsRow {
public static final int PERSONID = 0;
public static final int EMAIL = 1;
public static final int FIRSTNAME = 2;
public static final int LASTNAME = 3;
public static final int PERSONTYPECODE = 4;
public static final int PRIMARYADDRESSID = 5;
// etc.

You'll also notice that the automatically maintained, strongly typed getter and setter
methods in the view row class use these attribute constants like this:

// In devguide.examples.PersonsRowImpl class
public String getEmail() {
return (String) getAttributeInternal(EMAIL); // <-- Attribute constant

}
public void setEmail(String value) {
setAttributeInternal(EMAIL, value);// <-- Attribute constant

}
The last two aspects of the automatically maintained code related to view row
attribute constants are the getAttrInvokeAccessor() and
setAttrInvokeAccessor() methods. These methods optimize the performance of
attribute access by numerical index, which is how generic code in the ViewRowImpl
base class typically accesses attribute values. An example of the
getAttrInvokeAccessor() method looks like the following from the
PersonsRowImpl.java class. The companion setAttrInvokeAccessor()
method looks similar.

Working Programmatically with Multiple Named View Criteria

39-30 Fusion Developer's Guide for Oracle Application Development Framework

// In devguide.examples.PersonsRowImpl class
protected Object getAttrInvokeAccessor(int index,AttributeDefImpl attrDef)
throws Exception {
switch (index) {
case PERSONID: return getPersonId();
case EMAIL: return getEmail();
case FIRSTNAME: return getFirstName();
case LASTNAME: return getLastName();
case PERSONTYPECODE: return getPersonTypeCode();
case PRIMARYADDRESSID: return getPrimaryAddressId();
default:
return super.getAttrInvokeAccessor(index, attrDef);

}
}

The rules of thumb to remember about this generated attribute-index related code are
the following.

The Do’s
■ Add custom code if needed inside the strongly typed attribute getter and setter

methods

■ Use the view object overview editor to change the order or type of view object
attributes

JDeveloper will change the Java signature of getter and setter methods, as well as
the related XML component definition for you.

The Don'ts
■ Don’t modify the getAttrInvokeAccessor() and

setAttrInvokeAccessor() methods

■ Don't change the values of the attribute index numbers by hand

39.4 Working Programmatically with Multiple Named View Criteria
You can define multiple named view criteria in the overview editor for a view object
and then selectively apply any combination of them to your view object at runtime as
needed. For information about working with named view criteria at design time, see
Section 5.11.1, "How to Create Named View Criteria Declaratively."

Note: If you need to manually edit the generated attribute constants,
perhaps due to source control merge conflicts, you must ensure that
the zero-based ordering reflects the sequential ordering of the
<ViewAttribute> and <ViewLinkAccessor> tags in the corresponding
view object XML component definition.

Note: The example in this section refers to the
MultipleViewCriteria project in the
AdvancedViewObjectsExamples application workspace in the
StandaloneExamples module of the Fusion Order Demo
application.

Working Programmatically with Multiple Named View Criteria

Advanced View Object Techniques 39-31

39.4.1 Applying One or More Named View Criteria
To apply one or more named view criteria, use the
setApplyViewCriteriaNames() method. This method accepts a String array of
the names of the criteria you want to apply. If you apply more than one named
criteria, they are AND-ed together in the WHERE clause produced at runtime. New
view criteria that you apply with the setApplyViewCriteriaNames() method will
overwrite all previously applied view criteria. Alternatively, you can use the
setApplyViewCriteriaName() method when you want to append a single view
criteria to those that were previously applied.

When you need to apply more than one named view criteria, you can expose custom
methods on the client interface of the view object to encapsulate applying
combinations of the named view criteria. For example, Example 39–8 shows custom
methods showMaleCustomers(), showFemaleStaff(), and
showFemaleCustomers(), each of which uses the
setApplyViewCriteriaNames() method to apply an appropriate combination of
named view criteria. Once these methods are exposed on the view object's client
interface, at runtime clients can invoke these methods as needed to change the
information displayed by the view object.

Example 39–8 Exposing Client Methods to Enable Appropriate Named Criterias

// In PersonsViewImpl.java
 public void showMaleCustomers() {
 ViewCriteriaManager vcm = getViewCriteriaManager();
 ViewCriteria vc_gender = vcm.getViewCriteria("GenderIsNotFCriteria");
 ViewCriteria vc_type = vcm.getViewCriteria("IsCustomerCriteria");
 VariableValueManager vvm_gender = vc_gender.ensureVariableManager();
 VariableValueManager vvm_type = vc_type.ensureVariableManager();
 vvm_gender.setVariableValue("bv_Gender","F");
 vvm_type.setVariableValue("bv_PersonTypeCode", "CUST");
 setApplyViewCriteriaNames(new String[]{"GenderIsNotFCriteria",
 "IsCustomerCriteria"});
 }

 public void showFemaleStaff() {
 ViewCriteriaManager vcm = getViewCriteriaManager();
 ViewCriteria vc_gender = vcm.getViewCriteria("GenderIsFCriteria");
 ViewCriteria vc_type = vcm.getViewCriteria("IsStaffSupplierCriteria");
 VariableValueManager vvm_gender = vc_gender.ensureVariableManager();
 VariableValueManager vvm_type = vc_type.ensureVariableManager();
 vvm_gender.setVariableValue("bv_Gender","F");
 vvm_type.setVariableValue("bv_PersonTypeCode", "CUST");
 setApplyViewCriteriaNames(new String[]{"GenderIsFCriteria",
 "IsStaffSupplierCriteria"});
 executeQuery();
 }

 public void showFemaleCustomers() {
 ViewCriteriaManager vcm = getViewCriteriaManager();
 ViewCriteria vc_gender = vcm.getViewCriteria("GenderIsFCriteria");
 ViewCriteria vc_type = vcm.getViewCriteria("IsCustomerCriteria");
 VariableValueManager vvm_gender = vc_gender.ensureVariableManager();
 VariableValueManager vvm_type = vc_type.ensureVariableManager();
 vvm_gender.setVariableValue("bv_Gender","F");
 vvm_type.setVariableValue("bv_PersonTypeCode", "CUST");
 setApplyViewCriteriaNames(new String[]{"GenderIsFCriteria",
 "IsCustomerCriteria"});
 executeQuery();

Working Programmatically with Multiple Named View Criteria

39-32 Fusion Developer's Guide for Oracle Application Development Framework

39.4.2 Removing All Applied Named View Criteria
To remove any currently applied named view criteria, use
setApplyViewCriteriaNames(null). For example, you could add the
showAll() method in Example 39–9 to the Users view object and expose it on the
client interface. This would allow clients to return to an unfiltered view of the data
when needed.

Do not remove any design time view criteria because the row level bind variable
values may already be applied on the row set. To help ensure this, named view criteria
that get defined for a view accessor in the design time, will be applied as "required"
view criteria on the view object instance so that it does not get removed by the view
criteria’s life cycle methods.

Example 39–9 Removing All Applied Named View Criteria

// In UsersImpl.java
public void showAll() {
setApplyViewCriteriaNames(null);
executeQuery();

}

39.4.3 Using the Named Criteria at Runtime
At runtime, your application can invoke different client methods on a single view
object interface to return different filtered sets of data. Example 39–10 shows the
interesting lines of a TestClient class that works with the Persons view object
described above. The showResults() method is a helper method that iterates over
the rows in the view object to display some attributes.

Example 39–10 Test Client Code Working with Named View Criterias

// In TestClientMultipleViewCriterias.java
PersonsView vo = (PersonsView)am.findViewObject("PersonsView");
vo.showMaleCustomers();
showResults(vo,"After applying view criterias for male customers");
vo.applyViewCriteria(null);
vo.showFemaleStaff();
showResults(vo,"After applying view criterias for female staff");
vo.showFemaleCustomers();
showResults(vo,"After applying view criterias for female customers");
vo.showAll();
vo.showResults(vo,"After clearing all view criterias");

Running the TestClient program produces output as follows:

---After applying view criterias for male customers ---
Daniel Faviet [CUST, M]
John Chen [CUST, M]

Note: The setApplyViewCriterias(null) removes all applied
view criteria, but allows you to later reapply any combination of
them. In contrast, the clearViewCriterias() method deletes all
named view criteria. After calling clearViewCriterias() you
would have to use putViewCriteria() again to define new named
criteria before you could apply them.

Performing In-Memory Sorting and Filtering of Row Sets

Advanced View Object Techniques 39-33

Ismael Sciarra [CUST, M]
Jose Manuel Urman [CUST, M]
Luis Popp [CUST, M]
Den Raphaely [CUST, M]
Alexander Khoo [CUST, M]
Sigal Tobias [CUST, M]
Guy Himuro [CUST, M]
Matthew Weiss [CUST, M]
Adam Fripp [CUST, M]
Payam Kaufling [CUST, M]
Kevin Mourgos [CUST, M]
James Landry [CUST, M]
Steven Markle [CUST, M]
...
---After applying view criterias for female staff ---
Neena Kochhar [STAFF, F]
Valli Pataballa [STAFF, F]
Diana Lorentz [STAFF, F]
Terra Bralick [SUPP, F]
Rachel Berman [SUPP, F]
Claudia Benghiat [SUPP, F]
Sharon Hemant [SUPP, F]
Alison Chen [SUPP, F]
Alex Duckers [SUPP, F]
Katrina Han [SUPP, F]
---After applying view criterias for female customers ---
Nancy Greenberg [CUST, F]
Shelli Baida [CUST, F]
Karen Colmenares [CUST, F]
Shanta Vollman [CUST, F]
Julia Nayer [CUST, F]
Irene Mikkilineni [CUST, F]
Laura Bissot [CUST, F]
---After clearing all view criterias ---
Steven King [STAFF, M]
Neena Kochhar [STAFF, F]
Lex De Haan [STAFF, M]
Alexander Hunold [STAFF, M]
Bruce Ernst [STAFF, M]
David Austin [STAFF, M]
Valli Pataballa [STAFF, F]
Diana Lorentz [STAFF, F]
Nancy Greenberg [CUST, F]
...

39.5 Performing In-Memory Sorting and Filtering of Row Sets
By default a view object performs its query against the database to retrieve the rows in
its resulting row set. However, you can also use view objects to perform in-memory
searches and sorting to avoid unnecessary trips to the database.

Note: The example in this section refers to the
InMemoryOperations project in the
AdvancedViewObjectsExamples application workspace in the
StandaloneExamples module of the Fusion Order Demo
application.

Performing In-Memory Sorting and Filtering of Row Sets

39-34 Fusion Developer's Guide for Oracle Application Development Framework

39.5.1 Understanding the View Object's SQL Mode
The view object's SQL mode controls the source used to retrieve rows to populate its
row set. The setQueryMode() allows you to control which mode, or combination of
modes, are used:

■ ViewObject.QUERY_MODE_SCAN_DATABASE_TABLES

This is the default mode that retrieves results from the database.

■ ViewObject.QUERY_MODE_SCAN_VIEW_ROWS

This mode uses rows already in the row set as the source, allowing you to
progressively refine the row set's contents through in-memory filtering.

■ ViewObject.QUERY_MODE_SCAN_ENTITY_ROWS

This mode, valid only for entity-based view objects, uses the entity rows presently
in the entity cache as the source to produce results based on the contents of the
cache.

You can use the modes individually, or combine them using Java's logical OR operator
(X | Y). For example, to create a view object that queries the entity cache for
unposted new entity rows, as well as the database for existing rows, you could write
code like:

setQueryMode(ViewObject.QUERY_MODE_SCAN_DATABASE_TABLES |
ViewObject.QUERY_MODE_SCAN_ENTITY_ROWS)

If you combine the SQL modes, the view object automatically handles skipping of
duplicate rows. In addition, there is an implied order to the results that are found:

1. Scan view rows (if specified)

2. Scan entity cache (if specified)

3. Scan database tables (if specified) by issuing a SQL query

If you call the setQueryMode() method to change the SQL mode, your new setting
takes effect the next time you call the executeQuery() method.

39.5.2 Sorting View Object Rows In Memory
To sort the rows in a view object at runtime, use the setSortBy() method. You pass
a sort expression that looks like a SQL ORDER BY clause. However, instead of
referencing the column names of the table, you use the view object's attribute names.
For example, for a view object containing attributes named Customer and DaysOpen,
you could sort the view object first by Customer descending, then by DaysOpen by
calling:

setSortBy("Customer desc, DaysOpen");

Alternatively, you can use the zero-based attribute index position in the sorting clause
like this:

setSortBy("3 desc, 2");

After calling the setSortBy() method, the rows will be sorted the next time you call
the executeQuery() method. The view object translates this sorting clause into an
appropriate format to use for ordering the rows depending on the SQL mode of the
view object. If you use the default SQL mode, the SortBy clause is translated into an
appropriate ORDER BY clause and used as part of the SQL statement sent to the
database. If you use either of the in-memory SQL modes, then the SortBy by clause is

Performing In-Memory Sorting and Filtering of Row Sets

Advanced View Object Techniques 39-35

translated into one or more SortCriteria objects for use in performing the
in-memory sort.

39.5.2.1 Combining setSortBy and setQueryMode for In-Memory Sorting
You can perform an in-memory sort on the rows produced by a read-only view object
using the setSortBy() and setQueryMode() methods. Example 39–11 shows the
interesting lines of code from the TestClientSetSortBy class that uses
setSortBy() and setQueryMode() to perform an in-memory sort on the rows
produced by a read-only view object ClosedOrders.

Example 39–11 Combining setSortBy and setQueryMode for In-Memory Sorting

// In TestClientSetSortBy.java
am.getTransaction().executeCommand("ALTER SESSION SET SQL_TRACE TRUE");
ViewObject vo = am.findViewObject("ClosedOrders");
vo.executeQuery();
showRows(vo,"Initial database results");
vo.setSortBy("Customer desc");
vo.setQueryMode(ViewObject.QUERY_MODE_SCAN_VIEW_ROWS);
vo.executeQuery();
showRows(vo,"After in-memory sorting by Customer desc");
vo.setSortBy("Customer desc, DaysOpen");
vo.executeQuery();
showRows(vo,"After in-memory sorting by Customer desc, DaysOpen");

Running the example produces the results:

--- Initial database results ---
106,Ice machine not working,1,mhartste
103,Washing machine leaks,4,ngreenbe
105,Air in dryer not hot,4,jmurman
109,Freezer is not cold,4,jwhalen
:
--- After in-memory sorting by Customer desc ---
100,I have noticed that every time I do a...,9,dfaviet
101,Agitator does not work,8,sbaida
103,Washing machine leaks,4,ngreenbe
105,Air in dryer not hot,4,jmurman
:
--- After in-memory sorting by Customer desc, DaysOpen ---
100,I have noticed that every time I do a...,9,dfaviet
101,Agitator does not work,8,sbaida
105,Air in dryer not hot,4,jmurman
109,Freezer is not cold,4,jwhalen
:

The first line in Example 39–11 containing the executeCommand() call issues the
ALTER SESSION SET SQL TRACE command to enable SQL tracing for the current
database session. This causes the Oracle database to log every SQL statement
performed to a server-side trace file. It records information about the text of each SQL
statement, including how many times the database parsed the statement and how
many round-trips the client made to fetch batches of rows while retrieving the query
result.

Note: While SQL ORDER BY expressions treat column names in a
case-insensitive way, the attribute names in a SortBy expression are
case-sensitive.

Performing In-Memory Sorting and Filtering of Row Sets

39-36 Fusion Developer's Guide for Oracle Application Development Framework

Once you've produced a trace file, you can use the TKPROF utility that comes with the
database to format the file:

tkprof xe_ora_3916.trc trace.prf

For details about working with the TKPROF utility, see sections "Understanding SQL
Trace and TKPROF" and "Using the SQL Trace Facility and TKPROF" in the Oracle
Database Performance Tuning Guide.

This will produces a trace.prf file containing the interesting information shown in
Example 39–12 about the SQL statement performed by the ClosedOrders view
object. You can see that after initially querying six rows of data in a single execute and
fetch from the database, the two subsequent sorts of those results did not cause any
further executions. Since the code set the SQL mode to ViewObject.QUERY_MODE_
SCAN_VIEW_ROWS the setSortBy() followed by the executeQuery() performed
the sort in memory.

Example 39–12 TKPROF Output of a Trace File Confirming Sort Was Done In Memory

SELECT * FROM (select o.order_id,

case
when length(o.giftwrap_message) > 5 then
rtrim(substr(o.giftwrap_message,1,5))||'...'
else o.giftwrap_messagen

end as giftwrap_message,
ceil(
(select trunc(max(creation_date))

from order_histories
where order_id = or.order_id)

- trunc(o.order_date)
) as days_open,
p.email as customer

from orders o, persons p
where o.customer_id = p.person_id
and order status code = 'COMPLETE')

call count cpu elapsed disk query current rows
------- ----- ------ -------- ---- ------ -------- -------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.00 0.00 0 22 0 6
------- ----- ------ -------- ---- ------ -------- -------
total 3 0.00 0.00 0 22 0 6

39.5.2.2 Extensibility Points for In-Memory Sorting
Should you need to customize the way that rows are sorted in memory, you have the
following two extensibility points:

1. You can override the method:

public void sortRows(Row[] rows)

Note: You might need a DBA to grant permission to the FOD account
to perform the ALTER SESSION command to do the tracing of SQL
output.

Performing In-Memory Sorting and Filtering of Row Sets

Advanced View Object Techniques 39-37

This method performs the actual in-memory sorting of rows. By overriding this
method you can plug in an alternative sorting approach if needed.

2. You can override the method:

public Comparator getRowComparator()

The default implementation of this method returns an
oracle.jbo.RowComparator. RowComparator invokes the compareTo()
method to compare two data values. These methods/objects can be overridden to
provide custom compare routines.

39.5.3 Performing In-Memory Filtering with View Criteria
To filter the contents of a row set using ViewCriteria, you can call:

■ applyViewCriteria() or setApplyViewCriteriaNames() followed by
executeQuery() to produce a new, filtered row set.

■ findByViewCriteria() to retrieve a new row set to process programmatically
without changing the contents of the original row set.

Both of these approaches can be used against the database or to perform in-memory
filtering, or both, depending on the view criteria mode. You set the criteria mode using
the setCriteriaMode() method on the ViewCriteria object, to which you can
pass either of the following integer flags, or the logical OR of both:

■ ViewCriteria.CRITERIA_MODE_QUERY

■ ViewCriteria.CRITERIA_MODE_CACHE

When used for in-memory filtering with view criteria, the operators supported are
shown in Table 39–1. You can group subexpressions with parenthesis and use the AND
and OR operators between subexpressions.

Example 39–13 shows the interesting lines from a
TestClientFindByViewCriteria class that uses the two features described above
both against the database and in-memory. It uses a CustomerList view object
instance and performs the following basic steps:

1. Queries customers from the database with a last name starting with a 'C',
producing the output:

--- Initial database results with applied view criteria ---
John Chen
Emerson Clabe
Karen Colmenares

2. Subsets the results from step 1 in memory to only those with a first name starting
with 'J'. It does this by adding a second view criteria row to the view criteria and
setting the conjunction to use "AND". This produces the output:

Table 39–1 SQL Operators Supported By In-Memory Filtering with View Criteria

Operator Operation

=, >, <, <=, >=, <>, LIKE, BETWEEN, IN Comparison

NOT Logical negation

AND Conjunction

OR Disjunction

Performing In-Memory Sorting and Filtering of Row Sets

39-38 Fusion Developer's Guide for Oracle Application Development Framework

--- After augmenting view criteria and applying in-memory ---
John Chen

3. Sets the conjunction back to OR and re-applies the criteria to the database to query
customers with last name like 'J%' or first name like 'C%'. This produces the
output:

--- After changing view criteria and applying to database again ---
John Chen
Jose Manuel Urman
Emerson Clabe
Karen Colmenares
Jennifer Whalen

4. Defines a new criteria to find customers in-memory with first or last name that
contain a letter 'o'

5. Uses findByViewCriteria() to produce new row set instead of subsetting,
producing the output:

--- Rows returned from in-memory findByViewCriteria ---
John Chen
Jose Manuel Urman
Emerson Clabe
Karen Colmenares

6. Shows that original row set hasn't changed when findByViewCriteria() was
used, producing the output:

--- Note findByViewCriteria didn't change rows in the view ---
John Chen
Jose Manuel Urman
Emerson Clabe
Karen Colmenares
Jennifer Whalen

Example 39–13 Performing Database and In-Memory Filtering with View Criteria

// In TestClientFindByViewCriteria.java
ViewObject vo = am.findViewObject("CustomerList");
// 1. Show customers with a last name starting with a 'M'
ViewCriteria vc = vo.createViewCriteria();
ViewCriteriaRow vcr1 = vc.createViewCriteriaRow();
vcr1.setAttribute("LastName","LIKE 'M%'");
vo.applyViewCriteria(vc);
vo.executeQuery();
vc.add(vcr1);
vo.executeQuery();
showRows(vo, "Initial database results with applied view criteria");
// 2. Subset results in memory to those with first name starting with 'S'
vo.setQueryMode(ViewObject.QUERY_MODE_SCAN_VIEW_ROWS);
ViewCriteriaRow vcr2 = vc.createViewCriteriaRow();
vcr2.setAttribute("FirstName","LIKE 'S%'");
vcr2.setConjunction(ViewCriteriaRow.VCROW_CONJ_AND);
vc.setCriteriaMode(ViewCriteria.CRITERIA_MODE_CACHE);
vc.add(vcr2);
vo.executeQuery();
showRows(vo,"After augmenting view criteria and applying in-memory");
// 3. Set conjuction back to OR and re-apply to database query to find
// customers with last name like 'H%' or first name like 'S%'
vc.setCriteriaMode(ViewCriteria.CRITERIA_MODE_QUERY);

Performing In-Memory Sorting and Filtering of Row Sets

Advanced View Object Techniques 39-39

vo.setQueryMode(ViewObject.QUERY_MODE_SCAN_DATABASE_TABLES);
vcr2.setConjunction(ViewCriteriaRow.VCROW_CONJ_OR);
vo.executeQuery();
showRows(vo,"After changing view criteria and applying to database again");
// 4. Define new critera to find customers with first or last name like '%o%'
ViewCriteria nameContainsO = vo.createViewCriteria();
ViewCriteriaRow lastContainsO = nameContainsO.createViewCriteriaRow();
lastContainsO.setAttribute("LastName","LIKE '%o%'");
ViewCriteriaRow firstContainsO = nameContainsO.createViewCriteriaRow();
firstContainsO.setAttribute("FirstName","LIKE '%o%'");
nameContainsO.add(firstContainsO);
nameContainsO.add(lastContainsO);
// 5. Use findByViewCriteria() to produce new rowset instead of subsetting
nameContainsO.setCriteriaMode(ViewCriteria.CRITERIA_MODE_CACHE);
RowSet rs = (RowSet)vo.findByViewCriteria(nameContainsO,

-1,ViewObject.QUERY_MODE_SCAN_VIEW_ROWS);
showRows(rs,"Rows returned from in-memory findByViewCriteria");
// 6. Show that original rowset hasn't changed
showRows(vo,"Note findByViewCriteria didn't change rows in the view");

39.5.4 Performing In-Memory Filtering with RowMatch
The RowMatch object provides an even more convenient way to express in-memory
filtering conditions. You create a RowMatch object by passing a query predicate
expression to the constructor like this:

RowMatch rm =
new RowMatch("LastName = 'Popp' or (FirstName like 'A%' and LastName like 'K%')")
;

As you do with the SortBy clause, you phrase the RowMatch expression in terms of
the view object attribute names, using the supported operators shown in Table 39–2.
You can group subexpressions with parenthesis and use the AND and OR operators
between subexpressions.

You can also use a limited set of SQL functions in the RowMatch expression, as shown
in Table 39–3.

Table 39–2 SQL Operators Supported By In-Memory Filtering with RowMatch

Operator Operation

=, >, <, <=, >=, <>, LIKE, BETWEEN, IN Comparison

NOT Logical negation

Note that logical negation operations
NOT IN are not supported by the
RowMatch expression.

To negate the IN operator, use this
construction instead (note the use of
brackets):

NOT (EmpID IN ('VP','PU'))

AND Conjunction

OR Disjunction

Performing In-Memory Sorting and Filtering of Row Sets

39-40 Fusion Developer's Guide for Oracle Application Development Framework

39.5.4.1 Applying a RowMatch to a View Object
To apply a RowMatch to your view object, call the setRowMatch() method. In
contrast to a ViewCriteria, the RowMatch is only used for in-memory filtering, so
there is no "match mode" to set. You can use a RowMatch on view objects in any
supported SQL mode, and you will see the results of applying it the next time you call
the executeQuery() method.

When you apply a RowMatch to a view object, the RowMatch expression can reference
the view object's named bind variables using the same :VarName notation that you
would use in a SQL statement. For example, if a view object had a named bind
variable named StatusCode, you could apply a RowMatch to it with an expression
like:

Status = :StatusCode or :StatusCode = '%'

Example 39–14 shows the interesting lines of a TestClientRowMatch class that
illustrate the RowMatch in action. The CustomerList view object used in the example
has a transient Boolean attribute named Selected. The code performs the following
basic steps:

1. Queries the full customer list, producing the output:

--- Initial database results ---
Neena Kochhar [null]
Lex De Haan [null]
Nancy Greenberg [null]
:

2. Marks odd-numbered rows selected by setting the Selected attribute of odd
rows to Boolean.TRUE, producing the output:

--- After marking odd rows selected ---
Neena Kochhar [null]
Lex De Haan [true]
Nancy Greenberg [null]
Daniel Faviet [true]
John Chen [null]
Ismael Sciarra [true]
:

3. Uses a RowMatch to subset the row set to contain only the select rows, that is,
those with Selected = true. This produces the output:

Table 39–3 SQL Functions Supported By In-Memory Filtering with RowMatch

Operator Operation

UPPER Converts all letters in a string to
uppercase.

TO_CHAR Converts a number or date to a string.

TO_DATE Converts a character string to a date
format.

TO_TIMESTAMP Converts a string to timestamp.

Note: While SQL query predicates treat column names in a
case-insensitive way, the attribute names in a RowMatch expression
are case-sensitive.

Performing In-Memory Sorting and Filtering of Row Sets

Advanced View Object Techniques 39-41

--- After in-memory filtering on only selected rows ---
Lex De Haan [true]
Daniel Faviet [true]
Ismael Sciarra [true]
Luis Popp [true]
:

4. Further subsets the row set using a more complicated RowMatch expression,
producing the output:

--- After in-memory filtering with more complex expression ---
Lex De Haan [true]
Luis Popp [true]

Example 39–14 Performing In-Memory Filtering with RowMatch

// In TestClientRowMatch.java
// 1. Query the full customer list
ViewObject vo = am.findViewObject("CustomerList");
vo.executeQuery();
showRows(vo,"Initial database results");
// 2. Mark odd-numbered rows selected by setting Selected = Boolean.TRUE
markOddRowsAsSelected(vo);
showRows(vo,"After marking odd rows selected");
// 3. Use a RowMatch to subset row set to only those with Selected = true
RowMatch rm = new RowMatch("Selected = true");
vo.setRowMatch(rm);
// Note: Only need to set SQL mode when not defined at design time
vo.setQueryMode(ViewObject.QUERY_MODE_SCAN_VIEW_ROWS);
vo.executeQuery();
showRows(vo, "After in-memory filtering on only selected rows");
// 5. Further subset rowset using more complicated RowMatch expression
rm = new RowMatch("LastName = 'Popp' "+

"or (FirstName like 'A%' and LastName like 'K%')");
vo.setRowMatch(rm);
vo.executeQuery();
showRows(vo,"After in-memory filtering with more complex expression");
// 5. Remove RowMatch, set query mode back to database, requery to see full list
vo.setRowMatch(null);
vo.setQueryMode(ViewObject.QUERY_MODE_SCAN_DATABASE_TABLES);
vo.executeQuery();
showRows(vo,"After re-querying to see a full list again");

39.5.4.2 Using RowMatch to Test an Individual Row
In addition to using a RowMatch to filter a row set, you can also use its rowQualifies()
method to test whether any individual row matches the criteria it encapsulates. For
example:

RowMatch rowMatch = new RowMatch("CountryId = 'US'");
if (rowMatch.rowQualifies(row)) {
System.out.println("Customer is from the United States ");

}

39.5.4.3 How a RowMatch Affects Rows Fetched from the Database
Once you apply a RowMatch, if the view object's SQL mode is set to retrieve rows
from the database, when you call executeQuery() the RowMatch is applied to rows
as they are fetched. If a fetched row does not qualify, it is not added to the rowset.

Using View Objects to Work with Multiple Row Types

39-42 Fusion Developer's Guide for Oracle Application Development Framework

Unlike a SQL WHERE clause, a RowMatch can evaluate expressions involving transient
view object attributes and not-yet-posted attribute values. This can be useful to filter
queried rows based on RowMatch expressions involving transient view row attributes
whose values are calculated in Java. This interesting aspect should be used with care,
however, if your application needs to process a large rowset. Oracle recommends
using database-level filtering to retrieve the smallest-possible rowset first, and then
using RowMatch as appropriate to subset that list in memory.

39.6 Using View Objects to Work with Multiple Row Types
Sometimes you will create a view object to work with entity rows of a single type like
Supplier, which perhaps includes Supplier-specific attributes. At other times you
may want to query and update rows based on an entity object inheritance hierarchy in
the same row set. For example, you might work, in the same row set, with attributes
that are common to the inheritance hierarchy of Persons, Supplier, and Staff
entity objects.

39.6.1 Working with Polymorphic Entity Usages
A polymorphic entity usage is one that references a base entity object in an inheritance
hierarchy and is configured to handle subtypes of that entity as well. Figure 39–8 shows
the results of using a view object with a polymorphic entity usage. The entity-based
PersonList view object has the Person entity object as its primary entity usage. The
view object partitions each row retrieved from the database into an entity row part of
the appropriate entity object subtype of Person. It creates the appropriate entity row
subtype based on consulting the value of the discriminator attribute. For example, if
the PersonList query retrieves one row for person ngreenbe, one row for staff
sking, and one row for supplier ahunold, the underlying entity row parts would be
as shown in the figure.

Figure 39–8 View Object with a Polymorphic Entity Usage Handles Entity Subtypes

39.6.2 How To Create a View Object with a Polymorphic Entity Usage
The view object that you create with a polymorphic entity usage may inherit one or
more of the attributes of the base entity object and the subtype entities. Attributes that
you select from the entity objects will be overridden by the view object attribute
definitions. When an entity-based view object references an entity object with a

Note: To experiment with the example described in this section, use
the same InheritanceAndPolymorphicQueries project in the
AdvancedEntityExamples workspace used in Section 38.7, "Using
Inheritance in Your Business Domain Layer."

Using View Objects to Work with Multiple Row Types

Advanced View Object Techniques 39-43

discriminator attribute, then JDeveloper enforces that the discriminator attribute is
included in the query (in addition to the primary key attribute).

Before you begin:
Create the base entity object from which the polymorphic entity usages will inherit, as
described in Section 4.2.2, "How to Create Single Entity Objects Using the Create Entity
Wizard."

Extend the base entity object to create the polymorphic entity usages and specify the
discriminator attribute upon which the entity row subtype will be based, as described
in Section 4.10.14, "How to Set the Discriminator Attribute for Entity Object
Inheritance Hierarchies."

Create an entity-based view object from the base entity object and select the attributes
that are common to the view object you will create for the polymorphic entity usage,
as described in Section 5.2.1, "How to Create an Entity-Based View Object."

To create a view object with a polymorphic entity usage:
1. In the Application Navigator, under the user interface project, right-click your

application and choose New.

2. In the New Gallery, expand Business Tier, select ADF Business Components and
then View Object, and click OK.

3. In the Create View Object wizard, name the view object and click Browse.

For example, the data model project might define a base Persons entity object in
order to support the creation of view objects with polymorphic entity usages for
the Supplier and Staff subtype entity objects. When you create the view object
for these polymorphic entity usages, you might create view objects named
SupplierList or StaffList.

4. In the Select Parent dialog, select the entity-based view object that you created
from the based entity object and click OK.

For example, when you create the view object PersonList for the base entity
object Persons, you would select PersonList as the view object to extend.

5. In the Create View Object wizard, click Next and note that the base entity object
already appears in the Selected list and is labeled Extended, as shown in
Figure 39–9.

Using View Objects to Work with Multiple Row Types

39-44 Fusion Developer's Guide for Oracle Application Development Framework

Figure 39–9 View Object with a Base Entity Selection

6. On the Entity Objects page of the Create View Object wizard, select the base entity
object in the Selected list and click Subtypes.

7. In the Select Subtypes dialog, shuttle the desired entity subtypes you want to
allow from the Available to the Selected list, and click OK.

For example, for the StaffList view object you would select the entity subtype
Staff, as shown in Figure 39–10.

Figure 39–10 View Object with a Entity Subtype Selection

8. On the Entity Objects page of the Create View Object wizard, from the Available
list, identify the entity object that represents the entity subtype that you want this
view object to work with and add it to the Selected list.

Using View Objects to Work with Multiple Row Types

Advanced View Object Techniques 39-45

For example, in order to support the creation of StaffList view object with a
polymorphic entity usage, select the Staff entity subtype.

9. In the Business Components dialog, click OK to override the entity usage for your
view object.

The Business Components dialog warns you that you will override the attributes
of the base entity usage with the entity subtype, as shown in Figure 39–11.

Figure 39–11 View Object with a Polymorphic Entity Subtype Selection

10. On the Entity Objects page of the Create View Object wizard, click Next and on
the Attributes page of the wizard shuttle desired attributes from the base entity
object to the Selected list.

11. Complete the wizard and click Finish.

The Entity Objects page of the overview editor identifies the selected entity object
with the entity subtype override. For example, the overview editor for the
StaffList view object identifies the overridden entity object ThePerson
(Staff): overridden with the subtype in parenthesis, as shown in
Figure 39–12.

Using View Objects to Work with Multiple Row Types

39-46 Fusion Developer's Guide for Oracle Application Development Framework

Figure 39–12 View Object Editor Shows Entity Subtype is Overridden

12. Repeat this procedure to create view objects for additional polymorphic entity
usages that you created for the base entity object.

39.6.3 What Happens When You Create a View Object with a Polymorphic Entity Usage
When you create an entity-based view object with a polymorphic entity usage,
JDeveloper adds information about the allowed entity subtypes to the view object's
XML component definition. For example, when creating the PersonList view object
above, the names of the allowed subtype entity objects are recorded in an <AttrArray>
tag like this:

<ViewObject Name="PersonList" ... >
<EntityUsage Name="ThePerson"

Entity="devguide.advanced.inheritance.Persons" >
</EntityUsage>

...
<AttrArray Name="EntityImports">

<Item Value="devguide.advanced.inheritance.Staff" />
<Item Value="devguide.advanced.inheritance.Supplier" />

</AttrArray>
<!-- etc. -->

</ViewObject>

39.6.4 What You May Need to Know About Entity Usages
This section provides additional information to help you work with polymorphic
entity usages.

Using View Objects to Work with Multiple Row Types

Advanced View Object Techniques 39-47

39.6.4.1 Your Query Must Limit Rows to Expected Entity Subtypes
If your view object expects to work with only a subset of the available entity subtypes
in a hierarchy, you need to include an appropriate WHERE clause that limits the query
to only return rows whose discriminator column matches the expected entity types.

39.6.4.2 Exposing Selected Entity Methods in View Rows Using Delegation
By design, clients do not work directly with entity objects. Instead, they work
indirectly with entity objects through the view rows of an appropriate view object that
presents a relevant set of information related to the task as hand. Just as a view object
can expose a particular set of the underlying attributes of one or more entity objects
related to the task at hand, it can also expose a selected set of methods from those
entities. You accomplish this by enabling a custom view row Java class and writing a
method in the view row class that:

■ Accesses the appropriate underlying entity row using the generated entity
accessor in the view row, and

■ Invokes a method on it

For example, assume that the Persons entity object contains a
performPersonFeature() method in its PersonsImpl class. To expose this
method to clients on the PersonsList view row, you can enable a custom view row
Java class and write the method shown in Example 39–15. JDeveloper generates an
entity accessor method in the view row class for each participating entity usage based
on the entity usage alias name. Since the alias for the Persons entity in the
PersonsList view object is "ThePerson", it generates a getThePerson() method
to return the entity row part related to that entity usage.

Example 39–15 Exposing Selected Entity Object Methods on View Rows Through
Delegation

// In PersonListRowImpl.java
public void performPersonFeature() {
getThePerson().performPersonFeature();

}

The code in the view row's performPersonFeature() method uses this
getThePerson() method to access the underlying PersonImpl entity row class and
then invokes its performPersonFeature() method. This style of coding is known
as delegation, where a view row method delegates the implementation of one of its
methods to a corresponding method on an underlying entity object. When delegation
is used in a view row with a polymorphic entity usage, the delegated method call is
handled by appropriate underlying entity row subtype. This means that if the
PersonsImpl, StaffImpl, and SupplierImpl classes implement the
performPersonFeature() method in a different way, the appropriate
implementation is used depending on the entity subtype for the current row.

After exposing this method on the client row interface, client programs can use the
custom row interface to invoke custom business functionality on a particular view
row. Example 39–16 shows the interesting lines of code from a
TestEntityPolymorphism class. It iterates over all the rows in the PersonList
view object instance, casts each one to the custom PersonListRow interface, and
invokes the performPersonFeature() method.

Example 39–16 Invoking a View Row Method That Delegates to an Entity Object

PersonList personlist = (PersonList)am.findViewObject("PersonList");
personlist.executeQuery();

Using View Objects to Work with Multiple Row Types

39-48 Fusion Developer's Guide for Oracle Application Development Framework

while (personlist.hasNext()) {
PersonListRow person = (PersonListRow)personlist.next();
System.out.print(person.getEmail()+"->");
person.performPersonFeature();

}

Running the client code in Example 39–16 produces the following output:

austin->## performPersonFeature as Supplier
hbaer->## performPersonFeature as Person
:
sking->## performPersonFeature as Staff
:

Rows related to Persons entities display a message confirming that the
performPersonFeature() method in the PersonsImpl class was used. Rows
related to Supplier and Staff entities display a different message, highlighting the
different implementations that the respective SupplierImpl and StaffImpl classes
have for the inherited performPersonFeature() method.

39.6.4.3 Creating New Rows With the Desired Entity Subtype
In a view object with a polymorphic entity usage, when you create a new view row it
contains a new entity row part whose type matches the base entity usage. To create a
new view row with one of the entity subtypes instead, use the createAndInitRow()
method. Example 39–17 shows two custom methods in the PersonList view object's
Java class that use createAndInitRow() to allow a client to create new rows having
entity rows either of Staff or Supplier subtypes. To use the
createAndInitRow(), as shown in the example, create an instance of the
NameValuePairs object and set it to have an appropriate value for the discriminator
attribute. Then, pass that NameValuePairs to the createAndInitRow() method to
create a new view row with the appropriate entity row subtype, based on the value of
the discriminator attribute you passed in.

Example 39–17 Exposing Custom Methods to Create New Rows with Entity Subtypes

// In PersonListImpl.java
public PersonListRow createStaffRow() {
NameValuePairs nvp = new NameValuePairs();
nvp.setAttribute("PersonTypeCode","STAFF");
return (PersonListRow)createAndInitRow(nvp);

}
public PersonListRow createSupplierRow() {
NameValuePairs nvp = new NameValuePairs();
nvp.setAttribute("PersonTypeCode","SUPP");
return (PersonListRow)createAndInitRow(nvp);

}

If you expose methods like this on the view object's custom interface, then at runtime,
a client can call them to create new view rows with appropriate entity subtypes.
Example 39–18 shows the interesting lines relevant to this functionality from a
TestEntityPolymorphism class. First, it uses the createRow(),
createStaffRow(), and createSupplierRow() methods to create three new
view rows. Then, it invokes the performPersonFeature() method from the
PersonListRow custom interface on each of the new rows.

As expected, each row handles the method in a way that is specific to the subtype of
entity row related to it, producing the results:

performPersonFeature as Person

Using View Objects to Work with Multiple Row Types

Advanced View Object Techniques 39-49

performPersonFeature as Staff
performPersonFeature as Supplier

Example 39–18 Creating New View Rows with Different Entity Subtypes

// In TestEntityPolymorphism.java
PersonListRow newPerson = (PersonListRow)Personlist.createRow();
PersonListRow newStaff = Personlist.createStaffRow();
PersonListRow newSupplier = Personlist.createSupplierRow();
newPerson.performPersonFeature();
newStaff.performPersonFeature();
newSupplier.performPersonFeature();

39.6.5 Working with Polymorphic View Rows
In the example shown in Section 39.6, "Using View Objects to Work with Multiple Row
Types," the polymorphism occurs "behind the scenes" at the entity object level. Since
the client code works with all view rows using the same PersonListRow interface, it
cannot distinguish between rows based on a Staff entity object from those based on a
Persons entity object. The code works with all view rows using the same set of view
row attributes and methods common to all types of underlying entity subtypes.

If you configure a view object to support polymorphic view rows, then the client can
work with different types of view rows using a view row interface specific to the type
of row it is. By doing this, the client can access view attributes or invoke view row
methods that are specific to a given subtype as needed. Figure 39–13 illustrates the
hierarchy of view objects that enables this feature for the PersonList example
considered above. SupplierList and StaffList are view objects that extend the
base PersonList view object. Notice that each one includes an additional attribute
specific to the subtype of Person they have as their entity usage. SupplierList
includes an additional ContractExpires attribute, while StaffList includes the
additional DiscountEligible attribute. When configured for view row
polymorphism as described in the next section, a client can work with the results of
the PersonList view object using:

■ PersonListRow interface for view rows related to persons

■ SupplierListRow interface for view rows related to suppliers

■ StaffListRow interface for view rows related to staff

As you'll see, this allows the client to access the additional attributes and view row
methods that are specific to a given subtype of view row.

Using View Objects to Work with Multiple Row Types

39-50 Fusion Developer's Guide for Oracle Application Development Framework

Figure 39–13 Hierarchy of View Object Subtypes Enables View Row Polymorphism

39.6.6 How to Create a View Object with Polymorphic View Rows
To create a view object with polymorphic view rows, follow these steps:

1. In the Application Navigator, double-click the view object that you want to be the
base.

In the example above, the PersonList view object is the base.

2. In the overview editor, click the Attributes navigation tab and select a
discriminator attribute for the view row, and click the Edit selected attribute(s)
button.

3. In the Edit Attribute dialog, give the discriminator attribute a default value and
and check the Discriminator checkbox to mark the attribute as the one that
distinguishes which view row interface to use.

You must supply a value for the Value field that matches the attribute value for
which you expect the base view object's view row interface to be used. For
example, in the PersonList view object, you would mark the PersonTypeCode
attribute as the discriminator attribute and supply a default value of "person".

4. Enable a custom view row class for the base view object, and expose at least one
method on the client row interface. This can be one or all of the view row attribute
accessor methods, as well as any custom view row methods.

5. Create a new view object that extends the base view object

In the example above, SupplierList extends the base PersonList view object.

6. Enable a custom view row class for the extended view object.

If appropriate, add additional custom view row methods or override custom view
row methods inherited from the parent view object's row class.

7. Supply a distinct value for the discriminator attribute in the extended view object.

The SupplierList view object provides the value of "SUPP" for the
PersonTypeCode discriminator attribute.

8. Repeat steps 4-6 to add additional extended view objects as needed.

Using View Objects to Work with Multiple Row Types

Advanced View Object Techniques 39-51

For example, the StaffList view object is a second one that extends
PersonList. It supplies the value "STAFF" for the PersonTypeCode
discriminator attribute.

After setting up the view object hierarchy, you need to define the list of view object
subtypes that participate in the view row polymorphism. To accomplish this, do the
following:

1. Add an instance of each type of view object in the hierarchy to the data model of
an application module.

For example, the PersonModule application module in the example has instances
of PersonList, SupplierList, and StaffList view objects.

2. In the overview editor for the application module, click the Data Model
navigation tab and click the Subtypes button.

3. In the Subtypes dialog that appears, shuttle the desired view object subtypes that
you want to participate in view row polymorphism from the Available to the
Selected list, and click OK

39.6.7 What You May Need to Know About Polymorphic View Rows
This section provides additional information to help you work with polymorphic view
rows.

39.6.7.1 Selecting Subtype-Specific Attributes in Extended View Objects
When you create an extended view object, it inherits the entity usage of its parent. If
the parent view object's entity usage is based on an entity object with subtypes in your
domain layer, you may want your extended view object to work with one of these
subtypes instead of the inherited parent entity usage type. Two reasons you might
want to do this are:

1. To select attributes that are specific to the entity subtype

2. To be able to write view row methods that delegate to methods specific to the
entity subtype

In order to do this, you need to override the inherited entity usage to refer to the
desired entity subtype. To do this, perform these steps in the overview editor for your
extended view object:

1. In the Application Navigator, double-click the view object.

2. In the overview editor, click the Entity Objects navigation tab and verify that you
are working with an extended entity usage.

For example, when creating the SupplierList view object that extends the
PersonList view object, the entity usage with the alias ThePerson will initially
display in the Selected list as: ThePerson(Person): extended. The type of the
entity usage is in parenthesis, and the "extended" label confirms that the entity
usage is currently inherited from its parent.

3. Select the desired entity subtype in the Available list that you want to override the
inherited one. It must be a subtype entity of the existing entity usage's type.

For example, you would select the Supplier entity object in the Available list to
overridden the inherited entity usage based on the Persons entity type.

4. Click > to shuttle it to the Selected list

Using View Objects to Work with Multiple Row Types

39-52 Fusion Developer's Guide for Oracle Application Development Framework

5. Acknowledge the alert that appears, confirming that you want to override the
existing, inherited entity usage.

When you have performed these steps, the Selected list updates to reflect the
overridden entity usage. For example, for the SupplierList view object, after
overriding the Persons-based entity usage with the Supplier entity subtype, it
updates to show: ThePerson (Supplier): overridden.

After overriding the entity usage to be related to an entity subtype, you can then use
the Attributes tab of the editor to select additional attributes that are specific to the
subtype. For example, the SupplierList view object includes the additional
attribute named ContractExpires that is specific to the Supplier entity object.

39.6.7.2 Delegating to Subtype-Specific Methods After Overriding the Entity Usage
After overriding the entity usage in an extended view object to reference a subtype
entity, you can write view row methods that delegate to methods specific to the
subtype entity class. Example 39–19 shows the code for a
performSupplierFeature() method in the custom view row class for the
SupplierList view object. It casts the return value from the getThePerson()
entity row accessor to the subtype SupplierImpl, and then invokes the
performSupplierFeature() method that is specific to Supplier entity objects.

Example 39–19 View Row Method Delegating to Method in Subtype Entity

// In SupplierListRowImpl.java
public void performSupplierFeature() {

SupplierImpl supplier = (SupplierImpl)getThePerson();
supplier.performSupplierFeature();

}

39.6.7.3 Working with Different View Row Interface Types in Client Code
Example 39–20 shows the interesting lines of code from a
TestViewRowPolymorphism class that performs the following steps:

1. Iterates over the rows in the PersonList view object.

For each row in the loop, it uses Java's instanceof operator to test whether the
current row is an instance of the StaffListRow or the SupplierListRow.

2. If the row is a StaffListRow, then cast it to this more specific type and:

■ Call the performStaffFeature() method specific to the StaffListRow
interface, and

■ Access the value of the DiscountEligible attribute that is specific to the
StaffList view object.

3. If the row is a SupplierListRow, then cast it to this more specific type and:

■ Call the performSupplierFeature() method specific to the
SupplierListRow interface, and

Note: You need to perform the explicit cast to the entity subtype here
because JDeveloper does not yet take advantage of the JDK feature
called covariant return types that would allow a subclass like
SupplierListRowImpl to override a method like
getThePerson() and change its return type.

Using View Objects to Work with Multiple Row Types

Advanced View Object Techniques 39-53

■ Access the value of the ContractExpires attribute that is specific to the
SupplierList view object.

4. Otherwise, just call a method on the PersonListRow

Example 39–20 Using View Row Polymorphism in Client Code

// In TestViewRowPolymorphism.java
ViewObject vo = am.findViewObject("PersonList");
vo.executeQuery();
// 1. Iterate over the rows in the PersonList view object
while (vo.hasNext()) {
PersonListRow Person = (PersonListRow)vo.next();
System.out.print(Person.getEmail()+"->");
if (Person instanceof StaffListRow) {
// 2. If the row is a StaffListRow, cast it
StaffListRow mgr = (StaffListRow)Person;
mgr.performStaffFeature();
System.out.println("Discount Status: "+staff.getDiscountEligible());

}
else if (Person instanceof SupplieristRow) {
// 3. If the row is a StaffListRow, cast it
SupplierListRow tech = (SupplierListRow)Person;
supplier.performSupplierFeature();
System.out.println("Contract expires: "+tech.getContractExpires());

}
else {
// 4. Otherwise, just call a method on the PersonListRow
Person.performPersonFeature();

}
}

Running the code in Example 39–20 produces the following output:

daustin->## performSupplierFeature called
Contract expires: 2006-05-09
hbaer->## performPersonFeature as Person
:
sking->## performStaffFeature called
Discount Status: Y
:

This illustrates that by using the view row polymorphism feature the client was able to
distinguish between view rows of different types and access methods and attributes
specific to each subtype of view row.

39.6.7.4 View Row Polymorphism and Polymorphic Entity Usage are Orthogonal
While often even more useful when used together, the view row polymorphism and
the polymorphic entity usage features are distinct and can be used separately. In
particular, the view row polymorphism feature can be used for read-only view objects,
as well as for entity-based view objects. When you combine both mechanisms, you can
have both the entity row part being polymorphic, as well as the view row type.

Note to use view row polymorphism with either view objects or entity objects, you
must configure the discriminator attribute property separately for each. This is
necessary because read-only view objects contain no related entity usages from which
to infer the discriminator information.

In summary, to use view row polymorphism:

Reading and Writing XML

39-54 Fusion Developer's Guide for Oracle Application Development Framework

1. Configure an attribute to be the discriminator at the view object level in the root
view object in an inheritance hierarchy.

2. Have a hierarchy of inherited view objects each of which provides a distinct value
for the "Default Value" property of that view object level discriminator attribute.

3. List the subclassed view objects in this hierarchy in the application module's list of
Subtypes.

Whereas, to create a view object with a polymorphic entity usage:

1. Configure an attribute to be the discriminator at the entity object level in the root
entity object in an inheritance hierarchy.

2. Have a hierarchy of inherited entity objects, each of which overrides and provides
a distinct value for the "Default Value" property of that entity object level
discriminator attribute.

3. List the subclassed entity objects in a view object's list of Subtypes.

39.7 Reading and Writing XML
The Extensible Markup Language (XML) standard from the Worldwide Web
Consortium (W3C) defines a language-neutral approach for electronic data exchange.
Its rigorous set of rules enables the structure inherent in data to be easily encoded and
unambiguously interpreted using human-readable text documents.

View objects support the ability to write these XML documents based on their queried
data. View objects also support the ability to read XML documents in order to apply
changes to data including inserts, updates, and deletes. When you've introduced view
links, this XML capability supports reading and writing multi-level nested information
for master-detail hierarchies of any complexity. While the XML produced and
consumed by view objects follows a canonical format, you can combine the view
object's XML features with XML Stylesheet Language Transformations (XSLT) to
easily convert between this canonical XML format and any format you need to work
with.

39.7.1 How to Produce XML for Queried Data
To produce XML from a view object, use the writeXML() method. If offers two ways
to control the XML produced:

1. For precise control over the XML produced, you can specify a view object attribute
map indicating which attributes should appear, including which view link
accessor attributes should be accessed for nested, detail information:

Node writeXML(long options, HashMap voAttrMap)

2. To producing XML that includes all attributes, you can simply specify a
depth-level that indicates how many levels of view link accessor attributes should
be traversed to produce the result:

Node writeXML(int depthCount, long options)

Note: The example in this section refers to the
ReadingAndWritingXML project in the
AdvancedViewObjectsExamples application workspace in the
StandaloneExamples module of the Fusion Order Demo
application.

Reading and Writing XML

Advanced View Object Techniques 39-55

The options parameter is a integer flag field that can be set to one of the following bit
flags:

■ XMLInterface.XML_OPT_ALL_ROWS

Includes all rows in the view object's row set in the XML.

■ XMLInterface.XML_OPT_LIMIT_RANGE

Includes only the rows in the current range in the XML.

Using the logical OR operation, you can combine either of the above flags with the
XMLInterface.XML_OPT_ASSOC_CONSISTENT flag when you want to include new,
unposted rows in the current transaction in the XML output.

Both versions of the writeXML() method accept an optional third argument which is
an XSLT stylesheet that, if supplied, is used to transform the XML output before
returning it.

39.7.2 What Happens When You Produce XML
When you produce XML using writeXML(), the view object begins by creating a
wrapping XML element whose default name matches the name of the view object
definition. For example, for a Persons view object in the
devguide.advanced.xml.queries package, the XML produces will be wrapped
in an outermost <Persons> tag.

Then, it converts the attribute data for the appropriate rows into XML elements. By
default, each row's data is wrapped in an row element whose name is the name of the
view object with the Row suffix. For example, each row of data from a view object
named Persons is wrapped in an <PersonsRow> element. The elements representing
the attribute data for each row appear as nested children inside this row element.

If any of the attributes is a view link accessor attribute, and if the parameters passed to
writeXML() enable it, the view object will include the data for the detail rowset
returned by the view link accessor. This nested data is wrapped by an element whose
name is determined by the name of the view link accessor attribute. The return value
of the writeXML() method is an object that implements the standard W3C Node
interface, representing the root element of the generated XML.

For example, to produce an XML element for all rows of a Persons view object
instance, and following view link accessors as many levels deep as exists,
Example 39–21 shows the code required.

Example 39–21 Generating XML for All Rows of a View Object to All View Link Levels

ViewObject vo = am.findViewObject("PersonsView");
printXML(vo.writeXML(-1,XMLInterface.XML_OPT_ALL_ROWS));

The Persons view object is linked to a Orders view object showing the orders
created by that person. In turn, the Orders view object is linked to a OrderItems
view object providing details on the items ordered by customers. Running the code in
Example 39–21 produces the XML shown in Example 39–22, reflecting the nested
structure defined by the view links.

Note: The writeXML() method uses view link accessor attributes to
programmatically access detail collections. It does not require adding
view link instances in the data model.

Reading and Writing XML

39-56 Fusion Developer's Guide for Oracle Application Development Framework

Example 39–22 XML from a Persons View Object with Two Levels of View Linked Details

 ...
 <PersonsViewRow>
 <PersonId>111</PersonId>
 <PrincipalName>ISCIARRA</PrincipalName>
 <FirstName>Ismael</FirstName>
 <LastName>Sciarra</LastName>
 <PersonTypeCode>CUST</PersonTypeCode>
 <ProvisionedFlag>N</ProvisionedFlag>
 <PrimaryAddressId>42</PrimaryAddressId>
 <MembershipId>2</MembershipId>
 <Email>ISCIARRA</Email>
 <ConfirmedEmail>ISCIARRA</ConfirmedEmail>
 <PhoneNumber>228.555.0126</PhoneNumber>
 <DateOfBirth>1971-09-30</DateOfBirth>
 <MaritalStatusCode>SING</MaritalStatusCode>
 <Gender>M</Gender>
 <ContactableFlag>Y</ContactableFlag>
 <ContactByAffilliatesFlag>Y</ContactByAffilliatesFlag>
 <CreatedBy>SEED_DATA</CreatedBy>
 <CreationDate>2008-08-15 11:26:36.0</CreationDate>
 <LastUpdatedBy>SEED_DATA</LastUpdatedBy>
 <LastUpdateDate>2008-08-15 11:26:36.0</LastUpdateDate>
 <ObjectVersionId>1</ObjectVersionId>
 <OrdersView>
 <OrdersViewRow>
 <OrderId>1017</OrderId>
 <OrderDate>2008-08-06 11:28:26.0</OrderDate>
 <OrderStatusCode>STOCK</OrderStatusCode>
 <OrderTotal>1649.92</OrderTotal>
 <CustomerId>111</CustomerId>
 <ShipToAddressId>8</ShipToAddressId>
 <ShippingOptionId>2</ShippingOptionId>
 <PaymentOptionId>1006</PaymentOptionId>
 <DiscountId>3</DiscountId>
 <FreeShippingFlag>Y</FreeShippingFlag>
 <CustomerCollectFlag>Y</CustomerCollectFlag>
 <CollectionWarehouseId>102</CollectionWarehouseId>
 <GiftwrapFlag>N</GiftwrapFlag>
 <CreatedBy>0</CreatedBy>
 <CreationDate>2008-08-15 11:28:26.0</CreationDate>
 <LastUpdatedBy>0</LastUpdatedBy>
 <LastUpdateDate>2008-08-15 11:28:26.0</LastUpdateDate>
 <ObjectVersionId>0</ObjectVersionId>
 <OrderItemsView>
 <OrderItemsViewRow>
 <OrderId>1017</OrderId>
 <LineItemId>1</LineItemId>
 <ProductId>22</ProductId>
 <Quantity>1</Quantity>
 <UnitPrice>199.95</UnitPrice>
 <CreatedBy>0</CreatedBy>
 <CreationDate>2008-08-15 11:32:26.0</CreationDate>
 <LastUpdatedBy>0</LastUpdatedBy>
 <LastUpdateDate>2008-08-15 11:32:26.0</LastUpdateDate>
 <ObjectVersionId>0</ObjectVersionId>
 </OrderItemsViewRow>
 <OrderItemsViewRow>
 <OrderId>1017</OrderId>
 <LineItemId>2</LineItemId>

Reading and Writing XML

Advanced View Object Techniques 39-57

 <ProductId>9</ProductId>
 <Quantity>1</Quantity>
 <UnitPrice>129.99</UnitPrice>
 <CreatedBy>0</CreatedBy>
 <CreationDate>2008-08-15 11:32:27.0</CreationDate>
 <LastUpdatedBy>0</LastUpdatedBy>
 <LastUpdateDate>2008-08-15 11:32:27.0</LastUpdateDate>
 <ObjectVersionId>0</ObjectVersionId>
 </OrderItemsViewRow>
 <OrderItemsViewRow>
 <OrderId>1017</OrderId>
 <LineItemId>3</LineItemId>
 <ProductId>36</ProductId>
 <Quantity>2</Quantity>
 <UnitPrice>659.99</UnitPrice>
 <CreatedBy>0</CreatedBy>
 <CreationDate>2008-08-15 11:32:27.0</CreationDate>
 <LastUpdatedBy>0</LastUpdatedBy>
 <LastUpdateDate>2008-08-15 11:32:27.0</LastUpdateDate>
 <ObjectVersionId>0</ObjectVersionId>
 </OrderItemsViewRow>
 </OrderItemsView>
 </OrdersViewRow>
 </OrdersView>
 </PersonsViewRow>
...

39.7.3 What You May Need to Know About Reading and Writing XML
This section provides additional information to help you work with XML.

39.7.3.1 Controlling XML Element Names
You can use the Property Inspector to change the default XML element names used in
the view object's canonical XML format by setting several properties. To accomplish
this, open the overview editor for the view object, then:

■ Select the attribute on the Attributes page and in the Property Inspector, select the
Custom Properties navigation tab and set the custom attribute-level property
named Xml Element to a value SomeOtherName to change the XML element
name used for that attribute to <SomeOtherName>

For example, the Email attribute in the Persons view object defines this property
to change the XML element you see in Example 39–22 to be <EmailAddress>
instead of <Email>.

■ Select the General navigation tab in the Property Inspector and set the custom view
object-level property named Xml Row Element to a value SomeOtherRowName to
change the XML element name used for that view object to
<SomeOtherRowName>.

For example, the Persons view object defines this property to change the XML
element name for the rows you see in Example 39–22 to be <Person> instead of
<PersonsRow>.

■ To change the name of the element names that wrapper nested row set data from
view link attribute accessors, use the View Link Properties dialog. To open the
dialog, in the view link overview editor, click the Edit accessors icon on the

Reading and Writing XML

39-58 Fusion Developer's Guide for Oracle Application Development Framework

Accessors section of Relationship page. Enter the desired name of the view link
accessor attribute in the Accessor Name field.

39.7.3.2 Controlling Element Suppression for Null-Valued Attributes
By default, if a view row attribute is null, then its corresponding element is omitted
from the generated XML. Select the attribute on the Attributes page of the overview
editor and in the Property Inspector, select the Custom Properties navigation tab and
set the custom attribute-level property named Xml Explicit Null to any value (e.g.
"true" or "yes") to cause an element to be included for the attribute if its value is null.
For example, if an attribute named AssignedDate has this property set, then a row
containing a null assigned date will contain a corresponding <AssignedDate
null="true"/> element. If you want this behavior for all attributes of a view object, you
can define the Xml Explicit Null custom property at the view object level as a shortcut
for defining it on each attribute.

39.7.3.3 Printing or Searching the Generated XML Using XPath
Two of the most common things you might want to do with the XML Node object
returned from writeXML() are:

1. Printing the node to its serialized text representation — to send across the network
or save in a file, for example

2. Searching the generated XML using W3C XPath expressions

Unfortunately, the standard W3C Document Object Model (DOM) API does not
include methods for doing either of these useful operations. But there is hope. Since
ADF Business Components uses the Oracle XML parser's implementation of the DOM,
you can cast the Node return value from writeXML() to the Oracle specific classes
XMLNode or XMLElement (in the oracle.xml.parser.v2 package) to access
additional useful functionality like:

■ Printing the XML element to its serialized text format using the print() method

■ Searching the XML element in memory with XPath expressions using the
selectNodes() method

■ Finding the value of an XPath expression related to the XML element using the
valueOf() method.

Example 39–23 shows the printXML() method in the TestClientWriteXML. It
casts the Node parameter to an XMLNode and calls the print() method to dump the
XML to the console.

Example 39–23 Using the XMLNode's print() Method to Serialize XML

// In TestClientWriteXML.java
private static void printXML(Node n) throws IOException {
((XMLNode)n).print(System.out);

}

39.7.3.4 Using the Attribute Map For Fine Control Over Generated XML
When you need fine control over which attributes appear in the generated XML, use
the version of the writeXML() method that accepts a HashMap. Example 39–24
shows the interesting lines from a TestClientWriteXML class that use this
technique. After creating the HashMap, you put String[]-valued entries into it
containing the names of the attributes you want to include in the XML, keyed by the
fully-qualified name of the view definition those attributes belong to. The example
includes the PersonId, Email, PersonTypeCode, and OrdersView attributes from

Reading and Writing XML

Advanced View Object Techniques 39-59

the Persons view object, and the OrderId, OrderStatusCode, and OrderTotal
attributes from the OrdersView view object.

While processing the view rows for a given view object instance:

■ If an entry exists in the attribute map with a key matching the fully-qualified view
definition name for that view object, then only the attributes named in the
corresponding String array are included in the XML.

Furthermore, if the string array includes the name of a view link accessor attribute,
then the nested contents of its detail row set are included in the XML. If a view
link accessor attribute name does not appear in the string array, then the contents
of its detail row set are not included.

■ If no such entry exists in the map, then all attributes for that row are included in
the XML.

Example 39–24 Using a View Definition Attribute Map for Fine Control Over Generated
XML

HashMap viewDefMap = new HashMap();
viewDefMap.put("devguide.advanced.xml.queries.PersonsView",

new String[]{"PersonId","Email", "PersonTypeCode",
"OrdersView" /* View link accessor attribute */
});

viewDefMap.put("devguide.advanced.xml.queries.OrdersView",
new String[]{"OrderId","OrderStatusCode","OrderTotal"});

printXML(vo.writeXML(XMLInterface.XML_OPT_ALL_ROWS,viewDefMap));

Running the example produces the XML shown in Example 39–25, including only the
exact attributes and view link accessors indicated by the supplied attribute map.

Example 39–25 XML from a Users View Object Produced Using an Attribute Map

<OrdersViewRow>
 <OrderId>1033</OrderId>
 <OrderDate>2009-01-30 13:59:39.0</OrderDate>
 <OrderShippedDate>2009-02-02 13:59:39.0</OrderShippedDate>
 <OrderStatusCode>COMPLETE</OrderStatusCode>
 <OrderTotal>2677.96</OrderTotal>
 <CustomerId>108</CustomerId>
 <ShipToAddressId>20</ShipToAddressId>
 <ShippingOptionId>1</ShippingOptionId>
 <PaymentOptionId>1016</PaymentOptionId>
 <DiscountId>3</DiscountId>
 <FreeShippingFlag>Y</FreeShippingFlag>
 <CustomerCollectFlag>Y</CustomerCollectFlag>
 <CollectionWarehouseId>101</CollectionWarehouseId>
 <GiftwrapFlag>N</GiftwrapFlag>
 <CreatedBy>0</CreatedBy>
 <CreationDate>2009-02-23 13:59:39.0</CreationDate>
 <LastUpdatedBy>0</LastUpdatedBy>
 <LastUpdateDate>2009-02-23 13:59:39.0</LastUpdateDate>
 <ObjectVersionId>0</ObjectVersionId>

Note: For upward compatibility reasons with earlier versions of
ADF Business Components the HashMap expected by the
writeXML() method is the one in the
com.sun.java.util.collections package.

Reading and Writing XML

39-60 Fusion Developer's Guide for Oracle Application Development Framework

 <OrderItemsView>
 <OrderItemsViewRow>
 <OrderId>1033</OrderId>
 <LineItemId>1</LineItemId>
 <ProductId>10</ProductId>
 <Quantity>3</Quantity>
 <UnitPrice>225.99</UnitPrice>
 <CreatedBy>0</CreatedBy>
 <CreationDate>2009-02-23 13:59:40.0</CreationDate>
 <LastUpdatedBy>0</LastUpdatedBy>
 <LastUpdateDate>2009-02-23 13:59:40.0</LastUpdateDate>
 <ObjectVersionId>0</ObjectVersionId>
 </OrderItemsViewRow>
 <OrderItemsViewRow>
 <OrderId>1033</OrderId>
 <LineItemId>2</LineItemId>
 <ProductId>1</ProductId>
 <Quantity>1</Quantity>
 <UnitPrice>1999.99</UnitPrice>
 <CreatedBy>0</CreatedBy>
 <CreationDate>2009-02-23 13:59:40.0</CreationDate>
 <LastUpdatedBy>0</LastUpdatedBy>
 <LastUpdateDate>2009-02-23 13:59:40.0</LastUpdateDate>
 <ObjectVersionId>0</ObjectVersionId>
 </OrderItemsViewRow>
 </OrderItemsView>
</OrdersViewRow>
...

39.7.3.5 Use the Attribute Map Approach with Bi-Directional View Links
If your view objects are related through a view link that you have configured to be
bi-directional, then you must use the writeXML() approach that uses the attribute
map. If you were to use the writeXML() approach in the presence of bi-directional
view links and were to supply a maximum depth of -1 to include all levels of view
links that exist, the writeXML() method will go into an infinite loop as it follows the
bi-directional view links back and forth, generating deeply nested XML containing
duplicate data until it runs out of memory. Use writeXML() with an attribute map
instead in this situation. Only by using this approach can you control which view link
accessors are included in the XML and which are not to avoid infinite recursion while
generating the XML.

39.7.3.6 Transforming Generated XML Using an XSLT Stylesheet
When the canonical XML format produced by writeXML() does not meet your
needs, you can supply an XSLT stylesheet as an optional argument. It will produce the
XML as it would normally, but then transform that result using the supplied stylesheet
before returning the final XML to the caller.

Consider the XSLT stylesheet shown in Example 39–26. It is a simple transformation
with a single template that matches the root element of the generated XML from
Example 39–25 to create a new <CustomerEmailAddresses> element in the result. The
template uses the <xsl:for-each> instruction to process all <PersonsView> elements
that contain more than one <OrdersViewRow> child element inside a nested
<OrdersViews> element. For each <PersonsView> element that qualifies, it creates a
<Customer> element in the result whose Contact attribute is populated from the
value of the <Email> child element of the <PersonsView>.

Reading and Writing XML

Advanced View Object Techniques 39-61

Example 39–26 XSLT Stylesheet to Transform Generated XML Into Another Format

<?xml version="1.0" encoding="windows-1252" ?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
<CustomerEmailAddresses>
<xsl:for-each

select="/PersonsView/PersonsViewRow[count(OrdersView/OrdersViewRow) >
1]">

<xsl:sort select="Email"/>
<Customer Contact="{Email}"/>

</xsl:for-each>
</CustomerEmailAddresses>

</xsl:template>
</xsl:stylesheet>

Example 39–27 shows the interesting lines from a TestClientWriteXML class that
put this XSLT stylesheet into action when calling writeXML().

Example 39–27 Passing an XSLT Stylesheet to writeXML() to Transform the Resulting
XML

// In TestClientWriteXML.java
XSLStylesheet xsl = getXSLStylesheet();
printXML(vo.writeXML(XMLInterface.XML_OPT_ALL_ROWS,viewDefMap,xsl));

Running the code in Example 39–27 produces the transformed XML shown here:

<CustomerEmailAddresses>
<Customer Contact="dfaviet"/>
<Customer Contact="jchen"/>
<Customer Contact="ngreenbe"/>

</CustomerEmailAddresses>

The getXSLStylesheet() helper method shown in Example 39–28 is also
interesting to study since it illustrates how to read a resource like an XSLT stylesheet
from the classpath at runtime. The code expects the Example.xsl stylesheet to be in
the same directory as the TestClientWriteXML class. By referencing the Class
object for the TestClientWriteXML class using the .class operator, the code uses
the getResource() method to get a URL to the resource. Then, it passes the URL to
the newXSLStylesheet() method of the XSLProcessor class to create a new
XSLStylesheet object to return. That object represents the compiled version of the
XSLT stylesheet read in from the *.xslfile.

Example 39–28 Reading an XSLT Stylesheet as a Resource from the Classpath

private static XSLStylesheet getXSLStylesheet()
throws XMLParseException, SAXException,IOException,XSLException {

String xslurl = "Example.xsl";
URL xslURL = TestClientWriteXML.class.getResource(xslurl);
XSLProcessor xslProc = new XSLProcessor();
return xslProc.newXSLStylesheet(xslURL);

}

Note: When working with resources like XSLT stylesheets that you
want to be included in the output directory along with your compiled
Java classes and XML metadata, you can use the Compiler page of the
Project Properties dialog to update the Copy File Types to Output
Directory field to include .xsl in the semicolon-separated list.

Reading and Writing XML

39-62 Fusion Developer's Guide for Oracle Application Development Framework

39.7.3.7 Generating XML for a Single Row
In addition to calling writeXML() on a view object, you can call the same method
with the same parameters and options on any Row as well. If the Row object on which
you call writeXML() is a entity row, you can bitwise-OR the additional
XMLInterface.XML_OPT_CHANGES_ONLY flag if you only want the changed entity
attributes to appear in the XML.

39.7.4 How to Consume XML Documents to Apply Changes
To have a view object consume an XML document to process inserts, updates, and
deletes, use the readXML() method:

void readXML(Element elem, int depthcount)

The canonical format expected by readXML() is the same as what would be produced
by a call to the writeXML() method on the same view object. If the XML document to
process does not correspond to this canonical format, you can supply an XSLT
stylesheet as an optional third argument to readXML() to transform the incoming
XML document into the canonical format before it is read for processing.

39.7.5 What Happens When You Consume XML Documents
When a view object consumes an XML document in canonical format, it processes the
document to recognize row elements, their attribute element children, and any nested
elements representing view link accessor attributes. It processes the document
recursively to a maximum level indicated by the depthcount parameter. Passing -1
for the depthcount to request that it process all levels of the XML document.

39.7.5.1 How ViewObject.readXML() Processes an XML Document
For each row element it recognizes, the readXML() method does the following:

■ Identifies the related view object to process the row.

■ Reads the children attribute elements to get the values of the primary key
attributes for the row.

■ Performs a findByKey() using the primary key attributes to detect whether the
row already exists or not.

■ If the row exists:

■ If the row element contains the marker attribute bc4j-action="remove",
then the existing row is deleted.

■ Otherwise, the row's attributes are updated using the values in any attribute
element children of the current row element in the XML

■ If the row does not exist, then a new row is created, inserted into the view object's
rowset. Its attributes are populated using the values in any attribute element
children of the current row element in the XML.

39.7.5.2 Using readXML() to Processes XML for a Single Row
The same readXML() method is also supported on any Row object. The canonical
XML format it expects is the same format produced by a call to writeXML() on the
same row. You can invoke readXML() method on a row to:

■ Update its attribute values from XML

Reading and Writing XML

Advanced View Object Techniques 39-63

■ Remove the row, if the bc4j-action="remove" marker attribute is present on
the corresponding row element.

■ Insert, update, or delete any nested rows via view link accessors

Consider the XML document shown in Example 39–29. It is in the canonical format
expected by a single row in the PersonsView view object. Nested inside the root
<PersonsViewRow> element, the <ConfirmedEmail> attribute represents the
customer’s email address. The nested <OrdersView> element corresponds to the
Orders view link accessor attribute and contains three <OrdersViewRow> elements.
Each of these includes <OrderId> elements representing the primary key of a
OrdersView row.

Example 39–29 XML Document in Canonical Format to Insert, Update, and Delete Rows

<PersonsViewRow>
 <!-- This will update Person's ConfirmedEmail attribute -->
 <PersonId>110</PersonId>
 <ConfirmedEmail>NewConfirmed</ConfirmedEmail>
 <OrdersView>
 <!-- This will be an update since it does exist -->
 <OrdersViewRow>
 <OrderId>1011</OrderId>
 <OrderStatusCode>SHIP</OrderStatusCode>
 </OrdersViewRow>
 <!-- This will be an insert since it doesn't exist -->
 <OrdersViewRow>
 <OrderId>1070</OrderId>
 <OrderStatusCode>PENDING</OrderStatusCode>
 </OrdersViewRow>
 <!-- This will be deleted -->
 <OrdersViewRow bc4j-action="remove">
 <OrderId>1026</OrderId>
 </OrdersViewRow>
 </OrdersView>
</PersonsViewRow>

Example 39–30 shows the interesting lines of code from a TestClientReadXML class
that applies this XML datagram to a particular row in the PersonsView view object.
TestClientReadXML class performs the following basic steps:

1. Finds a target row by key (e.g. for customer "jchen").

2. Shows the XML produced for the row before changes are applied.

3. Obtains the parsed XML document with changes to apply using a helper method.

4. Reads the XML document to apply changes to the row.

5. Shows the XML with the pending changes applied.

TestClientReadXML class is using the XMLInterface.XML_OPT_ASSOC_
CONSISTENT flag described in Section 39.7.1, "How to Produce XML for Queried
Data" to ensure that new, unposted rows are included in the XML.

Example 39–30 Applying Changes to an Existing Row with readXML()

ViewObject vo = am.findViewObject("CustomersView");
Key k = new Key(new Object[] { 110 });
// 1. Find a target row by key (e.g. for customer "jchen")
Row jchen = vo.findByKey(k, 1)[0];
// 2. Show the XML produced for the row before changes are applied

Reading and Writing XML

39-64 Fusion Developer's Guide for Oracle Application Development Framework

printXML(jchen.writeXML(-1, XMLInterface.XML_OPT_ALL_ROWS));
// 3. Obtain parsed XML document with changes to apply using helper method
Element xmlToRead = getInsertUpdateDeleteXMLGram();
printXML(xmlToRead);
// 4. Read the XML document to apply changes to the row
jchen.readXML(getInsertUpdateDeleteXMLGram(), -1);
// 5. Show the XML with the pending changes applied
printXML(jchen.writeXML(-1, XMLInterface.XML_OPT_ALL_ROWS |

XMLInterface.XML_OPT_ASSOC_CONSISTENT));

Running the code in Example 39–30 initially displays the "before" version of John
Chen’s information. Notice that:

■ The ConfirmedEmail attribute has the value "JCHEN"

■ The status code for order 1011 has a level of "CANCEL"

■ There is an orders row for order 1026, and

■ There is no orders row related to order 1070.

<PersonsViewRow>
 <PersonId>110</PersonId>
 <PrincipalName>JCHEN</PrincipalName>
 <FirstName>John</FirstName>
 <LastName>Chen</LastName>
 <PersonTypeCode>CUST</PersonTypeCode>
 <ProvisionedFlag>N</ProvisionedFlag>
 <PrimaryAddressId>37</PrimaryAddressId>
 <MembershipId>1</MembershipId>
 <Email>JCHEN</Email>
 <ConfirmedEmail>JCHEN</ConfirmedEmail>
 <PhoneNumber>706.555.0103</PhoneNumber>
 <DateOfBirth>1967-09-28</DateOfBirth>
 <MaritalStatusCode>MARR</MaritalStatusCode>
 <Gender>M</Gender>
 <ContactableFlag>Y</ContactableFlag>
 <ContactByAffilliatesFlag>Y</ContactByAffilliatesFlag>
 <CreatedBy>SEED_DATA</CreatedBy>
 <CreationDate>2009-02-23 13:59:38.0</CreationDate>
 <LastUpdatedBy>SEED_DATA</LastUpdatedBy>
 <LastUpdateDate>2009-02-23 13:59:38.0</LastUpdateDate>
 <ObjectVersionId>1</ObjectVersionId>
 <OrdersView>
 <OrdersViewRow>
 <OrderId>1011</OrderId>
 <OrderDate>2009-02-17 13:59:38.0</OrderDate>
 <OrderStatusCode>CANCEL</OrderStatusCode>
 <OrderTotal>99.99</OrderTotal>
 <CustomerId>110</CustomerId>
 <ShipToAddressId>9</ShipToAddressId>
 <ShippingOptionId>2</ShippingOptionId>
 <PaymentOptionId>1005</PaymentOptionId>
 <DiscountId>5</DiscountId>
 <FreeShippingFlag>N</FreeShippingFlag>
 <CustomerCollectFlag>N</CustomerCollectFlag>
 <GiftwrapFlag>N</GiftwrapFlag>
 <CreatedBy>0</CreatedBy>
 <CreationDate>2009-02-23 13:59:38.0</CreationDate>
 <LastUpdatedBy>anonymous</LastUpdatedBy>
 <LastUpdateDate>2009-02-23 13:59:38.0</LastUpdateDate>
 <ObjectVersionId>8</ObjectVersionId>

Reading and Writing XML

Advanced View Object Techniques 39-65

 <OrderItemsView>
 <OrderItemsViewRow>
 <OrderId>1011</OrderId>
 <LineItemId>1</LineItemId>
 <ProductId>18</ProductId>
 <Quantity>1</Quantity>
 <UnitPrice>99.99</UnitPrice>
 <CreatedBy>0</CreatedBy>
 <CreationDate>2009-02-23 13:59:39.0</CreationDate>
 <LastUpdatedBy>0</LastUpdatedBy>
 <LastUpdateDate>2009-02-23 13:59:39.0</LastUpdateDate>
 <ObjectVersionId>0</ObjectVersionId>
 </OrderItemsViewRow>
 </OrderItemsView>
 </OrdersViewRow>
...

After applying the changes from the XML document using readXML() to the row and
printing its XML again using writeXML() you see that:

■ The ConfirmedEmail is now "NewConfirmed"

■ A new orders row for order 1070 got created.

■ The status code for order 1011 has a level of "SHIP", and

■ The orders row for order 1026 is removed

<PersonsViewRow>
 <PersonId>110</PersonId>
 <PrincipalName>JCHEN</PrincipalName>
 <FirstName>John</FirstName>
 <LastName>Chen</LastName>
 <PersonTypeCode>CUST</PersonTypeCode>
 <ProvisionedFlag>N</ProvisionedFlag>
 <PrimaryAddressId>37</PrimaryAddressId>
 <MembershipId>1</MembershipId>
 <Email>JCHEN</Email>
 <ConfirmedEmail>NewConfirmed</ConfirmedEmail>
 <PhoneNumber>706.555.0103</PhoneNumber>
 <DateOfBirth>1967-09-28</DateOfBirth>
 <MaritalStatusCode>MARR</MaritalStatusCode>
 <Gender>M</Gender>
 <ContactableFlag>Y</ContactableFlag>
 <ContactByAffilliatesFlag>Y</ContactByAffilliatesFlag>
 <CreatedBy>0</CreatedBy>
 <CreationDate>2009-02-23 13:59:38.0</CreationDate>
 <LastUpdatedBy>0</LastUpdatedBy>
 <LastUpdateDate>2009-02-23 13:59:38.0</LastUpdateDate>
 <ObjectVersionId>1</ObjectVersionId>
 <OrdersView>
 <OrdersViewRow>
 <OrderId>1070</OrderId>
 <OrderDate>2009-06-22</OrderDate>
 <OrderStatusCode>PENDING</OrderStatusCode>
 ...
 </OrdersViewRow>
 <OrdersViewRow>
 <OrderId>1011</OrderId>
 <OrderDate>2009-02-17 13:59:38.0</OrderDate>
 <OrderStatusCode>SHIP</OrderStatusCode>
 <OrderTotal>99.99</OrderTotal>

Using Programmatic View Objects for Alternative Data Sources

39-66 Fusion Developer's Guide for Oracle Application Development Framework

 <CustomerId>110</CustomerId>
 <ShipToAddressId>9</ShipToAddressId>
 <ShippingOptionId>2</ShippingOptionId>
 <PaymentOptionId>1005</PaymentOptionId>
 <DiscountId>5</DiscountId>
 <FreeShippingFlag>N</FreeShippingFlag>
 <CustomerCollectFlag>N</CustomerCollectFlag>
 <GiftwrapFlag>N</GiftwrapFlag>
 <CreatedBy>0</CreatedBy>
 <CreationDate>2009-02-23 13:59:38.0</CreationDate>
 <LastUpdatedBy>0</LastUpdatedBy>
 <LastUpdateDate>2009-02-23 13:59:38.0</LastUpdateDate>
 <ObjectVersionId>0</ObjectVersionId>
 <OrderItemsView>
 <OrderItemsViewRow>
 <OrderId>1011</OrderId>
 <LineItemId>1</LineItemId>
 <ProductId>18</ProductId>
 <Quantity>1</Quantity>
 <UnitPrice>99.99</UnitPrice>
 <CreatedBy>0</CreatedBy>
 <CreationDate>2009-02-01 13:59:39.0</CreationDate>
 <LastUpdatedBy>0</LastUpdatedBy>
 <LastUpdateDate>2009-02-01 13:59:39.0</LastUpdateDate>
 <ObjectVersionId>0</ObjectVersionId>
 </OrderItemsViewRow>
 </OrderItemsView>
 </OrdersViewRow>
...

39.8 Using Programmatic View Objects for Alternative Data Sources
By default view objects read their data from the database and automate the task of
working with the Java Database Connectivity (JDBC) layer to process the database
result sets. However, by overriding appropriate methods in its custom Java class, you
can create a view object that programmatically retrieves data from alterative data
sources like a REF CURSOR, an in-memory array, or a Java *.properties file, to
name a few.

39.8.1 How to Create a Read-Only Programmatic View Object
To create a read-only programmatic view object, you use the Create View Object
wizard.

To create the read-only programmatic view object:
1. In the Application Navigator, right-click the project in which you want to create

the view object and choose New.

Note: The example illustrated using readXML() to apply changes to
a single row. If the XML document contained a wrapping
<PersonsView> row, including the primary key attribute in each of its
one or more nested <PersonsViewRow> elements, then that document
could be processed using the readXML() method on the
PersonsView view object for handling operations for multiple
PersonsView rows.

Using Programmatic View Objects for Alternative Data Sources

Advanced View Object Techniques 39-67

2. In the New Gallery, expand Business Tier, select ADF Business Components and
then View Object, and click OK.

3. In the Create View Object wizard, in the Name page, provide a name and package
for the view object. For the data source, select Rows populated programmatically,
not based on a query.

4. In the Attributes page, click New one or more times to define the view object
attributes your programmatic view object requires.

5. In the Attribute Settings page, adjust any setting you may need to for the
attributes you defined.

6. In the Java page, select Generate View Object Class to enable a custom view
object class (ViewObjImpl) to contain your code.

7. Click Finish to create the view object.

In your view object's custom Java class, override the methods described in
Section 39.8.3, "Key Framework Methods to Override for Programmatic View Objects"
to implement your custom data retrieval strategy.

39.8.2 How to Create an Entity-Based Programmatic View Object
To create a entity-based view object with programmatic data retrieval, create the view
object in the normal way, enable a custom Java class for it, and override the methods
described in the next section to implement your custom data retrieval strategy.

39.8.3 Key Framework Methods to Override for Programmatic View Objects
A programmatic view object typically overrides all of the following methods of the
base ViewObjectImpl class to implement its custom strategy for retrieving data:

■ create()

This method is called when the view object instance is created and can be used to
initialize any state required by the programmatic view object. At a minimum, this
overridden method will contain the following lines to ensure the programmatic
view object has no trace of a SQL query related to it:

// Wipe out all traces of a query for this VO
getViewDef().setQuery(null);
getViewDef().setSelectClause(null);
setQuery(null);

■ executeQueryForCollection()

This method is called whenever the view object's query needs to be executed (or
re-executed).

■ hasNextForCollection()

This method is called to support the hasNext() method on the row set iterator
for a row set created from this view object. Your implementation returns true if
you have not yet exhausted the rows to retrieve from your programmatic data
source.

■ createRowFromResultSet()

This method is called to populate each row of "fetched" data. Your implementation
will call createNewRowForCollection() to create a new blank row and then
populateAttributeForRow() to populate each attribute of data for the row.

Using Programmatic View Objects for Alternative Data Sources

39-68 Fusion Developer's Guide for Oracle Application Development Framework

■ getQueryHitCount()

This method is called to support the getEstimatedRowCount() method. Your
implementation returns a count, or estimated count, of the number of rows that
will be retrieved by the programmatic view object's query.

■ protected void releaseUserDataForCollection()

Your code can store and retrieve a user data context object with each row set. This
method is called to allow you to release any resources that may be associated with
a row set that is being closed.

Since the view object component can be related to several active row sets at runtime,
many of the above framework methods receive an Object parameter named qc in
which the framework will pass the collection of rows in question that your code is
supposed to be filling, as well as the array of bind variable values that might affect
which rows get populated into the specific collection.

You can store a user-data object with each collection of rows so your custom
datasource implementation can associate any needed datasource context information.
The framework provides the setUserDataForCollection() and
getUserDataForCollection() methods to get and set this per-collection context
information. Each time one of the overridden framework methods is called, you can
use the getUserDataForCollection() method to retrieve the correct ResultSet
object associated with the collection of rows the framework wants you to populate.

The examples in the following sections each override these methods to implement
different kinds of programmatic view objects.

39.8.4 How to Create a View Object on a REF CURSOR
Sometimes your application might need to work with the results of a query that is
encapsulated within a stored procedure. PL/SQL allows you to open a cursor to
iterate through the results of a query, and then return a reference to this cursor to the
client. This so-called REF CURSOR is a handle with which the client can then iterate
the results of the query. This is possible even though the client never actually issued
the original SQL SELECT statement.

Declaring a PL/SQL package with a function that returns a REF CURSOR is
straightforward. For example, your package might look like this:

CREATE OR REPLACE PACKAGE RefCursorExample IS
TYPE ref_cursor IS REF CURSOR;
FUNCTION get_orders_for_customer(p_email VARCHAR2) RETURN ref_cursor;
FUNCTION count_orders_for_customer(p_email VARCHAR2) RETURN NUMBER;

END RefCursorExample;

After defining an entity-based OrdersForCustomer view object with an entity usage
for a Order entity object, go to its custom Java class
OrdersForCustomerImpl.java. At the top of the view object class, define some
constant Strings to hold the anonymous blocks of PL/SQL that you'll execute using
JDBC CallableStatement objects to invoke the stored functions:

Note: The example in this section refers to the
ViewObjectOnRefCursor project in the
AdvancedViewObjectsExamples application workspace in the
StandaloneExamples module of the Fusion Order Demo
application.

Using Programmatic View Objects for Alternative Data Sources

Advanced View Object Techniques 39-69

/*
* Execute this block to retrieve the REF CURSOR
*/
private static final String SQL =

"begin ? := RefCursorSample.get_orders_for_customer(?);end;";
/*
* Execute this block to retrieve the count of orders that
* would be returned if you executed the statement above.
*/
private static final String COUNTSQL =

"begin ? := RefCursorSample.count_orders_for_customer(?);end;";

Then, override the methods of the view object as described in the following sections.

39.8.4.1 The Overridden create() Method
The create() method removes all traces of a SQL query for this view object.

protected void create() {
getViewDef().setQuery(null);
getViewDef().setSelectClause(null);
setQuery(null);

}

39.8.4.2 The Overridden executeQueryForCollection() Method
The executeQueryForCollection() method calls a helper method
retrieveRefCursor() to execute the stored function and return the REF CURSOR
return value, cast as a JDBC ResultSet. Then, it calls the helper method
storeNewResultSet() that uses the setUserDataForCollection() method to
store this ResultSet with the collection of rows for which the framework is asking to
execute the query.

protected void executeQueryForCollection(Object qc,Object[] params,
int numUserParams) {

storeNewResultSet(qc,retrieveRefCursor(qc,params));
super.executeQueryForCollection(qc, params, numUserParams);

}

The retrieveRefCursor() uses the helper method described in Section 37.5,
"Invoking Stored Procedures and Functions" to invoke the stored function and return
the REF CURSOR:

private ResultSet retrieveRefCursor(Object qc, Object[] params) {
ResultSet rs = (ResultSet)callStoredFunction(OracleTypes.CURSOR,

"RefCursorExample.get_requests_for_customer(?)",
new Object[]{getNamedBindParamValue("CustEmail",params)});

return rs ;
}

39.8.4.3 The Overridden createRowFromResultSet() Method
For each row that the framework needs fetched from the datasource, it will invoke
your overridden createRowFromResultSet() method. The implementation
retrieves the collection-specific ResultSet object from the user-data context, uses the
createNewRowForCollection() method to create a new blank row in the
collection, and then use the populateAttributeForRow() method to populate the
attribute values for each attribute defined at design time in the view object overview
editor.

protected ViewRowImpl createRowFromResultSet(Object qc, ResultSet rs) {

Using Programmatic View Objects for Alternative Data Sources

39-70 Fusion Developer's Guide for Oracle Application Development Framework

/*
* We ignore the JDBC ResultSet passed by the framework (null anyway) and
* use the resultset that we've stored in the query-collection-private
* user data storage
*/
rs = getResultSet(qc);

/*
* Create a new row to populate
*/
ViewRowImpl r = createNewRowForCollection(qc);
try {
/*
* Populate new row by attribute slot number for current row in Result Set
*/
populateAttributeForRow(r,0, rs.getLong(1));
populateAttributeForRow(r,1, rs.getString(2));
populateAttributeForRow(r,2, rs.getString(3));

}
catch (SQLException s) {
throw new JboException(s);

}
return r;

}

39.8.4.4 The Overridden hasNextForCollectionMethod()
The overridden implementation of the framework method
hasNextForCollection() has the responsibility to return true or false based on
whether there are more rows to fetch. When you've hit the end, you call the
setFetchCompleteForCollection() to tell view object that this collection is done
being populated.

protected boolean hasNextForCollection(Object qc) {
ResultSet rs = getResultSet(qc);
boolean nextOne = false;
try {
nextOne = rs.next();
/*
* When were at the end of the result set, mark the query collection
* as "FetchComplete".
*/
if (!nextOne) {
setFetchCompleteForCollection(qc, true);
/*
* Close the result set, we're done with it
*/
rs.close();

}
}
catch (SQLException s) {
throw new JboException(s);
}
return nextOne;

}

Using Programmatic View Objects for Alternative Data Sources

Advanced View Object Techniques 39-71

39.8.4.5 The Overridden releaseUserDataForCollection() Method
Once the collection is done with its fetch-processing, the overridden
releaseUserDataForCollection() method gets invoked and closes the
ResultSet cleanly so no database cursors are left open.

protected void releaseUserDataForCollection(Object qc, Object rs) {
ResultSet userDataRS = getResultSet(qc);
if (userDataRS != null) {
try {
userDataRS.close();

}
catch (SQLException s) {
/* Ignore */

}
}
super.releaseUserDataForCollection(qc, rs);

}

39.8.4.6 The Overridden getQueryHitCount() Method
Lastly, in order to properly support the view object's getEstimatedRowCount()
method, the overridden getQueryHitCount() method returns a count of the rows
that would be retrieved if all rows were fetched from the row set. Here the code uses a
CallableStatement to get the job done. Since the query is completely encapsulated
behind the stored function API, the code also relies on the PL/SQL package to provide
an implementation of the count logic as well to support this functionality.

public long getQueryHitCount(ViewRowSetImpl viewRowSet) {
Object[] params = viewRowSet.getParameters(true);
BigDecimal id = (BigDecimal)params[0];
CallableStatement st = null;
try {
st = getDBTransaction().createCallableStatement(COUNTSQL,

DBTransaction.DEFAULT);
/*
* Register the first bind parameter as our return value of type CURSOR
*/
st.registerOutParameter(1,Types.NUMERIC);
/*
* Set the value of the 2nd bind variable to pass id as argument
*/
if (id == null) st.setNull(2,Types.NUMERIC);
else st.setBigDecimal(2,id);
st.execute();
return st.getLong(1);

}
catch (SQLException s) {
throw new JboException(s);

}
finally {try {st.close();} catch (SQLException s) {}}

}

Creating a View Object with Multiple Updatable Entities

39-72 Fusion Developer's Guide for Oracle Application Development Framework

39.9 Creating a View Object with Multiple Updatable Entities

When you create a view object with multiple entity usages, you can enable a
secondary entity usage to be updatable by selecting it in the Selected list of the Entity
Objects page of the view object overview editor and:

■ Deselecting the Reference checkbox

■ Selecting the Updatable checkbox

If you only plan to use the view object to update or delete existing data, then this is the
only step required. The user can update attributes related to any of the non-reference,
updatable entity usages and the view row will delegate the changes to the appropriate
underlying entity rows.

However, if you need a view object with multiple updatable entities to support
creating new rows and the association between the entity objects is not a composition,
then you need to write a bit of code to enable that to work correctly.

When you call createRow() on a view object with multiple update entities, it creates
new entity row parts for each updatable entity usage. Since the multiple entities in this
scenario are related by an association, there are three pieces of code you might need to
implement to ensure the new, associated entity rows can be saved without errors:

1. You may need to override the postChanges() method on entity objects involved
to control the correct posting order.

2. If the primary key of the associated entity is populated by a database sequence
using DBSequence, and if the multiple entity objects are associated but not
composed, then you need to override the postChanges() and
refreshFKInNewContainees() method to handle cascading the refreshed
primary key value to the associated rows that were referencing the temporary
value.

3. You need to override the create() method of the view object's custom view row
class to modify the default row creation behavior to pass the context of the parent
entity object to the newly-created child entity.

In Section 38.8, "Controlling Entity Posting Order to Avoid Constraint Violations,"
you've already seen the code required for 1 and 2 above in an example with associated
Suppliers and Products entity objects. The only thing remaining is the overridden
create() method on the view row. Consider a ProductAndSupplier view object
with a primary entity usage of Product and secondary entity usages of Supplier
and User. Assume the Product entity usage is marked as updatable and
non-reference, while the User entity usage is a reference entity usage.

Note: The example in this section refers to the MultipleMasters
project in the AdvancedViewObjectsExamples application
workspace in the StandaloneExamples module of the Fusion Order
Demo application.

Note: You only need to write code to handle creating new rows
when the association between the updatable entities is not a
composition. If the association is a composition, then ADF Business
Components handles this automatically.

Creating a View Object with Multiple Updatable Entities

Advanced View Object Techniques 39-73

Example 39–31 shows the commented code required to correctly sequence the creation
of the multiple, updatable entity row parts during a view row create operation.

Example 39–31 Overriding View Row create() Method for Multiple Updatable Entities

/**
* By default, the framework will automatically create the new
* underlying entity object instances that are related to this
* view object row being created.
*
* We override this default view object row creation to explicitly
* pre-populate the new (detail) ProductsImpl instance using
* the new (master) SuppliersImpl instance. Since all entity objects
* implement the AttributeList interface, we can directly pass the
* new SuppliersImpl instance to the ProductsImpl create()
* method that accepts an AttributeList.
*/
protected void create(AttributeList attributeList) {
// The view row will already have created "blank" entity instances
SuppliersImpl newSupplier = getSupplier();
ProductsImpl newProduct = getProduct();
try {

// Let product "blank" entity instance to do programmatic defaulting
newSupplier.create(attributeList);
// Let product "blank" entity instance to do programmatic
// defaulting passing in new SuppliersImpl instance so its attributes
// are available to the EmployeeImpl's create method.
newProduct.create(newSupplier);

}
catch (JboException ex) {
newSupplier.revert();
newProduct.revert();
throw ex;

}
catch (Exception otherEx) {
newSupplier.revert();
newProduct.revert();
throw new RowCreateException(true /* EO Row? */,

"Product" /* EO Name */,
otherEx /* Details */);

}
}

In order for this view row class to be able to invoke the protected create() method
on the Suppliers and Products entity objects, they need to override the create()
method. If the view object and entity objects are in the same package, the overridden
create() method can have protected access. Otherwise, it requires public access.

/**
* Overridding this method in this class allows friendly access
* to the create() method by other classes in this same package, like the
 * ProductsAndSuppliers view object implementation class, whose overridden
 * create() method needs to call this.
* @param nameValuePair
*/
protected void create(AttributeList nameValuePair) {
super.create(nameValuePair);

}

Programmatically Creating View Definitions and View Objects

39-74 Fusion Developer's Guide for Oracle Application Development Framework

39.10 Programmatically Creating View Definitions and View Objects
The oracle.jbo.server.ViewDefImpl class lets you dynamically define the view
definition meta-object for view object instances. The view definition describes the view
object's structure.

Typically, the application creates the view definition object by loading an XML file
that you create using JDeveloper overview editors. When the application needs to
create a view object instance, it queries the MetaObjectManager for the view
definition with the same name, it then finds the XML file, opens it, parses it, and
builds a view definition.

Alternatively, you can create the view definition programmatically using methods of
the ViewDefImpl class. The ViewDefImpl methods simplify creating view objects
dynamically without incurring runtime overhead that occurs if you were to call
createViewObjectFromQueryStmt() API on the ApplicationModule interface
at runtime.

When you create a programmatic view definition, your application code must begin
with:

ViewDefImpl viewDef = new ViewDefImpl("MyViewDef");

Where MyViewDef is the name by which the view definition object will identified by
MetaObjectManager. This instance name is the name that the application should
pass when an API requires a view definition name. For example, your application
might request the defName parameter when invoking
ApplicationModule.createViewObject(String, String).

Example 39–32 illustrates instantiating the view definition and defining the view
object SQL statement (either in one statement or in parts). The view definition code
must resolve the definition object through resolveDefObject() and register it with
MetaObjectManager through RowDef.registerDefObject().

To create a view definition and then create a view object instance based on that
definition, follow these basic steps (as illustrated in Example 39–32):

1. Create the view definition object.

2. Define the view object SQL statement.

3. Resolve and register the view definition.

4. With the view definition, construct instance of view objects based on it.

Example 39–32 Creating a View Definition Using the ViewDefImpl API

/*
 * 1. Create the view definition object.
 */
ViewDefImpl v = new ViewDefImpl("some.unique.DefNameForTheObject");

/*
* 2. Then, define the view object's SQL statement by either using a fully-
* specified "expert-mode" SQL query.
*/
v.setQuery("select e.empno,e.ename,e.sal,e.deptno,d.dname,d.loc,"+
 "d.deptno,trunc(sysdate)+1 tomorrow_date, "+
 "e.sal + nvl(e.comm,0) total_compensation, "+
 "to_char(e.hiredate,'dd-mon-yyyy') formated_hiredate"+
 " from emp e, dept d "+
 " where e.deptno = d.deptno (+)"+

Declaratively Preventing Insert, Update, and Delete

Advanced View Object Techniques 39-75

 " order by e.ename");
v.setFullSql(true);

/*
* Or, you can construct the SQL statement in parts like this.
*/
v.setSelectClause("e.empno,e.ename,e.sal,e.deptno,d.dname,d.loc,"+
 "d.deptno,trunc(sysdate)+1 tomorrows_date,"+
 "e.sal + nvl(e.comm,0) total_compensation, "+
 "to_char(e.hiredate,'dd-mon-yyyy') formated_hiredate");
v.setFromClause("emp e, dept d");
v.setWhereClause("e.deptno = d.deptno (+)");
v.setOrderByClause("e.ename");

/*
* 3. Then resolve and register the view definition.
*/
v.resolveDefObject();
v.registerDefObject();

/*
* 4. Finally, use the dynamically-created view definition to construct
* instances of view objects based on it.
*/
ViewObject vo = createViewObject("SomeInstanceName",v);

39.11 Declaratively Preventing Insert, Update, and Delete
Some 4GL tools like Oracle Forms provide declarative properties that control whether
a given data collection allows inserts, updates, or deletes. While the view object does
not yet support this as a built-in feature in the current release, it's easy to add this
facility using a framework extension class that exploits custom metadata properties as
the developer-supplied flags to control insert, update, or delete on a view object.

To allow developers to have control over individual view object instances, you could
adopt the convention of using application module custom properties by the same
name as the view object instance. For example, if an application module has view
object instances named ProductsInsertOnly, ProductsUpdateOnly,
ProductsNoDelete, and Products, your generic code might look for application
module custom properties by these same names. If the property value contains
Insert, then insert is enabled for that view object instance. If the property contains
Update, then update allowed. And, similarly, if the property value contains Delete,
then delete is allowed. You could use helper methods like this to test for these
application module properties and determine whether insert, update, and delete are
allowed for a given view object:

private boolean isInsertAllowed() {
return isStringInAppModulePropertyNamedAfterVOInstance("Insert");

}
private boolean isUpdateAllowed() {

Note: The example in this section refers to the
DeclarativeBlockOperations project in the
AdvancedViewObjectsExamples application workspace in the
StandaloneExamples module of the Fusion Order Demo
application.

Declaratively Preventing Insert, Update, and Delete

39-76 Fusion Developer's Guide for Oracle Application Development Framework

return isStringInAppModulePropertyNamedAfterVOInstance("Update");
}
private boolean isDeleteAllowed() {
return isStringInAppModulePropertyNamedAfterVOInstance("Delete");

}
private boolean isStringInAppModulePropertyNamedAfterVOInstance(String s) {
String voInstName = getViewObject().getName();
String propVal = (String)getApplicationModule().getProperty(voInstName);
return propVal != null ? propVal.indexOf(s) >= 0 : true;

}

Example 39–33 shows the other code required in a custom framework extension class
for view rows to complete the implementation. It overrides the following methods:

■ isAttributeUpdateable()

To enable the user interface to disable fields in a new row if insert is not allowed
or to disable fields in an existing row if update is not allowed.

■ setAttributeInternal()

To prevent setting attribute values in a new row if insert is not allowed or to
prevent setting attributes in an existing row if update is not allowed.

■ remove()

To prevent remove if delete is not allowed.

■ create()

To prevent create if insert is not allowed.

Example 39–33 Preventing Insert, Update, or Delete Based on Custom Properties

public class CustomViewRowImpl extends ViewRowImpl {
public boolean isAttributeUpdateable(int index) {
if (hasEntities() &&

((isNewOrInitialized() && !isInsertAllowed()) ||
(isModifiedOrUnmodified() && !isUpdateAllowed()))) {

return false;
}
return super.isAttributeUpdateable(index);

}
protected void setAttributeInternal(int index, Object val) {
if (hasEntities()) {
if (isNewOrInitialized() && !isInsertAllowed())
throw new JboException("No inserts allowed in this view");

else if (isModifiedOrUnmodified() && !isUpdateAllowed())
throw new JboException("No updates allowed in this view");

}
super.setAttributeInternal(index, val);

}
public void remove() {
if (!hasEntities() || isDeleteAllowed() || isNewOrInitialized())
super.remove();

else
throw new JboException("Delete not allowed in this view");

}
protected void create(AttributeList nvp) {
if (isInsertAllowed()) {
super.create(nvp);

} else {
throw new JboException("Insert not allowed in this view");

Declaratively Preventing Insert, Update, and Delete

Advanced View Object Techniques 39-77

}
}
// private helper methods omitted from this example

}

Declaratively Preventing Insert, Update, and Delete

39-78 Fusion Developer's Guide for Oracle Application Development Framework

40

Application State Management 40-1

40Application State Management

This chapter describes the Fusion web application state management facilities and
how to use them to specify the release level for ADF application modules to support
stateful applications on the web.

This chapter includes the following sections:

■ Section 40.1, "Understanding Why State Management is Necessary"

■ Section 40.2, "Introduction to Fusion Web Application State Management"

■ Section 40.3, "Using Save For Later"

■ Section 40.4, "Setting the Application Module Release Level at Runtime"

■ Section 40.5, "What Model State Is Saved and When It Is Cleaned Up"

■ Section 40.6, "Timing Out the HttpSession"

■ Section 40.7, "Managing Custom User-Specific Information"

■ Section 40.8, "Managing the State of View Objects"

■ Section 40.9, "Using State Management for Middle-Tier Savepoints"

■ Section 40.10, "Testing to Ensure Your Application Module is Activation-Safe"

■ Section 40.11, "Keeping Pending Changes in the Middle Tier"

40.1 Understanding Why State Management is Necessary
Most real-world business applications need to support multi-step user tasks. Modern
sites tend to use a step-by-step style user interface to guide the end user through a
logical sequence of pages to complete these tasks. When the task is done, the user can
save or cancel everything as a unit.

40.1.1 Examples of Multi-Step Tasks
In a typical search-then-edit scenario, the end user searches to find an appropriate row
to update, then may open several different pages of related master/detail information
to make edits before deciding to save or cancel his work. Consider another scenario
where the end user wants to book a vacation online. The process may involve the end
user's entering details about:

■ One or more flight segments that comprise the journey

■ One or more passengers taking the trip

■ Seat selections and meal preferences

Understanding Why State Management is Necessary

40-2 Fusion Developer's Guide for Oracle Application Development Framework

■ One or more hotel rooms in different cities

■ Car they will rent

Along the way, the user might decide to complete the transaction, save the reservation
for finishing later, or abandoning the whole thing.

It's clear these scenarios involve a logical unit of work that spans multiple web pages.
You've seen in previous chapters how to use JDeveloper's JSF page navigation
diagram to design the page flow for these use cases, but that is only part of the puzzle.
The pending changes the end user makes to business domain objects along the way —
Trip, Flight, Passenger, Seat, HotelRoom, Auto, etc. — represent the
in-progress state of the application for each end user. Along with this, other types of
"bookkeeping" information about selections made in previous steps comprise the
complete picture of the application state.

40.1.2 Stateless HTTP Protocol Complicates Stateful Applications
While it may be easy to imagine these multi-step scenarios, implementing them in web
applications is complicated by the stateless nature of HTTP, the hypertext transfer
protocol. Figure 40–1 illustrates how an end user's visit to a site comprises a series of
HTTP request/response pairs. However, HTTP affords a web server no way to
distinguish one user's request from another user's, or to differentiate between a single
user's first request and any subsequent requests he makes while interacting with the
site. The server gets each request from any user always as if it were the first (and only)
one they make.

Figure 40–1 Web Applications Use the Stateless HTTP Protocol

But even if you've never implemented your own web applications before, since you've
undoubtedly used a web application to buy a book, plan a holiday, or even just read
your email, it's clear that a solution must exist to distinguish one user from another.

40.1.3 How Cookies Are Used to Track a User Session
As shown in Figure 40–2, the technique used to recognize an ongoing sequence of
requests from the same end user over the stateless HTTP protocol involves a unique
identifier called a cookie. A cookie is a name/value pair that is sent in the header
information of each HTTP request the user makes to a site. On the initial request made
by a user, the cookie is not part of the request. The server uses the absence of the cookie
to detect the start of a user's session of interactions with the site, and it returns a
unique identifier to the browser that represents this session for this user. In practice,
the cookie value is a long string of letters and numbers, but for the simplicity of the
illustration, assume that the unique identifier is a letter like "A" or "Z" that
corresponds to different users using the site.

Web browsers support a standard way of recognizing the cookie returned by the
server that allows the browser to identify the following:

■ the site that sent the cookie

Understanding Why State Management is Necessary

Application State Management 40-3

■ how long it should remember the cookie value

On each subsequent request made by that user, until the cookie expires, the browser
sends the cookie along in the header of the request. The server uses the value of the
cookie to distinguish between requests made by different users.

A cookie that expires when you close your browser is known as a session cookie, while
other cookies that are set to live beyond a single browser session might expire in a
week, a month, or a year from when they were first created.

Figure 40–2 Tracking State Using a Session Cookies and Server-Side Session

Java EE-compliant web servers provide a standard server-side facility called the
HttpSession that allows a web application to store Java objects related to a
particular user's session as named attribute/value pairs. An object placed in this
session Map on one request can be retrieved by the application while handling a
subsequent request during the same session.

The session remains active while the user continues to send new requests within the
timeframe configured by the <session-timeout> element in the web.xml file. The
default session length is 35 minutes.

40.1.4 Performance and Reliability Impact of Using HttpSession
The HttpSession facility is an ingredient in most application state management
strategies, but it can present performance and reliability problems if not used
judiciously. First, because the session-scope Java objects you create are held in the
memory of the Java EE web server, the objects in the HTTP session are lost if the
server should fail.

As shown in Figure 40–3, one way to improve the reliability is to configure multiple
Java EE servers in a cluster. By doing this, the Java EE application server replicates the
objects in the HTTP session for each user across multiple servers in the cluster so that
if one server goes down, the objects exist in the memory of the other servers in the
cluster that can continue to handle the users requests. Since the cluster comprises
separate servers, replicating the HTTP session contents among them involves
broadcasting the changes made to HTTP session objects over the network.

Understanding Why State Management is Necessary

40-4 Fusion Developer's Guide for Oracle Application Development Framework

Figure 40–3 Session Replication in a Server Cluster

You can begin to see some of the performance implications of overusing the HTTP
session:

■ The more active users, the more HTTP sessions will be created on the server.

■ The more objects stored in each HTTP session, the more memory you will need.
Note that the memory is not reclaimed when the user becomes inactive; this only
happens with a session timeout or an explicit session invalidation. Session
invalidations don't always happen because users don't always logout.

■ In a cluster, the more objects in each HTTP session that change, the more network
traffic will be generated to replicate the changed objects to other servers in the
cluster.

At the outset, it would seem that keeping the number of objects stored in the session to
a minimum addresses the problem. However, this implies leveraging an alternative
mechanism for temporary storage for each user's pending application state. The most
popular alternatives involve saving the application state to the database between
requests or to a file of some kind on a shared file system.

Of course, this is easier said than done. A possible approach involves eagerly saving
the pending changes to your underlying database tables and committing the
transaction at the end of each HTTP request. But this idea has two key drawbacks:

■ Your database constraints might fail.

At any given step of the multi-step process, the information may only be partially
complete, and this could cause errors at the database level when trying to save the
changes.

■ You complicate rolling back the changes.

Cancelling the logical of unit of work would involve carefully deleting all of the
eagerly-committed rows in possible multiple tables.

These limitations have led developers in the past to invent solutions involving a
"shadow" set of database tables with no constraints and with all of the column types
defined as character-based. Using such a solution becomes very complex very quickly.
Ultimately, you will conclude that you need some kind of generic application state
management facility to address these issues in a more generic and workable way. The
solution comes in the form of ADF Business Components, which implements this for
you out of the box.

Introduction to Fusion Web Application State Management

Application State Management 40-5

40.2 Introduction to Fusion Web Application State Management
State management enables you to easily create web applications that support
multi-step use cases without falling prey to the memory, reliability, or implementation
complexity problems described in Section 40.1, "Understanding Why State
Management is Necessary."

Application state management is provided at two levels, by the Save For Later feature
in a task flow, and application module state management in the model layer.

Save For Later is activated at the controller layer and automatically saves a "snapshot"
of the current UI and controller states, and delegates to the model layer to passivate
(save) its state as well.

If you are not using ADF data controls, you can still use application module state
management alone, but since this will save only the model state, this is an outside case
for most applications.

40.2.1 Basic Architecture of the Save for Later Facility
Save for Later saves an incomplete transaction without enforcing validation rules or
submitting the data. The end user can resume working on the same transaction later
with the same data that was originally saved when the application was exited.

40.2.2 Basic Architecture of the Application Module State Management Facility
Your ADF Business Components-based application automatically manages the
application state of each user session. This provides the simplicity of a stateful
programming model that you are accustomed to in previous 4GL tools, yet
implemented in a way that delivers scalability nearing that of a purely stateless
application. Understanding what happens behind the scenes is essential to make the
most efficient use of this important feature.

You can use application module components to implement completely stateless
applications or to support a unit of work that spans multiple browser pages.
Figure 40–4 illustrates the basic architecture of the state management facility to
support these multi-step scenarios. An application module supports passivating
(storing) its pending transaction state to an XML document, which is stored in the
database in a single, generic table, keyed by a unique passivation snapshot ID. It also
supports the reverse operation of activating pending transaction state from one of these
saved XML snapshots. This passivation and activation is performed automatically by
the application module pool when needed.

Introduction to Fusion Web Application State Management

40-6 Fusion Developer's Guide for Oracle Application Development Framework

Figure 40–4 ADF Provides Generic, Database-Backed State Management

The ADF binding context is the one object that lives in the HttpSession for each end
user. It holds references to lightweight application module data control objects that
manage acquiring an application module instance from the pool during the request
(when the data control is accessed) and releasing it to the pool at the end of each
request. The data control holds a reference to the ADF session cookie that identifies the
user session. In particular, business domain objects created or modified in the pending
transaction are not saved in the HttpSession using this approach. This minimizes
both the session memory required per user and eliminates the network traffic related
to session replication if the servers are configured in a cluster.

For improved reliability, serialize your session objects. Objects stored in distributed
sessions need to implement the java.io.Serializable interface. Implementing
this interface ensures the data can be transported over-the-wire to each server instance
in the cluster. Use a custom method like the addObjectToSession(String key,
Serializable value) method, instead of the default
HttpSession.setAttribute (String key, Object value) method when
adding session data. The distinction is, if you were to call the
addObjectToSession() method with a non-serializable object, you would see a
compile-time error. If you were to try to replicate a session object that had
non-serializable objects placed into session with the put() method, you would see a
runtime error and potentially, a broken user experience.

Additionally, if you have multiple application servers and you enable the optional
ADF Business Components failover support (explained in Section 40.2.2.2, "How
Passivation Changes When Optional Failover Mode is Enabled"), then subsequent
end-user requests can be handled by any server in your server farm or cluster. The
session cookie can reactivate the pending application state from the database-backed
XML snapshot if required, regardless of which server handles the request.

40.2.2.1 Understanding When Passivation and Activation Occurs
To better understand when the automatic passivation and activation of application
module state occurs, consider the following simple case:

1. At the beginning of an HTTP request, the application module data control handles
the beginRequest event by checking out an application module instance from
the pool.

Introduction to Fusion Web Application State Management

Application State Management 40-7

The application module pool returns an unreferenced instance. An unreferenced
application module is one that is not currently managing the pending state for any
other user session.

2. At the end of the request, the application module data control handles the
endRequest event by checking the application module instance back into the
pool in "managed state" mode.

That application module instance is now referenced by the data control that just
used it. And the application module instance is an object that still contains
pending transaction state made by the data control (that is, entity object and view
object caches; updates made but not committed; and cursor states), stored in
memory. As you’ll see below, it’s not dedicated to this data control, just referenced
by it.

3. On a subsequent request, the same data control — identified by its
SessionCookie — checks out an application module instance again.

Due to the "stateless with user affinity" algorithm the pool uses, you might assume
that the pool returns the exact same application module instance, with the state
still there in memory. (To understand this algorithm, read Section 41.1,
"Introduction to Application Module Pooling" and the discussion of Referenced
Pool Size in Section 41.2.7.2, "Pool Sizing Parameters.")

Sometimes due to a high number of users simultaneously accessing the site,
application module instances must be sequentially reused by different user sessions.
In this case, the application pool must recycle a currently referenced application
module instance for use by another session, as follows:

1. The application module data control for User A's session checks an application
module instance into the application pool at the end of a request. Assume this
instance is named AM1.

2. The application module data control for User Z's new session requests an
application module instance from the pool for the first time, but there are no
unreferenced instances available. The application module pool then:

■ Passivates the state of instance AM1 to the database.

■ Resets the state of AM1 in preparation to be used by another session.

■ Returns the AM1 instance to User Z's data control.

3. On a subsequent request, the application module data control for User A's session
requests an application module instance from the pool. The application module
pool then:

■ Obtains an unreference instance.

This could be instance AM1, obtained by following the same steps as in (2)
above, or another AM2 instance if it had become unreferenced in the meantime.

■ Activates the appropriate pending state for User A from the database.

■ Returns the application module instance to User A's data control.

The process of passivation, activation, and recycling allows the state referenced by the
data control to be preserved across requests without requiring a dedicated application
module instance for each data control. Both browser users in the above scenario are
carrying on an application transaction that spans multiple HTTP requests, but the end
users are unaware whether the passivation and activation is occurring in the
background. They just continue to see the pending changes. In the process, the

Introduction to Fusion Web Application State Management

40-8 Fusion Developer's Guide for Oracle Application Development Framework

pending changes never need to be saved into the underlying application database
tables until the end user is ready to commit the logical unit of work.

Note that this keeps the session memory footprint low because the only business
component objects that are directly referenced by the session (and are replicable) are
the data control and the session cookie.

The application module pool makes a best effort to keep an application module
instance "sticky" to the current data control whose pending state it is managing. This is
known as maintaining user session affinity. The best performance is achieved if a data
control continues to use exactly the same application module instance on each request,
since this avoids any overhead involved in reactivating the pending state from a
persisted snapshot.

40.2.2.2 How Passivation Changes When Optional Failover Mode is Enabled
The jbo.dofailover parameter controls when and how often passivation occurs.
You can set this parameter in your application module configuration on the Pooling
and Scalability tab of the Business Components Configuration dialog. When the
failover feature is disabled, which it is by default, then application module pending
state will only be passivated on demand when it must be. This occurs just before the
pool determines it must hand out a currently-referenced application module instance
to a different data control.

In contrast, with the failover feature turned on, the application module’s pending state
is passivated every time it is checked back into application module pool. This provides
the most pessimistic protection against application server failure. The application
module instances' state is always saved and may be activated by any application
module instance at any time. Of course, this capability comes at expense of the
additional overhead of eager passivation on each request.

When failover is turned on, a failure can occur when Oracle WebLogic Server is
configured to forcibly release connections back into the pool. A failure of this type
produces a SQLException (Connection has already been closed.) that is saved to the
server log. The exception is not reported through the user interface. To ensure that
state passivation occurs and users' changes are saved, the server administrator should
set an appropriate value for the weblogic-application.xml deployment
descriptor parameter inactive-connection-timeout-seconds on the
<connection-check-params> pool params element. Setting the deployment
descriptor parameter to several minutes, in most cases, should avoid forcing the
inactive connection timeout and the resulting passivation failure. Adjust the setting as
needed for your environment.

Note: Passivation can also occur when an application module is
timed out. For more information about application pool removal
algorithms (such as jbo.ampool.timetolive), see Section 41.2.7.3,
"Pool Cleanup Parameters."

Introduction to Fusion Web Application State Management

Application State Management 40-9

40.2.2.3 About State Management Release Levels
When a data control handles the endRequest notification indicating the processing
for the current HTTP request has completed, it releases the application module
instance by checking it back into the application module pool. The application module
pool manages instances and performs state management tasks (or not) based on the
release level you use when returning the instance to the pool.

There are three release levels used for returning an instance of an application module
to a pool:

■ Managed - This is the default level, where the application module pool prefers to
keep the same application module instance for the same data control, but may
release an instance if necessary.

■ Unmanaged - No state needs to be preserved beyond the current request.

■ Reserved - A one-to-one relationship is preserved between an application module
instance and a data control.

40.2.2.3.1 About Managed Release Level This is the default release level and implies that
application module's state is relevant and has to be preserved for this data control to
span over several HTTP requests. Managed level does not guarantee that for the next
request this data control will receive the same physical application module instance,
but it does guarantees that an application module with identical state will be provided
so it is logically the same application module instance each time. It is important to note
that the framework makes the best effort it can to provide the same instance of
application module for the same data control if it is available at the moment. This is
done for better performance since the same application module does not need to
activate the previous state which it still has intact after servicing the same data control
during previous request. However, the data control is not guaranteed to receive the
same instance for all its requests and if the application module that serviced that data
control during previous is busy or unavailable, then a different application module
will activate this data control’s state. For this reason, it is not valid to cache references
to application module objects, view objects, or view rows across HTTP requests in
controller-layer code.

This mode was called the "Stateful Release Mode" in previous releases of JDeveloper.

Note: When running or debugging an application that uses failover
support within the JDeveloper environment, you are frequently
starting and stopping the application server. The ADF failover
mechanism has no way of knowing whether you stopped the server to
simulate an application server failure, or whether you stopped it
because you want to retest something from scratch in a fresh server
instance. If you intend to do the latter, exit out of your browser before
restarting the application on the server. This eliminates the chance
that you will be confused by the correct functioning of the failover
mechanism when you didn't intend to be testing that aspect of your
application.

Caution: In general, it is strongly recommended never to use
Reserved release level. You would normally avoid using this mode
because the data control to application module correlation becomes
one to one, the scalability of the application reduces very sharply, and
so does reliability of the application.

Introduction to Fusion Web Application State Management

40-10 Fusion Developer's Guide for Oracle Application Development Framework

40.2.2.3.2 About Unmanaged Release Level This mode implies that no state associated
with this data control has to be preserved to survive beyond the current HTTP request.
This level is the most efficient in performance because there is no overhead related to
state management. However, you should limit its use to applications that require no
state management, or to cases when state no longer needs to be preserved at this point.
Usually, you can programmatically release the application module with the
unmanaged level when you want to signal that the user has ended a logical unit of
work.

This mode was called the "Stateless Release Mode" in previous releases of JDeveloper.

40.2.2.3.3 About Reserved Release Level This level guarantees that each data control will
be assigned its own application module during its first request and for all subsequent
requests coming from the HttpSession associated with this data control. This data
control will always receive the same physical instance of application module. This
mode exists for legacy compatibility reasons and for very rare special use cases.

An example of using Reserved level occurs when there is a pending database state
across a request resulting from the postChanges() method or a PL/SQL stored
procedure but not issuing a commit() or rollback() at the end of the request. In
this case, if any other release level is used instead of Reserved, when the application
module instance is recycled, a rollback is issued on the database connection associated
with this application module instance and all uncommitted changes would be lost.

Note: If the jbo.ampool.doampooling configuration property is
false — corresponding to your unchecking the Enable Application
Module Pooling option in the Pooling and Scalability tab of the
Business Components Configuration dialog — then there is effectively
no pool. In this case, when the application module instance is released
at the end of a request it is immediately removed. On subsequent
requests made by the same user session, a new application module
instance must be created to handle each user request, and pending
state must be reactivated from the passivation store. Setting this
property to false is useful to discover problems in your application
logic that might occur when reactivation does occur due to
unpredictable load on your system. However, the property
jbo.ampool.doampooling set to false is not a supported
configuration for production applications and must be set to true
before you deploy your application. For further details, see
Section 40.10, "Testing to Ensure Your Application Module is
Activation-Safe."

Performance Tip: .The default release level is Managed, which
implies that the application module’s state is relevant and has to be
preserved to allow the data control to span over several HTTP
requests. Set release level to Unmanaged programmatically at runtime
for particular pages to eliminate passivation and achieve better
performance. A typical example is releasing the application module
after servicing the HTTP request from a logout page.

Setting the Application Module Release Level at Runtime

Application State Management 40-11

Consequences of Reserved mode can be adverse. Reliability suffers because if for
whatever reason the application module is lost, the data control will not be able to
receive any other application module in its place from the pool, and so HttpSession
gets lost as well, which is not the case for managed level.

The failover option is ignored for an application module released with Reserved
release level since its use implies your application absolutely requires working with
the same application module instance on each request.

40.3 Using Save For Later
To enable Save For Later, you must first add Save Points to the application at points
where you would like application state and data to be preserved if the end user leaves
the application. You can use it to save data and state information about a region, view
port, or portlet. Later, you use the Save Point Restore activity to restore application
state and data associated with a Save Point.

For more information on how create and restore Save Points, see Section 18.9, "Using
Save Points in Task Flows."

Save For Later can also perform implicit saves. These occur when data is saved
automatically without the end user performing an explicit Save action when the user
session times out or closes the browser window, for example.

For more information on how to perform an implicit save, see Section 18.9, "Using
Save Points in Task Flows."

40.4 Setting the Application Module Release Level at Runtime
If you do not want to use the default "Managed State" release level for application
modules, you can set your desired level programmatically.

40.4.1 How to Set Unmanaged Level
To set a data control to release its application module using the unmanaged level, call
the resetState() method on the DCDataControl class (in the
oracle.adf.model.binding package).

You can call this method any time during the request. This will cause application
module not to passivate its state at all when it is released to the pool at the end of the
request. Note that this method only affects the current application module instance in
the current request. After this, the application module is released in unmanaged level
to the pool, it becomes unreferenced and gets reset. The next time the application
module is used by a client, it will be used in the managed level again by default.

Performance Tip: If you must use Reserved level, call
setReleaseLevel() on the data control to keep its period as short
as possible. For details about changing the release level
programmatically, see Section 40.4, "Setting the Application Module
Release Level at Runtime."

Note: You can programmatically release the application module
with the unmanaged level when you want to signal that the user has
ended a logical unit of work. This will happen automatically when the
HTTPSession times out, as described below.

Setting the Application Module Release Level at Runtime

40-12 Fusion Developer's Guide for Oracle Application Development Framework

40.4.2 How to Set Reserved Level
To set a data control to release its application module using the reserved level, call the
setReleaseLevel() method of the DCJboDataControl class (in the
oracle.adf.model.bc4j package), and pass the integer constant
ApplicationModule.RELEASE_LEVEL_RESERVED.

When the release level for an application module has been changed to "Reserved" it
will stay so for all subsequent requests until explicitly changed.

40.4.3 How to Set Managed Level
If you have set an application module to use reserved level, you can later set it back to
use managed level by calling the setReleaseLevel() method of the
DCJboDataControl class, and passing the integer constant
ApplicationModule.RELEASE_LEVEL_MANAGED.

40.4.4 How to Set Release Level in a JSF Backing Bean
Example 40–1 shows calling the resetState() method on a data control named
UserModuleDataControl from the action method of a JSF backing bean.

Example 40–1 Calling resetState() on Data Control in a JSF Backing Bean Action
Method

package devguide.advanced.releasestateless.controller.backing;
import devguide.advanced.releasestateless.controller.JSFUtils;
import oracle.adf.model.BindingContext;
import oracle.adf.model.binding.DCDataControl;
/**
* JSF Backing bean for the "Example.jspx" page
*/
public class Example {
/**
* In an action method, call resetState() on the data control to cause
* it to release to the pool with the "unmanaged" release level.
* In other words, as a stateless application module.
*/
public String commandButton_action() {
// Add event code here...
getDataControl("UserModuleDataControl").resetState();
return null;

}
private DCDataControl getDataControl(String name) {
BindingContext bc =
(BindingContext)JSFUtils.resolveExpression("#{data}");

return bc.findDataControl(name);
}

}

40.4.5 How to Set Release Level in an ADF PagePhaseListener
Example 40–2 shows calling the resetState() method on a data control named
UserModuleDataControl from the after-prepareRender phase of the ADF lifecycle
using a custom ADF page phase-listener class. You would associate this custom class
to a particular page by setting the ControllerClass attribute on the page’s page
definition to the fully-qualified name of this class.

Setting the Application Module Release Level at Runtime

Application State Management 40-13

Example 40–2 Calling resetState() on Data Control in a Custom PagePhaseListener

package devguide.advanced.releasestateless.controller;
import oracle.adf.controller.v2.lifecycle.Lifecycle;
import oracle.adf.controller.v2.lifecycle.PagePhaseEvent;
import oracle.adf.controller.v2.lifecycle.PagePhaseListener;
import oracle.adf.model.binding.DCDataControl;
public class ReleaseStatelessPagePhaseListener

implements PagePhaseListener {
/**
* In the "after" phase of the final "prepareRender" ADF Lifecycle
* phase, call resetState() on the data control to cause it to release
* to the pool with the "unmanaged" release level. In other words,
* as a stateless application module.
*
* @param event ADF page phase event
*/
public void afterPhase(PagePhaseEvent event) {
if (event.getPhaseId() == Lifecycle.PREPARE_RENDER_ID) {
getDataControl("UserModuleDataControl", event).resetState();

}
}
// Required to implement the PagePhaseListener interface
public void beforePhase(PagePhaseEvent event) {}
private DCDataControl getDataControl(String name,

PagePhaseEvent event) {
return event.getLifecycleContext()

.getBindingContext()

.findDataControl(name);
}

}

40.4.6 How to Set Release Level in an ADF PageController
Example 40–3 shows calling the resetState() method on a data control named
UserModuleDataControl from an overridden prepareRender() method of a custom
ADF page controller class. You would associate this custom class to a particular page
by setting the ControllerClass attribute on the page’s page definition to the
fully-qualified name of this class.

Example 40–3 Calling resetState() on Data Control in a Custom ADF PageController

package devguide.advanced.releasestateless.controller;
import oracle.adf.controller.v2.context.LifecycleContext;
import oracle.adf.controller.v2.lifecycle.PageController;
import oracle.adf.controller.v2.lifecycle.PagePhaseEvent;
import oracle.adf.model.binding.DCDataControl;
public class ReleaseStatelessPageController extends PageController {
/**
* After calling the super in the final prepareRender() phase
* of the ADF Lifecycle, call resetState() on the data control
* to cause it to release to the pool with the "unmanaged"

Note: You can accomplish basically the same kinds of page-specific
lifecycle customization tasks using a custom PagePhaseListener or
a custom PageController class. The key difference is that the
PagePhaseListener interface can be implemented on any class,
while a custom PageController must extend the PageController
class in the oracle.adf.controller.v2.lifecycle package.

What Model State Is Saved and When It Is Cleaned Up

40-14 Fusion Developer's Guide for Oracle Application Development Framework

* release level. In other words, as a stateless application module.
*
* @param lcCtx ADF lifecycle context
*/

public void prepareRender(LifecycleContext lcCtx) {
super.prepareRender(lcCtx);
getDataControl("UserModuleDataControl", lcCtx).resetState();

}
private DCDataControl getDataControl(String name,

LifecycleContext lcCtx) {
return lcCtx.getBindingContext().findDataControl(name);

}
}

40.4.7 How to Set Release Level in an Custom ADF PageLifecycle
If you wanted to build a Fusion web application where every request was handled in a
completely stateless way, use a global custom PageLifecycle class as shown in
Example 40–4. For details on how to configure your application to use your custom
lifecycle see Section 21.2, "The JSF and ADF Page Lifecycles."

Example 40–4 Calling resetState() on Data Control in a Custom ADF PageLifecycle

package devguide.advanced.releasestateless.controller;
import oracle.adf.controller.faces.lifecycle.FacesPageLifecycle;
import oracle.adf.controller.v2.context.LifecycleContext;
import oracle.adf.model.binding.DCDataControl;
public class ReleaseStatelessPageLifecycle extends FacesPageLifecycle {
/**
* After calling the super in the final prepareRender() phase
* of the ADF Lifecycle, call resetState() on the data control
* to cause it to release to the pool with the "unmanaged"
* release level. In other words, as a stateless application module.
*
* @param lcCtx ADF lifecycle context
*/
public void prepareRender(LifecycleContext lcCtx) {
super.prepareRender(lcCtx);
getDataControl("UserModuleDataControl", lcCtx).resetState();

}
private DCDataControl getDataControl(String name,

LifecycleContext lcCtx) {
return lcCtx.getBindingContext().findDataControl(name);

}
}

40.5 What Model State Is Saved and When It Is Cleaned Up
The information saved by application model passivation is divided in two parts:
transactional and non-transactional state. Transactional state is the set of updates
made to entity object data – performed either directly on entity objects or on entities
through view object rows – that are intended to be saved into the database.
Non-transactional state comprises view object runtime settings, such as the current
row index, WHERE clause, and ORDER BY clause.

What Model State Is Saved and When It Is Cleaned Up

Application State Management 40-15

40.5.1 State Information Saved During Passivation
The information saved as part of the application module passivation "snapshot"
includes the following.

Transactional State
■ New, modified, and deleted entities in the entity caches of the root application

module for this user session’s (including old/new values for modified ones).

Non-Transactional State
■ For each active view object (both statically and dynamically created):

■ Current row indicator for each row set (typically one)

■ New rows and their positions. (New rows are treated differently then updated
ones. Their index in the view object is traced as well.)

■ ViewCriteria and all related parameters such as view criteria row, etc.

■ Flag indicating whether or not a row set has been executed

■ Range start and Range size

■ Access mode

■ Fetch mode and fetch size

■ Any view object-level custom data

■ SELECT, FROM, WHERE, and ORDER BY clause if created dynamically or
changed from the View definition

40.5.2 Where the Model State Is Saved
By default, passivation snapshots are saved in the database, but you can configure it to
use the file system as an alternative.

40.5.2.1 How Database-Backed Passivation Works
The passivated XML snapshot is written to a BLOB column in a table named PS_TXN,
using a connection specified by the jbo.server.internal_connection property.
Each time a passivation record is saved, it is assigned a unique passivation snapshot
ID based on the sequence number taken from the PS_TXN_SEQ sequence. The ADF
session cookie held by the application module data control in the ADF binding context
remembers the latest passivation snapshot ID that was created on its behalf and
remembers the previous ID that was used.

Note: Transient view object attributes can be saved if they are
selected for passivation at design time. However, use this feature
judiciously because this results in a snapshot that will grow in size
with the number of rows that have been retrieved.

Note: If you enable ADF Business Components runtime diagnostics,
the contents of each XML state snapshot are also saved. See
Section 6.3.8, "How to Enable ADF Business Components Debug
Diagnostics" for information on how to enable diagnostics.

What Model State Is Saved and When It Is Cleaned Up

40-16 Fusion Developer's Guide for Oracle Application Development Framework

40.5.2.2 Controlling the Schema Where the State Management Table Resides
The ADF runtime recognizes a configuration property named
jbo.server.internal_connection that controls which database connection and
schema should be used for the creation of the PS_TXN table and the PS_TXN_SEQ
sequence. If you don't set the value of this configuration parameter explicitly, then the
state management facility creates the temporary tables using the credentials of the
current application database connection.

To keep the temporary information separate, the state management facility uses a
different connection instance from the database connection pool, but the database
credentials are the same as the current user. Since the framework creates temporary
tables, and possibly a sequence if they don't already exist, the implication of not
setting a value for the jbo.server.internal_connection is that the current
database user must have CREATE TABLE, CREATE INDEX and CREATE SEQUENCE
privileges. Since this is often not desirable, Oracle recommends always supplying an
appropriate value for the jbo.server.internal_connection property, providing
the credentials for a state management schema where table and schema be created.
Valid values for the jbo.server.internal_connection property in your
configuration are:

■ A fully-qualified JDBC connection URL like:

jdbc:oracle:thin:username/password@host:port:SID

■ A JDBC datasource name like:

java:/comp/env/jdbc/YourJavaEEDataSourceName

40.5.2.3 Configuring the Type of Passivation Store
Passivated information can be stored in several places. You can control it
programmatically or by configuring an option in the application module
configuration. The choices are database or a file stored on local file system:

■ File

This choice may be the fastest available, because access to the file is faster then
access to the database. This choice is good if the entire middle tier is either
installed on the same machine or has access to a commonly shared file system, so
passivated information is accessible to all. Usually, this choice may be good for a
small middle tier where one Oracle WebLogic Server domain is used. In other
words this is a very suitable choice for small middle tier such as one Oracle
WebLogic Server instance with all its components installed on one physical
machine. The location and name of the persistent snapshot files are determined by
jbo.tmpdir property if specified. It follows usual rules of ADF property
precedence for a configuration property. If nothing else is specified, then the
location is determined by user.dir if specified. This is a default property and the
property is OS specific.

■ Database

Performance Tip: When creating the PS_TXN table, use securefiles to
store LOB data (the content column), and create a primary column
index on the PS_TXN table as global, partitioned reverse key index.
The securefile configuration delivers superior performance over the
basicfile configuration when working with LOB data. The reverse key
index helps by reducing contention that can happen when the rate of
inserts is high.

What Model State Is Saved and When It Is Cleaned Up

Application State Management 40-17

This is the default choice. While it may be a little slower than passivating to file, it
is by far the most reliable choice. With passivation to file, the common problem
might be that it is not accessible to Oracle WebLogic Server instances that are
remotely installed. In this case, in a cluster environment, if one node goes down
the other may not be able to access passivated information and then failover will
not work. Another possible problem is that even if file is accessible to the remote
node, the access time for the local and remote node may be very different and
performance will be inconsistent. With database access, time should be about the
same for all nodes.

To set the value of your choice in design time, set the property
jbo.passivationstore to database or file. The value null will indicate that a
connection-type-specific default should be used. This will use database passivation for
Oracle or DB2, and file serialization for any others.

To set the storage programmatically use the method setStoreForPassiveState()
of interface oracle.jbo.ApplicationModule. The parameter values that you can
pass are:

■ PASSIVATE_TO_DATABASE

■ PASSIVATE_TO_FILE

40.5.3 Cleaning Up the Model State
Under normal circumstances, the ADF state management facility provides automatic
cleanup of the passivation snapshot records.

40.5.3.1 Previous Snapshot Removed When Next One Taken
When a passivation record is saved to the database on behalf of a session cookie, as
described above, this passivation record gets a new, unique snapshot ID. The
passivation record with the previous snapshot ID used by that same session cookie is
deleted as part of the same transaction. In this way, assuming no server failures, there
will only ever be a single passivation snapshot record per active end-user session.

40.5.3.2 Passivation Snapshot Removed on Unmanaged Release
The passivation snapshot record related to a session cookie is removed when the
application module is checked into the pool with the unmanaged state level. This can
occur when:

■ Your code specifically calls resetState() on the application module data
control.

■ Your code explicitly invalidates the HttpSession, for example, as part of
implementing an explicit "Logout" functionality.

■ The HttpSession times out due to exceeding the session timeout threshold for
idle time and failover mode is disabled (which is the default).

In each of these cases, the application module pool also resets the application module
referenced by the session cookie to be "unreferenced" again. Since no changes were
ever saved into the underlying database tables, once the pending session state
snapshots are removed, there remains no trace of the unfinished work the user session
had completed up to that point.

What Model State Is Saved and When It Is Cleaned Up

40-18 Fusion Developer's Guide for Oracle Application Development Framework

40.5.3.3 Passivation Snapshot Retained in Failover Mode
When the failover mode is enabled, if the HttpSession times out due to session
inactivity, then the passivation snapshot is retained so that the end user can resume
work upon returning to the browser.

After a break in the action, when the end user returns to his browser and continues to
use the application, it continues working as if nothing had changed. The session
cookie is used to reactivate any available application module instance with the user's
last pending state snapshot before handling the request. So, even though the users
next request will be processed in the context of a new HttpSession (perhaps even in
a different application server instance), the user is unaware that this has occurred.

40.5.4 Cleaning Up Temporary Storage Tables
JDeveloper provides the adfbc_purge_statesnapshots.sql script to help with
periodically cleaning up the application module state management table. You can find
this file in the oracle_common subdirectory of your Oracle Middleware installation
directory (for example, ORACLE_HOME\oracle_common\common\sql).

Persistent snapshot records can accumulate over time if the server has been shutdown
in an abnormal way, such as might occur during development or due to a server
failure. Running the script in SQL*Plus will create the BC4J_CLEANUP PL/SQL
package. The two relevant procedures in this package are:

■ PROCEDURE Session_State(olderThan DATE)

This procedure cleans-up application module session state storage for sessions
older than a given date.

■ PROCEDURE Session_State(olderThan_minutes INTEGER)

This procedures cleans-up application module session state storage for sessions
older than a given number of minutes.

You can schedule periodic cleanup of your ADF temporary persistence storage by
submitting an invocation of the appropriate procedure in this package as a database
job.

You can use an anonymous PL/SQL block like the one shown in Example 40–5 to
schedule the execution of bc4j_cleanup.session_state() to run starting
tomorrow at 2:00am and each day thereafter to cleanup sessions whose state is over 1
day (1440 minutes) old.

Example 40–5 Scheduling Periodic Cleanup of the State Management Table

SET SERVEROUTPUT ON
DECLARE
jobId BINARY_INTEGER;
firstRun DATE;

BEGIN
-- Start the job tomorrow at 2am
firstRun := TO_DATE(TO_CHAR(SYSDATE+1,'DD-MON-YYYY')||' 02:00',

'DD-MON-YYYY HH24:MI');
-- Submit the job, indicating it should repeat once a day
dbms_job.submit(job => jobId,

Note: If an application module was released with reserved level then
the HttpSession times out, the user will have to go through
authentication process, and all unsaved changes are lost.

Timing Out the HttpSession

Application State Management 40-19

-- Run the ADF Purge for Session State
-- to cleanup sessions older than 1 day (1440 minutes)
what => 'bc4j_cleanup.session_state(1440);',
next_date => firstRun,
-- When completed, automatically reschedule
-- for 1 day later
interval => 'SYSDATE + 1'
);

dbms_output.put_line('Successfully submitted job. Job Id is '||jobId);
END;
.
/

40.6 Timing Out the HttpSession
Since HTTP is a stateless protocol, the server receives no implicit notice that a client
has closed his browser or gone away for the weekend. Therefore any Java
EE-compliant server provides a standard, configurable session timeout mechanism to
allow resources tied to the HTTP session to be freed when the user has stopped
performing requests. You can also programmatically force a timeout.

40.6.1 How to Configure the Implicit Timeout Due to User Inactivity
You configure the session timeout threshold using the <session-timeout> tag in the
web.xml file. The default value is 35 minutes. When the HttpSession times out the
BindingContext goes out of scope, and along with it, any data controls that might
have referenced application modules released to the pool in the managed state level.
The application module pool resets any of these referenced application modules and
marks the instances unreferenced again.

40.6.2 How to Code an Explicit HttpSession Timeout
To end a user's session before the session timeout expires, you can call the
invalidate() method on the HttpSession object from a backing bean in response
to the user's click on a Logout button or link. This cleans up the HttpSession in the
same way as if the session time had expired. Using JSF and ADF, after invalidating the
session, you must perform a redirect to the next page you want to display, rather than
just doing a forward. Example 40–6 shows sample code to perform this task from a
Logout button.

Example 40–6 Programatically Terminating a Session

public String logoutButton_action() throws IOException{
ExternalContext ectx = FacesContext.getCurrentInstance().getExternalContext();
HttpServletResponse response = (HttpServletResponse)ectx.getResponse();
HttpSession session = (HttpSession)ectx.getSession(false);
session.invalidate();
response.sendRedirect("Welcome.jspx");
return null;

}

As with the implicit timeouts, when the HTTP session is cleaned up this way, it ends
up causing any referenced application modules to be marked unreferenced.

Managing Custom User-Specific Information

40-20 Fusion Developer's Guide for Oracle Application Development Framework

40.7 Managing Custom User-Specific Information
It is fairly common practice to add custom user-defined information in the application
module in the form of member variables or some custom information stored in
oracle.jbo.Session user data hashtable. The ADF state management facility
provides a mechanism to save this custom information to the passivation snapshot as
well, by overriding the passivateState() method and the activateState()
method in the ApplicationModuleImpl class.

40.7.1 How to Passivate Custom User-Specific Information
You can override passivateState() and activateState() to ensure that
custom application module state information is included in the passivation/activation
cycle. Example 40–7 shows how this is done.

In the example, jbo.counter contains custom values you want to preserve across
passivation and activation of the application module state. Each application module
has an oracle.jbo.Session object associated with it that stores application
module-specific session-level state. The session contains a user data hashtable where
you can store transient information. For the user-specific data to "survive" across
application module passivation and reactivation, you need to write code to save and
restore this custom value into the application module state passivation snapshot.

Example 40–7 Passivating and Activating Custom Information in the State Snapshot
XML Document

/**
* Overridden framework method to passivate custom XML elements
* into the pending state snapshot document
*/
public void passivateState(Document doc, Element parent) {
// 1. Retrieve the value of the value to save
int counterValue = getCounterValue();
// 2. Create an XML element to contain the value
Node node = doc.createElement(COUNTER);
// 3. Create an XML text node to represent the value
Node cNode = doc.createTextNode(Integer.toString(counterValue));
// 4. Append the text node as a child of the element
node.appendChild(cNode);
// 5. Append the element to the parent element passed in
parent.appendChild(node);

}
/**
* Overridden framework method to activate custom XML elements
* into the pending state snapshot document
*/
public void activateState(Element elem) {
super.activateState(elem);
if (elem != null) {
// 1. Search the element for any <jbo.counter> elements
NodeList nl = elem.getElementsByTagName(COUNTER);
if (nl != null) {
// 2. If any found, loop over the nodes found
for (int i=0, length = nl.getLength(); i < length; i++) {

Note: Similar methods are available on the ViewObjectImpl class
and the EntityObjectImpl class to save custom state for those
objects to the passivation snapshot as well.

Managing Custom User-Specific Information

Application State Management 40-21

// 3. Get first child node of the <jbo.counter> element
Node child = nl.item(i).getFirstChild();
if (child != null) {
// 4. Set the counter value to the activated value
setCounterValue(new Integer(child.getNodeValue()).intValue()+1);
break;

}
}

}
}

}
/*
* Helper Methods
*/
private int getCounterValue() {
String counterValue = (String)getSession().getUserData().get(COUNTER);
return counterValue == null ? 0 : Integer.parseInt(counterValue);

}
private void setCounterValue(int i) {
getSession().getUserData().put(COUNTER,Integer.toString(i));

}
private static final String COUNTER = "jbo.counter";

40.7.2 What Happens When You Passivate Custom Information
In Example 40–7, when activateState() is overridden, the following steps are
performed:

1. Search the element for any jbo.counter elements.

2. If any are found, loop over the nodes found in the node list.

3. Get first child node of the jbo.counter element.

It should be a DOM Text node whose value is the string you saved when your
passivateState() method above got called, representing the value of the
jbo.counter attribute.

4. Set the counter value to the activated value from the snapshot.

When passivateState() is overridden, it performs the reverse job by doing the
following:

1. Retrieve the value of the value to save.

2. Create an XML element to contain the value.

3. Create an XML text node to represent the value.

4. Append the text node as a child of the element.

5. Append the element to the parent element passed in.

Note: The API's used to manipulate nodes in an XML document are
provided by the Document Object Model (DOM) interfaces in the
org.w3c.dom package. These are part of the Java API for XML
Processing (JAXP). See the Javadoc for the Node, Element, Text,
Document, and NodeList interfaces in this package for more details.

Managing the State of View Objects

40-22 Fusion Developer's Guide for Oracle Application Development Framework

40.7.3 What You May Need to Know About Activating Custom Information
The activateState() method is called at the end of the activation process after the
view objects have been activated. Most of the time this is where you want to place the
application module state activation logic. However, if your application module
activation logic needs to set up custom state information before the ADF state
management facility activates the view objects (for example, you might need to write
custom code to allow the view objects to internally reference custom values at
execution time), then the prepareForActivation() method in the
ApplicationModuleImpl class would be the right place because it fires at the
beginning of the activation process.

40.8 Managing the State of View Objects
By default, all view objects are marked as passivation-enabled, so their state will be
saved. However, view objects that have transient attributes do not have those
attributes passivated by default. You can change how a view object is passivated, and
even which attributes are passivated, using the Tuning page of the view object
overview editor.

40.8.1 How to Manage the State of View Objects
Each view object can be declaratively configured to be passivation-enabled or not. If a
view object is not passivation enabled, then no information about it gets written in the
application module passivation snapshot.

To set the passivation state of a view object:
1. In the Application Navigator, double-click a view object to open it in the overview

editor.

2. On the General page, expand the Tuning section.

3. Select Passivate State to make sure the view object data is saved.

Optionally, you can select Including All Transient Attributes to passivate all
transient attributes at this time, but see Section 40.8.4, "What You May Need to
Know About Passivating Transient View Objects" for additional information.

40.8.2 What You May Need to Know About Passivating View Objects
The activation mechanism is designed to return your view object to the state it was in
when the last passivation occurred. To ensure that, Oracle ADF stores in the state
snapshot the values of any bind variables that were used for the last query execution.
These bind variables are in addition to those that are set on the row set at the time of
passivation. The passivated state also stores the user-supplied WHERE clause on the
view object related to the row set at the time of passivation.

40.8.3 How to Manage the State of Transient View Objects and Attributes
Because view objects are marked as passivated by default, a transient view object —
one that contains only transient attributes — is marked to be passivation enabled, but

Performance Tip: There is no need to passivate read-only view
objects since they are not intended to be updated and are easily
recreated from the XML definition. This eliminates the performance
overhead associated with passivation and activation and reduces the
CPU usage needed to maintain the application module pool.

Managing the State of View Objects

Application State Management 40-23

only passivates its information related to the current row and other non-transactional
state.

To individually set the passivation state for transient view object attributes:
1. In the Application Navigator, double-click a view object to open it in the overview

editor.

2. On the Attributes page, select the transient attribute you want to passivate and
click the Edit icon.

3. In the Edit Attribute dialog, click the View Attribute node.

4. Select the Passivate checkbox and click OK.

40.8.4 What You May Need to Know About Passivating Transient View Objects
Passivating transient view object attributes is more costly resource-wise and
performance- wise, because transactional functionality is usually managed on the
entity object level. Since transient view objects are not based on an entity object, this
means that all updates are managed in the view object row cache and not in the entity
cache. Therefore, passivating transient view objects or transient view object attributes
requires special runtime handling.

Usually passivation only saves the values that have been changed, but with transient
view objects passivation has to save entire row. The row will include only the view
object attributes marked for passivation.

40.8.5 How to Use Transient View Objects to Store Session-level Global Variables
Using passivation, you can use a view object to store one or more global variables,
each on a different transient attribute. When you mark a transient attribute as
passivated, the ADF Business Components framework will remember the transient
values across passivation and activation in high-throughput and failover scenarios.
Therefore, it is an easy way to implement a session-level global value that is backed up
by the state management mechanism, instead of the less-efficient HTTP Session
replication. This also makes it easy to bind to controls in the UI if necessary.

There are two basic approaches to store values between invocations of different
screens, one is controller-centric, and the other is model-centric.

Implementation of the task in the ADF controller
The controller-centric approach involves storing and referencing values using
attributes in the page flow scope. This approach might be appropriate if the global
values do not need to be referenced internally by any implementations of ADF
Business Components.

For more information about page flow scope, see Section 14.2.4, "What You May Need
to Know About Memory Scope for Task Flows."

Performance Tip: Transient view object attributes are not passivated
by default. Due to their nature, they are usually intended to be
read-only and are easily recreated. So, it often doesn’t make sense to
passivate their values as part of the XML snapshot. This also avoids
the performance overhead associated with passivation and activation
and reduces the CPU usage needed to maintain the application
module pool.

Using State Management for Middle-Tier Savepoints

40-24 Fusion Developer's Guide for Oracle Application Development Framework

Implementation of the task in the ADF model
The model-centric approach involves creating a transient view object, which is
conceptually equivalent to a non-database block in Oracle Forms.

1. Create a new view object using the View Object Wizard, as described in
Section 5.2.1, "How to Create an Entity-Based View Object."

■ On step 1 of the wizard, select the option for Rows populated
programmatically, not based on a query.

■ On step 2, click New to define the transient attribute names and types the
view object should contain. Make sure to set the Updateable option to
Always.

■ Click Finish and the newly-created view object appears in the overview
editor.

2. Disable any queries from being performed in the view object.

■ On the General page of the overview editor, expand the Tuning section, and
in the Retrieve from Database group box, select the No Rows option.

3. Make sure data in the view object is not cleared out during a rollback operation.
To implement this, you enable a custom Java class for the view object and override
two rollback methods.

■ On the Java page of the overview editor, click the Edit icon in the Java Classes
section to open the Java dialog.

■ In the Java dialog, select Generate View Object Class and click OK.

■ In the overview editor, click on the hyperlink next to the View Object Class in
the Java Classes section to open the source editor.

■ From the Source menu, choose Override Methods.

■ In the Override Methods dialog, select the beforeRollback() and
afterRollback() methods to override, and click then OK.

■ In both the beforeRollback() and afterRollback() methods, comment
out the call to super in the Java code.

4. Add an instance of the transient view object to your application module's data
model, as described in Section 9.2.3.2, "Adding Master-Detail View Object
Instances to an Application Module."

5. Create an empty row in the view object when a new user begins using the
application module.

■ Enable a Java class for your application module if you don't have one yet.

■ Override the prepareSession() method of the application module, as
described in Section 9.11.1, "How to Override a Built-in Framework Method."

■ After the call to super.prepareSession(), add code to create a new row
in the transient view object and insert it into the view object.

Now you can bind read-only and updateable UI elements to the "global" view object
attributes just as with any other view object using the data control palette.

40.9 Using State Management for Middle-Tier Savepoints
In the database server you are likely familiar with the savepoint feature that allows a
developer to rollback to a certain point within a transaction instead of rolling back the

Testing to Ensure Your Application Module is Activation-Safe

Application State Management 40-25

entire transaction. An application module offers the same feature but implemented in
the middle tier.

40.9.1 How to Use State Management for Savepoints
To use state management for implementing middle-tier savepoints, you override three
methods in the oracle.jbo.ApplicationModule interface

public String passivateStateForUndo(String id,byte[] clientData,int flags)
public byte[] activateStateForUndo(String id,int flags)
public boolean isValidIdForUndo(String id)

You can use these methods to create a stack of named snapshots and restore the
pending transaction state from them by name. Keep in mind that those snapshots do
not survive past duration of transaction (for example, events of commit or rollback).
This feature could be used to develop complex capabilities of the application, such as
the ability to undo and redo changes. Another ambitious goal that could exploit this
functionality would be functionality to make the browser back and forward buttons
behave in an application-specific way. Otherwise, simple uses of these methods can
come quite in handy.

40.10 Testing to Ensure Your Application Module is Activation-Safe
If you have not explicitly tested that your application module functions when its
pending state gets activated from a passivation snapshot, then you may encounter an
unpleasant surprise in your production environment when heavy system load tests
this aspect of your system for the first time.

40.10.1 Understanding the jbo.ampool.doampooling Configuration Parameter
The jbo.ampool.doampooling configuration property corresponds to the Enable
Application Module Pooling option in the Pooling and Scalability tab of the Business
Components Configuration dialog. By default, this checkbox is checked so that
application module pooling is enabled. Whenever you deploy your application in a
production environment the default setting of jbo.ampool.doampooling to true
is the way you will run your application. But, as long as you run your application in a
test environment, setting the property to false can play an important role in your
testing. When this property is false, there is effectively no application pool. When the
application module instance is released at the end of a request it is immediately
removed. On subsequent requests made by the same user session, a new application
module instance must be created to handle it and the pending state of the application
module must be reactivated from the passivation store.

40.10.2 Disabling Application Module Pooling to Test Activation
As part of your overall testing plan, you should adopt the practice of testing your
application modules with the jbo.ampool.doampooling configuration parameter
set to false. This setting completely disables application module pooling and forces
the system to activate your application module’s pending state from a passivation

Best Practice: Oracle ADF provides a declarative approach to
working with savepoints, described in Section 18.9, "Using Save
Points in Task Flows." Use the programmatic approach described in
Section 40.9.1, "How to Use State Management for Savepoints" only if
the declarative approach doesn’t meet your needs.

Keeping Pending Changes in the Middle Tier

40-26 Fusion Developer's Guide for Oracle Application Development Framework

snapshot on each page request. It is an excellent way to detect problems that might
occur in your production environment due to assumptions made in your custom
application code.

For example, if you have transient view object attributes you believe should be getting
passivated, this technique allows you to test that they are working as you expect. In
addition, consider situations where you might have introduced:

■ Private member fields in application modules, view objects, or entity objects

■ Custom user session state in the Session user data hashtable

Your custom code likely assumes that this custom state will be maintained across
HTTP requests. As long as you test with a single user on the JDeveloper Integrated
WebLogic Server, or test with a small number of users, things will appear to work fine.
This is due to the "stateless with affinity" optimization of the ADF application module
pool. If system load allows, the pool will continue to return the same application
module instance to a user on subsequent requests. However, under heavier load,
during real-world use, it may not be able to achieve this optimization and will need to
resort to grabbing any available application module instance and reactivating its
pending state from a passivation snapshot. If you have not correctly overridden
passivateState() and activateState() (as described in Section 40.7,
"Managing Custom User-Specific Information") to save and reload your custom
component state to the passivation snapshot, then your custom state will be missing
(i.e. null or back to your default values) after this reactivation step. Testing with
jbo.ampool.doampooling set to false allows you to quickly isolate these kinds of
situations in your code.

40.11 Keeping Pending Changes in the Middle Tier
The ADF state management mechanism relies on passivation and activation to manage
the state of an application module instance. Implementing this feature in a robust way
is only possible if all pending changes are managed by the application module
transaction in the middle tier. The most scalable strategy is to keep pending changes in
middle-tier objects and not perform operations that cause pending database state to
exist across HTTP requests. This allows the highest leverage of the performance
optimizations offered by the application module pool and the most robust runtime
behavior for your application.

When the jbo.doconnectionpooling configuration parameter is set to true —
typically in order to share a common pool of database connections across multiple
application module pools — upon releasing your application module to the
application module pool, its JDBC connection is released back to the database
connection pool and a ROLLBACK will be issued on that connection. This implies that
all changes which were posted but not commited will be lost. On the next request, when
the application module is used, it will receive a JDBC connection from the pool, which
may be a different JDBC connection instance from the one it used previously. Those
changes that were posted to the database but not commited during the previous
request are lost.

Caution: It is important to reenable application module pooling after
you conclude testing and are ready to deploy the application to a
production environment. The configuration property
jbo.ampool.doampooling set to false is not a supported
configuration for production applications and must be set to true
before deploying the application.

Keeping Pending Changes in the Middle Tier

Application State Management 40-27

40.11.1 How to Set Applications to Use Optimistic Locking
Oracle recommends using optimistic locking, the default mode for web applications.
Pessimistic locking should not be used for web applications as it creates pending
transactional state in the database in the form of row-level locks. If pessimistic locking
is set, state management will work, but the locking mode will not perform as expected.
Behind the scenes, every time an application module is recycled, a rollback is issued in
the JDBC connection. This releases all the locks that pessimistic locking had created.

To ensure your configuration uses optimistic locking, open the Properties tab of the
Business Components Configuration dialog and confirm that the value of the
jbo.locking.mode property is set to optimistic or optupdate.

Optimistic locking (optimistic) issues a SELECT FOR UPDATE statement to lock
the row, then detects whether the row has been changed by another user by
comparing the change indicator attribute — or, if no change indicator is specified, the
values of all the persistent attributes of the current entity as they existed when the
entity object was fetched into the cache.

Optimistic update locking (optupdate) does not perform any locking. The UPDATE
statement determines whether the row was updated by another user by including a

Caution: When the jbo.doconnectionpooling configuration
parameter is set to true — typically in order to share a common pool
of database connections across multiple application module pools —
upon releasing your application module to the application module
pool, its JDBC connection is released back to the database connection
pool and a ROLLBACK will be issued on that connection. This implies
that all changes which were posted but not commited will be lost. On
the next request, when the application module is used, it will receive a
JDBC connection from the pool, which may be a different JDBC
connection instance from the one it used previously. Those changes
that were posted to the database but not commited during the
previous request are lost.

The jbo.doconnectionpooling configuration parameter is set by
checking the Disconnect Application Module Upon Release property
on the Pooling and Scalability tab of the Business Components
Configuration dialog.

Performance Tip: Always use the default mode optimistic locking
for web applications. Only optimistic locking is compatible with the
application module unmanaged release level mode, which allows the
application module instance to be immediately released when a web
page terminates. This provides the best level of performance for web
applications that expect many users to access the application
simultaneously.

Note: To open the Business Components Configuration dialog,
right-click the application module in the Applications window, and
choose Configurations from the context menu. Then, in the Manage
Configurations dialog, select the configuration you want to edit and
click Edit.

Keeping Pending Changes in the Middle Tier

40-28 Fusion Developer's Guide for Oracle Application Development Framework

WHERE clause that will match the existing row to update only if the attribute values are
unchanged since the current entity object was fetched.

40.11.2 How to Avoid Clashes Using the postChanges() Method
The transaction-level postChanges() method exists to force the transaction to post
unvalidated changes without committing them. This method is not recommended for
use in web applications unless you can guarantee that the transaction will definitely be
committed or rolled-back during the same HTTP request. Failure to heed this advice
can lead to strange results in an environment where both application modules and
database connections can be pooled and shared serially by multiple different clients.

40.11.3 How to Use the Reserved Level For Pending Database States
If for some reason you need to create a transactional state in the database in some
request by invoking postChanges() method or by calling PL/SQL stored procedure,
but you cannot issue a commit or rollback by the end of that same request, then you
must release the application module instance with the reserved level from that request
until a subsequent request when you either commit or rollback.

Once an application module has been released with reserved level, it remains at that
release level for all subsequent requests until release level is explicitly changed back to
managed or unmanaged level. So, it is your responsibility to set release level back to
managed level once commit or rollback has been issued.

For more information, see Section 40.4, "Setting the Application Module Release Level
at Runtime."

Performance Tip: Use as short a period of time as possible between
creation of transactional state in the database and performing the
concluding commit or rollback. This ensures that reserved level
doesn’t have to be used for a long time, as it has adverse effects on
application’s scalability and reliability.

41

Tuning Application Module Pools and Connection Pools 41-1

41Tuning Application Module Pools and
Connection Pools

This chapter describes how ADF Business Components application module pools
work and how you can tune both application module pools and database connection
pools to optimize ADF application performance.

This chapter includes the following sections:

■ Section 41.1, "Introduction to Application Module Pooling"

■ Section 41.2, "Setting Pool Configuration Parameters"

■ Section 41.3, "Initializing Database State and Pooling Considerations"

41.1 Introduction to Application Module Pooling
An application module pool is a collection application module instances of the same
type. For example, the Fusion Order Demo application has one or more instances of
the application module in it, based on the number of users that are visiting the site.
This pool of application module instances is shared by multiple browser clients whose
typical "think time" between submitting web pages allows optimizing the number of
application module components to be effectively smaller than the total number of
active users working on the system. That is, twenty users visiting the web site from
their browser might be able to be serviced by 5 or 10 application module instances
instead of having as many application module instances as you have browser users.

Application module components can be used to support Fusion web application
scenarios that are completely stateless, or they can be used to support a unit of work
that spans multiple browser pages. As a performance optimization, when an instance
of an application module is returned to the pool in "managed state" mode, the pool
tracks session references to the application module. The application module instance is
still in the pool and available for use, but it would prefer to be used by the same session
that was using it the last time because maintaining this so-called "session affinity"
improves performance.

So, at any one moment in time, the instances of application modules in the pool are
logically partitioned into three groups, reflecting their state:

■ Unconditionally available for use

■ Available for use, but referenced for session affinity reuse by an active user session

■ Unavailable, inasmuch as it's currently in use (at that very moment) by some thread
in the web container.

Introduction to Application Module Pooling

41-2 Fusion Developer's Guide for Oracle Application Development Framework

Section 41.2.5, "What You May Need to Know About Configuration Property Scopes"
describes the application module pool configuration parameters and how they affect
the behavior of the pool.

41.1.1 Types of Pools Created When Running the Fusion Web Application
There are two kinds of pools in use when running a typical Fusion web application,
Application Module pools and database connection pools. It's important to
understand how many of each kind of pool your application will create.

41.1.1.1 Application Module Pools
Application Module components can be used at runtime in two ways:

■ As an application module the client accesses directly

■ As a reusable component aggregated (or "nested") inside of another application
module instance

When a client accesses it directly, an application module is called a root application
module. Clients access nested application modules indirectly as a part of their
containing application module instance. It's possible, but not common, to use the same
application module at runtime in both ways. The important point is that ADF only
creates an application module pool for a root application module.

The basic rule is that one application module pool is created for each root application
module used by a Fusion web application in each Java VM where a root application
module of that type is used by the ADF controller layer.

41.1.1.2 Database Connection Pools
The type of database connection pool the Fusion web application uses depends on the
connection type that you configure for your application modules:

■ JDBC URL (e.g. jdbc:oracle:thin:@penguin:1521:ORCL)

■ JNDI name for a data source (e.g. java:comp/env/jdbc/YourConnectionDS)

If you supply a JDBC URL connection while configuring your application module —
which happens when you select a JDeveloper named connection which encapsulates
the JDBC URL and username information — then the ADF database connection pool
will be used for managing the connection pool.

If you supply the JNDI name of a JDBC data source then the ADF database connection
pool will not be used and the configuration parameters described below relating to the
ADF database connection pool are not relevant.

When using ADF database connection pooling, you have the following basic rule: One
database connection pool is created for each unique <JDBCURL,Username> pair, in
each Java VM where a <JDBCURL,Username> connection is requested by a root
application used by the ADF controller layer.

Note: To configure the database connection pool for JDBC data
sources looked-up by JNDI from your Java EE web and/or EJB
container, consult the documentation for your Java EE container to
understand the pooling configuration options and how to set them.

Introduction to Application Module Pooling

Tuning Application Module Pools and Connection Pools 41-3

41.1.2 Understanding Application Module and Connection Pools
The number of pools and the type of pools that your application will utilize will
depend upon how the target platform is configured. For example, will there be more
than one Java Virtual Machine (JVM) available to service the web requests coming
from your application users and will there be more than one Oracle WebLogic Server
domain? To understand how many pools of which kinds are created for an application
in both a single-JVM scenario and a multiple-JVM runtime scenario, review the
following assumptions:

■ Your Fusion web application makes use of two application modules HRModule
and PayablesModule.

■ You have a CommonLOVModule containing a set of commonly used view objects
to support list of values in your application, and that both HRModule and
PayablesModule aggregate a nested instance of CommonLOVModule to access
the common LOV view objects it contains.

■ You have configured both HRModule and PayablesModule to use the same
JDeveloper connection definition named appuser.

■ In both HRModule and PayablesModule you have configured
jbo.passivationstore=database (the default) and configured the ADF
"internal connection" (jbo.server.internal_connection) used for state
management persistence to have the value of a fully-qualified JDBC URL that
points to a different username than the appuser connection does.

41.1.2.1 Single Oracle WebLogic Server Domain, Single Oracle WebLogic Server
Instance, Single JVM
If you deploy this application to a single Oracle WebLogic Server domain, configured
with a single Oracle WebLogic Server instance, there is only a single Java VM available
to service the web requests coming from your application users.

Assuming that all the users are making use of web pages that access both the
HRModule and the PayablesModule, this will give:

■ One application module pool for the HRModule root application module

■ One application module pool for the PayablesModule root application module

■ One DB connection pool for the appuser connection

■ One DB connection pool for the JDBC URL supplied for the internal connection for
state management.

This gives a total of two application module pools and two database pools in this
single Java VM.

41.1.2.2 Multiple Oracle WebLogic Server Domains, Multiple Oracle WebLogic
Server Instance, Multiple JVMs
Next consider a deployment environment involving multiple Java VMs. Assume that
you have configured four different physical machines as two Oracle WebLogic Server
domains, with a hardware load-balancer in front. On these four machines, each Oracle

Note: There is no separate application module pool for the nested
instances of the reusable CommonLOVModule. Instances of
CommonLOVModule are wrapped by instances of HRModule and
PayablesModule in their respective application module pools.

Setting Pool Configuration Parameters

41-4 Fusion Developer's Guide for Oracle Application Development Framework

WebLogic Server instance will have a single JVM. As users of your application access
the application, their requests are shared across these two Oracle WebLogic Server
domains, and within each domain, across the two JVMs that its Oracle WebLogic
Server instances have available.

Again assuming that all the users are making use of web pages that access both the
HRModule and the PayablesModule, this will give:

■ Four application module pools for HRModule, one in each of four JVMs.

(1 HRModule root application module) x (2 Oracle WebLogic Server domains) x (2
Oracle WebLogic Server JVMs each)

■ Four application module pools for PayablesModule, one in each of four JVMs.

(1 PayablesModule root application module) x (2 Oracle WebLogic Server
domains) x (2 Oracle WebLogic Server JVMs each)

■ Four DB connection pools for appuser, one in each of four JVMs.

(1 appuser DB connection pool) x (2 Oracle WebLogic Server domains) x (2
Oracle WebLogic Server JVMs each)

■ Four DB connection pools for the internal connection JDBC URL, one in each of
four JVMs.

(1 internal connection JDBC URL DB connection pool) x (2 Oracle WebLogic
Server domains) x (2 Oracle WebLogic Server JVMs each)

This gives a total of eight application module pools and eight DB connection pools
spread across four JVMs.

As you begin to explore the configuration parameters for the application module pools
in Section 41.2.7, "What You May Need to Know About Application Module Pool
Parameters," keep in mind that the parameters apply to a given application module
pool for a given application module in a single JVM.

As the load balancing spreads user requests across the multiple JVMs where ADF is
running, each individual application module pool in each JVM will have to support
one n th of the user load — where n is the number of JVMs available to service those
user requests. The appropriate values of the application module and DB connection
pools need to be set with the number of Java VMs in mind. The basic approach is to
base sizing parameters on load testing and the results of the application module
pooling statistics, then divide that total number by the n number of pools you will
have based on your use of multiple application server domains and multiple Oracle
WebLogic Server instances. For example, if you decide to set the minimum number of
application modules in the pool to ten and you end up with five pools due to having
five Oracle WebLogic Server instances servicing this application, then you would want
to configure the parameter to 2 (ten divided by five), not 10 (which would only serve a
given application module in a single JVM). For details about available sizing
parameters, see Table 41–2 and Table 41–5.

41.2 Setting Pool Configuration Parameters
You control the runtime behavior of an application module pool by setting
appropriate configuration parameters. You can set these declaratively in an
application module configuration, supply them as Java System parameters, or set them
programmatically at runtime.

Setting Pool Configuration Parameters

Tuning Application Module Pools and Connection Pools 41-5

41.2.1 How to Set Configuration Properties Declaratively
The Pooling and Scalability tab of the Edit Business Components Configuration
dialog shown in Figure 41–1 is used for viewing and setting parameters.

Figure 41–1 Pooling and Scalability Tab of the Configuration Manager

41.2.2 What Happens When You Set Configuration Properties Declaratively
The values that you supply through the Configuration Manager are saved in an XML
file named bc4j.xcfg in the ./common subdirectory relative to the application
module's XML component definition. All of the configurations for all of the
application modules in a single Java package are saved in that same file.

For example, if you look at the bc4j.xcfg file in the
.src/oracle/fodemo/storefront/store/service/common directory of the
Fusion Order Demo application's StoreFront project, you will see the three named
configurations for its StoreServiceAM application module, as shown in
Example 41–1. In this case, The StoreServiceAMLocal and the
StoreServiceAMLocalWeb configurations specify JDBC URL connections for use by
the Business Component Browser. The connection details for the JDBC connections
appear in the connections.xml file located in the ./.adf/META-INF subdirectory
relative to the project directory. The third configuration StoreFrontService
specifies a JDBC data source name and is used by the Fusion web application. This
type of configuration is generated by default when you expose a service interface for
the application module in the Service Interface page of the overview editor.

Example 41–1 Configuration Settings for the StoreService Application Module

<BC4JConfig version="11.1" xmlns="http://xmlns.oracle.com/bc4j/configuration">
 <AppModuleConfigBag ApplicationName="oracle.fodemo.storefront.store.service.StoreServiceAM">
 <AppModuleConfig
 DeployPlatform="LOCAL"
 JDBCName="FOD"
 jbo.project="StoreFrontService"

Setting Pool Configuration Parameters

41-6 Fusion Developer's Guide for Oracle Application Development Framework

 name="StoreServiceAMLocal"
 ApplicationName="oracle.fodemo.storefront.store.service.StoreServiceAM">
 <Database jbo.locking.mode="optimistic"/>
 <Security AppModuleJndiName="oracle.fodemo.storefront.store.service.StoreServiceAM"/>
 </AppModuleConfig>
 <AppModuleConfig
 DeployPlatform="LOCAL"
 JDBCName="FOD"
 jbo.project="StoreFrontService"
 name="StoreServiceAMLocalWeb"
 ApplicationName="oracle.fodemo.storefront.store.service.StoreServiceAM">
 <AM-Pooling jbo.ampool.initpoolsize="1"/>
 <Database jbo.locking.mode="optimistic"/>
 <Security AppModuleJndiName="oracle.fodemo.storefront.store.service.StoreServiceAM"/>
 <Custom fod.application.issoaenabled="true"/>
 </AppModuleConfig>
 <AppModuleConfig
 name="StoreFrontService"
 ApplicationName="oracle.fodemo.storefront.store.service.StoreServiceAM"
 jbo.project="StoreFrontService"
 DeployPlatform="SI">
 <AM-Pooling jbo.ampool.resetnontransactionalstate="true"/>
 <Database jbo.SQLBuilder="ORACLE" jbo.locking.mode="optimistic"
 jbo.TypeMapEntries="Java"/>
 <Security AppModuleJndiName="oracle.fodemo.storefront.store.service.StoreServiceAM"/>
 <Custom JDBCDataSource="java:comp/env/jdbc/FODDS"/>
 </AppModuleConfig>
 </AppModuleConfigBag>
</BC4JConfig>

Note that attributes of child elements of the <AppModuleConfig> tag have names
beginning with jbo that match the names of their ADF Business Components
properties (for example, the <Database> tag defines the attribute
jbo.locking.mode that corresponds to the property jbo.locking.mode). It's also
important to understand that if a property is currently set to its runtime default value
in the Edit Business Components Configuration dialog, then JDeveloper does not write
the entry to the bc4j.xcfg file.

41.2.3 How to Set Configuration Properties as System Parameters
As an alternative to specifying configuration properties in the bc4j.xcfg file, you
can also set Java VM system parameters with the same property names. These system
parameters will be used only if a corresponding property does not exist in the relevant
bc4j.xcfg file for the application module in question. In other words, configuration
parameters that appear in the application module configuration take precedence over
parameters of the same name supplied as Java system parameters.

You typically set Java system parameters using the -D command line flag to the Java
VM like this:

java -Dproperty=value -jar yourserver.jar

Alternatively, your Java EE container probably has a section in its own configuration
files where Java system parameters can be specified for use at Java EE container
startup time.

If you adopt the technique of specifying site-specific default values for Oracle
Application Development Framework (Oracle ADF) configuration parameters as Java
system parameters, you should make sure that your application’s bc4j.xcfg files do

Setting Pool Configuration Parameters

Tuning Application Module Pools and Connection Pools 41-7

not include references to these parameters unless you want to define an
application-module-specific exception to these global default values.

41.2.4 How to Programmatically Set Configuration Properties
You can set configuration properties programmatically by creating a Java class that
implements the EnvInfoProvider interface in the oracle.jbo.common.ampool
package. In your class, you override the getInfo() method and call put() to put
values into the environment Hashtable passed in as shown in Example 41–2.

Example 41–2 Setting Environment Properties with a Custom EnvInfoProvider

package devguide.advanced.customenv.view;
import java.util.Hashtable;
import oracle.jbo.common.ampool.EnvInfoProvider;
/**
* Custom EnvInfoProvider implementation to set
* environment properties programmatically
*/
public class CustomEnvInfoProvider implements EnvInfoProvider {
/**
* Overridden framework method to set custom values in the
* environment hashtable.
*
* @param string - ignore
* @param environment Hashtable of config parameters
* @return null - not used
*/
public Object getInfo(String string, Object environment) {
Hashtable envHashtable = (Hashtable)environment;
envHashtable.put("some.property.name","some value");
return null;

}
/* Required to implement EnvInfoProvider */
public void modifyInitialContext(Object object) {}
/* Required to implement EnvInfoProvider */
public int getNumOfRetries() {return 0;}

}

When creating an application module for a stateless or command-line-client, with the
createRootApplicationModule() method of the Configuration class, you can
pass the custom EnvInfoProvider as the optional second argument. In order to use
a custom EnvInfoProvider in an ADF web-based application, you need to
implement a custom session cookie factory class as shown in Example 41–3. To use
your custom session cookie factory, set the
jbo.ampool.sessioncookiefactoryclass configuration property to the
fully-qualified name of your custom session cookie factory class.

Caution: The values of Idle Instance Timeout, Pool Polling Interval
settings for both the Application Pool and the database Connection
Pool are displayed and edited in this dialog as a number of seconds,
but are saved to the configuration file in milliseconds. If you provide a
value for any of these four parameters as a Java System parameter —
or if you hand-edit the bc4j.xcfg file — make sure to provide these
time interval values in milliseconds!

Setting Pool Configuration Parameters

41-8 Fusion Developer's Guide for Oracle Application Development Framework

Example 41–3 Custom SessionCookieFactory to Install a Custom EnvInfoProvider

package devguide.advanced.customenv.view;
import java.util.Properties;
import oracle.jbo.common.ampool.ApplicationPool;
import oracle.jbo.common.ampool.EnvInfoProvider;
import oracle.jbo.common.ampool.SessionCookie;
import oracle.jbo.http.HttpSessionCookieFactory;
/**
* Example of custom http session cookie factory
* to install a custom EnvInfoProvider implementation
* for an ADF web-based application.
*/
public class CustomHttpSessionCookieFactory

extends HttpSessionCookieFactory {
public SessionCookie createSessionCookie(String appId,

String sessionId,
ApplicationPool pool,
Properties props) {

SessionCookie cookie =
super.createSessionCookie(appId, sessionId,pool, props);

EnvInfoProvider envInfoProv = new CustomEnvInfoProvider();
cookie.setEnvInfoProvider(envInfoProv);
return cookie;

}
}

41.2.5 What You May Need to Know About Configuration Property Scopes
Each runtime configuration property used by ADF Business Components has a scope.
The scope of each property indicates at what level the property's value is evaluated
and whether its value is effectively shared (i.e. static) in a single Java VM, or not. The
ADF Business Components PropertyManager class is the registry of all supported
properties. It defines the property names, their default values, and their scope. This
class contains a main() method so that you can run the class from the command line
to see a list of all the configuration property information.

Assuming JDEVHOME is the JDeveloper installation directory, to see this list of
settings for reference, do the following:

$ java -cp JDEVHOME/BC4J/lib/bc4jmt.jar oracle.jbo.common.PropertyManager

Issuing this command will send all of the ADF Business Components configuration
properties to the console. It also lists a handy reference about the different levels at
which you can set configuration property values and remind you of the precedence
order these levels have:

Properties loaded from following sources, in order:
1. Client environment [Provided programmatically

or declaratively in bc4j.xcfg]
2. Applet tags
3. -D flags (appear in System.properties)
4. bc4j.properties file (in current directory)
5. /oracle/jbo/BC4J.properties resource
6. /oracle/jbo/commom.jboserver.properties resource
7. /oracle/jbo/common.Diagnostic.properties resource
8. System defined default

You'll see each property is listed with one of the following scopes:

Setting Pool Configuration Parameters

Tuning Application Module Pools and Connection Pools 41-9

■ MetaObjectManager

Properties at this scope are initialized once per Java VM when the ADF
PropertyManager is first initialized.

■ SessionImpl

Properties at this scope are initialized once per invocation of
ApplicationModule.prepareSession().

■ Configuration

Properties at this scope are initialized when the ApplicationModule pool is first
created and the application module's configuration is read the first time.

■ Diagnostic

Properties at this scope are specific to the built-in ADF Business Components
diagnostic facility.

At each of these scopes, the layered value resolution described above is performed
when the properties are initialized. Whenever property values are initialized, if you
have specified them in the Client Environment (level 1 in the resolution order) the
values will take precedence over values specified as System parameters (level 3 in the
resolution order).

The Client Environment is a hashtable of name/value pairs that you can either
programatically populate, or which will be automatically populated for you by the
Configuration object when loaded, with the name/value pairs it contains in its
entry in the bc4j.xcfg file. The implication of this is that for any properties scoped
at MetaObjectManager level, the most reliable way to ensure that all of your
application modules use the same default value for those properties is to do both of
the following:

1. Make sure the property value does not appear in any of your application module's
bc4j.xcfg file configuration name/value pair entries.

2. Set the property value using a Java system property in your runtime environment.

If, instead, you leave any MetaObjectManager-scoped properties in your bc4j.xcfg
files, you will have the undesirable behavior that they will take on the value specified
in the configuration of the first application module whose pool gets created after the
Java VM starts up.

41.2.6 What You May Need to Know About How Database and Application Module
Pools Cooperate

How ADF application module pools use the database connection pool depends on the
setting of the jbo.doconnectionpooling application module configuration
parameter. In the Configuration Manager panel shown in Figure 41–1, you set this
parameter using the checkbox labelled Disconnect Application Module Upon
Release.

Setting Pool Configuration Parameters

41-10 Fusion Developer's Guide for Oracle Application Development Framework

If the default setting of jbo.doconnectionpooling=false is used, then when an
application module instance is created in any pool it acquires a JDBC connection from
the appropriate connection pool (based on the JDBC URL in the ADF case, or from the
underlying JDBC data source implementation's pool in the case of a JNDI data source
name). That application module instance holds onto the JDBC connection object that it
acquired from the pool until the application module instance is removed from the
application module pool. During its lifetime, that application module instance may
service many different users, and ADF worries about issuing rollbacks on the database
connection so that different users don't end up getting pending database state
confused. By holding onto the JDBC connection, it allows each application module
instance to keep its JDBC PreparedStatement objects open and usable across
subsequent accesses by clients, thereby providing the best performance.

If jbo.doconnectionpooling=true, then each time a user session finishes using
an application module (typically at the end of each HTTP request), the application
module instance disassociates itself with the JDBC connection it was using on that
request and it returns it to the JDBC connection pool. The next time that application
module instance is used by a user session, it will reacquire a JDBC connection from the
JDBC connection pool and use it for the span of time that application module is
checked out of the application module pool (again, typically the span of one HTTP
request). Since the application module instance "unplugs" itself from the JDBC
connection object used to create the PreparedStatements it might have used during the
servicing of the current HTTP request, those PreparedStatements are no longer usable
on the next HTTP request because they are only valid in the context of the Connection
object in which they were created. So, when using the connection pooling mode
turned on like this, the trade-off is slightly more JDBC overhead setup each time, in
return for using a smaller number of overall database connections.

The key difference is seen when many application module pools are all using the same
underlying database user for their application connection.

■ If 50 different application module pools each have even just a single application
module instance in them, with jbo.doconnectionpooling=false there will
be 50 JDBC application connections in use. If the application module pooling
parameters are set such that the application module pools are allowed to shrink to
0 instances after an appropriate instance idle timeout by setting
jbo.ampool.minavailablesize=0, then when the application module is
removed from its pool, it will put back the connection its holding onto.

■ In contrast, if 50 different application module pools each have a single application
module instance and jbo.doconnectionpooling=true, then the amount of
JDBC connections in use will depend on how many of those application modules
are simultaneously being used by different clients. If an application module
instance is in the pool and is not currently being used by a user session, then with
jbo.doconnectionpooling=true it will have released its JDBC connection
back to the connection pool and while the application module instance is sitting
there waiting for either another user to need it again, or to eventually be cleaned

Note: The notion of disconnecting the application module upon
release to the pool better captures what the actual feature is doing
than the related configuration parameter name
(jbo.doconnectionpooling) does. The setting of
jbo.doconnectionpooling=false does not mean that there is no
database connection pooling happening. What it means is that the
application module is not disconnected from its JDBC connection
upon check in back to the application module pool.

Setting Pool Configuration Parameters

Tuning Application Module Pools and Connection Pools 41-11

up by the application module pool monitor, it will not be "hanging on" to a JDBC
connection.

Highest performance is achieved by not disconnecting the application module instance
from its database connection on each check in to the application module pool.
Accordingly, the default setting of the jbo.doconnectionpooling configuration
parameter is false. The pooling of application module instances is already an
effective way to optimize resource usage, and the Oracle ADF runtime is more
efficient when you do not have to disconnect application module instances from their
associated JDBC connection after each release to the pool. Effectively, by pooling the
application modules which are related one-to-one with a JDBC connection, you are
already achieving a pooling of database connections that is optimal for most Fusion
web applications.

However, when minimizing the total overall number of database sessions is a priority,
one situation in which it might be appropriate to use database connection pooling is
when you have a large number of application module pools all needing to use
database connections from the same underlying application user at the database level.
In this case, the many application module pools can economize on the total overall
database sessions by sharing a single, underlying database connection pool of JDBC
connections, albeit at a loss of efficiency of each one. This choice would be favored
only if total overall database sessions is of maximum priority. In this scenario, if a user
scrolls through some, but not all rows of a view object's row set, then with
jbo.doconnectionpooling=true, Oracle ADF will automatically passivate the
pending application module state (including current row information) so that the next
time the application module is used, the queried view object can be put back into the
same current row with the same initial rows fetched. This passivation behavior may
reduce performance.

41.2.7 What You May Need to Know About Application Module Pool Parameters
The application module pool configuration parameters fall into three logical categories
relating to pool behavior, pool sizing, and pool cleanup behavior.

41.2.7.1 Pool Behavior Parameters
Table 41–1 lists the application module configuration parameters that affect the
behavior of the application module pool.

Performance Tip: Leave the jbo.doconnectionpooling
configuration parameter set to false for best performance without
sacrificing scalability and reliability. Database connection pooling is
still achieved through application module pooling. The only exception
is when multiple application module pools (and therefore a large
number of application module instances) share the same database,
making the total available database connections the highest priority.

Setting Pool Configuration Parameters

41-12 Fusion Developer's Guide for Oracle Application Development Framework

Table 41–1 Application Module Pool Behavior Configuration Parameters

Pool Configuration Parameter Description

Failover Transaction State Upon Managed
Release

(jbo.dofailover)

Enables eager passivation of pending
transaction state each time an application
module is released to the pool in "Managed
State" mode. See Section 40.2.2.2, "How
Passivation Changes When Optional Failover
Mode is Enabled" for more information.

Fusion web applications should set enable
failover (true) to allow any other application
module to activate the state at any time.

By default, the failover feature is disabled
(jbo.dofailover=false) as a performance
optimization when there is only one web
server instance configured, by reducing the
need for passivation and activation. This
allows for application module affinity to a
specific user session.

For high availability, enable the failover
feature (jbo.dofailover=true) to ensure
that more application modules are readily
available, thereby increasing scalability. In this
mode, passivation occurs at the end of every
request.

When failover is enabled, a failure can occur
when Oracle WebLogic Server is configured to
forcibly release connections back into the pool.
A failure of this type produces a
SQLException (Connection has already been
closed.) that is saved to the server log. To
ensure that state passivation occurs and users'
changes are saved, the server administrator
should set an appropriate value for the
weblogic-application.xml deployment
descriptor parameter
inactive-connection-timeout-second
s on the <connection-check-params>
pool params element. Setting the deployment
descriptor parameter to several minutes, in
most cases, should avoid forcing the inactive
connection timeout and the resulting
passivation failure. Adjust the setting as
needed for your environment.

Row-Level Locking Behavior Upon Release

(jbo.locking.mode)

Forces the application module pool not to
create a pending transaction state on the
database with row-level locks each time the
application module is released to the pool. See
Section 40.11.1, "How to Set Applications to
Use Optimistic Locking" for more information.

Fusion web applications should leave the
locking mode set to the default value
optimistic to avoid creating the row-level
locks.

This feature is disabled when the property is
set to pessimistic.

Setting Pool Configuration Parameters

Tuning Application Module Pools and Connection Pools 41-13

Disconnect Application Module Upon Release

(jbo.doconnectionpooling)

Forces the application module pool to release
the JDBC connection used each time the
application module is released to the pool. See
Section 41.2.6, "What You May Need to Know
About How Database and Application
Module Pools Cooperate" for more
information.

This feature is disabled by default (false).

Transaction Memory State Upon Release

(jbo.txn.disconnect_level)

By default, after the application module is
passivated, the view objects and its row sets
are closed and removed, to be recreated and
reverted to their original state upon activation.
This behavior corresponds to the default
jbo.txn.disconnect_level=0.

When setting jbo.txn.disconnect_
level=1 the application module, view objects
and row sets all remain in memory and stay
valid but their corresponding references to
JDBC objects are dropped. Upon activation,
the framework reexecutes and synchronizes
the cursor positions.

Setting jbo.txn.disconnect_level=1
can improve performance when enabling
application modules to disconnect from their
JDBC connection (when used in conjunction
with jbo.doconnectionpooling=true)
and reduces the memory overhead associated
with this situation.

Enable Application Module Pooling

(jbo.ampool.doampooling)

Enables application module pooling by
default. Whenever you deploy your
application in a production environment the
default setting of
jbo.ampool.doampooling set to true is
the way you will run your application. But, as
long as you run your application in a test
environment, setting the property to false
can play an important role in your testing.
When this property is false, there is
effectively no application pool. See
Section 40.10, "Testing to Ensure Your
Application Module is Activation-Safe" for
more information.

This feature is enabled by default (true).

Support Dynamic JDBC Credentials

(jbo.ampool.dynamicjdbccredentials)

Enables additional pooling lifecycle events to
allow developer-written code to change the
database credentials (username/password)
each time a new user session begins to use the
application module.

This feature is enabled by default (true),
however this setting is a necessary but not
sufficient condition to implement the feature.
The complete implementation requires
additional developer-written code.

Table 41–1 (Cont.) Application Module Pool Behavior Configuration Parameters

Pool Configuration Parameter Description

Setting Pool Configuration Parameters

41-14 Fusion Developer's Guide for Oracle Application Development Framework

41.2.7.2 Pool Sizing Parameters
Table 41–2 lists the application module configuration parameters that affect the sizing
of the application module pool.

Reset Non-Transactional State Upon
Unmanaged Release

(jbo.ampool.resetnontransactionals
tate))

Forces the application module to reset any
non-transactional state like view object
runtime settings, JDBC prepared statements,
bind variable values, etc. when the application
module is released to the pool in unmanaged
or "stateless" mode.

This feature is enabled by default (true).
Disabling this feature can improve
performance, however since it does not clear
bind variable values, your application needs
to ensure that it systemically sets bind variable
values correctly. Failure to do so with this
feature disabled can mean one user might see
data with another users bind variable values.)

Table 41–2 Application Module Pool Sizing Configuration Parameters

Pool Configuration Parameter Description

Initial Pool Size

(jbo.ampool.initpoolsize)

The number of application module instances
to created when the pool is initialized.

The default is 0 (zero) instances. A general
guideline is to configure this to 10% more than
the anticipated number of concurrent
application module instances required to
service all users.

Creating application module instances during
initialization takes the CPU processing costs of
creating application module instances during
the initialization instead of on-demand when
additional application module instances are
required.

Maximum Pool Size

(jbo.ampool.maxpoolsize)

The maximum number of application module
instances that the pool can allocate. The pool
will never create more application module
instances than this limit imposes.

The default is 4096 instances. A general
guideline is to configure this to 20% more than
the initial pool size to allow for some
additional growth. If this is set too low, then
some users may see an error accessing the
application if no application module instances
are available.

Table 41–1 (Cont.) Application Module Pool Behavior Configuration Parameters

Pool Configuration Parameter Description

Setting Pool Configuration Parameters

Tuning Application Module Pools and Connection Pools 41-15

41.2.7.3 Pool Cleanup Parameters
A single "application module pool monitor" per Java VM runs in a background thread
and wakes up every so often to do resource reclamation. Table 41–3 lists the
parameters that affect how resources are reclaimed when the pool monitor does one of
its resource cleanup passes.

Referenced Pool Size

(jbo.recyclethreshold)

The maximum number of application module
instances in the pool that attempt to preserve
session affinity for the next request made by
the session which used them last before
releasing them to the pool in managed-state
mode.

The referenced pool size should always be less
than or equal to the maximum pool size. The
default is to allow 10 available instances to try
and remain "loyal" to the affinity they have
with the most recent session that released
them in managed state mode.

Configure this value to maintain the
application module instance's affinity to a
user's session. A general guideline is to
configure this to the expected number of
concurrent users that perform multiple
operations with short think times. If there are
no users expected to use the application with
short think times, then this can be configured
to 0 zero to eliminate affinity.

Maintaining this affinity as much as possible
will save the CPU processing cost of needing
to switch an application module instance from
one user session to another.

Maximum Instance Time to Live

(jbo.ampool.timetolive)

The number of milliseconds after which to
consider an application module instance in the
pool as a candidate for removal during the
next resource cleanup regardless of whether it
would bring the number of instances in the
pool below minavailablesize.

The default is 3600000 milliseconds of total
time to live (which is 3600 seconds, or one
hour). The default value is sufficient for most
applications.

Best Practice: When you specify the length of time between
application module pool cleanup passes, set all application modules to
use the same Pool Polling Interval value. Since there is only a single
application monitor pool monitor per Java VM, the value that will
effectively be used for the application module pool monitor polling
interval will be the value found in the application module
configuration read by the first application module pool that gets
created. Setting all application modules to use the same value ensures
that this value is set in a predictable way.

Table 41–2 (Cont.) Application Module Pool Sizing Configuration Parameters

Pool Configuration Parameter Description

Setting Pool Configuration Parameters

41-16 Fusion Developer's Guide for Oracle Application Development Framework

Table 41–3 Application Module Resource Management Configuration Parameters

Pool Configuration Parameter Description

Pool Polling Interval

(jbo.ampool.monitorsleepinterval)

The length of time in milliseconds between
pool resource cleanup.

While the number of application module
instances in the pool will never exceed the
maximum pool size, available instances which
are candidates for getting removed from the
pool do not get "cleaned up" until the next
time the application module pool monitor
wakes up to do its job.

The default is to have the application module
pool monitor wake up every 600000
milliseconds (which is 600 seconds, or ten
minutes). Configuring a lower interval results
in inactive application module instances being
removed more frequently to save memory.
Configuring a higher interval results in less
frequent resource cleanups.

Maximum Available Size

(jbo.ampool.maxavailablesize)

The ideal maximum number of available
application module instances in the pool when
the server is under load.

When the pool monitor wakes up to do
resource cleanup, it will try to remove
available application module instances to
bring the total number of available instances
down to this ideal maximum. Instances that
have been not been used for a period longer
than the idle instance time-out will always get
cleaned up at this time, then additional
available instances will be removed if
necessary to bring the number of available
instances down to this size.

The default maximum available size is 25
instances. Configure this to leave the
maximum number of available instances
desired after a resource cleanup. A lower
value generally results in more application
module instances being removed from the
pool on a cleanup.

While application module pool tuning allows
different values for the
jbo.ampool.maxavailablesize |
jbo.ampool.minavailablesize
parameters, in most cases it is fine to set these
minimum and maximum tuning properties to
the same value.

Setting Pool Configuration Parameters

Tuning Application Module Pools and Connection Pools 41-17

41.2.8 What You May Need to Know About Data Source Configuration
When you specify a JDBC data source as your application module’s connection type,
any configuration parameters that you have configured for the database connection
pool will be ignored. To configure the connection pool for your data source, you must
use the means provided by your Java EE container. In the case of Oracle WebLogic
Server, you configure the data source using the Oracle WebLogic Server
Administration Console.

The main steps for configuring JDBC data sources are:

1. Create a data source for each data base that you want to connect to. When you
create the data source, specify the configuration options to match the ones for ADF

Minimum Available Size

(jbo.ampool.minavailablesize)

The minimum number of available application
module instances that the pool monitor should
leave in the pool during a resource cleanup
operation, when the server is under light load.

Set to 0 (zero) if you want the pool to shrink to
contain no instances when all instances have
been idle for longer than the idle time-out
after a resource cleanup.

The default is 5 instances.

While application module pool tuning allows
different values for the
jbo.ampool.minavailablesize |
jbo.ampool.maxavailablesize
parameters, in most cases it is fine to set these
minimum and maximum tuning properties to
the same value.

Idle Instance Timeout

(jbo.ampool.maxinactiveage)

The number of milliseconds after which to
consider an inactive application module
instance in the pool as a candidate for removal
during the next resource cleanup.

The default is 600000 milliseconds of idle time
(which is 600 seconds, or ten minutes). A
lower value results in more application
module instances being marked as a candidate
for removal at the next resource cleanup. A
higher value results in fewer application
module instances being marked as a candidate
for removal at the next resource cleanup.

Maximum Instance Time to Live

(jbo.ampool.timetolive)

The number of milliseconds after which to
consider an connection instance in the pool as
a candidate for removal during the next
resource cleanup regardless of whether it
would bring the number of instances in the
pool below minavailablesize.

The default is 3600000 milliseconds of total
time to live (which is 3600 seconds, or one
hour). A lower value reduces the time an
application module instance can exist before it
must be removed at the next resource cleanup.
The default value is sufficient for most
applications. A higher value increases the time
an application module instance can exist
before it must be removed at the next cleanup.

Table 41–3 (Cont.) Application Module Resource Management Configuration Parameters

Pool Configuration Parameter Description

Setting Pool Configuration Parameters

41-18 Fusion Developer's Guide for Oracle Application Development Framework

Business Components database connection pools described in Table 41–4. The
configuration settings that you specify will depend on your database and the
capacity planning that you need anticipate for your application.

For details about configuring JDBC data sources and connection pool capacity
planning, see Oracle Fusion Middleware Configuring and Managing JDBC for Oracle
WebLogic Server.

2. Optionally, configure transaction options for the data source.

3. Optionally, configure connection testing options for the data source.

4. Optionally, target the data source to additional servers and clusters.

For detailed procedures for each of these steps, see the topic "Configure JDBC data
sources" in the Administration Console Online Help.

41.2.9 What You May Need to Know About Database Connection Pool Parameters
If you are using a JDBC URL for your connection information so that the ADF
database connection pool is used, then configuration parameters listed in Table 41–5
can be used to tune the behavior of the database connection pool. A single "database
connection pool monitor" per Java VM runs in a background thread and wakes up
every so often to do resource reclamation. The parameters in Table 41–3 include the
ones that affect how resources are reclaimed when the pool monitor does one of its
resource cleanup passes.

Table 41–4 Equivalent Oracle WebLogic Server Data Source Parameters

ADF Business Components Parameter \Oracle WebLogic Server Parameter

Initial Pool Size

(jbo.initpoolsize)

Initial Capacity

Maximum Pool Size

(jbo.maxpoolsize)

Maximum Capacity

Pool Polling Interval

(jbo.poolmonitorsleepinterval)

No equivalent for Oracle WebLogic Server.

Maximum Available Size

(jbo.poolmaxavailablesize)

Maximum Capacity

Minimum Available Size

(jbo.poolminavailablesize)

Maximum Capacity

Idle Instance Timeout

(jbo.poolmaxinactiveage)

Shrink Frequency Seconds

Setting Pool Configuration Parameters

Tuning Application Module Pools and Connection Pools 41-19

Note: The configuration parameters for database connection pooling
have MetaObjectManager scope (described in Section 41.2.5, "What
You May Need to Know About Configuration Property Scopes"
earlier). This means their settings are global and will be set once when
the first application module pool in your application is created. To
insure the most predictable behavior, leave the values of these
parameters in the Connection Pool section of the Pooling and
Scalability tab at their default values — so that no entry for them is
written into the bc4j.xcfg file — and to instead set the desired
values for the database connection pooling tuning parameters as Java
System Parameters in your Java EE container.

Table 41–5 Database Connection Pool Parameters

Pool Configuration Parameter Description

Initial Pool Size

(jbo.initpoolsize)

The number of JDBC connection instances to
created when the pool is initialized

The default is an initial size of 0 instances.

Maximum Pool Size

(jbo.maxpoolsize)

The maximum number of JDBC connection
instances that the pool can allocate.

The pool will never create more JDBC
connections than this imposes. The default is
4096 instances.

Pool Polling Interval

(jbo.poolmonitorsleepinterval)

The length of time in milliseconds between
pool resource cleanup.

While the number of JDBC connection
instances in the pool will never exceed the
maximum pool size, available instances which
are candidates for getting removed from the
pool do not get "cleaned up" until the next
time the JDBC connection pool monitor wakes
up to do its job.

The default is 600000 milliseconds of idle
time (which is 600 seconds, or ten minutes).
Configuring a lower interval results in
inactive connection instances being removed
more frequently to save memory. Configuring
a higher interval results in less frequent
resource cleanups.

Maximum Available Size

(jbo.poolmaxavailablesize)

The ideal maximum number of JDBC
connection instances in the pool when the
server is under load.

When the pool monitor wakes up to do
resource cleanup, it will try to remove
available JDBC connection instances to bring
the total number of available instances down
to this ideal maximum. Instances that have
been not been used for a period longer than
the idle instance time-out will always get
cleaned up at this time, then additional
available instances will be removed if
necessary to bring the number of available
instances down to this size. The default is an
ideal maximum of 25 instances (when not
under load).

Initializing Database State and Pooling Considerations

41-20 Fusion Developer's Guide for Oracle Application Development Framework

Notice that since the database connection pool does not implement the heuristic of
session affinity, there is no configuration parameter for the database connection pool
which controls the referenced pool size.

41.3 Initializing Database State and Pooling Considerations
Sometimes you may need to invoke stored procedures to initialize database state
related to the current user's session. The correct place to perform this initialization is in
an overridden prepareSession() method of your application module.

41.3.1 How to Set Database State Per User
The Fusion web application can set database state on a per-user basis. You typically
create a database CONTEXT namespace, associate a PL/SQL procedure with it, and
then use the SYS_CONTEXT() SQL function to reference values from the context.

For example, you can use the PL/SQL package to set and get a package-level variable
that holds the name of the currently authenticated Fusion web application user as
shown in Example 41–4.

Example 41–4 CONTEXT_PKG PL/SQL Package

create or replace package context_pkg as
 procedure set_app_user_name(username varchar2);
 function app_user_name return varchar2;
end context_pkg;

Then your application can define the WHERE clause of a view object to reference the
context_pkg.app_user_name function and query the per-user state.

To set the database state, the application module framework extension class
(AppModuleImpl.java) defines a callStoredProcedure() helper method
similar to the ones in Section 37.5.2, "How to Invoke Stored Procedure with Only IN
Arguments." The custom application module class then extends this framework
extension class and defines the setCurrentUserInPLSQLPackage() helper
method shown in Example 41–5. The helper method uses the
callStoredProcedure() method to invoke the context_pkg.set_app_user_

Minimum Available Size

(jbo.poolminavailablesize)

The minimum number of available JDBC
connection instances that the pool monitor
should leave in the pool during a resource
cleanup operation, when the server is under
light load. Set to zero (0) if you want the pool
to shrink to contain no instances when all
instances have been idle for longer than the
idle time-out.

The default is to not let the minimum
available size drop below 5 instances.

Idle Instance Timeout

(jbo.poolmaxinactiveage)

The number of seconds after which to
consider an inactive JDBC connection instance
in the pool as a candidate for removal during
the next resource cleanup.

The default is 600000 milliseconds of idle
time (which is 600 seconds, or ten minutes).

Table 41–5 (Cont.) Database Connection Pool Parameters

Pool Configuration Parameter Description

Initializing Database State and Pooling Considerations

Tuning Application Module Pools and Connection Pools 41-21

name() stored procedure, passing the value of the currently authenticated user as a
parameter value.

Example 41–5 Method to Call Context_Pkg.Set_App_User_Name Stored Procedure

// In CustomAppModuleImpl.java
public void setCurrentUserInPLSQLPackage() {
 String user = getUserPrincipalName();
 callStoredProcedure("context_pkg.set_app_user_name(?)",new Object[]{user});
}

With this helper method in place, the custom application module class then overrides
the prepareSession() method as shown in Example 41–6.

Example 41–6 Overridden afterConnect() and prepareSession() to Set Database State

// In CustomAppModuleImpl.java
 protected void prepareSession(Session session) {
 super.prepareSession(session);
 getLoggedInUser().retrieveUserInfoForAuthenticatedUser();
 setUserIdIntoUserDataHashtable();
 setCurrentUserInPLSQLPackage();
 }

41.3.2 What You May Need to Know About Database User State and
jbo.doconnectionpooling = true

The default setting for jbo.doconnectionpooling is false. This means the
application module instance hangs onto its JDBC connection while it's in the
application module pool. This is the most efficient setting because the application
module can keep its JDBC prepared statements open across application module
checkouts/checkins.The application module instance will trigger its
prepareSession() method each time a new user session begins using it.

If you set jbo.doconnectionpooling to true, then on each checkout of an
application module from the pool, that application module pool will acquire a JDBC
connection from the database connection pool and use it during the span of the current
request. At the end of the request when the application module is released back to the
application module pool, that application module pool releases the JDBC connection it
was using back to the database connection pool.

It follows that with jbo.doconnectionpooling set to true, the application
module instance in the pool may have a completely different JDBC connection each
time you check it out of the pool. In this situation, the prepareSession() method
will fire each time the application module is checked out of the pool to give you a
chance to reinitialize the database state.

Alternatively, you can set jbo.txn.disconnect_level=1 (default is 0) to ensure
that all application modules, view objects and row sets remain in memory and stay
valid after their corresponding references to JDBC connections are dropped. Upon
activation, the framework reexecutes and synchronizes the cursor positions. When
used in conjunction with jbo.doconnectionpooling=true, setting
jbo.txn.disconnect_level=1 reduces the memory overhead associated with this
situation.

Initializing Database State and Pooling Considerations

41-22 Fusion Developer's Guide for Oracle Application Development Framework

42

Using the Active Data Service 42-1

42Using the Active Data Service

This chapter provides information for using the ADF Model layer and ADF Faces
components with Active Data Service (ADS) in a Fusion web application.

This chapter includes the following sections:

■ Section 42.1, "Introduction to the Active Data Service"

■ Section 42.2, "Configuring the Active Data Service"

■ Section 42.3, "Configuring Components to Use the Active Data Service"

■ Section 42.4, "Using the Active Data Proxy"

■ Section 42.5, "Using the Active Data with a Scalar Model"

42.1 Introduction to the Active Data Service
The Fusion technology stack includes Active Data Service (ADS), which is a
server-side push framework that allows you to provide real-time data updates for
ADF Faces components. You bind ADF Faces components to a data source and ADS
pushes the data updates to the browser client without requiring the browser client to
explicitly request it. For example, you may have a table bound to attributes of an ADF
data control whose values change on the server periodically, and you want the
updated values to display in the table. You can configure your application and the
component so that whenever the data changes on the server, the ADF Model layer
notifies the component and the component rerenders the changed data with the new
value highlighted, as shown in Figure 42–1.

Figure 42–1 Table Displays Updated Data as Highlighted

Using ADS is an alternative to using automatic partial page rendering (PPR) to
rerender data that changes on the backend as a result of business logic associated with
the ADF data control bound to the ADF Faces component. Whereas automatic PPR
requires sending a request to the server (typically initiated by the user), ADS enables

Introduction to the Active Data Service

42-2 Fusion Developer's Guide for Oracle Application Development Framework

changed data to be pushed from the data store as the data arrives on the server. Also,
in contrast to PPR, ADS makes it possible for the component to rerender only the
changed data instead of the entire component. This makes ADS ideal for situations
where the application needs to react to data that changes periodically.

To use this functionality, you must configure the application to use ADS. If your
application services do not support ADS, then you also need to create a proxy of the
service so that the components can display the data as it updates in the source.

Any ADF Faces page can use ADS. However, you can configure only the following
ADF Faces components to work with active data:

■ activeCommandToolbarButton

■ activeImage

■ activeOutputText

■ table

■ tree

■ treeTable

■ DVT graph, gauge, and geographical map components

42.1.1 Limitations of the Active Data Service Framework
The framework for ADS has the following limitations.

■ ADS does not support active data for ADF Faces components added dynamically,
using PPR.

■ ADS does not support active data for ADF Faces components that appear in a web
page or region that gets invoked from a task flow call activity. Do not use task
flow call activities with bounded task flows when active data is required.

■ ADS does not support active data on ADF Faces table components with filtering
enabled. Once a table is filtered at runtime, active data cannot be displayed.

42.1.2 Active Data Service Framework
The framework for ADS contains a number of components that work together to send
the active data from the source to the UI component. When a data event occurs, if the
associated ADF Model layer binding is configured for active data, the Active Data
model delivers the data to the Event Manager. The Event Manager then retrieves the
data and invokes the Push Service, which delivers the data to the correct component,
based on how the service is configured (for more information, see Section 42.1.3, "Data
Transport Modes"). The component then applies the new data pushed from the server.
Figure 42–2 shows the ADS framework.

Introduction to the Active Data Service

Using the Active Data Service 42-3

Figure 42–2 Active Data Service Framework

In order to use the Active Data Service, you need to have a data store that publishes
events when data is changed, and you need to create business services that react to
those events. By default, ADF Business Components does not react to data events. The
Active Data Proxy framework allows all types of data sources, including ADF
Business Components, to work with ADS. It combines the ActiveDataModel with
the JSF model, so that you need to override functionality only on this proxy rather
than on both the ActiveDataModel and the JSF model.

The following comprise the ADS framework:

■ ActiveDataModel interface: Abstraction of the active data model. Its
responsibilities include:

– Starting and stopping active data

– Keeping track of the current active data event ID

– Letting the renderer know whether the model needs active data or not.

■ Event Manager: A server-side component that works with the ADF Model layer. It
is responsible for the following:

– Listening to binding events

– Retrieving active data

– Managing active data encoding

– Invoking the Push service to send the encoded active data

■ Push service: A delivery channel that interacts with the Event Manager on the
server side and with the Active Data Manager on the client side. It provides the
following:

– Establishing and maintaining the connection between the server and the client

Introduction to the Active Data Service

42-4 Fusion Developer's Guide for Oracle Application Development Framework

– Transmitting the active data over this connection from the server to the client

– Ensuring that active data gets delivered within desired parameters and
forcing component update if not

■ Active Data Manager: A client-side component that distributes the active data to
the correct component. Specifically, it is responsible for the following;

– Delivering events from the server side that are coming through the channel,
using an event delivery service

– Handling multiple browser windows through a shared channel

– Dispatching active data events to rich client components, so that the
components can render the change accordingly

■ Active Data Proxy: A proxy that allows all types of data sources to enable push
functionality. Specifically, the proxy is responsible for the following:

■ Implementing and delegating ActiveDataModel functionality

■ Delegating to JSF models

■ Listening to data change events from the data source

■ Generating active data events based on the data change events

42.1.3 Data Transport Modes
Active data is sent to the client using data streaming (push) or one of two types of data
polling. With data streaming, there is only one request, which stays open. When a data
change event occurs, a partial response is sent (the response is not closed), the client is
notified, and the associated component is updated to show the new data, as shown in
Figure 42–3.

Figure 42–3 Streaming Mode

With data polling, the application is configured to poll the data source at specified
intervals, as shown in Figure 42–4. With each request, a response is sent and closed,
whether or not a data change event has occurred. If the data has changed, then the
client is notified and the component is updated.

Configuring the Active Data Service

Using the Active Data Service 42-5

Figure 42–4 Poll Mode

Long polling is similar to streaming. When the page is rendered, a request is sent to the
active channel. However, a response is not returned until there is a data change event.
At that point, the connection is closed. As soon as the connection is closed, a new
connection is initiated, which results in the connection being active most of the time:
there are no specific intervals. Long polling results in the majority of data change
events being received when they occur, because the connection is already established
and ready to send a response to the client, as shown in Figure 42–5.

Figure 42–5 Long Polling Mode

For more information, see Section 42.2.2, "What You May Need to Know About
Transport Modes."

To use ADS, you need to configure your application to determine the method of data
transport, as well as other performance options.You also need to configure the
bindings for your components so that they can use ADS. If you are using ADF
Business Components, you need to modify your model to implement the
ActiveModel interface to register itself as the listener for active data events using the
Active Data Proxy.

42.2 Configuring the Active Data Service
You need to configure ADS to determine the data transport mode, as well as to set
other configurations, such as a latency threshold and reconnect information.

Tip: Oracle offers Oracle Business Activity Monitoring (BAM), which
is a complete solution that provides the ability to create an active data
store. For more information, see the Oracle Fusion Middleware
Developer's Guide for Oracle SOA Suite.

Configuring the Active Data Service

42-6 Fusion Developer's Guide for Oracle Application Development Framework

42.2.1 How to Configure the Active Data Service
Configuration for running the Fusion web application with ADS in JDeveloper and
Integrated WebLogic Server is done in the adf-config.xml file. For more
information about the adf-config.xml file, including how to create one if you need
to, see the "Configuration in adf-config.xml" section of the Oracle Fusion Middleware
Web User Interface Developer's Guide for Oracle Application Development Framework.

To configure the Active Data Service:
1. In the Application Resources panel, double-click the adf-config.xml file.

2. Click the Source tab to open the file in the source editor, and create an entry for
each of the elements shown in Table 42–1.

Note: If you enable ADS but do not configure it, the ADS framework
will use the default values shown in Table 42–1.

Table 42–1 ADS Configuration Elements in adf-config.xml

Element Description

Default Value
(in
milliseconds)

Minimum
Value (in
milliseconds)

<transport> The method by which data
will be delivered to the client.
Value values are:

■ streaming (default)

■ polling

■ long-polling

For more information, see
Section 42.2.2, "What You
May Need to Know About
Transport Modes."

<latency threshold> Latency threshold in
milliseconds. Active data
messages with network
delays greater than this
threshold will be treated as
late.

10000 1000

<keep-alive-interval> Frequency in milliseconds for
sending keep-alive messages
when no events are
generated.

10000 5000

<polling-interval> When <transport> set to
polling, frequency in
milliseconds of the poll
request.

5000 1000

<max-reconnect-attempt
-time>

Maximum period of time in
milliseconds a client will
attempt to reconnect the push
channel to the server upon
getting disconnected.

1800000
(30 minutes)

0

<reconnect-wait-time> Time interval in milliseconds
to wait between reconnect
attempts.

10000 1000

Configuring the Active Data Service

Using the Active Data Service 42-7

Example 42–1 shows a sample configuration that has content pushed to the client.

Example 42–1 Sample Configuration for ADS in adf-config.xml

<?xml version="1.0" encoding="utf-8" ?>
<adf-config xmlns="http://xmlns.oracle.com/adf/config"
 xmlns:ads="http://xmlns.oracle.com/adf/activedata/config">
 <ads:adf-activedata-config xmlns=
 "http://xmlns.oracle.com/adf/activedata/config">
 <transport>streaming</transport>
 <latency-threshold>5000</latency-threshold>
 <keep-alive-interval>10000</keep-alive-interval>
 <max-reconnect-attempt-time>90000</max-reconnect-attempt-time>
 <reconnect-wait-time>8000</reconnect-wait-time>
 </ads:adf-activedata-config>
</adf-config>

3. Create a properties file with an entry for the ADS configuration.

a. From the Main menu, choose File > New.

b. In the New Gallery, select General Category and then File, and click OK.

c. Name the file adf-config.properties and save it to the
META-INF\services directory.

d. Add the following line:

http\://xmlns.oracle.com/adf/activedata/config=oracle.adfinternal.view.
faces.activedata.ActiveDataConfiguration$ActiveDataConfigCallback

e. Save and close the file.

4. Synchronize the clocks on the data server and on the application server. If these
are not synchronized, then events may appear to ADS to have occurred in the
future.

42.2.2 What You May Need to Know About Transport Modes
ADS can use one of three transport modes to deliver active data to the component:
streaming, polling, or long polling.

When you configure ADS to use the streaming mode, data is pushed to the client
whenever a change event is raised by the data. On the client side, after the push
channel is established, if there is no activity within the time of the value for the
latency-threshold element plus the keep-alive-interval, an
establish-channel-request will be sent out repeatedly based on the value of the
reconnect-wait-time element, until the amount of time passed reaches the value
of the max-reconnect-attempt-time element. After that, the connection will be
considered disconnected. For example, given the values in Example 42–1, if there is no

Performance Tip: Keep the following in mind when configuring the
ADS.

■ Set the latency threshold to more than 1000 to avoid frequent
component refreshing.

■ Set the keep-alive interval and reconnect wait time to be less than
the browser's keep-alive timeout.

■ Set the max reconnect time to be less than your web server’s
session timeout.

Configuring the Active Data Service

42-8 Fusion Developer's Guide for Oracle Application Development Framework

activity in 15,000 milliseconds, an establish channel request will be sent out every 8,000
milliseconds for up to 90,000 milliseconds. After that, the connection will be
considered disconnected.

On the server side, the server disconnects the push channel and starts a timer to clean
up with a cleanup-delay-time when there is an empty active data message or
when it fails to send out an active data message. The cleanup-delay-time is
calculated as max-reconnect-attempt-time + 30 * 1000 ms. Its default value is 30
minutes.

When you configure ADS to use the polling mode, on the client side the polling
request is scheduled to be sent out repeatedly after the value of the
polling-interval element has been reached. If no response is received after the
value of the max-reconnect-attempt-time has elapsed, the connection is treated
as disconnected and no more requests will be sent. After receiving a polling response,
if the time the response has taken is greater than the polling-interval element,
the service sends the next request out right away. If it is less, the next request will be
sent as scheduled.

For the server side, the session ends after the polling response is returned. At that
point, a timer with a cleanup-delay-time is set up to trigger cleanup. If a new
request comes in before the timer fires, the old timer is canceled, and new timer is
created.

When you configure ADS to use the long polling mode, requests are made as they are
in streaming mode; however, as soon as the connection is treated as disconnected, a
new connection is initiated. The result is a significant reduction in latency.

Table 42–2 compares the three different modes.

Table 42–2 Comparison of Streaming, Polling, and Long-Polling Modes

Streaming Polling Long-Polling

Latency Very good.

Directly after an
event occurs on the
server side, a partial
response is sent to
the client. If there is
another event,
immediately, it is
also sent as a partial
response. There is
almost no latency
with this approach.

Poor, depending on the
polling interval.

If the polling interval is
short (for example, 0.5
seconds), it will slow
down the network
because the connections
are repeatedly opened. It
is also expensive on the
client- and server-side
resources.

Good.

However, when there is
a new event immediately
after a response has been
closed, there is some
latency until the new
data appears on the
client side. On average,
this is not a problem.

Configuring Components to Use the Active Data Service

Using the Active Data Service 42-9

42.3 Configuring Components to Use the Active Data Service
How you configure components to use ADS depends on whether or not you must use
the Active Data proxy. If your application uses a data store that publishes events when
data is changed, and your business services react to those events (for example, if your
application uses BAM), then you do not need to use the Active Data proxy.

If your business services do not react to those events (for example, if your application
uses ADF Business Components), then you must use the Active Data proxy and follow
different procedures for configuring your components.

HTTP Proxy Poor.

For some older
servers, because the
response is never
released, when a
proxy is sitting
between client and
server, it is possible
that the proxy will
buffer responses.

This is an
unfortunate
optimization that
prevents real-time
data from flowing
into the browser.
Long polling should
be used if a proxy is
used.

Good. Good.

Number of live
connections

Poor.

Many concurrent
connections, as the
stream is always live.

Good.

Connections are live
only during the actual
poll. Note however that
if there is a high polling
rate then the number of
concurrent connections
will also be high.

Poor.

Many concurrent
connections, as the
stream is almost always
live.

Communication
channel

HTTP GET

This can result in the
display of a "busy"
cursor or the
animation of a
browser’s "throbber"
icon.

XMLHttpRequest
(XHR)

HTTP GET

XMLHttpRequest
(XHR)

HTTP GET

Table 42–2 (Cont.) Comparison of Streaming, Polling, and Long-Polling Modes

Streaming Polling Long-Polling

Configuring Components to Use the Active Data Service

42-10 Fusion Developer's Guide for Oracle Application Development Framework

42.3.1 How to Configure Components to Use the Active Data Service Without the
Active Data Proxy

To use ADS without the proxy, you need to set a value on the binding element in the
corresponding page definition file.

To configure a component to display active data without the Active Data proxy:
1. Drop a component onto a JSF page.

2. If you are using an ADF bound tree or tree table, you need to ensure the following:

■ The binding represents homogeneous data (that is, only one rule), although an
accessor can still access a like accessor.

■ The binding rule contains a single attribute.

■ The table does not use filtering.

■ The tree component’s nodeStamp facet contains a single outputText tag
and contains no other tags, as described in Section 42.3.3, "What You May
Need to Know About Displaying Active Data in ADF Trees."

3. Open the page’s associated page definition file.

4. In the Structure window for the page definition file, select the node that represents
the attribute binding for the component. In the Property Inspector, set the
ChangeEventPolicy attribute to Push.

42.3.2 How to Configure Components to Use the Active Data Service with the Active
Data Proxy

To use ADS with the proxy, you need bind the value of your component to decorator
class that will use the proxy. For more information about this class, see Section 42.4,
"Using the Active Data Proxy." to set a value on the binding element in the
corresponding page definition file.

To configure a component to display active data with the Active Data proxy:
1. Drop a component onto a JSF page.

2. Change the value attribute to be bound to a decorator class that you will create for
use with the proxy. For more information, see Section 42.4, "Using the Active Data
Proxy."

Note: If your business service requires the use of the Active Data
proxy, then you can only use the following components with active
data:

■ table

■ tree

■ treeTable

■ DVT graphs, gauges, and geographical map components

Tip: You can use the statusIndicator component to indicate the
server state. For more information, see the "Displaying Application
Status Using Icons" section of the Oracle Fusion Middleware Web User
Interface Developer's Guide for Oracle Application Development Framework.

Configuring Components to Use the Active Data Service

Using the Active Data Service 42-11

If you are using an ADF bound tree or tree table, you need to ensure the following:

■ The binding represents homogeneous data (that is, only one rule), although an
accessor can still access a like accessor.

■ The binding rule contains a single attribute.

■ The table does not use filtering.

■ The tree component’s nodeStamp facet contains a single outputText tag
and contains no other tags, as described in Section 42.3.3, "What You May
Need to Know About Displaying Active Data in ADF Trees."

42.3.3 What You May Need to Know About Displaying Active Data in ADF Trees
When you create an ADF Faces tree (or tree table) component, you configure a
nodeStamp facet, which is a holder for the component used to display the data for
each node of the tree. Each node is rendered (stamped) once, repeatedly for all nodes.

Because of this stamping behavior, only certain types of components are supported as
children inside an ADF Faces tree component. When the tree component is not bound
to an active data source, all components that have no behavior are supported.
However, when you configure the tree to use ADS, only the outputText component
is supported inside of the nodeStamp facet, as shown in Example 42–2. The
nodeStamp facet must not contain any other tags. So, for example, active data will not
work if you add panelGroupLayout tags to the nodeStamp facets of a tree
configured to use ADS.

Example 42–2 Tree Configured to Use ADS Must Contain outputText Component

<f:facet name="nodeStamp">
 <af:outputText value="#{row.str2}"/>
</f:facet>

42.3.4 What Happens at Runtime: How Components Render When Bound to Active
Data

After you configure your application and the component for ADS, whenever the data
changes on the server, the component is notified and rerenders with only the changed
data. In contrast, a component not configured for either active data or automatic PPR
will need to be explicitly refreshed after a data change occurs. The explicit refresh will
refetch all data that is visible on the client, including data that has not changed.
Consequently, this will force the entire component to rerender. Additionally, when the
component is bound to an active data source (with active data policy "Push"), the
component rerenders with the new value highlighted.

42.3.5 What You May Need to Know About ADS and Google Chrome
When the Fusion web application runs in the Google Chrome web browser and a user
presses Ctrl+N (or Ctrl+T) to open a new window (or tab) and then copies the URL
from the original window into the new window, active data in the original window
will stop streaming. According to the Google Chrome process model, the new browser
window will be created in a separate process and both windows will share the same
HTTP session. However, because browser windows that are created in two separate
processes cannot communicate with each other, ADS will become out of sync between
the client and server and will stop streaming. As a workaround, to allow active data in
multiple Google Chrome windows, before copying the URL from the original window
into the new window users must press Ctrl-Shift-N to open the browser window in

Using the Active Data Proxy

42-12 Fusion Developer's Guide for Oracle Application Development Framework

incognito mode (private browsing). Because Ctrl-Shift-N opens the window in a
separate process and a separate HTTP session, ADS will not attempt to synchronize
between the windows and streaming will be unaffected.

42.4 Using the Active Data Proxy
You use the active data proxy when your business services do not react to data events.
If you want your components to update based on events passed into ADF Business
Components, then you need to use the Active Data Proxy.

You need to create a Java class that subclasses one of the following decorator classes:

■ ActiveCollectionModelDecorator class

■ ActiveDataModelDecorator class (for use with graphs)

■ ActiveGeoMapDataModelDecorator class

■ ActiveGaugeDataModelDecorator class

These classes are wrapper classes that delegate the active data functionality to a
default implementation of ActiveDataModel. The ActiveDataModel class listens
for data change events and interacts with the Event Manager. Specifically, it does the
following:

■ Starts and stops the active data and the ActiveDataModel object, and registers
and unregisters listeners to the data source.

■ Wraps the JSF model interface. For example, the
ActiveCollectionModelDecorator class wraps the CollectionModel
class.

■ Generates active data events based on data change events from the data source.

■ Manages listeners from the Event Manager and pushes active data events to the
Event Manager.

You need to implement methods on this Java class that registers itself as the listener of
the active data source and gets the model to which the data is being sent.

Tip: If your application uses BAM for the business service, then you
do not need to use the Active Data Proxy.

Note: If your business service requires the use of the Active Data
Proxy, then you can only use the following components with active
data:

■ table

■ tree

■ treeTable

■ Graph, geographical map, and gauge DVT components

Using the Active Data Proxy

Using the Active Data Service 42-13

Before you begin:
Implement the logic to fire the active data events asynchronously from the data
source. For example, this logic might be a business process that updates the database,
or a JMS client that gets notified from JMS.

To use the active data service:
1. Create a Java class that extends the decorator class appropriate for your

component. Example 42–3 shows a class created for a table.

Example 42–3 Extend the Decorator Class

package view;

import oracle.adf.view.rich.model.ActiveCollectionModelDecorator;

/**
 * This code wraps the existing collection model in the page and implements the
 ActiveDataModel interface to enable ADS for the existing page.
 */
public class DeptModel
 extends ActiveCollectionModelDecorator
{
}

2. Implement the method that returns the model. Example 42–4 shows an
implementation of the getCollectionModel() method that relies on
expression language (EL) to avoid needing to typecast to an internal class. The
method returns the DepartmentsView1 collection from the binding container.

Example 42–4 Return the Model

public CollectionModel getCollectionModel()
{
 if (_model == null)
 {
 FacesContext fc = FacesContext.getCurrentInstance();
 Application app = fc.getApplication();
 ExpressionFactory elFactory = app.getExpressionFactory();
 ELContext el = fc.getELContext();

 // This is EL to avoid typecasting to an Internal class.
 ValueExpression ve = elFactory.createValueExpression(el,
 "#{bindings.DepartmentsView1.collectionModel}", Object.class);

Note: The Active Data framework does not support complicated
business logic or transformations that require the ADF runtime
context, such as a user profile or security. For example, the framework
cannot convert an ADF context locale-dependent value and return a
locale-specific value.

As an example of complicated business logic, say you have logic that
allows a user to move an order from open status to pending. This
change results in an update event, which should cause the order to
be removed from a data object called "Open Orders." The framework
cannot handle this event type transformation based on business logic.
Instead, you need to have your data source handle this before
publishing the data change event.

Using the Active Data Proxy

42-14 Fusion Developer's Guide for Oracle Application Development Framework

 // Now GET the collectionModel
 _model = (CollectionModel)ve.getValue(el);
 }
 return _model;
}

3. Create an inner class that is your own implementation of an ActiveDataModel
class, which the decorator can use to start and stop the active data and connect
and disconnect from the data source. This class should also use the changeCount
API to maintain data read consistency, as shown in Example 42–5. For more
information, see Section 42.4.1, "What You May Need to Know About Read
Consistency."

Example 42–5 Connect to the Data Source

public class MyActiveDataModel extends BaseActiveDataModel
 {
 protected void startActiveData(Collection<Object> rowKeys,
 int startChangeCount)
 {
 _listenerCount.incrementAndGet();
 if (_listenerCount.get() == 1)
 {
 System.out.println("start up");

 Runnable dataChanger = new Runnable()
 {
 public void run()
 {
 System.out.println("MyThread starting.");
 try
 {
 Thread.sleep(2000);
 System.out.println("thread running");
 triggerDataChange(MyActiveDataModel.this);
 }
 catch (Exception exc)
 {
 System.out.println("MyThread exceptioned out.");
 }
 System.out.println("MyThread terminating.");
 }
 };
 Thread newThrd = new Thread(dataChanger);
 newThrd.start();
 }
 }

 protected void stopActiveData(Collection<Object> rowKeys)
 {
 _listenerCount.decrementAndGet();
 if (_listenerCount.get() == 0)
 {
 System.out.println("tear down");
 }
 }

 public int getCurrentChangeCount()
 {

Using the Active Data Proxy

Using the Active Data Service 42-15

 return _currEventId.get();
 }

 public void bumpChangeCount()
 {
 _currEventId.incrementAndGet();
 }

 public void dataChanged(ActiveDataUpdateEvent event)
 {
 fireActiveDataUpdate(event);
 }

 private final AtomicInteger _listenerCount = new AtomicInteger(0);
 private final AtomicInteger _currEventId = new AtomicInteger();
}

4. Implement the method that will return the ActiveDataModel class, as shown in
Example 42–6.

Example 42–6 Return the ActiveDataModel

public ActiveDataModel getActiveDataModel()
 {
 return _activeDataModel;
 }

5. Create a method that creates application-specific events that can be used to insert
or update data on the active model.

Example 42–7 shows the triggerDataChange() method, which uses the active
model (an instance of MyActiveDataModel) to create
ActiveDataUpdateEvent objects to insert and update data.

Example 42–7 Create Event Objects to Update Model

public void triggerDataChange(MyActiveDataModel l)
 throws Exception
 {

 // do an update on dept 1
 l.bumpChangeCount();
 ActiveDataUpdateEvent event =
 ActiveDataEventUtil.buildActiveDataUpdateEvent(ActiveDataEntry.ChangeType.UPDATE,
 l.getCurrentChangeCount(),
 JboActiveDataEventUtil.convertKeyPath(new Object[]
 { new Long(1), new Integer(0) }), null, new String[]
 { "name" }, new Object[]
 { "Name Pushed" });

 l.dataChanged(event);

 try
 {
 Thread.sleep(2000);
 }
 catch (InterruptedException ie)
 {

Using the Active Data Proxy

42-16 Fusion Developer's Guide for Oracle Application Development Framework

 ie.printStackTrace();
 }
 // insert dept 99

 l.bumpChangeCount();
 event =
 ActiveDataEventUtil.buildActiveDataUpdateEvent(ActiveDataEntry.ChangeType.INSERT_AFTER,
 l.getCurrentChangeCount(),
 JboActiveDataEventUtil.convertKeyPath(new Object[]
 { new Long(99), new Integer(0) }),
 JboActiveDataEventUtil.convertKeyPath(null), new String[]
 { "addr1", "name" }, new Object[]
 { "Addr Inserted", "Name Inserted" });
 l.dataChanged(event);

 try
 {
 Thread.sleep(2000);
 }
 catch (InterruptedException ie)
 {
 ie.printStackTrace();
 }

 // delete dept 10

 l.bumpChangeCount();
 event =
 ActiveDataEventUtil.buildActiveDataUpdateEvent(ActiveDataEntry.ChangeType.REMOVE,
 l.getCurrentChangeCount(),
 JboActiveDataEventUtil.convertKeyPath(new Object[]
 { new Long(9), new Integer(0) }), null, null, null);
 l.dataChanged(event);

 try
 {
 Thread.sleep(2000);
 }
 catch (InterruptedException ie)
 {
 ie.printStackTrace();
 }

 // refresh the entire table

 l.bumpChangeCount();
 event =
 ActiveDataEventUtil.buildActiveDataUpdateEvent(ActiveDataEntry.ChangeType.REFRESH,
 l.getCurrentChangeCount(),
 null, null, null,
 null);
 l.dataChanged(event);
 }

 private MyActiveDataModel _activeDataModel = new MyActiveDataModel();

 private CollectionModel _model = null;

Using the Active Data with a Scalar Model

Using the Active Data Service 42-17

}

42.4.1 What You May Need to Know About Read Consistency
Using active data means that your component has two sources of data: the active data
feed and the standard data fetch. Because of this, you must make sure your application
maintains read consistency.

For example, say your page contains a table and that table has active data enabled. The
table has two methods of delivery from which it updates its data: normal table data
fetch and active data push. Say the back end data changes from foo to bar to fred.
For each of these changes, an active data event is fired. If the table is refreshed before
those events hit the browser, the table will display fred because standard data fetch
will always get the latest data. But then, because the active data event might take
longer, some time after the refresh the data change event would cause foo to arrive at
the browser, and so the table would update to display foo instead of fred for a
period of time. Therefore, you must implement a way to maintain the read
consistency.

To achieve read consistency, the ActiveDataModel has the concept of a change count,
which effectively timestamps the data. Both data fetch and active data push need to
maintain this changeCount object by monotonically increasing the count, so that if
any data returned has a lower changeCount, the active data event can throw it away.
Example 42–7 shows how you can use your implementation of the
ActiveDataModel class to maintain read consistency.

42.5 Using the Active Data with a Scalar Model
ADF components that display collection-based data can be configured to work with
ADS and require no extra setup in the view layer. However, imagine that your JSPX
page uses an activeOutputText component to display new counts based on a Java
timer. In this case, you will replace the model layer with scalar or "flat" data that you
display from a Java Bean.

To implement the scalar model, follow these basic steps (as illustrated in the
Example 42–8):

1. Use the ActiveModelContext API to register the bean with ADS so the bean (a
scalar model) imitates an actual model.

2. Implement a custom mechanism to push the data to the view layer.

Example 42–8 Implement the Scalar Model in the Java Bean

package oracle.adfdemo.view.feature.rich;

import java.util.Collection;
import java.util.Timer;
import java.util.TimerTask;
import java.util.concurrent.atomic.AtomicInteger;

import oracle.adf.view.rich.activedata.ActiveModelContext;
import oracle.adf.view.rich.activedata.BaseActiveDataModel;
import oracle.adf.view.rich.event.ActiveDataEntry;
import oracle.adf.view.rich.event.ActiveDataUpdateEvent;

import oracle.adfinternal.view.faces.activedata.ActiveDataEventUtil;

Using the Active Data with a Scalar Model

42-18 Fusion Developer's Guide for Oracle Application Development Framework

public class CounterBean extends BaseActiveDataModel
// Example using a Java timer to create new counts
{
 public CounterBean()
 // 1. Use the ActiveModelContext API to register the scalar model key path for
 // the "state" attribute.
 {
 ActiveModelContext context = ActiveModelContext.getActiveModelContext();
 Object[] keyPath = new String[0];
 context.addActiveModelInfo(this, keyPath, "state");

 timer.schedule(new UpdateTask(), 2000, 2000);
 }

 public String getState()
 {
 return String.valueOf(counter);
 }

 // Not needed. We do not need to connect to a (real) active data scource.
 protected void startActiveData(Collection<Object> rowKeys, int
 startChangeCount) {}

 // Not needed. We do not need to connect to a (real) active data scource.

 protected void stopActiveData(Collection<Object> rowKeys) {}

 public int getCurrentChangeCount()
 {
 return counter.get();
 }

 protected class UpdateTask extends TimerTask
 {
 public void run()
 {
 counter.incrementAndGet();

 // 2. Use ActiveDataEventUtil to create an event object to update the model.
 ActiveDataUpdateEvent event =
 ActiveDataEventUtil.buildActiveDataUpdateEvent(
 ActiveDataEntry.ChangeType.UPDATE,
 counter.get(),
 new String[0],
 null,
 new String[] { "state" },
 new Object[] { counter.get() });
 fireActiveDataUpdate(event);
 }
 }

 private static final Timer timer = new Timer();
 private final AtomicInteger counter = new AtomicInteger(0);

After you create the bean, register the bean as a managed bean in the
faces-config.xml file (as illustrated for counterBean in Example 42–9):

Using the Active Data with a Scalar Model

Using the Active Data Service 42-19

Example 42–9 Register the Managed Bean

...
<managed-bean>
 <managed-bean-name>counterBean</managed-bean-name>
 <managed-bean-class>
 oracle.adfdemo.view.feature.rich.CounterBean
 </managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
</managed-bean>

Once the bean is registered, you can use ADS to stream the data to the view layer.
Your ADF Faces component use expression language to receive the pushed data (as
illustrated by the activeOutputText component value attribute in
Example 42–10):

Example 42–10 Display the Active Data

...
<f:view>
 <af:document title="Active Data Visual Design Demo"
 binding="#{templateBindings.documentComponent}"
 smallIconSource="#{aboutBean.smallIconSource}"
 largeIconSource="#{aboutBean.largeIconSource}" theme="dark"
 id="d1">
 <af:pageTemplate id="dmoTpl" viewId="#{templates.componentTemplate}">
 <f:attribute name="tagName" value="Active Data Visual Design"/>
 <f:attribute name="demoKind" value="visualDesign"/>
 <f:attribute name="customEditorPresent" value="true"/>
 <f:facet name="center">
 <af:panelGroupLayout layout="scroll">
 <af:activeOutputText
 value="#{counterBean.state}"
 inlineStyle=
 "color:brown;
 font-size:100px;
 font-weight:bold;
 text-align:center;"
 />
 </af:panelGroupLayout>
 </f:facet>
 </af:pageTemplate>
 </af:document>
</f:view>

Using the Active Data with a Scalar Model

42-20 Fusion Developer's Guide for Oracle Application Development Framework

Part VII
Part VII Appendices

Part VII contains the following appendices:

■ Appendix A, "Oracle ADF XML Files"

■ Appendix B, "Oracle ADF Binding Properties"

■ Appendix C, "Oracle ADF Permission Grants"

■ Appendix D, "ADF Equivalents of Common Oracle Forms Triggers"

■ Appendix E, "Most Commonly Used ADF Business Components Methods"

■ Appendix F, "ADF Business Components Java EE Design Pattern Catalog"

■ Appendix G, "Performing Common Oracle Forms Tasks in Oracle ADF"

■ Appendix H, "Data Controls in Oracle ADF Fusion Web Applications"

A

Oracle ADF XML Files A-1

AOracle ADF XML Files

This appendix provides reference for the Oracle ADF metadata files that you create in
your data model and user interface projects. You may use this information when you
want to edit the contents of the metadata these files define.

This appendix includes the following sections:

■ Section A.1, "Introduction to the ADF Metadata Files"

■ Section A.2, "ADF File Overview Diagram"

■ Section A.3, "ADF File Syntax Diagram"

■ Section A.4, "adfm.xml"

■ Section A.5, "modelProjectName.jpx"

■ Section A.6, "bc4j.xcfg"

■ Section A.7, "DataBindings.cpx"

■ Section A.8, "pageNamePageDef.xml"

■ Section A.9, "adfc-config.xml"

■ Section A.10, "task-flow-definition.xml"

■ Section A.11, "adf-config.xml"

■ Section A.12, "adf-settings.xml"

■ Section A.13, "web.xml"

■ Section A.14, "logging.xml"

A.1 Introduction to the ADF Metadata Files
Metadata files in the Oracle Fusion web application are structured XML files used by
the application to:

■ Specify the parameters, methods, and return values available to your application’s
Oracle ADF data control usages

■ Create objects in the Oracle ADF binding context and define the runtime behavior
of those objects

■ Define configuration information about the UI components in JSF and ADF Faces

■ Define application configuration information for the Java EE application server

In the case of ADF bindings, you can use the binding-specific editors to customize the
runtime properties of the binding objects. You can open a binding editor when you

ADF File Overview Diagram

A-2 Fusion Developer's Guide for Oracle Application Development Framework

display the Structure window for a page definition file and choose Properties from the
context menu.

Additionally, you can view and edit the contents of any metadata file in JDeveloper’s
XML editor. The easiest way to work with these file is through the Structure window
and Property Inspector. In the Structure window, you can select an element and in the
Property Inspector, you can define attribute values for the element, often by choosing
among dropdown menu choices. Use this reference to learn the choices you can select
in the case of the Oracle ADF-specific elements.

A.2 ADF File Overview Diagram
The relationship between the Oracle ADF metadata files defines dependencies
between the model data and the user interface projects. The dependencies are defined
as file references within XML elements of the files.

Figure A–1 illustrates the hierarchical relationship of the XML metadata files that you
might work with in a Fusion web application that uses an ADF Business Components
application module as a service interface to JSF web pages.

Figure A–1 Oracle ADF File Hierarchy Overview for the Fusion Web Application

A.2.1 Oracle ADF Data Control Files
In an ADF Business Components application, the data control implementation files are
contained within the application. The application module and view object XML
component descriptor files provide the references for the data control. These files, in
conjunction with the bc4j.xcfg file, provide the necessary information for the data
control.

ADF File Overview Diagram

Oracle ADF XML Files A-3

An application that uses ADF Business Components in one project and a non-ADF
Business Components data control in another project may have a
DataControls.dcx file, as well as supporting <sessionbeanname>.xml and
<beanname>.xml files.

A.2.2 Oracle ADF Data Binding Files
These standard XML configuration files for a Fusion web application appear in your
user interface project:

■ adfm.xml: This file lists the DataBindings.cpx file that is available in the
current project.

See Section A.4, "adfm.xml" for more information.

■ DataBindings.cpx : This file contains the page map, page definitions
references, and data control references. The file is created the first time you create a
data binding for a UI component (either from the Structure window or from the
Data Controls Panel). The DataBindings.cpx file defines the Oracle ADF
binding context for the entire application. The binding context provides access to
the bindings and data controls across the entire application. The
DataBindings.cpx file also contains references to the
<pagename>PageDef.xml files that define the metadata for the Oracle ADF
bindings in each web page.

For more information, see Section A.7, "DataBindings.cpx".

■ <pagename>PageDef.xml: This is the page definition XML file. It associates web
page UI components with data, or data controls. JDeveloper creates this file each
time you design a new web page using the Data Controls Panel or Structure
window. These XML files contain the metadata used to create the bindings that
populate the data in the web page’s UI components. For every web page that
refers to an ADF binding, there must be a corresponding page definition file with
binding definitions.

For more information, see Section A.8, "pageNamePageDef.xml".

A.2.3 Web Configuration Files
These standard XML configuration files required for a JSF application appear in your
user interface project:

■ web.xml: Part of the application's configuration is determined by the contents of
its Java EE application deployment descriptor, web.xml. The web.xml file defines
everything about your application that a server needs to know. The file plays a
role in configuring the Oracle ADF data binding by setting up the
ADFBindingFilter. Additional runtime settings include servlet runtime and
initialization parameters, custom tag library location, and security settings.

For more information about ADF data binding and JSF configuration options, see
Section A.13, "web.xml".

An ADF Faces application typically uses its own set of configuration files in
addition to web.xml. For more information, see the "Configuration in
trinidad-config.xml" section in the Oracle Fusion Middleware Web User Interface
Developer's Guide for Oracle Application Development Framework.

■ adfc-config.xml: The configuration file for an ADF unbounded task flow.
The configuration file contains metadata about the activities and control flows

ADF File Syntax Diagram

A-4 Fusion Developer's Guide for Oracle Application Development Framework

contained in the unbounded task flow. The default name for this file is
adfc-config.xml, but an end user can change the name.

For more information, see Section A.9, "adfc-config.xml".

■ task-flow-definition.xml: The configuration file for an ADF bounded task
flow. The configuration file contains metadata about the activities and control
flows contained in the bounded task flow. The default name for this file can be
task-flow-defintion.xml or whatever an end user specifies in the Create
ADF Task Flow dialog. The same application can contain multiple task flow
definition files.

For more information, see Section A.10, "task-flow-definition.xml".

A.3 ADF File Syntax Diagram
Figure A–2 illustrates the hierarchical relationship of the XML metadata files that you
might work with in a web application that uses an ADF application module as a
service interface to ADF Business Components. At runtime, the objects created from
these files interact in this sequence:

1. When the first request for an ADF databound web page occurs, the servlet
registers the Oracle ADF servlet filter ADFBindingFilter named in the
web.xml file.

2. The binding filter creates an empty binding context.

3. When a page is rendered, the binding filter asks the binding context to load a
corresponding PageDef.xml for the page.

4. The binding context creates the binding container by loading the <page> file as
referenced by the <pagemap> element in the DataBindings.cpx file.

5. The adfm.xml file loads the DataBindings.cpx contents and finds the right
PageDef.xml based on the <pagemap> element reference to the
<pageDefinitionUsage> element.

6. The binding container's prepareModel phase prepares and refreshes all relevant
executables (most are marked deferred by default).

7. An iterator binding gets executed by referencing the named method on the data
control found through the data control factory named in the case of ADF Business
Components in the bc4j.xcfg file.

8. The binding container also creates the bindings defined in the <bindings>
section of the pagenamePageDef.xml file for the mapped web page.

9. The web page references to ADF bindings through EL using the expression
#{bindings} are resolved by accessing the binding container of the page.

10. The page pulls the available data from the bindings in the binding container.

adfm.xml

Oracle ADF XML Files A-5

Figure A–2 Oracle ADF File Hierarchy and Syntax Diagram for an ADF BC-based Web Application

A.4 adfm.xml
The adfm.xml file contains the classpath-relative paths for the .cpx, .dcx, .jpx, and
.xcfg files in each design time project that is included in the runtime deployed
application. The adfm.xml file operates as a dynamically maintained "Registry of

modelProjectName.jpx

A-6 Fusion Developer's Guide for Oracle Application Development Framework

Registries" that is used to quickly find all .cpx, .dcx, .jpx, and .xcfg files (which
are themselves registries of metadata).

The file registry is used extensively by the ADF Library resource catalog browsing
implementations, by the ADF model layer design time, and at runtime during merge
and discovery.

When a developer creates a binding on a page, JDeveloper adds metadata files (for
example, page definitions) in the project source tree. The adfm.xml file then notes the
location of each.

When a project is built, the adfm.xml file is put in
project-root/adfmsrc/META-INF/adfm.xml. The project-level archive
deployment profiles locate the file at META-INF/adfm.xml.

At runtime, the application classpath is scanned to build the list of .cpx files that
comprise the application. The application then loads each.cpx as needed to create the
binding context. For details about the ADF model layer usage, see Section 12.3.2,
"What Happens When You Use the Data Controls Panel".

Four types of sub registries are recorded by the adfm.xml file:

■ DataBindingRegistry (.cpx)

■ DataControlRegistry (.dcx)

■ BusinessComponentServiceRegistry (.xcfg)

■ BusinessComponentProjectRegistry (.jpx)

A.5 modelProjectName.jpx
The.jpx file contains configuration information that JDeveloper uses in the design
time to allow you to create the data model project with ADF Business Components. It
also contains metadata that defines how a shared application module is used at
runtime. Because the shared application module can be accessed by any data model
project in the same Fusion web application, JDeveloper maintains the scope of the
shared application module in the ADF Business Components project configuration file.

This file is saved in the src directory of the project. For example, if you look at the
StoreFrontService.jpx file in the ./src/model subdirectory of the Fusion
Order Demo application’s StoreFrontService project, you will see the
SharedLookupService application module’s usage definition. For details about the
shared application module usage, see Section 10.2.2, "What Happens When You Define
a Shared Application Module".

Example A–2 displays a sample default.jpx file.

Example A–1 Sample .jpx File

<JboProject
xmlns="http://xmlns.oracle.com/bc4j"
Name="StoreFrontService"
Version="11.1.1.49.73"
SeparateXMLFiles="true"
PackageName="">
<DesignTime>

<Attr Name="_appModuleNames0"
Value="oracle.fodemo.storefront.lookups.LookupServiceAM"/>

<Attr Name="_domainNames0"
Value="oracle.fodemo.storefront.entities.formatters.UppercaseOracleStyleDate"/>

<Attr Name="_jprName" Value="../StoreFrontService.jpr"/>

modelProjectName.jpx

Oracle ADF XML Files A-7

<Attr Name="_appModuleNames1"
Value="oracle.fodemo.storefront.store.service.StoreServiceAM"/>

<Attr Name="_NamedConnection" Value="FOD"/>
</DesignTime>
<Containee

Name="links"
FullName="oracle.fodemo.storefront.account.queries.links.links"
ObjectType="JboPackage">
<DesignTime>

<Attr Name="_VO" Value="true"/>
<Attr Name="_VL" Value="true"/>

</DesignTime>
</Containee>
<Containee

Name="queries"
FullName="oracle.fodemo.storefront.account.queries.queries"
ObjectType="JboPackage">
<DesignTime>

<Attr Name="_VO" Value="true"/>
</DesignTime>

</Containee>
<Containee

Name="associations"
FullName="oracle.fodemo.storefront.entities.associations.associations"
ObjectType="JboPackage">
<DesignTime>

<Attr Name="_AS" Value="true"/>
</DesignTime>

</Containee>
<Containee

Name="entities"
FullName="oracle.fodemo.storefront.entities.entities"
ObjectType="JboPackage">
<DesignTime>

<Attr Name="_EO" Value="true"/>
</DesignTime>

</Containee>
<Containee

Name="formatters"
FullName="oracle.fodemo.storefront.entities.formatters.formatters"
ObjectType="JboPackage">
<DesignTime>

<Attr Name="_DO" Value="true"/>
</DesignTime>

</Containee>
<Containee

Name="lookups"
FullName="oracle.fodemo.storefront.lookups.lookups"
ObjectType="JboPackage">
<DesignTime>

<Attr Name="_VO" Value="true"/>
<Attr Name="_AM" Value="true"/>

</DesignTime>
</Containee>
<Containee

Name="links"
FullName="oracle.fodemo.storefront.store.queries.links.links"
ObjectType="JboPackage">
<DesignTime>

<Attr Name="_VL" Value="true"/>

bc4j.xcfg

A-8 Fusion Developer's Guide for Oracle Application Development Framework

</DesignTime>
</Containee>
<Containee

Name="queries"
FullName="oracle.fodemo.storefront.store.queries.queries"
ObjectType="JboPackage">
<DesignTime>

<Attr Name="_VO" Value="true"/>
</DesignTime>

</Containee>
<Containee

Name="service"
FullName="oracle.fodemo.storefront.store.service.service"
ObjectType="JboPackage">
<DesignTime>

<Attr Name="_AM" Value="true"/>
</DesignTime>

</Containee>
<AppModuleUsage

Name="SharedLookupService"
FullName="oracle.fodemo.storefront.lookups.LookupServiceAM"
ConfigurationName="oracle.fodemo.storefront.lookups.null"
SharedScope="1"/>

</JboProject>

A.6 bc4j.xcfg
The bc4j.xcfg file contains metadata information about application module names,
the database connection used by the application module, and the runtime parameters
the user has configured for the application module.

The bc4j.xcfg file is located in the ./common subdirectory relative to the
application module's XML component definition. All of the configurations for all of
the application modules in a single Java package are saved in that same file. For
example, if you look at the bc4j.xcfg file in the
./classes/oracle/fodemo/storefront/store/service/common directory of
the Fusion Order Demo application's StoreFront project, you will see the three
named configurations for its StoreServiceAM application module. For details about
editing the configurations, see Section 9.3.4, "How to Change Your Application
Module's Runtime Configuration" and Section 41.2, "Setting Pool Configuration
Parameters".

Example A–2 displays a sample bc4j.xcfg file from the Fusion Order Demo
application.

Example A–2 Sample bc4j.xcfg File

<BC4JConfig version="11.1" xmlns="http://xmlns.oracle.com/bc4j/configuration">
 <AppModuleConfigBag ApplicationName="oracle.fodemo.storefront.store.service.StoreServiceAM">
 <AppModuleConfig
 DeployPlatform="LOCAL"
 JDBCName="FOD"
 jbo.project="StoreFrontService"
 name="StoreServiceAMLocal"
 ApplicationName="oracle.fodemo.storefront.store.service.StoreServiceAM">
 <Database jbo.locking.mode="optimistic"/>
 <Security AppModuleJndiName="oracle.fodemo.storefront.store.service.StoreServiceAM"/>
 </AppModuleConfig>

DataBindings.cpx

Oracle ADF XML Files A-9

 <AppModuleConfig
 DeployPlatform="LOCAL"
 JDBCName="FOD"
 jbo.project="StoreFrontService"
 name="StoreServiceAMLocalWeb"
 ApplicationName="oracle.fodemo.storefront.store.service.StoreServiceAM">
 <AM-Pooling jbo.ampool.initpoolsize="1"/>
 <Database jbo.locking.mode="optimistic"/>
 <Security AppModuleJndiName="oracle.fodemo.storefront.store.service.StoreServiceAM"/>
 <Custom fod.application.issoaenabled="true"/>
 </AppModuleConfig>
 <AppModuleConfig
 name="StoreFrontService"
 ApplicationName="oracle.fodemo.storefront.store.service.StoreServiceAM"
 jbo.project="StoreFrontService"
 DeployPlatform="SI">
 <AM-Pooling jbo.ampool.resetnontransactionalstate="true"/>
 <Database jbo.SQLBuilder="ORACLE" jbo.locking.mode="optimistic"
 jbo.TypeMapEntries="Java"/>
 <Security AppModuleJndiName="oracle.fodemo.storefront.store.service.StoreServiceAM"/>
 <Custom JDBCDataSource="java:comp/env/jdbc/FODDS"/>
 </AppModuleConfig>
 </AppModuleConfigBag>
</BC4JConfig>

A.7 DataBindings.cpx
The DataBindings.cpx file is created in the user interface project the first time you
drop a data control usage onto a web page in the visual editor. The
DataBindings.cpx file defines the Oracle ADF binding context for the entire
application and provides the metadata from which the Oracle ADF binding objects are
created at runtime. It is used extensively by the ADF Library Resource Palette
browsing implementations, and also by the .cpx and .dcx design time and runtime
merge and discovery. When you insert a databound UI component into your
document, the page will contain binding expressions that access the Oracle ADF
binding objects at runtime.

If you are familiar with building Fusion web applications in earlier releases of
JDeveloper, you’ll notice that the.cpx file no longer contains all the information
copied from the DataControls.dcx file, but only a reference to it. If you need to
make changes to the.cpx file, you must edit the DataControls.dcx file.

The DataBindings.cpx file appears in the /src directory of the user interface
project. When you double-click the file node, the binding context description appears
in the XML source editor. (To edit the binding context parameters, use the Property
Inspector and select the desired parameter in the Structure window.)

A.7.1 DataBindings.cpx Syntax
The top level element of the DataBindings.cpx file is <DataControlConfigs>:

<?xml version = '1.0' encoding = 'UTF-8'?>
<BC4JConfig version="11.0" xmlns="http://xmlns.oracle.com/bc4j/configuration">

where the XML namespace attribute (xmlns) specifies the URI to which the data
controls bind at runtime. Only the package name is editable; all other attributes should
have the values shown.

DataBindings.cpx

A-10 Fusion Developer's Guide for Oracle Application Development Framework

Figure A–3 displays the child element hierarchy of the <DataControlConfigs>
element. Note that each business service for which you have created a data control will
have its own <dataControlUsages> definition.

Figure A–3 Schema for the Structure Definition of the DataBindings.cpx File

The child elements have the following usages:

■ <definitionFactories> registers a factory class to create the ADF binding
objects associated with a particular namespace at runtime. The factory class is
specific to the namespace associated with the type of ADF binding (for instance, a
task flow binding).

■ <pageMap> maps all user interface URLs and the corresponding page definition
usage name. This map is used at runtime to map a URL to its page definition.

■ <pageDefinitionUsages> maps a page definition usage (BindingContainer
instance) name to the corresponding page definition. The id attribute represents
the usage ID. The path attribute represents the full path to the page definition.

■ <dataControlUsages> declares a list of data control usages (shortnames) and
corresponding path to the data control definition entries in the .dcx or .xcfg
file.

Table A–1 describes the attributes of the DataBindings.cpx elements.

Table A–1 Attributes of the DataBindings.cpx File Elements

Element Syntax Attributes Attribute Description

<definitionFactories>

 <factory/>

</definitionFactories>

nameSpace A URI. Identifies the location of the executable
elements in the page definition usage.

className The fully qualified class name. Identifies the location
of the factory class that creates the page definition
usage objects.

<pageMap>

 <page />

</pageMap>

path The full directory path. Identifies the location of the
user interface page.

DataBindings.cpx

Oracle ADF XML Files A-11

A.7.2 DataBindings.cpx Sample
Example A–3 shows the syntax for the DataBindings.cpx file in the Fusion Order
Demo application.

The ADF executable definition factory (factory element) is named by a className
attribute and is associated with a namespace. At runtime, the factory class creates the
executable definition objects that leads to the creation of the binding objects for the
ADF binding container associated with a particular page definition. The factory locates
the page definition through two DataBindings.cpx file elements: the pageMap
element that maps the page URL to the page definition ID (usageId attribute)
assigned at design time and the pageDefinitionUsages element that maps the ID
to the location of the page definition from the project or project classpath.

Additionally, the ADF Business Components data control (BC4JDataControl
element) is named by the id attribute. The combination of the Package attribute and
the Configuration attribute is used to locate the bc4j.xcfg file in the ./common
subdirectory of the indicated package. The configuration contains the information of
the application module name and all the runtime parameters the user has configured.

Example A–3 Sample DataBindings.cpx File

<Application xmlns="http://xmlns.oracle.com/adfm/application"
 version="11.1.1.44.61" id="DataBindings" SeparateXMLFiles="false"
 Package="oracle.fodemo.storefront" ClientType="Generic"
 ErrorHandlerClass="oracle.fodemo.frmwkext.FODCustomErrorHandler">
 <definitionFactories>
 <factory nameSpace="http://xmlns.oracle.com/adf/controller/binding"
 className="oracle.adf.controller.internal.binding.
 TaskFlowBindingDefFactoryImpl"/>
 <factory nameSpace="http://xmlns.oracle.com/adfm/dvt"
 className="oracle.adfinternal.view.faces.dvt.model.binding.
 FacesBindingFactory"/>
 </definitionFactories>
 <pageMap>
 <page path="/home.jspx" usageId="homePageDef"/>

usageId A unique qualifier. Names the page definition ID that
appears in the ADF page definition file. The ADF
binding servlet looks at the incoming URL requests
and checks that the bindings variable is pointing to
the ADF page definition associated with the URL of
the incoming HTTP request.

<pageDefinitionUsages>

 <page/>

</pageDefinitionUsages>

id A unique qualifier. References the page definition ID
that appears in the ADF page definition file.

path The fully qualified package name. Identifies the
location of the user interface page’s ADF page
definition file.

<dataControlUsages>

 <dc.../>

</dataControlUsages>

id A unique qualifier. Identifies the data control usage as
is defined in the DataControls.dcx file.

path The fully qualified package name. Identifies the
location of the data control.

Table A–1 (Cont.) Attributes of the DataBindings.cpx File Elements

Element Syntax Attributes Attribute Description

pageNamePageDef.xml

A-12 Fusion Developer's Guide for Oracle Application Development Framework

 ...
 </pageMap>
 <pageDefinitionUsages>
 <page id="homePageDef"
 path="oracle.fodemo.storefront.pageDefs.homePageDef"/>
 ...
 </pageDefinitionUsages>
 <dataControlUsages>
 <BC4JDataControl id="StoreServiceAMDataControl"
 Package="oracle.fodemo.storefront.store.service"
 FactoryClass="oracle.adf.model.bc4j.DataControlFactoryImpl"
 SupportsTransactions="true" SupportsFindMode="true"
 SupportsRangesize="true" SupportsResetState="true"
 SupportsSortCollection="true"
 Configuration="StoreServiceAMLocalWeb" syncMode="Immediate"
 xmlns="http://xmlns.oracle.com/adfm/datacontrol"/>
 ...
 </dataControlUsages>
</Application>

A.8 pageNamePageDef.xml
The pageNamePageDef.xml files are created each time you insert a databound
component into a web page using the Data Controls Palette or Structure window.
These XML files define the Oracle ADF binding container for each web page in the
application. The binding container provides access to the bindings within the page.
You will have one XML file for each databound web page.

The PageDef.xml file appears in the /src/view directory of the user interface
project. The Application Navigator displays the file in the view package of the
Application Sources node. When you double-click the file node, the page description
appears in the XML source editor. To edit the page description parameters, use the
Property Inspector and select the desired parameter in the Structure window.

For more information, see Chapter 12.6, "Working with Page Definition Files".

There are important differences in how the page definitions are generated for methods
that return a single value and a collection.

A.8.1 PageDef.xml Syntax
The top-level element of the PageDef.xml file is <pageDefinition>:

<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
 version="10.1.3.35.83" id="<pagename>PageDef"
 Package="oracle.fod.view.pageDefs">

where the XML namespace attribute (xmlns) specifies the URI to which the ADF
binding container binds at runtime. Only the package name is editable; all other
attributes should have the values shown.

Caution: The DataBindings.cpx file maps JSF pages to their
corresponding page definition files. If you change the name of a page
definition file or a JSF page, JDeveloper does not automatically
refactor the DataBindings.cpx file. You must manually update the
page mapping in the DataBindings.cpx file.

pageNamePageDef.xml

Oracle ADF XML Files A-13

Example A–4 displays the child element hierarchy of the <pageDefinition>
element. Note that each business service for which you have created a data control will
have its own <AdapterDataControl> definition.

Example A–4 PageDef.xml Element Hierarchy

<?xml version="1.0" encoding="UTF-8" ?>
<pageDefinition>
 <parameters>
 ...
 </parameters>
 <executables>
 ...
 </executables>
 <bindings>
 ...
 </bindings>
</pageDefinition>

The child elements have the following usages:

■ <parameters> defines page-level parameters that are EL accessible. These
parameters store information local to the web page request and may be accessed in
the binding expressions.

■ <executables> defines the list of items (methods, view objects, and accessors) to
execute during the prepareModel phase of the ADF page lifecycle. Methods to
be executed are defined by <methodIterator>. The lifecycle performs the
execute in the sequence listed in the <executables> section. Whether or not the
method or operation is executed depends on its refresh or refreshCondition
attribute value. Built-in operations on the data control are defined by:

- <page> - definition for a nested page definition (binding container)

- <iterator> - definition to a named collection in DataControls

- <accessorIterator> - definition to get an accessor in a data control hierarchy

- <methodIterator> - definition to get to an iterator returned by an invoked
method defined by a methodAction in the same file

- <variableIterator> - internal iterator that contains variables declared for the
binding container

- <invokeAction> - definition of which method to invoke as an executable

■ <bindings> refers to an entry in <executables> to get to the collection from
which bindings extract/submit attribute level data.

Table A–2 describes the attributes of the top-level <pageDefinition> element.

pageNamePageDef.xml

A-14 Fusion Developer's Guide for Oracle Application Development Framework

Table A–3 describes the attributes of the child element of <parameters>.

Table A–2 Attributes of the PageDef.xml File <pageDefinition> Element

Element Syntax Attributes Attribute Description

<pageDefinition> ControllerClass Fully qualified class name to create when controller
requests a PageController object for this
bindingContainer.

EnableTokenValidation Enables currency validation for this bindingContainer
when a postback occurs. This is to confirm that the web
tier state matches the state that particular page was
rendered with.

FindMode FindMode is for legacy (10.1.2) use only and indicates
whether this bindingContainer should start out in
findMode when initially prepared.

MsgBundleClass Fully qualified package name. Identifies the class which
contains translation strings for any bindings.

SkipValidation Determines if data validation occurs. The supported
values are:

■ true: skips data validation. Note that client-side
binding level attribute validation still occurs. For
example, validates non-null and type conversion
errors.

■ false: validates all rows for all data controls
referenced in the current page. This is the default
value.

■ skipDataControls: validates the current rows of
iterator bindings modified in the current page.

■ custom: set to custom if your application
implements an instance of the
oracle.binding.BindingContainerValidator
interface and references it through an EL expression
entry named CustomValidator in the binding
container.

Setting a value for this attribute can be useful if you want
to skip data validation on, for example, a train component.
For more information see the "How to Create the Train
Model" section of the Oracle Fusion Middleware Web User
Interface Developer's Guide for Oracle Application
Development Framework

Viewable An EL expression that should resolve at runtime to
whether this binding and the associated component
should be rendered or not.

pageNamePageDef.xml

Oracle ADF XML Files A-15

Table A–4 describes the attributes of the PageDef.xml <executables> elements.

Table A–3 Attributes of the PageDef.xml File <parameters> Element

Element Syntax Attributes Attribute Description

<parameter> evaluate Specifies when the parameter should be evaluated:
eachUse, firstUse, or inPrepareModel.

id Unique identifier. May be referenced by ADF bindings.

option Indicates the usage of the variable within the binding
container:

■ Final indicates that this parameter cannot be passed
in by a usage of this binding container. It must use the
default value in the definition.

■ Optional indicates that the variable value need not
be provided.

■ Mandatory indicates that the variable value must be
provided or a binding container exception will be
thrown.

readonly Indicates whether the parameter value may be modified or
not. Set to true when you do not want the application to
modify the parameter value.

value A default value, which can be an EL expression.

Table A–4 Attributes of the PageDef.xml File <executables> Element

Element Syntax Attributes Attribute Description

<accessorIterator> Accessor Specifies any other accessor defined by this binding.

Binds Specifies the view or action to which the iterator is bound.

BeanClass Identifies the Java type of beans in the associated iterator or
collection.

CacheResults If true, manages the data collection between requests.

ChangeEventRate Specifies the rate of events when a component is wired to
data via this iterator and is in polling event mode.

DataControl Interprets and returns the collection referred to by this
iterator binding.

id Unique identifier. May be referenced by any ADF value
binding.

MasterBinding Reference to the methodIterator (or iterator) that binds
the data collection that serves as the master to the accessor
iterator’s detail collection.

ObjectType Used for ADF Business Components only. A boolean value
determines whether the collection is an object type or not.

RangeSize Specifies the number of data objects in a range to fetch from
the bound collection. The range defines a window you can
use to access a subset of the data objects in the collection.
By default, the range size is set to a range that fetches just
ten data objects. Use RangeSize when you want to work
with an entire set or when you want to limit the number of
data objects to display in the page. Note that the values -1
and 0 have specific meaning: the value -1 returns all
available objects from the collection, while the value 0 will
return the same number of objects as the collection uses to
retrieve from its data source.

pageNamePageDef.xml

A-16 Fusion Developer's Guide for Oracle Application Development Framework

Refresh Determines when and whether the executable should be
invoked. Set one of the following properties as required:

■ always - causes the executable to be invoked each
time the binding container is prepared. This will occur
when the page is displayed and when the user submits
changes, or when the application posts back to the
page.

■ deferred (default for ADF faces applications) -
refresh occurs when another binding requires or refers
to this executable. Since refreshing an executable may
be a performance concern, you can set the refresh to
occur only if deferred is used in a binding that is
being rendered.

■ <default> - Always set to Deferred by default.

■ ifNeeded (default for all view technologies other than
ADF Faces) - whenever the framework needs to refresh
the executable because it has not been refreshed to this
point. For example, when you have an accessor
hierarchy such that a detail is listed first in the page
definition, the master could be refreshed twice (once
for the detail and again for the master’s iterator).
Using ifNeeded gives the mean to avoid duplicate
refreshes. This is the default behavior for executables.

■ never - when the application itself will call refresh on
the executable during one of the controller phases and
does not want the framework to refresh it at all.

■ prepareModel - causes the executable to be invoked
each time the page’s binding container is prepared.

■ prepareModelIfNeeded - causes the executable to
be invoked during the prepareModel phase if this
executable has not been refreshed to this point. See
also ifNeeded above.

■ renderModel - causes the executable to be invoked
each time the page is rendered.

■ renderModelIfNeeded - causes the executable to be
invoked during the page’s renderModel phase on the
condition that it is needed. See also ifNeeded above.

■ refreshAfter - Use to handle dependencies
between executables. For example, you can set the
condition so that this executable refreshes after another
executable.

RefreshCondition An EL expression that when resolved, determines when
and whether the executable should be invoked. For
example,
${!bindings.findAllServiceRequestIter.findMo
del} resolves the value of the findMode on the iterator in
the ADF binding context AllServiceRequest. Hint: Use
the Property Inspector to create expressions from the
available objects of the binding context (bindings
namespace) or binding context (data namespace), JSF
managed beans, and JSP objects.

RefreshAfter Specifies the condition after which the page should be
refreshed.

Table A–4 (Cont.) Attributes of the PageDef.xml File <executables> Element

Element Syntax Attributes Attribute Description

pageNamePageDef.xml

Oracle ADF XML Files A-17

RowCountThreshold

Specify a value to determine if a result set returns the
number of rows you specify as a value. If you set
RowCountThreshold to 0, the iterator returns the
estimated row count in the result set by executing the count
query. If you set RowCountThreshold to less than 0, the
iterator does not execute the count query.

Set RowCountThreshold to a value greater than 0 if you
want the iterator to execute the count query with the
maximum value equal to the value you specify for
RowCountThreshold. If the estimated row count is less
than the value of RowCountThreshold, return the
number of rows in the estimated row count. If the
estimated row count is greater than the value of
RowCountThreshold, return -1.

Sortable Specifies whether the iterator is sortable or not.

<invokeAction> Binds Determines the action to invoke. This may be on any
actionBinding. Additionally, in the case, of the EJB
session facade data control, you may bind to the finder
method exposed by the data control. Built-in actions
supported by the EJB session facade data control include:

■ Execute executes the bound action defined by the
data collection.

■ Find retrieves a data object from a collection.

■ First navigates to the first data object in the data
collection range.

■ Last navigates to the first data object in the data
collection range.

■ Next navigates to the first data object in the data
collection range. If the current range position is already
on the last data object, then no action is performed.

■ Previous navigates to the first data object in the data
collection range. If the current position is already on
the first data object, then no action is performed.

■ setCurrentRowWithKey passes the row key as a
String converted from the value specified by the
input field. The row key is used to set the currency of
the data object in the bound data collection. When
passing the key, the URL for the form will not display
the row key value. You may use this operation when
the data collection defines a multipart attribute key.

■ setCurrentRowWithKeyValue is used as above, but
when you want to use a primary key value instead of
the stringified key.

id Unique identifier. May be referenced by any ADF action
binding.

Refresh See Refresh for <accessorIterator>.

RefreshCondition See RefreshCondition for <accessorIterator>.

<iterator> and
<methodIterator>

BeanClass Identifies the Java type of beans in the associated iterator or
collection.

Table A–4 (Cont.) Attributes of the PageDef.xml File <executables> Element

Element Syntax Attributes Attribute Description

pageNamePageDef.xml

A-18 Fusion Developer's Guide for Oracle Application Development Framework

Table A–5 describes the attributes of the PageDef.xml <bindings> element.

BindingClass This is for backward compatibility to indicate which class
implements the runtime for this binding definition. Not
used in current JDeveloper release.

Binds See Binds for <invokeAction>.

CacheResults See CacheResults for <accessorIterator>.

ChangeEventRate Specifies the rate of events when a component is wired to
data via this iterator and is in polling event mode.

DataControl Name of the DataControl usage in the
bindingContext (.cpx) which this iterator is
associated with.

DefClass Used internally by ADF.

id Unique identifier. May be referenced by any ADF value
binding.

ObjectType Not used by EJB session facade data control (used by ADF
Business Components only).

RangeSize See RangeSize for <accessorIterator>.

Refresh See Refresh for <accessorIterator>.

RefreshAfter Specifies the condition after which the page should be
refreshed.

RefreshCondition See RefreshCondition for <accessorIterator>.

RowCountThreshold See RowCountThreshold for <accessorIterator>.

<page> and
<variableIterator>

id Unique identifier. In the case of <page>, refers to nested
page or region that is included in this page. In the case of
the <variableIterator> executable, the identifier may
be referenced by any ADF value binding.

ChangeEventRate Specifies the rate of events when a component is wired to
data via this iterator and is in polling event mode.

path Used by <page> executable only. Advanced, a fully
qualified path that may reference another page’s binding
container.

Refresh See Refresh for <accessorIterator>.

RefreshAfter Specifies the condition after which the page should be
refreshed.

RefreshCondition See RefreshCondition for <accessorIterator>.

Table A–4 (Cont.) Attributes of the PageDef.xml File <executables> Element

Element Syntax Attributes Attribute Description

pageNamePageDef.xml

Oracle ADF XML Files A-19

Table A–5 Attributes of the PageDef.xml File <bindings> Element

Element Syntax Attributes Attribute Description

<action> Action Fully qualified package name. Identifies the class for
which the data control is created. In the case of the EJB
session facade, this is the session bean.

BindingClass This is for backward compatibility to indicate which
class implements the runtime for this binding definition.
This is used by earlier versions of JDeveloper.

DataControl Name of the DataControl usage in the
bindingContext (.cpx) which this
iteratorBinding or actionBinding is associated
with.

Execute Used by default when you drop an operation from the
Data Controls Panel in the automatically configured
ActionListener property. It results in executing the
action binding's operation at runtime.

InstanceName Specifies the instance name for the action.

IterBinding Specifies the iteratorBinding instance in this
bindingContainer to which this binding is
associated.

Outcome Use if you want to use the result of a method action
binding (once converted to a String) as a JSF
navigation outcome name.

<attributeValues> ApplyValidation Set to true by default. When true, controlBinding
executes validators defined on the binding. You can set
to false in the case of ADF Business Components,
when running in local mode and the same validators are
already defined on the corresponding attribute.

BindingClass This is for backward compatibility to indicate which
class implements the runtime for this binding definition.
This is used by earlier versions of JDeveloper.

ChangeEventPolicy Specifies the event strategy for the component when run
with ADS (Active Data Services). Can be specified as

push

poll

ppr

none

ControlClass Used internally by ADF.

CustomInputHandle
r

This is the class name for a
oracle.jbo.uicli.binding.JUCtrlValueHandle
r implementation that is used to process the
inputValue for a given value binding.

DefClass Used internally by ADF.

id Unique identifier. May be referenced by any ADF action
binding.

IterBinding Refers to the iteratorBinding instance in this
bindingContainer to which this binding is
associated.

NullValueId Refers to the entry in the message bundle for this
bindingContainer that contains the String to
indicate the null value in a list display.

pageNamePageDef.xml

A-20 Fusion Developer's Guide for Oracle Application Development Framework

<button> ApplyValidation Set to true by default. When true, controlBinding
executes validators defined on the binding. You can set
to false in the case of ADF Business Components,
when running in local mode and when the same
validators are already defined on the corresponding
attribute.

BindingClass This is for backward compatibility to indicate which
class implements the runtime for this binding definition.
This is used by earlier versions of JDeveloper.

BoolVal Identifies whether the value at the zero index in the
static value list in this boolean list binding represents
true or false.

ControlClass Used internally by ADF.

CustomInputHandle
r

This is the class name for a
oracle.jbo.uicli.binding.JUCtrlValueHandle
r implementation that is used to process the
inputValue for a given value binding.

DefClass Used internally by ADF.

id Unique identifier. May be referenced by any ADF action
binding.

IterBinding Refers to the iteratorBinding instance in this
bindingContainer to which this binding is
associated.

ListIter Refers to the iteratorBinding that is associated with
the source list of this listBinding.

ListOperMode Determines whether this list binding is for navigation,
contains a static list of values or is an LOV type list.

NullValueFlag Describes whether this list binding has a null value and,
if so, whether it should be displayed at the beginning or
the end of the list.

NullValueId Refers to the entry in the message bundle for this
bindingContainer that contains the String to
indicate the null value in a list display.

<ganttDataMap> Maps the data binding XML for an ADF Faces gantt
component.

<gaugeDataMap> Maps the data binding XML for an ADF Faces gauge
component.

<graph> ApplyValidation Set to true by default. When true, controlBinding
executes validators defined on the binding. You can set
to false in the case of ADF Business Components,
when running in local mode and when the same
validators are already defined on the corresponding
attribute.

BindingClass This is for backward compatibility to indicate which
class implements the runtime for this binding definition.
This is used by earlier versions of JDeveloper.

BoolVal Identifies whether the value at the zero index in the
static value list in this boolean list binding represents
true or false.

ChildAccessorName The name of the accessor to invoke to get the next level
of nodes for a given hierarchical node type in a tree.

Table A–5 (Cont.) Attributes of the PageDef.xml File <bindings> Element

Element Syntax Attributes Attribute Description

pageNamePageDef.xml

Oracle ADF XML Files A-21

ControlClass Used internally by ADF.

CustomInputHandle
r

This is the class name for a
oracle.jbo.uicli.binding.JUCtrlValueHandle
r implementation that is used to process the
inputValue for a given value binding.

DefClass Used internally by ADF.

GraphPropertiesFi
le
Name

An XML file that specifies the type of graph to use, for
example, pie chart or bar graph. This XML file can be
used to customize the visual properties of the graph. It
contains graph attributes such as title, subtitle, footnote,
graph type, legend area, and plot area. The default
filename is BIGraphDef.xml.

GroupLabel For master-detail forms, specifies the attribute that will
be used to group data.

id Unique identifier. May be referenced by any ADF action
binding.

IterBinding Refers to the iteratorBinding instance in this
bindingContainer to which this binding is
associated.

NullValueId Refers to the entry in the message bundle for this
bindingContainer that contains the String to
indicate the null value in a list display.

SeriesLabel Defines the attribute, based on which data will be
clubbed.

SeriesType Determines whether graph is for Single
View(SINGLE_SERIES), or for MASTER_DETAIL.

<graphDataMap> Wraps the data binding XML for an ADF Faces graph
component.

<list> ApplyValidation Set to true by default. When true, controlBinding
executes validators defined on the binding. You can set
to false in the case of ADF Business Components,
when running in local mode and when the same
validators are already defined on the corresponding
attribute.

BindingClass This is for backward compatibility to indicate which
class implements the runtime for this binding definition.
This is used by earlier versions of JDeveloper.

ControlClass Used internally by ADF.

CustomInputHandle
r

This is the class name for a
oracle.jbo.uicli.binding.JUCtrlValueHandle
r implementation that is used to process the
inputValue for a given value binding.

DefClass Used internally by ADF.

id Unique identifier. May be referenced by any ADF action
binding.

IterBinding Refers to the iteratorBinding instance in this
bindingContainer to which this binding is
associated.

ListIter Refers to the iteratorBinding that is associated with
the source list of this listBinding.

Table A–5 (Cont.) Attributes of the PageDef.xml File <bindings> Element

Element Syntax Attributes Attribute Description

pageNamePageDef.xml

A-22 Fusion Developer's Guide for Oracle Application Development Framework

ListOperMode Determines whether this list binding is for navigation,
contains a static list of values, or is an LOV type list.

MRUCount Specifies the number of items to display in a choice list
when you want to provide a shortcut for the end-user to
display their most recent selections. For example, a form
might display a choice list of supplier ID values to drive
a purchase order form. In this case, you can allow users
to select from a list of their most recently view suppliers,
where the number of supplier choices is determined by
the count you enter. The default for the choice list is to
display all values for the attribute and is specified by the
count 0 (zero)."

MRUId Specifies the String that will be the discriminator line
for the MRU list.

NullValueFlag Describes whether this list binding has a null value and,
if so, whether it should be displayed at the beginning of
the list or the end.

NullValueId Refers to the entry in the message bundle for this
bindingContainer that contains the String to
indicate the null value in a list display.

StaticList Defines a static list of values that will be rendered in the
bound list component.

<mapThemeDataMap> Wraps the data binding XML for an ADF Data
Visualization geographic map component.

<methodAction> Action Fully qualified package name. Identifies the class for
which the data control is created. In the case of the EJB
session facade, this is the session bean.

BindingClass This is for backward compatibility to indicate which
class implements the runtime for this binding definition.
This is used by earlier versions of JDeveloper.

ClassName This is the class to which the method being invoked
belongs.

DataControl Name of the DataControl usage in the
bindingContext (.cpx) which this
iteratorBinding or actionBinding is associated
with.

DefClass Used internally by ADF.

id Unique identifier. May be referenced by any ADF action
binding.

InstanceName A dot-separated EL path to a Java object instance on
which the associated method is to be invoked.

IsLocalObjectRefe
rence

Set to true if the instanceName contains an EL path
relative to this bindingContainer.

IsViewObjectMetho
d

Set to true if the instanceName contains an instance
path relative to the associated data control's application
module.

MethodName Indicates the name of the operation on the given instance
or class that needs to be invoked for this
methodActionBinding.

RequiresUpdateMod
el

Whether this action requires that the model be updated
before the action is to be invoked.

Table A–5 (Cont.) Attributes of the PageDef.xml File <bindings> Element

Element Syntax Attributes Attribute Description

adfc-config.xml

Oracle ADF XML Files A-23

A.9 adfc-config.xml
The default name for an ADF unbounded task flow’s XML source file is
adfc-config.xml. Each Fusion web application optionally contains a single ADF
unbounded task flow. The adfc_config.xml file contains activities, control flow
rules, and managed beans interacting to allow a user to complete a task.

The adfc-config.xml file is located in the /public_html/WEB-INF directory
relative to the ADF application’s user interface project.

For more information, see Section 14.1.2.1, "Unbounded Task Flows".

ReturnName The EL path of the result returned by the associated
method.

<pivotTableDataMap> Wraps the data binding XML for an ADF Faces pivot
table component.

<table> and <tree> ApplyValidation Set to true by default. When true, controlBinding
executes validators defined on the binding. You can set
to false in the case of ADF Business Components,
when running in local mode and when the same
validators are already defined on the corresponding
attribute.

BindingClass This is for backward compatibility to indicate which
class implements the runtime for this binding
definition.This is used by earlier versions of JDeveloper.

CollectionModel Accesses the CollectionModel object, the data model
that is used by ADF table components. A table’s value is
bound to the CollectionModel attribute. The table
wraps the result set from the iterator binding in a
CollectionModel object. The CollectionModel
attribute allows each item in the collection to be available
within the table component using the var attribute.

ControlClass Used internally for testing purposes.

CustomInputHandle
r

This is the class name for a
oracle.jbo.uicli.binding.JUCtrlValueHandle
r implementation that is used to process the
inputValue for a given value binding.

DefClass Used internally by ADF.

DiscrValue Indicates the discriminator value for a hierarchical type
binding (type definition for a tree node). This value is
used to determine whether a given row in a collection
being rendered in a polymorphic tree binding should be
rendered using the containing hierarchical type binding.

id Unique identifier. May be referenced by any ADF action
binding.

IterBinding Refers to the iteratorBinding instance in this
bindingContainer to which this binding is
associated.

TreeModel The data model used by ADF Tree components.
TreeModel extends CollectionModel to add support
for container rows. Rows in the TreeModel may
(recursively) contain other rows.

Table A–5 (Cont.) Attributes of the PageDef.xml File <bindings> Element

Element Syntax Attributes Attribute Description

task-flow-definition.xml

A-24 Fusion Developer's Guide for Oracle Application Development Framework

A.10 task-flow-definition.xml
The XML source file for an ADF bounded task flow is called a task flow definition. The
name for this source file is taken from the value specified in the Task Flow ID field of
the Create ADF Task Flow wizard. By default, JDeveloper proposes the following
filename when you invoke the Create ADF Task Flow wizard:
task-flow-definition.xml. A Fusion web application can contain one or more
ADF bounded task flows. Each bounded task flow has its own task flow definition
source file. For more information about bounded task flows, see Section 14.1.2.2,
"Bounded Task Flows".

A.11 adf-config.xml
JDeveloper generates the adf-config.xml file when you create an application using
the Fusion Web Application (ADF) template. It stores the file in the following
directory:

application_root\.adf\META-INF

The adf-config.xml file specifies application-level settings that are usually
determined at deployment and are often changed at runtime. You can use a
deployment profile to specify settings that are used at application deploy time. You
can change some of the settings at runtime using Oracle Enterprise Manager.

Changing settings in the adf-config.xml file allow you to, for example, enable or
disable the validation of ADF Controller metadata. Another example is where you
need to replicate memory scope if you deploy your Fusion web application in a
clustered environment.

You can also change settings in the adf-config.xml file to manage the caching of
resource bundles where your application uses EL expressions to retrieve strings at
runtime from resource bundles. The properties that you can configure to do this are:

■ initial-size

Specifies the initial number of resource bundles that your application can cache.
The default value is 100.

■ max-size

Specifies the maximum number of resource bundles that your application can
cache. The default value is 100.

■ load-factor

The default value is 0.75.

■ expire-time

The default value is 43200 seconds (12 hours).

You specify these properties as attribute values of the
<resource-bundle-cache> element in the adf-config.xml file.
Example A–5 demonstrates how you might configure these values for your
application in the adf-config.xml file.

As an alternative to configuring the caching of resource bundles in the
adf-config.xml file, you can specify the resource bundle caching properties as
parameters for the Java Virtual Machine (JVM). If you specify the properties as
parameters for the JVM, the changes apply to all applications managed by the JVM.
For this reason, we recommend that you configure the resource bundle caching
properties in the adf-config.xml file for you application. Use the following

adf-config.xml

Oracle ADF XML Files A-25

property names if you decide to specify the resource bundle caching properties as
parameters for the JVM:

■ resource-bundle-cache-initial-size

■ resource-bundle-cache-max-size

■ resource-bundle-cache-load-factor

■ resource-bundle-cache-expire-time

At runtime, the Fusion web application loads the adf-config.xml file from the
META-INF directory. If the Fusion web application finds more than one
adf-config.xml file, it stops loading the file and logs a warning.

The following tasks also modify or require you to modify the adf-config.xml file:

■ Creating task flows

For more information, see Chapter 14, "Getting Started with ADF Task Flows".

■ Enabling implicit save points

For more information, see Section 18.9.7, "How to Enable Implicit Save Points".

■ Persisting saved searches in MDS

For more information, see Section 27.2.3, "How to Persist Saved Searches into
MDS".

■ Configure ADF Business Components global settings

For more information, see Section 39.1.1, "Limiting the View Object Max Fetch Size
to Fetch the First n Rows" and see Section 3.3.1, "Choosing a Connection, SQL
Flavor, and Type Map."

■ Enabling ADF Security

For more information, see Section 30.3.2, "What Happens When You Enable ADF
Security".

■ Enabling seeded customizations

For more information, Section 34.2.4, "How to Enable Seeded Customizations for
View Projects" and Section 34.2.5, "How to Enable Seeded Customizations in
Existing Pages".

■ Configuring change persistence

For more information, see Section 35.2.1, "How to Enable User Customizations".

■ Enabling user customizations

For more information, see Section 35.2.2, "What Happens When You Enable User
Customizations".

Example A–5 shows extracts from the Fusion Order Demo application’s
adf-config.xml file.

Example A–5 Sample adf-config.xml File

<?xml version="1.0" encoding="windows-1252" ?>
<adf-config xmlns="http://xmlns.oracle.com/adf/config"
 xmlns:sec="http://xmlns.oracle.com/adf/security/config">
 <sec:adf-security-child xmlns="http://xmlns.oracle.com/adf/security/config">
 <JaasSecurityContext
initialContextFactoryClass="oracle.adf.share.security.JAASInitialContextFactory"

adf-config.xml

A-26 Fusion Developer's Guide for Oracle Application Development Framework

jaasProviderClass="oracle.adf.share.security.providers.jps.JpsSecurityContext"
 authorizationEnforce="true"
 authenticationRequire="true"/>
 <CredentialStoreContext
credentialStoreClass="oracle.adf.share.security.providers.jps.CSFCredentialStore"
 credentialStoreLocation="../../src/META-INF/jps-config.xml"/>
 </sec:adf-security-child>
 <adf-controller-config xmlns="http://xmlns.oracle.com/adf/controller/config">
 <savepoint-datasource>java:comp/env/jdbc/FODDS</savepoint-datasource>
 <enable-implicit-savepoints>true</enable-implicit-savepoints>
 </adf-controller-config>
 <adf-faces-config xmlns="http://xmlns.oracle.com/adf/faces/config">
 <persistent-change-manager>

<persistent-change-manager-class>oracle.adf.view.rich.change.MDSDocumentChangeManager</persistent-c
hange-manager-class>
 </persistent-change-manager>
 <taglib-config>
 <taglib uri="http://xmlns.oracle.com/adf/faces/rich">
 <tag name="calendar">
 <attribute name="activeDay">
 <persist-changes>true</persist-changes>
 </attribute>
 </tag>
 <!-- Additional tags omitted to make this example concise -->
 <tag name="table">
 <attribute name="filterVisible">
 <persist-changes>true</persist-changes>
 </attribute>
 </tag>
 </taglib>
 </taglib-config>
 </adf-faces-config>
 <adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
 <mds-config xmlns="http://xmlns.oracle.com/mds/config" version="11.1.1.000">
 <cust-config>
 <match path="/">
 <customization-class name="oracle.adf.share.config.UserCC"/>
 </match>
 </cust-config>
 </mds-config>
 </adf-mds-config>
 <adf-adfm-config xmlns="http://xmlns.oracle.com/adfm/config">
 <defaults rowLimit="100"/>
 <startup>
 <amconfig-overrides>
 <config:Database jbo.SQLBuilder="Oracle" jbo.locking.mode="optimistic"/>
 </amconfig-overrides>
 </startup>
 </adf-adfm-config>
<!-- Properties to manage the caching of a resource bundle in your application -->
<adf-resourcebundle-config xmlns="http://xmlns.oracle.com/adf/resourcebundle/config">
 <applicationBundleName>
 path-to-resource-bundle/bundle-name
 </applicationBundleName>
 <resource-bundle-cache initial-size="20" max-size="100" expire-time="30000" load-factor=".75"/>
 <bundleList>
 <bundleId override="true">
 package.BundleID

web.xml

Oracle ADF XML Files A-27

 </bundleId>
 </bundleList>
 </adf-resourcebundle-config>
</adf-config>

A.12 adf-settings.xml
The adf-settings.xml file holds project-level and library-level settings such as
ADF Faces help providers and ADF Controller phase listeners.

The configuration settings for adf-settings.xml are fixed and cannot be changed
during or after application deployment. There can be multiple adf-settings.xml
files in an application. The users of adf-settings.xml files are responsible for
merging the contents of their configuration.

The following tasks modify or require you to modify the adf-settings.xml file:

■ Registering a phase listener

For more information, see Section 21.4.2, "How to Register a Listener Globally".

■ Creating help for ADF Faces components

For more information, see the "Displaying Help for Components" section in the
Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework.

For information about how to create and edit the adf-settings.xml file, see the "How to
Configure for ADF Faces in adf-settings" section in the Oracle Fusion Middleware Web
User Interface Developer's Guide for Oracle Application Development Framework.

Example A–6 shows a sample adf-setting.xml file with settings configured for a phase
listener and a help provider.

Example A–6 Sample adf-settings.xml File

<?xml version="1.0" encoding="windows-1252" ?>
<adf-config xmlns="http://xmlns.oracle.com/adf/config">
 <adfc-controller-config xmlns="http://xmlns.oracle.com/adf/controller/config">
 <lifecycle>
 <phase-listener>
 <listener-id>FODPhaseListener</listener-id>
 <class>oracle.fodemo.storefront.listeners.FODPhaseListener</class>
 </phase-listener>
 </lifecycle>
 <help-provider prefix="MYAPP">
 <help-provider-class>oracle.fodemo.storefront.MyHelpProvider</help-provider-class>
 <property>
 <property-name>myCustomProperty</property-name>
 <value>someValue</value>
 </property>
 </help-provider>
 </adfc-controller-config>
</adf-config>

A.13 web.xml
Oracle ADF has specific configuration settings for the standard web.xml deployment
descriptor file.

logging.xml

A-28 Fusion Developer's Guide for Oracle Application Development Framework

When you create a project in JDeveloper that uses JSF technology, a starter web.xml
file with default settings is created for you in the /WEB-INF folder. To edit the file,
double-click web.xml in the Application Navigator to open it in the XML editor.

The following must be configured in web.xml for all applications that use JSF and
ADF Faces:

■ JSF servlet and mapping: The servlet javax.faces.webapp.FacesServlet
that manages the request-processing lifecycle for web applications utilizing JSF to
construct the user interface.

■ ADF Faces filter and mapping: A servlet filter to ensure that ADF Faces is properly
initialized by establishing a AdfFacesContext object. This filter also processes
file uploads.

■ ADF resource servlet and mapping: A servlet to serve up web application
resources (images, style sheets, JavaScript libraries) by delegating to a
ResourceLoader.

The JSF servlet and mapping configuration settings are automatically added to the
starter web.xml file when you first create a JSF project. When you insert an ADF Faces
component into a JSF page for the first time, JDeveloper automatically inserts the
configuration settings for ADF Faces filter and mapping, and resource servlet and
mapping.

For more information, see the "ADF Faces Configuration" appendix in the Oracle
Fusion Middleware Web User Interface Developer’s Guide for Oracle Application Development
Framework.

A.14 logging.xml
ADF Logger is a diagnostic tool that you can use in JDeveloper to capture runtime
traces messages when you debug an application. You configure the use of this tool by
editing the logging.xml file.

For more information about the logging.xml file and using the ADF Logger, see
Section 31.5, "Using the ADF Logger".

B

Oracle ADF Binding Properties B-1

BOracle ADF Binding Properties

This appendix provides a reference for the properties of the ADF bindings.

Table B–1 shows the properties that you can use in EL expressions to access values of
the ADF binding objects at runtime. The properties appear in alphabetical order.

Table B–1 EL Properties of Oracle ADF Bindings

Runtime Property Description Iterator Action Attribute Button List Table Tree

actionEnabled Use operationEnabled
instead.

n/a yes n/a n/a n/a n/a n/a

allRowsInRange Returns an array of the current
set of rows from the associated
collection. Calls
getAllRowsInRange() on
the RowSetIterator object.

yes n/a n/a n/a n/a n/a n/a

attributeDef Returns the attribute definition
for the first attribute with
which the binding is
associated.

n/a n/a yes yes yes n/a n/a

attributeDefs Returns the attribute
definitions for all the attributes
to which the binding is
associated.

n/a n/a yes yes yes n/a n/a

attributeValue Returns an unformatted and
typed (appropriate Java type)
value in the current row, for
the attribute to which the
control binding is bound. Note
that this property is not visible
in the EL expression builder
dialog.

n/a n/a yes yes yes n/a n/a

attributeValues Returns the value of all the
attributes to which the binding
is associated in an ordered
array. Returns an array of
unformatted and typed
(appropriate Java type) values
in the current row for all the
attributes to which the control
binding is bound. Note that
this property is not visible in
the EL expression builder
dialog.

n/a n/a yes yes yes n/a n/a

B-2 Fusion Developer's Guide for Oracle Application Development Framework

bindings Returns a new binding for
each cell or attribute exposed
under the rows of a tree node
binding.

no no no no no no yes

children Returns the child nodes of a
tree node binding.

n/a n/a n/a n/a n/a n/a yes

currentRow Returns the current row on an
action binding bound to an
iterator (for example, built-in
navigation actions).

n/a yes n/a n/a n/a n/a n/a

dataControl Returns the iterator’s
associated data provider.

yes n/a n/a n/a n/a n/a n/a

displayData Returns a list of map elements.
Each map entry contains the
following elements:

■ selected: A boolean
true if the current entry
should be selected.

■ index: The index value of
the current entry.

■ prompt: A string value
that may be used to
render the entry in the UI.

■ displayValues: An
ordered list of display
attribute values for all
display attributes in the
list binding.

Note that this property is not
visible in the EL expression
builder dialog.

n/a n/a n/a n/a yes n/a n/a

displayHint Returns the display hint for the
first attribute to which the
binding is associated. The hint
identifies whether the attribute
should be displayed or not. For
more information, see
oracle.jbo.AttributeHin
ts.displayHint. Note that
this property is not visible in
the EL expression builder
dialog.

n/a n/a n/a n/a yes n/a n/a

Table B–1 (Cont.) EL Properties of Oracle ADF Bindings

Runtime Property Description Iterator Action Attribute Button List Table Tree

Oracle ADF Binding Properties B-3

displayHints Returns a list of name-value
pairs for UI hints for all
display attributes to which the
binding is associated. The map
contains the following
elements:

■ label: The label to
display for the current
attribute.

■ tooltip: The tooltip to
display for the current
attribute.

■ displayHint: The
display hint for the
current attribute.

■ displayHeight: The
height in lines for the
current attribute.

■ displayWidth: The
width in characters for the
current attribute.

■ controlType: The
control type hint for the
current attribute.

■ format: The format to be
used for the current
attribute.

Note that this property is not
visible in the EL expression
builder dialog.

n/a n/a n/a yes yes n/a n/a

enabled Use the operationEnabled
property.

n/a n/a n/a n/a n/a n/a n/a

enabledString Returns disabled if the
action binding is not ready to
be invoked. Otherwise, returns
an empty string ("").

n/a yes n/a n/a n/a n/a n/a

error Returns any exception that
was cached while updating the
associated attribute value for a
value binding or when
invoking an operation bound
by an operation binding.

yes yes yes yes yes yes yes

estimatedRowCount Returns the maximum row
count of the rows in the
collection with which this
iterator binding is associated

yes n/a n/a n/a n/a yes yes

findMode Returns true if the iterator is
currently operating in find
mode. Otherwise, returns
false.

yes n/a n/a n/a n/a n/a n/a

fullName Returns the fully qualified
name of the binding object in
the Oracle ADF binding
context.

yes yes yes yes yes yes yes

Table B–1 (Cont.) EL Properties of Oracle ADF Bindings

Runtime Property Description Iterator Action Attribute Button List Table Tree

B-4 Fusion Developer's Guide for Oracle Application Development Framework

hints Returns the value of the UI
hint indicated for the binding.
See displayHints for the list
of UI hint keywords.

yes yes yes yes yes yes yes

inputValue Returns the value of the first
attribute to which the binding
is associated. If the binding
was used to set the value on
the attribute and the set
operation failed, this method
returns the invalid value that
was being set.

n/a n/a yes yes yes yes yes

iteratorBinding Returns the iterator binding
that provides access to the data
collection.

n/a yes yes yes yes yes yes

label Returns the label (if supplied
by control hints) for the first
attribute of the binding.

n/a n/a yes yes yes n/a n/a

labels Returns a map of labels (if
supplied by control hints)
keyed by attribute name for all
attributes to which the binding
is associated. Note that this
property is not visible in the
EL expression builder dialog.

n/a n/a yes yes yes yes n/a

labelSet Returns an ordered set of
labels for all the attributes to
which the binding is
associated. Note that this
property is not visible in the
EL expression builder dialog.

n/a n/a yes yes yes yes n/a

mandatory Returns whether the first
attribute to which the binding
is associated is required.

n/a n/a yes yes yes n/a n/a

name Returns the name of the
binding object in the context of
the binding container to which
it is registered. Note this
property is not visible in the
EL expression builder dialog.

yes yes yes yes yes yes yes

operationEnabled Returns true or false,
depending on the state of the
action binding. For example,
the action binding may be
enabled (true) or disabled
(false) based on the currency
(as determined, for example,
when the user clicks the First,
Next, Previous, Last
navigation buttons).

n/a yes n/a n/a n/a n/a n/a

Table B–1 (Cont.) EL Properties of Oracle ADF Bindings

Runtime Property Description Iterator Action Attribute Button List Table Tree

Oracle ADF Binding Properties B-5

rangeSet Returns a list of map elements
over the range of rows from
the associated iterator binding.
The elements in this list are
wrapper objects over the
indexed row in the range that
restricts access to the attributes
to which the binding is bound.
The properties returned on the
reference object are:

■ index: The range index of
the row this reference is
pointing to.

■ key: The key of the row
this reference is pointing
to.

■ keyStr: The string format
of the key of the row this
reference is pointing to.

■ currencyString: The
current indexed row as a
string. Returns "*" if the
current entry belongs to
the current row;
otherwise, returns " ". This
property is useful in JSP
applications to display the
current row.

■ attributeValues: The
array of applicable
attribute values from the
row.

You may also access an
attribute value by name on a
range set like
rangeSet.dname if dname is
a bound attribute in the range
binding.

n/a n/a n/a n/a n/a yes yes

rangeSize Returns the range size of the
ADF iterator binding’s row set.
This allows you to determine
the number of data objects to
bind from the data source.

yes n/a n/a n/a n/a yes yes

rangeStart Returns the absolute index in a
collection of the first row in
range. See the javadoc for
oracle.jbo.RowSetIterat
or.getRangeStart().

yes n/a n/a n/a n/a yes yes

result Returns the result of a method
that is bound and invoked by a
method action binding.

n/a yes n/a n/a n/a n/a n/a

rootNodeBinding Returns the root node of a tree
binding.

n/a n/a n/a n/a n/a n/a yes

Table B–1 (Cont.) EL Properties of Oracle ADF Bindings

Runtime Property Description Iterator Action Attribute Button List Table Tree

B-6 Fusion Developer's Guide for Oracle Application Development Framework

selectedValue Returns the value
corresponding to the current
selected index in the list or
button binding.

n/a n/a n/a yes yes n/a n/a

tooltip Returns the tooltip hint for the
first attribute to which the
binding is associated.

n/a n/a yes yes yes n/a n/a

updateable Returns true if the first
attribute to which the binding
is associated is updateable.
Otherwise, returns false.

n/a n/a yes yes yes n/a n/a

Table B–1 (Cont.) EL Properties of Oracle ADF Bindings

Runtime Property Description Iterator Action Attribute Button List Table Tree

C

Oracle ADF Permission Grants C-1

COracle ADF Permission Grants

This appendix lists the security-aware components of Oracle Application
Development Framework (Oracle ADF) and the actions that their Permission
implementation classes define.

 Table C–1 shows the ADF components and their permission grants that you can
define to create ADF security policies. You add grants to the policy store using the
overview editor for ADF security policies. A permission grant specifies the fully
qualified permission class name, the fully qualified resource name, the action that can
be performed against the resource, and the application role target of the grant. When
you enable ADF security to enforce permission checking, the operations supported by
ADF components will be inaccessible to users who do not possess sufficient access
rights as defined by grants to their application role.

For complete details about defining ADF security policies in Fusion web applications,
see Chapter 30, "Enabling ADF Security in a Fusion Web Application."

Note: JDeveloper displays grantable actions for Fusion web
applications including actions for the Oracle WebCenter Portal:
Framework. WebCenter Portal: Framework supports creating
personalizable web pages. For details about securing WebCenter
Portal: Framework applications, see the Oracle Fusion Middleware
Developer's Guide for Oracle WebCenter Portal.

Table C–1 ADF Security Permission Grants

ADF Component Grantable Action Corresponding Implementation

ADF bounded task
flow

View The view action controls who can read and execute a bounded task
flow. Pages that the user accesses within the process of executing a
bounded task flow will not be individually security checked and
will run under the permission of the task flow.

In this release, this is the only task flow action supported by Fusion
web applications without Oracle WebCenter Portal: Framework.

Customize Reserved for future use. This action is not checked at runtime.

Grant Reserved for future use. This action is not checked at runtime.

Personalize Reserved for future use. This action is not checked at runtime.

C-2 Fusion Developer's Guide for Oracle Application Development Framework

ADF page definition View The view action controls who can view the page. Page-level security
is checked for pages that have an associated page definition binding
file only if the page is accessed in the process of an unbounded task
flow. There is a one-to-one relationship between the page definition
file and the web page it secures.

In this release, this is the only page definition action supported by
Fusion web applications without Oracle WebCenter Portal:
Framework.

Customize The customize action controls who can make implicit changes (such
as minimize/restore, delete, or move) to a WebCenter Portal
customizable component (in a Panel Customizable or Show Detail
Frame) contained in a page of a custom application (one enabled to
use Oracle WebCenter Portal’s Composer) or a WebCenter Portal:
Framework application.

Edit The edit action controls who can invoke Oracle WebCenter Portal’s
Composer and who can make changes to the page using Oracle
WebCenter Portal’s Composer. Additionally, this action combines
personalize and customize actions. This means that the edit action
also controls who can make implicit changes to a WebCenter Portal
customizable component (in a Panel Customizable or Show Detail
Frame) contained in a page with the edit permission grant.

Grant The grant action confers the rights specified by all
WebCenter-specific actions combined; it is equivalent to granting all
other actions. It also controls who can make grants to other users
and who can change security settings on the page using Oracle
WebCenter Portal’s Composer.

Personalize The personalize action controls who can make implicit changes
(such as minimize/restore, delete, or move) to a WebCenter Portal
customizable component (in a Panel Customizable or Show Detail
Frame) contained in a page of a custom application (one enabled to
use Oracle WebCenter Portal’s Composer) or a WebCenter Portal:
Framework application.

ADF Business
Components entity
objects

read The read action controls who can view a row of the bound
collection.

update The update action controls who can update any attribute of the
bound collection.

removeCurrentRow
/delete

The delete action controls who can delete a row from the bound
collection.

ADF Business
Components
attributes of entity
objects

update The update action controls who can update a specific attribute of the
bound collection.

Table C–1 (Cont.) ADF Security Permission Grants

ADF Component Grantable Action Corresponding Implementation

D

ADF Equivalents of Common Oracle Forms Triggers D-1

DADF Equivalents of Common Oracle Forms
Triggers

This appendix provides a quick summary of how basic tasks performed with the most
common Oracle Forms triggers are accomplished using Oracle ADF.

This appendix includes the following sections:

■ Section D.1, "Validation and Defaulting (Business Logic)"

■ Section D.2, "Query Processing"

■ Section D.3, "Database Connection"

■ Section D.4, "Transaction "Post" Processing (Record Cache)"

■ Section D.5, "Error Handling"

D.1 Validation and Defaulting (Business Logic)

Table D–1 ADF Equivalents for Oracle Forms Validation and Defaulting Triggers

Forms Trigger ADF Equivalent

WHEN-VALIDATE-RECORD

Execute validation code at the record
level

In the custom EntityImpl class for your entity object,
write a public method returning a boolean type with a
method name like validateXXXX() and have it
return true if the validation succeeds or false if the
validation fails. Then, add a Method validator for this
validation method to your entity object at the entity
level. When doing that, you can associate a validation
failure message with the rule.

WHEN-VALIDATE-ITEM

Execute validation code at the field
level

In the custom EntityImpl class for your entity object,
write a public method returning a boolean type and
accepting a single argument of the same data type as
your attribute, having a method name like
validateXXXX(). Have it return true if the
validation succeeds or false if the validation fails.
Then, add a Method validator for this validation
method to the entity object at the attribute level for the
appropriate attribute. When doing that, you can
associate a validation failure message with the rule.

WHEN-DATABASE-RECORD

Execute code when a row in the data
block is marked for insert or update

Override the addToTransactionManager() method
of your entity object. Write code after calling the super.

Query Processing

D-2 Fusion Developer's Guide for Oracle Application Development Framework

D.2 Query Processing

WHEN-CREATE-RECORD

Execute code to populate complex
default values when a new record in
the data block is created, without
changing the modification status of
the record

Override the create() method of your entity object
and after calling the super, use appropriate
setAttrName() methods to set default values for
attributes as necessary.

To immediately set a primary key attribute to the value
of a sequence, construct an instance of the
SequenceImpl helper class and call its
getSequenceNumber() method to get the next
sequence number. Assign this value to your primary
key attribute.

If you want to wait to assign the sequence number until
the new record is saved, but still without using a
database trigger, you can use this technique in an
overridden prepareForDML() method in your entity
object.

If instead you want to assign the primary key from a
sequence using your own BEFOREINSERTFOREACHROW
database trigger, then use the special data type called
DBSequence for your primary key attribute instead of
the regular Number type.

WHEN-REMOVE-RECORD

Execute code whenever a row is
removed from the data block

Override the remove() method of your entity object
and write code either before or after calling the super.

Table D–2 ADF Equivalents for Oracle Forms Query Processing Triggers

Forms Trigger ADF Equivalent

PRE-QUERY

Execute logic before executing a
query in a data block, typically to set
up values for Query-by-Example
criteria in the "example record"

Override the executeQueryForCollection()
method on your view object class and write code before
calling the super.

ON-COUNT

Override default behavior to count
the query hits for a data block

Override the getQueryHitCount() method in your
view object and do something instead of calling the
super.

POST-QUERY

Execute logic after retrieving each
row from the data source for a data
block.

Generally instead of using a POST-QUERY style
technique to fetch descriptions from other tables based
on foreign key values in the current row, in ADF it's
more efficient to build a view object that has multiple
participating entity objects, joining in all the
information you need in the query from the main table,
as well as any auxiliary or lookup-value tables. This
way, in a single roundtrip to the database you get all
the information you need. If you still need a
per-fetched-row trigger like POST-QUERY, override the
createInstanceFromResultSet() method in your
view object class.

ON-LOCK

Override default behavior to attempt
to acquire a lock on the current row
in the data block

Override the lock() method in your entity object class
and do something instead of calling the super.

Table D–1 (Cont.) ADF Equivalents for Oracle Forms Validation and Defaulting Triggers

Forms Trigger ADF Equivalent

Transaction "Post" Processing (Record Cache)

ADF Equivalents of Common Oracle Forms Triggers D-3

D.3 Database Connection

D.4 Transaction "Post" Processing (Record Cache)

Table D–3 ADF Equivalents for Oracle Forms Database Connection Triggers

Forms Trigger ADF Equivalent

POST-LOGON

Execute logic after logging into the
database

Override the afterConnect() method on your
custom application module. Since application module
instances can stay connected while serving different
logical client sessions, you can override the
prepareSession() method, which is fired after
initial login, as well as after any time the application
module is accessed by a user that was different from
the one that accessed it last time.

PRE-LOGOUT

Execute logic before logging out of
the database

Override the beforeDisconnect() method on your
custom application module class.

Table D–4 ADF Equivalents for Oracle Forms Transactional Triggers

Forms Trigger ADF Equivalent

PRE-COMMIT

Execute code before commencing processing
of the changed rows in all data blocks in the
transaction

Override the commit() method in a custom
DBTransactionImpl class and write code
before calling the super.

Note:

For an overview of creating and using a
custom DBTransaction implementation, see
Section 37.8.5.1, "Creating a Custom Database
Transaction Framework Extension Class."

PRE-INSERT

Execute code before a new row in the data
block is inserted into the database during
"post" processing

Override the doDML() method in your entity
class, and if the operation equals DML_
INSERT, then write code before calling the
super.

ON-INSERT

Override default processing for inserting a
new row into the database during "post"
processing

Override the doDML() method in your entity
class, and if the operation equals DML_
INSERT, then write code instead of calling the
super.

POST-INSERT

Execute code after new row in the data block
is inserted into the database during "post"
processing

Override the doDML() method in your entity
class, and if the operation equals DML_
INSERT, then write code after calling the
super.

PRE-DELETE

Execute code before a row removed from the
data block is deleted from the database during
"post" processing

Override the doDML() method in your entity
class, and if the operation equals DML_
DELETE, then write code before calling the
super.

ON-DELETE

Override default processing for deleting a row
removed from the data block from the
database during "post" processing

Override the doDML() method in your entity
class, and if the operation equals DML_
DELETE, then write code instead of calling the
super.

Error Handling

D-4 Fusion Developer's Guide for Oracle Application Development Framework

D.5 Error Handling

POST-DELETE

Execute code after a row removed from the
data block is deleted from the database during
"post" processing

Override the doDML() method in your entity
class, and if the operation equals DML_
DELETE, then write code after calling the
super.

PRE-UPDATE

Execute code before a row changed in the data
block is updated in the database during "post"
processing

Override the doDML() method in your entity
class, and if the operation equals DML_
UPDATE, then write code before calling the
super.

ON-UPDATE

Override default processing for updating a
row changed in the data block from the
database during "post" processing

Override the doDML() method in your entity
class, and if the operation equals DML_
UPDATE, then write code instead of calling the
super.

POST-UPDATE

Execute code after a row changed in the data
block is updated in the database during "post"
processing

Override the doDML() method in your entity
class, and if the operation equals DML_
UPDATE, then write code after calling the
super.

POST-FORMS-COMMIT

Execute code after Forms has "posted" all
necessary rows to the database, but before
issuing the data commit to end the transaction

If you want a single block of code for the
whole transaction, you can override the
doCommit() method in a custom
DBTransactionImpl object and write code
before calling the super.

To execute entity-specific code before commit
for each affected entity in the transaction,
override the beforeCommit() method on
your entity object, and write code there.

POST-DATABASE-COMMIT

Execute code after database transaction has
been committed

Override the commit() method in a custom
DBTransactionImpl class, and write code
after calling the super.

Table D–5 ADF Equivalents for Oracle Forms Error Handling Triggers

Forms Trigger ADF Equivalent

ON-ERROR

Override default behavior for handling an
error

Install a custom error handler
(DCErrorHandler) on the ADF
BindingContext. For details, see
Section 28.10, "Customizing Error Handling."

Table D–4 (Cont.) ADF Equivalents for Oracle Forms Transactional Triggers

Forms Trigger ADF Equivalent

E

Most Commonly Used ADF Business Components Methods E-1

EMost Commonly Used ADF Business
Components Methods

This appendix lists the most commonly used methods in the interfaces and classes of
the ADF Business Components layer of Oracle Application Development Framework
(Oracle ADF).

This appendix contains the following sections:

■ Section E.1, "Most Commonly Used Methods in the Client Tier"

■ Section E.2, "Most Commonly Used Methods in the Business Service Tier"

E.1 Most Commonly Used Methods in the Client Tier
All of the interfaces described in this section are designed for use by client-layer code
and are part of the oracle.jbo.* package.

This section provides a summary of the most frequently called, written, and
overridden methods for the key ADF Business Components interfaces.

E.1.1 ApplicationModule Interface
An application module is a business service component that acts as a transactional
container for other ADF components and coordinates with them to implement a
number of Java EE design patterns important to business application developers.
These design pattern implementations enable your client code to work easily with
updatable collections of value objects, based on fast-lane reader SQL queries that
retrieve only the data needed by the client, in the way the client wants to view it.
Changes made to these value objects are automatically coordinated with your
persistent business domain objects in the business service tier to enforce business rules
consistently and save changes back to the database. Table E–1 describes the operations
that you can perform on an application module using the ApplicationModule
interface.

Note: The corresponding implementation classes for these
oracle.jbo.* interfaces are intentionally designed to not be directly
accessed by client code. Section E.2, "Most Commonly Used Methods
in the Business Service Tier" shows that the implementation classes
reside in the oracle.jbo.server.* package and generally have
the suffix Impl in their name to help remind you not to use them in
your client-layer code.

Most Commonly Used Methods in the Client Tier

E-2 Fusion Developer's Guide for Oracle Application Development Framework

In addition to generic application module access, Oracle JDeveloper can generate a
custom YourApplicationModuleName interface containing service-level custom
methods that you've chosen to expose to the client. You use the Client Interface page
of the Edit Application Module dialog to select the methods that you want to appear
in your client interface.

Note: For the complete list of design patterns that ADF Business
Components implements, see Appendix F, "ADF Business
Components Java EE Design Pattern Catalog."

Table E–1 ApplicationModule Interface

If you want to...
Call this ApplicationModule interface
method

Access an existing view object instance using
the assigned instance name (for example,
MyVOInstanceName)

findViewObject()

Create a new view object instance from an
existing definition

createViewObject()

Create a new view object instance from a SQL
Statement

createViewObjectFromQueryStmt()

Notes:

This incurs runtime overhead to describe the
"shape" of the dynamic query's SELECT list.
Use this method only when you cannot know
the SELECT list for the query at design time.
Furthermore, if you are creating the dynamic
query based on some kind of custom runtime
repository, you can follow the steps to create
(both read-only and updatable) dynamic view
objects without the runtime-describe
overhead, as described in Section 39.9,
"Creating a View Object with Multiple
Updatable Entities." If only the WHERE needs
to be dynamic, create the view object at design
time, then set the WHERE clause dynamically
as needed using ViewObject APIs.

Access a nested application module instance
by name

findApplicationModule()

Create a new nested application module
instance from an existing definition

createApplicationModule()

Find a view object instance in a nested
application module using a dot-notated name
(for example,
MyNestedAMInstanceName.OneOfItsVON
ames)

findViewObject()

Notes:

You can use this method to find an instance of
a view object belonging to a nested application
module in a single method call. This way you
do not need to first call
findApplicationModule() to find the
nested application module, before calling
findViewObject() on that nested
application module.

Access the current transaction object getTransaction()

Most Commonly Used Methods in the Client Tier

Most Commonly Used ADF Business Components Methods E-3

E.1.2 Transaction Interface
The Transaction interface exposes methods allowing the client to manage pending
changes in the current transaction. Table E–2 describes the operations that you can
perform on the transaction using the Transaction interface.

E.1.3 ViewObject Interface
A view object is a component that encapsulates a database query and simplifies
working with the row set of results it produces. You use view objects to project, filter,
join, or sort business data using SQL from one or more tables to cast the data into
exactly the format that the user should see on the page or panel. You can create
"master-detail" hierarchies of any depth or complexity by connecting view objects
together using view links. View objects can produce read-only query results, or when

Table E–2 Transaction Interface

If you want to... Call this Transaction interface method

Commit pending changes commit()

Roll back pending changes rollback()

Execute a one-time database command or
block of PL/SQL

executeCommand()

Notes:

Do not use this command with methods that
require retrieving OUT parameters and that
will be executed more than once, or that could
benefit from using bind variables. Instead,
expose a custom method on your application
module.

Validate all pending invalid changes in the
transaction

validate()

Change the default locking mode setLockingMode()

Notes:

You can set the locking mode in your
configuration by setting the property
jbo.locking.mode to one of the four
supported values: none, optimistic,
pessimistic, optupdate. If you don't
explicitly set the locking mode, it will default
to optimistic. For Fusion web applications,
use optimistic or optupdate modes.

Decide whether to use bundled exception
reporting mode or not

setBundledExceptionMode()

Notes:

ADF Controller layer support sets this
parameter to true automatically for Fusion
web applications.

Decide whether entity caches will be cleared
upon a successful commit of the transaction

setClearCacheOnCommit()

Notes:

Default is false.

Decide whether entity caches will be cleared
upon a rollback of the transaction

setClearCacheOnRollback()

Notes:

Default is true.

Clear the entity cache for a specific entity
object

clearEntityCache()

Most Commonly Used Methods in the Client Tier

E-4 Fusion Developer's Guide for Oracle Application Development Framework

associated with one or more entity objects at design time, can be fully updatable.
Updatable view objects can support insertion, modification, and deletion of rows in
the result collection, with automatic delegation to the correct business domain objects.

Every view object contains a "default row set" for simplifying the 90 percent of use
cases where you work with a single row set of results for the view object's query. A
view object implements all the methods on the RowSet interface by delegating them
to this default RowSet. That means you can invoke any RowSet methods on any view
object as well.

Every view object implements the StructureDef interface to provide information
about the number and types of attributes in a row of its row sets. So you can call
StructureDef methods directly on any view object.

Table E–3 describes the operations that you can perform on a view object using the
ViewObject interface

In addition to generic ViewObject access, JDeveloper can generate you a custom
YourViewObjectName interface containing view object-level custom methods that

Table E–3 ViewObject Interface

If you want to... Call this ViewObject interface method

Set an additional runtime WHERE clause on the
row set

setWhereClause()

Notes:

This WHERE clause augments any WHERE
clause specified at design time in the base
view object. It does not replace it.

Set a dynamic ORDER BY clause setOrderByClause()

Create a Query-by-Example criteria collection createViewCriteria()

Notes:

You then create one or more
ViewCriteriaRow objects using the
createViewCriteriaRow() method on the
ViewCriteria object you created. Then you
add() these view criteria rows to the view
criteria collection and apply the criteria using
the applyViewCriteria() method.

Apply a Query-by-Example criteria collection applyViewCriteria()

Set a query optimizer hint setQueryOptimizerHint()

Access the attribute definitions for the key
attributes in the view object

getKeyAttributeDefs()

Add a dynamic attribute to rows in this view
object's row sets

addDynamicAttribute()

Clear all row sets produced by a view object clearCache()

Remove a view object instance and its
resources

remove()

Set an upper limit on the number of rows that
the view object will attempt to fetch from the
database

setMaxFetchSize()

Notes:

Default is -1, which means to impose no limit
on how many rows would be retrieved from
the database if you iterated through them all.
By default, as you iterate through them, they
are fetched lazily.

Most Commonly Used Methods in the Client Tier

Most Commonly Used ADF Business Components Methods E-5

you've chosen to expose to the client. You use the Client Interface page of the Edit
View Object dialog to select the methods that you want to appear in your client
interface.

E.1.4 RowSet Interface
A row set is an object that contains a set of rows, typically produced by executing a
view object's query.

Every RowSet aggregates a "default row set iterator" for simplifying the 90 percent of
use cases where you need only a single iterator over the row set. A RowSet object
implements all the methods on the RowSetIterator interface by delegating them to
this default RowSetIterator. This means you can invoke any RowSetIterator
method on any RowSet object (or view object, since it implements RowSet, as well for
its default RowSet).

Table E–4 describes the operations that you can perform on a row set using the
RowSet interface.

Table E–4 RowSet Interface

If you want to... Call this RowSet interface method

Set a WHERE clause bind variable value setWhereClauseParams()

Notes:

Bind variable ordinal positions are zero-based.

Avoid view object row caching if data is being
read only once

setForwardOnly()

Force a row set's query to be (re)executed (in
the case of exclusive view object instances) or
potentially executed (in the case of shared
view object instances)

executeQuery()

Notes:

The behavior of this method differs depending
on whether the view object belongs to a
shared application module or not. When
reexecuting the query for an exclusive view
object (not an instance of a shared module), a
new query collection is created. Before
executing the query for a shared view object
instance, a check is performed to determine
whether the results already exist. Already
cached results will be reused for the shared
view object instance instead of reexecuting the
query. If you want to ensure that the results
for a shared view object instance are refreshed,
you can invoke the
forceExecuteQueryOfSharedVO()
method. However, if at the time of invoking
force execute a user is iterating over the
collection of a shared view object instance,
then the behavior is undefined and exceptions
may result.

Estimate the number of rows in a view object's
query result

getEstimatedRowCount()

Produce an XML document for rows in a view
object row set

writeXML()

Process all rows from an incoming XML
document

readXML()

Most Commonly Used Methods in the Client Tier

E-6 Fusion Developer's Guide for Oracle Application Development Framework

E.1.5 RowSetIterator Interface
A row set iterator is an iterator over the rows in a row set. By default it allows you to
iterate both forward and backward through the rows. Table E–5 describes the
operations that you can perform on a row set using the RowSetIterator interface.

Set whether a row set will automatically see
new rows based on the same entity object
created through other row sets

setAssociationConsistent()

Create a secondary iterator to use for
programmatic iteration

createRowSetIterator()

Notes:

If you plan to find and use the secondary
iterator by name later, then pass in a string
name as the argument; otherwise, pass null
for the name and make sure to close the
iterator when done iterating by calling its
closeRowSetIterator() method.

Table E–5 RowSetIterator Interface

If you want to... Call this RowSetIterator interface method

Get the first row of the iterator's row set first()

Test whether there are more rows to iterate hasNext()

Get the next row of an iterator's row set next()

Find a row in this iterator's row set with a
given key value

findByKey()

Notes:

It's important that the Key object that you pass
to findByKey be created using the exact same
data types as the attributes that comprise the
key of the rows in the view object you're
working with.

Create a new row to populate for insertion createRow()

Notes:

The new row will already have default values
set for attributes which either have a static
default value supplied at the entity object or
view object level, or if the values have been
populated in an overridden create()
method of the underlying entity object(s).

Create a view row with an initial set of foreign
key and/or discriminator attribute values

createAndInitRow()

Notes:

You use this method when working with view
objects that can return one of a "family" of
entity object subtypes. By passing in the
correct discriminator attribute value in the call
to create the row, the framework can create
you the correct matching entity object subtype
underneath.

Table E–4 (Cont.) RowSet Interface

If you want to... Call this RowSet interface method

Most Commonly Used Methods in the Client Tier

Most Commonly Used ADF Business Components Methods E-7

E.1.6 Row Interface
A row is generic value object. It contains attributes appropriate in name and Java type
for the view object that it is related to. Table E–6 describes the operations that you can
perform on a view object row using the Row interface.

Insert a new row into the iterator's row set insertRow()

Notes:

It's a good habit to always immediately insert
a newly created row into the rowset. That way
you will avoid a common gotcha of creating
the row but forgetting to insert it into the
rowset.

Get the last row of the iterator's row set last()

Get the previous row of the iterator's row set previous()

Reset the current row pointer to the slot before
the first row

reset()

Close an iterator when done iterating closeRowSetIterator()

Set a given row to be the current row setCurrentRow()

Remove the current row removeCurrentRow()

Remove the current row to later insert it at a
different location in the same iterator

removeCurrentRowAndRetain()

Remove the current row from the current
collection but do not remove it from the
transaction.

removeCurrentRowFromCollection()

Set/change the number of rows in the range (a
"page" of rows the user can see)

setRangeSize()

Scroll to view the nth page of rows (1-based) scrollToRangePage()

Scroll to view the range of rows starting with
row number n

scrollRangeTo()

Set row number n in the range to be the
current row

setCurrentRowAtRangeIndex()

Get all rows in the range as a row array getAllRowsInRange()

Table E–6 Row Interface

If you want to... Call this Row interface method

Get the value of an attribute by name getAttribute()

Set the value of an attribute by name setAttribute()

Produce an XML document for a single row writeXML()

Eagerly validate a row validate()

Read row attribute values from XML readXML()

Remove the row remove()

Flag a newly created row as temporary (until
updated again)

setNewRowState(Row.STATUS_
INITIALIZED)

Table E–5 (Cont.) RowSetIterator Interface

If you want to... Call this RowSetIterator interface method

Most Commonly Used Methods in the Client Tier

E-8 Fusion Developer's Guide for Oracle Application Development Framework

In addition to generic Row access, JDeveloper can generate a custom
YourViewObjectNameRow interface containing your type-safe attribute getter and
setter methods, as well as any desired row-level custom methods that you've chosen to
expose to the client. You use the Client Row Interface page of the Edit View Object
dialog to select the methods that you want to appear in your client interface.

E.1.7 StructureDef Interface
The StructureDef interface provides access to runtime metadata about the structure
of a Row object.

In addition, for convenience every view object implements the StructureDef
interface as well, providing access to metadata about the attributes in the resulting
view rows that its query will produce.

Table E–7 describes the operations that you can perform on a view object row using
the StructureDef interface.

E.1.8 AttributeDef Interface
The AttributeDef interface provides attribute definition information for any
attribute of a view object row or entity object instance like attribute name, Java type,
and SQL type. It also provides access to custom attribute-specific metadata properties
that can be inspected by generic code you write, as well as UI hints that can assist in
rendering an appropriate user interface display for the attribute and its value.
Table E–8 describes the operations that you can perform on an attribute using the
AttributeDef interface.

Retrieve the attribute structure definition
information for a row

getStructureDef()

Get the Key object for a row getKey()

Table E–7 StructureDef Interface

If you want to... Call this StructureDef interface method

Access attribute definitions for all attributes in
the view object row

getAttributeDefs()

Find an attribute definition by name findAttributeDef()

Get attribute definition by index getAttributeDef()

Get number of attributes in a row getAttributeCount()

Table E–8 AttributeDef Interface

If you want to... Call this AttributeDef interface method

Get the Java type of the attribute getJavaType()

Get the SQL type of the attribute getSQLType()

Notes:

The int value corresponds to constants in the
JDBC class java.sql.Types.

Table E–6 (Cont.) Row Interface

If you want to... Call this Row interface method

Most Commonly Used Methods in the Client Tier

Most Commonly Used ADF Business Components Methods E-9

E.1.9 AttributeHints Interface
The AttributeHints interface exposes UI hint information that you can use to
render an appropriate user interface display for the attribute and its value. Table E–9
describes the operations that you can perform on an attribute using the
AttributeHints interface.

Determine the kind of attribute getAttributeKind()

Notes:

A simple attribute is one that returns one of
the constants ATTR_PERSISTENT, ATTR_
SQL_DERIVED, ATTR_TRANSIENT, ATTR_
DYNAMIC, ATTR_ENTITY_DERIVED. If the
attribute is a 1-to-1 or many-to-1
association/viewlink accessor, it returns
ATTR_ASSOCIATED_ROW. If the attribute is a
1-to-many or many-to-many
association/viewlink accessor, it returns
ATTR_ASSOCIATED_ROWITERATOR

Get the Java type of elements contained in an
Array-valued attribute

getElemJavaType()

Get the SQL type of elements contained in an
Array-valued attribute

getElemSQLType()

Get the name of the attribute getName()

Get the index position of the attribute getIndex()

Get the precision of a numeric attribute or the
maximum length of a string attribute

getPrecision()

Get the scale of a numeric attribute getScale()

Get the underlying column name
corresponding to the attribute

getColumnNameForQuery()

Get attribute-specific custom property values getProperty(), getProperties()

Get the UI AttributeHints object for the
attribute

getUIHelper()

Test whether the attribute is mandatory isMandatory()

Test whether the attribute is queriable isQueriable()

Test whether the attribute is part of the
primary key for the row

isPrimaryKey()

Table E–9 AttributeHints Interface

If you want to... Call this AttributeHints interface method

Get the UI label for the attribute getLabel()

Get the tooltip for the attribute getTooltip()

Get the formatted value of the attribute, using
any format mask supplied

getFormattedAttribute()

Table E–8 (Cont.) AttributeDef Interface

If you want to... Call this AttributeDef interface method

Most Commonly Used Methods in the Business Service Tier

E-10 Fusion Developer's Guide for Oracle Application Development Framework

E.2 Most Commonly Used Methods in the Business Service Tier
The implementation classes corresponding to the oracle.jbo.* interfaces, as
described in Section E.1, "Most Commonly Used Methods in the Client Tier," are
intentionally designed to not be directly accessed by client code. They reside in a
different package named oracle.jbo.server.* and have the Impl suffix in their
name to help remind you not to use them in your client-layer code.

In your business service tier implementation code, you can use any of the same
methods that are available to clients, but in addition you can also:

■ Safely cast any oracle.jbo.* interface to its oracle.jbo.server.* package
implementation class and use any methods on that Impl class as well.

■ Override any of the public or protected methods for the base framework
implementation classes and write custom code in your component subclass before
or after calling super.methodName() to augment or change the default
functionality.

This section provides a summary of the most frequently called, written, and
overridden methods for the key ADF Business Components classes.

E.2.1 Controlling Custom Java Files for Your Components
Before examining the specifics of individual classes, it's important to understand how
you can control which custom Java files each of your components will use. When you
don't need a customized subclass for a given component, you can just let the base
framework class handle the implementation at runtime.

Each business component you create comprises a single XML component descriptor,
and zero or more related custom Java implementation files. Each component that
supports Java customization has a Java page in its component overview editor in the
JDeveloper IDE. By selecting or deselecting the different Java classes, you control
which ones will be created for your component. If none of the classes is specified, then
your component will be an XML-only component, which simply uses the base
framework class as its Java implementation. Otherwise, tick the checkbox of the
related Java classes for the current component that you need to customize. JDeveloper
will create a custom subclass of the framework base class in which you can add your
code.

Get the display hint for the attribute getDisplayHint()

Notes:

The display hint will have a string value of
either Display or Hide.

Get the preferred control type for the attribute getControlType()

Parse a formatted string value using any
format mask supplied for the attribute

parseFormattedAttribute()

Note: You can set up global IDE preferences for the Java classes to be
generated by default for each ADF business component type by
choosing Tools > Preferences > Business Components and ticking
the checkboxes to indicate what you want your defaults to be.

Table E–9 (Cont.) AttributeHints Interface

If you want to... Call this AttributeHints interface method

Most Commonly Used Methods in the Business Service Tier

Most Commonly Used ADF Business Components Methods E-11

A best practice is to always generate entity object and view row classes, even if you
don't require any custom code in them other than the automatically generated getter
and setter methods. These getter and setter methods offer you compile-time type
checking that prevents errors surfacing at runtime in response to an attribute having
been set to an incorrect kind of value.

E.2.2 ApplicationModuleImpl Class
The ApplicationModuleImpl class is the base class for application module
components. Since the application module is the ADF component used to implement a
business service, think of the application module class as the place where you can
write your service-level application logic. The application module coordinates with
view object instances to support updatable collections of value objects that are
automatically "wired" to business domain objects. The business domain objects are
implemented as ADF entity objects.

E.2.2.1 Methods You Typically Call on ApplicationModuleImpl
Table E–10 describes the operations that you can perform on an application module
using the ApplicationModuleImpl class.

E.2.2.2 Methods You Typically Write in Your Custom ApplicationModuleImpl
Subclass
Table E–11 describes the operations that you can perform on an application module
using your custom ApplicationModuleImpl class.

Table E–10 Methods You Typically Call on ApplicationModuleImpl

If you want to...
Call this method of the
ApplicationModuleImpl class

Perform any of the common application
module operations from inside your class,
which can also be done from the client

For a list of these methods, see Section E.1.1,
"ApplicationModule Interface."

Access a view object instance that you added
to the application module's data model at
design time

getViewObjectInstanceName()

Notes:

JDeveloper generates this type-safe view
object instance getter method for you to reflect
each view object instance in the application
module's design time data model.

Access the current DBTransaction object getDBTransaction()

Access a nested application module instance
that you added to the application module at
design time

getAppModuleInstanceName()

Notes:

JDeveloper generates this type-safe
application module instance getter method for
you to reflect each nested application module
instance added to the current application
module at design time.

Most Commonly Used Methods in the Business Service Tier

E-12 Fusion Developer's Guide for Oracle Application Development Framework

JDeveloper can generate a custom YourApplicationModuleName interface
containing service-level custom methods that you've chosen to expose to the client.
You can use the Client Interface page of the Edit Application Module dialog to select
the methods that you want to appear in your client interface.

E.2.2.3 Methods You Typically Override in Your Custom ApplicationModuleImpl
Subclass
Table E–12 describes the operations that you can override on an application module
using your custom ApplicationModuleImpl class.

Table E–11 Methods You Typically Write in Your Custom ApplicationModuleImpl
Subclass

If you want to...
Write a method like this in your custom
ApplicationModuleImpl class

Invoke a database stored procedure someCustomMethod()

Notes:

Use the appropriate method on the
DBTransaction interface to create a JDBC
PreparedStatement. If the stored
procedure has OUT parameters, then create a
CallableStatement instead.

For sample code that demonstrates
encapsulating a call to a PL/SQL stored
procedure inside your application module, see
Section 37.5, "Invoking Stored Procedures and
Functions."

Expose custom business service methods on
your application module

someCustomMethod()

Notes:

Select the method name on the Client
Interface page of the Edit Application Module
dialog to expose it for client access if required.

Table E–12 Methods You Typically Override in Your Custom ApplicationModuleImpl
Subclass

If you want to...
Override this method in your custom
ApplicationModuleImpl class

Perform custom setup code the first time an
application module is created and each
subsequent time it gets used by a different
client session.

prepareSession()

Notes:

This is the method you'd use to set up
per-client context info for the current user in
order to use Oracle's Virtual Private Database
(VPD) features. It can also be used to set other
kinds of PL/SQL package global variables,
whose values might be client-specific, on
which other stored procedures might rely.

This method is also useful to perform setup
code that is specific to a given view object
instance in the application module. If instead
of the view object setup code being
instance-specific, you want it to be initialized
for every instance ever created of that view
object component, then put the setup logic in
an overridden create() method in your
ViewObjectImpl subclass instead.

Most Commonly Used Methods in the Business Service Tier

Most Commonly Used ADF Business Components Methods E-13

E.2.3 DBTransactionImpl2 Class
The DBTransactionImpl2 class — which extends the base DBTransactionImpl
class, and is constructed by the DatabaseTransactionFactory class — is the base
class that implements the DBTransaction interface, representing the unit of pending
work in the current transaction.

E.2.3.1 Methods You Typically Call on DBTransaction
Table E–13 describes the operations that you can perform on a transaction using the
DBTransaction class.

Perform custom setup code after the
application module's transaction is associated
with a database connection from the
connection pool

afterConnect()

Notes:

Can be a useful place to write a line of code
that uses
getDBTransaction().executeCommand(
) to perform an ALTER SESSION SET SQL
TRACE TRUE to enable database SQL trace
logging for the current application connection.
These logs can then be processed with the
TKPROF utility to study the SQL statements
being performed and the query optimizer
plans that are getting used.

For details about the TKPROF utility, see the
"Understanding SQL Trace and TKPROF"
section in the Oracle Database Performance
Tuning Guide.

Perform custom setup code before the
application module's transaction releases its
database connection back to the database
connection pool

beforeDisconnect()

Notes:

If you have set jbo.doconnectionpooling
to true, then the connection is released to the
database connection pool each time the
application module is returned to the
application module pool.

Write custom application module state to the
state management XML snapshot

passivateState()

Read and restore custom application module
state from the state management XML
snapshot

activateState()

Table E–13 Methods You Typically Call on DBTransaction

If you want to...
Call this method on the DBTransaction
class

Commit the transaction commit()

Roll back the transaction rollback()

Eagerly validate any pending invalid changes
in the transaction

validate()

Create a JDBC PreparedStatement using
the transaction's Connection object

createPreparedStatement()

Table E–12 (Cont.) Methods You Typically Override in Your Custom
ApplicationModuleImpl Subclass

If you want to...
Override this method in your custom
ApplicationModuleImpl class

Most Commonly Used Methods in the Business Service Tier

E-14 Fusion Developer's Guide for Oracle Application Development Framework

E.2.3.2 Methods You Typically Override in Your Custom DBTransactionImpl2
Subclass
Table E–14 describes the operations that you can perform on a transaction using your
custom DBTransactionImpl2 subclass.

In order for your custom DBTransactionImpl2 subclass to be used at runtime, there
are you must follow these steps:

1. Create a custom subclass of DatabaseTransactionFactory that overrides the
create method to return an instance of your custom DBTransactionImpl2
subclass like this:

package com.yourcompany.adfextensions;
import oracle.jbo.server.DBTransactionImpl2;
import oracle.jbo.server.DatabaseTransactionFactory;
import com.yourcompany.adfextensions.CustomDBTransactionImpl;
public class CustomDatabaseTransactionFactory

extends DatabaseTransactionFactory {
/**
* Return an instance of our custom CustomDBTransactionImpl class
* instead of the default implementation.
*
* @return An instance of our custom DBTransactionImpl2 implementation.
*/
public DBTransactionImpl2 create() {
return new CustomDBTransactionImpl();

}
}

2. Tell the framework to use your custom transaction factory class by setting the
value of the TransactionFactory configuration property to the fully qualified
class name of your custom transaction factory. As with other configuration
properties, if not supplied in the configuration XML file, it can be provided
alternatively as a Java system parameter of the same name.

Create a JDBC CallableStatement using
the transaction's Connection object

createCallableStatement()

Create a JDBC Statement using the
transaction's Connection object

createStatement()

Add a warning to the transaction's warning
list

addWarning()

Table E–14 Methods You Typically Override in Your Custom DBTransactionImpl2
Subclass

If you want to...
Override this method in your custom
DBTransactionImpl2 class

Perform custom code before or after the
transaction commit operation

commit()

Perform custom code before or after the
transaction rollback operation

rollback()

Table E–13 (Cont.) Methods You Typically Call on DBTransaction

If you want to...
Call this method on the DBTransaction
class

Most Commonly Used Methods in the Business Service Tier

Most Commonly Used ADF Business Components Methods E-15

E.2.4 EntityImpl Class
The EntityImpl class is the base class for entity objects, which encapsulate the data,
validation rules, and business behavior for your business domain objects.

E.2.4.1 Methods You Typically Call on EntityImpl
Table E–15 describes the operations that you can perform on an entity object using the
EntityImpl class.

Table E–15 Methods You Typically Call on EntityImpl

If you want to... Call this method in the EntityImpl class

Get the value of an attribute getAttributeName()

Notes:

This code-generated getter method calls
getAttributeInternal(), but provides
compile-time type checking.

Set the value of an attribute setAttributeName()

Notes:

This code-generated setter method calls
setAttributeInternal(), but provides
compile-time type checking.

Get the value of an attribute by name getAttributeInternal()

Set the value of an attribute by name setAttributeInternal()

Eagerly perform entity object validation validate()

Refresh the entity from the database refresh()

Populate the value of an attribute without
marking it as being changed, but sending
notification of its being changed so that the UI
refreshes the value on the screen/page

populateAttributeAsChanged()

Access the Definition object for an entity getDefinitionObject()

Get the Key object for an entity getKey()

Determine the state of the entity instance,
irrespective of whether it has already been
posted (but not yet committed) in the current
transaction

getEntityState()

Notes:

This method will return one of the constants
STATUS_UNMODIFIED, STATUS_
INITIALIZED, STATUS_NEW, STATUS_
MODIFIED, STATUS_DELETED, or STATUS_
DEAD, indicating the status of the entity
instance in the current transaction.

Determine the state of the entity instance getPostState()

Notes:

This method is typically relevant only if you
are programmatically using the
postChanges() method to post but not yet
commit, entity changes to the database and
need to detect the state of an entity with
regard to its posting state.

Get the value originally read from the
database for a given attribute

getPostedAttribute()

Most Commonly Used Methods in the Business Service Tier

E-16 Fusion Developer's Guide for Oracle Application Development Framework

E.2.4.2 Methods You Typically Write in Your Custom EntityImpl Subclass
Table E–16 describes the operations that you can perform on an entity object using
your custom EntityImpl subclass.

E.2.4.3 Methods You Typically Override in Your Custom EntityImpl Subclass
Table E–17 describes the operations that you can override on an entity object using
your custom EntityImpl subclass.

Eagerly lock the database row for an entity
instance

lock()

Table E–16 Methods You Typically Write in Your Custom EntityImpl Subclass

If you want to...
Write a method like this in your custom
EntityImpl subclass

Perform attribute-specific validation public boolean
validateSomething(AttrTypevalue)

Notes:

Register the attribute validator method by
adding a MethodValidator rule on the correct
attribute in the Validation page of the Edit
Entity Object dialog.

Perform entity-level validation public boolean validateSomething()

Notes:

Register the entity-level validator method by
adding a MethodValidator rule on the entity
in the Validation panel of the Edit Entity
Object dialog.

Calculate the value of a transient attribute Add your calculation code to the generated
getAttributeName() method.

Table E–17 Methods You Typically Override in Your Custom EntityImpl Subclass

If you want to...
Override this method in your EntityImpl
subclass

Set calculated default attribute values,
including programmatically populating the
primary key attribute value of a new entity
instance

create()

Notes:

After calling super.create(), call the
appropriate setAttrName() method(s) to set
the default values for the attributes.

Modify attribute values before changes are
posted to the database

prepareForDML()

Augment or change the standard INSERT,
UPDATE, or DELETE DML operation that the
framework will perform on your entity
object's behalf to the database

doDML()

Notes:

This method checks the value of the operation
flag to the constants DML_INSERT, DML_
UPDATE, or DML_DELETE to test what DML
operation is being performed.

Table E–15 (Cont.) Methods You Typically Call on EntityImpl

If you want to... Call this method in the EntityImpl class

Most Commonly Used Methods in the Business Service Tier

Most Commonly Used ADF Business Components Methods E-17

E.2.5 EntityDefImpl Class
The EntityDefImpl class is a singleton, shared metadata object for all entity objects
of a given type in a single Java VM. It defines the structure of the entity instances and
provides methods to create new entity instances and find existing instances by their
primary key.

Perform complex, SQL-based validation after
all entity instances have been posted to the
database but before those changes are
committed

beforeCommit()

Insure that a related, newly-created, parent
entity gets posted to the database before the
current child entity on which it depends

postChanges()

Notes:

If the parent entity is related to this child
entity via a composition association, then the
framework already handles posting the
changes automatically. If they are only
associated (but not composed), then you need
to override postChanges() to force a newly
created parent entity to post before the
current, dependent child entity. For an
example of the code you typically write in
your overridden postChanges() method to
accomplish this, see Section 38.8.3,
"Overriding postChanges() to Control Post
Order."

Note: It is possible to write attribute-level validation code directly
inside the appropriate setAttributeName method of your
EntityImpl class; however, adopting the MethodValidator
approach suggested in Table E–16 conveniently places all the
validations in effect on the Validation Rules page of the overview
editor for the attributes of the entity object.

WARNING: It is also possible to override the validateEntity()
method to write entity-level validation code; however, if you want
to maintain the benefits of the ADF bundled exception mode —
where the framework collects and reports a maximal set of
validation errors back to the client user interface — use the
MethodValidator approach suggested in Table E–16. This allows
the framework to automatically collect all of your exceptions that
your validation methods throw without your having to understand
the bundled exception implementation mechanism. Overriding the
validateEntity() method directly shifts the responsibility onto
your own code to correctly catch and bundle the exceptions that
Oracle ADF would have caught by default, which is non-trivial and
a chore to remember and hand-code each time.

Table E–17 (Cont.) Methods You Typically Override in Your Custom EntityImpl Subclass

If you want to...
Override this method in your EntityImpl
subclass

Most Commonly Used Methods in the Business Service Tier

E-18 Fusion Developer's Guide for Oracle Application Development Framework

E.2.5.1 Methods You Typically Call on EntityDefImpl
Table E–18 describes the operations that you can perform on an entity object using the
EntityDefImpl class.

E.2.5.2 Methods You Typically Write in Your Custom EntityDefImpl Class
Table E–19 describes the operations that you can perform on an entity object using
your custom EntityDefImpl class.

Table E–18 Methods You Typically Call on EntityDefImpl

If you want to... Call this method in the EntityDefImpl class

Find an entity object of a given type by its
primary key

findByPrimaryKey()

Notes:

For a tip about getting
findByPrimaryKey() to find entity
instances of subtype entities as well, see
Section 38.7.4.2, "Finding Subtype Entities by
Primary Key."

Access the current DBTransaction object getDBTransaction()

Find any EntityDefImpl object by its fully
qualified name

findDefObject() (static method)

Retrieve the value of an entity object's custom
property

getProperty(), getProperties()

Set the value of an entity object's custom
property

setProperty()

Create a new instance of an entity object createInstance2()

Notes:

Alternatively, you can expose custom
createXXX() methods with your own
expected signatures in that same custom
EntityDefImpl subclass. See Section E.2.5.2,
"Methods You Typically Write in Your Custom
EntityDefImpl Class" for details.

Iterate over the entity instances in the cache of
this entity type

getAllEntityInstancesIterator()

Access an array list of entity definition objects
for entities that extend the current one.

getExtendedDefObjects()

Table E–19 Methods You Typically Write on EntityDefImpl

If you want to...
Write a method like this in your custom
EntityDefImpl class

Allow other classes to create an entity instance
with an initial type-safe set of attribute values
or setup information

createXXXX(Type1arg1,...,
TypeNargN)

Notes:

Internally, using this method would create
and populate an instance of a
NameValuePairs object (which implements
AttributeList) and call the protected
method createInstance(), passing that
NameValuePairs object. Make sure that the
method is public if other classes need to be
able to call it.

Most Commonly Used Methods in the Business Service Tier

Most Commonly Used ADF Business Components Methods E-19

E.2.5.3 Methods You Typically Override in Your Custom EntityDefImpl
Table E–20 describes the operations that you can perform on an entity object using the
EntityDefImpl class.

E.2.6 ViewObjectImpl Class
The ViewObjectImpl class is the base class for view objects.

E.2.6.1 Methods You Typically Call on ViewObjectImpl
Table E–21 describes the operations that you can perform on a view object using the
ViewObjectImpl class.

Table E–20 Methods You Typically Override on EntityDefImpl

If you want to...
Override this method in your custom
EntityDefImpl class

Perform custom metadata initialization when
this singleton metaobject is loaded

createDef()

Avoid using the RETURNING INTO clause to
support refresh-on-insert or refresh-on-update
attributes

isUseReturningClause()

Notes:

Set this method to return false to disable the
use of RETURNING INTO, necessary
sometimes when your entity object is based on
a view with INSTEAD OF triggers that don't
support RETURNING INTO at the database
level.

Control whether the UPDATE statements
issued for this entity update only changed
columns or for all columns

isUpdateChangedColumns()

Notes:

Defaults to true.

Find any EntityDefImpl object by its fully
qualified name

findDefObject()

Notes:

Static method.

Set the value of an entity object's custom
property

setProperty()

Allow other classes to create a new instance of
an entity object without doing so implicitly via
a view object

createInstance()

Notes:

If you don't write a custom create method as
noted in Section E.2.5.2, "Methods You
Typically Write in Your Custom EntityDefImpl
Class", you'll need to override this method
and widen the visibility from protected to
public to allow other classes to construct an
entity instance.

Table E–21 Methods You Typically Call on ViewObjectImpl

If you want to...
Call this method in the ViewObjectImpl
class

Perform any of the common view object, row
set, or row set iterator operations from inside
your class, which can also be done from the
client

For more information about operations at the
view object, row set, or row set iterator-level,
see Section E.1.3, "ViewObject Interface,"
Section E.1.4, "RowSet Interface," and
Section E.1.5, "RowSetIterator Interface."

Most Commonly Used Methods in the Business Service Tier

E-20 Fusion Developer's Guide for Oracle Application Development Framework

E.2.6.2 Methods You Typically Write in Your Custom ViewObjectImpl Subclass
Table E–22 describes the operations that you can perform on a view object using your
custom ViewObjectImpl subclass.

Set an additional runtime WHERE clause on the
default row set

setWhereClause()

Define a named bind parameter defineNamedWhereClauseParam()

Remove a named bind parameter removeNamedWhereClauseParam()

Set bind variable values on the default row set
by name

setNamedWhereClauseParam()

Notes:

Only works when you have formally defined
named bind variables on your view object.

Set bind variable values on the default row set setWhereClauseParams()

Notes:

Use this method for view objects with binding
style of "Oracle Positional" or "JDBC
Positional" when you have not formally
defined named bind variables.

Retrieve a subset of rows in a view object's
row set based on evaluating an in-memory
filter expression

getFilteredRows()

Retrieve a subset of rows in the current range
of a view object's row set based on evaluating
an in-memory filter expression

getFilteredRowsInRange()

Set the number of rows that will be fetched
from the database per roundtrip for this view
object

setFetchSize()

Notes:

The default fetch size is a single row at a time.
This is definitely not optimal if your view
object intends to retrieve many rows, so you
should either set the fetch size higher at
design time on the Tuning page of the Edit
View Object dialog, or set it at runtime using
this method.

Force a row set's query to be (re)executed
specifically on a lookup view object instance
in a shared application module

forceExecuteQueryOfSharedVO()

Notes:

Reexecuting the query forces a new query
collection and will prevent the application
module cache from being used. You should
only use this method when you are sure that
you are accessing the shared application
module during setup and not during runtime.
This method when used during normal
runtime may have unintended side-effects
that disrupt the navigation of users accessing
the collection concurrently. If you want to
refresh the collection from the cache without
creating a new query collection, call
executeQuery() instead.

Table E–21 (Cont.) Methods You Typically Call on ViewObjectImpl

If you want to...
Call this method in the ViewObjectImpl
class

Most Commonly Used Methods in the Business Service Tier

Most Commonly Used ADF Business Components Methods E-21

JDeveloper can generate a custom YourViewObjectName interface containing view
object custom methods that you've chosen to expose to the client. You can use the
Client Interface page of the Edit View Object to select the methods that you want to
appear in your client interface.

E.2.6.3 Methods You Typically Override in Your Custom ViewObjectImpl Subclass
Table E–23 describes the operations that you can perform on a view object using your
custom ViewObjectImpl subclass.

Table E–22 Methods You Typically Write in Your Custom ViewObjectImpl Subclass

If you want to...
Write a method like this in your custom
ViewObjectImpl subclass

Provide clients with type-safe methods to set
bind variable values without exposing
positional details of the bind variables
themselves

someMethodName(Type1arg1,...,
TypeNargN)

Notes:

Internally, this method would call the
setWhereClauseParams() method to set
the correct bind variables with the values
provided in the type-safe method arguments.

Table E–23 Methods You Typically Override in Your Custom ViewObjectImpl Subclass

If you want to...
Override this method in your custom
ViewObjectImpl subclass

Initialize custom view object class members
(not row attributes) when the view object
instance is created for the first time

create()

Notes:

This method is useful to perform set up logic
that is applicable to every instance of a view
object that will ever get created, in the context
of any application module.

If instead of generic view object setup logic,
you need to perform logic specific to a given
view object instance in an application module,
then override the prepareSession()
method of your application module's
ApplicationModuleImpl subclass and
perform the logic there after calling
findViewObject() to find the view object
instance whose properties you want to set.

Write custom view object instance state to the
state management XML snapshot

passivateState()

Read and restore custom view object instance
state from the state management XML
snapshot

activateState()

Most Commonly Used Methods in the Business Service Tier

E-22 Fusion Developer's Guide for Oracle Application Development Framework

E.2.7 ViewRowImpl Class
The ViewRowImpl class is the base class for view row objects.

E.2.7.1 Methods You Typically Call on ViewRowImpl
Table E–24 describes the operations that you can perform on a view object row using
your custom ViewRowImpl class.

Customize the execution of the view object
query to utilize an alternative data source

executeQueryForCollection()

Notes:

By default view objects read their data from
the database and automate the task of
working with the JDBC layer to process the
database result sets. However, by overriding
appropriate methods in its custom Java class,
you can create a view object that
programmatically retrieves data from
alterative data sources, as described in
Section 39.8, "Using Programmatic View
Objects for Alternative Data Sources."

Customize the programmatic view object to
utilize an alternative data source and
determine whether the query collection has
more rows to fetch from the query execution

hasNextForCollection()

Customize the programmatic view object to
utilize an alternative data source and populate
each row of the retrieved data

createRowFromResultSet()

Customize the programmatic view object to
utilize an alternative data source and return a
count of the number of rows that will be
retrieved

getQueryHitCount()

Customize the programmatic view object to
utilize an alternative data source and release
any resources that may be associated with a
row set that is being closed

releaseUserDataForCollection()

Change or augment the way that the
ViewCriteria collection of
ViewCriteriaRows is converted into a
Query-by-Example WHERE clause

getViewCriteriaClause()

Table E–24 Methods You Typically Call on ViewRowImpl

If you want to...
Call this method in your custom
ViewRowImpl class

Perform any of the common view row
operations from inside your class, which can
also be done from the client

For more information about the row-level
operations, see Section E.1.6, "Row Interface."

Get the value of an attribute getAttrName()

Set the value of an attribute setAttrName()

Table E–23 (Cont.) Methods You Typically Override in Your Custom ViewObjectImpl

If you want to...
Override this method in your custom
ViewObjectImpl subclass

Most Commonly Used Methods in the Business Service Tier

Most Commonly Used ADF Business Components Methods E-23

E.2.7.2 Methods You Typically Write in Your Custom ViewRowImpl Class
Table E–25 describes the operations that you can perform on a view object row using
your custom ViewRowImpl class.

JDeveloper can generate a custom YourViewObjectNameRow interface containing
view row custom methods that you've chosen to expose to the client. You can use the
Client Row Interface page of the Edit View Object dialog to select the methods that
you want to appear in your client interface.

E.2.7.3 Methods You Typically Override in Your Custom ViewRowImpl Subclass
Table E–26 describes the operations that you can perform on a view object row using
your custom ViewRowImpl subclass.

Access the underlying entity instance to which
this view row is delegating attribute storage

getEntityUsageAliasName()

Notes:

You can change the name of the entity usage
alias name on the Entity Objects page of the
Edit View Object dialog.

Table E–25 Methods You Typically Write on ViewRowImpl

If you want to...
Write a method like this in your custom
ViewRowImpl class

Calculate the value of a view object-level
transient attribute

getAttrName()

Notes:

JDeveloper generates the skeleton of the
method for you, but you need to write the
custom calculation logic inside the method
body.

Perform custom processing of the setting of a
view row attribute

setAttrName()

Notes:

JDeveloper generates the skeleton of the
method for you, but you need to write the
custom logic inside the method body if
required.

Determine the updateability of an attribute in
a conditional way

isAttributeUpdateable()

Expose logical operations on the current row,
optionally callable by clients

doSomething()

Notes:

Often these view-row-level custom methods
simply turn around and delegate to a method
call on the underlying entity object related to
the current row.

Table E–24 (Cont.) Methods You Typically Call on ViewRowImpl

If you want to...
Call this method in your custom
ViewRowImpl class

Most Commonly Used Methods in the Business Service Tier

E-24 Fusion Developer's Guide for Oracle Application Development Framework

E.2.8 Setting Up Your Own Layer of Framework Base Classes
Before you begin to develop application-specific business components, you can create
a layer of classes that extend all of the ADF Business Components framework base
implementation classes described in this appendix. An example of a customized
framework base class for application module components might look like this:

package com.yourcompany.adfextensions;
import oracle.jbo.server.ApplicationModuleImpl;
public class CustomApplicationModuleImpl extends ApplicationModuleImpl {
/*
* We might not yet have any custom code to put here yet, but
* the first time we need to add a generic feature that all of
* our company's application modules need, we will be very happy
* that we thought ahead to leave ourselves a convenient place
* in our class hierarchy to add it so that all of the application
* modules we have created will instantly benefit by that new feature,
* behavior change, or even perhaps, bug workaround.
*/

}

A common set of customized framework base classes in a package name of your own
choosing like com.yourcompany.adfextensions, each importing the
oracle.jbo.server.* package, would consist of the following classes:

■ public class CustomEntityImpl extends EntityImpl

■ public class CustomEntityDefImpl extends EntityDefImpl

■ public class CustomViewObjectImpl extends ViewObjectImpl

■ public class CustomViewRowImpl extends ViewRowImpl

■ public class CustomApplicationModuleImpl extends
ApplicationModuleImpl

■ public class CustomDBTransactionImpl extends
DBTransactionImpl2

■ public class CustomDatabaseTransactionFactory extends
DatabaseTransactionFactory

For completeness, you may also want to create customized framework classes for the
following classes as well:

■ public class CustomViewDefImpl extends ViewDefImpl

■ public class CustomEntityCache extends EntityCache

■ public class CustomApplicationModuleDefImpl extends
ApplicationModuleDefImpl

Overriding anything in these classes would be a fairly rare requirement.

Table E–26 Methods You Typically Override in Your Custom ViewRowImpl Subclass

If you want to...
Write a method like this in your
ViewRowImpl subclass

Determine the updateability of an attribute in
a conditional way

isAttributeUpdateable()

F

ADF Business Components Java EE Design Pattern Catalog F-1

FADF Business Components Java EE Design
Pattern Catalog

This appendix summarizes the Java Platform, Enterprise Edition (Java EE) design
patterns that the ADF Business Components layer implements for you.

By using Oracle Application Development Framework (Oracle ADF) business
components building-blocks and related design time extensions to JDeveloper, you get
a prescriptive architecture for building richly functional and cleanly layered Java EE
business services with great performance.

Table F–1 provides a brief overview of the numerous design patterns that the ADF
Business Components layer implements for you. Some are the familiar patterns from
Sun’s Java EE BluePrints and some are design patterns that ADF Business
Components adds to the list. For details about Java EE BluePrints, see the BluePrints
page at the Oracle Technology Network web site at
http://www.oracle.com/technetwork/java/index-jsp-136701.html.

Table F–1 Java EE Design Patterns Implemented by ADF Business Components

Pattern Name and Description
How ADF Business Components
Implements It

Model/View/Controller

Cleanly separates the roles of data and
presentation, allowing multiple types of client
displays to work with the same business
information.

The ADF application module provides a
generic implementation of a
Model/View/Controller "application object"
that simplifies exposing the application data
model for any application or service, and
facilitates declaratively specifying the
boundaries of a logical unit of work.
Additional UI-centric frameworks and tag
libraries provided in JDeveloper help you
implement the view and controller layers.

Interface / Implementation Separation

Cleanly separates the API or Interface for
components from their implementation class.

ADF Business Components enforces a logical
separation of client-tier accessible
functionality (via interfaces) and its business
tier implementation. JDeveloper handles the
creation of custom interfaces and client proxy
classes automatically.

Service Locator

Abstracts the technical details of locating a
service so that the client can use it more easily.

ADF application modules are looked up using
a simple configuration object which hides the
low-level details of finding the service
instance behind the scenes. For Fusion web
applications, it also hides the implementation
of the application module pool usage, a
lightweight pool of service components that
improves application scalability.

F-2 Fusion Developer's Guide for Oracle Application Development Framework

Inversion of Control

A containing component orchestrates the
lifecycle of the components it contains,
invoking specific methods that you can
override at the appropriate times, so as to be
able to focus more on what the code should
do, instead of when it should be executed.

ADF components contain a number of
easy-to-override methods that the framework
invokes as needed during the course of
application processing.

Dependency Injection

Simplifies application code, and increases
configuration flexibility by deferring
component configuration and assembly to the
container.

ADF Business Components configures all its
components from externalized XML metadata
definition files. At runtime, the framework
automatically injects dependent objects like
view object instances into your application
module service component and entity objects
into your view rows, implementing lazy
loading. It supports runtime factory
substitution of components by any customized
subclass of that component to simplify onsite
application customization scenarios. Much of
the ADF Business Components functionality is
implemented via dynamic injection of
validator and listener subscriptions that
coordinate the framework interactions
depending on what declarative features have
been configured for each component in their
XML metadata.

Active Record

Avoids the complexity of "anything to
anything" object/relational mapping, by
providing an object that wraps a row in a
database table or view, encapsulates the
database access, and adds domain logic on
that data.

ADF entity objects handle the database
mapping functionality you use most
frequently, including inheritance, association,
and composition support, so you don’t have to
focus on object/relational mapping. They also
provide a place to encapsulate both
declarative business rules and one-off
programmatic business domain.

Data Access Objects

Prevents unnecessary marshalling overhead
by implementing dependent objects as
lightweight, persistent classes instead of each
as an individual enterprise bean. Isolates
persistence details into a single,
easy-to-maintain class.

ADF view objects automate the
implementation of data access for reading
data using SQL statements. ADF entity objects
automate persistent storage of lightweight
business entities. ADF view objects and entity
objects cooperate to provide a sophisticated,
performant data access objects layer, where
any data queried through a view object can
optionally be made fully updatable without
requiring that you write any "application
plumbing" code.

Session Facade

Prevents inefficient client access of entity
beans and inadvertent exposure of sensitive
business information by wrapping entity
beans with a session bean.

ADF application modules are designed to
implement a coarse-grained "service facade"
architecture in any of their supported
deployment modes. When deployed as a
service interface, they provide an
implementation of the Session Facade pattern
automatically.

Table F–1 (Cont.) Java EE Design Patterns Implemented by ADF Business Components

Pattern Name and Description
How ADF Business Components
Implements It

ADF Business Components Java EE Design Pattern Catalog F-3

Value Object

Prevents unnecessary network roundtrips by
creating one-off "transport" objects to group a
set of related attributes needed by a client
program.

ADF Business Components provides an
implementation of a generic Row object, which
is a metadata-driven container of any number
and kind of attributes that need to be accessed
by a client. The developer can work with the
generic Row interface and do late-bound
getAttribute("Price") and
setAttribute("Quantity")calls, or
optionally generate early-bound row
interfaces like OverdueOrdersRow, to enable
type-safe method calls like getPrice() and
setQuantity(). Smarter than just a simple
"bag 'o attributes", the ADF Row object can be
introspected at runtime to describe the
number, names, and types of the attributes in
the row, enabling sophisticated, generic
solutions to be implemented.

Page-by-Page Iterator

Prevents sending unnecessary data to the
client by breaking a large collection into
page-sized "chunks" for display.

ADF Business Components provides an
implementation of a generic RowSet interface
which manages result sets produced by
executing view object SQL queries. The
RowSet interface allows you to set a desired
page size, for example 10 rows, and page up
and down through the query results in these
page-sized chunks. Since data is retrieved
lazily, only data the user actually visits will
ever be retrieved from the database on the
backend, and in the client tier the number of
rows in the page can be returned over the
network in a single roundtrip.

Fast-Lane Reader

Prevents unnecessary overhead for read-only
data by accessing JDBC APIs directly. This
allows an application to retrieve only the
attributes that need to be displayed, instead of
finding all of the attributes by primary key
when only a few are required by the client.
Typically, implementations of this pattern
sacrifice data consistency for performance,
since queries performed at the raw JDBC level
do not "see" pending changes made to
business information represented by
enterprise beans.

ADF view objects read data directly from the
database for best performance; however, they
give you a choice regarding data consistency.
If updateability and/or consistency with
pending changes is desired, you need only
associate your view object with the
appropriate entity objects whose business data
is being presented. If consistency is not a
concern, view objects can simply perform the
query with no additional overhead. In either
case, you never have to write JDBC data
access code. You need only provide
appropriate SQL statements in XML
descriptors.

(Bean) Factory

Allows runtime instantiation and
configuration of an appropriate subclass of a
given interface or superclass based on
externally configurable information.

All ADF component instantiation is done
based on XML configuration metadata
through factory classes allowing runtime
substitution of specialized components to
facilitate application customization.

Entity Facade

Provides a restricted view of data and
behavior of one or more business entities.

ADF view objects can surface any set of
attributes and methods from any combination
of one or more underlying entity objects to
furnish the client with a single, logical value
object to work with.

Table F–1 (Cont.) Java EE Design Patterns Implemented by ADF Business Components

Pattern Name and Description
How ADF Business Components
Implements It

F-4 Fusion Developer's Guide for Oracle Application Development Framework

Value Messenger

Keeps client value object attributes in sync
with the middle-tier business entity
information that they represent in a
bidirectional fashion.

The ADF Business Components value object
implementation coordinates with a client-side
value object cache to batch attribute changes
to the EJB tier and receive batch attribute
updates which occur as a result of middle-tier
business logic. The ADF Value Messenger
implementation is designed to not require any
kind of asynchronous messaging to achieve
this effect.

Continuations

Gives you the simplicity and productivity of a
stateful programming model with the
scalability of a stateless web solution.

ADF Business Components application
module pooling and state management
functionality combine to deliver this
value-add. Application module pooling
eliminates the need to dedicate application
server tier resources to individual users and
supports a "stateless with user affinity"
optimization that you can tune.

Table F–1 (Cont.) Java EE Design Patterns Implemented by ADF Business Components

Pattern Name and Description
How ADF Business Components
Implements It

G

Performing Common Oracle Forms Tasks in Oracle ADF G-1

GPerforming Common Oracle Forms Tasks in
Oracle ADF

This appendix describes how some common Oracle Forms tasks are implemented in
Oracle ADF. In Oracle Forms, you do some tasks in the data block, and others in the
UI. For this reason, the appendix is divided into two sections: tasks that relate to data,
and tasks that relate to the UI.

This appendix includes the following sections:

■ Section G.1, "Performing Tasks Related to Data"

■ Section G.2, "Performing Tasks Related to the User Interface"

G.1 Performing Tasks Related to Data
In Oracle Forms, tasks that relate solely to data are performed in the data block. In
Oracle ADF, these tasks are done on the business components that persist data (entity
objects) and on the objects that query data (view objects).

G.1.1 How to Retrieve Lookup Display Values for Foreign Keys
In Oracle Forms, an editable table often has foreign key lookup columns to other
tables. The user-friendly display values corresponding to the foreign key column
values exist in related tables. You often need to present these related display values to
the user.

In Oracle Forms, this was a complicated task that required adding nondatabase items
to the data block, adding a block-level POST-QUERY trigger to the data block, and
writing a SQL select statement for each foreign key attribute. Additionally, if the user
changed the data, you needed to sync the foreign key values with an item-level
WHEN-VALIDATE-ITEM trigger. This process is much easier in Oracle ADF.

Implementation of the task in Oracle ADF
1. Create a view object that includes the following:

■ The main, editable entity object as the primary entity usage

■ Secondary "reference" entity usages for the one or more associated entities
whose underlying tables contain the display text

For more information, see Section 5.5.1, "How to Create Joins for Entity-Based
View Objects."

Performing Tasks Related to Data

G-2 Fusion Developer's Guide for Oracle Application Development Framework

2. Select the desired attributes (at least the display text) from the secondary entity
usages as described in Section 5.5.2, "How to Select Additional Attributes from
Reference Entity Usages."

At runtime, the data for the main entity and all related lookup display fields is
retrieved from the database in a single join.

If the user can change the data, no additional steps are required. If the user
changes the value of a foreign key attribute, the reference information is
automatically retrieved for the new, related row in the associated table.

G.1.2 How to Get the Sysdate from the Database
In Oracle Forms, when you wanted to get the current date and time, you retrieved the
sysdate from the database. In Oracle ADF, you also have the option of getting the
system date using a Java method or a Groovy expression.

Implementation of the task in Oracle ADF
To get the system date from the database, you can use the following Groovy
expression at the entity level:

DBTransaction.currentDbTime

If you want to assign a default value to an attribute using this Groovy expression, see
Section 4.10.7, "How to Define a Default Value Using a Groovy Expression."

To get the system date from Java, you call the getCurrentDate() method. For more
information, see Section 8.10, "Accessing the Current Date and Time."

G.1.3 How to Implement an Isolation Mode That Is Not Read Consistent
In Oracle Forms, you might have been concerned with read consistency, that is, the
ability of the database to deliver the state of the data at the time the SQL statement
was issued.

Implementation of the task in Oracle ADF
If you use an entity-based view object, the query sees the changes currently in
progress by the current user's session in the pending transaction. This is the default
behavior, and the most accurate.

If instead, you want a snapshot of the data on the database without considering the
pending changes made by the current user, you can use a read-only view object and
reexecute the query to see the latest committed database values. For more information
on read-only view objects, see Section 5.2.3, "How to Create an Expert Mode,
Read-Only View Object."

G.1.4 How to Implement Calculated Fields
Calculated fields are often used to show the sum of two values, but they could also be
used for the concatenated value of two or more fields, or the result of a method call.

Note: The DBTransaction reference is for entity-level Groovy
expressions only.

Performing Tasks Related to the User Interface

Performing Common Oracle Forms Tasks in Oracle ADF G-3

Implementation of the task in Oracle ADF
Calculated attributes are usually not stored in the database, as their values can easily
be obtained programmatically. Attributes that are used in the middle tier, but that are
not stored in the database are called transient attributes. Transient attributes can be
defined at the entity object level or the view object level.

If a transient attribute will be used by more than one view object that might be based
on an entity object, then define the attribute at the entity object level. Otherwise, define
the transient attribute at the view object level for a particular view object.

To define transient attributes at the entity object level, see Section 4.14, "Adding
Transient and Calculated Attributes to an Entity Object." To define transient attributes
at the view object level, see Section 5.14, "Adding Calculated and Transient Attributes
to a View Object."

G.1.5 How to Implement Mirrored Items
In Oracle Forms, you may be used to using mirrored items to show two or more fields
that share identical values.

Implementation of the task in Oracle ADF
There is no need to have mirrored items in Oracle ADF, because the UI and data are
separated. The same view object can appear on any number of pages, so you don’t
need to create mirrored items that have the same value. Likewise, a form could have
the same field represented in more than one place and it would not have to be
mirrored.

G.1.6 How to Use Database Columns of Type CLOB or BLOB
If you are used to working with standard database types, you may be wondering how
to use the CLOB and BLOB types in Oracle ADF.

Implementation of the task in Oracle ADF
In Oracle ADF, use the built-in data types ClobDomain or BlobDomain. These are
automatically created when you reverse-engineer entity objects or view objects from
existing tables with these column types. ADF Business Components also supports data
types for Intermedia column types: OrdImage, OrdAudio, OrdDoc, and OrdVideo.
For more information, see Section 4.10.1, "How to Set Database and Java Data Types
for an Entity Object Attribute."

G.2 Performing Tasks Related to the User Interface
In Oracle ADF, common UI-related tasks (such as master-detail screens, popup list of
values, and page layout) are handled quite differently than they were in Oracle Forms.
This section describes how to perform some common Oracle Forms tasks that relate to
the UI with Oracle ADF.

G.2.1 How to Lay Out a Page
Oracle Forms is based on an absolute pixel or point-based layout, as compared to the
container-based approach of JSF, and the Layout Manager approach in ADF Swing.

Performing Tasks Related to the User Interface

G-4 Fusion Developer's Guide for Oracle Application Development Framework

Implementation of the task in Oracle ADF
See the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle
Application Development Framework for information on how to lay out a page in Oracle
ADF.

G.2.2 How to Stack Canvases
In Oracle Forms, stacked canvases were often used to hide and display areas of the
screen.

Implementation of the task in Oracle ADF
The analog of stacked canvases in Oracle ADF is panels (layout containers) with the
rendered property set to true or false. See the Oracle Fusion Middleware Web User
Interface Developer's Guide for Oracle Application Development Framework for more
information.

G.2.3 How to Implement a Master-Detail Screen
Master-detail relationships in Oracle ADF are coordinated through a view link. A view
link is conceptually similar to a Oracle Forms relation.

Implementation of the task in Oracle ADF
For information on how create view links, see Section 5.6, "Working with Multiple
Tables in a Master-Detail Hierarchy." Once you have established a relationship
between two view objects with a view link, see Section 5.6.4, "How to Enable Active
Master-Detail Coordination in the Data Model."

G.2.4 How to Implement an Enter Query Screen
In Oracle Forms, another common task was creating an enter query screen. That is, a
screen that starts in Find mode.

Implementation of the task in Oracle ADF
In Oracle ADF, this accomplished with a search form. Complete information on how
to create a search form is covered in Chapter 27, "Creating ADF Databound Search
Forms." In particular, you may want to look at Section 27.3.1, "How to Set Search Form
Properties on the View Criteria."

G.2.5 How to Implement an Updatable Multi-Record Table
In Oracle Forms, you may be used to creating tables where you can edit and insert
many records at the same time. This can be slightly more complicated when using a
JSF page in Oracle ADF, because the operations to edit an existing record and to create
a new record are not the same.

Implementation of the task in Oracle ADF
In Oracle ADF, this is done using an input table. To create an input table, see
Section 23.4, "Creating an Input Table."

G.2.6 How to Create a Popup List of Values
In Oracle Forms, it was simple to create a list of values (LOV) object and then associate
that object with a field in a declarative manner. This LOV would display a popup
window and provide the following capabilities:

Performing Tasks Related to the User Interface

Performing Common Oracle Forms Tasks in Oracle ADF G-5

■ Selection of modal values

■ Query area at the top of the LOV dialog

■ Display of multiple columns

■ Automatic reduction of LOV contents, possibly based on the contents of the field
that launched the LOV

■ Automatic selection of the list value when only one value matches the value in the
field when the LOV function is invoked

■ Validation of the field value based on the values cached by the LOV

■ Automatic popup of the LOV if the field contents are not valid

Implementation of the task in Oracle ADF
To implement a popup list in Oracle ADF, you configure one of the view object’s
attributes to be of LOV type, and select Input Text with List of Values as the style for
its UI hint. For a description of how to do this, see Section 5.12, "Working with List of
Values (LOV) in View Object Attributes."

G.2.7 How to Implement a Dropdown List as a List of Values
In Oracle Forms, you could create a list of values (LOV) object and then associate that
object with a field in a declarative manner. In Oracle ADF, you can implement an LOV
(lookup-value) screen with a search item, usable for a lookup field with many possible
values.

Implementation of the task in Oracle ADF
To implement a dropdown list in Oracle ADF, you configure one of the view object’s
attributes to be of LOV type, and select Input Text with List of Values as the style for
its UI hint. For a description of how to do this, see Section 5.12, "Working with List of
Values (LOV) in View Object Attributes."

G.2.8 How to Implement a Dropdown List with Values from Another Table
In Oracle Forms, you could create a list of values (LOV) object and then associate that
object with a field in a declarative manner. In Oracle ADF, you can implement a
dropdown list with string values from a different table. These string values populate
the field with an id code that is valid input in the table that the screen is based on.

Implementation of the task in Oracle ADF
To implement a dropdown list of this type in Oracle ADF, you configure one of the
view object’s attributes to be of LOV type, and select Choice List as the style for its UI
hint. For a description of how to do this, see Section 5.12, "Working with List of Values
(LOV) in View Object Attributes."

G.2.9 How to Implement Immediate Locking
In Oracle ADF, you can lock a record in the database at the first moment it is obvious
that the user is going to change a specific record.

Implementation of the task in Oracle ADF
Immediate row locking can be configured in ADF Business Components, although it is
not the default and is typically not used in web application scenarios. For web
applications, use the default configuration setting

Performing Tasks Related to the User Interface

G-6 Fusion Developer's Guide for Oracle Application Development Framework

jbo.locking.mode=optimistic. For more information, see Section 40.11.1, "How
to Set Applications to Use Optimistic Locking."

G.2.10 How to Throw an Error When a Record Is Locked
When a record has been locked by a user, it’s helpful to throw an error to let other
users know that the record is not currently updatable.

Implementation of the task in Oracle ADF
Locking rows and throwing an exception if the row is already locked is built-in ADF
Business Components functionality. There are a couple of different ways that you can
handle the error message, depending on whether you want a static error message or a
custom message with information about the current row.

■ To throw a static message, register a custom message bundle in your ADF
Business Components project to substitute the default
RowAlreadyLockedException's error message with something more
meaningful or user-friendly.

■ To throw a message that contains information about the row, override the lock()
method on the entity object, using a try/catch block to catch the
RowAlreadyLocked exception. After you catch the exception, you can throw an
error message that might contain more specific information about the current row.

H

Data Controls in Oracle ADF Fusion Web Applications H-1

HData Controls in Oracle ADF
Fusion Web Applications

This appendix describes the various types of data controls available for Oracle ADF
Fusion Web Applications. It also presents a brief comparison of how data access
features are implemented for each type of data control.

This appendix includes the following sections:

■ Section H.1, "Introduction to Data Controls"

■ Section H.2, "Data Control Feature Implementation Comparison"

■ Section H.3, "Data Control Objects"

H.1 Introduction to Data Controls
A data control is essentially a bridge that makes data from a source available to the
user interface in an ADF Fusion Web Application. You can use the objects in the data
control to create databound user interface components.

The most commonly used types of data controls include the following:

■ ADF Business Components Data Control

This type of data control is generated by JDeveloper when you create an
application module in your ADF Business Components application.

For more information, see Section 12.3, "Using the Data Controls Panel."

■ JavaBean Data Control

This type of data control obtains the structure of the data from POJOs (plain, old
Java objects).

To create a JavaBean data control, right-click a Java class file (in the Application
Navigator), and choose Create Data Control.

For information about the data control objects available in a JavaBean data control,
see Section H.3, "Data Control Objects."

■ EJB Data Control

The EJB data control is essentially the same as the JavaBean data control, except
that it uses features inherent in the EJB architecture to obtain the structure of the
data.

You can create an EJB data control from the New Gallery. Expand the Business
Tier node, select Data Controls, choose EJB Data Control, and click OK.

Data Control Feature Implementation Comparison

H-2 Fusion Developer's Guide for Oracle Application Development Framework

For information about the data control objects available in an EJB data control, see
the Oracle Fusion Middleware Java EE Developer's Guide for Oracle Application
Development Framework.

■ URL Service Data Control

A URL service data control lets you access and consume the data stream from a
specified URL. This type of data control is not updateable.

You can create a URL Service data control from the New Gallery. Expand the
Business Tier node, select Data Controls, choose URL Service Data Control, and
click OK.

For information about the data control objects available in a URL Service data
control, see Section H.3, "Data Control Objects."

■ Web Service Data Control

A Web Service data control obtains the structure of the data from the WSDL for a
web service.

You can create a Web Service data control from the New Gallery. Expand the
Business Tier node, select Data Controls, choose Web Service Data Control, and
click OK.

For more information, see Section 13.3, "Creating Web Service Data Controls."

■ JMX Data Control

A JMX data control obtains the structure of the JMX MBeans from an MBean
Server.

You can create a JMX data control from the New Gallery. Expand the Business
Tier node, select Data Controls, choose JMX Data Control, and click OK. For
more information about creating a JMX data control, see the online help for the
Create JMX Data Control wizard.

Before you can create a JMX data control, you must first have a JMX connection.
For more information about JMX connections, see the online help for the Create
JMX Connection dialog.

For information about the data control objects available in a JMX data control, see
Section H.3, "Data Control Objects."

■ Placeholder Data Control

A placeholder data control is a special type of data control that doesn’t require a
traditional data structure. As the name implies, it is a placeholder that can be used
during UI development, and then replaced with the real data control when it
becomes available.

You can create a Placeholder data control from the New Gallery. Expand the
Business Tier node, select Data Controls, choose Placeholder Data Control, and
click OK.

For more information, see Chapter 29, "Designing a Page Using Placeholder Data
Controls."

H.2 Data Control Feature Implementation Comparison
The type of data control that you choose to use will impact how you implement data
access features. Table H–1 provides a comparison of how you implement some
commonly used data access features for each type of data control.

Data Control Objects

Data Controls in Oracle ADF Fusion Web Applications H-3

The features that are listed in the table as "implemented programmatically" can be
implemented using the necessary Java classes required to implement a business model
that can be used by the specific data-entry component. For more information, refer to
the Javadoc for the appropriate classes.

H.3 Data Control Objects
In the Data Controls panel, each data control object is represented by an icon.
Table H–2 describes what each icon represents, where it appears in the Data Controls
panel hierarchy, and what components it can be used to create.

You can design a databound user interface by dragging an item from the Data
Controls panel and dropping it on a page as a specific UI component.

The objects described in Table H–2 are applicable to the JavaBean data control, the EJB
data control, the JMX data control, the URL Service data control, unless otherwise
noted. For information about the data control objects available in the other types of
data controls, refer to the documentation for desired type of data control as listed in
Section H.1, "Introduction to Data Controls"

Table H–1 Comparison of Feature Implementation in Data Controls

ADF
Business
Components
data control

JavaBean
data control

EJB
data control

Web
Services data
control

URL Service
data control

JMX data
control

Placeholder
data control

af:Query declarative declarative declarative implemented
programmatic
ally

not available not available not available

af:quickQuery declarative declarative declarative implemented
programmatic
ally

not available not available not available

af:inputCombo
ListOfValues

declarative declarative declarative implemented
programmatic
ally

not available not available declarative

af:Calendar declarative implemented
programmatic
ally

implemented
programmatic
ally

implemented
programmatic
ally

not available not available not available

af:Media declarative implemented
programmatic
ally

implemented
programmatic
ally

implemented
programmatic
ally

not available not available not available

Data Control Objects

H-4 Fusion Developer's Guide for Oracle Application Development Framework

Table H–2 Data Controls Panel Icons and Object Hierarchy for JavaBeans, EJBs, and URLs

Icon Name Description Used to Create...

Data
Control

Represents a data control. You cannot use the data control itself to
create UI components, but you can use the child objects listed
under the data control. There may be more than one data control,
each representing a logical grouping of data functions.

Typically, there is one data control for a given source (bean, EJB,
or URL). However, you may have additional data controls that
were created for other types of objects (for example, application
modules or web services).

Serves as a container for
the other objects. Not
used to create anything.

Create
Method

Represents a built-in method that creates a new instance of an
object in a data collection using the new Java constructor call.
Create method icons are located in a node named after the data
collection to which they belong. These data collection nodes are
located in the Constructors node under the data control. The
Attributes node, which appears as a child under a create method,
contains all the attributes of the data collection. If the collection
contains an attribute from another collection (called a foreign key
in relational databases), that attribute is represented by an
accessor return icon. In this case, the accessor returns a single
object.

This object is not available in a URL Service data control. Because
the URL Service data control is not updateable, there is no
instance of an object that can be created.

This object is not available in the JMX data control.

Creation forms.

Method Represents a custom method on the data control that may accept
parameters, perform some action or business logic, and return
data or data collections. If the method is a get method of a map
and returns a data collection, a method return icon appears as a
child under it. If a method requires a parameter, a folder appears
under the method, which lists the required parameters.

The URL Service data control exposes only one method
loadData() which retrieves the contents of the URL.

UI actions such as
buttons or links.

Method
Return

Represents a data collection that is returned by a custom method.
A method return appears as a child under the method that
returns it. The objects that appear as children under a method
return may be attributes of the collection, accessor returns that
represent collections related to the parent collection, other
methods that perform actions related to the parent collection, and
operations that can be performed on the parent collection.

Forms, tables, trees, and
range navigation
components.

Data Control Objects

Data Controls in Oracle ADF Fusion Web Applications H-5

Accessor
Return

Represents an object returned by a bean-style accessor method on
the business service. An accessor method is used when the objects
returned are JavaBeans. Accessor returns appear as children
under method returns, other accessor returns, or in the Attributes
node under built-in create methods. Accessor returns are objects
that are related to the current object in the parent collection. This
relationship is usually based on a common unique attribute in
both objects. For example, if a method returns a collection of
users, an accessor return that is a child of that collection might be
a collection of service requests that are assigned to a particular
user. In ADF, the relationship between parent and child
collections is called a master-detail relationship. For more
information about master-detail objects, see Chapter 24,
"Displaying Master-Detail Data.".

Accessor returns can be either collections or single objects. For
example, if a method returns a collection of service requests, one
accessor return under that method might be a collection of service
history details for the current service request, while another
accessor return might be a single user assigned to the current
service request. By default, when data controls are created from
session beans over POJOs, the names of accessors that return
collections end in Collection (for example,
OrderCollection). The UI components available from the Data
Controls panel context menu differ depending on whether the
accessor return is a collection or a single object.

The children under an accessor return may be attributes of the
collection or object, other accessor returns, custom methods that
return a value from the collection or object, and operations that
can be performed on the collection or object. The accessor returns
under a built-in create method are always a single object and
never have any children.

For collections: Forms,
tables, trees, range
navigation components,
and master-detail
widgets.

For single objects:
Forms, master-detail
widgets, and selection
lists.

For single objects under
a constructor: selection
lists only.

Attribute Represents a discrete data element in an object. Attributes appear
as children under method returns or accessor returns.

Label, text field, and
selection list
components.

Operation Represents a built-in data control operation that performs actions
on the parent object. If an operation requires a parameter, a folder
appears under the method, which lists the required parameters.
Data control operations are located in an Operations node under
method returns or accessor returns and under the root data
control node. The operations that are children of a particular
method or accessor return operate on that return object only,
while operations under the data control node operate on all the
objects represented by the data control.

Because the URL Service data control is not updateable, only
retrieval and navigation operations are available.

UI actions such as
buttons or links.

Parameter Represents a parameter value that is declared by the method or
operation under which it appears. Parameters appear in a folder
under a method or operation.

The parameter for a URL Service data control is the parameter
that a user passes in the URL. These show up as a parameters to
the loadData() method when the URL Service data control is
created. For example, say you create a data control to the URL
http://www.example.org?id=##param##. On the Data
Controls panel, you would see that the loadData() method has
one parameter with the name param. The value supplied to this
parameter is substituted in the URL when the invocation occurs.

Label, text, and selection
list components.

Table H–2 (Cont.) Data Controls Panel Icons and Object Hierarchy for JavaBeans, EJBs, and URLs

Icon Name Description Used to Create...

Data Control Objects

H-6 Fusion Developer's Guide for Oracle Application Development Framework

Glossary

action binding

A binding for command components, such as buttons or links, to built-in or custom
methods on the data control, or to built-in collection-level operations (such as, Create,
Delete, Next, or Previous). An action binding object encapsulates the details of how to
invoke a method and what parameters (if any) the method is expecting.

activity

A piece of work that is performed when an ADF Controller task flow runs, for
example, a method call or view.

ADF

See Oracle ADF.

ADF binding filter

A servlet filter that ADF web applications use to preprocess any HTTP requests that
may require access to the binding context.

ADF Business Components

A framework that simplifies the development, delivery, and customization of business
applications for the Java 2 Platform. You use ADF Business Components to define
associations between entity objects, view objects, and application modules to reflect
the foreign keys present in the underlying tables.

ADF Controller layer

A mechanism that provides an enhanced navigation and state management model on
top of JSF. This mechanism declaratively defines navigation using control flow rules.

ADF Faces Rich Client (RC)

A set of standard JSF components that include built-in Ajax functionality.

ADF Model layer

A layer that implements service abstraction called the data control.

application module

A transactional component that UI clients use to work with application data. It defines
an updatable data model and top-level procedures and functions (called service
methods) related to a logical unit of work. This unit of work is related to an end-user
task.
Glossary-1

binding context
binding context

A container object that holds a list of available data controls and data binding objects.
The DataBindings.cpx files define the binding context for the application.See also
data control.

bounded task flow

A specialized form of ADF Controller task flow that has a single entry point and zero
or more exit points. It contains its own set of private, control flow rules, activities, and
managed beans. A bounded task flow allows reuse, parameters, transaction
management, and reentry. When dropped on a page, it becomes a region.

control flow

An ADF Controller activity that enables navigation between other activities in an ADF
task flow. The control flow links one activity to another in a task flow.

data control

XML configuration files that describe a service. At design time, visual tools like
JDeveloper can leverage that metadata to UI component to be declaratively bound to
an operation or data collection.

Data Controls panel

A panel in JDeveloper that lists all the data controls that have been created for the
application's business services and exposes all the collections (row sets of data objects),
methods, and built-in operations that are available for binding to UI components.

entity object

An object that represents a row in a database table and that simplifies modifying its
data by handling all data manipulation language operations for you. Entity objects are
ADF Business Components that provide the mapping to underlying data structures.

invoke action

An action that binds to a method that invokes the operations or methods defined in an
action or a method action binding during any phase of the page lifecycle. See also
action binding.

iterator binding

A binding to an iterator that iterates over view object collections. There is one iterator
binding for each collection used on the page. All of the value bindings on the page
must refer to an iterator binding in order for the component values to be populated
with data at runtime.

Contrast with variable iterator and method iterator.

list of values (LOV)

See LOV.

LOV

Input components that allow a user to enter values by picking from a list that is
generated by a query

MDS

An application server and Oracle relational database that keep metadata in these areas:
a file-based repository data, dictionary tables (accessed by built-in functions) and a
Glossary-2

variable iterator
metadata registry. One of the primary uses of MDS is to store customizations and
persisted personalization for Oracle applications

method iterator

A binding to an iterator that iterates over the collections returned by custom methods
in the data control. An iterator binding that is always related to a method action
binding object. The method action binding encapsulates the details about how to
invoke the method and what parameters the method is expecting. The method action
binding is itself bound to the method iterator, which provides the data.

Oracle ADF

An end-to-end application framework that builds on Java Platform, Enterprise Edition
standards and open-source technologies to simplify and accelerate implementing
service-oriented applications.

Oracle Application Development Framework (Oracle ADF)

See Oracle ADF.

Oracle Metadata Services (MDS)

See MDS.

page definition file

A file that defines the binding objects that populate the data in UI components at
runtime. For every page that has ADF bindings, there must be a corresponding page
definition file that defines the binding objects used by that page.

region

An ADF Controller UI component whose content is based on a task flow definition.
When first rendered, the region's content is that of the first view activity in a task flow.
See also activity.

task flow

A set of ADF Controller activities, control flow rules and managed beans that interact
to allow a user to complete a task.

unbounded task flow

A set of activities, ADF control flow rules, and managed beans that interact to allow a
user to complete a task. An unbounded task flow has a single point of entry.

value binding

A binding used by ADF view UI components that display data. Value bindings range
from the most basic variety that work with a simple text field to more sophisticated list
and tree bindings that support the additional needs of list, table, and tree UI controls.

value iterator

An ADF Model iterator pointing to a collection that contains only one data object
whose attributes are the binding container variable. Contrast with method iterator and
value iterator iterator.

variable iterator

A binding to an iterator that exposes all the variables in the binding container to the
other bindings. While there is an iterator binding for each collection, there is only one
Glossary-3

view accessor
variable iterator binding for all variables used on the page. Contrast with method
iterator and value iterator iterator.

view accessor

An ADF Business Components object that points from an entity object attribute (or
view object) to a destination view object or shared view instance in the same
application workspace. The view accessor returns a row set that by default contains all
the rows from the destination view object.

view object

An ADF Business Components object that represents a SQL query and simplifies
working with its results. The SQL language is used to join, project, filter, sort, and
aggregate data into the shape required by the end-user task being represented in the
user interface.
Glossary-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide for Release 11.1.1.6.4
	Part I Getting Started with Fusion Web Applications
	1 Introduction to Building Fusion Web Applications with Oracle ADF
	1.1 Introduction to Oracle ADF
	1.2 Oracle ADF Architecture
	1.2.1 ADF Business Components
	1.2.2 ADF Model Layer
	1.2.3 ADF Controller
	1.2.4 ADF Faces Rich Client

	1.3 Developing with Oracle ADF
	1.3.1 Creating an Application Workspace
	1.3.2 Modeling with Database Object Definitions
	1.3.3 Creating Use Cases
	1.3.4 Designing Application Control and Navigation Using ADF Task Flows
	1.3.5 Identifying Shared Resources
	1.3.6 Creating a Data Model to Access Data with ADF Business Components
	1.3.6.1 Creating a Layer of Business Domain Objects for Tables
	1.3.6.2 Building the Business Services
	1.3.6.3 Testing and Debugging Business Services with the Business Component Browser

	1.3.7 Implementing the User Interface with JSF
	1.3.8 Data Binding with ADF Model Layer
	1.3.9 Validation and Error Handling
	1.3.10 Adding Security
	1.3.11 Testing and Debugging the Web Client Application
	1.3.12 Refactoring Application Artifacts
	1.3.13 Deploying a Fusion Web Application
	1.3.14 Integrating a Fusion Web Application

	1.4 Working Productively in Teams
	1.4.1 Enforcing Standards
	1.4.2 Using a Source Control System

	1.5 Learning Oracle ADF
	1.6 Generation of Complete Web Tier Using Oracle JHeadstart

	2 Introduction to the ADF Sample Application
	2.1 Introduction to the Oracle Fusion Order Demo
	2.2 Setting Up the Fusion Order Demo Application
	2.2.1 How to Download the Application Resources
	2.2.2 How to Install the Fusion Order Demo Schema
	2.2.3 Overview of the Fusion Order Demo Schema
	2.2.3.1 Translation Support in the Fusion Order Demo Schema
	2.2.3.2 Lookup Tables in the Fusion Order Demo Schema

	2.3 Running the Fusion Order Demo Application StoreFront Module
	2.4 Running the Fusion Order Demo Standalone Applications
	2.4.1 How to Run the Standalone Applications
	2.4.2 Standalone Applications in the DevGuideExamples Application Workspace
	2.4.3 Standalone Applications in the AdvancedExamples Application Workspace
	2.4.4 Standalone Applications in the AdvancedEntityExamples Application Workspace
	2.4.5 Standalone Applications in the AdvancedViewObjectExamples Application Workspace

	2.5 Taking a Look at the Fusion Order Demo Application
	2.5.1 Anonymous Browsing
	2.5.1.1 Viewing Product Details
	2.5.1.2 Browsing the Product Catalog
	2.5.1.3 Searching for Products

	2.5.2 The Login Process
	2.5.3 The Ordering Process
	2.5.4 The Customer Registration Process

	Part II Building Your Business Services
	3 Getting Started with ADF Business Components
	3.1 Introduction to ADF Business Components
	3.1.1 ADF Business Components Features
	3.1.2 ADF Business Components Core Objects

	3.2 Comparison to Familiar 4GL Tools
	3.2.1 Familiar Concepts for Oracle Forms Developers
	3.2.1.1 Similarities Between the Application Module and a "Headless" Form Module
	3.2.1.2 Similarities Between the Entity Object and a Forms Record Manager
	3.2.1.3 Similarities Between the View Object and a Data Block

	3.2.2 Familiar Concepts for PeopleTools Developers
	3.2.2.1 Similarities Between the Application Module and a "Headless" Component
	3.2.2.2 Similarities Between the Entity Object and a Record Definition
	3.2.2.3 Similarities Between the View Object and a Row Set

	3.2.3 Familiar Concepts for Siebel Tools Developers
	3.2.3.1 Similarities Between the entity Object and a Table Object
	3.2.3.2 Similarities Between the View Object and a Business Component
	3.2.3.3 Similarities Between the Application Module and a Business Object

	3.2.4 Familiar Functionality for ADO.NET Developers
	3.2.4.1 Similarities Between the Application Module and a Data Set
	3.2.4.2 Similarities Between the Entity Object and a Data Adapter
	3.2.4.3 Similarities Between the View Object and a Data Table

	3.3 Overview of Design Time Facilities
	3.3.1 Choosing a Connection, SQL Flavor, and Type Map
	3.3.2 Creating New Components Using Wizards
	3.3.3 Creating New Components Using the Context Menu
	3.3.4 Editing Components Using the Component Overview Editor
	3.3.5 Visualizing, Creating, and Editing Components Using UML Diagrams
	3.3.6 Testing Application Modules Using the Business Component Browser
	3.3.7 Refactoring Components

	3.4 Overview of the UI-Aware Data Model
	3.4.1 A More Generic Business Service Solution
	3.4.2 Typical Scenarios for a UI-Aware Data Model
	3.4.3 UI-Aware Data Model Support for Custom Code

	3.5 Overview of the Implementation Architecture
	3.5.1 Standard Java and XML
	3.5.2 Application Server or Database Independence
	3.5.3 Java EE Design Pattern Support
	3.5.4 Source Code Organization
	3.5.5 Package Naming Conventions
	3.5.6 Metadata with Optional Custom Java Code
	3.5.6.1 Example of an XML-Only Component
	3.5.6.2 Example of a Component with Custom Java Class

	3.5.7 Basic Data Types
	3.5.8 Generic Versus Strongly-Typed APIs
	3.5.9 Custom Interface Support for Client-Accessible Components
	3.5.9.1 Framework Client Interfaces for Components
	3.5.9.2 Custom Client Interfaces for Components

	3.6 Overview of Groovy Support
	3.6.1 Referencing Business Components Objects in Groovy Expressions
	3.6.2 Referencing Custom Business Components Methods and Attributes in Groovy Expressions
	3.6.2.1 Referencing Members of the Same Business Component
	3.6.2.2 Referencing Members of Other Business Components

	3.6.3 Manipulating Business Component Attribute Values in Groovy Expressions

	4 Creating a Business Domain Layer Using Entity Objects
	4.1 Introduction to Entity Objects
	4.2 Creating Entity Objects and Associations
	4.2.1 How to Create Multiple Entity Objects and Associations from Existing Tables
	4.2.2 How to Create Single Entity Objects Using the Create Entity Wizard
	4.2.3 What Happens When You Create Entity Objects and Associations from Existing Tables
	4.2.3.1 What Happens When Tables Have Foreign Key Relationships
	4.2.3.2 What Happens When a Table Has No Primary Key

	4.2.4 What Happens When You Create an Entity Object for a Synonym or View
	4.2.5 How to Edit an Existing Entity Object or Association
	4.2.6 How to Create Database Tables from Entity Objects
	4.2.7 How to Synchronize an Entity with Changes to Its Database Table
	4.2.7.1 Removing an Attribute Associated with a Dropped Column
	4.2.7.2 Addressing a Data Type Change in the Underlying Table

	4.2.8 How to Store Data Pertaining to a Specific Point in Time
	4.2.9 What Happens When You Create Effective Dated Entity Objects
	4.2.10 What You May Need to Know About Creating Entities from Tables

	4.3 Creating and Configuring Associations
	4.3.1 How to Create an Association
	4.3.2 What Happens When You Create an Association
	4.3.3 How to Change Entity Association Accessor Names
	4.3.4 How to Rename and Move Associations to a Different Package
	4.3.5 What You May Need to Know About Using a Custom View Object in an Association
	4.3.6 What You May Need to Know About Composition Associations

	4.4 Creating an Entity Diagram for Your Business Layer
	4.4.1 How to Create an Entity Diagram
	4.4.2 What Happens When You Create an Entity Diagram
	4.4.3 What You May Need to Know About the XML Component Descriptors
	4.4.4 What You May Need to Know About Changing the Names of Components

	4.5 Defining Property Sets
	4.5.1 How to Define a Property Set
	4.5.2 How to Apply a Property Set

	4.6 Defining Attribute Control Hints for Entity Objects
	4.6.1 How to Add Attribute Control Hints
	4.6.2 What Happens When You Add Attribute Control Hints
	4.6.3 How to Define Formatters and Masks

	4.7 Working with Resource Bundles
	4.7.1 How to Set Message Bundle Options
	4.7.2 How to Use Multiple Resource Bundles
	4.7.3 How to Internationalize the Date Format

	4.8 Defining Business Logic Groups
	4.8.1 How to Create a Business Logic Group
	4.8.2 How to Create a Business Logic Unit
	4.8.3 How to Add Logic to a Business Logic Unit
	4.8.4 How to Override Attributes in a Business Logic Unit
	4.8.5 What Happens When You Create a Business Logic Group
	4.8.6 What Happens at Runtime: Invoking a Business Logic Group

	4.9 Configuring Runtime Behavior Declaratively
	4.9.1 How to Configure Declarative Runtime Behavior
	4.9.2 What Happens When You Configure Declarative Runtime Behavior

	4.10 Setting Attribute Properties
	4.10.1 How to Set Database and Java Data Types for an Entity Object Attribute
	4.10.2 How to Indicate Data Type Length, Precision, and Scale
	4.10.3 How to Control the Updatability of an Attribute
	4.10.4 How to Make an Attribute Mandatory
	4.10.5 How to Define the Primary Key for the Entity
	4.10.6 How to Define a Static Default Value
	4.10.7 How to Define a Default Value Using a Groovy Expression
	4.10.8 What Happens When You Create a Default Value Using a Groovy expression
	4.10.9 How to Synchronize with Trigger-Assigned Values
	4.10.10 How to Get Trigger-Assigned Primary Key Values from a Database Sequence
	4.10.11 How to Protect Against Losing Simultaneously Updated Data
	4.10.12 How to Track Created and Modified Dates Using the History Column
	4.10.13 How to Configure Composition Behavior
	4.10.13.1 Orphan-Row Protection for New Composed Entities
	4.10.13.2 Ordering of Changes Saved to the Database
	4.10.13.3 Cascade Update of Composed Details from Refresh-On-Insert Primary Keys
	4.10.13.4 Cascade Delete Support
	4.10.13.5 Cascade Update of Foreign Key Attributes When Primary Key Changes
	4.10.13.6 Locking of Composite Parent Entities
	4.10.13.7 Updating of Composing Parent History Attributes

	4.10.14 How to Set the Discriminator Attribute for Entity Object Inheritance Hierarchies
	4.10.15 How to Define Alternate Key Values
	4.10.16 What Happens When You Define Alternate Key Values
	4.10.17 What You May Need to Know About Alternate Key Values

	4.11 Creating Business Events
	4.11.1 Introducing Event Definitions
	4.11.2 Introducing Event Points
	4.11.3 What You May Need to Know About Event Points
	4.11.4 How to Create a Business Event
	4.11.5 What Happens When You Create a Business Event
	4.11.6 What You May Need to Know About Payload Size
	4.11.7 How to Publish a Business Event
	4.11.8 How to Subscribe to Business Events

	4.12 Working Programmatically with Entity Objects and Associations
	4.12.1 How to Find an Entity Object by Primary Key
	4.12.2 How to Access an Associated Entity Using the Accessor Attribute
	4.12.3 How to Update or Remove an Existing Entity Row
	4.12.4 How to Create a New Entity Row
	4.12.5 Assigning the Primary Key Value Using an Oracle Sequence

	4.13 Generating Custom Java Classes for an Entity Object
	4.13.1 How to Generate Custom Classes
	4.13.2 What Happens When You Generate Custom Classes
	4.13.3 What Happens When You Generate Entity Attribute Accessors
	4.13.4 How to Navigate to Custom Java Files
	4.13.5 What You May Need to Know About Custom Java Classes
	4.13.5.1 About the Framework Base Classes for an Entity Object
	4.13.5.2 You Can Safely Add Code to the Custom Component File
	4.13.5.3 Configuring Default Java Generation Preferences
	4.13.5.4 Attribute Indexes and InvokeAccessor Generated Code

	4.13.6 Programmatic Example for Comparison Using Custom Entity Classes

	4.14 Adding Transient and Calculated Attributes to an Entity Object
	4.14.1 How to Add a Transient Attribute
	4.14.2 What Happens When You Add a Transient Attribute
	4.14.3 How to Base a Transient Attribute On a Groovy Expression
	4.14.4 What Happens When You Base a Transient Attribute on Groovy Expression
	4.14.5 How to Add Java Code in the Entity Class to Perform Calculation

	5 Defining SQL Queries Using View Objects
	5.1 Introduction to View Objects
	5.1.1 Overview of View Object Concepts
	5.1.2 Runtime Features Unique to Entity-Based View Objects

	5.2 Populating View Object Rows from a Single Database Table
	5.2.1 How to Create an Entity-Based View Object
	5.2.1.1 Creating an Entity-Based View Object from a Single Table
	5.2.1.2 Creating a View Object with All the Attributes of an Entity Object

	5.2.2 What Happens When You Create an Entity-Based View Object
	5.2.3 How to Create an Expert Mode, Read-Only View Object
	5.2.4 What Happens When You Create a Read-Only View Object
	5.2.5 How to Edit a View Object
	5.2.5.1 Overriding the Inherit Properties from Underlying Entity Object Attributes
	5.2.5.2 Controlling the Length, Precision, and Scale of View Object Attributes
	5.2.5.3 Converting a Read-Only View Object to Allow Attribute Updates
	5.2.5.4 Customizing View Object Attribute Display in the Overview Editor
	5.2.5.5 Modifying the Order of Attributes in the View Object Source File

	5.2.6 How to Show View Objects in a Business Components Diagram

	5.3 Populating View Object Rows with Static Data
	5.3.1 How to Create Static View Objects with Data You Enter
	5.3.2 How to Create Static View Objects with Data You Import
	5.3.3 What Happens When You Create a Static List View Object
	5.3.4 Editing Static List View Objects
	5.3.5 What You May Need to Know About Static List View Objects

	5.4 Limiting View Object Rows Using Effective Date Ranges
	5.4.1 How to Create an Date-Effective View Object
	5.4.2 How to Create New View Rows Using Date-Effective View Objects
	5.4.3 How to Update Date-Effective View Rows
	5.4.4 How to Delete Date-Effective View Rows
	5.4.5 What Happens When You Create a Date-Effective View Object
	5.4.6 What You May Need to Know About Date-Effective View Objects and View Links

	5.5 Working with Multiple Tables in Join Query Results
	5.5.1 How to Create Joins for Entity-Based View Objects
	5.5.2 How to Select Additional Attributes from Reference Entity Usages
	5.5.3 How to Remove Unnecessary Key Attributes from Reference Entity Usages
	5.5.4 How to Hide the Primary Key Attributes from Reference Entity Usages
	5.5.5 How to Modify a Default Join Clause to Be an Outer Join When Appropriate
	5.5.6 What Happens When You Reference Entities in a View Object
	5.5.7 How to Create Joins for Read-Only View Objects
	5.5.8 How to Test the Join View
	5.5.9 How to Use the Query Builder with Read-Only View Objects
	5.5.10 What You May Need to Know About Join View Objects

	5.6 Working with Multiple Tables in a Master-Detail Hierarchy
	5.6.1 How to Create a Master-Detail Hierarchy for Read-Only View Objects
	5.6.2 How to Create a Master-Detail Hierarchy for Entity-Based View Objects
	5.6.3 What Happens When You Create Master-Detail Hierarchies Using View Links
	5.6.4 How to Enable Active Master-Detail Coordination in the Data Model
	5.6.5 How to Test Master-Detail Coordination
	5.6.6 How to Access the Detail Collection Using the View Link Accessor
	5.6.6.1 Accessing Attributes of Row by Name
	5.6.6.2 Programmatically Accessing a Detail Collection Using the View Link Accessor

	5.7 Working with a Single Table in a Recursive Master-Detail Hierarchy
	5.7.1 How to Create a Recursive Master-Detail Hierarchy for an Entity-Based View Object
	5.7.2 What Happens When You Create a Recursive Master-Detail Hierarchy

	5.8 Working with View Objects in Declarative SQL Mode
	5.8.1 How to Create SQL-Independent View Objects with Declarative SQL Mode
	5.8.2 How to Filter Declarative SQL-Based View Objects When Table Joins Apply
	5.8.3 How to Filter Master-Detail Related View Objects with Declarative SQL Mode
	5.8.4 How to Force Attribute Queries for Declarative SQL Mode View Objects
	5.8.5 What Happens When You Create a View Object in Declarative SQL Mode
	5.8.6 What Happens at Runtime: When a Declarative SQL Mode Query is Generated
	5.8.7 What You May Need to Know About Overriding Declarative SQL Mode Defaults
	5.8.8 What You May Need to Know About Working Programmatically with Declarative SQL Mode View Objects

	5.9 Working with View Objects in Expert Mode
	5.9.1 How to Customize SQL Statements in Expert Mode
	5.9.2 How to Name Attributes in Expert Mode
	5.9.3 What Happens When You Enable Expert Mode
	5.9.4 What You May Need to Know About Expert Mode
	5.9.4.1 Expert Mode Provides Limited Attribute Mapping Assistance
	5.9.4.2 Expert Mode Drops Custom Edits
	5.9.4.3 Expert Mode Ignores Changes to SQL Expressions
	5.9.4.4 Expert Mode Returns Error for SQL Calculations that Change Entity Attributes
	5.9.4.5 Expert Mode Retains Formatting of SQL Statement
	5.9.4.6 Expert Mode Wraps Queries as Inline Views
	5.9.4.7 Limitation of Inline View Wrapping at Runtime
	5.9.4.8 Expert Mode Changes May Affect Dependent Objects

	5.10 Working with Bind Variables
	5.10.1 How to Add Bind Variables to a View Object Definition
	5.10.2 How to Reference the Current User in a Named Bind Variable Using Groovy
	5.10.3 What Happens When You Add Named Bind Variables
	5.10.4 How to Test Named Bind Variables
	5.10.5 How to Add a WHERE Clause with Named Bind Variables at Runtime
	5.10.6 How to Set Existing Bind Variable Values at Runtime
	5.10.7 What Happens at Runtime: When a Read-Only View Object WHERE Clause is Set
	5.10.8 What You May Need to Know About Named Bind Variables
	5.10.8.1 An Error Related to Clearing Bind Variables
	5.10.8.2 Errors Related to Naming Bind Variables
	5.10.8.3 Default Value of NULL for Bind Variables

	5.11 Working with Named View Criteria
	5.11.1 How to Create Named View Criteria Declaratively
	5.11.2 What Happens When You Create a Named View Criteria
	5.11.3 What You May Need to Know About Bind Variable Options
	5.11.4 What You May Need to Know About Nested Expressions
	5.11.5 How to Set User Interface Hints on View Criteria
	5.11.6 How to Test View Criteria Using the Business Component Browser
	5.11.7 How to Create View Criteria Programmatically
	5.11.8 What Happens at Runtime: When the View Criteria Is Applied to a View Object
	5.11.9 What You May Need to Know About the View Criteria API
	5.11.9.1 Referencing Attribute Names in View Criteria
	5.11.9.2 Referencing Bind Variables in View Criteria
	5.11.9.3 Altering Compound Search Conditions Using Multiple View Criteria
	5.11.9.4 Searching for a Row Whose Attribute Value Is NULL Value
	5.11.9.5 Searching for Rows Whose Attribute Value Matches a Value in a List
	5.11.9.6 Searching Case-Insensitively
	5.11.9.7 Clearing View Criteria in Effect

	5.11.10 What You May Need to Know About Query-by-Example Criteria

	5.12 Working with List of Values (LOV) in View Object Attributes
	5.12.1 How to Define a Single LOV-Enabled View Object Attribute
	5.12.2 How to Define Cascading Lists for LOV-Enabled View Object Attributes
	5.12.2.1 Creating a Data Source View Object to Control the Cascading List
	5.12.2.2 Creating a View Accessor to Filter the Cascading List

	5.12.3 How to Specify Multiple LOVs for an LOV-Enabled View Object Attribute
	5.12.4 How to Set User Interface Hints on a View Object LOV-Enabled Attribute
	5.12.5 How to Handle Date Conversion for List Type UI Components
	5.12.6 How to Automatically Refresh the View Object of the View Accessor
	5.12.7 How to Test LOV-Enabled Attributes Using the Business Component Browser
	5.12.8 What Happens When You Define an LOV for a View Object Attribute
	5.12.9 What Happens at Runtime: When an LOV Queries the List Data Source
	5.12.10 What You May Need to Know About Lists
	5.12.10.1 Inheritance of AttributeDef Properties from Parent View Object Attributes
	5.12.10.2 Using Validators to Validate Attribute Values
	5.12.10.3 LOV Limitation When Exposing Application Module as EJB Session Bean

	5.13 Defining Control Hints for View Objects
	5.13.1 How to Add Attribute-Specific Control Hints
	5.13.2 How to Add View Object Control Hints
	5.13.3 How to Access Control Hints Using EL Expressions
	5.13.4 What Happens When You Add Control Hints
	5.13.5 What You May Need to Know About Resource Bundles

	5.14 Adding Calculated and Transient Attributes to a View Object
	5.14.1 How to Add a SQL-Calculated Attribute
	5.14.2 What Happens When You Add a SQL-Calculated Attribute
	5.14.3 How to Add a Transient Attribute
	5.14.4 How to Add a Validation Rule to a Transient Attribute
	5.14.5 What Happens When You Add a Transient Attribute
	5.14.6 Adding Java Code in the View Row Class to Perform Calculation
	5.14.7 What You May Need to Know About Transient Attributes

	6 Working with View Object Query Results
	6.1 Introduction to View Object Runtime Behavior
	6.2 Creating an Application Module to Test View Instances
	6.2.1 How to Create the Application Module with Individual View Object Instances
	6.2.2 How to Create the Application Module with Master-Detail View Object Instances

	6.3 Testing View Object Instances Using the Business Component Browser
	6.3.1 How to Run the Business Component Browser
	6.3.2 How to Test Entity-Based View Objects Interactively
	6.3.3 How to Update the Business Component Browser to Display Project Changes
	6.3.4 What Happens When You Use the Business Component Browser
	6.3.5 How to Simulate End-User Interaction in the Business Component Browser
	6.3.5.1 Testing Master-Detail Coordination
	6.3.5.2 Testing UI Control Hints
	6.3.5.3 Testing Business Domain Layer Validation
	6.3.5.4 Testing Alternate Language Message Bundles and Control Hints
	6.3.5.5 Testing View Objects That Reference Entity Usages
	6.3.5.6 Testing Row Creation and Default Value Generation
	6.3.5.7 Testing That New Detail Rows Have Correct Foreign Keys

	6.3.6 How to Test Multiuser Scenarios in the Business Component Browser
	6.3.7 How to Customize Configuration Options Before Running the Browser
	6.3.8 How to Enable ADF Business Components Debug Diagnostics
	6.3.9 What Happens at Runtime: When View Objects and Entity Objects Cooperate
	6.3.9.1 What Happens When a View Object Executes Its Query
	6.3.9.2 What Happens When a View Row Attribute Is Modified
	6.3.9.3 What Happens When a Foreign Key Attribute is Changed
	6.3.9.4 What Happens When a Transaction is Committed
	6.3.9.5 What Happens When a View Object Requeries Data

	6.3.10 What You May Need to Know About Optimizing View Object Runtime Performance

	6.4 Testing View Object Instances Programmatically
	6.4.1 ViewObject Interface Methods for Working with the View Object’s Default RowSet
	6.4.1.1 The Role of the Key Object in a View Row or Entity Row
	6.4.1.2 The Role of the Entity Cache in the Transaction

	6.4.2 How to Create a Command-Line Java Test Client
	6.4.2.1 Generating a Test Client with Skeleton Code
	6.4.2.2 Modifying the Skeleton Code to Create the Test Client

	6.4.3 What Happens When You Run a Test Client Program
	6.4.4 What You May Need to Know About Running a Test Client
	6.4.5 How to Count the Number of Rows in a Row Set
	6.4.6 How to Access a Detail Collection Using the View Link Accessor
	6.4.7 How to Iterate Over a Master-Detail-Detail Hierarchy
	6.4.8 How to Find a Row and Update a Foreign Key Value
	6.4.9 How to Create a New Row for a View Object Instance
	6.4.10 How to Retrieve the Row Key Identifying a Row

	7 Defining Validation and Business Rules Declaratively
	7.1 Introduction to Declarative Validation
	7.1.1 When to Use Business-Layer Validation or Model-Layer Validation

	7.2 Understanding the Validation Cycle
	7.2.1 Types of Entity Object Validation Rules
	7.2.1.1 Attribute-Level Validation Rules
	7.2.1.2 Entity-Level Validation Rules

	7.2.2 Understanding Commit Processing and Validation
	7.2.3 Understanding the Impact of Composition on Validation Order
	7.2.4 Avoiding Infinite Validation Cycles
	7.2.5 What Happens When Validations Fail
	7.2.6 Understanding Entity Objects Row States
	7.2.7 Understanding Bundled Exception Mode

	7.3 Adding Validation Rules to Entity Objects and Attributes
	7.3.1 How to Add a Validation Rule to an Entity or Attribute
	7.3.2 How to View and Edit a Validation Rule On an Entity or Attribute
	7.3.3 What Happens When You Add a Validation Rule
	7.3.4 What You May Need to Know About Entity and Attribute Validation Rules

	7.4 Using the Built-in Declarative Validation Rules
	7.4.1 How to Ensure That Key Values Are Unique
	7.4.2 What Happens When You Use a Unique Key Validator
	7.4.3 How to Validate Based on a Comparison
	7.4.4 What Happens When You Validate Based on a Comparison
	7.4.5 How to Validate Using a List of Values
	7.4.6 What Happens When You Validate Using a List of Values
	7.4.7 What You May Need to Know About the List Validator
	7.4.8 How to Make Sure a Value Falls Within a Certain Range
	7.4.9 What Happens When You Use a Range Validator
	7.4.10 How to Validate Against a Number of Bytes or Characters
	7.4.11 What Happens When You Validate Against a Number of Bytes or Characters
	7.4.12 How to Validate Using a Regular Expression
	7.4.13 What Happens When You Validate Using a Regular Expression
	7.4.14 How to Use the Average, Count, or Sum to Validate a Collection
	7.4.15 What Happens When You Use Collection Validation
	7.4.16 How to Determine Whether a Key Exists
	7.4.17 What Happens When You Use a Key Exists Validator
	7.4.18 What You May Need to Know About Declarative Validators and View Accessors

	7.5 Using Groovy Expressions For Validation and Business Rules
	7.5.1 How to Reference Entity Object Methods in Groovy Validation Expressions
	7.5.2 How to Validate Using a True/False Expression
	7.5.3 What Happens When You Add a Groovy Expression

	7.6 Triggering Validation Execution
	7.6.1 How to Specify Which Attributes Fire Validation
	7.6.2 What Happens When You Constrain Validation Execution with Triggering Attributes
	7.6.3 How to Set Preconditions for Validation
	7.6.4 How to Set Transaction-Level Validation
	7.6.5 What You May Need to Know About the Order of Validation Execution

	7.7 Creating Validation Error Messages
	7.7.1 How to Create Validation Error Messages
	7.7.2 How to Localize Validation Messages
	7.7.3 How to Conditionally Raise Error Messages Using Groovy
	7.7.4 How to Embed a Groovy Expression in an Error Message

	7.8 Setting the Severity Level for Validation Exceptions
	7.9 Bulk Validation in SQL

	8 Implementing Validation and Business Rules Programmatically
	8.1 Introduction to Programmatic Business Rules
	8.2 Using Method Validators
	8.2.1 How to Create an Attribute-Level Method Validator
	8.2.2 What Happens When You Create an Attribute-Level Method Validator
	8.2.3 How to Create an Entity-Level Method Validator
	8.2.4 What Happens When You Create an Entity-Level Method Validator
	8.2.5 What You May Need to Know About Translating Validation Rule Error Messages

	8.3 Assigning Programmatically Derived Attribute Values
	8.3.1 How to Provide Default Values for New Rows at Create Time
	8.3.1.1 Choosing Between create() and initDefaultExpressionAttributes() Methods
	8.3.1.2 Eagerly Defaulting an Attribute Value from a Database Sequence

	8.3.2 How to Assign Derived Values Before Saving
	8.3.3 How to Assign Derived Values When an Attribute Value Is Set

	8.4 Undoing Pending Changes to an Entity Using the Refresh Method
	8.4.1 How to Control What Happens to New Rows During a Refresh
	8.4.2 How to Cascade Refresh to Composed Children Entity Rows

	8.5 Using View Objects for Validation
	8.5.1 How to Use View Accessors for Validation Against View Objects
	8.5.2 How to Validate Conditions Related to All Entities of a Given Type
	8.5.3 What You May Need to Know About Row Set Access with View Accessors

	8.6 Accessing Related Entity Rows Using Association Accessors
	8.6.1 How to Access Related Entity Rows
	8.6.2 How to Access Related Entity Row Sets

	8.7 Referencing Information About the Authenticated User
	8.8 Accessing Original Attribute Values
	8.9 Storing Information About the Current User Session
	8.9.1 How to Store Information About the Current User Session
	8.9.2 How to Use Groovy to Access Information About the Current User Session

	8.10 Accessing the Current Date and Time
	8.11 Sending Notifications Upon a Successful Commit
	8.12 Conditionally Preventing an Entity Row from Being Removed
	8.13 Determining Conditional Updatability for Attributes

	9 Implementing Business Services with Application Modules
	9.1 Introduction to Application Modules
	9.2 Creating and Modifying an Application Module
	9.2.1 How to Create an Application Module
	9.2.2 What Happens When You Create an Application Module
	9.2.3 How to Add a View Object to an Application Module
	9.2.3.1 Adding a View Object Instance to an Existing Application Module
	9.2.3.2 Adding Master-Detail View Object Instances to an Application Module
	9.2.3.3 Customizing a View Object Instance that You Add to an Application Module

	9.2.4 What Happens When You Add a View Object to an Application Module
	9.2.5 How to Edit an Existing Application Module
	9.2.6 How to Change the Data Control Name Before You Begin Building Pages
	9.2.7 What You May Need to Know About Application Module Granularity
	9.2.8 What You May Need to Know About View Object Components and View Object Instances

	9.3 Configuring Your Application Module Database Connection
	9.3.1 How to Use a JDBC URL Connection Type
	9.3.2 How to Use a JDBC Data Source Connection Type
	9.3.3 What Happens When You Create an Application Module Database Connection
	9.3.4 How to Change Your Application Module's Runtime Configuration
	9.3.5 How to Change the Database Connection for Your Project

	9.4 Defining Nested Application Modules
	9.4.1 How to Define a Nested Application Module
	9.4.2 What You May Need to Know About Root Application Modules Versus Nested Application Module Usages

	9.5 Creating an Application Module Diagram for Your Business Service
	9.5.1 How to Create an Application Module Diagram
	9.5.2 What Happens When You Create an Application Module Diagram
	9.5.3 How to Use the Diagram to Edit the Application Module
	9.5.4 How to Control Diagram Display Options
	9.5.5 How to Filtering Method Names Displayed in the Diagram
	9.5.6 How to Show Related Objects and Implementation Files in the Diagram
	9.5.7 How to Publish the Application Module Diagram
	9.5.8 How to Test the Application Module from the Diagram

	9.6 Supporting Multipage Units of Work
	9.6.1 How to Simulate State Management in the Business Component Browser
	9.6.2 What Happens When the Application Uses Application Module Pooling and State Management

	9.7 Customizing an Application Module with Service Methods
	9.7.1 How to Generate a Custom Class for an Application Module
	9.7.2 What Happens When You Generate a Custom Class for an Application Module
	9.7.3 What You May Need to Know About Default Code Generation
	9.7.4 How to Add a Custom Service Method to an Application Module
	9.7.5 How to Test the Custom Application Module Using a Static Main Method
	9.7.6 What You May Need to Know About Programmatic Row Set Iteration

	9.8 Customizing Application Module Message Strings
	9.8.1 How to Add a Resource Bundle to an Application Module
	9.8.2 What Happens When You Add a Resource Bundle to an Application Module

	9.9 Publishing Custom Service Methods to UI Clients
	9.9.1 How to Publish a Custom Method on the Application Module’s Client Interface
	9.9.2 What Happens When You Publish Custom Service Methods
	9.9.3 How to Generate Client Interfaces for View Objects and View Rows
	9.9.4 How to Test Custom Service Methods Using the Business Component Browser
	9.9.5 What You May Need to Know About Method Signatures on the Client Interface
	9.9.6 What You May Need to Know About Passing Information from the Data Model

	9.10 Working Programmatically with an Application Module's Client Interface
	9.10.1 How to Work Programmatically with an Application Module's Client Interface
	9.10.2 What Happens When You Work with an Application Module's Client Interface
	9.10.3 How to Access an Application Module Client Interface in a Fusion Web Application

	9.11 Overriding Built-in Framework Methods
	9.11.1 How to Override a Built-in Framework Method
	9.11.2 What Happens When You Override a Built-in Framework Method
	9.11.3 How to Override prepareSession() to Set Up an Application Module for a New User Session

	10 Sharing Application Module View Instances
	10.1 Introduction to Shared Application Modules
	10.2 Sharing an Application Module Instance
	10.2.1 How to Create a Shared Application Module Instance
	10.2.2 What Happens When You Define a Shared Application Module
	10.2.3 What You May Need to Know About Design Time Scope of the Shared Application Module
	10.2.4 What You May Need to Know About the Design Time Scope of View Instances of the Shared Application Module
	10.2.5 What You May Need to Know About Managing the Number of Shared Query Collections
	10.2.6 What You May Need to Know About Shared Application Modules and Connection Pooling

	10.3 Defining a Base View Object for Use with Lookup Tables
	10.3.1 How to Create a Base View Object Definition for a Lookup Table
	10.3.2 What Happens When You Create a Base View Object
	10.3.3 How to Define the WHERE Clause of the Lookup View Object Using View Criteria
	10.3.4 What Happens When You Create a View Criteria with the Editor
	10.3.5 What Happens at Runtime: When a View Instance Accesses Lookup Data

	10.4 Accessing View Instances of the Shared Service
	10.4.1 How to Create a View Accessor for an Entity Object or View Object
	10.4.2 How to Validate Against a View Accessor
	10.4.3 What Happens When You Validate Against a View Accessor
	10.4.4 How to Create an LOV Based on a Lookup Table
	10.4.5 What Happens When You Define an LOV for a View Object Attribute
	10.4.6 How to Automatically Refresh the View Object of the View Accessor
	10.4.7 What Happens at Runtime: When the Attribute Displays the List of Values
	10.4.8 What You May Need to Know About Displaying List of Values From a Lookup Table
	10.4.9 What You May Need to Know About Inheritance of AttributeDef Properties
	10.4.10 What You May Need to Know About Using Validators

	10.5 Testing View Object Instances in a Shared Application Module
	10.5.1 How to Test the Base View Object Using the Business Component Browser
	10.5.2 How to Test LOV-Enabled Attributes Using the Business Component Browser
	10.5.3 What Happens When You Use the Business Component Browser
	10.5.4 What Happens at Runtime: When Another Service Accesses the Shared Application Module Cache

	11 Integrating Service-Enabled Application Modules
	11.1 Introduction to Service-Enabled Application Modules
	11.2 Publishing Service-Enabled Application Modules
	11.2.1 How to Enable the Application Module Service Interface
	11.2.2 What Happens When You Create an Application Module Service Interface
	11.2.2.1 Remote Common Interface
	11.2.2.2 Remote Service Schema File
	11.2.2.3 Remote Service Definition File
	11.2.2.4 Remote Server Class
	11.2.2.5 connections.xml

	11.2.3 What You May Need to Know About Method Signatures on the Service Interface
	11.2.4 How to Service-Enable Individual View Objects
	11.2.5 How to Customize the SDO Properties of Service-Enabled View Objects
	11.2.5.1 Excluding Individual SDO Properties in a Generated SDO Component
	11.2.5.2 Associating Related SDO Properties Using Complex Data Types

	11.2.6 How to Support Nested Processing in Service-Enabled Master-Detail View Objects
	11.2.7 What Happens When You Create SDO Classes
	11.2.7.1 Service Data Object Interface
	11.2.7.2 Service Data Object Class
	11.2.7.3 Service Data Object Schema File
	11.2.7.4 Service Data Object Result Class and Interface

	11.2.8 How to Expose a Declarative Find Operation Filtered By a Required Bind Variable
	11.2.9 How to Expose a Custom Find Method Filtered By a Required Bind Variable
	11.2.10 How to Generate Asynchronous Web Service Methods
	11.2.11 What Happens When You Generate Asynchronous Service Methods
	11.2.12 What Happens at Runtime: When the Asynchronous Call Is Made
	11.2.13 How to Set Preferences for Generating the Service Interface
	11.2.14 How to Secure the Web Service for SOAP Clients
	11.2.14.1 Enabling Authentication for SOAP Clients
	11.2.14.2 Enabling Authorization for SOAP Clients

	11.2.15 How to Secure the Web Service for RMI Clients
	11.2.15.1 Enabling Authentication for RMI Clients
	11.2.15.2 Enabling Authorization for RMI Clients

	11.2.16 How to Grant Test Users Access to the Service
	11.2.17 How to Enable Support for Binary Attachments for SOAP Clients
	11.2.18 How to Test the Web Service Using Integrated WebLogic Server
	11.2.19 How to Prevent Custom Service Methods from Timing Out
	11.2.20 How to Deploy Web Services to Oracle WebLogic Server

	11.3 Accessing Remote Data Over the Service-Enabled Application Module
	11.3.1 How to Use Service-Enabled Entity Objects and View Objects
	11.3.1.1 Creating Entity Objects Backed by SDO Services
	11.3.1.2 Using Complex Data Types with Service-Backed Entity Object Attributes
	11.3.1.3 Creating View Objects Backed by SDO Services

	11.3.2 What Happens When You Create Service-Backed Business Components
	11.3.3 How to Update the Data Model for Service-Backed Business Components
	11.3.4 How to Configure the Service-Backed Business Components Runtime
	11.3.4.1 Adding the SDO Client Library to the Classpath
	11.3.4.2 Registering the ADF Business Components Service in the Consuming Application’s connections.xml for the EJB RMI Protocol
	11.3.4.3 Registering the ADF Business Components Service in the Consuming Application’s connections.xml for the SOAP Protocol
	11.3.4.4 Registering the ADF Business Components Service in the Consuming Application’s connections.xml for Fabric SDO Binding

	11.3.5 How to Test the Service-Backed Components in the Business Component Browser
	11.3.6 How to Invoke Operations of the Service-Backed Components in the Consuming Application
	11.3.7 What Happens at Runtime: When the Application Accesses the Published Application Module
	11.3.8 What You May Need to Know About Service-Backed Entity Objects and View Objects

	12 Using ADF Model in a Fusion Web Application
	12.1 Introduction to ADF Data Binding
	12.2 Exposing Application Modules with ADF Data Controls
	12.2.1 How an Application Module Data Control Appears in the Data Controls Panel
	12.2.1.1 How the Data Model and Service Methods Appear in the Data Controls Panel
	12.2.1.2 How Transaction Control Operations Appear in the Data Controls Panel
	12.2.1.3 How View Objects Appear in the Data Controls Panel
	12.2.1.4 How Nested Application Modules Appear in the Data Controls Panel

	12.2.2 How to Open the Data Controls Panel
	12.2.3 How to Refresh the Data Controls Panel
	12.2.4 Packaging a Data Control for Use in Another Project

	12.3 Using the Data Controls Panel
	12.3.1 How to Use the Data Controls Panel
	12.3.2 What Happens When You Use the Data Controls Panel
	12.3.3 What Happens at Runtime: How the Binding Context Works

	12.4 Working with the DataBindings.cpx File
	12.4.1 How JDeveloper Creates a DataBindings.cpx File
	12.4.2 What Happens When JDeveloper Creates a DataBindings.cpx File

	12.5 Configuring the ADF Binding Filter
	12.5.1 How JDeveloper Configures the ADF Binding Filter
	12.5.2 What Happens When JDeveloper Configures an ADF Binding Filter
	12.5.3 What Happens at Runtime: How the ADF Binding Filter Works

	12.6 Working with Page Definition Files
	12.6.1 How JDeveloper Creates a Page Definition File
	12.6.2 What Happens When JDeveloper Creates a Page Definition File
	12.6.2.1 Bindings Binding Objects
	12.6.2.2 Executable Binding Objects

	12.7 Creating ADF Data Binding EL Expressions
	12.7.1 How to Create an ADF Data Binding EL Expression
	12.7.1.1 Opening the Expression Builder from the Property Inspector
	12.7.1.2 Using the Expression Builder

	12.7.2 What You May Need to Know About ADF Binding Properties

	12.8 Using Simple UI First Development
	12.8.1 How to Apply ADF Model Data Binding to Existing UI Components
	12.8.2 What Happens When You Apply ADF Model Data Binding to UI Components

	13 Integrating Web Services Into a Fusion Web Application
	13.1 Introduction to Web Services in Fusion Web Applications
	13.2 Calling a Web Service from an Application Module
	13.2.1 How to Call an External Service Programmatically
	13.2.1.1 Creating a Web Service Proxy Class to Programmatically Access the Service
	13.2.1.2 Calling the Web Service Proxy Template to Invoke the Service
	13.2.1.3 Calling a Web Service Method Using the Proxy Class in an Application Module

	13.2.2 How to Create a New Web Service Connection
	13.2.3 What Happens When You Create the Web Service Proxy
	13.2.4 What Happens at Runtime: When You Call a Web Service Using a Web Service Proxy Class
	13.2.5 What You May Need to Know About Web Service Proxies
	13.2.5.1 Using a Try-Catch Block to Handle Web Service Exceptions
	13.2.5.2 Separating Application Module and Web Services Transactions
	13.2.5.3 Setting Browser Proxy Information
	13.2.5.4 Invoking Application Modules with a Web Service Proxy Class

	13.3 Creating Web Service Data Controls
	13.3.1 How to Create a Web Service Data Control
	13.3.2 How to Include a Header Parameter for a Web Service Data Control
	13.3.3 How to Adjust the Endpoint for a Web Service Data Control
	13.3.4 How to Refresh a Web Service Data Control
	13.3.5 What You May Need to Know About Web Service Data Controls

	13.4 Securing Web Service Data Controls
	13.4.1 WS-Security Specification
	13.4.2 Using Key Stores
	13.4.3 How to Define Web Service Data Control Security

	Part III Creating ADF Task Flows
	14 Getting Started with ADF Task Flows
	14.1 Introduction to ADF Task Flows
	14.1.1 Task Flow Advantages
	14.1.2 Task Flow Types
	14.1.2.1 Unbounded Task Flows
	14.1.2.2 Bounded Task Flows

	14.1.3 Control Flows

	14.2 Creating a Task Flow
	14.2.1 How to Create a Task Flow
	14.2.2 What Happens When You Create a Task Flow
	14.2.3 What You May Need to Know About the Default Activity in an ADF Bounded Task Flow
	14.2.4 What You May Need to Know About Memory Scope for Task Flows
	14.2.5 What Happens at Runtime: Using ADF Task Flows

	14.3 Adding Activities to a Task Flow
	14.3.1 How to Add Additional Activities to an ADF Task Flow
	14.3.2 What Happens When You Add an Activity to an ADF Task Flow
	14.3.3 How to Add Control Flows
	14.3.4 How to Add a Wildcard Control Flow Rule
	14.3.5 What Happens When You Create a Control Flow Rule
	14.3.6 What Happens at Runtime: Evaluating Control Flow Rules

	14.4 Testing ADF Task Flows
	14.4.1 How to Run a Bounded Task Flow That Contains Pages
	14.4.2 How to Run a Bounded Task Flow That Uses Page Fragments
	14.4.3 How to Run a Bounded Task Flow That Has Parameters
	14.4.4 How to Run a JSF Page
	14.4.5 How to Run an ADF Unbounded Task Flow
	14.4.6 How to Set a Run Configuration for a Project

	14.5 Refactoring to Create New ADF Task Flows and Templates
	14.5.1 How to Create an ADF Bounded Task Flow from Selected Activities
	14.5.2 How to Create a Task Flow from JSF Pages
	14.5.3 How to Convert ADF Bounded Task Flows

	14.6 What You Should Know About Task Flow Constraints

	15 Working with Task Flow Activities
	15.1 Introduction to Activity Types
	15.2 Using View Activities
	15.2.1 Adding a View Activity
	15.2.2 Transitioning Between View Activities
	15.2.2.1 How to Transition to a View Activity
	15.2.2.2 What Happens When You Transition Between Activities

	15.2.3 Bookmarking View Activities
	15.2.3.1 How to Create a Bookmarkable View Activity
	15.2.3.2 How to Specify HTTP Redirect
	15.2.3.3 What Happens When You Designate a View as Bookmarkable

	15.3 Using URL View Activities
	15.3.1 How to Add a URL View Activity to a Task Flow
	15.3.2 Constructing a URL for Use Within a Portlet

	15.4 Using Router Activities
	15.5 Using Method Call Activities
	15.5.1 How to Add a Method Call Activity
	15.5.2 How to Specify Method Parameters and Return Values
	15.5.3 What Happens When You Add a Method Call Activity

	15.6 Using Task Flow Call Activities
	15.6.1 How to Call a Bounded Task Flow Using a Task Flow Call Activity
	15.6.2 What Happens When You Call a Bounded Task Flow Using a Task Flow Call Activity
	15.6.3 How to Specify Input Parameters on a Task Flow Call Activity
	15.6.4 How to Call a Bounded Task Flow Using a URL
	15.6.5 What Happens When You Configure a Bounded Task Flow to be Invoked by a URL
	15.6.6 What You May Need to Know About Calling a Bounded Task Flow Using a URL
	15.6.7 How to Specify Before and After Listeners
	15.6.8 What Happens When You Add a Task Flow Call Activity
	15.6.9 What Happens at Runtime When a Task Flow Call Activity Invokes a Task Flow

	15.7 Using Task Flow Return Activities
	15.8 Using Save Point Restore Activities
	15.9 Using Parent Action Activities
	15.10 Using Task Flow Activities with Page Definition Files
	15.10.1 How to Associate a Page Definition File with a Task Flow Activity
	15.10.2 What Happens When You Associate a Page Definition File with a Task Flow Activity

	16 Using Parameters in Task Flows
	16.1 Introduction to Parameters in Task Flows
	16.2 Passing Parameters to a View Activity
	16.3 How to Pass Parameters to an ADF Bounded Task Flow
	16.4 Specifying Return Values
	16.5 Specifying EL Binding Expressions

	17 Using Task Flows as Regions
	17.1 Introduction to Using Task Flows in ADF Regions
	17.1.1 Benefits of Executing a Task Flow in an ADF Region
	17.1.2 Task Flows and ADF Region Use Cases and Examples
	17.1.3 Additional Functionality for Task Flows that Render in ADF Regions
	17.1.3.1 Page Fragments and ADF Regions
	17.1.3.2 View Ports and ADF Regions
	17.1.3.3 Security and ADF Regions
	17.1.3.4 Parent Page Determines the Capabilities of an ADF Region

	17.2 Creating an ADF Region
	17.2.1 How to Create an ADF Region
	17.2.2 What Happens When You Create an ADF Region

	17.3 Specifying Parameters for an ADF Region
	17.3.1 How to Specify Parameters for an ADF Region
	17.3.2 What Happens When You Specify Parameters for an ADF Region

	17.4 Specifying Parameters for ADF Regions Using Parameter Maps
	17.4.1 How to Create a Parameter Map to Specify Input Parameters for an ADF Region
	17.4.2 What Happens When You Create a Parameter Map to Specify Input Parameters

	17.5 Refreshing an ADF Region
	17.5.1 How to Configure the Refresh of an ADF Region
	17.5.2 What You May Need to Know About Refreshing an ADF Region

	17.6 Configuring Activation of an ADF Region
	17.6.1 How to Configure Activation of an ADF Region
	17.6.2 What Happens When You Configure Activation of an ADF Region

	17.7 Navigating Outside an ADF Region’s Task Flow
	17.7.1 How to Trigger Navigation Outside of an ADF Region’s Task Flow
	17.7.2 What Happens When You Configure Navigation Outside a Task Flow

	17.8 Creating ADF Dynamic Regions
	17.8.1 How to Create an ADF Dynamic Region
	17.8.2 What Happens When You Create an ADF Dynamic Region

	17.9 Adding Additional Task Flows to an ADF Dynamic Region
	17.9.1 How to Create an ADF Dynamic Region Link
	17.9.2 What Happens When You Create an ADF Dynamic Region

	18 Creating Complex Task Flows
	18.1 Introduction to Complex Task Flows
	18.2 Using Initializers and Finalizers
	18.3 Sharing Data Controls Between Task Flows
	18.3.1 How to Share a Data Control Between Task Flows
	18.3.2 What Happens When You Share a Data Control Between Task Flows

	18.4 Managing Transactions
	18.4.1 How to Enable Transactions in a Bounded Task Flow
	18.4.2 What Happens When You Specify Transaction Options
	18.4.3 What You May Need to Know About Sharing Data Controls and Managing Transactions

	18.5 Reentering a Bounded Task Flow
	18.5.1 How to Set Reentry Behavior
	18.5.2 How to Set Outcome-Dependent Options
	18.5.3 What You Should Know About Managed Bean Values Upon Task Flow Reentry

	18.6 Executing a Bounded Task Flow Directly From a JSF Page
	18.7 Handling Exceptions in Task Flows
	18.7.1 How to Designate an Activity as an Exception Handler
	18.7.2 What Happens When You Designate an Activity as an Exception Handler
	18.7.3 How to Designate Custom Code as an Exception Handler
	18.7.4 What Happens When You Designate Custom Code as an Exception Handler
	18.7.5 What You May Need to Know About Handling Exceptions During Transactions
	18.7.6 What You May Need to Know About Handling Validation Errors

	18.8 Configuring Your Application to Use Save Points
	18.8.1 How to Configure Your Fusion Web Application to Use Save Points
	18.8.2 What Happens When You Configure a Fusion Web Application to Use Save Points
	18.8.3 What You May Need to Know About the Database Table for Save Points

	18.9 Using Save Points in Task Flows
	18.9.1 How to Add a Save Point to a Task Flow
	18.9.2 What Happens When You Add Save Points to a Task Flow
	18.9.3 How to Restore a Save Point
	18.9.4 What Happens When You Restore a Save Point
	18.9.5 How to Use the Save Point Restore Finalizer
	18.9.6 What Happens When a Task Flow Invokes a Save Point Restore Finalizer
	18.9.7 How to Enable Implicit Save Points
	18.9.8 What You May Need to Know About Enabling Implicit Save Points
	18.9.9 What You May Need to Know About the Time-to-Live Period for a Save Point

	18.10 Creating a Train
	18.10.1 Bounded Task Flows as Trains
	18.10.2 Train Sequences
	18.10.3 How to Create a Train
	18.10.4 What You May Need to Know About Grouping Activities
	18.10.5 What You May Need to Know About Grouping Activities in Child Task Flows
	18.10.6 What You May Need To Know About Using Child Trains
	18.10.7 What You May Need to Know About Branching

	18.11 Running Multiple Task Flows
	18.11.1 Understanding How the ViewPortInstance Works in ADF Regions

	18.12 Creating a Task Flow Template
	18.12.1 How to Copy and Reference a Task Flow Template
	18.12.2 How to Create a Task Flow Template from Another Task Flow
	18.12.3 How to Use a Task Flow Template
	18.12.4 How to Create a Task Flow Template
	18.12.5 What Happens When You Create a Task Flow Template
	18.12.6 What You May Need to Know About Task Flow Templates That Use Bindings

	18.13 Creating a Page Hierarchy
	18.13.1 How to Create a Page Hierarchy
	18.13.1.1 How to Create an XMLMenuModel Metadata File
	18.13.1.2 How to Create a Submenu with a Hierarchy of Group and Child Nodes
	18.13.1.3 How to Attach a Menu Hierarchy to Another Menu Hierarchy

	18.13.2 What Happens When You Create a Page Hierarchy

	18.14 Using BPEL with Task Flows
	18.14.1 How to Invoke a BPEL Process from a Task Flow
	18.14.2 How to Call a Bounded Task Flow from BPEL

	19 Using Dialogs in Your Application
	19.1 Introduction to Using Dialogs in Your Application
	19.2 Running a Bounded Task Flow in a Modal Dialog
	19.2.1 How to Run a Bounded Task Flow in a Modal Dialog
	19.2.2 How to Return a Value From a Modal Dialog
	19.2.3 What You May Need to Know About Running a Bounded Task Flow in a Modal Dialog

	19.3 Using the ADF Faces Dialog Framework
	19.3.1 How to Define a JSF Navigation Rule for Opening a Dialog
	19.3.2 How to Create the JSF Page That Opens a Dialog
	19.3.3 How to Create the Dialog Page and Return a Dialog Value
	19.3.4 What Happens at Runtime: Raising the Return Event from the Dialog
	19.3.5 How to Pass a Value into a Dialog
	19.3.6 What Happens at Runtime: Handling the LaunchEvent
	19.3.7 How to Handle the Return Value
	19.3.8 What Happens at Runtime: Handling the ReturnEvent on the Launching Component

	Part IV Creating a Databound Web User Interface
	20 Getting Started with Your Web Interface
	20.1 Introduction to Developing a Web Application with ADF Faces
	20.2 Using Page Templates
	20.2.1 How to Use ADF Data Binding in ADF Page Templates
	20.2.2 What Happens When You Use ADF Model Layer Bindings on a Page Template
	20.2.3 How to Add a Databound Page Template to a Page Dynamically
	20.2.4 What Happens at Runtime: How Pages Use Templates

	20.3 Creating a Web Page
	20.4 Using a Managed Bean in a Fusion Web Application
	20.4.1 How to Use a Managed Bean to Store Information
	20.4.2 What Happens When You Create a Managed Bean
	20.4.3 How to Set Managed Bean Memory Scopes in a Server-Cluster Environment

	21 Understanding the Fusion Page Lifecycle
	21.1 Introduction to the Fusion Page Lifecycle
	21.2 The JSF and ADF Page Lifecycles
	21.2.1 What You May Need to Know About Using the Refresh Property Correctly
	21.2.2 What You May Need to Know About Task Flows and the Lifecycle

	21.3 Object Scope Lifecycles
	21.3.1 What You May Need to Know About Object Scopes and Task Flows

	21.4 Customizing the ADF Page Lifecycle
	21.4.1 How to Create a Custom Phase Listener
	21.4.2 How to Register a Listener Globally
	21.4.3 What You May Need to Know About Listener Order
	21.4.4 How to Register a Lifecycle Listener for a Single Page
	21.4.5 What You May Need to Know About Extending RegionController for Page Fragments

	22 Creating a Basic Databound Page
	22.1 Introduction to Creating a Basic Databound Page
	22.2 Using Attributes to Create Text Fields
	22.2.1 How to Create a Text Field
	22.2.2 What Happens When You Create a Text Field
	22.2.2.1 Creating and Using Iterator Bindings
	22.2.2.2 Creating and Using Value Bindings
	22.2.2.3 Using EL Expressions to Bind UI Components

	22.3 Creating a Basic Form
	22.3.1 How to Create a Form
	22.3.2 What Happens When You Create a Form

	22.4 Incorporating Range Navigation into Forms
	22.4.1 How to Insert Navigation Controls into a Form
	22.4.2 What Happens When You Create Command Buttons
	22.4.2.1 Action Bindings for Built-in Navigation Operations
	22.4.2.2 Iterator RangeSize Attribute
	22.4.2.3 EL Expressions Used to Bind to Navigation Operations

	22.4.3 What You May Need to Know About Automatic Partial Page Rendering
	22.4.4 What Happens at Runtime: How Action Events and Action Listeners Work
	22.4.5 What You May Need to Know About the Browser Back Button and Navigating Through Records

	22.5 Creating a Form to Edit an Existing Record
	22.5.1 How to Create Edit Forms
	22.5.2 What Happens When You Use Built-in Operations to Change Data

	22.6 Creating an Input Form
	22.6.1 How to Create an Input Form Using a Task Flow
	22.6.2 What Happens When You Create an Input Form Using a Task Flow
	22.6.3 What Happens at Runtime: CreateInsert Action from the Method Activity
	22.6.4 What You May Need to Know About Displaying Sequence Numbers

	22.7 Using a Dynamic Form to Determine Data to Display at Runtime
	22.7.1 How to Use Dynamic Forms
	22.7.2 What Happens When You Use Dynamic Components
	22.7.3 What Happens at Runtime: How Attribute Values Are Dynamically Determined

	22.8 Modifying the UI Components and Bindings on a Form
	22.8.1 How to Modify the UI Components and Bindings
	22.8.2 What Happens When You Modify Attributes and Bindings

	23 Creating ADF Databound Tables
	23.1 Introduction to Adding Tables
	23.2 Creating a Basic Table
	23.2.1 How to Create a Basic Table
	23.2.2 What Happens When You Create a Table
	23.2.2.1 Iterator and Value Bindings for Tables
	23.2.2.2 Code on the JSF Page for an ADF Faces Table

	23.2.3 What You May Need to Know About Setting the Current Row in a Table

	23.3 Creating an Editable Table
	23.3.1 How to Create an Editable Table
	23.3.2 What Happens When You Create an Editable Table

	23.4 Creating an Input Table
	23.4.1 How to Create an Input Table
	23.4.2 What Happens When You Create an Input Table
	23.4.3 What Happens at Runtime: How CreateInsert and Partial Page Refresh Work
	23.4.4 What You May Need to Know About Creating a Row and Sorting Columns
	23.4.5 What You May Need to Know About Create and CreateInsert

	23.5 Providing Multiselect Capabilities
	23.5.1 How to Add Multiselect Capabilities
	23.5.2 What Happens at Runtime: How an Operation Executes Against Multiple Rows

	23.6 Modifying the Attributes Displayed in the Table
	23.6.1 How to Modify the Displayed Attributes
	23.6.2 How to Change the Binding for a Table
	23.6.3 What Happens When You Modify Bindings or Displayed Attributes

	24 Displaying Master-Detail Data
	24.1 Introduction to Displaying Master-Detail Data
	24.2 Identifying Master-Detail Objects on the Data Controls Panel
	24.3 Using Tables and Forms to Display Master-Detail Objects
	24.3.1 How to Display Master-Detail Objects in Tables and Forms
	24.3.2 What Happens When You Create Master-Detail Tables and Forms
	24.3.2.1 Code Generated in the JSF Page
	24.3.2.2 Binding Objects Defined in the Page Definition File

	24.3.3 What Happens at Runtime: ADF Iterator for Master-Detail Tables and Forms
	24.3.4 What You May Need to Know About Displaying Master-Detail Widgets on Separate Pages

	24.4 Using Trees to Display Master-Detail Objects
	24.4.1 How to Display Master-Detail Objects in Trees
	24.4.2 What Happens When You Create an ADF Databound Tree
	24.4.2.1 Code Generated in the JSF Page
	24.4.2.2 Binding Objects Defined in the Page Definition File

	24.4.3 What Happens at Runtime: Displaying an ADF Databound Tree

	24.5 Using Tree Tables to Display Master-Detail Objects
	24.5.1 How to Display Master-Detail Objects in Tree Tables
	24.5.2 What Happens When You Create a Databound Tree Table
	24.5.2.1 Code Generated in the JSF Page
	24.5.2.2 Binding Objects Defined in the Page Definition File

	24.5.3 What Happens at Runtime: Events
	24.5.4 Using the TargetIterator Property

	24.6 Using Selection Events with Trees and Tables
	24.6.1 How to Use Selection Events with Trees and Tables
	24.6.2 What Happens at Runtime: RowKeySet Objects and SelectionEvent Events

	25 Creating Databound Selection Lists and Shuttles
	25.1 Introduction to Selection Lists and Shuttles
	25.2 Creating List of Values (LOV)
	25.2.1 How to Create an LOV
	25.2.2 What Happens When You Create an LOV

	25.3 Creating a Selection List
	25.3.1 How to Create a Single Selection List
	25.3.2 How to Create a Model-Driven List
	25.3.3 How to Create a Selection List Containing Fixed Values
	25.3.4 How to Create a Selection List Containing Dynamically Generated Values
	25.3.5 What Happens When You Create a Model-Driven Selection List
	25.3.6 What Happens When You Create a Fixed Selection List
	25.3.7 What You May Need to Know About Values in a Selection List
	25.3.8 What Happens When You Create a Dynamic Selection List

	25.4 Creating a List with Navigation List Binding
	25.5 Creating a Databound Shuttle

	26 Creating Databound ADF Data Visualization Components
	26.1 Introduction to Creating ADF Data Visualization Components
	26.2 Creating Databound Graphs
	26.2.1 How to Create a Graph
	26.2.2 What Happens When You Use the Data Controls Panel to Create a Graph
	26.2.3 What You May Need to Know About Using a Graph’s Row Selection Listener for Master-Detail Processing
	26.2.4 How to Create a Databound Sparkchart

	26.3 Creating Databound Gauges
	26.3.1 How to Create a Databound Dial Gauge
	26.3.2 What Happens When You Create a Dial Gauge from a Data Control
	26.3.3 How to Create a Databound Status Meter Gauge Set
	26.3.4 What Happens When You Create a Status Meter Gauge from a Data Control

	26.4 Creating Databound Pivot Tables
	26.4.1 How to Create a Pivot Table
	26.4.2 What Happens When You Use the Data Controls Panel to Create a Pivot Table
	26.4.2.1 Bindings for Pivot Tables
	26.4.2.2 Code on the JSF Page for a Pivot Table and Pivot Filter Bar

	26.4.3 What You May Need to Know About Aggregating Attributes in the Pivot Table
	26.4.3.1 Default Aggregation of Duplicate Data Rows
	26.4.3.2 Custom Aggregation of Duplicate Rows

	26.4.4 What You May Need to Know About Specifying an Initial Sort for a Pivot Table

	26.5 Creating Databound Geographic Maps
	26.5.1 How to Create a Geographic Map with a Point Theme
	26.5.2 How to Create Point Style Items for a Point Theme
	26.5.3 What Happens When You Create a Geographic Map with a Point Theme
	26.5.3.1 Binding XML for a Point Theme
	26.5.3.2 XML Code on the JSF Page for a Geographic Map and Point Theme

	26.5.4 What You May Need to Know About Adding Custom Point Style Items to a Map Point Theme
	26.5.5 How to Add a Databound Color Theme to a Geographic Map
	26.5.6 What Happens When You Add a Color Theme to a Geographic Map
	26.5.6.1 Binding XML for a Color Theme
	26.5.6.2 XML Code on the JSF Page for a Color Theme

	26.5.7 What You May Need to Know About Customizing Colors in a Map Color Theme
	26.5.8 How to Add a Databound Pie Graph Theme to a Geographic Map
	26.5.9 What Happens When You Add a Pie Graph Theme to a Geographic Map
	26.5.9.1 Binding XML for a Pie Graph Theme
	26.5.9.2 Code on the JSF Page for a Pie Graph Theme

	26.6 Creating Databound Gantt Charts
	26.6.1 How to Create a Databound Project Gantt Chart
	26.6.2 What Happens When You Create a Project Gantt Chart from a Data Control
	26.6.3 What You May Need to Know About Summary Tasks in a Project Gantt Chart
	26.6.4 What You May Need to Know About Percent Complete in a Project Gantt Chart
	26.6.5 What You May Need to Know About Variance in a Project Gantt Chart
	26.6.6 How to Create a Databound Resource Utilization Gantt Chart
	26.6.7 What Happens When You Create a Resource Utilization Gantt Chart
	26.6.8 How to Create a Databound Scheduling Gantt Chart
	26.6.9 What Happens When You Create a Scheduling Gantt Chart

	26.7 Creating Databound Hierarchy Viewers
	26.7.1 How to Create a Databound Hierarchy Viewer
	26.7.2 What Happens When You Create a Databound Hierarchy Viewer
	26.7.3 How to Create a Databound Search in a Hierarchy Viewer

	27 Creating ADF Databound Search Forms
	27.1 Introduction to Creating Search Forms
	27.1.1 Query Search Forms
	27.1.2 Quick Query Search Forms
	27.1.3 Named Bind Variables in Query Search Forms
	27.1.4 Filtered Table and Query-by-Example Searches
	27.1.5 Implicit and Named View Criteria
	27.1.6 List of Values (LOV) Input Fields

	27.2 Creating Query Search Forms
	27.2.1 How to Create a Query Search Form with a Results Table or Tree Table
	27.2.2 How to Create a Query Search Form and Add a Results Component Later
	27.2.3 How to Persist Saved Searches into MDS
	27.2.4 How to Set Default Search Binding Behavior
	27.2.5 What You May Need to Know About Dependent Criterion
	27.2.6 What Happens When You Create a Query Form
	27.2.7 What Happens at Runtime: Search Forms

	27.3 Setting Up Search Form Properties
	27.3.1 How to Set Search Form Properties on the View Criteria
	27.3.2 How to Set Search Form Properties on the Query Component
	27.3.3 How to Set Timezone Control Hint for Timestamp Attribute
	27.3.4 How to Create Custom Operators or Remove Standard Operators

	27.4 Creating Quick Query Search Forms
	27.4.1 How to Create a Quick Query Search Form with a Results Table or Tree Table
	27.4.2 How to Create a Quick Query Search Form and Add a Results Component Later
	27.4.3 How to Set the Quick Query Layout Format
	27.4.4 What Happens When You Create a Quick Query Search Form
	27.4.5 What Happens at Runtime: Quick Query

	27.5 Creating Standalone Filtered Search Tables from Named View Criteria

	28 Creating More Complex Pages
	28.1 Introduction to More Complex Pages
	28.2 Creating Command Components to Execute Methods
	28.2.1 How to Create a Command Component Bound to a Custom Method
	28.2.2 What Happens When You Create Command Components Using a Method
	28.2.2.1 Defining Method Action Binding
	28.2.2.2 Using Parameters in a Method
	28.2.2.3 Adding ADF Faces Component Code to JSF Page
	28.2.2.4 Using EL Expressions to Bind to Methods
	28.2.2.5 Using the Return Value from a Method Call

	28.2.3 What Happens at Runtime: Command Button Method Bindings

	28.3 Setting Parameter Values Using a Command Component
	28.3.1 How to Set Parameters Using setPropertyListener Within a Command Component
	28.3.2 What Happens When You Set Parameters
	28.3.3 What Happens at Runtime: setPropertyListener for a Command Component

	28.4 Overriding Declarative Methods
	28.4.1 How to Override a Declarative Method
	28.4.2 What Happens When You Override a Declarative Method

	28.5 Using the ADF Faces Calendar Component
	28.5.1 How to Use the ADF Faces Calendar
	28.5.2 What Happens When You Create a Calendar
	28.5.3 What Happens at Runtime: How the Calendar Binding Works

	28.6 Using the ADF Faces Carousel Component
	28.6.1 How to Create a Databound Carousel Component
	28.6.2 What Happens When You Create a Carousel

	28.7 Creating Contextual Events
	28.7.1 How to Create Contextual Events Declaratively
	28.7.1.1 Creating Contextual Events in the Publisher
	28.7.1.2 Subscribing to and Consuming Events

	28.7.2 How to Create Contextual Events Manually
	28.7.3 How to Create Contextual Event Using Managed Beans
	28.7.4 How to Create a Contextual Event from JavaScript
	28.7.5 How to Manually Create the Event Map
	28.7.6 How to Register a Custom Event Dispatcher
	28.7.7 What Happens When You Create Contextual Events
	28.7.8 How to Control Contextual Events Dispatch
	28.7.9 What Happens at Runtime: Contextual Events

	28.8 Adding ADF Model Layer Validation
	28.8.1 How to Add Validation
	28.8.2 What Happens at Runtime: Model Validation Rules

	28.9 Displaying Error Messages
	28.10 Customizing Error Handling
	28.10.1 How to Customize the Detail Portion of a Message
	28.10.2 How to Write an Error Handler to Deal with Multiple Threads

	29 Designing a Page Using Placeholder Data Controls
	29.1 Introduction to Placeholder Data Controls
	29.2 Creating Placeholder Data Controls
	29.2.1 How to Create a Placeholder Data Control
	29.2.2 What Happens When You Create a Placeholder Data Control

	29.3 Creating Placeholder Data Types
	29.3.1 How to Create a Placeholder Data Type
	29.3.2 What Happens When You Create a Placeholder Data Type
	29.3.3 How to Configure a Placeholder Data Type Attribute to Be an LOV
	29.3.3.1 Configuring an Attribute to Be a Fixed LOV
	29.3.3.2 Configuring an Attribute to Be a Dynamic LOV

	29.3.4 How to Create Master-Detail Data Types
	29.3.5 What Happens When You Create a Master-Detail Data Type
	29.3.6 How to Add Sample Data
	29.3.6.1 Adding Sample Data Manually
	29.3.6.2 Importing Sample Data

	29.3.7 What Happens When You Add Sample Data

	29.4 Using Placeholder Data Controls
	29.4.1 Limitations of Placeholder Data Controls
	29.4.2 Creating Layout
	29.4.3 Creating a Search Form
	29.4.4 Binding Components
	29.4.5 Rebinding Components
	29.4.6 Packaging Placeholder Data Controls to ADF Library JARs

	Part V Completing Your Application
	30 Enabling ADF Security in a Fusion Web Application
	30.1 Introduction to ADF Security
	30.1.1 Integration of ADF Security and Java Security
	30.1.2 Summary of ADF Security

	30.2 ADF Security Process Overview
	30.3 Enabling ADF Security
	30.3.1 How to Enable ADF Security
	30.3.2 What Happens When You Enable ADF Security
	30.3.3 What Happens When You Generate a Default Form-Based Login Page
	30.3.4 What You May Need to Know About the Configure ADF Security Wizard
	30.3.5 What You May Need to Know About ADF Authentication
	30.3.6 What You May Need to Know About the Built-In test-all Role
	30.3.7 What You May Need to Know About the valid-users Role

	30.4 Creating Application Roles
	30.4.1 How to Create Application Roles
	30.4.2 What Happens When You Create Application Roles
	30.4.3 What You May Need to Know About Enterprise Roles and Application Roles

	30.5 Defining ADF Security Policies
	30.5.1 How to Make an ADF Resource Public
	30.5.2 What Happens When You Make an ADF Resource Public
	30.5.3 What Happens at Runtime: How the Built-in Roles Are Used
	30.5.4 How to Define Policies for ADF Bounded Task Flows
	30.5.5 How to Define Policies for Web Pages That Reference a Page Definition
	30.5.6 What Happens When You Define the Security Policy
	30.5.7 What Happens at Runtime: How ADF Security Policies Are Enforced
	30.5.8 What You May Need to Know About Defining Policies for Pages with No ADF Bindings
	30.5.9 How to Use Regular Expressions to Define Policies on Groups of Resources
	30.5.10 How to Define Policies for Data
	30.5.10.1 Defining Permission Maps on ADF Entity Objects
	30.5.10.2 Granting Permissions on ADF Entity Objects

	30.6 Creating Test Users
	30.6.1 How to Create Test Users in JDeveloper
	30.6.2 What Happens When You Create Test Users
	30.6.3 How to Associate Test Users with Application Roles
	30.6.4 What Happens When You Configure Application Roles

	30.7 Creating a Login Page
	30.7.1 How to Create a Login Link Component and Add it to a Public Web Page for Explicit Authentication
	30.7.2 How to Create a Login Page Specifically for Explicit Authentication
	30.7.2.1 Creating Login Code for the Backing Bean
	30.7.2.2 Creating an ADF Faces-Based Login Page Specifically for Explicit Authentication
	30.7.2.3 Ensuring That the Login Page Is Public

	30.7.3 How to Ensure That the Custom Login Page’s Resources Are Accessible for Explicit Authentication
	30.7.4 How to Create a Public Welcome Page
	30.7.4.1 Ensuring That the Welcome Page Is Public
	30.7.4.2 Adding Login and Logout Links
	30.7.4.3 Hiding Links to Secured Pages

	30.7.5 How to Redirect a User After Authentication
	30.7.6 How to Trigger a Custom Login Page Specifically for Implicit Authentication
	30.7.7 What You May Need to Know About ADF Servlet Logout and Browser Caching
	30.7.8 What You May Need to Know About IBM WebSphere Application Server

	30.8 Testing Security in JDeveloper
	30.8.1 How to Configure, Deploy, and Run a Secure Application in JDeveloper
	30.8.2 What Happens When You Configure Security Deployment Options
	30.8.3 How to Use the Built-In test-all Application Role
	30.8.4 What Happens at Runtime: How ADF Security Handles Authentication
	30.8.5 What Happens at Runtime: How ADF Security Handles Authorization

	30.9 Preparing the Secure Application for Deployment
	30.9.1 How to Remove the test-all Role from the Application Policy Store
	30.9.2 How to Remove Test Users from the Application Identity Store

	30.10 Disabling ADF Security
	30.10.1 How to Disable ADF Security
	30.10.2 What Happens When You Disable ADF Security

	30.11 Advanced Topics and Best Practices
	30.11.1 Using Expression Language (EL) with ADF Security
	30.11.1.1 How to Evaluate Policies Using EL
	30.11.1.2 What Happens When You Use the Expression Builder Dialog
	30.11.1.3 What You May Need to Know About Delayed Evaluation of EL

	30.11.2 How to Evaluate Policies Using Custom JAAS Permissions and EL
	30.11.3 Getting Information from the ADF Security Context
	30.11.3.1 How to Determine Whether Security Is Enabled
	30.11.3.2 How to Determine Whether the User Is Authenticated
	30.11.3.3 How to Determine the Current User Name, Enterprise Name, or Enterprise ID
	30.11.3.4 How to Determine Membership of a Java EE Security Role
	30.11.3.5 How to Determine Permission Using Java

	30.11.4 Best Practices for Working with ADF Security

	31 Testing and Debugging ADF Components
	31.1 Introduction to ADF Debugging
	31.2 Correcting Simple Oracle ADF Compilation Errors
	31.3 Correcting Simple Oracle ADF Runtime Errors
	31.4 Validating ADF Controller Metadata
	31.5 Using the ADF Logger
	31.5.1 How to Turn On Diagnostic Logging
	31.5.2 How to Create an Oracle ADF Debugging Configuration
	31.5.3 How to Set ADF Logging Levels
	31.5.4 How to Use the Log Analyzer to View Log Messages
	31.5.4.1 Viewing Diagnostic Messages in the Log Analyzer
	31.5.4.2 Using the Log Analyzer to Analyze the ADF Request
	31.5.4.3 Sorting Diagnostic Messages By ADF Events

	31.5.5 What You May Need to Know About the Logging.xml File
	31.5.6 What You May Need to Know About ADF Logging and Oracle WebLogic Server

	31.6 Using the Business Component Browser for Testing and Debugging
	31.6.1 How to Run in Debug Mode and Test with the Business Component Browser
	31.6.2 How to Run the Business Component Browser and Test with a Specific Configuration
	31.6.3 What Happens When You Run the Business Component Browser in Debug Mode
	31.6.4 How to Verify Runtime Artifacts in the Business Component Browser
	31.6.5 How to Refresh the Business Component Browser with Application Changes

	31.7 Using the ADF Declarative Debugger
	31.7.1 Using ADF Source Code with the Debugger
	31.7.2 How to Set Up the ADF Source User Library
	31.7.3 How to Add the ADF Source Library to a Project
	31.7.4 How to Use the EL Expression Evaluator
	31.7.5 How to View and Export Stack Trace Information

	31.8 Setting ADF Declarative Breakpoints
	31.8.1 How to Set and Use Task Flow Activity Breakpoints
	31.8.2 How to Set and Use Page Definition Executable Breakpoints
	31.8.3 How to Set and Use Page Definition Action Binding Breakpoints
	31.8.4 How to Set and Use Page Definition Attribute Value Binding Breakpoints
	31.8.5 How to Set and Use ADF Lifecycle Phase Breakpoints
	31.8.6 How to Use the ADF Structure Window
	31.8.7 How to Use the ADF Data Window
	31.8.8 What Happens When You Set an ADF Declarative Breakpoint

	31.9 Setting Java Code Breakpoints
	31.9.1 How to Set Java Breakpoints on Classes and Methods
	31.9.2 How to Optimize Use of the Source Editor
	31.9.3 How to Set Breakpoints and Debug Using ADF Source Code
	31.9.4 How to Use Debug Libraries for Symbolic Debugging
	31.9.5 How to Use Different Kinds of Java Code Breakpoints
	31.9.6 How to Edit Breakpoints for Improved Control
	31.9.7 How to Filter Your View of Class Members
	31.9.8 How to Use Common Oracle ADF Breakpoints

	31.10 Regression Testing with JUnit
	31.10.1 How to Obtain the JUnit Extension
	31.10.2 How to Create a JUnit Test Case
	31.10.3 How to Create a JUnit Test Fixture
	31.10.4 How to Create a JUnit Test Suite
	31.10.5 How to Create a Business Components Test Suite
	31.10.6 How to a Create Business Components Test Fixture
	31.10.7 How to Run a JUnit Test Suite as Part of an Ant Build Script

	32 Refactoring a Fusion Web Application
	32.1 Introduction to Refactoring a Fusion Web Application
	32.2 Renaming Files
	32.3 Moving JSF Pages
	32.4 Refactoring pagedef.xml Bindings Objects
	32.5 Refactoring ADF Business Components
	32.6 Refactoring ADF Business Component Object Attributes
	32.7 Refactoring Named Elements
	32.8 Refactoring ADF Task Flows
	32.9 Refactoring the DataBindings.cpx File
	32.10 Refactoring Across Abstraction Layers
	32.11 Refactoring Limitations
	32.12 Refactoring the .jpx Project File

	33 Reusing Application Components
	33.1 Introduction to Reusable Components
	33.1.1 Creating Reusable Components
	33.1.1.1 Naming Conventions
	33.1.1.1.1 Naming Considerations for Packages
	33.1.1.1.2 Naming Considerations for Connections
	33.1.1.1.3 Naming Considerations for Applications with EJB Projects

	33.1.1.2 The Naming Process for the ADF Library JAR Deployment Profile
	33.1.1.3 Keeping the Relevant Project
	33.1.1.4 Selecting the Relevant Technology Scope
	33.1.1.5 Selecting Paths and Folders
	33.1.1.6 Including Connections Within Reusable Components

	33.1.2 Using the Resource Palette
	33.1.3 Extension Libraries

	33.2 Packaging a Reusable ADF Component into an ADF Library
	33.2.1 How to Package a Component into an ADF Library JAR
	33.2.2 What Happens When You Package a Project to an ADF Library JAR
	33.2.2.1 Application Modules
	33.2.2.2 Data Controls
	33.2.2.3 Task Flows
	33.2.2.4 Page Templates
	33.2.2.5 Declarative Components

	33.2.3 How to Place and Access JDeveloper JAR Files

	33.3 Adding ADF Library Components into Projects
	33.3.1 How to Add an ADF Library JAR into a Project using the Resource Palette
	33.3.2 How to Add an ADF Library JAR into a Project Manually
	33.3.3 What Happens When You Add an ADF Library JAR to a Project
	33.3.4 What You May Need to Know About Using ADF Library Components
	33.3.4.1 Using Data Controls
	33.3.4.2 Using Application Modules
	33.3.4.3 Using Business Components
	33.3.4.4 Using Task Flows
	33.3.4.5 Using Page Templates
	33.3.4.6 Using Declarative Components

	33.3.5 What You May Need to Know About Differentiating ADF Library Components
	33.3.6 What Happens at Runtime: Adding ADF Libraries

	33.4 Removing an ADF Library JAR from a Project
	33.4.1 How to Remove an ADF Library JAR from a Project Using the Resource Palette
	33.4.2 How to Remove an ADF Library JAR from a Project Manually

	34 Customizing Applications with MDS
	34.1 Introduction to Customization and MDS
	34.1.1 Customizations and Layers
	34.1.2 Static and Dynamic Customization Content

	34.2 Developing a Customizable Application
	34.2.1 How to Create Customization Classes
	34.2.1.1 Customization Classes
	34.2.1.2 Implementing the getValue() Method in Your Customization Class
	34.2.1.3 Creating a Customization Class

	34.2.2 What You May Need to Know About Customization Classes
	34.2.3 How to Consume Customization Classes
	34.2.3.1 Making Customization Classes Available to JDeveloper
	34.2.3.2 Consuming Customization Classes from an Extension Project

	34.2.4 How to Enable Seeded Customizations for View Projects
	34.2.5 How to Enable Seeded Customizations in Existing Pages
	34.2.6 How to Enable Customizations in Resource Bundles
	34.2.7 How to Configure the adf-config.xml file
	34.2.8 What Happens When You Create a Customizable Application
	34.2.9 What You May Need to Know About Customizable Objects and Applications

	34.3 Customizing an Application
	34.3.1 Introducing the Customization Developer Role
	34.3.2 How to Switch to the Customization Developer Role in JDeveloper
	34.3.3 Introducing the Tip Layer
	34.3.4 How to Configure Customization Layers
	34.3.4.1 Configuring Layer Values Globally
	34.3.4.2 Configuring Workspace-Level Layer Values from the adf-config Editor
	34.3.4.3 Configuring Workspace-Level Layer Values from the Customization Context Window

	34.3.5 How to Customize Metadata in JDeveloper
	34.3.6 How to Fix Incongruencies Between the Tip Layer and Base Metadata
	34.3.7 What Happens When You Customize an Application
	34.3.8 How to Customize Business Logic using Groovy Triggers
	34.3.9 How to Customize ADF Library Artifacts in JDeveloper
	34.3.9.1 Specifying a Location for ADF Library Customizations
	34.3.9.2 Viewing ADF Library Runtime Customizations from Exported JARs

	34.3.10 What Happens When You Customize ADF Library Artifacts
	34.3.11 How to Package and Deploy Customized Applications
	34.3.11.1 Implicitly Creating a MAR
	34.3.11.2 Explicitly Creating a MAR

	34.3.12 What Happens at Runtime in a Customized Application
	34.3.13 What You May Need to Know About Customized Applications
	34.3.13.1 Customization and Integrated Source Control
	34.3.13.2 Editing Resource Bundles in Customized Applications

	34.4 Extended Metadata Properties
	34.4.1 How to Edit Extended Metadata Properties
	34.4.2 How to Enable Customization for Design Time at Runtime

	34.5 Enabling Runtime Modification of Customization Configuration

	35 Allowing User Customizations at Runtime
	35.1 Introduction to Allowing User Customizations
	35.2 Enabling Runtime User Customizations for a Fusion Web Application
	35.2.1 How to Enable User Customizations
	35.2.2 What Happens When You Enable User Customizations

	35.3 Configuring User Customizations
	35.3.1 How to Configure Change Persistence
	35.3.2 What Happens When You Configure Change Persistence

	35.4 Controlling User Customizations in Individual JSF Pages
	35.4.1 How to Implement User Customizations on a JSF Page
	35.4.2 What Happens at Runtime: How Changes Are Persisted and Restored
	35.4.3 What You May Need to Know About Using Change Persistence on Templates, Regions, and Declarative Components

	35.5 Implementing Custom User Customizations
	35.5.1 Change Persistence Framework API
	35.5.2 How to Create Code for Custom User Customizations

	35.6 Creating Implicit Change Persistence in Custom Components
	35.6.1 How to Set Implicit Change Persistence For Attribute Values that Use Events
	35.6.2 How to Set Implicit Change Persistence For Other Attribute Values

	36 Deploying Fusion Web Applications
	36.1 Introduction to Deploying Fusion Web Applications
	36.1.1 Developing Applications with Integrated WebLogic Server
	36.1.2 Developing Applications to Deploy to Standalone Application Servers

	36.2 Running an ADF Application in Integrated WebLogic Server
	36.2.1 How to Run an Application in Integrated WebLogic Server
	36.2.2 How to Run an Application with Metadata in Integrated WebLogic Server

	36.3 Preparing the Application
	36.3.1 How to Create a Connection to the Target Application Server
	36.3.2 How to Create Deployment Profiles
	36.3.2.1 Adding Customization Classes into a JAR
	36.3.2.2 Creating a WAR Deployment Profile
	36.3.2.3 Creating a MAR Deployment Profile
	36.3.2.4 Creating an Application-Level EAR Deployment Profile
	36.3.2.5 Delivering Customization Classes as a Shared Library
	36.3.2.6 Viewing and Changing Deployment Profile Properties

	36.3.3 How to Create and Edit Deployment Descriptors
	36.3.3.1 Creating Deployment Descriptors
	36.3.3.2 Viewing or Modifying Deployment Descriptor Properties
	36.3.3.3 Configuring the application.xml File for Application Server Compatibility
	36.3.3.4 Configuring the web.xml File for Application Server Compatibility
	36.3.3.5 Enabling the Application for Real User Experience Insight and End User Monitoring

	36.3.4 How to Deploy Applications with ADF Security Enabled
	36.3.4.1 Applications That Will Run Using Oracle Single Sign-On (SSO)
	36.3.4.2 Configuring Security for WebLogic Server
	36.3.4.2.1 Applications with JDBC URL for WebLogic
	36.3.4.2.2 Applications with JDBC Data Source for WebLogic

	36.3.4.3 Configuring Security for WebSphere Server
	36.3.4.3.1 Applications with JDBC URL for WebSphere
	36.3.4.3.2 Applications with JDBC Data Source for WebSphere
	36.3.4.3.3 Editing the web.xml File to Protect the Application Root for WebSphere

	36.3.5 How to Replicate Memory Scopes in a Clustered Environment
	36.3.6 How to Enable the Application for ADF MBeans
	36.3.7 What You May Need to Know About JDBC Data Source for Oracle WebLogic Server

	36.4 Deploying the Application
	36.4.1 How to Deploy to the Application Server from JDeveloper
	36.4.2 How to Create an EAR File for Deployment
	36.4.3 What You May Need to Know About EAR Files and Packaging
	36.4.4 How to Deploy the Application Using Scripts and Ant
	36.4.5 How to Deploy New Customizations Applied to ADF LIbrary
	36.4.5.1 Exporting Customization to a Deployed Application
	36.4.5.2 Deploying Customizations to a JAR

	36.4.6 What You May Need to Know About ADF Libraries
	36.4.7 What You May Need to Know About JDeveloper Runtime Libraries

	36.5 Postdeployment Configuration
	36.5.1 How to Migrate an Application
	36.5.2 How to Configure the Application Using ADF MBeans

	36.6 Testing the Application and Verifying Deployment

	Part VI Advanced Topics
	37 Advanced Business Components Techniques
	37.1 Globally Extending ADF Business Components Functionality
	37.1.1 How To Create a Framework Extension Class
	37.1.2 What Happens When You Create a Framework Extension Class
	37.1.3 How to Base an ADF Component on a Framework Extension Class
	37.1.4 How to Define Framework Extension Classes for All New Components
	37.1.5 How to Define Framework Extension Classes for All New Projects
	37.1.6 What Happens When You Base a Component on a Framework Extension Class
	37.1.6.1 XML-Only Components
	37.1.6.2 Components with Custom Java Classes

	37.1.7 What You May Need to Know About Updating the Extends Clause in Custom Component Java Files

	37.2 Creating a Layer of Framework Extensions
	37.2.1 How to Create Your Layer of Framework Extension Layer Classes
	37.2.2 How to Package Your Framework Extension Layer in a JAR File
	37.2.3 How to Create a Library Definition for Your Framework Extension JAR File

	37.3 Customizing Framework Behavior with Extension Classes
	37.3.1 How to Access Runtime Metadata For View Objects and Entity Objects
	37.3.2 How to Implement Generic Functionality Using Runtime Metadata
	37.3.3 How to Implement Generic Functionality Driven by Custom Properties
	37.3.4 How to Configure Design Time Custom Property Names
	37.3.5 What You May Need to Know About the Kinds of Attributes
	37.3.6 What You May Need to Know About Custom Properties

	37.4 Creating Generic Extension Interfaces
	37.5 Invoking Stored Procedures and Functions
	37.5.1 How to Invoke Stored Procedures with No Arguments
	37.5.2 How to Invoke Stored Procedure with Only IN Arguments
	37.5.3 How to Invoke Stored Function with Only IN Arguments
	37.5.4 How to Call Other Types of Stored Procedures

	37.6 Accessing the Current Database Transaction
	37.7 Working with Libraries of Reusable Business Components
	37.7.1 How To Create a Reusable Library of Business Components
	37.7.2 How To Import a Package of Reusable Components from a Library
	37.7.3 How to Remove an Imported Package from a Project
	37.7.4 What Happens When You Import a Package of Reusable Components from a Library
	37.7.5 What You May Need to Know About Imported Projects

	37.8 Customizing Business Components Error Messages
	37.8.1 How to Customize Base ADF Business Components Error Messages
	37.8.2 What Happens When You Customize Base ADF Business Components Error Messages
	37.8.3 How to Display Customize Error Messages as Nested Exceptions
	37.8.4 How to Customize Error Messages for Database Constraint Violations
	37.8.5 How to Implement a Custom Constraint Error Handling Routine
	37.8.5.1 Creating a Custom Database Transaction Framework Extension Class
	37.8.5.2 Configuring an Application Module to Use a Custom Database Transaction Class

	37.9 Creating Extended Components Using Inheritance
	37.9.1 How To Create a Component That Extends Another
	37.9.2 How To Extend a Component After Creation
	37.9.3 What Happens When You Create a Component That Extends Another
	37.9.3.1 Understanding an Extended Component's XML Descriptor
	37.9.3.2 Understanding Java Code Generation for an Extended Component

	37.9.4 What You May Need to Know
	37.9.4.1 You Can Use Parent Classes and Interfaces to Work with Extended Components
	37.9.4.2 Class Extends is Disabled for Extended Components
	37.9.4.3 Interesting Aspects You Can Extend for Key Component Types
	37.9.4.4 Extended Components Have Attribute Indices Relative to Parent

	37.10 Substituting Extended Components in a Delivered Application
	37.10.1 How To Substitute an Extended Component
	37.10.2 What Happens When You Substitute
	37.10.3 How to Enable the Substituted Components in the Base Application

	38 Advanced Entity Object Techniques
	38.1 Creating Custom, Validated Data Types Using Domains
	38.1.1 How to Create a Domain
	38.1.2 What Happens When You Create a Domain
	38.1.3 What You May Need to Know About Domains
	38.1.3.1 Using Domains for Entity and View Object Attributes
	38.1.3.2 Validate Method Should Throw DataCreationException If Sanity Checks Fail
	38.1.3.3 String Domains Aggregate a String Value
	38.1.3.4 Other Domains Extend Existing Domain Type
	38.1.3.5 Simple Domains Are Immutable Java Classes
	38.1.3.6 Creating Domains for Oracle Object Types When Useful
	38.1.3.7 Quickly Navigating to the Domain Class
	38.1.3.8 Domains Get Packaged in the Common JAR
	38.1.3.9 Entity and View Object Attributes Inherit Custom Domain Properties
	38.1.3.10 Domain Settings Cannot Be Less Restrictive at Entity or View Level

	38.2 Updating a Deleted Flag Instead of Deleting Rows
	38.2.1 How to Update a Deleted Flag When a Row Is Removed
	38.2.2 Forcing an Update DML Operation Instead of a Delete

	38.3 Using Update Batching
	38.4 Advanced Entity Association Techniques
	38.4.1 Modifying Association SQL Clause to Implement Complex Associations
	38.4.2 Exposing View Link Accessor Attributes at the Entity Level
	38.4.3 Optimizing Entity Accessor Access by Retaining the Row Set

	38.5 Basing an Entity Object on a PL/SQL Package API
	38.5.1 How to Create an Entity Object Based on a View
	38.5.2 What Happens When You Create an Entity Object Based on a View
	38.5.3 Centralizing Details for PL/SQL-Based Entities into a Base Class
	38.5.4 Implementing the Stored Procedure Calls for DML Operations
	38.5.5 Adding Select and Lock Handling
	38.5.5.1 Updating PLSQLEntityImpl Base Class to Handle Lock and Select
	38.5.5.2 Implementing Lock and Select for the Product Entity
	38.5.5.3 Refreshing the Entity Object After RowInconsistentException

	38.6 Basing an Entity Object on a Join View or Remote DBLink
	38.7 Using Inheritance in Your Business Domain Layer
	38.7.1 Understanding When Inheritance Can Be Useful
	38.7.2 How to Create Entity Objects in an Inheritance Hierarchy
	38.7.2.1 Start by Identifying the Discriminator Column and Distinct Values
	38.7.2.2 Identify the Subset of Attributes Relevant to Each Kind of Entity
	38.7.2.3 Creating the Base Entity Object in an Inheritance Hierarchy
	38.7.2.4 Creating a Subtype Entity Object in an Inheritance Hierarchy

	38.7.3 How to Add Methods to Entity Objects in an Inheritance Hierarchy
	38.7.3.1 Adding Methods Common to All Entity Objects in the Hierarchy
	38.7.3.2 Overriding Common Methods in a Subtype Entity
	38.7.3.3 Adding Methods Specific to a Subtype Entity

	38.7.4 What You May Need to Know About Using Inheritance
	38.7.4.1 Sometimes You Need to Introduce a New Base Entity
	38.7.4.2 Finding Subtype Entities by Primary Key
	38.7.4.3 You Can Create View Objects with Polymorphic Entity Usages

	38.8 Controlling Entity Posting Order to Avoid Constraint Violations
	38.8.1 Understanding the Default Post Processing Order
	38.8.2 How Compositions Change the Default Processing Ordering
	38.8.3 Overriding postChanges() to Control Post Order
	38.8.3.1 Observing the Post Ordering Problem First Hand
	38.8.3.2 Forcing the Supplier to Post Before the Product
	38.8.3.3 Understanding Associations Based on DBSequence-Valued Primary Keys
	38.8.3.4 Refreshing References to DBSequence-Assigned Foreign Keys

	38.9 Implementing Custom Validation Rules
	38.9.1 How to Create a Custom Validation Rule
	38.9.2 Adding a Design Time Bean Customizer for Your Rule
	38.9.3 Registering and Using a Custom Rule in JDeveloper

	38.10 Creating New History Types
	38.10.1 How to Create New History Types
	38.10.2 How to Remove a History Type

	39 Advanced View Object Techniques
	39.1 Advanced View Object Concepts and Features
	39.1.1 Limiting the View Object Max Fetch Size to Fetch the First n Rows
	39.1.2 Maintaining New Row Consistency in View Objects Based on the Same Entity
	39.1.2.1 What Happens at Runtime When View Link Consistency is Enabled
	39.1.2.2 How to Change the Default View Link Consistency Setting
	39.1.2.3 How to Use a RowMatch to Qualify Which New, Unposted Rows Get Added to a Row Set
	39.1.2.4 What You May Need to Know About the Dynamic WHERE Clause and View Link Consistency

	39.1.3 Understanding View Link Accessors Versus Data Model View Link Instances
	39.1.3.1 Enabling a Dynamic Detail Row Set with Active Master-Detail Coordination
	39.1.3.2 Accessing a Stable Detail Row Set Using View Link Accessor Attributes
	39.1.3.3 Accessor Attributes Create Distinct Row Sets Based on an Internal View Object

	39.1.4 Presenting and Scrolling Data a Page at a Time Using the Range
	39.1.5 Efficiently Scrolling Through Large Result Sets Using Range Paging
	39.1.5.1 Understanding How to Oracle Supports "TOP-N" Queries
	39.1.5.2 How to Enable Range Paging for a View Object
	39.1.5.3 What Happens When You Enable Range Paging
	39.1.5.4 What Happens When View Rows are Cached When Using Range Paging
	39.1.5.5 How to Scroll to a Given Page Number Using Range Paging
	39.1.5.6 Estimating the Number of Pages in the Row Set Using Range Paging
	39.1.5.7 Understanding the Tradeoffs of Using a Range Paging Mode

	39.1.6 Setting Up a Data Model with Multiple Masters
	39.1.7 Understanding When You Can Use Partial Keys with findByKey()
	39.1.8 Creating Dynamic Attributes to Store UI State
	39.1.9 Working with Multiple Row Sets and Row Set Iterators
	39.1.10 Optimizing View Link Accessor Access By Retaining the Row Set

	39.2 Tuning Your View Objects for Best Performance
	39.2.1 Use Bind Variables for Parameterized Queries
	39.2.1.1 Use Bind Variables to Avoid Re-parsing of Queries
	39.2.1.2 Use Bind Variables to Prevent SQL-Injection Attacks

	39.2.2 Consider Using Entity-Based View Objects for Read-Only Data
	39.2.3 Use SQL Tracing to Identify Ill-Performing Queries
	39.2.4 Consider the Appropriate Tuning Settings for Every View Object
	39.2.4.1 Set the Database Retrieval Options Appropriately
	39.2.4.2 Consider Whether Fetching One Row at a Time is Appropriate
	39.2.4.3 Specify a Query Optimizer Hint if Necessary

	39.2.5 Creating View Objects at Design Time
	39.2.6 Use Forward Only Mode to Avoid Caching View Rows

	39.3 Generating Custom Java Classes for a View Object
	39.3.1 How To Generate Custom Classes
	39.3.1.1 Generating Bind Variable Accessors
	39.3.1.2 Generating View Row Attribute Accessors
	39.3.1.3 Exposing View Row Accessors to Clients
	39.3.1.4 Configuring Default Java Generation Preferences

	39.3.2 What Happens When You Generate Custom Classes
	39.3.2.1 Seeing and Navigating to Custom Java Files

	39.3.3 What You May Need to Know About Custom Classes
	39.3.3.1 About the Framework Base Classes for a View Object
	39.3.3.2 You Can Safely Add Code to the Custom Component File
	39.3.3.3 Attribute Indexes and InvokeAccessor Generated Code

	39.4 Working Programmatically with Multiple Named View Criteria
	39.4.1 Applying One or More Named View Criteria
	39.4.2 Removing All Applied Named View Criteria
	39.4.3 Using the Named Criteria at Runtime

	39.5 Performing In-Memory Sorting and Filtering of Row Sets
	39.5.1 Understanding the View Object's SQL Mode
	39.5.2 Sorting View Object Rows In Memory
	39.5.2.1 Combining setSortBy and setQueryMode for In-Memory Sorting
	39.5.2.2 Extensibility Points for In-Memory Sorting

	39.5.3 Performing In-Memory Filtering with View Criteria
	39.5.4 Performing In-Memory Filtering with RowMatch
	39.5.4.1 Applying a RowMatch to a View Object
	39.5.4.2 Using RowMatch to Test an Individual Row
	39.5.4.3 How a RowMatch Affects Rows Fetched from the Database

	39.6 Using View Objects to Work with Multiple Row Types
	39.6.1 Working with Polymorphic Entity Usages
	39.6.2 How To Create a View Object with a Polymorphic Entity Usage
	39.6.3 What Happens When You Create a View Object with a Polymorphic Entity Usage
	39.6.4 What You May Need to Know About Entity Usages
	39.6.4.1 Your Query Must Limit Rows to Expected Entity Subtypes
	39.6.4.2 Exposing Selected Entity Methods in View Rows Using Delegation
	39.6.4.3 Creating New Rows With the Desired Entity Subtype

	39.6.5 Working with Polymorphic View Rows
	39.6.6 How to Create a View Object with Polymorphic View Rows
	39.6.7 What You May Need to Know About Polymorphic View Rows
	39.6.7.1 Selecting Subtype-Specific Attributes in Extended View Objects
	39.6.7.2 Delegating to Subtype-Specific Methods After Overriding the Entity Usage
	39.6.7.3 Working with Different View Row Interface Types in Client Code
	39.6.7.4 View Row Polymorphism and Polymorphic Entity Usage are Orthogonal

	39.7 Reading and Writing XML
	39.7.1 How to Produce XML for Queried Data
	39.7.2 What Happens When You Produce XML
	39.7.3 What You May Need to Know About Reading and Writing XML
	39.7.3.1 Controlling XML Element Names
	39.7.3.2 Controlling Element Suppression for Null-Valued Attributes
	39.7.3.3 Printing or Searching the Generated XML Using XPath
	39.7.3.4 Using the Attribute Map For Fine Control Over Generated XML
	39.7.3.5 Use the Attribute Map Approach with Bi-Directional View Links
	39.7.3.6 Transforming Generated XML Using an XSLT Stylesheet
	39.7.3.7 Generating XML for a Single Row

	39.7.4 How to Consume XML Documents to Apply Changes
	39.7.5 What Happens When You Consume XML Documents
	39.7.5.1 How ViewObject.readXML() Processes an XML Document
	39.7.5.2 Using readXML() to Processes XML for a Single Row

	39.8 Using Programmatic View Objects for Alternative Data Sources
	39.8.1 How to Create a Read-Only Programmatic View Object
	39.8.2 How to Create an Entity-Based Programmatic View Object
	39.8.3 Key Framework Methods to Override for Programmatic View Objects
	39.8.4 How to Create a View Object on a REF CURSOR
	39.8.4.1 The Overridden create() Method
	39.8.4.2 The Overridden executeQueryForCollection() Method
	39.8.4.3 The Overridden createRowFromResultSet() Method
	39.8.4.4 The Overridden hasNextForCollectionMethod()
	39.8.4.5 The Overridden releaseUserDataForCollection() Method
	39.8.4.6 The Overridden getQueryHitCount() Method

	39.9 Creating a View Object with Multiple Updatable Entities
	39.10 Programmatically Creating View Definitions and View Objects
	39.11 Declaratively Preventing Insert, Update, and Delete

	40 Application State Management
	40.1 Understanding Why State Management is Necessary
	40.1.1 Examples of Multi-Step Tasks
	40.1.2 Stateless HTTP Protocol Complicates Stateful Applications
	40.1.3 How Cookies Are Used to Track a User Session
	40.1.4 Performance and Reliability Impact of Using HttpSession

	40.2 Introduction to Fusion Web Application State Management
	40.2.1 Basic Architecture of the Save for Later Facility
	40.2.2 Basic Architecture of the Application Module State Management Facility
	40.2.2.1 Understanding When Passivation and Activation Occurs
	40.2.2.2 How Passivation Changes When Optional Failover Mode is Enabled
	40.2.2.3 About State Management Release Levels
	40.2.2.3.1 About Managed Release Level
	40.2.2.3.2 About Unmanaged Release Level
	40.2.2.3.3 About Reserved Release Level

	40.3 Using Save For Later
	40.4 Setting the Application Module Release Level at Runtime
	40.4.1 How to Set Unmanaged Level
	40.4.2 How to Set Reserved Level
	40.4.3 How to Set Managed Level
	40.4.4 How to Set Release Level in a JSF Backing Bean
	40.4.5 How to Set Release Level in an ADF PagePhaseListener
	40.4.6 How to Set Release Level in an ADF PageController
	40.4.7 How to Set Release Level in an Custom ADF PageLifecycle

	40.5 What Model State Is Saved and When It Is Cleaned Up
	40.5.1 State Information Saved During Passivation
	40.5.2 Where the Model State Is Saved
	40.5.2.1 How Database-Backed Passivation Works
	40.5.2.2 Controlling the Schema Where the State Management Table Resides
	40.5.2.3 Configuring the Type of Passivation Store

	40.5.3 Cleaning Up the Model State
	40.5.3.1 Previous Snapshot Removed When Next One Taken
	40.5.3.2 Passivation Snapshot Removed on Unmanaged Release
	40.5.3.3 Passivation Snapshot Retained in Failover Mode

	40.5.4 Cleaning Up Temporary Storage Tables

	40.6 Timing Out the HttpSession
	40.6.1 How to Configure the Implicit Timeout Due to User Inactivity
	40.6.2 How to Code an Explicit HttpSession Timeout

	40.7 Managing Custom User-Specific Information
	40.7.1 How to Passivate Custom User-Specific Information
	40.7.2 What Happens When You Passivate Custom Information
	40.7.3 What You May Need to Know About Activating Custom Information

	40.8 Managing the State of View Objects
	40.8.1 How to Manage the State of View Objects
	40.8.2 What You May Need to Know About Passivating View Objects
	40.8.3 How to Manage the State of Transient View Objects and Attributes
	40.8.4 What You May Need to Know About Passivating Transient View Objects
	40.8.5 How to Use Transient View Objects to Store Session-level Global Variables

	40.9 Using State Management for Middle-Tier Savepoints
	40.9.1 How to Use State Management for Savepoints

	40.10 Testing to Ensure Your Application Module is Activation-Safe
	40.10.1 Understanding the jbo.ampool.doampooling Configuration Parameter
	40.10.2 Disabling Application Module Pooling to Test Activation

	40.11 Keeping Pending Changes in the Middle Tier
	40.11.1 How to Set Applications to Use Optimistic Locking
	40.11.2 How to Avoid Clashes Using the postChanges() Method
	40.11.3 How to Use the Reserved Level For Pending Database States

	41 Tuning Application Module Pools and Connection Pools
	41.1 Introduction to Application Module Pooling
	41.1.1 Types of Pools Created When Running the Fusion Web Application
	41.1.1.1 Application Module Pools
	41.1.1.2 Database Connection Pools

	41.1.2 Understanding Application Module and Connection Pools
	41.1.2.1 Single Oracle WebLogic Server Domain, Single Oracle WebLogic Server Instance, Single JVM
	41.1.2.2 Multiple Oracle WebLogic Server Domains, Multiple Oracle WebLogic Server Instance, Multiple JVMs

	41.2 Setting Pool Configuration Parameters
	41.2.1 How to Set Configuration Properties Declaratively
	41.2.2 What Happens When You Set Configuration Properties Declaratively
	41.2.3 How to Set Configuration Properties as System Parameters
	41.2.4 How to Programmatically Set Configuration Properties
	41.2.5 What You May Need to Know About Configuration Property Scopes
	41.2.6 What You May Need to Know About How Database and Application Module Pools Cooperate
	41.2.7 What You May Need to Know About Application Module Pool Parameters
	41.2.7.1 Pool Behavior Parameters
	41.2.7.2 Pool Sizing Parameters
	41.2.7.3 Pool Cleanup Parameters

	41.2.8 What You May Need to Know About Data Source Configuration
	41.2.9 What You May Need to Know About Database Connection Pool Parameters

	41.3 Initializing Database State and Pooling Considerations
	41.3.1 How to Set Database State Per User
	41.3.2 What You May Need to Know About Database User State and jbo.doconnectionpooling = true

	42 Using the Active Data Service
	42.1 Introduction to the Active Data Service
	42.1.1 Limitations of the Active Data Service Framework
	42.1.2 Active Data Service Framework
	42.1.3 Data Transport Modes

	42.2 Configuring the Active Data Service
	42.2.1 How to Configure the Active Data Service
	42.2.2 What You May Need to Know About Transport Modes

	42.3 Configuring Components to Use the Active Data Service
	42.3.1 How to Configure Components to Use the Active Data Service Without the Active Data Proxy
	42.3.2 How to Configure Components to Use the Active Data Service with the Active Data Proxy
	42.3.3 What You May Need to Know About Displaying Active Data in ADF Trees
	42.3.4 What Happens at Runtime: How Components Render When Bound to Active Data
	42.3.5 What You May Need to Know About ADS and Google Chrome

	42.4 Using the Active Data Proxy
	42.4.1 What You May Need to Know About Read Consistency

	42.5 Using the Active Data with a Scalar Model

	Part VII Appendices
	A Oracle ADF XML Files
	A.1 Introduction to the ADF Metadata Files
	A.2 ADF File Overview Diagram
	A.2.1 Oracle ADF Data Control Files
	A.2.2 Oracle ADF Data Binding Files
	A.2.3 Web Configuration Files

	A.3 ADF File Syntax Diagram
	A.4 adfm.xml
	A.5 modelProjectName.jpx
	A.6 bc4j.xcfg
	A.7 DataBindings.cpx
	A.7.1 DataBindings.cpx Syntax
	A.7.2 DataBindings.cpx Sample

	A.8 pageNamePageDef.xml
	A.8.1 PageDef.xml Syntax

	A.9 adfc-config.xml
	A.10 task-flow-definition.xml
	A.11 adf-config.xml
	A.12 adf-settings.xml
	A.13 web.xml
	A.14 logging.xml

	B Oracle ADF Binding Properties
	C Oracle ADF Permission Grants
	D ADF Equivalents of Common Oracle Forms Triggers
	D.1 Validation and Defaulting (Business Logic)
	D.2 Query Processing
	D.3 Database Connection
	D.4 Transaction "Post" Processing (Record Cache)
	D.5 Error Handling

	E Most Commonly Used ADF Business Components Methods
	E.1 Most Commonly Used Methods in the Client Tier
	E.1.1 ApplicationModule Interface
	E.1.2 Transaction Interface
	E.1.3 ViewObject Interface
	E.1.4 RowSet Interface
	E.1.5 RowSetIterator Interface
	E.1.6 Row Interface
	E.1.7 StructureDef Interface
	E.1.8 AttributeDef Interface
	E.1.9 AttributeHints Interface

	E.2 Most Commonly Used Methods in the Business Service Tier
	E.2.1 Controlling Custom Java Files for Your Components
	E.2.2 ApplicationModuleImpl Class
	E.2.2.1 Methods You Typically Call on ApplicationModuleImpl
	E.2.2.2 Methods You Typically Write in Your Custom ApplicationModuleImpl Subclass
	E.2.2.3 Methods You Typically Override in Your Custom ApplicationModuleImpl Subclass

	E.2.3 DBTransactionImpl2 Class
	E.2.3.1 Methods You Typically Call on DBTransaction
	E.2.3.2 Methods You Typically Override in Your Custom DBTransactionImpl2 Subclass

	E.2.4 EntityImpl Class
	E.2.4.1 Methods You Typically Call on EntityImpl
	E.2.4.2 Methods You Typically Write in Your Custom EntityImpl Subclass
	E.2.4.3 Methods You Typically Override in Your Custom EntityImpl Subclass

	E.2.5 EntityDefImpl Class
	E.2.5.1 Methods You Typically Call on EntityDefImpl
	E.2.5.2 Methods You Typically Write in Your Custom EntityDefImpl Class
	E.2.5.3 Methods You Typically Override in Your Custom EntityDefImpl

	E.2.6 ViewObjectImpl Class
	E.2.6.1 Methods You Typically Call on ViewObjectImpl
	E.2.6.2 Methods You Typically Write in Your Custom ViewObjectImpl Subclass
	E.2.6.3 Methods You Typically Override in Your Custom ViewObjectImpl Subclass

	E.2.7 ViewRowImpl Class
	E.2.7.1 Methods You Typically Call on ViewRowImpl
	E.2.7.2 Methods You Typically Write in Your Custom ViewRowImpl Class
	E.2.7.3 Methods You Typically Override in Your Custom ViewRowImpl Subclass

	E.2.8 Setting Up Your Own Layer of Framework Base Classes

	F ADF Business Components Java EE Design Pattern Catalog
	G Performing Common Oracle Forms Tasks in Oracle ADF
	G.1 Performing Tasks Related to Data
	G.1.1 How to Retrieve Lookup Display Values for Foreign Keys
	G.1.2 How to Get the Sysdate from the Database
	G.1.3 How to Implement an Isolation Mode That Is Not Read Consistent
	G.1.4 How to Implement Calculated Fields
	G.1.5 How to Implement Mirrored Items
	G.1.6 How to Use Database Columns of Type CLOB or BLOB

	G.2 Performing Tasks Related to the User Interface
	G.2.1 How to Lay Out a Page
	G.2.2 How to Stack Canvases
	G.2.3 How to Implement a Master-Detail Screen
	G.2.4 How to Implement an Enter Query Screen
	G.2.5 How to Implement an Updatable Multi-Record Table
	G.2.6 How to Create a Popup List of Values
	G.2.7 How to Implement a Dropdown List as a List of Values
	G.2.8 How to Implement a Dropdown List with Values from Another Table
	G.2.9 How to Implement Immediate Locking
	G.2.10 How to Throw an Error When a Record Is Locked

	H Data Controls in Oracle ADF Fusion Web Applications
	H.1 Introduction to Data Controls
	H.2 Data Control Feature Implementation Comparison
	H.3 Data Control Objects

	Glossary

