
Oracle® Endeca Server

Developer's Guide

Version 2.3.0 • June 2012 • Revision A

Copyright and disclaimer
Copyright © 2003, 2012, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No
other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It
is not developed or intended for use in any inherently dangerous applications, including applications that may
create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software
or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content, products and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Rosette® Linguistics Platform Copyright © 2000-2011 Basis Technology Corp. All rights reserved.

Teragram Language Identification Software Copyright © 1997-2005 Teragram Corporation. All rights reserved.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Table of Contents

Copyright and disclaimer ..ii

Preface...xii
About this guide..xii
Who should use this guide ..xii
Conventions used in this guide ...xii
Contacting Oracle Customer Support ..xii

Part I: Overview and Concepts

Chapter 1: Oracle Endeca Server Interfaces ..2
The data flow ..2
Oracle Endeca Server overview ...3
Oracle Endeca Server Web services ...3
About the Oracle Endeca Server API Reference ...5
About the Java client examples ...5
Handling secure Web Service requests..6
The Dgraph configuration documents ...6

Chapter 2: Oracle Endeca Server Concepts...8
About the data model...8

Records ..8
Attributes ...9

Assignments on standard attributes ..9
Primary keys...9
Attribute types ..10

XML representation of records and attributes11
Examples of records and standard attributes.......................................11
Managed attributes ...13

System records ..14
Property Description Record (PDR) ...14
Dimension Description Record (DDR)..18
Global Configuration Record (GCR) ...19

Part II: Web Services for the Oracle Endeca Server

Chapter 3: About Web Service Versions...23
How version numbers are assigned ...23
Obtaining a version number for a web service..24
Using version numbers in requests..24
Backward-compatibility of web service versions ..25

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Resolving incompatibility of web services and client stubs26

Chapter 4: Using the Configuration Web Service27
About the Configuration Web Service ..27
Configuration Web Service operations ...28
Loading an attribute schema ..32
Loading configuration documents ...33
Using the Configuration Web Service in Integrator.......................................34

Chapter 5: Using the Conversation Web Service35
About the Conversation Web Service ..35
Conversation Web Service operations ...36
Examples of building query requests ..38
Example of an EQL request ...40

Chapter 6: Using the Entity Configuration Web Service................................42
About entities ...42
About the Entity Configuration Web Service ...45
Operations in the Entity Configuration Web Service......................................47
Examples of requests with the Entity Configuration Web Service48

Chapter 7: Using the Control Web Service...51
About the Control Web Service ..51
Operations in the Control Web Service ...52
Examples of Control Web Service requests ...54

Chapter 8: Using the Transaction Web Service.......................................59
About the Transaction Web Service ...59
Outer transactions and queries...60
Transaction Web Service operation description...61
Transaction Web Service operations ..62
Rolling back an outer transaction ...64
Notes about inner transactions...65
Treatment of requests from Oracle Endeca Server interfaces...............................65
Transaction Web Service and Integrator ..67

Part III: Working with Records and Record Filters

Chapter 9: Working with Records ..69
Displaying records and attribute values with Studio69
Displaying records and attribute values with the API69

Configuring a record list..69
Understanding a RecordList result ..71
Paging through a record list ...72
Retrieving large numbers of records...73
Displaying attribute values ..74

Performance impact of requesting large numbers of records75
Performance impact when displaying attribute values75

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Chapter 10: Sorting Records ..76
About record sorting ..76
Global sort order of records ...76
Query-time sort ordering ...77
Troubleshooting application sort problems ..78

Chapter 11: Record Filters ..79
About record filters ...79
Record filter syntax ...80
Record filter result caching..81
Requesting record filters with the API ..81
Filtering data and non-data records ...82
Record filter performance impact ...83

Interaction with spelling auto-correction and spelling DYM.............................83
Expression evaluation ...83

Chapter 12: Using Range Filters ...85
About range filters ..85
Supported attribute types...85
Implementing range filters in Studio ...86
Implementing range filters with the API...86

Operator for range filters ...86
Less-than range filter format ..87
Greater-than range filter format ..88
Between range filter format ...88
Geocode range filter format ...89
Removing range filter operators ..91
Rendering the range filter results ...91
Examples of range filter parameters ...91

Performance impact for range filters...92

Part IV: Working with Refinements, Breadcrumbs, and Groups

Chapter 13: Working with Refinements ...94
About refinements ..94
Displaying refinements in Studio..95
Configuring managed attributes for query refinement.....................................95
Configuring the global order of refinements..95
Configuring refinement counts ...96
About multi-select attributes...96

Configuring multi-select attributes...96
Handling multi-select attributes in an application97

About externally managed attributes...98
Working with refinements using the API ..99

Retrieving refinements with the API ...99
Refinements configuration format..100

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Retrieving managed attributes that have refinements............................103
Creating a new query from refinement attribute values104
Limiting the number of refinements to be displayed105
Retrieving the full path of hierarchical refinements..............................106

Retrieving the order of refinements with the API109
Using query-time control of refinement ordering109
Enabling the refinement order at query time110

Retrieving refinement counts with the API..110
Retrieving refinement counts for records.....................................110

About multi-select refinements ..111
Performance impact for displaying refinements ..111
Performance impact of refinement ordering...111
Performance impact of refinement counts..112

Chapter 14: Using Breadcrumbs ..113
About breadcrumbs ..113
Implementing breadcrumbs with the API...114

Retrieving breadcrumbs in a navigation query.....................................114
Retrieving breadcrumbs in a search query116
Example of breadcrumbs with spelling correction117
Example of breadcrumbs with DYM ..118

Chapter 15: Using Attribute Groups ...121
About attribute groups ..121
Configuring and using attribute groups in Studio121
Retrieving attribute group information with the API122

Retrieving groups ...122
Retrieving lists of groups ..124

Chapter 16: Using Precedence Rules ..127
About precedence rules...127
Managed attribute trigger types ...128
Configuring precedence rules...129
Precedence rules and implicit attribute value selection130

Part V: Using Search Features

Chapter 17: Using Record Search ...132
Record search overview ..132
Configuring attributes for record search ...133
Enabling hierarchical record search ..134

Adding search synonyms to attribute values134
Implementing record search in Studio...135
Implementing record search with the API ..135

Obtaining the available search keys ..135
Record search operator ...136

Search query processing order..137

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Step 1: Record filtering ...138
Step 2: Tokenization ...138
Step 3: Auto correction (spelling correction and automatic phrasing)138
Step 4: Thesaurus expansion...139
Step 5: Stemming ...139
Step 6: Primitive term and phrase lookup ..139
Step 7: Did You Mean ..140
Step 8: Navigation filtering ...140
Step 9: EQL ...140
Step 10: Relevance ranking ..140

Tips for troubleshooting record search ..140
Performance impact of record search ...141

Chapter 18: Working with Search Interfaces ..142
About search interfaces ...142
Implementing search interfaces ...142
Options for allowing cross-field matches ...143
Additional search interface options ...144
Tips for troubleshooting search interfaces..145

Chapter 19: Using Value Search ..146
About value search ..146
How value search works ..146
When to use value and record search...147
Enabling value search ..148
Utilizing value search in Studio..148
Implementing value search with the API ...148

Value search query format...148
Constructing a value search query ...150
Restricting value search to specific attributes151
Limiting the number of results per attribute151
Retrieving the number of matching results152
Ordering results...153
Specifying relevance ranking strategy for results...................................153

Interaction of value search and wildcard search153
Performance impact of value search..154

Chapter 20: Using Search Modes ...155
List of valid search modes ...155

All mode ..156
Partial mode ...156

Interaction of Partial mode and stop words156
AllPartial mode ...156
Any mode ...157
AllAny mode ...157
PartialMax mode ..157
Boolean mode..158

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Configuring search modes in Studio ..158
Configuring search modes in the API ...158

Chapter 21: Using Boolean Search ..159
About Boolean search ..159
Boolean query syntax ..160
Examples of using the key restrict operator...161
About proximity search ...162

Example of using NEAR for unordered matching...................................162
Example of using ONEAR for ordered matching162

Proximity operators and nested sub-expressions.......................................163
Boolean query semantics..163
Operator precedence...164
Interaction of Boolean search with other features164
Error messages for Boolean search ..165
Implementing Boolean search in Studio ...166
Implementing Boolean search with the API ...166
Troubleshooting Boolean search ..167
Performance impact of Boolean search ...167

Chapter 22: Using Phrase Search ...168
About phrase search ...168
About positional indexing ..169
How punctuation is handled in phrase search ...169
Examples of phrase search queries ..169
Performance impact of phrase search ..170

Chapter 23: Using Snippeting in Record Searches...................................171
About snippeting ..171
Snippet formatting and size ..172
Enabling snippeting ..172
Tuning tips for snippeting..173
Request examples for retrieving snippets ..174
Example request ..174
Example response ..174
Enabling snippets per query with the API ..175

Chapter 24: Using Wildcard Search ...176
About wildcard search ..176
Interaction of wildcard search with other features177
Ways to configure wildcard search ...177

Configuring wildcard search in record search177
Configuring wildcard search in value search178
Configuring wildcard search for a search interface..................................178

Dgraph flags for wildcard search ..179
Using wildcard search in Studio ...180
Performance impact of wildcard search ...180

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Chapter 25: Search Characters ...181
About search characters ..181
Implementing search characters...181
Query matching semantics...182

Categories of characters in indexed text ...182
Indexing alphanumeric characters ...182
Indexing search characters ..182
Indexing non-alphanumeric characters ..182

Search query processing ..183
Dgraph flags for search characters...184

Chapter 26: Working with Spelling Correction and Did You Mean185
About Spelling Correction and Did You Mean ...185
Enabling Spelling Correction and Did You Mean186
Logic used for spelling correction ..186

How value search treats number of results187
updateaspell ...187
Spelling mode (Aspell)..188
Retrieving spelling suggestions and DYM in query results188
Configuring constraints for spelling dictionaries ..189
About word-break analysis...190
Troubleshooting Spelling Correction and Did You Mean191
Performance impact for Spelling Correction and Did You Mean191

Chapter 27: Using Stemming and Thesaurus192
Overview of stemming and thesaurus...192
About the stemming feature ..192

Types of stemming matches and sort order.......................................193
About the thesaurus feature..194

Adding, modifying, or deleting thesaurus entries195
Troubleshooting the thesaurus ..195

Dgraph flags for stemming and thesaurus..196
Interactions with other search features ..196
Performance impact of stemming and thesaurus.......................................198

Chapter 28: Relevance Ranking...199
About the relevance ranking feature ..199
About relevance ranking modules..199

Exact ..200
Field...200
First ...201
Frequency...201
Glom ..202
Interpreted ..202
Maximum Field ...203
Number of Fields..203
Number of Terms ...203

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Phrase ...204
Configuring the Phrase module ...204

Phrase module options ..204
Summary of Phrase option interactions.................................205

Phrase module behavior ..207
Treatment of wildcards with the Phrase module207

Proximity..208
Spell...209
Static ..209
Stem...210
Thesaurus...210
Weighted Frequency ...210

Relevance ranking strategies ...210
Creating relevance ranking strategies...211

Implementing relevance ranking...211
Adding a Static module ...212
Ranking order for Field and Maximum Field modules212
How relevance ranking score ties between search interfaces are resolved212
Implementing relevance ranking for value search212
Specifying relevance ranking for record search and value search in query requests213

Relevance ranking sample scenarios ...214
Example 1: Using a small data set ...214
Example 2: UI reference implementation...215

Recommended strategies ...217
Recommended strategy for retail catalog data.....................................217
Recommended strategy for document repositories218

Performance impact of relevance ranking ..218

Part VI: References

Chapter 29: Dgraph Configuration Reference221
XML elements..221

COMMENT..221
DIMNAME...222
PROP..222
PROPNAME ...223
PVAL ..223

Dimsearch_config elements ..224
DIMSEARCH_CONFIG ...224

Recsearch_config elements ..225
RECSEARCH_CONFIG...225

Relrank_strategies elements ...226
RELRANK_APPROXPHRASE ..226
RELRANK_EXACT ..227
RELRANK_FIELD ...227
RELRANK_FIRST...228

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

RELRANK_FREQ ...228
RELRANK_GLOM...229
RELRANK_INTERP..229
RELRANK_MAXFIELD ...230
RELRANK_MODULE ..231
RELRANK_NTERMS...231
RELRANK_NUMFIELDS ..232
RELRANK_PHRASE...232
RELRANK_PROXIMITY ..233
RELRANK_SPELL ..234
RELRANK_STATIC..234
RELRANK_STRATEGIES ...235
RELRANK_STRATEGY...236
RELRANK_WFREQ ...238

Search_interface elements...239
MEMBER_NAME ...239
PARTIAL_MATCH...240
SEARCH_INTERFACE ...241

Stop_words elements ..242
STOP_WORD..242
STOP_WORDS...243

Thesaurus elements ...244
THESAURUS ..244
THESAURUS_ENTRY..245
THESAURUS_ENTRY_ONEWAY ...246
THESAURUS_FORM ..247
THESAURUS_FORM_FROM ..247
THESAURUS_FORM_TO ...248

Chapter 30: Suggested Stop Words ...249
About stop words ...249
List of suggested stop words ...249

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Preface
Oracle® Endeca Server is the core search-analytical database. It organizes complex and varied data from
disparate source systems into a faceted data model that is extremely flexible and reduces the need for up-
front data modeling. This highly-scalable server enables users to explore data in an unconstrained and
impromptu manner and to rapidly address new questions that inevitably follow every new insight.

About this guide
This guide describes the core features of the Oracle Endeca Server that you can access via applications built
with Studio, or with other front-end applications that can communicate with the Oracle Endeca Server.

Who should use this guide
This guide is intended for developers who are building applications based on Oracle Endeca Server.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace font. In
the case of long lines of code, or when inline monospace text occurs at the end of a line, the following symbol
is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the corresponding
line break are deleted and any remaining space is closed up.

Contacting Oracle Customer Support
Oracle Endeca Customer Support provides registered users with important information regarding Oracle
Endeca software, implementation questions, product and solution help, as well as overall news and updates.

You can contact Oracle Endeca Customer Support through Oracle's Support portal, My Oracle Support at
https://support.oracle.com.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

https://support.oracle.com

Part I

Overview and Concepts

Chapter 1

Oracle Endeca Server Interfaces

The Oracle Endeca Server is the backbone of all applications running on top of it. The set of server Web
services provide the interfaces to the Oracle Endeca Server. You use the Web Services through Integrator to
load the data, and through Studio components to query the Oracle Endeca Server and manipulate the query
results. You can also use these web services directly with the Oracle Endeca Server.

The data flow

Oracle Endeca Server overview

Oracle Endeca Server Web services

About the Oracle Endeca Server API Reference

About the Java client examples

Handling secure Web Service requests

The Dgraph configuration documents

The data flow
The Oracle Endeca Server communicates with the Web application using its Web services.

A typical solution that utilizes the Oracle Endeca Server consists of the following parts:

• The Oracle Endeca Server, which processes query requests. The Oracle Endeca Server Web services are
used for sending and receiving requests.

• A Web application in the form of a set of application modules, which receive client requests and pass
them to the Oracle Endeca Server.

The following diagram illustrates the data flow between these parts for a typical application that uses the
Oracle Endeca Server:

In this diagram, the following actions take place:

1. A client browser makes a request. The Web application server receives the request and passes it to the
Oracle Endeca Server, using its Web services.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Oracle Endeca Server Interfaces 3

2. The Oracle Endeca Server processes the query and returns its results.

3. The Web services retrieve and manipulate the query results and transfer them in XML format to the Web
application. The application performs formatting of the query results and returns them to the client
browser, via the Web application server.

Note: For security reasons, you should never allow Web browsers to connect directly to the Oracle
Endeca Server. Browsers should always connect to your application through an application server.

Oracle Endeca Server overview
The Oracle Endeca Server is the query engine that provides the foundation for all solutions that utilize it.

The Oracle Endeca Server uses proprietary data structures and algorithms that allow it to provide real-time
responses to client requests. The Oracle Endeca Server stores the data files that were created after your
source data is ingested. After the data files are stored, the Oracle Endeca Server receives client requests via
the application tier, queries the data files, and returns the results.

The Dgraph is the name of the process for the data store created in the Oracle Endeca Server. Because the
Dgraph is key to every implementation, its performance is critical. A typical implementation includes the Oracle
Endeca Server that is running one or more Dgraphs.

The Oracle Endeca Server is designed to be stateless. This design requires that a complete query be sent to
it for each request. The stateless design facilitates the addition of Oracle Endeca Servers for load balancing
and redundancy — any replica of an Oracle Endeca Server can reply to queries independently of other
replicas.

Consequently, configuring additional Dgraph processes as nodes in a cluster increases availability of request
processing. If a node in the cluster goes down, at least one of the Dgraphs running in the cluster continues to
reply to queries. In addition, total response time is improved by using load balancers to distribute queries
among the nodes in the cluster.

Oracle Endeca Server Web services
The Oracle Endeca Server is installed with a set of versioned Web services for loading, configuring, and
querying the data. These Web services provide the interface to the Oracle Endeca Server.

List of Web services available for the data store on the Oracle Endeca Server

Once you install the Oracle Endeca Server and create a data store in it, you can use the following Web
services to send requests:

• Data Ingest Web Service, ingest (Documented in the Oracle Endeca Server Data Loading Guide)

• Configuration Web Service, config (Documented in this guide)

• Conversation Web Service, conversation (Documented in this guide)

• Transaction Web Service, transaction (Documented in this guide)

• Administration Web Service, admin (Documented in the Oracle Endeca Server Administrator's Guide)

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Oracle Endeca Server Interfaces 4

In addition to these listed Web services, additional Web services are available with the Oracle Endeca Server:

• The LQL Parser Web Service, lql_parser — a web service for parsing Endeca Query Language
queries and filters. For more information on this web service, see the Oracle Endeca Server API
Reference and the Oracle Endeca Server Query Language Reference.

• The Entity Configuration Web Service, sconfig, used by Integrator and Studio to create and manage
views. For more information on this web service, in the Oracle Endeca Information Discovery Studio
User's Guide, see the section on creating views.

• The Control Web Service, control, used internally by the Oracle Endeca Server commands.

Note: Each web service is assigned its own version, consisting of major and minor version. The
supported versions are listed in its WSDL document. If you are planning to use web service calls
directly or use client-side code created with stubs generated from a web service, ensure that you use
a supported version of the web service. For detailed information on web service versions, see the
section in this guide.

In addition to these listed web services, the Bulk Load Interface is also included. It does not use web services
technology. Together with the Data Ingest Web Service, the Bulk Load Interface loads the records into the
Oracle Endeca Server. For more information on the Bulk Load Interface, see the Oracle Endeca Server API
Reference (if you are planning to use this interface directly), or the Oracle Endeca Information Discovery
Integrator Components Guide (if you are planning to use components in Integrator that utilize calls to the Bulk
Load Interface).

Flow for using the Web services

As you build your application, you use these Oracle Endeca Server Web services through various tools. The
usage pattern is as follows:

1. Use the Data Ingest Web Service and the Configuration Web Service to load data and configuration into
the data store created on the Oracle Endeca Server.

2. Use the Configuration Web Service to configure the record schema and Oracle Endeca Server features.

3. Use the Conversation Web Service and the Configuration Web Service to send requests and obtain
results from the Oracle Endeca Server for your data store. These results can subsequently be rendered in
the front-end application used by the end users.

4. Use the Administration Web Service to set up monitoring and backups.

How each Web service interacts with the Oracle Endeca Server

Each Web service can be described in the context of how it interacts with the Oracle Endeca Server:

Web service Function

Data Ingest Service The Data Ingest Web Service is used to load data into the Oracle Endeca
Server. It serves as the basis for various batch processes, and is designed for
easy integration with ETL tools.

Configuration Web The Configuration Web Service supports the process of refining the records
Service schema and adjusting your configuration in the development environment.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Oracle Endeca Server Interfaces 5

Web service Function

Conversation Web The Conversation Web Service is used to query the Oracle Endeca Server and
Service to provide summarizations.

Unlike the Data Ingest and Configuration Web Services, it is not used to update
the Oracle Endeca Server data files.

Administration Web The Administration Web Service is used by IT engineers and administrators to
Service integrate the Oracle Endeca Server and its reporting with third-party IT tools.

Transaction Web Service The Transaction Web Service controls outer transactions in the Oracle Endeca
Server.

About the Oracle Endeca Server API Reference
The Oracle Endeca Server API Reference is a collection of automatically generated reference documentation
for each of the Web services and the Bulk Load Interface that are packaged with the Oracle Endeca Server.

The Oracle Endeca Server API Reference is the documentation generated from the two types of files that
describe a Web service:

• A WSDL document

• An XML Schema definition (XSD)

In addition to the WSDL documentation for the packaged Web services, the Oracle Endeca Server API
Reference also includes the documentation for the Bulk Load Interface.

The Oracle Endeca Server API Reference is located in the doc directory of the Oracle Endeca Server
installation. It is complemented by the Oracle Endeca Server Developer's Guide (this guide) which discusses
how to use the Conversation Web Service, the Transaction Web Service, and the Configuration Web Service.

The Oracle Endeca Server Administrator's Guide discusses how to use the Administrator Web Service. The
Oracle Endeca Server Data Loading Guide discusses how to use the Data Ingest Web Service.

About the Java client examples
The Oracle Endeca Server includes a collection of Java client examples for sending queries to the Oracle
Endeca Server. Treat these examples as one of the possible ways to build your own front-end client code.

The examples are based on Java stubs generated with CXF version 2.4.2, however, you can use any other
utility for stub generation.

Even though these examples represent Java classes and methods, they do not represent the supported
interfaces. The Web services and the Bulk Load Interface represent the supported interfaces to the Oracle
Endeca Server. The Java client examples are not intended to be extensible to real tasks. Use the Java client
examples as demonstrations of how to interact with the generated code and how to create your own client
code in Java for sending queries to the Oracle Endeca Server.

Do not use the Java client examples as your reference for the supported interfaces. To learn about the
capabilities of each of the supported interfaces, use the Web services themselves, their corresponding WSDL
documents and the documentation generated from them, and the Bulk Load Interface. The automatically-

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Oracle Endeca Server Interfaces 6

generated documentation for these interfaces, collectively known as the Oracle Endeca Server API Reference,
is included in the installation of the Oracle Endeca Server. In addition, the Oracle Endeca Server
documentation provides information about the interface capabilities and describes how to use the Web service
interfaces.

The Java client examples are installed in the /apis/examples directory of the Oracle Endeca Server
package, and include the following top-level directories:

Directory Description

generated-sources Contains the result of generating stubs using a version of CXF wsdl2java.

src Contains sample code for accomplishing basic tasks using these stubs, such as
configuring a data store, adding individual records, and making basic queries.

In addition, the src/tests directory contains unit tests employing the simple
routines in src/main, as well as wrappers around those unit tests.

standalone_tests Includes a JAR file containing compiled versions of unit test wrappers,
supporting JAR files, and a Perl script for starting the Oracle Endeca Server and
running the tests.

Before running the Perl script, ensure that you have Perl and the Java JDK
packages installed on your machine and that your PATH environment variable
includes the path to the bin directories of both of these packages.

If you use the Perl script with no arguments, it issues a list of available options.

To run the Perl script, specify the name of the test to run.

By default, the script assumes that the script's directory is part of the installation,
and it will start the Oracle Endeca Server from its sibling path. Alternatively, the
script can check the environment variable ENDECA_SERVER for the location of
your Oracle Endeca Server installation.

Handling secure Web Service requests
Depending on the protocol in the web service request, the Oracle Endeca Server issues an http or https
response.

The front-end clients of the Oracle Endeca Server that do not wish this behavior may override it by adding
?https=true or ?https=false to their WSDL query strings, as in this example:

http://localhost:<port>/ws/config/DataStore?wsdl?https=true

Version 2.3.0 • June 2012 • Revision A

The Dgraph configuration documents
You can use the Configuration Web Service interface to load and modify configuration documents.

You can modify the following configuration documents:

• dimsearch_config

Oracle® Endeca Server: Developer's Guide

Oracle Endeca Server Interfaces 7

• recsearch_config

• relrank_strategies

• stop_words

• thesaurus

Various features of the Oracle Endeca Server use these documents. See this guide for more information.

Note: In addition to letting you modify configuration documents, the Configuration Web Service is also
used to modify the system records — Property Description Records, Dimension Description Records,
and the Global Configuration Record. For more information, see Using the Configuration Web Service
on page 27.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Chapter 2

Oracle Endeca Server Concepts

This chapter introduces basic concepts associated with the schema of records in the Oracle Endeca Server
and describes how data is structured and configured in the Oracle Endeca Server data model.

About the data model

System records

About the data model
The data model in the Oracle Endeca Server consists of records and attributes.

• Records are the fundamental units of data.

• Attributes are the fundamental units of the schema. For each attribute, a record may be assigned one or
more attribute values.

Records

Records are the fundamental units of data in the Oracle Endeca Server. Almost all information that is
consumed by the Oracle Endeca Server, including raw data and the data schema, is represented by records.

In the context of applications powered by the Oracle Endeca Server, the following types of records are
discussed:

Record type Description

Source records Source records represent the data that is input into the application powered by the Oracle
Endeca Server. Source records in a variety of formats are supported.

Data records In most applications, you are primarily concerned with data records. Data records are the
business records you want to explore using your application.

System records System records represent the records schema in the Oracle Endeca Server data files.
They are created in the Oracle Endeca Server using the schema from the primordial
records. You use these records for data modeling — changing these records controls the
behavior of your records schema and thus affects your data model.

Primordial Primordial records are created automatically and used internally by the Oracle Endeca
records Server. They represent the most basic infrastructure of the data model.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Oracle Endeca Server Concepts 9

Attributes

An attribute is the basic unit of a record schema. Assignments on attributes (also known as key value pairs)
describe records in the Oracle Endeca Server.

For a data record, an assignment on an attribute provides information about that record. For example, for a list
of book records, an assignment on the Author attribute contains the author of the book record.

Each attribute is identified by a unique name.

Each attribute on a data record is itself represented by a record that describes this attribute. Following the
book records example, there is a record that describes the Author attribute. A collection of these records that
describe attributes forms a schema for your records. This collection is known as system records. Each
attribute in a record in the schema controls an aspect of the attribute on a data record. For example, an
attribute on any data record can be searchable or not. This fact is described by an attribute in the schema
record.

The term attribute collectively refers to both standard attributes and managed attributes:

• Standard attributes are described by system records known as Property Description Records (PDRs).

• Managed attributes are described by Property Description Records (PDRs) and Dimension Description
Records (DDRs). Each managed attribute is described by one PDR and one DDR.

Assignments on standard attributes

Records are assigned standard attribute values. An assignment indicates that a record has a value for a
standard attribute.

A record typically has assignments for multiple standard attributes. For each assigned attribute, the record
may have one or more values. An assignment on a standard attribute is known as a key value pair (KVP).

Not all standard attributes will have an assignment for every record. For example, for a publisher that sells
both books and magazines, the "ISBN number" standard attribute would be assigned for book records, but not
assigned (empty) for most magazine records.

Standard attributes may be single-assign or multi-assign:

• A single-assign attribute is an attribute for which each record can only have one value. For example, for a
list of books, the ISBN number would be a single-assign attribute. Each book only has one ISBN number.

• A multi-assign attribute is an attribute for which a single record can have more than one value. For the
same list of books, because a single book may have multiple authors, the Author attribute would be a
multi-assign attribute.

By default, all standard attributes are single-assign. To make a standard attribute multi-assign, you must
update the attribute configuration.

Primary keys

In the Oracle Endeca Server data model, primary keys (also known as record specs) are used to uniquely
identify records.

In order for an attribute to be used as a primary key:

• The attribute must be unique

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Oracle Endeca Server Concepts 10

This means that no two records in a single Endeca data store may have the same value for a primary key
attribute. (Note that by default, a standard attribute is not unique. To make a standard attribute unique, you
must update the standard attribute configuration.)

In addition, each record must have an assignment from exactly one primary key, so that the Oracle Endeca
Server can uniquely identify it (in order to update it, for example).

Each set of records must have at least one primary key standard attribute, although this primary key attribute
could be different for different sets of records. This allows the Oracle Endeca Server to handle different record
types, each of which can have a meaningful identifying standard attribute. For example, a store that carries
multiple types of items might identify book records by a BookID primary key attribute, and apparel records by
an ApparelID attribute.

Attribute types

The attribute type identifies the type of data allowed for the standard attribute value (key value pair).

The Oracle Endeca Server supports the following standard attribute types:

Attribute type Description

mdex:string XML-valid character strings.

mdex:int A 32-bit signed integer. mdex:int values accepted by the Oracle Endeca
Server on all platforms can be up to the value of 2,147,483,647.

mdex:long A 64-bit signed integer. mdex:long values accepted by the Oracle Endeca
Server on all platforms can be up to the value of
9,223,372,036,854,775,807.

mdex:double A floating point value.

mdex:time Represents the hour and minutes of an instance of time, with the optional
specification of fractional seconds.

mdex:dateTime Represents the year, month, day, hour, minute, and seconds of a time point,
with the optional specification of fractional seconds. The dateTime value can
be specified as a universal (UTC) date time or as a local time plus a UTC
timezone offset.

mdex:duration Represents a duration of the days, hours, and minutes of an instance of
time.

mdex:boolean A Boolean. Valid Boolean values are true (or 1, which is a synonym for
true) and false (or 0, which is a synonym for false).

mdex:geocode A latitude and longitude pair. The latitude and longitude are both double-
precision floating-point values.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Oracle Endeca Server Concepts 11

XML representation of records and attributes

In XML, each record is represented as a collection of attribute value assignments (key value pairs).

In all of the Oracle Endeca Server web service interfaces, a record is represented in XML as a record
element. The record element contains attribute elements (these attributes should not be confused with the
term "attribute" used in the XML standard set of terms). Each attribute element contains the attribute values
for the specified attribute.

If a record does not have a value for an attribute, the attribute is not included for that record.

If a record has multiple values for an attribute, there is a separate attribute element for each value.

The following XML represents a single data record with three standard attributes (ProductID, BikeType,
and Color):

<Record>
<ProductID type="mdex:int">12345</ProductID>
<BikeType type="mdex:string">Road Bikes</BikeType>
<Color type="mdex:string">Red</Color>

</Record>

Version 2.3.0 • June 2012 • Revision A

Examples of records and standard attributes

The following examples of records demonstrate different configurations of standard attributes and their values
(key value pairs).

About these examples

In the examples, each row in the table represents a single record, in this case, a bicycle. The column
headings are standard attributes, and each cell contains a standard attribute value (key value pair).

Example 1: all records have a single assignment from each attribute

In this example:

• The ProductID attribute is the primary key, and is therefore both unique and single-assign. Each record
has exactly one assignment on the ProductID attribute, and the ProductID attribute value for a given
record is unique across the data set.

• The Name attribute is also unique and single-assign, to avoid duplicated product names across the data
set.

• No records have multiple assignments.

• Every record has an assignment for every attribute.

Name Bike Type ProductID Size Range Color Number Price
Sold

Road-450 Road Bikes 4038 42-46 CM Red 171 1457.99

Road-550-W Road Bikes 5213 38-40 CM Yellow 455 1000.48

Touring-1000 Touring Bikes 8765 54-58 CM Blue 117 2384.07

Oracle® Endeca Server: Developer's Guide

Oracle Endeca Server Concepts 12

Name Bike Type ProductID Size Range Color Number Price
Sold

Touring-3000 Touring Bikes 4035 48-52 CM Yellow 221 742.35

Mountain-300 Mountain 3421 38-40 CM Black 223 1079.99
Bikes

Mountain-500 Mountain 4821 38-40 CM Silver 176 564.99
Bikes

The XML representation of the Road-450 record may look similar to the following example:

<Record>
<Name type="mdex:string">Road-450</Name>
<ProductID type="mdex:int">4038</ProductID>
<BikeType type="mdex:string">Road Bikes</BikeType>
<SizeRange type="mdex:string">42-46 CM</SizeRange>
<Color type="mdex:string">Red</Color>
<NumSold type="mdex:int">171</NumSold>
<Price type="mdex:double">1457.99</Price>

</Record>

Version 2.3.0 • June 2012 • Revision A

Notice the primary key attribute, which in this case is the ProductID attribute. This primary key attribute is
used by the Oracle Endeca Server to uniquely identify this record. At the data loading stage, you decide which
of your standard attributes is going to be the primary key attribute.

Example 2: records with no assignments or multiple assignments on an attribute

This example uses the same data as the previous example, but adds a Review Score attribute. For the
Review Score attribute, some records have multiple assignments and some have no assignments.

For example, the Road-450 record has multiple review scores and the Touring-3000 record has no review
scores.

Name Bike Type ProductID Size Range Color Review Price
Score

Road-450 Road Bikes 4038 42-46 CM Red 35, 45, 60 1457.99

Road-550-W Road Bikes 5213 38-40 CM Yellow 80, 82 1000.48

Touring-3000 Touring Bikes 4035 48-52 CM Yellow 742.35

Mountain-500 Mountain 4821 38-40 CM Silver 76 564.99
Bikes

The XML representation of the Road-450 and Touring-3000 bikes may look similar to the following example:

<Record>
<Name type="mdex:string">Road-450</Name>
<ProductID type="mdex:int">4038</ProductID>
<BikeType type="mdex:string">Road Bikes</BikeType>
<SizeRange type="mdex:string">42-46 CM</SizeRange>

Oracle® Endeca Server: Developer's Guide

Oracle Endeca Server Concepts 13

<Color type="mdex:string">Red</Color>
<ReviewScore type="mdex:int">35</ReviewScore>
<ReviewScore type="mdex:int">45</ReviewScore>
<ReviewScore type="mdex:int">60</ReviewScore>
<Price type="mdex:double">1457.99</Price>

</Record>
<Record>
<Name type="mdex:string">Touring-3000</Name>
<ProductID type="mdex:int">4035</ProductID>
<BikeType type="mdex:string">Mountain Bikes</BikeType>
<SizeRange type="mdex:string">48-52 CM</SizeRange>
<Color type="mdex:string">Yellow</Color>
<Price type="mdex:double">742.35</Price>

</Record>

Version 2.3.0 • June 2012 • Revision A

The XML for the Road-450 record contains three ReviewScore elements, one for each score. Because the
Touring-3000 record does not have any review scores, it does not include a ReviewScore element.

Managed attributes

Managed attributes are similar to standard attributes in that they describe the records in your data set. Unlike
standard attributes, (which only provide a way to assign values on records in your data set), managed
attributes allow you to capture additional characteristics that may be present in your data. Once captured and
loaded into the Oracle Endeca Server data store, these characteristics become part of the Oracle Endeca
Server data files.

Managed attributes allow you, as a data architect, to capture the following characteristics of your records:

• A set of predefined allowed values. Some attributes on your data records may have a requirement to
have assignments only from a predefined set of allowed values. For example, an attribute currency may
have a predefined set of values (dollars and euros). A managed attribute allows you to define a set of
specific values that are allowed on a standard attribute.

• Hierarchy. Some attributes on your data records may benefit from being organized in a hierarchy. For
example, an attribute representing a ProductCategory type of Clothing may have different types of clothing
items underneath it, each represented by a standard attribute (such as Caps, Gloves, Jerseys, and so on).
A managed attribute allows you to define the hierarchy of standard attributes.

• Additional metadata on attribute values. Finally, your source data records may have attribute values
which could include additional metadata, such as text descriptions. Managed attributes allow you to
capture these additional metadata on attribute values.

Managed attributes are often used to support hierarchical navigation. In other words, associating a managed
attribute with a standard attribute enables hierarchical navigation of records based on the standard attribute
values. For example, you can navigate a collection of books using the Library of Congress Classification
standard attribute, and refine by Literature > American > 19th century. (Note that while managed attributes
can capture hierarchy of your attributes, they are not required to contain hierarchy information.)

When you create a managed attribute whose purpose is to represent a hierarchy, you load a taxonomy
definition that enumerates a hierarchy where each standard attribute value (in a key value pair for the
standard attribute) is a node in the hierarchy (called a managed attribute value, or mval).

Managed attributes are described by system records — PDRs and DDRs.

Oracle® Endeca Server: Developer's Guide

Oracle Endeca Server Concepts 14

System records
The Oracle Endeca Server data store uses system records to store configuration information.

You can configure the following system records:

• Property Description Records (PDRs), used to define the format and behavior of standard attributes and
managed attributes.

• Dimension Description Records (DDRs), used to define managed attributes and thus, among other
characteristics, enable the creation of hierarchical standard attribute values.

• The Global Configuration Record (GCR), used to control various aspects of the global configuration.

To avoid naming collisions with customer-created records and attributes, the keys for system records are
prefixed with specific namespaces, such as mdex-property.

Property Description Record (PDR)

A Property Description Record (PDR) is a system record that defines a record for a standard and managed
attribute in the Oracle Endeca Server data store.

About PDRs

The Oracle Endeca Server uses a PDR to store metadata about the standard attribute, and must have a PDR
created in order to build a schema for your data records. In addition, to create a managed attribute, both one
PDR and one DDR are required.

As records, PDRs themselves have required attributes, and can also have arbitrary, user-defined attributes.

For each standard attribute, the attributes in the associated PDR define the attribute's characteristics,
including:

• Name and type

• Display name

• Configuration parameters. For example, whether an attribute is searchable.

• Navigability settings. For example, whether to show record counts for available refinements, whether to
enable multi-select, and how to sort refinements.

Creating and updating PDRs

When the Oracle Endeca Server data store acquires a new record, it stores it and constructs a PDR for any
attributes that it finds in the record.

Updating a PDR immediately changes the navigation behavior of the Oracle Endeca Server. To create or
change a PDR, you can use the Data Ingest Web Service, or Integrator.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Oracle Endeca Server Concepts 15

Required schema attributes of a PDR

PDRs have the following required attributes:

Schema attribute Type Description

mdex-property_Key string The name of the standard attribute.

The key name must be an NCName.

The NCName format is defined in the
W3C document Namespaces in XML 1.0
(Second Edition), located at this URL:
http://www.w3.org/TR/REC-xml-
names/#NT-NCName

mdex-property_DisplayName string The name of the standard attribute in an
easy-to-understand format.

The display name can use a non-
NCName format.

mdex-property_Type string The data type of the standard attribute.

The possible values are mdex:string,
mdex:int, mdex:int64, mdex:double,
mdex:boolean, mdex:dateTime,
mdex:time, mdex:duration, and
mdex:geocode.

The default is mdex:string.

mdex-property_IsSingleAssign boolean If set to true, each record can have at
most one value for the standard attribute.

If set to false, each record may have
more than one value for the standard
attribute.

The default is false.

mdex-property_IsUnique boolean If set to true, then each record must
have a unique value for the standard
attribute.

If set to false, then multiple records can
have the same value.

The default is false.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

http://www.w3.org/TR/REC-xml-names/#NT-NCName
http://www.w3.org/TR/REC-xml-names/#NT-NCName

Oracle Endeca Server Concepts 16

Schema attribute Type Description

mdex-property_IsTextSearchable boolean If set to true, then the standard attribute
is enabled for text search.

If set to false, the standard attribute
does not support text search.

The default is false.

mdex- boolean If set to true, then wildcard search is
property_TextSearchAllowsWildcards enabled for this standard attribute.

If set to false, then wildcard search is
not enabled.

If this is set to true, then mdex-
property_IsTextSearchable must
be set to false.

The default is false.

mdex- boolean If set to true, the standard attribute is
property_IsPropertyValueSearchable enabled for value search.

If set to false, the attribute is not value-
searchable.

The default is true.

This schema attribute can be changed
only for the standard attributes of type
string.

This schema attribute does not apply for
managed attributes, for which value
search is always enabled and cannot be
disabled.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Oracle Endeca Server Concepts 17

Schema attribute Type Description

system-navigation_Select string Used to configure the multi-select feature
for a standard attribute. The allowed
values are:

• single. Users can select only one
refinement from this attribute.

• multi-and. Users can select
multiple refinements from the
attribute. The returned records must
have assignments from all of the
selected refinements (from A AND B).

• multi-or. Users can select multiple
refinements from this attribute. The
returned records must have
assignments from at least one of the
selected refinements (from A OR B).

The default is single.

system-navigation_Sorting string The order in which to display refinements
in the navigation menu. The allowed
values are:

• lexical sorts refinements
alphabetically or by number.

• record-count sorts refinements in
descending order, by the number of
records available for each refinement.

The default is lexical.

system-navigation_ShowRecordCounts boolean Whether to show record counts for a
refinement.

If set to true, the record counts are
shown.

If set to false, the record counts are not
shown.

The default is true.

system-property_GroupMembership string The groups to which the attribute belongs.

User-defined schema attributes of a PDR

You can use the arbitrary, user-defined schema attributes in a Property Description Record to display various
aspects of how your data records are organized.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Oracle Endeca Server Concepts 18

Dimension Description Record (DDR)

A Dimension Description Record (DDR), together with a PDR, defines a managed attribute.

About DDRs

The Dimension Description Record has the same name as the associated standard attribute. It is used to
enable the creation of hierarchical standard attribute values, to provide a list of predefined allowed values, and
also as a placeholder for metadata on the attribute values.

Required schema attributes of a DDR

A Dimension Description Record has the following required schema attributes:

Schema attributes Type Description

mdex-dimension_Key string The name of the managed
attribute.

mdex-dimension_EnableRefinements boolean If set to true, then
refinements are displayed.

If set to false, refinements
are not displayed. In other
words, the managed
attribute is hidden.

The default is true.

mdex- boolean If set to true, then during
dimension_IsDimensionSearchHierarchical value searches, the search

matches both the assigned
values and the ancestors of
those values.

If set to false, then the
search matches only the
assigned values.

The default is false.

mdex-dimension_IsRecordSearchHierarchical boolean If set to true, then during
record searches, the search
matches records with both
the assigned values and the
ancestors of those values.

If set to false, then the
search only matches
records with the assigned
values.

The default is false.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Oracle Endeca Server Concepts 19

Global Configuration Record (GCR)

The Global Configuration Record (GCR) is a single record used to identify and store global configuration
information.

Definition

The Global Configuration Record is created automatically in the Oracle Endeca Server, and can be modified if
needed. This information persists if you restart the Oracle Endeca Server data store.

The Global Configuration Record controls the following areas of the Oracle Endeca Server data store
configuration:

Area of global configuration What you can do...

Wildcard search enablement Specify whether wildcard search should be enabled or disabled for value
search in the Oracle Endeca Server. By default, it is disabled.

Search characters List which characters you want to identify as search characters to the
Oracle Endeca Server.

Merge policy Optionally, change the policy that the Oracle Endeca Server uses in the
background to merge its generations of data files.

The default policy – balanced – is recommended, and is optimized for
best performance.

Spelling correction settings Control which words are eligible for the spelling dictionary.

To do this, for each attribute assignment on a record and for each
managed attribute value, you specify the following parameters:

• Minimum word occurrence

• Minimum word length

• Maximum word length

Note: If you change the spelling settings in the Global
Configuration Record, you must run the
admin?op=updateaspell command in order for them to take
effect.

Modifying the settings in the Global Configuration Record

To change the Global Configuration Record settings, use the Data Ingest Web Service, or Integrator.

Required attributes of the GCR

The Global Configuration Record has required attributes, but it cannot have arbitrary, user-defined attributes.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Oracle Endeca Server Concepts 20

The required attributes are:

Attribute Type Description

mdex-config_Key String The only value for this attribute is
global.

This attribute is unique and
single-assign.

mdex-config_EnableValueSearchWildcard Boolean If set to true, then wildcard
search is enabled for value
search.

If set to false, then wildcard
search is disabled.

The default value is false.

mdex-config_MergePolicy String The allowed values are
balanced or aggressive.

The default is balanced.

mdex-config_SearchChars String The characters to use as search
characters in the Oracle Endeca
Server.

The allowed values are strings
that are listed sequentially and
are not separated by commas or
spaces.

Each string is a search character.

mdex-config_SystemRecordVersion String The version of the system
records in the Oracle Endeca
Server.

This attribute is used by the
Oracle Endeca Server and
should not be modified.

mdex-config_SpellingRecordMinWordOccur Int The minimum number of times a
word must occur in a standard
attribute value (record
assignment on a standard
attribute, in a key value pair) for it
to affect the configuration for
spelling correction.

The default value is 4.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Oracle Endeca Server Concepts 21

Attribute Type Description

mdex-config_SpellingRecordMinWordLength Int The minimum number of
characters that a word can
contain in a standard attribute
value for it to affect the
configuration for spelling
correction.

The default value is 3.

mdex-config_SpellingRecordMaxWordLength Int The maximum number of
characters that a word can
contain in a standard attribute
value for it to affect the spelling
correction.

The default value is 16.

mdex-config_SpellingDValMinWordOccur Int The minimum number of times a
word must occur in a managed
attribute value for it to affect the
spelling correction.

The default value is 1.

mdex-config_SpellingDValMinWordLength Int The minimum number of
characters that a word must
contain in a managed attribute
value for it to affect the spelling
correction.

The default value is 3.

mdex-config_SpellingDValMaxWordLength Int The maximum number of
characters that a word may
contain in a managed attribute
value for it to affect the spelling
correction.

The default value is 16.

Validating the GCR settings

During record updates, the Oracle Endeca Server validation process validates the configuration of the Global
Configuration Record, and returns errors if its requirements are not met.

The requirements are as follows:

• The mdex-config_Key attribute must be unique and single-assign. The value must be global.

• The Global Configuration Record must contain valid allowable values for all of its attributes. None of its
attributes can be omitted.

• The Global Configuration Record cannot have any arbitrary, user-defined attributes.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Part II

Web Services for the Oracle Endeca
Server

Chapter 3

About Web Service Versions

This chapter discusses versions used for the web service interfaces in the Oracle Endeca Server.

How version numbers are assigned

Obtaining a version number for a web service

Using version numbers in requests

Backward-compatibility of web service versions

Resolving incompatibility of web services and client stubs

How version numbers are assigned
Interface version numbers are assigned each time the particular interface is updated.

A version number for an interface consists of major and minor versions:

• Major version is used to track changes to the service that are not backward-compatible.

• Minor version is used to track backward-compatible changes to the service.

For example, if a version number for a web service is 1.0, its major version is 1, and its minor version is 0.

All interface changes result in a version number increase:

• Major version numbers are increased only when changes that are not backward-compatible are introduced
in the interface. These changes include removal of operations, elements, or attributes; addition of new
required attributes to existing operations; or cases when services are split or combined, or operations are
moved from one service to another.

Changes that are not backward-compatible are introduced with the following deprecation policy. When any
of the interface's artifacts change, new artifacts are added, but old ones are not removed in the new
version. Instead, old artifacts are deprecated and retained for a period of time.

The Oracle Endeca Information Discovery Installation Guide lists the following:

• Which service versions are shipped with the particular Oracle Endeca Server release.

• Which operations and/or services have been deprecated.

• The upgrade impact for each of the changes.

• Minor version numbers are increased when backward-compatible changes are introduced. Backward-
compatible changes include new operations that may be added, or new operations with new types.

Interface version numbers for each of the web service interfaces may differ and depend on the changes to that
interface.

Interface version numbers do not correspond to the version number of the product that is being released.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

About Web Service Versions 24

After upgrading to a new version of the product, it is recommended to check the version numbers of each of
the interfaces and ensure that your clients also have the corresponding versions.

Obtaining a version number for a web service
To request a version number for a web service interface, obtain the WSDL document for the web service from
a running data store in the Oracle Endeca Server. The WSDL document indicates the version of a web
service.

You can obtain a WSDL document for a specific web service once the Oracle Endeca Server is installed and
your data store is running on it.

Each web service has its own version. If a web service has more than one minor version, for example, 1.0 and
1.1, then the newer version is backward-compatible with the older version, and all these versions are listed in
the WSDL document.

To obtain the version number from a web service:

1. Issue a request to the Oracle Endeca Server for the WSDL document of the web service,
http://localhost:<port>/ws/<WebServiceName>/<DataStore>?wsdl, as in the following
example for the Configuration Web Service:

http://localhost:<port>/ws/config/DataStore?wsdl

Version 2.3.0 • June 2012 • Revision A

where the host and port represent the Oracle Endeca Server, config is the name of the
Configuration Web Service, and the DataStore is the name of the data store created on the server.

In the WSDL document, the major and minor versions are displayed in one of the required
namespaces, as follows:

xmlns:config-service-v1_0="http://www.endeca.com/MDEX/config/services/config/1/0"

In this example, 1 is the major version, and 0 is the minor version.

If there is more than one minor version, then all of them are supported and listed in the WSDL
document. The most recent version is backward-compatible with the other minor versions listed in the
WSDL document.

2. Repeat the process for any other web service whose version you need to verify, using the name of
any of the available web services: config, admin, transaction, conversation, diws (Data
Ingest available at /ws/ingest), control, lql-parser, sconfig.

Using version numbers in requests
Version numbers are specified in web service requests as a required namespace.

The following statements describe how versions of the web service interfaces affect interaction with them:

• When the client sends a version in its request, the server sends an API version in its response.

• The version of a client (such as a set of Java methods generated from contacting a service) must be
compatible with the version of the web service.

Oracle® Endeca Server: Developer's Guide

About Web Service Versions 25

If clients contact a service whose version is incompatible with the version in their stubs, they receive a SOAP
fault. Specifically, the following cases are possible:

• If version A is specified in the client stubs but version B is used in the web service, and version B is
backward-compatible with version A, the request is processed normally without any messages.

• If no version is specified in the client stubs but a version exists in the web service, this is interpreted as a
parsing error: Unable to parse version for <operation_name> in namespace
<namespace_name>.

• If version A is specified in the client stubs, but version B is used in the web service, and version B is not
backward-compatible with version A (that is, it represents a major version change), an error is issued
listing both versions, similar to the following example: Invalid version for <operation_name>.
Request version is 2010.8; supported version is 1.0.

Important: In all cases, to fix the client's incompatibility with the current web service version, generate
new client stubs and use them with the front-end application.

Examples of specifying the version numbers in requests

These examples illustrate how to specify the version number in requests to various web services. The
principle for specifying the version is the same, but the syntax differs slightly depending on the type of the web
service.

In this example, the request is sent to the Configuration Web Service, with specified values for major and
minor versions in the namespace (1.0):

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
config:configTransaction xmlns:config="http://www.endeca.com/MDEX/config/services/types/1/0"
xmlns:mdex="http://www.endeca.com/MDEX/config/XQuery/2009/09">
<soapenv:Header/>
<soapenv:Body>
...
</soapenv:Body>
</soapenv:Envelope>

Version 2.3.0 • June 2012 • Revision A

In this example, the request is sent to the Administration Web Service:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:admin="http://www.endeca.com/MDEX/admin/1/0">
<soapenv:Header/>
<soapenv:Body>
<admin:Request>
...
</admin:Request>
</soapenv:Body>
</soapenv:Envelope>

The response also contains version numbers.

Backward-compatibility of web service versions
Changes between minor versions are backward-compatible. Changes between major versions are not.

If a minor version change has occurred for an interface, you can continue using the previous minor version, if
this version is listed in the current WSDL document (this indicates the backward-compatibility of a particular
minor version).

Oracle® Endeca Server: Developer's Guide

About Web Service Versions 26

However, a good practice is to keep the versions used by clients updated to the latest versions of the web
services installed with the Oracle Endeca Server.

Resolving incompatibility of web services and client stubs
The client stubs generated from the web services must be installed in various other front-end applications that
communicate with the Oracle Endeca Server. When you upgrade the Oracle Endeca Server, to ensure
compatibility with the newer versions of the interfaces, regenerate the client stubs.

To resolve incompatibility of web service versions and client stubs:

1. Install new web service versions.
This is typically done as part of an upgrade to the Oracle Endeca Server package.

2. Query each interface for its version to check which interfaces have major number changes (these
changes are not backward-compatible).
Read the Migration Guide for the upgraded version of the Oracle Endeca Server to learn about
changes to the web service interfaces.

3. Regenerate the client stubs. If the major version had changed for any interface, you must regenerate
the client stubs. If only the minor version had changed, it is still recommended to regenerate the client
stubs, although you can continue to use your existing clients generated against the previous minor
versions.
When the stubs are compiled, the new version of the interface is read from the web service's WSDL.

Note: If you are upgrading from an interface without a version to an interface with a version,
the initial upgrade to the client stubs requires changing all import statements in your client
code, similar to the following example.

If the import statement in the client code using stubs generated from an unversioned web
service looked similar to this example:

import com.endeca.www.mdex.transaction._2011.startOuterTransactionDocument;

Version 2.3.0 • June 2012 • Revision A

change the import statement to indicate the versions:

import com.endeca.www.mdex.transaction._1._0.startOuterTransactionDocument;

The namespaces for each operation indicate which versions are supported for this operation.
In this case, the startOuterTransaction operation is supported as of version 1.0.

4. Start using the new stubs in your front-end application to send requests to the data store created in
the Oracle Endeca Server.

Oracle® Endeca Server: Developer's Guide

Chapter 4

Using the Configuration Web Service

This chapter describes the Configuration Web Service.

About the Configuration Web Service

Configuration Web Service operations

Loading an attribute schema

Loading configuration documents

Using the Configuration Web Service in Integrator

About the Configuration Web Service
The Configuration Web Service provides an interface that allows ergonomic interaction with both the Oracle
Endeca Server configuration and record schema.

Overview

The Configuration Web Service allows you to manipulate schema and configuration. The service is declared in
its WSDL document, which you can access at this URL:
http://localhost:<port>/ws/config/DataStore?wsdl, similar to other packaged Web services.
The host and port represent the Oracle Endeca Server, and the DataStore is the name of the data store
created on the server.

Operation description
A request to the Configuration Web Service consists of a configTransaction element, which contains a
series of operations that read the configuration and schema and also update it. Operations can be combined
arbitrarily in a single service request; each of the operations can appear at most once. The operations perform
actions on PDRs (Property Description Records), DDRs (Dimension Description Records), groups, the GCR
(Global Configuration Record), and on XML configuration documents.

The effect of a Configuration Web Service request that contains put operations is to add attributes, XML
configuration documents, or the Global Configuration Record to the Oracle Endeca Server data store:

• If a record with the specified key already exists in the data store, it is replaced.

• If a record does not exist, it is created.

Request

The input to the Configuration Web Service depends on the operation used. It can include attribute schema
records (PDRs and DDRs), Global Configuration Record, groups, and a set of XML configuration documents.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using the Configuration Web Service 28

Any request to the Configuration Web Service can contain an optional element OuterTransactionId that
specifies the ID of an outer transaction (if it has been started by the Transaction Web Service). The following
statements describe the interaction of configuration requests with outer transactions:

• If an outer transaction has been started by the Transaction Web Service, the configuration request may be
run against either the latest version of the data files inside the transaction, or against the pre-transaction
version of the data files:

• To run a configuration request against the latest version, the OuterTransactionId element in your
request must specify the ID issued by the Transaction Web Service when the transaction was started.
This element must be the first element specified in your request.

• To run against the published version (it could be the version published prior to the outer transaction,
or the version published after the outer transaction has been committed or rolled back), the
OuterTransactionId element must be empty or omitted.

It is incorrect to specify an outer transaction ID when an outer transaction is not in progress. All configuration
requests with incorrectly specified outer transaction IDs fail with a SOAP fault.

Response

Not all operations in the Configuration Web Service return data.

If the operation returns data, the response to the Configuration Web Service is a results element, within which
each of the submitted operations produces an element showing its own results.

If any operation does not succeed, the whole Web service transaction returns a SOAP fault and none of the
operations are applied. An operation may not succeed if an outer transaction has been started by a
Transaction Web Service, but an incorrect ID has been specified within a request sent to the Configuration
Web Service.

Configuration Web Service operations
This topic lists the operations available in the Configuration Web Service.

A request to the Configuration Web Service consists of a configTransaction element.

Operations for PDRs

The operations on PDRs are the following:

Operation Description

exportProperties Return all Property Description Records (PDRs) for the data
store.

listProperties Return the key of the PDRs for the standard attributes present in
the schema of the Oracle Endeca Server data store.

getProperties Return PDRs for the specified attribute keys. Attribute keys are
obtained from listProperties.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using the Configuration Web Service 29

Operation Description

putProperties Add the PDRs (specified as an argument) to the schema of the
Oracle Endeca Server data store. If an attribute with the same
key exists, it is replaced.

updateProperties Lets you add or modify specified assignments on the PDR.

As an argument, specify an attribute key associated with an
existing PDR and zero or more assignments.

The operation replaces the assignment on the PDR with a new
assignment if it is provided as an argument.

There is no requirement to specify the entire PDR to this
operation; there is a requirement to specify the standard attribute
key.

Operations for DDRs

The operations on DDRs are the following:

Operation Description

exportDimensions Return all Dimension Description Records.

listDimensions Return the key of each managed attribute present in the Oracle
Endeca Server data store.

getDimensions Return DDRs for specified managed attribute keys. Managed
attribute keys are obtained from listDimensions.

putDimensions Add the DDRs (specified as arguments) to the Oracle Endeca
Server data store. If a managed attribute with the same key
exists, it is replaced.

updateDimensions Lets you add or modify specified assignments on the DDR.

As an argument, specify a managed attribute key associated with
an existing DDR and zero or more assignments.

The operation replaces the assignment on the DDR with a new
assignment if it is provided as an argument.

There is no requirement to specify the entire DDR to this
operation; there is a requirement to specify the managed attribute
key.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using the Configuration Web Service 30

Operations for Attribute Groups

The operations on attribute groups are the following:

Operation Description

importGroups Remove any existing groups and add the specified ones.

exportGroups Return the full representation of each group.

listGroups Return a summary of each group.

getGroups Return the specified groups.

This operation returns groups in the order in which you specify the keys for
each group. This operation creates a summary of each existing group which
includes the group key, the display name (if it exists), and the cardinality of the
group.

This operation returns attributes for all user-specified groups and attributes that
do not belong to any user-specified groups. To request all attributes that do not
belong to any user-specified groups, specify the key system-
navigation_InternalGroup.

putGroups Add or replace each of the specified groups.

deleteGroups Delete each of the specified groups.

updateGroupConfigs Lets you add or modify specified assignments on the group description record.

As an argument, specify a system-group_Key indicating which group to
update, and zero or more assignments in the group description record.

The operation replaces the assignment on the group description record with a
new assignment if it is provided as an argument.

There is no requirement to specify the entire group description record to this
operation; there is a requirement to specify the system-group_Key
associated with the group.

For example, the group system-navigation_InternalGroup is a group
that contains all attributes that do not belong to any user-specified groups. This
group is created automatically and does not have a display name initially. To
provide a display name "Other attributes" for this group, send the following
request to the Configuration Web Service running on the particular data store:

<config-service:updateGroupConfigs>
<mdex:record>
<system-group_DisplayName>Other Attributes</system-group_DisplayName>
<system-group_Key>system-navigation_InternalGroup</system-group_Key>

</mdex:record>
</config-service:updateGroupConfigs>

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using the Configuration Web Service 31

Operations for Global Configuration Record

The operations for Global Configuration Record are the following:

Operation Description

getGlobalConfigRecord Obtain the Global Configuration Record from the data store
(created with the Oracle Endeca Server).

putGlobalConfigRecord Add the Global Configuration Record to the data store. If the
GCR already exists, it is replaced.

Operations for XML configuration documents

The operations for managing the XML configuration documents are the following:

Operation Description

listConfigDocuments Return the names of the Dgraph process configuration documents.

getConfigDocuments Return the requested Dgraph process configuration documents.

putConfigDocuments Add or replace each of the specified Dgraph process configuration
documents.

Operations for precedence rules

The operations for managing precedence rule records are the following:

Operation Description

listPrecedenceRules Return the names of the precedence rules configured for the
data store.

putPrecedenceRules Add or replace each of the specified precedence rules.

deletePrecedenceRules Take a list of precedence rule keys and completely delete each
rule.

Global operations

The Configuration Web Service has the following global operations:

Operation Description

export Export all attributes, groups, configuration documents, and the Global
Configuration Record.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using the Configuration Web Service 32

Operation Description

import Import all attributes, groups, configuration documents, and the Global
Configuration Record.

Loading an attribute schema
You can use the Configuration Web Service to load the schema for your standard and managed attributes.

If you load your attribute schema before loading your source records, you can modify the resulting PDRs and
DDRs as needed. After they have been configured as desired, you can then use the Data Ingest Web Service
to load your source records.

• The putProperties element loads the standard attributes schema.

• The putDimensions element loads the managed attributes schema.

To illustrate the use of this operation, this configTransaction simple example from the Configuration Web
Service will be used:

<config-service:configTransaction
xmlns:config="http://www.endeca.com/MDEX/config/services/types/1/0"
xmlns:mdex="http://www.endeca.com/MDEX/config/XQuery/2009/09">

<config-service:putDimensions>
<mdex:record>

<mdex-dimension_EnableRefinements>true</mdex-dimension_EnableRefinements>
<mdex-dimension_IsDimensionSearchHierarchical>true<

/mdex-dimension_IsDimensionSearchHierarchical>
<mdex-dimension_IsRecordSearchHierarchical>true</mdex-dimension_IsRecordSearchHierarchical>
<mdex-dimension_Key>BikeType</mdex-dimension_Key>

</mdex:record>
</config-service:putDimensions>
<config-service:putProperties>
<mdex:record>

<mdex-property_IsSingleAssign>true</mdex-property_IsSingleAssign>
<mdex-property_IsTextSearchable>false</mdex-property_IsTextSearchable>
<mdex-property_IsUnique>true</mdex-property_IsUnique>
<mdex-property_Key>ProductID</mdex-property_Key>
<mdex-property_TextSearchAllowsWildcards>false</mdex-property_TextSearchAllowsWildcards>
<mdex-property_IsPropertyValueSearchable>false</mdex-property_IsPropertyValueSearchable>
<mdex-property_Type>mdex:int</mdex-property_Type>
<mdex-property_DisplayName>Product ID</mdex-property_DisplayName>

</mdex:record>
<mdex:record>

<mdex-property_IsSingleAssign>true</mdex-property_IsSingleAssign>
<mdex-property_IsTextSearchable>true</mdex-property_IsTextSearchable>
<mdex-property_IsUnique>false</mdex-property_IsUnique>
<mdex-property_Key>BikeType</mdex-property_Key>
<mdex-property_TextSearchAllowsWildcards>true</mdex-property_TextSearchAllowsWildcards>
<mdex-property_IsPropertyValueSearchable>true</mdex-property_IsPropertyValueSearchable>
<mdex-property_Type>mdex:string</mdex-property_Type>
<mdex-property_DisplayName>Bike Type</mdex-property_DisplayName>

</mdex:record>
</config-service:putProperties>

</config-service:configTransaction>

Version 2.3.0 • June 2012 • Revision A

The example creates two standard attributes (ProductID and BikeType) and one managed attribute
(BikeType). The ProductID attribute is configured as a single-assign, unique attribute, so that it can be used as
a primary key for records. The BikeType attribute is the standard attribute record used for the creation of the
BikeType managed attribute.

Oracle® Endeca Server: Developer's Guide

Using the Configuration Web Service 33

To load an attribute schema into the data store of the Oracle Endeca Server:

1. Make sure that the Oracle Endeca Server and the data store are running. Access the Configuration
Web Service for the data store: http://localhost:<port>/ws/config/DataStore?wsdl.

2. Make a SOAP request to the Configuration Web Service as shown above.

If the request is successful, the response will look like this example:

soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header/>
<soapenv:Body>

<config-types:results
xmlns:config-types="http://www.endeca.com/MDEX/config/services/types/1/0">
<config-service:successPutDimensions/>
<config-service:successPutProperties/>

</config-types:results>
</soapenv:Body>

</soapenv:Envelope>

Version 2.3.0 • June 2012 • Revision A

Loading configuration documents
You can use the Configuration Web Service to load the XML configuration documents to the data store's
configuration.

If you load your configuration documents before loading your source records, you can modify them as needed.
After they have been configured as desired, you can then use the Data Ingest Web Service to load your
source records.

You can load the following configuration documents:

• dimsearch_config

• recsearch_config

• relrank_strategies

• stop_words

• thesaurus

For more information on the syntax of these documents, see the section Dgraph Configuration Reference on
page 221.

The operations for managing the XML configuration documents are the following:

Operation Description

listConfigDocuments Return the names of the Dgraph process configuration documents.

getConfigDocuments Return the requested Dgraph process configuration documents.

putConfigDocuments Add or replace each of the specified Dgraph process configuration
documents.

The following example illustrates the use of the putConfigDocuments operation to load the
RECSEARCH_CONFIG configuration document. This request creates three search interfaces. The
RECSEARCH_CONFIG document specifies the following search interfaces — Spanish, English and Essay:

Oracle® Endeca Server: Developer's Guide

Using the Configuration Web Service 34

</soap:Envelope>
</soap:Body>
</config:configTransaction>
<config:putConfigDocuments>

<mdex:configDocument name="recsearch_config">
<RECSEARCH_CONFIG>
<SEARCH_INTERFACE CROSS_FIELD_BOUNDARY="ALWAYS" NAME="All">
<MEMBER_NAME RELEVANCE_RANK="10">Spanish</MEMBER_NAME>
<MEMBER_NAME RELEVANCE_RANK="9">English</MEMBER_NAME>
<MEMBER_NAME RELEVANCE_RANK="1">Essay</MEMBER_NAME>

</SEARCH_INTERFACE>
</RECSEARCH_CONFIG>

</mdex:configDocument>
</config:putConfigDocuments>

</config:configTransaction>
</soap:Body>
</soap:Envelope>

Version 2.3.0 • June 2012 • Revision A

To load the XML configuration documents into the data store of the Oracle Endeca Server:

1. Make sure that the Oracle Endeca Server and the data store are running. Access the Configuration
Web Service for the data store: http://localhost:<port>/ws/config/DataStore?wsdl.

2. Make a SOAP request to the Configuration Web Service as shown above.

If the request is successful, the response will look like this example:

soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header/>
<soapenv:Body>

<config-types:results xmlns:config-types="http://www.endeca.com/MDEX/config/services/types/1
/0">

<config-service:successPutConfigDocuments/>
</config-types:results>

</soapenv:Body>
</soapenv:Envelope>

Using the Configuration Web Service in Integrator
The Configuration Web Service lets you perform operations with the schema and configuration documents. All
of these operations are supported in Integrator, which uses the Configuration Web Service requests.

You can load record-based configuration files using either one of its connectors, or the WebServiceClient
component. For example, you can use a dedicated component of Integrator to load schema records, or
records representing precedence rules. You can also use the WebServiceClient component of Integrator to
load the Global Configuration Record and configuration documents.

For more information on Integrator, see the Oracle Endeca Information Discovery Integrator Components
Guide.

Oracle® Endeca Server: Developer's Guide

Chapter 5

Using the Conversation Web Service

This chapter describes the role and operations of the Conversation Web Service in the Oracle Endeca Server
and shows how to build basic queries with it.

About the Conversation Web Service

Conversation Web Service operations

Examples of building query requests

Example of an EQL request

About the Conversation Web Service
The Conversation Web Service provides the primary means of querying data in the Oracle Endeca Server.
This web service interface can be used by any front-end application powered by the Oracle Endeca Server.
The interface is used by Studio to send queries (such as navigation or search queries) to the Oracle Endeca
Server. You can also use it on its own.

Overview

The service is a WS-I compliant SOAP/HTTP Web service that also supports the wrapped-document/literal
pattern of binding.

The Conversation Web Service is declared in conversation.wsdl. The service uses several library helper
modules.

To view the WSDL document for the Conversation Web Service, issue the following command:

http://localhost:<port>/ws/conversation/DataStore?wsdl

Version 2.3.0 • June 2012 • Revision A

where the host and port represent the Oracle Endeca Server, and the DataStore is the name of the data
store created on the server.

The service's version is listed in one of its namespaces included in the WSDL, as shown in the following
example (the version in this example may not match the version of the service you have installed):

xmlns:cs_v1_0="http://www.endeca.com/MDEX/conversation/1/0"

In this example, 1 is the major version; 0 is the minor version. If more than one minor version is supported, it
is listed in its own namespace in the WSDL.

The service supports fundamental Oracle Endeca Server behavior, such as:

• Guided navigation

• Record and value searches

• Communication between the front-end application client and the Oracle Endeca Server

Oracle® Endeca Server: Developer's Guide

Using the Conversation Web Service 36

• A range of summarizations

For reference information on the Conversation Web Service operations and for schema elements, see the
Oracle Endeca Server API Reference.

Conversation Web Service operations
The Conversation Web Service interface provides an operation that queries the Oracle Endeca Server.

This topic provides an overview of the operations in the Conversation Web Service.

Operation description

At a high level, the Conversation Web Service facilitates a dialog with users about data. It manages the filter
state, content element configurations, and operators:

• The filter state reflects the currently selected records and the selections that were used to reach them.

• Content element configurations provide information about the currently selected records.

• The operators represent requests to change the filter state or reconfigure content elements, typically as a
result of user actions. Operators can be specified for refinements, record and range filters, breadcrumbs,
and other aspects of the front-end application available for navigation.

The sequence of actions in the Conversation Web Service "dialog" is as follows:

1. A user issues a query using the front-end application.

In the Conversation Web Service, the request is reflected in the Request complex type (in the WSDL, all
complex types are listed asComplexType).

This query is used to construct an initial filter state (typically, empty, or containing a simple record filter),
and a number of content element configurations. These filter state and content element configurations are
sent in a Conversation Web Service request.

2. The response to this initial request returns the filter state in a State element, describing the records
selected, and the resulting content elements.

The content elements contain a number of operators, represented by the various types of operators
available through the Operator complex type, each describing a user action that might occur from this
state. For instance, a record list content element contains operators to re-sort the records, or to view
different pages; a navigation menu content element contains an operator for each refinement.

Operators describe how a request to the Oracle Endeca Server differs from the previous request.
Typically, a Request is constructed from the Results returned by the previous invocation of the
Conversation Web Service request.

3. When the user chooses a particular action, the front-end application submits a new request through the
Conversation Web Service, passing in the filter State returned by the previous response and passing in
the operators corresponding to the user actions.

The requester may also attach arbitrary XML to the request via the PassThrough element, to be returned
unchanged in the response.

4. The response returns a transformed query along with new filter State and new content element contents
(response data).

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using the Conversation Web Service 37

To summarize, the "conversation" underlying this web service consists of the following stages: The
Conversation Web Service offers a list of content elements and a number of operators, the front-end
application selects some operators, and the Conversation Web Service offers new content elements and new
operators.

Request
The Request operation looks like the following:

<operation name="Request">
<input name="request" message="cs:Request"/>

<output name="response" message="cs:Results"/>
<fault name="fault" message="cs:Fault"/>

</operation>

Version 2.3.0 • June 2012 • Revision A

The Request operation takes a Request complex type as its input. The schema for the Request complex type
is:

<complexType name="Request">
<sequence>
<element name="OuterTransactionId" minOccurs="0" type="cs_v1_0:NonEmptyString"/>
<element name="State" type="cs_v1_0:State"/>
<element name="Operator" type="cs_v1_0:Operator" minOccurs="0" maxOccurs="unbounded"/>
<element name="ContentElementConfig" type="cs_v1_0:ContentElementConfig"
minOccurs="0" maxOccurs="unbounded"/>
<element name="PassThrough" type="cs_v1_0:CatchAll" minOccurs="0"/>
</sequence>

</complexType>

A request consists of a filter state, and a list of content element configurations and operators to compute. Each
request specifies:

Element Description

OuterTransactionId Has to be the first element in the request, and is
optional. It must be specified only if the request runs
within an outer transaction.

State Contains inputs that affect the set of records to operate
on. A filter state may contain, for example, selected
refinements, search terms, and record filters.

Operator Transform the filter state and configuration. Each
request may contain a sequence of operators.

ContentElementConfig Represents a message to the Oracle Endeca Server,
asking it to provide certain information relative to a
certain filter state.

For example, these elements can describe a
summarization of a filter state or the data therein, such
as a set of breadcrumbs, a navigation menu, or the
data for a grid or chart.

PassThrough A placeholder element for adding arbitrary XML to the
request; it is returned unchanged in the response.

Oracle® Endeca Server: Developer's Guide

Using the Conversation Web Service 38

Response
The Request operation outputs a Results response. The response contains the Request element that
generated it, as well as any components that were requested. Each component is returned only if its
corresponding configuration was supplied in the request.

In other words, a response from the Conversation Web Service contains operators for refinements,
breadcrumbs, and other aspects of the front-end application available for navigation.

The schema for the Results complex type response is:

<complexType name="Results">
<sequence>
<element name="Request" type="cs_v1_0:Request"/>
<element name="ContentElement" type="cs_v1_0:ContentElement"
minOccurs="0" maxOccurs="unbounded"/>
<element name="PassThrough" type="cs_v1_0:CatchAll" minOccurs="0"/>

</sequence>
</complexType>

Version 2.3.0 • June 2012 • Revision A

Error example
On failure, the SOAP fault is thrown. Its faultstring element contains information about the request that
caused the error, and the detail element includes pointers to the location of errors in the request.

Examples of building query requests
Each request to the Conversation Web Service consists of a filter state and a list of content element
configurations and operators to compute. This topic provides examples showing the contents of a typical
request.

Example with operator

The following request is used for a record search query. It specifies the search interface that must be used,
and also the search terms entered by the user in the front-end application. It utilizes the Operator element.
This element is the base type for various types of operators, such as
AppplySpellingSuggestionOperator, RecordFilterOperator, RangeFilterOperator, and
RefinementOperator.

In this specific example, state and content element configuration are not shown and only the operator is
shown. The Operator is used with SearchOperator type, which adds a text search component to the filter
state.

The SearchOperator specifies the options for the SearchFilter element, which are Key (representing
the name of the search interface to use), and the text value of this element (representing the actual user-
entered search terms):

<Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="SearchOperator" Within="false">
<SearchFilter Mode="AllPartial" RelevanceRankingStrategy="numfields"

Key="Description">spice flavors</SearchFilter>
</Operator>

In general, for the SearchFilter type of Operator, you can specify various aspects of your request
configuration, such as the name of the configured search interface, the search mode, the relevance ranking
strategy, whether to enable snippeting, and the snippet length.

Oracle® Endeca Server: Developer's Guide

Using the Conversation Web Service 39

Similarly, for other types of Operator, you can specify options of their own. For instance, for the
RangeFilterOperator, you can specify the range filter type and the lower and upper bound ranges.

To remove an operator from the filter state, you can use PopName_of_operatorOperator, where
Name_of_operator is the name of the operator that you want to remove, such as RangeFilter,
RecordFilter, or Search.

For more information on value search, search modes, and relevance ranking, see the dedicated sections in
this guide. For more information on the detailed syntax of various types of operators, see the Oracle Endeca
Server API Reference for the Conversation Web Service.

Example with state, operator and content element

The following example is used to request breadcrumbs in a search query that also returns spelling correction
information. Such a request needs to include all three parts — state, operator, and content element
configuration:

1. The initial state that must be passed to the Oracle Endeca Server (it is empty in this example).

2. The Operator of type SearchOperator, which uses SearchFilter to specify the actual user-entered
search term that requires spelling correction and the search mode.

3. The content element configuration, represented by ContentElementConfig. In this example, it contains
a configuration requesting breadcrumbs (via BreadCrumbConfig) and a configuration requesting spelling
correction (via SearchAdjustmentConfig).

In general, the ContentElementConfig complex type can contain many subtypes, such as
AttributeGroupListConfig, BreadCrumbConfig (as in the example below), LQLConfig,
RecordListConfig, PropertyListConfig, or ValueSearchConfig. Each of these subtypes
specifies a particular configuration, such as whether to return breadcrumbs, how to return lists of records
or attributes, or which options to use when searching for attribute values.

To return to the example, it contains state, operator, and content element configuration, as follows:

<Request xmlns="http://www.endeca.com/MDEX/conversation/1/0">
<State/>
<Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="SearchOperator" Within="false">
<SearchFilter Mode="All" Key="English">
fife

</SearchFilter>
</Operator>

<ContentElementConfig
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="BreadcrumbConfig" ReturnFullPath="true"
HandlerFunction="BreadcrumbHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
Id="Breadcrumbs"/>
<ContentElementConfig
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="SearchAdjustmentConfig"
HandlerFunction="SearchAdjustmentHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
Id="SearchAdjustments"/>
<PassThrough>...</PassThrough>

</Request>

Version 2.3.0 • June 2012 • Revision A

For more information on requesting breadcrumbs, see the section in this guide.

Oracle® Endeca Server: Developer's Guide

Using the Conversation Web Service 40

Example of an EQL request
A request made with the Conversation Web Service can include statements in the Endeca Query Language
(EQL). To make EQL requests, add EQL statements with the LQLConfig type.

Consider the following EQL statement:

RETURN statement AS SELECT SUM(FactSales_SalesAmount)
WHERE (DimDate_FiscalYear=2008) AS Sales2008,
SUM(FactSales_SalesAmount)
WHERE (DimDate_FiscalYear=2007) AS Sales2007,
((Sales2008-Sales2007)/Sales2007 * 100) AS pctChange,
countDistinct(FactSales_SalesOrderNumber)
AS TransactionCount group

Version 2.3.0 • June 2012 • Revision A

To send it to the Oracle Endeca Server, use the LQLConfig type of ContentElementConfig, including the
statement inside the LQLQueryString element, as in this example:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:typ="http://www.endeca.com/MDEX/lql_parser/types">
<soapenv:Header/>
<soapenv:Body>
<ns:Request>
<ns:State/>
<ns:ContentElementConfig Id="LQLConfig" xsi:type="ns:LQLConfig"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
HandlerFunction="LQLHandler"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<ns:LQLQueryString>
RETURN statement AS SELECT SUM(FactSales_SalesAmount)
WHERE (DimDate_FiscalYear=2008) AS Sales2008,
SUM(FactSales_SalesAmount) WHERE (DimDate_FiscalYear=2007) AS Sales2007,
((Sales2008-Sales2007)/Sales2007 * 100) AS pctChange,
countDistinct(FactSales_SalesOrderNumber)
AS TransactionCount
group

</ns:LQLQueryString>
</ns:ContentElementConfig>
</ns:Request>

</soapenv:Body>
</soapenv:Envelope>

The contents of the LQLQueryString in LQLConfig must be a valid EQL statement. For detailed information
on EQL syntax, see the Oracle Endeca Server Query Language Reference.

The HandlerFunction that supports processing of the LQLConfig is LQLHandler.

Note: This example shows only one of the ways for using EQL statements in Conversation Web
Service requests. Typically, requests also include State and Operators that define the navigation state.
In your EQL statement, you can select from this navigation state using the From clause.

The following abbreviated response returned from the Conversation Web Service contains the calculated
results of the EQL statements:

<cs:ContentElement xsi:type="cs:LQL" Id="LQLConfig"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<cs:ResultRecords NumRecords="1" Name="statement">
<cs:DimensionHierarchy/>
<cs:AttributeMetadata name="Sales2007" type="mdex:double"/>
<cs:AttributeMetadata name="Sales2008" type="mdex:double"/>
<cs:AttributeMetadata name="TransactionCount" type="mdex:long"/>
<cs:AttributeMetadata name="pctChange" type="mdex:double"/>

Oracle® Endeca Server: Developer's Guide

Using the Conversation Web Service 41

<cs:Record>
<Sales2007 type="mdex:double">2.79216705182E7</Sales2007>
<Sales2008 type="mdex:double">3.62404846965997E7</Sales2008>
<TransactionCount type="mdex:long">3796</TransactionCount>
<pctChange type="mdex:double">29.793397114178</pctChange>

</cs:Record>
</cs:ResultRecords>

</cs:ContentElement>

Version 2.3.0 • June 2012 • Revision AOracle® Endeca Server: Developer's Guide

Chapter 6

Using the Entity Configuration Web Service

This chapter describes the role and operations of the Entity Configuration Web Service in the Oracle Endeca
Server. It also contains examples of web service requests for managing entities.

About entities

About the Entity Configuration Web Service

Operations in the Entity Configuration Web Service

Examples of requests with the Entity Configuration Web Service

About entities
Entities provide you with intuitive, conceptual views of various categories in your data. They reflect the
relational complexity between categories of data that is present in the Oracle Endeca Server's flat data model,
but that is not immediately visible.

An entity (or view, in Studio) represents a logical set of records that are derived from the physical records by
aliasing, filtering, and grouping. An entity has its own metadata, which include names, types, and display
names of the attributes, and the names and definitions of metrics.

Note: In Studio, entities are known as views. The Entity Configuration Web Service interface is used
by Studio to create and manage views. For information on creating and managing views in Studio, see
the Oracle Endeca Information Discovery Studio User's Guide.

When you create entities on top of various data categories, you map business concepts to complex data
structures, based on how you would like to analyze data. Entities re-establish the relationship between
categories of data once all data is loaded into the Oracle Endeca Server.

You define entities by specifying metadata on them, such as their metrics. This allows you, as the data
architect, to inform the business analyst about the relationship between different categories in your data, and
to suggest metrics that can be requested on the entities. For example, metrics can provide information on
which entities are useful to be grouped by, or to be aggregated upon.

Once you create entities, they serve as (aggregated) logical views of your data, allowing business analysts to
run analytic queries on them.

You create entities using the putEntity or putEntities operations of the Entity Configuration Web
Service. You can only create entities if the underlying attributes are already defined in your schema and exist
in your data store.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using the Entity Configuration Web Service 43

The semanticEntity complex type of the Entity Configuration Web Service defines an entity and all its
attributes. The semanticEntity type includes the following elements and attributes:

Name of Description
element or
attribute

key Required attribute. A unique identifier for the entity, which you provide when creating an
entity. For example, you may create an entity with the key Sales. The key must be
based on the NCName format.

displayName Optional attribute. Defines the display name which may be used by the front-end
application such as Studio. The display name can use a non-NCName format.

definition Required element. An EQL statement defining the entity. This EQL statement must create
(or filter out) a virtual collection of records, based on the EQL expressions included in it.

The EQL definition of an entity consists of one or more DEFINE statements separated by
semicolons. The name of any of the DEFINE statements should match the name of the
entity.

For example:

<definition>DEFINE Sales AS SELECT FactSales_SalesAmount AS SalesAmount,
DimReseller_ProductLine AS ProductLine, DimSalesTerritory_SalesTerritoryCountry
AS SalesTerritoryCountry, DimDate_FiscalYear AS FiscalYear,
FactSales_SalesOrderNumber AS SaleOrderNumber
</definition>

description Optional attribute. Describes an entity.

attributes Optional element. Represents a list of attributes in an entity. The attributes element
may contain one or more semanticAttribute elements. Each attribute in an entity
must correspond to an attribute specified in the EQL statement included in definition.

For each semanticAttribute element, specify the following attributes:

• name specifies a unique identifier for the attribute. The identifier must follow the
NCName format.

• datatype specifies a valid data type, such as mdex:string. Valid types are listed
in the mdex.xsd.

• displayName is the name of the entity attribute in an easy-to-understand format.
The display name can use a non-NCName format.

• The isDimension attribute should be set to true on attributes on which it is useful
to do a GROUP BY. For example, attributes such as Size, Region, or Category
should have isDimension="true", indicating that they are managed attributes
containing hierarchy, and are candidates for GROUP BY statements in EQL.

This abbreviated example shows one of the several attributes based on which a Sales
entity is created:

<attributes><semanticAttribute name="SalesAmount" displayName
="Sales Amount" datatype="mdex:double" isDimension="false"/>
...</attributes>

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using the Entity Configuration Web Service 44

Name of Description
element or
attribute

metrics
Optional element. Provides a list of one or more suggested metric elements. You create
each metric by giving it a name and defining its EQL statement in the definition
element. The definition element must contain an arithmetic formula in EQL used for
aggregation when querying against the entity's attributes.

Each metric must contain at least one aggregation function, such as SUM(X), or AVG(Y),
where X and Y are attributes defined for the entity.

For example, an entity may include the attribute SalesAmount, and a metric
TotalSales, defined as the sum of the values of the SalesAmount attribute:

<metrics><metric name="TotalSales" displayName="Total Sale" datatype
="mdex:double"> <definition>sum(SalesAmount)</definition></metric><metric name
="AvgSales" displayName="Average Sale" datatype
="mdex:double"><definition>avg(SalesAmount)</definition></metric></metrics>

An example of an entity

To put the previously described portions of an entity definition together, consider the following use case.

When you load a list of sales transactions, you also are loading information about customers, products, and
suppliers. You can create entities for each of them. Consider creating a Sales entity as a virtual set of
records derived from the following attributes: SalesAmount, ProductLine, and FiscalYear.

When you define the Sales entity, you also provide metrics for it, allowing business analysts to issue queries
in EQL against this entity. These metrics could be the TotalSales, defined as a sum of SalesAmount, or
the AvgSales, defined as an average of SalesAmount.

This example illustrates a Sales entity defined on top of several entity attributes and listing two metrics that
could be used in subsequent analytic queries against this entity:

<semanticEntity key="Sales" displayName="Sales">
<definition>
DEFINE Sales AS
SELECT FactSales_SalesAmount AS SalesAmount,
DimReseller_ProductLine AS ProductLine,
DimSalesTerritory_SalesTerritoryCountry AS SalesTerritoryCountry,
DimDate_FiscalYear AS FiscalYear,
FactSales_SalesOrderNumber AS SaleOrderNumber

</definition>
<attributes>
<semanticAttribute name="SalesAmount" displayName="Sales Amount" datatype="mdex:double"

isDimension="false"/>
<semanticAttribute name="ProductLine" displayName="Product Line" datatype="mdex:string"
isDimension="true"/>
<semanticAttribute name="SalesTerritoryCountry" displayName="Sales Territory Country"
datatype="mdex:string" isDimension="true"/>
<semanticAttribute name="FiscalYear" displayName="Year" datatype="mdex:int"
isDimension="true"/>
<semanticAttribute name="SaleOrderNumber" displayName="Sale Order Number"
datatype="mdex:string" isDimension="false"/>
</attributes>
<metrics>
<metric name="TotalSales" displayName="Total Sale" datatype="mdex:double">
<definition>sum(SalesAmount)</definition>
</metric>

Version 2.3.0 • June 2012 • Revision AOracle® Endeca Server: Developer's Guide

Using the Entity Configuration Web Service 45

<metric name="AvgSales" displayName="Average Sale" datatype="mdex:double">
<definition>avg(SalesAmount)</definition>
</metric>
</metrics>

</semanticEntity>

Version 2.3.0 • June 2012 • Revision A

Notes about the base entity

Once records are loaded into the Endeca data store, one single base entity record is created for each of the
attributes in the data store. The base entity record is created based on the PDRs defining each of the
attributes on your physical records. The base entity provides a convenient way for you to create your own
custom entities.

Note: Because the base entity represents records derived from actual attributes that exist in the
system, you cannot create, modify, or delete the base entity.

About the Entity Configuration Web Service
The Entity Configuration Web Service lets you create, replace, delete and update entities.

Entity Configuration Web Service overview

The Entity Configuration Web Service is a WS-I compliant SOAP/HTTP Web service that also supports the
wrapped-document/literal pattern of binding. The service is declared in sconfig.wsdl. The service supports
creation and management of entities, as well as validation of statements in them.

To view the WSDL document for the service, issue the following command:

http://localhost:<port>/ws/sconfig/<DataStore>?wsdl

where the host and port represent the Oracle Endeca Server, and DataStore is the name of the data store
created on the server.

The service's version is listed in one of its namespaces included in the WSDL, as shown in the following
example (the version in this example may not match the version of the service you have installed):

xmlns:v1_0="http://www.endeca.com/endeca-server/sconfig/1/0"

In this example, 1 is the major version; 0 is the minor version. If more than one minor version is supported, it
is listed in its own namespace in the WSDL document.

For reference information on the Entity Configuration Web Service operations and for schema elements, see
the Oracle Endeca Server API Reference.

Operation description

A request to the Entity Configuration Web Service depends on the operation. The operations perform actions
on entities, listing them, adding and removing them, and validating them.

The effect of an Entity Configuration Web Service request that contains put operations is to add entities to the
corpus of records in the Oracle Endeca Server for this data store:

• If an entity with the specified key already exists in the corpus, it is replaced by the new entity with the
same key (if the EQL statements defining the entity are valid).

• If an entity does not exist, and if its EQL definition is valid, it is created.

Oracle® Endeca Server: Developer's Guide

Using the Entity Configuration Web Service 46

After creation, each entity is represented as a single logical record in the Endeca data store. The on-disk
storage of these records means that they persist across restarts of the Endeca data store, as they are loaded
into the Dgraph process at start-up time.

Request

The input to the Entity Configuration Web Service depends on the operation used. It can include a key and an
EQL statement that defines an entity, for put operations; it can include the key only, for deleteEntities
operation; or it can include the definition of the entity, for validate operations.

Any request to the Entity Configuration Web Service can contain an optional element OuterTransactionId
that specifies the ID of an outer transaction (if it has been started by the Transaction Web Service). The
following statements describe the interaction of configuration requests with outer transactions:

• If an outer transaction has been started by the Transaction Web Service, the request may be run against
either the latest version of the data files inside the transaction, or against the pre-transaction version of the
data files:

• To run a request against the latest version, the OuterTransactionId element in your request must
specify the ID issued by the Transaction Web Service when the transaction was started. This element
must be the first element specified in your request.

• To run against the published version (it could be the version published prior to the outer transaction,
or the version published after the outer transaction has been committed or rolled back), the
OuterTransactionId element must be empty or omitted.

It is incorrect to specify an outer transaction ID when an outer transaction is not in progress. All configuration
requests with incorrectly specified outer transaction IDs fail with a SOAP fault.

Response

Not all operations in the Entity Configuration Web Service return data.

If the operation returns data, the response to the Entity Configuration Web Service is a results element, within
which each of the submitted operations produces an element showing its own results.

If any operation does not succeed, the whole web service transaction returns a SOAP fault and none of the
operations are applied. An operation may not succeed if an outer transaction has been started by a
Transaction Web Service, but an incorrect ID has been specified within a request sent to the Entity
Configuration Web Service.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using the Entity Configuration Web Service 47

Operations in the Entity Configuration Web Service
This topic lists the operations of the Entity Configuration Web Service.

A request to the Entity Configuration Web Service may be one of the following operations:

Operation Description

listEntities List entities that already exist in the data store. Note that even if you have not
created any custom entities, this operation lists the base entity created
automatically on top of PDRs for your record attributes.

You can use this operation to export the existing entities, for example during an
upgrade procedure, in order to later import them to the Endeca Server with the
putEntities operation.

validateEntity Validate an entity with the specified key and definition before it has been added.

validateEntities Validate multiple entities with specified definitions.

putEntity Add an entity with the specified key and definition to the data store.

The key must be valid according to the NCName format. The NCName format is
defined in the W3C document Namespaces in XML 1.0 (Second Edition), located
at this URL: http://www.w3.org/TR/REC-xml-names/#NT-NCName

For an entity to be created, its building blocks — the physical records and
attributes — must already exist in the data store.

If an entity with the specified key already exists in the corpus, it is replaced by the
new entity with the same key (if the EQL statements defining the entity are valid).

If an entity does not exist, and if its EQL definition is valid, the entity is created.

You cannot modify or create the base entity using this command. The base entity
is created by the Oracle Endeca Server on top of PDRs for existing physical
attributes on your records.

putEntities Add multiple entities with the specified keys and definitions to the data store. The
keys must be valid according to the NCName format.

You cannot use this command to create or replace the base entity.

deleteEntities Delete multiple entities for which keys are specified. You cannot delete the base
entity.

deleteAllEntities Delete all custom entities that exist in the corpus without specifying any of their
keys. You cannot delete the base entity.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

http://www.w3.org/TR/REC-xml-names/#NT-NCName

Using the Entity Configuration Web Service 48

Examples of requests with the Entity Configuration Web
Service
This topic includes examples of requests for listing, adding, deleting, and validating entities.

Listing entities example

The following example of the request lists all entities that are present in the corpus:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/endeca-server/sconfig/1/0">

<soapenv:Header/>
<soapenv:Body>

<ns:listEntities>
</ns:listEntities>

</soapenv:Body>
</soapenv:Envelope>

Version 2.3.0 • June 2012 • Revision A

The response to this request returns a list of entities that are already added, including the base entity added
by the Oracle Endeca Server for each PDR describing an existing attribute in your data store.

For example, the following abbreviated response lists the Transactions entity:

<listEntitiesResponse xmlns="http://www.endeca.com/endeca-server/sconfig/1/0">
<semanticEntity key="Transactions" displayName="Transactions">
<definition>/*Calculate Total Sales respecting Navigation*/
DEFINE GlobalSales as select sum(FactSales_SalesAmount) AS TotalSales Group;
DEFINE Transactions AS SELECT FactSales_SalesAmount AS "FactSales_SalesAmount",
DimReseller_ProductLine AS "DimReseller_ProductLine",
DimSalesTerritory_SalesTerritoryCountry AS "DimSalesTerritory_SalesTerritoryCountry",
DimDate_FiscalYear AS "DimDate_FiscalYear",
ProductSubcategoryName AS "ProductSubcategoryName",
DimReseller_ResellerName AS "DimReseller_ResellerName",
DimEmployee_FullName AS "DimEmployee_FullName",
ProductCategoryName AS "ProductCategoryName",
DimDate_FiscalSemester AS DimDate_FiscalSemester,
DimDate_FiscalQuarter AS DimDate_FiscalQuarter,
DimSalesTerritory_SalesTerritoryRegion AS DimSalesTerritory_SalesTerritoryRegion,
DimDate_FiscalYear*100+DimDate_MonthNumberOfYear as "Year-Month"
</definition><description>Sales Transaction Line Items</description>
...
</semanticEntity>

The Transactions entity contains the following attributes:

<attributes>
<semanticAttribute name="DimDate_FiscalQuarter" displayName="Fiscal Quarter"
datatype="mdex:string" isDimension="true"/>
<semanticAttribute name="DimDate_FiscalSemester" displayName="Fiscal Semester"
datatype="mdex:int" isDimension="true"/>
<semanticAttribute name="DimDate_FiscalYear" displayName="Fiscal Year"
datatype="mdex:int" isDimension="true"/>
<semanticAttribute name="DimEmployee_FullName" displayName="Employee Name"
datatype="mdex:string" isDimension="true"/>
<semanticAttribute name="DimReseller_ProductLine" displayName="Product Line"
datatype="mdex:string" isDimension="true"/>
<semanticAttribute name="DimReseller_ResellerName" displayName="Reseller Name"
datatype="mdex:string" isDimension="true"/>
<semanticAttribute name="DimSalesTerritory_SalesTerritoryCountry"
displayName="Sale Country" datatype="mdex:string" isDimension="true"/>
<semanticAttribute name="DimSalesTerritory_SalesTerritoryRegion"
displayName="Sales Region" datatype="mdex:string" isDimension="true"/>
<semanticAttribute name="FactSales_SalesAmount" displayName="Sales Amount"
datatype="mdex:double" isDimension="false"/>

Oracle® Endeca Server: Developer's Guide

Using the Entity Configuration Web Service 49

<semanticAttribute name="ProductCategoryName" displayName="Product Category"
datatype="mdex:string" isDimension="true"/>
<semanticAttribute name="ProductSubcategoryName"
displayName="Product Subcategory" datatype="mdex:string" isDimension="true"/>
<semanticAttribute name="Year-Month" displayName="Year - Month"
datatype="mdex:long" isDimension="true"/>
</attributes>

Version 2.3.0 • June 2012 • Revision A

It also contains the following metrics:

<metrics>
<metric name="SalesShare" displayName="Sales Share"
datatype="mdex:double"
description="Ratio of Total Sales of the Group to Total Sales of All Groups">
<definition>sum(FactSales_SalesAmount)/GlobalSales[].TotalSales
</definition>

</metric>
</metrics>

Validating an entity example

Before adding an entity, it is useful to validate the syntax of the EQL statements in the entity definition.

To validate an entity, issue a request either with ValidateEntity, which validates a single entity, or with
ValidateEntities, specifying the entities inside the semanticEntity elements. The following
abbreviated example illustrates the ValidateEntity request:

<ns:validateEntity>
<ns:semanticEntity key="Sales" displayName="Sales">
...
</ns:semanticEntity>

</ns:validateEntity>

If the request validates successfully, validateEntityResponse does not contain errors.

Adding an entity example

You can add one entity using a putEntity operation, or add multiple entities using putEntities.

In this abbreviated example, a putEntities operation is used in a request to add one entity, Sales, with
two metrics, TotalSales and AvgSales:

<ns:putEntities><ns:semanticEntity key="Sales" displayName="Sales">
<ns:definition>

DEFINE Sales AS SELECT FactSales_SalesAmount
AS SalesAmount, DimReseller_ProductLine AS ProductLine,
DimSalesTerritory_SalesTerritoryCountry AS SalesTerritoryCountry,
DimDate_FiscalYear AS FiscalYear,
FactSales_SalesOrderNumber AS SaleOrderNumber

</ns:definition>
<ns:attributes>

<ns:semanticAttribute name="SalesAmount" displayName="Sales Amount" datatype="mdex:double"
isDimension="false"/>

<ns:semanticAttribute name="ProductLine" displayName="Product Line" datatype="mdex:string"
isDimension="true"/>

<ns:semanticAttribute name="SalesTerritoryCountry" displayName="Sales Territory Country"
datatype="mdex:string" isDimension="true"/>

<ns:semanticAttribute name="FiscalYear" displayName="Year" datatype="mdex:int"
isDimension="true" />

<ns:semanticAttribute name="SaleOrderNumber" displayName="Sale Order Number"
datatype="mdex:string" isDimension="false"/>

</ns:attributes>
<ns:metrics>
<ns:metric name="TotalSales" displayName="Total Sale" datatype="mdex:double">

Oracle® Endeca Server: Developer's Guide

Using the Entity Configuration Web Service 50

<ns:definition>sum(SalesAmount)</ns:definition>
</ns:metric>

<ns:metric name="AvgSales" displayName="Average Sale" datatype="mdex:double">
<ns:definition>avg(SalesAmount)</ns:definition>

</ns:metric>
</ns:metrics>
</ns:semanticEntity>

</ns:putEntities>

Version 2.3.0 • June 2012 • Revision A

The abbreviated example response from the Entity Configuration Web Service informs you how many entities
were created or replaced:

<putEntitiesResponse xmlns="http://www.endeca.com/endeca-server/sconfig/1/0">
<entityAdditionInformation numEntitiesAdded="1" numEntitiesReplaced="0"/>

</putEntitiesResponse>

You cannot add or replace the base entity.

Deleting an entity example

To delete one or more entities, issue a request with the deleteEntities operation, specifying keys for one
ore more entities you would like to delete, as in this abbreviated example:

<ns:deleteEntities>
<ns:semanticEntityKey key="Sales"/>

</ns:deleteEntities>

The response indicates the number of entities deleted:

<deleteEntitiesResponse xmlns="http://www.endeca.com/endeca-server/sconfig/1/0">
<numEntitiesDeleted>1</numEntitiesDeleted>

</deleteEntitiesResponse>

You cannot delete the base entity.

Oracle® Endeca Server: Developer's Guide

Chapter 7

Using the Control Web Service

This chapter describes the role and operations of the Control Web Service in the Oracle Endeca Server.

About the Control Web Service

Operations in the Control Web Service

Examples of Control Web Service requests

About the Control Web Service
The Control Web Service provides an interface that lets you create and manage Endeca data store instances.

Overview
The Control Web Service is declared in control.wsdl. You can access the Control Web Service at the
following URL:

http://localhost:<port>/ws/control?wsdl

Version 2.3.0 • June 2012 • Revision A

where the localhost and port are the host and port of the running Oracle Endeca Server.

The namespace for the Control Web Service is similar to the following example and reflects the version of the
service:

http://www.endeca.com/endeca-server/control/1/0

This namespace is included in the WSDL document for the Web service.

Operation and request overview

A request to the Control Web Service depends on the operation. The request types and their operations are:

Request Type Operation Response Type

attachDataStoreRequest attachDataStore attachDataStoreResponse

createDataStoreRequest createDataStore createDataStoreResponse

dataStoreStatusRequest dataStoreStatus dataStoreStatusResponse

detachDataStoreRequest detachDataStore detachDataStoreResponse

listDataStoresRequest listDataStores listDataStoresResponse

Oracle® Endeca Server: Developer's Guide

Using the Control Web Service 52

Request Type Operation Response Type

startDataStoreRequest startDataStore startDataStoreResponse

stopDataStoreRequest stopDataStore stopDataStoreResponse

usageRequest usage usageResponse

versionRequest version versionResponse

The operations are described in greater detail in Operations in the Control Web Service on page 52.

The Control Web Service does not support outer transactions, and therefore does not support the
OuterTransactionId element that specifies the ID of an outer transaction in a request.

Response
The response types are listed in the table above. Data is returned by the dataStoreStatusResponse,
listDataStoresResponse, usageResponse, and versionResponse responses.

If any operation does not succeed, the Web service transaction returns a SOAP fault with an appropriate error
message and the operation is not applied. The SOAP fault will look like this example:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>

<soap:Fault>
<faultcode>soap:Server</faultcode>
<faultstring>Cannot perform this operation while the data store is STOPPED</faultstring>
<detail>

<controlFault xmlns="http://www.endeca.com/endeca-server/control/1/0"/>
</detail>

</soap:Fault>
</soap:Body>

</soap:Envelope>

Version 2.3.0 • June 2012 • Revision A

In this example, the faultstring informs the user that the operation (which is a stopDataStore in this
case) cannot be performed because the Endeca data store is already stopped.

Operations in the Control Web Service
This topic lists the operations of the Control Web Service.

A request to the Control Web Service will contain one of the following operations:

Operation Description Equivalent endeca-cmd
command

attachDataStore Attach an Endeca data store to existing data files attach-ds
on disk. The data store will be started.

createDataStore Create the data files for a new Endeca data store create-ds
on disk and attach it. The data store will be
started.

Oracle® Endeca Server: Developer's Guide

Using the Control Web Service 53

Operation Description Equivalent endeca-cmd
command

dataStoreStatus Get the status of a started or stopped Endeca status-ds
data store.

detachDataStore Detach a stopped Endeca data store. detach-ds

listDataStores List the names of all attached Endeca data stores. list-ds

startDataStore Start a stopped Endeca data store. start-ds

stopDataStore Stop a started Endeca data store. stop-ds

usage List the available Dgraph start-up flags. usage

version List the version of the Oracle Endeca Server and version
the versions of any started Dgraph processes
powering each of the data stores.

Note: The endeca-cmd list-jobs command is not listed in the table, as it uses the
listJobsOperation of the Administration Web Service. For details on this operation, see the Oracle
Endeca Server Administrator's Guide.

dataStoreConfig complex type
When you are creating or attaching a data store, you do so using the dataStoreConfig complex type. It
represents an Endeca data store and all its configuration attributes. The dataStoreConfig type has the
following characteristics:

Element Data Type Description

name string Required. The name of the new Endeca data store.
The name must be unique among any other Endeca
data stores on this node.

dataFiles string Required for attachDataStore; optional for
createDataStore. The absolute path of the Endeca
data store's data files directory to be created or
attached to. For a createDataStore, the default is
to create the data files directory in the location
configured in the Endeca Server.

wsPort int Optional. Web service port number to be used for the
Endeca data store's Dgraph process. The port number
cannot be in use by any other process on the machine
(including another Endeca data store). Defaults to a
port number in the default range specified on the
Endeca Server.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using the Control Web Service 54

Element Data Type Description

bulkLoadPort int Optional. The port number for bulk load ingest
operations for the Endeca data store's Dgraph
process. Defaults to a port number in the default
range specified on the Endeca Server.

startupTimeoutSeconds int Optional. The maximum length of time (in seconds)
that is allowed for the Endeca data store's Dgraph
process to start up. Default is 60 seconds.

shutdownTimeoutSeconds int Optional. The maximum length of time (in seconds)
that is allowed for the Endeca data store's Dgraph
process to shut down. Default is 60 seconds.

arg string Optional. Specifies one Dgraph flag that will be used
for the Endeca data store's Dgraph process. For
multiple flags, use an arg element per flag.

The arg cannot parse spaces. Therefore, for flags that take parameters, use one arg for the flag itself and a
second arg for the parameter. For example, the "--threads 6" flag would be specified as:

<arg>--threads</arg>
<arg>6</arg>

Version 2.3.0 • June 2012 • Revision A

Examples of Control Web Service requests
This topic includes examples of the various Control Web Service requests.

The examples in this topic were generated using the soapUI utility.

Creating an Endeca data store

The createDataStore operation lets you create a new Endeca data store, including a new set of data files,
as in this example:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/endeca-server/control/1/0">
<soapenv:Header/>
<soapenv:Body>

<ns:createDataStore>
<ns:dataStoreConfig>

<ns:name>books</ns:name>
<ns:dataFiles>c:\endeca\apps\books</ns:dataFiles>
<ns:wsPort>8000</ns:wsPort>
<ns:bulkLoadPort>8001</ns:bulkLoadPort>
<ns:startupTimeoutSeconds>90</ns:startupTimeoutSeconds>
<ns:shutdownTimeoutSeconds>120</ns:shutdownTimeoutSeconds>
<ns:arg>--threads</ns:arg>
<ns:arg>6</ns:arg>

</ns:dataStoreConfig>
</ns:createDataStore>

</soapenv:Body>
</soapenv:Envelope>

Oracle® Endeca Server: Developer's Guide

Using the Control Web Service 55

The name attribute specifies the name of the Endeca data store to be created, while the dataFiles attribute
specifies the location of the data store's data files if they should be created in a non-default location.

Also note that the arg attribute cannot parse spaces. Therefore, for flags that take parameters, use one arg
attribute for the flag itself and a second arg attribute for the parameter. It is for this reason that the --
threads 6 flag in the example is specified as:

<ns:arg>--threads</ns:arg>
<ns:arg>6</ns:arg>

Version 2.3.0 • June 2012 • Revision A

If the request is successful, the createDataStoreResponse will be:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>

<createDataStoreResponse xmlns="http://www.endeca.com/endeca-server/control/1/0"/>
</soap:Body>

</soap:Envelope>

Attaching an Endeca data store

An attachDataStore operation example is not included because its elements and attributes are identical to
the createDataStore operation. The only difference in implementation is that an attachDataStore
operation must use the dataFiles element to point to an existing data files, while a createDataStore
operation can omit the dataFiles element.

Starting an Endeca data store

The startDataStore operation starts a stopped Endeca store, as in this example that starts the wine data
store:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/endeca-server/control/1/0">
<soapenv:Header/>
<soapenv:Body>

<ns:startDataStore>
<ns:name>wine</ns:name>

</ns:startDataStore>
</soapenv:Body>

</soapenv:Envelope>

The name attribute specifies the name of the Endeca data store to be started.

If the request is successful, the startDataStoreResponse will be:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>

<startDataStoreResponse xmlns="http://www.endeca.com/endeca-server/control/1/0"/>
</soap:Body>

</soap:Envelope>

Listing all Endeca data stores

The listDataStores operation lists the names of all attached Endeca data stores:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/endeca-server/control/1/0">
<soapenv:Header/>
<soapenv:Body>

Oracle® Endeca Server: Developer's Guide

Using the Control Web Service 56

<ns:listDataStores/>
</soapenv:Body>

</soapenv:Envelope>

Version 2.3.0 • June 2012 • Revision A

If the request is successful, the listDataStoresResponse will look similar to this example:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>

<listDataStoresResponse xmlns="http://www.endeca.com/endeca-server/control/1/0">
<dataStoreNames>beer</dataStoreNames>
<dataStoreNames>wine</dataStoreNames>

</listDataStoresResponse>
</soap:Body>

</soap:Envelope>

Getting the status of an Endeca data store

The dataStoreStatus operation retrieves the topped Endeca data store, as in this example:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/endeca-server/control/1/0">
<soapenv:Header/>
<soapenv:Body>

<ns:dataStoreStatus>
<ns:name>wine</ns:name>

</ns:dataStoreStatus>
</soapenv:Body>

</soapenv:Envelope>

The name attribute specifies the name of the Endeca data store whose status is to be retrieved.

If the request is successful, the dataStoreStatusResponse will be similar to this example:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>

<dataStoreStatusResponse xmlns="http://www.endeca.com/endeca-server/control/1/0">
<config>

<name>wine</name>
<dataFiles>c:\endeca\apps\wine</dataFiles>
<wsPort>7771</wsPort>
<bulkLoadPort>7772</bulkLoadPort>
<startupTimeoutSeconds>60</startupTimeoutSeconds>
<shutdownTimeoutSeconds>60</shutdownTimeoutSeconds>
<arg>--coordinator_port</arg>
<arg>2181</arg>
<arg>--coordinator_host</arg>
<arg>localhost</arg>

</config>
<state>Started</state>

</dataStoreStatusResponse>
</soap:Body>

</soap:Envelope>

In the response, the state element shows whether the data store is started or stopped.

Stopping an Endeca data store

The stopDataStore operation stops a started Endeca data store, as in this example that stops the wine
data store:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/endeca-server/control/1/0">

Oracle® Endeca Server: Developer's Guide

Using the Control Web Service 57

<soapenv:Header/>
<soapenv:Body>

<ns:stopDataStore>
<ns:name>wine</ns:name>

</ns:stopDataStore>
</soapenv:Body>

</soapenv:Envelope>

Version 2.3.0 • June 2012 • Revision A

The name attribute specifies the name of the Endeca data store to be stopped.

If the request is successful, the stopDataStoreResponse will be:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>

<stopDataStoreResponse xmlns="http://www.endeca.com/endeca-server/control/1/0">
<terminationType>Normal</terminationType>

</stopDataStoreResponse>
</soap:Body>

</soap:Envelope>

In the response, the terminationType element lists how the stop operation was accomplished:

• Normal indicates a normal, graceful shutdown (i.e., the Dgraph was shut down within its configured
shutdown timeout period).

• Killed on Timeout means the Dgraph could not be shut down within its configured shutdown timeout
period and thus the Dgraph process was killed by the Endeca Server.

Detaching an Endeca data store

The detachDataStore operation detaches a stopped Endeca data store, as in this example that detaches
the books data store:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/endeca-server/control/1/0">
<soapenv:Header/>
<soapenv:Body>

<ns:detachDataStore>
<ns:name>books</ns:name>

</ns:detachDataStore>
</soapenv:Body>

</soapenv:Envelope>

The name attribute specifies the name of the Endeca data store to be detached.

If the request is successful, the detachDataStoreResponse will be:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>

<detachDataStoreResponse xmlns="http://www.endeca.com/endeca-server/control/1/0"/>
</soap:Body>

</soap:Envelope>

Displaying version information

The version operation displays the version of the Oracle Endeca Server and the versions of the started
Dgraph processes.

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/endeca-server/control/1/0">
<soapenv:Header/>

Oracle® Endeca Server: Developer's Guide

Using the Control Web Service 58

<soapenv:Body>
<ns:version/>

</soapenv:Body>
</soapenv:Envelope>

Version 2.3.0 • June 2012 • Revision A

If the request is successful, the versionResponse will be similar to this example:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>

<versionResponse xmlns="http://www.endeca.com/endeca-server/control/1/0">
<serverVersion>Oracle Endeca Server 2.3.0.557

hudson-label=endeca-server-project-windows-138</serverVersion>
<dataStoreVersions>

<name>wine</name>
<version>2.3.0</version>
<build>7.4.0.637212</build>

</dataStoreVersions>
</versionResponse>

</soap:Body>
</soap:Envelope>

Displaying Dgraph flag usage information

The usage operation displays usage information for the Dgraph flags.

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/endeca-server/control/1/0">
<soapenv:Header/>
<soapenv:Body>

<ns:usage/>
</soapenv:Body>

</soapenv:Envelope>

If the request is successful, the usageResponse will display a list of Dgraph flags.

Oracle® Endeca Server: Developer's Guide

Chapter 8

Using the Transaction Web Service

This chapter describes the Transaction Web Service.

About the Transaction Web Service

Outer transactions and queries

Transaction Web Service operation description

Transaction Web Service operations

Rolling back an outer transaction

Notes about inner transactions

Treatment of requests from Oracle Endeca Server interfaces

Transaction Web Service and Integrator

About the Transaction Web Service
The Transaction Web Service provides a versioned interface for controlling one or more inner transactions on
a particular data store.

Each web service request to the Oracle Endeca Server represents an inner transaction. If the request
completes successfully, the transaction is automatically committed. If the request fails, the transaction is rolled
back.

In addition to using these inner transactions that are sent as independent web service requests, you can also
nest inner transactions inside a single outer transaction run by the Transaction Web Service.

The Transaction Web Service is a versioned web service declared in its WSDL document, which you can
access at this URL:

http://localhost:<port>/ws/transaction/<DataStore>?wsdl

Version 2.3.0 • June 2012 • Revision A

where the host and port represent the Oracle Endeca Server, and the DataStore is the name of the data
store that is created on the server. The WSDL that is returned contains a version number for the service.

Using outer transactions depends on whether you want to group multiple updates (which, together with other
web service requests, typically represent simple inner transactions) into a single outer transaction.

The Transaction Web Service enables you to isolate updates within a single outer transaction, while non-
updating queries continue to be served by the same server against the pre-transaction version of the data
files.

Although you can issue requests to the Transaction Web Service with any web service tool, such as soapUI,
you can use the Transaction RunGraph in Integrator.

Oracle® Endeca Server: Developer's Guide

Using the Transaction Web Service 60

Outer transactions and queries
The Oracle Endeca Server processes two types of queries — non-updating (or read-only) queries and
updating queries.

• The purpose of non-updating queries is, typically, to obtain query results from the data files, based on
search or navigation selections made by the end users in the front-end application. Non-updating queries
represent read-only requests to the data files and do not attempt to change them.

• The purpose of updating queries is to change the data files or other settings in the Dgraph data store.
Updating queries represent "write" requests to the data files.

The following diagram shows how both updating and non-updating queries are processed by the Oracle
Endeca Server in view of outer transactions. It illustrates that, to be processed within the outer transaction,
updating queries must specify its ID. Non-updating queries, depending on whether they specify the outer
transaction ID, are processed against different versions of the data files in the Oracle Endeca Server:

The following statements describe the actions in this diagram in detail, starting from the left side of the
diagram:

• Stage 1: Before an outer transaction is started. If no outer transaction is in progress, then all queries
(updating and non-updating) are processed against the most recent published version of the data files. If
no outer transaction is in progress, the queries do not need to specify any outer transaction ID.

• Stage 2: The outer transaction has been started. Queries that specify a correct outer transaction ID
(also known as queries sent inside the transaction):

• All such queries (updating and non-updating) are guaranteed to run against the most recent internal
version of the data files available to the transaction. This version is not published and not available to
queries outside of the outer transaction until the transaction commits. This version is published after
the transaction commits.

Queries that do not specify an outer transaction ID (also known as queries sent outside of the transaction):

• Non-updating queries run against the most recent published (pre-transaction) version of the data files.

• Updating queries wait until the outer transaction is committed (or rolled back), and are computed
based on the published version of the data files available at that time.

If the outer transaction has been started and requests that are sent to the Oracle Endeca Server specify
an incorrect ID, the requests fail.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using the Transaction Web Service 61

• Stage 3: After the outer transaction has been committed. All queries (updating and non-updating) are
processed against the most recent published version of the data files.

Transaction Web Service operation description
This topic describes the logic of web service's operations, as well as its request and response structure.

Operation description

Here is the logic of the web service's operations:

• Before an outer transaction starts, the pre-transaction version of the data files is available; it is known as
the last published version of the data files.

• When a startOuterTransaction operation is issued, it starts an outer transaction. This transaction,
because it encapsulates inner transactions within it, is referred to as an outer transaction. Only one outer
transaction can be running at a time.

You can supply the ID for the transaction in the startOuterTransaction operation. If you do not
specify it, the Dgraph process issues a unique outer transaction ID in the response.

While the outer transaction is in progress, update requests to the data files that reference the outer
transaction ID are processed within the outer transaction. These updates can be made through any of the
available interfaces that can issue requests to the server, including the Data Ingest Web Service, the
Configuration Web Service, and the Bulk Load Interface. Updating requests from all interfaces except the
Bulk Load that don't reference the ID wait until the outer transaction is committed (or rolled back), and are
computed based on the published version of the data files. (Requests from the Bulk Load interface that
don't specify the ID are rejected while the outer transaction is in progress).

• Once an outer transaction starts, the data files are internally updated. Internal versions of the data files
might become available to qualifying requests (those that reference the ID) within an outer transaction.
These versions are known as transaction versions.

• For the duration of the outer transaction, the server answers updating queries only if they specify the
transaction ID. These updating queries are answered against a transaction version of the data files that is
not published until the transaction is committed. (This transaction version reflects the most recent "writes"
to the data files that occurred within the outer transaction until this point.) All non-updating queries are
answered either against the last published version of the data files (if they don't specify the ID), or against
the transaction version (if they specify the ID).

• The outer transaction is committed with the Transaction Web Service commitOuterTransaction
operation.

• Once the transaction commits, its version of the data files is published. Updating requests that were
waiting in the queue (and that didn't specify the ID) are now processed against this version.

• If an outer transaction fails to commit, it remains open. You cannot start another outer transaction until you
commit or roll back the outer transaction that failed to commit. You can manually issue a commit or
rollback operation to recover from a failed transaction without restarting the data store.

Alternatively, to manually end a transaction that failed to commit and roll back the changes, you can issue
the rollBackOuterTransaction operation specifying the ID of this outer transaction. If you roll back a
transaction, then updating requests that didn't specify the ID and that were waiting in the queue are
processed once the outer transaction is successfully rolled back.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using the Transaction Web Service 62

For information on connectors that support transactions, see the Oracle Endeca Information Discovery
Integrator Components Guide.

Request

The input to the Web Service depends on the operation used and can include any of its operations for starting,
committing, or rolling back a transaction, or for listing the outer transaction ID.

In the startOuterTransaction operation you can provide a transaction ID. If it is not provided, the Dgraph
process issues an ID automatically and returns it in the response. In addition, you can use the
listOuterTransaction operation to obtain the ID from the running Oracle Endeca Server for your data
store.

Response

The response to the Transaction Web Service indicates whether each of the operations succeeded or failed.

If any operation does not succeed, the whole web service transaction returns a SOAP fault and none of the
operations are applied.

Transaction Web Service operations
This topic lists the operations available in the Transaction Web Service.

A request to the Transaction Web Service consists of a Request element.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using the Transaction Web Service 63

The operations are the following:

Operation Description

startOuterTransaction An operation to begin an outer transaction. You can optionally
provide a transaction ID in the OuterTransactionId element.

If this operation succeeds, it starts the outer transaction, returns
a transaction ID, and the Dgraph process enters transaction
mode.

If this operation does not succeed, the Dgraph process does not
start an outer transaction, and does not return a transaction ID.

While an outer transaction is in progress, the following actions
take place:

• All queries that reference the transaction ID are processed
within the transaction. Updating queries that do not
reference the transaction ID wait until the outer transaction
is committed (or rolled back) and are computed based on
the published transaction version of the data files.

• Read-only queries that do not reference the transaction ID
are not rejected — they are processed against the
published version of the data files.

Updates applied within the outer transaction do not become a
published version of the data files until another operation,
commitOuterTransaction, returns successfully.

listOuterTransaction An operation to request an ID of a running outer transaction. If
an outer transaction is in progress, this operation returns its ID.

rollBackOuterTransaction An operation to roll back an outer transaction with the ID
specified in the OuterTransactionIdToRollBack element.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using the Transaction Web Service 64

Operation Description

commitOuterTransaction An operation to end an outer transaction.

If an outer transaction with the specified ID is in progress, then if
the operation succeeds, the Dgraph process commits the
transaction and exits transaction mode. The Dgraph process
resumes accepting unqualified queries. The version of the data
files that is propagated to all nodes becomes the last published
version.

If the operation does not succeed, the outer transaction is not
committed. The Dgraph process does not apply any updates
that referenced the transaction ID. If the operation does not
succeed and the transaction is not committed, all queries sent to
the Dgraph process continue to use the pre-transaction version
of the data files.

Note: If the outer transaction fails to commit, it remains
open, and you cannot start another outer transaction
before committing or rolling back the one that failed.
Without stopping the Dgraph process, you can manually
commit the transaction and roll back any changes using
the rollBackOuterTransaction operation
specifying the ID of the transaction.

Rolling back an outer transaction
The rollBackOuterTransaction operation is useful in operational environments that use outer
transactions. In case a running outer transaction fails, this operation lets you roll back to the previously
committed version of the data files and commit the transaction.

You can run this operation directly using a tool such as soapUI, or in Integrator, using one of the two options:
either through the Transaction RunGraph component and its rollback option, or by using the
WebServiceClient component in Integrator, by configuring it to access the Transaction Web Service on the
particular data store, and specifying the rollBackOuterTransaction operation to it.

The following statements describe the rollBackOuterTransaction operation:

• If you are running this operation through a tool such as soapUI, ensure that the tool accesses the
Transaction Web Service as follows:

http://localhost:<port>/ws/transaction/<DataStore>?wsdl

Version 2.3.0 • June 2012 • Revision A

Use this operation only if an outer transaction has been started on the node, referencing a transaction ID
in the OuterTransactionIdToRollBack element, as in the following example:

<rollBackOuterTransaction>
<OuterTransactionIdToRollBack>myID</OuterTransactionIdToRollBack>

</rollBackOuterTransaction>

Note: The transaction ID can be either specified to the Transaction Web Service when you start a
transaction, or, if you don't specify it, the Web Service generates the ID automatically. The
operation listOuterTransaction lists the ID. Also, if you are using the Transaction

Oracle® Endeca Server: Developer's Guide

Using the Transaction Web Service 65

RunGraph connector for running transactions, this connector automatically uses the ID string
"transaction".

• If you issue this operation with the outer transaction ID that does not match the ID of the currently running
outer transaction, the error message notifies you of the transaction ID that is in progress.

• If you are using this operation directly (such as in the soapUI) and not in the context of Integrator, you can
issue it at any point during a running outer transaction on the node on which the transaction is open. Once
issued, this operation ensures that inner transactions running within the outer transaction are rolled back
to the state of data files prior to when the outer transaction was started.

If you have updating requests sent to the server that didn't specify the outer transaction ID, these requests
wait for the outer transaction to finish (be committed or rolled back). If you roll back the outer transaction,
these requests start being processed by the server based on the published version of the data files that is
available after the rollback operation.

• If you are running a cluster of nodes, issue this operation on the leader node only. This operation is
rejected if you attempt to run it on any other node.

Once the operation completes, it stops the outer transaction, and the leader resumes serving queries on
the last version of the data files available before the start of the outer transaction.

• Only one rollBackOuterTransaction operation can be processed at a time.

Notes about inner transactions
This topic discusses the treatment of requests and operations that occur within a single outer transaction.

Inner transactions are operations that occur within a single outer transaction. They represent either web
service requests or administrative operations that run within an outer transaction. A few considerations about
inner transactions are useful to note:

• All non-updating inner transactions that specify the outer transaction ID are processed against the most
recent internal version of the data files available within the outer transaction.

• Inner transactions with updates are always serial —they are applied in the order they are received.

• Read-only inner transactions are processed in parallel.

Treatment of requests from Oracle Endeca Server interfaces
This topic describes how requests sent from various web services, administration URL requests, and the Bulk
Load Interface are treated by the Oracle Endeca Server, in the presence of outer transactions.

Requests from the Oracle Endeca Server interfaces can be updating and non-updating (read-only).

For read-only requests, if the correct ID of the outer transaction is specified as the first element in the request,
they run against the most recent version inside the outer transaction. If no transaction ID is specified, the
requests run against the pre-transaction version.

For updating requests, if the correct ID is specified as the first element in the request, the requests run;
otherwise, the requests wait until the outer transaction is committed (or rolled back), and are computed based
on the published version of the data files that becomes available at that time.

An incorrect ID in any request results in a SOAP fault.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using the Transaction Web Service 66

The following statements describe each interface in detail:

• Configuration Web Service.Updating and non-updating requests are treated as updating requests.
Changes to XML configuration documents made with requests from the Configuration Web Service are no
different from updating requests and follow the same rules. See the section below in this topic for more
information.

• Entity Configuration Web Service.This Web service allows you to run both updating and non-updating
requests. These requests are treated as described at the beginning of this topic.

• Data Ingest Web Service. All requests from the Data Ingest Web Service are updating requests. If the
correct ID is specified, the Data Ingest requests run against the most recent version available within the
outer transaction; otherwise, the requests wait until the outer transaction is committed or rolled back and
are computed based on the published version of the data files.

• Conversation Web Service. All requests from the Conversation Web Service are non-updating. These
requests are treated as described at the beginning of this topic.

• Administration Web Service. Requests for taking snapshots are not allowed during outer transactions.
Listing running jobs requests can be issued while an outer transaction is running. You can specify or omit
the transaction ID. An incorrect transaction ID results in a SOAP fault from the Dgraph. Requests for
canceling jobs can run regardless of outer transactions — they do not require specifying an outer
transaction ID (they do require specifying the ID of the pending job).

• Administration URL requests. The following URL administrative request must run within an outer
transaction, and thus require specifying the correct transaction ID:
/admin/datastore?op=updateaspell&outerTransactionId="myID"

An incorrect transaction ID results in a SOAP fault from the Dgraph. All other URL administrative requests
can run alongside outer transactions regardless of whether the outer transaction ID is specified.

• Bulk Load Interface. All requests from the Bulk Load Interface are updating requests. If the correct ID is
specified, these requests run against the most recent version available within the outer transaction;
otherwise, the requests are rejected.

Note: The Control Web Service requests do not interfere with outer transactions. In other words,
requests from the Control Web Service do not require specifying an outer transaction ID regardless of
whether any outer transactions are running. This is because the Control Web Service runs on the host
and port of the Oracle Endeca Server, whereas all other web services run on the host and port of the
Dgraph process for the data store.

Treatment of changes to the configuration documents

While an outer transaction is being processed, you can update the configuration, such as the text search
configuration.

For example, any changes to the configuration of search interfaces, as well as to dimsearch_config,
en_word_forms_collection, recsearch_config, relrank_strategies, stop_words, and
thesaurus configuration documents are possible while an outer transaction is in progress. If the correct
OuterTransactionId is specified in these requests, the requests run within a transaction; otherwise, the
requests wait until the outer transaction is committed and are computed based on the post-transaction version
of the data files.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using the Transaction Web Service 67

Transaction Web Service and Integrator
In Integrator, you can start and commit an outer transaction using the Transaction RunGraph connector.

For information on how to run outer transactions in Integrator, see the Oracle Endeca Information Discovery
Integrator Components Guide.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Part III

Working with Records and Record Filters

Chapter 9

Working with Records

This chapter provides information on handling records in your Web application.

Displaying records and attribute values with Studio

Displaying records and attribute values with the API

Performance impact of requesting large numbers of records

Performance impact when displaying attribute values

Displaying records and attribute values with Studio
The Results Table component displays records in a tabular format. The Results List component displays
records in a format similar to regular Web search results. The Data Explorer component displays each record
as a set of key value pairs.

For details on adding and configuring a Results Table, Results List, or Data Explorer component in your
Studio application, see the Oracle Endeca Information Discovery Studio User's Guide.

Displaying records and attribute values with the API
This section describes how to use the Conversation Web Service to request records and their attribute values
from the data store.

Configuring a record list
You use the RecordListConfig complex type to configure settings for lists of records returned by the Oracle
Endeca Server. For example, you can configure how many records should be included per page in the list,
how many pages of records should be returned, which attributes should be returned for each record included
in the list, and the attribute by which to sort the record list.

As a result of a query containing RecordListConfig, a RecordList is returned.

In the RecordListConfig complex type, you define what information should be returned in the record list. The
format of the RecordListConfig type is shown in this example:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:typ="http://www.endeca.com/MDEX/lql_parser/types">

<soapenv:Header/>
<soapenv:Body>

<ns:Request>
<ns:ContentElementConfig xsi:type="ns:RecordListConfig"

Id="RecordList"

Version 2.3.0 • June 2012 • Revision AOracle® Endeca Server: Developer's Guide

Working with Records 70

HandlerFunction="RecordListHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
MaxPages="2">

<ns:Column>ModelName</ns:Column>
<ns:Column>Size</ns:Column>
<ns:RecordsPerPage>10</ns:RecordsPerPage>
<ns:Page>1</ns:Page>

<ns:Sort Key="ModelName" Direction="Ascending"/>
</ns:ContentElementConfig>

</ns:Request>
</soapenv:Body>

</soapenv:Envelope>

Version 2.3.0 • June 2012 • Revision A

The elements and attributes that must be specified in the RecordListConfig complex type are the following:

Element/Attribute Description

HandlerFunction Specifies the RecordListHandler handler function for this
ContentElementConfig. Required.

HandlerNamespace Specifies the namespace for the handler function. Required.

Id An arbitrary identifier for this ContentElementConfig. Required.

MaxPages Optionally specifies an integer that is the maximum number of record pages
to be returned. If this attribute is omitted, a default value of 20 is used for the
query.

Column Optionally defines an attribute that will be returned in the RecordList with
the record. You can specify multiple instances of the Column element. Note
that you do not have to specify the primary key, because it is automatically
returned. If no Column elements are specified, then all the record's standard
and managed attributes are returned.

RecordsPerPage Optionally specifies an integer that is the maximum number of records
(Record elements) to be displayed in the ContentElement of the result. If
this element is omitted, a default value of 10 is used.

Page Optionally specifies an integer that is the page to be displayed (that is, it
provides an offset into the overall list of pages). The offset is a zero-based
index, which means that 0 (zero) specifies the first page. This element allows
users to page through a long result set, either directly or step by step. If an
offset is greater than the total number of pages, then the record list returned
will not include records. If this element is omitted, a default value of 0 is used.

Sort Key Direction Optionally specifies a sort order for the record list. Key specifies the standard
or managed attribute used for the sort. Direction specifies an Ascending
(the default) or Descending sort order.

Oracle® Endeca Server: Developer's Guide

Working with Records 71

Understanding a RecordList result
The records returned from the query are contained in the RecordList element.

A list of records is returned with every query result received from the Oracle Endeca Server. The list of
records is represented as a RecordList complex type that is returned in a Results response by the
Conversation Web Service. Each record is returned in a Record element.

The following sample snippet shows a RecordList with one record, one pagination control, and one column:

<cs:ContentElement xsi:type="cs:RecordList" Id="RecordList" xmlns:xsi="http://www.w3.org/2001
/XMLSchema-instance">
<cs:NumRecords>61096</cs:NumRecords>
<cs:TotalPages>6110</cs:TotalPages>
<cs:RecordRange First="11" Last="20"/>
<cs:RecordListEntry>

<cs:Record>
<ProductName type="mdex:string">Bike Wash - Dissolver</ProductName>
<ProductSubcategoryName type="mdex:string">Cleaners</ProductSubcategoryName>
<Description type="mdex:string">Washes off the toughest road grime; dissolves grease
</Description>
...

</cs:Record>
<cs:ComputedProperties/>
...

<cs:PaginationControl Label="First" Active="true">
<cs:Operator OwnerId="RecordList" Page="0" xsi:type="cs:PageOperator"/>
</cs:PaginationControl>
...

<cs:Column ColumnKey="ProductName" DisplayName="Product Name" SpecColumn="false">
<cs:SortControl Key="ProductName" Direction="Ascending" Active="false" xsi:type="cs:SortControl">
<cs:Operator OwnerId="RecordList" xsi:type="cs:SortOperator" Key="ProductName" Direction="Ascending"
/>
</cs:SortControl>
<cs:SortControl Key="ProductName" Direction="Descending" Active="false" xsi:type="cs:SortControl">
<cs:Operator OwnerId="RecordList" xsi:type="cs:SortOperator" Key="ProductName" Direction="Descending"
/>
</cs:SortControl>
</cs:Column>
...

</cs:ContentElement>

Version 2.3.0 • June 2012 • Revision A

The elements in the RecordList contain the following information:

• NumRecords specifies the total number of records (Record elements) that were returned from the query.

• TotalPages lists the total number of pages of records.

• RecordRange lists the starting and ending records for this page set.

• DimensionHierarchy lists paths of managed attributes whose values have assignments in the requested
record list. Also contains DimensionValueWithPath.

• Each RecordListEntry contains a specific record in a Record element and a ComputedProperties

element that has any computed attributes (such as geocode distance or snippets) for that record.

• PaginationControl is a control (a PageOperator) for a specific record page.

• SortControl identifies the sort order (Ascending or Descending) of the attributes.

In addition, the attributes on the Column element contain the following information for a specific standard or
managed attribute on a record:

• ColumnKey identifies the name (in an NCName format) of the attribute.

Oracle® Endeca Server: Developer's Guide

Working with Records 72

• DisplayName specifies the name of the attribute in an easy-to-understand format. (Once you define
display names, they appear in the front-end application.)

• SpecColumn identifies whether the attribute is the primary key for the records. If set to true, identifies this
property as the primary key attribute for the records.

The SpecColumn allows you to select a record for viewing its record details.

Paging through a record list
If many records are returned, you can specify a paging control, using the PaginationControl complex type.

A query to the Oracle Endeca Server may return more records than can be displayed all at once. A common
user interface mechanism for overcoming this is to create pages of results, where each page displays a
subset of the entire result set.

The RecordList in the Results response includes pagination controls (the PaginationControl type) that
you can use for paging.

The following is an example of a RecordList with a total of seven record pages and three records per page:

<cs:ContentElement xsi:type="cs:RecordList" Id="RecordList"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<cs:NumRecords>19</cs:NumRecords>
<cs:TotalPages>7</cs:TotalPages>
<cs:RecordRange First="1" Last="3"/>
<cs:RecordListEntry>
...
</cs:RecordListEntry>
<cs:PaginationControl Label="First" Active="false">

<cs:Operator OwnerId="RecordList" Page="0" xsi:type="cs:PageOperator"/>
</cs:PaginationControl>
<cs:PaginationControl Label="Previous" Active="false">

<cs:Operator OwnerId="RecordList" Page="-1" xsi:type="cs:PageOperator"/>
</cs:PaginationControl>
<cs:PaginationControl Label="1" Active="false">

<cs:Operator OwnerId="RecordList" Page="0" xsi:type="cs:PageOperator"/>
</cs:PaginationControl>
<cs:PaginationControl Label="2" Active="true">

<cs:Operator OwnerId="RecordList" Page="1" xsi:type="cs:PageOperator"/>
</cs:PaginationControl>
<cs:PaginationControl Label="3" Active="true">

<cs:Operator OwnerId="RecordList" Page="2" xsi:type="cs:PageOperator"/>
</cs:PaginationControl>
<cs:PaginationControl Label="Next" Active="true">

<cs:Operator OwnerId="RecordList" Page="1" xsi:type="cs:PageOperator"/>
</cs:PaginationControl>
<cs:PaginationControl Label="Last" Active="true">

<cs:Operator OwnerId="RecordList" Page="6" xsi:type="cs:PageOperator"/>
</cs:PaginationControl>
...

</cs:ContentElement>

Version 2.3.0 • June 2012 • Revision A

The RecordList is the initial access point for providing the paging controls for the entire record set. By
default, the query returns a maximum of ten records for display. To override this setting, use the
RecordsPerPage element in the RecordListConfig type, as in this example that sets five records for display:

<ContentElementConfig xsi:type="RecordListConfig"
HandlerFunction="RecordListHandler"
HandlerNamespace=""http://www.endeca.com/MDEX/conversation/1/0"
Id="RecordList" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<RecordsPerPage>5</RecordsPerPage>
</ContentElementConfig>

Oracle® Endeca Server: Developer's Guide

Working with Records 73

The NumRecords element in the RecordList lists the total number of records being returned by the query:

<cs:NumRecords>20</cs:NumRecords>

Version 2.3.0 • June 2012 • Revision A

The default page offset for a record set is zero, meaning that the first ten records are displayed. The default
offset can be overridden with the PageOperator type, as in this example that sets the offset to the third page
of records:

<Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="PageOperator" OwnerId="RecordList" Page="3"/>

If the number of total pages is 1:

<cs:TotalPages>1</cs:TotalPages>

then no paging controls are needed.

If the number of total pages is 2 or greater, you can use the PaginationControl elements in the RecordList

to go to the appropriate page, as indicated in the following table.

Page Label Result

First Goes to the first record page (which is page 0).

Previous Goes to the previous record page.

Next Goes to the next record page.

Last Goes to the last record page.

1 Goes to the first record page (which is page 0).

2 or greater Goes to the Nth record page.

Note that the Active attribute in a PaginationControl element indicates whether that paging control is
relevant within the context of the current state. For example, if you are on the last record page, then neither
the Next or Last paging controls will be active.

Retrieving large numbers of records

To obtain a large number of records that can later be exported, you request them as part of the
RecordListConfig element in the Conversation Web Service.

A query that requests a large number of records that could later be exported is the same as any valid
navigation query requesting a list of records. This topic contains examples of Conversation Web Service
request and response formats for such a query. No configuration is necessary to request a large number of
records. Any record that is returned as part of the RecordListConfig request, is available to be exported.

When creating the navigation query for a list of records that will be exported, you do not need to specify the
number of records that should be returned. The Conversation Web Service returns records in the record list as
it would for any other request for records. If you are using Studio, the settings that limit the number of records
for export are configured in Studio. For information on configuring these settings, see the Oracle Endeca
Information Discovery Studio User's Guide.

Oracle® Endeca Server: Developer's Guide

Working with Records 74

Example request
To request a record list with a Conversation Web Service request, use ContentElementConfig of type
RecordListConfig.

There is no requirement to specify any new parameters in the RecordListConfig. Simply set the
RecordsPerPage to the number of records desired for export, and Page to 0.

In this abbreviated example, you can see the format for RecordListConfig:

<ContentElementConfig xsi:type="RecordListConfig"
HandlerFunction="RecordListHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
Id="RecordList" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
MaxPages="40">

<Column>WineType</Column>
<Column>Price</Column>

<RecordsPerPage>20</RecordsPerPage>
<Page>0</Page>
<Sort Key="Num" Direction="Ascending" />

</ContentElementConfig>

Version 2.3.0 • June 2012 • Revision A

Example response

The following abbreviated example shows a returned list:

<cs:ContentElement xsi:type="cs:RecordList"
Id="RecordList" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<cs:NumRecords>19</cs:NumRecords>
<cs:TotalPages>40</cs:TotalPages>
<cs:RecordRange First="1" Last="19"/>
<cs:RecordListEntry>

<cs:Record>
...

</cs:Record>
<cs:ComputedProperties/>

</cs:RecordListEntry>
...

</cs:ContentElement>

Displaying attribute values

You can send a request asking to display attribute values assigned on records.

Records are returned in Record elements. Each attribute value on a record is returned in a format like this
example:

<ProductName type="mdex:string">Bike Wash - Dissolver</ProductName>

This example shows a record with five managed attribute values:

<cs:Record>
<Decimal cs:ValueName="53" type="mdex:string">/1-100/51-60/53</Decimal>
<English type="mdex:string">five three</English>
<FirstDigit cs:ValueName="5" type="mdex:string">/5</FirstDigit>
<Hex cs:ValueName="0035" type="mdex:string">/0001-0100/0031-0040/0035</Hex>
<LastDigit cs:ValueName="3" type="mdex:string">/3</LastDigit>
<Num type="mdex:int">53</Num>
<NumberOfDigits cs:ValueName="2" type="mdex:string">/2</NumberOfDigits>
<Spanish type="mdex:string">cinco tres</Spanish>

</cs:Record>

Oracle® Endeca Server: Developer's Guide

Working with Records 75

Your front-end application can iterate through the record, extract the attribute values for the record, and
display a table containing the results.

Performance impact of requesting large numbers of records
Requesting a large number of records at once can reduce memory usage in your front-end application if the
response is handled by a streaming parser in the front-end application.

Performance impact when displaying attribute values
Displaying too many attribute values can affect performance.

The main purpose of attribute values is to enable navigation through the records. Therefore, the default
behavior of the Oracle Endeca Server is to return attribute values on records only when a record query
request has been made (not for navigation-type query requests). You can change this behavior. However,
requesting the Oracle Endeca Server to return too many attribute values can cause a performance hit.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Chapter 10

Sorting Records

Sorting allows you to define the order of records returned with each navigation query.

About record sorting

Global sort order of records

Query-time sort ordering

Troubleshooting application sort problems

About record sorting
When making a basic navigation request, you may define a series of attributes and order (Ascending or
Descending) of pairs.

The Oracle Endeca Server returns query results in a Descending order on the primary key for returned
records. You cannot change the default record sort order for the system.

All of the records corresponding to a particular navigation state are considered for sorting, not just the records
visible in the current request. For example, if a navigation state applies to 100 bicycles, all 100 bicycles are
considered when sorting, even though only the first ten bicycle records may be returned with the current
request.

Record sorting only affects the order of records. It does not affect the ordering of attributes or attribute values
that are returned for query refinement.

Note that all attributes are automatically enabled for record sorting when they are created. Therefore, no
attribute configuration is required for sorting.

Global sort order of records
This topic discusses the global sort order of records.

Once the records have been added to the data store, the Oracle Endeca Server maintains data files for the
records in memory. The following rules apply to how the records are sorted in the results returned by the
Oracle Endeca Server in response to queries:

• Records are sorted according to the sort order that you specified, if any.

• Even if you specified a sort order, it may not have uniquely determined the resulting order of records —
this usually happens when some records only differ in attributes that were not included in the sort
specification. In such cases, the Dgraph process tie-breaks the sorting results at random.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Sorting Records 77

• Subsequent requests with the same query will result in the same order (the tie-break is consistent) unless
you have modified the records in any way between requests. For example, the order will change if you
delete any of the records and add them to the data store again, even if they are identical.

Note that when a sorted record result list is requested, string values will be sorted case-insensitively, with ties
broken with a case-sensitive comparison (upper-cased letters will rank above lower-cased letters). For
example, for the six records A, B, C, a, b, and c, the resulting sort order will be:

A
a
B
b
C
c

Version 2.3.0 • June 2012 • Revision A

Query-time sort ordering
On a per-query basis, you can specify a key on which to sort the records and a sort direction.

You can add a Sort type to a RecordList configuration that lets you specify a key to sort on and the sort
direction. The Sort format is:

<Sort Key="keyName" Direction="dirOrder"/>

where:

• keyName is the name of a standard or managed attribute based on which sorting is performed.

• dirOrder is either Ascending for an ascending order or Descending for a descending order.

Note that the attribute name and the sort order are both case sensitive.

The following example shows an Ascending sort order based on the ModelName attribute:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Header/>
<soapenv:Body>

<ns:Request>
<ns:ContentElementConfig xsi:type="ns:RecordListConfig"

Id="RecordList"
HandlerFunction="RecordListHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
MaxPages="2">
<ns:RecordsPerPage>10</ns:RecordsPerPage>
<ns:Page>1</ns:Page>
<ns:Sort Key="ModelName" Direction="Ascending"/>
</ns:ContentElementConfig>

</ns:Request>
</soapenv:Body>

</soapenv:Envelope>

Oracle® Endeca Server: Developer's Guide

Sorting Records 78

Troubleshooting application sort problems
This topic presents some approaches to solving sorting problems.

If the returned records do not seem to respect the sort key parameter, there are some potential problems:

• Was the attribute specified as a numeric when it is actually alphanumeric? Or vice versa? In this case, the
Oracle Endeca Server returns a valid response, but the sorting may be incorrect.

• If a record has multiple attribute value assignments from a single attribute, the Oracle Endeca Server sorts
the records based on the first value associated with the key. If the application is displaying the last value,
the records will not appear to be sorted correctly. In general, attributes that used for sorting should only
have one value assigned per record.

• If certain records in a data store lack a sort-key value, they will always appear last in a result set.
Therefore, if you reverse a sort order on a record set containing such records, the order of the entire
record set will not be reversed — the records without a sort-key value always sort at the end of the set.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Chapter 11

Record Filters

This chapter describes how to implement record filters in your front-end application.

About record filters

Record filter syntax

Record filter result caching

Requesting record filters with the API

Filtering data and non-data records

Record filter performance impact

About record filters
Record filters allow a front-end application powered by the Oracle Endeca Server to define arbitrary subsets of
the total record set and dynamically restrict search and navigation results to these subsets.

For example, the catalog might be filtered to a subset of records appropriate to the specific end user or user
role. The records might be restricted to contain only those visible to the current user based on security
policies. Or, an application might allow end users to define their own custom record lists (that is, the set of
parts related to a specific project) and then restrict search and navigation based on a selected list. Record
filters enable these and many other application features that depend on applying Oracle Endeca Server
search and navigation to dynamically defined and selected subsets of the data.

If you specify a record filter, whether for security, custom catalogs, or any other reason, it is applied before
any search processing. The result is that the search query is performed as if the data set only contained
records allowed by the record filter.

Record filters support Boolean syntax using attribute values as base predicates and standard Boolean
operators (AND, OR, and NOT) to compose complex expressions. For example, a filter can consist of a list of
part number attribute values joined in a multi-way OR expression. Or, a filter might consist of a complex
nested expression of ANDs, ORs, and NOTs on managed attribute IDs and attribute values.

Filter expressions are passed directly as part of a query to the Oracle Endeca Server. When a filter is
selected, the set of visible records is restricted to those matching the filter expression. For example, record
search queries will not return records outside the selected subset, and refinement values are restricted to lead
only to records contained within the subset.

Note that all attribute values are automatically enabled for use in record filter expressions.

Finally, it is important to keep in mind that record filters are case-sensitive.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Record Filters 80

Record filter syntax
Record filters are specified with query-based expressions.

Record filters are specified directly within a query to the Oracle Endeca Server. The query-level syntax
supports prefix-oriented Boolean functions (AND, OR, and NOT), colon-separated paths for standard attribute
values, and forward-slash-separated paths for managed attribute values.

The following BNF grammar describes the syntax for query-level filter expressions:

<filter> ::= <and-expr>
| <or-expr>
| <not-expr>
| <literal>

<and-expr> ::= AND(<filter-list>)
<or-expr> ::= OR(<filter-list>)
<not-expr> ::= NOT(<filter>)
<filter-list> ::= <filter>

| <filter>,<filter-list>
<literal> ::= <pval>

| <dval-path>
<pval> ::= <prop-key>:<prop-value>
<prop-key> ::= <string>
<prop-value> ::= <string>
<dval-path> ::= <string>

| <string>/<dval-path>
<string> ::= any character string

Version 2.3.0 • June 2012 • Revision A

The following six special reserved characters must be prepended with an escape character (\) for inclusion in
a string:

() , : \ /

Example of a query-level filter expression
The following example illustrates a basic filter expression that uses nested Boolean operations:

OR(AND(Manufacturer:Sony, Product Category/Digital Camera),
AND(Manufacturer:Aiwa,NOT(Product Category/Television)), Manufacturer:Denon)

This expression will match the set of records satisfying any of the following statements:

• Value for the Manufacturer attribute is Sony and record assigned managed attribute value is Product
Category/Digital Camera.

• Value for Manufacturer is Aiwa and record is not assigned managed attribute value Product
Category/Television.

• Value for Manufacturer attribute is Denon.

Using Boolean attributes
Filtering by Boolean attribute assignments is supported. You can specify the Boolean value as true (or its
synonym of 1), or as false (or its synonym of 0). For example, assuming isOdd is a Boolean attribute, both
isOdd:1 and isOdd:true will parse properly and yield the same results.

Oracle® Endeca Server: Developer's Guide

Record Filters 81

Record filter result caching
The Dgraph process caches the results of record filter evaluations for re-use.

The cached results are used on subsequent queries as part of the global dynamic cache. The cache
replacement policy is to discard least recently used (LRU) entries.

Requesting record filters with the API
The RecordFilterOperator complex type adds a record filter component to the filter state.

Record filters are not visible in the user interface of the front-end application (so they do not appear in
breadcrumbs), and are not cleared by any of the general mechanisms for clearing the state. You can remove
them using a PopRecordFilterOperator.

When making a query with the Conversation Web Service, you can use a RecordFilterOperator to limit the
set of returned records, as in this example:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<Request xmlns="http://www.endeca.com/MDEX/conversation/1/0">

<State />
<Operator

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="RecordFilterOperator">
<RecordFilter Name="ProductLine">OR(OR(ProductLine:Road),OR(ProductLine:Mountain))
</RecordFilter>

</Operator>
<ContentElementConfig xsi:type="RecordListConfig"
HandlerFunction="RecordListHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
Id="RecordList" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<Column>ProductLine</Column>
<RecordsPerPage>5</RecordsPerPage>

</ContentElementConfig>
</Request>

</soap:Body>
</soap:Envelope>

Version 2.3.0 • June 2012 • Revision A

This example, as many other examples in this guide, is based on a sample data store representing bicycles,
their models, sellers, and other related information. In this example, a record filter is specified for records that
have a ProductLine attribute with a value of Mountain or Road. Only those records are returned as a
result of this request.

Examples with managed attribute values

You can use a record filter to perform a record query search so that only results tagged with a specified
managed attribute value are returned. For example, say you have a managed attribute hierarchy that looks
like this, where Sku is the managed attribute root and 123, 456, and 789 are leaf managed attribute values:

Sku
123
456
789
...

To perform a record query search so that results tagged with any of these managed attribute values are
returned, use the following:

Oracle® Endeca Server: Developer's Guide

Record Filters 82

OR(sku/123,OR(sku/456),OR(sku/789))

Version 2.3.0 • June 2012 • Revision A

To perform a record query search so that only results tagged with the managed attribute value 123 are
returned, use the following:

sku/123

Note that the / (forward slash) is used as the delimiter for managed attribute value paths.

Filtering data and non-data records
If you wish to perform some queries only against data records and other queries only against PDRs, or against
schema and configuration records, you can use the RecordKindOperator type to restrict records to a
particular kind.

The RecordKindOperator type contains the RecordKind element, which allows the following values:

Value Description

data Restricts records to actual data records that you load to the data
store.

properties Restricts records to those records that declare record attributes
(PDRs).

nondata Restricts records to those records that do not represent data
records, and instead represent all system records (PDRs, DDRs,
GCR), records that define groups, records that define
precedence rules (if any are created), records that define other
configuration, or records that define semantic entity definitions (if
any are created).

If you use this operator, you can restrict the State from which all other search and filtering operations in the
Endeca Server will be performed. It is useful to use the RecordKindOperator type in cases when you want to
issue subsequent queries only on a subset of records in the corpus, for example, only on those records that
represent actual data records.

The following example illustrates how to specify the record kind with the RecordKindOperator:

<ns:Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="ns:RecordKindOperator">

<ns:RecordKind>data</ns:RecordKind>
</ns:Operator>

If a record kind is specified, it is used in the State for the subsequent request, as shown in this abbreviated
example of the response:

<cs:Results xmlns:cs="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
<cs:Request>

<cs:State>
<ns3:RecordKind xmlns:ns2="http://www.endeca.com/MDEX/lql_parser/types"
xmlns:ns3="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
data

Oracle® Endeca Server: Developer's Guide

Record Filters 83

</ns3:RecordKind>
</cs:State>

</cs:Request>
</cs:Results>

Version 2.3.0 • June 2012 • Revision A

If a new record kind is specified, it replaces the one specified previously. Record kinds are not visible in the
user interface — they do not appear in breadcrumbs, for example. You can remove them from the State by
using a PopRecordKindOperator.

Record filter performance impact
Record filters can have an impact in some areas.

The evaluation of record filter expressions is based on the same technology that supports navigation queries
in the Dgraph(s) of the Oracle Endeca Server. Because of this, there is no additional cost associated with
using navigation attribute values in record filters.

Because expression evaluation is based on composition of information in the Oracle Endeca Server data files,
most expressions of moderate size (that is, tens of terms/operators) do not add significantly to request
processing time.

Furthermore, because the Dgraph process caches the results of record filter operations on an LRU (least
recently used) basis, the costs of expression evaluation are typically only incurred on the first use of a record
filter during a navigation session. However, some expected uses of record filters have known performance
bounds, which are described below.

Record filters can impact the following areas:

• Spelling auto-correction and spelling Did You Mean

• Expression evaluation

Interaction with spelling auto-correction and spelling DYM

Record filters impose an extra cost on spelling auto-correction and spelling Did You Mean.

Expression evaluation

Expression evaluation of large OR filters and large scale negation can impose a performance impact on the
system.

Because expression evaluation is based on composition of information stored in Oracle Endeca Server data
files, most expressions of moderate size (that is, tens of terms and operators) do not add significantly to
request processing time. Furthermore, because the Dgraph caches the results of record filter operations, the
costs of expression evaluation are typically only incurred on the first use of a filter during a navigation session.
However, some expected uses of record filters have known performance bounds, which are described in the
following two sections.

Large OR filters

One common use of record filters is the specification of lists of individual records to identify data subsets (for
example, custom part lists for individual customers, culled from a superset of parts for all customers).

Oracle® Endeca Server: Developer's Guide

Record Filters 84

The total cost of processing records can be broken down into two main parts: the parsing cost and the
evaluation cost. For large expressions such as these, XML parsing performance dominates total processing
cost.

XML parsing cost is linear in the size of the filter expression, but incurs a much higher unit cost than actual
expression evaluation. Though lightweight, expression evaluation exhibits non-linear slowdown as the size of
the expression grows.

OR expressions with a small number of operands perform linearly in the number of results, even for large
result sets. While the expression evaluation cost is reasonable into the low millions of records for large OR
expressions, parsing costs relative to total query execution time can become too large, even for smaller
numbers of records.

Part lists beyond approximately one hundred thousand records generally result in unacceptable performance
(10 seconds or more load time, depending on hardware platform). Lists with over one million records can take
a minute or more to load, depending on hardware. Because results are cached, load time is generally only an
issue on the first use of a filter during a session. However, long load times can cause other Dgraph requests
to be delayed and should generally be avoided.

Large-scale negation

In most common cases, where the NOT operator is used in conjunction with other positive expressions (that
is, AND with a positive attribute value), the cost of negation does not add significantly to the cost of expression
evaluation.

However, the costs associated with less typical, large-scale negation operations can be significant. For
example, while still sub-second, top-level negation filtering (such as "NOT availability=FALSE") of a record set
in the millions does not allow high throughput (generally less than 10 operations per second).

If possible, attempt to rephrase expressions to avoid the top-level use of NOT in Boolean expressions. For
example, in the case where you want to list only available products, the expression "availability=TRUE" will
yield better performance than "NOT availability=FALSE".

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Chapter 12

Using Range Filters

You can use range filters for navigation queries.

About range filters

Supported attribute types

Implementing range filters in Studio

Implementing range filters with the API

Performance impact for range filters

About range filters
Range filters allow a user, at request time, to specify an arbitrary, dynamic range of values that are then used
to limit the records returned for a navigation query.

The remaining refinement values for the records in the result set are also returned. For example, a range filter
would be used if a user were querying for bicycle gloves within a price range, say between $10 and $40.

It is important to remember that, similar to record search, range filters are simply modifiers for a navigation
query. The range filter acts in the same manner as an attribute value, even though it is not a specific system-
defined attribute value.

Only records returned by the basic navigation request are considered when evaluating the range filter. You
can use a range filter in a query on any of the record attributes.

Supported attribute types
Range filters can be applied to either standard attributes or managed attributes of the following supported
types.

• Standard attributes of type Numeric (Integer, Long, Double, dateTime), type Geocode, or type Boolean

• Managed attributes of type Numeric that contain only Integer or Floating point values

For values of attributes of type Double, you can specify values using both decimal (0.00...68), and scientific
notation (6.8e-10).

For standard attributes of type Boolean, false is interpreted to be less than true. If isOdd is a Boolean
attribute, a query of isOdd|LTEQ false will return all records with assignments of false on attribute isOdd.
Likewise, isOdd|BTWN false true will return all records with any assignment on isOdd.

No Dgraph process configuration flags are necessary to enable range filters. All numeric standard attributes
and managed attributes and all geocode standard attributes are automatically enabled for use in range filters.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using Range Filters 86

Implementing range filters in Studio
To use range filters in a Studio application, you must add a Range Filters component and configure at least
one attribute.

After adding the Range Filters component, you can configure the component to select the attributes to be
used for range filter queries.

For detailed information on using Studio, see the Oracle Endeca Information Discovery Studio User's Guide.

Implementing range filters with the API
This section describes how to issue range filter queries using the Conversation Web Service.

For additional information on the Conversation Web Service interface, see the Oracle Endeca Server API
Reference.

Operator for range filters
A range filter search requires a RangeFilterOperator with a Search type.

The syntax for a RangeFilterOperator is shown in this example for a geocode range filter:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<Request xmlns="http://www.endeca.com/MDEX/conversation/1/0">

<State />
<Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:type="RangeFilterOperator">
<RangeFilter AttributeName="Location">

<LowerBound Inclusive="false">10</LowerBound>
<UpperBound Inclusive="false">20</UpperBound>
<GeocodeReferencePoint Latitude="+42.365615"

Longitude="-71.075647"/>
</RangeFilter>

</Operator>
...
</Request>

</soap:Body>
</soap:Envelope>

Version 2.3.0 • June 2012 • Revision A

The meanings of the RangeFilter elements and attributes are as follows:

RangeFilter Attribute Meaning

AttributeName The name of a standard attribute of type numeric or geocode, or of a
managed attribute of type numeric on which range filtering will be
performed. Only a single standard or managed attribute can be
specified per range filter.

LowerBound A numeric value that is the lower value of the range to search.

UpperBound A numeric value that is the upper value of the range. This value must
be equal to or greater than the lower value.

Oracle® Endeca Server: Developer's Guide

Using Range Filters 87

RangeFilter Attribute Meaning

Inclusive A Boolean that determines whether the values for the lower and/or
upper bounds are excluded (false) or included (true) in the range.
Note that geocode filters support only exclusive bounds.

GeocodeReferencePoint Specifies latitude and longitude values for a geocode range filter.

Note: Multiple range filters can be applied to the same attribute. The results will include the
intersection of the result sets of each range filter.

Less-than range filter format
The UpperBound element lets you make less-than range filter queries.

To make a less-than query, use only the UpperBound element. Because you are specifying only the upper
bound of the range, all returned records will fall below this bound (i.e., be less than the upper bound).

In addition, the Inclusive attribute determines whether the specified value is included in the range:

• If Inclusive is set to false, the value for the UpperBound element is exclusive. That is, the specified
value for the UpperBound element is not included in the range.

• If Inclusive is set to true, the value for the UpperBound element is inclusive.

The default for the Inclusive attribute is false (that is, if you omit the attribute, the query will work as if you
had specified false for this attribute).

Less-than example

The following is an example of an inclusive less-than query:

<cs:Request xmlns="http://www.endeca.com/MDEX/conversation/1/0">
<cs:State/>
<cs:Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:type="RangeFilterOperator">
<cs:RangeFilter AttributeName="ListPrice">

<cs:UpperBound Inclusive="true">250</cs:UpperBound>
</cs:RangeFilter>

</cs:Operator>
<cs:ContentElementConfig xsi:type="RecordListConfig"

HandlerFunction="RecordListHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
Id="RecordList"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" />

</cs:Request>

Version 2.3.0 • June 2012 • Revision A

This example returns all items whose price is up to, and including, $250.

In the example, if Inclusive had been set to false, the query would return all items whose price is up to,
but not including, $250.

Oracle® Endeca Server: Developer's Guide

Using Range Filters 88

Greater-than range filter format
The LowerBound element lets you make greater-than range filter queries.

To make a greater-than query, use only the LowerBound element. Because you are specifying only the lower
bound of the range, all returned records will be above this bound (i.e., be greater than the lower bound).

In addition, the Inclusive attribute determines whether the specified value is included in the range:

• If Inclusive is set to false, the value for the LowerBound element is exclusive. That is, the specified
value for the UpperBound element is not included in the range.

• If Inclusive is set to true, the value for the LowerBound element is inclusive.

The default for the Inclusive attribute is false (that is, if you omit the attribute, the query will work as if you
had specified false for this attribute).

Greater-than example

The following is an example of an inclusive greater-than query against a bicycle data set:

<cs:Request xmlns="http://www.endeca.com/MDEX/conversation/1/0">
<cs:State/>
<cs:Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:type="RangeFilterOperator">
<cs:RangeFilter AttributeName="Score">

<cs:LowerBound Inclusive="true">90</cs:LowerBound>
</cs:RangeFilter>

</cs:Operator>
<cs:ContentElementConfig xsi:type="RecordListConfig"

HandlerFunction="RecordListHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
Id="RecordList"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" />

</cs:Request>

Version 2.3.0 • June 2012 • Revision A

This example returns all bicycles whose rating score is 90 and above, including those with a score of 90.

In the example, if Inclusive had been set to false, the query would include all bicycles whose rating score
is greater than 90, but would not include bicycles with a score of 90.

Between range filter format
Use both UpperBound and LowerBound elements to construct between range filter queries.

A between range filter query returns records with a standard or managed attribute value of type numeric that
falls between a lower bound (the LowerBound element) and an upper bound (the UpperBound element).

Between range filters must be inclusive. Therefore, the Inclusive attribute for both bound elements must be
set to true, as shown in the example below.

Between example

The following is an example of a between range filter query:

<cs:Request xmlns="http://www.endeca.com/MDEX/conversation/1/0">
<cs:State/>
<cs:Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:type="RangeFilterOperator">
<cs:RangeFilter AttributeName="Price">

Oracle® Endeca Server: Developer's Guide

Using Range Filters 89

<cs:LowerBound Inclusive="true">100</cs:LowerBound>
<cs:UpperBound Inclusive="true">250</cs:UpperBound>

</cs:RangeFilter>
</cs:Operator>
<cs:ContentElementConfig xsi:type="RecordListConfig"

HandlerFunction="RecordListHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
Id="RecordList"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" />

</cs:Request>

Version 2.3.0 • June 2012 • Revision A

This example returns all bicycles whose price is between $100 and $250. Because both bound elements are
inclusive, the returned records include bicycles that cost $100 and $250.

Geocode range filter format
When used with a standard attribute of type geocode, the GeocodeReferencePoint element indicates a
range filter based on the distance of that geocode attribute from a given reference point.

The syntax for a geocode range filter is shown in this snippet sample from the request:

<cs:Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="RangeFilterOperator">

<cs:RangeFilter AttributeName="Location">
<cs:LowerBound>0</cs:LowerBound>
<cs:UpperBound>20</cs:UpperBound>
<cs:GeocodeReferencePoint Latitude="+42.365615"

Longitude="-71.075647"/>
</cs:RangeFilter>
</cs:Operator>
...

</cs:Request>

The meanings of the RangeFilter elements and attributes are described in the following table:

RangeFilter Geocode Attribute Meaning

AttributeName The name of a standard attribute of type geocode. Only one
standard attribute of type geocode can be specified per range
filter.

LowerBound Used to specify a greater-than distance (in kilometers) from the
geocode attribute to the reference point.

UpperBound Used to specify a less-than distance (in kilometers) from the
geocode attribute to the reference point. Note that the range
filter must contain at least one of the boundary elements.

GeocodeReferencePoint Uses the Latitude and Longitude attributes to specify a
reference point for range filtering of geocode attributes.

Latitude The latitude of the location in whole and fractional degrees
(positive values indicate north latitude and negative values
indicate south latitude).

Oracle® Endeca Server: Developer's Guide

Using Range Filters 90

RangeFilter Geocode Attribute Meaning

Longitude The longitude of the location in whole and fractional degrees
(positive values indicate east longitude and negative values
indicate west longitude).

Note the following about geocode range filters:

• Distance limits (specified via the LowerBound and UpperBound elements) are exclusive. This means
that you cannot use the Inclusive attribute set to true for these two elements. Because the
Inclusive default is false, you can omit this attribute for geocode range filters.

• Geocode range filters must contain at least one of the bound elements.

• Distance limits in range filters are always expressed in kilometers.

The records are filtered by the distance from the filter key to the latitude/longitude pair.

Between geocode range filters
Use both UpperBound and LowerBound elements to indicate that the distance from the geocode attribute to
the reference point is between the two bounds. The example at the beginning of this topic returns only records
whose location (in the Location property) is between 0 and 20 miles from the reference point.

Less-than geocode range filters
If only the UpperBound element is used, the distance from the geocode attribute to the reference point will be
less than the given amount. For example:

<Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="RangeFilterOperator">

<RangeFilter AttributeName="Location">
<UpperBound>20</UpperBound>
<GeocodeReferencePoint Latitude="+42.365615"

Longitude="-71.075647"/>
</RangeFilter>
</Operator>

Version 2.3.0 • June 2012 • Revision A

This sample query returns all records whose location is less than 20 miles from the reference point.

Greater-than geocode range filters
If only the LowerBound element is used, the distance from the geocode attribute to the reference point will be
greater than the given amount. For example:

<Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="RangeFilterOperator">

<RangeFilter AttributeName="Location">
<LowerBound>20</LowerBound>
<GeocodeReferencePoint Latitude="+42.365615"

Longitude="-71.075647"/>
</RangeFilter>

</Operator>

This sample query returns all records whose location is greater than 20 miles from the reference point.

Oracle® Endeca Server: Developer's Guide

Using Range Filters 91

Removing range filter operators
The PopRangeFilterOperator removes a range filter component from the state.

The syntax of this operator is:

<Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="PopRangeFilterOperator">
<RangeFilter AttributeName="ListPrice" />

</Operator>

Version 2.3.0 • June 2012 • Revision A

The AttributeName attribute is the name of the numeric or geocode attribute for which a range filter
component had been used.

If the call is successful, the following Results component is returned:

<cs:Results xmlns:cs="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
<cs:Request>

<cs:State/>
</cs:Request>

</cs:Results>

The empty State element shows that the range filter component was successfully removed.

Rendering the range filter results

The results of a range filter request can be rendered in the front-end application's user interface similar to any
other navigation request.

Because a range filter request is simply a variation of a basic navigation request, rendering the results of a
range filter request is identical to rendering the results of a navigation request.

Note, however, that there are no API components to access a list of valid range filter attributes. This is
because the attributes do not need to be explicitly identified as valid for range filters in the same way that they
need to be explicitly identified as valid for record search. Therefore, specific standard and managed attributes
that a user is allowed to filter against must be correctly identified as having the type numeric or geocode in the
data store.

Examples of range filter parameters

This topic shows some valid examples of range filter queries.

Consider the following examples that use these four records:

Record Product line managed attribute ListPrice attribute
value

1 Mountain (Value 101) 200

2 Mountain (Value 101) 275

3 Road (Value 102) 175

4 Other (Value 103) 150

Oracle® Endeca Server: Developer's Guide

Using Range Filters 92

Example 1

Assume that the following query is created:

<cs:Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="RangeFilterOperator">

<cs:RangeFilter AttributeName="ListPrice">
<cs:LowerBound Inclusive="true">200</cs:LowerBound>

</cs:RangeFilter>
</cs:Operator>

Version 2.3.0 • June 2012 • Revision A

This request has a range filter specifying the ListPrice attribute should be greater than 200 (with no managed
attribute values specified). The following objects are returned:

• 2 records (records 1 and 2)

Example 2

This example uses the following query:

<cs:Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="RangeFilterOperator">

<cs:RangeFilter AttributeName="Mountain">
<cs:UpperBound Inclusive="true">250</cs:UpperBound>

</cs:RangeFilter>
</cs:Operator>

This request specifies the Mountain value (value 101) and a range filter specifying a price less than 250. The
following objects are returned:

• 1 record (record 1)

• (No additional refinements)

Example 3

This query:

<cs:Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="RangeFilterOperator">

<cs:RangeFilter AttributeName="ListPrice">
<cs:LowerBound Inclusive="false">140</cs:LowerBound>
<cs:UpperBound Inclusive="false">180</cs:UpperBound>

</cs:RangeFilter>
</cs:Operator>

would return records 3 and 4 from the sample record set.

Performance impact for range filters
Range filters impact the Dgraph response times, but not memory usage.

This feature does not impact the amount of memory needed by the Dgraph. However, because the feature is
evaluated entirely at request time, the Dgraph process response times are directly related to the number of
records being evaluated for a given range filter request. You should test your application to ensure that the
resulting performance is compatible with the requirements of the deployment.

Oracle® Endeca Server: Developer's Guide

Part IV

Working with Refinements, Breadcrumbs,
and Groups

Chapter 13

Working with Refinements

This chapter provides information on handling and displaying refinements in your Web application.

About refinements

Displaying refinements in Studio

Configuring managed attributes for query refinement

Configuring the global order of refinements

Configuring refinement counts

About multi-select attributes

About externally managed attributes

Working with refinements using the API

Performance impact for displaying refinements

Performance impact of refinement ordering

Performance impact of refinement counts

About refinements
Endeca standard and managed attributes are known as refinements. Refinements can be used for navigation
and search — when you select a specific refinement, you refine your result set.

Refinements contain refinement attribute values for the current record set. The attribute values for refinements
are derived from both standard and managed attributes.

Standard and managed attributes are similar in that they both:

• Support navigation.

• Are usually generated from a record’s source attributes.

• Consist of key/value pairs (standard attribute name/standard attribute value, managed attribute
name/managed attribute value).

• Can be searched and displayed using their display names.

• Can have a multi-level hierarchy.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Working with Refinements 95

Displaying refinements in Studio
Each component that is affected by the Guided Navigation component uses refinements and information
received from refinements computation, such as the order of refinements or a number of refinements for a
given attribute.

For additional information on configuring Studio components that use refinement information, including the
Guided Navigation component, see the Oracle Endeca Information Discovery Studio User's Guide.

Configuring managed attributes for query refinement
You must configure a managed attribute for query refinement.

In the managed attribute's DDR (Dimension Description Record), the mdex-
dimension_EnableRefinements attribute must be set to true, so that refinements will be displayed. If the
configuration attribute is set to false, refinements will not be displayed (i.e., the managed attribute will be
hidden).

If a managed attribute is created and used to classify records, but no records are classified with any
corresponding values, that managed attribute will not be available as a refinement, because it is not related to
the resulting record set in any way.

Notes

No configuration is needed for standard attributes. Assuming that the standard attribute is used to classify
records, the corresponding refinement values will be available to create or refine a query.

There are no Dgraph configuration flags necessary to enable the basic displaying of refinements.

Configuring the global order of refinements
You configure the global order for the values of a refinement by sending this configuration request to the
Oracle Endeca Server with the Configuration Web Service, or by using Integrator.

The system-navigation_Sorting attribute in the PDR for the selected attribute controls the global order
of values in a refinement. This attribute can have the following values:

• record-count sorts refinement values in descending order, by the number of records available for each
refinement. This is the default.

• lexical sorts refinement values in alphabetical or numeric order. For example, if the end user in the front-
end application chooses the values Red (15 records), Green (25 records), and Blue (5 records), then if the
sorting is lexical, the values are displayed in this order: Blue (5 records), Green (25 records) Red (15
records).

For information on the Configuration Web Service, see the section in this guide and the Oracle Endeca Server
API Reference.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Working with Refinements 96

For information on how to configure the global order of refinements in Integrator, see the Oracle Endeca
Information Discovery Integrator Components Guide.

Configuring refinement counts
You configure whether to show record counts for an attribute by changing the value in the system-
navigation_ShowRecordCounts attribute in the PDR, using either the Configuration Web Service or
Integrator.

The system-navigation_ShowRecordCounts attribute in the PDR specifies whether to show record
counts for a refinement. The valid settings for this attribute are:

• true means that record counts are enabled and will display. This is the default.

• false means that record counts are disabled and will not be displayed.

About multi-select attributes
A multi-select attribute is an attribute that can be present on records multiple times, with different values, in a
single navigation state.

There are two forms of multi-select attributes:

• If the navigation state contains multiple values from a multi-select-and attribute, then all of the records in
that state contain all of the selected values for that attribute.

• If the navigation state contains multiple values from a multi-select-or attribute, then all of the records in
that state contain at least one of the selected values.

This has consequences for the refinements that the Dgraph process of the Oracle Endeca Server generates
as well as the navigation state: the Dgraph allows you to select additional values for a multi-select attribute.

In the Dgraph, you can configure an attribute as multi-select by changing the values of the system-
navigation_Select attribute on the Property Description Record for this attribute.

The multi-select feature is only fully supported for those attributes (standard or managed) that do not contain a
hierarchy.

Configuring multi-select attributes
You configure whether an attribute is multi-select by changing the value in the system-
navigation_Select attribute of a PDR, using the Configuration Web Service or Integrator.

The system-navigation_Select attribute of a PDR can have the following settings:

• multi-and configures the attribute as a multi-select AND attribute. This means that a current navigation
state represents the intersection of the records returned from the multiple selections of values on that
attribute.

• multi-or configures the attribute as a multi-select OR attribute. This means that a current navigation state
represents the union of the records returned from the multiple selections of values on that attribute.

• single configures the attribute as a single-select attribute. This means that only one value can be selected
for an attribute at a time. This is the default.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Working with Refinements 97

Handling multi-select attributes in an application

The behavior of multi-select attributes may require changes in the UI.

The fact that an attribute is tagged as multi-select should be transparent to the application developer. There is
no special development required to enable multi-select attributes, and there are no query parameters that are
specific to multi-select attributes.

However, the semantics of how the Dgraph process of the Oracle Endeca Server interprets navigation queries
and returns available refinements changes once an attribute is tagged as multi-select. After tagging an
attribute as multi-select, the Dgraph allows multiple attribute values from the same attribute to be added to the
navigation state.

The Dgraph process behaves differently for the two types of multi-select managed attributes:

• Multi-select AND managed attributes. The Dgraph treats the list of attribute values selected from a
multi-and attribute as a Boolean AND operation. That is, it will return all records that satisfy the Boolean
AND of all the attribute values selected from a multi-and attribute (that is, all records that have been
tagged with "Apple" AND "Apricot"). The Dgraph process will also continue to return refinements for a
multi-and attribute. The list of available refinements will be the set of attribute values that have not been
chosen, and are still valid refinements for the results.

• Multi-select OR managed attributes. A multi-or managed attribute is analogous to a multi-and
attribute, except that a Boolean OR operation is performed instead (that is, all records that have been
tagged with "Apple" OR "Apricot"). The Dgraph process will always return all attribute values for a multi-
or attribute that have not already been selected – the set of refinements does not correlate to the set of
remaining records. Also note that as more multi-or attribute values are added to the navigation state,
the set of record results gets larger instead of smaller, because adding more terms to an OR expands the
set of results that satisfy the query.

Avoiding dead-end query results
Be careful when rendering the selected managed attribute values of multi-or managed attributes. It is
possible to create an interface that might result in dead ends when removing selected attribute values.

Consider this example: Managed attribute Alpha has been flagged as multi-or, and contains values 1 and
2. Attribute Beta contains value 3.

Assume the user’s current query contains all three values. The user’s current navigation state would represent
the query:

"Return all records tagged with (1 or 2) and 3"

Version 2.3.0 • June 2012 • Revision A

If the user then removes one of the values from Attribute Alpha, a dead end could be reached. For example, if
the user removes value 1, the new query becomes:

"Return all records tagged with 2 and 3"

This could result in a dead end if no records are tagged with both value 2 and 3.

Due to this behavior, it is recommended that the UI be designed so that the user must be forced to remove all
values from a multi-or managed attribute when making changes to the list of selected attribute values.

Performance impact for multi-select managed attributes

Tagging an attribute as multi-select does not affect performance. However, when making decisions about
when to tag an attribute as multi-select, keep the following in mind: Users will take longer to refine the list of

Oracle® Endeca Server: Developer's Guide

Working with Refinements 98

results, because each selection from a multi-select managed attribute still allows for further refinements within
that attribute. Also, refinements for multi-or attribute are more expensive.

Refinement counts for multi-or refinements

Refinement counts on a standard refinement that is multi-or indicate how many records in the result set will be
tagged with the refinement if you select it. When there are no selections made yet, the refinement count
equals the total number of records in the result set if that refinement were selected. However, for subsequent
refinements, the refinement count may differ from the total results set.

Consider the following example which illustrates this use case. A cuisine refinement is configured as multi-
or. In the data set, there are 2 records that have assignments only to a Chinese attribute, and 3 records that
have assignments only to a Japanese attribute. There is also 1 record that has assignments on both of these
attributes.

When the user requests Chinese or Japanese as refinements during navigation, the resulting record list
includes all 6 records, out of which 2 have only Chinese attribute, 3 have only Japanese attribute, and 1 has
both:

Records Assignment on a Chinese attribute Assignment on a Japanese attribute

1 x

2 x

3 x x

4 x

5 x

6 x

If the user first selects only Chinese, the navigation state shows that there is one remaining follow-on
refinement (Japanese) with the refinement count of 4 records (3 with only Japanese assignment on a
attribute and 1that has both Chinese and Japanese attribute assignments on them). When the user
navigates on that refinement, the resulting record list includes all 6 records. This illustrates that a record count
for a Japanese refinement shows the number of records (4) tagged with that refinement, within the entire
record set (6).

About externally managed attributes
Web applications powered by the Oracle Endeca Server can use managed attributes created with a taxonomy
management tool.

You can also import or otherwise access externally managed attributes. For details on loading these attributes,
see the "Adding New Records" chapter in the Oracle Endeca Server Data Loading Guide.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Working with Refinements 99

Working with refinements using the API
This section provides examples of Conversation Web Service requests and responses that let you retrieve
various aspects of the refinement configuration — refinements themselves, their order, counts, and special
types of refinements, such as those that are multi-select.

Retrieving refinements with the API

Displaying standard and managed attribute refinement values is the core concept behind Guided Navigation.

The complex type PropertyListConfig returns a list of all available attributes in the system. It contains an
element Property, which includes pertinent information about an attribute including its key, display name,
and other options. The PDR (and DDR, if present) is included for those clients of the Conversation Web
Service that prefer to read descriptor records directly.

The following example request illustrates how to obtain a list of attributes:

<ns:Request>
<ns:ContentElementConfig
Id="AttributeList" xsi:type="ns:PropertyListConfig"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
HandlerFunction="PropertyListHandler"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
</ns:ContentElementConfig>

</ns:Request>

Version 2.3.0 • June 2012 • Revision A

Such a request returns information that describes all attributes, and includes all characteristics of the
attributes.

The following example shows the characteristics of the managed attribute ProductCategory. Using this
output, you can view the values of PDRs and DDRs for the attribute ProductCategory, indicating whether
the attribute is searchable, and specifying other characteristics contained in the PDR and DDR for this
managed attribute:

<cs:Property Key="ProductCategory" Type="mdex:string" Dimension="true"
DisplayName="Product Category" Refinable="true">

<cs:PropertyRecord>
<mdex-property_DisplayName type="mdex:string">Product Category</mdex-property_DisplayName>
<mdex-property_IsPropertyValueSearchable type="mdex:boolean">false<

/mdex-property_IsPropertyValueSearchable>
<mdex-property_IsSingleAssign type="mdex:boolean">false</mdex-property_IsSingleAssign>
<mdex-property_IsTextSearchable type="mdex:boolean">false</mdex-property_IsTextSearchable>
<mdex-property_IsUnique type="mdex:boolean">false</mdex-property_IsUnique>
<mdex-property_Key type="mdex:string">ProductCategory</mdex-property_Key>
<mdex-property_TextSearchAllowsWildcards type="mdex:boolean">false<

/mdex-property_TextSearchAllowsWildcards>
<mdex-property_Type type="mdex:string">mdex:string</mdex-property_Type>
<system-navigation_Select type="mdex:string">single</system-navigation_Select>
<system-navigation_ShowRecordCounts type="mdex:boolean">true<

/system-navigation_ShowRecordCounts>
<system-navigation_Sorting type="mdex:string">lexical</system-navigation_Sorting>

</cs:PropertyRecord>
<cs:DimensionRecord>
<mdex-dimension_EnableRefinements type="mdex:boolean">true</mdex-dimension_EnableRefinements>
<mdex-dimension_IsDimensionSearchHierarchical type="mdex:boolean">false<

/mdex-dimension_IsDimensionSearchHierarchical>
<mdex-dimension_IsRecordSearchHierarchical type="mdex:boolean">false<

/mdex-dimension_IsRecordSearchHierarchical>
<mdex-dimension_Key type="mdex:string">ProductCategory</mdex-dimension_Key>

</cs:DimensionRecord>
</cs:Property>

Oracle® Endeca Server: Developer's Guide

Working with Refinements 100

In addition, after a user creates a query using record and/or value search, only valid remaining refinement
values are provided to the user to refine that query. This allows the user to reduce the number of matching
records without creating an invalid query.

To display refinements (standard and managed attributes), they need to be requested, that is, included in the
Conversation Web service request that describes the navigation menu. If the refinements belong to a group,
this group needs to be requested.

The following example shows the request in which a group of refinements is requested. This example
assumes that the group Sales-Transaction exists and includes the refinements (attributes)
CustomerPONumber, OrderQuantity, and UnitPrice:

<Request xmlns="http://www.endeca.com/MDEX/conversation/1/0">
<State/>
<ContentElementConfig xsi:type="NavigationMenuConfig"
Id="NavigationMenu"
HandlerFunction="NavigationMenuHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<RefinementGroupConfig Name="Sales-Transaction" Expose="true"/>

</ContentElementConfig>
</Request>

Version 2.3.0 • June 2012 • Revision A

These refinements will be returned along with the group Sales Transaction in which they are included.

If you would like to retrieve refinements that are not explicitly included in any user-configured groups, you can
request a group system-navigation_InternalGroup. This group exists in the Oracle Endeca Server and
includes all refinements that are not members of any other groups.

Refinements configuration format

Use the RefinementConfig element of the Conversation Web service request to expose refinement values for
standard and managed attributes.

The RefinementConfig element of the Conversation Web service request specifies which managed or
standard attribute, out of all valid attributes returned with a navigation query, should return actual refinement
values. Note that only the top-level refinement values are returned.

For managed attributes, if a managed attribute value is a parent, you can also use the RefinementConfig

element with that managed attribute value and return its child attribute values (again, only the top-level child
attribute values are returned).

The RefinementConfig element is included in the RefinementGroupConfig. This parent element returns
refinements for groups.

RefinementConfig format
The basic RefinementConfig format is shown in this example:

<RefinementConfig
Name="OrderQuantity"
Spec="/"
Expose="false"
OrderByRecordCount="false"
MaximumCount="100">

</RefinementConfig>

Oracle® Endeca Server: Developer's Guide

Working with Refinements 101

The descriptions of the attributes are:

Attribute Description

Name Required. The name of the standard or managed attribute value.
Specifying a root value name of the managed attribute is the same as
specifying a name of the managed attribute.

Spec Optional. The standard or managed attribute value spec. For a
hierarchical managed attribute, refinements will be returned for any
child managed attribute values of this spec.

Expose Optional. Specify false (the default) to just show the root refinement,
or true to expose refinements.

OrderByRecordCount Optional. Specify true to use dynamic ranking to order by record
count, or false (the default) to use the default order from the Oracle
Endeca Server.

MaximumCount Optional. An integer that specifies a maximum limit on the number of
refinements returned per standard or managed attribute.

If this setting is not specified, the number of refinements returned per
attribute in the Conversation Web Service response is dictated by a
value specified in the MaximumRefinementCount attribute in the
NavigationMenuConfig element in the Conversation Web Service
request. Further, if that value is not specified, the default is 10.

The RefinementConfig element is used in a NavigationMenuConfig element, as in this example. It exposes
refinement values for the OrderQuantity attribute that is part of the group Sales-Transaction:

<Request xmlns="http://www.endeca.com/MDEX/conversation/1/0">
<State/>
<ContentElementConfig xsi:type="NavigationMenuConfig"
Id="NavigationMenu"
HandlerFunction="NavigationMenuHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<RefinementGroupConfig Name="Sales-Transaction" Expose="true">
<RefinementConfig Name="OrderQuantity" Expose="true" MaximumCount="100" />

</RefinementGroupConfig>
</ContentElementConfig>

</Request>

Version 2.3.0 • June 2012 • Revision A

Note that you can use multiple RefinementConfig elements in a RefinementGroupConfig.

Notes on RefinementConfig
Keep in mind that the RefinementConfig element is an optional query parameter. However, attributes for
which RefinementConfig is not included will not return refinements. The Expose attribute is also optional and
defaults to false. Expose="false" helps improve performance.

For example, in a simple data set with three attributes in a user-defined group "Sales-Characteristics", the
query:

<Request xmlns="http://www.endeca.com/MDEX/conversation/1/0">

Oracle® Endeca Server: Developer's Guide

Working with Refinements 102

<State/>
<ContentElementConfig xsi:type="NavigationMenuConfig"

Id="NavigationMenu"
HandlerFunction="NavigationMenuHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<RefinementGroupConfig Name="Sales-Characteristics" Expose="false"/>
</ContentElementConfig>
</ContentElementConfig>

</Request>

Version 2.3.0 • June 2012 • Revision A

will return all attributes in the group but no refinement values. This is faster for the Oracle Endeca Server to
compute, and returns only root values.

However, this query for the ProductType managed attribute:

<Request xmlns="http://www.endeca.com/MDEX/conversation/1/0">
<State/>
<ContentElementConfig xsi:type="NavigationMenuConfig"

Id="NavigationMenu"
HandlerFunction="NavigationMenuHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<RefinementGroupConfig Name="Sales-Characteristics" Expose="true"/>
<RefinementConfig Name="ProductType" Expose="true" />
</ContentElementConfig>

</Request>

will return all three managed attributes (since they are included in the Sales-Characteristics group), as well as
the top-level refinement attribute values for the ProductType managed attribute. This is slightly more
expensive for the Oracle Endeca Server to compute, and returns the three root managed attribute values as
well as the top-level managed attribute values for ProductType, but is necessary for selecting a valid
refinement.

A more advanced query option returns all the top-level managed attribute value refinements for all attributes
requested (instead of a single attribute). This option involves setting the ExposeAllRefinements attribute to
true. If an application sets this attribute to true, the query:

<Request xmlns="http://www.endeca.com/MDEX/conversation/1/0">
<State/>
<ContentElementConfig xsi:type="NavigationMenuConfig"

HandlerFunction="NavigationMenuHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
Id="NavigationMenu"
ExposeAllRefinements="true"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<RefinementGroupConfig Name="Sales-Characteristics" Expose="true"/>
</ContentElementConfig>

</Request>

will return three managed attributes, as well as all valid top-level managed attribute values for each of these
attributes.

This is the equivalent of the query:

<Request xmlns="http://www.endeca.com/MDEX/conversation/1/0">
<State/>
<ContentElementConfig xsi:type="NavigationMenuConfig"

Id="NavigationMenu"
HandlerFunction="NavigationMenuHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<RefinementGroupConfig Name="Sales-Characteristics" Expose="true">
<RefinementConfig Name="UnitPrice" Expose="true" />
<RefinementConfig Name="OrderQuantity" Expose="true" />
<RefinementConfig Name="CustomerPONumber" Expose="true" />
</RefinementGroupConfig>

Oracle® Endeca Server: Developer's Guide

Working with Refinements 103

</ContentElementConfig>
</Request>

Version 2.3.0 • June 2012 • Revision A

This is the most expensive type of query for the Oracle Endeca Server to compute, and returns three root
managed attribute values as well as all the top-level managed attribute values, creating a larger network and
page size strain. This method, however, is effective for creating custom navigation solutions that require all
possible refinement values to be displayed at all times.

Retrieving managed attributes that have refinements

The first step in displaying refinements is to retrieve those managed attributes that potentially have
refinements.

Types of refinements

Refinement attributes contain attribute values for the current data store, including both standard refinements
and implicit refinements.

• Standard refinements refine the result set when selected.

• Implicit refinements are managed attribute values that are assigned to all records in the current result set
and whose selection, therefore, does not narrow the results.

Retrieving standard and implicit refinements
Refinements (both standard and implicit) are returned in a NavigationMenu content element, that in turn
contains aNavigationMenuItemGroup element with NavigationMenuItem elements for each managed
attribute with refinements.

This example shows the NavigationMenuItem element for the managed attribute:

<cs:NavigationMenuItem
Name="WineType"
Display Name="Wine Type"
MultiSelect="Or" HasMore="false">
<cs:ExposureControl Exposed="true">
<cs:Operator
OwnerId="NavMenu" xsi:type="cs:RefinementHideOperator"
Name="Perfect"
Spec="/"
Group="Wine Characteristics"/>

</cs:ExposureControl>
<cs:Refinement Name="Red" Spec="/Red" Label="Red" Count="40">

<cs:Operator xsi:type="cs:RefinementOperator" Name="Red" Spec="/Red"/>
</cs:Refinement>
<cs:Refinement Name="White" Spec="/White" Label="White" Count="50">

<cs:Operator xsi:type="cs:RefinementOperator" Name="White" Spec="/White"/>
</cs:Refinement>
<cs:RootDimensionValue DimensionName="Sparkling" Spec="/"/>

</cs:NavigationMenuItem>

Each refinement is returned in a Refinement element, as shown in this example for the Red managed
attribute value:

<cs:Refinement Name="Red" Spec="/Red" Label="Red" Count="18">
<cs:Operator xsi:type="cs:RefinementOperator" Name="Red" Spec="/Red"/>

</cs:Refinement>

The Count element indicates that eighteen records would be in the result set if you were to refine on this
attribute value.

Oracle® Endeca Server: Developer's Guide

Working with Refinements 104

Creating a new query from refinement attribute values

Once refinement values have been retrieved, these values typically are used to create additional refinement
navigation queries.

First, consider this request in which the WineType refinement is requested and exposed:

<Request xmlns="http://www.endeca.com/MDEX/conversation/1/0">
<State/>
<ContentElementConfig xsi:type="NavigationMenuConfig"
Id="NavigationMenu"
HandlerFunction="NavigationMenuHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<RefinementGroupConfig Name="Wine Characteristics" Expose="true">
<RefinementConfig Name="WineType" Expose="true"/>
</RefinementGroupConfig>

</ContentElementConfig>
</Request>

Version 2.3.0 • June 2012 • Revision A

It returns the following query results. Notice that the query results show the WineType refinement and the
refinement values on it — White and Sparkling.

<cs:Results xmlns:cs="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
<cs:Request>
<State xmlns="http://www.endeca.com/MDEX/conversation/1/0">
<ContentElementConfig xsi:type="NavigationMenuConfig"

Id="NavigationMenu"
HandlerFunction="NavigationMenuHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
xmlns="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<RefinementGroupConfig Name="Wine Characteristics" Expose="true">
<RefinementConfig Name="WineType" Expose="true"

xmlns:ns="http://www.endeca.com/MDEX/conversation/1/0">
</RefinementGroupConfig>

</ContentElementConfig>
</cs:Request>
<cs:ContentElement xsi:type="cs:NavigationMenu" Id="NavigationMenu"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<cs:NavigationMenuItemGroup Name="Wine Characteristics"
HasRefinablePRoperties="true">
<cs:NavigationMenuItem Name="WineType" DisplayName="WineType"
MultiSelect="Or" HasMore="false">

<cs:ExposureControl Exposed="true">
<cs:Operator OwnerId="NavigationMenu"
xsi:type="cs:RefinementHideOperator"

Name="WineType"
Spec="/"
Group="Wine Characteristics"/>

</cs:ExposureControl>
<cs:Refinement Name="WineType" Spec="/Red" Label="Red"
Count="18">
<cs:Operator xsi:type="cs:RefinementOperator"
Name="WineType" Spec="/Red"/>

</cs:Refinement>
<cs:Refinement Name="WineType" Spec="/White" Label="White"
Count="40">
<cs:Operator xsi:type="cs:RefinementOperator"
Name="WineType" Spec="/Red"/>

</cs:Refinement>
<cs:Refinement Name="WineType" Spec="/Sparkling"
Label="Sparkling" Count="50">
<cs:Operator xsi:type="cs:RefinementOperator"
Name="WineType" Spec="/Red"/>

</cs:Refinement>

Oracle® Endeca Server: Developer's Guide

Working with Refinements 105

<cs:RootDimensionValue DimensionName="WineType" Spec="/"/>
</cs:NavigationMenuItem>
</cs:NavigationMenuItemGroup>

</cs:ContentElement>
</cs:Results>

Version 2.3.0 • June 2012 • Revision A

Based on this result, a follow-on request creates an additional refinement navigation query. It uses the
refinement operator to request Red, to let you further refine to WineType Red.

<Request xmlns="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<State/>
<ContentElementConfig xsi:type="NavigationMenuConfig"

Id="NavigationMenu"
HandlerFunction="NavigationMenuHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0">

<RefinementGroupConfig Name="Wine Characteristics" Expose="true">
<RefinementConfig Name="WineType" Expose="true"/>

</RefinementGroupConfig>
</ContentElementConfig>

<Operator xsi:type="RefinementOperator" Name="WineType" Spec="/Red"/>
</Request>

Limiting the number of refinements to be displayed

If there are too many refinements to be returned per refinement, you can limit the number of displayed
refinements.

Generally, when the request from the Conversation Web Service asks for attributes to return in response to a
query, it asks for all of them that were requested with a RefinementGroupConfig element.

To provide a meaningful navigation experience, the Oracle Endeca Server returns only those attributes that
actually have refinements on them and that are not filtered by precedence rules. In other words, the attributes
are returned based on the navigation state. (In order for the request to return refinements if they are present in
the data set, the Expose attribute should be set to true in the RefinementConfig. Its default value is
false).

If there are too many refinements to be returned per attribute, you can limit the number of them that are
displayed using NavigationMenuConfig in the Conversation Web Service request.

You can do this in a global setting or per each refinement value. The following statements describe the logic
used by the Conversation Web Service to identify the number of refinements to be displayed:

• Per attribute configuration. You can specify a number of refinements to display per attribute. For each, you
can optionally specify the number in the attribute MaximumCount in the RefinementConfig element.

• Global configuration, for all attributes in a particular navigation menu. If the number for each attribute is
not specified, the Conversation Web Service response uses the global setting you can specify in the
MaximumRefinementCount attribute of RefinementConfig in ContentElementConfig. The setting is per
content element, not per query.

• Further, if neither of the settings is specified, the number defaults to 10.

For example, in this configuration for the navigation menu, MaximumRefinementCount is set to 15. In addition,
for the WineType refinement value, MaximumCount is set to 40. MaximumCount is not set in each of the other
refinement values.

<ContentElementConfig xsi:type="NavigationMenuConfig"
HandlerFunction="NavigationMenuHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
Id="NavigationMenu"
MaximumRefinementCount="15"

Oracle® Endeca Server: Developer's Guide

Working with Refinements 106

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<RefinementGroupConfig Name="Wine Characteristics" Expose="true">
<RefinementConfig Name="WineType" MaximumCount="40"/>
<RefinementConfig Name="Year"/>
<RefinementConfig Name="Score"/>

</RefinementGroupConfig>
</ContentElementConfig>

Version 2.3.0 • June 2012 • Revision A

This request returns up to 40 refinement values for WineType. It returns 15 refinement values for each of the
other two refinement values (Year and Score).

The attribute HasMore (with possible boolean values true or false) in the response specifies whether the
total refinement count exceeds the value returned with the MaximumRefinementCount.

The following example shows a response where the HasMore attribute is set to true in the
NavigationMenuItem type of the Conversation Web Service response:

<cs:Results xmlns:cs="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">

<cs:Request>
<FilterState xmlns="http://www.endeca.com/MDEX/conversation/1/0">
<ContentElementConfig xsi:type="NavigationMenuConfig" Id="NavigationMenu"

HandlerFunction="NavigationMenuHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
xmlns="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<RefinementGroupConfig Name="Wine Characteristics" Expose="true">
<RefinementConfig Name="WineType" MaximumCount="1" Expose="true"
xmlns:ns="http://www.endeca.com/MDEX/conversation/1/0"/>

</RefinementGroupConfig>
</ContentElementConfig>

</cs:Request>
<cs:ContentElement xsi:type="cs:NavigationMenu" Id="NavigationMenu"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<cs:NavigationMenuItemGroup Name="Wine Characteristics" HasRefinablePRoperties="true">
<cs:NavigationMenuItem Name="WineType" DisplayName="WineType" MultiSelect="Or" HasMore="true">

<cs:ExposureControl Exposed="true">
<cs:Operator OwnerId="NavigationMenu"

xsi:type="cs:RefinementHideOperator"
Name="WineType" Spec="/"
Group="Wine Characteristics"/>

</cs:ExposureControl>
<cs:Refinement Name="WineType" Spec="/Red" Label="Red" Count="18">
<cs:Operator xsi:type="cs:RefinementOperator" Name="WineType" Spec="/Red"/>

</cs:Refinement>
<cs:RootDimensionValue DimensionName="WineType" Spec="/"/>

</cs:NavigationMenuItem>
</NavigationMenuItemGroup>

</cs:ContentElement>
</cs:Results>

Retrieving the full path of hierarchical refinements

For managed attribute groups (which are groups of those attributes that contain hierarchy), you can request
hierarchy information about a refinement with the ReturnFullPath attribute. In addition, for managed
attribute values, hierarchy information is returned with DimensionHierarchy and DimensionValueWithPath

types in any record list request.

Hierarchy information represents refinements behind a particular managed attribute. For example, if a
ProductCategory managed attribute contains one level of hierarchy (CAT_COMPONENTS) and the current
query is at the category components level, the full path of hierarchical refinements can be represented by the
following list:

Oracle® Endeca Server: Developer's Guide

Working with Refinements 107

ProductCategory > CAT_COMPONENTS > Brakes

Version 2.3.0 • June 2012 • Revision A

Refinement values, in this case specific components, may still exist for the Brakes refinement to refine the
query even further.

Retrieving hierarchy information for attribute groups
To request the full path of hierarchical refinements for an attribute group, use the ReturnFullPath attribute
on NavigationMenuConfig. The ReturnFullPath has the following values:

ReturnFullPath Specifies whether to return the full path of hierarchical refinements with
the response. This setting is relevant in navigation queries for
refinements and breadcrumbs.

If set to true, the returned refinement contains the full path to its parent
refinement values, as in ProductCategory > CAT_COMPONENTS >
Brakes.

If set to false, returns only the refinement, without the path to its
ancestors. The default is false.

The format of the NavigationMenuConfig is shown in this example. It uses the ReturnFullPath attribute
set to true for an already create attribute group "Product Categories":

<ContentElementConfig xsi:type="NavigationMenuConfig"
Id="NavigationMenu"
HandlerFunction="NavigationMenuHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

ReturnFullPath="true">
<RefinementGroupConfig Name="Product Categories" Expose="true">
<RefinementConfig Name="CAT_COMPONENTS" Expose="true" MaximumCount="3"/>

</RefinementGroupConfig>
</ContentElementConfig>

For a flat managed attribute with no hierarchy, the refinement parent will always be the attribute root, because
there would be no further refinements if a value had already been selected for the attribute.

Refinements for a given managed attribute can only be returned from the Oracle Endeca Server on the same
level within the attribute. For example, the Oracle Endeca Server could never return a list of refinement
choices that included a mix of countries, states, and regions. In all cases where hierarchy is explicitly defined
for an attribute, only refinements on an equal level of hierarchy will be returned for a given query.

The following example request in the Conversation Web Service illustrates how to retrieve a full path of
hierarchical refinements for a standard or managed attribute:

<Request xmlns="http://www.endeca.com/MDEX/conversation/1/0">
<State>
<SelectedRefinementFilter Name="WineType" Spec="/Red"/>

</State>
<ContentElementConfig xsi:type="NavigationMenuConfig"

Id="NavigationMenu"
HandlerFunction="NavigationMenuHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
ReturnFullPath="true">

<RefinementGroupConfig Name="Product Categories" Expose="true">
<RefinementConfig Name="CAT_COMPONENTS" Expose="true" MaximumCount="3"/>

</RefinementGroupConfig>
</ContentElementConfig>

Oracle® Endeca Server: Developer's Guide

Working with Refinements 108

</Request>

Version 2.3.0 • June 2012 • Revision A

The response returns a list of hierarchical refinements. It contains the attribute group information, and all the
attributes from this group.

Retrieving hierarchy information for managed attribute values

To retrieve hierarchy information on managed attribute values, you can use a query that requests a record list,
with the RecordListConfig type that is part of ContentElementConfig.

In the response to a RecordListConfig query, the following two types include hierarchy and path information
for managed attributes:

• The DimensionHierarchy complex type returns a collection of paths from specified managed attributes.

• The DimensionValueWithPath complex type specifies a path to a refinement attribute value from the root
of that managed attribute.

For example, consider this abbreviated example of a record list query:

<ns:ContentElementConfig xsi:type="ns:RecordListConfig"
Id="RecordList"
HandlerFunction="RecordListHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
MaxPages="60">
<ns:Column>ProductCategory</ns:Column>
<ns:RecordsPerPage>200</ns:RecordsPerPage>
<ns:Page>2</ns:Page>
<ns:Sort Key="Description" Direction="Ascending"/>

</ns:ContentElementConfig>

This request returns hierarchy information and hierarchy paths for the managed attribute ProductCategory.
In the following abbreviated example of the response, you can see the returned hierarchy information:

<cs:DimensionHierarchy>
<cs:DimensionValueWithPath>

<cs:DimensionValue DimensionName="ProductCategory"
Spec="4">Handlebars</cs:DimensionValue>
<cs:DimensionValue DimensionName="ProductCategory"
Spec="CAT_COMPONENTS">Components</cs:DimensionValue>

<cs:DimensionValue DimensionName="ProductCategory"
Spec="/">ProductCategory</cs:DimensionValue>

</cs:DimensionValueWithPath>
<cs:DimensionValueWithPath>

<cs:DimensionValue DimensionName="ProductCategory"
Spec="6">Brakes</cs:DimensionValue>

<cs:DimensionValue DimensionName="ProductCategory"
Spec="CAT_COMPONENTS">Components</cs:DimensionValue>

<cs:DimensionValue DimensionName="ProductCategory"
Spec="/">ProductCategory</cs:DimensionValue>

</cs:DimensionValueWithPath>
</cs:DimensionHierarchy>

Oracle® Endeca Server: Developer's Guide

Working with Refinements 109

Retrieving the order of refinements with the API

A core capability of the Oracle Endeca Server is the ability to dynamically order and present the most popular
refinement values to the user.

There are two ways in which you can configure the display order of refinements in the Conversation Web
Service:

• By specifying the value for system-navigation_Sorting in the PDR, for a standard or managed
attribute.

• By using query-time control of the display order specified in the OrderByRecordCount attribute in the
RefinementConfig element of the Conversation Web Service request. Note that by using this method,
you can override the system-navigation_Sorting settings for a given attribute.

Using query-time control of refinement ordering

You can configure refinement ordering on a per-query basis.

The Oracle Endeca Server lets you switch refinement ordering on and off on a per-query basis.

A use case for this refinement ordering would be an application that renders refinements as a tag cloud. Such
an application may adjust the size of the tag cloud at query time, depending on user preferences or from
which page the query originates.

You set the refinement ordering at the refinement value level that you want to control. For managed attributes,
ordering is applied to that managed attribute value and all its children. For example, assume that you have a
managed attribute named WineType that has three child attribute values (named Red, White, and Sparkling),
which in turn have two child attribute values each. The attribute's hierarchy would look like this:

You would set the ordering depending on which level of the hierarchy you want to order and present, for
example:

• If you set the ordering on the root attribute value (which has the same name and ID as the managed
attribute itself), the refinements in the Red, White, and Sparkling attribute values will be returned.

• If there are multiple child attribute values, you can set an order on only one sibling. In this case, the
refinements from the other siblings will not be exposed. For example, if you set an order on the Red
attribute value, only the refinements of the Merlot and Chianti attribute values will be returned. The
refinements from the White and Sparkling attribute values will be not be shown, even if you explicitly set
orders for them.

The settings of the per query ordering of refinements are not persistent. That is, each query must have its own
configuration, because it is not carried over from the previous query.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Working with Refinements 110

Enabling the refinement order at query time

The OrderByRecordCount attribute sets the refinement order at query time.

Setting the OrderByRecordCount attribute to true in the RefinementConfig element sets the order in which
refinements will be displayed, at query time, as in this example:

<Request xmlns="http://www.endeca.com/MDEX/conversation/1/0">
<State/>
<ContentElementConfig xsi:type="NavigationMenuConfig"

Id="NavigationMenu"
HandlerFunction="NavigationMenuHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<RefinementGroupConfig Name="Wine Characteristics" Expose="true">
<RefinementConfig
Name="WineType"
Expose="true"
OrderByRecordCount="true"
MaximumCount="100" />

</RefinementGroupConfig>
</ContentElementConfig>

</Request>

Version 2.3.0 • June 2012 • Revision A

This setting overrides the setting for refinement order that you can specify in the system-
navigation_Sorting in the PDR for a refinement.

Retrieving refinement counts with the API

The application UI can display the number of records returned for refinements.

Refinement counts represent the number of records (in the current navigation state) available beneath a given
refinement value. These counts are dynamically computed at run-time by the Oracle Endeca Server and can
be displayed in the user interface.

By providing the user with an indication of the number of records that will be returned for each refinement,
refinement counts can enhance the front-end application’s navigation controls by providing more context at
each point in the application.

A refinement count is the number of records that would be in the result set if you were to refine on an attribute
value.

By default, both standard and managed attributes are enabled for refinement counts. Therefore, no further
configuration is needed to display record counts. So long as there are attribute values returned for a given
request, refinement value statistics will be returned as an attribute attached to each attribute value.

You can, however, disable refinement statistics for attributes in the system-
navigation_ShowRecordCounts property on the PDR.

Retrieving refinement counts for records

Record counts are returned in a Count attribute.

Each refinement is returned in a Refinement element, as shown in this example:

<cs:Refinement Name="Red" Spec="/Red" Label="2" Count="18">
<cs:Operator xsi:type="cs:RefinementOperator" Name="Red" Spec="/Red"/>

</cs:Refinement>

In the example, a record count of 18 is returned for the Red attribute value.

Oracle® Endeca Server: Developer's Guide

Working with Refinements 111

About multi-select refinements

The Oracle Endeca Server supports two types of multi-select standard and managed attributes.

The default behavior of the Oracle Endeca Server permits only a single value from an attribute to be added to
the navigation state. By default, after a user selects a leaf refinement from any managed attribute, that
attribute is removed from the list of refinements available for future refinement in the query results. For
example, after selecting "Apple" from the Flavors attribute, the Flavors attribute is removed from the navigation
controls.

However, sometimes it is useful at navigation time to allow the user to select more than one value from an
attribute. For example, you can give a user the ability to show wines that have a flavor of "Apple" and
"Apricot".

The Oracle Endeca Server provides support for two types of multi-select standard and managed attributes that
apply Boolean logic to the values selected:

• multi-and

• multi-or

You can tag the attribute as multi-and, or multi-or (or single) by changing the values of the system-
navigation_Select attribute on the PDR that defines a particular attribute.

Performance impact for displaying refinements
Run-time performance of the Dgraph process is directly related to the number of refinement values being
computed for display.

Only request refinement values if you are planning to display them in the front-end application. If any
refinement values are being computed by the Dgraph process but not being displayed by the application, this
negatively affects performance. Attributes containing large numbers of refinements also affect performance.

Performance impact of refinement ordering
You can use the --esampmin option with the Dgraph process, to specify the minimum number of records to
sample during refinement computation.

This option is useful because sampling the entire navigation state during the refinement computation can be
one of the more performance intensive operations for the Dgraph.

For most applications, larger values for --esampmin reduce performance without improving the quality of
refinement ordering. For some applications with extremely large, non-hierarchical attributes (if they cannot be
avoided), larger values can meaningfully improve refinement ordering quality with minor performance cost.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Working with Refinements 112

Performance impact of refinement counts
Dynamic statistics on records are expensive computations for the Dgraph process of the Oracle Endeca
Server.

You should only enable a managed attribute for dynamic statistics if you intend to use the statistics. Because
the Dgraph does additional computation for additional statistics, there is a performance cost for those that you
are not using.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Chapter 14

Using Breadcrumbs

The chapter discusses how to implement breadcrumbs.

About breadcrumbs

Implementing breadcrumbs with the API

About breadcrumbs
Breadcrumbs let you summarize any Guided Navigation selections, keyword searches, or range filters
specified by the end user.

Breadcrumbs represent the following information that was passed to the navigation state by the Conversation
Web Service response:

• Selected refinement values that were used to query for the current record set.

• Keyword searches that were used to query for the current record set.

• Range filters that have been selected for the query.

Any standard or managed attribute value available in the data files of the particular data store can be selected
as a breadcrumb.

Breadcrumbs honor record filters (such as security filters), but do not display them.

Breadcrumbs can reflect spelling correction and DYM information returned by the Dgraph process of the
Oracle Endeca Server in response to keyword search queries.

In Studio, the Breadcrumbs component lets you display breadcrumbs made with navigation queries (when
users select refinement values or range filters for navigation), and keyword search queries.

For example, here is how user selections made in the Guided Navigation component are reflected in the
Breadcrumbs component:

• Once the user selects a refinement in the Guided Navigation component, it is reflected as a breadcrumb
in the Breadcrumbs component.

• The user can select an additional breadcrumb in the Guided Navigation component, thereby narrowing
down the scope of the record set for the query.

• Alternatively, the user can remove a refinement value from the Breadcrumbs component, which
increases the scope of the record set for the query.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using Breadcrumbs 114

Implementing breadcrumbs with the API
This section describes how to issue queries requesting breadcrumbs using the Conversation Web Service.

The Conversation Web Service returns breadcrumb results for these types of queries:

• Navigation

• Search

• Range filters

For more information on the Conversation Web Service interface, see the Oracle Endeca Server API
Reference. This reference contains documentation generated from the interface WSDL document.

Retrieving breadcrumbs in a navigation query

An initial Conversation Web Service request that is made in response to a user-initiated navigation query (in
which no selections have been made in the navigation state) does not yet return breadcrumbs. However, a
subsequent request (in which the user made selections within the available attribute values) returns
breadcrumbs.

The request for breadcrumbs is implemented with the ContentElementConfig element with the
BreadcrumbHandler:

<ContentElementConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="BreadcrumbConfig"
ReturnFullPath="false"
HandlerFunction="BreadcrumbHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
Id="Breadcrumbs"/>

Version 2.3.0 • June 2012 • Revision A

This element includes:

ReturnFullPath Specifies whether to return the full path of hierarchical refinements with
the response. This setting is relevant only in navigation queries that
request breadcrumbs; it is ignored in search or range filter queries
requesting breadcrumbs.

If set to true, the returned breadcrumb contains the full path to its
parent refinement values, as in Wine > Red > Merlot.

If set to false, returns only the refinement, without the path to its
ancestors. The default is false.

BreadcrumbHandler Is the function that facilitates breadcrumb generation in the response.
This function is required to return breadcrumbs.

If spelling is enabled in the data store configuration, and in addition to breadcrumbs, you want the
Conversation Web Service response to contain supplemental information about spelling suggestions and
DYM, a second ContentElementConfig with SearchAdjustmentHandler is required. If this element is
included, spelling correction or DYM suggestions are returned with the breadcrumbs in the response.

Note: If spelling is enabled, spelling correction occurs for breadcrumb results even if
ContentElementConfig with SearchAdjustmentHandler is not included; however, while spelling
correction takes place, the spelling correction and DYM suggestions are not returned in the response.

Oracle® Endeca Server: Developer's Guide

Using Breadcrumbs 115

In the response, breadcrumbs are returned in the order in which they were added (requested).

To request breadcrumbs for a navigation query:

1. In the Conversation Web Service request, specify the following:

• The selection for a specific refinement.
• The ContentElementConfig element for BreadcrumbHandler.

• (Optional). The ContentElementConfig element for SearchAdjustments.

In this example, the navigation state includes a selection of the NumberOfDigits refinement, and
two ContentElementConfig elements, one for BreadcrumbHandler and one for
SearchAdjustmentHandler:

<Request xmlns="http://www.endeca.com/MDEX/conversation/1/0">
<State/>
<Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="RefinementOperator" Spec="/2"
Name="NumberOfDigits"/>

<ContentElementConfig
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="BreadcrumbConfig"
ReturnFullPath="true" HandlerFunction="BreadcrumbHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0" Id="Breadcrumbs"/>

<ContentElementConfig
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="SearchAdjustmentConfig"
HandlerFunction="SearchAdjustmentHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
Id="SearchAdjustments"/>

<PassThrough> ...</PassThrough>
</Request>

Version 2.3.0 • June 2012 • Revision A

The Conversation Web Service result includes the original request with operators for BreadcrumbHandler and
SearchAdjustmentHandler applied, followed by the ContentElementConfig element that lists attribute
values identified as breadcrumbs, based on the user-selected navigation state.

Note: The result also includes the GeneralizationOperator. It enables the removal of the
refinement (and thus the breadcrumb) in the user interface of the front-end application powered by the
Oracle Endeca Server (such as Studio), if the user chooses to remove the previously selected
refinement from the breadcrumb list.

The first half of the response repeats the request, as follows:

<cs:Results xmlns:cs="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
<cs:Request>
<cs:State>
<cs:SelectedRefinementFilter Name="NumberOfDigits" Spec="/2"/>
</cs:State>
<ContentElementConfig xmlns="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="BreadcrumbConfig" ReturnFullPath="true"
HandlerFunction="BreadcrumbHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0" Id="Breadcrumbs"/>

<ContentElementConfig xmlns="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="SearchAdjustmentConfig" HandlerFunction="SearchAdjustmentHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
Id="SearchAdjustments"/>

</cs:Request>

The second half of the response includes breadcrumbs:

Oracle® Endeca Server: Developer's Guide

Using Breadcrumbs 116

<cs:ContentElement xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="cs:Breadcrumbs" Id="Breadcrumbs">

<cs:RefinementBreadcrumb Name="NumberOfDigits"
DisplayName="Number Of Digits" Spec="/2">

<cs:DimensionValue>
<cs:DimensionValue DimensionName="NumberOfDigits" Spec="/">
NumberOfDigits

</cs:DimensionValue>
<cs:Operator xsi:type="cs:GeneralizationOperator" Name="" Spec="/"/>
</cs:DimensionValue>
<cs:DimensionValue>
<cs:DimensionValue DimensionName="NumberOfDigits" Spec="/2">2
</cs:DimensionValue>
<cs:Operator xsi:type="cs:GeneralizationOperator" Name="" Spec="/2"/>
</cs:DimensionValue>
<cs:Operator xsi:type="cs:GeneralizationOperator"
Name="NumberOfDigits" Spec="/2"/>

</cs:RefinementBreadcrumb>
</cs:ContentElement>
<cs:ContentElement xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:type="cs:SearchAdjustments" Id="SearchAdjustments"/>
</cs:Results>

Version 2.3.0 • June 2012 • Revision A

Retrieving breadcrumbs in a search query

Breadcrumbs returned by the Conversation Web Service in response to a search query can reflect spelling
correction and DYM (Did You Mean) information.

The following requirements must be met to implement breadcrumbs that also return spelling correction and
DYM information in response to a search query:

• The spelling must be enabled in the data store. To enable spelling, after you install the Oracle Endeca
Server and create a data store, run the admin?op=updateaspell command.

• The request must include the ContentElementConfig element for the BreadcrumbHandler. This ensures
that breadcrumbs are returned:

<ContentElementConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="BreadcrumbConfig"
ReturnFullPath="false"
HandlerFunction="BreadcrumbHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
Id="Breadcrumbs" />

• If you would like to return DYM and spelling correction results with breadcrumbs, the request must include
the ContentElementConfig element for the SearchAdjustmentHandler:

<ContentElementConfig
xmlns="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="SearchAdjustmentConfig"
HandlerFunction="SearchAdjustmentHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
Id="SearchAdjustments" />

In the response, breadcrumbs are returned in the order in which they were added.

Oracle® Endeca Server: Developer's Guide

Using Breadcrumbs 117

Example of breadcrumbs with spelling correction

Breadcrumbs information returned by the Conversation Web Service can reflect spelling correction. The
following example illustrates this case.

To request breadcrumbs in a search query that returns spelling correction, specify the search keyword in the
request, and these two types — BreadcrumbConfig and SearchAdjustmentsConfig. These types are
subtypes of the ContentElementConfig.

The request in this example specifies a navigation state that includes a search for a user-entered word fife.
It illustrates a search request with a breadcrumb that needs to be corrected for spelling:

<Request xmlns="http://www.endeca.com/MDEX/conversation/1/0">
<State/>
<Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="SearchOperator" Within="false">
<SearchFilter Mode="All" Key="English">
fife

</SearchFilter>
</Operator>

<ContentElementConfig
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="BreadcrumbConfig" ReturnFullPath="true"
HandlerFunction="BreadcrumbHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
Id="Breadcrumbs"/>

<ContentElementConfig
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="SearchAdjustmentConfig"
HandlerFunction="SearchAdjustmentHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
Id="SearchAdjustments"/>

<PassThrough>...</PassThrough>
</Request>

Version 2.3.0 • June 2012 • Revision A

The response from the Conversation Web Service contains the original request with search filter operators
applied, the original (not yet spelling-corrected) term fife, and the PopSearchOperator needed for removing
the refinement (if the user decides to remove this breadcrumb). Finally, the response also includes the
automatically corrected term five in the ContentElement for AppliedAdjustment.

The first half of the response repeats the request:

<cs:Results
xmlns:cs="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
<cs:Request>

<cs:State>
<SearchFilter
xmlns="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
Mode="All"
Key="English">
fife

</SearchFilter>
</cs:State>
<ContentElementConfig
xmlns="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="BreadcrumbConfig" ReturnFullPath="true"
HandlerFunction="BreadcrumbHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0" Id="Breadcrumbs"/>

<ContentElementConfig
xmlns="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Oracle® Endeca Server: Developer's Guide

Using Breadcrumbs 118

xsi:type="SearchAdjustmentConfig"
HandlerFunction="SearchAdjustmentHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0" Id="SearchAdjustments"/>

</cs:Request>

Version 2.3.0 • June 2012 • Revision A

The second half of the response returns the automatically corrected term:

<cs:ContentElement
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:type="cs:Breadcrumbs" Id="Breadcrumbs">
<cs:SearchBreadcrumb DisplayName="English">
<cs:SearchFilter Key="English" Mode="All">

fife
</cs:SearchFilter>

<cs:Operator xsi:type="cs:PopSearchOperator">
<cs:SearchFilter Key="English" Mode="All">
fife

</cs:SearchFilter>
</cs:Operator>
</cs:SearchBreadcrumb>

</cs:ContentElement>
<cs:ContentElement
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="cs:SearchAdjustments" Id="SearchAdjustments">

<cs:AppliedAdjustment>
<cs:SearchFilter Key="English" Mode="All">

fife
</cs:SearchFilter>

<cs:AdjustedTerms>
five

</cs:AdjustedTerms>
</cs:AppliedAdjustment>

</cs:ContentElement>
</cs:Results>

Example of breadcrumbs with DYM

Breadcrumbs information returned by the Conversation Web Service can reflect DYM suggestions. The
following example illustrates this case.

To request breadcrumbs in a search query that returns DYM suggestions, specify the keyword search entry,
and the BreadcrumbConfig and SearchAdjustmentConfig types of the ContentElementConfig complex
type.

The following example of a request contains a keyword search jane:

<Request xmlns="http://www.endeca.com/MDEX/conversation/1/0">
<State />
<Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="SearchOperator" Within="false">
<SearchFilter Mode="All" Key="Essay">
jane
</SearchFilter>

</Operator>
<ContentElementConfig
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="BreadcrumbConfig" ReturnFullPath="true"
HandlerFunction="BreadcrumbHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
Id="Breadcrumbs" />

<ContentElementConfig
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="SearchAdjustmentConfig"
HandlerFunction="SearchAdjustmentHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"

Oracle® Endeca Server: Developer's Guide

Using Breadcrumbs 119

Id="SearchAdjustments" />
</Request>

Version 2.3.0 • June 2012 • Revision A

The response reflects DYM results. In this example, the response includes the request with operators applied,
followed by a DYM suggested term, can and by the ApplySpellingSuggestionOperator that actually
replaces the keyword with the term suggested with DYM.

The first half of the response repeats the request:

<cs:Results
xmlns:cs="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
<cs:Request>
<cs:State>
<SearchFilter xmlns="http://www.endeca.com/MDEX/conversation/1/0"

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
Mode="All" Key="Essay">
jane

</SearchFilter>
</cs:State>

<ContentElementConfig
xmlns="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="BreadcrumbConfig" ReturnFullPath="true"
HandlerFunction="BreadcrumbHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
Id="Breadcrumbs" />

<ContentElementConfig
xmlns="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="SearchAdjustmentConfig"
HandlerFunction="SearchAdjustmentHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
Id="SearchAdjustments" />

</cs:Request>

The second half of the response includes the information for DYM:

<cs:ContentElement
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="cs:Breadcrumbs" Id="Breadcrumbs">
<cs:SearchBreadcrumb DisplayName="Essay">

<cs:SearchFilter Key="Essay" Mode="All">
jane

</cs:SearchFilter>
<cs:Operator xsi:type="cs:PopSearchOperator">
<cs:SearchFilter Key="Essay" Mode="All">
jane

</cs:SearchFilter>
</cs:Operator>

</cs:SearchBreadcrumb>
</cs:ContentElement>
<cs:ContentElement
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="cs:SearchAdjustments" Id="SearchAdjustments">
<cs:SuggestedAdjustment RecordCountIfApplied="15">

<cs:SearchFilter Key="Essay" Mode="All">
jane

</cs:SearchFilter>
<cs:SuggestedTerms>
can

</cs:SuggestedTerms>
<cs:Operator xsi:type="cs:ApplySpellingSuggestionOperator">

<cs:SearchFilter Key="Essay" Mode="All">
jane

</cs:SearchFilter>
<cs:Replacement>

Oracle® Endeca Server: Developer's Guide

Using Breadcrumbs 120

can
</cs:Replacement>

</cs:Operator>
</cs:SuggestedAdjustment>

</cs:ContentElement>
</cs:Results>

Version 2.3.0 • June 2012 • Revision AOracle® Endeca Server: Developer's Guide

Chapter 15

Using Attribute Groups

This chapter discusses how to implement attribute groups.

About attribute groups

Configuring and using attribute groups in Studio

Retrieving attribute group information with the API

About attribute groups
Attribute groups are ordered collections of attributes. They are stored in the Oracle Endeca Server as
records.

Attribute groups are useful for organizing a large number of attributes in the user interface of your front-end
application, such as Studio. You can define a set of attribute groups to be displayed, assign attributes to each
group, and determine the display order of the groups and attributes.

Because you define the attribute groups, you can group the attributes in any way that makes sense for your
data.

You can assign an attribute to more than one of your attribute groups. There is also a default Other attribute
group containing all of the attributes that you have not assigned to a group.

Configuring and using attribute groups in Studio
In Studio, lists of attributes are displayed in attribute groups.

This includes:

• For power users, when configuring Studio components

• For end users, when viewing components such as the Guided Navigation component

From the Attribute Settings component, power users can:

• Create and delete attribute groups

Note: In addition to creating attribute groups in Studio, you can also create them by sending
Configuration Web Service requests to the Oracle Endeca Server. However, the recommended
way to create groups is through Studio.

• Add and remove the attributes in each attribute group

• Set the default display order of the attributes within each group. You cannot change the group display
order.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using Attribute Groups 122

For information on using and configuring attribute groups in Studio, see the Oracle Endeca Information
Discovery Studio User's Guide.

Retrieving attribute group information with the API
You can use Conversation Web Service requests to request groups or lists of groups from the Oracle Endeca
Server data store.

The Conversation Web Service returns groups for those types of queries that return refinements (standard or
managed attributes). Any attributes returned from the Conversation Web Service as refinements are returned
as part of groups.

This section provides examples for how to retrieve groups and lists of groups. For additional information about
the Conversation Web Service WSDL, see the Oracle Endeca Server API Reference.

Retrieving groups

Any request that asks for refinements is also requesting groups, if the attributes that are going to be returned
are configured as part of groups.

The request for groups is implemented with the RefinementGroupConfig element of the Conversation Web
service request. This element contains one or more RefinementConfig elements that list which attributes, out
of all valid properties returned with a navigation query, should return actual refinement values. Note that only
the top-level refinement values are returned.

The complex type RefinementGroupConfig has the following format:

<complexType name="RefinementGroupConfig">
<sequence>
<element maxOccurs="unbounded" minOccurs="0"
name="RefinementConfig" type="cs_v1_0:RefinementConfig"/>

</sequence>
<attribute name="Name" type="cs_v1_0:NonEmptyString" use="required"/>
<attribute name="Expose" type="boolean" use="required"/>
<attribute name="ExposeAllPropertyRefinements" type="boolean"/>

</complexType>

Version 2.3.0 • June 2012 • Revision A

Note: The type "cs_v1_0:RefinementConfig" indicates the version of the web service. In this
example, the version is 1.0. It may or may not correspond to the version of the Conversation Web
Service that you are using and that is currently supported.

The meanings of the attributes are:

Attribute Description

Name Required. The name of the group.

Oracle® Endeca Server: Developer's Guide

Using Attribute Groups 123

Attribute Description

Expose Required. Specify true to expose all top-level attributes in
the group, or false (the default) to just show the root of the
group.

Note: If an attribute is a managed attribute, it
contains a hierarchy of attributes under its root.
Whether these nested attributes are exposed is
controlled by the Expose attribute on the
RefinementConfig element for each attribute
within a managed attribute. The default for Expose
is false.

ExposeAllPropertyRefinements Optional. If set to true, specifies whether to expose all
attribute refinements underneath each managed attribute
that has them. The default is false (if this attribute is not
specified).

This setting supersedes the Expose attribute on the
RefinementConfig element for each attribute refinement.

Groups are returned in a NavigationMenuItemGroup element that contains one or more NavigationMenu

elements, each of which returns refinements in the NavigationMenuItem. Here is the format for the
NavigationMenuItemGroup:

<complexType name="NavigationMenuItemGroup">
<sequence>
<element maxOccurs="unbounded" minOccurs="0" name="NavigationMenuItem"
type="cs_v1_0:NavigationMenuItem"/>

</sequence>
<attribute name="HasRefineableProperties" type="boolean"/>
<attribute name="Name" type="string" use="required"/>

</complexType>

Version 2.3.0 • June 2012 • Revision A

Note: The type "cs_v1_0:RefinementConfig" indicates the version of the web service. In this
example, the version is 1.0. It may or may not correspond to the version of the Conversation Web
Service that you are using and that is currently supported.

The required attribute HasRefineableProperties specifies whether a group has attributes that could be
refined further.

Note: From the perspective of controlling the groups behavior in the front-end application, another
attribute may be useful. It is the ExposureControl attribute of type boolean, on the
NavigationMenuItem. If set to false (the default), it does not expose refinements contained within
NavigationMenuItem. If set to true, it exposes the collection of refinements.

To request groups:

1. In the Conversation Web Service request, for each group, specify its name and whether to expose all
top-level attributes in the group by specifying the value of Expose attribute on the
RefinementGroupConfig element. Optionally, you can also use this attribute on the refinements
within the group.

Oracle® Endeca Server: Developer's Guide

Using Attribute Groups 124

In this example, two groups are requested, FlavorGroup and ProvenanceGroup, but exposing top-
level properties is requested for FlavorGroup only:

<Request xmlns="http://www.endeca.com/MDEX/conversation/1/0">
<State/>
<ContentElementConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="NavigationMenuConfig"
MaximumRefinementCount="10"
ReturnFullPath="true"
ExposeAllRefinements="false"
HandlerFunction="NavigationMenuHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
Id="Navigation">
<RefinementGroupConfig Name="FlavorGroup" Expose="true">

<RefinementConfig Name="Flavors" Expose="true" MaximumCount="2"/>
</RefinementGroupConfig>
<RefinementGroupConfig Name="ProvenanceGroup" Expose="false"/>

</ContentElementConfig>
</Request>

Version 2.3.0 • June 2012 • Revision A

The Conversation Web Service result includes results for one group, FlavorGroup, for which refinements
were requested to be exposed:

<cs:ContentElement xsi:type="cs:NavigationMenu" Id="Navigation">
<cs:NavigationMenuItemGroup Name="FlavorGroup" HasRefineableProperties="true">
<cs:NavigationMenuItem Name="Flavors" DisplayName="Flavors" MultiSelect="And" HasMore="true">

<cs:ExposureControl Exposed="true">
<cs:Operator OwnerId="Navigation" xsi:type="cs:RefinementHideOperator"

Name="Flavors" Group="FlavorGroup" Spec="/"/>
</cs:ExposureControl>
<cs:Refinement Name="Flavors" Spec="Currant" Label="Currant">
<cs:Operator xsi:type="cs:RefinementOperator" Name="Flavors" Spec="Currant"/>

</cs:Refinement>
<cs:Refinement Name="Flavors" Spec="Oak" Label="Oak">
<cs:Operator xsi:type="cs:RefinementOperator" Name="Flavors" Spec="Oak"/>

</cs:Refinement>
<cs:RootDimensionValue DimensionName="Flavors" Spec="/"/>
<cs:FullPath><!-- path information omitted in this example--></cs:FullPath>

</cs:NavigationMenuItem>
<cs:NavigationMenuItem Name="Drinkability" DisplayName="Drinkability"

MultiSelect="None" HasMore="true">
<cs:ExposureControl Exposed="false">
<cs:Operator OwnerId="Navigation" xsi:type="cs:RefinementExposeOperator"

Name="Drinkability" Group="FlavorGroup" Spec="/"/>
</cs:ExposureControl>
<cs:RootDimensionValue DimensionName="Drinkability" Spec="/"/>
<cs:FullPath><!-- path information omitted in this example --></cs:FullPath>
</cs:NavigationMenuItem>

</cs:NavigationMenuItemGroup>
<cs:NavigationMenuItemGroup Name="ProvenanceGroup" HasRefineableProperties="true"/>

</cs:ContentElement>

Retrieving lists of groups
To retrieve a lists of groups, use a request with AttributeGroupListConfig which, as an extension of
ContentElementConfig complex type, provides information about attribute groups.

To retrieve a list of groups:

1. Use the request similar to the following example:

<Request xmlns="http://www.endeca.com/MDEX/conversation/1/0">
<State/>
<ContentElementConfig xsi:type="AttributeGroupListConfig"
Id="AttributeGroupList"

Oracle® Endeca Server: Developer's Guide

Using Attribute Groups 125

HandlerFunction="AttributeGroupListHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

</ContentElementConfig>
</Request>

Version 2.3.0 • June 2012 • Revision A

The Conversation Web Service request contains a list of groups that are currently defined, specifying a
group's display name and a number of attributes in each within each group. Information about each group is
returned inside the GroupSummary element of the ContentElement response.

In this example, two groups are returned — Sale-Geography, and Sales-Transaction. The attribute
Cardinality specifies the number of attributes in each of these groups; the attributes for each group are
also listed.

The first half of the response repeats the request:

<cs:Results xmlns:cs="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">
<cs:Request>
<ns3:State xmlns:ns2="http://www.endeca.com/MDEX/lql_parser/types"

xmlns:ns3="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"/>

<ns3:ContentElementConfig
xsi:type="ns3:AttributeGroupListConfig" Id="AttributeGroupList"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
HandlerFunction="AttributeGroupListHandler"
xmlns:ns3="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>

</cs:Request>

The second half of the response includes information about groups and their contents:

<cs:ContentElement
xsi:type="cs:AttributeGroupList"
Id="AttributeGroupList" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<cs:GroupSummary Key="Sale-Geography" Cardinality="7">
<cs:Record>
<system-group_DisplayName type="mdex:string">

Sale Geography
</system-group_DisplayName>
<system-group_Key type="mdex:string">

Sale-Geography
</system-group_Key>

</cs:Record>
<cs:GroupMembers>
<mdex-property_Key>DimGeography_CountryRegionName</mdex-property_Key>
<mdex-property_Key>DimGeography_StateProvinceName</mdex-property_Key>
<mdex-property_Key>DimGeography_City</mdex-property_Key>
<mdex-property_Key>DimGeography_PostalCode</mdex-property_Key>
<mdex-property_Key>DimSalesTerritory_SalesTerritoryCountry</mdex-property_Key>
<mdex-property_Key>DimSalesTerritory_SalesTerritoryGroup</mdex-property_Key>
<mdex-property_Key>DimSalesTerritory_SalesTerritoryRegion</mdex-property_Key>

</cs:GroupMembers>
</cs:GroupSummary>
<cs:GroupSummary Key="Sales-Transaction" Cardinality="15">

<cs:Record>
<system-group_DisplayName type="mdex:string">Sales Transaction</system-group_DisplayName>
<system-group_Key type="mdex:string">Sales-Transaction</system-group_Key>

</cs:Record>
<cs:GroupMembers>
...
<mdex-property_Key>FactSales_CarrierTrackingNumber</mdex-property_Key>
<mdex-property_Key>FactSales_CustomerPONumer</mdex-property_Key>

</cs:GroupMembers>
</cs:GroupSummary>

</cs:ContentElement>

Oracle® Endeca Server: Developer's Guide

Using Attribute Groups 126

</cs:Results>

Version 2.3.0 • June 2012 • Revision A

Note: In a response, you may also notice a group system-navigation_InternalGroup (not
shown in this example) which contains all of the attributes that are not members of any other user-
created groups. This group is used by the Oracle Endeca Server and Studio and is not intended to be
used in your application.

Oracle® Endeca Server: Developer's Guide

Chapter 16

Using Precedence Rules

This chapter describes how to configure and use precedence rules.

About precedence rules

Managed attribute trigger types

Configuring precedence rules

Precedence rules and implicit attribute value selection

About precedence rules
Precedence rules provide a way to delay the display of attributes until they offer a useful refinement of the
navigation state.

Precedence rules are defined in terms of a trigger attribute and a target attribute, where a user's selection of
the trigger reveals the previously unavailable target attribute to the user. That is, precedence rules are
triggered by implicit or explicit selections of either managed attribute values or standard attribute values.
These triggers are able to cause either managed attributes or standard attributes to be included as available
refinements.

Precedence rule triggers can be expressed as:

• Managed attribute value (mval): triggered when a particular mval is selected. This can be configured to
control whether the mval itself must be selected, or whether any child of the mval will trigger the rule.
Using a root mval for a managed attribute effectively causes any selection within that managed attribute to
trigger the rule.

• Standard attribute value (sval): triggered when a particular sval is selected.

• Standard attribute: triggered when any value in a particular standard attribute is selected

The precedence rule target can be a managed attribute or a standard attribute.

Note that either attribute type can trigger the other type. That is, a managed attribute value configured as a
trigger can display a standard attribute, while a standard attribute (or standard attribute value) can be a trigger
for a managed attribute target.

To illustrate the concept of precedence rules, assume that one might not want both the Country and State
managed attributes to appear simultaneously in a geographical data set. A precedence rule could be defined
so that the State managed attribute would appear only after a managed attribute value from the Country
managed attribute is selected. This simplifies the user's navigation choices and avoids information overload by
hiding the State managed attribute until it is relevant to the navigation state.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using Precedence Rules 128

Treatment of target attributes associated with multiple precedence rules

A target managed or standard attribute associated with more than one precedence rule is exposed when at
least one associated trigger is selected.

For example, assume we have three managed attributes: Author, Region, and Language. We have two
precedence rules:

Region > Author
Language > Author

Version 2.3.0 • June 2012 • Revision A

In this case, the Author managed attribute is displayed after a managed attribute value from either the Region
or Author managed attribute is selected.

Precedence rules with non-existent sources

If the source attribute in a precedence rule does not exist in the data store but its destination attribute does
exist, then the precedence rule will never be triggered. This behavior effectively hides the destination attribute
from refinements. To correct this behavior, either remove the rule or create the source attribute in the data
store.

Precedence rules versus hierarchical managed attributes

The creation of managed attributes can be facilitated with precedence rules. Consider the task of creating a
Geography managed attribute as a hierarchy of country, state, and city. The hierarchy would need to be
created manually, with Country as the root managed value. Each country managed value would have its
corresponding states as children and each state its corresponding cities. In this scenario, the onus is on the
knowledge worker to create and maintain this potentially enormous hierarchy.

Precedence rules offer a much simpler solution. The knowledge worker can produce the same results by
creating three individual managed (or standard) attributes (Country, State, and City) and configuring
precedence rules such that the State attribute is not presented until a country has been chosen and the City
attribute is not presented until a state has been chosen. Because each attribute is flat, this solution involves
much less initial and maintenance effort. Clearly, creating a managed attribute hierarchy by hand is a much
more difficult task than creating the three flat attributes, configuring precedence rules, and letting contraction
do the work to give the application the desired behavior (that is, to mimic the hierarchy).

Managed attribute trigger types
During configuration, you can specify a rule type for managed attribute triggers.

Managed value triggers are either leaf or non-leaf, while standard attribute triggers are not typed. Non-leaf
precedence rules display the target attribute if the trigger managed value or its descendants are in the
navigation state. Leaf precedence rules display the target attribute only after descendants of the trigger
managed value have been selected.

The two types differ in how the trigger value of the managed attribute is interpreted:

• For the non-leaf type, if the managed value specified as the trigger, or any of its descendants, are in the
navigation state, then the target attribute is displayed.

• For the leaf type, only leaf managed values (managed values with no children) that are descendants of the
specified trigger managed value cause the target attribute to be displayed. The presence of the specified
trigger managed value in the navigation state does not cause the target attribute to appear. Hence, a leaf
precedence rule requires that the trigger managed value have children.

Oracle® Endeca Server: Developer's Guide

Using Precedence Rules 129

When managed value triggers are created, the isLeafTrigger attribute sets the type. For details on
isLeafTrigger usage, see the Oracle Endeca Information Discovery Integrator Components Guide.

Non-leaf rule example

In this non-leaf rule example, we have a Color managed attribute with a child managed value named blue.
We can construct a non-leaf precedence rule with blue as the trigger managed value and the managed
attribute ShadesOfBlue as the target.

When the user drills into Color and selects blue, the target managed attribute ShadesOfBlue is displayed in
the user interface.

Leaf rule example

For leaf type rules, we will use a hierarchical managed attribute named Country and a second managed
attribute named State. The Country attribute hierarchy looks like this:

Country
- North America

- Canada
- Mexico
- United States

- Europe
- England
- Spain
- Italy

Version 2.3.0 • June 2012 • Revision A

Logically, a user should choose a country before choosing a state. We can use a leaf precedence rule to
suppress the display of the State attribute until a leaf value in the Country managed attribute (an actual
country as opposed to a continent) has been selected. To achieve this, a leaf precedence rule is constructed
with the Country root managed value as the trigger and the State managed attribute as the target.

If the user drills into Country and selects an intermediate child managed value (North America or Europe), the
target State attribute is not displayed. However, once the user has selected a leaf value from the Country
managed attribute (United States, Canada, Mexico, England, Spain, or Italy) the State managed attribute
appears.

Configuring precedence rules
You configure precedence rules in the Oracle Endeca Server by loading them in Integrator. Alternatively, you
can create a rule in the data store using the config-service:putPrecedenceRules operation of the
Configuration Web Service.

The precedence rule is stored by the Dgraph process as a record in its data files, so that the precedence rules
are automatically reloaded each time the Dgraph process is re-started.

To configure precedence rules:

1. Create an input source file (such as a text file or a CSV file) that defines your precedence rules.

2. In Integrator, create a graph that will read the input file, create the precedence rules, and send them to
the Oracle Endeca Server using the config-service:putPrecedenceRules operation from the
Configuration Web Service through WebClient component in Integrator.

The Oracle Endeca Information Discovery Integrator Components Guide provides details on creating the
precedence rules and loading them into the Oracle Endeca Server.

Oracle® Endeca Server: Developer's Guide

Using Precedence Rules 130

Precedence rules and implicit attribute value selection
When all records in the navigation state are assigned a given attribute value, that attribute value is an implicit
selection.

In addition to being selected explicitly by the application, attribute values (either standard attribute values or
managed attribute values) can be selected implicitly. For example, if all Champagnes are from France, then
the explicit selection of WineType>Champagne causes the implicit selection of Region>France. Implicit
selection is a function of the set of records in the navigation state, regardless of what combination of search,
navigation, and record filters was used to obtain them.

Implicitly-selected attribute values trigger precedence rules in exactly the same way as explicitly-selected
attribute values. This behavior helps ensure a consistent user experience, by providing the same attributes for
refinement of a given result set, regardless of whether that result set was obtained through search, navigation,
or a combination of the two.

For this reason, two navigation paths leading to the same set of records will always have exactly the same set
of navigation selections (differing only in whether the selections are implicit or explicit). Because of this
equivalence, the set of precedence rules fired in both states will be identical.

When precedence rules are overridden

Implicit selection of a precedence rule's trigger attribute value fires the rule. Under some circumstances,
implicit selection of the rule's target managed value also fires it. Specifically, when a precedence rule's target
managed value is implicit in the navigation state, and when refinements are available underneath that target
managed value, the precedence rule fires and the target attribute is displayed. This occurs even when none of
the rule's trigger values have been implicitly or explicitly selected. The Oracle Endeca Server treats any
precedence rules targeting the parent managed attributes of these managed values as having fired, even
though the rules' trigger values have not been selected.

For this reason, precedence rule target attributes may appear when no precedence rule trigger has been
selected.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Part V

Using Search Features

Chapter 17

Using Record Search

This chapter discusses record search, which is an Oracle Endeca Server equivalent of full-text search, and is
one of the fundamental building blocks of Oracle Endeca Server search capabilities.

Record search overview

Configuring attributes for record search

Enabling hierarchical record search

Implementing record search in Studio

Implementing record search with the API

Search query processing order

Tips for troubleshooting record search

Performance impact of record search

Record search overview
Record search allows a user to perform a keyword search against specific attribute values assigned to
records.

The resulting records that have matching attribute values are returned, along with any valid refinement values.

Because record search returns a navigation page, it is important to remember that the record search
parameter acts as a record filter in the same way that an attribute value does, even though it is not a specific
value.

Example of record search

For example, consider the following records:

Rec ID Attribute value Name of attribute Description of attribute
(BikeType)

1 Road Bikes (Value 2) Road-450 can do double-duty for racing or long-range
mileage...

2 Road Bikes (Value 2) Road-550-W its speed comes at the sake of comfort...

3 Touring Bikes (Value Touring-1000 combines comfort and performance...
3)

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using Record Search 133

Rec ID Attribute value Name of attribute Description of attribute
(BikeType)

4 Mountain Bikes (Value Mountain-500 this mountain bike has serious racing
1) performance...

When the user performs a record search on the Description attribute using the keyword comfort, the
following objects are returned:

• 2 records (records 2 and 3)

• 2 refinement attribute values (Road Bikes and Touring Bikes)

When performing a record search on the Description attribute using the keyword racing, these objects are
returned:

• 2 records (records 1 and 4)

• 2 refinement attribute values (Road Bikes and Mountain Bikes)

Note: In addition to basic record search, other features affect the behavior of record search, such as
spelling support, relevance ranking of results, wildcard syntax, multiple attribute record searches, and
attribute group record searches. These are discussed in detail in their respective sections.

Features for controlling record search

The following statements describe various aspects of record search behavior and how you can control it:

• To configure run-time record search behavior, you must create one or more search interfaces. For more
information, see the section on search interfaces.

• There are no Dgraph configuration flags necessary to enable record searching. If an attribute was properly
enabled for record searching, it will automatically be available for record searching.

• Multiple Dgraph configuration flags are available to manage different controls for record search, such as
spelling support and relevance ranking. See the specific feature sections for details.

Configuring attributes for record search
The first step in implementing basic record search is to configure a standard attribute for record searching
using either the Configuration Web Service directly or Integrator (whose components use this service).

The mdex-property_IsTextSearchable attribute of a PDR enables the attribute for record searching.
The valid settings for this attribute are:

• If set to true, the attribute is enabled for record search.

• If set to false, the attribute is not enabled for record search. This is the default.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using Record Search 134

To configure an attribute for record search, see the Oracle Endeca Information Discovery Integrator
Components Guide.

Enabling hierarchical record search
If you want to consider ancestor managed attribute values when matching a record search query, you can
enable hierarchical record search.

By default, a record search that uses a managed attribute as the search key returns only those records that
are assigned an attribute value whose text matches the search terms. As part of this behavior, record search
does not consider implicit ancestor attribute values.

For example, consider the following managed attributes hierarchy:

In this hierarchy, the Jersey attribute (with an ID of 12) is an ancestor of the Sleeveless attribute (ID of
13). A search against the Clothing attribute for the keyword sleeveless matches any records assigned
the attribute value 13. But a search in Clothing for sleeveless jersey does not match these records,
because record search does not normally consider implicit ancestor attribute value assignments.

In such cases, you may want record search to consider ancestor attribute values when matching a record
search query. You can enable this sort of hierarchical record search by setting the mdex-
dimension_IsRecordSearchHierarchical attribute to true in the managed attribute's DDR (Dimension
Description Record).

Adding search synonyms to attribute values

You can add synonyms to a managed attribute value so that users can search for other text strings and still
get the same records as a search for the original attribute value name.

When a managed attribute is used as the record search key, the text strings considered by record search for
matching are the individual names of the attribute values within the attribute. The managed attribute name is
automatically added as a searchable string.

You can add synonyms to an attribute value so that users can search for other text strings and still get the
same records as a search for the original attribute value name. Synonyms can be added only to child attribute
values, not to root attribute values.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using Record Search 135

You can use the Data Ingest Web Service's ingestDimensionValues operation to add synonyms when
adding attribute values to the data store in the Oracle Endeca Server. For details, see the Oracle Endeca
Server Data Loading Guide.

Implementing record search in Studio
Record search queries in a Studio application are made from the Search Box component.

To make record search queries in Studio, you must add and configure the Search Box component. For details
on this component, see the Oracle Endeca Information Discovery Studio User's Guide.

Implementing record search with the API
This section describes how to issue record search queries using the Conversation Web Service API.

For more information on the Conversation Web Service interface, see the Oracle Endeca Server API
Reference. This reference contains documentation generated from the interface WSDL document.

Obtaining the available search keys
The AvailableSearchKeys complex type lets you retrieve a list of the searchable attributes and search
interfaces available in the data store.

The AvailableSearchKeys element contains one or more AvailableSearchKey elements. The complex type
AvailableSearchKey identifies the items that are searchable — search interfaces and searchable properties.
This type has the following format:

<complexType name="AvailableSearchKey">
<annotation>
<documentation>

A key used to identify searchable properties and search interfaces.
</documentation>

</annotation>
<sequence>
<element name="Key" type="string"/>
<element name="DisplayName" type="string" />

</sequence>
<attribute name="Interface" type="boolean" use="required" />

</complexType>

Version 2.3.0 • June 2012 • Revision A

The Interface attribute distinguishes whether the search key is a searchable attribute or a search interface. If
the search key is a search interface, the attribute is set to true. If the search key is not a search interface and
is a searchable attribute, the attribute is set to false.

Request for available search keys
To make a request for available search keys, use the AvailableSearchKeysConfig component as illustrated
in this example:

<Request xmlns="http://www.endeca.com/MDEX/conversation/1/0">
<State/>
<ContentElementConfig xsi:type="AvailableSearchKeysConfig"

HandlerFunction="AvailableSearchKeysHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
Id="MySearchKeys" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" />

Oracle® Endeca Server: Developer's Guide

Using Record Search 136

</Request>

Version 2.3.0 • June 2012 • Revision A

The Id attribute is an identifier for the configuration.

Response for available search keys
The response contains an AvailableSearchKeys component that lists all of the searchable keys in a single
alphabetically ordered list, as shown in this example:

<cs:Results xmlns:cs="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:mdex="http://www.endeca.com/MDEX/XQuery/2009/09">

<cs:Request>
<State xmlns="http://www.endeca.com/MDEX/conversation/1/0"

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"/>
<ContentElementConfig xsi:type="AvailableSearchKeysConfig"
HandlerFunction="AvailableSearchKeysHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
Id="MySearchKeys" xmlns="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>

</cs:Request>
<cs:ContentElement xsi:type="cs:AvailableSearchKeys"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<cs:AvailableSearchKey Interface="true">

<cs:Key>AllWineSearch</cs:Key>
<cs:DisplayName>AllWineSearch</cs:DisplayName>

</cs:AvailableSearchKey>
<cs:AvailableSearchKey Interface="false">

<cs:Key>Description</cs:Key>
<cs:DisplayName>Wine Description</cs:DisplayName>

</cs:AvailableSearchKey>
<cs:AvailableSearchKey Interface="false">

<cs:Key>WineType</cs:Key>
<cs:DisplayName>Wine Type</cs:DisplayName>

</cs:AvailableSearchKey>
</cs:ContentElement>

</cs:Results>

Each AvailableSearchKey element lists the name of a searchable attribute or search interface (the Key sub-
element) and the display name (which can have a non-NCName format). If the search key is a search
interface, the Interface attribute is set to true.

In this sample response, one search interface, AllWineSearch, and two attributes, Description and
WineType, are listed as available search keys.

Record search operator
A basic record search requires an Operator with a SearchOperator type.

The syntax for a search request is shown in this example:

<ns:Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ns="http://www.endeca.com/MDEX/conversation/1/0" xsi:type="ns:SearchOperator"
Within="false">

<ns:SearchFilter Mode="AllPartial" RelevanceRankingStrategy="numfields"
Key="Description">Mountain</ns:SearchFilter>

</ns:Operator>

Oracle® Endeca Server: Developer's Guide

Using Record Search 137

The text content of the SearchFilter element contains the search term(s). In the example, a record search is
being made for the "spice flavors" keywords. The meanings of attributes for the SearchOperator and the
SearchFilter element are as follows:

Search attribute Description

Within Optional. If set to false on the SearchOperator element,
then the visible parts of the filter state are cleared first. The
default value is false.

Key Required to be specified for the SearchFilter. Specifies
which standard or managed attribute will be evaluated
when searching. You specify an attribute as a value for this
parameter. (You can also specify a search interface as a
value.)

EnableSnippeting Optional. If set to true on the SearchFilter element,
enables snippeting. If set to false, disables snippeting.

SnippetLength Optional. Specifies the length of the snippet for the
SearchFilter.

Mode Optionally specifies a match mode for the SearchFilter.
Cannot use Boolean match mode.

RelevanceRankingStrategy Optionally specifies a relevance ranking strategy for the
SearchFilter.

Search query processing order
This section summarizes how the Dgraph process of the Oracle Endeca Server processes record search
queries.

While this summary is not exhaustive, it covers the processing steps likely to occur is most application
contexts. The process outlined here assumes that other features (such as spelling correction and thesaurus)
are being used.

The Dgraph process uses the following high-level steps to process record search queries:

1. Record filtering

2. Tokenization

3. Auto correction (spelling correction and automatic phrasing)

4. Thesaurus expansion

5. Stemming

6. Primitive term and phrase lookup

7. Did you mean

8. Navigation filtering

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using Record Search 138

9. EQL

10. Relevance ranking

Note: For Boolean search queries, tokenization, auto correction, and thesaurus expansion are
replaced with a separate parsing phase.

Step 1: Record filtering

If a record filter is specified, whether for security, custom catalogs, or any other reason, the Oracle Endeca
Server applies it before any search processing.

The result is that the search query is performed as if the data set only contained records allowed by the record
filter.

Step 2: Tokenization

Tokenization is the process by which the Dgraph analyzes the search query string, yielding a sequence of
distinct query terms.

Step 3: Auto correction (spelling correction and automatic phrasing)

If spelling correction and automatic phrasing are enabled and triggered, the Dgraph process of the Oracle
Endeca Server implements them as part of the record search processing.

If the spelling correction feature is enabled and triggered, the Dgraph creates spelling suggestions by
enumerating (for each query term) a set of alternatives, and considering some of the combinations of term
alternatives as whole-query alternatives.

Each of these whole-query alternatives is subject to thesaurus expansion and stemming.

For example, if the tokenized query is employee moral, then employee may generate the set of alternatives
{employer, employee, employed}, while moral may generate the set of alternatives {moral, morale}.

The two query alternatives generated as spelling suggestions might be employer moral and employee
morale.

For details on the auto-correction feature, see the section about it.

If automatic phrasing is enabled, then the Dgraph automatically combines distinct query terms that match a
phrase in the phrase dictionary into a search phrase.

Once distinct terms are grouped as an automatic phrase, the phrase is not subject to additional thesaurus
expansion and stemming.

For example, suppose the phrase dictionary contains two phrases Kenneth Cole and also blue jeans. If
the query is Kenneth Cole blue jeans, the alternative query might be "Kenneth Cole" "blue jeans".

For details on automatic phrasing, see the section about it.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using Record Search 139

Step 4: Thesaurus expansion

The tokenized query, as well as each query alternative generated by spelling suggestion, is expanded by the
Oracle Endeca Server based on thesaurus matches. This topic describes the behavior of the thesaurus
expansion feature.

Thesaurus expansion replaces each expanded query term with an OR of alternatives.

For example, if the thesaurus expands pentium to intel and laptop to notebook, then the query
pentium laptop will be expanded to:

(pentium OR intel) AND (laptop OR notebook)

Version 2.3.0 • June 2012 • Revision A

assuming the match mode is All.

The other match modes (with the exception of Boolean) behave analogously.

If there is a multiple-word thesaurus match, then OR is used on the query itself to accommodate the various
ways of partitioning the query terms.

For example, if high speed expands to performance, then the query high speed laptop will be
expanded to:

(high AND speed AND (laptop OR notebook)) OR (performance
AND (laptop OR notebook))

Multiple-word thesaurus matches only apply when the words appear in exact sequence in the query. The
queries speed high laptop and high laptop speed do not activate the expansion to performance.

For more details on thesaurus expansion, see the section on this feature.

Step 5: Stemming

Query terms, unless they are delimited with quotation marks to be treated as exact phrases, are expanded by
the Oracle Endeca Server using stemming.

The expansion for stemming applies even to terms that are the result of thesaurus expansion. A stemmed
query term is an OR expression of its word forms.

For example, if the query pentium laptop was thesaurus-expanded to:

(pentium OR intel) AND (laptop OR notebook)

it will be stemmed to:

(pentium OR intel) AND (laptop OR laptops OR notebook
OR notebooks)

assuming that only the improper nouns have plurals in the word form dictionary.

For more details on stemming, see the section on this feature.

Step 6: Primitive term and phrase lookup

Primitive term and phrase lookup is the lowest level of search processing performed by the Oracle Endeca
Server.

The Oracle Endeca Server evaluates each search term as is, and matches it to the set of documents
containing that precise word or phrase (given the tokenization rules) in the data files being searched. Search
is never case-sensitive, even for phrases.

Oracle® Endeca Server: Developer's Guide

Using Record Search 140

Step 7: Did You Mean

The Oracle Endeca Server performs the "Did you mean" processing as part of the record search processing.

"Did you mean?" processing is analogous to the spelling correction and automatic phrasing processing, only
that the results are not included, but rather the spelling suggestions and automatic phrases themselves are
returned.

For details on the "Did you mean?" feature, see the section about it.

Step 8: Navigation filtering

The Oracle Endeca Server performs all filtering based on the navigation state after the search processing.
This order is important, because it ensures that the spelling suggestions remain consistent as the navigation
state changes.

Step 9: EQL

The Endeca Query Language (EQL) builds on the core capabilities of the Oracle Endeca Server to enable
applications that examine aggregate information such as trends, statistics, analytical visualizations,
comparisons, and so on, all within the Guided Navigation interface. If EQL is used, it is applied near the end of
processing.

For more information about EQL, see the Oracle Endeca Server Query Language Reference.

Step 10: Relevance ranking

Relevance ranking is the last step in the Oracle Endeca Server processing for the record search. Each of the
navigation-filtered search results is assigned a relevance score, and the results are sorted in descending order
of relevance.

For details on this feature, see the section about it.

Tips for troubleshooting record search
This topic includes tips for troubleshooting record search.

Due to the user-specified interaction of this feature (as opposed to the system-controlled interaction of Guided
Navigation in which the Oracle Endeca Server controls the refinement values presented to the user), a user is
allowed to submit a keyword search that does not match any records. Therefore, it is possible for a user to
make a dead-end request with zero results when using record search. Applications utilizing record search
need to account for this.

In production systems, these attributes are typically hard-coded at the application level, because the
application requires specific search keys to be used for specific functionality.

If an attribute is not enabled for record searching but an application attempts to perform a record search
against this attribute, the Oracle Endeca Server successfully returns a null result set. The Dgraph process
error log, however, outputs the following message: In fulltext search: [Wed Sep 3 12:28:02 2010]
[Warning] Invalid fulltext search key "Description" requested.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using Record Search 141

The -v flag to the Dgraph causes the Dgraph process to output detailed information about its record search
configuration. If you are unsure whether the Dgraph is recognizing a particular parameter, start it with the -v
flag and check the output.

Finally, record search can be enabled for standard attributes and for managed attribute values.

Performance impact of record search
Each attribute enabled for record searching increases the size of the Dgraph process.

The specific size of the increase is related to the size of the unique word list generated by the specific attribute
in the data set. Therefore, only attributes that are specifically needed by an application for record searching
should be configured as such.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Chapter 18

Working with Search Interfaces

A search interface is a named collection of standard and managed attributes, each of which is enabled for
record search.

About search interfaces

Implementing search interfaces

Options for allowing cross-field matches

Additional search interface options

Tips for troubleshooting search interfaces

About search interfaces
A search interface allows you to control record search behavior for groups of one or more attributes.

A search interface may also contain:

• A number of attributes, such as name, cross-field information, and so on.

• An ordered collection of one or more ranking strategies.

Some of the features that can be specified for a search interface include:

• Relevance ranking

• Matching across multiple attributes

• Keyword in context results

• Partial match

You can use a search interface to control the behavior of search against a single standard or managed
attribute, or to simultaneously search across multiple attributes.

For example, if a data set contains both an Actor standard attribute and Director managed attribute, a
search interface can provide the user the ability to search for a person’s name in both. A search interface’s
name is used just like a normal attribute when performing record searches. By default, a record search query
on a search interface returns results that match any of the attributes in the interface.

Implementing search interfaces
You implement search interfaces with Integrator.

In Integrator, you can use the WebClient component to send a request to the Oracle Endeca Server using the
Configuration Web Service. This request sends the RECSEARCH_CONFIG document to the Oracle Endeca

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Working with Search Interfaces 143

Server, thus creating a search interface. For information on how to configure a search interface using
Integrator, see the Oracle Endeca Information Discovery Integrator Components Guide.

If you are not using Integrator, you can create a request with the putConfigDocuments operation of the
Configuration Web Service and send the RECSEARCH_CONFIG XML document to the Oracle Endeca Server.
For information, see Configuration Web Service operations on page 28.

Before implementing search interfaces, make sure that all the attributes that are going to be included in a
search interface have already been enabled for record search. In addition, if the search interface will include a
relevance ranking strategy, make sure that the relevance ranking strategy has been configured.

If you are implementing wildcard search in a search interface, search interfaces can contain a mixture of
wildcard-enabled and non-wildcard-enabled members (although only the former will return wildcard-expanded
results).

You implement a search interface via the RECSEARCH_CONFIG XML configuration document. The resulting
search interface should look similar to this example of a search interface named AllFields that uses a
relevance ranking strategy named All:
<RECSEARCH_CONFIG>
<SEARCH_INTERFACE CROSS_FIELD_BOUNDARY="NEVER"

CROSS_FIELD_RELEVANCE_RANK="0"
DEFAULT_RELRANK_STRATEGY="All" NAME="AllFields">

<MEMBER_NAME RELEVANCE_RANK="4">ProductType</MEMBER_NAME>
<MEMBER_NAME RELEVANCE_RANK="3">ProductName</MEMBER_NAME>
<MEMBER_NAME RELEVANCE_RANK="2">SalesRegion</MEMBER_NAME>
<MEMBER_NAME RELEVANCE_RANK="1">Description</MEMBER_NAME>

</SEARCH_INTERFACE>
<RECSEARCH_CONFIG>

Version 2.3.0 • June 2012 • Revision A

Options for allowing cross-field matches
The CROSS_FIELD_BOUNDARY attribute specifies when the Dgraph process of the Oracle Endeca Server
should try to match search queries across attribute boundaries.

The three settings for CROSS_FIELD_BOUNDARY are:

Setting Description

Always
The Dgraph always looks for matches across attribute boundaries, in addition to matches
within an attribute.

If you choose to use cross-field matching, the Always setting is recommended and is the
default.

For example, in the Sony camera user query, if CROSS_FIELD_BOUNDARY is set to
Always, the Dgraph returns all matches with Brand = Sony and Product_Type =
camera.

Never
The Dgraph does not look across boundaries for matches.

On Failure
The Dgraph only tries to match queries across attribute boundaries if it fails to find any
matches within a single attribute. Note that in most cases, the Always setting provides
better results than the On Failure setting.

Oracle® Endeca Server: Developer's Guide

Working with Search Interfaces 144

By default, record search queries using a search interface return the union of the results from the same record
search query performed against each of the interface members.

For example, assume a search interface named MoviePeople that includes actor and director
attributes. Searching for deniro against this interface returns the union of records that results from searching
for deniro against the actor attribute and against the director attribute.

Less frequently, you may wish to allow a match to span multiple attributes. For example, in the same
MoviePeople search interface, a query for clint eastwood returns records where either an actor
standard attribute or a director attribute is assigned a value containing the words clint and eastwood.
This behavior is useful for this query, where the search terms all relate to a single concept (the actor/director
Clint Eastwood).

However, in some cases returning a union of the results from the same record search query performed
against each search interface member is unnecessarily limiting. For example, in a home electronics catalog
application, a customer searching for Sony camera might be interested in a broad range of products, but this
record search would only return the few products that have the terms Sony and camera in the product name.

In such cases, you can use the CROSS_FIELD_BOUNDARY attribute when you create a search interface. This
attribute specifies when the Dgraph should try to match search queries across attribute boundaries, but within
the members of the search interface.

How cross-field matches work in multi-assign cases

When a search interface member (that is, a searchable attribute) is multi-assigned on a record, the multi-
assigns are treated by the Dgraph process of the Oracle Endeca Server as separate matches, just as if they
were values from different attributes. A search that matches two or more terms in separate multi-assign values
for the same attribute is treated as a cross-field match by the Dgraph process.

For example, assume a record has the following attribute values:

P_Tag: Tom Brady
P_Tag: Jersey

Version 2.3.0 • June 2012 • Revision A

A search against P_Tag for "tom brady jersey" is treated as a cross-field match, even though all results were
found in the same attribute (P_Tag).

Additional search interface options
You can configure other features for the search interface by specifying other match-related attributes to the
SEARCH_INTERFACE element.

The following table lists the attributes (other than the CROSS_FIELD_BOUNDARY attribute) that you can specify
with the SEARCH_INTERFACE element.

Attribute Purpose

DEFAULT_RELRANK_STRATEGY For record search, assigns a default relevance
scoring function to a search interface.

Oracle® Endeca Server: Developer's Guide

Working with Search Interfaces 145

Attribute Purpose

CROSS_FIELD_RELEVANCE_RANK Specifies the relevance rank score for cross-field
matches. The value should be an unsigned 32-bit
integer.

The default value for
CROSS_FIELD_RELEVANCE_RANK is 0.

STRICT_PHRASE_MATCH Specifies that the Dgraph process should
interpret a query strictly when comparing white
space in the query with punctuation in the source
text.

If set to FALSE, partial word tokens connected in
the source text by punctuation can be matched to
a phrase query where the partial tokens are
separated by spaces instead of matching
punctuation.

The default value of this attribute is TRUE.

You can also use the PARTIAL_MATCH element to specify if partial query matches should be supported for the
SEARCH_INTERFACE that contains this element.

Tips for troubleshooting search interfaces
All the tips for troubleshooting basic record search are also useful for troubleshooting record search that uses
search interfaces. To get the most out of the search interfaces feature, make sure to set your search
interfaces to contain the relevant searchable fields.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Chapter 19

Using Value Search

This chapter discusses how the Oracle Endeca Server performs value search and how to configure it for your
application.

About value search

How value search works

When to use value and record search

Enabling value search

Utilizing value search in Studio

Implementing value search with the API

Interaction of value search and wildcard search

Performance impact of value search

About value search
Value search allows users to perform keyword searches across attributes for values with matching names.

End users of applications powered by the Oracle Endeca Server can search all types of attribute values,
including values for standard and managed attributes. The front-end application can present these values to
the end-user, allowing the user to select them and create a new navigation request.

Value search is enabled differently for attributes:

• Standard attributes. You can make standard attributes of type string value searchable. To configure a set
of standard attributes of type string whose values will be considered for search, modify the values of the
IsPropertyValueSearchable attribute on the PDRs.

• Managed attributes. All managed attributes are evaluated for value search by default, and you cannot
disable value search for them.

How value search works
Value search returns single values that match the user’s search terms, organized by attribute.

To be considered a valid result, a value must match all of the search terms that the user provides in the
request to the Oracle Endeca Server.

Example of value search
For example, a value search for road might return:

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using Value Search 147

Attribute Values

Bikes Road Bikes

Components Road Frames, Road Gloves, Road Wheels

Reviews Best all-around road bike

When to use value and record search
Value search is sometimes confused with record search. This topic provides examples of when to use each
type of search.

Understanding the differences between the two basic types of keyword search (record search and value
search) is important before creating a solution for a specific business problem. Use the following
recommendations:

Type of keyword When to use
search

Value search
In general, data sets with little descriptive text and extensive attribute values of
type string that represent the most frequently searched terms (for example, autos)
are a good fit for value search.

Keyword searches are usually suitable for such keywords as make, model, or
year. These keywords are also likely candidates for being configured as managed
attributes in your application.

Record search
Data sets with descriptive text or names (such as news articles) are better suited
for record search. This is because a reasonable set of attribute values for such a
data set cannot be expected to cover all the terms required to handle keyword
search.

In such cases, text search allows an application to search directly against record
text (such as the body of an article).

For many applications, a combination of value search and record search is the best solution. In this case,
separate value search and text search queries are executed simultaneously for the same keywords:

• If a value matches, the user is given the opportunity to select that value in place of the record search
query to produce results.

• If no values match, the user is still left with the matching records for a record search query.

Keep in mind that navigation queries and value search queries are completely independent. In the scenario
described above where both queries are executed simultaneously, neither query affects the other. Record
search is a variation of a navigation query. Record search could return results even though value search does
not, and vice-versa.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using Value Search 148

Enabling value search
You enable a standard attribute for value search by changing the values in the mdex-property-
IsPropertyValueSearchable attribute in the PDR.

Managed attributes are always enabled for value search in the Oracle Endeca Server. In addition, you can
also enable standard attributes of type string for value search. In this case, these attributes are searched by
the Oracle Endeca Server. Only the standard attributes of type string can be enabled for value search.

The mdex-property-IsPropertyValueSearchable attribute in the PDR specifies whether an attribute in
your data set is value searchable. The valid settings for this attribute are:

• true means that the attribute is enabled for value search. This is the default.

• false means that the attribute is not enabled for value search.

If, in addition to enabling value search for specific attributes of type string, you also would like to enable
wildcard search for all value search queries, set the mdex-config_EnableValueSearchWildcard
attribute in the Global Configuration Record (GCR) to true.

To enable value search, you can send a request to change the attribute in the GCR using the Configuration
Web Service, or you can use Integrator.

For information on how to use the Configuration Web Service, see the section in this guide and the Oracle
Endeca Server API Reference (which contains documentation for the WSDL).

For information on how to use Integrator to enable a standard attribute for value search, see the Oracle
Endeca Information Discovery Integrator Components Guide.

Utilizing value search in Studio
Value search supports the refinement search available in the Guided Navigation component, and the ability
to utilize typeahead search in the Search Box component.

For additional information on configuring Studio components that utilize value search, see the Oracle Endeca
Information Discovery Studio User's Guide.

Implementing value search with the API
This section provides examples of Conversation Web Service requests and responses and describes
parameters you can use for value search.

Value search query format
To make a value search query, use a ValueSearchConfig type, specifying a SearchTerm element and,
optionally, the attributes within which you would like to search.

ValueSearchConfig is a type of ContentElementConfig complex type element. ValueSearchConfig
controls the behavior of a single value search query.

The SearchTerm element specifies search term(s) used by the Oracle Endeca Server for a search either
against all value-searchable attributes, or those that you specify in RestrictToProperties. You can
optionally limit the number of search matches returned for each attribute using MaxPerProperty.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using Value Search 149

The ValueSearchConfig type has the following parameters (some of which are optional):

Parameter Description

HandlerFunction Required attribute. Specifies the ValueSearchHandler
handler function for ValueSearchConfig, which is a
type of ContentElementConfig.

HandlerNamespace Required attribute. Specifies the namespace for the
handler function.

Id Optional. An identifier for this query configuration.

Mode Optional. Specifies a search mode, such as Any, or
AllPartial. If Mode is not used, the query defaults to
using the All search mode.

MaxPerProperty Optional. Limits the number of matches returned per
record attribute. If this attribute is omitted, all found
matches for the record attribute are returned.

RelevanceRankingStrategy Optional. Specifies a relevance ranking strategy to use
on the results. If you omit this attribute and do not specify
a relevance ranking strategy, the Oracle Endeca Server
uses the value for the strategy provided in the
DIMSEARCH_CONFIG XML configuration document.
Further, if the document does not specify a strategy, the
Oracle Endeca Server ranks the results using the
following three strategies in this order (to break ties):
interp, exact, and static.

RestrictToProperties Optional. If not specified, the request searches within all
attributes. If specified, the request searches within
specified attributes.

SearchTerm Required. Contains the search term(s) (also known as
keywords) the Oracle Endeca Server uses to conduct
value search.

Example of a value search query

The following example illustrates the format of a typical value search request in the Conversation Web
Service. In this request, a search is conducted for the term Wash within the ModelName attribute. The number
of requested results to return per attribute is set to 5:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:typ="http://www.endeca.com/MDEX/lql_parser/types">
<soapenv:Header/>
<soapenv:Body>
<ns:Request>
<ns:State/>
<ns:Operator/>

Version 2.3.0 • June 2012 • Revision AOracle® Endeca Server: Developer's Guide

Using Value Search 150

<ns:ContentElementConfig
Id="ValueSearchConfig"
xsi:type="ns:ValueSearchConfig"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
HandlerFunction="ValueSearchHandler"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
MaxPerProperty="5"
RelevanceRankingStrategy="static (nbins,descending)"
Mode="Any">
<ns:SearchTerm>Wash</ns:SearchTerm>
<ns:RestrictToProperties>
<ns:Property>ModelName</ns:Property>
</ns:RestrictToProperties>
</ns:ContentElementConfig>
<ns:PassThrough/>

</ns:Request>
</soapenv:Body>

</soapenv:Envelope>

Version 2.3.0 • June 2012 • Revision A

Constructing a value search query
You create a value search query by issuing a request that uses the ValueSearchConfig type.

Use the parameters for ValueSearchConfig specified in its format.

As a rule of thumb, for any record attribute in the data store that could contain more than 100 possible results,
use <RestrictToProperties> and MaxPerProperty attributes to help control the results returned from
the corpus. Without these controls, the size of the resulting response from the Conversation Web Service
could cause slow response times between your front-end application and the Oracle Endeca Server.

To create a value search query:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:typ="http://www.endeca.com/MDEX/lql_parser/types">

<soapenv:Header/>
<soapenv:Body>
<ns:Request>

<ns:State>
</ns:State>
<ns:Operator/>
<ns:ContentElementConfig Id="ValueSearchConfig"
xsi:type="ns:ValueSearchConfig"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
HandlerFunction="ValueSearchHandler"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
MaxPerProperty="5"
RelevanceRankingStrategy="static (nbins,descending)"
Mode="Any">
<ns:SearchTerm>26</ns:SearchTerm>
<ns:RestrictToProperties>
<ns:Property>ProductCategory</ns:Property>
<ns:Property>Bike Racks</ns:Property>

</ns:RestrictToProperties>
</ns:ContentElementConfig>
<ns:PassThrough />

</ns:Request>
</soapenv:Body>

</soapenv:Envelope>

Oracle® Endeca Server: Developer's Guide

Using Value Search 151

The results of a value search query are returned in the ValueSearch type of ContentElementConfig. In
the response, the following information is returned:

• The PropertyMatches element appears only for those standard and managed record attributes in which
matches were found, and contains values for those matches.

• TotalValuesCount specifies the number of values returned for each value-searchable attribute.

• HasMore specifies whether there exist more attribute matches, beyond those that are returned. Because
the request may limit the number of result values, the list of results returned may contain returned values
and also indicate that a additional matching values exist that are not returned.

The HasMore attribute specifies whether any results are cut off because of a limit specified in the request.

Restricting value search to specific attributes
Value search queries could potentially contain many results. You can use RestrictToProperties attribute
to limit the number of returned results to a list of one or more specified attributes.

If a managed attribute is searched, using RestrictToProperties you can search within a whole managed
attribute and its entire hierarchy of values, but you cannot restrict value search to a subtree within a particular
root value in the hierarchy.

To restrict value search to searching specific attributes, use RestrictToProperties element inside
ContentElementConfig, as shown in this abbreviated example:

<ns:ContentElementConfig
...
<ns:RestrictToProperties>
<ns:Property>ProductCategory</ns:Property>
<ns:Property>Bike Racks</ns:Property>
</ns:RestrictToProperties>
</ns:ContentElementConfig>

Version 2.3.0 • June 2012 • Revision A

Limiting the number of results per attribute

Another way to limit value search results is to specify the number of values to return for each record attribute,
using the MaxPerProperty attribute of ValueSearchConfig.

To set the number of attribute values to return for each attribute, use the MaxPerProperty attribute with an
integer that specifies the number of values to return per attribute.

For example, the following query:

<ns:ContentElementConfig
...
MaxPerProperty="2">
<ns:SearchTerm>Handlebars</ns:SearchTerm>
<ns:RestrictToProperties>
...
</ns:ContentElementConfig>

Oracle® Endeca Server: Developer's Guide

Using Value Search 152

returns 2 results for each attribute.

Retrieving the number of matching results

The standard response to any value search request always includes information about the total number of
matched values found, and whether all of them have been returned in this request. This information is
returned in the TotalValuesCount and HasMore attributes on the PropertyMatches element.

A PropertyMatches element appears in the response only for those attributes in which matches were
found, and contains attribute values for those matches. It contains two attributes that provide information on
the number of values found and returned:

TotalValuesCount Specifies the total number of matched values found per property.

HasMore Specifies whether any results were cut off because of a limit
specified in the request with MaxPerProperty.

Additionally, if the returned match is a managed attribute, then in the response, you will see the Match

complex type. Match lists details of a single value within a particular attribute that matched a value search. If
the matched value belongs to a managed attribute, then the FullPath is present in the response too, as in
the following abbreviated example of the response:

<cs:PropertyMatches Name="ProductCategory" DisplayName="Product Category" TotalValuesCount
="1" HasMore="false">
<cs:Match>
<cs:MatchingValue DisplayName="Gloves">20</cs:MatchingValue>
<cs:FullPath>

<cs:DimensionValue>
<cs:DimensionValue DimensionName="ProductCategory"
Spec="/">ProductCategory
</cs:DimensionValue>
<cs:Operator xsi:type="cs:RefinementOperator"
Name="ProductCategory" Spec="/"/>
</cs:DimensionValue>

<cs:DimensionValue>
<cs:DimensionValue DimensionName="ProductCategory"
Spec="CAT_CLOTHING">Clothing

</cs:DimensionValue>
<cs:Operator xsi:type="cs:RefinementOperator"
Name="ProductCategory" Spec="CAT_CLOTHING"/>
</cs:DimensionValue>
<cs:DimensionValue>

<cs:DimensionValue DimensionName="ProductCategory"
Spec="20">Gloves</cs:DimensionValue>
<cs:Operator xsi:type="cs:RefinementOperator"
Name="ProductCategory" Spec="20"/>

</cs:DimensionValue>
</cs:FullPath>

</cs:Match>
</cs:PropertyMatches>

Version 2.3.0 • June 2012 • Revision AOracle® Endeca Server: Developer's Guide

Using Value Search 153

Ordering results

Value search results consist of values grouped by record attribute. Attributes in the result list are returned in
an ascending alphabetical order.

The ordering of values, within each attribute, uses an order described as follows:

• If you specify a relevance ranking strategy, the order of results is ranked according to it.

• If you do not specify a relevance ranking strategy, the Dgraph process of the Endeca Server uses the
value for this strategy provided in the DIMSEARCH_CONFIG XML configuration document (you can send
an updated version of this document to the Endeca Server by using the Configuration Web Service).

• Further, if the document does not provide a strategy, the Endeca Server ranks the results using the three
strategies in this order to break ties: interp, exact, and static(nbins,descending).

Specifying relevance ranking strategy for results

To rank the order of results received in response for a value search request, you can use the
RelevanceRankingStrategy attribute.

If you specify a relevance ranking strategy, the order of results is ranked according to it. To rank the order of
results of the value search request, specify the value for the RelevanceRankingStrategy attribute in the
ValueSearchConfig type of your Conversation Web Service request, as in this abbreviated example:

<ns:ContentElementConfig
...
RelevanceRankingStrategy="static (nbins,descending)">
...
</ns:ContentElementConfig>

Version 2.3.0 • June 2012 • Revision A

Interaction of value search and wildcard search
By default, value search allows wildcards at the end of the search term (such as gua* for the search term
guarantee). To enable wildcards elsewhere in a search term, you need to set the mdex-
config_EnableValueSearchWildcard attribute in the Global Configuration Record (GCR) to true, for
the standard attribute in your records.

The following examples illustrate how the Oracle Endeca Server treats wildcards in value searches:

• A wildcard search at the end of the search term, such as gua*, is conducted by the Oracle Endeca Server
for all standard attributes for which value search is enabled.

• Wildcard searches of type *uara and g*ara are conducted by the Oracle Endeca Server only if the GCR
attribute mdex-config_EnableValueSearchWildcard is set to true for the corresponding standard
attribute on your records. The default value for this attribute is false, meaning that wildcard search is
disabled for value search.

Oracle® Endeca Server: Developer's Guide

Using Value Search 154

Performance impact of value search
This topic discusses value search and its impact on Oracle Endeca Server performance.

Limit value search scope and the number of returned results

If you submit a value search query, the query is generally very fast. The runtime performance of value search
directly corresponds to the number of values and the size of the resulting set of matching values. In general,
this feature performs at a much higher number of operations per second than navigation requests. The most
common performance problem is when the resulting set of values is exceptionally large (greater than 1,000),
thus creating a large results page. To avoid it, limit the number of results per request, using value search
parameters.

The query will be faster if you limit the scope and the number or results returned. You can do this using the
options for configuring search configurations and Type-ahead suggestions of the Search Box component in
Studio.

Decide which attributes to make value searchable

All managed attributes are always value searchable (you cannot toggle the value search setting for them). In
addition, standard attributes of type string can be made value searchable. The
IsPropertyValueSearchable attribute on the PDR controls whether the attribute in your record set is
enabled for value search.

Before changing a value search setting for an attribute, examine your data to decide which of the attributes in
your record set need to be value searchable. Next, turn off value search for attributes you will not be using for
navigation, such as those standard attributes that contain long chunks of text.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Chapter 20

Using Search Modes

By default, search operations built on top of the Oracle Endeca Server return results that contain text matching
all user search terms. In other words, search is conjunctive by default. However, in some cases a less
restrictive matching is desirable, so that results are returned that contain fewer user search terms. This
chapter describes the available search modes for record search and value search operations.

List of valid search modes

Configuring search modes in Studio

Configuring search modes in the API

List of valid search modes
The search mode can be specified independently for each record search operation contained in a navigation
query, as well as for the value search query.

Valid search modes are the following:

Search mode Description

All Match all user search terms (that is, perform a conjunctive search). This is
the default mode.

Partial Match some user search terms.

Any Match at least one user search term.

AllAny Match all user search terms if possible, otherwise match at least one. The
AllAny search mode is not recommended in cases where queries can
exceed two words. For example, a query on womens small brown shoes
would return results on each of these four words and thus be essentially
useless. In general, AllPartial is a better strategy.

AllPartial Match all user search terms if possible, otherwise match some. Because
you can configure this mode to match at least two or three words in a multi-
word query, AllPartial is generally a better choice than AllAny.

PartialMax Match a maximal subset of user search terms.

Boolean Match using a Boolean query.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using Search Modes 156

All mode
In All mode (the default mode), results must contain text matching each user search query term.

Partial mode
In Partial mode, results must contain text matching at least a certain number of user search query terms,
according to the rules listed in this topic.

In Partial mode, results must contain text matching search query terms, according to the following rules:

• The MIN_WORDS_INCLUDED setting specifies the minimum number of user query terms that each result
must match. If there are not enough terms in the original query to satisfy this rule, then the entire query
must match.

• The MAX_WORDS_OMITTED setting specifies the maximum number of user query terms that can be
ignored in the user query. If MAX_WORDS_OMITTED value is set to zero, any number of words can be
ignored.

You can specify both of these settings with the PARTIAL_MATCH element in a SEARCH_INTERFACE
configuration.

In Partial mode, result sets always include all of the results that an All query have produced, and possibly
additional results as well.

Interaction of Partial mode and stop words

The presence of a stop word in a query reduces the minimum term count requirement for a document to
match when Partial mode is used. The example in this topic explains the interaction between stop words
and Partial mode.

The Oracle Endeca Server treats stop words in a query as terms that match every document in the entire
document set when counting how many terms must match a given query.

Therefore, the presence of a stop word in a query reduces the minimum term count requirement for a
document to match by one, the presence of two stop words reduces it by two, and so on.

In practical terms, it means the result set may be both larger and more general than expected.

For example, consider a four-term query (such as Medical Society of America) against a search interface
configured to allow Partial modes to require three terms to match. If one of those four terms (in this case
of) is a stop word, only two of the other terms have to match, meaning results such as Botanical Society
of America or Medical Society Reunion would be included in the set.

AllPartial mode
In AllPartial mode, the Oracle Endeca Server first uses All mode to return results matching all search
terms, if any are available.

If no such All results are available, the Oracle Endeca Server returns the results that Partial would have
produced. This allows a more conservative matching policy than Partial, because high-quality conjunctive
results are returned if they exist and Partial results are used as a fallback on conjunctive misses.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using Search Modes 157

This behavior, however, can be affected if cross-field matches are applied to the search interface. A search
that matches "any" or "partial" inside of the same field might be returned before a search that matches "all" of
the terms but has to cross field boundaries to do so.

In addition, spell correction can also alter the results. A search that matches any or partial spell-corrected in a
same field may return before a non-spell-corrected search that matches all terms in different fields. To the
user, this looks like there were no records matching all of the terms, even though there may be many that
match cross-field.

Note: AllPartial is recommended for record search in a typical catalog application. The default
configuration for Partial, which works well, can be adjusted to be more inclusive or conservative.

Any mode
In Any mode, results need only match a single user search term.

An Any result set always includes all of the results that an All or Partial query have produced, and
possibly additional results as well.

Note: The Any mode is not recommended for use with record search in typical catalog applications.

AllAny mode
In AllAny mode, the Oracle Endeca Server first uses All mode to return results matching all search terms, if
any are available.

If no such All results are available, the Oracle Endeca Server returns the results that Any would have
produced.

Note: The AllAny mode is useful for value search.

PartialMax mode
PartialMax mode is a variant of the AllPartial mode: All results are returned if they exist.

If no such All results exist, then results matching all but one term are returned; otherwise, results matching
all but two terms are returned; and so forth.

PartialMax mode is subject to the MIN_WORDS_INCLUDED and MAX_WORDS_OMITTED settings used
in the Partial mode. Hence, a PartialMax result set includes results if (and only if) the corresponding
Partial result set includes results, and it contains a subset of the Partial results (possibly the entire set).

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using Search Modes 158

Boolean mode

The Boolean search mode implements Boolean search, which allows users to specify complex expressions
that describe the exact search criteria with which they would like to search.

Configuring search modes in Studio
You configure search modes in the edit view of the Search Box component in Studio.

In addition, if you want to configure the minimum number of words for partial match modes and maximum
number of words that may be omitted for partial match modes, you can specify these settings with the
PARTIAL_MATCH element in a SEARCH_INTERFACE XML configuration element that is part of
RECSEARCH_CONFIG. For information, see Recsearch_config elements on page 225.

Configuring search modes in the API
In the Conversation Web Service, the SearchMode simple type enumerates the search modes available when
performing a text search.

You can specify a specific type of search mode as a value for Mode attribute in the SearchFilter element
of your request, and in the ValueSearchConfig element.

The following example uses the AllPartial search mode in SearchFilter:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:typ="http://www.endeca.com/MDEX/lql_parser/types">

<soapenv:Header/>
<soapenv:Body>
<ns:Request>

<ns:State/>
<ns:Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ns="http://www.endeca.com/MDEX/conversation/1/0"
xsi:type="ns:SearchOperator">
<ns:SearchFilter Mode="AllPartial" Key="MySearchInterface">mountain</ns:SearchFilter>

</ns:Operator>
<ns:ContentElementConfig xsi:type="ns:RecordListConfig"

Id="RecordList"
HandlerFunction="RecordListHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
MaxPages="2">
<ns:Column>ProductCategory</ns:Column>
<ns:RecordsPerPage>50</ns:RecordsPerPage>
<ns:Page>15</ns:Page>
<ns:Sort Key="ProductCategory" Direction="Ascending"/>
</ns:ContentElementConfig>

</ns:Request>
</soapenv:Body>

</soapenv:Envelope>

Version 2.3.0 • June 2012 • Revision AOracle® Endeca Server: Developer's Guide

Chapter 21

Using Boolean Search

This chapter describes how to enable Boolean search for record search and attribute search.

About Boolean search

Boolean query syntax

Examples of using the key restrict operator

About proximity search

Proximity operators and nested sub-expressions

Boolean query semantics

Operator precedence

Interaction of Boolean search with other features

Error messages for Boolean search

Implementing Boolean search in Studio

Implementing Boolean search with the API

Troubleshooting Boolean search

Performance impact of Boolean search

About Boolean search
The Boolean search mode implements Boolean search. It lets users specify complex expressions describing
the exact search criteria for their searches.

Endeca Server search operations use the All mode by default, which results in conjunctive searches.
However, users often want more precise control over their exact search query.

For example, consider the following request: "Show me all records that match either red or blue
and also match the word car."

To express this request, the following query is required: (red OR blue) AND car. The OR in this query is a
disjunctive operator that matches all records that are either red or blue. This set is then intersected with the
set of results for the word car and the result of that operation is returned from the Oracle Endeca Server.

Unlike the All and Any modes, Boolean search also lets users specify negation in their queries.

For example, the query camcorder AND NOT digital will search for all records in the data store that have
the word camcorder and will then remove all records that have the word digital from that set before
returning the result.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using Boolean Search 160

The set of Boolean operators implemented by the Oracle Endeca Server are:

• AND

• OR

• NOT

• NEAR, used for unordered proximity search

• ONEAR, used for ordered proximity search

In addition, you can use parentheses to create sub-expressions such as:

red AND NOT (blue OR green)

Version 2.3.0 • June 2012 • Revision A

As with other search query modes, you can run Boolean search queries against search interfaces also;
however, they may only be run against a single search interface.

Finally, the colon (:) character is a key restrict operator that you can use to limit a search to a single attribute
regardless of whether or not these attributes are included in the same search interface.

Boolean query syntax
The complete grammar for expressing Boolean queries, in a BNF-like format, is included in this topic.

The following sample code expresses Boolean queries, in a BNF-like format:

orexpr: andexpr ;
| andexpr OR orexpr ;

andexpr: parenexpr ;
| parenexpr andexpr ;
| parenexpr AND andexpr ;
| parenexpr andnotexpr ;

andnotexpr: AND NOT orexpr ;
| NOT orexpr ;

parenexpr: LPAREN orexpr RPAREN ;
| terms ;

terms: word_or_phrase KEY_RESTRICT keyexpr ;
| word_or_phrase NEAR/NUM word_or_phrase ;
| word_or_phrase ONEAR/NUM word_or_phrase ;
| multiple_word_or_phrase ;

multiple_word_or_phrase: word_or_phrase ;
| word_or_phrase multiple_word_or_phrase ;

keyexpr: LPAREN nr_orexpr RPAREN ;
| word_or_phrase ;

nr_orexpr: nr_andexpr ;
| nr_andexpr OR nr_orexpr ;

nr_andexpr: nr_parenexpr ;
| nr_parenexpr nr_andexpr ;
| nr_parenexpr AND nr_andexpr ;
| nr_parenexpr nr_andnotexpr ;

nr_andnotexpr: AND NOT nr_orexpr ;
| NOT nr_orexpr ;

nr_notexpr: nr_parenexpr ;
| NOT nr_parenexpr ;

nr_parenexpr: LPAREN nr_orexpr RPAREN ;
| nr_terms ;

nr_terms: multiple_word_or_phrase ;
word_or_phrase: word ;

| phrase ;

AND: '[Aa]' '[Nn]' '[Dd]' ;
OR: '[Oo]' '[Rr]' ;
NOT: '[Nn]' '[Oo]' '[Tt]' ;

Oracle® Endeca Server: Developer's Guide

Using Boolean Search 161

NEAR: '[Nn]' '[Ee]' '[Aa]' '[Rr]' ;
ONEAR: '[Oo]' '[Nn]' '[Ee]' '[Aa]' '[Rr]' ;

NUM: '[0-9] ;
| NUM NUM ;

LPAREN: '(' ;
RPAREN: ')' ;
KEY_RESTRICT: ':' ;

Version 2.3.0 • June 2012 • Revision A

Examples of using the key restrict operator
This topic uses examples to explain how to use the key restrict operator (:) in queries that contain Boolean
search.

If you have two attributes, Actor and Director, you can issue a query that involves a Boolean expression
consisting of both the Actor and Director attributes (for example, "Search for records where the
director was DeNiro and the actor does not include Pacino."). The two attributes do not need to
be included in the same search interface.

Users can successfully conduct a search on this using the following query which will execute the desired
result:

Actor: Deniro AND NOT Director: Pacino

This is useful because it allows you to search for attributes that are outside of the search interface
configuration.

The key restrict operator (:) binds only to the words or expressions adjacent to it. The resulting search is case-
sensitive. For example, the query:

car maker : aston martin

will search for the word car against the specified search interface, the word aston against the attribute
named maker, and martin against the specified search interface.

If the intention was to search against the attribute named "car maker", you must alter the query to one of the
following:

•

"car maker" : aston martin

This query searches for the word aston against the attribute car maker, while it searches for martin
against the specified search interface.

•

"car maker" : (aston martin)

This query does a conjunctive (All) search for the words aston martin against the attribute car maker.

•

"car maker" : "aston martin"

This query searches for the phrase aston martin against the attribute car maker.

Oracle® Endeca Server: Developer's Guide

Using Boolean Search 162

About proximity search
The proximity operators, NEAR and ONEAR, let users search for a pair of terms that must occur within a given
distance from each other in a document.

The document is matched if both terms are present in the document, and if the terms are within the specified
number of words from each other.

Wildcards are not supported in term specifications.

The syntax for using the proximity operators is as follows:

term1 NEAR/num term2
term1 ONEAR/num term2

Version 2.3.0 • June 2012 • Revision A

In this example:

• Each term (term1 and term2) can be a single word or a multi-word phrase (which must be specified
within quotation marks).

• The num parameter is an integer that specifies the maximum number of words between the two terms.
That is, if num is 5, then term1 and term2 can be separated by no more than five words.

Example of using NEAR for unordered matching
Use the NEAR operator for unordered proximity searches.

That is, term1 can appear within num words before or after term2 in the document.

For example, if a user specifies:

"Mark Twain" NEAR/8 Hartford

Then both of these sentences will be considered matches:

"Mark Twain wrote some of his best books in Hartford."
"Tour the Hartford, Connecticut home where Mark Twain lived
and worked from 1874 to 1891."

Phrases are treated as one word. In the first sentence, for example, the software starts counting with the word
"wrote" (not "Twain").

Example of using ONEAR for ordered matching

Use the ONEAR operator for ordered proximity searches.

term1 must appear within num words before term2 in the document.

For example, if a user specifies:

"Mark Twain" NEAR/8 Hartford

The following sentence:

"Tour the Hartford,
Connecticut home where Mark Twain lived and
worked from 1874 to 1891."

would not be considered a match because the word "Hartford" must appear after the phrase "Mark
Twain" in the text (assuming that the next eight words are not "Hartford").

Oracle® Endeca Server: Developer's Guide

Using Boolean Search 163

Proximity operators and nested sub-expressions
This topic contains examples of using proximity operators with nested sub-expressions.

Using the two proximity operators as sub-expressions to the other Boolean operators is supported. For
example, the expression:

(chardonnay NEAR/5 California) AND Sonoma

Version 2.3.0 • June 2012 • Revision A

is a valid expression because NEAR is being used as a sub-expression to the AND operator.

However, you cannot use the non-proximity operators (AND, OR, NOT) as sub-expressions to the NEAR and
ONEAR operators.

For example, the expression:

(chardonnay OR merlot) NEAR/5 California

is not a valid expression.

This invalid expression, however, could be specified as:

(chardonnay NEAR/5 California) OR (merlot NEAR/5 California)

The proximity operators are therefore leaf operators. That is, they accept only words and phrases as sub-
expressions, but not the other Boolean operators.

Using proximity operators with the key restrict operator also has the same limitations when used as sub-
expressions.

For example, the query:

("car maker" : aston) NEAR/3 martin

is not valid.

However, the following format for a key restrict operator is acceptable:

"car maker" : (aston NEAR/3 martin)

Boolean query semantics
This topic discusses the meaning of AND, OR, AND NOT, and other operators allowed in Boolean search
queries.

The following statements describe semantics of Boolean query operators:

• The AND operator executes an intersection of its two operands.

• The OR operator executes a union of the two operands.

• The AND NOT operator executes a set subtract, subtracting the second operand from the first.

• The parentheses operators have two meanings, depending on their usage:

• They can either be used to group sub-expressions, as in "(red or blue) and car"

• Or, they can be used as AND operators in themselves.

For example, the query "(red or blue) car" automatically treats the ")" as a ") AND". Thus the
query would be treated as "(red or blue) and car".

The same is true for usage of the left parenthesis.

Oracle® Endeca Server: Developer's Guide

Using Boolean Search 164

• Words or phrases grouped together without any explicit operators (such as "red car or blue
bicycle") are also queried conjunctively.

Thus the example query would return the results for "(red and car) or (blue and bicycle)".
Similarly, "red car" "blue bicycle" will return the results for "red car" AND "blue bicycle".

• As the examples demonstrate, operator names are not case sensitive, although field names are.

Operator precedence
The NOT operator has the highest precedence, followed by the AND operator, followed by the OR operator. You
can always control the precedence by using parentheses.

For example, the expression "A OR B AND C NOT D" is interpreted as "A OR (B AND C AND (NOT D))".

Interaction of Boolean search with other features
The following table describes whether various features are supported for queries that execute a Boolean
search (including the proximity operators).

Feature Support with Comments
Boolean search

Stemming Yes

Thesaurus No
matching

Misspelling No Auto-correct and “Did you mean?” are not supported.
correction

Relevance No
ranking

Range filters Yes for the AND
operator only.

Wildcard Yes for the AND, OR, Proximity operators do not support wildcards.
search and NOT operators.

Stop words No Stop words are treated as normal words and are not filtered from
queries.

Phrase Yes
search

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using Boolean Search 165

Error messages for Boolean search
Syntactically invalid queries generate error messages described in this topic.

Sample query Error message Comments

NOT sony Top-level negation is not allowed. The final result set is not
allowed to be the result
of a negation operation.

(Unexpected end of expression.

Sony OR NOT Aiwa The <first | second> clause of the OR Neither clause of an OR
at position <position> is a expression can be the
negation. Neither clause of an OR result of a negation
expression may be a negation. operation.

Sony OR Unexpected end of expression.

Sony AND Unexpected end of expression.

Sony NOT Unexpected end of expression.
Expecting an opening left
parenthesis, a word, or a phrase.

(Sony Unexpected end of expression.
Expecting closing right
parenthesis.

Manufacturer:(Sony OR The key restrict operator may not be
Item: Camera) used within another key restrict

expression.

Manufacturer: Unexpected end of expression. The
key restrict operator must be
followed by a word, a phrase, or a
left parenthesis.

Manufacturer:OR The key restrict operator must be
followed by a word, a phrase, or a
left parenthesis.

Foo:Sony Unknown search index name "Foo" used The name must exactly
for restrict operator match the name used in

the data.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using Boolean Search 166

Sample query Error message Comments

Sony AND OR Aiwa Expecting a term or phrase. Repeated operators are
an error.

Implementing Boolean search in Studio
You configure Boolean search in Studio, in the edit view of the Search Box component.

When you set up the attributes to search on in the Search Box component, you also set a match mode that
should be used for search. To use Boolean search for the search mode, you set the match mode to Boolean.

Attributes should be configured appropriately for record search and/or managed attribute value search.

Implementing Boolean search with the API
Using requests to the Conversation Web Service, you can specify a Boolean search mode for any search
request that performs value or attribute search, or a search request against defined search interfaces. You
can also use Boolean search in record and attribute filters. This topic includes examples of these types of
requests.

Before using search on any attributes, ensure that attributes are configured for either record search and/or
managed attribute value search. For information, see Enabling value search on page 148.

Boolean search in value search

In this example, Boolean search mode is used for a value search made with the ValueSearchConfig type:

<ns:ContentElementConfig
Id="ValueSearchConfig"
xsi:type="ns:ValueSearchConfig"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
HandlerFunction="ValueSearchHandler"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
Mode="Boolean">

<ns:SearchTerm>"Bike Racks" AND "Handlebars"</ns:SearchTerm>
</ns:ContentElementConfig>

Version 2.3.0 • June 2012 • Revision A

Boolean search in record filters

You can use strings that specify Boolean search as input for the RecordFilter operator:

<ns:Operator
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="ns:RecordFilterOperator">
<ns:RecordFilter
Name

="OmitSystemRecords">AND(NOT(mdex-config_Key),NOT(mdex-property_Key),NOT(mdex-dimension_Key))
</ns:RecordFilter>

</ns:Operator>

Oracle® Endeca Server: Developer's Guide

Using Boolean Search 167

Boolean search in attribute filters

When you set up the attributes for which to search using the SearchFilter operator, you also set a match
mode that should be used for search. To use boolean search for the search mode, you set the match mode to
Boolean. The following example illustrates the SearchFilter that uses Boolean search:

<ns:SearchFilter Mode="Boolean" Key="Description">Mountain</ns:SearchFilter>

Version 2.3.0 • June 2012 • Revision A

Boolean search in search interfaces

Before you use Boolean search against search interfaces, you need to configure one or more search
interfaces that include all of the attributes that you want to search. This is done through the
putConfigDocuments operation of the Configuration Web Service, by sending in an XML configuration
document RECSEARCH_CONFIG. For information on how to send XML configuration documents to the Oracle
Endeca Server, see Loading configuration documents on page 33.

Now you can create a single Boolean search request against the defined search interfaces:

<ns:Operator
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="ns:SearchOperator" Within="false">

<ns:SearchFilter Key="All" Mode="Boolean">English : one AND Spanish : dos</ns:SearchFilter>
</ns:Operator>

Troubleshooting Boolean search
If you encounter unexpected behavior while using Boolean search, use the Dgraph -v flag when starting the
data store in the Oracle Endeca Server. This flag prints detailed output to standard error describing its
execution of the Boolean query.

Performance impact of Boolean search
The performance of Boolean search is a function of the number of records associated with each term in the
query and also the number of terms and operators in the query.

As the number of records increases and as the number of terms and operators increase, queries become
more expensive.

The performance of proximity searches is as follows:

• Searches using the proximity operators are slower than searches using the other Boolean operators.

• Proximity searches that operate on phrases are slower than other proximity searches and slower than
normal phrase searches.

• Searches using the NEAR operator are about twice as slow as searches using the ONEAR operator
(because word positioning must be calculated forwards and backwards from the target term).

Oracle® Endeca Server: Developer's Guide

Chapter 22

Using Phrase Search

Phrase search allows users to specify a literal string to be searched.

About phrase search

About positional indexing

How punctuation is handled in phrase search

Examples of phrase search queries

Performance impact of phrase search

About phrase search
Phrase search allows users to enter queries for text matching of an ordered sequence of one or more specific
words.

By default, an Oracle Endeca Server search query matches any text containing all of the search terms entered
by the user. Order and location of the search words in the matching text is not considered. For example, a
search for John Smith returns matches against text containing the string John Smith and also against text
containing the string Jane Smith and John Doe.

In some cases, the user may want location and order to be considered when matching searches. If one were
searching for documents written by John Smith, one would want hits containing the text John Smith in the
author field, but not results containing Jane Smith and John Doe.

Phrase search allows the user to put double-quote characters around the search term, thus specifying a literal
string to be searched. Results of a phrase search contain all of the words specified in the user’s search (not
stemming, spelling, or thesaurus equivalents) in the exact order specified.

For example, if the user enters the phrase query "run fast", the search finds text containing the string run
fast, but not text containing strings such as fast run, run very fast, or running fast, which might be
returned by a normal non-phrase query.

Additionally, phase search queries do not ignore stop words. For example, if the word the is configured as a
stop word, a phrase search for "the car" does not return results containing simply car (not preceded by
the).

Also, phrase search enables stop words to be disabled. For example, if the is a stop word, a phrase search
for "the" can retrieve text containing the word the.

Because phrase searches only consider exact matches for contained words, phrase search also provides a
means to return only true matches for a particular word, avoiding matches due to features such as stemming,
thesaurus, and spelling.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using Phrase Search 169

For example, a normal search for the word corkscrew might also return results containing the text
corkscrews or wine opener. Performing a phrase search for the word "corkscrew" only returns results
containing the word corkscrew verbatim.

About positional indexing
To enable faster phrase search performance and faster relevance ranking with the Phrase module, your
project builds data files out of word positions. This process is called positional indexing.

The Oracle Endeca Server creates a set of positional data files for standard and managed attribute values.

Phrase search is automatically enabled in the Oracle Endeca Server at all times. For phrase search query
processing, the Oracle Endeca Server examines potential matching text to verify the presence of the
requested phrase query string. This examination process can be slow in the following cases:

• The amount of text data is large (perhaps containing attribute values representing lengthy descriptions)

• The text that is being processed is offline (in the case of document text)

The Oracle Endeca Server uses positional data files to improve performance in these scenarios. Positional
indexing improves performance of multi-word phrase search, proximity search, and certain relevance ranking
modules. The thesaurus uses phrase search, so positional indexing improves performance of multi-word
thesaurus expansions as well. Positional indexing is enabled by default for attributes in your data store.

How punctuation is handled in phrase search
Unless they are included as special characters, all punctuation characters are stripped out, during both
indexing and query processing. When punctuation is stripped out during query processing, the previously
connected terms have to remain in their original order.

Examples of phrase search queries
You request phrase matching in the Conversation Web Service requests by enclosing a set of one or more
search terms in quotation marks.

You can include phrase search queries in either record search or value search operations. You can combine
phrase search with non-phrase search terms or other phrase terms.

The following examples illustrate a phrase search query:

• A record search for a phrase Mountain Bikes is as follows:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.endeca.com/MDEX/conversation/1/0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:typ="http://www.endeca.com/MDEX/lql_parser/types">
<soapenv:Header/>
<soapenv:Body>
<ns:Request>

<ns:State/>
<ns:Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ns="http://www.endeca.com/MDEX/conversation/1/0"
xsi:type="ns:SearchOperator">
<ns:SearchFilter Key="MySearchInterface">"Mountain Bikes"</ns:SearchFilter>

Version 2.3.0 • June 2012 • Revision AOracle® Endeca Server: Developer's Guide

Using Phrase Search 170

</ns:Operator>
</ns:Request>

</soapenv:Body>
</soapenv:Envelope>

Version 2.3.0 • June 2012 • Revision A

• A value search for values containing the phrase "Touring Bikes" is similar to the following abbreviated
example:

<ns:Request>
<ns:State>
</ns:State>
<ns:Operator/>
<ns:ContentElementConfig Id="ValueSearchConfig" xsi:type="ns:ValueSearchConfig"

HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
HandlerFunction="ValueSearchHandler"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
MaxPerProperty="5" RelevanceRankingStrategy="static (nbins,descending)"
Mode="Any">

<ns:SearchTerm>"Bike Racks"</ns:SearchTerm>
<ns:RestrictToProperties>
<ns:Property>ProductCategory</ns:Property>

</ns:RestrictToProperties>
</ns:ContentElementConfig>

</ns:Request>

Performance impact of phrase search
Phrase search queries are generally more expensive to process than normal conjunctive search queries.

In addition to the work associated with a conjunctive query, a phrase search operation must verify the
presence of the exact requested phrase.

The cost of phrase search operations depends mostly on how frequently the query words appear in the data.
Searches for phrases containing relatively infrequent words (such as proper names) are generally very rapid,
because the base conjunctive search narrows the results to a small set of candidate hits, and within these hits
relatively few possible match positions need to be considered.

On the other hand, searches for phrases containing only very common words are more expensive. For
example, consider a search for the phrase "to be or not to be" on a large collection of documents.
Because all of these words are quite common, the base conjunctive search does not narrow the set of
candidate hit documents significantly. Then, within each candidate result document, numerous possible word
positions need to be scanned, because these words tend to be frequently reused within a single document.

Even very difficult queries (such as "to be or not to be") are handled by the Oracle Endeca Server within
a few seconds (depending on hardware), and possibly faster on moderate sized data sets. If such queries are
expected to be very common, adequate hardware must be employed to ensure sufficient throughput. In most
applications, phrase searches tend to be used far less frequently than normal searches. Also, most phrase
searches performed tend to contain at least one information-rich, low-frequency word, allowing results to be
returned rapidly (that is, in less than a second).

Oracle® Endeca Server: Developer's Guide

Chapter 23

Using Snippeting in Record Searches

Snippeting provides the ability to return an excerpt from a record in context, as a result of a user query.

About snippeting

Snippet formatting and size

Enabling snippeting

Tuning tips for snippeting

Request examples for retrieving snippets

Enabling snippets per query with the API

About snippeting
The snippeting feature provides the ability to return an excerpt from a record — called a snippet — to an
application user who performs a record search query.

A snippet contains the search terms that the user provided, along with a portion of the term’s surrounding
content to provide context. With the added context, users can more quickly choose the individual records they
are interested in.

A snippet can be based on the term itself or on any thesaurus or spell-correction equivalents. At least one
instance of a term or equivalent is highlighted per snippet, regardless of the number of times the term or its
equivalents appear in the snippet. A thesaurus or spell-corrected alternative may be highlighted instead of the
term itself, even if both appear within the snippet.

You enable snippeting on individual members (fields) in a search interface that typically have many lines of
content. For example, fields such as Description, Abstract, DocumentBody, and so on are good candidates to
provide snippeting results. You can also enable snippeting on a per-query basis.

The result of a query with snippeting enabled contains at least one snippet in which enough terms are
highlighted to satisfy the user's query. That is, if it is an AND query, the result contains at least one of each
term, and if it is an OR query, it contains at least one of the alternatives.

In Studio, only the Data Explorer, Results List, and Results Table components support snippeting. On these
components, for attributes that support snippeting, when users perform a search, the search snippet is
displayed.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using Snippeting in Record Searches 172

Snippet formatting and size
A snippet consists of search terms, surrounding context words, and ellipses.

A snippet can contain any number of search terms bracketed by SnippetTerm tags. The tags call out search
terms and allow you to more easily reformat the terms for display in your front-end application.

The snippet size is the total number of search terms and surrounding context words. Although you can
configure the total number of words in a snippet In order to adhere to the size setting for a snippet, it is
possible that the Oracle Endeca Server may omit some search terms and context words from a snippet. This
situation becomes more likely if an application user provides a large number of search terms and the
maximum snippet size is comparatively small.

A snippet consists of one or more segments. If there are multiple segments, they are delimited by ellipses in
between them. Ellipses (...) indicate that there is text omitted from the snippet occurring before or after the
ellipses.

Example of a snippet

For example, here is a snippet made up of two segments with a maximum size set at 20 words. The snippet
resulted from a search for the search terms, Scotland and British, which are enclosed within
<SnippetTerm> tags.

<SearchSnippet>
<SnippetText>...in Edinburgh </SnippetText>
<SnippetTerm>Scotland</SnippetTerm>
<SnippetText>, and has been employed by Ford for 25 years...He first joined Ford's
</SnippetText>
<SnippetTerm>British</SnippetTerm>
<SnippetText> operation. Mazda motor...</SnippetText>

</SearchSnippet>

Version 2.3.0 • June 2012 • Revision A

Enabling snippeting
You enable snippeting globally for the Oracle Endeca Server via the RECSEARCH_CONFIG configuration
document.

The Oracle Endeca Server has several configuration documents that configure some features. You can edit
them using the format specified in the Dgraph Configuration Reference appendix in this guide. After these
documents are edited, you can send them to the Oracle Endeca Server using the Configuration Web Service
or Integrator.

The RECSEARCH_CONFIG document allows inclusion of SEARCH_INTERFACE, which in turn lets you specify
snippet size for each of its members. The following example shows the syntax:

<RECSEARCH_CONFIG>
<SEARCH_INTERFACE NAME="MySearch">
<MEMBER_NAME SNIPPET_SIZE="12">Description</MEMBER_NAME>

</SEARCH_INTERFACE>
</RECSEARCH_CONFIG>

The presence of the SNIPPET_SIZE attribute enables snippeting for the MEMBER_NAME attribute, and the
value of SNIPPET_SIZE specifies the maximum number of words a snippet can contain. Omitting this
attribute or setting its value to zero disables snippeting.

Oracle® Endeca Server: Developer's Guide

Using Snippeting in Record Searches 173

Each member of a search interface is enabled and configured separately. In other words, snippeting results
are enabled and configured for each member of a search interface and not for all members of a single search
interface.

Note: A search interface member is an attribute that has been enabled for search and that has been
added to the SEARCH_INTERFACE element.

You can enable and configure any number of individual search interface members. Each member that you
enable produces its own snippet. Enabling a member in one search interface does not affect that member if it
appears in other search interfaces. For example, enabling the Description attribute for Search Interface A
does not affect the Description attribute in Search Interface B.

To enable snippeting:

1. In any text editor, edit the RECSEARCH_CONFIG document, similar to the following example:

<RECSEARCH_CONFIG>
<SEARCH_INTERFACE NAME="MySearch">
<MEMBER_NAME SNIPPET_SIZE="10">Description</MEMBER_NAME>

</SEARCH_INTERFACE>
</RECSEARCH_CONFIG>

Version 2.3.0 • June 2012 • Revision A

In this example, snippet size is set to 10 for an attribute "Description".

2. Use the Configuration Web Service or Integrator to send the RECSEARCH_CONFIG document to the
data store in the Oracle Endeca Server.
For information on the Configuration Web Service, see the section in this guide, or the Oracle Endeca
API Reference. For information on Integrator, see the Oracle Endeca Information Discovery Integrator
Components Guide.

Tuning tips for snippeting
Enabling snippeting affects query runtime performance.

You can minimize the performance impact on query runtime by limiting the number of words in an attribute
that the Oracle Endeca Server evaluates to identify the snippet. This approach is especially useful in cases
where a snippet-enabled attribute stores large amounts of text.

Provide the --snip_cutoff flag to the Dgraph to restrict the number of words that the Oracle Endeca
Server evaluates in an attribute. For example, --snip_cutoff 300 evaluates the first 300 words of the
attribute to identify the snippet.

If the --snip_cutoff Dgraph flag is not specified, or is specified without a value, the snippeting feature
defaults to a cutoff value of 500 words.

If a snippet is too short, and you are not seeing enough context words in it, increase the value for
SNIPPET_SIZE in the configuration document. See the topic for enabling snippeting for the detailed format of
the configuration.

Oracle® Endeca Server: Developer's Guide

Using Snippeting in Record Searches 174

Request examples for retrieving snippets
To request snippets with the Conversation Web Service, use the SearchFilter with the specified search
interface. The Conversation Web Service returns snippets as part of the RecordListEntry element (which
also returns the records themselves).

Specifying the name of the search interface in the SearchFilter retrieves snippeting information:

<ns:SearchFilter Key="My search interface">
</ns:SearchFilter>

Version 2.3.0 • June 2012 • Revision A

where My search interface is the name of the search interface for which snippeting is enabled for its
members in the RECSEARCH_CONFIG XML document.

Example request
The following request illustrates how to request a snippet with the Conversation Web Service for a search
interface Description:

<ns:Request>
<ns:State/>
<ns:Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ns="http://www.endeca.com/MDEX/conversation/1/0" xsi:type="ns:SearchOperator">
<ns:SearchFilter Key="Description">gearing</ns:SearchFilter>

</ns:Operator>
<ns:ContentElementConfig xsi:type="ns:RecordListConfig"

Id="RecordList"
HandlerFunction="RecordListHandler"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
MaxPages="2">

<ns:Column>Description</ns:Column>
<ns:RecordsPerPage>50</ns:RecordsPerPage>
<ns:Page>15</ns:Page>
<ns:Sort Key="Description" Direction="Ascending"/>

</ns:ContentElementConfig>
</ns:Request>

Example response
The following response from the Conversation Web Service returns snippeting information as part of the
RecordListEntry:

...
<cs:ContentElement xsi:type="cs:RecordList" Id="RecordList"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<cs:NumRecords>61157</cs:NumRecords>
<cs:TotalPages>1224</cs:TotalPages>
<cs:RecordRange First="751" Last="800"/>
...

<cs:RecordListEntry>
<cs:Record>
<Description type="mdex:string">A true multi-sport bike that offers

streamlined riding and a revolutionary design. Aerodynamic design lets you
ride with the pros, and the gearing will conquer hilly roads.

</Description>
<FactSales_RecordSpec type="mdex:string">SO44563-19</FactSales_RecordSpec>

</cs:Record>
<cs:ComputedProperties>
<cs:SearchSnippets Key="Description">

<cs:SearchSnippet>

Oracle® Endeca Server: Developer's Guide

Using Snippeting in Record Searches 175

<cs:SnippetText>...and the gearing will conquer hilly </cs:SnippetText>
<cs:SnippetTerm>gearing<cs:SnippetTerm>
<cs:SnippetText> the gearing will conquer...</cs:SnippetText>

</cs:SearchSnippet>
</cs:SearchSnippets>

</cs:ComputedProperties>
</cs:RecordListEntry>
...

Version 2.3.0 • June 2012 • Revision A

Enabling snippets per query with the API
You can enable snippets for a particular attribute on a per query basis using the SearchFilter element in the
Conversation Web Service.

Setting the EnableSnippeting attribute to true in the SearchFilter enables snippeting per query, for the
specified property. The SnippetLength attribute sets the length of the snippet; the search term specifies the
snippet term:

<ns:Request>
<ns:State/>
<ns:Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ns="http://www.endeca.com/MDEX/conversation/1/0" xsi:type="ns:SearchOperator">
<ns:SearchFilter Key="Description" EnableSnippeting="true"

SnippetLength="4">gearing</ns:SearchFilter>
</ns:Operator>

</ns:Request>

Note: Use these settings only if you need to specify snippeting information for a single attribute for
which there is no search interface configured. These settings do not override the settings that globally
enable snippeting for members of the search interface in the RECSEARCH_CONFIG > SEARCH_INTERFACE

elements.

Oracle® Endeca Server: Developer's Guide

Chapter 24

Using Wildcard Search

Wildcard search allows users to match query terms to fragments of words in text processed by an Endeca
data store.

About wildcard search

Interaction of wildcard search with other features

Ways to configure wildcard search

Dgraph flags for wildcard search

Using wildcard search in Studio

Performance impact of wildcard search

About wildcard search
Wildcard search is the ability to match user query terms to fragments of words in indexed text.

Normally, Oracle Endeca Server search operations (such as record search and value search) match user
query terms to entire words in the indexed text. For example, searching for the word run only returns results
containing the specific word run. Text containing run as a substring of larger words (such as running or
overrun) does not result in matches.

With wildcard search enabled, the user can enter queries containing the special asterisk or star operator (*).
The asterisk operator matches any string of zero or more characters. Users can enter a search term such as:

run

Version 2.3.0 • June 2012 • Revision A

which will match any text containing the string run, even if it occurs in the middle of a larger word such as
brunt.

Wildcard search is useful for performing text search on data fields such as part numbers, ISBNs, and SKUs.
Unlike cases where search is performed against normal linguistic text, in searches against data fields it may
be convenient or even necessary for the user to enter partial string values. Details on how data fields that
include punctuation characters are processed are provided in this section.

For example, suppose users were searching a database of integrated circuits for Intel 486 CPU chips. The
database might contain records with part numbers such as 80486SX and 80486DX, because these are the full
part numbers specified by the manufacturer. But to end users, these chips are known by the more generic
number 486. In such cases, wildcard search is a natural feature to bridge the gap between user terminology
and the source data.

Note: To optimize performance, the Dgraph process performs wildcard indexing for words that are
shorter than 1024 characters. Words that are longer than 1024 characters are not indexed for wildcard
search.

Oracle® Endeca Server: Developer's Guide

Using Wildcard Search 177

Interaction of wildcard search with other features
The table in this topic describes whether various features are supported for queries that execute a wildcard
search.

Feature Support with Comments
wildcard search

Stemming No

Thesaurus matching No

Misspelling correction No Auto-correct and “Did You Mean?” are not supported.

Relevance ranking Yes

Snippeting No

Phrase search No

Why Did It Match Yes

Word interp Yes

Ways to configure wildcard search
To send the configuration for wildcard search to the Oracle Endeca Server, you can use the Configuration
Web Service directly or use Integrator.

For information on how to load the schema using the Configuration Web Service, see the section in this guide.

For information on how to configure wildcard search in record search for attributes, see the Oracle Endeca
Information Discovery Integrator Components Guide.

Configuring wildcard search in record search
You make an attribute wildcard searchable in record searches by changing the value of the mdex-
property_TextSearchAllowsWildcards attribute in the PDR, using either a request to the Configuration
Web Service for loading the schema, or by sending this configuration to the Oracle Endeca Server through a
connector in Integrator.

The mdex-property_TextSearchAllowsWildcards attribute of a PDR enables wildcard searches in
record search against the attribute. The valid settings for this attribute are:

• If set to true, an attribute is wildcard searchable during record searches.

• If set to false, an attribute is not wildcard searchable during record searches. The default is false.

Note that it is an error if mdex-property_TextSearchAllowsWildcards is set to true but mdex-
property_IsTextSearchable is set to false. In other words, an attribute must be record searchable in
order for it to allow wildcard search in record searches.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using Wildcard Search 178

Note: Enabling wildcard search for an attribute which contains large portions of text (either via
numerous or large attribute values with text content) can take a long time to process. Before making
this change, examine your data to decide which of the attributes in your record set need to be wildcard
searchable. Also, turn off wildcard search in record searches for those attributes on which it won't be
used by the users of your front-end application.

Example: enabling wildcard search for an attribute

For example, the following web service request to the Configuration Web Service enables wildcard search for
the attribute VehicleModel:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<config:configTransaction
xmlns:config="http://www.endeca.com/MDEX/config/services/types/1/0"
xmlns:mdex="http://www.endeca.com/MDEX/config/XQuery/2009/09">
<config:updateProperties>
<mdex:record>
<mdex-property_Key>VehicleModel</mdex-property_Key>
<mdex-property_TextSearchAllowsWildcards>true</mdex-property_TextSearchAllowsWildcards>

</mdex:record>
</config:updateProperties>

</config:configTransaction>
</soap:Body>

</soap:Envelope>

Version 2.3.0 • June 2012 • Revision A

Configuring wildcard search in value search

You configure wildcard search during value searches in the Global Configuration Record (GCR), using either a
request to the Configuration Web Service or Integrator.

Unlike the option for enabling wildcard search in text search which is performed by editing each attribute in its
PDR (which affects only a single attribute), the GCR globally affects the enablement of wildcard search in
value search for all attributes.

The mdex-config_EnableValueSearchWildcard attribute in the GCR specifies whether wildcard search
should be enabled or disabled for value search across all attributes in the Oracle Endeca Server data store.
The valid settings for this attribute are:

• If set to true, wildcards are supported for value search.

• If set to false, wildcards are not supported for value search. The default is false.

Wildcard queries at the end of the search term (for example, gua* for the search term guarantee) are
always enabled even if wildcard search is disabled for value search for the attribute.

Configuring wildcard search for a search interface

You can enable wildcard matching for a search interface by adding one or more wildcard-enabled attributes to
the search interface.

First, add the desired attributes. Wildcard search can be partially enabled for a search interface. That is, some
members of the search interface are wildcard-enabled while the others are not.

Oracle® Endeca Server: Developer's Guide

Using Wildcard Search 179

Searches against a partially wildcard-enabled search interface follow these rules:

• The search results from a given member follow the rules of its configuration. That is, results from a
wildcard-enabled member follow the rules of wildcard search, while results from non-wildcard members
follow the rules for non-wildcard searches.

• The final result is a union of the results of all the members (whether or not they are wildcard-enabled).

You should keep these rules in mind when analyzing search results. For example, assume that in a partially
wildcard-enabled search interface, Property-W is wildcard-enabled while Property-X is not. In addition,
the asterisk (*) is not configured as a search character. A record search issued for woo* against that search
interface may return the following results:

• Property-W returns records with woo, wood, and wool.

• Property-X only returns records with woo, because the query against this attribute treats the asterisk as
a word break. However, it does not return records with wool and wood, even though records with those
words exist.

However, because the returned record set is a union, the user will see all the records. A possible source of
confusion might be that if snippeting is enabled, the records from Property-X will not have wood and wool
highlighted (if they exist), while the records from Property-W will have all the search terms highlighted.

To enable wildcard search in a search interface:

1. Enable wildcard search in text search for members of the search interface. (This is controlled by the
mdex-property_TextSearchAllowsWildcards attribute on the PDR, for each attribute member
of the search interface).
Wildcard search in text search can be partially enabled for a search interface. That is, some members
of the search interface can be enabled for wildcard search in text search, while the others are not.

2. Add the desired attributes to the search interface in the RECSEARCH_CONFIG document. For the
structure of this document, see the appendix in this guide.

3. Use the Configuration Web Service or Integrator to send this document to the Oracle Endeca Server.
For information, see the section about the Configuration Web Service in this guide, or the Oracle
Endeca Information Discovery Integrator Components Guide.

Dgraph flags for wildcard search
There are no Dgraph flags required to enable wildcard search. If wildcard is enabled in record search for an
attribute, and is also enabled for value search, the Dgraph process automatically enables the use of the
asterisk operator (*) in appropriate search queries.

The following considerations apply to wildcard search queries that contain punctuation, such as abc*.d*f:

The Dgraph process rejects and does not process queries that contain only wildcard characters and
punctuation or spaces, such as *., * *. Queries with wildcards only are also rejected.

The maximum number of matching terms for a wildcard expression is 100 by default. You can modify this
value with the --wildcard_max flag for the Dgraph.

In case of wildcard search with punctuation, you may want to increase --wildcard_max, if you would like to
increase the number of returned matched results.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using Wildcard Search 180

Using wildcard search in Studio
No specific Studio development is required to use wildcard search.

If wildcard search is enabled for record search and value search, users can use the Search Box component
to enter search queries containing asterisk operators to request partial matching. If wildcard search is enabled
for value search, type-ahead suggestions can be used in the Search Box.

Whereas the simplest use of wildcard search requires users to explicitly include asterisk operators in their
search queries, some applications automate the inclusion of asterisk operators as a convenience, or control
the use of asterisk operators using higher-level interface elements.

For example, an application might render a radio button next to the search box with options to select Whole-
word Match or Substring Match. In Substring Match mode, the application might automatically add asterisk
operators onto the ends of all user search terms. Interfaces such as this make wildcard search more easily
accessible to less sophisticated user communities to which use of the asterisk operator might be unfamiliar.

Performance impact of wildcard search
To optimize performance of wildcard search, use the following recommendations.

• Account for increased time needed for indexing. In general, if wildcard search is enabled in the Oracle
Endeca Server (even if it is not used by the users), it increases the time and disk space required for
indexing. Therefore, consider first the business requirements for your Endeca application to decide
whether you need to use wildcard search.

Note: To optimize performance, the Dgraph process of the Oracle Endeca Server performs
wildcard indexing for words that are shorter than 1024 characters. Words that are longer than
1024 characters are not indexed for wildcard search.

• Do not use "low information" queries. For optimal performance, use wildcard search queries with at
least 2-3 non-wildcarded characters in them, such as abc* and ab*de, and avoid wildcard searches with
one non-wildcarded character, such as a*. Wildcard queries with extremely low information, such as a*,
require a significant amount of time to process. Queries that contain only wildcards, or only wildcards and
punctuation or spaces, such as *. (star followed by period), or * * (star space star), are rejected by the
Oracle Endeca Server.

• Analyze the format of your typical wildcard query cases. This lets you be aware of performance
implications associated with one specific wildcard search pattern.

Do you have queries that contain punctuation syntax in between strings of text, such as ab*c.def*?

For strings with punctuation, the Dgraph process generates lists of words that match each of the
punctuation-separated wildcard expressions. Only in this case, Dgraph uses the --wildcard_max
<count> setting to optimize its performance.

Increasing the --wildcard_max <count> improves the completeness of results returned by wildcard
search for strings with punctuation, but negatively affects performance. Thus you may want to find the
number that provides a reasonable trade-off.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Chapter 25

Search Characters

This chapter describes the semantics of matching search queries to result text.

About search characters

Implementing search characters

Query matching semantics

Search query processing

Dgraph flags for search characters

About search characters
The Oracle Endeca Server supports configurable handling of punctuation and other non-alphanumeric
characters in search queries.

This section does the following:

• Describes the semantics of matching search queries to result text (that is, records in record search or
attribute values in value search) when either the query or result text contains non-alphanumeric
characters.

• Explains how you can control this behavior using the search characters feature of the Oracle Endeca
Server.

Implementing search characters
Search indexing distinguishes between alphanumeric characters and non-alphanumeric characters and
supports the ability to mark some non-alphanumeric characters as significant for search operations.

You mark a non-alphanumeric character as a search character in the Global Configuration Record.

Search characters are configured globally for all search operations. For example, adding the plus (+) character
marks it as a search character for value search and record search operations.

To mark a non-alphanumeric character as a search character:

1. Edit the contents of the mdex-config_SearchChars element of the Global Configuration Record in
any text editor, as in the following example.

This example marks "+" and "_" characters as search characters. You can add more than one
character; they are not separated by any delimiters.

<mdex-config_SearchChars>+_</mdex-config_SearchChars>

Version 2.3.0 • June 2012 • Revision A

2. To send the changes to the Oracle Endeca Server, use the Configuration Web Service or Integrator.

Oracle® Endeca Server: Developer's Guide

Search Characters 182

Query matching semantics
The semantics of matching search queries to text containing special non-alphanumeric characters in the
Oracle Endeca Sever is based on indexing various forms of source text containing such characters.

Basically, user query terms are required to match exactly against indexed forms of the words in the source
text to result in matches. Thus, to understand the behavior of query matching in the presence of non-
alphanumeric characters, one must understand the set of forms indexed for source text.

Categories of characters in indexed text

The Oracle Endeca Server treats characters in indexed text based on three categories:

• Alphanumeric characters including ASCII characters as well as non-punctuation characters in ISO-Latin1.

• Non-alphanumeric search characters (configured using the search characters feature, as described
below).

• Other non-alphanumeric characters (this category is the default for all non-alphanumeric characters not
explicitly configured to be in group 2).

During data processing, each word in the source text (that is, searchable attributes for record search, attribute
values for value search) is indexed based on the alternatives for handling characters from the three
categories, which is described in subsequent topics.

Indexing alphanumeric characters

Alphanumeric characters are included in all forms.

Because Oracle Endeca Server search operations are not case sensitive, alphabetic characters are always
included in lowercase form, a technique commonly referred to as case folding.

Indexing search characters

Search characters are non-alphanumeric characters that are specified as searchable.

Search characters are included as part of the token.

Indexing non-alphanumeric characters

The way non-alphanumeric characters that are not defined as search characters are treated depends on
whether they are considered punctuation characters or symbols.

• Non-alphanumeric characters considered to be punctuation are treated as white space. In a multi-word
search with the words separated by punctuation characters, word order is preserved as if it were a phrase
search. The following characters are considered to be punctuation: ! @ # & () – [{ }] : ; ', ? / *

• Non-alphanumeric characters that are considered to be symbols are also treated as white space.
However, unlike punctuation characters, they do not preserve word order in a multi-word search. If a
symbol character is adjacent to a punctuation character, the symbol character is ignored. That is to say,
the combination of the symbol character and the punctuation character is treated the same as the
punctuation character alone. For example, a search on ice-cream would return the same results as a

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Search Characters 183

phrase search for "ice cream", while a search for ice~cream would return the same results as simply
searching for ice cream. A search on ice-~cream would behave the same way as a search on ice-cream.
Symbol characters include the following: ` ~ $ ^ + = < > "

Search query processing
The semantics of matching search query terms to result text containing non-alphanumeric characters are
described in this topic.

• During query processing, each user query term is transformed to replace all non-alphanumeric characters
that are not marked as search characters with delimiters (spaces).

• Non-alphanumeric characters considered to be punctuation (! @ # & () – [{ }] : ; ', ? / *) are treated
as white space and preserve word order. This means that the equivalent of a quoted phrase search is
generated. For that reason, all search features that are incompatible with quoted phrase search, such
as spelling correction, stemming, and thesaurus expansion, are not activated. (For details, see the
chapter "About phrase search.")

• Non-alphanumeric characters that are considered to be symbols (` ~ $ ^ + = < > “) are also treated as
white space. However, unlike punctuation characters, they do not preserve word order in a multi-word
search.

• Alphabetic characters in the user query are replaced with lowercase equivalents, to ensure that they
match against case-folded indexed strings.

• Each query term in the transformed query must exactly match some indexed string from the given source
text for the text to be considered a hit.

As noted above, when parsing user-entered search terms, a query with non-searchable characters is
transformed to replace all non-alphanumeric characters (that are not marked as search characters) with white
space, but the treatment of word order depends on whether the character in question is considered to be a
punctuation character or a symbol. The search behavior preserves the word order and proximity of the search
term only in the case of punctuation characters.

For example, a search query for ice-cream will replace the hyphen (a punctuation character) with white space
and return only records with this text:

• ice-cream

• ice cream

Records with this text are not returned because the word order and word proximity of text does not match the
original query term:

• cream ice

• ice in the cream container

However, assuming the match mode is All, a search for ice~cream would return non-contiguous results for [ice
AND cream].

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Search Characters 184

Dgraph flags for search characters
There are no Dgraph process flags necessary to enable the search characters feature. The Oracle Endeca
Server automatically detects the additional search characters.

The Oracle Endeca Server supports an important closely related feature: automatic mapping of ISO-Latin1
international characters to ASCII equivalents in text search queries. You can specify this mapping with the --
latin1 flag for the Dgraph. This option allows search queries containing international characters such as
Spätlese to match against Anglicized result text such as Spatlese. Using the --latin1 flag causes the Latin1
mappings to be applied to search queries.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Chapter 26

Working with Spelling Correction and Did
You Mean

This chapter describes the behavior of the Spelling Correction and Did You Mean features.

About Spelling Correction and Did You Mean

Enabling Spelling Correction and Did You Mean

Logic used for spelling correction

updateaspell

Spelling mode (Aspell)

Retrieving spelling suggestions and DYM in query results

Configuring constraints for spelling dictionaries

About word-break analysis

Troubleshooting Spelling Correction and Did You Mean

Performance impact for Spelling Correction and Did You Mean

About Spelling Correction and Did You Mean
The Oracle Endeca Server supports two complementary forms of Spelling Correction — automatic spelling
correction for record search and value search, and explicit spelling suggestions for record search ("Did You
Mean?").

The Automatic Spelling Correction and Did You Mean features of the Oracle Endeca Server enable search
queries to return expected results when the spelling used in query terms does not match the spelling used in
the result text (that is, when the user misspells search terms).

Either or both features can be used in a single application, and all are supported by the same underlying
spelling engine and Spelling Correction module.

Automatic Spelling Correction operates by computing alternate spellings for user query terms, evaluating the
likelihood that these alternate spellings are the best interpretation, and then using the best alternate spell-
corrected query forms to return extra search results. For example, a user might search for records containing
the text Abrham Lincoln. With spelling correction enabled, the Oracle Endeca Server returns the expected
results: those containing the text Abraham Lincoln.

Did You Mean (DYM) functionality allows an application to provide the user with explicit alternative
suggestions for a keyword search. For example, assume that a user gets six results when searching for valle
in a data set. The terms valley and vale, however, are much more prevalent in that data set. When the DYM
feature is enabled, the Oracle Endeca Server will respond with the six results for valle, but will also suggest
that valley or vale may be what the end-user actually intended. If multiple suggestions are returned, they will
be sorted and presented according to the closeness of the match.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Working with Spelling Correction and Did You Mean 186

The behavior of spelling correction features is application-aware, because the spelling dictionary for a given
data set is derived directly from the indexed source text, populated with the words found in all searchable
values and attributes. The Oracle Endeca Server returns spelling-corrected results as normal search results,
for both value search and record search operations.

For example, in a set of records containing computer equipment, a search for graphi might spell-correct to
graphics. In a different data set for sporting equipment, the same search might spell-correct to graphite.

Enabling Spelling Correction and Did You Mean
To enable spelling correction and spelling suggestions, run the admin?op=updateaspell command on the
Dgraph process.

Logic used for spelling correction
At a high level, the spelling engine in Oracle Endeca Server performs the following steps related to spelling
correction for a given search query.

1. If the search terms generate more than a certain number of hits without any correction, then the spelling
engine does not generate any corrections or suggestions.

For the automatic correction, the threshold for the number of hits is 1. For the Did You Mean feature, the
threshold for the number of hits is 20.

2. For each term in the query, the spelling engine finds the 32 corrections with the lowest spelling scores. A
low spelling score signifies that the correction is similar to the search term.

For the Aspell mode that the Dgraph process uses, the spelling score is based on phonetic distance. The
32 corrections are pruned to corrections with a spelling score below a certain threshold. For the automatic
correction, the spelling threshold is 125, for Did You Mean, the spelling threshold is 175.

3. The spelling engine tests each correction in place of the original search term it corrects. Only those
corrections which increase the number of hits (relative to the original query) without reducing the number
of terms matched are eligible to be returned.

4. The spelling engine selects the best correction based on which of the eligible corrections has the highest
number of hits. For record search, this is the number of records matched. For value search, this is the
number of records associated with the set of values matched.

Note: For more information about the difference in the treatment of results between record search
and value search, see the topic How value search treats number of results.

To change the Dgraph process configuration for Automatic Spelling Correction and DYM, you can rebuild the
spelling dictionary with the admin?op=updateaspell command at any time. During the data ingest process,
you can periodically run this command to update the spelling dictionary in the Dgraph data files.

Suggestions for automatic correction are not exposed by the Oracle Endeca Server, that is, you cannot update
the dictionary manually in the installed product.

In the Global Configuration Record, you can configure the Aspell indexing parameters such as minimum word
occurrences, maximum and minimum word length. These parameters let you set the boundaries indicating to
the Dgraph process of the Oracle Endeca Server which words should be included in the spelling dictionary.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Working with Spelling Correction and Did You Mean 187

How value search treats number of results

Value search results may vary if spelling correction is performed.

An important note applies to the options and behavior associated with value search spelling correction: in
situations where the number of results is evaluated by an option or in the scoring of words or queries
performed by the spelling engine, value search uses an alternate definition of number of results. Instead of
using the simple number of hits returned to the user as this value (which is perfectly reasonable in the case of
record search), value search instead uses the number of records associated with the set of value search
results computed for a given query.

In other words, value search follows an additional level of indirection to weight the value results computed by
spelling suggestion queries according to the number of records than these values would lead to if selected in a
navigation query. This alternate definition of number or results allows consistent behavior between spelling
corrections computed for value and record search operations when given the same query terms.

updateaspell
The admin?op=updateaspell administrative operation lets you rebuild the aspell dictionary for spelling
correction from the data corpus while continuing to issue queries and updates to the Oracle Endeca Server
and without stopping and restarting the Dgraph process.

Run this command after you have added data records to the data store, to enable spelling correction in the
Dgraph process for this data store.

During the data ingest process, you can run the admin?op=updateaspellcommand periodically to update
the spelling dictionary used by the Dgraph for Automatic Spelling Correction and DYM.

The admin?op=updateaspell operation performs the following actions:

• Crawls the text search index for all terms which meet the constraint settings.

The constraint settings include minimum word occurrences and maximum and minimum number of
characters, for records and attribute values. The Dgraph uses these constraints to update the spelling
dictionary. You can change them in the Global Configuration Record.

• Compiles a temporary text version of the aspell word list, <db_prefix>.worddat.

• Converts this word list to the binary format required by aspell.

• Writes the generated binary file into the current data files representation in the Oracle Endeca Server, for
a particular data store.

• Makes the updated aspell spelling dictionary available in the Dgraph for processing of all queries
arriving after this index update. The Dgraph process uses this updated dictionary when processing all
future queries.

Note: Because of the nature of continuous query, once the Dgraph processes this administrative
request, it will start using the updated spelling dictionary after a certain point in its processing, and
all newly incoming queries will be answered against the updated spelling dictionary. However, it is
not possible to identify after which particular partial update or after which query the Dgraph will
start using the newly updated spelling dictionary.

The Dgraph applies the updated settings while continuing to run queries and without needing to restart.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Working with Spelling Correction and Did You Mean 188

Note: If admin?op=updateaspell is started within a transaction, it must reference a transaction ID,
as in the following example:

admin?op=updateaspell&outerTransactionId=42

Version 2.3.0 • June 2012 • Revision A

Only one admin?op=updateaspell operation can be processed at a time.

The admin?op=updateaspell operation returns output similar to the following in the Dgraph error log:

...
spellengine aspell ran successfully.

If you start the Dgraph with the -v flag, the output also contains a line similar to the following:

Time taken for updateaspell, including wait time on any
previous updateaspell, was 290.378174 ms.

Spelling mode (Aspell)
Spelling features of the Oracle Endeca Server compute contextual suggestions at the full query level.

That is, suggestions may include one or more corrected query terms, which can depend on context such as
other words used in the query. To determine these full query suggestions, the Dgraph process relies on the
low-level Aspell spelling module to compute single-word suggestions, that is, words similar to a given user
query term and contained within the application-specific dictionary.

Aspell spelling module

The Oracle Endeca Server supports one internal spelling module, Aspell. It supports sound-alike corrections
(using English phonetic rules). It does not support corrections to non-alphabetic/non-ASCII terms (such as
café, 1234, or A&M).

Retrieving spelling suggestions and DYM in query results
You can retrieve spelling suggestion and did you mean (DYM) information in a query using the
SearchAdjustmentConfig type of the ContentElementConfig complex type of your Conversation Web
Service request.

If spelling is enabled in the Oracle Endeca Server, and, in addition to breadcrumbs, you would like that the
Conversation Web Service response contains supplemental information about spelling suggestions and DYM,
a second SearchAdjustmentConfig type in ContentElementConfig is required. If it is included, spelling
correction or DYM suggestions are returned as part of the response.

It is important to realize that if spelling is enabled, spelling auto-correction occurs even if the additional
ContentElementConfig with SearchAdjustmentConfig type is not included; however, while spelling
correction takes place, the spelling correction and DYM suggestions are not returned in the response.

For example, the following abbreviated section of a query request contains ContentElementConfig with
SearchAdjustmentConfig type, to ensure that spelling correction and DYM suggestions are returned in the
response:

<ns:ContentElementConfig
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="ns:SearchAdjustmentConfig"
HandlerFunction="SearchAdjustmentHandler"

Oracle® Endeca Server: Developer's Guide

Working with Spelling Correction and Did You Mean 189

HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
Id="SearchAdjustments"/>

Version 2.3.0 • June 2012 • Revision A

The response would then be similar to the following. It contains suggested terms for DYM:

<cs:ContentElement xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="cs:SearchAdjustments" Id="SearchAdjustments">
<cs:SuggestedAdjustment RecordCountIfApplied="15">
<cs:SearchFilter Key="Essay" Mode="All">jane</cs:SearchFilter>
<cs:SuggestedTerms>can</cs:SuggestedTerms>
<cs:Operator xsi:type="cs:ApplySpellingSuggestionOperator">

<cs:SearchFilter Key="Essay" Mode="All">jane</cs:SearchFilter>
<cs:Replacement>can</cs:Replacement>

</cs:Operator>
</cs:SuggestedAdjustment>

</cs:ContentElement>

Configuring constraints for spelling dictionaries
The Oracle Endeca Server selects words for the spelling dictionary based on predefined constraints. Modifying
these constraints can be useful for improving performance of spell-corrected searches.

The constraint settings are available in the Global Configuration Record.

You can use these configuration settings to tune and improve the types of spelling corrections produced by
the Oracle Endeca Server. For example, setting the minimum number of word occurrences can direct the
attention of the spelling correction algorithm away from infrequent terms and towards more popular (frequently
occurring) terms, which might be deemed more likely to correspond to intended user search terms.

To configure the settings which the Dgraph process of the Oracle Endeca Server uses to generate spelling
dictionary entries:

1. In the editor of your choice, edit the constraints in the GCR that the Dgraph should use for adding
words to the spelling dictionary.
You can separately edit settings for entries in the dictionary for record search and value search. In
other words, for each attribute assignment on a record, and for each attribute value, you could specify
the following settings in the Global Configuration Record:

Attribute Type Description

mdex-config_SpellingRecordMinWordOccur Int Specifies the minimum number of
times a word must occur in a
standard attribute value (record
assignment on an attribute) for it to
be indexed for spelling correction.
The default value is 4.

mdex-config_SpellingRecordMinWordLength Int Specifies the minimum number of
characters that a word must contain
in a standard attribute value (record
assignment on an attribute) for it to
be indexed for spelling correction.
The default value is 3.

Oracle® Endeca Server: Developer's Guide

Working with Spelling Correction and Did You Mean 190

Attribute Type Description

mdex-config_SpellingRecordMaxWordLength Int Specifies the maximum number of
characters that a word may contain
for it to be indexed for spelling
correction. The default value is 16.

mdex-config_SpellingDValMinWordOccur Int Specifies the minimum number of
times a word must occur in a
managed attribute value for it to be
indexed for spelling correction. The
default value is 1.

mdex-config_SpellingDValMinWordLength Int Specifies the minimum number of
characters that a word must contain
in a managed attribute value for it
to be indexed for spelling
correction. The default value is 3.

mdex-config_SpellingDValMaxWordLength Int Specifies the maximum number of
characters that a word may contain
for it to be indexed for spelling
correction. The default value is 16.

2. To send the updated GCR to the Oracle Endeca Server, use the Configuration Web Service directly or
Integrator. For information, see either the section on Configuration Web Service in this guide, or, if you
are using Integrator, see the Oracle Endeca Information Discovery Integrator Components Guide.

3. Run the admin/<DataStore>?op=updateaspell command on the data store in order for these
changes to take effect.

About word-break analysis
Word-break analysis allows the Spelling Correction feature to consider alternate queries computed by
changing the word divisions in the user’s query.

For example, if the query is Back Street Boys, word-break analysis could instruct the Oracle Endeca Server
to consider the alternate Backstreet Boys.

The following statements describe how word-break analysis works in the Dgraph process of the Oracle
Endeca Server:

• It is enabled by default.

• As part of the word-break analysis, the Dgraph process removes breaks from the original term, or adds
breaks to the original term if needed.

• The maximum number of word breaks that the Dgraph adds to or removes from a query is one.

• The minimum length for a new term created by word-break analysis is two characters. The Dgraph does
not correct words that are smaller than 2 characters. For example, it does not correct anear to a near. It
could correct to an ear if there are actual terms in the data corpus that match both an and ear.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Working with Spelling Correction and Did You Mean 191

• When word-break analysis is applied to a query, it requires that the substrings that the term is broken up
into appear in the data in succession. For example, starting with the query box17, word-break analysis
would find box 17, as well as box-17, assuming that the hyphen (-) has not been specified as a search
character. However, it would not find 17 old boxes, because the target terms do not appear in order.

Troubleshooting Spelling Correction and Did You Mean
If spell-corrected results are not returned for words with expected spell-corrected options in the data, use
these suggestions for troubleshooting.

• When debugging spelling behavior, pay close attention to the errors of the Dgraph on startup, at which
point problems in spelling configuration are typically reported.

• Did You Mean can in some cases correct a word to one on the stop words list.

Performance impact for Spelling Correction and Did You
Mean
Spelling correction performance is impacted by the size of the dictionary in use.

Spell-corrected keyword searches with many words, in systems with very large dictionaries, can take a
disproportionately long time to process relative to other Oracle Endeca Server requests. Those searches can
cause requests that immediately follow such a search to wait while the spelling recommendations are being
sought and considered.

It is important to carefully analyze the performance of the system together with application requirements prior
to production application deployment.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Chapter 27

Using Stemming and Thesaurus

This chapter describes the tasks involved in implementing the Stemming and Thesaurus features.

Overview of stemming and thesaurus

About the stemming feature

About the thesaurus feature

Dgraph flags for stemming and thesaurus

Interactions with other search features

Performance impact of stemming and thesaurus

Overview of stemming and thesaurus
The Oracle Endeca Server supports stemming and thesaurus features that allow keyword search queries to
match text containing alternate forms of the query terms or phrases.

The definitions of these features are as follows:

• The stemming feature allows the system to consider alternate forms of individual words as equivalent for
the purpose of search query matching. For example, it is often desirable for singular nouns to match their
plural equivalents in the searchable text, and vice versa.

• The thesaurus feature allows the system to return matches for related concepts to words or phrases
contained in user queries. For example, a thesaurus entry may allow searches for Mark Twain to match
text containing the phrase Samuel Clemens.

Both the thesaurus and stemming features rely on defining equivalent textual forms that are used to match
user queries to searchable text data. Because these features are based on similar concepts, and because
they are typically configured to operate in conjunction to achieve desired query matching effects, both features
and their interactions are discussed in one section.

About the stemming feature
The stemming feature broadens search results to include word roots and word derivations.

Stemming is enabled in an Endeca data store by default.

The default configuration for stemming is recorded in the en_word_forms_collection configuration file.
This file lists all word forms used for stemming dictionaries in an Endeca data store. This file is created in the
Oracle Endeca Server data files once the data store is provisioned, and is typically not modified. However, you
can overwrite the default English stemming word forms with those from another stemming file in another
language, as explained below.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using Stemming and Thesaurus 193

Stemming is intended to allow words with a common root form (such as the singular and plural forms of
nouns) to be considered interchangeable in search operations. For example, search results for the word shirt
will include the derivation shirts, while a search for shirts will also include its word root shirt.

Stemming equivalences are defined among single words. For example, stemming is used to produce an
equivalence between the words automobile and automobiles (because the first word is the stem form of the
second), but not to define an equivalence between the words vehicle and automobile (this type of concept-
level mapping is done via the thesaurus feature).

Stemming equivalences are strictly two-way (that is, all-to-all). For example, if there is a stemming entry for
the word truck, then searches for truck will always return matches for both the singular form (truck) and its
plural form (trucks), and searches for trucks will also return matches for truck. In contrast, the thesaurus
feature supports one-way mappings in addition to two-way mappings.

Note: The stemming implementation does not include decompounding. Decompounding is the ability
to decompose a compound word (such as kindergarten) into its single word components (kinder and
garten) and then find occurrences based on the smaller words.

Supported languages for stemming

The default language for the stemming feature is English. However, stemming files for these other languages
are available:

• Dutch

• French

• German

• Italian

• Portuguese

• Spanish

The stemming files for these languages are shipped with Integrator. You use Integrator to overwrite the default
stemming file with another one. For details, see the Oracle Endeca Information Discovery Integrator
Components Guide.

Note: An Endeca data store supports only one stemming language at a time.

Types of stemming matches and sort order

Stemming can produce one of three match types.

If stemming is enabled, a search on a given term (T) will produce one or more of these results:

• Literal matches: Any occurrence of T will always produce a match.

• Stem form matches: Matches will occur on the stem form of T (assuming that T is not a stem form). For
example, if T is children, then child (the stem form) will also match.

• Inflected form matches: Matches will occur on all inflected forms of the stem form of T. For example, if T is
the verb ran (as in Jane ran in the Boston Marathon), then matches will include the stem form (run) and
inflected forms (such as runs and running). (Note that although this example is in English, stemming for
inflected verb forms is not supported for English; see below for support details).

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using Stemming and Thesaurus 194

The order of the returned results depends on the sorting configuration:

• If relevance ranking is enabled and the Interpreted (interp) module is used, literal matches will always
have higher priority than stem form and inflected form matches.

• If relevance ranking is not enabled but you have set a record sort order, the results will come back in that
sort order.

• If relevance ranking is not enabled and there is no record sort order, the order of the results is completely
arbitrary.

About the thesaurus feature
The thesaurus feature allows you to configure rules for matching queries to text containing equivalent words or
concepts.

The thesaurus is intended for specifying concept-level mappings between words and phrases. Even a modest
number of well-thought-out thesaurus entries can greatly improve your users’ search experience.

The thesaurus feature is a higher level than the stemming feature, because thesaurus matching and query
expansion respects stemming equivalences, whereas the stemming module is unaware of thesaurus
equivalences.

For example, if you define a thesaurus entry mapping the words automobile and car, and there is a stemming
equivalence between car and cars, then a search for automobile will return matches for automobile, car, and
cars. The same results will also be returned for the queries car and cars.

The thesaurus supports specifying multi-word equivalences. For example, an equivalence might specify that
the phrase Mark Twain is interchangeable with the phrase Samuel Clemens. It is also possible to mix the
number of words in the phrase-forms for a single equivalence. For example, you can specify that wine opener
is equivalent to corkscrew.

Multi-word equivalences are matched on a phrase basis. For example, if a thesaurus equivalence between
wine opener and corkscrew is defined, then a search for corkscrew will match the text stainless steel wine
opener, but will not match the text an effective opener for wine casks.

Thesaurus equivalences can be either one-way or two-way:

• One-way mapping specifies only one direction of equivalence. That is, one "From" term is mapped to one
or more "To" terms, but none of the "To" terms are mapped to the "From" term. Only one "From" term can
be specified.

For example, assume you define a one-way mapping from the phrase red wine to the phrases merlot and
cabernet sauvignon. This one-way mapping ensures that a search for red wine also returns any matches
containing the more specific terms merlot or cabernet sauvignon. But you avoid returning matches for the
more general phrase red wine when the user specifically searches for either merlot or cabernet sauvignon.

• Two-way (or all-to-all) mapping means that the direction of a word mapping is equivalent between the
words. For example, a two-way mapping between stove, range, and oven means that a search for one of
these words will return all results matching any of these words (that is, the mapping marks the forms as
strictly interchangeable).

When you define a two-way mapping, you do not specify a "From" term. Instead, you specify two or more
"To" terms.

Unlike the stemming module, the thesaurus feature lets you define multiple equivalences for a single word or
phrase. These multiple equivalences are considered independent and non-transitive.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using Stemming and Thesaurus 195

For example, we might define one equivalence between football and NFL, and another between football and
soccer. With these two equivalences, a search for NFL will return hits for NFL and hits for football, a search for
soccer will return hits for soccer and football, and a search for football will return all of the hits for football,
NFL, and soccer. However, searches for NFL will not return hits for soccer (and vice versa).

This non-transitive nature of the thesaurus is useful for defining equivalences containing ambiguous terms
such as football. The word football is sometimes used interchangeably with soccer, but in other cases football
refers to American football, which is played professionally in the NFL. In other words, the term football is
ambiguous.

When you define equivalences for ambiguous terms, you do not want their specific meanings to overlap into
one another. People searching for soccer do not want hits for NFL, but they may want at least some of the hits
associated with the more general term football.

Thesaurus entries are essentially used to produce alternate forms of the user query, which in turn are used to
produce additional query results. As a rule, the Oracle Endeca Server will expand the user query into the
maximum possible set of alternate queries based on the available thesaurus entries.

This behavior is particularly important in the presence of overlapping thesaurus forms. For example, suppose
that you define an equivalence between red wine and vino rosso, and a second equivalence between wine
opener and corkscrew. The query red wine opener might match the thesaurus entries in two different ways:
red wine could be mapped to vino rosso based on the first entry; or wine opener could be mapped to
corkscrew based on the second entry.

Using the maximal-expansion rule, this issue is resolved by expanding to all possible queries. In other words,
the Oracle Endeca Server returns hits for all of the queries: red wine opener, vino rosso opener, and red
corkscrew.

Adding, modifying, or deleting thesaurus entries
Thesaurus entries are added in the THESAURUS XML document.

All XML configuration documents are present in the data files of the Oracle Endeca Server. You can edit them
using the format specified in the Dgraph Configuration Reference, found in this guide. After these documents
are edited, you can send them to the Oracle Endeca Server using the Configuration Web Service or
Integrator, thus specifying the configuration your want.

To add a one-way or two-way thesaurus entry, or modify and delete existing thesaurus entries:

1. In any editor, edit the contents of the THESAURUS XML document.

2. Use Integrator or the request created with the Configuration Web Service to send the THESAURUS
document to the Oracle Endeca Server.

Troubleshooting the thesaurus

The following thesaurus clean-up rules should be observed to avoid performance problems related to
expensive and non-useful thesaurus search query expansions.

• Do not create a two-way thesaurus entry for a word with multiple meanings. For example, khaki can refer
to a color as well as to a style of pants. If you create a two-way thesaurus entry for khaki = pants, then
a user’s search for khaki towels could return irrelevant results for pants.

• Do not create a two-way thesaurus entry between a general and several more-specific terms, such as:

top = shirt = sweater = vest

Version 2.3.0 • June 2012 • Revision AOracle® Endeca Server: Developer's Guide

Using Stemming and Thesaurus 196

This increases the number of results the user has to go through while reducing the overall accuracy of the
items returned. In this instance, better results are attained by creating individual one-way thesaurus
entries between the general term top and each of the more-specific terms.

• A thesaurus entry should never include a term that is a substring of another term in the entry.

For example, consider the two-way equivalency:

Adam and Eve = Eve

Version 2.3.0 • June 2012 • Revision A

If users type Eve, they get results for Eve or (Adam and Eve) (that is, the same results they would have
gotten for Eve without the thesaurus). If users type Adam and Eve, they get results for (Adam and Eve) or
Eve, causing the Adam and part of the query to be ignored.

• Stop words such as and or the should not be used in single-word thesaurus forms. For example, if the has
been configured as a stop word, an equivalency between thee and the is not useful.

You can use stop words in multi-word thesaurus forms, because multi-word thesaurus forms are handled
as phrases. In phrases, a stop word is treated as a literal word and not a stop word.

• Avoid multi-word thesaurus forms where single-word forms are appropriate. In particular, avoid multi-word
forms that are not phrases that users are likely to type, or to which phrase expansion is likely to provide
relevant additional results.

For example, the two-way thesaurus entry:

Aethelstan, King Of England (D. 939) = Athelstan, King Of England (D. 939)

should be replaced with the single-word form:

Aethelstan = Athelstan

• Thesaurus forms should not use non-searchable characters. For example, the one-way thesaurus entry:

Pikes Peak -> Pike’s Peak

should be used only if the apostrophe (') is enabled as a search character.

Dgraph flags for stemming and thesaurus
Stemming and thesaurus data that has been configured is automatically enabled for use during text indexing
and search query processing. In addition, there is no Oracle Endeca Server configuration necessary to
configure thesaurus and stemming information.

The Dgraph --thesaurus_cutoff flag can be used to tune performance associated with thesaurus
expansion. By default, the value of this flag is set to 3, meaning that if a search query contains more terms
that match thesaurus entries than the number set by this flag, none of the terms are thesaurus expanded.

Interactions with other search features
As core features of the Oracle Endeca Server search subsystem, stemming and the thesaurus have
interactions with other search features.

The following sections describe the types of interactions between the various search features.

Oracle® Endeca Server: Developer's Guide

Using Stemming and Thesaurus 197

Search characters

The search character set configured for the application dictates the set of available characters for stemming
and thesaurus entries. By default, only alphanumeric ASCII characters may be used in stemming and
thesaurus entries. Additional punctuation and other special characters may be enabled for use in stemming
and thesaurus entries by adding these characters to the search character set.

The Oracle Endeca Server matches user query terms to thesaurus forms using the following rule: all
alphanumeric and search characters must match against the stemming and thesaurus forms exactly; other
characters in the user search query are treated as word delimiters. For details on search characters, see the
chapter in this guide.

Spelling

Spelling correction is a closely-related feature to stemming and thesaurus functionality, because spelling auto-
correction essentially provides an additional mechanism for computing alternate versions of the user query. In
the Oracle Endeca Server's Dgraph process, spelling is handled as a higher-level feature than stemming and
thesaurus. That is, spelling correction considers only the raw form of the user query when producing alternate
query forms.

Alternate spell-corrected queries are then subject to all of the normal stemming and thesaurus processing. For
example, if the user enters the query telvision and this query is spell-corrected to television, the results will
also include results for the alternate forms televisions, tv, and tvs.

Note that in some cases, the thesaurus feature is used as a replacement or in addition to the system's
standard spelling correction features. In general, this technique is discouraged. The vast majority of actual
misspelled user queries can be handled correctly by the spelling correction subsystem. But in some rare
cases, the spelling correction feature cannot correct a particular misspelled query of interest; in these cases it
is common to add a thesaurus entry to handle the correction. If at all possible, such entries should be avoided
as they can lead to undesirable feature interactions.

Stop words

Stop words are words configured to be ignored by the Oracle Endeca Server search query engine. A stop
word list typically includes words that occur too frequently in the data to be useful (for example, the word bottle
in a wine data set), as well as words that are too general (such as clothing in an apparel-only data set).

If the is marked as a stop word, then a query for the computer will match to text containing the word computer,
but possibly missing the word the.

Stop words are not currently expanded by the stemming and thesaurus equivalence set. For example,
suppose you mark item as a stop word and also include a thesaurus equivalence between the words item and
items. This will not automatically mark the word items as a stop word; such expansions must be applied
manually.

Stop words are respected when matching thesaurus entries to user queries. For example, suppose you define
an equivalence between Muhammad Ali and Cassius Clay and also mark M as a stop word (it is not
uncommon to mark all or most single letter words as stop words). In this case, a query for Cassius M. Clay
would match the thesaurus entry and return results for Muhammad Ali as expected.

Phrase search

A phrase search is a search query that contains one or more multi-word phrases enclosed in quotation marks.
The words inside phrase-query terms are interpreted strictly literally and are not subject to stemming or

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Using Stemming and Thesaurus 198

thesaurus processing. For example, if you define a thesaurus equivalence between Jennifer Lopez and JLo,
normal (unquoted) searches for Jennifer Lopez will also return results for JLo, but a quoted phrase search for
"Jennifer Lopez" will not return the additional JLo results.

Relevance ranking

It is typically desirable to return results for the actual user query ahead of results for stemming and/or
thesaurus transformed versions of the query. This type of result ordering is supported by the Relevance
Ranking modules. In particular, the module that is affected by thesaurus expansion and stemming is Interp.
The module that is not affected by thesaurus and stemming is Freq.

Performance impact of stemming and thesaurus
Stemming and thesaurus equivalences generally add little or no time to data processing and indexing, and
introduce little space overhead (beyond the space required to store the raw string forms of the equivalences).

In terms of online processing, both features will expand the set of results for typical user queries. While this
generally slows search performance (search operations require an amount of time that grows linearly with the
number of results), typically these additional results are a required part of the application behavior and cannot
be avoided.

The overhead involved in matching the user query to thesaurus and stemming forms is generally low, but
could slow performance in cases where a large thesaurus (tens of thousands of entries) is asked to process
long search queries (dozens of terms). Typical applications exhibit neither extremely large thesauri nor very
long user search queries.

Because matching for stemming entries is performed on a single-word basis, the cost for stemming-oriented
query expansion does not grow with the size of the stemming database or with the length of the query.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Chapter 28

Relevance Ranking

This chapter describes the tasks involved in implementing the Relevance Ranking feature.

About the relevance ranking feature

About relevance ranking modules

Relevance ranking strategies

Implementing relevance ranking

Relevance ranking sample scenarios

Recommended strategies

Performance impact of relevance ranking

About the relevance ranking feature
Relevance ranking lets you control the order in which search results are displayed to the end user of a front-
end application powered by the Oracle Endeca Server.

Typically, the relevance ranking feature is used to ensure that the most important search results are displayed
earliest to the user, because users of search-oriented information retrieval systems are often unwilling to page
through large result sets.

Relevance ranking can be used to independently control the result ordering for both record search and value
search queries. You can establish a system-default relevance ranking for both record search and value
search. In addition, you can assign relevance ranking on a per-query basis for both search types.

The importance of a search result is generally an application-specific concept. Thus, the relevance ranking
feature provides a flexible, configurable set of result ranking modules. These modules can be used in
combinations (called relevance ranking strategies) to produce a wide range of relevance ranking effects.
Results are scored according to the order of ranking modules within the strategy.

Note: Because relevance ranking is a complex and powerful feature, this documentation provides
recommended strategies that you can use as a point of departure for further development. For details,
see the "Recommended strategies" topic in this section.

About relevance ranking modules
Relevance ranking modules are the building blocks from which you build the relevance ranking strategies that
you actually apply to your search interfaces.

This section describes the available set of relevance ranking modules and their scoring behaviors.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Relevance Ranking 200

Exact

The Exact module provides a finer grained (but more computationally expensive) alternative to the Phrase
module.

The Exact module groups results into three strata based on how well they match the query string:

• The highest stratum contains results whose complete text matches the user’s query exactly.

• The middle stratum contains results that contain the user’s query as a subphrase.

• The lowest stratum contains other hits (such as normal conjunctive matches). Any match that would not
be a match without query expansion lands in the lowest stratum. Also in this stratum are records that do
not contain relevance ranking terms.

The Exact module is computationally expensive, especially on large text fields. It is intended for use only on
small text fields (such as managed attribute values or small managed attribute values like part IDs). This
module should not be used with large or offline documents. Use of this module in these cases will result in
very poor performance and/or application failures due to request timeouts. The Phrase module, with and
without approximation turned on, does similar but less sophisticated ranking that can be used as a higher
performance substitute.

Field

The Field module ranks documents based on the search interface field with the highest priority in which it
matched.

Only the best field in which a match occurs is considered. The Field module is often used in relevance ranking
strategies for catalog applications, because the category or product name is typically a good match. Field
assigns a score to each result based on the static rank of the standard or managed attribute member (or
members) of the search interface that caused the document to match the query. Static field ranks are
assigned based on the order in which members of a search interface are listed in the search interface
configuration. The first member has the highest rank.

By default, matches caused by cross-field matching are assigned a score of zero. The score for cross-field
matches can be set explicitly in the CROSS_FIELD_RELEVANCE_RANK attribute of the SEARCH_INTERFACE
element. This element is used only for search interfaces that have the Field module and are configured to
support cross-field matches. All non-zero ranks must be non-equal and only their order matters.

For example, a search interface might contain both Title and DocumentContent standard attributes, where hits
on Title are considered more important than hits on DocumentContent (which in turn are considered more
important than cross-field matches). Such a ranking is implemented by assigning the highest rank to Title, the
next highest rank to DocumentContent, and setting the CROSS_FIELD_RELEVANCE_RANK attribute to a low
integer such as 0 or 1.

The Field module is only valid for record search operations. This module assigns a score of zero to all results
for other types of search requests. In addition, Field treats all matches the same, whether or not they are due
to query expansion.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Relevance Ranking 201

First

Designed primarily for use with unstructured data, the First module ranks documents by how close the query
terms are to the beginning of the document.

The First module groups its results into variably-sized strata. The strata are not the same size, because while
the first word is probably more relevant than the tenth word, the 301st is probably not so much more relevant
than the 310th word. This module takes advantage of the fact that the closer something is to the beginning of
a document, the more likely it is to be relevant.

The First module works as follows:

• When the query has a single term, First’s behavior is straight-forward: it retrieves the first absolute position
of the word in the document, then calculates which stratum contains that position. The score for this
document is based upon that stratum; earlier strata are better than later strata.

• When the query has multiple terms, First behaves as follows: The first absolute position for each of the
query terms is determined, and then the median position of these positions is calculated. This median is
treated as the position of this query in the document and can be used with stratification as described in the
single word case.

• With query expansion (using stemming, spelling correction, or the thesaurus), the First module treats
expanded terms as if they occurred in the source query. For example, the phrase glucose intolerence
would be corrected to glucose intolerance (with intolerence spell-corrected to intolerance). First then
continues as it does in the non-expansion case. The first position of each term is computed and the
median of these is taken.

• In a partially matched query, where only some of the query terms cause a document to match, First
behaves as if the intersection of terms that occur in the document and terms that occur in the original
query were the entire query. For example, if the query cat bird dog is partially matched to a document on
the terms cat and bird, then the document is scored as if the query were cat bird. If no terms match, then
the document is scored in the lowest strata.

Note: The First module does not work with Boolean searches, cross-field matching, or wildcard
search. It assigns all such matches a score of zero.

Frequency

The Frequency (Freq) module provides result scoring based on the frequency (number of occurrences) of the
user’s query terms in the result text.

Results with more occurrences of the user search terms are considered more relevant.

The score produced by the Frequency module for a result record is the sum of the frequencies of all user
search terms in all fields (standard or managed attributes in the search interface in question) that match a
sufficient number of terms. The number of terms depends on the match mode, such as all terms in a query
with search mode All, a sufficient number of terms in a query with search mode Partial, and so on. Cross-
field match records are assigned a score of zero. Total scores are capped at 1024; in other words, if the sum
of frequencies of the user search terms in all matching fields is greater than or equal to 1024, the record gets
a score of 1024 from the Freq module.

For example, suppose we have the following record:

{Title="test record", Abstract="this is a test", Text="one test this is"}

Version 2.3.0 • June 2012 • Revision A

An All search for test this would cause Frequency to assign a score of 4, since this and test occur a total of 4
times in the fields that match all search terms (Abstract and Text, in this case). The number of phrase

Oracle® Endeca Server: Developer's Guide

Relevance Ranking 202

occurrences (just one in the Text field) doesn't matter, only the sum of the individual word occurrences. Also
note that the occurrence of test in the Title field does not contribute to the score, since that field did not match
all of the terms.

An All search for one record would hit this record, assuming that cross field matching was enabled. But the
record would get a score of zero from Freq, because no single field matches all of the terms. Freq ignores
matches due to query expansion (that is, such matches are given a rank of 0).

Note: Due to performance issues, do not use the Frequency module with standalone relevance
ranking (that is, per-query relevance ranking).

Glom

The Glom module ranks single-field matches ahead of cross-field matches and also ahead of non-matches
(records that do not contain the search term).

The Glom module serves as a useful tie-breaker function in combination with the Maximum Field module. It is
only useful in conjunction with record search operations. If you want a strategy that ranks single-field matches
first, cross-field matches second, and no matches third, then use the Glom module followed by the Number of
Terms (Nterms) module.

Glom treats all matches the same, whether or not they are due to query expansion.

Glom interaction with search modes

The Glom module considers a single-field match to be one in which a single field has enough terms to satisfy
the conditions of the match mode. For this reason, in the Any search mode, cross-field matches are
impossible, because a single term is sufficient to create a match. Every match is considered to be a single-
field match, even if there were several search terms.

For Partial search mode, if the required number of matches is two, the Glom module considers a record to be
a single-field match if it has at least one field that contains two or more or the search terms. You cannot rank
results based on how many terms match within a single field.

For more information about search modes, see the "Using Search Modes" chapter of this guide.

Interpreted

Interpreted (interp) is a general-purpose module that assigns a score to each result record based on the query
processing techniques used to obtain the match.

Matching techniques considered include partial matching, cross-attribute matching, spelling correction,
thesaurus, and stemming matching.

Specifically, the Interpreted module ranks results as follows:

1. All non-partial matches are ranked ahead of all partial matches. For more information, see the "Using
Search Modes" chapter in this guide.

2. Within the above strata, all single-field matches are ranked ahead of all cross-field matches. For more
information, see the "Working with Search Interfaces" chapter in this guide.

3. Within the above strata, all non-spelling-corrected matches are ranked above all spelling-corrected
matches. See the "Working with Spelling Correction and Did You Mean" chapter in this guide for more
information.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Relevance Ranking 203

4. Within the above strata, all thesaurus matches are ranked below all non-thesaurus matches. See the
"Using Stemming and Thesaurus" chapter in this guide for more information.

5. Within the above strata, all stemming matches are ranked below all non-stemming matches. See the
"Using Stemming and Thesaurus" chapter for more information.

Maximum Field

The Maximum Field (maxfield) module behaves identically to the Field module, except in how it scores cross-
field matches.

Unlike Field, which assigns a static score to cross-field matches, Maximum Field selects the score of the
highest-ranked field that contributed to the match.

Note the following:

• Because Maximum Field defines the score for cross-field matches dynamically, it does not make use of
the cross-field setting in the search interface.

• Maximum Field is only valid for record search operations. This module assigns a score of zero to all
results for other types of search requests.

• Maximum Field treats all matches the same, whether or not they are due to query expansion.

Number of Fields

The Number of Fields (Numfields) module ranks results based on the number of fields in the associated
search interface in which a match occurs.

Note that we are counting whole-field rather than cross-field matches. Therefore, a result that matches two
fields matches each field completely, while a cross-field match typically does not match any field completely.

Note: Numfields treats all matches the same, whether or not they are due to query expansion. The
Numfields module is only useful in conjunction with record search operations.

Number of Terms

The Number of Terms (or Nterms) module ranks matches according to how many query terms they match.

For example, in a three-word query, results that match all three words will be ranked above results that match
only two, which will be ranked above results that match only one, which will be ranked above results that had
no matches.

With multiple term searches, Nterms only ranks the terms in the field with the most existence of the term. For
example, assume that a search is made for 5 terms (a, b, c, d, and e) and you have a record with two fields:

Field 1: a b c
Field 2: d e

Version 2.3.0 • June 2012 • Revision A

This record is ranked as if it matched three terms, the maximum number that matched in any single field.

Note the following about Nterms:

• The Nterms module is only applicable to search modes where results can vary in how many query terms
they match. These include Any, Partial, Any, and AllPartial. For details on these search modes, see the
Using Search Modes on page 155 section in this guide.

Oracle® Endeca Server: Developer's Guide

Relevance Ranking 204

• Nterms treats all matches the same, whether or not they are due to query expansion.

Phrase

The Phrase module states that results containing the user’s query as an exact phrase, or a subset of the exact
phrase, should be considered more relevant than matches simply containing the user’s search terms scattered
throughout the text.

Records that have the phrase are ranked higher than records which do not contain the phrase.

Configuring the Phrase module

The Phrase module is configured by editing the RELRANK_PHRASE XML element.

You add a Phrase module with the RELRANK_PHRASE element, which is a sub-element of the
RELRANK_STRATEGY element.

The following example shows a relevance ranking strategy named PhraseMatch with a Phrase module:

<RELRANK_STRATEGIES>
<RELRANK_STRATEGY NAME="PhraseMatch">
<RELRANK_PHRASE APPROXIMATE="TRUE" QUERY_EXPANSION="FALSE" SUBPHRASE="TRUE"/>

</RELRANK_STRATEGY>
</RELRANK_STRATEGIES>

Version 2.3.0 • June 2012 • Revision A

To configure the Phrase module:

1. In any editor, edit the contents of the RELRANK_STRATEGIES configuration document to add or
modify the RELRANK_PHRASE element.
For details on these elements, see the appendix in this guide. The resulting contents should look
similar to the example above.

2. Send the changes to the Oracle Endeca Server using the Configuration Web Service or Integrator.

Details on the three options are explained in the following topic.

Phrase module options

The Phrase module has a variety of options that you use to customize its behavior.

The Phrase module has three options, which are configured via Boolean attributes:

• The APPROXIMATE attribute sets the use of approximate subphrase/phrase matching.

• The QUERY_EXPANSION attribute determines whether to apply query expansion (spell correction,
thesaurus, and stemming).

• The SUBPHRASE attribute enables ranking based on length of subphrases.

These attributes belong to the RELRANK_PHRASE element.

Approximate matching

Approximate matching provides higher-performance matching, as compared to the standard Phrase module,
with somewhat less exact results.

With approximate matching enabled, the Phrase module looks at a limited number of positions in each result
that a phrase match could possibly exist, rather than all the positions. Only this limited number of possible

Oracle® Endeca Server: Developer's Guide

Relevance Ranking 205

occurrences is considered, regardless of whether there are later occurrences that are better, more relevant
matches.

The approximate setting is appropriate in cases where the runtime performance of the standard Phrase
module is inadequate because of large result contents and/or high site load.

Query expansion

Applying spelling correction, thesaurus, and stemming adjustments to the original phrase is generically known
as query expansion. With query expansion enabled, the Phrase module ranks results that match a phrase’s
expanded forms in the same stratum as results that match the original phrase.

Consider the following example:

• A thesaurus entry exists that expands "US" to "United States".

• The user queries for "US government".

The query "US government" is expanded to "United States government" for matching purposes, but the
Phrase module gives a score of two to any results matching "United States government" because the original,
unexpanded version of the query, "US government", only had two terms.

Subphrasing

Subphrasing ranks results based on the length of their subphrase matches. In other words, results that match
three terms are considered more relevant than results that match two terms, and so on.

A subphrase is defined as a contiguous subset of the query terms the user entered, in the order that he or she
entered them. For example, the query "fax cover sheets" contains the subphrases "fax", "cover", "sheets", "fax
cover", "cover sheets", and "fax cover sheets", but not "fax sheets".

Content contained inside nested quotes in a phrase is treated as one term. For example, consider the
following phrase:

the question is "to be or not to be"

Version 2.3.0 • June 2012 • Revision A

The quoted text ("to be or not to be") is treated as one query term, so this example consists of four query
terms even though it has a total of nine words.

When subphrasing is not enabled, results are ranked into two strata: those that matched the entire phrase and
those that did not.

Summary of Phrase option interactions

The three configuration settings for the Phrase module can be used in a variety of combinations for different
effects.

The following matrix describes the behavior of each combination.

Subphrase Approximate Expansion Description

Off Off Off Default. Ranks results into two strata: those that
match the user’s query as a whole phrase, and those
that do not.

Oracle® Endeca Server: Developer's Guide

Relevance Ranking 206

Subphrase Approximate Expansion Description

Off Off On Ranks results into two strata: those that match the
original, or an extended version, of the query as a
whole phrase, and those that do not.

Off On Off Ranks results into two strata: those that match the
original query as a whole phrase, and those that do
not. Look only at the first possible phrase match
within each record.

Off On On Ranks results into two strata: those that match the
original, or an extended version, of the query as a
whole phrase, and those that do not. Look only at the
first possible phrase match within each record.

On Off Off Ranks results into N strata where N equals the length
of the query and each result’s score equals the length
of its matched subphrase.

On Off On Ranks results into N strata where N equals the length
of the query and each result’s score equals the length
of its matched subphrase. Extend subphrases to
facilitate matching but rank based on the length of the
original subphrase (before extension). Note that this
combination can have a negative performance impact
on query throughput.

On On Off Ranks results into N strata where N equals the length
of the query and each result’s score equals the length
of its matched subphrase. Look only at the first
possible phrase match within each record.

On On On Ranks results into N strata where N equals the length
of the query and each result’s score equals the length
of its matched subphrase. Expand the query to
facilitate matching but rank based on the length of the
original subphrase (before extension). Look only at
the first possible phrase match within each record.

Note: You should only use one Phrase module in any given search interface and set all of your
options in it.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Relevance Ranking 207

Phrase module behavior

This topic describes some aspects of the behavior of the Phrase module with other features of the Oracle
Endeca Server.

Effect of search modes

Oracle Endeca Server provides a variety of search modes to facilitate matching during search (Any, All,
Partial, and so on). These modes only determine which results match a user’s query, they have no effect on
how the results are ranked after the matches have been found. Therefore, the Phrase module works as
described in this section, regardless of search mode. The one exception to this rule is Boolean. Phrase, like
the other relevance ranking modules, is never applied to the results of Boolean queries.

Results with multiple matches

If a single result has multiple subphrase matches, either within the same field or in several different fields, the
result is slotted into a stratum based on the length of the longest subphrase match.

Stop words

When using the Phrase module, stop words are always treated like non-stop word terms and stratified
accordingly.

For example, the query "raining cats and dogs" will result in a rank of two for a result containing "fat cats and
hungry dogs" and a rank of three for a result containing "fat cats and dogs" (this example assumes subphrase
is enabled).

Cross-field matches

An entire phrase, or subphrase, must appear in a single field in order for it to be considered a match. In other
words, matches created by concatenating fields are not considered by the Phrase module.

Notes about the Phrase module

Keep the following points in mind when using the Phrase module:

• If a query contains only one word, then that word constitutes the entire phrase and all of the matching
results will be put into one stratum (score = 1). However, the module can rank the results into two strata:
one for records that contain the phrase and a lower-ranking stratum for records that do not contain the
phrase.

• Because of the way hyphenated words are positionally indexed, it is recommended to enable subphrase if
your results contain hyphenated words.

Treatment of wildcards with the Phrase module

The Phrase module translates each wildcard in a query into a generic placeholder for a single term.

For example, the query "sparkling w* wine" becomes "sparkling * wine" during phrase relevance ranking,
where "*" indicates a single term. This generic wildcard replacement causes slightly different behavior
depending on whether subphrasing is enabled.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Relevance Ranking 208

When subphrasing is not enabled, all results that match the generic version of the wildcard phrase exactly are
still placed into the first stratum. It is important, however, to understand what constitutes a matching result
from the Phrase module’s point of view.

Consider the search query "sparkling w* wine" with the Any mode enabled. In Any mode, search results only
need to contain one of the requested terms to be valid, so a list of search results for this query could contain
phrases that look like this:

sparkling white wine
sparkling refreshing wine
sparkling wet wine
sparkling soda
wine cooler

Version 2.3.0 • June 2012 • Revision A

When phrase relevance ranking is applied to these search results, the Phrase module looks for matches to
"sparkling * wine" not "sparkling w* wine". Therefore, there are three results—"sparkling white wine", "sparkling
refreshing wine", and "sparkling wet wine"—that are considered phrase matches for the purposes of ranking.
These results are placed in the first stratum. The other two results are placed in the second stratum.

When subphrasing is enabled, the behavior becomes a bit more complex. Again, we have to remember that
wildcards become generic placeholders and match any single term in a result. This means that any subphrase
that is adjacent to a wildcard will, by definition, match at least one additional term (the wildcard). Because of
this behavior, subphrases break down differently. The subphrases for "cold sparkling w* wine" break down into
the following (note that w* changes to *):

cold
sparkling *
* wine
cold sparkling *
sparkling * wine
cold sparkling * wine

Notice that the subphrases "sparkling", "wine" and "cold sparkling" are not included in this list. Because these
subphrases are adjacent to the wildcard, we know that the subphrases will match at least one additional term.
Therefore, these subphrases are subsumed by the "sparkling *", "* wine", and "cold sparkling *" subphrases.

Like regular subphrase, stratification is based on the number of terms in the subphrase, and the wildcard
placeholders are counted toward the length of the subphrase. To continue the example above, results that
contain “cold” get a score of one, results that contain "sparkling *" get a score of two, and so on. Again, this is
the case even if the matching result phrases are different, for example, "sparkling white" and "sparkling soda".

Finally, it is important to note that, while the wildcard can be replaced by any term, a term must still exist. In
other words, search results that contain the phrase "sparkling wine" are not acceptable matches for the phrase
"sparkling * wine" because there is no term to substitute for the wildcard. Conversely, the phrase "sparkling
cold white wine" is also not a match because each wildcard can be replaced by one, and only one, term. Even
when wildcards are present, results must contain the correct number of terms, in the correct order, for them to
be considered phrase matches by the Phrase module.

Proximity

Designed primarily for use with unstructured data, the Proximity module ranks how close the query terms are
to each other in a document by counting the number of intervening words.

Like the First module, this module groups its results into variable sized strata, because the difference in
significance of an interval of one word and one of two words is usually greater than the difference in
significance of an interval of 21 words and 22. If no terms match, the document is placed in the lowest
stratum.

Oracle® Endeca Server: Developer's Guide

Relevance Ranking 209

Single words and phrases get assigned to the best stratum because there are no intervening words. When the
query has multiple terms, Proximity behaves as follows:

1. All of the absolute positions for each of the query terms are computed.

2. The smallest range that includes at least one instance of each of the query terms is calculated. This
range’s length is given in number of words. The score for each document is the strata that contains the
difference of the range’s length and the number of terms in the query; smaller differences are better than
larger differences.

Under query expansion (that is, stemming, spelling correction, and the thesaurus), the expanded terms are
treated as if they were in the query, so the proximity metric is computed using the locations of the expanded
terms in the matching document.

For example, if a user searches for big cats and a document contains the sentence, "Big Bird likes his cat"
(stemming takes cats to cat), then the proximity metric is computed just as if the sentence were, "Big Bird likes
his cats."

Proximity scores partially matched queries as if the query only contained the matching terms. For example, if a
user searches for cat dog fish and a document is partially matched that contains only cat and fish, then the
document is scored as if the query cat fish had been entered.

Note: Proximity does not work with Boolean searches, cross-field matching, or wildcard search. It
assigns all such matches a score of zero.

Spell

The Spell module ranks spelling-corrected matches below other kinds of matches.

Spell assigns a rank of 0 to matches from spelling correction, and a rank of 1 from all other sources. That is, it
ignores all other sorts of query expansion.

Static

The Static module assigns a static or constant data-specific value to each search result, depending on the
type of search operation performed and depending on optional parameters that can be passed to the module.

For record search operations, the first parameter to the module specifies an attribute, which will define the sort
order assigned by the module. The second parameter can be specified as ascending or descending to
indicate the sort order to use for the specified attribute.

For example, using the module Static(Availability,descending) would sort result records in
descending order with respect to their assignments from the Availability standard attribute. Using the module
Static(Title,ascending) would sort result records in ascending order by their Title standard attribute
assignments.

In a catalog application, setting the static module by Price, descending leads to more expensive products
being displayed first.

For value search, the first parameter can be specified as nbins, depth, or rank:

• Specifying nbins causes the static module to sort result values by the number of associated records in
the full data set.

• Specifying depth causes the static module to sort result values by their depth in the managed attributes
hierarchy.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Relevance Ranking 210

• Specifying rank causes values to be sorted by the ranks assigned to them for the application.

Stem

The Stem module ranks matches due to stemming below other kinds of matches.

Stem assigns a rank of 0 to matches from stemming, and a rank of 1 from all other sources. That is, it ignores
all other sorts of query expansion.

Thesaurus

The Thesaurus module ranks matches due to thesaurus entries below other sorts of matches.

Thesaurus assigns a rank of 0 to matches from the thesaurus, and a rank of 1 from all other sources. That is,
it ignores all other sorts of query expansion.

Weighted Frequency

Like the Frequency module, the Weighted Frequency (Wfreq) module scores results based on the frequency
of user query terms in the result.

Additionally, the Weighted Frequency module weights the individual query term frequencies for each result by
the information content (overall frequency in the complete data set) of each query term. Less frequent query
terms (that is, terms that would result in fewer search results) are weighted more heavily than more frequently
occurring terms.

The Weighted Frequency module ignores matches due to query expansion (that is, such matches are given a
rank of 0).

Note: Due to performance issues, it is not recommended to use the Weighted Frequency module with
standalone relevance ranking (that is, per-query relevance ranking).

Relevance ranking strategies
Relevance ranking modules define the primitive search result ordering functions provided by the Oracle
Endeca Server. These primitive modules can be combined to compose more complex ordering behaviors
called relevance ranking strategies.

You may also define and apply a strategy that consists of a single module, rather than a group of modules.

You can specify a relevance ranking strategy either in the request issued by the Conversation Web Service,
and/or in the RECSEARCH_CONFIG configuration XML document.

The scores assigned by a strategy are composed from the scores assigned by its constituent modules. This
composite score is constructed so that records are first ordered by the first module. After that, ties are broken
by the subsequent modules in order. If any ties remain after all modules have been consulted, they are
resolved by the default sort. If after that any ties still remain, the order of records is determined by the system.

Note that the order of results returned for a query where there are multiple text searches with relevance
ranking enabled in the query is that the relevance rank of a given record will be the maximum of the relevance
ranks of the searches for that record.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Relevance Ranking 211

Relevance ranking strategies are used in two main contexts in the Oracle Endeca Server:

• You can configure relevance ranking to a search interface in the RECSEARCH_CONFIG configuration
document, and send this document to the Oracle Endeca Server using the Configuration Web Service or
Integrator.

• You can specify a relevance ranking strategy for a particular attribute to override the strategy specified for
the selected search interface. This allows relevance ranking behavior to be fully customized on a per-
query basis. In other words, in a Conversation Web Service request, you can send a per-query relevance
ranking strategy. For details, see the "Using standalone relevance ranking at the query level" topic.

Creating relevance ranking strategies
You create relevance ranking strategies by modifying the RELRANK_STRATEGIES configuration document.

All configuration documents are present in the data files of the Oracle Endeca Server, for a particular data
store and its corresponding Dgraph process. You can edit them using the format specified in the Dgraph
Configuration Reference appendix in this guide. After these documents are edited, you can send them to the
Dgraph using the Configuration Web Service or Integrator, thus specifying the configuration your want.

You create a relevance ranking strategy by adding one or more RELRANK_STRATEGY elements to the root
RELRANK_STRATEGIES document.

Each RELRANK_STRATEGY element, in turn, contains one or more relevance ranking module elements, such
as the RELRANK_INTERP and RELRANK_FIELD module elements in this WineMatch example:

<RELRANK_STRATEGIES>
<RELRANK_STRATEGY NAME="WineMatch">
<RELRANK_INTERP/>
<RELRANK_STATIC NAME="Flavors" ORDER="ASCENDING"/>
<RELRANK_FIELD/>

</RELRANK_STRATEGY>
</RELRANK_STRATEGIES>

Version 2.3.0 • June 2012 • Revision A

Keep in mind that the order of the module sub-elements defines the order in which the strategies are applied
to the search results.

To create a relevance ranking strategy:

1. Edit the contents of the RELRANK_STRATEGIES document to add or modify the RELRANK_STRATEGY
elements.
For details on these elements, see the appendix in this guide. The resulting contents of the edited
document should look similar to the example above.

2. Send the RELRANK_STRATEGIES document to the Dgraph using the Configuration Web Service or
Integrator.

The new relevance ranking strategy can now be added to a search interface.

Implementing relevance ranking
You can create and control relevance ranking for both record search and value search at a system-default
level.

You can apply record search relevance ranking as you are creating a search interface, or afterwards. A search
interface is a named group of at least one attribute. You create search interfaces so you can apply behavior
like relevance ranking across a group.

Oracle® Endeca Server: Developer's Guide

Relevance Ranking 212

You set the search interface for record search by modifying the RECSEARCH_CONFIG configuration document
and sending it to the Oracle Endeca Server with the Configuration Web Service, or using a connector in
Integrator. For information about configuring relevance ranking in search interfaces, see the "Working with
Search Interfaces" section in this guide.

For value search, the "Implementing relevance ranking for value search" topic in this section describes the
configuration procedure.

Adding a Static module

Keep the following in mind when you add a Static module to the ranking strategy.

The Static module is the only one that you can add multiple times. When you add a Static module, be sure to
set the two Static attributes:

• The NAME attribute sets the name of an attribute that is used for static relevance ranking.

• The ORDER attribute specifies how records should be sorted with respect to the specified Endeca attribute
sets. The two values are ASCENDING and DESCENDING.

Ranking order for Field and Maximum Field modules

The Field and Maximum Field modules rank results based on which attribute member of the selected search
interface caused the match.

Higher relevance-ranked values correspond to greater importance. This behavior means that the Field and
Maximum Field modules will score results caused by higher-ranked Endeca attributes ahead of those caused
by lower-ranked attributes. In this example:

<MEMBER_NAME RELEVANCE_RANK="1">P_Description</MEMBER_NAME>
<MEMBER_NAME RELEVANCE_RANK="2">P_Type</MEMBER_NAME>

Version 2.3.0 • June 2012 • Revision A

P_Type will be ranked ahead of P_Description.

To change the relevance ranking behavior for these modules, move the search interface members to the
appropriate position in the search interface (that is, move the MEMBER_NAME attributes up or down within the
SEARCH_INTERFACE element).

How relevance ranking score ties between search interfaces are resolved

In the case of multiple search interfaces and relevance ranking score ties, ties are broken based on the
relevance ranking sort strategy of the search interface with the highest relevance ranking score for a given
record.

If two different records belong to different search interfaces, the record from the search interface specified
earlier in the query comes first.

Implementing relevance ranking for value search

You can define a system-default relevance ranking strategy for value search operations.

To define a system-default relevance ranking strategy for value search operations, modify the
RELRANK_STRATEGY attribute of the DIMSEARCH_CONFIG configuration document. To do so, create a text file

Oracle® Endeca Server: Developer's Guide

Relevance Ranking 213

with the configuration document and send it to the Oracle Endeca Server, using the Configuration Web
Service or Integrator.

The RELRANK_STRATEGY attribute specifies the name of a relevance ranking strategy for value search. The
content of this attribute should be a relevance ranking string, as in this example:

<DIMSEARCH_CONFIG FILTER_FOR_ANCESTORS="FALSE" RELRANK_STRATEGY="interp,exact"/>

Version 2.3.0 • June 2012 • Revision A

The default ranking strategy for value search operations, which is applied if you do not make any changes to
it, is:

interp,exact,static

Specifying relevance ranking for record search and value search in query
requests

You can specify a relevance ranking strategy for both record search queries and value search queries in the
Conversation Web Service.

Both types of queries let you specify either an existing relevance ranking strategy or the names of the
relevance ranking modules.

Record search
For record search, the RelevanceRankingStrategy attribute of the SearchFilter element lets you specify
a relevance ranking strategy for the query, as in this example:

<ns:Operator xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ns="http://www.endeca.com/MDEX/conversation/1/0" xsi:type="ns:SearchOperator"
Within="false">
<ns:SearchFilter Mode="AllPartial" RelevanceRankingStrategy="exact"

Key="Description">Mountain</ns:SearchFilter>
</ns:Operator>

For more information on the SearchFilter, see Record search operator on page 136.

Value search
For value search, the RelevanceRankingStrategy attribute of the ValueSearchConfig type lets you
specify a relevance ranking strategy for the query.

<ns:ContentElementConfig
Id="ValueSearchConfig"
xsi:type="ns:ValueSearchConfig"
HandlerNamespace="http://www.endeca.com/MDEX/conversation/1/0"
HandlerFunction="ValueSearchHandler"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
MaxPerProperty="5"
RelevanceRankingStrategy="static (nbins,descending)"
Mode="Any">

<ns:SearchTerm>"Bike Racks"</ns:SearchTerm>
<ns:RestrictToProperties>

<ns:Property>ProductCategory</ns:Property>
</ns:RestrictToProperties>

</ns:ContentElementConfig>

For more information on the ValueSearchConfig type, see Value search query format on page 148.

Oracle® Endeca Server: Developer's Guide

Relevance Ranking 214

Relevance ranking sample scenarios
This section contains two examples of relevance ranking behavior to further illustrate the capabilities of this
feature.

In the first example, we first look at the effects of various relevance ranking strategies on a small sample data
set that supports record search, examining the range of possible result orderings possible using only a limited
set of ranking modules.

In the second example, we look at how adding a simple relevance ranking strategy can affect user results in
the reference implementation.

Note: These extremely simple scenarios are provided for illustrative purposes only. For more realistic
examples, see the "Recommended strategies" topic.

Example 1: Using a small data set

This scenario shows the effects of various relevance ranking strategies on a small data set.

This example illustrates the richness of relevance ranking tuning possible with the modular relevance ranking
system of the Oracle Endeca Server: using two modules on a data set of three records, we found that all four
possible combinations of the modules into strategies resulted in different orderings, all of which were different
from the default ordering.

The example uses the following example record set:

Record Title attribute Author attribute

1 Great Short Stories Mark Twain and other authors

2 Mark Twain William Lyon Phelps

3 Tom Sawyer Mark Twain

Creating the search interface

In a text editor, we have defined a search interface named Books that contains both Title and Author standard
attributes. The relevance rank is determined by the order in which the Endeca attributes appear in the
members list.

Assume that we have not defined an explicit default sort order for the records, in which case their default order
is determined by the system.

Without relevance ranking

Suppose that the user enters a record search query against the Books search interface for Mark Twain.
Clearly all three of the records are hits, because each record has at least one searchable attribute value
containing at least one occurrence of both the words Mark and Twain. But in what order should the results be
presented to the user? Without relevance ranking enabled, the results will be returned in their default order: 1,
2, 3.

If relevance ranking were enabled, the order depends on the relevance ranking strategy selected.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Relevance Ranking 215

With an Exact ranking strategy

Suppose we have selected the Exact relevance ranking strategy, either by assigning this as the default
strategy for the Books search interface or by using query-level search options.

In this case, the order of results would be based only on whether results were Exact, Phrase, or other
matches. Because records 2 and 3 have attributes whose complete values exactly match the user query Mark
Twain, these results would be returned ahead of record 1, with the tie being broken by the default sort set by
the system (remember that we have not defined a default sort).

With a Field ranking strategy

Now, assume that we have selected the Field relevance ranking strategy.

The order of results would be based only on which Endeca attribute caused the match, with Author matches
being prioritized over Title matches. Because records 1 and 3 match on Author, these are returned ahead of
record 2 (again, with ties broken by the default sort imposed by the system).

With a Field,Exact ranking strategy

Now, consider using a combination of these two strategies: Field,Exact.

In this case, the primary sort is determined by the first module, Field, which again dictates that records 1 and 3
should be returned ahead of record 2. But in this case, the Field tie between records 1 and 3 is resolved by
the Exact module, which prioritizes record 3 ahead of record 1. Thus, the order of results returned is: 3, 1, 2.

With an Exact,Field ranking strategy

Finally, consider combining the same two modules but in a different priority order: Exact,Field.

In this case, the primary sort is determined by the Exact module, which again prioritizes records 2 and 3
ahead of record 1. In this case, the Exact tie between records 2 and 3 is resolved by the Field module, which
orders record 3 ahead of record 2 because record 3 is an Author match. Thus, the order of results returned is:
3, 2, 1.

Example 2: UI reference implementation

This scenario shows how adding a relevance ranking module can change the order of the returned records.

This example, which is somewhat more realistically scaled, uses a wine data set. It demonstrates how
relevance ranking can affect the results displayed to your users.

In this scenario, we use the thesaurus and relevance ranking features to enable end users’ access to Flavor
results similar to the one they searched on, while still seeing exact matches first.

First, we establish the following two-way thesaurus entries:

<THESAURUS>
<THESAURUS_ENTRY>
<THESAURUS_FORM>cab</THESAURUS_FORM>
<THESAURUS_FORM>cabernet</THESAURUS_FORM>

</THESAURUS_ENTRY>
<THESAURUS_ENTRY>
<THESAURUS_FORM>cinnamon</THESAURUS_FORM>
<THESAURUS_FORM>spice</THESAURUS_FORM>
<THESAURUS_FORM>nutmeg</THESAURUS_FORM>

</THESAURUS_ENTRY>

Version 2.3.0 • June 2012 • Revision AOracle® Endeca Server: Developer's Guide

Relevance Ranking 216

<THESAURUS_ENTRY>
<THESAURUS_FORM>tangy</THESAURUS_FORM>
<THESAURUS_FORM>tart</THESAURUS_FORM>
<THESAURUS_FORM>sour</THESAURUS_FORM>
<THESAURUS_FORM>vinegary</THESAURUS_FORM>

</THESAURUS_ENTRY>
<THESAURUS_ENTRY>
<THESAURUS_FORM>dusty</THESAURUS_FORM>
<THESAURUS_FORM>earthy</THESAURUS_FORM>

</THESAURUS_ENTRY>
</THESAURUS>

Version 2.3.0 • June 2012 • Revision A

Before applying these thesaurus equivalencies, if we search on the Dusty flavor, 83 records are returned, and
if we search on the Earthy flavor, 3,814 records are returned.

After applying these thesaurus equivalencies, if we search on the Dusty attribute, results for both Dusty and
Earthy are returned. (Because some records are flagged with both the Dusty and Earthy descriptors, the
number of records is not an exact total of the two.)

Wine (by order returned) Relevant attribute

A Tribute Sonoma Mountain Earthy

Against the Wall California Earthy

Aglianico Irpinia Rubrato Dusty

Aglianico Sannio Earthy

Because the application is sorting on Name in ascending order, the Dusty and Earthy results are intermingled.
That is, the first two results are for Earthy and the third is for Dusty, even though we searched on Dusty,
because the two Earthy records came before the Dusty one when the records were sorted in alphabetical
order.

Now, suppose that while we want our users to see the synonymous entries, we want records that exactly
match the search term Dusty to be returned first. We therefore would use the Interpreted ranking module to
ensure that outcome.

Wine (by order returned) Relevant attribute

Aglianico Irpinia Rubrato Dusty

Bandol Cuvee Speciale La Miguoa Dusty

Beaujolais-Villages Reserve du Chateau de Dusty
Montmelas

Beauzeaux Winemaker’s Collection Napa Valley Dusty

With the Interpreted ranking strategy, the results are different. When we search on Dusty, we see the records
that matched for Dusty sorted in alphabetical order, followed by those that matched for Earthy. The wine
Aglianico Irpinia Rubrato, which was returned third in the previous example, is now returned first.

Oracle® Endeca Server: Developer's Guide

Relevance Ranking 217

Recommended strategies
This section provides some recommended strategies that depend on the implementation type.

Relevance ranking behavior is complex and powerful and requires careful, iterative development. Typically,
selection of the ideal relevance ranking strategy for a given application depends on extensive experimentation
during application development. The set of possible result ranking strategies is extremely rich, and because
setting ranking strategies is highly dependent on the quantity and type of data you are working with, a strategy
that works well in one situation could be unsatisfactory in another.

For this reason, this documentation provides recommended strategies for different types of implementations
and suggests that you use them as a point of departure in creating your own strategies. The following sections
describe recommended general strategies for each product in detail.

Testing your strategies

When testing your own strategies, it is a good idea to try searching on diverse examples: single word terms,
multi-word terms that you know are an exact match for records in your data, and multi-word terms that contain
additional words as well as the ones in your data. In this way you will see the full range of relevance ranking
effects.

Recommended strategy for retail catalog data

This topic describes a good starting strategy to try if you are a retailer working with a catalog data set.

The strategy assumes the following:

• The search mode is AllPartial. By using this mode, you ensure that a user’s search would return a two-
words-out-of-five match as well as a four-words-out-of-five match, just at a lower priority.

• The strategy is based on a search interface with members such as Category, Name, and Description, in
that order. The order is significant because a match on the first member ranks more highly than a cross-
field match or match on the second or third member. (For details, see the "Working with Search
Interfaces" chapter in this guide.

The strategy is as follows:

• NTerms

• MaxField

• Glom

• Exact

• Static

The modules in this strategy work like this:

1. NTerms, the first module, ensures that in a multi-word search, the more words that match the better.

2. MaxField puts cross-field matches as high in priority as possible, to the point where they could tie with
non-cross-field matches.

3. The next module, Glom, decomposes cross-field matches, effectively breaking any ties resulting from
MaxField. Together, MaxField and Glom provide the proper ordering, depending upon what matched.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Relevance Ranking 218

4. Applying the Exact module means that an exact match in a highly-ranked member of the search interface
is placed higher than a partial or cross-field match.

5. Optionally, the Static module can be used to sort remaining ties by criteria such as Price or SalesRank.

Recommended strategy for document repositories

This topic describes a good starting strategy to try if you are working with a document repository.

The strategy assumes the following:

• The search mode is AllPartial. By using this mode, you ensure that a user’s search would return a two-
words-out-of-five match as well as a four-words-out-of-five match, just at a lower priority.

• The strategy is based on a search interface with members such as Title, Summary, and DocumentText, in
that order. The order is significant because a match on the first member ranks more highly than a cross-
field match or match on the second or third member.

The strategy is as follows:

• NTerms

• MaxField

• Glom

• Phrase (with or without approximate matching enabled)

• Static

The modules in this strategy work like this:

1. NTerms, the first module, ensures that in a multi-word search, the more words that match the better.

2. MaxField puts cross-field matches as high in priority as possible, to the point where they could tie with
non-cross-field matches.

3. The next module, Glom, decomposes cross-field matches, effectively breaking any ties resulting from
MaxField. Together, MaxField and Glom provide the proper ordering, depending upon what matched.

4. Applying the Phrase module ensures that results containing the user’s query as an exact phrase are
given a higher priority than matching containing the user’s search terms sprinkled throughout the text.

5. Optionally, the Static module can be used to sort the remaining ties by criteria such as ReleaseDate or
Popularity.

Performance impact of relevance ranking
Relevance ranking can impose a significant computational cost in the context of affected search operations
(that is, operations where relevance ranking is actually enabled).

You can minimize the performance impact of relevance ranking in your implementation by making module
substitutions when appropriate, and by ordering the modules you do select sensibly within your relevance
ranking strategy.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Relevance Ranking 219

Making module substitutions

Because of the linear cost of relevance ranking in the size of the result set, the actual cost of relevance
ranking depends heavily on the set of ranking modules used. In general, modules that do not perform text
evaluation introduce significantly lower computational costs than text-matching-oriented modules.

Although the relative cost of the various ranking modules is dependent on the nature of your data and the
number of records, the modules can be roughly grouped into four tiers:

• Exact is very computationally expensive.

• Proximity, Phrase with Subphrase or Query Expansion options specified, and First are all high-cost
modules, presented in the order of decreasing cost.

• WFreq can also be costly in some situations.

• The remaining modules (Static, Phrase with no options specified, Freq, Spell, Glom, Nterms,
Interp, Numfields, Maxfield, and Field) are generally relatively cheap.

In order to maximize the performance of your relevance ranking strategy, consider a less expensive way to get
similar results. For example, replacing Exact with Phrase may improve performance in some cases with
relatively little impact on results.

Note: Choose the set of modules used for relevance ranking most carefully when the data set is large
or contains large/offline file content that is used for search operations.

Ordering modules sensibly

Relevance ranking modules are only evaluated as needed. When higher-priority ranking modules determine
the order of records, lower-priority modules do not need to be calculated. This can have a dramatic impact on
performance when higher-cost modules have a lower priority than a lower-cost module.

While you have the freedom to order modules as you like, for best performance, make sure that the cheaper
modules are placed before the more expensive ones in your strategy.

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Part VI

References

Chapter 29

Dgraph Configuration Reference

This reference describes the XML elements in the Dgraph configuration documents. The reference describes
each element's format, attributes, and sub-elements, and provides an example of its usage.

XML elements

Dimsearch_config elements

Recsearch_config elements

Relrank_strategies elements

Search_interface elements

Stop_words elements

Thesaurus elements

XML elements
These common elements are available for use in multiple XML configuration files.

COMMENT

The COMMENT element associates a comment with a pipeline component and preserves the comment when
the file is rewritten. This element provides an alternative to using inline XML comments of the form <!-- ... -->.

Format
<!ELEMENT COMMENT (#PCDATA)>

Version 2.3.0 • June 2012 • Revision A

Attributes

The COMMENT element has no attributes.

Sub-elements

The COMMENT element has no sub-elements.

Example

This example includes an informational comment.

<DIMSEARCH_CONFIG FILTER_FOR_ANCESTORS="FALSE"

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 222

<COMMENT>Displays ancestor managed values.</COMMENT>
/DIMSEARCH_CONFIG>

Version 2.3.0 • June 2012 • Revision A

DIMNAME

The DIMNAME element specifies the name of a managed attribute.

Format
<!ELEMENT DIMNAME (#PCDATA)>

Attributes

The DIMNAME element has no attributes.

Sub-elements

The DIMNAME element has no sub-elements.

Example

This example shows the name of a managed attribute.

<RECORD>
<DIMNAME="ProductType">
...

</RECORD>

PROP

The PROP element represents an Endeca standard attribute. it can optionally contain a PVAL element.

Format
<!ELEMENT PROP (PVAL?)>
<!ATTLIST PROP

NAME CDATA #REQUIRED
>

Attributes

The PROP element has the following attributes.

NAME

Identifies the name of the standard attribute.

Sub-elements

The PROP element can optionally contain a PVAL element (or it can have no PVAL elements).

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 223

Example

This example shows a standard attribute name.

<RECORD>
<PROP NAME="Endeca.Title">

<PVAL>The Simpsons Archive</PVAL>
</PROP>
...

</RECORD>

Version 2.3.0 • June 2012 • Revision A

PROPNAME

The PROPNAME element represents an Endeca standard attribute.

Format
<!ELEMENT PROPNAME (#PCDATA)>

Attributes

The PROPNAME element has no attributes.

Sub-elements

The PROPNAME element has no sub-elements.

Example

This example shows a standard attribute name.

<RECORD>
<PROPNAME="P_Price">
...

</RECORD>

PVAL

The PVAL element represents a standard attribute value.

Format
<!ELEMENT PVAL (#PCDATA)>

Attributes

The PVAL element has no attributes.

Sub-elements

The PVAL element has no sub-elements.

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 224

Example

This example shows a standard attribute value.

<PROP NAME="Endeca.Title">
<PVAL>The Simpsons Archive</PVAL>

</PROP>

Version 2.3.0 • June 2012 • Revision A

Dimsearch_config elements
The Dimsearch_config element controls how value searches behave.

This file configures search matching, spelling correction, filtering, and relevance ranking for value search.
These options are configured in the file's DIMSEARCH_CONFIG root element.

DIMSEARCH_CONFIG

A DIMSEARCH_CONFIG element sets up the configuration of standard and managed attributes for value
searches. Value searches search against the text collection that consists of the names of all the attribute
values in the data set.

Format
<!ELEMENT DIMSEARCH_CONFIG (COMMENT?, PARTIAL_MATCH?)>
<!ATTLIST DIMSEARCH_CONFIG

FILTER_FOR_ANCESTORS (TRUE | FALSE) "FALSE"
RELRANK_STRATEGY CDATA #IMPLIED

>

Attributes

The DIMSEARCH_CONFIG element has the following attributes.

FILTER_FOR_ANCESTORS

When set to TRUE, the results of a value search return only the highest ancestor attribute value. This means
that if both bike clothes and bike vests match a search query for "bike" and FILTER_FOR_ANCESTORS is set
to true, only the bike clothes attribute value is returned. When set to FALSE, then both attribute values are
returned. The default value is FALSE.

RELRANK_STRATEGY

Specifies the name of a relevance ranking strategy for value search.

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 225

Sub-elements

The following table provides a brief overview of the DIMSEARCH_CONFIG sub-elements.

Sub-element Brief description

COMMENT Associates a comment with a parent element and preserves the
comment when the file is rewritten. This element provides an
alternative to using inline XML comments of the form <!-- ... -->.

PARTIAL_MATCH Specifies if partial query matches should be supported for the
managed attribute.

Example

This example shows a configuration that displays ancestor attribute values.

<DIMSEARCH_CONFIG FILTER_FOR_ANCESTORS="FALSE"/>

Version 2.3.0 • June 2012 • Revision A

Recsearch_config elements
The Recsearch_config element configures record search.

RECSEARCH_CONFIG

A RECSEARCH_CONFIG element sets up the configuration of attributes for record searches.

Record searches search against the text collection that consists of the names of all the attribute values in the
data set.

Format
<!ELEMENT RECSEARCH_CONFIG

(COMMENT?
, SEARCH_INTERFACE*
)

>
<!ATTLIST RECSEARCH_CONFIG

WORD_INTERP (TRUE | FALSE) "FALSE"
>

Attributes

The RECSEARCH_CONFIG element has the following attributes.

WORD_INTERP

Specifies whether to enable word interpretation forms (see-also suggestions) of user query terms considered
by the text search engine while processing record search requests. The default value is FALSE.

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 226

Sub-elements

The following table provides a brief overview of the RECSEARCH_CONFIG sub-elements.

Sub-element Brief description

COMMENT Associates a comment with a parent element and preserves the
comment when the file is rewritten. This element provides an alternative
to using inline XML comments of the form <!-- ... -->.

SEARCH_INTERFACE Represents a named collection of standard and/or managed attributes.

Example

This example shows the configuration for a business implementation.

<RECSEARCH_CONFIG>
<SEARCH_INTERFACE CROSS_FIELD_BOUNDARY="NEVER"

CROSS_FIELD_RELEVANCE_RANK="0"
DEFAULT_RELRANK_STRATEGY="All" NAME="All">

<MEMBER_NAME RELEVANCE_RANK="4">ProductType</MEMBER_NAME>
<MEMBER_NAME RELEVANCE_RANK="3">Name</MEMBER_NAME>
<MEMBER_NAME RELEVANCE_RANK="2">Region</MEMBER_NAME>
<MEMBER_NAME RELEVANCE_RANK="1">Description</MEMBER_NAME>

</SEARCH_INTERFACE>
</RECSEARCH_CONFIG>

Version 2.3.0 • June 2012 • Revision A

Relrank_strategies elements
The Relrank_strategies elements contain the relevance ranking strategies for an application.

The strategies are grouped in the root element RELRANK_STRATEGIES. Each strategy is expressed in a
RELRANK_STRATEGY element, which in turn is made of individual relevance ranking modules such as
RELRANK_EXACT, RELRANK_FIELD, and so on.

For more information, see the "Relevance Ranking" chapter of this guide.

RELRANK_APPROXPHRASE

The RELRANK_APPROXPHRASE element implements the Approximate Phrase relevance ranking module.

This module is similar to RELRANK_PHRASE, except that in the higher stratum, only the first instance of an
exact match of the user's phrase is considered, which improves system performance.

Note: The RELRANK_APPROXPHRASE element is no longer supported. Use the
RELRANK_PHRASE element with the APPROXIMATE attribute instead.

Format
<!ELEMENT RELRANK_APPROXPHRASE EMPTY>

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 227

Attributes

The RELRANK_APPROXPHRASE element has no attributes.

Sub-elements

The RELRANK_APPROXPHRASE element has no sub-elements.

RELRANK_EXACT

The RELRANK_EXACT element implements the Exact relevance ranking module.

This module groups results into strata based on how well they match a query string, with the highest stratum
containing results that match the user's query exactly.

Format
<!ELEMENT RELRANK_EXACT EMPTY>

Version 2.3.0 • June 2012 • Revision A

Attributes

The RELRANK_EXACT element has no attributes.

Sub-elements

The RELRANK_EXACT element has no sub-elements.

Example

In this example, the ranking strategy MyStrategy includes the RELRANK_EXACT element.

<RELRANK_STRATEGY NAME="MyStrategy">
<RELRANK_STATIC NAME="Availability" ORDER="DESCENDING"/>
<RELRANK_EXACT/>
<RELRANK_STATIC NAME="Price" ORDER="ASCENDING"/>

</RELRANK_STRATEGY>

RELRANK_FIELD

The RELRANK_FIELD element implements the Field relevance ranking module.

This module assigns a score to each result based on the static rank of the standard attribute or managed
attribute member of the search interface that caused the document to match the query.

Format
<!ELEMENT RELRANK_FIELD EMPTY>

Attributes

The RELRANK_FIELD element has no attributes.

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 228

Sub-elements

The RELRANK_FIELD element has no sub-elements.

Example

In this example, the field module is included in a strategy called All_Fields.

<RELRANK_STRATEGY NAME="All_Fields">
<RELRANK_EXACT/>
<RELRANK_INTERP/>
<RELRANK_FIELD/>

</RELRANK_STRATEGY>

Version 2.3.0 • June 2012 • Revision A

RELRANK_FIRST

The RELRANK_FIRST element implements the First relevance ranking module.

This module ranks documents by how close the query terms are to the beginning of the document. This
module takes advantage of the fact that the closer something is to the beginning of a document, the more
likely it is to be relevant.

Format
<!ELEMENT RELRANK_FIRST EMPTY>

Attributes

The RELRANK_FIRST element has no attributes.

Sub-elements

The RELRANK_FIRST element has no sub-elements.

Example

In this example, the ranking strategy All includes the First relevance ranking module.

<RELRANK_STRATEGY NAME="All">
<RELRANK_FIRST/>
<RELRANK_INTERP/>
<RELRANK_FIELD/>

</RELRANK_STRATEGY>

RELRANK_FREQ

The RELRANK_FREQ element implements the Frequency relevance ranking module.

This module provides result scoring based on the frequency (number of occurrences) of the user's query
terms in the result text.

Format

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 229

<!ELEMENT RELRANK_FREQ EMPTY>

Version 2.3.0 • June 2012 • Revision A

Attributes

The RELRANK_FREQ element has no attributes.

Sub-elements

The RELRANK_FREQ element has no sub-elements.

Example

This example implements a strategy called Frequency.

<RELRANK_STRATEGY NAME="Frequency">
<RELRANK_FREQ/>

</RELRANK_STRATEGY>

RELRANK_GLOM

The RELRANK_GLOM element implements the Glom relevance ranking module.

This module ranks single-field matches ahead of cross-field matches.

Format
<!ELEMENT RELRANK_GLOM EMPTY>

Attributes

The RELRANK_GLOM element has no attributes.

Sub-elements

The RELRANK_GLOM element has no sub-elements.

Example

This example implements a strategy called Single_Field.

<RELRANK_STRATEGY NAME="Single_Field">
<RELRANK_GLOM/>

</RELRANK_STRATEGY>

RELRANK_INTERP

The RELRANK_INTERP element implements the Interpreted (Interp) relevance ranking module.

This module provides a general-purpose strategy that assigns a score to each result document based on the
query processing techniques used to obtain the match. Matching techniques considered include partial
matching, cross-attribute matching, spelling correction, thesaurus, and stemming matching.

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 230

Format
<!ELEMENT RELRANK_INTERP EMPTY>

Version 2.3.0 • June 2012 • Revision A

Attributes

The RELRANK_INTERP element has no attributes.

Sub-elements

The RELRANK_INTERP element has no sub-elements.

Example

In this example, the Interpreted module is included in a strategy called All_Fields.

<RELRANK_STRATEGY NAME="All_Fields">
<RELRANK_EXACT/>
<RELRANK_INTERP/>
<RELRANK_FIELD/>

</RELRANK_STRATEGY>

RELRANK_MAXFIELD

The RELRANK_MAXFIELD element implements the Maximum Field (Maxfield) relevance ranking module.

This module is similar to the Field strategy module, except it selects the static field-specific score of the
highest-ranked field that contributed to the match.

Format
<!ELEMENT RELRANK_MAXFIELD EMPTY>

Attributes

The RELRANK_MAXFIELD element has no attributes.

Sub-elements

The RELRANK_MAXFIELD element has no sub-elements.

Example

This example implements a strategy called High_Rank.

<RELRANK_STRATEGY NAME="High_Rank">
<RELRANK_MAXFIELD/>

</RELRANK_STRATEGY>

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 231

RELRANK_MODULE

The RELRANK_MODULE element is used to refer to and compose other relevance ranking modules into
strategies.

Format
<!ELEMENT RELRANK_MODULE (RELRANK_MODULE_PARAM*)>
<!ATTLIST RELRANK_MODULE

NAME CDATA #REQUIRED
>

Version 2.3.0 • June 2012 • Revision A

Attributes

The RELRANK_MODULE element has the following attribute.

NAME

NAME refers to another defined relevance ranking module.

Sub-elements

The RELRANK_MODULE element has no supported sub-elements. RELRANK_MODULE_PARAM is not
supported.

Example

In this example, a strategy called Best Price is defined. Later, this strategy is included in another strategy
definition using the RELRANK_MODULE element.

<RELRANK_STRATEGY NAME="Best Price">
<RELRANK_STATIC NAME="Price" ORDER="ASCENDING"/>

</RELRANK_STRATEGY>
<RELRANK_STRATEGY NAME="MyStrategy">

<RELRANK_STATIC NAME="Availability" ORDER="DESCENDING"/>
<RELRANK_EXACT/>
<RELRANK_MODULE NAME="Best Price"/>

</RELRANK_STRATEGY>

RELRANK_NTERMS

The RELRANK_NTERMS element implements the Number of Terms (Nterms) relevance ranking module.

This module assigns a score to each result record based on the number of query terms that the result record
matches. For example, in a three-word query, results that match all three words are ranked above results that
match only two words, which are ranked above results that match only one word.

This module applies only to search modes where the number of results can vary in how many query terms
they match. These search modes include Partial, Any, AllPartial, and AllAny.

Format
<!ELEMENT RELRANK_NTERMS EMPTY>

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 232

Attributes

The RELRANK_NTERMS element has no attributes.

Sub-elements

The RELRANK_NTERMS element has no sub-elements.

Example

In this example, the Nterms module is included in a strategy called NumberOfTerms.

<RELRANK_STRATEGY NAME="NumberOfTerms">
<RELRANK_NTERMS/>

</RELRANK_STRATEGY>

Version 2.3.0 • June 2012 • Revision A

RELRANK_NUMFIELDS

The RELRANK_NUMFIELDS element implements the Number of Fields (Numfields) relevance ranking
module.

This module ranks results based on the number of fields in the associated search interface in which a match
occurs.

Format
<!ELEMENT RELRANK_NUMFIELDS EMPTY>

Attributes

The RELRANK_NUMFIELDS element has no attributes.

Sub-elements

The RELRANK_NUMFIELDS element has no sub-elements.

Example

This example implements the Numfields relevance ranking module.

<RELRANK_STRATEGY NAME="NumFields">
<RELRANK_NUMFIELDS/>

</RELRANK_STRATEGY>

RELRANK_PHRASE

The RELRANK_PHRASE element implements the Phrase relevance ranking module.

This module states that results containing the user’s query as an exact phrase, or a subset of the exact
phrase, should be considered more relevant than matches simply containing the user’s search terms scattered
throughout the text. Note that records that have the phrase are ranked higher than records which do not
contain the phrase.

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 233

Format
<!ELEMENT RELRANK_PHRASE EMPTY>
<!ATTLIST RELRANK_PHRASE

SUBPHRASE (TRUE | FALSE) "FALSE"
APPROXIMATE (TRUE | FALSE) "FALSE"
QUERY_EXPANSION (TRUE | FALSE) "FALSE"

>

Version 2.3.0 • June 2012 • Revision A

Attributes

The RELRANK_PHRASE element has the following attributes.

SUBPHRASE

If set to TRUE, enables subphrasing, which ranks results based on the length of their subphrase matches.

If set to FALSE (the default), subphrasing is not enabled, which means that results are ranked into two strata:
those that matched the entire phrase and those that did not.

APPROXIMATE

If set to TRUE, approximate matching is enabled. In this case, the Phrase module looks at a limited number of
positions in each result that a phrase match could possibly exist, rather than all the positions. Only this limited
number of possible occurrences is considered, regardless of whether there are later occurrences that are
better, more relevant matches.

QUERY_EXPANSION

If set to TRUE, enables query expansion, in which spelling correction, thesaurus, and stemming adjustments
are applied to the original phrase. With query expansion enabled, the Phrase module ranks results that match
a phrase’s expanded forms in the same stratum as results that match the original phrase.

Sub-elements

The RELRANK_PHRASE element has no sub-elements.

Example

This example of the Phrase module enables approximate matching and query expansion, and disables
subphrasing.

<RELRANK_STRATEGY NAME="PhraseMatch">
<RELRANK_PHRASE APPROXIMATE="TRUE"
QUERY_EXPANSION="TRUE" SUBPHRASE="FALSE"/>

</RELRANK_STRATEGY>

RELRANK_PROXIMITY

The RELRANK_PROXIMITY element implements the Proximity relevance ranking module.

This module ranks how close the query terms are to each other in a document by counting the number of
intervening words.

Format

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 234

<!ELEMENT RELRANK_PROXIMITY EMPTY>

Version 2.3.0 • June 2012 • Revision A

Attributes

The RELRANK_PROXIMITY element has no attributes.

Sub-elements

The RELRANK_PROXIMITY element has no sub-elements.

Example

This example implements a strategy called All that includes the Proximity module.

<RELRANK_STRATEGY NAME="All">
<RELRANK_PROXIMITY/>
<RELRANK_INTERP/>
<RELRANK_FIELD/>

</RELRANK_STRATEGY>

RELRANK_SPELL

The RELRANK_SPELL element implements the Spell relevance ranking module.

This module ranks matches that do not require spelling correction ahead of spelling-corrected matches.

Format
<!ELEMENT RELRANK_SPELL EMPTY>

Attributes

The RELRANK_SPELL element has no attributes.

Sub-elements

The RELRANK_SPELL element has no sub-elements.

Example

This example implements a strategy called TrueMatch.

<RELRANK_STRATEGY NAME="TrueMatch">
<RELRANK_SPELL/>

</RELRANK_STRATEGY>

RELRANK_STATIC

The RELRANK_STATIC element implements the Static relevance ranking module.

This module assigns a constant score to each result, depending on the type of search operation performed.

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 235

Format
<!ELEMENT RELRANK_FREQ EMPTY>
<!ATTLIST RELRANK_STATIC

NAME CDATA #REQUIRED
ORDER (ASCENDING|DESCENDING) #REQUIRED

>

Version 2.3.0 • June 2012 • Revision A

Attributes

The RELRANK_STATIC element has the following attributes.

NAME

Specifies the name of a standard or managed attribute that is used for static relevance ranking.

ORDER

Specifies how records should be sorted with respect to the specified standard or managed attribute.

Sub-elements

The RELRANK_STATIC element has no sub-elements.

Example

In this example, the BestPrice strategy consists of the Price managed attribute sorted from lowest to highest.

<RELRANK_STRATEGY NAME="BestPrice">
<RELRANK_STATIC NAME="Price" ORDER="ASCENDING"/>

</RELRANK_STRATEGY>

RELRANK_STRATEGIES

A RELRANK_STRATEGIES element contains any number of relevance ranking strategies for an application.

Each strategy is specified in a RELRANK_STRATEGY element.

Format
<!ELEMENT RELRANK_STRATEGIES

(COMMENT?
, RELRANK_STRATEGY*
)

>

Attributes

The RELRANK_STRATEGIES element has no attributes.

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 236

Sub-elements

The following table provides a brief overview of the RELRANK_STRATEGIES sub-elements.

Sub-element Brief description

COMMENT Associates a comment with a parent element and preserves the
comment when the file is rewritten. This element provides an alternative
to using inline XML comments of the form <!-- ... -->.

RELRANK_STRATEGY Contains a list of relevance ranking strategies that affect the order in
which search results are returned to a user.

Example

This example shows several strategies grouped under the root element RELRANK_STRATEGIES.

<RELRANK_STRATEGIES>
<RELRANK_STRATEGY NAME="Bestseller Strategy">
<RELRANK_STATIC NAME="Bestseller" ORDER="DESCENDING"/>

</RELRANK_STRATEGY>
<RELRANK_STRATEGY NAME="Electronics Strategy">
<RELRANK_FIELD/>
<RELRANK_EXACT/>
<RELRANK_INTERP/>
<RELRANK_STATIC NAME="Bestseller" ORDER="DESCENDING"/>
<RELRANK_STATIC NAME="Product_Name" ORDER="ASCENDING"/>

</RELRANK_STRATEGY>
</RELRANK_STRATEGIES>

Version 2.3.0 • June 2012 • Revision A

RELRANK_STRATEGY

The RELRANK_STRATEGY element contains a list of relevance ranking strategies that affect the order in
which search results are returned to a user.

Each sub-element of RELRANK_STRATEGY represents a specific type of strategy. If you want several
relevance ranking strategies to affect search result, then the order of the sub-elements, which represent the
strategies, is significant. The order of the sub-elements defines the order in which the strategies are applied to
the search results.

Format
<!ELEMENT RELRANK_STRATEGY (

RELRANK_STATIC
| RELRANK_EXACT
| RELRANK_PHRASE
| RELRANK_APPROXPHRASE
| RELRANK_GLOM
| RELRANK_SPELL
| RELRANK_FIELD
| RELRANK_MAXFIELD
| RELRANK_INTERP
| RELRANK_FREQ
| RELRANK_WFREQ
| RELRANK_NTERMS
| RELRANK_PROXIMITY
| RELRANK_FIRST

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 237

| RELRANK_NUMFIELDS
| RELRANK_MODULE
)+>

<!ATTLIST RELRANK_STRATEGY
NAME CDATA #REQUIRED

>

Version 2.3.0 • June 2012 • Revision A

Attributes

The RELRANK_STRATEGY element has the following attribute.

NAME

Specifies the name of the strategy.

Sub-elements

The following table provides a brief overview of the RELRANK_STRATEGY sub-elements.

Sub-element Brief description

RELRANK_STATIC Assigns a constant score to each result, depending on the type of search
operation perform.

RELRANK_EXACT Groups results into strata based on how well they match the query string,
with the highest stratum containing results that match the user's query
exactly.

RELRANK_PHRASE Considers results containing the user’s query as an exact phrase, or a
subset of the exact phrase, to be more relevant than matches simply
containing the user’s search terms scattered throughout the text.

RELRANK_APPROXPHRASE Not supported.

RELRANK_GLOM Ranks single-field matches ahead of cross-field matches.

RELRANK_SPELL Ranks true matches ahead of spelling-corrected matches.

RELRANK_FIELD Assigns a score to each result based on the static rank of the attribute
member of the search interface that caused the document to match the
query.

RELRANK_MAXFIELD Similar to the Field strategy, except it selects the static field-specific
score of the highest-ranked field that contributed to the match.

RELRANK_INTERP A general-purpose strategy that assigns a score to each result document
based on the query processing techniques used to obtain the match.
Matching techniques considered include partial matching, cross-attribute
matching, spelling correction, thesaurus, and stemming matching.

RELRANK_FREQ Provides result scoring based on the frequency (number of occurrences)
of the user's query terms in the result text.

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 238

Sub-element Brief description

RELRANK_WFREQ Scores results based on the frequency of user query terms in the result,
while weighing the individual query term frequencies for each result by
the information content (overall frequency in the complete data set) of
each query term.

RELRANK_NTERMS Assigns a score to each result record based on the number of query
terms that the result record matches.

RELRANK_PROXIMITY Ranks how close the query terms are to each other in a document by
counting the number of intervening words.

RELRANK_FIRST Ranks documents by how close the query terms are to the beginning of
the document.

RELRANK_NUMFIELDS Ranks results based on the number of fields in the associated search
interface in which a match occurs.

RELRANK_MODULE Used to refer to other RELRANK elements and compose them into
cohesive strategies.

Example

This example presents a ranking strategy called Product_Search_Rank, which itself is composed of multiple
strategies.

<RELRANK_STRATEGY NAME="Product_Search_Rank">
<RELRANK_MODULE NAME="IsAvailable"/>
<RELRANK_FIELD/>
<RELRANK_PHRASE/>
<RELRANK_MODULE NAME="BestPrice"/>

</RELRANK_STRATEGY>

Version 2.3.0 • June 2012 • Revision A

RELRANK_WFREQ

The RELRANK_WFREQ element implements the Weighted Frequency (Wfreq) relevance ranking module.

This module scores results based on the frequency of user query terms in the result, while weighing the
individual query term frequencies for each result by the information content (overall frequency in the complete
data set) of each query term.

Format
<!ELEMENT RELRANK_WFREQ EMPTY>

Attributes

The RELRANK_WFREQ element has no attributes.

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 239

Sub-elements

The RELRANK_WFREQ element has no sub-elements.

Example

This example implements a strategy called Term_Freq.

<RELRANK_STRATEGY NAME="Term_Freq">
<RELRANK_WFREQ/>

</RELRANK_STRATEGY>

Version 2.3.0 • June 2012 • Revision A

Search_interface elements
The Search_interface elements are used to build and configure search interfaces.

The file's root element is SEARCH_INTERFACE. Search interfaces control record search behavior for groups
of standard and managed attributes.

MEMBER_NAME

The MEMBER_NAME element specifies the name of an Endeca standard or managed attribute that is part of
a SEARCH_INTERFACE.

For information on search interfaces, see the "Working with Search Interfaces" chapter in this guide.

Format
<!ELEMENT MEMBER_NAME (#PCDATA)>
<!ATTLIST MEMBER_NAME

RELEVANCE_RANK CDATA #IMPLIED
SNIPPET_SIZE CDATA "0"

>

Attributes

The MEMBER_NAME element has the following attributes.

RELEVANCE_RANK

RELEVANCE_RANK is an unsigned integer that specifies the relevance rank of a match on the specified
Endeca standard or managed attribute.

SNIPPET_SIZE

The presence of SNIPPET_SIZE enables snippeting for a MEMBER_NAME and the value of SNIPPET_SIZE
specifies the maximum number of words a snippet can contain. Omitting this attribute or setting its value equal
to zero disables snippeting. For more information, see "Using Snippeting in Record Searches" in this guide.

Sub-elements

The MEMBER_NAME element has no sub-elements.

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 240

Example

In the following example for a search interface named ProductSearch, four attributes are listed in
MEMBER_NAME elements, each with its own relevance rank. A fifth MEMBER_NAME element enables
snippeting for the Description attribute.

<SEARCH_INTERFACE CROSS_FIELD_BOUNDARY="NEVER"
CROSS_FIELD_RELEVANCE_RANK="0"
DEFAULT_RELRANK_STRATEGY="ProductRelRank" NAME="ProductSearch">

<MEMBER_NAME RELEVANCE_RANK="4">ProductType</MEMBER_NAME>
<MEMBER_NAME RELEVANCE_RANK="3">Name</MEMBER_NAME>
<MEMBER_NAME RELEVANCE_RANK="2">SalesRegion</MEMBER_NAME>

<MEMBER_NAME RELEVANCE_RANK='1' SNIPPET_SIZE='10'>Description</MEMBER_NAME>
</SEARCH_INTERFACE>

Version 2.3.0 • June 2012 • Revision A

PARTIAL_MATCH

The PARTIAL_MATCH element specifies if partial query matches should be supported for the
SEARCH_INTERFACE that contains this element.

For details about searching and search modes, see the chapters in the "Search Features" part of this guide.

Format
<!ELEMENT PARTIAL_MATCH EMPTY>
<!ATTLIST PARTIAL_MATCH

MIN_WORDS_INCLUDED CDATA #IMPLIED
MAX_WORDS_OMITTED CDATA #IMPLIED

>

Attributes

The PARTIAL_MATCH element has the following attributes.

MIN_WORDS_INCLUDED

Specifies that search results match at least this number of terms in the search query. This value must be an
integer greater than zero. The default value of this attribute is one.

MAX_WORDS_OMITTED

Specifies the maximum number of query terms that may be ignored in the search query. This value must be a
non-negative integer. If set to zero or left unspecified, any number of words may be omitted (i.e., there is no
maximum). The default value of this attribute is two.

Sub-elements

The PARTIAL_MATCH element has no sub-elements.

Example

In this example, the search interface is subject to partial matching in which at least two of the words in the
search query are included, and no more than one is omitted.

<SEARCH_INTERFACE CROSS_FIELD_BOUNDARY="ALWAYS"
CROSS_FIELD_RELEVANCE_RANK="0"
DEFAULT_RELRANK_STRATEGY="BikeRelRank" NAME="BikePartSearch">

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 241

<MEMBER_NAME RELEVANCE_RANK="2">Body</MEMBER_NAME>
<MEMBER_NAME RELEVANCE_RANK="1">Description</MEMBER_NAME>
<PARTIAL_MATCH MAX_WORDS_OMITTED="1" MIN_WORDS_INCLUDED="2"/>

</SEARCH_INTERFACE>

Version 2.3.0 • June 2012 • Revision A

SEARCH_INTERFACE

The SEARCH_INTERFACE element is a named collection of Endeca standard attributes and/or managed
attributes.

Both standard attributes and managed attributes can co-exist in a SEARCH_INTERFACE. The Endeca
attributes in the group are specified in MEMBER_NAME elements.

If a standard attribute or managed attribute is not included in any SEARCH_INTERFACE element, then an
implicit SEARCH_INTERFACE element is created with the same name as the standard attribute or managed
attribute and that single standard attribute or managed attribute as its only member. The value for the
CROSS_FIELD_RELEVANCE_RANK is set to 0.

Format
<!ELEMENT SEARCH_INTERFACE

(MEMBER_NAME+
, PARTIAL_MATCH?
)

>
<!ATTLIST SEARCH_INTERFACE

NAME CDATA #REQUIRED
DEFAULT_RELRANK_STRATEGY CDATA #IMPLIED
CROSS_FIELD_RELEVANCE_RANK CDATA #IMPLIED
CROSS_FIELD_BOUNDARY (ALWAYS

|ON_FAILURE
|NEVER) "NEVER"

STRICT_PHRASE_MATCH (TRUE|FALSE) #IMPLIED
>

Attributes

The SEARCH_INTERFACE element has the following attributes.

NAME

A unique name for this search interface.

DEFAULT_RELRANK_STRATEGY

For record search, a default relevance scoring function assigned to a SEARCH_INTERFACE. For example, if
your search interface is called Flavors, the DEFAULT_RELRANK_STRATEGY attribute has the value
"Flavors_strategy".

CROSS_FIELD_RELEVANCE_RANK

Specifies the relevance rank score for cross-field matches. The value should be an unsigned 32-bit integer.
The default value for CROSS_FIELD_RELEVANCE_RANK is 0.

CROSS_FIELD_BOUNDARY

Specifies when the search engine should try to match search queries across standard attribute/managed
attribute boundaries, but within the members of the SEARCH_INTERFACE. If its value is set to ON_FAILURE,
then the search engine will only try to match queries across standard attribute/managed attribute boundaries if

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 242

it fails to find any match within a single standard attribute/managed attribute. If its value is set to ALWAYS,
then the engine will always look for matches across standard attribute/managed attribute boundaries, in
addition to matches within a standard attribute/managed attribute.

By default, the Oracle Endeca Server will not look across boundaries for matches.

STRICT_PHRASE_MATCH

Specifies that the Dgraph should interpret a query strictly when comparing white space in the query with
punctuation in the source text. If set to FALSE, partial word tokens connected in the source text by
punctuation can be matched to a phrase query where the partial tokens are separated by spaces instead of
matching punctuation. The default value of this attribute is TRUE.

Sub-elements

The following table provides a brief overview of the SEARCH_INTERFACE sub-elements.

Sub-element Brief description

MEMBER_NAME Specifies the name of an attribute that is part of a
SEARCH_INTERFACE.

PARTIAL_MATCH Specifies if partial query matches should be supported for the
SEARCH_INTERFACE that contains this element.

Example

This example establishes a search interface called AllFields, which contains four members.

<SEARCH_INTERFACE CROSS_FIELD_BOUNDARY="NEVER"
CROSS_FIELD_RELEVANCE_RANK="0"
DEFAULT_RELRANK_STRATEGY="All" NAME="AllFields">

<MEMBER_NAME RELEVANCE_RANK="4">ProductType</MEMBER_NAME>
<MEMBER_NAME RELEVANCE_RANK="3">ProductName</MEMBER_NAME>
<MEMBER_NAME RELEVANCE_RANK="2">SalesRegion</MEMBER_NAME>
<MEMBER_NAME RELEVANCE_RANK="1">Description</MEMBER_NAME>

</SEARCH_INTERFACE>

Version 2.3.0 • June 2012 • Revision A

Stop_words elements
The Stop_words elements contain words that should be eliminated from a query before it is processed by the
Dgraph.

Each stop is specified in a STOP_WORD element.

STOP_WORD

The STOP_WORD element identifies words that should be eliminated from a query before it is processed.

Examples of common stop words include the words "the" and "of".

Format

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 243

<!ELEMENT STOP_WORD (#PCDATA)>

Version 2.3.0 • June 2012 • Revision A

Attributes

The STOP_WORD element has no attributes.

Sub-elements

The STOP_WORD element has no sub-elements.

Example

This example shows a common set of stop words.

<STOP_WORDS>
<STOP_WORD>a</STOP_WORD>
<STOP_WORD>an</STOP_WORD>
<STOP_WORD>of</STOP_WORD>
<STOP_WORD>the</STOP_WORD>

</STOP_WORDS>

STOP_WORDS

A STOP_WORDS element specifies the stop words enabled in your application.

Each stop word is represented by a STOP_WORD element.

Format
<!ELEMENT STOP_WORDS

(COMMENT?
, STOP_WORD*
)

>

Attributes

The STOP_WORDS element has no attributes.

Sub-elements

The following table provides a brief overview of the STOP_WORDS sub-elements.

Sub-element Brief description

COMMENT Associates a comment with a parent element and preserves the
comment when the file is rewritten. This element provides an alternative
to using inline XML comments of the form <!-- ... -->.

STOP_WORD Identifies words that should be eliminated from a query before it is
processed.

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 244

Example

This example shows a common set of stop words.

<STOP_WORDS>
<STOP_WORD>a</STOP_WORD>
<STOP_WORD>an</STOP_WORD>
<STOP_WORD>of</STOP_WORD>
<STOP_WORD>the</STOP_WORD>

</STOP_WORDS>

Version 2.3.0 • June 2012 • Revision A

Thesaurus elements
The Thesaurus elements contain thesaurus entries for your application.

Thesaurus entries provide a means to account for alternate forms of a user's query. These entries provide
concept-level mappings between words and phrases. For details, see the "Using Stemming and Thesaurus"
chapter in this guide.

THESAURUS

A THESAURUS element contains the term equivalence mappings for an application.

THESAURUS is the root element for all thesaurus entries.

Note that the order of sub-elements within THESAURUS is significant. You should add sub-elements in the
order in which they are listed in the format section.

For example, THESAURUS_ENTRY sub-elements appear before THESAURUS_ENTRY_ONEWAY. See the
example below.

Format
<!ELEMENT THESAURUS

(COMMENT?
, THESAURUS_ENTRY*
, THESAURUS_ENTRY_ONEWAY*
)

>

Attributes

The THESAURUS element has no attributes.

Sub-elements

The following table provides a brief overview of the THESAURUS sub-elements.

Sub-element Brief description

COMMENT Associates a comment with a parent element and preserves the
comment when the file is rewritten. This element provides an
alternative to using inline XML comments of the form <!-- ... -->.

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 245

Sub-element Brief description

THESAURUS_ENTRY Indicates a set of word forms (contained in THESAURUS_FORM
elements) that are equivalent.

THESAURUS_ENTRY_ONEWAY Specifies single-direction equivalency mappings.

Example

This example shows the thesaurus entries for an application.

<THESAURUS>
<THESAURUS_ENTRY>
<THESAURUS_FORM>france</THESAURUS_FORM>
<THESAURUS_FORM>french</THESAURUS_FORM>

</THESAURUS_ENTRY>
<THESAURUS_ENTRY_ONEWAY>
<THESAURUS_FORM_FROM>bike accessory</THESAURUS_FORM_FROM>
<THESAURUS_FORM_TO>helmet</THESAURUS_FORM_TO>
<THESAURUS_FORM_TO>pannier</THESAURUS_FORM_TO>
<THESAURUS_FORM_TO>tire</THESAURUS_FORM_TO>

</THESAURUS_ENTRY_ONEWAY>
</THESAURUS>

Version 2.3.0 • June 2012 • Revision A

THESAURUS_ENTRY

The THESAURUS_ENTRY element indicates a set of word forms that are equivalent.

The word forms are contained in THESAURUS_FORM elements. A search for any of these forms (including
stemming-matched versions) returns hits for all of the forms.

Format
<!ELEMENT THESAURUS_ENTRY (THESAURUS_FORM+)>

Attributes

The THESAURUS_ENTRY element has no attributes.

Sub-elements

The following table provides a brief overview of the THESAURUS_ENTRY sub-element.

Sub-element Brief description

THESAURUS_ENTRY Indicates a set of word forms that are equivalent.

Example

In this example, the noun and adjective forms of a word are made equivalent.

<THESAURUS>

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 246

<THESAURUS_ENTRY>
<THESAURUS_FORM>france</THESAURUS_FORM>
<THESAURUS_FORM>french</THESAURUS_FORM>

</THESAURUS_ENTRY>
</THESAURUS>

Version 2.3.0 • June 2012 • Revision A

THESAURUS_ENTRY_ONEWAY

A THESAURUS_ENTRY_ONEWAY element specifies a single-direction mapping.

Searches for any of the "from" forms (THESAURUS_FORM_FROM elements) also return hits for all of the "to"
forms (THESAURUS_FORM_TO elements). The other direction is not enabled; that is, searches for the "to"
forms do not return results for either the "from" forms or the other "to" forms.

Format
<!ELEMENT THESAURUS_ENTRY_ONEWAY

(THESAURUS_FORM_FROM
, THESAURUS_FORM_TO+
)

>

Attributes

The THESAURUS_ENTRY_ONEWAY element has no attributes.

Sub-elements

The following table provides a brief overview of the THESAURUS_ENTRY_ONEWAY sub-elements.

Sub-element Brief description

THESAURUS_FORM_FROM Specifies the "from" form in a one-way word mapping.

THESAURUS_FORM_TO Specifies the "to" form in a one-way word mapping.

Example
In this example, searches for bike accessory would return hits for bike accessory as well as for helmet,
pannier, and tire. Since the equivalence is one-way, more specific searches such as helmet or pannier
would not return results for the more general concept bike accessory.

<THESAURUS_ENTRY_ONEWAY>
<THESAURUS_FORM_FROM>bike accessory</THESAURUS_FORM_FROM>
<THESAURUS_FORM_TO>helmet</THESAURUS_FORM_TO>
<THESAURUS_FORM_TO>pannier</THESAURUS_FORM_TO>
<THESAURUS_FORM_TO>tire</THESAURUS_FORM_TO>

</THESAURUS_ENTRY_ONEWAY>

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 247

THESAURUS_FORM

The THESAURUS_FORM element contains a word form that is used by the THESAURUS_ENTRY element to
set an equivalence.

Format
<!ELEMENT THESAURUS_FORM (#PCDATA)>

Version 2.3.0 • June 2012 • Revision A

Attributes

The THESAURUS_FORM element has no attributes.

Sub-elements

The THESAURUS_FORM element has no sub-elements.

Example

In this example, the noun and adjective forms of a word are made equivalent.

<THESAURUS>
<THESAURUS_ENTRY>
<THESAURUS_FORM>france</THESAURUS_FORM>
<THESAURUS_FORM>french</THESAURUS_FORM>

</THESAURUS_ENTRY>
</THESAURUS>

THESAURUS_FORM_FROM

The THESAURUS_FORM_FROM element provides the "from" form within a
THESAURUS_ENTRY_ONEWAY element.

Format
<!ELEMENT THESAURUS_FORM_FROM (#PCDATA)>

Attributes

The THESAURUS_FORM_FROM element has no attributes.

Sub-elements

The THESAURUS_FORM_FROM element has no sub-elements.

Example
In this example, searches for bike part would return hits for bike part as well as for handlebar and
derailleur. Because the equivalence is one-way, more specific searches such as handlebar or
derailleur would not return results for the more general concept bike part.

Oracle® Endeca Server: Developer's Guide

Dgraph Configuration Reference 248

<THESAURUS_ENTRY_ONEWAY>
<THESAURUS_FORM_FROM>bike part</THESAURUS_FORM_FROM>
<THESAURUS_FORM_TO>handlebar</THESAURUS_FORM_TO>
<THESAURUS_FORM_TO>derailleur</THESAURUS_FORM_TO>

</THESAURUS_ENTRY_ONEWAY>

Version 2.3.0 • June 2012 • Revision A

THESAURUS_FORM_TO

The THESAURUS_FORM_TO element provides the "to" form within a THESAURUS_ENTRY_ONEWAY
element.

Format
<!ELEMENT THESAURUS_FORM_TO (#PCDATA)>

Attributes

The THESAURUS_FORM_TO element has no attributes.

Sub-elements

The THESAURUS_FORM_TO element has no sub-elements.

Example
In this example, searches for bike part would return hits for bike part as well as for handlebar and
derailleur. Because the equivalence is one-way, more specific searches such as handlebar or
derailleur would not return results for the more general concept bike part.

<THESAURUS_ENTRY_ONEWAY>
<THESAURUS_FORM_FROM>bike part</THESAURUS_FORM_FROM>
<THESAURUS_FORM_TO>handlebar</THESAURUS_FORM_TO>
<THESAURUS_FORM_TO>derailleur</THESAURUS_FORM_TO>

</THESAURUS_ENTRY_ONEWAY>

Oracle® Endeca Server: Developer's Guide

Chapter 30

Suggested Stop Words

Stop words are words that are set to be ignored by the Oracle Endeca Server.

About stop words

List of suggested stop words

About stop words
Typically, common words (like "the") are included in the stop word list. In addition, the stop word list can
include the extraneous words contained in a typical question, allowing the query to focus on what the user is
really searching for.

Stop words must be single words only, and cannot contain any non-searchable characters. If more than one
word is entered as a stop word, neither the individual words nor the combined phrase will act as a stop word.
Non-searchable characters within a stop word will also cause this behavior. Entering "full-bodied" as a stop
word acts just as if you had entered "full bodied", and does not have any effect on searches.

Stop words are counted in any search mode that calculates results based on number of matching terms.
However, the Oracle Endeca Server reduces the minimum term match and maximum word omit requirement
by the number of stop words contained in the query.

Note: Did You Mean can in some cases correct a word to one on the stop words list.

List of suggested stop words
The following table provides a list of words that are commonly added to the stop word list; you may find it
useful as a point of departure when you configure a list for your application.

In addition to some or all of the words listed below, you might want to add terms that are prevalent in your
data set. For example, if your data consists of lists of books, you might want to add the word book itself to the
stop word list, since a search on that word would return an impracticably large set of records.

You can add stop words to the Oracle Endeca Server with the Configuration Web Service, or by using
Integrator.

a do me when

about find not where

above for or why

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Suggested Stop Words 250

an from over with

and have show you

any how the your

are I under

can is what

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Index

requesting with the Conversation WebA
Service 114

Administration Web Service and outer returning in the Conversation Web
transactions 66 Service 114, 116
admin operations search query 116

interaction with outer transactions 66 Bulk Load Interface and outer transactions 66
updateaspell 187

AllAny search mode 157 C
AllPartial search mode 156

caching for record filters 81
All search mode 156

categories of characters in indexed text 182
alphanumeric characters, indexing 182

characters
Any search mode 157 indexing alphanumeric 182
API Reference 5 indexing non-alphanumeric 182

indexing search 182Aspell dictionary, about 188
COMMENT element 221assignments 9
configuration documents, Dgraph 6attribute groups

about 121 Configuration Web Service
configuring in Studio 121 adding XML configuration documents 33
retrieving 122 description 27

Integrator 34attributes 9
interaction with outer transactions 66configuring as record searchable 133
list of operations 28multi-select 96
loading an attribute schema 32performance impact when displaying 75

standard and managed 94 configuring
unique 9 snippeting 172

value search 148automatic phrasing in record search processing 138
Control Web Serviceavailable search keys, retrieving 135

about 51
attachDataStore operation 55

B createDataStore operation 54
dataStoreStatus operation 56base entities 45
detachDataStore operation 57between range filter queries 88 interaction with outer transactions 66

boolean attribute type 10 listDataStores operation 55
list of operations 52Boolean search
startDataStore operation 55about 159
stopDataStore operation 56error messages 165
usage operation 58examples of Conversation Web Service
version operation 57requests 166

examples of using the key restrict operator Conversation Web Service 36
(:) 161 EQL query example 40
interaction with other features 164 examples of building requests 38
operator precedence 164 interaction with outer transactions 66
proximity search 162 retrieving refinement information 99
semantics 163 counts, value search 152syntax 160

creating a query for value search 150Boolean syntax for record filters 79
cross-field matching 144breadcrumbs 113

example with DYM 118
example with spelling correction 117 D
navigation query 114 Data Ingest Web Service and outer transactions 66

data model, Oracle Endeca Server 8

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Index 252

dateTime attribute type 10 H
DDR 18 hierarchical record search 134
dead-end query results, avoiding 97 hierarchy, requesting for refinements 107
Dgraph

configuration documents 6 Iflags for search characters 184
implementingDid You Mean feature

Boolean search 166enabling 186
Phrase relevance ranking 204in record search 140
phrase search 168

Dimension Description Record 18 search characters 181
DIMNAME element 222 search interfaces 142

search modes 158Dimsearch_config
wildcard search 176about 224
wildcard search for a search interface 178DIMSEARCH_CONFIG element 224
wildcard search in record search 177DIMSEARCH_CONFIG element 224

implicit refinements, about 103double attribute type 10
indexingduration attribute type 10 non-alphanumeric characters 182

search characters 182
E integer attribute type 10

enabling hierarchical record search for managed
attributes 134 J
entities 42 Java client examples 5adding 48

base 45
deleting 48 L
list of operations 47 large OR filter performance impact 83

Entity Configuration Web Service Leaf precedence rules 129
description 45

less-than range filter queries 87examples of requests 48
interaction with outer transactions 66 long attribute type 10
list of operations 47

EQL query example 40 M
examples of Conversation Web Service requests 38 managed attributes 13
exporting a large number of records 73 enabling for refinements 95

multi-select 111expression evaluation of record filters 83
RefinementConfig element 100

externally managed attributes 98 working with external 98
MEMBER_NAME element 239

F multi-assign attributes 9
filtering data and non-data records 82 multi-select AND 97

multi-select attributes
G avoiding dead-end query results 97

configuring 96geocode attribute type 10
handling in an application 97geocode range filter 89 performance impact 97

Global Configuration Record 19 refinements 96
global order of refinements, configuring 95 multi-select managed attributes, displaying 111
greater-than range filter queries 88 multi-select OR

about 97groups
refinement counts 98requesting a list 124

returning in Conversation Web Service 122

N
navigation filtering 140

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Index 253

NEAR Boolean operator 162 loading into the data store 129
non-leaf type 129non-alphanumeric characters, indexing 182
targets 127

non-leaf type precedence rules 129 triggers 127
NumRecords element 73 primary key 9

primitive term and phrase lookup 139
O primordial records 8

ONEAR Boolean operator 162 processing order for record search queries 137
one-way thesaurus entries 194 PROP element 222
Oracle Endeca Server Property Description Record 14

overview 3
PROPNAME element 223record search query processing order 137
PVAL element 223OrderByRecordCount attribute for refinement

order 110
ordering value search results 153 Q
outer transactions query expansion in Phrase module, configuring 205

changes to XML configuration documents 66 query matching semantics 182
committing 62
operations 62

Rprocessing of updates 60
RangeFilterOperator 86overview of Oracle Endeca Server 3
range filters

between query format 88P
configuring in Studio 86

PageOperator type 73 geocode 89
PaginationControl element 73 greater-than query format 88

less-than query format 87paging through a record set 72
overview 85

PARTIAL_MATCH element 240 performance impact 92
PartialMax mode 157 query examples 91

RangeFilterOperator 86Partial mode and stop words 156
removing range filter components 91Partial search mode 156 rendering results 91

PDR 14 supported attribute types 85
performance impact ranking results for value search 153

displaying attributes 75 record filtering during record searches 138displaying refinements 111
record filtersmulti-select attributes 97

about 79phrase search 170
caching in the Oracle Endeca Server 81range filters 92
expression evaluation 83record search 141
filtering data and non-data 82refinement statistics 112
large scale negation 84snippeting 173
performance impact 83value search 154
RecordFilterOperator 81wildcard search 180
syntax 80Phrase relevance ranking module, configuring 204 using Boolean attributes 80

phrase search RecordKindOperator 82examples of queries 169
RecordListConfig element 69implementing 168

performance impact 170 records
definition of 8PopRangeFilterOperator 91
displaying in Studio 69positional indexing, about 169 examples 11

precedence rules paging through a record set 72
about 127 sorting 76
Configuration Web Service operations 129 types of 8
implicit attribute value selection 130 XML representation 11
Leaf type 129 record search

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Index 254

about 132 Number of Terms module 203
auto correction 138 overview 199
available search keys 135 performance impact 218
examples 133 Phrase module 204
features for controlling it 133 Proximity module 208
hierarchical record search 134 recommended strategies 217
making an attribute record searchable 133 resolving tied scores 212
Oracle Endeca Server search processing sample scenarios 214
logic 137 specifying for queries 213
performance impact 141 Spell module 209
SearchOperator 136 Static module 209
specifying relevance ranking strategies 213 Stem module 210
stemming 139 Thesaurus module 210
thesaurus expansion 139 Weighted Frequency module 210
tokenization 138 RELRANK_APPROXPHRASE element 226
troubleshooting 140

RELRANK_EXACT element 227using in Studio 135
RELRANK_FIELD element 227when to use 147
RELRANK_FIRST element 228record spec 9
RELRANK_FREQ element 228RecordsPerPage element 72
RELRANK_GLOM element 229records schema, about 13
RELRANK_INTERP element 229Recsearch_config

about 225 RELRANK_MAXFIELD element 230
RECSEARCH_CONFIG element 225 RELRANK_MODULE element 231

RECSEARCH_CONFIG element 225 RELRANK_NTERMS element 231
RefinementConfig element 100 RELRANK_NUMFIELDS element 232
refinement counts RELRANK_PHRASE element 232configuring whether to return 96

RELRANK_PROXIMITY element 233for multi-select OR refinements 98
RELRANK_SPELL element 234refinement order

OrderByRecordCount attribute 110 RELRANK_STATIC element 234
query-time control 109 Relrank_strategies

refinements about 226
accessing hierarchy 107 RELRANK_APPROXPHRASE element 226
configuring global order 95 RELRANK_EXACT element 227
displaying 100 RELRANK_FIELD element 227
displaying counts 110 RELRANK_FIRST element 228
displaying in Studio 95 RELRANK_FREQ element 228
limiting the number 105 RELRANK_GLOM element 229
performance impact of 111 RELRANK_INTERP element 229
query-time control of ordering 109 RELRANK_MAXFIELD element 230
retrieving with Conversation Service API 99 RELRANK_MODULE element 231
sorting 95 RELRANK_NTERMS element 231

RELRANK_NUMFIELDS element 232refinement statistics
RELRANK_PHRASE element 232disabling 96
RELRANK_PROXIMITY element 233displaying 110
RELRANK_SPELL element 234performance impact 112
RELRANK_STATIC element 234retrieving 103, 110
RELRANK_STRATEGIES element 235relevance ranking RELRANK_STRATEGY element 236Exact module 200 RELRANK_WFREQ element 238Field module 200

RELRANK_STRATEGIES element 235First module 201
Frequency module 201 RELRANK_STRATEGY element 236
Glom module 202 RELRANK_WFREQ element 238
Interpreted module 202

requesting record filters 81list of modules 199
Maximum Field module 203 retrieving records with the Conversation Web
Number of Fields module 203 Service 73

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Index 255

rollback 61, 64 troubleshooting 191
outer transaction 62 using word-break analysis 190

standard attributes
assignments 9S
examples 11

Search_interface multi-assign 9
about 239 single-assign 9
MEMBER_NAME element 239 types 10
PARTIAL_MATCH element 240 XML representation 11
SEARCH_INTERFACE element 241

standard attributes vs managed attributes 13
SEARCH_INTERFACE element 241

stemming and thesaurus
search characters about 192

categories of characters 182 about the thesaurus 194
Dgraph flags for 184 adding thesaurus entries 195
implementing 181 en_word_forms_collection.xml 192
indexing alphanumeric 182 interaction with other features 196
indexing specified search characters 182 performance impact 198
query matching semantics 182 sort order of stemmed results 194
using 181 troubleshooting the thesaurus 195

search interfaces STOP_WORD element 242
about 142

Stop_wordsconfiguring wildcard search for 178
about 242cross-field matching 144
STOP_WORD element 242implementing 142
STOP_WORDS element 243troubleshooting 145

STOP_WORDS element 243search modes
All 156 stop words
AllAny 157 about 249
AllPartial 156 and Did You Mean 191
Any 157 and Partial mode 156
implementing 158 list of suggested 249
list of, valid 155 string attribute type 10
PartialMax mode 157

StudioPartial mode 156
configuring range filters 86query parameters 158
implementing record search 135

SearchOperator 136
synonyms used for search 134

search query processing 183
syntax

search query processing order 137 Boolean search 160
single-assign attributes 9 record filters 80
snippeting system records 14

about 171 Dimension Description Record 18
configuring 172 Global Configuration Record 19
enabling per query 175 Property Description Record 14
performance impact 173
retrieving with Conversation Web Service 174 T

sorting records
targets for precedence rules 127changing sort order for queries 77
taxonomies, external 98global sort order 76

overview 76 thesaurus
troubleshooting problems 78 about 244

THESAURUS_ENTRY_ONEWAY element 246sorting refinements 95
THESAURUS_ENTRY element 245Spelling Correction and DYM
THESAURUS_FORM_FROM element 247about 185
THESAURUS_FORM_TO element 248Aspell module 188
THESAURUS_FORM element 247configuring 189
THESAURUS element 244enabling 186
See stemming and thesaurusperformance impact 191

THESAURUS_ENTRY_ONEWAY element 246retrieving with Conversation Web Service 188

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

Index 256

THESAURUS_ENTRY element 245 results from spelling corrections 187
specifying relevance ranking strategies 213THESAURUS_FORM_FROM element 247
troubleshooting 147

THESAURUS_FORM_TO element 248 using in Studio 148
THESAURUS_FORM element 247 when to use 147
THESAURUS element 244 ValueSearchConfig type 149
thesaurus expansion 139 versions, web service backward-compatible 25
time attribute type 10 views 42
tokenization in record search 138
transactions W

nested 65 web services
overview 59 backward-compatible versions 25
running on a single node 59 HTTPS requests 6

Transaction Web Service major and minor versions 23
description 59 obtaining a version 24
Integrator 67 resolving version incompatibility 26
list of operations 62 using versions in requests 24

version incompatibility, treatment of 24triggers for precedence rules 127
Web services API architecture 2troubleshooting record search 140
wildcard searchtwo-way thesaurus entries 194

about 176
configuring for a search interface 178U configuring in text search 177
configuring in value search 178unique attributes 9
false positive matches and performance 179updateaspell admin operation 187
front-end application tips 180

update processing in outer transactions 60 implementing 176
interaction with other features 177
in value searches 153V
performance impact 180

value search retrieving error messages 179
about 146

word-break analysis, about 190and wildcard search interaction 153
Conversation Web Service API 148 WSDL documentation 5
creating a query 150
enabling standard attributes for it 148 Xlimiting results per attribute 151

XML elementsnumber of matched results 152
COMMENT 221ordering results 153
DIMNAME 222performance impact 154
PROP 222query format 149
PROPNAME 223ranking results 153
PVAL 223restricting to specified attributes 151

Oracle® Endeca Server: Developer's Guide Version 2.3.0 • June 2012 • Revision A

	Copyright and disclaimer
	Table of Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Customer Support

	Part I: Overview and Concepts
	Chapter 1: Oracle Endeca Server Interfaces
	The data flow
	Oracle Endeca Server overview
	Oracle Endeca Server Web services
	About the Oracle Endeca Server API Reference
	About the Java client examples
	Handling secure Web Service requests
	The Dgraph configuration documents

	Chapter 2: Oracle Endeca Server Concepts
	About the data model
	Records
	Attributes
	Assignments on standard attributes
	Primary keys
	Attribute types

	XML representation of records and attributes
	Examples of records and standard attributes
	Managed attributes

	System records
	Property Description Record (PDR)
	Dimension Description Record (DDR)
	Global Configuration Record (GCR)

	Part II: Web Services for the Oracle Endeca Server
	Chapter 3: About Web Service Versions
	How version numbers are assigned
	Obtaining a version number for a web service
	Using version numbers in requests
	Backward-compatibility of web service versions
	Resolving incompatibility of web services and client stubs

	Chapter 4: Using the Configuration Web Service
	About the Configuration Web Service
	Configuration Web Service operations
	Loading an attribute schema
	Loading configuration documents
	Using the Configuration Web Service in Integrator

	Chapter 5: Using the Conversation Web Service
	About the Conversation Web Service
	Conversation Web Service operations
	Examples of building query requests
	Example of an EQL request

	Chapter 6: Using the Entity Configuration Web Service
	About entities
	About the Entity Configuration Web Service
	Operations in the Entity Configuration Web Service
	Examples of requests with the Entity Configuration Web Service

	Chapter 7: Using the Control Web Service
	About the Control Web Service
	Operations in the Control Web Service
	Examples of Control Web Service requests

	Chapter 8: Using the Transaction Web Service
	About the Transaction Web Service
	Outer transactions and queries
	Transaction Web Service operation description
	Transaction Web Service operations
	Rolling back an outer transaction
	Notes about inner transactions
	Treatment of requests from Oracle Endeca Server interfaces
	Transaction Web Service and Integrator

	Part III: Working with Records and Record Filters
	Chapter 9: Working with Records
	Displaying records and attribute values with Studio
	Displaying records and attribute values with the API
	Configuring a record list
	Understanding a RecordList result
	Paging through a record list
	Retrieving large numbers of records
	Displaying attribute values

	Performance impact of requesting large numbers of records
	Performance impact when displaying attribute values

	Chapter 10: Sorting Records
	About record sorting
	Global sort order of records
	Query-time sort ordering
	Troubleshooting application sort problems

	Chapter 11: Record Filters
	About record filters
	Record filter syntax
	Record filter result caching
	Requesting record filters with the API
	Filtering data and non-data records
	Record filter performance impact
	Interaction with spelling auto-correction and spelling DYM
	Expression evaluation

	Chapter 12: Using Range Filters
	About range filters
	Supported attribute types
	Implementing range filters in Studio
	Implementing range filters with the API
	Operator for range filters
	Less-than range filter format
	Greater-than range filter format
	Between range filter format
	Geocode range filter format
	Removing range filter operators
	Rendering the range filter results
	Examples of range filter parameters

	Performance impact for range filters

	Part IV: Working with Refinements, Breadcrumbs, and Groups
	Chapter 13: Working with Refinements
	About refinements
	Displaying refinements in Studio
	Configuring managed attributes for query refinement
	Configuring the global order of refinements
	Configuring refinement counts
	About multi-select attributes
	Configuring multi-select attributes
	Handling multi-select attributes in an application

	About externally managed attributes
	Working with refinements using the API
	Retrieving refinements with the API
	Refinements configuration format
	Retrieving managed attributes that have refinements
	Creating a new query from refinement attribute values
	Limiting the number of refinements to be displayed
	Retrieving the full path of hierarchical refinements

	Retrieving the order of refinements with the API
	Using query-time control of refinement ordering
	Enabling the refinement order at query time

	Retrieving refinement counts with the API
	Retrieving refinement counts for records

	About multi-select refinements

	Performance impact for displaying refinements
	Performance impact of refinement ordering
	Performance impact of refinement counts

	Chapter 14: Using Breadcrumbs
	About breadcrumbs
	Implementing breadcrumbs with the API
	Retrieving breadcrumbs in a navigation query
	Retrieving breadcrumbs in a search query
	Example of breadcrumbs with spelling correction
	Example of breadcrumbs with DYM

	Chapter 15: Using Attribute Groups
	About attribute groups
	Configuring and using attribute groups in Studio
	Retrieving attribute group information with the API
	Retrieving groups
	Retrieving lists of groups

	Chapter 16: Using Precedence Rules
	About precedence rules
	Managed attribute trigger types
	Configuring precedence rules
	Precedence rules and implicit attribute value selection

	Part V: Using Search Features
	Chapter 17: Using Record Search
	Record search overview
	Configuring attributes for record search
	Enabling hierarchical record search
	Adding search synonyms to attribute values

	Implementing record search in Studio
	Implementing record search with the API
	Obtaining the available search keys
	Record search operator

	Search query processing order
	Step 1: Record filtering
	Step 2: Tokenization
	Step 3: Auto correction (spelling correction and automatic phrasing)
	Step 4: Thesaurus expansion
	Step 5: Stemming
	Step 6: Primitive term and phrase lookup
	Step 7: Did You Mean
	Step 8: Navigation filtering
	Step 9: EQL
	Step 10: Relevance ranking

	Tips for troubleshooting record search
	Performance impact of record search

	Chapter 18: Working with Search Interfaces
	About search interfaces
	Implementing search interfaces
	Options for allowing cross-field matches
	Additional search interface options
	Tips for troubleshooting search interfaces

	Chapter 19: Using Value Search
	About value search
	How value search works
	When to use value and record search
	Enabling value search
	Utilizing value search in Studio
	Implementing value search with the API
	Value search query format
	Constructing a value search query
	Restricting value search to specific attributes
	Limiting the number of results per attribute
	Retrieving the number of matching results
	Ordering results
	Specifying relevance ranking strategy for results

	Interaction of value search and wildcard search
	Performance impact of value search

	Chapter 20: Using Search Modes
	List of valid search modes
	All mode
	Partial mode
	Interaction of Partial mode and stop words

	AllPartial mode
	Any mode
	AllAny mode
	PartialMax mode
	Boolean mode

	Configuring search modes in Studio
	Configuring search modes in the API

	Chapter 21: Using Boolean Search
	About Boolean search
	Boolean query syntax
	Examples of using the key restrict operator
	About proximity search
	Example of using NEAR for unordered matching
	Example of using ONEAR for ordered matching

	Proximity operators and nested sub-expressions
	Boolean query semantics
	Operator precedence
	Interaction of Boolean search with other features
	Error messages for Boolean search
	Implementing Boolean search in Studio
	Implementing Boolean search with the API
	Troubleshooting Boolean search
	Performance impact of Boolean search

	Chapter 22: Using Phrase Search
	About phrase search
	About positional indexing
	How punctuation is handled in phrase search
	Examples of phrase search queries
	Performance impact of phrase search

	Chapter 23: Using Snippeting in Record Searches
	About snippeting
	Snippet formatting and size
	Enabling snippeting
	Tuning tips for snippeting
	Request examples for retrieving snippets
	Example request
	Example response
	Enabling snippets per query with the API

	Chapter 24: Using Wildcard Search
	About wildcard search
	Interaction of wildcard search with other features
	Ways to configure wildcard search
	Configuring wildcard search in record search
	Configuring wildcard search in value search
	Configuring wildcard search for a search interface

	Dgraph flags for wildcard search
	Using wildcard search in Studio
	Performance impact of wildcard search

	Chapter 25: Search Characters
	About search characters
	Implementing search characters
	Query matching semantics
	Categories of characters in indexed text
	Indexing alphanumeric characters
	Indexing search characters
	Indexing non-alphanumeric characters

	Search query processing
	Dgraph flags for search characters

	Chapter 26: Working with Spelling Correction and Did You Mean
	About Spelling Correction and Did You Mean
	Enabling Spelling Correction and Did You Mean
	Logic used for spelling correction
	How value search treats number of results

	updateaspell
	Spelling mode (Aspell)
	Retrieving spelling suggestions and DYM in query results
	Configuring constraints for spelling dictionaries
	About word-break analysis
	Troubleshooting Spelling Correction and Did You Mean
	Performance impact for Spelling Correction and Did You Mean

	Chapter 27: Using Stemming and Thesaurus
	Overview of stemming and thesaurus
	About the stemming feature
	Types of stemming matches and sort order

	About the thesaurus feature
	Adding, modifying, or deleting thesaurus entries
	Troubleshooting the thesaurus

	Dgraph flags for stemming and thesaurus
	Interactions with other search features
	Performance impact of stemming and thesaurus

	Chapter 28: Relevance Ranking
	About the relevance ranking feature
	About relevance ranking modules
	Exact
	Field
	First
	Frequency
	Glom
	Interpreted
	Maximum Field
	Number of Fields
	Number of Terms
	Phrase
	Configuring the Phrase module
	Phrase module options
	Summary of Phrase option interactions

	Phrase module behavior
	Treatment of wildcards with the Phrase module

	Proximity
	Spell
	Static
	Stem
	Thesaurus
	Weighted Frequency

	Relevance ranking strategies
	Creating relevance ranking strategies

	Implementing relevance ranking
	Adding a Static module
	Ranking order for Field and Maximum Field modules
	How relevance ranking score ties between search interfaces are resolved
	Implementing relevance ranking for value search
	Specifying relevance ranking for record search and value search in query requests

	Relevance ranking sample scenarios
	Example 1: Using a small data set
	Example 2: UI reference implementation

	Recommended strategies
	Recommended strategy for retail catalog data
	Recommended strategy for document repositories

	Performance impact of relevance ranking

	Part VI: References
	Chapter 29: Dgraph Configuration Reference
	XML elements
	COMMENT
	DIMNAME
	PROP
	PROPNAME
	PVAL

	Dimsearch_config elements
	DIMSEARCH_CONFIG

	Recsearch_config elements
	RECSEARCH_CONFIG

	Relrank_strategies elements
	RELRANK_APPROXPHRASE
	RELRANK_EXACT
	RELRANK_FIELD
	RELRANK_FIRST
	RELRANK_FREQ
	RELRANK_GLOM
	RELRANK_INTERP
	RELRANK_MAXFIELD
	RELRANK_MODULE
	RELRANK_NTERMS
	RELRANK_NUMFIELDS
	RELRANK_PHRASE
	RELRANK_PROXIMITY
	RELRANK_SPELL
	RELRANK_STATIC
	RELRANK_STRATEGIES
	RELRANK_STRATEGY
	RELRANK_WFREQ

	Search_interface elements
	MEMBER_NAME
	PARTIAL_MATCH
	SEARCH_INTERFACE

	Stop_words elements
	STOP_WORD
	STOP_WORDS

	Thesaurus elements
	THESAURUS
	THESAURUS_ENTRY
	THESAURUS_ENTRY_ONEWAY
	THESAURUS_FORM
	THESAURUS_FORM_FROM
	THESAURUS_FORM_TO

	Chapter 30: Suggested Stop Words
	About stop words
	List of suggested stop words

	Index

