Oracle® Endeca Server
Query Language Reference

Version 2.3.0 « June 2012 ¢ Revision A

ORACLE

Copyright and disclaimer

Copyright © 2003, 2012, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No
other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It
is not developed or intended for use in any inherently dangerous applications, including applications that may
create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software
or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content, products and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Rosette® Linguistics Platform Copyright © 2000-2011 Basis Technology Corp. All rights reserved.
Teragram Language ldentification Software Copyright © 1997-2005 Teragram Corporation. All rights reserved.

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

Table of Contents

Copyright and disclaimer i
Preface. . . %
AboUL thisS QUIdE. o v
Who should use this guide v
Conventions used iN this QUIdE. e e %
Contacting Oracle CusStOmMer SUPPOIt oot e e e e e e e e %
Chapter 1: Introduction to the Endeca Query Language it 1
EQL OVEIVIEBW . . . ottt e e 1
Important concepts and teIMS ot 1

EQL and SQL: @ COMPAISON ottt et e e e e e e e e 2

HOW qUETIES @re ProCESSEA ottt e e e e e e e 3
Chapter 2: EQL Syntax and SemantiCSt 4
QUETY OVEIVIEW ottt e 4
Statements and ClauSES. 5
DEFINE and RETURN ClaUSES oottt et e e e e e e e e e e 6

SELECT ClaUSES o ottt e e 6

FROM Clauseso e e e e e 7

JOIN ClaUSES. . . . o et e e e e 8

WHERE ClaUSESot e 11
GROUP/GROUP BY ClausSes o e e e e e e e e e e e 12

HAVING ClaUSES . . . o oottt i e e e e e e e 14

ORDER BY ClaUSES. . . . ottt et et e e 14

PAGE Clauses.o 15

Grouping and aggregation 17
Nested aggregationot 17

Using the COUNT and COUNTDISTINCT functions 17
Per-aggregation filters e 18

Handling of records with multiple values for an attribute. 18
EXPIESSIONS . . o ot 19
Supported data tyPesS.t 19

Operator precedence rules in EQL o 19

Literals . . . 20

Handling of characters in EQL o it e 20

Handling of upper- and lower-case iN EQL 21

Handling NULL attribute values e 21

Type promotion iNn EQLo 22

Handling of NaN, infand -infresults. 23

Functions and OPEeratorsttt 24

NUMENIC FUNCHONS e e e e e 24

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

Aggregation funCtions 26

Hierarchy funCtions e 27

Geocode fUNCHONS. 29

Working with date and time values iIn EQL 29
Manipulating current date and time. 31

Constructing date and time values 31

Timezone manipulation 32

Using EXTRACT to extract a portion of a dateTime value 33

Using TRUNC to round down dateTimevalues.c.covu... 35

Using arithmetic operations on date and time values. 35

Arithmetic Operators 36

B00lean OpEratorS.o vt e 36

Using EQL results to compose follow-on queries. i 36
Using AS expressions to calculate derived attributes., 37
COALESCE e 38
CASE . . 38
Using inter-statement references it 39

IN . 40
LOOKURP . . 41
Chapter 3: EQL USe CasSesottt e e e e e 42
Re-normalization 42
Grouping by range buCKets e 43
Manipulating records in a dynamically computed range value 44
Grouping data into quartiles 44
Combining multiple sparse fields intoone. e 46
Counting MUlti-aSSIgN tEIMS o o 46
Joining data from different types of records. 46
Joining on hierarChy 47
Linear regressions iN EQLottt e 48
Using an IN filter for pie chart segmentation 49
RUNNING SUML. . . o o e e 49
QUEIY DY @0€ . . . o 49
Calculating percent change between most recent month and previous month. 50
Chapter 4: EQL Best PractiCes. 51
Controlling INPUL SIZE 51
Filtering as early as possible 52
Controlling JOIN SIZE o oo 53
Additional tips oo 53

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

Preface

Oracle® Endeca Server is the core search-analytical database. It organizes complex and varied data from
disparate source systems into a faceted data model that is extremely flexible and reduces the need for up-
front data modeling. This highly-scalable server enables users to explore data in an unconstrained and
impromptu manner and to rapidly address new questions that inevitably follow every new insight.

About this guide

This guide describes how to write queries in the Endeca Query Language, or EQL.

Who should use this guide

This guide is intended for data developers who need to create EQL queries.

Conventions used in this guide

This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in nonospace font. In
the case of long lines of code, or when inline monospace text occurs at the end of a line, the following symbol
is used to show that the content continues on to the next line: =

When copying and pasting such examples, ensure that any occurrences of the symbol and the corresponding
line break are deleted and any remaining space is closed up.

Contacting Oracle Customer Support

Oracle Endeca Customer Support provides registered users with important information regarding Oracle
Endeca software, implementation questions, product and solution help, as well as overall news and updates.

You can contact Oracle Endeca Customer Support through Oracle's Support portal, My Oracle Support at
https://support.oracle.com.

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

https://support.oracle.com

Chapter 1
Introduction to the Endeca Query Language

This section introduces the Endeca Query Language (or EQL) and walks you through the query processing
model.

EQL overview

Important concepts and terms

EQL and SQL: a comparison

How queries are processed

EQL overview

EQL is a SQL-like language designed specifically to query and manipulate data from the Oracle Endeca
Server. It enables Endeca Server—based applications to examine aggregate information such as trends,
statistics, analytical visualizations, comparisons, and more.

An EQL query contains one or more statements, each of which can group, join, and analyze records, either
those stored in the server or those produced by other statements. Multiple statements within a single query
can return results back to the application, allowing complex analyses to be done within a single query.

Important concepts and terms

In order to work with EQL, you need to understand the following concepts.

o Attribute: An attribute is the basic unit of a record schema. Attributes describe records in the Endeca
Server.

* Multi-assign attribute: An attribute for which a record may have more than one value. For example,
because a book may have more than one author, the Author attribute would be multi-assign.

* Managed attribute: An attribute for which a hierarchy of attribute values is attached. Managed
attributes are used to support hierarchical navigation.

» Standard attribute: An attribute whose value is not included in an enumerated list or hierarchy.

» Record: The fundamental unit of data in the Endeca Server. Records are assigned attribute values. An
assignment indicates that a record has a value for an attribute. A record typically has assignments from
multiple attributes.

f Note: Records in the corpus can include multiple assignments to the same attribute. Records in
EQL results cannot.

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

Introduction to the Endeca Query Language 2

e Corpus: The full body of Endeca Server records. Endeca Server data is corpus—based rather than
table—based. By default, the source of records for an EQL statement is the result of the containing search
and navigation query. However, you can also include the FROMsyntax in your statement to specify a

different record source, either from the corpus or from a previously defined statement. Two names identify
a corpus-based source:

» Al | BaseRecor ds: Every record that passed the security filter.
* NavSt at eRecor ds: Every record that passed all previous filters.

The omission of the FROMclause implies FROMNav St at eRecor ds. This implicit FROMis equivalent to
using a WHERE clause that expresses the filters currently applied.

e Statement: A unit of EQL that computes related or independent analytics results. In EQL, a statement
starts with DEFI NE or RETURN and ends with a semi-colon, and includes a mandatory SELECT clause

and, optionally, some other clause(s).
e Result: Query results are a collection of statement results; statement results are a collection of records.

e Intermediate results: Results from RETURN statements can also be used as intermediate results for
further processing by other statements.

e Returned results: Set of matching values returned by the query or statement.

e Query: A request sent to the Endeca Server. In general, a query consists of multiple statements.

EQL and SQL: a comparison

EQL is, in many ways, similar to SQL, but has some marked differences as well.

This topic identifies EQL concepts that may be familiar to users familiar with SQL, as well as the unique
features of EQL:

e Tables with a single schema vs a corpus of records with more than one schema. SQL is designed
around tables of records — all records in a table have the same schema. EQL is designed around a single
corpus of records with heterogeneous schemas.

 EQL Query vs SQL Query. An EQL statement requires a DEFI NE or RETURN clause, which, like a SQL
common table expression (or CTE), defines a temporary result set. The following differences apply,
however:

» EQL does not support a schema declaration.

In EQL, the scope of a CTE is the entire query, not just the immediately following statement.
* In EQL, a RETURN s both a CTE and a normal statement (one that produces results).

» EQL does not support recursion. That is, a statement cannot refer to itself using a FROMclause, either
directly or indirectly.

» EQL does not contain an update operation.

* Clauses. In EQL, SELECT, FROM WHERE, HAVI NG GROUP BY, and ORDER BY are all like SQL, with the
following caveats:

* In SELECT statements, AS aliasing is required in EQL; it is optional in SQL.

* In EQL, GROUP BY implies SELECT. That is, grouping attributes are always included in statement
results, whether or not they are explicitly selected.

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

Introduction to the Endeca Query Language 3

e Grouping by a multi-assign attribute can cause a single record to participate in multiple groups.

* GROUP BY discards NULLs. (That is, input records that have no assignment for one or more grouping
attributes are discarded.) This is different from SQL, which treats NULL like any other value.

* WHERE can be applied to an aggregation expression.

* In SQL, use of aggregation implies grouping. In EQL, grouping is always explicit.
e Other language differences.

» PAGE works in the same way as many common vendor extensions to SQL.

* In EQL, a JO Nexpression's Boolean join condition must be contained within parentheses. This is not
necessary in SQL.

» EQL supports SELECT statements only. It does not support other DML statements, such as | NSERT
or DELETE, nor does it support DDL, DCL, or TCL statements.

e EQL supports a different set of data types, expressions, and functions than described by the SQL
standard.

How queries are processed

This topic walks you through the steps involved in EQL query processing.

/s Note: This abstract processing model is provided for educational purposes and is not meant to reflect
/ actual query evaluation.

Prior to processing each statement, EQL computes source records for that statement. When the records come
from a single statement or the corpus, the source records are the result records of the statement or the
appropriately filtered corpus records, respectively. When the records come from a JO N, there is a source
record for every pair of records from the left and right sides for which the join condition evaluates to true on
that pair of records. Before processing, statements are re-ordered, if necessary, so that statements are
processed before other statements that depend on them.

EQL then processes queries in the following order. Each step is performed within each statement in a query,
and each statement is done in order:

1. It filters source records (both statement and per-aggregate) according to the WHERE clauses.

2. For each source record, it computes SELECT clauses that are used in the GROUP BY clause (as well as
GROUP BYs not from SELECTs) and arguments to aggregations.

. It maps source records to result records and computes aggregations.
. It finishes computing SELECTSs.
. It filters result records according to the HAVI NG clause.

. It orders result records.

N o o1~ W

. It applies paging to the results.

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

Chapter 2
EQL Syntax and Semantics

This section describes EQL structure, syntax, and semantics.

Query overview
Statements and clauses
Grouping and aggregation

Expressions

Query overview

An EQL query contains one or more semicolon-delimited statements.

Any number of statements from the query can return results, while others are defined only as generating
intermediate results.

Each statement must contain at least two clauses: a DEFI NE or a RETURN clause, and a SELECT clause. In
addition, it may contain other, optional clauses.

Most clauses can contain expressions. Expressions are typically combinations of one or more functions,
attributes, constants, or operators. Most expressions are simple combinations of functions and attributes. EQL
provides functions for working with numeric, string, dateTime, duration, Boolean, and geocode attribute types.

Input records, output records, and records used in aggregation can be filtered in EQL. EQL supports filtering
on arbitrary, Boolean expressions.

About the examples in this section

Several of the examples in this section are based on sales data from a fictitious bicycle seller. The schema
used matches the schema used in the Quick Start application, a reference implementation of Oracle Endeca
Information Discovery. You can use these examples in the Quick Start application to begin experimenting with
EQL.

Syntax conventions used in this section

The syntax descriptions in this section use the following conventions:

Convention Meaning Example

Square Optional FROM <st at enent Key> [al i as]
brackets []

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

EQL Syntax and Semantics

Convention Meaning Example

Asterisk * May be [, JON statement [alias] ON <Bool ean expression>]*
repeated

Ellipsis ... Additional, DEFI NE <r ecor dSet Name> AS . . .
unspecified
content

Angle brackets | Variable name | pay NG <Bool ean expr essi on>

<>

Commenting in EQL
You can comment your EQL code using the following notation:

DEFI NE Exanpl e AS SELECT /* This is a conment */

You can also comment out lines or sections as shown in the following example:

RETURN Top5 AS SELECT
SUM Sal e) AS Sal es
GROUP BY Cust oner
ORDER BY Sal es DESC
PAGE(0, 5) ;

/*

RETURN Ot hers AS SELECT

SUM Sal e) AS Sal es

WHERE NOT [Custoner] | N Top5
GROUP

*/

/} Note: EQL comments cannot be nested.

Statements and clauses

EQL queries consist of statements. Statements, in their turn, can contain several types of clauses.
» DEFI NE and RETURN cl auses on page 6 specify whether to return the result.

e SELECT cl auses on page 6 specify how to compute attributes that will appear in statement results.

e« FROMcl auses on page 7 (optional) specify the source.
 JO Ncl auses on page 8 (optional) allow source record joining.

 WHERE cl auses on page 11 (optional) filter source records.

e GROUP/ GROUP BY cl auses on page 12 (optional) specify source record to result record mapping.

 HAVI NGcl auses on page 14 (optional) filter result records.

 ORDERBY cl auses on page 14 (optional) specify sort criteria.

Oracle® Endeca Server: Query Language Reference

Version 2.3.0 « June 2012 ¢ Revision A

EQL Syntax and Semantics 6

* PAGE cl auses on page 15 (optional) specify the subset of records to be included in a statement result.

DEFINE and RETURN clauses

All EQL statements begin with either DEFI NE or RETURN. DEFI NE is used to generate an intermediate result
that will not be included in the query result. RETURN indicates that the statement result should be included in
the query result.

DEFINE

You can use multiple DEFI NE clauses to make results available to other statements. Typically, DEFI NE
clauses are used to look up values, compare attribute values to each other, and normalize data.

Its syntax is as follows:

DEFI NE <r ecor dSet Nane> AS ...

In the following example, the RegionTotals record set is used in a subsequent calculation:
DEFI NE Regi onTotal s AS

SELECT SUM Anpunt) AS Tot al

GROUP BY Regi on

RETURN Product Pct AS

SELECT 100* SUM Anpunt) / Regi onTot al s[Regi on] . Total AS Pct Tot al
GROUP BY Regi on, Product Type

RETURN

RETURN provides the key for accessing EQL results from the Endeca Server query result. This is important
when more than one statement is submitted with the query.

Its syntax is as follows:

RETURN <r ecor dSet Nane> AS ...
The following statement returns for each size the number of different values for the Color attribute:
RETURN result AS

SELECT COUNTDI STI NCT(Col or) AS Total
GROUP BY Size

SELECT clauses

The SELECT clause defines the list of attributes on the records produced by the statement.

Its syntax is as follows:

SELECT <expression> AS <attribute key>[, <expression> AS <key>]*

For example:

SELECT Sun{ Anount) AS Tot al Sal es

The attribute definitions can refer to previously defined attributes, as shown in the following example:

SELECT Sun{Anmpunt) AS Total Sal es, Total Sales / 4 AS QuarterAvg

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

EQL Syntax and Semantics 7

/,9 Note: If an attribute defined in a SELECT clause is used in the statement's GROUP clause, then the
& expression can only refer to source attributes and other attributes used in the GROUP clause. It must
not contain aggregations.

FROM clauses

You can include a FROMclause in your statement to specify a different record source than the result of the
containing search and navigation query.

Its syntax is as follows:

FROM <st at enent Key> [al i as]

By default, the source of records for an EQL statement is the result of the containing search and navigation
guery. However, you can also include the FROMsyntax in your statement to specify a different record source,
either from the corpus or from a previously defined statement, whether that statement is a DEFI NE or a
RETURN.

Two names identify a corpus-based source:
» Al | BaseRecor ds: Every record that passed the security filter.
* NavSt at eRecor ds: Every record that passed all previous filters.

/,9 Note: If you want to submit your query against NavSt at eRecor ds, you do not need to include the
& FROMsyntax in your statement. The absence of FROMimplies Nav St at eRecor ds.

You can also use the result of a different statement as your record source. In the following example, a
statement computes the total number of sales transactions for each quarter and sales representative. To then
compute the average number of transactions per sales rep, a subsequent statement groups those results by
quarter.

DEFI NE RepQuarters AS
SELECT COUNT(Transld) AS Nunilr ans
GROUP BY Sal esRep, Quarter;

RETURN Quarters AS

SELECT AVGE Nunilrans) AS AvgTr ansPer Rep
FROM RepQuarters

GROUP BY Quarter

The RepQuart er s statement generates a list of records. Each record contains the attributes { Sal esRep,
Quarter, Numlrans }. For example:
{ J. smith, 11Q1, 10 }

{ J. Smth, 11, 3}
{ F. Jackson, 104, 10 }

The Quart er s statement then uses the results of the RepQuart er s statement to generate a list with the
attributes { Quarter, AvgTransPer Rep }. For example:
{ 104, 10}

{ 11QL, 4.5 }
{ 112, 6}

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

EQL Syntax and Semantics 8

JOIN clauses

JA N clauses allow records from multiple statements to be combined.

JA N clauses, which conform to a subset of the SQL standard, do a join with the specified join condition. The
join condition may be an arbitrary Boolean expression referring to the attributes in the FROM statement. The
expression must be enclosed in parentheses.

The JA N clause always modifies a FROMclause. Two named sources can be indicated in the FROMclause.
Fields must be dot-qualified to indicate which source they come from, except in queries from a single table.

Self-join is supported. Statement aliasing is required for self-join.

Both input tables must result from DEFI NE or RETURN statements (that is, from intermediate results).
Al | BaseRecor ds and Nav St at eRecor ds cannot be joined.

Any number of joins can be performed in a single statement.

The syntax of JO Nis as follows:

FROM <St at enent > [al i as]
[LEFT, RI GHT, FULL] JO N <St at ement 2> [al i as]
ON (Bool ean expression) [, JON <Statenment N> [alias] ON (Bool ean expression)]*

If there is more than one JO N, each statement is joined with a FROMstatement.

Types of joins
EQL supports the following types of joins:

« INNER JOIN: I NNER JO N joins records on the left and right sides, then filters the result records by the
join condition. That means that only rows for which the join condition is TRUE are included. If you do not
specify the join type, JO N defaults to | NNERJO N.

e LEFT JOIN, RIGHT JOIN, and FULL JOIN: LEFT JO N, Rl GHT JO N, and FULL JO N (collectively called
outer joins) extend the result of an | NNER JO N with records from a side for which no record on the other
side matched the join condition. When such an additional record is included from one side, the record in
the join result contains NULLs for all attributes from the other side. LEFT JO Nincludes all such rows from
the left side, Rl GHT JO Nincludes all such rows from the right side, and FULL JO N includes all such
rows from either side.

e CROSS JOIN: The result of CROSS JA Nis the Cartesian product of the left and right sides. Each result
record has the assignments from both of the corresponding records from the two sides.
M Important: CROSS JO Nshould be used with caution, because it can generate very large
' numbers of records. For example, a CROSS JO N of a result with 100 records and a result with
200 records would contain 20,000 records.

JOIN examples

The following | NNER JO N example finds employees whose sales in a particular subcategory account for

more than 10% of that subcategory's total:
DEFI NE Enpl oyeeTotal s AS
SELECT

Di nEnpl oyee_Ful | Nane AS Nane,

SUM Fact Sal es_Sal esAnount) AS Tot al
GROUP BY Di nEnpl oyee_Enpl oyeeKey, Product Subcat egor yNane;

DEFI NE Subcat egoryTotal s AS

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

EQL Syntax and Semantics 9

SELECT
SUM Fact Sal es_Sal esAmount) AS Tot al
GROUP BY Product Subcat egor yNane;

RETURN St ars AS
SELECT
Enpl oyeeTot al s. Nane AS Nane,
Enpl oyeeTot al s. Product Subcat egor yNanme AS Subcat egory,
100 * Enpl oyeeTot al s. Total / SubcategoryTotal s. Total AS Pct
FROM Enpl oyeeTot al s
JA N SubcategoryTotal s
ON (Enpl oyeeTot al s. Product Subcat egor yNanme = Subcat egor yTot al s. Product Subcat egor yNane)
HAVI NG Pct > 10

The following self-join using | NNER JO N computes cumulative daily sales totals per employee:

DEFI NE Days AS
SELECT
Fact Sal es_Or der Dat eKey AS Dat eKey,
Di nEnpl oyee_Enpl oyeeKey AS Enpl oyeeKey,
Di nEnpl oyee_Ful | Nane AS Enpl oyeeNane,
SUM Fact Sal es_Sal esAnount) AS Dai |l yTot al
GROUP BY Dat eKey, Enpl oyeeKey;

RETURN Currul ati veDays AS
SELECT
SUM Pr evi ousDays. Dai | yTotal) AS Cunul ati veTot al ,
Day. Dat eKey AS Dat eKey,
Day. Enpl oyeeKey AS Enpl oyeeKey,
Day. Enpl oyeeNane AS Enpl oyeeNane
FROM Days Day
JO N Days PreviousbDays
ON (PreviousDays. Dat eKey <= Day. Dat eKey)
GROUP BY Dat eKey, Enpl oyeeKey

The following LEFT JO N example computes the top 5 subcategories along with an Other bucket, for use in a
pie chart:

DEFI NE Total s AS

SELECT

SUM Fact Sal es_Sal esAmount) AS Tot al
GROUP BY Product Subcat egor yNane;

DEFI NE Top5 AS

SELECT
Total AS Tot al
FROM Tot al s

GROUP BY Product Subcat egor yNane
ORDER BY Tot al DESC PAGE(O, 5);
RETURN Chart AS
SELECT
COALESCE(Top5. Product Subcat egoryNane, ' Other') AS Subcategory,
SUM Tot al s. Total) AS Tot al
FROM Tot al s
LEFT JO N Top5
ON (Tot al s. Product Subcat egor yNanme = Top5. Product Subcat egor yNane)
GROUP BY Subcat egory

The following LEFT JO N computes metrics for each product in a particular region, ensuring all products
appear in the list even if they have never been sold in that region:
DEFI NE Product AS
SELECT
Product Al t er nat eKey AS Key,
Product Name AS Nane GROUP BY Key;

DEFI NE Regi onTrans AS

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

EQL Syntax and Semantics 10

SELECT
Product Al t er nat eKey AS Product Key,
Fact Sal es_Sal esAmobunt AS Anpunt
WHERE Di nfSal esTerritory_Sal esTerritoryRegi on=' United Kingdoni;

RETURN Results AS
SELECT
Product . Key AS Product Key,
Product . Nane AS Product Nane,
COALESCE(SUM Regi onTr ans. Anount), 0) AS Sal esTot al ,
COUNT(Regi onTr ans. Amount) AS Transact i onCount
FROM Pr oduct
LEFT JO N Regi onTr ans
ON (Product. Key = Regi onTrans. Product Key)
GROUP BY Product Key

The following FULL JO N computes the top 10 employees' sales totals for the top 10 products, ensuring that
each employee and each product appears in the result:

DEFI NE TopEnpl oyees AS
SELECT
Di nEnpl oyee_Enpl oyeeKey AS Key,
Di nEnpl oyee_Ful | Nane AS Nane,
SUM Fact Sal es_Sal esAnobunt) AS Sal esTot al
GROUP BY Key
ORDER BY Sal esTotal DESC
PAGE (0, 10) ;

DEFI NE TopProducts AS
SELECT
Product Al t er nat eKey AS Key,
Product Nane AS Nane,
SUM Fact Sal es_Sal esAnobunt) AS Sal esTot al
GROUP BY Key
ORDER BY Sal esTotal DESC
PAGE (0, 10) ;

DEFI NE Enpl oyeePr oduct Total s AS
SELECT
Di nEnpl oyee_Enpl oyeeKey AS Enpl oyeeKey,
Product Al t er nat eKey AS Product Key,
SUM Fact Sal es_Sal esAmount) AS Sal esTot al
GROUP BY Enpl oyeeKey, Product Key
HAVI NG [Enpl oyeeKey] | N TopEnpl oyees AND [Product Key] | N TopProducts;

RETURN Results AS
SELECT
TopEnpl oyees. Key AS Enpl oyeeKey,
TopEnpl oyees. Nane AS Enpl oyeeNane,
TopEnpl oyees. Sal esTotal AS Enpl oyeeTot al ,
TopPr oduct s. Key AS Product Key,
TopProducts. Nane AS Product Nang,
TopPr oduct s. Sal esTotal AS Product Tot al ,
Enpl oyeePr oduct Tot al s. Sal esTot al AS Enpl oyeePr oduct Tot al
FROM Enpl oyeePr oduct Tot al s
FULL JO N TopEnpl oyees
ON (Enpl oyeePr oduct Tot al s. Enpl oyeeKey = TopEnpl oyees. Key)
FULL JO N TopProduct s
ON (Enpl oyeePr oduct Tot al s. Product Key = TopProduct s. Key)

The following CROSS JO N example finds the percentage of total sales each product subcategory represents:

DEFI NE d obal Total AS
SELECT

Oracle® Endeca Server: Query Language Reference Version 2.3.0 ¢ June 2012 « Revision A

EQL Syntax and Semantics 11

SUM Fact Sal es_Sal esAnobunt) AS d obal Tot al
CGROUP;

DEFI NE Subcat egoryTotal s AS
SELECT

SUM Fact Sal es_Sal esAmount) AS Subcat egor yTot al
GROUP BY Product Subcat egor yNane;

RETURN Subcat egoryContri buti ons AS
SELECT

Subcat egor yTot al s. Product Subcat egor yName AS Subcat egory,

Subcat egor yTot al s. Subcat egoryTotal / @ obal Total . @ obal Total AS Contribution
FROM Subcat egoryTot al s

CROSS JO N G obal Tot al

-\ Important: Joins can cause the Endeca Server to grow beyond available RAM. Going beyond the
' scale capabilities will cause very, very large materializations, intense memory pressure, and can result
in an unresponsive Endeca Server.

WHERE clauses

EQL provides two filtering options: WHERE and HAVI NG The WHERE clause is used to filter input records for an
expression.

Its syntax is as follows:

WHERE <Bool ean expressi on>

You can use the WHERE clause with any Boolean expression, such as:
* Numeric and string value comparison: {=, <>, <, <=. >, >=}
* Null value evaluation: <attri bute>1S{NULL, NOT NULL}

» Grouping keys of the source statement: <attri butelist>1N<source stat enent >. The number

and type of these keys must match the number and type of keys used in the statement referenced by the
I N clause. For more information, see IN on page 40.

If an aggregation function is used with a WHERE clause, then the Boolean expression must be enclosed within
parentheses. The aggregation functions are listed in the topic Aggregation functions on page 26.

In this example, the amounts are only calculated for sales in the West region. Then, within those results, only
sales representatives who generated at least $10,000 are returned:

RETURN Reps AS

SELECT SUM Anpunt) AS Sal esTot al
WHERE Regi on = ‘ West’

GROUP BY Sal esRep

HAVI NG Sal esTotal > 10000

In the next example, a single statement contains two expressions. The first expression computes the total for
all of the records and the second expression computes the total for one specific sales representative:

RETURN QuarterTotals AS SELECT

SUM Anmpunt) As Sal esTot al ,

SUM Anount) WHERE (Sal esRep = ‘Juan Smith’) AS JuanTot al
GROUP BY Quarter

This would return both the total overall sales and the total sales for Juan Smith for each quarter. Note that the
Boolean expression in the WHERE clause is in parentheses because it is used with an aggregation function
(SUMin this case).

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

EQL Syntax and Semantics 12

GROUP/GROUP BY clauses

The GROUP/ GROUP BY clause specifies how to map source records to result records to group statement
output.

There are three ways to use this clause in a query:
* Omitting the GROUP clause maps each source record to its own result record.
* GROUP maps all source records to a single result record.

e GROUPBY <attributelist>maps source records to result records by the combination of values in the
listed attributes.

Specifying only GROUP
You can use a GROUP clause to aggregate results into a single bucket.

For example, the following statement uses the SUMstatement to return a single sum across a set of records:

RETURN " Revi ewCount * AS SELECT
SUM nunber _of _revi ews) AS "NunRevi ews"
GROUP

This statement returns one record for NunRevi ews. The value is the sum of the values for the attribute
nunber of reviews.

Grouping is allowed on source and locally defined attributes.

/s Note: If you group by a locally defined attribute, that attribute cannot refer to non-grouping attributes
/ and cannot contain any aggregates.

All grouping attributes are part of the result records. A NULL value in any grouping attribute causes the source
record to map to no result records. This is different from SQL, which treats NULL like any other value. For
information about user-defined NULL-value handling in EQL, see COALESCE on page 38.

Specifying GROUP BY
You can use GROUP BY to aggregate results into buckets with common values for the grouping keys.

For example, suppose we have sales transaction data with records consisting of the following attributes:

{ Transld, ProductType, Amount, Year, Quarter, Region,
Sal esRep, Custoner }

For example:
{ Transld = 1, ProductType = "Wdget", Anpunt = 100. 00,
Year = 2011, Quarter = "11Ql", Region = "East",

Sal esRep = "J. Smith", Custoner = "Custonerl" }

If an EQL statement uses Region and Year as GROUP BY attributes, the statement results contain an
aggregated record for each valid, non-empty combination of Region and Year. In EQL, this example is
expressed as:

DEFI NE Regi onsByYear AS
GROUP BY Regi on, Year

resulting in the aggregates of the form { Region, Year }, for example:

{ "East", "2010" }
{ "West", "2011" }

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

EQL Syntax and Semantics 13

{ "East”, "2011" }

Using a GROUP BY that is an output of a SELECT expression

A GROUP BY key can be the output of a SELECT expression, as long as that expression itself does not contain
an aggregation function.

For example, the following syntax is a correct usage of GROUP BY:

SELECT COALESCE(Person, ' Unknown Person')
as Person2, ... GROUP BY Person2

The following syntax is incorrect and results in an error, because Sales2 contains an aggregation function
(SUM:

SELECT SUM Sal es) as Sales2, ... GROUP
BY Sal es2

Specifying the hierarchy level for a managed attribute
You can group by a specified depth of each managed attribute.

If you group results by a managed attribute, you can specify a hierarchy depth at which to group, using the
syntax:

GROUP BY ManagedAttr: <l evel >

For example, the Region attribute contains the hierarchy Country, State, and City. To group the results at the
State level (one level below the root of the managed attribute hierarchy), you would use the following syntax:

GROUP BY "Region": 1

/s Note: This is equivalent to ANCESTOR(ManagedAttr, | evel), but GROUP BY statements need to
/ use the syntax managedAt tr: | evel , because you cannot group by an expression.

Grouping by a multi-assign attribute

If you group by a multi-assign attribute, each source record will map to multiple corresponding output records.
For example, the record [A: 1, A: 2, B: 3, B: 4, B: 5] will map to:

e Two output records if you group by A
e Three output records if you group by B
e Six output records if you group by both A and B

» Six output records for SELECT A + B AS C GROUP BY C, because all six possible values of A + B will be
computed prior to grouping.
This can only occur with a corpus source, because result records are always single assign.
In this example, User Tag is multi-assign:
RETURN " Exanpl e" AS SELECT
AVE "G oss") AS "AvgG oss”,

SUM " Gross") AS "Total Goss",
GROUP BY User Tag

To define the set of resulting buckets, a statement must specify a set of GROUP BY attributes. The cross
product of all values in these grouping attributes defines the set of candidate buckets.

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

EQL Syntax and Semantics 14

The results are automatically pruned to include only non-empty buckets.

If an attribute reference appears in a statement with a GROUP clause in the definition of an attribute not in the
GROUP clause, the attribute will have an implicit ARB aggregate applied.

HAVING clauses

EQL provides two filtering options: WHERE and HAVI NG. The HAVI NG clause is used to filter output records.
Its syntax is as follows:

HAVI NG <Bool ean expressi on>

You can use the HAVI NG clause with any Boolean expression, such as:
* Numeric and string value comparison: {=, <>, <, <=. >, >=}
* Null value evaluation: <attri bute>1S{NULL, NOT NULL}
» Grouping keys of the source statement: <attri butelist>1N<source st at enent >
In the following example, the results include only sales representatives who generated at least $10,000:

Return Reps AS

SELECT SUM Anpunt) AS Sal esTot al
GROUP BY Sal esRep

HAVI NG Sal esTotal > 10000

ORDER BY clauses

The ORDER BY clause is used to control the order of result records.
The ORDER BY syntax is as follows:

ORDER BY <AttrName> [ASC/ DESC] [, <AttrName> [ASC/ DESC]] *

You can sort result records by any of their attribute values, and can specify whether to sort in ascending (ASC)
or descending (DESC) order. You can use any combination of values and sort orders. The absence of a
direction, as with Attr3 in the example above, implies ASC.

When an ORDER BY clause is used, NULL values will always sort after non-NULL values for a given attribute,
and NaN (not-a-number) values will always sort after values other than NaN and NULL, regardless of the
direction of the sort. Tied ranges (or all records in the absence of an ORDER BY clause) are ordered in an
arbitrary but stable way: the same query will always return its results in the same order, as long as it is
guerying against the same version of the data. Data updates add or remove records from the order, but will
not change the order of unmodified records.

In this example, the amount is calculated for each sales representative. The resulting records are sorted by
total amount in descending order:

DEFI NE Reps AS

SELECT SUM Anpunt) AS Tot al

GROUP BY Sal esRep
ORDER BY Total DESC

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

EQL Syntax and Semantics 15

Geocode sorting

Data of type geocode is sorted by latitude and then by longitude. To establish a more meaningful sort order
when using geocode data, compute the distance from some point and then sort by the distance.

String sorting

String values are sorted in Unicode byte order.

Stability of ORDER BY
EQL guarantees that the results of a statement are stable across queries. This means that:

» If no updates are performed, then the same statement will return results in the same order on repeated
gueries, even if no ORDER BY clause is specified, or there are ties in the order specified in the ORDER BY

clause.

» If updates are performed, then only changes that explicitly impact the order will impact the order; the order
will not be otherwise affected. Changes that impact the order are things like deleting or inserting records
that contribute to the result on or prior to the returned page, or modifying a value that is used for grouping
or ordering.

For example, on a statement with no ORDER BY clause, queries that use PAGE(0, 10), then PAGE(10, 10),
then PAGE(20, 10) will, with no updates, return successive groups of 10 records from the same arbitrary but
stable result.

For an example with updates, on a statement with ORDER BY NumPAGE(3, 4), an initial query returns
records {5, 6, 7, 8}. An update then inserts a record with 4 (before the specified page), deletes the record with
6 (on the specified page), and inserts a record with 9 (after the specified page). The results of the same query,
after the update, would be {4, 5, 7, 8}. This is because:

» The insertion of 4 shifts all subsequent results down by one. Offsetting by 3 records includes the new
record.

» The removal of 6 shifts all subsequent results up by one.

» The insertion of 9 does not impact any of the records prior to or included in this result.

PAGE clauses

The PAGE clause specifies a subset of records to return.

By default, a statement returns all of the result records. In some cases, however, it is useful to request only a
subset of the results. In these cases, you can use the PAGE (<of f set >, <count >) clause to specify how

many result records to return.

The <of f set > argument is an integer that determines the number of records to skip. An offset of 0 will return
the first result record; an offset of 8 will return the ninth. The <count > argument is an integer that determines
the number of records to return.

The following example groups the NavSt at eRecor ds by the SalesRep attribute, and returns result records
11-20:
DEFI NE Reps AS

GROUP BY Sal esRep
Page (10, 10)

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

EQL Syntax and Semantics 16

PAGE applies to intermediate results; a statement FROMa statement with PAGE(0, 10) will have at most 10
source records.

Top-k

You can use the PAGE clause in conjunction with the ORDER BY clause in order to create Top-K queries. The
following example returns the top 10 sales representatives by total sales:

DEFI NE Reps AS

SELECT SUM Anpunt) AS Tot al

GROUP BY Sal esRep

ORDER BY Total DESC
PAGE (0, 10)

Percentile

The PAGE clause supports a PERCENT modifier. When PERCENT is specified, fractional offset and size are
allowed, as in the example PAGE(33. 3, 0. 5) PERCENT. This specified the portion of the data set to skip and
the portion to return.

The number of records skipped equals r ound(of f set * COUNT / 100) .

The number of records returned equals r ound((of f set +si ze) * COUNT/ 100) - round(of f set *
COUNT / 100).

DEFI NE "Model Year" AS

SELECT SUM Cost) AS Cost

GROUP BY Mbdel , Year

ORDER BY Cost DESC
PAGE(0, 10) PERCENT

The PERCENT keyword will not repeat records at non-overlapping offsets, but the number of results for a given
page size may not be uniform across the same query.

For example, if COUNT = 6:

PAGE clause Resulting behavior is the same as
PAGE (0, 25) PERCENT PAGE (0, 2)
PAGE (25, 25) PERCENT PAGE (2, 1)
PAGE (50, 25) PERCENT PAGE (3, 2)
PAGE (75, 25) PERCENT PAGE (5, 1)

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

EQL Syntax and Semantics 17

Grouping and aggregation

In EQL, aggregation operations bucket a set of records into a resulting set of aggregated records.

Nested aggregation

You can perform multi-level aggregation in EQL.
This example computes the average number of transactions per sales representative grouped by Quarter and
Region.

This query represents a multi-level aggregation. First, transactions must be grouped into sales representatives
to get per-representative transaction counts. Then these representative counts must be aggregated into
averages by quarter and region.

DEFI NE Deal Count AS
SELECT COUNT(Transld) AS NunDeal s
GROUP BY Sal esRep, Quarter, Region ;

RETURN AvgDeal s AS
SELECT AVGE NunDeal s) AS AvgDeal sPer Rep

FROM Deal Count
GROUP BY Quarter, Region

Using the COUNT and COUNTDISTINCT functions

The COUNT function returns the number of records that have a value for an attribute. COUNTDI STI NCT counts
the number of distinct values for an attribute.

Using COUNT to count the number of records with values of attributes
The COUNT function counts the number of records that have values in a field for each GROUP BY resullt.

For example, the following records include Size and Color attributes:

Record 1: Size=small, Color=red, Color=white
Record 2: Size=snall, Col or=blue, Col or=green
Record 3: Size=small, Col or=black

Record 4: Size=small

The following statement returns the number of records for each size that have a value for the Color attribute:
RETURN result AS SELECT COUNT(Col or) as Total GROUP BY Size

The statement result is:
Record 1: Size=small, Total =3

Because all of the records have the same value for Size, there is only one group, and thus only one record.
For this group, the value of Total is 3, because only three of the records have Color assignments.

Using COUNTDISTINCT to get the number of distinct values for an attribute
The COUNTDI STI NCT function returns the number of unique values in a field for each GROUP BY result.

COUNTDI STI NCT can only be used for single-assign attributes, and not for multi-assigned attributes. Using a
multi-assign attribute generates misleading results.

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

EQL Syntax and Semantics 18

For example, for the following records:

Record 1: Size=small, Col or=red

Record 2: Size=small, Col or=bl ue

Record 3: Size=small, Col or=red

Record 4: Size=smal |

The following statement returns for each size the number of different values for the Color attribute:

RETURN result AS
SELECT COUNTDI STI NCT (Col or) as Tot al
GROUP BY Si ze

The statement result is:
Record 1: Size=small, Total =2

Because all of the records have the same value for Size, there is only one group, and thus only one record.
For this group, the value of Total is 2 because there are two unique values for the Color attribute: red and
blue.

Per-aggregation filters

Each aggregation can have its own filtering WHERE clause. Aggregation function filters filter the inputs to an
aggregation expression. They are useful for working with sparse or heterogeneous data. Only records that
satisfy the filter contribute to the calculation of the aggregation function.

The syntax is as follows:

Aggr egat eFuncti on(Expressi on) WHERE (Filter)

For example:
RETURN Net Sal es AS SELECT
SUM Amount) WHERE (Type=' Sal e’)
AS Sal esTot al ,
SUM Amount) WHERE (Type=' Return’)
AS ReturnTotal ,
Sal esTotal — ReturnTotal AS Tot al
GROUP BY Year, Month, Category

This is the same as:

SUM CASE WHEN Type=' Sal e’ THEN Amount END) AS Sal esTot al ,
SUM CASE WHEN type='Return' THEN Anpbunt END) AS ReturnTot al

/} Note: These WHERE clauses also operate on records, not assignments, just like the statement-level
& WHERE clause. A source record will contribute to an aggregation if it passes the statement-level WHERE
clause and the aggregation's WHERE clause.

Handling of records with multiple values for an attribute

In the case of corpus records (but not result records) an attribute may allow a record to have multiple values.
To show how EQL handles these types of records, for a record tagged with both Bl ue and G een:

* WHERE Col or = Bl ue matches the record (Bl ue = Bl ue)

* WHERE Col or <> Bl ue matches the record (Gr een <> Bl ue)

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

EQL Syntax and Semantics

19

* VWHERE NOT(Col or = Bl ue) does not match the record (NOT(true))
* VWHERE NOT(Col or <> Bl ue) does not match the record (NOT(tr ue))

Expressions

Expressions are typically combinations of one or more functions, attributes, constants, or operators. Most

expressions are simple combinations of functions and attributes.

Supported data types

This topic describes the format of data types supported by EQL.

Data type Description
string Represents character strings.
int Represents an integer.

/}i Note: EQL supports only 64-bit integers.

double I.?epresents a floating point number.

boolean Represents a Boolean value (TRUE or FALSE)

time Represents the time of day to a resolution of milliseconds.
dateTime Represents a date and time to a resolution of milliseconds.
duration Represents a length of time with a resolution of milliseconds.
geocode Represents a latitude and longitude pair.

Operator precedence rules in EQL

EQL enforces the following precedence rules for operators.

The rules are listed in descending order.

Parentheses (as well as brackets in LOOKUP and | N expressions)

/s Note: You can freely add parentheses any time you want to impose an alternative precedence or
/ to make precedence clearer.

*/
+ -

=<><><=>=

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

EQL Syntax and Semantics 20

I'S(I'SNULL, | SNOT NULL)
BETVEEN

.« NOT

- AND

. R

f Note: All binary operators are left-associative, as are all of the JO N operators.

Literals

This section discusses how literals are used in EQL.

Handling of characters in EQL

EQL accepts all Unicode characters.

<Literal > ::= <StringLiteral> | <NunericLiteral>

String literals String literals must be surrounded by single quotation marks.
Embedded single quotes and backslashes must be escaped by
backslashes. Examples:

Yjim
"al éx\' s house'

Numeric literals Numeric literals can be integers or floating point numbers.

Numeric literals cannot be surrounded by single quotation marks.
Numeric literals do not support exponential notation, and they cannot
have trailing f|[F|d|D to indicate float or double.

34
.34

Boolean literal TRUE/ FALSE

Boolean literals cannot be surrounded by single quotation marks.

Literals of structured types
(such as Date, Time, or
Geocode)

Literals of structured types must use appropriate conversions, as shown
in the following example:
RETURN Resul t AS

SELECT TO GEOCODE(45.0, 37.0) AS Geocode,
TO_DATETI ME(' 2011- 11- 21T08: 22: 00Z') AS Ti mest anp

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

EQL Syntax and Semantics 21

ldentifiers Identifiers must be NCNames. The NCName format is defined in the

W3C document Namespaces in XML 1.0 (Second Edition), located at
this URL: http://www.w3.0rg/TR/REC-xml-names/.

An identifier must be enclosed in double quotation marks if:

¢ The identifier contains characters other than letters, digits, and
underscores.

¢ The identifier starts with a digit.

¢ The identifier uses the same name as an EQL keyword. For
example, if an attribute is named WHERE or GROUP.

If an identifier is in quotation marks, then you must use a backslash to
escape double quotation marks and backslashes.

Examples:
"Count" "Sal es. Anount "

Handling of upper- and lower-case in EQL

This topic discusses character case handling in EQL.
The following are case sensitive:

* I|dentifiers

* Literals

» Standard attribute references

» Managed attribute references
The following are case insensitive:

» Clauses

* Reserved words

» Keywords

Handling NULL attribute values

If an attribute value is missing for a record, then the attribute is referred to as being NULL. For example, if a
record does not contain an assignment for a Price attribute, EQL defines the Price value as NULL.

The following table outlines how EQL handles NULL values for each type of operation:

Type of operation How EQL handles NULL values

Arithmetic operations and non- The value of any operation on a NULL value is also defined as NULL.

aggregating functions For example, if a record has a value of 4 for Quantity and a NULL value

for Price, then the value of Quantity + Pri ce is considered to be
NULL.

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

http://www.w3.org/TR/REC-xml-names/

EQL Syntax and Semantics 22

Type of operation How EQL handles NULL values

Aggregating functions EQL ignores records with NULL values.

For example, if there are 10 records, and 2 of them have a NULL value
for a Price attribute, all aggregating operations ignore the 2 records, and
instead compute their value using only the other 8 records.

If all 10 records have a NULL Price, then most aggregations such as
SUM Pri ce) also result in NULL values.

The exceptions are COUNT and COUNTDI STI NCT, which return zero if all
the records have a NULL value. (That is, the output of COUNT or
COUNTDI STI NCT is never NULL.)

Grouping expressions EQL ignores any record that has a NULL value in any of the group keys,
and does not consider the record to be present in any group.

Filters When doing a comparison against a specific value, the NULL value will
not match the specified filter, except for the I S NULL filter.

For example, if record A has price 5, and record B has no price value,
then:

e WHERE pri ce =5 matches A

 WHERE NOT(pri ce =5) matches B

 WHERE pri ce <> 5 matches neither A nor B
 WHERE NOT(pri ce <>5) matches both A and B
* WHERE pri ce = 99 matches neither A nor B
 WHERE NOT(pri ce =99) matches both A and B
* WHERE pri ce <> 99 matches A

* WHERE NOT(pri ce <>99) matches B

Sorting For any sort order specified, EQL returns:

1. Normal results
2. Records for a NaN value
3. Records with a NULL value

/} Note: There is no NULL keyword or literal. To create a NULL, use CASE, as in this example: CASE
o WHEN Fal se THEN 1 END.
Type promotion in EQL

In general, EQL performs type promotion when there is no risk of loss of information.

For example, in the expression 1 + 3. 5, 1 is an integer and 3.5 is a double. The integer value is promoted to
a double, and the overall result is 4.5.

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

EQL Syntax and Semantics 23

Some functions, such as LN() , take double arguments, and automatically promote integer arguments to
doubles. In most other cases, automatic type promotion is not performed, and an explicit conversion is
required. For example, if Quantity is an integer and SingleOrder is a Boolean, then an expression such as the
following is not allowed:

COALESCE(Quantity, SingleOrder)
An explicit conversion from Boolean to integer like the following is required:

COALESCE(Quantity, TO_I NTEGER(Si ngl eOrder))

Handling of NaN, inf and -inf results

Operations in EQL adhere to the conventions for Not a Number (NaN), i nf and -i nf defined by the IEEE
7540 2008 standard for handling floating point numbers.

In cases when it has to perform operations involving floating point numbers, or operations involving division by
zero or NULL values, EQL expressions can return NaN, i nf, and - i nf results.

For example, NaN, i nf and -i nf values could arise in your EQL calculations when:
» A zero divided by zero results in NaN
» A positive number divided by zero results in i nf
* A negative number divided by zero results in - i nf
For most operations, EQL treats NaN, i nf or -i nf values the same way as any other value.

However, you may find it useful to know how EQL defines the following special values:

Type of operation How EQL handles NaN, i nf, and - i nf
Arithmetic operations Arithmetic operations with NaN values result in NaN values.
Filters NaN values do not pass filters (except for ! =).

Any other comparison involving a NaN value is false.

Sorting NaN is treated as "less than" -i nf (NaN< -i nf).
For any sort order specified, EQL returns:

1. Normal records

2. Records with a NaN value

3. Records with a NULL value

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

EQL Syntax and Semantics

24

Functions and operators

EQL contains a number of built-in functions that process data. It also supports arithmetic operators.

Numeric functions

EQL supports the following numeric functions.

Function

Description and Example

addition

The addition operator (+) .

SELECT Nort heast Sal es + Sout heast Sal es AS East Tot al Sal es

subtraction

The subtraction operator (-) .

SELECT Sal esRevenue - Total Costs AS Profit

multiplication

The multiplication operator (*) .

SELECT Price * 0.7 AS Sal ePrice

division

The division operator (/).

SELECT YearTotal / 4 AS QuarterAvg

ABS

Returns the absolute value of n.
If nis O or a positive integer, returns n.
Otherwise, n is multiplied by -1.

SELECT ABS(-1) AS one

RESULT: one =1

CEIL

Returns the smallest integer value not less than n.

SELECT CEIL(123.45) AS x, CEIL(32) ASy, CElL(-123.45) AS z

RESULT: x =124, y =32, z =123

EXP

Exponentiation, where the base is e.
Returns the value of e (the base of natural logarithms) raised to the power n.

SELECT EXP(1.0) AS baseE

RESULT: baseE=e"1. 0 =2. 71828182845905

FLOOR

Returns the largest integer value not greater than n.

SELECT FLOOR(123.45 AS x, FLOOR(32) AS 'y, FLOOR(-123.45) AS z

RESULT: x =123, y =32, z =124

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

EQL Syntax and Semantics

25

Function Description and Example
LN Natural logarithm. Computes the logarithm of its single argument, the base
of which is e.
SELECT LN(1.0) AS baseE
RESULT: baseE=e”1.0=0
LOG Logarithm. | og(n, n) takes two arguments, where n is the base, and mis
the value you are taking the logarithm of.
Log(10, 1000) = 3
MOD Modulo. Returns the remainder of n divided by m
Mbd(10,3) = 1
EQL uses the f nod floating point remainder, as defined in the C/POSIX
standard.
ROUND Returns a number rounded to the specified decimal place.
The unary version drops the decimal (non-integral) portion of the input.
The binary version allows you to set the number of spaces at which the
number is rounded:
» Positive second arguments specified to this function correspond to the
number of places that must be returned after the decimal point. For
example, ROUND(123. 4567, 3) =123. 457
» Negative second arguments correspond to the number of places that
must be returned before the decimal point. For example,
ROUND(123. 4567, -3) =100.0
SIGN Returns the sign of the argument as -1, 0, or 1, depending on whether n is
negative, zero, or positive.
SELECT SIGN(-12) AS x, SIGN(0) ASy, SIGN(12) AS z
RESULT: x=-1, y=0, z=1
SQRT Returns the nonnegative square root of n.

SELECT SQRT(9) AS x

RESULT: x =3

Oracle® Endeca Server: Query Language Reference

Version 2.3.0 « June 2012 ¢ Revision A

EQL Syntax and Semantics

26

Function Description and Example
TRUNC Returns the number n, truncated to mdecimal places.
If mis 0, the result has no decimal point or fractional part.
The unary version drops the decimal (non-integral) portion of the input, while
the binary version allows you to set the number of spaces at which the
number is truncated.
SELECT TRUNC(3. 14159265, 3)as x
RESULT: x = 3. 141
SIN The sine of n, where the angle of n is in radians.
SIN(Pi/6) =5
COSs The cosine of n, where the angle of n is in radians.
COS(Pi/3) = .5
TAN The tangent of n, where the angle of n is in radians.
TAN(Pi/4) =1
POWER Returns the value of n raised to the power of m
Power (2,8) = 256
TO_DURATION Casts an integer into a number of milliseconds so that it can be used as a
duration.
TO_DOUBLE Casts an integer as a double.
TO_INTEGER(Boolean) Casts TRUE/ FALSE to 1/ 0.

Aggregation functions

EQL supports the following aggregation functions.

Function Description
AVG Computes the arithmetic mean value for a field.
COUNT Counts the number of records with valid non-NULL values in a field for each GROUP

BY result.

COUNTDISTINCT

Counts the number of unique, valid non-NULL values in a field for each GROUP BY
result.

MAX

Finds the maximum value for a field.

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

EQL Syntax and Semantics

27

Function Description

MIN Finds the minimum value for a field.

MEDIAN Finds the median value for a field.
Note that the EQL definition of MEDI AN differs from the normal statistical definition
when EQL is computing the median of an even number of numbers. That is, given an
input relation containing { 1, 2, 3, 4}, the following query:
RETURN results AS SELECT

MEDI AN(a) AS ned

GROUP
produces the relation { <med: 3> } . According to the normal statistical definition, the
statistical median of the set {1, 2, 3, 4} should be the mean of the two elements in
the middle of the sorted set, or 2.5.

STDDEV Computes the standard deviation for a field.

ARB Selects an arbitrary but consistent value from the set of values in a field.

SUM Computes the sum of field values.

VARIANCE Computes the variance (that is, the square of the standard deviation) for a field.

Hierarchy functions

EQL supports hierarchy functions on managed attributes.

You can filter by a descendant or an ancestor, or return a specific or relative level of the hierarchy. Managed
attributes can be aliased in the SELECT statement and elsewhere.

The following are the related functions:

Function Description

ANCESTOR(expr, int) Return the ancestor of the named attribute at the depth specified.
Returns NULL if the requested depth is greater than the depth of the
attribute value. The root is at depth O.

H ERARCHY_LEVEL(expr) Return the level of the named attribute as a number. The level is the
number of values on the path from the root to it. The root is always level
0.

| S DESCENDANT(attri bute, Include the record if the named attribute is the attribute specified or a

string) descendant. If the attribute is not a member of the specified hierarchy, it
is a compile-time error. If no attribute with the primary key in the
attribute is found, it results in NULL.

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

EQL Syntax and Semantics 28

Function Description

I S ANCESTOR(attri bute) Include the record if the named attribute is the attribute specified or an

ancestor. If the attribute is not a member of the specified hierarchy, it is
a compile-time error. If no attribute with the primary key in the attribute

is found, it results in NULL.

GET_LCA(attribute) A row function that returns the LCA (least common ancestor) of the two
managed attributes. The two managed attributes should belong to same
hierarchy. Otherwise, it is a compile-time error.

LCA(attribute) An aggregation function that returns the LCA of the managed attributes
in the specified attribute column. The LCA is the lowest point in a
hierarchy that is an ancestor of all specified members. Any encountered
NULL values are ignored by the function.

In the first example, we filter by product category CAT_BIKES, and get all records assigned produce category
CAT_BIKES or a descendant thereof:

RETURN exanpl el AS

SELECT
Product Cat egory AS Product Cat egory,
ANCESTOR(Pr oduct Cat egory, 0) AS Ancestor

i:{ErURN exanpl e2 AS

Product Cat egory AS Product Cat egory,

ANCESTOR(Pr oduct Cat egory, H ERARCHY_LEVEL(Product Cat egory)-1) AS Ancestor
WHERE

| S_DESCENDANT(Pr oduct Cat egory, ' CAT_BI KES')

In the second example, we want to return level 1 (one level below the root) of the Product Category hierarchy:

RETURN Resul ts AS
SELECT
Pr oduct Cat egory AS PC,
ANCESTOR(PC, 1) AS Ancestor
WHERE
ANCESTOR(Pr oduct Cat egory, 1) = ' CAT_BI KES
CGROUP BY PC
ORDER BY PC

In the third example, we want to return the direct ancestor of the Product Category hierarchy:

RETURN Results AS
SELECT

Pr oduct Cat egory AS PC,

ANCESTOR(PC, HI ERARCHY_LEVEL(PC) - 1) AS Parent
VWHERE

ANCESTOR(Pr oduct Cat egory, 1) = ' CAT_BI KES
GROUP BY PC
ORDER BY PC

In the second and third examples, we use GROUP BY to de-duplicate. In addition, note that even though we
aliased Pr oduct Cat egor y AS PC, we cannot use the alias in the WHERE clause, because the alias does not
become available until after WHERE clause executes.

/@ Note: GROUP BY statements need to use the syntax managedAttr: | evel , rather than the
& ANCESTOR function, because you cannot group by an expression in EQL.

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

EQL Syntax and Semantics 29

Geocode functions

The geocode data type contains the longitude and latitude values that represent a geocode property.

The following are the related functions:

Function Description

LATI TUDE(ndex: geocode) Returns the latitude of a geocode as a floating-point number.
LONG TUDE(ndex: geocode) Returns the longitude of a geocode as a floating-point number.
DI STANCE(ndex: geocode, Returns the distance (in kilometers) between the two geocodes,
ndex: geocode) using the haversine formula.

TO_GEOCCODE(ndex: f | oat , Creates a geocode from the given latitude and longitude.

mdex: f | oat)

The following example enables the display of a map with a pin for each location where a claim has been filed:

RETURN Result AS
SELECT

LATI TUDE(geo) AS Lat,

LONG TUDE(geo) AS Lon,

DI STANCE(geo, TO GEOCODE(42.37, 71.13)) AS Di stanceFrontCanbri dge
VWHERE

DI STANCE(geo, TO GEOCODE(42.37, 71.13)) BETWEEN 1 AND 10

f Note: All distances are expressed in kilometers.

Working with date and time values in EQL

EQL provides functions for working with t i ne, dat eTi e, and dur at i on data types.

EQL supports normal arithmetic operations between these data types.

All aggregation functions can be applied on these types except for SUM which cannot be appliedtoti ne or
dat eTi ne types.

f Note: In all cases, the internal representation of dates and times is on an abstract time line with no
time zone. On this time line, all days are assumed to have exactly 86400 seconds. The system does
not track, nor can it accommodate, leap seconds. This is equivalent to the SQL date, time, and
timestamp data types that specify W THOUT TI MEZONE. ISO 8601 ("Data elements and interchange
formats - Information interchange - Representation of dates and times") recommends that, when
communicating dates and times without timezone with other systems, they be represented using Zulu
time, which is a synonym for GMT. Endeca Server conforms to this recommendation.

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

EQL Syntax and Semantics

30

The following table summarizes the supported date and time functions:

Function Return Data Type Purpose

CURRENT _TI MESTAMP dat eTi ne Constants representing the current date and

SYSTI MESTAVP dat eTi e time (at. an grbltrary point durlng_ query
evaluation) in GMT and server time zone,
respectively.

CURRENT_DATE dat eTi ne Constants representing current date (at an

SYSDATE dat eTi me arbitrary pomt during query eyaluatlon) in GMT
and server time zone, respectively.

TO TI ME time Constructs a timestamp representing time,

TO_DATETI ME dat eTi e date, or duration, using an expression.

TO_DURATI ON duration

EXTRACT i nt eger Extracts a portion of a dat eTi ne value, such
as the day of the week or month of the year.

TRUNC dat eTi e Rounds a dat eTi me value down to a coarser
granularity.

TO Tz dat eTi ne Returns the given timestamp in a different time

FROM TZ dat eTi me Zone.

The following table summarizes supported operations:

Operation Return Data Type
time (+]-) duration time

dat eTi ne (+|-) durati on dat eTi e
time-tine duration

dat eTi ne - dat eTi ne duration
duration (+|-) duration duration

dur ati on (*|//) doubl e duration
duration /duration doubl e

Oracle® Endeca Server: Query Language Reference

Version 2.3.0 « June 2012 ¢ Revision A

EQL Syntax and Semantics

31

Manipulating current date and time

EQL provides four constant keywords to obtain current date and time values. Values are obtained at an
arbitrary point during query evaluation.

GMT time and date are independent of any daylight savings rules, while System time and date are subject to
daylight savings rules.

Keyword

Description

CURRENT_TI MESTAVP

Obtains current date and time in GMT.

SYSTI MESTAMP Obtains current date and time in server time zone.
CURRENT_DATE Obtains current date in GMT.
SYSDATE Obtains system date in server time zone.

/} Note: CURRENT _DATE and SYSDATE return dateTime data types where time fields are reset to zero.

The following example retrieves the average duration of service:

RETURN Exanpl e AS

SELECT AVG(CURRENT_DATE -

GROUP

Di nEnpl oyee_Hi reDate) AS DurationCOf Service

Constructing date and time values

EQL provides functions to construct a timestamp representing time, date, or duration using an expression.

If the expression is a string, it must be in a certain format. If the format is invalid or the value is out of range, it

results in NULL.

Function Description Format

TO_TIME Qonstructs A |<TimesStri ng Format > ::=hh: mMm ss[.sss] ((+|-) hh: mm| 2)
timestamp
representing
time.

TO_DATETI ME | Constructs a

timestamp
representing

date and time.

<DateTine String Format>::=[-]YYYY- MVt DDT<Ti ne Stri ng
For mat >

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

EQL Syntax and Semantics

32

<Seconds>)]

Function Description Format

TO_DURATION Qonstructs 4 |<DurationStri ng Format > :: =
timestamp
representing | [-] P[<Days>] [T(<Hour s>[<M nut es>} [<Seconds>] |
duration.

<M nut es>[<Seconds>] |

<Days>::=<lInteger>D

<Hour s>:: =<l nteger>H

<M nut es>:: =<l nt eger >M
<Seconds>::=<Integer>[.<Integer>]S

As stated in the Format column above, TO Tl ME and TO_DATETI ME accept time zone offset. However, EQL
does not store the offset value. Instead, it stores the value normalized to the GMT timezone.

The following table shows the output of several date and time expressions:

Expression

Normalized value

TO_DATETI ME(' 2012-03-
21T16: 00: 00. 000+02: 00")

2012-03-21T14:00:00.000Z

TO_DATETI ME(' 2012- 12- 31T20: 00: 00. 000-
06: 00")

2013-01-01T02:00:00.000Z

TO_DATETI ME(' 2012- 06- 15T20: 00: 00. 000Z")

2012-06-15T20:00:00.000Z

TO_TI ME(" 23: 00: 00. 000+03: 00")

20:00:00.000Z

TO_TI ME(' 15: 00: 00. 000- 10: 00")

01:00:00.000Z2

Timezone manipulation

EQL provides two functions to obtain the corresponding timestamp in different timezones.

EQL supports the standard IANA Time Zone database (https://www.iana.org/time-zones).

e TO_TZ Takes a timestamp in GMT, looks up the GMT offset for the specified timezone at that time in
GMT, and returns a timestamp adjusted by that offset. If the specified timezone does not exist, the result
is NULL. For example, TO TZ(dat eTi e, ' Ameri ca/ New_Yor k') answers the question, "What time
was it in America/New_York when it was dat eTi me in GMT?"

 FROM TZ Takes a timestamp in the specified timezone, looks up the GMT offset for the specified
timezone at that time, and returns a timestamp adjusted by that offset. If the specified timezone does not
exist, the result is NULL. For example, FROM TZ(dat eTi e, ' EST') answers the question, "What time

was it in GMT when it was dat eTi ne in EST?"

The following table shows the results of several timezone expressions:

Oracle® Endeca Server: Query Language Reference

Version 2.3.0 « June 2012 ¢ Revision A

https://www.iana.org/time-zones

EQL Syntax and Semantics

33

Expression

Results

TO TZ(TO_DATETI ME(' 2012-07-
05T16: 00: 00. 000Z"), " Ameri ca/ New_York')

2012-07-05T12:00:00.000Z

TO TZ(TO DATETI ME(' 2012- 01-
05T16: 00: 00. 000Z'), ' Aneri ca/ New _York')

2012-01-05T11:00:00.000Z

FROM TZ(TO _DATETI ME(' 2012- 07-
05T16: 00: 00. 000Z'),
" Aneri cal/ Los_Angel es')

2012-07-05T23:00:00.000Z

FROM TZ(TO DATETI ME(' 2012- 01-
05T16: 00: 00. 000Z'),
" Aneri cal/ Los_Angel es')

2012-01-06T00:00:00.000Z

Using EXTRACT to extract a portion of a dateTime value

The EXTRACT function extracts a portion of a dat eTi me value, such as the day of the week or month of the
year. This can be useful in situations where the data must be filtered or grouped by a slice of its timestamps,
for example to compute the total sales that occurred on any Monday.

The syntax of the EXTRACT function is:

<Extract Expr >
<Dat eTi meUni t >

EXTRACT(<expr >, <Dat eTi neUni t >)
SECOND | M NUTE | HOUR | DAY_OF WEEK |

DAY_OF MONTH | DAY_OF YEAR | DATE | WEEK |
MONTH | QUARTER | YEAR | JULI AN DAY NUVBER

Date Time Unit Range of Returned Notes
Values

SECOND (0 - 59)

M NUTE (0 - 59)

HOUR (0 - 23)

DAY OF WEEK @a-7 Returns the rank of the day within the week,
where Sunday is 1.

DAY_OF MONTH (DATE) (1 -31)

DAY_OF_YEAR (1 - 365)

VEEK (1-53) Returns the rank of the week in the year, where
the first week starts on the first day of the year.

MONTH (1-12)

QUARTER a-4 Quarters start in January, April, July, and
October.

Oracle® Endeca Server: Query Language Reference

Version 2.3.0 « June 2012 ¢ Revision A

EQL Syntax and Semantics

34

Date Time Unit Range of Returned Notes
Values
YEAR (-4713 - 9999)
JULI AN_DAY_ NUMBER (0 - 5373484) Returns the integral number of whole days
between the timestamp and midnight, 24
November -4713.

For example, the dat eTi ne attribute TimeStamp has a value representing 10/13/2011 11:35:12.000. The
following list shows the results of using the EXTRACT operator to extract each component of that value:

EXTRACT(" Ti meSt anp”, SECOND) = Q2
EXTRACT(" Ti meSt anp”, M NUTE) = 35
EXTRACT(" Ti meSt anp”, HOUR) = i
EXTRACT(" Ti neSt anp", DATE) = 13
EXTRACT(" Ti meSt anp”, WEEK) =4
EXTRACT(" Ti meSt anp”, NMONTH) = 10
EXTRACT(" Ti meSt anp”, QUARTER) =4
EXTRACT(" Ti meSt anp", YEAR) = 2011
EXTRACT(" Ti meSt anp”, DAY_OF WEEK) =5
EXTRACT(" Ti meSt anp", DAY_OF_MONTH) = 13
EXTRACT(" Ti meSt anp”, DAY_OF_YEAR) = 286
EXTRACT(" Ti meSt anp”, JULI AN_DAY_NUVBER) = 2455848

Here is a simple example of using this functionality. The following statement groups the total value of the
Amount attribute by quarter, and for each quarter computes the total sales that occurred on a Monday
(DAY_OF_WVEEEK=2):
RETURN Quarters AS
SELECT SUM Anpunt) AS Tot al
TRUNC(Ti meSt anp, QUARTER) AS Qtr
WHERE EXTRACT(Ti meSt anp, DAY_OF WEEK) = 2
GROUP BY Qr

The following example allows you to sort claims in buckets by age:

DEFI NE C ai nsW t hAge AS
SELECT

FLOOR((EXTRACT(TO_TZ(CURRENT_TI NESTAMP, cl ai m t z) , JULI AN_DAY_NUVBER) - EXTRACT(TO TZ(cl ai m ts, cl aimtz),

JULI AN_DAY_NUMBER))/ 7) AS "Agel n\Weeks",
COUNT(1) AS "Count"

GROUP BY " Agel n\eeks"

HAVI NG " Agel n\eeks" < 2

ORDER BY " Agel n\eeks";

RETURN Result AS
SELECT
CASE Agel n\eeks
WHEN O THEN ' Past 7 Days'
WHEN 1 THEN ' Prior 7 Days'
ELSE ' O her'
END
AS "Label ",
" Count "
FROM Revi ewsW t hAge

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

EQL Syntax and Semantics 35

Using TRUNC to round down dateTime values

The TRUNC function can be used to round a dat eTi nme value down to a coarser granularity.

For example, this may be useful when you want to group your statement results data for each quarter using a
dat eTi ne attribute.

The syntax of the TRUNC function is:

<Tr uncExpr > TRUNC(<expr >, <Dat eTi meUni t >)

<dat eTi meUni t > SECOND | M NUTE | HOUR |
DATE | WEEK | MONTH | QUARTER | YEAR
DAY _OF WEEK | DAY _OF _MONTH | DAY_OF_YEAR
JULI AN_DAY_NUVBER

/,.s Note: WEEK truncates to the nearest previous Sunday.

For example, the dat eTi ne attribute TimeStamp has a value representing 10/13/2011 11:35:12.000. The list
below shows the results of using the TRUNC operator to round the TimeStamp value at each level of
granularity. The values are displayed here in a format that is easier to read—the actual values would use the
standard Endeca dat eTi me format.
TRUNC(" Ti meSt anp”, SECOND)

TRUNC(" Ti meSt anp”, M NUTE)
TRUNC(" Ti meSt anp”, HOUR)

10/13/ 2011 11:35:12. 000
10/ 13/ 2011 11: 35:00. 000
10/ 13/ 2011 11:00: 00. 000

TRUNC(" Ti meSt anp”, DATE) 10/ 13/ 2011 00: 00: 00. 000
TRUNC(" Ti meSt anp”, WEEK) 10/ 09/ 2011 00: 00: 00. 000
TRUNC(" Ti meSt anp”, NMONTH) 10/ 01/ 2011 00: 00: 00. 000
TRUNC(" Ti meSt anp”, QUARTER) 10/ 01/ 2011 00: 00: 00. 000

TRUNC(" Ti meSt ar‘r’p": YEAR) 01/01/2011 00: 00: 00. 000

TRUNC(" Ti meSt anp”, DAY_OF_\EEK) 10/ 13/ 2011 00: 00: 00: 000
TRUNC(" Ti meSt anp”, DAY_OF_MONTH) 10/ 13/ 2011 00: 00: 00: 000
TRUNC(" Ti meSt anp”, DAY_OF_YEAR) 10/ 13/ 2011 00: 00: 00: 000

TRUNC(" Ti meSt anp”, JULI_AN:DAY_NUI\/BER) 10/ 13/ 2011 00: 00: 00: 000

Here is a simple example of using this functionality. In the following statement, the total value for the Amount
attribute is grouped by quarter. The quarter is obtained by using the TRUNC operation on the TimeStamp
attribute:

RETURN Quarters AS
SELECT SUM Anount) AS Tot al ,
TRUNC(Ti meSt anp, QUARTER) AS Qir
GROUP BY Qr
Using arithmetic operations on date and time values

In addition to using the TRUNC and EXTRACT functions, you also can use normal arithmetic operations with
date and time values.

The following are the supported operations:
» Add or subtract a duration to or from a time or a dateTime to obtain a new time or dateTime.
» Subtract two times or dateTimes to obtain a duration.
» Add or subtract two durations to obtain a new duration.
* Multiply or divide a duration by a double number.

» Divide a duration by a duration.

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

EQL Syntax and Semantics

36

The following table shows the results of several arithmetic operations on date and time values:

Expression

Results

2012-10-05T00: 00: 00. 000Z + P30D

2012-11-04T00:00:00.000Z

2012-10-05T00: 00: 00. 000Z - PTO1M

2012-10-04T23:59:00.000Z

23: 00: 00. 000Z + PTO2H

01:00:00.00

20: 00: 00. 000Z - PTO2S

19:59:58.000Z

2012-01-01T0O: 00: 00. 000Z - 2012-12-
31T00: 00: 00. 000Z

-P365DTOHOMO0.000S

23:15: 00. 000Z - 20: 12: 30. 500z

PODT3H2M29.500S

P1500DTOHOM). 000S - P500DTOHOM). 000S

P1000DTOHOMO.000S

P1DTOH30M). 500S * 2. 5

P2DT13H15M1.250S

P1DTOH30M). 225S/ 2

PODT12H15M0.112S

P5DT12HOOM). 000S/ P1DTOHOOM. 000S

5.5

Arithmetic operators

EQL supports arithmetic operators for addition, subtraction, multiplication, and division.

The syntax is as follows:

<expr>{+, -, *, |} <expr>

Each arithmetic operator has a corresponding numeric function. For information on order of operations, see

Operator precedence rules on page 19.

Boolean operators

EQL supports the Boolean operators AND, OR, and NOT.

For information on order of operations, see Operator precedence rules on page 19.

Using EQL results to compose follow-on queries

You can select a value in an EQL result and use it to compose a follow-on query.

This enables users to interact with EQL results through a chart or a graph to compose follow-on queries. For

example, when viewing a chart of year-to-date sales by country, a user might select a specific country for drill-

down.

EQL is specifically designed to support this kind of follow-on query.

Oracle® Endeca Server: Query Language Reference

Version 2.3.0 « June 2012 ¢ Revision A

EQL Syntax and Semantics 37

If, in the above example, the user selects the country United States, then the follow-on query should examine
only sales of products in the United States. To filter to these items, a WHERE clause like the following can be

added:

VWHERE Di mCeogr aphy_CountryRegi onName = ' United States'

For attributes with types other than string, a conversion is necessary to use the string representation of the
value returned by EQL. For an integer attribute, like Di nDat e_Cal endar Year , the string representation of
the value must be converted to an integer for filtering, as follows:

WHERE Di nDat e_Cal endar Year = TO_| NTEGER(' 2006').

EQL provides conversions for all non-string data types:
« TO BOOLEAN()

« TO DATETI ME()

« TO_DOUBLE()

« TO_DURATI ON()

 TO_GEOCODE()

e TO_I NTEGER()

o TO_TI ME()

Each of these accepts the string representation of values produced by the Endeca Server. Note that, for
nmdex: st ri ng attributes (including managed attributes), no conversion is necessary.

To determine which conversion function to use, EQL results are accompanied by attribute metadata that
describes both the type of the attribute, and, for managed attributes, any associated hierarchy.

Filtering to a node in a hierarchy

When filtering to a node in a hierarchy, such as ProductCategory, users typically want to filter to records that
are tagged with a particular value or any of its descendants. For example, if a user drills into Accessories,
filtering to records tagged with Accessories will return no results. However, filtering with:

WHERE | S_DESCENDANT(Pr oduct Cat egory, ' Accessories')

produces the desired result of filtering to records tagged with Accessories or any descendent thereof.

Using AS expressions to calculate derived attributes

EQL statements typically use expressions to compute one or more derived attributes.

Each aggregation operation can declare an arbitrary set of named expressions, sometimes referred to as
derived attributes, using SELECT AS syntax. These expressions represent aggregate analytic functions that

are computed for each aggregated record in the statement result.

A_ Important: Derived attribute names must be NCName-compliant. They cannot contain spaces or
special characters. For example, the following statement would not be valid:

RETURN price AS SELECT AVG Price) AS "Average Price"

<

The space would have to be removed:
RETURN price AS SELECT AVQ Price) AS "AveragePrice"

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

EQL Syntax and Semantics 38

The NCName format is defined in the W3C document Namespaces in XML 1.0 (Second Edition), located at
this URL: http://www.w3.0rg/TR/REC-xml-names/.

COALESCE

The COALESCE expression allows for user-specified NULL-handling. It is often used to fill in missing values in
dirty data.

It has a function-like syntax, but can take unlimited arguments, for example: COALESCE(a, b, c, x, vy, z).

You can use the COALESCE expression to evaluate records for multiple values and return the first non-NULL
value encountered, in the order specified. The following requirements apply:

* You can specify two or more arguments to COALESCE.

* Arguments that you specify to COALESCE must all be of the same type, with the following exceptions:
* Integers with doubles (resulting in doubles)
» Strings with managed attributes (resulting in managed attributes)

In the following example, all records without a specified price are treated as zero in the computation:
AVG(COALESCE(price, 0))

COALESCE can also be used without aggregation, for example:
SELECT COALESCE(price, 0) AS price_or_zero WHERE . ..

CASE

CASE expressions allow conditional processing in EQL, allowing you to make decisions at query time.
The syntax of the CASE expression, which conforms to the SQL standard, is:

CASE
WHEN <Bool ean expression> THEN <expr essi on>
[WHEN <Bool ean expressi on> THEN <expr essi on>] *
[ELSE expression]

END

CASE expressions must include at least one WHEN expression. The first WHEN expression with a TRUE
condition is the one selected. NULL is not TRUE. The optional ELSE clause must always come at the end of
the CASE statement and is equivalent to WHEN TRUE THEN. If no condition matches, the result is NULL.

In this example, division by non-positive integers is avoided:

CASE

END

In this example, records are categorized as Recent or Old:

RETURN Result AS
SELECT
CASE
WHEN (Days < 7) THEN ' Recent'
ELSE ‘A d’
END AS Age

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

http://www.w3.org/TR/REC-xml-names/

EQL Syntax and Semantics 39

The following example groups all records by class and computes the following:
» The minimum DealerPrice of all records in class H.
» The minimum ListPrice of all records in class M.
e The minimum StandardCost of all other records (called class L).

RETURN CaseExanpl e AS SELECT

CASE
WHEN Class = 'H THEN M N(Deal erPri ce)
WHEN Class = 'M THEN M N(ListPrice)
ELSE M N(St andar dCost)
END
AS val ue

GROUP BY dl ass

Using inter-statement references

In EQL, you can define statements and then refer to these statements from other statements.

Multiple EQL sub-queries can be specified within the context of a single navigation query, each corresponding
to a different analytical view, or to a sub-total at a different granularity level.

Expressions also can use values from other computed statements. This is often useful when coarser subtotals
are required for computing analytics within a finer-grained bucket.

For example, when computing the percent contribution for each sales representative in a given year, you must
also calculate the overall total for the year. You can use inter-statement references to create these types of
queries.

Syntax for inter-statement references

The syntax for an inter-statement reference is:

<st at ement nane>[<LookupLi st>].<attribute nanme>

<enpty>
<Si npl eExpr > [, <LookupLi st >]

<LookupExpr >
<LookuplLi st >

The square brackets are used to identify the record set and grouping attribute, and the dot is used to identify
the field.

Referencing a value from another statement

For example, suppose we want to compute the percentage of sales per ProductType per Region. One
aggregation computes totals grouped by Region, and a subsequent aggregation computes totals grouped by
Region and ProductType.

This second aggregation would use expressions that referred to the results from the Region aggregation. That
is, it would allow each Region and ProductType pair to compute the percentage of the full Region subtotal
represented by the ProductType in this Region.

DEFI NE Regi onTotal s AS

SELECT SUM Anpunt) AS Tot al
GROUP BY Regi on

RETURN Pr oduct Pcts AS
SELECT

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

EQL Syntax and Semantics 40

100 * SUM Anpunt) / Regi onTot al s[Regi on] . Total AS Pct Tot al
GROUP BY Regi on, Product Type

The first statement computes the total product sales for each region. The next statement then uses the
RegionTotals results to determine the percentage for each region, making use of the inter-statement reference

syntax.

» The bracket operator indicates to reference the RegionTotals result that has a group-by value equal to the
ProductPcts value for the Region attribute.

» The dot operator indicates to reference the Total field in the specified RegionTotals record.

Computing percentage of sales
This example computes for each quarter the percentage of sales for each product type.
This query requires calculating information in one statement in order to use it in another statement.

To compute the sales of a given product as a percentage of total sales for a given quarter, the quarterly totals
must be computed and stored. The calculations for quarter/product pairs can then retrieve the corresponding

quarterly total.

DEFI NE QuarterTotal s AS
SELECT SUM Anpunt) AS Tot al
CROUP BY Quarter ;

RETURN Pr oduct Pcts AS
SELECT
100 * SUM Anpunt) / QuarterTotal s[Quarter].Total AS Pct Total

GROUP BY Quarter, ProductType

IN

I N expressions perform a membership test.

I N expressions address use cases where you want to identify a set of interest, and then filter to records with
attributes that are in or out of that set. They are useful in conjunction with HAVI NG and PAGE expressions.

The syntax is as follows:

[Attrl, Attr2, .] IN StatenentNane

The example below helps answer the questions, "Which products do my highest value customers buy?" and
"What is my total spend with suppliers from which | purchase my highest spend commodities?"

DEFI NE Hi ghVal ueCust AS SELECT
SUM Sal esAnpbunt) AS Val ue

GROUP BY Custld

HAVI NG Val ue>10000 ;

RETURN Top_HVC Products AS SELECT
COUNT(1) AS NunBal es

WHERE [Custld] I N H ghVal ueCust

GROUP BY Product Nanme

ORDER BY Nunfal es DESC

PAGE(0, 10)

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

EQL Syntax and Semantics 41

LOOKUP

A LOOKUP expression is a simple form of join. It treats the result of a prior statement as a lookup table.

Its syntax is as follows:

<st at ement >[<expression |list>].<attribute>

The expression list corresponds to the grouping attributes of the specified statement. If any of the expressions
in the list is NULL, the result is NULL.

Lookup attributes refer to GROUP BYs of the target statement, in order. Computed lookup of indexed values is
allowed, which means you can look up related information, such as total sales from the prior year, as shown in
the following example:

DEFI NE Year Total s AS SELECT
SUM Sal esAnpunt) AS Tot al
GROUP BY Year ;

RETURN Annual Cat egoryPcts AS SELECT
SUM Sal esAnpbunt) AS Tot al ,
Tot al / Year Tot al s[Year] . Total AS Pct
CROUP BY Year, Category ;

RETURN YoY AS SELECT
Year Tot al s[Year] . Total AS Total,
Year Tot al s[Year-1]. Total AS Prior,
(Total -Prior)/Prior AS PctChange
GROUP BY Year

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

Chapter 3
EQL Use Cases

This section introduces a number of use case examples for various business scenarios. The examples in this
section are not based on a single data schema.
Re-normalization

Grouping by range buckets

Manipulating records in a dynamically computed range value
Grouping data into quartiles

Combining multiple sparse fields into one

Counting multi-assign terms

Joining data from different types of records

Joining on hierarchy

Linear regressions in EQL

Using an IN filter for pie chart segmentation

Running sum

Query by age

Calculating percent change between most recent month and previous month

Re-normalization

Re-normalization is important in denormalized data models in the Endeca Server, as well as when analyzing
multi-value attributes.

In the Quick Start data, Employees were de-normalized onto Transactions, as shown in the following example:

DimEmployee_FullName: Tsvi Michael Reiter
DimEmployee_HireDate: 2005-07-01T04:00:00.000Z
DimEmployee_Title: Sales Representative
FactSales RecordSpec: S049122-2
FactSales_SalesAmount: 939.588

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

EQL Use Cases 43

Incorrect
The following EQL code double-counts the tenure of Employees with multiple transactions:

RETURN AvgTenure AS SELECT
AVG(CURRENT_DATE - Di nEnpl oyee_HireDate) AS AvgTenure GROUP BY Di nEnpl oyee Title

Correct
In this example, you re-normalize each Employee, and then operate over them using FROM

DEFI NE Enpl oyees AS SELECT
Di nEnpl oyee_Hi reDat e AS Di nEnpl oyee_Hi reDat e,
Di nEnpl oyee _Titl e AS Di nEnpl oyee Title GROUP BY D nEnpl oyee Enpl oyeeKey;

RETURN AvgTenure AS SELECT
AVG(CURRENT_DATE - Di nEnpl oyee_Hi reDate) AS AvgTenure FROM Enpl oyees GROUP BY Di nEnpl oyee Title

Grouping by range buckets

To create value range buckets, divide the records by the bucket size, and then use FLOOR or CEI L if needed
to round to the nearest integer.

The following examples group sales into buckets by amount:

/**
* This groups results into buckets by anount,
* rounded to the nearest 1000.
*/

RETURN Results AS

SELECT
ROUND(Fact Sal es_Sal esAmount, -3) AS Bucket,
COUNT(1) AS "Count"

GROUP BY Bucket

/**
* This groups results into buckets by anount,
* truncated to the next-lower 1000.
*/
RETURN Resul ts AS
SELECT
FLOOR(Fact Sal es_Sal esAnount / 1000) *1000 AS Bucket ,
COUNT(1) AS "Count"
GROUP BY Bucket

A similar effect can be achieved with ROUND, but the set of buckets is different:
e FLOOR(900/1000) =0
e ROUND(900, -3) =1000
In the following example, records are grouped into a fixed number of buckets:
DEFI NE Val ueRange AS SELECT
COUNT(1) AS "Count"
GROUP BY Sal esAnpunt
HAVI NG Sal esAnpunt > 1.0
AND Sal esAnmpbunt < 10000. 0;
RETURN Buckets AS SELECT

SUM " Count ") AS "Count",
FLOOR((Sal esAmpbunt - 1)/999. 0) AS Bucket

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

EQL Use Cases 44

FROM Val ueRange
GROUP BY Bucket
ORDER BY Bucket

Manipulating records in a dynamically computed range
value

The following scenario describes how to manipulate records in a dynamically computed range value.

In the following example:
* Use GROUP to calculate a range of interest.
» Empty LOOKUP to get the range of interest into the desired expression.

» Use subtraction and HAVI NGto enable filtering by a dynamic value (instead of a static constant, as
required by WHERE).

DEFI NE Cust oner Total s AS SELECT
SUM Sal esAnpunt) AS Tot al
CGROUP BY Cust oner Key ;

DEFI NE Range AS SELECT
MAX(Tot al) AS MaxVal ,
M N(Total) AS M nVal,
((MaxVal - M nVal)/ 10) AS Decil e,
M nVal + (Decile*9) AS ToplOPct
FROM Cust oner Tot al s GROUP ;

RETURN Result AS SELECT

SUM Sal esAnpbunt) AS Tot al ,

Tot al - Range[] . Topl0Pct AS Diff
CROUP BY Cust oner Key
HAVI NG Di f f >0

Grouping data into quartiles

EQL allows you to group your data into quartiles.
The following example demonstrates how to group data into four roughly equal-sized buckets.

/* This finds quartiles in the range
* of Product SubCat egory, arranged by
* total sales. Adjust the grouping
* attribute and nmetric to your use case.
*/
DEFI NE | nput AS SELECT
Pr oduct Subcat egor yNane AS Key,
SUM Fact Sal es_Sal esAmount) AS Metric
GROUP BY Key
ORDER BY Metri c;

DEFI NE Quartil elRecords AS SELECT
Key AS Key,
Metric AS Metric

FROM | nput

ORDER BY Metric

PAGE(0, 25) PERCENT;

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

EQL Use Cases

45

/* Using MAX(Metric) as the Quartile boundary isn't quite
* right: if the boundary falls between two records,
* quartile is the average of the values on those two records.

* But this gives the right groupings.
*
/
DEFI NE Quartilel AS SELECT
MAX(Metric) AS Quartile,

SUM Metric) AS Metric /* ...or any other aggregate */

FROM Quarti |l elRecords
GROUP;

DEFI NE Quartil e2Records AS SELECT
Key AS Key,
Metric AS Metric

FROM | nput

ORDER BY Metric

PAGE(25, 25) PERCENT;

DEFI NE Quartile2 AS SELECT
MAX(Metric) AS Quartile,
SUM Metric) AS Metric

FROM Quartil e2Recor ds

GROUP;

DEFI NE Quartil e3Records AS SELECT
Key AS Key,
Metric AS Metric

FROM | nput

ORDER BY Metric

PAGE(50, 25) PERCENT;

DEFI NE Quartile3 AS SELECT
MAX(Metric) AS Quartile,
SUM Metric) AS Metric

FROM Quartil e3Records

GROUP;

DEFI NE Quartil e4Records AS SELECT
Key AS Key,
Metric AS Metric

FROM | nput

ORDER BY Metric

PAGE(75, 25) PERCENT;

DEFI NE Quartiled4 AS SELECT
MAX(Metric) AS Quartile,
SUM Metric) AS Metric

FROM Quarti | e4Recor ds

CGROUP;

/**

The technical definition of "Quartile" is

the val ues that segnent the data into four
roughly equal groups. Here, we return not
just the Quartiles, but the nmetric aggregated
over the records within the groups defined

by the Quartiles.

EE

RETURN Quartiles AS

SELECT
Quartile AS Quartilel,
Metric AS QuartilelMetric,
Quartile2[].Quartile AS Quartile2,
Quartile2[].Metric AS Quartile2Metric,
Quartile3[].Quartile AS Quartile3,
Quartile3[].Metric AS Quartile3Metric,
Quartiled[].Quartile AS Quartil e4,

Quartiled[].Metric AS QuartiledMetric FROM Quartil el;

Oracle® Endeca Server: Query Language Reference

Version 2.3.0 « June 2012 ¢ Revision A

EQL Use Cases

46

Combining multiple sparse fields into one

EQL allows you to combine multiple sparse fields into a single field.

In the example below, we use the AVG and COALESCE functions to combine the | easePaynent and
| oanPaynent fields into a single avgPaynent field.

ID | Make Model | Type leasePayment | loanPayment
1| Audi A4 lease 380
2 | Audi Ad loan 600
3| BMW 325 lease 420
4 | BMW 325 loan 700

RETURN Result AS SELECT
AVGE COALESCE(| oanPaynent , | easePaynent))
AS avgPaynment
FROM Conbi nedCol umms
GROUP BY make

Counting multi-assign terms

Take care when counting multi-assign terms to ensure you capture all assignments.
The first, incorrect example only counts a single arbitrary term assignment per record scanned:

RETURN Ter mCounts AS SELECT
COUNTDI STI NCT(Term) as Nunilfernms, /* wong; termis de-nulti-assigned
* prior to COUNTDI STI NCT */
COUNT(Term) as NumAssi gnnment s

CROUP BY Cat egory

The second, correct example uses a SUMof COUNTs pattern. This pattern can be used any time where it is
useful to first produce partial COUNTs and then add them up to get the total COUNT.

DEFI NE Ternms AS SELECT

COUNT(1) AS Assignnents
GROUP BY Term Category ;

RETURN Ter nCounts AS SELECT
COUNTDI STI NCT(Tern) as Nuniler ns,
SUM Assi gnnents) AS NumAssi gnnent s
FROM Ter s
GROUP BY Cat egory

Joining data from different types of records

You can use EQL to join data from different types of records.

Use lookups against Al | BaseRecor ds to avoid eliminating all records of a secondary type when navigation
refinements are selected from an attribute only associated with the primary record type.

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

EQL Use Cases 47

In the following example, the following types of records are joined:
Record type 1

Recor dType: Revi ew

Rating: 4

Productld: Drill-X15

Text: Thisis agreat product. ..

Record type 2

Recor dType: Transaction
Sal esAmount : 49. 99
Productld: Drill-X15

DEFI NE Ratings AS SELECT
AVGE Rating) AS AvScore

FROM Al | BaseRecor ds

WHERE RecordType = ' Revi ew

GROUP BY Productld ;

RETURN TopProducts AS SELECT
SUM Sal esAnpunt) AS Tot al Sal es,
Rat i ngs[Product | d] . AvScore AS AvScore
WHERE RecordType = ' Transacti on'
GROUP BY Product | d
ORDER BY Tot al Sal es DESC
PAGE(0, 10)

Joining on hierarchy

The following example shows a transitive join on hierarchy.

This query returns the number of reports in each manager's Or g. (Or g is a managed attribute representing
organizational structure.)

RETURN SELECT

COUNT(1) AS Tot al Menbers,

manager. Org AS Og
FROM Peopl e nanager

JA N Peopl e report

ON | S_ANCESTOR(manager. Org, report. O g)
GROUP BY Org

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

EQL Use Cases

48

Linear regressions in EQL

Using the syntax described in this topic, you can produce linear regressions in EQL.

Using the following data set:

ID X Y
1 60 3.1
2 61 3.6
3 62 3.8
4 63 4
5 65 4.1

The following simple formulation:
y = A+ Bx
Can be expressed in EQL as:

RETURN Regr essi on AS SELECT
COUNT(I D) AS N,
SUM X) AS sunk,
SUM Y) AS suny,
SUM X*Y) AS sunXY,
SUM X*X) AS sumX2,
((N*sunXY) - (sumX*sunv)) /
((NfsumX2) - (sumX*sumX)) AS B,
(sum¥- (B*sunX))/ N AS A

GROUP

With the result:

N sumX sumY sumxXxY

sumx2

B A

5 311.000000 | 18.600000 1159.700000

19359.000000

0.187838 -7.963514

Using the regression results
Fory = A+ Bx:

DEFI NE Regressi on AS SELECT
COUNT(I D) AS N,
SUM X) AS sunk,
SUM Y) AS suny,
SUM X*Y) AS sumXy,
SUM X*X) AS sumX2,
((NFsunXY) - (sumX*sunv)) /
((NfsumX2) - (sumX*sumX)) AS B,
(sum¥- (B*sunX))/ N AS A

GROUP

RETURN Resul ts AS SELECT

Oracle® Endeca Server: Query Language Reference

Version 2.3.0 « June 2012 ¢ Revision A

EQL Use Cases 49

Y AS Y, X AS X, Regression[].A + Regression[].B * X AS Projection

As a final step in the example above, you would need to PAGE or GROUP what could be a very large number of
results.

Using an IN filter for pie chart segmentation

This query shows how the I Nfilter can be used to populate a pie chart showing sales divided into six
segments: one segment for each of the five largest customers, and one segment showing the aggregate sales
for all other customers.

The first statement gathers the sales for the top five customers, and the second statement aggregates the
sales for all customers not in the top five.

RETURN Top5 AS SELECT
SUM Sal e) AS Sal es
GROUP BY Cust omer
ORDER BY Sal es DESC
PAGE(0, 5) ;

RETURN O hers AS SELECT

SUM Sal e) AS Sal es

WHERE NOT [Custoner] IN Top5
CGROUP

Running sum

A running (or cumulative) sum calculation can be useful in warranty scenarios.

/* This selects the total sales in the
* 12 nost recent nonths.
“f
DEFI NE | nput AS SELECT
Di nDat e_Cal endar Year AS "Year",
Di nDat e_Mont hNunber O Year AS " Mont h",
SUM Fact Sal es_Sal esAmount) AS Tot al Sal es GROUP BY "Year", "Month"
ORDER BY "Year" DESC, "Month" DESC
PAGE(0, 12);

RETURN Cunul ati veSum AS SELECT
one. "Year" AS "Year",
one. "Mounth" AS "Mnth",
SUM many. Tot al Sal es) AS Tot al Sal es
FROM | nput one JO N | nput many
ON ((one."Year" > many."Year") OR
(one."Year" = many."Year" AND
one. "Mont h" >= many. " Mont h")

)
GROUP BY "Year", "Month"
ORDER BY "Year", "Month"

Query by age
In this example, records are tagged with a Date attribute on initial ingest. No updates are necessary.

RETURN Result AS

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

EQL Use Cases 50

SELECT
EXTRACT(CURRENT_DATE,
JULI AN_DAY_NUMBER) -
EXTRACT(Dat e, JULI AN_DAY_NUMBER)
AS Agel nDays
HAVI NG (Agel nDays < 30)

Calculating percent change between most recent month and
previous month

The following example finds the most recent month in the data that matches the current filters, and compares
it to the prior month, again in the data that matches the current filters.

/* This conputes the percent change between the npst
* recent nmonth in the current nav state, conpared to the prior
* month in the nav state. Note that, if there's only
* one nonth represented in the nav state, this will return NULL.
*/
DEFI NE | nput AS SELECT
Di nDat e_Cal endar Year AS "Year",
Di nDat e_Mont hNunber O Year AS " Mont h",
Di nDat e_Cal endar Year * 12 + Di nDat e_Mont hNunber O Year AS O di nal Mont h,
SUM Fact Sal es_Sal esAnobunt) AS Tot al Sal es GROUP BY O di nal Mont h;

RETURN Result AS SELECT
"Year" AS "Year",
"Mont h" AS "Mont h",
Tot al Sal es AS Tot al Sal es,
I nput [Ordi nal Month - 1]. Tot al Sal es AS Pri or Mont hSal es,
100 * (Total Sal es - PriorMnthSal es)
/ PriorMnthSal es AS Percent Change FROM | nput ORDER BY "Year" DESC, "Month" DESC PAGE(0, 1)

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

Chapter 4
EQL Best Practices

This section discusses ways to maximize your EQL query performance.

Controlling input size
Filtering as early as possible
Controlling join size

Additional tips

Controlling input size

The size of the input for a statement can have a big impact on the evaluation time of the query.

The input for a statement is defined by the FROMclause. If no FROMclause is provided, the input defaults to
the Nav St at eRecor ds. When possible, use an already completed result from another statement, instead of
using corpus records, to avoid inputting unnecessary records.

Consider the following queries. In the first query, the input to each statement is of a size on the order of the
navigation state. In the first two statements, Sums and Totals, the data is aggregated at two levels of
granularity. In the last statement, the data set is accessed again for the sole purpose of identifying the
month/year combinations that are present in the data. The computations of interest are derived from
previously-computed results.

DEFI NE Suns AS SELECT
SUM a) AS Mont hl yTot al
GROUP BY nont h, year ;

DEFI NE Total s AS SELECT
SUM a) AS Yearl yTot al
GROUP BY year;

DEFI NE Result AS SELECT

Suns[nont h, year] . Mont hl yTot al AS Mont hl yTot al ,

Suns[nont h, year] . Mont hl yTot al / Tot al s[year]. Yearl yTotal AS Fraction
GROUP BY nont h, year

In the following rewrite of the query, the index is accessed only once. The first statement accesses the index
to compute the monthly totals. The second statement has been modified to compute yearly totals using the
results of the first statement. Assuming that there are many records per month, the savings could be multiple
orders of magnitude. Finally, the last statement has also been modified to use the results of the first
statement. The first statement has already identified all of the valid month/year combinations in the data set.
Rather than accessing the broader data set (possibly millions of records) just to identify the valid
combinations, the month/year pairs are read from the much smaller (probably several dozen records) previous
result.

DEFI NE Sunms AS SELECT
SUM a) AS Mont hl yTot al

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

EQL Best Practices 52

GROUP BY nont h, year;

DEFI NE Total s AS SELECT

SUM Mont hl yTot al) AS Year| yTot al
FROM Suns
CROUP year;

DEFI NE Result AS SELECT

Mont hl yTot al AS Mont hl yTot al ,

Mont hl yTot al / Tot al s[year] . Yearl yTotal AS Fraction
FROM Suns

Defining constants independent of data set size

A common practice is to define constants for a query through a single group, as shown in the first query
below. Note that the input for this query is the entire navigation state, even though nothing from the input is
used. Since none of the input is actually needed, restrict the input to the smallest size possible with a very
restrictive filter, such as the one shown in the second example.

DEFI NE Constants AS SELECT
500 AS Def aul t Quot a
GROUP

DEFI NE Constants AS SELECT

500 AS Def aul t Quot a
WHERE " ndex- property_Key" |I'S NOT NULL
GROUP

Filtering as early as possible

Filtering out rows as soon as possible improves query latency because it reduces the amount of data that
must be tracked through the evaluator.

Consider the following two versions of a query. The first form of the query first groups records by g, passes
each group through the filter (b < 10) , and then accumulates the records that remain. The input records are

not filtered, and the grouping operation must operate on all input records.

RETURN Result AS SELECT
SUMa) WHERE (b < 10) AS sum.a_blt10
GROUP BY g

The second form of the query filters the input (with the WHERE clause) before the records are passed to the
grouping operation. Thus the grouping operation must group only those records of interest to the query. By
eliminating records that are not of interest sooner, evaluation will be faster.

RETURN Results AS SELECT
SUMa) AS sum a_blt10,

VHERE (b < 10)

GROUP BY g

Another example of filtering records early is illustrated with the following pair of queries. Recall that a WHERE
clauses filters input records and a HAVI NG clause filters output records. The first query computes the sum for
all values of g and (after performing all of that computation) throws away all results that do not meet the
condition (g < 10).

RETURN Resul t AS SELECT

SUM a) AS sum a
GROUP BY g

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

EQL Best Practices 53

HAVING g < 10

The second query, on the other hand, first filters the input records to only those in the interesting groups. It
then aggregates only those interesting groups.

RETURN Resul t AS SELECT

SUM a) AS sum a

WHERE g < 10
GROUP BY g

Controlling join size

Joins can cause the Endeca Server to grow beyond available RAM. Going beyond the scale capabilities will
cause very, very large materializations, intense memory pressure, and can result in an unresponsive Endeca
Server.

Additional tips

This topic contains additional tips for working effectively with EQL.

e String manipulations are unsupported in EQL. Therefore, ensure you prepare string values for query
purposes in the data ingest stage.

» Normalize information to avoid double counting or summing, as well as to prevent the production of
arbitrary values with multi-assign attributes.

e Use a common case (upper case) for attribute string values when sharing attributes between data
sources.

» Name each DEFI NE statement something meaningful so that others reading your work can make sense of
what your logic is.

» Use paging in DEFI NE statements to reduce the number of records returned.

* When using CASE statements, bear in mind that all conditions and expressions are always evaluated,
even though only one is returned. If an expression is repeated across multiple WHEN clauses of a CASE
expression, it is best to factor the computation of that expression out into a separate SELECT, then re-use
it.

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

Index

A controlling input size 51

about EQL 1 controlling join size 53

about queries 4 COS function 26

ABS function 24 COUNTDISTINCT function 17, 26
COUNT function 17, 26
counting multi-assign terms 46

addition operator 24

aggregation
function filters 18 CROSS JOIN 8
functions 26 cumulative sum 49
nested 17

CURRENT_DATE function 31
CURRENT_TIMESTAMP function 31

with COUNT and COUNTDISTINCT 17
ANCESTOR function 27
ARB function 27 D
arithmetic operators 36

AVG function 26 data types 19

date and time 31

B date and time values 29
) constructing 31
best practices using arithmetic operations on 35

additional tips 53 DEFINE clause 6
controlling input size 51

defining constants 52 defining constants for best performance 52
filtering as early as possible 52 DISTANCE function 29
Boolean division operator 24
literal handling 20
operators 36 E
C EQL
case handling 21
calculate percent change over month 50 characters 20
CASE expression 38 commentirlg 5
PR concepts
case handling in EQL 21 handling of inf results 23
CEIL function 24 handling of multi-assign attribute values 18
characters in EQL 20 handling of NaN results 23
clauses handling of NULL results 21
DEFINE 6 hierarchy filtering 27
FROM 7 inter-statement references 39
GROUP 12 nested aggregation example 17
GROUP BY 12 overview 1
HAVING 14 processing order 3
JOIN SG SELECT AS statements 37
ORDER BY 14 SQL comparison 2
PAGE 15 syntax conventions 4
RETURN 6 evaluation time and input size 51
SELECT 65 EXP function 24
summary .
expressions 19
WHERE 11 _ CASE 38
COALESCE expression 38 COALESCE 38
combining multiple sparse fields into one 46 IN 40
commenting in EQL 5 LOOKUP 41

SELECT AS 37

concepts 1 EXTRACT function 33

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

Index

55

filtering 4
geocode 29
hierarchy 27
performance impact of 52
to a node in a hierarchy 37

filters
per-aggregation 18
using results values as 36
FLOOR function 25
follow-on queries 36
FROM_TZ function 32
FROM clause 7
FULL JOIN 8

functions
ABS 24
aggregation 26
ANCESTOR 27
ARB 27
arithmetic operators 36
AVG 26
CEIL 24
COS 26
COUNT 17, 26
COUNTDISTINCT 17, 26
CURRENT_DATE 31
CURRENT_TIMESTAMP 31
date and time 29
DISTANCE 29
EXP 24
EXTRACT 33
FLOOR 25
FROM_TZ 32
GET_LCA 28
hierarchy 27
HIERARCHY_LEVEL 27
IS_ANCESTOR 28
IS_DESCENDANT 27
LATITUDE 29
LCA 28
LN 25
LOG 25
LONGITUDE 29
MAX 26
MEDIAN 27
MIN 27
MOD 25
numeric 24
POWER 26
ROUND 25
SIGN 25
SIN 26
SQRT 26
STDDEV 27
SUM 27
SYSDATE 31
SYSTIMESTAMP 31
TAN 26
TO_DATETIME 31

Oracle® Endeca Server: Query Language Reference

TO_DOUBLE 26
TO_DURATION 26, 32
TO_GEOCODE 29
TO_INTEGER 26
TO_TIME 31

TO TZ 32

TRUNC 26, 35
VARIANCE 27

geocode

filtering 29

sorting by 15
GET_LCA function 28
GROUP BY clause 12
GROUP clause 12
grouping

by range buckets 43

data into quartiles 44

HAVING clause 14
HIERARCHY_LEVEL function 27
hierarchy filtering 27

identifier handling 21

important concepts 1

IN expression 40

inf, EQL handling of 23

INNER JOIN 8

inter-statement references, EQL 39
IS_ANCESTOR function 28
IS_DESCENDANT function 27

JOIN clause 8

joining data from different types of records 46

joining on hierarchy 47
join size constraints 53

LATITUDE function 29
LCA function 28

LEFT JOIN 8

linear regression in EQL 48
literals 20

LN function 25

LOG function 25
LONGITUDE function 29

Version 2.3.0 « June 2012 ¢ Revision A

Index

56

LOOKUP expression 41

manipulating records in a dynamically computed
range value 44

MAX function 26

MEDIAN function 27

MIN function 27

MOD function 25

multi-assign attribute values in EQL 18
multiplication operator 24

NaN, EQL handling of 23
nested aggregation example 17
NULL values, EQL handling of 21

numeric
functions 24
literal handling 20

operations, date and time 29

operators
arithmetic 36
Boolean 36
precedence order 20

ORDER BY clause 14
ORDER BY stability 15
order of processing in EQL 3
overview of queries 4

PAGE clause 15
expressions, PERCENT 15
Top-K queries 15

PERCENT expression 15

pie chart segmentation with IN filters 49
POWER function 26

precedence rules for operators 20

queries 4
query by age 49
query processing order 3

re-normalization 42
result values used as filters 36
RETURN clause 6

Oracle® Endeca Server: Query Language Reference

RIGHT JOIN 8
ROUND function 25
running sum 49

SELECT AS statements 37
SELECT clause 6

SIGN function 25

SIN function 26

SQL comparison 2

SQRT function 26
STDDEV function 27

string
literal handling 20
sort order 15

structured literal handling 21
subtraction operator 24

SUM function 27

syntax conventions 4
SYSDATE function 31
SYSTIMESTAMP function 31

TAN function 26
terminology, EQL 1
TO_DATETIME function 31
TO_DOUBLE function 26
TO_DURATION function 26, 32
TO_GEOCODE function 29
TO_INTEGER function 26
TO_TIME function 31
TO_TZ function 32

Top-K queries 15

TRUNC function 26, 35
type promotion 22

use cases
calculate percent change over month 50
combining multiple sparse fields into 46
counting multi-assign 46
grouping by range buckets 43
grouping data into quartiles 44
joining data from different types of 46
joining on hierarchy 47
linear regression 48
manipulating records in a dynamically
computed 44
pie chart segmentation 49
query by age 49
re-normalization 42

Version 2.3.0 « June 2012 ¢ Revision A

Index 57

running sum 49 W

using arithmetic operations on date and time WHERE clause 11
values 35

V

VARIANCE function 27

Oracle® Endeca Server: Query Language Reference Version 2.3.0 » June 2012 « Revision A

	Copyright and disclaimer
	Table of Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Customer Support

	Chapter 1: Introduction to the Endeca Query Language
	EQL overview
	Important concepts and terms
	EQL and SQL: a comparison
	How queries are processed

	Chapter 2: EQL Syntax and Semantics
	Query overview
	Statements and clauses
	DEFINE and RETURN clauses
	SELECT clauses
	FROM clauses
	JOIN clauses
	WHERE clauses
	GROUP/GROUP BY clauses
	HAVING clauses
	ORDER BY clauses
	PAGE clauses

	Grouping and aggregation
	Nested aggregation
	Using the COUNT and COUNTDISTINCT functions
	Per-aggregation filters
	Handling of records with multiple values for an attribute

	Expressions
	Supported data types
	Operator precedence rules in EQL
	Literals
	Handling of characters in EQL
	Handling of upper- and lower-case in EQL
	Handling NULL attribute values
	Type promotion in EQL
	Handling of NaN, inf and -inf results

	Functions and operators
	Numeric functions
	Aggregation functions
	Hierarchy functions
	Geocode functions
	Working with date and time values in EQL
	Manipulating current date and time
	Constructing date and time values
	Timezone manipulation
	Using EXTRACT to extract a portion of a dateTime value
	Using TRUNC to round down dateTime values
	Using arithmetic operations on date and time values

	Arithmetic operators
	Boolean operators

	Using EQL results to compose follow-on queries
	Using AS expressions to calculate derived attributes
	COALESCE
	CASE
	Using inter-statement references
	IN
	LOOKUP

	Chapter 3: EQL Use Cases
	Re-normalization
	Grouping by range buckets
	Manipulating records in a dynamically computed range value
	Grouping data into quartiles
	Combining multiple sparse fields into one
	Counting multi-assign terms
	Joining data from different types of records
	Joining on hierarchy
	Linear regressions in EQL
	Using an IN filter for pie chart segmentation
	Running sum
	Query by age
	Calculating percent change between most recent month and previous month

	Chapter 4: EQL Best Practices
	Controlling input size
	Filtering as early as possible
	Controlling join size
	Additional tips

	Index

