
Oracle® Endeca Server

Query Language Reference

Version 2.3.0 • June 2012 • Revision A

Copyright and disclaimer
Copyright © 2003, 2012, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No
other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It
is not developed or intended for use in any inherently dangerous applications, including applications that may
create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software
or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content, products and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Rosette® Linguistics Platform Copyright © 2000-2011 Basis Technology Corp. All rights reserved.

Teragram Language Identification Software Copyright © 1997-2005 Teragram Corporation. All rights reserved.

Oracle® Endeca Server: Query Language Reference Version 2.3.0 • June 2012 • Revision A

Table of Contents

Copyright and disclaimer ..ii

Preface..v
About this guide...v
Who should use this guide ...v
Conventions used in this guide..v
Contacting Oracle Customer Support ...v

Chapter 1: Introduction to the Endeca Query Language1
EQL overview ..1
Important concepts and terms ..1
EQL and SQL: a comparison ...2
How queries are processed ..3

Chapter 2: EQL Syntax and Semantics ...4
Query overview ...4
Statements and clauses...5

DEFINE and RETURN clauses ...6
SELECT clauses ..6
FROM clauses ...7
JOIN clauses...8
WHERE clauses ...11
GROUP/GROUP BY clauses ..12
HAVING clauses ...14
ORDER BY clauses...14
PAGE clauses...15

Grouping and aggregation ..17
Nested aggregation ...17
Using the COUNT and COUNTDISTINCT functions17
Per-aggregation filters ...18
Handling of records with multiple values for an attribute...............................18

Expressions ..19
Supported data types..19
Operator precedence rules in EQL ..19
Literals ..20

Handling of characters in EQL ...20
Handling of upper- and lower-case in EQL21
Handling NULL attribute values ..21
Type promotion in EQL ..22
Handling of NaN, inf and -inf results ...23

Functions and operators ...24
Numeric functions ..24

Oracle® Endeca Server: Query Language Reference Version 2.3.0 • June 2012 • Revision A

Aggregation functions ...26
Hierarchy functions ...27
Geocode functions..29
Working with date and time values in EQL29

Manipulating current date and time.....................................31
Constructing date and time values31
Timezone manipulation ...32
Using EXTRACT to extract a portion of a dateTime value33
Using TRUNC to round down dateTime values35
Using arithmetic operations on date and time values35

Arithmetic operators ..36
Boolean operators..36

Using EQL results to compose follow-on queries....................................36
Using AS expressions to calculate derived attributes.................................37
COALESCE ..38
CASE ...38
Using inter-statement references ...39
IN..40
LOOKUP ..41

Chapter 3: EQL Use Cases ..42
Re-normalization ...42
Grouping by range buckets ...43
Manipulating records in a dynamically computed range value44
Grouping data into quartiles ...44
Combining multiple sparse fields into one ...46
Counting multi-assign terms...46
Joining data from different types of records..46
Joining on hierarchy ..47
Linear regressions in EQL ..48
Using an IN filter for pie chart segmentation ...49
Running sum..49
Query by age ...49
Calculating percent change between most recent month and previous month...................50

Chapter 4: EQL Best Practices...51
Controlling input size ..51
Filtering as early as possible ..52
Controlling join size ...53
Additional tips ...53

Oracle® Endeca Server: Query Language Reference Version 2.3.0 • June 2012 • Revision A

Preface
Oracle® Endeca Server is the core search-analytical database. It organizes complex and varied data from
disparate source systems into a faceted data model that is extremely flexible and reduces the need for up-
front data modeling. This highly-scalable server enables users to explore data in an unconstrained and
impromptu manner and to rapidly address new questions that inevitably follow every new insight.

About this guide
This guide describes how to write queries in the Endeca Query Language, or EQL.

Who should use this guide
This guide is intended for data developers who need to create EQL queries.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace font. In
the case of long lines of code, or when inline monospace text occurs at the end of a line, the following symbol
is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the corresponding
line break are deleted and any remaining space is closed up.

Contacting Oracle Customer Support
Oracle Endeca Customer Support provides registered users with important information regarding Oracle
Endeca software, implementation questions, product and solution help, as well as overall news and updates.

You can contact Oracle Endeca Customer Support through Oracle's Support portal, My Oracle Support at
https://support.oracle.com.

Oracle® Endeca Server: Query Language Reference Version 2.3.0 • June 2012 • Revision A

https://support.oracle.com

Chapter 1

Introduction to the Endeca Query Language

This section introduces the Endeca Query Language (or EQL) and walks you through the query processing
model.

EQL overview

Important concepts and terms

EQL and SQL: a comparison

How queries are processed

EQL overview
EQL is a SQL-like language designed specifically to query and manipulate data from the Oracle Endeca
Server. It enables Endeca Server–based applications to examine aggregate information such as trends,
statistics, analytical visualizations, comparisons, and more.

An EQL query contains one or more statements, each of which can group, join, and analyze records, either
those stored in the server or those produced by other statements. Multiple statements within a single query
can return results back to the application, allowing complex analyses to be done within a single query.

Important concepts and terms
In order to work with EQL, you need to understand the following concepts.

• Attribute: An attribute is the basic unit of a record schema. Attributes describe records in the Endeca
Server.

• Multi-assign attribute: An attribute for which a record may have more than one value. For example,
because a book may have more than one author, the Author attribute would be multi-assign.

• Managed attribute: An attribute for which a hierarchy of attribute values is attached. Managed
attributes are used to support hierarchical navigation.

• Standard attribute: An attribute whose value is not included in an enumerated list or hierarchy.

• Record: The fundamental unit of data in the Endeca Server. Records are assigned attribute values. An
assignment indicates that a record has a value for an attribute. A record typically has assignments from
multiple attributes.

Note: Records in the corpus can include multiple assignments to the same attribute. Records in
EQL results cannot.

Oracle® Endeca Server: Query Language Reference Version 2.3.0 • June 2012 • Revision A

Introduction to the Endeca Query Language 2

• Corpus: The full body of Endeca Server records. Endeca Server data is corpus–based rather than
table–based. By default, the source of records for an EQL statement is the result of the containing search
and navigation query. However, you can also include the FROM syntax in your statement to specify a
different record source, either from the corpus or from a previously defined statement. Two names identify
a corpus-based source:

• AllBaseRecords: Every record that passed the security filter.

• NavStateRecords: Every record that passed all previous filters.

The omission of the FROM clause implies FROM NavStateRecords. This implicit FROM is equivalent to
using a WHERE clause that expresses the filters currently applied.

• Statement: A unit of EQL that computes related or independent analytics results. In EQL, a statement
starts with DEFINE or RETURN and ends with a semi-colon, and includes a mandatory SELECT clause
and, optionally, some other clause(s).

• Result: Query results are a collection of statement results; statement results are a collection of records.

• Intermediate results: Results from RETURN statements can also be used as intermediate results for
further processing by other statements.

• Returned results: Set of matching values returned by the query or statement.

• Query: A request sent to the Endeca Server. In general, a query consists of multiple statements.

EQL and SQL: a comparison
EQL is, in many ways, similar to SQL, but has some marked differences as well.

This topic identifies EQL concepts that may be familiar to users familiar with SQL, as well as the unique
features of EQL:

• Tables with a single schema vs a corpus of records with more than one schema. SQL is designed
around tables of records — all records in a table have the same schema. EQL is designed around a single
corpus of records with heterogeneous schemas.

• EQL Query vs SQL Query. An EQL statement requires a DEFINE or RETURN clause, which, like a SQL
common table expression (or CTE), defines a temporary result set. The following differences apply,
however:

• EQL does not support a schema declaration.

• In EQL, the scope of a CTE is the entire query, not just the immediately following statement.

• In EQL, a RETURN is both a CTE and a normal statement (one that produces results).

• EQL does not support recursion. That is, a statement cannot refer to itself using a FROM clause, either
directly or indirectly.

• EQL does not contain an update operation.

• Clauses. In EQL, SELECT, FROM, WHERE, HAVING, GROUP BY, and ORDER BY are all like SQL, with the
following caveats:

• In SELECT statements, AS aliasing is required in EQL; it is optional in SQL.

• In EQL, GROUP BY implies SELECT. That is, grouping attributes are always included in statement
results, whether or not they are explicitly selected.

Oracle® Endeca Server: Query Language Reference Version 2.3.0 • June 2012 • Revision A

Introduction to the Endeca Query Language 3

• Grouping by a multi-assign attribute can cause a single record to participate in multiple groups.

• GROUP BY discards NULLs. (That is, input records that have no assignment for one or more grouping
attributes are discarded.) This is different from SQL, which treats NULL like any other value.

• WHERE can be applied to an aggregation expression.

• In SQL, use of aggregation implies grouping. In EQL, grouping is always explicit.

• Other language differences.

• PAGE works in the same way as many common vendor extensions to SQL.

• In EQL, a JOIN expression's Boolean join condition must be contained within parentheses. This is not
necessary in SQL.

• EQL supports SELECT statements only. It does not support other DML statements, such as INSERT
or DELETE, nor does it support DDL, DCL, or TCL statements.

• EQL supports a different set of data types, expressions, and functions than described by the SQL
standard.

How queries are processed
This topic walks you through the steps involved in EQL query processing.

Note: This abstract processing model is provided for educational purposes and is not meant to reflect
actual query evaluation.

Prior to processing each statement, EQL computes source records for that statement. When the records come
from a single statement or the corpus, the source records are the result records of the statement or the
appropriately filtered corpus records, respectively. When the records come from a JOIN, there is a source
record for every pair of records from the left and right sides for which the join condition evaluates to true on
that pair of records. Before processing, statements are re-ordered, if necessary, so that statements are
processed before other statements that depend on them.

EQL then processes queries in the following order. Each step is performed within each statement in a query,
and each statement is done in order:

1. It filters source records (both statement and per-aggregate) according to the WHERE clauses.

2. For each source record, it computes SELECT clauses that are used in the GROUP BY clause (as well as
GROUP BYs not from SELECTs) and arguments to aggregations.

3. It maps source records to result records and computes aggregations.

4. It finishes computing SELECTs.

5. It filters result records according to the HAVING clause.

6. It orders result records.

7. It applies paging to the results.

Oracle® Endeca Server: Query Language Reference Version 2.3.0 • June 2012 • Revision A

Chapter 2

EQL Syntax and Semantics

This section describes EQL structure, syntax, and semantics.

Query overview

Statements and clauses

Grouping and aggregation

Expressions

Query overview
An EQL query contains one or more semicolon-delimited statements.

Any number of statements from the query can return results, while others are defined only as generating
intermediate results.

Each statement must contain at least two clauses: a DEFINE or a RETURN clause, and a SELECT clause. In
addition, it may contain other, optional clauses.

Most clauses can contain expressions. Expressions are typically combinations of one or more functions,
attributes, constants, or operators. Most expressions are simple combinations of functions and attributes. EQL
provides functions for working with numeric, string, dateTime, duration, Boolean, and geocode attribute types.

Input records, output records, and records used in aggregation can be filtered in EQL. EQL supports filtering
on arbitrary, Boolean expressions.

About the examples in this section

Several of the examples in this section are based on sales data from a fictitious bicycle seller. The schema
used matches the schema used in the Quick Start application, a reference implementation of Oracle Endeca
Information Discovery. You can use these examples in the Quick Start application to begin experimenting with
EQL.

Syntax conventions used in this section

The syntax descriptions in this section use the following conventions:

Convention Meaning Example

Square Optional FROM <statementKey> [alias]
brackets []

Oracle® Endeca Server: Query Language Reference Version 2.3.0 • June 2012 • Revision A

EQL Syntax and Semantics 5

Convention Meaning Example

Asterisk * May be [, JOIN statement [alias] ON <Boolean expression>]*
repeated

Ellipsis ... Additional, DEFINE <recordSetName> AS ...
unspecified
content

Angle brackets Variable name HAVING <Boolean expression>
< >

Commenting in EQL

You can comment your EQL code using the following notation:

DEFINE Example AS SELECT /* This is a comment */

Version 2.3.0 • June 2012 • Revision A

You can also comment out lines or sections as shown in the following example:

RETURN Top5 AS SELECT
SUM(Sale) AS Sales
GROUP BY Customer
ORDER BY Sales DESC
PAGE(0,5);

/*
RETURN Others AS SELECT
SUM(Sale) AS Sales
WHERE NOT [Customer] IN Top5
GROUP
*/

...

Note: EQL comments cannot be nested.

Statements and clauses
EQL queries consist of statements. Statements, in their turn, can contain several types of clauses.

• DEFINE and RETURN clauses on page 6 specify whether to return the result.

• SELECT clauses on page 6 specify how to compute attributes that will appear in statement results.

• FROM clauses on page 7 (optional) specify the source.

• JOIN clauses on page 8 (optional) allow source record joining.

• WHERE clauses on page 11 (optional) filter source records.

• GROUP/GROUP BY clauses on page 12 (optional) specify source record to result record mapping.

• HAVING clauses on page 14 (optional) filter result records.

• ORDER BY clauses on page 14 (optional) specify sort criteria.

Oracle® Endeca Server: Query Language Reference

EQL Syntax and Semantics 6

• PAGE clauses on page 15 (optional) specify the subset of records to be included in a statement result.

DEFINE and RETURN clauses
All EQL statements begin with either DEFINE or RETURN. DEFINE is used to generate an intermediate result
that will not be included in the query result. RETURN indicates that the statement result should be included in
the query result.

DEFINE
You can use multiple DEFINE clauses to make results available to other statements. Typically, DEFINE
clauses are used to look up values, compare attribute values to each other, and normalize data.

Its syntax is as follows:

DEFINE <recordSetName> AS ...

Version 2.3.0 • June 2012 • Revision A

In the following example, the RegionTotals record set is used in a subsequent calculation:

DEFINE RegionTotals AS
SELECT SUM(Amount) AS Total
GROUP BY Region

RETURN ProductPct AS
SELECT 100*SUM(Amount) / RegionTotals[Region].Total AS PctTotal
GROUP BY Region, Product Type

RETURN
RETURN provides the key for accessing EQL results from the Endeca Server query result. This is important
when more than one statement is submitted with the query.

Its syntax is as follows:

RETURN <recordSetName> AS ...

The following statement returns for each size the number of different values for the Color attribute:

RETURN result AS
SELECT COUNTDISTINCT(Color) AS Total
GROUP BY Size

SELECT clauses
The SELECT clause defines the list of attributes on the records produced by the statement.

Its syntax is as follows:

SELECT <expression> AS <attribute key>[, <expression> AS <key>]*

For example:

SELECT Sum(Amount) AS TotalSales

The attribute definitions can refer to previously defined attributes, as shown in the following example:

SELECT Sum(Amount) AS TotalSales, TotalSales / 4 AS QuarterAvg

Oracle® Endeca Server: Query Language Reference

EQL Syntax and Semantics 7

Note: If an attribute defined in a SELECT clause is used in the statement's GROUP clause, then the
expression can only refer to source attributes and other attributes used in the GROUP clause. It must
not contain aggregations.

FROM clauses
You can include a FROM clause in your statement to specify a different record source than the result of the
containing search and navigation query.

Its syntax is as follows:

FROM <statementKey> [alias]

Version 2.3.0 • June 2012 • Revision A

By default, the source of records for an EQL statement is the result of the containing search and navigation
query. However, you can also include the FROM syntax in your statement to specify a different record source,
either from the corpus or from a previously defined statement, whether that statement is a DEFINE or a
RETURN.

Two names identify a corpus-based source:

• AllBaseRecords: Every record that passed the security filter.

• NavStateRecords: Every record that passed all previous filters.

Note: If you want to submit your query against NavStateRecords, you do not need to include the
FROM syntax in your statement. The absence of FROM implies NavStateRecords.

You can also use the result of a different statement as your record source. In the following example, a
statement computes the total number of sales transactions for each quarter and sales representative. To then
compute the average number of transactions per sales rep, a subsequent statement groups those results by
quarter.

DEFINE RepQuarters AS
SELECT COUNT(TransId) AS NumTrans
GROUP BY SalesRep, Quarter;

RETURN Quarters AS
SELECT AVG(NumTrans) AS AvgTransPerRep
FROM RepQuarters
GROUP BY Quarter

The RepQuarters statement generates a list of records. Each record contains the attributes { SalesRep,
Quarter, NumTrans }. For example:

{ J. Smith, 11Q1, 10 }
{ J. Smith, 11Q2, 3 }
{ F. Jackson, 10Q4, 10 }
...

The Quarters statement then uses the results of the RepQuarters statement to generate a list with the
attributes { Quarter, AvgTransPerRep }. For example:

{ 10Q4, 10 }
{ 11Q1, 4.5 }
{ 11Q2, 6 }
...

Oracle® Endeca Server: Query Language Reference

EQL Syntax and Semantics 8

JOIN clauses
JOIN clauses allow records from multiple statements to be combined.

JOIN clauses, which conform to a subset of the SQL standard, do a join with the specified join condition. The
join condition may be an arbitrary Boolean expression referring to the attributes in the FROM statement. The
expression must be enclosed in parentheses.

The JOIN clause always modifies a FROM clause. Two named sources can be indicated in the FROM clause.
Fields must be dot-qualified to indicate which source they come from, except in queries from a single table.

Self-join is supported. Statement aliasing is required for self-join.

Both input tables must result from DEFINE or RETURN statements (that is, from intermediate results).
AllBaseRecords and NavStateRecords cannot be joined.

Any number of joins can be performed in a single statement.

The syntax of JOIN is as follows:

FROM <Statement> [alias]
[LEFT,RIGHT,FULL] JOIN <Statement2> [alias]
ON (Boolean expression) [, JOIN <StatementN> [alias] ON (Boolean expression)]*

Version 2.3.0 • June 2012 • Revision A

If there is more than one JOIN, each statement is joined with a FROM statement.

Types of joins

EQL supports the following types of joins:

• INNER JOIN: INNER JOIN joins records on the left and right sides, then filters the result records by the
join condition. That means that only rows for which the join condition is TRUE are included. If you do not
specify the join type, JOIN defaults to INNER JOIN.

• LEFT JOIN, RIGHT JOIN, and FULL JOIN: LEFT JOIN, RIGHT JOIN, and FULL JOIN (collectively called
outer joins) extend the result of an INNER JOIN with records from a side for which no record on the other
side matched the join condition. When such an additional record is included from one side, the record in
the join result contains NULLs for all attributes from the other side. LEFT JOIN includes all such rows from
the left side, RIGHT JOIN includes all such rows from the right side, and FULL JOIN includes all such
rows from either side.

• CROSS JOIN: The result of CROSS JOIN is the Cartesian product of the left and right sides. Each result
record has the assignments from both of the corresponding records from the two sides.

Important: CROSS JOIN should be used with caution, because it can generate very large
numbers of records. For example, a CROSS JOIN of a result with 100 records and a result with
200 records would contain 20,000 records.

JOIN examples
The following INNER JOIN example finds employees whose sales in a particular subcategory account for
more than 10% of that subcategory's total:

DEFINE EmployeeTotals AS
SELECT

DimEmployee_FullName AS Name,
SUM(FactSales_SalesAmount) AS Total

GROUP BY DimEmployee_EmployeeKey, ProductSubcategoryName;

DEFINE SubcategoryTotals AS

Oracle® Endeca Server: Query Language Reference

EQL Syntax and Semantics 9

SELECT
SUM(FactSales_SalesAmount) AS Total

GROUP BY ProductSubcategoryName;

RETURN Stars AS
SELECT

EmployeeTotals.Name AS Name,
EmployeeTotals.ProductSubcategoryName AS Subcategory,
100 * EmployeeTotals.Total / SubcategoryTotals.Total AS Pct

FROM EmployeeTotals
JOIN SubcategoryTotals
ON (EmployeeTotals.ProductSubcategoryName = SubcategoryTotals.ProductSubcategoryName)

HAVING Pct > 10

Version 2.3.0 • June 2012 • Revision A

The following self-join using INNER JOIN computes cumulative daily sales totals per employee:

DEFINE Days AS
SELECT

FactSales_OrderDateKey AS DateKey,
DimEmployee_EmployeeKey AS EmployeeKey,
DimEmployee_FullName AS EmployeeName,
SUM(FactSales_SalesAmount) AS DailyTotal

GROUP BY DateKey, EmployeeKey;

RETURN CumulativeDays AS
SELECT

SUM(PreviousDays.DailyTotal) AS CumulativeTotal,
Day.DateKey AS DateKey,
Day.EmployeeKey AS EmployeeKey,
Day.EmployeeName AS EmployeeName

FROM Days Day
JOIN Days PreviousDays
ON (PreviousDays.DateKey <= Day.DateKey)

GROUP BY DateKey, EmployeeKey

The following LEFT JOIN example computes the top 5 subcategories along with an Other bucket, for use in a
pie chart:

DEFINE Totals AS
SELECT

SUM(FactSales_SalesAmount) AS Total
GROUP BY ProductSubcategoryName;

DEFINE Top5 AS
SELECT

Total AS Total
FROM Totals
GROUP BY ProductSubcategoryName
ORDER BY Total DESC PAGE(0,5);
RETURN Chart AS
SELECT

COALESCE(Top5.ProductSubcategoryName, 'Other') AS Subcategory,
SUM(Totals.Total) AS Total

FROM Totals
LEFT JOIN Top5
ON (Totals.ProductSubcategoryName = Top5.ProductSubcategoryName)

GROUP BY Subcategory

The following LEFT JOIN computes metrics for each product in a particular region, ensuring all products
appear in the list even if they have never been sold in that region:

DEFINE Product AS
SELECT

ProductAlternateKey AS Key,
ProductName AS Name GROUP BY Key;

DEFINE RegionTrans AS

Oracle® Endeca Server: Query Language Reference

EQL Syntax and Semantics 10

SELECT
ProductAlternateKey AS ProductKey,
FactSales_SalesAmount AS Amount

WHERE DimSalesTerritory_SalesTerritoryRegion='United Kingdom';

RETURN Results AS
SELECT

Product.Key AS ProductKey,
Product.Name AS ProductName,
COALESCE(SUM(RegionTrans.Amount), 0) AS SalesTotal,
COUNT(RegionTrans.Amount) AS TransactionCount

FROM Product
LEFT JOIN RegionTrans
ON (Product.Key = RegionTrans.ProductKey)

GROUP BY ProductKey

Version 2.3.0 • June 2012 • Revision A

The following FULL JOIN computes the top 10 employees' sales totals for the top 10 products, ensuring that
each employee and each product appears in the result:

DEFINE TopEmployees AS
SELECT

DimEmployee_EmployeeKey AS Key,
DimEmployee_FullName AS Name,
SUM(FactSales_SalesAmount) AS SalesTotal

GROUP BY Key
ORDER BY SalesTotal DESC
PAGE (0,10);

DEFINE TopProducts AS
SELECT

ProductAlternateKey AS Key,
ProductName AS Name,
SUM(FactSales_SalesAmount) AS SalesTotal

GROUP BY Key
ORDER BY SalesTotal DESC
PAGE (0,10);

DEFINE EmployeeProductTotals AS
SELECT

DimEmployee_EmployeeKey AS EmployeeKey,
ProductAlternateKey AS ProductKey,
SUM(FactSales_SalesAmount) AS SalesTotal

GROUP BY EmployeeKey, ProductKey
HAVING [EmployeeKey] IN TopEmployees AND [ProductKey] IN TopProducts;

RETURN Results AS
SELECT

TopEmployees.Key AS EmployeeKey,
TopEmployees.Name AS EmployeeName,
TopEmployees.SalesTotal AS EmployeeTotal,
TopProducts.Key AS ProductKey,
TopProducts.Name AS ProductName,
TopProducts.SalesTotal AS ProductTotal,
EmployeeProductTotals.SalesTotal AS EmployeeProductTotal

FROM EmployeeProductTotals
FULL JOIN TopEmployees
ON (EmployeeProductTotals.EmployeeKey = TopEmployees.Key)
FULL JOIN TopProducts
ON (EmployeeProductTotals.ProductKey = TopProducts.Key)

The following CROSS JOIN example finds the percentage of total sales each product subcategory represents:

DEFINE GlobalTotal AS
SELECT

Oracle® Endeca Server: Query Language Reference

EQL Syntax and Semantics 11

SUM(FactSales_SalesAmount) AS GlobalTotal
GROUP;

DEFINE SubcategoryTotals AS
SELECT

SUM(FactSales_SalesAmount) AS SubcategoryTotal
GROUP BY ProductSubcategoryName;

RETURN SubcategoryContributions AS
SELECT

SubcategoryTotals.ProductSubcategoryName AS Subcategory,
SubcategoryTotals.SubcategoryTotal / GlobalTotal.GlobalTotal AS Contribution

FROM SubcategoryTotals
CROSS JOIN GlobalTotal

Version 2.3.0 • June 2012 • Revision A

Important: Joins can cause the Endeca Server to grow beyond available RAM. Going beyond the
scale capabilities will cause very, very large materializations, intense memory pressure, and can result
in an unresponsive Endeca Server.

WHERE clauses
EQL provides two filtering options: WHERE and HAVING. The WHERE clause is used to filter input records for an
expression.

Its syntax is as follows:

WHERE <Boolean expression>

You can use the WHERE clause with any Boolean expression, such as:

• Numeric and string value comparison: {= , <>, <, <=. >, >=}

• Null value evaluation: <attribute> IS {NULL, NOT NULL}

• Grouping keys of the source statement: <attribute list> IN <source statement>. The number
and type of these keys must match the number and type of keys used in the statement referenced by the
IN clause. For more information, see IN on page 40.

If an aggregation function is used with a WHERE clause, then the Boolean expression must be enclosed within
parentheses. The aggregation functions are listed in the topic Aggregation functions on page 26.

In this example, the amounts are only calculated for sales in the West region. Then, within those results, only
sales representatives who generated at least $10,000 are returned:

RETURN Reps AS
SELECT SUM(Amount) AS SalesTotal
WHERE Region = ‘West’
GROUP BY SalesRep
HAVING SalesTotal > 10000

In the next example, a single statement contains two expressions. The first expression computes the total for
all of the records and the second expression computes the total for one specific sales representative:

RETURN QuarterTotals AS SELECT
SUM(Amount) As SalesTotal,
SUM(Amount) WHERE (SalesRep = ‘Juan Smith’) AS JuanTotal

GROUP BY Quarter

This would return both the total overall sales and the total sales for Juan Smith for each quarter. Note that the
Boolean expression in the WHERE clause is in parentheses because it is used with an aggregation function
(SUM in this case).

Oracle® Endeca Server: Query Language Reference

EQL Syntax and Semantics 12

GROUP/GROUP BY clauses
The GROUP/GROUP BY clause specifies how to map source records to result records to group statement
output.

There are three ways to use this clause in a query:

• Omitting the GROUP clause maps each source record to its own result record.

• GROUP maps all source records to a single result record.

• GROUP BY <attribute list> maps source records to result records by the combination of values in the
listed attributes.

Specifying only GROUP
You can use a GROUP clause to aggregate results into a single bucket.

For example, the following statement uses the SUM statement to return a single sum across a set of records:

RETURN "ReviewCount" AS SELECT
SUM(number_of_reviews) AS "NumReviews"
GROUP

Version 2.3.0 • June 2012 • Revision A

This statement returns one record for NumReviews. The value is the sum of the values for the attribute
number_of_reviews.

Grouping is allowed on source and locally defined attributes.

Note: If you group by a locally defined attribute, that attribute cannot refer to non-grouping attributes
and cannot contain any aggregates.

All grouping attributes are part of the result records. A NULL value in any grouping attribute causes the source
record to map to no result records. This is different from SQL, which treats NULL like any other value. For
information about user-defined NULL-value handling in EQL, see COALESCE on page 38.

Specifying GROUP BY
You can use GROUP BY to aggregate results into buckets with common values for the grouping keys.

For example, suppose we have sales transaction data with records consisting of the following attributes:

{ TransId, ProductType, Amount, Year, Quarter, Region,
SalesRep, Customer }

For example:

{ TransId = 1, ProductType = "Widget", Amount = 100.00,
Year = 2011, Quarter = "11Q1", Region = "East",
SalesRep = "J. Smith", Customer = "Customer1" }

If an EQL statement uses Region and Year as GROUP BY attributes, the statement results contain an
aggregated record for each valid, non-empty combination of Region and Year. In EQL, this example is
expressed as:

DEFINE RegionsByYear AS
GROUP BY Region, Year

resulting in the aggregates of the form { Region, Year }, for example:

{ "East", "2010" }
{ "West", "2011" }

Oracle® Endeca Server: Query Language Reference

EQL Syntax and Semantics 13

{ "East", "2011" }

Version 2.3.0 • June 2012 • Revision A

Using a GROUP BY that is an output of a SELECT expression
A GROUP BY key can be the output of a SELECT expression, as long as that expression itself does not contain
an aggregation function.

For example, the following syntax is a correct usage of GROUP BY:

SELECT COALESCE(Person, 'Unknown Person')
as Person2, ... GROUP BY Person2

The following syntax is incorrect and results in an error, because Sales2 contains an aggregation function
(SUM):

SELECT SUM(Sales) as Sales2, ... GROUP
BY Sales2

Specifying the hierarchy level for a managed attribute

You can group by a specified depth of each managed attribute.

If you group results by a managed attribute, you can specify a hierarchy depth at which to group, using the
syntax:

GROUP BY ManagedAttr:<level>

For example, the Region attribute contains the hierarchy Country, State, and City. To group the results at the
State level (one level below the root of the managed attribute hierarchy), you would use the following syntax:

GROUP BY "Region":1

Note: This is equivalent to ANCESTOR(ManagedAttr, level), but GROUP BY statements need to
use the syntax managedAttr:level, because you cannot group by an expression.

Grouping by a multi-assign attribute

If you group by a multi-assign attribute, each source record will map to multiple corresponding output records.
For example, the record [A:1, A:2, B:3, B:4, B:5] will map to:

• Two output records if you group by A

• Three output records if you group by B

• Six output records if you group by both A and B

• Six output records for SELECT A + B AS C GROUP BY C, because all six possible values of A + B will be
computed prior to grouping.

This can only occur with a corpus source, because result records are always single assign.

In this example, UserTag is multi-assign:

RETURN "Example" AS SELECT
AVG("Gross") AS "AvgGross",
SUM("Gross") AS "TotalGross",

GROUP BY UserTag

To define the set of resulting buckets, a statement must specify a set of GROUP BY attributes. The cross
product of all values in these grouping attributes defines the set of candidate buckets.

Oracle® Endeca Server: Query Language Reference

EQL Syntax and Semantics 14

The results are automatically pruned to include only non-empty buckets.

If an attribute reference appears in a statement with a GROUP clause in the definition of an attribute not in the
GROUP clause, the attribute will have an implicit ARB aggregate applied.

HAVING clauses
EQL provides two filtering options: WHERE and HAVING. The HAVING clause is used to filter output records.

Its syntax is as follows:

HAVING <Boolean expression>

Version 2.3.0 • June 2012 • Revision A

You can use the HAVING clause with any Boolean expression, such as:

• Numeric and string value comparison: {= , <>, <, <=. >, >=}

• Null value evaluation: <attribute> IS {NULL, NOT NULL}

• Grouping keys of the source statement: <attribute list> IN <source statement>

In the following example, the results include only sales representatives who generated at least $10,000:

Return Reps AS
SELECT SUM(Amount) AS SalesTotal
GROUP BY SalesRep
HAVING SalesTotal > 10000

ORDER BY clauses
The ORDER BY clause is used to control the order of result records.

The ORDER BY syntax is as follows:

ORDER BY <AttrName> [ASC/DESC] [,<AttrName> [ASC/DESC]]*

You can sort result records by any of their attribute values, and can specify whether to sort in ascending (ASC)
or descending (DESC) order. You can use any combination of values and sort orders. The absence of a
direction, as with Attr3 in the example above, implies ASC.

When an ORDER BY clause is used, NULL values will always sort after non-NULL values for a given attribute,
and NaN (not-a-number) values will always sort after values other than NaN and NULL, regardless of the
direction of the sort. Tied ranges (or all records in the absence of an ORDER BY clause) are ordered in an
arbitrary but stable way: the same query will always return its results in the same order, as long as it is
querying against the same version of the data. Data updates add or remove records from the order, but will
not change the order of unmodified records.

In this example, the amount is calculated for each sales representative. The resulting records are sorted by
total amount in descending order:

DEFINE Reps AS
SELECT SUM(Amount) AS Total
GROUP BY SalesRep
ORDER BY Total DESC

Oracle® Endeca Server: Query Language Reference

EQL Syntax and Semantics 15

Geocode sorting
Data of type geocode is sorted by latitude and then by longitude. To establish a more meaningful sort order
when using geocode data, compute the distance from some point and then sort by the distance.

String sorting

String values are sorted in Unicode byte order.

Stability of ORDER BY

EQL guarantees that the results of a statement are stable across queries. This means that:

• If no updates are performed, then the same statement will return results in the same order on repeated
queries, even if no ORDER BY clause is specified, or there are ties in the order specified in the ORDER BY
clause.

• If updates are performed, then only changes that explicitly impact the order will impact the order; the order
will not be otherwise affected. Changes that impact the order are things like deleting or inserting records
that contribute to the result on or prior to the returned page, or modifying a value that is used for grouping
or ordering.

For example, on a statement with no ORDER BY clause, queries that use PAGE(0, 10), then PAGE(10, 10),
then PAGE(20, 10) will, with no updates, return successive groups of 10 records from the same arbitrary but
stable result.

For an example with updates, on a statement with ORDER BY Num PAGE(3, 4), an initial query returns
records {5, 6, 7, 8}. An update then inserts a record with 4 (before the specified page), deletes the record with
6 (on the specified page), and inserts a record with 9 (after the specified page). The results of the same query,
after the update, would be {4, 5, 7, 8}. This is because:

• The insertion of 4 shifts all subsequent results down by one. Offsetting by 3 records includes the new
record.

• The removal of 6 shifts all subsequent results up by one.

• The insertion of 9 does not impact any of the records prior to or included in this result.

PAGE clauses
The PAGE clause specifies a subset of records to return.

By default, a statement returns all of the result records. In some cases, however, it is useful to request only a
subset of the results. In these cases, you can use the PAGE (<offset>, <count>) clause to specify how
many result records to return.

The <offset> argument is an integer that determines the number of records to skip. An offset of 0 will return
the first result record; an offset of 8 will return the ninth. The <count> argument is an integer that determines
the number of records to return.

The following example groups the NavStateRecords by the SalesRep attribute, and returns result records
11-20:

DEFINE Reps AS
GROUP BY SalesRep
Page (10,10)

Version 2.3.0 • June 2012 • Revision AOracle® Endeca Server: Query Language Reference

EQL Syntax and Semantics 16

PAGE applies to intermediate results; a statement FROM a statement with PAGE(0, 10) will have at most 10
source records.

Top-k
You can use the PAGE clause in conjunction with the ORDER BY clause in order to create Top-K queries. The
following example returns the top 10 sales representatives by total sales:

DEFINE Reps AS
SELECT SUM(Amount) AS Total
GROUP BY SalesRep
ORDER BY Total DESC
PAGE (0,10)

Version 2.3.0 • June 2012 • Revision A

Percentile
The PAGE clause supports a PERCENT modifier. When PERCENT is specified, fractional offset and size are
allowed, as in the example PAGE(33.3, 0.5) PERCENT. This specified the portion of the data set to skip and
the portion to return.

The number of records skipped equals round(offset * COUNT / 100).

The number of records returned equals round((offset + size) * COUNT / 100) - round(offset *
COUNT / 100).

DEFINE "ModelYear" AS
SELECT SUM(Cost) AS Cost
GROUP BY Model, Year
ORDER BY Cost DESC
PAGE(0, 10) PERCENT

The PERCENT keyword will not repeat records at non-overlapping offsets, but the number of results for a given
page size may not be uniform across the same query.

For example, if COUNT = 6:

PAGE clause Resulting behavior is the same as

PAGE (0, 25) PERCENT PAGE (0, 2)

PAGE (25, 25) PERCENT PAGE (2, 1)

PAGE (50, 25) PERCENT PAGE (3, 2)

PAGE (75, 25) PERCENT PAGE (5, 1)

Oracle® Endeca Server: Query Language Reference

EQL Syntax and Semantics 17

Grouping and aggregation
In EQL, aggregation operations bucket a set of records into a resulting set of aggregated records.

Nested aggregation

You can perform multi-level aggregation in EQL.

This example computes the average number of transactions per sales representative grouped by Quarter and
Region.

This query represents a multi-level aggregation. First, transactions must be grouped into sales representatives
to get per-representative transaction counts. Then these representative counts must be aggregated into
averages by quarter and region.

DEFINE DealCount AS
SELECT COUNT(TransId) AS NumDeals
GROUP BY SalesRep, Quarter, Region ;

RETURN AvgDeals AS
SELECT AVG(NumDeals) AS AvgDealsPerRep
FROM DealCount
GROUP BY Quarter, Region

Version 2.3.0 • June 2012 • Revision A

Using the COUNT and COUNTDISTINCT functions
The COUNT function returns the number of records that have a value for an attribute. COUNTDISTINCT counts
the number of distinct values for an attribute.

Using COUNT to count the number of records with values of attributes
The COUNT function counts the number of records that have values in a field for each GROUP BY result.

For example, the following records include Size and Color attributes:

Record 1: Size=small, Color=red, Color=white
Record 2: Size=small, Color=blue, Color=green
Record 3: Size=small, Color=black
Record 4: Size=small

The following statement returns the number of records for each size that have a value for the Color attribute:

RETURN result AS SELECT COUNT(Color) as Total GROUP BY Size

The statement result is:

Record 1: Size=small, Total=3

Because all of the records have the same value for Size, there is only one group, and thus only one record.
For this group, the value of Total is 3, because only three of the records have Color assignments.

Using COUNTDISTINCT to get the number of distinct values for an attribute
The COUNTDISTINCT function returns the number of unique values in a field for each GROUP BY result.

COUNTDISTINCT can only be used for single-assign attributes, and not for multi-assigned attributes. Using a
multi-assign attribute generates misleading results.

Oracle® Endeca Server: Query Language Reference

EQL Syntax and Semantics 18

For example, for the following records:

Record 1: Size=small, Color=red
Record 2: Size=small, Color=blue
Record 3: Size=small, Color=red
Record 4: Size=small

Version 2.3.0 • June 2012 • Revision A

The following statement returns for each size the number of different values for the Color attribute:

RETURN result AS
SELECT COUNTDISTINCT (Color) as Total
GROUP BY Size

The statement result is:

Record 1: Size=small, Total=2

Because all of the records have the same value for Size, there is only one group, and thus only one record.
For this group, the value of Total is 2 because there are two unique values for the Color attribute: red and
blue.

Per-aggregation filters
Each aggregation can have its own filtering WHERE clause. Aggregation function filters filter the inputs to an
aggregation expression. They are useful for working with sparse or heterogeneous data. Only records that
satisfy the filter contribute to the calculation of the aggregation function.

The syntax is as follows:

AggregateFunction(Expression) WHERE (Filter)

For example:

RETURN NetSales AS SELECT
SUM(Amount) WHERE (Type=‘Sale’)
AS SalesTotal,

SUM(Amount) WHERE (Type=‘Return’)
AS ReturnTotal,

SalesTotal – ReturnTotal AS Total
GROUP BY Year, Month, Category

This is the same as:

SUM(CASE WHEN Type='Sale' THEN Amount END) AS SalesTotal,
SUM(CASE WHEN type='Return' THEN Amount END) AS ReturnTotal
...

Note: These WHERE clauses also operate on records, not assignments, just like the statement-level
WHERE clause. A source record will contribute to an aggregation if it passes the statement-level WHERE
clause and the aggregation's WHERE clause.

Handling of records with multiple values for an attribute

In the case of corpus records (but not result records) an attribute may allow a record to have multiple values.

To show how EQL handles these types of records, for a record tagged with both Blue and Green:

• WHERE Color = Blue matches the record (Blue = Blue)

• WHERE Color <> Blue matches the record (Green <> Blue)

Oracle® Endeca Server: Query Language Reference

EQL Syntax and Semantics 19

• WHERE NOT(Color = Blue) does not match the record (NOT(true))

• WHERE NOT(Color <> Blue) does not match the record (NOT(true))

Expressions
Expressions are typically combinations of one or more functions, attributes, constants, or operators. Most
expressions are simple combinations of functions and attributes.

Supported data types

This topic describes the format of data types supported by EQL.

Data type Description

string Represents character strings.

int Represents an integer.

Note: EQL supports only 64-bit integers.

double Represents a floating point number.

boolean Represents a Boolean value (TRUE or FALSE)

time Represents the time of day to a resolution of milliseconds.

dateTime Represents a date and time to a resolution of milliseconds.

duration Represents a length of time with a resolution of milliseconds.

geocode Represents a latitude and longitude pair.

Operator precedence rules in EQL

EQL enforces the following precedence rules for operators.

The rules are listed in descending order.

• Parentheses (as well as brackets in LOOKUP and IN expressions)

Note: You can freely add parentheses any time you want to impose an alternative precedence or
to make precedence clearer.

• * /

• + -

• = <> < > <= >=

Oracle® Endeca Server: Query Language Reference Version 2.3.0 • June 2012 • Revision A

EQL Syntax and Semantics 20

• IS (IS NULL, IS NOT NULL)

• BETWEEN

• NOT

• AND

• OR

Note: All binary operators are left-associative, as are all of the JOIN operators.

Literals

This section discusses how literals are used in EQL.

Handling of characters in EQL

EQL accepts all Unicode characters.

<Literal> ::= <StringLiteral> | <NumericLiteral>

Version 2.3.0 • June 2012 • Revision A

String literals String literals must be surrounded by single quotation marks.

Embedded single quotes and backslashes must be escaped by
backslashes. Examples:

'jim'
'àlêx\'s house'

Numeric literals Numeric literals can be integers or floating point numbers.

Numeric literals cannot be surrounded by single quotation marks.

Numeric literals do not support exponential notation, and they cannot
have trailing f|F|d|D to indicate float or double.

34
.34

Boolean literal
TRUE/FALSE

Boolean literals cannot be surrounded by single quotation marks.

Literals of structured types
Literals of structured types must use appropriate conversions, as shown

(such as Date, Time, or
in the following example:

Geocode)
RETURN Result AS
SELECT TO_GEOCODE(45.0, 37.0) AS Geocode,

TO_DATETIME('2011-11-21T08:22:00Z') AS Timestamp

Oracle® Endeca Server: Query Language Reference

EQL Syntax and Semantics 21

Identifiers
Identifiers must be NCNames. The NCName format is defined in the
W3C document Namespaces in XML 1.0 (Second Edition), located at
this URL: http://www.w3.org/TR/REC-xml-names/.

An identifier must be enclosed in double quotation marks if:

• The identifier contains characters other than letters, digits, and
underscores.

• The identifier starts with a digit.

• The identifier uses the same name as an EQL keyword. For
example, if an attribute is named WHERE or GROUP.

If an identifier is in quotation marks, then you must use a backslash to
escape double quotation marks and backslashes.

Examples:

"Count" "Sales.Amount"

Handling of upper- and lower-case in EQL

This topic discusses character case handling in EQL.

The following are case sensitive:

• Identifiers

• Literals

• Standard attribute references

• Managed attribute references

The following are case insensitive:

• Clauses

• Reserved words

• Keywords

Handling NULL attribute values

If an attribute value is missing for a record, then the attribute is referred to as being NULL. For example, if a
record does not contain an assignment for a Price attribute, EQL defines the Price value as NULL.

The following table outlines how EQL handles NULL values for each type of operation:

Type of operation How EQL handles NULL values

Arithmetic operations and non- The value of any operation on a NULL value is also defined as NULL.
aggregating functions

For example, if a record has a value of 4 for Quantity and a NULL value
for Price, then the value of Quantity + Price is considered to be
NULL.

Oracle® Endeca Server: Query Language Reference Version 2.3.0 • June 2012 • Revision A

http://www.w3.org/TR/REC-xml-names/

EQL Syntax and Semantics 22

Type of operation How EQL handles NULL values

Aggregating functions EQL ignores records with NULL values.

For example, if there are 10 records, and 2 of them have a NULL value
for a Price attribute, all aggregating operations ignore the 2 records, and
instead compute their value using only the other 8 records.

If all 10 records have a NULL Price, then most aggregations such as
SUM(Price) also result in NULL values.

The exceptions are COUNT and COUNTDISTINCT, which return zero if all
the records have a NULL value. (That is, the output of COUNT or
COUNTDISTINCT is never NULL.)

Grouping expressions EQL ignores any record that has a NULL value in any of the group keys,
and does not consider the record to be present in any group.

Filters When doing a comparison against a specific value, the NULL value will
not match the specified filter, except for the IS NULL filter.

For example, if record A has price 5, and record B has no price value,
then:

• WHERE price = 5 matches A

• WHERE NOT(price = 5) matches B

• WHERE price <> 5 matches neither A nor B

• WHERE NOT(price <> 5) matches both A and B

• WHERE price = 99 matches neither A nor B

• WHERE NOT(price = 99) matches both A and B

• WHERE price <> 99 matches A

• WHERE NOT(price <> 99) matches B

Sorting
For any sort order specified, EQL returns:

1. Normal results

2. Records for a NaN value

3. Records with a NULL value

Note: There is no NULL keyword or literal. To create a NULL, use CASE, as in this example: CASE
WHEN False THEN 1 END.

Type promotion in EQL

In general, EQL performs type promotion when there is no risk of loss of information.

For example, in the expression 1 + 3.5, 1 is an integer and 3.5 is a double. The integer value is promoted to
a double, and the overall result is 4.5.

Oracle® Endeca Server: Query Language Reference Version 2.3.0 • June 2012 • Revision A

EQL Syntax and Semantics 23

Some functions, such as LN(), take double arguments, and automatically promote integer arguments to
doubles. In most other cases, automatic type promotion is not performed, and an explicit conversion is
required. For example, if Quantity is an integer and SingleOrder is a Boolean, then an expression such as the
following is not allowed:

COALESCE(Quantity, SingleOrder)

Version 2.3.0 • June 2012 • Revision A

An explicit conversion from Boolean to integer like the following is required:

COALESCE(Quantity, TO_INTEGER(SingleOrder))

Handling of NaN, inf and -inf results

Operations in EQL adhere to the conventions for Not a Number (NaN), inf and -inf defined by the IEEE
7540 2008 standard for handling floating point numbers.

In cases when it has to perform operations involving floating point numbers, or operations involving division by
zero or NULL values, EQL expressions can return NaN, inf, and -inf results.

For example, NaN, inf and -inf values could arise in your EQL calculations when:

• A zero divided by zero results in NaN

• A positive number divided by zero results in inf

• A negative number divided by zero results in -inf

For most operations, EQL treats NaN, inf or -inf values the same way as any other value.

However, you may find it useful to know how EQL defines the following special values:

Type of operation How EQL handles NaN, inf, and -inf

Arithmetic operations Arithmetic operations with NaN values result in NaN values.

Filters NaN values do not pass filters (except for !=).

Any other comparison involving a NaN value is false.

Sorting NaN is treated as "less than" -inf (NaN < -inf).

For any sort order specified, EQL returns:

1. Normal records

2. Records with a NaN value

3. Records with a NULL value

Oracle® Endeca Server: Query Language Reference

EQL Syntax and Semantics 24

Functions and operators

EQL contains a number of built-in functions that process data. It also supports arithmetic operators.

Numeric functions

EQL supports the following numeric functions.

Function Description and Example

addition The addition operator (+).

SELECT NortheastSales + SoutheastSales AS EastTotalSales

subtraction The subtraction operator (-).

SELECT SalesRevenue - TotalCosts AS Profit

multiplication The multiplication operator (*).

SELECT Price * 0.7 AS SalePrice

division The division operator (/).

SELECT YearTotal / 4 AS QuarterAvg

ABS Returns the absolute value of n.

If n is 0 or a positive integer, returns n.

Otherwise, n is multiplied by -1.

SELECT ABS(-1) AS one

RESULT: one = 1

CEIL Returns the smallest integer value not less than n.

SELECT CEIL(123.45) AS x, CEIL(32) AS y, CEIL(-123.45) AS z

RESULT: x = 124, y = 32, z = 123

EXP Exponentiation, where the base is e.

Returns the value of e (the base of natural logarithms) raised to the power n.

SELECT EXP(1.0) AS baseE

RESULT: baseE = e^1.0 = 2.71828182845905

FLOOR Returns the largest integer value not greater than n.

SELECT FLOOR(123.45 AS x, FLOOR(32) AS y, FLOOR(-123.45) AS z

RESULT: x = 123, y = 32, z = 124

Oracle® Endeca Server: Query Language Reference Version 2.3.0 • June 2012 • Revision A

EQL Syntax and Semantics 25

Function Description and Example

LN Natural logarithm. Computes the logarithm of its single argument, the base
of which is e.

SELECT LN(1.0) AS baseE

RESULT: baseE = e^1.0 = 0

LOG Logarithm. log(n, m) takes two arguments, where n is the base, and m is
the value you are taking the logarithm of.

Log(10,1000) = 3

MOD Modulo. Returns the remainder of n divided by m.

Mod(10,3) = 1

EQL uses the fmod floating point remainder, as defined in the C/POSIX
standard.

ROUND Returns a number rounded to the specified decimal place.

The unary version drops the decimal (non-integral) portion of the input.

The binary version allows you to set the number of spaces at which the
number is rounded:

• Positive second arguments specified to this function correspond to the
number of places that must be returned after the decimal point. For
example, ROUND(123.4567, 3) = 123.457

• Negative second arguments correspond to the number of places that
must be returned before the decimal point. For example,
ROUND(123.4567, -3) = 100.0

SIGN Returns the sign of the argument as -1, 0, or 1, depending on whether n is
negative, zero, or positive.

SELECT SIGN(-12) AS x, SIGN(0) AS y, SIGN(12) AS z

RESULT: x = -1, y = 0, z = 1

SQRT Returns the nonnegative square root of n.

SELECT SQRT(9) AS x

RESULT: x = 3

Oracle® Endeca Server: Query Language Reference Version 2.3.0 • June 2012 • Revision A

EQL Syntax and Semantics 26

Function Description and Example

TRUNC Returns the number n, truncated to m decimal places.

If m is 0, the result has no decimal point or fractional part.

The unary version drops the decimal (non-integral) portion of the input, while
the binary version allows you to set the number of spaces at which the
number is truncated.

SELECT TRUNC(3.14159265, 3)as x

RESULT: x = 3.141

SIN The sine of n, where the angle of n is in radians.

SIN(Pi/6) = 5

COS The cosine of n, where the angle of n is in radians.

COS(Pi/3) = .5

TAN The tangent of n, where the angle of n is in radians.

TAN(Pi/4) = 1

POWER Returns the value of n raised to the power of m.

Power(2,8) = 256

TO_DURATION Casts an integer into a number of milliseconds so that it can be used as a
duration.

TO_DOUBLE Casts an integer as a double.

TO_INTEGER(Boolean) Casts TRUE/FALSE to 1/0.

Aggregation functions

EQL supports the following aggregation functions.

Function Description

AVG Computes the arithmetic mean value for a field.

COUNT Counts the number of records with valid non-NULL values in a field for each GROUP
BY result.

COUNTDISTINCT Counts the number of unique, valid non-NULL values in a field for each GROUP BY
result.

MAX Finds the maximum value for a field.

Oracle® Endeca Server: Query Language Reference Version 2.3.0 • June 2012 • Revision A

EQL Syntax and Semantics 27

Function Description

MIN Finds the minimum value for a field.

MEDIAN Finds the median value for a field.

Note that the EQL definition of MEDIAN differs from the normal statistical definition
when EQL is computing the median of an even number of numbers. That is, given an
input relation containing {1,2,3,4}, the following query:

RETURN results AS SELECT
MEDIAN(a) AS med

GROUP

produces the relation { <med:3> }. According to the normal statistical definition, the
statistical median of the set {1, 2, 3, 4} should be the mean of the two elements in
the middle of the sorted set, or 2.5.

STDDEV Computes the standard deviation for a field.

ARB Selects an arbitrary but consistent value from the set of values in a field.

SUM Computes the sum of field values.

VARIANCE Computes the variance (that is, the square of the standard deviation) for a field.

Hierarchy functions

EQL supports hierarchy functions on managed attributes.

You can filter by a descendant or an ancestor, or return a specific or relative level of the hierarchy. Managed
attributes can be aliased in the SELECT statement and elsewhere.

The following are the related functions:

Function Description

ANCESTOR(expr, int) Return the ancestor of the named attribute at the depth specified.
Returns NULL if the requested depth is greater than the depth of the
attribute value. The root is at depth 0.

HIERARCHY_LEVEL(expr) Return the level of the named attribute as a number. The level is the
number of values on the path from the root to it. The root is always level
0.

IS_DESCENDANT(attribute, Include the record if the named attribute is the attribute specified or a
string) descendant. If the attribute is not a member of the specified hierarchy, it

is a compile-time error. If no attribute with the primary key in the
attribute is found, it results in NULL.

Oracle® Endeca Server: Query Language Reference Version 2.3.0 • June 2012 • Revision A

EQL Syntax and Semantics 28

Function Description

IS_ANCESTOR(attribute) Include the record if the named attribute is the attribute specified or an
ancestor. If the attribute is not a member of the specified hierarchy, it is
a compile-time error. If no attribute with the primary key in the attribute
is found, it results in NULL.

GET_LCA(attribute) A row function that returns the LCA (least common ancestor) of the two
managed attributes. The two managed attributes should belong to same
hierarchy. Otherwise, it is a compile-time error.

LCA(attribute) An aggregation function that returns the LCA of the managed attributes
in the specified attribute column. The LCA is the lowest point in a
hierarchy that is an ancestor of all specified members. Any encountered
NULL values are ignored by the function.

In the first example, we filter by product category CAT_BIKES, and get all records assigned produce category
CAT_BIKES or a descendant thereof:

RETURN example1 AS
SELECT
ProductCategory AS ProductCategory,
ANCESTOR(ProductCategory, 0) AS Ancestor

;
RETURN example2 AS
ProductCategory AS ProductCategory,
ANCESTOR(ProductCategory, HIERARCHY_LEVEL(ProductCategory)-1) AS Ancestor

WHERE
IS_DESCENDANT(ProductCategory, 'CAT_BIKES')

Version 2.3.0 • June 2012 • Revision A

In the second example, we want to return level 1 (one level below the root) of the Product Category hierarchy:

RETURN Results AS
SELECT

ProductCategory AS PC,
ANCESTOR(PC, 1) AS Ancestor

WHERE
ANCESTOR(ProductCategory, 1) = 'CAT_BIKES'

GROUP BY PC
ORDER BY PC

In the third example, we want to return the direct ancestor of the Product Category hierarchy:

RETURN Results AS
SELECT

ProductCategory AS PC,
ANCESTOR(PC, HIERARCHY_LEVEL(PC) - 1) AS Parent

WHERE
ANCESTOR(ProductCategory, 1) = 'CAT_BIKES'

GROUP BY PC
ORDER BY PC

In the second and third examples, we use GROUP BY to de-duplicate. In addition, note that even though we
aliased ProductCategory AS PC, we cannot use the alias in the WHERE clause, because the alias does not
become available until after WHERE clause executes.

Note: GROUP BY statements need to use the syntax managedAttr:level, rather than the
ANCESTOR function, because you cannot group by an expression in EQL.

Oracle® Endeca Server: Query Language Reference

EQL Syntax and Semantics 29

Geocode functions

The geocode data type contains the longitude and latitude values that represent a geocode property.

The following are the related functions:

Function Description

LATITUDE(mdex:geocode) Returns the latitude of a geocode as a floating-point number.

LONGITUDE(mdex:geocode) Returns the longitude of a geocode as a floating-point number.

DISTANCE(mdex:geocode, Returns the distance (in kilometers) between the two geocodes,
mdex:geocode) using the haversine formula.

TO_GEOCODE(mdex:float, Creates a geocode from the given latitude and longitude.
mdex:float)

The following example enables the display of a map with a pin for each location where a claim has been filed:

RETURN Result AS
SELECT

LATITUDE(geo) AS Lat,
LONGITUDE(geo) AS Lon,
DISTANCE(geo, TO_GEOCODE(42.37, 71.13)) AS DistanceFromCambridge

WHERE
DISTANCE(geo, TO_GEOCODE(42.37, 71.13)) BETWEEN 1 AND 10

Version 2.3.0 • June 2012 • Revision A

Note: All distances are expressed in kilometers.

Working with date and time values in EQL

EQL provides functions for working with time, dateTime, and duration data types.

EQL supports normal arithmetic operations between these data types.

All aggregation functions can be applied on these types except for SUM, which cannot be applied to time or
dateTime types.

Note: In all cases, the internal representation of dates and times is on an abstract time line with no
time zone. On this time line, all days are assumed to have exactly 86400 seconds. The system does
not track, nor can it accommodate, leap seconds. This is equivalent to the SQL date, time, and
timestamp data types that specify WITHOUT TIMEZONE. ISO 8601 ("Data elements and interchange
formats - Information interchange - Representation of dates and times") recommends that, when
communicating dates and times without timezone with other systems, they be represented using Zulu
time, which is a synonym for GMT. Endeca Server conforms to this recommendation.

Oracle® Endeca Server: Query Language Reference

EQL Syntax and Semantics 30

The following table summarizes the supported date and time functions:

Function Return Data Type Purpose

CURRENT_TIMESTAMP dateTime Constants representing the current date and
time (at an arbitrary point during query

SYSTIMESTAMP dateTime
evaluation) in GMT and server time zone,
respectively.

CURRENT_DATE dateTime Constants representing current date (at an
arbitrary point during query evaluation) in GMT

SYSDATE dateTime
and server time zone, respectively.

TO_TIME time Constructs a timestamp representing time,
date, or duration, using an expression.

TO_DATETIME dateTime

TO_DURATION duration

EXTRACT integer Extracts a portion of a dateTime value, such
as the day of the week or month of the year.

TRUNC dateTime Rounds a dateTime value down to a coarser
granularity.

TO_TZ dateTime Returns the given timestamp in a different time
zone.

FROM_TZ dateTime

The following table summarizes supported operations:

Operation Return Data Type

time (+|-) duration time

dateTime (+|-) duration dateTime

time - time duration

dateTime - dateTime duration

duration (+|-) duration duration

duration (*|/) double duration

duration /duration double

Oracle® Endeca Server: Query Language Reference Version 2.3.0 • June 2012 • Revision A

EQL Syntax and Semantics 31

Manipulating current date and time

EQL provides four constant keywords to obtain current date and time values. Values are obtained at an
arbitrary point during query evaluation.

GMT time and date are independent of any daylight savings rules, while System time and date are subject to
daylight savings rules.

Keyword Description

CURRENT_TIMESTAMP Obtains current date and time in GMT.

SYSTIMESTAMP Obtains current date and time in server time zone.

CURRENT_DATE Obtains current date in GMT.

SYSDATE Obtains system date in server time zone.

Note: CURRENT_DATE and SYSDATE return dateTime data types where time fields are reset to zero.

The following example retrieves the average duration of service:

RETURN Example AS
SELECT AVG(CURRENT_DATE - DimEmployee_HireDate) AS DurationOfService
GROUP

Version 2.3.0 • June 2012 • Revision A

Constructing date and time values

EQL provides functions to construct a timestamp representing time, date, or duration using an expression.

If the expression is a string, it must be in a certain format. If the format is invalid or the value is out of range, it
results in NULL.

Function Description Format

TO_TIME Constructs a
<Time String Format> ::= hh:mm:ss[.sss]((+|-) hh:mm |Z)

timestamp
representing
time.

TO_DATETIME Constructs a
<DateTime String Format> ::= [-]YYYY-MM-DDT<Time String

timestamp
Format>

representing
date and time.

Oracle® Endeca Server: Query Language Reference

EQL Syntax and Semantics 32

Function Description Format

TO_DURATION Constructs a
<Duration String Format> ::=

timestamp
representing [-]P[<Days>][T(<Hours>[<Minutes>}[<Seconds>]|
duration.

<Minutes>[<Seconds>]|

<Seconds>)]

<Days> ::= <Integer>D

<Hours> ::= <Integer>H

<Minutes> ::= <Integer>M

<Seconds> ::= <Integer>[.<Integer>]S

As stated in the Format column above, TO_TIME and TO_DATETIME accept time zone offset. However, EQL
does not store the offset value. Instead, it stores the value normalized to the GMT timezone.

The following table shows the output of several date and time expressions:

Expression Normalized value

TO_DATETIME('2012-03- 2012-03-21T14:00:00.000Z
21T16:00:00.000+02:00')

TO_DATETIME('2012-12-31T20:00:00.000- 2013-01-01T02:00:00.000Z
06:00')

TO_DATETIME('2012-06-15T20:00:00.000Z') 2012-06-15T20:00:00.000Z

TO_TIME('23:00:00.000+03:00') 20:00:00.000Z

TO_TIME('15:00:00.000-10:00') 01:00:00.000Z

Timezone manipulation

EQL provides two functions to obtain the corresponding timestamp in different timezones.

EQL supports the standard IANA Time Zone database (https://www.iana.org/time-zones).

• TO_TZ Takes a timestamp in GMT, looks up the GMT offset for the specified timezone at that time in
GMT, and returns a timestamp adjusted by that offset. If the specified timezone does not exist, the result
is NULL. For example, TO_TZ(dateTime,'America/New_York') answers the question, "What time
was it in America/New_York when it was dateTime in GMT?"

• FROM_TZ Takes a timestamp in the specified timezone, looks up the GMT offset for the specified
timezone at that time, and returns a timestamp adjusted by that offset. If the specified timezone does not
exist, the result is NULL. For example, FROM_TZ(dateTime,'EST') answers the question, "What time
was it in GMT when it was dateTime in EST?"

The following table shows the results of several timezone expressions:

Oracle® Endeca Server: Query Language Reference Version 2.3.0 • June 2012 • Revision A

https://www.iana.org/time-zones

EQL Syntax and Semantics 33

Expression Results

TO_TZ(TO_DATETIME('2012-07- 2012-07-05T12:00:00.000Z
05T16:00:00.000Z'), 'America/New_York')

TO_TZ(TO_DATETIME('2012-01- 2012-01-05T11:00:00.000Z
05T16:00:00.000Z'), 'America/New_York')

FROM_TZ(TO_DATETIME('2012-07- 2012-07-05T23:00:00.000Z
05T16:00:00.000Z'),
'America/Los_Angeles')

FROM_TZ(TO_DATETIME('2012-01- 2012-01-06T00:00:00.000Z
05T16:00:00.000Z'),
'America/Los_Angeles')

Using EXTRACT to extract a portion of a dateTime value

The EXTRACT function extracts a portion of a dateTime value, such as the day of the week or month of the
year. This can be useful in situations where the data must be filtered or grouped by a slice of its timestamps,
for example to compute the total sales that occurred on any Monday.

The syntax of the EXTRACT function is:

<ExtractExpr> ::= EXTRACT(<expr>,<DateTimeUnit>)
<DateTimeUnit> ::= SECOND | MINUTE | HOUR | DAY_OF_WEEK |

DAY_OF_MONTH | DAY_OF_YEAR | DATE | WEEK |
MONTH | QUARTER | YEAR | JULIAN_DAY_NUMBER

Version 2.3.0 • June 2012 • Revision A

Date Time Unit Range of Returned Notes
Values

SECOND (0 - 59)

MINUTE (0 - 59)

HOUR (0 - 23)

DAY_OF_WEEK (1 - 7) Returns the rank of the day within the week,
where Sunday is 1.

DAY_OF_MONTH (DATE) (1 -31)

DAY_OF_YEAR (1 - 365)

WEEK (1 - 53) Returns the rank of the week in the year, where
the first week starts on the first day of the year.

MONTH (1 - 12)

QUARTER (1 - 4) Quarters start in January, April, July, and
October.

Oracle® Endeca Server: Query Language Reference

EQL Syntax and Semantics 34

Date Time Unit Range of Returned Notes
Values

YEAR (-4713 - 9999)

JULIAN_DAY_NUMBER (0 - 5373484) Returns the integral number of whole days
between the timestamp and midnight, 24
November -4713.

For example, the dateTime attribute TimeStamp has a value representing 10/13/2011 11:35:12.000. The
following list shows the results of using the EXTRACT operator to extract each component of that value:

EXTRACT("TimeStamp", SECOND) = 12
EXTRACT("TimeStamp", MINUTE) = 35
EXTRACT("TimeStamp", HOUR) = 11
EXTRACT("TimeStamp", DATE) = 13
EXTRACT("TimeStamp", WEEK) = 41
EXTRACT("TimeStamp", MONTH) = 10
EXTRACT("TimeStamp", QUARTER) = 4
EXTRACT("TimeStamp", YEAR) = 2011
EXTRACT("TimeStamp", DAY_OF_WEEK) = 5
EXTRACT("TimeStamp", DAY_OF_MONTH) = 13
EXTRACT("TimeStamp", DAY_OF_YEAR) = 286
EXTRACT("TimeStamp", JULIAN_DAY_NUMBER) = 2455848

Version 2.3.0 • June 2012 • Revision A

Here is a simple example of using this functionality. The following statement groups the total value of the
Amount attribute by quarter, and for each quarter computes the total sales that occurred on a Monday
(DAY_OF_WEEK=2):

RETURN Quarters AS
SELECT SUM(Amount) AS Total

TRUNC(TimeStamp, QUARTER) AS Qtr
WHERE EXTRACT(TimeStamp,DAY_OF_WEEK) = 2
GROUP BY Qtr

The following example allows you to sort claims in buckets by age:

DEFINE ClaimsWithAge AS
SELECT

FLOOR((EXTRACT(TO_TZ(CURRENT_TIMESTAMP,claim_tz),JULIAN_DAY_NUMBER)-EXTRACT(TO_TZ(claim_ts,claim_tz),
JULIAN_DAY_NUMBER))/7) AS "AgeInWeeks",

COUNT(1) AS "Count"
GROUP BY "AgeInWeeks"
HAVING "AgeInWeeks" < 2
ORDER BY "AgeInWeeks";

RETURN Result AS
SELECT

CASE AgeInWeeks
WHEN 0 THEN 'Past 7 Days'
WHEN 1 THEN 'Prior 7 Days'

ELSE 'Other'
END

AS "Label",
"Count"

FROM ReviewsWithAge

Oracle® Endeca Server: Query Language Reference

EQL Syntax and Semantics 35

Using TRUNC to round down dateTime values

The TRUNC function can be used to round a dateTime value down to a coarser granularity.

For example, this may be useful when you want to group your statement results data for each quarter using a
dateTime attribute.

The syntax of the TRUNC function is:

<TruncExpr> ::= TRUNC(<expr>,<DateTimeUnit>)
<dateTimeUnit> ::= SECOND | MINUTE | HOUR |

DATE | WEEK | MONTH | QUARTER | YEAR
DAY_OF_WEEK | DAY_OF_MONTH | DAY_OF_YEAR
JULIAN_DAY_NUMBER

Version 2.3.0 • June 2012 • Revision A

Note: WEEK truncates to the nearest previous Sunday.

For example, the dateTime attribute TimeStamp has a value representing 10/13/2011 11:35:12.000. The list
below shows the results of using the TRUNC operator to round the TimeStamp value at each level of
granularity. The values are displayed here in a format that is easier to read—the actual values would use the
standard Endeca dateTime format.

TRUNC("TimeStamp", SECOND) = 10/13/2011 11:35:12.000
TRUNC("TimeStamp", MINUTE) = 10/13/2011 11:35:00.000
TRUNC("TimeStamp", HOUR) = 10/13/2011 11:00:00.000
TRUNC("TimeStamp", DATE) = 10/13/2011 00:00:00.000
TRUNC("TimeStamp", WEEK) = 10/09/2011 00:00:00.000
TRUNC("TimeStamp", MONTH) = 10/01/2011 00:00:00.000
TRUNC("TimeStamp", QUARTER) = 10/01/2011 00:00:00.000
TRUNC("TimeStamp", YEAR) = 01/01/2011 00:00:00.000
TRUNC("TimeStamp", DAY_OF_WEEK) = 10/13/2011 00:00:00:000
TRUNC("TimeStamp", DAY_OF_MONTH) = 10/13/2011 00:00:00:000
TRUNC("TimeStamp", DAY_OF_YEAR) = 10/13/2011 00:00:00:000
TRUNC("TimeStamp", JULIAN_DAY_NUMBER) = 10/13/2011 00:00:00:000

Here is a simple example of using this functionality. In the following statement, the total value for the Amount
attribute is grouped by quarter. The quarter is obtained by using the TRUNC operation on the TimeStamp
attribute:

RETURN Quarters AS
SELECT SUM(Amount) AS Total,

TRUNC(TimeStamp, QUARTER) AS Qtr
GROUP BY Qtr

Using arithmetic operations on date and time values

In addition to using the TRUNC and EXTRACT functions, you also can use normal arithmetic operations with
date and time values.

The following are the supported operations:

• Add or subtract a duration to or from a time or a dateTime to obtain a new time or dateTime.

• Subtract two times or dateTimes to obtain a duration.

• Add or subtract two durations to obtain a new duration.

• Multiply or divide a duration by a double number.

• Divide a duration by a duration.

Oracle® Endeca Server: Query Language Reference

EQL Syntax and Semantics 36

The following table shows the results of several arithmetic operations on date and time values:

Expression Results

2012-10-05T00:00:00.000Z + P30D 2012-11-04T00:00:00.000Z

2012-10-05T00:00:00.000Z - PT01M 2012-10-04T23:59:00.000Z

23:00:00.000Z + PT02H 01:00:00.00

20:00:00.000Z - PT02S 19:59:58.000Z

2012-01-01T00:00:00.000Z - 2012-12- -P365DT0H0M0.000S
31T00:00:00.000Z

23:15:00.000Z - 20:12:30.500Z P0DT3H2M29.500S

P1500DT0H0M0.000S - P500DT0H0M0.000S P1000DT0H0M0.000S

P1DT0H30M0.500S * 2.5 P2DT13H15M1.250S

P1DT0H30M0.225S / 2 P0DT12H15M0.112S

P5DT12H00M0.000S / P1DT0H00M0.000S 5.5

Arithmetic operators

EQL supports arithmetic operators for addition, subtraction, multiplication, and division.

The syntax is as follows:

<expr> {+, -, *, /} <expr>

Each arithmetic operator has a corresponding numeric function. For information on order of operations, see
Operator precedence rules on page 19.

Boolean operators

EQL supports the Boolean operators AND, OR, and NOT.

For information on order of operations, see Operator precedence rules on page 19.

Using EQL results to compose follow-on queries

You can select a value in an EQL result and use it to compose a follow-on query.

This enables users to interact with EQL results through a chart or a graph to compose follow-on queries. For
example, when viewing a chart of year-to-date sales by country, a user might select a specific country for drill-
down.

EQL is specifically designed to support this kind of follow-on query.

Oracle® Endeca Server: Query Language Reference Version 2.3.0 • June 2012 • Revision A

EQL Syntax and Semantics 37

If, in the above example, the user selects the country United States, then the follow-on query should examine
only sales of products in the United States. To filter to these items, a WHERE clause like the following can be
added:

WHERE DimGeography_CountryRegionName = 'United States'

Version 2.3.0 • June 2012 • Revision A

For attributes with types other than string, a conversion is necessary to use the string representation of the
value returned by EQL. For an integer attribute, like DimDate_CalendarYear, the string representation of
the value must be converted to an integer for filtering, as follows:

WHERE DimDate_CalendarYear = TO_INTEGER('2006').

EQL provides conversions for all non-string data types:

• TO_BOOLEAN()

• TO_DATETIME()

• TO_DOUBLE()

• TO_DURATION()

• TO_GEOCODE()

• TO_INTEGER()

• TO_TIME()

Each of these accepts the string representation of values produced by the Endeca Server. Note that, for
mdex:string attributes (including managed attributes), no conversion is necessary.

To determine which conversion function to use, EQL results are accompanied by attribute metadata that
describes both the type of the attribute, and, for managed attributes, any associated hierarchy.

Filtering to a node in a hierarchy

When filtering to a node in a hierarchy, such as ProductCategory, users typically want to filter to records that
are tagged with a particular value or any of its descendants. For example, if a user drills into Accessories,
filtering to records tagged with Accessories will return no results. However, filtering with:

WHERE IS_DESCENDANT(ProductCategory, 'Accessories')

produces the desired result of filtering to records tagged with Accessories or any descendent thereof.

Using AS expressions to calculate derived attributes

EQL statements typically use expressions to compute one or more derived attributes.

Each aggregation operation can declare an arbitrary set of named expressions, sometimes referred to as
derived attributes, using SELECT AS syntax. These expressions represent aggregate analytic functions that
are computed for each aggregated record in the statement result.

Important: Derived attribute names must be NCName-compliant. They cannot contain spaces or
special characters. For example, the following statement would not be valid:

RETURN price AS SELECT AVG(Price) AS "Average Price"

The space would have to be removed:

RETURN price AS SELECT AVG(Price) AS "AveragePrice"

Oracle® Endeca Server: Query Language Reference

EQL Syntax and Semantics 38

The NCName format is defined in the W3C document Namespaces in XML 1.0 (Second Edition), located at
this URL: http://www.w3.org/TR/REC-xml-names/.

COALESCE
The COALESCE expression allows for user-specified NULL-handling. It is often used to fill in missing values in
dirty data.

It has a function-like syntax, but can take unlimited arguments, for example: COALESCE(a, b, c, x, y, z).

You can use the COALESCE expression to evaluate records for multiple values and return the first non-NULL
value encountered, in the order specified. The following requirements apply:

• You can specify two or more arguments to COALESCE.

• Arguments that you specify to COALESCE must all be of the same type, with the following exceptions:

• Integers with doubles (resulting in doubles)

• Strings with managed attributes (resulting in managed attributes)

In the following example, all records without a specified price are treated as zero in the computation:

AVG(COALESCE(price, 0))

Version 2.3.0 • June 2012 • Revision A

COALESCE can also be used without aggregation, for example:

SELECT COALESCE(price, 0) AS price_or_zero WHERE ...

CASE
CASE expressions allow conditional processing in EQL, allowing you to make decisions at query time.

The syntax of the CASE expression, which conforms to the SQL standard, is:

CASE
WHEN <Boolean expression> THEN <expression>
[WHEN <Boolean expression> THEN <expression>]*
[ELSE expression]

END

CASE expressions must include at least one WHEN expression. The first WHEN expression with a TRUE
condition is the one selected. NULL is not TRUE. The optional ELSE clause must always come at the end of
the CASE statement and is equivalent to WHEN TRUE THEN. If no condition matches, the result is NULL.

In this example, division by non-positive integers is avoided:

CASE
WHEN y < 0 THEN x / (0 - y)
WHEN y > 0 THEN x / y
ELSE 0

END

In this example, records are categorized as Recent or Old:

RETURN Result AS
SELECT
CASE
WHEN (Days < 7) THEN 'Recent'
ELSE ‘Old’

END AS Age

Oracle® Endeca Server: Query Language Reference

http://www.w3.org/TR/REC-xml-names/

EQL Syntax and Semantics 39

The following example groups all records by class and computes the following:

• The minimum DealerPrice of all records in class H.

• The minimum ListPrice of all records in class M.

• The minimum StandardCost of all other records (called class L).

RETURN CaseExample AS SELECT
CASE
WHEN Class = 'H' THEN MIN(DealerPrice)
WHEN Class = 'M' THEN MIN(ListPrice)
ELSE MIN(StandardCost)

END
AS value
GROUP BY Class

Version 2.3.0 • June 2012 • Revision A

Using inter-statement references

In EQL, you can define statements and then refer to these statements from other statements.

Multiple EQL sub-queries can be specified within the context of a single navigation query, each corresponding
to a different analytical view, or to a sub-total at a different granularity level.

Expressions also can use values from other computed statements. This is often useful when coarser subtotals
are required for computing analytics within a finer-grained bucket.

For example, when computing the percent contribution for each sales representative in a given year, you must
also calculate the overall total for the year. You can use inter-statement references to create these types of
queries.

Syntax for inter-statement references

The syntax for an inter-statement reference is:

<LookupExpr> ::= <statement name>[<LookupList>].<attribute name>
<LookupList> ::= <empty>

::= <SimpleExpr> [,<LookupList>]

The square brackets are used to identify the record set and grouping attribute, and the dot is used to identify
the field.

Referencing a value from another statement

For example, suppose we want to compute the percentage of sales per ProductType per Region. One
aggregation computes totals grouped by Region, and a subsequent aggregation computes totals grouped by
Region and ProductType.

This second aggregation would use expressions that referred to the results from the Region aggregation. That
is, it would allow each Region and ProductType pair to compute the percentage of the full Region subtotal
represented by the ProductType in this Region.

DEFINE RegionTotals AS
SELECT SUM(Amount) AS Total
GROUP BY Region

RETURN ProductPcts AS
SELECT

Oracle® Endeca Server: Query Language Reference

EQL Syntax and Semantics 40

100 * SUM(Amount) / RegionTotals[Region].Total AS PctTotal
GROUP BY Region, ProductType

Version 2.3.0 • June 2012 • Revision A

The first statement computes the total product sales for each region. The next statement then uses the
RegionTotals results to determine the percentage for each region, making use of the inter-statement reference
syntax.

• The bracket operator indicates to reference the RegionTotals result that has a group-by value equal to the
ProductPcts value for the Region attribute.

• The dot operator indicates to reference the Total field in the specified RegionTotals record.

Computing percentage of sales

This example computes for each quarter the percentage of sales for each product type.

This query requires calculating information in one statement in order to use it in another statement.

To compute the sales of a given product as a percentage of total sales for a given quarter, the quarterly totals
must be computed and stored. The calculations for quarter/product pairs can then retrieve the corresponding
quarterly total.

DEFINE QuarterTotals AS
SELECT SUM(Amount) AS Total
GROUP BY Quarter ;

RETURN ProductPcts AS
SELECT
100 * SUM(Amount) / QuarterTotals[Quarter].Total AS PctTotal

GROUP BY Quarter, ProductType

IN
IN expressions perform a membership test.

IN expressions address use cases where you want to identify a set of interest, and then filter to records with
attributes that are in or out of that set. They are useful in conjunction with HAVING and PAGE expressions.

The syntax is as follows:

[Attr1, Attr2, …] IN StatementName

The example below helps answer the questions, "Which products do my highest value customers buy?" and
"What is my total spend with suppliers from which I purchase my highest spend commodities?"

DEFINE HighValueCust AS SELECT
SUM(SalesAmount) AS Value

GROUP BY CustId
HAVING Value>10000 ;

RETURN Top_HVC_Products AS SELECT
COUNT(1) AS NumSales

WHERE [CustId] IN HighValueCust
GROUP BY ProductName
ORDER BY NumSales DESC
PAGE(0,10)

Oracle® Endeca Server: Query Language Reference

EQL Syntax and Semantics 41

LOOKUP
A LOOKUP expression is a simple form of join. It treats the result of a prior statement as a lookup table.

Its syntax is as follows:

<statement>[<expression list>].<attribute>

Version 2.3.0 • June 2012 • Revision A

The expression list corresponds to the grouping attributes of the specified statement. If any of the expressions
in the list is NULL, the result is NULL.

Lookup attributes refer to GROUP BYs of the target statement, in order. Computed lookup of indexed values is
allowed, which means you can look up related information, such as total sales from the prior year, as shown in
the following example:

DEFINE YearTotals AS SELECT
SUM(SalesAmount) AS Total

GROUP BY Year ;

RETURN AnnualCategoryPcts AS SELECT
SUM(SalesAmount) AS Total,
Total/YearTotals[Year].Total AS Pct

GROUP BY Year, Category ;

RETURN YoY AS SELECT
YearTotals[Year].Total AS Total,
YearTotals[Year-1].Total AS Prior,
(Total-Prior)/Prior AS PctChange

GROUP BY Year

Oracle® Endeca Server: Query Language Reference

Chapter 3

EQL Use Cases

This section introduces a number of use case examples for various business scenarios. The examples in this
section are not based on a single data schema.

Re-normalization

Grouping by range buckets

Manipulating records in a dynamically computed range value

Grouping data into quartiles

Combining multiple sparse fields into one

Counting multi-assign terms

Joining data from different types of records

Joining on hierarchy

Linear regressions in EQL

Using an IN filter for pie chart segmentation

Running sum

Query by age

Calculating percent change between most recent month and previous month

Re-normalization
Re-normalization is important in denormalized data models in the Endeca Server, as well as when analyzing
multi-value attributes.

In the Quick Start data, Employees were de-normalized onto Transactions, as shown in the following example:

DimEmployee_FullName: Tsvi Michael Reiter

DimEmployee_HireDate: 2005-07-01T04:00:00.000Z

DimEmployee_Title: Sales Representative

FactSales_RecordSpec: SO49122-2

FactSales_SalesAmount: 939.588

Oracle® Endeca Server: Query Language Reference Version 2.3.0 • June 2012 • Revision A

EQL Use Cases 43

Incorrect

The following EQL code double-counts the tenure of Employees with multiple transactions:

RETURN AvgTenure AS SELECT
AVG(CURRENT_DATE - DimEmployee_HireDate) AS AvgTenure GROUP BY DimEmployee_Title

Version 2.3.0 • June 2012 • Revision A

Correct
In this example, you re-normalize each Employee, and then operate over them using FROM:

DEFINE Employees AS SELECT
DimEmployee_HireDate AS DimEmployee_HireDate,
DimEmployee_Title AS DimEmployee_Title GROUP BY DimEmployee_EmployeeKey;

RETURN AvgTenure AS SELECT
AVG(CURRENT_DATE - DimEmployee_HireDate) AS AvgTenure FROM Employees GROUP BY DimEmployee_Title

Grouping by range buckets
To create value range buckets, divide the records by the bucket size, and then use FLOOR or CEIL if needed
to round to the nearest integer.

The following examples group sales into buckets by amount:

/**
* This groups results into buckets by amount,
* rounded to the nearest 1000.
*/

RETURN Results AS
SELECT

ROUND(FactSales_SalesAmount, -3) AS Bucket,
COUNT(1) AS "Count"

GROUP BY Bucket

/**
* This groups results into buckets by amount,
* truncated to the next-lower 1000.
*/

RETURN Results AS
SELECT

FLOOR(FactSales_SalesAmount/1000)*1000 AS Bucket,
COUNT(1) AS "Count"

GROUP BY Bucket

A similar effect can be achieved with ROUND, but the set of buckets is different:

• FLOOR(900/1000) = 0

• ROUND(900,-3) = 1000

In the following example, records are grouped into a fixed number of buckets:

DEFINE ValueRange AS SELECT
COUNT(1) AS "Count"

GROUP BY SalesAmount
HAVING SalesAmount > 1.0

AND SalesAmount < 10000.0;

RETURN Buckets AS SELECT
SUM("Count") AS "Count",
FLOOR((SalesAmount - 1)/999.0) AS Bucket

Oracle® Endeca Server: Query Language Reference

EQL Use Cases 44

FROM ValueRange
GROUP BY Bucket
ORDER BY Bucket

Version 2.3.0 • June 2012 • Revision A

Manipulating records in a dynamically computed range
value
The following scenario describes how to manipulate records in a dynamically computed range value.

In the following example:

• Use GROUP to calculate a range of interest.

• Empty LOOKUP to get the range of interest into the desired expression.

• Use subtraction and HAVING to enable filtering by a dynamic value (instead of a static constant, as
required by WHERE).

DEFINE CustomerTotals AS SELECT
SUM(SalesAmount) AS Total

GROUP BY CustomerKey ;

DEFINE Range AS SELECT
MAX(Total) AS MaxVal,
MIN(Total) AS MinVal,
((MaxVal-MinVal)/10) AS Decile,
MinVal + (Decile*9) AS Top10Pct

FROM CustomerTotals GROUP ;

RETURN Result AS SELECT
SUM(SalesAmount) AS Total,
Total-Range[].Top10Pct AS Diff

GROUP BY CustomerKey
HAVING Diff>0

Grouping data into quartiles
EQL allows you to group your data into quartiles.

The following example demonstrates how to group data into four roughly equal-sized buckets.

/* This finds quartiles in the range
* of ProductSubCategory, arranged by
* total sales. Adjust the grouping
* attribute and metric to your use case.
*/

DEFINE Input AS SELECT
ProductSubcategoryName AS Key,
SUM(FactSales_SalesAmount) AS Metric

GROUP BY Key
ORDER BY Metric;

DEFINE Quartile1Records AS SELECT
Key AS Key,
Metric AS Metric

FROM Input
ORDER BY Metric
PAGE(0, 25) PERCENT;

Oracle® Endeca Server: Query Language Reference

EQL Use Cases 45

/* Using MAX(Metric) as the Quartile boundary isn't quite
* right: if the boundary falls between two records, the
* quartile is the average of the values on those two records.
* But this gives the right groupings.
*/

DEFINE Quartile1 AS SELECT
MAX(Metric) AS Quartile,
SUM(Metric) AS Metric /* ...or any other aggregate */

FROM Quartile1Records
GROUP;

DEFINE Quartile2Records AS SELECT
Key AS Key,
Metric AS Metric

FROM Input
ORDER BY Metric
PAGE(25, 25) PERCENT;

DEFINE Quartile2 AS SELECT
MAX(Metric) AS Quartile,
SUM(Metric) AS Metric

FROM Quartile2Records
GROUP;

DEFINE Quartile3Records AS SELECT
Key AS Key,
Metric AS Metric

FROM Input
ORDER BY Metric
PAGE(50, 25) PERCENT;

Version 2.3.0 • June 2012 • Revision A

DEFINE Quartile3 AS SELECT
MAX(Metric) AS Quartile,
SUM(Metric) AS Metric

FROM Quartile3Records
GROUP;

DEFINE Quartile4Records AS SELECT
Key AS Key,
Metric AS Metric

FROM Input
ORDER BY Metric
PAGE(75, 25) PERCENT;

DEFINE Quartile4 AS SELECT
MAX(Metric) AS Quartile,
SUM(Metric) AS Metric

FROM Quartile4Records
GROUP;

/**
* The technical definition of "Quartile" is
* the values that segment the data into four
* roughly equal groups. Here, we return not
* just the Quartiles, but the metric aggregated
* over the records within the groups defined
* by the Quartiles.
*/

RETURN Quartiles AS
SELECT

Quartile AS Quartile1,
Metric AS Quartile1Metric,
Quartile2[].Quartile AS Quartile2,
Quartile2[].Metric AS Quartile2Metric,
Quartile3[].Quartile AS Quartile3,
Quartile3[].Metric AS Quartile3Metric,
Quartile4[].Quartile AS Quartile4,
Quartile4[].Metric AS Quartile4Metric FROM Quartile1;

Oracle® Endeca Server: Query Language Reference

EQL Use Cases 46

Combining multiple sparse fields into one
EQL allows you to combine multiple sparse fields into a single field.

In the example below, we use the AVG and COALESCE functions to combine the leasePayment and
loanPayment fields into a single avgPayment field.

ID Make Model Type leasePayment loanPayment

1 Audi A4 lease 380

2 Audi A4 loan 600

3 BMW 325 lease 420

4 BMW 325 loan 700

RETURN Result AS SELECT
AVG(COALESCE(loanPayment,leasePayment))
AS avgPayment

FROM CombinedColumns
GROUP BY make

Version 2.3.0 • June 2012 • Revision A

Counting multi-assign terms
Take care when counting multi-assign terms to ensure you capture all assignments.

The first, incorrect example only counts a single arbitrary term assignment per record scanned:

RETURN TermCounts AS SELECT
COUNTDISTINCT(Term) as NumTerms, /* wrong; term is de-multi-assigned
* prior to COUNTDISTINCT */
COUNT(Term) as NumAssignments

GROUP BY Category

The second, correct example uses a SUM of COUNTs pattern. This pattern can be used any time where it is
useful to first produce partial COUNTs and then add them up to get the total COUNT.

DEFINE Terms AS SELECT
COUNT(1) AS Assignments

GROUP BY Term, Category ;

RETURN TermCounts AS SELECT
COUNTDISTINCT(Term) as NumTerms,
SUM(Assignments) AS NumAssignments

FROM Terms
GROUP BY Category

Joining data from different types of records
You can use EQL to join data from different types of records.

Use lookups against AllBaseRecords to avoid eliminating all records of a secondary type when navigation
refinements are selected from an attribute only associated with the primary record type.

Oracle® Endeca Server: Query Language Reference

EQL Use Cases 47

In the following example, the following types of records are joined:

Record type 1

RecordType: Review

Rating: 4

ProductId: Drill-X15

Text: This is a great product...

Record type 2

RecordType: Transaction

SalesAmount: 49.99

ProductId: Drill-X15

...

DEFINE Ratings AS SELECT
AVG(Rating) AS AvScore

FROM AllBaseRecords
WHERE RecordType = 'Review'
GROUP BY ProductId ;

RETURN TopProducts AS SELECT
SUM(SalesAmount) AS TotalSales,
Ratings[ProductId].AvScore AS AvScore

WHERE RecordType = 'Transaction'
GROUP BY ProductId
ORDER BY TotalSales DESC
PAGE(0,10)

Version 2.3.0 • June 2012 • Revision A

Joining on hierarchy
The following example shows a transitive join on hierarchy.

This query returns the number of reports in each manager's Org. (Org is a managed attribute representing
organizational structure.)

RETURN SELECT
COUNT(1) AS TotalMembers,
manager.Org AS Org

FROM People manager
JOIN People report
ON IS_ANCESTOR(manager.Org, report.Org)

GROUP BY Org

Oracle® Endeca Server: Query Language Reference

EQL Use Cases 48

Linear regressions in EQL
Using the syntax described in this topic, you can produce linear regressions in EQL.

Using the following data set:

ID X Y

1 60 3.1

2 61 3.6

3 62 3.8

4 63 4

5 65 4.1

The following simple formulation:

y = A + Bx

Can be expressed in EQL as:

RETURN Regression AS SELECT
COUNT(ID) AS N,
SUM(X) AS sumX,
SUM(Y) AS sumY,
SUM(X*Y) AS sumXY,
SUM(X*X) AS sumX2,
((N*sumXY)-(sumX*sumY)) /
((N*sumX2)-(sumX*sumX)) AS B,

(sumY-(B*sumX))/N AS A
GROUP

Version 2.3.0 • June 2012 • Revision A

With the result:

N sumX sumY sumXY sumX2 B A

5 311.000000 18.600000 1159.700000 19359.000000 0.187838 -7.963514

Using the regression results
For y = A + Bx:

DEFINE Regression AS SELECT
COUNT(ID) AS N,
SUM(X) AS sumX,
SUM(Y) AS sumY,
SUM(X*Y) AS sumXY,
SUM(X*X) AS sumX2,
((N*sumXY)-(sumX*sumY)) /
((N*sumX2)-(sumX*sumX)) AS B,
(sumY-(B*sumX))/N AS A

GROUP

RETURN Results AS SELECT

Oracle® Endeca Server: Query Language Reference

EQL Use Cases 49

Y AS Y, X AS X, Regression[].A + Regression[].B * X AS Projection
...

Version 2.3.0 • June 2012 • Revision A

As a final step in the example above, you would need to PAGE or GROUP what could be a very large number of
results.

Using an IN filter for pie chart segmentation
This query shows how the IN filter can be used to populate a pie chart showing sales divided into six
segments: one segment for each of the five largest customers, and one segment showing the aggregate sales
for all other customers.

The first statement gathers the sales for the top five customers, and the second statement aggregates the
sales for all customers not in the top five.

RETURN Top5 AS SELECT
SUM(Sale) AS Sales
GROUP BY Customer
ORDER BY Sales DESC
PAGE(0,5);

RETURN Others AS SELECT
SUM(Sale) AS Sales
WHERE NOT [Customer] IN Top5
GROUP

Running sum
A running (or cumulative) sum calculation can be useful in warranty scenarios.

/* This selects the total sales in the
* 12 most recent months.
*/

DEFINE Input AS SELECT
DimDate_CalendarYear AS "Year",
DimDate_MonthNumberOfYear AS "Month",
SUM(FactSales_SalesAmount) AS TotalSales GROUP BY "Year", "Month"

ORDER BY "Year" DESC, "Month" DESC
PAGE(0, 12);

RETURN CumulativeSum AS SELECT
one."Year" AS "Year",
one."Month" AS "Month",
SUM(many.TotalSales) AS TotalSales

FROM Input one JOIN Input many
ON ((one."Year" > many."Year") OR

(one."Year" = many."Year" AND
one."Month" >= many."Month")

)
GROUP BY "Year", "Month"
ORDER BY "Year", "Month"

Query by age
In this example, records are tagged with a Date attribute on initial ingest. No updates are necessary.

RETURN Result AS

Oracle® Endeca Server: Query Language Reference

EQL Use Cases 50

SELECT
EXTRACT(CURRENT_DATE,

JULIAN_DAY_NUMBER) -
EXTRACT(Date, JULIAN_DAY_NUMBER)
AS AgeInDays

HAVING (AgeInDays < 30)

Version 2.3.0 • June 2012 • Revision A

Calculating percent change between most recent month and
previous month
The following example finds the most recent month in the data that matches the current filters, and compares
it to the prior month, again in the data that matches the current filters.

/* This computes the percent change between the most
* recent month in the current nav state, compared to the prior
* month in the nav state. Note that, if there's only
* one month represented in the nav state, this will return NULL.
*/

DEFINE Input AS SELECT
DimDate_CalendarYear AS "Year",
DimDate_MonthNumberOfYear AS "Month",
DimDate_CalendarYear * 12 + DimDate_MonthNumberOfYear AS OrdinalMonth,
SUM(FactSales_SalesAmount) AS TotalSales GROUP BY OrdinalMonth;

RETURN Result AS SELECT
"Year" AS "Year",
"Month" AS "Month",
TotalSales AS TotalSales,
Input[OrdinalMonth - 1].TotalSales AS PriorMonthSales,
100 * (TotalSales - PriorMonthSales)

/ PriorMonthSales AS PercentChange FROM Input ORDER BY "Year" DESC, "Month" DESC PAGE(0, 1)

Oracle® Endeca Server: Query Language Reference

Chapter 4

EQL Best Practices

This section discusses ways to maximize your EQL query performance.

Controlling input size

Filtering as early as possible

Controlling join size

Additional tips

Controlling input size
The size of the input for a statement can have a big impact on the evaluation time of the query.

The input for a statement is defined by the FROM clause. If no FROM clause is provided, the input defaults to
the NavStateRecords. When possible, use an already completed result from another statement, instead of
using corpus records, to avoid inputting unnecessary records.

Consider the following queries. In the first query, the input to each statement is of a size on the order of the
navigation state. In the first two statements, Sums and Totals, the data is aggregated at two levels of
granularity. In the last statement, the data set is accessed again for the sole purpose of identifying the
month/year combinations that are present in the data. The computations of interest are derived from
previously-computed results.

DEFINE Sums AS SELECT
SUM(a) AS MonthlyTotal

GROUP BY month,year;

DEFINE Totals AS SELECT
SUM(a) AS YearlyTotal

GROUP BY year;

DEFINE Result AS SELECT
Sums[month,year].MonthlyTotal AS MonthlyTotal,
Sums[month,year].MonthlyTotal/Totals[year].YearlyTotal AS Fraction

GROUP BY month,year

Version 2.3.0 • June 2012 • Revision A

In the following rewrite of the query, the index is accessed only once. The first statement accesses the index
to compute the monthly totals. The second statement has been modified to compute yearly totals using the
results of the first statement. Assuming that there are many records per month, the savings could be multiple
orders of magnitude. Finally, the last statement has also been modified to use the results of the first
statement. The first statement has already identified all of the valid month/year combinations in the data set.
Rather than accessing the broader data set (possibly millions of records) just to identify the valid
combinations, the month/year pairs are read from the much smaller (probably several dozen records) previous
result.

DEFINE Sums AS SELECT
SUM(a) AS MonthlyTotal

Oracle® Endeca Server: Query Language Reference

EQL Best Practices 52

GROUP BY month,year;

DEFINE Totals AS SELECT
SUM(MonthlyTotal) AS YearlyTotal

FROM Sums
GROUP year;

DEFINE Result AS SELECT
MonthlyTotal AS MonthlyTotal,
MonthlyTotal/Totals[year].YearlyTotal AS Fraction

FROM Sums

Version 2.3.0 • June 2012 • Revision A

Defining constants independent of data set size

A common practice is to define constants for a query through a single group, as shown in the first query
below. Note that the input for this query is the entire navigation state, even though nothing from the input is
used. Since none of the input is actually needed, restrict the input to the smallest size possible with a very
restrictive filter, such as the one shown in the second example.

DEFINE Constants AS SELECT
500 AS DefaultQuota

GROUP

DEFINE Constants AS SELECT
500 AS DefaultQuota

WHERE "mdex-property_Key" IS NOT NULL
GROUP

Filtering as early as possible
Filtering out rows as soon as possible improves query latency because it reduces the amount of data that
must be tracked through the evaluator.

Consider the following two versions of a query. The first form of the query first groups records by g, passes
each group through the filter (b < 10), and then accumulates the records that remain. The input records are
not filtered, and the grouping operation must operate on all input records.

RETURN Result AS SELECT
SUM(a) WHERE (b < 10) AS sum_a_blt10

GROUP BY g

The second form of the query filters the input (with the WHERE clause) before the records are passed to the
grouping operation. Thus the grouping operation must group only those records of interest to the query. By
eliminating records that are not of interest sooner, evaluation will be faster.

RETURN Results AS SELECT
SUM(a) AS sum_a_blt10,

WHERE (b < 10)
GROUP BY g

Another example of filtering records early is illustrated with the following pair of queries. Recall that a WHERE
clauses filters input records and a HAVING clause filters output records. The first query computes the sum for
all values of g and (after performing all of that computation) throws away all results that do not meet the
condition (g < 10).

RETURN Result AS SELECT
SUM(a) AS sum_a

GROUP BY g

Oracle® Endeca Server: Query Language Reference

EQL Best Practices 53

HAVING g < 10

Version 2.3.0 • June 2012 • Revision A

The second query, on the other hand, first filters the input records to only those in the interesting groups. It
then aggregates only those interesting groups.

RETURN Result AS SELECT
SUM(a) AS sum_a
WHERE g < 10
GROUP BY g

Controlling join size
Joins can cause the Endeca Server to grow beyond available RAM. Going beyond the scale capabilities will
cause very, very large materializations, intense memory pressure, and can result in an unresponsive Endeca
Server.

Additional tips
This topic contains additional tips for working effectively with EQL.

• String manipulations are unsupported in EQL. Therefore, ensure you prepare string values for query
purposes in the data ingest stage.

• Normalize information to avoid double counting or summing, as well as to prevent the production of
arbitrary values with multi-assign attributes.

• Use a common case (upper case) for attribute string values when sharing attributes between data
sources.

• Name each DEFINE statement something meaningful so that others reading your work can make sense of
what your logic is.

• Use paging in DEFINE statements to reduce the number of records returned.

• When using CASE statements, bear in mind that all conditions and expressions are always evaluated,
even though only one is returned. If an expression is repeated across multiple WHEN clauses of a CASE
expression, it is best to factor the computation of that expression out into a separate SELECT, then re-use
it.

Oracle® Endeca Server: Query Language Reference

Index

controlling input size 51A
controlling join size 53about EQL 1
COS function 26about queries 4
COUNTDISTINCT function 17, 26ABS function 24
COUNT function 17, 26addition operator 24
counting multi-assign terms 46aggregation
CROSS JOIN 8function filters 18

functions 26 cumulative sum 49
nested 17 CURRENT_DATE function 31with COUNT and COUNTDISTINCT 17

CURRENT_TIMESTAMP function 31ANCESTOR function 27
ARB function 27 D
arithmetic operators 36

data types 19AVG function 26
date and time 31
date and time values 29B

constructing 31
best practices using arithmetic operations on 35

additional tips 53 DEFINE clause 6controlling input size 51
defining constants for best performance 52defining constants 52

filtering as early as possible 52 DISTANCE function 29
Boolean division operator 24

literal handling 20
operators 36 E

EQLC case handling 21
calculate percent change over month 50 characters 20

commenting 5CASE expression 38
concepts 1case handling in EQL 21 handling of inf results 23

CEIL function 24 handling of multi-assign attribute values 18
handling of NaN results 23characters in EQL 20
handling of NULL results 21clauses
hierarchy filtering 27DEFINE 6
inter-statement references 39FROM 7
nested aggregation example 17GROUP 12
overview 1GROUP BY 12
processing order 3HAVING 14
SELECT AS statements 37JOIN 8
SQL comparison 2ORDER BY 14
syntax conventions 4PAGE 15

evaluation time and input size 51RETURN 6
SELECT 6 EXP function 24
summary 5 expressions 19WHERE 11 CASE 38

COALESCE expression 38 COALESCE 38
IN 40combining multiple sparse fields into one 46
LOOKUP 41commenting in EQL 5
SELECT AS 37

concepts 1
EXTRACT function 33

Oracle® Endeca Server: Query Language Reference Version 2.3.0 • June 2012 • Revision A

Index 55

TO_DOUBLE 26F
TO_DURATION 26, 32

filtering 4 TO_GEOCODE 29
geocode 29 TO_INTEGER 26
hierarchy 27 TO_TIME 31
performance impact of 52 TO_TZ 32
to a node in a hierarchy 37 TRUNC 26, 35

filters VARIANCE 27
per-aggregation 18
using results values as 36 G

FLOOR function 25
geocode

follow-on queries 36 filtering 29
FROM_TZ function 32 sorting by 15
FROM clause 7 GET_LCA function 28
FULL JOIN 8 GROUP BY clause 12
functions GROUP clause 12

ABS 24 grouping
aggregation 26 by range buckets 43
ANCESTOR 27 data into quartiles 44
ARB 27
arithmetic operators 36

HAVG 26
CEIL 24 HAVING clause 14
COS 26 HIERARCHY_LEVEL function 27COUNT 17, 26

hierarchy filtering 27COUNTDISTINCT 17, 26
CURRENT_DATE 31
CURRENT_TIMESTAMP 31 I
date and time 29

identifier handling 21DISTANCE 29
EXP 24 important concepts 1
EXTRACT 33 IN expression 40
FLOOR 25

inf, EQL handling of 23FROM_TZ 32
INNER JOIN 8GET_LCA 28

hierarchy 27 inter-statement references, EQL 39
HIERARCHY_LEVEL 27 IS_ANCESTOR function 28IS_ANCESTOR 28

IS_DESCENDANT function 27IS_DESCENDANT 27
LATITUDE 29
LCA 28 J
LN 25

JOIN clause 8LOG 25
LONGITUDE 29 joining data from different types of records 46
MAX 26 joining on hierarchy 47
MEDIAN 27

join size constraints 53MIN 27
MOD 25
numeric 24 L
POWER 26 LATITUDE function 29ROUND 25

LCA function 28SIGN 25
SIN 26 LEFT JOIN 8
SQRT 26 linear regression in EQL 48
STDDEV 27

literals 20SUM 27
SYSDATE 31 LN function 25
SYSTIMESTAMP 31 LOG function 25
TAN 26

LONGITUDE function 29TO_DATETIME 31

Oracle® Endeca Server: Query Language Reference Version 2.3.0 • June 2012 • Revision A

Index 56

LOOKUP expression 41 RIGHT JOIN 8
ROUND function 25

M running sum 49
manipulating records in a dynamically computed
range value 44 S
MAX function 26 SELECT AS statements 37
MEDIAN function 27 SELECT clause 6
MIN function 27 SIGN function 25
MOD function 25 SIN function 26
multi-assign attribute values in EQL 18 SQL comparison 2
multiplication operator 24 SQRT function 26

STDDEV function 27
N string

NaN, EQL handling of 23 literal handling 20
sort order 15nested aggregation example 17

structured literal handling 21NULL values, EQL handling of 21
subtraction operator 24numeric

functions 24 SUM function 27
literal handling 20 syntax conventions 4

SYSDATE function 31
O SYSTIMESTAMP function 31

operations, date and time 29
operators T

arithmetic 36
TAN function 26Boolean 36
terminology, EQL 1precedence order 20
TO_DATETIME function 31ORDER BY clause 14
TO_DOUBLE function 26ORDER BY stability 15
TO_DURATION function 26, 32order of processing in EQL 3
TO_GEOCODE function 29overview of queries 4
TO_INTEGER function 26
TO_TIME function 31P
TO_TZ function 32PAGE clause 15

expressions, PERCENT 15 Top-K queries 15
Top-K queries 15 TRUNC function 26, 35

PERCENT expression 15 type promotion 22
pie chart segmentation with IN filters 49
POWER function 26 U
precedence rules for operators 20 use cases

calculate percent change over month 50
combining multiple sparse fields into 46Q
counting multi-assign 46queries 4
grouping by range buckets 43

query by age 49 grouping data into quartiles 44
query processing order 3 joining data from different types of 46

joining on hierarchy 47
linear regression 48R manipulating records in a dynamically

re-normalization 42 computed 44
pie chart segmentation 49result values used as filters 36
query by age 49RETURN clause 6 re-normalization 42

Oracle® Endeca Server: Query Language Reference Version 2.3.0 • June 2012 • Revision A

Index 57

running sum 49 W
using arithmetic operations on date and time WHERE clause 11
values 35

V
VARIANCE function 27

Oracle® Endeca Server: Query Language Reference Version 2.3.0 • June 2012 • Revision A

	Copyright and disclaimer
	Table of Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Customer Support

	Chapter 1: Introduction to the Endeca Query Language
	EQL overview
	Important concepts and terms
	EQL and SQL: a comparison
	How queries are processed

	Chapter 2: EQL Syntax and Semantics
	Query overview
	Statements and clauses
	DEFINE and RETURN clauses
	SELECT clauses
	FROM clauses
	JOIN clauses
	WHERE clauses
	GROUP/GROUP BY clauses
	HAVING clauses
	ORDER BY clauses
	PAGE clauses

	Grouping and aggregation
	Nested aggregation
	Using the COUNT and COUNTDISTINCT functions
	Per-aggregation filters
	Handling of records with multiple values for an attribute

	Expressions
	Supported data types
	Operator precedence rules in EQL
	Literals
	Handling of characters in EQL
	Handling of upper- and lower-case in EQL
	Handling NULL attribute values
	Type promotion in EQL
	Handling of NaN, inf and -inf results

	Functions and operators
	Numeric functions
	Aggregation functions
	Hierarchy functions
	Geocode functions
	Working with date and time values in EQL
	Manipulating current date and time
	Constructing date and time values
	Timezone manipulation
	Using EXTRACT to extract a portion of a dateTime value
	Using TRUNC to round down dateTime values
	Using arithmetic operations on date and time values

	Arithmetic operators
	Boolean operators

	Using EQL results to compose follow-on queries
	Using AS expressions to calculate derived attributes
	COALESCE
	CASE
	Using inter-statement references
	IN
	LOOKUP

	Chapter 3: EQL Use Cases
	Re-normalization
	Grouping by range buckets
	Manipulating records in a dynamically computed range value
	Grouping data into quartiles
	Combining multiple sparse fields into one
	Counting multi-assign terms
	Joining data from different types of records
	Joining on hierarchy
	Linear regressions in EQL
	Using an IN filter for pie chart segmentation
	Running sum
	Query by age
	Calculating percent change between most recent month and previous month

	Chapter 4: EQL Best Practices
	Controlling input size
	Filtering as early as possible
	Controlling join size
	Additional tips

	Index

