
Oracle® Endeca Information Discovery

Studio Developer's Guide

Version 2.3.0 • April 2012

Copyright and disclaimer
Copyright © 2003, 2012, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No
other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It
is not developed or intended for use in any inherently dangerous applications, including applications that may
create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software
or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content, products and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Rosette® Linguistics Platform Copyright © 2000-2011 Basis Technology Corp. All rights reserved.

Teragram Language Identification Software Copyright © 1997-2005 Teragram Corporation. All rights reserved.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 • April 2012

Table of Contents

Copyright and disclaimer ..ii

Preface..v
About this guide...v
Who should use this guide ...v
Conventions used in this guide..v
Contacting Oracle Customer Support ...v

Chapter 1: About Extending Studio..1
Developer tasks in Studio ...1
Licensing requirement for component development.......................................1
Other resources for additional information..2

Chapter 2: Security Extensions to Studio...3
Security Manager class summary ...3
Creating a new Security Manager..4
Implementing a new Security Manager ..5
Using the Security Manager..5

Chapter 3: Managing Data Source State in Studio6
About the State Manager interface ...6
Creating a new State Manager..7
Implementing a State Manager..7
Using the State Manager ..9

Chapter 4: Installing and Using the Component SDK..................................10
Downloading and configuring the Component SDK10
Configuring Eclipse for component development ..11
Developing a new component ...11

Creating a new component ...12
Importing the project in Eclipse...12
Building and testing your new component...13
Adding and removing components from the WebLogic .ear file13

Modifying the enhancements to the Component SDK13

Chapter 5: Working with QueryFunction Classes15
Provided QueryFunction filter classes..15
Provided QueryConfig functions ..19
Creating a custom QueryFunction class ..25
Implementing a custom QueryFunction class ..26
Deploying a custom QueryFunction class ...26
Adding the custom QueryFunction .jar file to your Eclipse build path27
Obtaining query results ..27

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 • April 2012

Chapter 6: Localizing Studio ..29
Configuring localization for a component..29
Adding strings to your resource files...30

Including common shared messages ..30
Including the component name, category, and keywords30
Using tokens in message strings ...31

Guidelines for working with non-Unicode characters31
Localizing a component to a non-Unicode language31
How the build process works with resource files ..32
Using the LanguageUtils class to retrieve localized messages33

Calling static methods from Java ...33
Using the Discovery taglib in JSP...33
Using the LanguageUtils class from JSP..34
Instantiating the object and call instance methods from Java/JSP34
Retrieving all resource bundle messages in one call34

Adding a translation to a released component..34
Switching the locale of a component...35
Adding the Language component to your Studio application35
Obtaining more information about portal localization36

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 • April 2012

Preface
Oracle® Endeca Information Discovery is an enterprise data discovery platform for advanced, yet intuitive,
exploration and analysis of complex and varied data.

Information is loaded from disparate source systems and stored in a faceted data model that dynamically
supports changing data. This integrated and enriched data is made available for search, discovery, and
analysis via interactive and configurable applications.

Oracle Endeca Information Discovery enables an iterative “model-as-you-go” approach that simultaneously
frees IT from the burdens of traditional data modeling and supports the broad exploration and analysis needs
of business users.

About this guide
This guide provides information on extending the Studio portal of Oracle Endeca Information Discovery.

Who should use this guide
This guide is intended for developers who want to extend Studio.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace font. In
the case of long lines of code, or when inline monospace text occurs at the end of a line, the following symbol
is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the corresponding
line break are deleted and any remaining space is closed up.

Contacting Oracle Customer Support
Oracle Customer Support provides registered users with important information regarding Oracle software,
implementation questions, product and solution help, as well as overall news and updates from Oracle.

You can contact Oracle Customer Support through Oracle's Support portal, My Oracle Support at
https://support.oracle.com.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 • April 2012

https://support.oracle.com

Chapter 1

About Extending Studio

Out of the box, Studio includes numerous components that you can use to quickly develop an enterprise-
quality search application. In addition, Studio provides a number of extension points for managing query and
portlet operations, along with default implementations of the various interfaces that you can modify.

Developer tasks in Studio

Licensing requirement for component development

Other resources for additional information

Developer tasks in Studio
Developer tasks include both data source development and component customization.

Data source development tasks include:

• Modifying data sources.

• Adjusting security.

• Customizing how data sources interact with each other.

Component customization tasks include:

• Adding or modifying portlet components based on the EndecaPortlet class, using the Studio Component
SDK.

• Localizing components.

This guide covers all of these developer tasks.

Note: Before modifying data sources, make sure to read the data sources chapter of the Oracle
Endeca Information Discovery Studio User's Guide. This chapter describes the default interaction
model between related data sources.

Licensing requirement for component development
Studio component development may require the purchase of a third party license.

Studio uses Ext JS in its components and in the default components created by its SDK.

The Oracle Endeca Information Discovery license does not bundle licensing for ExtJS.

Therefore, customers developing components with ExtJS must either purchase their own development
licenses from ExtJS, or remove ExtJS and develop components without using that Javascript framework.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 • April 2012

http://www.extjs.com/products/js/

About Extending Studio 2

Other resources for additional information
In addition to this guide, there are other resources that can help with these development tasks.

Liferay documentation

Because Studio is built upon the Liferay Portal, you can access Liferay's documentation for more information
about how to perform administrative and developer tasks.

Specifically, the Liferay Portal Administrator's Guide provides extensive information about installing,
configuring, and maintaining a portal.

Liferay developer resources

This guide only covers Information Discovery extensions to the Liferay Portal. For additional developer
support, Liferay provides blogs, wikis, and forums. To access this, go to http://www.liferay.com and navigate to
Community.

Additional Information Discovery documentation

The complete Oracle Endeca Information Discovery documentation set is available from the Oracle
documentation library.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 • April 2012

http://www.liferay.com

Chapter 2

Security Extensions to Studio

You may require more than the default data source role-based security discussed in the Oracle Information
Discovery Studio User's Guide. If so, you can customize the automated filtering of data from the Oracle
Endeca Server (based on user profile details such as the user's role or group association) by creating a
custom Security Manager.

Security Manager class summary

Creating a new Security Manager

Implementing a new Security Manager

Using the Security Manager

Security Manager class summary
A Security Manager is a concrete class that implements
com.endeca.portal.data.security.MDEXSecurityManager.

Abstract base class com.endeca.portal.data.security.MDEXSecurityManager

Default implementation class com.endeca.portal.data.DefaultMDEXSecurityManager

Description Handles pre-execution query modification based on the user, role, or
group-based security configuration of filters.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 • April 2012

Security Extensions to Studio 4

Default implementation behavior The default Security Manager implementation uses the following
properties:

• securityEnabled. If the value is not present, then
securityEnabled defaults to false.

• securityFilters. Record filters are the only supported type of
securityFilter.

• rolePermissions

• inheritSecurity. If the data source has a parent, then
inheritSecurity defaults to true. Otherwise, the value defaults
to false.

• parentDataSource

These properties are defined in data source configurations in order to
apply role-based security filters to queries issued to the Endeca Server
backing a given data source.

Users are assigned to Liferay roles in the Control Panel. The related
associations are made available to every component throughout the
user's session.

Users who have not yet logged in are automatically assigned the
Guest user role. Any role-based restrictions for the Guest role are also
applied to these users.

For each data source, the Security Manager maintains an internal map
of security filters to always apply to queries issued during that user's
session.

Creating a new Security Manager
The Studio Component SDK includes Windows and Linux batch scripts for creating a new Security Manager.

To create a new Security Manager project:

1. In a terminal, change your directory to endeca-extensions within the Component SDK's root
directory (normally called components).

2. Run one of the following commands:
• On Windows: .\create-mdexsecuritymanager.bat <your-security-manager-name>

• On Linux: ./create-mdexsecuritymanager.sh <your-security-manager-name>

This command creates a your-security-manager-name directory under endeca-extensions.
This directory is an Eclipse project that you can import directly into Eclipse, if you use Eclipse as your
IDE.

This directory also contains a sample implementation that you can use to help understand how the
Security Manager can be used. The sample implementation is essentially identical to the default
implementation of the Security Manager used by Studio.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 • April 2012

Security Extensions to Studio 5

Implementing a new Security Manager
Your Security Manager must implement the applySecurity method.

There are two versions of the applySecurity method, one of which your Security Manager must implement:

public void applySecurity(PortletRequest request, MDEXState mdexState, Query query) throws
MDEXSecurityException;

Version 2.3.0 • April 2012

The Query class in this signature is com.endeca.portal.data.Query. This class provides a simple wrapper
around an ENEQuery.

Using the Security Manager
In order to use your Security Manager, you must specify a new class for Studio to pick up and use in place of
the default Security Manager implementation.

The your-security-manager-name directory you created contains an ant build file. The ant deploy task
places a .jar file containing your Security Manager into the portal/tomcat-<version>/lib/ext directory.

To configure Studio to use your new class:

1. Point the cursor at the Dock in the upper-right corner of the page.

2. In the drop-down menu, choose Control Panel.

3. In the Information Discovery section of the Control Panel navigation panel, select Framework
Settings.

4. Change the value of the df.mdexSecurityManager property to the full name of your class, similar to
following example:

df.mdexSecurityManager = com.endeca.portal.extensions.YourSecurityManagerClass

5. Click Update Settings.

6. Restart Studio so the change can take effect. You may also need to clear any cached user sessions.

Oracle® Endeca Information Discovery: Studio Developer's Guide

Chapter 3

Managing Data Source State in Studio

Studio allows you to define your own interaction model for data sources by creating a custom State Manager.
For information on the default interaction model between related data sources, see the Oracle Endeca
Information Discovery Studio User's Guide.

About the State Manager interface

Creating a new State Manager

Implementing a State Manager

Using the State Manager

About the State Manager interface
The State Manager controls how data sources interact during updates and query construction.

Interface (required) com.endeca.portal.data.MDEXStateManager

Abstract base class (optional) com.endeca.portal.data.AbstractMDEXStateManager

Default implementation class com.endeca.portal.data.DefaultMDEXStateManager

Description Handles:

• Updating a data source with a new query state (called from
DataSource.setQueryState(QueryState newState))

• Retrieving the current query state from a data source (called from
DataSource.getQueryState())

• Resetting a data source's query state to its initial state (called from
DataSource.resetQueryState())

• Retrieving a copy of the data source's initial state without resetting
the data source (called from
DataSource.getInitialQueryState())

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 • April 2012

Managing Data Source State in Studio 7

Default implementation behavior The default State Manager implementation uses the
ParentDataSource property from the data source configuration to
propagate state changes throughout the hierarchy of data source
relationships.

When a component changes the query state of its data source, that
modification is applied to:

• The parent data source

• All of the children of the parent data source

This is recursive, applying all the way up and back down an ancestor
tree.

Configuring a hierarchy of data source relationships allows application
developers to create more advanced interfaces, such as a tabbed
result set where a single Guided Navigation component controls the
query state for Results Table components on different tabs.

Creating a new State Manager
The endeca-extensions directory of the Component SDK includes scripts for creating a State Manager
project on either Windows or Linux.

To create a new State Manager project:

1. In a terminal, change to the endeca-extensions directory within the Component SDK's root
directory (normally called components).

2. Run one of the following commands:
• On Windows: .\create-mdexstatemanager.bat <your-state-manager-name>

• On Linux: ./create-mdexstatemanager.sh <your-state-manager-name>

This command creates a <your-state-manager-name> directory under endeca-extensions.
This directory is an Eclipse project. If you use Eclipse as your IDE, you can import the project directly
into Eclipse.

The directory also contains a sample implementation, which is essentially identical to the default
implementation of the State Manager used by Studio. You can use this sample implementation to help
understand how to use the State Manager.

Implementing a State Manager
Custom State Managers implement the MDEXStateManager interface. There are methods for updating,
retrieving, and resetting the data source query state.

Recommendations for implementing

To create a custom State Manager, you must at minimum implement the
com.endeca.portal.data.MDEXStateManager interface. The recommended approach is to extend
com.endeca.portal.data.AbstractMDEXStateManager, which in turn implements MDEXStateManager.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 • April 2012

Managing Data Source State in Studio 8

You also should extend com.endeca.portal.data.AbstractMDEXStateManager, which in turn implements
MDEXStateManager. The AbstractMDEXStateManager abstract class contains the useful utility method
addEventTrigger(PortletRequest, MDEXState).

The default state manager implementation is com.endeca.portal.data.DefaultMDEXStateManager. The
Studio Component SDK creates state managers that extend DefaultMDEXStateManager, because they will
work without any modification. If you want your custom state manager to inherit some of the default
functionality, you can extend DefaultMDEXStateManager instead of AbstractMDEXStateManager.

Required methods

Your State Manager must implement the following methods:

public void handleStateUpdate(PortletRequest request, MDEXState mdexState, QueryState newQueryState)
throws QueryStateException;

public QueryState handleStateMerge(PortletRequest request, MDEXState mdexState) throws
QueryStateException;

public void handleStateReset(PortletRequest request, MDEXState mdexState) throws QueryStateException;

public QueryState handleStateInitial(PortletRequest request, MDEXState mdexState) throws
QueryStateException;

Version 2.3.0 • April 2012

handleStateUpdate() Called when a component calls DataSource.setQueryState(qs).

This method should eventually call mdexState.setQueryState().
However, it is not required to make this call if it determines that the
MDEXState's QueryState should not change.

If the data source state is changed by handleStateUpdate(), you must
mark the affected data sources.

To mark the data sources, you call the
addEventTrigger(PortletRequest request, MDEXState ds) method,
passing in the request object and any MDEXState objects that are
changed.

handleStateMerge() Called when a component calls DataSource.getQueryState().

You are expected to return the QueryState that the component should
get access to for the data source represented by the mdexState, taking
into account any data source relationships or other aspects of your
State Manager that might affect the query state.

Oracle® Endeca Information Discovery: Studio Developer's Guide

Managing Data Source State in Studio 9

handleStateReset() Called when a component calls DataSource.resetQueryState().

This method returns the data source to the "initial state" defined by your
state manager.

The default implementation (DefaultMDEXStateManager) clears all
query functions from the data source except those defined in the
baseFunctions key of the data source's .json file, and similarly updates
all parent and child data sources.

If the data source state changes while it is being reset, you must mark
the affected data sources.

To mark the data sources, you call the
addEventTrigger(PortletRequest request, MDEXState ds) method,
passing in the request object and any MDEXState objects that are
changed.

handleStateInitial() Called when a component calls
DataSource.getInitialQueryState().

This method returns a copy of the data source's initial state as defined
by your state manager.

The default implementation (DefaultMDEXStateManager) returns a
QueryState with query functions made up of the union of the
baseFunctions from:

• The current data source

• All of the current data source's parents

Using the State Manager
In order to use your State Manager, you must specify a new class for Studio to pick up and use in place of the
default State Manager implementation.

The <your-state-manager-name> directory you created contains an ant build file. The ant deploy task
places a .jar file containing your State Manager into the portal/tomcat-<version>/lib/ext directory.

To configure Studio to use your State Manager:

1. Point the cursor at the Dock in the upper-right corner of the page.

2. In the drop-down menu, choose Control Panel.

3. In the Information Discovery section of the Control Panel navigation panel, select Framework
Settings.

4. Change the value of df.mdexStateManager property to the full name of your class, similar to following
example:

df.mdexStateManager = com.endeca.portal.extensions.YourStateManagerClass

Version 2.3.0 • April 2012

5. Click Update Settings.

6. Restart Studio so the change can take effect. You may also need to clear any cached user sessions.

Oracle® Endeca Information Discovery: Studio Developer's Guide

Chapter 4

Installing and Using the Component SDK

You can customize Studio even further by creating your own components.

The Studio Component SDK is a packaged development environment that you can use to add or modify
components, themes, and layout templates. It is a modified version of the Liferay Plugins SDK, and includes
enhancements such as the EndecaPortlet core class.

Note: The Studio Component SDK is designed to work with the Studio Tomcat bundle. It will not work
out-of-the-box on other platforms.

Downloading and configuring the Component SDK

Configuring Eclipse for component development

Developing a new component

Modifying the enhancements to the Component SDK

Downloading and configuring the Component SDK
The Studio Component SDK is available with the Studio installer.

Before installing the Component SDK, download and unzip EID_<version>_portal.zip, as described in
the Studio portion of the Oracle Endeca Information Discovery Installation Guide. This is the base Studio
code, upon which the Component SDK depends. You do not have to start Studio.

Note: Do not install the Component SDK in a directory path that contains spaces.

Note: On Windows, for steps b and d below, backslashes in paths must be escaped. That is, use a
path similar to the following:

portal.base.dir=C:\\my_folder\\EID-portal

Version 2.3.0 • April 2012

instead of:

portal.base.dir=C:\my_folder\EID-portal

To install the Component SDK:

1. Download and unzip EID_<version>_components_sdk.zip to a separate directory.

This is the Component SDK itself.

2. Perform the following steps within the Component SDK:
(a) Create a file components/build.<user>.properties

where <user> is the user name with which you logged on to this machine.

Oracle® Endeca Information Discovery: Studio Developer's Guide

Installing and Using the Component SDK 11

(b) Within that properties file, add a single property
portal.base.dir=<absolute_path_to_portal>

where <absolute_path_to_portal> is the path to the unzipped
EID_<version>_portal.zip.

(c) Create a shared.properties file in the shared/ directory.

(d) Edit shared/shared.properties and set the single property
portal.base.dir=<absolute_path_to_portal>

where <absolute_path_to_portal> is the path to the unzipped
EID_<version>_portal.zip.

Configuring Eclipse for component development
Before using the Component SDK to develop Studio components in Eclipse, you need to create two Eclipse
classpath variables.

Note: Depending on your version of Eclipse, the steps below may vary slightly.

To configure the Eclipse classpath variables for Studio component development:

1. In Eclipse, go to Window>Preferences>Java>Build Path>Classpath Variables.

2. Create two new variables:

Name Path

DF_GLOBAL_LIB Path to the application server global library.

Example:

C:/endeca-portal/tomcat-<version>/lib

DF_PORTAL_LIB Path to the Liferay ROOT Web application library.

Example:

C:/endeca-portal/tomcat-<version>/webapps/ROOT/WEB-
INF/lib

Once these variables have been created, the components generated by the Component SDK can be
imported into Eclipse.

Developing a new component
Here is a high-level overview of the component development process.

To develop a new Studio component:

1. Create the component.

2. Import the project in Eclipse.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 • April 2012

Installing and Using the Component SDK 12

3. Build and test the new component.

Creating a new component
New Studio components are extensions of the EndecaPortlet class.

To create a new component:

1. At a command prompt, navigate to the Component SDK directory, and from there to
components/portlets.

2. Run the command:

create.bat <component-name-no-spaces> "<ComponentDisplayName>"

Version 2.3.0 • April 2012

For example:

create.bat johns-test "John's Test Component"

In the command, the first argument is the component name. The component name:

• Cannot have spaces.

• Cannot include the string -ext, because it causes confusion with the ext plugin extension. For
example, my-component-extension would not be a valid name.

• Has the -portlet automatically appended to the name. For example, if you set the name to
johns-test, the name will actually be johns-test-portlet.

The second argument is intended to be a more human-friendly display name. The display name can
have spaces, but if it does, it must be enclosed in quotation marks.

Importing the project in Eclipse

Before beginning component development, you have to import the component project you just created into
Eclipse.

To import the Studio Component SDK project you just created into Eclipse:

1. Within Eclipse, choose File>Import>General>Existing Projects into Workspace.

2. As the root directory from which to import, select the directory where you installed the Component
SDK.

You should see multiple projects to import.

3. Import the components you need to work with.

If your components depend on shared library projects located within the /shared directory, import
those as well.

Note: It takes some time for projects to build after they are imported.

Oracle® Endeca Information Discovery: Studio Developer's Guide

Installing and Using the Component SDK 13

Building and testing your new component

Next, you can build your new component in Eclipse and ensure that it is available in Studio.

To build your new component in Eclipse:

1. In your new project, open the build.xml file at the top level.

2. In the outline view, right-click the deploy task and select Run as...>Ant Build.

Note: This step is only necessary if you do not have Build Automatically checked in the
Eclipse Project menu.

3. If Studio is not already running, start Studio and log in.

4. Look at the Studio logs to confirm that the component was picked up successfully.

5. To test your new component within Studio:

(a) In the Dock menu, click Add Component.

(b) In the Add Component dialog, expand the Sample category.

Your component should be listed in that category.

(c) To add the new component to the Studio page, drag and drop it from the Add Component dialog.

Adding and removing components from the WebLogic .ear file

If you have installed Studio on Oracle WebLogic Server, then you can also add the component to the
deployed .ear file, so that it will be deployed automatically the next time you deploy the file, for example when
installing a production instance after you have completed testing on a development instance.

To add components to and remove components from the WebLogic .ear file:

1. To add a custom component to the .ear file:
(a) Copy your component to the <LIFERAY_HOME>/deploy directory.

(b) After the component has been processed and moved to the <LIFERAY_HOME>/weblogic-
deploy directory, undeploy the .ear file.

(c) Add the processed component .war file to the root of the zipped .ear file.
(d) In the .ear file, add an entry for the new component to META-INF/application.xml.

2. To remove a component from the .ear file:

(a) Remove the component .war file from the root of the .ear file.
(b) In the .ear file, remove the component entry from META-INF/application.xml.

Modifying the enhancements to the Component SDK
The build.xml file in the root directory of each component created by the Component SDK contains
properties that control whether to include the build enhancements.

By default, these properties are:

<property name="shared.libs" value="endeca-common-resources,endeca-discovery-taglib" />
<property name="endeca-common-resources.includes" value="**/*" />

Version 2.3.0 • April 2012Oracle® Endeca Information Discovery: Studio Developer's Guide

Installing and Using the Component SDK 14

<property name="endeca-common-resources.excludes" value="" />

Version 2.3.0 • April 2012

The properties control the following behavior:

shared.libs Controls which projects in the shared/ directory to
include in your component.

These shared projects are compiled and included as
.jar files where appropriate.

endeca-common-resources.includes Controls which files in the shared/endeca-
common-resources project are copied into your
component.

The default value is "**/*", indicating that all of the
files are included,

These files provide:

• AJAX enhancements (preRender.jspf and
postRender.jspf)

• The ability to select a different data source for
the component (dataSourceSelector.jspf)

endeca-common-resources.excludes Controls which files from the shared/endeca-
common-resources project are excluded from your
component.

By default, the value is "", indicating that no files are
excluded.

If your component needs to override any of these
files, you must use this build property to exclude
them. If you do not exclude them, your code will be
overwritten.

The includes and excludes properties can be specified for any shared library, for example:

<property name="endeca-discovery-taglib.includes" value="**/*" />
<property name="endeca-discovery-taglib.excludes" value="" />

Oracle® Endeca Information Discovery: Studio Developer's Guide

Chapter 5

Working with QueryFunction Classes

Studio provides a set of QueryFunction classes to allow you to filter and query data. You can also create and
implement your own QueryFunction classes.

Provided QueryFunction filter classes

Provided QueryConfig functions

Creating a custom QueryFunction class

Implementing a custom QueryFunction class

Deploying a custom QueryFunction class

Adding the custom QueryFunction .jar file to your Eclipse build path

Obtaining query results

Provided QueryFunction filter classes
Studio provides the following filter classes. Filters are used to change the current query state. They can be
used in the definition of a Studio data source, or called by a custom component.

The available filter classes are:

• DataSourceFilter

• RecordFilter

• RefinementFilter

• NegativeRefinementFilter

• RangeFilter

• SearchFilter

Note that the examples below use the syntax for calling the filters from a component. For details on
configuring filters in a data source definition, see the Oracle Endeca Information Discovery Studio User's
Guide.

DataSourceFilter

Uses an EQL snippet to provide the filtering.

When used in a data source definition, a DataSourceFilter is a permanent filter designed to be used for
security purposes.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 • April 2012

Working with QueryFunction Classes 16

The available properties are:

filterString The EQL snippet containing the filter information.

For a DataSourceFilter, this would be the content of a WHERE
clause for an EQL statement.

For details on the EQL syntax, see the Oracle Endeca Server
Query Language Reference.

For example, to filter data to only show records from the Napa Valley region with a price lower than 40 dollars:

ExpressionBase expression = dataSource.parseLQLExpression("Region='Napa Valley' and P_Price<40");
DataSourceFilter dataSourceFilter = new DataSourceFilter(expression);

Version 2.3.0 • April 2012

RecordFilter
A RecordFilter can be configured to include multiple filters with Boolean logic.

When used in a data source definition, a RecordFilter provides permanent filtering of the data.

The properties for a RecordFilter are:

recordFilter String

The filter content. For details on the RecordFilter syntax, see
the Oracle Endeca Server Developer's Guide.

In the following example, the data is filtered to only include records that have a value of Midwest for the
Region attribute.

RecordFilter recordFilter = new RecordFilter("Region:Midwest");

RefinementFilter

Used to filter data to include only those records that have the provided attribute values. End users can remove
RefinementFilter refinements.

The properties for a RefinementFilter are:

attributeValue String

The attribute value to use for the refinement.

For a managed attribute, this is the value ID.

attributeKey String

The attribute key. Identifies the attribute to use for the
refinement.

Oracle® Endeca Information Discovery: Studio Developer's Guide

Working with QueryFunction Classes 17

multiSelect AND |OR | NONE

For multi-select attributes, how to do the refinement if the filters
include multiple values for the same attribute.

If set to AND, then matching records must contain all of the
provided values.

If set to OR, then matching records must contain at least one of
the provided values.

If set to NONE, then multi-select is not supported. Only the first
value is used for the refinement.

In the following example, the data is refined to only include records that have a value of 1999 for the Year
attribute.

RefinementFilter refinementFilter = new RefinementFilter("1999", "Year");

Version 2.3.0 • April 2012

NegativeRefinementFilter

Used to filter data to exclude records that have the provided attribute value. End users can remove
NegativeRefinementFilter refinements.

The properties for a NegativeRefinementFilter are:

attributeValue String

The attribute value to use for the refinement.

attributeKey String

The attribute key. Identifies the attribute to use for the
refinement.

For example, to refine the data to only include records that do NOT have a value of 2003 for the Year
attribute:

NegativeRefinementFilter negativeRefinementFilter = new NegativeRefinementFilter("Year", "2003");

RangeFilter

Used to filter data to include only those records that have attribute values within the specified range. End
users can remove RangeFilter refinements.

The properties for a RangeFilter are:

attributeKey String

The attribute key. Identifies the attribute to use for the filter.

Oracle® Endeca Information Discovery: Studio Developer's Guide

Working with QueryFunction Classes 18

rangeOperator LT | LTEQ |GT |GTEQ| BTWN |GCLT |GCGT | GCBTWN

The type of comparison to use.

• LT - Less than

• LTEQ - Less than or equal to

• GT - Greater than

• GTEQ - Greater than or equal to

• BTWN - Between. Inclusive of the specified range values.

• GCLT - Geocode less than

• GCGT - Geocode greater than

• GCBTWN - Geocode between

rangeType NUMERIC | CURRENCY | DATE | GEOCODE

The type of value that is being compared.

value1 Numeric

The value to use for the comparison.

For BTWN, this is the low value for the range.

For the geocode range operators, the origin point for the
comparison.

value2 Numeric

For a BTWN, this is the high value for the range.

For GCLT and GCGT, this is the value to use for the comparison.

For GCBTWN, this is the low value for the range.

value3 Numeric

Only used for the GCBTWN operator. The high value for the
range.

In the following example, the data is refined to only include records where the value of P_Score is a number
between 80 and 100:

RangeFilter rangeFilter
= new RangeFilter("P_Score", RangeType.NUMERIC, RangeOperator.BTWN, "80", "100");

Version 2.3.0 • April 2012

SearchFilter

Used to filter the data to include records that have the provided search terms. End users can remove
SearchFilter refinements.

Oracle® Endeca Information Discovery: Studio Developer's Guide

Working with QueryFunction Classes 19

The properties for a SearchFilter are:

searchInterface String

Either the name of the search interface to use, or the name of
an attribute that is enabled for text search.

terms String

The search terms.

matchMode ALL | PARTIAL | ANY | ALLANY | ALLPARTIAL | PARTIALMAX |
BOOLEAN

The match mode to use for the search.

enableSnippeting boolean

Whether to enable snippeting.

Optional. If not provided, the default is false.

snippetLength int

The number of characters to include in the snippet.

Required if enableSnippeting is true.

To enable snippeting, set enableSnippeting to true, and
provide a value for snippetLength.

In the following example, the filter uses the "default" search interface to search for the terms "California" and
"red". The matching records must include all of the search terms. Snippeting is supported, with a 100-
character snippet being displayed.

SearchFilter.Builder builder = new SearchFilter.Builder("default", "California red");
builder.matchMode(MatchMode.ALL);
builder.enableSnippeting(true);
builder.snippetLength(100);
SearchFilter searchFilter = builder.build();

Version 2.3.0 • April 2012

Provided QueryConfig functions
Studio provides the following QueryConfig functions, used to manage the results returned by a query. These
are more advanced functions for component development.

Each QueryConfig function generally has a corresponding function in DiscoveryServiceUtils to get the
results.

QueryConfig functions are specific to a component. Because of this, QueryConfig functions should never be
persisted to a data source using setQueryState(), as this would affect all of the components bound to that
data source. Instead, QueryConfig functions should only be added to a component's local copy of the
QueryState object.

The available QueryConfig functions are:

• AttributeValueSearchConfig

Oracle® Endeca Information Discovery: Studio Developer's Guide

Working with QueryFunction Classes 20

• BreadcrumbsConfig

• ExposeRefinement

• LQLQueryConfig

• NavConfig

• RecordDetailsConfig

• ResultsConfig

• ResultsSummaryConfig

• SearchAdjustmentsConfig

• SearchKeysConfig

• SortConfig

AttributeValueSearchConfig

Used for typeahead in search boxes. For example, used in Guided Navigation to narrow down the list of
available values for an attribute.

AttributeValueSearchConfig has the following properties:

searchTerm String

The term to search for in the attribute values.

maxValuesToReturn int (optional)

The maximum number of matching values to return.

If you do not provide a value, then the default is 10.

attribute String (optional)

The attribute key for the attribute in which to search.

Use the attribute property to search against a single attribute.
To search against multiple attributes, use searchWithin.

searchWithin List<String> (optional)

A list of attributes in which to search for matching values.

matchMode ALL|PARTIAL|ANY|ALLANY|ALLPARTIAL|PARTIALMAX|BOOLEAN

(optional)

The match mode to use for the search.

relevanceRankingStrategy String (optional)

The name of the relevance ranking strategy to use during the
search.

The following example searches for the term "red" in the WineType attribute values:

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 • April 2012

Working with QueryFunction Classes 21

AttributeValueSearchConfig attributeValueSearchConfig
= new AttributeValueSearchConfig("red", "WineType");

Version 2.3.0 • April 2012

BreadcrumbsConfig

Used to return the breadcrumbs associated with the query. Allows you to specify whether to display the full
path for hierarchical attribute values.

BreadcrumbsConfig has the following property:

returnFullPath boolean (optional)

For a hierarchical managed attribute, whether to return the full
path to the selected value.

The default is true, indicating to return the full path.

To not return the full path, set this to false.

This example returns the breadcrumbs, but does not return the full path for hierarchical managed attributes:

BreadcrumbsConfig breadcrumbsConfig = new BreadcrumbsConfig(false);

ExposeRefinement
Affects results from a NavConfig function. Used to implement Guided Navigation. Controls whether to display
available attributes within groups, and whether to display available refinements for attributes.

ExposeRefinement has the following properties:

dimValId String

The ID of the selected attribute value.

You would provide an attribute value ID if you were displaying
the next level of available values in a managed attribute
hierarchy.

dimensionId String

The name of the attribute.

You must provide at least one dimValId or dimensionId.

ownerId String (optional)

The ID of the associated NavConfig instance.

If not provided, then uses the first NavConfig instance.

dimExposed boolean (optional)

Whether to display the available values for the attribute, to the
number specified in maxRefinements.

The default is true.

Oracle® Endeca Information Discovery: Studio Developer's Guide

Working with QueryFunction Classes 22

exposeAll boolean (optional)

Whether to display the complete list of available values.

For example, on the Guided Navigation component, would
indicate whether the "More..." link is selected.

The default is false.

maxRefinements int (optional)

The maximum number of available values to display.

The default is 1000.

groupKey String (required)

The name of a group.

groupExposed boolean (optional)

Whether to display all of the attributes in the specified group.

The default is true.

The following example shows the available attributes for the Flavors attribute within the Characteristics group.

ExposeRefinement exposeRefinement = new ExposeRefinement("/", "Flavors", "Characteristics");

Version 2.3.0 • April 2012

LQLQueryConfig

Executes an EQL query on top of the current filter state.

LQLQuery has the following property:

LQLQuery AST

The EQL query to add.

To retrieve the AST from the query string, call
DataSource.parseLQLQuery.

The following example retrieves the average of the P_Price attribute grouped by Region:

Query query
= dataSource.parseLQLQuery("return mystatement as select avg(P_Price) as avgPrice group by Region",
true);
LQLQueryConfig lqlQueryConfig = new LQLQueryConfig(query);

NavConfig

Used to retrieve a navigation menu, such as in the Guided Navigation component.

Oracle® Endeca Information Discovery: Studio Developer's Guide

Working with QueryFunction Classes 23

NavConfig has the following properties:

exposeAllRefinements boolean

Whether to display all of the available values for the attributes.

Determines the initial state of the menu. The associated
ExposeRefinement function is then applied.

The default is false.

List<RefinementGroupConfigs> List of groups for which to return the available attributes.

If no RefinementGroupConfigs are specified, no attribute
groups or attributes are returned.

The following examples returns attributes in the Source and Characteristics groups:

List<RefinementGroupConfig> refinementGroups = new ArrayList<RefinementGroupConfig>();
RefinementGroupConfig source = new RefinementGroupConfig();
source.setName("Source");
source.setExpose(true);
refinementGroups.add(source);
RefinementGroupConfig characteristics = new RefinementGroupConfig();
characteristics.setName("Characteristics");
characteristics.setExpose(true);
refinementGroups.add(characteristics);
NavConfig navConfig = new NavConfig();
navConfig.setRefinementGroupConfig(refinementGroups);

Version 2.3.0 • April 2012

RecordDetailsConfig

Sends an attribute key-value pair to assemble the details for a selected record. The complete set of attribute-
value pairs must uniquely identify the record.

RecordDetailsConfig has the following property:

recordSpecs List<RecordSpec>

Each new RecordDetailsConfig is appended to the previous
RecordDetailsConfig.

The following example sends the value of the P_WineID attribute:

List<RecordSpec> recordSpecs = new ArrayList<RecordSpec>();
recordSpecs.add(new RecordSpec("P_WineID", "37509"));
RecordDetailsConfig recordDetailsConfig = new RecordDetailsConfig(recordSpecs);

ResultsConfig

Used to manage the returned records. Allows for paging of the records.

Oracle® Endeca Information Discovery: Studio Developer's Guide

Working with QueryFunction Classes 24

ResultsConfig has the following properties:

recordsPerPage long

The number of records to return at a time.

offset long (optional)

The position in the list at which to start. The very first record is
at position 0.

For example, if recordsPerPage is 10, then to get the second
page of results, the offset would be 10.

columns String[] (optional)

The columns to include in the results.

If not specified, then the results include all of the columns.

numBulkRecords int (optional)

The number of records to return. Overrides the value of
recordsPerPage.

The following example returns a selected set of columns for the third page of records, where each page
contains 50 records:

ResultsConfig resultsConfig = new ResultsConfig();
resultsConfig.setOffset(100);
resultsConfig.setRecordsPerPage(50);
String[] columns = {"Wine_ID", "Name", "Description", "WineType", "Winery", "Vintage"};
resultsConfig.setColumns(columns);

Version 2.3.0 • April 2012

ResultsSummaryConfig

Gets the number of records returned from a query.

ResultsSummaryConfig resultsSummaryConfig = new ResultsSummaryConfig();

SearchAdjustmentsConfig

Returns "Did you mean" and auto-correction items for a search.

SearchAdjustmentsConfig searchAdjustmentsConfig = new SearchAdjustmentsConfig();

SearchKeysConfig

Returns the list of available search interfaces.

SearchKeysConfig searchKeysConfig = new SearchKeysConfig();

SortConfig
Used to sort the results of a query. Used in conjunction with ResultsConfig.

Oracle® Endeca Information Discovery: Studio Developer's Guide

Working with QueryFunction Classes 25

SortConfig has the following properties:

ownerId String (optional)

The ID of the ResultsConfig that this SortConfig applies to. If
not provided, uses the default ResultsConfig ID.

If you configure a different ID, then you must provide a value for
ownerId.

property String

The attribute to use for the sort.

ascending boolean

Whether to sort in ascending order.

If set to false, then the results are sorted in descending order.

For example, with the following SortConfig, the results are sorted by the P_Score attribute in descending
order:

SortConfig sortConfig = new SortConfig("P_Score", false);

Version 2.3.0 • April 2012

Creating a custom QueryFunction class
The Component SDK directory includes scripts for creating new QueryFunction classes.

Note: Before you can create QueryFunction classes, you must install the Component SDK, which is
a separate download. See Downloading and configuring the Component SDK on page 10.

To create a new QueryFilter or QueryConfig class:

1. In a terminal window, change to the endeca-extensions subdirectory of the Component SDK's root
directory (normally called components).

2. Run the appropriate command to create the QueryFilter or QueryConfig class.

To create a QueryFilter class:

On Windows: .\create-queryfilter.bat <your-query-filter-name>

On Linux: ./create-queryfilter.sh <your-query-filter-name>

To create a QueryConfig class:

On Windows: .\create-queryconfig.bat <your-query-config-name>

On Linux: ./create-queryconfig.sh <your-query-config-name>

Oracle® Endeca Information Discovery: Studio Developer's Guide

Working with QueryFunction Classes 26

The command creates in the endeca-extensions directory a new directory for the QueryFilter or
QueryConfig class:

• For a QueryFilter, the directory is <your-query-filter-name>-filter.

• For a QueryConfig, the directory is <your-query-config-name>-config.

This directory is an Eclipse project that you can import directly into Eclipse, if you use Eclipse as your IDE.

It contains an empty sample implementation of a QueryFilter or QueryConfig. This has no effect on
QueryState in its original form.

The skeleton implementation creates source files that:

• Extend either QueryFilter or QueryConfig.

• Create stubs for the applyToDiscoveryServiceQuery, toString, and beforeQueryStateAdd methods.

applyToDiscoveryServiceQuery and toString are required methods that you must implement.

beforeQueryStateAdd is an optional method to verify the query state before the function is added. This
method is used to prevent invalid query states such as duplicate refinements.

• Create a no-argument, protected, empty constructor. The protected access modifier is optional, but
recommended.

• Create a private member variable for logging.

Implementing a custom QueryFunction class
After you create your new QueryFunction class, you then implement it.

To implement your new QueryFunction, you must:

• Add private filter or configuration properties.

• Create getters and setters for any filter properties you add.

• Define a no-argument constructor (protected access modifier optional, but recommended).

• Optionally, implement the beforeQueryStateAdd(QueryState state) method to check the current query
state before the function is added.

Deploying a custom QueryFunction class
Before you can use your new QueryFunction, you must deploy it to Studio.

The directory that you created for the new QueryFilter or QueryConfig contains an ant build file.

The ant deploy task places a .jar file containing the custom QueryFunction into the endeca-
portal/tomcat-<version>/lib/ext directory.

Note: If you are not using the default portal bundle, put the new QueryFunction.jar into the
container's global classpath.

To deploy the new QueryFunction:

1. Run the ant build.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 • April 2012

Working with QueryFunction Classes 27

2. Restart Studio.

The portal picks up the new class.

After you deploy your custom QueryFunction, you can use it in any component.

Adding the custom QueryFunction .jar file to your Eclipse
build path
If you are using Eclipse as your IDE, you need to add the new .jar file to the build path of your custom
component.

To add the new .jar file to your Eclipse build path:

1. Right-click the project, then select Build Path>Configure Build Path.

2. Click the Libraries tab.

3. Click Add Variable.

4. Select DF_GLOBAL_LIB.

You should have added this variable when you set up the SDK.

5. Click Extend.

6. Open the ext/ directory.

7. Select the .jar file containing your custom QueryFunction.

8. Click OK.

After adding the .jar file to the build path, you can import the class, and use your custom QueryFilter or
QueryConfig to modify your QueryState.

Obtaining query results
The Results class is used to represent results of queries.

You must add the relevant QueryConfigs to a component in order to specify the types of results it needs.

QueryState query = getDataSource(request).getQueryState();
query.addFunction(new NavConfig());
QueryResults results = getDataSource(request).execute(query);

Version 2.3.0 • April 2012

You can then get the underlying API results and do whatever manipulation is required by your component.

Results discoveryResults = results.getDiscoveryServiceResults();

Before executing, you can also make other local modifications to your query state by adding filters or
configurations to your query:

QueryState query = getDataSource(request).getQueryState();
query.addFunction(new ResultsConfig());
query.addFunction(new RecordFilter("Region:Midwest"));
QueryResults results = getDataSource(request).execute(query);

When you need to update a data source's state to update all of the associated components, you must use
QueryState instances.

Oracle® Endeca Information Discovery: Studio Developer's Guide

Working with QueryFunction Classes 28

DataSource ds = getDataSource(request);
QueryState query = ds.getQueryState();
query.addOperation(new RecordFilter("Region:Midwest"));
ds.setQueryState(query);

Version 2.3.0 • April 2012Oracle® Endeca Information Discovery: Studio Developer's Guide

Chapter 6

Localizing Studio

Studio is an internationalized application that can be adapted for use in different locales.

Configuring localization for a component

Adding strings to your resource files

Guidelines for working with non-Unicode characters

Localizing a component to a non-Unicode language

How the build process works with resource files

Using the LanguageUtils class to retrieve localized messages

Adding a translation to a released component

Switching the locale of a component

Adding the Language component to your Studio application

Obtaining more information about portal localization

Configuring localization for a component
To localize a component, you must specify the supported languages in portlet.xml, and then create the
resource files for each language.

To set up a component for localization:

1. Update the portlet.xml file to specify the locales this component will support.

The following example enables English and German:

<supported-locale>en</supported-locale>
<supported-locale>de</supported-locale>

Version 2.3.0 • April 2012

2. Update portlet.xml to specify the location of the component's resource bundle. (The resource
bundle is the mechanism the Liferay Portal uses to add localized content to a component.)

For example, to create custom English and German resource files for the Sample Endeca Portlet
component, we would include Resource_en.properties and Resource_de.properties in the
component's com/endeca/portlet/sample/ directory:

<resource-bundle>com.endeca.portlet.sample.Resource</resource-bundle>

3. Create resource bundles for your supported languages in WEB-
INF/src/[path/to/resource/bundle]_[locale].properties.

For example, the bundle for English for the Sample Endeca Portlet component would be WEB-
INF/src/com/endeca/portlet/sample/Resource_en.properties.

Oracle® Endeca Information Discovery: Studio Developer's Guide

Localizing Studio 30

For the most part, this is a simple properties file with key/value pairs for message IDs and their
locale-specific messages.

Note: You may have noticed that the resource-bundle attribute is different from the file
path you edit messages in. This is because the component build process combines common
message strings from shared libraries with your component-specific messages to create the
final com/endeca/Resource_[locale].properties file in the compiled portlet WAR. For
more information, see How the build process works with resource files on page 32.

4. Update your component's implementation to use the LanguageUtils class to retrieve messages from
the resource bundle, instead of hard-coding message strings.

This should be done for all messages displayed to the user, including form labels, component titles
(and other metadata), warning and error messages, edit views, help text, and so on.

For information on using the LanguageUtils class, see Retrieving all resource bundle messages in
one call on page 34.

Adding strings to your resource files
Your component resource files can include both common and component-specific text.

Including common shared messages

All Studio components tend to include common messages, like those associated with selecting the data
source, saving changes, and working with attributes. Your compiled component automatically includes the
default localizations for these messages.

These resource files containing these common messages are in the components\shared\endeca-
common-resources directory.

To change or override these values, include the same keys in your
PluginResource_[locale].properties file.

If the messages are not included in a component's resource bundle, then Studio uses the hard-coded English
defaults from the original files. It does not display an error.

Including the component name, category, and keywords

Resource bundles need to include a handful of component-specific messages to localize a component's name,
description, keywords, and category.

To localize the component's metadata, include the following messages:

javax.portlet.title=Sample Endeca Portlet
javax.portlet.short-title=Sample Endeca Portlet
javax.portlet.keywords=Sample, Endeca, Portlet

Version 2.3.0 • April 2012

Additionally, if your component is displayed in the Add Component menu as part of a custom category (or
sub-category), you may need to localize the name of the category. For example:

<display>
<category name="my.new.category">
<category name="my.new.sub-category">

Oracle® Endeca Information Discovery: Studio Developer's Guide

Localizing Studio 31

<portlet id="portlet_A" />
</category>

</category>
</display>

Version 2.3.0 • April 2012

To localize the category names, have your component's resource bundle include the following messages:

my.new.category=My Category
my.new.sub-category=My Sub-Category

All components that declare the same categories should include these messages, since the component
container uses the localized messages from the first component that specifies them.

Using tokens in message strings

Message strings can include tokens that are substituted at runtime.

For example, a search breadcrumb may need to display a spelling correction message such as "No matches
found for 'bearign'; showing results for 'bearing'". In a .properties file, this message would appear with
tokens for the two terms, as in the following example:

autocorrect-msg=No matches found for \'{0}\'; showing results for \'{1}\'

When using theLanguageUtils utility to include this message in your component, you pass in a list of
parameters to substitute for these tokens. This substitution uses the class java.text.MessageFormat. To see
the available token substitution options, refer to the javadoc for that class.

Tokens may also do advanced substitution, such as date substitution formatted appropriately for the locale.

Guidelines for working with non-Unicode characters
Because Studio is Java-based, it can only read Unicode or Latin-1 characters. In the case of other characters,
you can work around this limitation by converting the native file to ASCII, using a converter such as
native2ascii, which is freely available as part of the JDK.

Keep in mind the following guidelines:

1. Use UTF-8 as your encoding. Lesser encodings cannot properly represent Japanese characters.

2. Pick a valid character set, such as Shift-JIS or UTF-8/Unicode, and stick with it. You cannot change
character sets midstream—if you change character sets, you must re-enter your values.

3. Make sure the character set in your text editor matches the character set in native2ascii.

For more information about working with non-Unicode characters, see the Liferay Portal website.

Localizing a component to a non-Unicode language
The following example demonstrates how to localize a component to a double-byte, extended character
language.

If you want to use this example as a learning exercise but do not have non-Unicode text of your own to
deploy, you can machine-translate your English-language file and use that text in step 5 below.

Oracle® Endeca Information Discovery: Studio Developer's Guide

Localizing Studio 32

To localize your portlet to a non-Unicode language (such as Japanese):

1. Within your portlet, create a file PluginResource_<locale-code>.properties.native at the
appropriate location.

For example, if you are working with Japanese, the file name would be
PluginResource_ja.properties.native.

2. Commit both the .native and .properties file to your portlet.

The .properties file is used by the component, but because that file uses escaped Unicode
notation, it is extremely hard for humans to read.

It is easier to make any necessary changes in the .native file.

3. Open the .native file in an encoding- and character-set-aware text editor such as Notepad++.

Make sure the .native file uses UTF-8 as its encoding and Shift-JIS as its character set.

4. Copy the contents of the English resource bundle into the .native file.

5. Within your text editor, using your translation service, replace the English values with the Japanese
values.

6. Save the file.

7. From the command line, run Java's native2ascii converter. This tool is typically included in the
JDK.

In the encoding argument, specify:

• Shift_JIS as the character set

• Your .native file as the input

• Your final .properties file as the output

native2ascii -encoding Shift_JIS PluginResource_ja.properties.native
PluginResource_ja.properties

Version 2.3.0 • April 2012

8. Commit both the .native and .properties file to your component.

The .properties file is used by the component, but uses escaped Unicode notation, which is hard
to read. The .native file is easier to modify.

How the build process works with resource files
The build process combines resource files into a single resource file that the component reads messages
from.

The build combines:

• The component's com/endeca/PluginResource_[locale].properties file, and

• Any file in a shared library's directory that matches com/endeca/*Resource_[locale].properties

to create a single com/endeca/Resource_[locale].properties file.

The messages from your component's PluginResource_[locale].properties appear at the top of the
final Resource_[locale].properties, so you can easily override any messages from shared libraries.

Oracle® Endeca Information Discovery: Studio Developer's Guide

Localizing Studio 33

However, if your component includes more than one shared library, no guarantee can be made about the
order in which the resource files from shared libraries will be appended.

Localizing your own shared libraries

If you have included localized messages in your shared libraries, make sure you choose a prefix other than
Plugin for the resource file com/endeca/[prefix]Resource_[locale].properties.

If you do not, this file will override your component's
com/endeca/PluginResource_[locale].properties file during the build, and your final
com/endeca/Resource_[locale].properties will be incorrect.

We recommend that you choose a prefix for your library's resource file that is distinct and similar to your
library's name to avoid file name conflicts with components or other shared libraries.

Using the LanguageUtils class to retrieve localized
messages
Studio provides the core class com.endeca.portlet.util.LanguageUtils to retrieve the localized
messages to display on a component. There are several ways to use this class.

Calling static methods from Java
You can access LanguageUtils by calling static methods from your Java class.

The following example shows the static use of the getMessage methods to retrieve messages (with token
substitution in the third line).

LanguageUtils.getMessage(request, "reset");
LanguageUtils.getMessage(request, "num-records");
LanguageUtils.getMessage(request, "search-for", new String[]{ "American" });

Version 2.3.0 • April 2012

A number of convenience method signatures are provided, allowing the user to specify the component request
and message ID, and optionally to include parameters for token substitution and a default string.

The default string may be useful for shared localized messages, allowing components to function with a
default (un-localized) message if the localized message is not retrieved from the resource bundle.

All method signatures require specifying the PortletRequest.

Using the Discovery taglib in JSP
The Discovery taglib provides a tag for retrieving localized messages. This is the recommended way to
retrieve localized messages in JSPs.

The following is an example using the taglib:

<%@ taglib uri='http://endeca.com/discovery' prefix="edisc"%>
<edisc:getMessage messageName="no-matching-values"/>

<edisc:getMessage messageName="message-with-params">
<edisc:param value="test" />

</edisc:getMessage>

Oracle® Endeca Information Discovery: Studio Developer's Guide

Localizing Studio 34

Using the LanguageUtils class from JSP
You can access LanguageUtils to retrieve localized messages in JSP pages.

This is similar to accessing LanguageUtils from Java.

<%@ page import="com.endeca.portlet.util.LanguageUtils" />
<portlet:defineObjects />
<%= LanguageUtils.getMessage(renderRequest, "reset") %>

Version 2.3.0 • April 2012

Instantiating the object and call instance methods from Java/JSP
You can instantiate the LanguageUtils object and call methods from Java/JSP.

This approach provides the same convenience methods as the static approach, but simplifies the method
signatures by removing the need to specify the request on every call.

This may be useful for developers who make many calls for localized strings and would prefer to instantiate
the object once and simplify the subsequent method calls.

<%@ page import="com.endeca.portlet.util.LanguageUtils" %>
<%
LanguageUtils lang = new LanguageUtils(renderRequest);
%>
<%= lang.getMessage("reset") %>
<%= lang.getMessage("num-records", "Num records:") %>
<%= lang.getMessage("search-for", "Search for \"{0}\"", new String[]{ "American" }) %>

Retrieving all resource bundle messages in one call

You can retrieve all of the messages at once using a single call from Java/JSP.

This approach may improve performance in components that require frequent access to the resource bundle.
The message retrieval is consolidated to a single call. The rest of the page then makes lookups into the
loaded map.

<%@ page import="com.endeca.portlet.util.LanguageUtils" %>
<%@ page import="java.util.Map" %>
<%
Map<String, String> messages = LanguageUtils.getAllPortletMessages(renderRequest);
%>
<%= messages.get("reset") %>
<%= messages.get("num-records") %>
<%= LanguageUtils.replaceMessageTokens(messages.get("search-for"), new String[]{ "American" }) %>

Adding a translation to a released component
In this scenario, the component's English-language message strings have been externalized into the portlet
WAR file's resource bundle. These strings can be translated to the target language and then made available
to Studio.

This procedure can be followed whether you want to translate the content yourself or obtain the translation
from a third party.

Oracle® Endeca Information Discovery: Studio Developer's Guide

Localizing Studio 35

To add translated message strings to a released component:

1. Unzip the .war file of the localized component you want to modify.

2. Edit its portlet.xml file to enable the additional locale you want to support.

For example, to add French, include <supported-locale>fr</supported-locale>.

3. In WEB-INF/classes/com/endeca/ (or other location, based on your component's class structure),
generate a Resource_[locale].properties file for the new language.

This file should contain target-language values of the properties used in the component.

To see the supported properties, refer to the WEB-
INF/classes/com/endeca/Resource_en.properties file already in the component.

Your file should contain a version of each of those messages in your target language.

4. Re-zip the .war file of the component and place it in the endeca-portal/deploy directory.

Liferay hot-deploys the component.

5. Repeat steps 1 through 4 for each component you want to enable for your target language.

6. Start Studio, then add your components, as well as the Language component, to the page.

7. In the Language component, click the flag associated with your target language.

Studio displays the component messages from your resource bundle in your target language.

In addition, because the portal itself is also localized, menus and other portal controls also appear in
your target language.

8. In the Language component, to switch back to English, click the United States flag.

Switching the locale of a component
Studio includes resources that you can use to switch a component's locale.

The Language component can be used to change the locale of a portlet.

There are also controls available in the Display Settings section of Liferay's Control Panel (as well as
configuration properties in the portal.properties file) for setting the default container locale and the
available locales.

For full details on using these Liferay features, see the Liferay Portal documentation.

Adding the Language component to your Studio application
The Language component is the recommended method for selecting a different language in which to display
Studio.

To add the Language component and select a different language:

1. Point the cursor at the Dock in the upper-right corner of the page.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 • April 2012

http://www.liferay.com/documentation/liferay-portal/5.2/getting-started

Localizing Studio 36

The Dock is labeled "Welcome <user name>!"

2. In the drop-down menu, select Add Component.

3. In the Add Component dialog, expand the Tools category.

4. From the Tools category, either drag the Language component to the page, or click the component's
Add link.

5. To select a language, click the corresponding flag.

The application switches to that language, replacing English with the target language.

For example, after clicking the Spanish flag, the Dock menu looks like:

Obtaining more information about portal localization
For information about editing Language_<langcode>.properties, see the Liferay Portal Administrator's
Guide.

For extensive documentation on Liferay language display customization, see this wiki page.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 • April 2012

http://www.liferay.com/web/guest/community/wiki/-/wiki/Main/Languagedisplay+customization

Index

localizationB
adding a translation to a component 34

build process and localization 32 adding the Language component 35
build process 32
component-specific messages 30C
including common externalized strings 30

class summary non-Unicode example 31
Security Manager 3 of shared libraries 33
State Manager 6 setting components up for 29

components switching locales 35
adding localized message strings to 34 using tokens in message strings 31
adding to WebLogic .ear file 13
and localization 32 Nbuilding and testing 13
component-specific messages for non-Unicode characters
localization 30 guidelines for working with 31
creating 12
development overview 11 Oremoving from WebLogic .ear file 13

overview of component development 12setting up for localization 29
switching locales 35

Component SDK Q
about 10 QueryFunction classesconfiguring 10 adding jars to the Eclipse build path 27configuring Eclipse for 11 creating custom 25downloading 10 deploying custom 26modifying enhancements to 13 implementing custom 26

QueryFunctionsD provided filter classes 15
provided QueryConfig functions 19data sources, obtaining results from 27

data source state, managing 6
SDiscovery taglib 33

Security Manager
about 3E
class summary 3

Eclipse creating 4
adding jars for custom QueryFunctions 27 implementing 5
configuring classpath variables 11 using 5
importing the Component SDK project 12

shared libraries, localizing 33
Ext JS licensing requirement 1

State Manager
class summary 6

L creating 7
implementing 7Language component, adding 35
using 9

LanguageUtils
calling static methods from the JSP 33
instantiating from Java/JSP 34 T
retrieving all messages at once 34 taglib use in localization 33
using from JSP 34

tokens in message strings 31
licensing Ext JS 1

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 • April 2012

	Copyright and disclaimer
	Table of Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Customer Support

	Chapter 1: About Extending Studio
	Developer tasks in Studio
	Licensing requirement for component development
	Other resources for additional information

	Chapter 2: Security Extensions to Studio
	Security Manager class summary
	Creating a new Security Manager
	Implementing a new Security Manager
	Using the Security Manager

	Chapter 3: Managing Data Source State in Studio
	About the State Manager interface
	Creating a new State Manager
	Implementing a State Manager
	Using the State Manager

	Chapter 4: Installing and Using the Component SDK
	Downloading and configuring the Component SDK
	Configuring Eclipse for component development
	Developing a new component
	Creating a new component
	Importing the project in Eclipse
	Building and testing your new component
	Adding and removing components from the WebLogic .ear file

	Modifying the enhancements to the Component SDK

	Chapter 5: Working with QueryFunction Classes
	Provided QueryFunction filter classes
	Provided QueryConfig functions
	Creating a custom QueryFunction class
	Implementing a custom QueryFunction class
	Deploying a custom QueryFunction class
	Adding the custom QueryFunction .jar file to your Eclipse build path
	Obtaining query results

	Chapter 6: Localizing Studio
	Configuring localization for a component
	Adding strings to your resource files
	Including common shared messages
	Including the component name, category, and keywords
	Using tokens in message strings

	Guidelines for working with non-Unicode characters
	Localizing a component to a non-Unicode language
	How the build process works with resource files
	Using the LanguageUtils class to retrieve localized messages
	Calling static methods from Java
	Using the Discovery taglib in JSP
	Using the LanguageUtils class from JSP
	Instantiating the object and call instance methods from Java/JSP
	Retrieving all resource bundle messages in one call

	Adding a translation to a released component
	Switching the locale of a component
	Adding the Language component to your Studio application
	Obtaining more information about portal localization

	Index

