Oracle® Endeca Information Discovery
Studio Developer's Guide

Version 2.3.0 « April 2012

ORACLE

Copyright and disclaimer

Copyright © 2003, 2012, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No
other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It
is not developed or intended for use in any inherently dangerous applications, including applications that may
create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software
or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content, products and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Rosette® Linguistics Platform Copyright © 2000-2011 Basis Technology Corp. All rights reserved.
Teragram Language ldentification Software Copyright © 1997-2005 Teragram Corporation. All rights reserved.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 2012

Table of Contents

Copyright and disclaimer i
Preface. . . %
AboUL thisS QUIdE. o v
Who should use this guide v
Conventions used iN this QUIdE. e e %
Contacting Oracle CUuStOMer SUPPOItottt e e e e Y
Chapter 1: About Extending Studio. 1
Developer tasks in StUdIO 1
Licensing requirement for component development. 1
Other resources for additional information. 2
Chapter 2: Security Extensions to Studio. e 3
Security Manager Class SUMMAIYottt e e e e e e e e 3
Creating a new Security Manager.ottt e e e e 4
Implementing a new Security Manager 5
Using the Security Manager.ot e e e e 5
Chapter 3: Managing Data Source Statein Studio 6
About the State Manager interface 6
Creating a new State Manager.t 7
Implementing a State Manager. 7
Using the State Manager e 9
Chapter 4: Installing and Using the Component SDK. 10
Downloading and configuring the Component SDK 10
Configuring Eclipse for component development. 11
Developing a NeW COMPONENTottt et e et e e e e e e e e e e 11
Creating @ NeW COMPONENT oottt e e e e e e e e e e e 12

Importing the project in EClipse. 12

Building and testing your Nnew COMPONENt.ottt 13

Adding and removing components from the WebLogic .earfile 13

Modifying the enhancements to the Component SDK 13
Chapter 5: Working with QueryFunction Classes 15
Provided QueryFunction filter classes. 15
Provided QueryConfig funCtions 19
Creating a custom QUEryFUNCLION Classo e 25
Implementing a custom QueryFunction Class 26
Deploying a custom QueryFunction Class it 26
Adding the custom QueryFunction .jar file to your Eclipse buildpath 27
Obtaining qUEry reSUIS o 27

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 2012

Chapter 6: Localizing Studio 29

Configuring localization for a component. 29
Adding strings to your resource files. 30
Including common shared MeSSAgESottt 30
Including the component name, category, and keywords 30
Using tokens in message StringS oot 31
Guidelines for working with non-Unicode characters 31
Localizing a component to a non-Unicode language 31
How the build process works with resource files 32
Using the LanguageUtils class to retrieve localized messages. oot 33
Calling static methods from Java 33
Using the Discovery taglib in JSP. 33
Using the LanguageUtils class from JSP. 34
Instantiating the object and call instance methods from Java/JSP 34
Retrieving all resource bundle messagesinonecall 34
Adding a translation to a released COmMpPONENt. e 34
Switching the locale of a component. 35
Adding the Language component to your Studio application 35
Obtaining more information about portal localization 36

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 2012

Preface

Oracle® Endeca Information Discovery is an enterprise data discovery platform for advanced, yet intuitive,
exploration and analysis of complex and varied data.

Information is loaded from disparate source systems and stored in a faceted data model that dynamically
supports changing data. This integrated and enriched data is made available for search, discovery, and
analysis via interactive and configurable applications.

Oracle Endeca Information Discovery enables an iterative “model-as-you-go” approach that simultaneously
frees IT from the burdens of traditional data modeling and supports the broad exploration and analysis needs
of business users.

About this guide

This guide provides information on extending the Studio portal of Oracle Endeca Information Discovery.

Who should use this guide

This guide is intended for developers who want to extend Studio.

Conventions used in this guide

This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in nonospace font. In

the case of long lines of code, or when inline monospace text occurs at the end of a line, the following symbol
is used to show that the content continues on to the next line: =

When copying and pasting such examples, ensure that any occurrences of the symbol and the corresponding
line break are deleted and any remaining space is closed up.

Contacting Oracle Customer Support

Oracle Customer Support provides registered users with important information regarding Oracle software,
implementation questions, product and solution help, as well as overall news and updates from Oracle.

You can contact Oracle Customer Support through Oracle's Support portal, My Oracle Support at
https://support.oracle.com.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 2012

https://support.oracle.com

Chapter 1
About Extending Studio

Out of the box, Studio includes numerous components that you can use to quickly develop an enterprise-
quality search application. In addition, Studio provides a number of extension points for managing query and
portlet operations, along with default implementations of the various interfaces that you can modify.
Developer tasks in Studio

Licensing requirement for component development

Other resources for additional information

Developer tasks in Studio

Developer tasks include both data source development and component customization.
Data source development tasks include:

* Modifying data sources.

e Adjusting security.

e Customizing how data sources interact with each other.
Component customization tasks include:

» Adding or modifying portlet components based on the EndecaPort | et class, using the Studio Component
SDK.

» Localizing components.
This guide covers all of these developer tasks.

f Note: Before modifying data sources, make sure to read the data sources chapter of the Oracle
Endeca Information Discovery Studio User's Guide. This chapter describes the default interaction
model between related data sources.

Licensing requirement for component development

Studio component development may require the purchase of a third party license.
Studio uses Ext JS in its components and in the default components created by its SDK.
The Oracle Endeca Information Discovery license does not bundle licensing for ExtJS.

Therefore, customers developing components with ExtJS must either purchase their own development
licenses from ExtJS, or remove ExtJS and develop components without using that Javascript framework.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 2012

http://www.extjs.com/products/js/

About Extending Studio 2

Other resources for additional information

In addition to this guide, there are other resources that can help with these development tasks.

Liferay documentation

Because Studio is built upon the Liferay Portal, you can access Liferay's documentation for more information
about how to perform administrative and developer tasks.

Specifically, the Liferay Portal Administrator's Guide provides extensive information about installing,
configuring, and maintaining a portal.

Liferay developer resources

This guide only covers Information Discovery extensions to the Liferay Portal. For additional developer
support, Liferay provides blogs, wikis, and forums. To access this, go to http://www.liferay.com and navigate to
Community.

Additional Information Discovery documentation

The complete Oracle Endeca Information Discovery documentation set is available from the Oracle
documentation library.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 2012

http://www.liferay.com

Chapter 2
Security Extensions to Studio

You may require more than the default data source role-based security discussed in the Oracle Information
Discovery Studio User's Guide. If so, you can customize the automated filtering of data from the Oracle
Endeca Server (based on user profile details such as the user's role or group association) by creating a
custom Security Manager.

Security Manager class summary

Creating a new Security Manager

Implementing a new Security Manager

Using the Security Manager

Security Manager class summary

A Security Manager is a concrete class that implements
com endeca. portal . data. security. MDEXSecurityManager.

Abstract base class com endeca. portal . data. security. MDEXSecurityManager

Default implementation class com endeca. portal . dat a. Def aul t MDEXSecur i t yManager

Description Handles pre-execution query modification based on the user, role, or
group-based security configuration of filters.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 2012

Security Extensions to Studio

Default implementation behavior | The default Security Manager implementation uses the following

properties:

e securityEnabl ed. If the value is not present, then
securit yEnabl ed defaults to f al se.

e securityFilters. Record filters are the only supported type of
securityFilter.

* rol ePerm ssions

e inheritSecurity. If the data source has a parent, then
i nheritSecurity defaults to t r ue. Otherwise, the value defaults
to f al se.

e parent Dat aSour ce

These properties are defined in data source configurations in order to
apply role-based security filters to queries issued to the Endeca Server
backing a given data source.

Users are assigned to Liferay roles in the Control Panel. The related
associations are made available to every component throughout the
user's session.

Users who have not yet logged in are automatically assigned the
Guest user role. Any role-based restrictions for the Guest role are also
applied to these users.

For each data source, the Security Manager maintains an internal map
of security filters to always apply to queries issued during that user's
session.

Creating a new Security Manager

The Studio Component SDK includes Windows and Linux batch scripts for creating a new Security Manager.

To create a new Security Manager project:

1.

In a terminal, change your directory to endeca- ext ensi ons within the Component SDK's root
directory (normally called conponent s).

Run one of the following commands:
e On Windows: .\ creat e- ndexsecurit ymanager. bat <your-security-manager - nanme>
* OnLinux:./create-ndexsecuritymanager.sh <your-security-manager - name>

This command creates a your - securi t y- manager - name directory under endeca- ext ensi ons.
This directory is an Eclipse project that you can import directly into Eclipse, if you use Eclipse as your
IDE.

This directory also contains a sample implementation that you can use to help understand how the
Security Manager can be used. The sample implementation is essentially identical to the default
implementation of the Security Manager used by Studio.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 2012

Security Extensions to Studio 5

Implementing a new Security Manager

Your Security Manager must implement the appl ySecuri ty method.
There are two versions of the appl ySecuri ty method, one of which your Security Manager must implement:

public void applySecurity(Portl|etRequest request, MDEXState ndexState, Query query) throws
MDEXSecuri t yExcepti on;

The Query class in this signature is com endeca. portal . dat a. Query. This class provides a simple wrapper
around an ENEQuery.

Using the Security Manager

In order to use your Security Manager, you must specify a new class for Studio to pick up and use in place of
the default Security Manager implementation.

The your - securi ty- manager - namne directory you created contains an ant build file. The ant depl oy task
places a .jar file containing your Security Manager into the portal /t ontat - <ver si on>/1i b/ ext directory.

To configure Studio to use your new class:
1. Point the cursor at the Dock in the upper-right corner of the page.
2. In the drop-down menu, choose Control Panel.

3. Inthe Information Discovery section of the Control Panel navigation panel, select Framework
Settings.

4. Change the value of the df . ndexSecuri t yManager property to the full name of your class, similar to
following example:
df . ndexSecurityManager = com endeca. portal . ext ensi ons. Your Securi t yManager Cl ass

5. Click Update Settings.

6. Restart Studio so the change can take effect. You may also need to clear any cached user sessions.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 2012

Chapter 3
Managing Data Source State in Studio

Studio allows you to define your own interaction model for data sources by creating a custom State Manager.
For information on the default interaction model between related data sources, see the Oracle Endeca
Information Discovery Studio User's Guide.

About the State Manager interface

Creating a new State Manager

Implementing a State Manager

Using the State Manager

About the State Manager interface

The State Manager controls how data sources interact during updates and query construction.

Interface (required) com endeca. port al . dat a. MDEXSt at eManager
Abstract base class (optional) com endeca. portal . dat a. Abst r act MDEXSt at eManager
Default implementation class com endeca. port al . dat a. Def aul t MDEXSt at eManager
Description Handles:

e Updating a data source with a new query state (called from
Dat aSour ce. set Quer ySt at e(QuerySt at e newSt at e))

» Retrieving the current query state from a data source (called from
Dat aSour ce. get QueryState())

» Resetting a data source's query state to its initial state (called from
Dat aSour ce. reset QueryState())

» Retrieving a copy of the data source's initial state without resetting
the data source (called from
Dat aSource. getlnitial QueryState())

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 2012

Managing Data Source State in Studio 7

Default implementation behavior | The default State Manager implementation uses the
Par ent Dat aSour ce property from the data source configuration to

propagate state changes throughout the hierarchy of data source
relationships.

When a component changes the query state of its data source, that
modification is applied to:

» The parent data source
» All of the children of the parent data source

This is recursive, applying all the way up and back down an ancestor
tree.

Configuring a hierarchy of data source relationships allows application
developers to create more advanced interfaces, such as a tabbed
result set where a single Guided Navigation component controls the
query state for Results Table components on different tabs.

Creating a new State Manager

The endeca- ext ensi ons directory of the Component SDK includes scripts for creating a State Manager
project on either Windows or Linux.

To create a new State Manager project:

1. In aterminal, change to the endeca- ext ensi ons directory within the Component SDK's root
directory (normally called conponent s).

2. Run one of the following commands:
« On Windows: .\ cr eat e- ndexst at emanager . bat <your - st at e- nranager - nane>
e OnLinux:./create-ndexst at emanager . sh <your - st at e- mranager - nane>

This command creates a <your - st at e- manager - nane> directory under endeca- ext ensi ons.
This directory is an Eclipse project. If you use Eclipse as your IDE, you can import the project directly
into Eclipse.

The directory also contains a sample implementation, which is essentially identical to the default
implementation of the State Manager used by Studio. You can use this sample implementation to help
understand how to use the State Manager.

Implementing a State Manager

Custom State Managers implement the MDEXSt at eManager interface. There are methods for updating,
retrieving, and resetting the data source query state.

Recommendations for implementing

To create a custom State Manager, you must at minimum implement the
com endeca. portal . dat a. MDEXSt at eManager interface. The recommended approach is to extend
com endeca. port al . dat a. Abst r act MDEXSt at eManager , which in turn implements MDEXSt at eManager .

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 2012

Managing Data Source State in Studio 8

You also should extend com endeca. portal . dat a. Abst r act MDEXSt at eManager , which in turn implements
MDEXSt at eManager . The Abst r act MDEXSt at eManager abstract class contains the useful utility method
addEvent Tri gger (Port| et Request, MDEXSt ate) .

The default state manager implementation is com endeca. port al . dat a. Def aul t MDEXSt at eManager . The
Studio Component SDK creates state managers that extend Def aul t MDEXSt at eManager , because they will
work without any modification. If you want your custom state manager to inherit some of the default
functionality, you can extend Def aul t MDEXSt at eManager instead of Abst r act MDEXSt at eManager .

Required methods
Your State Manager must implement the following methods:

publ i c voi d handl eSt at eUpdat e(Port| et Request request, NMDEXState ndexState, QueryState newQueryState)
throws QueryStateException;

public QueryState handl eSt at eMerge(Portl et Request request, NMDEXState ndexState) throws
Quer ySt at eExcepti on;

public voi d handl eSt at eReset (Port| et Request request, MDEXState ndexState) throws QueryStateException;

public QueryState handl eStatelnitial (Portl et Request request, MDEXState ndexState) throws
Quer ySt at eExcepti on;

handl eSt at eUpdat e() Called when a component calls Dat aSour ce. set Quer ySt at e(gs) .

This method should eventually call ndexSt at e. set QuerySt at e() .
However, it is not required to make this call if it determines that the
MDEXSt at e' S Quer ySt at e should not change.

If the data source state is changed by handl eSt at eUpdat e(), you must
mark the affected data sources.

To mark the data sources, you call the

addEvent Tri gger (Port | et Request request, MDEXSt at e ds) method,
passing in the request object and any MDEXSt at e objects that are
changed.

handl eSt at eMer ge() Called when a component calls Dat aSour ce. get QuerySt at e() .

You are expected to return the Quer ySt at e that the component should
get access to for the data source represented by the ndexSt at e, taking
into account any data source relationships or other aspects of your

St at e Manager that might affect the query state.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 2012

Managing Data Source State in Studio 9

handl eSt at eReset () Called when a component calls Dat aSour ce. r eset QuerySt at e() .

This method returns the data source to the "initial state" defined by your
state manager.

The default implementation (Def aul t MDEXSt at eManager) clears all
query functions from the data source except those defined in the
baseFunct i ons key of the data source's .json file, and similarly updates
all parent and child data sources.

If the data source state changes while it is being reset, you must mark
the affected data sources.

To mark the data sources, you call the

addEvent Tri gger (Port | et Request request, MDEXSt at e ds) method,
passing in the request object and any MDEXSt at e objects that are
changed.

handl eStatel nitial () Called when a component calls

Dat aSource. getlnitial QueryState().

This method returns a copy of the data source's initial state as defined
by your state manager.

The default implementation (Def aul t MDEXSt at eManager) returns a
Quer ySt at e with query functions made up of the union of the
baseFuncti ons from:

* The current data source

e All of the current data source's parents

Using the State Manager

In order to use your State Manager, you must specify a new class for Studio to pick up and use in place of the
default State Manager implementation.

The <your - st at e- manager - nanme> directory you created contains an ant build file. The ant depl oy task
places a . j ar file containing your State Manager into the portal / t ontat - <ver si on>/ | i b/ ext directory.

To configure Studio to use your State Manager:

1.
2.
3.

Point the cursor at the Dock in the upper-right corner of the page.
In the drop-down menu, choose Control Panel.

In the Information Discovery section of the Control Panel navigation panel, select Framework
Settings.

Change the value of df . ndexSt at eManager property to the full name of your class, similar to following
example:

df . ndexSt at eManager = com endeca. port al . ext ensi ons. Your St at eManager Cl ass

Click Update Settings.

Restart Studio so the change can take effect. You may also need to clear any cached user sessions.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 2012

Chapter 4
Installing and Using the Component SDK

You can customize Studio even further by creating your own components.

The Studio Component SDK is a packaged development environment that you can use to add or modify
components, themes, and layout templates. It is a modified version of the Liferay Plugins SDK, and includes
enhancements such as the EndecaPort| et core class.

f Note: The Studio Component SDK is designed to work with the Studio Tomcat bundle. It will not work
out-of-the-box on other platforms.

Downloading and configuring the Component SDK
Configuring Eclipse for component development
Developing a new component

Modifying the enhancements to the Component SDK

Downloading and configuring the Component SDK

The Studio Component SDK is available with the Studio installer.

Before installing the Component SDK, download and unzip El D_<ver si on>_portal . zi p, as described in
the Studio portion of the Oracle Endeca Information Discovery Installation Guide. This is the base Studio
code, upon which the Component SDK depends. You do not have to start Studio.

f Note: Do not install the Component SDK in a directory path that contains spaces.

f Note: On Windows, for steps b and d below, backslashes in paths must be escaped. That is, use a
path similar to the following:

portal . base. di r=C:\\ ny_fol der\\ El D-port al

instead of:
portal . base. di r=C:\ ny_f ol der\ El D- port al

To install the Component SDK:
1. Download and unzip El D_<ver si on>_conponent s_sdk. zi p to a separate directory.
This is the Component SDK itself.

2. Perform the following steps within the Component SDK:
(&) Create a file conponent s/ bui | d. <user>. properties

where <user > is the user name with which you logged on to this machine.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 2012

Installing and Using the Component SDK 11

(b) Within that pr operti es file, add a single property
portal . base. di r =<absol ute_path_to_portal >

where <absol ut e_pat h_t o_port al > is the path to the unzipped
El D _<versi on>_portal . zip.

(c) Create ashared. properti es file in the shar ed/ directory.

(d) Editshared/ shared. properti es and set the single property
portal . base. di r=<absol ute_path_to_portal >

where <absol ute_path_to_port al > is the path to the unzipped
El D_<versi on>_portal . zip.

Configuring Eclipse for component development

Before using the Component SDK to develop Studio components in Eclipse, you need to create two Eclipse
classpath variables.

/,.s Note: Depending on your version of Eclipse, the steps below may vary slightly.

To configure the Eclipse classpath variables for Studio component development:
1. In Eclipse, go to Window >Preferences >Java>Build Path>Classpath Variables.

2. Create two new variables:

Name Path
DF GLOBAL_LIB Path to the application server global library.
Example:

C. /endeca-portal /tontat-<version>/lib

DF PORTAL_LIB Path to the Liferay ROOT Web application library.
Example:

C. / endeca- portal /tontat - <ver si on>/ webapps/ ROOT/ V\EB-
INF/1ib

Once these variables have been created, the components generated by the Component SDK can be
imported into Eclipse.

Developing a new component

Here is a high-level overview of the component development process.
To develop a new Studio component:
1. Create the component.

2. Import the project in Eclipse.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 2012

Installing and Using the Component SDK 12

3. Build and test the new component.

Creating a new component

New Studio components are extensions of the EndecaPort| et class.
To create a new component:

1. Atacommand prompt, navigate to the Component SDK directory, and from there to
conponent s/ portlets.

2. Run the command:

create. bat <component - nane- no- spaces> " <Conponent Di spl ayNanme>"

For example:

create. bat johns-test "John's Test Conponent"

In the command, the first argument is the component name. The component name:
» Cannot have spaces.

» Cannot include the string - ext , because it causes confusion with the ext plugin extension. For
example, my- conponent - ext ensi on would not be a valid name.

e Has the - port| et automatically appended to the name. For example, if you set the name to
j ohns-t est, the name will actually be j ohns-test-portlet.

The second argument is intended to be a more human-friendly display name. The display nhame can
have spaces, but if it does, it must be enclosed in quotation marks.

Importing the project in Eclipse
Before beginning component development, you have to import the component project you just created into
Eclipse.
To import the Studio Component SDK project you just created into Eclipse:
1. Within Eclipse, choose File>Import>General >Existing Projects into Workspace.

2. As the root directory from which to import, select the directory where you installed the Component
SDK.

You should see multiple projects to import.
3. Import the components you need to work with.

If your components depend on shared library projects located within the / shar ed directory, import
those as well.

f Note: It takes some time for projects to build after they are imported.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 2012

Installing and Using the Component SDK 13

Building and testing your new component

Next, you can build your new component in Eclipse and ensure that it is available in Studio.
To build your new component in Eclipse:

1. Inyour new project, open the bui | d. xm file at the top level.

2. In the outline view, right-click the deploy task and select Run as...>Ant Build.

/s Note: This step is only necessary if you do not have Build Automatically checked in the
/ Eclipse Project menu.

If Studio is not already running, start Studio and log in.
4. Look at the Studio logs to confirm that the component was picked up successfully.

To test your new component within Studio:

(&) In the Dock menu, click Add Component.

(b) Inthe Add Component dialog, expand the Sample category.
Your component should be listed in that category.

(c) To add the new component to the Studio page, drag and drop it from the Add Component dialog.

Adding and removing components from the WebLogic .ear file

If you have installed Studio on Oracle WebLogic Server, then you can also add the component to the
deployed .ear file, so that it will be deployed automatically the next time you deploy the file, for example when
installing a production instance after you have completed testing on a development instance.

To add components to and remove components from the WebLogic .ear file:

1. To add a custom component to the .ear file:
(&) Copy your component to the <LI FERAY_HOME>/ depl oy directory.

(b) After the component has been processed and moved to the <LI FERAY HOVE>/ webl ogi c-
depl oy directory, undeploy the .ear file.

(c) Add the processed component .war file to the root of the zipped .ear file.
(d) In the .ear file, add an entry for the new component to META- | NF/ appl i cati on. xni .

2. To remove a component from the .ear file:
(&) Remove the component .war file from the root of the .ear file.
(b) In the .ear file, remove the component entry from META- | NF/ appl i cati on. xim .

Modifying the enhancements to the Component SDK

The bui | d. xml file in the root directory of each component created by the Component SDK contains
properties that control whether to include the build enhancements.

By default, these properties are:

<property nanme="shared.|ibs" val ue="endeca- conmon-resour ces, endeca- di scovery-taglib" />
<property nanme="endeca-common-resources.includes" val ue="**/*" [|>

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 2012

Installing and Using the Component SDK

14

<property nanme="endeca- conmon-r esour ces. excl udes" val ue="" />

The properties control the following behavior:

shared. i bs

Controls which projects in the shar ed/ directory to
include in your component.

These shared projects are compiled and included as
. j ar files where appropriate.

endeca- commpn-r esour ces. i ncl udes

Controls which files in the shar ed/ endeca-
conmon- r esour ces project are copied into your
component.

The default value is "**/*" | indicating that all of the
files are included,

These files provide:

* AJAX enhancements (pr eRender . j spf and
post Render . j spf)

e The ability to select a different data source for
the component (dat aSour ceSel ect or. j spf)

endeca- common- r esour ces. excl udes

Controls which files from the shar ed/ endeca-
conmon- r esour ces project are excluded from your
component.

By default, the value is " ", indicating that no files are
excluded.

If your component needs to override any of these
files, you must use this build property to exclude
them. If you do not exclude them, your code will be
overwritten.

The i ncl udes and excl udes properties can be specified for any shared library, for example:

<property nanme="endeca-di scovery-taglib.includes" value="**/*" [|>
<property nane="endeca- di scovery-taglib. excludes" val ue="" />

Oracle® Endeca Information Discovery: Studio Developer's Guide

Version 2.3.0 « April 2012

Chapter 5
Working with QueryFunction Classes

Studio provides a set of Quer yFunct i on classes to allow you to filter and query data. You can also create and
implement your own Quer yFuncti on classes.

Provided QueryFunction filter classes

Provided QueryConfig functions

Creating a custom QueryFunction class

Implementing a custom QueryFunction class

Deploying a custom QueryFunction class

Adding the custom QueryFunction .jar file to your Eclipse build path

Obtaining query results

Provided QueryFunction filter classes

Studio provides the following filter classes. Filters are used to change the current query state. They can be
used in the definition of a Studio data source, or called by a custom component.

The available filter classes are:
* Dat aSourceFilter
* RecordFilter
* RefinenmentFilter
* NegativeRefinementFilter
* RangeFilter
e SearchFilter

Note that the examples below use the syntax for calling the filters from a component. For details on
configuring filters in a data source definition, see the Oracle Endeca Information Discovery Studio User's
Guide.

DataSourceFilter
Uses an EQL snippet to provide the filtering.

When used in a data source definition, a Dat aSour ceFi | t er is a permanent filter designed to be used for
security purposes.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 2012

Working with QueryFunction Classes 16

The available properties are:

filterString The EQL snippet containing the filter information.

For a Dat aSour ceFi | t er, this would be the content of a WHERE
clause for an EQL statement.

For details on the EQL syntax, see the Oracle Endeca Server
Query Language Reference.

For example, to filter data to only show records from the Napa Valley region with a price lower than 40 dollars:

Expr essi onBase expressi on = dat aSource. par seLQLExpr essi on(" Regi on=' Napa Val | ey’ and P_Price<40");
Dat aSour ceFi | t er dat aSourceFilter = new Dat aSourceFilter(expression);

RecordFilter
A Recor dFi | t er can be configured to include multiple filters with Boolean logic.
When used in a data source definition, a Recor dFi | t er provides permanent filtering of the data.

The properties for a Recor dFi | ter are:

recordFilter String

The filter content. For details on the Recor dFi | t er syntax, see
the Oracle Endeca Server Developer's Guide.

In the following example, the data is filtered to only include records that have a value of Midwest for the
Region attribute.

RecordFilter recordFilter = new RecordFilter("Region: M dwest");

RefinementFilter

Used to filter data to include only those records that have the provided attribute values. End users can remove
Ref i nenent Fi | t er refinements.

The properties for a Ref i nement Fi | t er are:

attributeVal ue String

The attribute value to use for the refinement.

For a managed attribute, this is the value ID.

attri but eKey String

The attribute key. Identifies the attribute to use for the
refinement.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 2012

Working with QueryFunction Classes 17

mul ti Sel ect AND | OR| NONE

For multi-select attributes, how to do the refinement if the filters
include multiple values for the same attribute.

If set to AND, then matching records must contain all of the
provided values.

If set to OR, then matching records must contain at least one of
the provided values.

If set to NONE, then multi-select is not supported. Only the first
value is used for the refinement.

In the following example, the data is refined to only include records that have a value of 1999 for the Year
attribute.

RefinenentFilter refinementFilter = new RefinementFilter("1999", "Year");

NegativeRefinementFilter

Used to filter data to exclude records that have the provided attribute value. End users can remove
Negat i veRef i nenent Fi | t er refinements.

The properties for a Negat i veRefi nement Fi | ter are:

attributeVal ue String

The attribute value to use for the refinement.

attri but eKey String

The attribute key. Identifies the attribute to use for the
refinement.

For example, to refine the data to only include records that do NOT have a value of 2003 for the Year
attribute:

Negati veRefi nement Fi |l ter negati veRefinenentFilter = new NegativeRefinenentFilter("Year", "2003");

RangekFilter

Used to filter data to include only those records that have attribute values within the specified range. End
users can remove RangeFi | t er refinements.

The properties for a RangeFi | t er are:

attri but eKey String

The attribute key. Identifies the attribute to use for the filter.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 2012

Working with QueryFunction Classes 18

r angeQper at or LT| LTEQ| GT | GTEQ BTWN| GCLT | GCGT | GCBTWN
The type of comparison to use.
e LT - Less than
e LTEQ- Less than or equal to
e GT - Greater than
e GIEQ- Greater than or equal to
e BTWN - Between. Inclusive of the specified range values.
e GCLT - Geocode less than
e GCGT - Geocode greater than
* GCBTWN - Geocode between

rangeType NUMERI C| CURRENCY | DATE | GEOCODE

The type of value that is being compared.

val uel Numeric
The value to use for the comparison.
For BTWN, this is the low value for the range.

For the geocode range operators, the origin point for the
comparison.

val ue2 Numeric
For a BTWN, this is the high value for the range.
For GCLT and GCGT, this is the value to use for the comparison.

For GCBTWW, this is the low value for the range.

val ue3 Numeric

Only used for the GCBTWN operator. The high value for the
range.

In the following example, the data is refined to only include records where the value of P_Score is a number
between 80 and 100:

RangeFi |l ter rangeFilter
= new RangeFilter("P_Score", RangeType. NUMERI C, RangeQperat or. BTWN, "80", "100");

SearchFilter

Used to filter the data to include records that have the provided search terms. End users can remove
Sear chFi | ter refinements.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 2012

Working with QueryFunction Classes 19

The properties for a SearchFi |l ter are:

searchlnterface String

Either the name of the search interface to use, or the name of
an attribute that is enabled for text search.

terms String

The search terms.

mat chVbde ALL | PARTIAL | ANY | ALLANY | ALLPARTI AL | PARTI ALMAX |
BOOLEAN

The match mode to use for the search.

enabl eSni ppeti ng boolean
Whether to enable snippeting.

Optional. If not provided, the default is f al se.

sni ppet Lengt h int
The number of characters to include in the snippet.
Required if enabl eSni ppeti ng istrue.

To enable snippeting, set enabl eSni ppeting totrue, and
provide a value for sni ppet Lengt h.

In the following example, the filter uses the "default" search interface to search for the terms "California" and
"red". The matching records must include all of the search terms. Snippeting is supported, with a 100-
character snippet being displayed.

SearchFil ter.Buil der builder = new SearchFilter.Builder("default", "California red");

bui | der . mat chMbde(Mat chMbde. ALL) ;

bui | der. enabl eSni ppeting(true);

bui | der . sni ppet Lengt h(100) ;
SearchFilter searchFilter = builder.build();

Provided QueryConfig functions

Studio provides the following Quer yConfi g functions, used to manage the results returned by a query. These
are more advanced functions for component development.

Each Quer yConfi g function generally has a corresponding function in Di scoveryServi ceUti | s to get the
results.

Quer yConfi g functions are specific to a component. Because of this, Quer yConf i g functions should never be
persisted to a data source using set Quer ySt at e(), as this would affect all of the components bound to that
data source. Instead, Quer yConf i g functions should only be added to a component's local copy of the

Quer ySt at e object.

The available Quer yConfi g functions are:

e AttributeVal ueSearchConfig

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 2012

Working with QueryFunction Classes

20

* BreadcrunbsConfig

* ExposeRefi nenment

* LQLQueryConfig

* NavConfig

* RecordDetail sConfig

* ResultsConfig

* Resul t sSunmaryConfi g

* Sear chAdj ust ment sConfig
* SearchKeysConfig

e SortConfig

AttributeValueSearchConfig

Used for typeahead in search boxes. For example, used in Guided Navigation to narrow down the list of

available values for an attribute.

Attri but eval ueSear chConfi g has the following properties:

searchTerm

String

The term to search for in the attribute values.

maxVal uesToRet urn

int (optional)
The maximum number of matching values to return.

If you do not provide a value, then the default is 10.

attribute

String (optional)

The attribute key for the attribute in which to search.

Use the at t ri but e property to search against a single attribute.

To search against multiple attributes, use sear chW't hi n.

searchWthin

List<String> (optional)

A list of attributes in which to search for matching values.

mat chMode

ALL| PARTI AL| ANY| ALLANY| ALLPARTI AL| PARTI ALMAX| BOOLEAN
(optional)

The match mode to use for the search.

r el evanceRanki ngSt r at egy

String (optional)

The name of the relevance ranking strategy to use during the
search.

The following example searches for the term "red" in the WineType attribute values:

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 20

12

Working with QueryFunction Classes

21

Attri but eVal ueSearchConfi g attri buteVal ueSearchConfig

= new AttributeVal ueSearchConfig("red",

BreadcrumbsConfig

"W neType");

Used to return the breadcrumbs associated with the query. Allows you to specify whether to display the full

path for hierarchical attribute values.

Br eadcr umbsConfi g has the following property:

returnFul | Pat h

boolean (optional)

For a hierarchical managed attribute, whether to return the full
path to the selected value.

The default is t r ue, indicating to return the full path.

To not return the full path, set this to f al se.

This example returns the breadcrumbs, but does not return the full path for hierarchical managed attributes:

Br eadcrunbsConfi g breadcrunbsConfig = new BreadcrunbsConfi g(fal se);

ExposeRefinement

Affects results from a NavConf i g function. Used to implement Guided Navigation. Controls whether to display
available attributes within groups, and whether to display available refinements for attributes.

ExposeRef i nement has the following properties:

dinval | d

String
The ID of the selected attribute value.

You would provide an attribute value ID if you were displaying
the next level of available values in a managed attribute
hierarchy.

di nensi onl d

String
The name of the attribute.

You must provide at least one di nval | d or di nensi onl d.

owner I d String (optional)

The ID of the associated NavConfi g instance.

If not provided, then uses the first NavConf i g instance.
di mExposed boolean (optional)

Whether to display the available values for the attribute, to the
number specified in maxRef i nenent s.

The default is t r ue.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 2012

Working with QueryFunction Classes 22

exposeAl | boolean (optional)
Whether to display the complete list of available values.

For example, on the Guided Navigation component, would
indicate whether the "More..." link is selected.

The default is f al se.

maxRef i nenent s int (optional)

The maximum number of available values to display.
The default is 1000.

gr oupKey String (required)

The name of a group.

gr oupExposed boolean (optional)
Whether to display all of the attributes in the specified group.

The default is t r ue.

The following example shows the available attributes for the Flavors attribute within the Characteristics group.

ExposeRef i nenent exposeRefi nement = new ExposeRefinenment("/", "Flavors", "Characteristics");

LQLQueryConfig
Executes an EQL query on top of the current filter state.
LQ.Query has the following property:

LQLQuery AST
The EQL query to add.

To retrieve the AST from the query string, call
Dat aSour ce. parseLQLQuery.

The following example retrieves the average of the P_Price attribute grouped by Region:

Query query

= dat aSour ce. parseLQ.Query("“return nystatenent as sel ect avg(P_Price) as avgPrice group by Region",
true);

LQLQueryConfig | gl QueryConfig = new LQLQueryConfi g(query);

NavConfig

Used to retrieve a navigation menu, such as in the Guided Navigation component.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 2012

Working with QueryFunction Classes 23

NavConf i g has the following properties:

exposeAl | Refi nenent s boolean
Whether to display all of the available values for the attributes.

Determines the initial state of the menu. The associated
ExposeRef i nement function is then applied.

The default is false.

Li st <Refi nement G oupConf i gs> List of groups for which to return the available attributes.

If no Ref i nenent G oupConfi gs are specified, no attribute
groups or attributes are returned.

The following examples returns attributes in the Source and Characteristics groups:

Li st <Refi nenent Gr oupConfi g> refinement G oups = new ArraylLi st <Refi nement G- oupConfi g>();
Ref i nenent G- oupConfi g source = new Refinenent G oupConfig();

sour ce. set Narme(" Sour ce") ;

sour ce. set Expose(true);

refi nenent G oups. add(source) ;

Ref i nenent G- oupConfi g characteristics = new Refinenent G oupConfig();
characteristics.set Name("Characteristics");

characteristics. set Expose(true);

refi nement G oups. add(characteristics);

NavConfi g navConfig = new NavConfig();

navConfi g. set Ref i nenent G oupConfi g(refi nement G oups) ;

RecordDetailsConfig

Sends an attribute key-value pair to assemble the details for a selected record. The complete set of attribute-
value pairs must uniquely identify the record.

Recor dDet ai | sConfi g has the following property:

recordSpecs List<RecordSpec>

Each new Recor dDet ai | sConfi g is appended to the previous
Recor dDet ai | sConfi g.

The following example sends the value of the P_WinelD attribute:
Li st <Recor dSpec> recordSpecs = new Arrayli st <RecordSpec>();

recor dSpecs. add(new Recor dSpec("P_W nel D', "37509"));
RecordDet ai | sConfig recordDetail sConfig = new RecordDet ai | sConfi g(recordSpecs);

ResultsConfig

Used to manage the returned records. Allows for paging of the records.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 2012

Working with QueryFunction Classes

24

Resul t sConfi g has the following properties:

recor dsPer Page

long

The number of records to return at a time.

of f set long (optional)
The position in the list at which to start. The very first record is
at position 0.
For example, if r ecor dsPer Page is 10, then to get the second
page of results, the offset would be 10.

col ums

String[] (optional)
The columns to include in the results.

If not specified, then the results include all of the columns.

nunmBul kRecor ds

int (optional)

The number of records to return. Overrides the value of
recor dsPer Page.

The following example returns a selected set of columns for the third page of records, where each page

contains 50 records:

Resul t sConfi g resultsConfig = new Resul tsConfig();

resul tsConfig. set O f set (100) ;
resul t sConfi g. set Recor dsPer Page(50) ;

String[] colums = {"Wne_ID', "Nane", "Description", "WneType", "Wnery", "Vintage"};

resul t sConfi g. set Col ums(col ums) ;

ResultsSummaryConfig

Gets the number of records returned from a query.

Resul t sSunmar yConfi g resul t sSunmaryConfi g = new Resul t sSunmar yConfi g();

SearchAdjustmentsConfig

Returns "Did you mean" and auto-correction items for a search.

Sear chAdj ust ment sConfi g sear chAdj ust ment sConfi g = new Sear chAdj ust nent sConfi g();

SearchKeysConfig

Returns the list of available search interfaces.

Sear chKeysConfi g searchKeysConfi g = new Sear chKeysConfig();

SortConfig

Used to sort the results of a query. Used in conjunction with Resul t sConfi g.

Oracle® Endeca Information Discovery: Studio Developer's Guide

Version 2.3.0 « April 2012

Working with QueryFunction Classes 25

Sort Conf i g has the following properties:

owner | d String (optional)

The ID of the Resul t sConf i g that this Sort Confi g applies to. If
not provided, uses the default Resul t sConfi g ID.

If you configure a different ID, then you must provide a value for
owner | d.

property String

The attribute to use for the sort.

ascendi ng boolean
Whether to sort in ascending order.

If set to f al se, then the results are sorted in descending order.

For example, with the following Sort Confi g, the results are sorted by the P_Score attribute in descending
order:

Sort Config sortConfig = new Sort Config("P_Score", false);

Creating a custom QueryFunction class

The Component SDK directory includes scripts for creating new Quer yFunct i on classes.

/s Note: Before you can create Quer yFunct i on classes, you must install the Component SDK, which is
4 a separate download. See Downloading and configuring the Component SDK on page 10.

To create a new Quer yFi | ter or QueryConfi g class:

1. In aterminal window, change to the endeca- ext ensi ons subdirectory of the Component SDK's root
directory (normally called conponent s).

2. Run the appropriate command to create the Quer yFi | t er or Quer yConfi g class.

To create a Quer yFi |l ter class:

On Windows: .\create-queryfilter.bat <your-query-filter-name>

On Linux: .l create-queryfilter.sh<your-query-filter-nane>

To create a Quer yConfi g class:

On Windows: .\create-queryconfig. bat <your-query-config-name>

On Linux: ./ creat e-queryconfig. sh <your-query-config-nane>

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 2012

Working with QueryFunction Classes 26

The command creates in the endeca- ext ensi ons directory a new directory for the QueryFil ter or
QueryConfi g class:

* For a QueryFilter, the directory is <your - query-filter-name>-filter.
» For a QueryConfi g, the directory is <your - quer y- confi g- name>- confi g.
This directory is an Eclipse project that you can import directly into Eclipse, if you use Eclipse as your IDE.

It contains an empty sample implementation of a Quer yFi | t er or Quer yConfi g. This has no effect on
QuerySt at e in its original form.

The skeleton implementation creates source files that:
» Extend either QueryFi | ter or QueryConfi g.
e Create stubs for the appl yToDi scover yServi ceQuery, t oStri ng, and bef or eQuer ySt at eAdd methods.
appl yToDi scover yServi ceQuery and t oSt ri ng are required methods that you must implement.

bef or eQuer ySt at eAdd is an optional method to verify the query state before the function is added. This
method is used to prevent invalid query states such as duplicate refinements.

e Create a no-argument, protected, empty constructor. The protected access modifier is optional, but
recommended.

e Create a private member variable for logging.

Implementing a custom QueryFunction class

After you create your new Quer yFunct i on class, you then implement it.
To implement your new Quer yFunct i on, you must:
* Add private filter or configuration properties.
» Create getters and setters for any filter properties you add.
» Define a no-argument constructor (protected access modifier optional, but recommended).

e Optionally, implement the bef or eQuer ySt at eAdd(Quer ySt at e st at e) method to check the current query
state before the function is added.

Deploying a custom QueryFunction class

Before you can use your new Quer yFunct i on, you must deploy it to Studio.
The directory that you created for the new Quer yFi | t er or Quer yConfi g contains an ant build file.

The ant depl oy task places a . j ar file containing the custom Quer yFuncti on into the endeca-
portal /tontat-<version>/1ib/ext directory.

f Note: If you are not using the default portal bundle, put the new Quer yFuncti on. j ar into the
container's global classpath.

To deploy the new Quer yFuncti on:
1. Run the ant build.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 2012

Working with QueryFunction Classes 27

2. Restart Studio.

The portal picks up the new class.

After you deploy your custom Quer yFunct i on, you can use it in any component.

Adding the custom QueryFunction .jar file to your Eclipse
build path

If you are using Eclipse as your IDE, you need to add the new . j ar file to the build path of your custom
component.

To add the new . j ar file to your Eclipse build path:

Right-click the project, then select Build Path>Configure Build Path.
Click the Libraries tab.

Click Add Variable.

Select DF_GLOBAL_LIB.

A

You should have added this variable when you set up the SDK.
Click Extend.

Open the ext / directory.

Select the . j ar file containing your custom Quer yFuncti on.

Click OK.

© N o O

After adding the . j ar file to the build path, you can import the class, and use your custom Quer yFi | ter or
Quer yConf i g to modify your QuerySt at e.

Obtaining query results

The Resul t s class is used to represent results of queries.

You must add the relevant Quer yConf i gs to a component in order to specify the types of results it needs.

QueryState query = get Dat aSour ce(request).get QueryState();
query. addFuncti on(new NavConfig());
QueryResul ts results = getDat aSour ce(request). execute(query);

You can then get the underlying API results and do whatever manipulation is required by your component.

Resul ts di scoveryResults = results.getDi scoveryServiceResults();

Before executing, you can also make other local modifications to your query state by adding filters or
configurations to your query:

QueryState query = get Dat aSour ce(request).get QueryState();

query. addFuncti on(new Resul t sConfig());

query. addFuncti on(new RecordFilter("Regi on: M dwest"));
QueryResults results = get Dat aSour ce(request). execut e(query);

When you need to update a data source's state to update all of the associated components, you must use
Quer ySt at e instances.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 2012

Working with QueryFunction Classes 28

Dat aSour ce ds = get Dat aSour ce(request);

QueryState query = ds.get QueryState();

query. addOper ati on(new RecordFilter("Regi on: M dwest"));
ds. set QuerySt at e(query);

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 2012

Chapter 6
Localizing Studio

Studio is an internationalized application that can be adapted for use in different locales.

Configuring localization for a component

Adding strings to your resource files

Guidelines for working with non-Unicode characters

Localizing a component to a non-Unicode language

How the build process works with resource files

Using the LanguageUtils class to retrieve localized messages

Adding a translation to a released component

Switching the locale of a component

Adding the Language component to your Studio application

Obtaining more information about portal localization

Configuring localization for a component

To localize a component, you must specify the supported languages in port | et. xm , and then create the
resource files for each language.

To set up a component for localization:

1.

Update the port | et.xm file to specify the locales this component will support.

The following example enables English and German:
<support ed- | ocal e>en</ support ed- | ocal e>
<support ed- | ocal e>de</ support ed-| ocal e>

Update portl et . xm to specify the location of the component's resource bundle. (The resource
bundle is the mechanism the Liferay Portal uses to add localized content to a component.)

For example, to create custom English and German resource files for the Sample Endeca Portlet
component, we would include Resour ce_en. properti es and Resour ce_de. properti es in the
component's conm endeca/ portl et/ sanpl e/ directory:

<r esour ce- bundl e>com endeca. portl et. sanpl e. Resour ce</ r esour ce- bundl e>

Create resource bundles for your supported languages in V\EB-
I NF/ src/[path/to/resource/bundle] [l ocal e].properties.

For example, the bundle for English for the Sample Endeca Portlet component would be VEB-
I NF/ src/ com endeca/ portl et/ sanpl e/ Resource_en. properti es.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 2012

Localizing Studio 30

For the most part, this is a simple pr operti es file with key/value pairs for message IDs and their
locale-specific messages.

f Note: You may have noticed that the r esour ce- bundl e attribute is different from the file
path you edit messages in. This is because the component build process combines common
message strings from shared libraries with your component-specific messages to create the
final conf endecal/ Resour ce_[| ocal e] . properti es file in the compiled portlet WAR. For

more information, see How the build process works with resource files on page 32.

4. Update your component's implementation to use the Languagelti | s class to retrieve messages from
the resource bundle, instead of hard-coding message strings.

This should be done for all messages displayed to the user, including form labels, component titles
(and other metadata), warning and error messages, edit views, help text, and so on.

For information on using the LanguageUt i | s class, see Retrieving all resource bundle messages in
one call on page 34.

Adding strings to your resource files

Your component resource files can include both common and component-specific text.

Including common shared messages

All Studio components tend to include common messages, like those associated with selecting the data
source, saving changes, and working with attributes. Your compiled component automatically includes the
default localizations for these messages.

These resource files containing these common messages are in the conmponent s\ shar ed\ endeca-
conmon-r esour ces directory.

To change or override these values, include the same keys in your
Pl ugi nResource_[| ocal e] . properti es file.

If the messages are not included in a component's resource bundle, then Studio uses the hard-coded English
defaults from the original files. It does not display an error.

Including the component name, category, and keywords

Resource bundles need to include a handful of component-specific messages to localize a component's hame,
description, keywords, and category.

To localize the component's metadata, include the following messages:
javax.portlet.title=Sanpl e Endeca Portl et

javax.portlet.short-title=Sanpl e Endeca Portl et
javax. portl et. keywor ds=Sanpl e, Endeca, Portl et

Additionally, if your component is displayed in the Add Component menu as part of a custom category (or
sub-category), you may need to localize the name of the category. For example:

<di spl ay>

<cat egory name="ny.new. cat egory" >
<cat egory nanme="ny.new. sub- cat egory">

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 2012

Localizing Studio 31

<portlet id="portlet A" />
</ cat egory>
</ cat egory>
</ di spl ay>

To localize the category names, have your component's resource bundle include the following messages:

ny. new. cat egor y=My Cat egory
nmy. new. sub- cat egor y=My Sub- Cat egory

All components that declare the same categories should include these messages, since the component
container uses the localized messages from the first component that specifies them.

Using tokens in message strings

Message strings can include tokens that are substituted at runtime.

For example, a search breadcrumb may need to display a spelling correction message such as "No matches
found for 'bearign’; showing results for ‘bearing™. In a . pr operti es file, this message would appear with

tokens for the two terms, as in the following example:

aut ocorrect-nmsg=No matches found for \'{0}\'; showing results for \'{1}\"'

When using theLanguagelt i | s utility to include this message in your component, you pass in a list of
parameters to substitute for these tokens. This substitution uses the class j ava. t ext . MessageFor mat . To see
the available token substitution options, refer to the javadoc for that class.

Tokens may also do advanced substitution, such as date substitution formatted appropriately for the locale.

Guidelines for working with non-Unicode characters

Because Studio is Java-based, it can only read Unicode or Latin-1 characters. In the case of other characters,
you can work around this limitation by converting the native file to ASCII, using a converter such as
nati ve2asci i, which is freely available as part of the JDK.

Keep in mind the following guidelines:
1. Use UTF-8 as your encoding. Lesser encodings cannot properly represent Japanese characters.

2. Pick a valid character set, such as Shift-JIS or UTF-8/Unicode, and stick with it. You cannot change
character sets midstream—if you change character sets, you must re-enter your values.

3. Make sure the character set in your text editor matches the character set in nati ve2asci i .

For more information about working with non-Unicode characters, see the Liferay Portal website.

Localizing a component to a non-Unicode language

The following example demonstrates how to localize a component to a double-byte, extended character
language.

If you want to use this example as a learning exercise but do not have non-Unicode text of your own to
deploy, you can machine-translate your English-language file and use that text in step 5 below.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 2012

Localizing Studio 32

To localize your portlet to a non-Unicode language (such as Japanese):

1. Within your portlet, create a file Pl ugi nResour ce_<I| ocal e-code>. properti es. nati ve at the
appropriate location.

For example, if you are working with Japanese, the file name would be
Pl ugi nResource_j a. properties. native.

2. Commit both the . nati ve and . properti es file to your portlet.

The . properti es file is used by the component, but because that file uses escaped Unicode
notation, it is extremely hard for humans to read.

It is easier to make any necessary changes in the . nat i ve file.

3. Openthe . nati ve file in an encoding- and character-set-aware text editor such as Notepad++.
Make sure the . nat i ve file uses UTF-8 as its encoding and Shift-JIS as its character set.

4. Copy the contents of the English resource bundle into the . nati ve file.

5. Within your text editor, using your translation service, replace the English values with the Japanese
values.

Save the file.

7. From the command line, run Java's nat i ve2asci i converter. This tool is typically included in the
JDK.

In the encodi ng argument, specify:
e Shift_JIS as the character set
* Your . nati ve file as the input
* Your final . properti es file as the output

nati ve2ascii -encoding Shift_JI'S Pl ugi nResource_j a. properties.native
Pl ugi nResource_j a. properties

8. Commit both the . nati ve and . pr operti es file to your component.

The . properti es file is used by the component, but uses escaped Unicode notation, which is hard
to read. The . nati ve file is easier to modify.

How the build process works with resource files

The build process combines resource files into a single resource file that the component reads messages
from.

The build combines:

e The component's com endeca/ Pl ugi nResource_[| ocal e] . properti es file, and

» Any file in a shared library's directory that matches conf endeca/ * Resource_[| ocal e] . properties
to create a single conf endecal/ Resource_[| ocal e] . properti es file.

The messages from your component's Pl ugi nResource_[| ocal €] . properti es appear at the top of the
final Resource_[| ocal e] . properti es, so you can easily override any messages from shared libraries.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 2012

Localizing Studio 33

However, if your component includes more than one shared library, no guarantee can be made about the
order in which the resource files from shared libraries will be appended.

Localizing your own shared libraries

If you have included localized messages in your shared libraries, make sure you choose a prefix other than
Plugin for the resource file com endeca/ [prefi x] Resource_[| ocal e] . properties.

If you do not, this file will override your component's
coni endeca/ Pl ugi nResource_[| ocal e]. properti es file during the build, and your final
conl endecal/ Resource_[| ocal e] . properti es will be incorrect.

We recommend that you choose a prefix for your library's resource file that is distinct and similar to your
library's name to avoid file name conflicts with components or other shared libraries.

Using the LanguageUtils class to retrieve localized
messages

Studio provides the core class com endeca. portlet.util.Languageltil s to retrieve the localized
messages to display on a component. There are several ways to use this class.

Calling static methods from Java

You can access Languagelti | s by calling static methods from your Java class.

The following example shows the static use of the get Message methods to retrieve messages (with token
substitution in the third line).
LanguageUti | s. get Message(request, "reset");

LanguageUti | s. get Message(request, "numrecords");
LanguageUti | s. get Message(request, "search-for", new String[]{ "Anerican" });

A number of convenience method signatures are provided, allowing the user to specify the component request
and message ID, and optionally to include parameters for token substitution and a default string.

The default string may be useful for shared localized messages, allowing components to function with a
default (un-localized) message if the localized message is not retrieved from the resource bundle.

All method signatures require specifying the Port | et Request .

Using the Discovery taglib in JSP

The Discovery t agl i b provides a tag for retrieving localized messages. This is the recommended way to
retrieve localized messages in JSPs.

The following is an example using the t agl i b:

<U@taglib uri="http://endeca.coni di scovery' prefix="edisc"%
<edi sc: get Message nessageNane="no- mat chi ng- val ues"/ >

<edi sc: get Message nessageNane="nessage-w t h- par ans" >

<edi sc: param val ue="test" />
</ edi sc: get Message>

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 2012

Localizing Studio 34

Using the LanguageUtils class from JSP

You can access LanguageUti | s to retrieve localized messages in JSP pages.
This is similar to accessing LanguagelUt i | s from Java.

<% page inport="com endeca. portlet.util.LanguagelUtils" />
<portlet:definelojects />
<% LanguageUti | s. get Message(render Request, "reset") %

Instantiating the object and call instance methods from Java/JSP

You can instantiate the LanguageUt i | s object and call methods from Java/JSP.

This approach provides the same convenience methods as the static approach, but simplifies the method
signatures by removing the need to specify the request on every call.

This may be useful for developers who make many calls for localized strings and would prefer to instantiate
the object once and simplify the subsequent method calls.

<% page inport="com endeca. portlet.util.LanguagelUtils" %

<%

LanguageUils | ang = new LanguageUti | s(render Request);

%

<% | ang. get Message("reset") %

<% | ang. get Message("numrecords”, "Numrecords:") %

<% | ang. get Message("search-for", "Search for \"{O}\"", new String[]{ "American" }) %

Retrieving all resource bundle messages in one call

You can retrieve all of the messages at once using a single call from Java/JSP.

This approach may improve performance in components that require frequent access to the resource bundle.
The message retrieval is consolidated to a single call. The rest of the page then makes lookups into the
loaded map.

<% page i nport="com endeca. portlet.util.LanguagelUtils" %

<% page inport="java.util.Mp" %

<%

Map<String, String> nessages = LanguageUtils.getAll Portl| et Messages(render Request);
%

<% nessages.get("reset") %
<% messages. get ("numrecords") %
<% LanguagelUtil s. repl aceMessageTokens(nessages. get ("search-for"), new String[]{ "Anmerican" }) %

Adding a translation to a released component

In this scenario, the component's English-language message strings have been externalized into the portlet
WAR file's resource bundle. These strings can be translated to the target language and then made available

to Studio.
This procedure can be followed whether you want to translate the content yourself or obtain the translation
from a third party.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 2012

Localizing Studio 35

To add translated message strings to a released component:
1. Unzip the . war file of the localized component you want to modify.
2. Edititsportlet.xm file to enable the additional locale you want to support.
For example, to add French, include <support ed- | ocal e>fr </ support ed-| ocal e>.

3. In\VEB-I NF/ cl asses/ com endeca/ (or other location, based on your component's class structure),
generate a Resource_[| ocal e] . properti es file for the new language.

This file should contain target-language values of the properties used in the component.

To see the supported properties, refer to the V\EB-
I NF/ cl asses/ conl endecal/ Resour ce_en. properti es file already in the component.

Your file should contain a version of each of those messages in your target language.

4. Re-zip the . war file of the component and place it in the endeca- port al / depl oy directory.
Liferay hot-deploys the component.

5. Repeat steps 1 through 4 for each component you want to enable for your target language.

6. Start Studio, then add your components, as well as the Language component, to the page.

7. Inthe Language component, click the flag associated with your target language.
Studio displays the component messages from your resource bundle in your target language.

In addition, because the portal itself is also localized, menus and other portal controls also appear in
your target language.

8. Inthe Language component, to switch back to English, click the United States flag.

Switching the locale of a component

Studio includes resources that you can use to switch a component's locale.
The Language component can be used to change the locale of a portlet.

There are also controls available in the Display Settings section of Liferay's Control Panel (as well as
configuration properties in the portal . properti es file) for setting the default container locale and the
available locales.

For full details on using these Liferay features, see the Liferay Portal documentation.

Adding the Language component to your Studio application

The Language component is the recommended method for selecting a different language in which to display
Studio.

To add the Language component and select a different language:

1. Point the cursor at the Dock in the upper-right corner of the page.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 2012

http://www.liferay.com/documentation/liferay-portal/5.2/getting-started

Localizing Studio 36

The Dock is labeled "Welcome <user name>!"

Welcome Test Test!

I ﬁ Home I
AL| Control Panel
a My Account
&l sion out
@ Add Component
@ Layout Template
Q Manage Pages

<gm My Places

2. In the drop-down menu, select Add Component.
In the Add Component dialog, expand the Tools category.

4. From the Tools category, either drag the Language component to the page, or click the component's
Add link.

5. To select a language, click the corresponding flag.

= Language =S
HEEFH =Sl =E11FEI1 o =iz
e e 53] [e o 2 £ 0 B

The application switches to that language, replacing English with the target language.
For example, after clicking the Spanish flag, the Dock menu looks like:

Welcome Test Test!
I ﬁ Inicio I
A | Panel de control
a Mi cuenta
ﬂ_] Salir
@ Afiadir portiet
@ Plantilla de pagina
Q Administrar paginas

<gm Mis espacios web

Obtaining more information about portal localization

For information about editing Language_<I angcode>. properti es, see the Liferay Portal Administrator's
Guide.

For extensive documentation on Liferay language display customization, see this wiki page.

Oracle® Endeca Information Discovery: Studio Developer's Guide Version 2.3.0 « April 2012

http://www.liferay.com/web/guest/community/wiki/-/wiki/Main/Languagedisplay+customization

Index

B

C

build process and localization 32

class summary
Security Manager 3
State Manager 6

components
adding localized message strings to 34
adding to WebLogic .ear file 13
and localization 32
building and testing 13
component-specific messages for
localization 30
creating 12
development overview 11
removing from WebLogic .ear file 13
setting up for localization 29
switching locales 35

Component SDK
about 10
configuring 10
configuring Eclipse for 11
downloading 10
modifying enhancements to 13

data sources, obtaining results from 27
data source state, managing 6
Discovery taglib 33

Eclipse
adding jars for custom QueryFunctions 27
configuring classpath variables 11
importing the Component SDK project 12

Ext JS licensing requirement 1

Language component, adding 35

LanguageUtils
calling static methods from the JSP 33
instantiating from Java/JSP 34
retrieving all messages at once 34
using from JSP 34

licensing Ext JS 1

Oracle® Endeca Information Discovery: Studio Developer's Guide

localization
adding a translation to a component 34
adding the Language component 35
build process 32
component-specific messages 30
including common externalized strings 30
non-Unicode example 31
of shared libraries 33
setting components up for 29
switching locales 35
using tokens in message strings 31

non-Unicode characters
guidelines for working with 31

overview of component development 12

QueryFunction classes
adding jars to the Eclipse build path 27
creating custom 25
deploying custom 26
implementing custom 26

QueryFunctions
provided filter classes 15
provided QueryConfig functions 19

Security Manager
about 3
class summary 3
creating 4
implementing 5
using 5

shared libraries, localizing 33

State Manager
class summary 6
creating 7
implementing 7
using 9

taglib use in localization 33
tokens in message strings 31

Version 2.3.0 « April 2012

	Copyright and disclaimer
	Table of Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Customer Support

	Chapter 1: About Extending Studio
	Developer tasks in Studio
	Licensing requirement for component development
	Other resources for additional information

	Chapter 2: Security Extensions to Studio
	Security Manager class summary
	Creating a new Security Manager
	Implementing a new Security Manager
	Using the Security Manager

	Chapter 3: Managing Data Source State in Studio
	About the State Manager interface
	Creating a new State Manager
	Implementing a State Manager
	Using the State Manager

	Chapter 4: Installing and Using the Component SDK
	Downloading and configuring the Component SDK
	Configuring Eclipse for component development
	Developing a new component
	Creating a new component
	Importing the project in Eclipse
	Building and testing your new component
	Adding and removing components from the WebLogic .ear file

	Modifying the enhancements to the Component SDK

	Chapter 5: Working with QueryFunction Classes
	Provided QueryFunction filter classes
	Provided QueryConfig functions
	Creating a custom QueryFunction class
	Implementing a custom QueryFunction class
	Deploying a custom QueryFunction class
	Adding the custom QueryFunction .jar file to your Eclipse build path
	Obtaining query results

	Chapter 6: Localizing Studio
	Configuring localization for a component
	Adding strings to your resource files
	Including common shared messages
	Including the component name, category, and keywords
	Using tokens in message strings

	Guidelines for working with non-Unicode characters
	Localizing a component to a non-Unicode language
	How the build process works with resource files
	Using the LanguageUtils class to retrieve localized messages
	Calling static methods from Java
	Using the Discovery taglib in JSP
	Using the LanguageUtils class from JSP
	Instantiating the object and call instance methods from Java/JSP
	Retrieving all resource bundle messages in one call

	Adding a translation to a released component
	Switching the locale of a component
	Adding the Language component to your Studio application
	Obtaining more information about portal localization

	Index

