

[image: Oracle Corporation]

Oracle® Communications IP Service Activator

OSS Java Development Library Guide

Release 7.2

E47731-01

October 2013

Oracle Communications IP Service Activator OSS Java Development Library Guide, Release 7.2

E47731-01

Copyright © 2011, 2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Contents

Preface

	Audience
	Documentation Accessibility

1 Overview

	About the OJDL
	System Architecture
	Prerequisites for Installing OJDL
	Installing OJDL

2 Using the OJDL

	Java Development Environment
	OJDL Directory and File Structure
	The doc Directory
	The lib Directory
	The Samples Directory

	JavaDocs
	Java Classes
	Best Practices for Minimizing Commits

A Managing Configuration Policies Using the OJDL API

	Initial Setup
	Creating a Configuration Policy
	Creating the Configuration Policy Data Type
	Creating the RuleGeneric Object to Contain the Configuration Policy
	Assigning the Configuration Policy to the Required Device and Interface Roles

	Modifying a Configuration Policy
	Querying the EOM for the Configuration Policy
	Modifying the Policy Definition

	Registering an Interface Policy
	Creating a Subinterface
	Creating the Subinterface Object
	Linking the New Subinterface Object to the Interface Policy Registration
	Modifying the Interface Configuration Policy Data
	Linking the New Subinterface to an Interface Role
	Optionally Discovering the Device

	Creating a Main Interface
	Decorating an Interface
	Comparing Created and Discovered Interfaces

	Configuration Policy Classes
	Example Source Code

Preface

This guide provides information for developing application programming interfaces to Oracle Communications IP Service Activator.

The OSS Java Development Library (OJDL) provides a Java-based Application Programming Interface (API) to IP Service Activator. It comprises a set of Java classes together with some code samples and an example Web interface.

Audience

This guide is intended for systems integrators and developers who will be using the OJDL to develop their own Java-based interfaces, for example customized web-based applications for Customer Network Management.

It assumes that readers have the following knowledge:

	
Knowledge of the OSS Integration Manager (OIM), including the External Object Model (EOM), the OIM command language, and the ability to write scripts

Refer to IP Service Activator OSS Integration Manager Guide for further information

	
Familiarity with the core IP Service Activator features

	
Experience of the Java programming language and Java technologies

	
Knowledge of the Oracle Solaris operating system and its commands, including the ability to use a text editor such as vi

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

1 Overview

This chapter provides a brief introduction to the OSS Java Development Library (OJDL), the components of the package, and its relationship to the rest of the Oracle Communications IP Service Activator system.

About the OJDL

The OJDL is a generic Java API for IP Service Activator, which allows Java developers to develop or customize interfaces, including web-based or intranet-based user interfaces.

The OJDL package comprises:

	
Java Classes

	
Java code samples

The OJDL can be used to develop Java-based interfaces used to integrate IP Service Activator with components of your environment. These could include, for example, your internal Operational Support System (OSS) environment or an external Customer Network Management solution.

System Architecture

Figure 1-1 shows the relationship between the OJDL and the rest of the IP Service Activator system:

Figure 1-1 OJDL in the IP Service Activator System

[image: Description of Figure 1-1 follows]

The OJDL uses the OSS Integration Manager (OIM) interface and provides access to the External Object Model (EOM), a simplified version of IP Service Activator's internal object model used by the OIM API. The OJDL is OSS compliant.

In effect, the OJDL provides additional layers that are built on top of OIM, which in turn sits on top of the core IP Service Activator system, as shown in Figure 1-2.

Figure 1-2 OJDL in the IP Service Activator Architecture Layers

[image: Description of Figure 1-2 follows]

The EOM is a subset of IP Service Activator's internal object model. It defines all the objects that can be accessed or updated by external applications, including their attributes and the relationships between them. The EOM allows users and user programs to create and access data objects without requiring knowledge of the underlying complexity of the entire object model.

The OJDL Java Classes provide access to the objects in the EOM. The OJDL provides the same functionality as the OIM CLI, allowing you to create objects, get and set attributes, search for objects, manage transactions, and report errors.

Prerequisites for Installing OJDL

There are no restrictions on where to install the OJDL directory on the host system.

The prerequisites for using the OJDL are:

	
Your IP Service Activator installation must include an instance of the OIM. For more information, see IP Service Activator Installation Guide.

	
If you are developing Java code or running web-based applications, a suitable Java development environment must be installed, such as the Java Platform, Standard Edition (Java SE). For more information, see "Java Development Environment".

Installing OJDL

The OJDL package is not installed as part of the IP Service Activator standard installation. It is a separate package downloadable from the Oracle software delivery Web site.

To install the OJDL:

	
Log in to the Oracle software delivery Web site and select Product Downloads. Select Oracle Communications IP Service Activator, then the Components folder for the desired release.

	
Download the ojdlpackage-rel#.build#.zip file available at the following path on the Oracle software delivery Web site:

Oracle Communications IP Service Activator Media Pack -> Oracle Communications IP Service Activator Software for Solaris

	
Move the file to the desired directory on the host where you are installing OJDL. There are no restrictions on which directory path you choose.

	
Unzip the file to create the OJDL directory. The name of the OJDL directory is denoted as ojdlpackage-rel#.build#.

The OJDL directory consists of the following subdirectories:

	
doc: contains the Java documentation (JavaDocs)

	
lib: contains the OJDL jar file that contains the java classes

	
samples: contains code samples for testing purposes

2 Using the OJDL

This chapter outlines the OJDL, including the Java classes provided for developers.

Java Development Environment

In order to develop Java code you need a suitable development environment, such as the Java Platform, Standard Edition (Java SE), which includes the Java Development Kit (JDK). Java SE can be downloaded from the Oracle Technology Network Web site:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

For information about the recommended JDK version for use with the OJDL, see IP Service Activator Installation Guide.

Java SE/JDK can be downloaded free of charge, and can be used for commercial or non-commercial purposes. However, you must retain the copyright notices.

This guide assumes the use of JDK, but other suitable Java tools can be used if required. You need to ensure they are configured correctly.

OJDL Directory and File Structure

When using the OJDL for developing Java code, you need the directories shown in Figure 2-1.

Figure 2-1 OJDL Directories

[image: Description of Figure 2-1 follows]

The doc Directory

The doc directory contains HTML files containing class and package information. The index.html file lists all the classes and packages, and contains links to access the HTML files which provide the relevant information. The doc directory contains the following two subdirectories:

	
doc\com\mslv\osa\ojdl\eom contains HTML files describing the EOM Java API classes.

	
doc\com\mslv\osa\ojdl\Oim contains HTML files describing the OIM Java API subclasses (for the OIM IDL).

The lib Directory

The lib directory contains the ojdl.jar file, which contains a compressed version of all the OJDL Java classes. Figure 2-2 shows the internal directory structure of ojdl.jar.

Figure 2-2 Internal Directory Structure of ojdl.jar

[image: Description of Figure 2-2 follows]

	
Note:

You must put the ojdl.jar file in the class path.

The Samples Directory

The samples directory contains Java code samples, which provide an illustration of the use of the OJDL classes. The Java code samples are available in the following directory:

samples\com\oracle\communications\ipsa\ojdlSamples

For a brief explanation of the code samples, see the README.txt file in the ojdlSamples folder.

JavaDocs

The JavaDocs are stored in the doc directory. For more information, see "The doc Directory".

Java Classes

The OJDL Java classes provide access to the EOM objects. The classes can also be used to create Java beans which can then be used to create reusable user interface components for particular tasks. These may be written as Java applications, applets, or as scripts within a Java Server Page.

The OJDL Java classes are stored in the lib directory. For more information, see "The lib Directory".

The Java classes are documented as follows:

	
Information on the classes is accessed through the doc\index.htm file.

	
Details of methods and variables used are contained in the doc\index-all.htm file

The main classes are summarized in Table 2-1. Refer to the JavaDocs for details.

Table 2-1 Main Java Classes

	Class	Description
	
EomAttribute

	
A base class for representing an attribute within the EOM.

	
EomAttributesSe

	
Holds a set of EomAttribute objects.

	
EomConnectionManager

	
Defines a connection manager interface for connecting to the OIM.

	
EomDebug

	
Provides a way to enable traces.

	
EomDefaultConnection

	
The default implementation of EomConnectManager using the JDK ORB.

	
EomDifferenceResolver

	
Finds the logical difference of EomObjects contained in two iterators.

	
EomDiscovery

	
Enables the discovery of devices.

	
EomException

	
The base class for any exception thrown by the OJDL. May be thrown by methods interacting with the OIM.

	
EomExtendedSearchIterator

	
Extends the EomSearchIterator by searching on an iterator of EomObjects.

	
EomIntersectionResolver

	
Finds the logical intersection of EomObjects contained in two iterators.

	
EomIterator

	
An extension of the java.util.Iterator interface. Provides a wrapper around the search functionality of the OIM find command.

	
EomIteratorParameters

	
Provides a way to pass parameters to an EomSearchIterator to refine the search.

	
EomNonIntegerException

	
Thrown when a non-integer value is being assigned to an integer variable.

	
EomObject

	
A base class for representing objects within the EOM. Each object has an Id, name, and set of attributes.

	
EomObjectException

	
Thrown during an EomObject creation.

	
EomObjectFactory

	
A factory to build EomObjects.

	
EomOimException

	
Thrown when a command cannot be executed by OIM.

	
EomResolver

	
A base class for combining the results of two iterator sets.

	
EomSearchIterator

	
Looks for all objects of a specific type with a given attribute.

	
EomSession

	
Represents a connection to the OIM.

	
EomSessionException

	
Thrown by a method in EomSession when connected to the OIM.

	
EomTransaction

	
Models the general IP Service Activator transaction concept.

	
EomTransactionStateChange

	
A base class that allows IP Service Activator to synchronously return configuration success or failure messages through the OJDL for transactions which perform adds, modifies, or deletes.

Best Practices for Minimizing Commits

It is good to minimize the number of IP Service Activator transaction commits to complete an operation, because each commit introduces a delay when the object model is updated to reflect the new changes.

The following example shows how commits may be minimized when an application generates a large number of devices for testing. These devices are all of the same type and use the device capabilities of an existing device.

To link the desired capabilities, you must first unlink the default capabilities that are linked when the device is created. In the least efficient case, the client code would take three commits; device create, commit, setpath to device and unlink existing caps, commit, link new caps, commit.

In the more efficient form, the client code could accomplish this through one commit by constructing a reference to the default capabilities of the device by appending the following to the path of the device object:

/DeviceCapabilities:"DeviceCapabilities"

The following excerpt shows how to construct an EomIdentifier that references the capabilities linked to the device when the transaction is committed:

EomIdentifier idForNotYetLinkedDefaultCaps = new EomIdentifier("DeviceCapabilities", "DeviceCapabilities", newDevice.getPath() + "/" + "DeviceCapabilities" + ":\"DeviceCapabilities\"");

Then the default caps are unlinked and the appropriate device caps are linked using the following excerpt:

itsTransaction.unlinkObjects(newDevice, itsSession.createEomObject(idForNotYetLinkedDefaultCaps));
itsTransaction.linkObjects(newDevice, deviceCaps);
tr = eomSession.openTransaction();
tr.commit();

Very large transactions can take more time to process once they are committed. This must be balanced against the overall number of commits you issue.

A Managing Configuration Policies Using the OJDL API

This appendix outlines how to use the OJDL API to manage Configuration Policies in Oracle Communications IP Service Activator.

Initial Setup

The following JAR files are required in the application classpath in order to create configuration policies using the OJDL API. They are installed with the Network Processor.

	
servicemodelextensions.jar contains XML Bean Classes for the Configuration Policy Service Model Extensions.

	
xbean.jar contains Apache XML Beans API.

	
jsr173_api.jar contains streaming API for XML, provided as part of the Apache XML Beans API.

	
ojdl.jar contains IP Service Activator OSS Java Development Library (OJDL) API.

These files are located in the following IP Service Activator installation directory:

	
Solaris: /opt/OracleCommunications/ServiceActivator/lib/java-lib

If your development environment is on a separate PC you will have to copy the JAR files from an IP Service Activator machine.

Creating a Configuration Policy

Configuration policies are optional XML extensions to the IP Service Activator object model that are supported by the Network Processor cartridges.

A configuration policy can be created using the OJDL API by creating a RuleGeneric object. A RuleGeneric object must have two parent objects: a Policy Type object, and the object to which you want it to apply. The latter object can be an interface, or other applicable objects. For details, refer to the discussion of the RuleGeneric object and the external object model in IP Service Activator OSS Integration Manager Guide.

There are code examples available in the additional documentation included with the OJDL libraries. For more information, see the StaticNATsConfigurationPolicyExample file in samples\com\oracle\communications\ipsa\ojdlSamples. The Configuration Policy XML definition is set in the RuleGeneric ContentValue attribute.

The structure of the XML for each configuration policy is defined by an XML Schema specification in servicemodelextension-api-versionNum.buildNum.zip, which is installed with the IP Service Activator client in the Service_Activator_Home\SamplePolicy folder. An API is provided to programmatically construct the configuration policy XML data structures using Java XML Beans, using the Apache XML Beans technology available at the Apache web site:

http://xmlbeans.apache.org/

The following example includes code which interacts with configuration policy objects using the OJDL APIs.

Creating the Configuration Policy Data Type

Each configuration policy top level XML element is represented by an XML Beans Document class. For example, the StaticNats configuration policy is created as a StaticNatsDocument object. Refer to "Configuration Policy Classes" for the complete configuration policy class mapping.

The content of the StaticNats object is set using the XML Beans API.

There are code examples available in the additional documentation included with the OJDL libraries. For more information, see the StaticNATsConfigurationPolicyExample file in the samples directory.

Creating the RuleGeneric Object to Contain the Configuration Policy

Configuration Policy objects are represented in the IP Service Activator External Object Model (EOM) as RuleGeneric objects. The following two attributes must be set:

	
ContentType: the configuration policy type

	
ContentValue: the configuration policy xml string

The ContentValue configuration policy XML is generated by invoking the toString() function.

There are code examples available in the additional documentation included with the OJDL libraries. For more information, see the StaticNATsConfigurationPolicyExample file in the samples directory.

When passing XML strings into the EOM object attributes, some special characters need to be escaped by pre-pending an additional \ character. For example, \" and \' must be fully escaped to \\\" and \\\' respectively. This conversion is performed by the escapeForOIM() function provided in the example.

Assigning the Configuration Policy to the Required Device and Interface Roles

The RuleGeneric object can be created as a child of many objects in the object hierarchy (as documented in IP Service Activator OSS Integration Manager Guide). However, the policy object Concrete is applied on any of the Interface objects in the inheritance hierarchy that match the RuleGeneric Roles. The RuleGeneric device and interface roles must match the device and interface roles on the interface where the configuration policy is applied.

There are code examples available in the additional documentation included with the OJDL libraries. For more information, see the StaticNATsConfigurationPolicyExample file in the samples directory.

Modifying a Configuration Policy

Modification of a configuration policy involves querying the object model for the current configuration policy definition, modifying the configuration policy, and updating the whole definition back into the object model.

Querying the EOM for the Configuration Policy

The configuration policy XML can be obtained from the RuleGeneric ContentValue parameter. The XML is parsed back into the XML Beans object definition of the service model extension.

There are code examples available in the additional documentation included with the OJDL libraries. For more information, see the StaticNATsConfigurationPolicyExample file in the samples directory.

As with creating the configuration policy, the XML content of RuleGeneric is updated to handle the extra escape characters around the \" and \' characters. This conversion is performed by the unescapeFromOIM() function.

Modifying the Policy Definition

The configuration policy definition is modified using the XML Bean API for the service model extension documents.

There are code examples available in the additional documentation included with the OJDL libraries. For more information, see the StaticNATsConfigurationPolicyExample file in the samples directory.

Registering an Interface Policy

Creating a new interface in IP Service Activator through the OIM and OJDL APIs involves a specialized use of configuration policies with the interface configuration management framework. As with interface management through IP Service Activator, there are three types of interface management interactions:

	
Main interface creation

	
Subinterface creation

	
Interface decoration

Each possible interaction must be registered as an Interface Policy Registration. The Interface Policy Registration objects can either be pre-configured in IP Service Activator, or created using the IP Service Activator APIs.

There are code examples available in the additional documentation included with the OJDL libraries. For more information, see the nterfaceManagementPolicyExample file in the samples directory.

Once an Interface Policy Registration is used to create or decorate an interface it cannot be modified or deleted until all dependent parent interfaces have been deleted or unlinked from the policy registration.

Creating a Subinterface

This section describes how to create a new interface in IP Service Activator so that the new interface configuration will also be correctly provisioned on the device.

As a prerequisite the appropriate subinterface creation Interface Policy Registration must be created.

Creating the Subinterface Object

Create a new subinterface object under the target interface. For consistency, it is recommended that you create the child subinterface with the correct ifType, although IP Service Activator will update this value on the next device discovery.

The following example shows the creation of a new subinterface:

// Create the new subinterface interface object
String subinterfaceName = "Serial1/3.100";
attributes = new EomAttributesSet();
attributes.setAttribute("Type", "32");
EomObject subinterface = tr.createObject(parentInterface, "Subinterface",
 subinterfaceName, attributes);

Linking the New Subinterface Object to the Interface Policy Registration

The created subinterface object is linked to the previously defined Interface Policy Registration. The act of linking the policy registration automatically creates a new RuleGeneric configuration policy object with the correct data type settings based on the Interface Policy Registration definition.

The following example shows the linking of the subinterface object with the interface policy registration:

 // Link the new subinterface object to the interface policy registration
 tr.linkObjects(subinterface, registrationPolicy);
 tr.commit();

The new RuleGeneric object name consists of the interface names with -Data appended to it.

Modifying the Interface Configuration Policy Data

The interface management configuration policy does not contain any default settings. These must be manually created using the appropriate XML data structure for the configuration policy data type defined in the interface registration policy. The XML content can be created manually or using the XML Beans API provided.

There are code examples available in the additional documentation included with the OJDL libraries. For more information, see the InterfaceManagementPolicyExample file in the samples directory.

Linking the New Subinterface to an Interface Role

Up to this point the new subinterface has only been created in the IP Service Activator object model. Before committing the subinterface creation to the device, the new subinterface object must be linked to an appropriate interface role.

There are code examples available in the additional documentation included with the OJDL libraries. For more information, see the InterfaceManagementPolicyExample file in the samples directory.

Optionally Discovering the Device

Optionally, the device can be re-discovered to align any interface changes (such as to the ifType or VC objects) with the object model. For interface types that have child VC object created by the configuration (such as the framerelay DLCI) device re-discovery is recommended.

The following example shows the optional device discovery:

// Optionally rediscover the device the get any VC level objects (in this example
// the DLCI)
eomSession.sendCommandtoOIM("discover " + parentDeviceId);

Creating a Main Interface

The steps for main interface creation are largely the same as for subinterface creation. For a main interface, the new interface is created as a child of the device and is linked to an appropriate Interface type Interface Policy Registration object.

When creating a main interface, the Interface Policy Registration must define the default capabilities that the interface (and its sub-interfaces and VCs) will be assigned. If the default settings are used, the created interface will not have any capabilities assigned and a capabilities reset and re-discovery must be performed instead.

Decorating an Interface

For interface decoration, follow the same steps as with subinterface creation, with the exception that the interface does not need to be created first. For interface decoration, the existing interface must be linked to a Decorate type Interface Policy Registration object.

Comparing Created and Discovered Interfaces

It is possible to determine if an interface was created using the IP Service Activator interface configuration management framework or was initially discovered from the device by inspecting the IsConfigurable parameter on the Interface or SubInterface object.

If IsConfigurable is set to True then the interface was created within IP Service Activator. If it is set to False then the interface was added through discovery.

Configuration Policy Classes

Table A-1 lists the configuration policy classes.

Table A-1 Configuration Policy Classes

	Extension	Configuration Policy	Java XMLBeans Class
	
AlcatelSamAccessInterfaceModule

	
alcatelSRL3Interface

	
com.metasolv.serviceactivator.alcatelSamAccessInterface.AlcatelSRL3InterfaceDocument

	
AlcatelSamAggregatedSchedulerModule

	
alcatelSamAggregatedScheduler

	
com.metasolv.serviceactivator.alcatelSamAggregatedScheduler.AlcatelSamAggregatedSchedulerDocument

	
AlcatelSamQosOverridePolicyModule

	
alcatelSamQosOverridePolicy

	
com.metasolv.serviceactivator.alcatelSamQosOverridePolicy.AlcatelSamQosOverridePolicyDocument

	
alcatelSamQosPoolModule

	
alcatelSamQosPool

	
com.metasolv.serviceactivator.alcatelSamQosPool.AlcatelSamQosPoolDocument

	
alcatelSamSchedulerOverridePolicyModule

	
alcatelSamSchedulerOverridePolicy

	
com.metasolv.serviceactivator.alcatelSamSchedulerOverridePolicy.AlcatelSamSchedulerOverridePolicyDocument

	
AtmPvcVcClassModule

	
atmPvcVcClass

	
com.metasolv.serviceactivator.atmpvcvcclass.AtmPvcVcClassDocument

	
CatOSPolicingRuleModule

	
catOSPolicingRule

	
com.metasolv.serviceactivator.catospolicingrule.CatOSPolicingRuleDocument

	
CiscoEthernetPortCharacteristicsModule

	
ciscoEthernetPortCharacteristics

	
com.metasolv.serviceactivator.ciscoEthernetPortCharacteristics.CiscoEthernetPortCharacteristicsDocument

	
CiscoQosPfcTxPortQueuesModule

	
ciscoQosPfcTxPortQueues

	
com.metasolv.serviceactivator.ciscoqospfctxportqueues.CiscoQosPfcTxPortQueuesDocument

	
DlswModule

	
dlswDevice

	
com.metasolv.serviceactivator.dlsw.DlswDeviceDocument

	
DlswModule

	
dlswEthernetInterface

	
com.metasolv.serviceactivator.dlsw.DlswEthernetInterfaceDocument

	
DlswModule

	
dlswTokenRingInterface

	
com.metasolv.serviceactivator.dlsw.DlswTokenRingInterfaceDocument

	
InterfaceConfigMgmtModule

	
atmSubInterfaceData

	
com.metasolv.serviceactivator.subinterface.AtmSubInterfaceDataDocument

	
InterfaceConfigMgmtModule

	
backUpInterfacePolicy

	
com.metasolv.serviceactivator.subinterface.BackUpInterfacePolicyDocument

	
InterfaceConfigMgmtModule

	
basicRateInterfaceData

	
com.metasolv.serviceactivator.subinterface.BasicRateInterfaceDataDocument

	
InterfaceConfigMgmtModule

	
ciscoUniversalInterface

	
com.metasolv.serviceactivator.subinterface.CiscoUniversalInterfaceDocument

	
InterfaceConfigMgmtModule

	
dialerInterface

	
com.metasolv.serviceactivator.subinterface.DialerInterfaceDocument

	
InterfaceConfigMgmtModule

	
e1ChannelizedSerialInterface

	
com.metasolv.serviceactivator.subinterface.E1ChannelizedSerialInterfaceDocument

	
InterfaceConfigMgmtModule

	
e1Controller

	
com.metasolv.serviceactivator.controller.E1ControllerDocument

	
InterfaceConfigMgmtModule

	
e3ChannelizedSerialInterface

	
com.metasolv.serviceactivator.subinterface.E3ChannelizedSerialInterfaceDocument

	
InterfaceConfigMgmtModule

	
e3Controller

	
com.metasolv.serviceactivator.controller.E3ControllerDocument

	
InterfaceConfigMgmtModule

	
frSubInterfaceData

	
com.metasolv.serviceactivator.subinterface.FrSubInterfaceDataDocument

	
InterfaceConfigMgmtModule

	
hsrp

	
com.metasolv.serviceactivator.hsrp.HsrpDocument

	
InterfaceConfigMgmtModule

	
loopbackInterfaceData

	
com.metasolv.serviceactivator.subinterface.LoopbackInterfaceDataDocument

	
InterfaceConfigMgmtModule

	
multilinkInterface

	
com.metasolv.serviceactivator.subinterface.MultilinkInterfaceDocument

	
InterfaceConfigMgmtModule

	
plPosInterfaceData

	
com.metasolv.serviceactivator.subinterface.PlPosInterfaceDataDocument

	
InterfaceConfigMgmtModule

	
pppMultilink

	
com.metasolv.serviceactivator.subinterface.PppMultilinkDocument

	
InterfaceConfigMgmtModule

	
stm1ChannelizedSerialInterface

	
com.metasolv.serviceactivator.subinterface.Stm1ChannelizedSerialInterfaceDocument

	
InterfaceConfigMgmtModule

	
stm1Controller

	
com.metasolv.serviceactivator.controller.Stm1ControllerDocument

	
InterfaceConfigMgmtModule

	
t1ChannelizedSerialInterface

	
com.metasolv.serviceactivator.subinterface.T1ChannelizedSerialInterfaceDocument

	
InterfaceConfigMgmtModule

	
t1Controller

	
com.metasolv.serviceactivator.controller.T1ControllerDocument

	
InterfaceConfigMgmtModule

	
t3ChannelizedSerialInterface

	
com.metasolv.serviceactivator.subinterface.T3ChannelizedSerialInterfaceDocument

	
InterfaceConfigMgmtModule

	
t3Controller

	
com.metasolv.serviceactivator.controller.T3ControllerDocument

	
InterfaceConfigMgmtModule

	
virtualTemplateInterface

	
com.metasolv.serviceactivator.subinterface.VirtualTemplateInterfaceDocument

	
InterfaceConfigMgmtModule

	
vlanSubInterface

	
com.metasolv.serviceactivator.subinterface.VlanSubInterfaceDataDocument

	
InterfaceConfigMgmtModule

	
vrfExportRouteFilter

	
com.metasolv.serviceactivator.vrfexportroutefilter.VrfExportRouteFilterDocument

	
IpsecModule

	
IPsecModule

	
com.metasolv.serviceactivator.ipsecmodule.IpsecmoduleDocument

	
LspModule

	
lspTunnel

	
com.metasolv.serviceactivator.lsp.LspTunnelDocument

	
L2QosModule

	
rateLimit

	
com.metasolv.serviceactivator.l2Qos.RateLimitDocument

	
JuniperQosCosAttachmentModule

	
juniperQosCosAttachment

	
com.metasolv.serviceactivator.juniperqoscosattachment.JuniperQosCosAttachmentDocument

	
MiscPluginsModule

	
atmVcClass

	
com.metasolv.serviceactivator.vcclass.AtmVcClassDocument

	
MiscPluginsModule

	
banners

	
com.metasolv.serviceactivator.banner.BannersDocument

	
MiscPluginsModule

	
bgpCE

	
com.metasolv.serviceactivator.bgpce.BgpCEDocument

	
MiscPluginsModule

	
dailerList

	
com.metasolv.serviceactivator.dialerList.DialerListDocument

	
MiscPluginsModule

	
dslInterfaceData

	
com.metasolv.serviceactivator.subinterface.DslInterfaceDataDocument

	
MiscPluginsModule

	
extendedAcl

	
com.metasolv.serviceactivator.extendedAcl.ExtendedAclDocument

	
MiscPluginsModule

	
ipPools

	
com.metasolv.serviceactivator.ippool.IpPoolsDocument

	
MiscPluginsModule

	
keyChains

	
com.metasolv.serviceactivator.keyChain.KeyChainsDocument

	
MiscPluginsModule

	
saveConfig

	
com.metasolv.serviceactivator.saveConfig.SaveConfigDocument

	
MiscPluginsModule

	
staticNats

	
com.metasolv.serviceactivator.staticnat.StaticNatsDocument

	
MiscPluginsModule

	
staticRoutes

	
com.metasolv.serviceactivator.staticroute.StaticRoutesDocument

	
MiscPluginsModule

	
userAuth

	
com.metasolv.serviceactivator.userAuth.UserAuthDocument

	
MiscPluginsModule

	
userData

	
com.metasolv.serviceactivator.userData.UserDataDocument

	
MulticastModule

	
multicastAutoRp

	
com.metasolv.serviceactivator.multicast.MulticastAutoRpDocument

	
MulticastModule

	
multicastBootstrapRouter

	
com.metasolv.serviceactivator.multicast.MulticastBootstrapRouterDocument

	
MulticastModule

	
multicastDevice

	
com.metasolv.serviceactivator.multicast.MulticastDeviceDocument

	
MulticastModule

	
multicastInterface

	
com.metasolv.serviceactivator.multicast.MulticastInterfaceDocument

	
MulticastModule

	
multicastVrf

	
com.metasolv.serviceactivator.multicast.MulticastVrfDocument

	
PrefixListModule

	
prefixListEntries

	
com.metasolv.serviceactivator.prefixlist.PrefixListEntriesDocument

	
QosCosAttachmentModule

	
qosCosAttachment

	
com.metasolv.serviceactivator.qoscosattachment.QosCosAttachmentDocument

	
RoutePolicyModule

	
bgpRoutePolicy

	
com.metasolv.serviceactivator.routePolicy.BgpRoutePolicyDocument

	
RoutePolicyModule

	
vrfRoutePolicy

	
com.metasolv.serviceactivator.routePolicy.VrfRoutePolicyDocument

	
SubInterfaceModule

	
plSerialInterfaceData

	
com.metasolv.serviceactivator.subinterface.PlSerialInterfaceDataDocument

	
ServiceAssuranceModule

	
collectorParameters

	
com.metasolv.serviceactivator.collectorParameters.CollectorParametersDocument

	
ServiceAssuranceModule

	
netflowParameters

	
com.metasolv.serviceactivator.netflowParameters.NetflowParametersDocument

	
ServiceAssuranceModule

	
rtrResponder

	
com.metasolv.serviceactivator.rtrr.RtrResponderDocument

	
SgbpModule

	
sgbp

	
com.metasolv.serviceactivator.sgbp.SgbpDocument

	
SnmpModule

	
snmpCommunities

	
com.metasolv.serviceactivator.snmp.SnmpCommunitiesDocument

	
SnmpModule

	
snmpHosts

	
com.metasolv.serviceactivator.snmp.SnmpHostsDocument

	
VlanModule

	
vlanDefinitions

	
com.metasolv.serviceactivator.vlanModule.VlanDefinitionsDocument

	
VlanInterfaceModule

	
mgmtVlanInterface

	
com.metasolv.serviceactivator.vlanInterface.MgmtVlanInterfaceDocument

	
VlanInterfaceModule

	
vlanInterface

	
com.metasolv.serviceactivator.vlanInterface.VlanInterfaceDocument

	
VrfCustomNamingModule

	
vrfCustomNaming

	
com.metasolv.serviceactivator.vrfCustomNaming.VrfCustomNamingDocument

	
VrfIPsecModule

	
customerIPsec

	
com.metasolv.serviceactivator.vrfipsec.CustomerIPsecDocument

	
VrfIPsecModule

	
publicIPsec

	
com.metasolv.serviceactivator.vrfipsec.PublicIPsecDocument

Example Source Code

There are code examples available in the additional documentation included with the OJDL libraries.

For configuration policy example source code, see the StaticNATsConfigurationPolicyExample file in the samples directory.

For interface management example source code, see the InterfaceManagementPolicyExample file in the samples directory.

Oracle Legal Notices

Copyright Notice

Copyright © 1994-2014, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Alpha and Beta Draft Documentation Notice

If this document is in preproduction status:

This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.

[image: Oracle Logo]

OEBPS/img/ojd_using_dirstructure.gif
<Document_Root>

doc lib samples
o aam
i ordl
ke commnicators
ojdl ipsa

[
— ojdiSamples

eom oM

OEBPS/img/ojd_over_archlayers.gif
1P Service Activat
system

i

Sorvico provider's salf-sonvice inrface

1P Service Activator

OEBPS/img/ojd_over_systemarch.gif
Tser Acatel
inerace @ | |Discovery
Toer Inerface
o Host
Appicaion oL O Clert =
I —ry —
Orace
Thid-pary Dalabase
ool
Database Host
Component g
Manager t—om = oy Sorver &5 | Component
=] Polorsener B[Gl @
st
=2 Systom Logger @ H| [Aoael
Compenent L Evere 1 Sem tooer @ [| piccovery o
Manager Handler —
oraceupdaeserver || [Naming o
Host_| | potcy Server Host Servio
Comporert Networ 4 Proy g3 | [component
Wanager Processor hgent B [Viarager
I
Network Processor L
o Cartrid Device Proxy Agent Host
(mutple instances) = Diver (muliple instances)

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Communications IP Service Activator
0SS Java Development Library Guide,
Release 7.2

OEBPS/dcommon/oracle.gif

OEBPS/img/ojd_using_jarfile.gif
<Document_Root>

com Meta-inf
msly
osa
ojdl

eom oIm

