
Commerce Service Center

Version 10.2

Installation and Programming Guide

Oracle ATG

One Main Street

Cambridge, MA 02142

USA

ATG Commerce Service Center Installation and Programming Guide

Product version: 10.2

Release date: 04-30-13

Document identifier: CSCInstallationAndProgrammingGuide1403311801

Copyright © 1997, 2013 Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are

protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy,

reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any

means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please

report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government,

the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the

hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable

Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and

adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or

documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S.

Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended

for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or

hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures

to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in

dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are

trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or

registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

Portions of this product may contain the following: EditLive Authoring Software Copyright © 2004 Ephox Corporation. All rights reserved.

Some code licensed from RSA Security, Inc. Some portions licensed from IBM, which are available at http://oss.software.ibm.com/icu4j/.

This product may include software developed by the Apache Software Foundation (http://www.apache.org/). Spell checking software from

Wintertree Software Inc. The Sentry Spell Checker Engine © 2000 Wintertree Software Inc. This product also includes software developed

by the following: Free Software Foundation, GNU Operating System, Incanto, JSON.org, JODA.org, The Dojo Foundation, Adobe Systems

Incorporated, Eclipse Foundation and Singular Systems.

The software is based in part on the work of the Independent JPEG Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties.

Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party

content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to

your access to or use of third-party content, products, or services.

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/

topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support: Oracle customers have access to electronic support through My Oracle Support. For information, visit http://

www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing

impaired.

The MIT License

Copyright (c) 2007 FlexLib Contributors. See: http://code.google.com/p/flexlib/wiki/ProjectContributors

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the

"Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,

sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following

conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE

WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS

OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR

OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

ATG Commerce Service Center Installation and Programming Guide v

Table of Contents

1. Introduction . 1

Audience . 1

Documentation Conventions . 1

Related Documents . 2

Before You Begin . 3

Browser and Environment Requirements . 3

2. Commerce Service Center Server Architecture . 5

Customer-Facing Server Configuration . 6

Agent-Facing Server Configuration . 7

3. Installing and Configuring the Commerce Service Center Server . 9

Requirements for Commerce Service Center . 9

Database and Schema Requirements . 9

Installing with the Configuration and Installation Manager . 10

Repositories . 11

Using IDGenerators . 12

Understanding Lock Management . 12

Accessing Commerce Service Center . 13

Working with Multiple Sites . 14

Enabling Multisite . 14

Configuring the Default Site . 14

Configuring the Default Site Icon . 15

Configuring a Site Icon . 15

Configuring Shareables . 15

4. Configuring Order and Profile Search . 17

Setting Up Order and Profile Search . 17

Using Live Indexing and Endeca MDEX Catalog Search . 17

Order and Profile Search Overview . 17

Configuring Live Indexing for Oracle ATG Web Commerce Search . 20

Creating Search Indexing Environments . 20

Preloading the Index . 22

Purging Older Orders . 22

Performing a Manual Re-Index . 25

Adding Searchable Properties . 26

5. Configuring Catalog Search . 31

Catalog Search with Endeca MDEX Prerequisites . 31

Using Live Indexing and Endeca MDEX Catalog Search . 31

Overview of Catalog Search with Endeca MDEX . 32

Initiating an Endeca MDEX Catalog Search Request . 32

Determining Content URI . 32

Filtering the Requests . 33

UI Page Fragments . 33

Encoding Framework URL . 33

Defining Navigation Actions . 34

CSRInvokeAssembler . 34

Setting the Agent Profile . 34

Configuring an Endeca MDEX Catalog Search . 35

Catalog Search Servlet Beans and Form Handlers . 37

Content Request URL Droplet Servlet Bean . 37

Content Item Results Droplet . 38

Paging Droplet . 39

Site Scope Form Handler . 40

vi ATG Commerce Service Center Installation and Programming Guide

Configuring Auto-Suggestions . 40

Implementing Auto-Suggestions . 40

Displaying Auto-Suggestions . 40

Working with Endeca MDEX Breadcrumbs . 41

Customizing Search Results . 42

Catalog Search Page Fragments . 42

Using Endeca Resourced Values . 44

Displaying Alternate Content . 44

Configuring Oracle for SQL Catalog Searching . 45

6. Programming Commerce Service Center . 47

Using the CSRConfigurator Component . 47

7. Working with Wish and Gift Lists . 51

Modifying Gift List Forms . 51

Rendering Gift Lists . 52

Displaying Gift List Information . 52

Configuring Gift List Search . 53

Gift List Form Handlers . 55

CSRGiftlistFormHandler . 55

GiftlistTableFormHandler . 55

Auditing Gift Lists . 55

8. Issuing Returns, Exchanges and Refunds . 57

Commerce Service Center-Specific Return Components . 57

Return Form Handler . 57

Is Item Returnable Droplet Servlet Bean . 58

Order Is Returnable Droplet Servlet Bean . 58

Prepare Replacement Order Pipeline . 58

Working with Exchange Orders . 59

Exchange Calculators . 59

Tiered Pricing and Exchanges . 60

Applying Promotions to Exchange Orders . 60

9. Working with Scheduled Orders . 61

Configuring Scheduled Orders . 61

Enabling and Disabling Scheduled Orders . 61

Configuring Price Lists . 62

Customizing Scheduled Orders . 63

Scheduled Order Form Handler . 63

Displaying Scheduling Information . 64

Scheduled Order Components . 64

Scheduled Orders Pipeline Additions . 65

10. Issuing Promotions . 67

Providing Promotions Browser Access . 67

Customizing Gift with Purchase Promotions . 67

Gift With Purchase Page Fragments . 67

Returns and Exchanges of Gifts with Purchases . 68

Reconciling Gift with Purchase Orders . 69

11. Using Order Approvals . 71

Configuring Order Approval . 71

Enabling the Order Approval Process . 72

Setting Global Appeasement Limits . 72

Modifying Individual Appeasement Limits . 72

Providing Approval Authorization . 73

Servlet Beans and Form Handlers for Approving Orders . 73

12. Setting Up Internal Access Control . 77

ATG Commerce Service Center Installation and Programming Guide vii

Access Control Overview . 77

Default Internal User Access Control Configuration . 78

Commerce Service Center Roles . 78

Access Controllers . 78

Creating New Roles . 79

Creating Agent Profiles . 79

Creating a New Agent Role . 80

Default Roles . 82

Customizing the Default Landing Page . 84

13. Configuring E-mail . 85

Customizing E-Mail . 85

Configuring E-mail Notifications . 85

Configuring New Passwords . 86

Configuring Order Confirmation E-Mails . 86

Configuring E-Mail Templates . 87

14. Using Catalogs and Price Lists . 89

Configuring Current Catalog and Price Lists . 89

Using the Current Catalog . 89

Using the Current Price List . 90

Defining the Default Catalog . 91

Defining the Default Price List . 91

Setting the Pricing Locale . 91

Specifying Quick Access Catalogs and Price Lists . 91

15. Understanding Environment Monitoring . 93

Overview of Environment Monitoring . 93

Environment Monitoring Components . 93

CSREnvironmentTools . 94

CSREnvironmentMonitor . 94

CSREnvironmentConstants . 94

EnvironmentChangeFormHandler, ChangeOrder . 95

Ticket Disposition Monitoring . 96

EnvironmentTools . 96

Environment Management and Site Context . 97

16. Pricing in Commerce Service Center . 99

Loading Orders and Pricing . 99

Determining if Orders are Modifiable . 99

Determining if Orders are Submitted . 100

Price Lists and Pricing . 100

Automatic Removal of Items . 101

Promotions . 101

Incomplete Orders or Schedule Order Templates . 102

Submitted Orders . 102

Determining the Correct PricingModelHolder . 102

Configuring Manual Pricing Adjustments . 102

17. Working with Shipping and Payment Groups . 105

Shipping Group Page Fragments . 105

Working with Shipping Group Page Fragments . 106

Customizing a Shipping Group Type . 110

Payment Group Page Fragments . 111

Working with Payment Group Page Fragments . 112

Customizing a Payment Group Type . 116

Limiting Amounts for Payment Groups . 117

Copying Payment Group Types . 118

viii ATG Commerce Service Center Installation and Programming Guide

Configuring Shipping Addresses . 118

Configuring Return Shipping Addresses . 118

Shipping and Payment Group Servlet Beans and Form Handlers . 119

Available Priced Shipping Methods Droplet Servlet Bean . 119

CSRShippingGroupFormHandler . 120

CSRPaymentGroupFormHandler . 120

Configuring In-Store Pickup . 121

Enabling In-Store Pickup . 121

Setting Distances for Searches . 121

Setting Recipient Authorization for In-Store Pickup . 122

Displaying the Cash Payment Group . 122

Working with Addresses . 122

Enabling and Disabling Copies . 122

Disabling Address Sharing . 123

18. Working with Submitted Orders . 125

Modifying Submitted Orders . 125

Handling and Fulfillment . 126

Fulfillment Notification for Order Modifications . 127

Cloning Orders . 128

Cloning Pipeline Chains . 128

Cloning Core Classes . 131

Extending Objects for Cloning . 134

19. Configuring Scenarios . 137

Using Scenarios . 137

Configuring Scenario Events . 137

Working with Scenario Managers . 138

Configuring Process Editor Servers . 140

Configuring the Customer-Facing Scenario Manager . 140

Configuring the Agent-Facing Scenario Managers . 140

20. Reporting and Logging . 141

Commerce Service Center Reporting Framework . 141

Data Collection Overview . 141

Loader Pipeline Overview . 144

Configuring Audit Logging . 149

Viewing Audit Logs . 149

Adding a New Agent Audit Log Record . 150

Disabling Audit Logging Events . 152

Using Window Scoped Failover . 154

Adding Additional Components . 155

A. Commerce Service Center Database Tables . 157

Commerce Service Center Core Tables . 157

Commerce Service Center Order Approval Tables . 158

Commerce Service Center Profile Tables . 159

Commerce Service Center Logging Tables . 159

B. Commerce Service Center Access Rights . 169

C. CIM Configuration Components . 173

Available Added Functionality . 173

Server Instances . 173

Add On Modifications . 174

Data Source Configuration . 175

JTDataSource for Agent . 175

JTDataSource for Production . 175

Switching Data Source . 176

ATG Commerce Service Center Installation and Programming Guide ix

CIM File Configuration . 176

Production Server File Configurations . 176

Agent Server File Configurations . 176

Prerequisites for Running CIM . 177

Running CIM . 178

D. Configuring Oracle Click-to-Call On Demand . 179

Overview . 179

Initiating a Call . 179

Using a CTI System . 179

Specifying Links and Pop-Ups . 180

Automatic Initialization of the Agent’s Working Environment . 180

Click-to-Call Requirements . 180

IBM WebSphere Requirements . 181

Oracle WebLogic Requirements . 181

Configuring the Click-to-Call Account . 181

Adding an Agent to Commerce Service Center . 182

Adding Agent Phone Numbers . 182

Configuring Commerce Service Center Pages . 182

Configuring Automatic Page Instrumentation . 182

Configuring a Static Link . 183

Disabling the Orphaned Session Service . 183

Creating Click-to-Call Links . 183

Creating a Link . 183

Creating a Rule . 184

Creating a Site . 184

Configuring the Click to Connect Token . 184

Example: Creating a Link based on Locale . 186

Using Live Help On Demand Agent Console . 186

Integrating with the Live Help On Demand Agent Console . 186

Integrating without Live Help On Demand Agent Console . 187

Configuring Commerce Service Center Authentication with the Agent Console . 188

Enabling Commerce Service Center Auto-Authentication . 189

Configuring Commerce Service Center Integration . 189

Disabling Commerce Service Center Auto-Authentication . 190

Configuring Commerce Service Center Landing Page Components . 190

Default Landing Page . 190

Customizing Landing Page Components . 190

Index . 195

x ATG Commerce Service Center Installation and Programming Guide

1 Introduction 1

1 Introduction

Oracle ATG Web Commerce Service Center is a customizable and deployable customer service application that

enables an agent to perform the following tasks for a Commerce site:

• Create and manage customer profiles

• Create and manage orders

• Issue refunds and exchanges

• Process returned items

• Research customer activity

For information about Oracle ATG Web Commerce, see the ATG Commerce Guide to Setting Up a Store and the ATG

Commerce Programming Guide.

Audience

This manual is intended for System Administrators, Site Administrators and Programmers responsible for

installing, configuring and customizing Commerce Service Center.

Documentation Conventions

The following conventions are used in this manual:

• Installation Directory

<ATG10dir> — The installation directory for ATG 10. For example, the default location for installations is /

ATG/ATG10.2

• Menu Navigation

The “ > “ (greater than) symbol indicates menu choices. For example, File > Save means you should select the

Save option on the File menu.

2 1 Introduction

Related Documents

The following documentation provides additional reference information:

Document Description

ATG Commerce Service Center User Guide Describes Commerce Service Center concepts and tasks for

agents and end users.

ATG Service Center UI Programming Guide Describes the architecture and customization of the Service

Center UI.

ATG Ticketing User Guide Describes the architecture and implementation of ATG

Ticketing.

ATG API Reference for Commerce Service

Center

Contains information from the Commerce Service Center API

ATG Installation and Configuration Guide Describes how to install and configure ATG applications

running on different Web applications.

ATG Personalization Programming Guide Describes programming tasks for the ATG Personalization

and Scenarios module. Includes information on setting up

profile repositories, creating targeting rules and services,

configuring scenario servers, and adding custom scenario

events and actions.

ATG Commerce Guide to Setting Up a Store Describes how to use Oracle ATG Web Commerce to create

an online store. Intended for business users and page

developers.

ATG Commerce Programming Guide Describes how to install and customize Oracle ATG

Web Commerce. Intended for programmers and site

administrators.

ATG Business Control Center User's Guide Describes how to use Oracle ATG Web Commerce Business

Control Center’s Web interface to manage user profiles

and organizations; create and assign roles; segment site

visitors; and define rules for personalizing site content. Also

includes setup and configuration information. Intended for

all audiences.

ATG Repository Guide Describes the ATG platform’s repository API. Presents

programming concepts for advanced users, including SQL

repositories, LDAP repositories, secured repositories, and

composite repositories. Includes examples and reference

information to help programmers develop applications

using the repository API.

http://www.atg.com/repositories/ContentCatalogRepository_en/manuals/Service10.0.1/apidoccsc/index.html
http://www.atg.com/repositories/ContentCatalogRepository_en/manuals/Service10.0.1/apidoccsc/index.html

1 Introduction 3

Before You Begin

This section provides a high-level description of the tasks you need to perform before running Commerce

Service Center:

1. Ensure that supported versions of your Web application software is installed.

2. Install a supported application server. Consult the ATG Installation and Configuration Guide for your

application server.

3. Install ATG 10.2.

4. Install and configure Oracle ATG Web Commerce 10.2

5. Install a supported database.

Browser and Environment Requirements

For information about the supported browsers, environments, and configurations, refer to the Oracle ATG Web

Commerce Supported Environments Matrix document in the My Oracle Support knowledge base.

Users must enable cookies and scripting in their browsers to access Commerce Service Center.

4 1 Introduction

2 Commerce Service Center Server Architecture 5

2 Commerce Service Center Server

Architecture

Commerce Service Center is comprised of both customer-facing and agent-facing clusters. The customer-facing

cluster contains such applications as Oracle ATG Web Commerce stores and other components that customers

use. The agent-facing cluster contains application such as Commerce Service Center and other components that

agents use.

Commerce Service Center Environment

Commerce Service Center works in tandem with Commerce and other ATG applications. The following diagram

displays a complete architectural schematic of Commerce Service Center within a typical environment. Note that

your environment may or may not look similar based upon the applications that you have installed.

6 2 Commerce Service Center Server Architecture

Commerce Service Center Architecture

Customer-Facing Server Configuration

Customer-facing servers display the sites that customers log into. These servers contain versioned information

that is deployed using standard Commerce Publishing. Repository information is accessed through data sources

that connect to production or switching databases.

In the customer-facing server configuration, the JTDataSource component is used for all repositories other

than the product catalog.

Customer-Facing Server Configuration

2 Commerce Service Center Server Architecture 7

Agent-Facing Server Configuration

The agent-facing server has access to the same customer-facing information, with the addition of agent-specific

repositories.

With agent-facing server configurations the JTDataSource references its own schema rather than the

one used by the customer-facing server. In addition to the JTDataSource, agent-facing servers use a

JTDataSource_production data source. This JTDataSource_production data source references all

operational data, which includes profiles, orders, tickets, and inventory data.

The catalog may still continue to uses the ProductCatalogSwitchingDataSource component.

Customer and Agent-Facing Server Configuration

For additional information on Commerce architecture, refer to the ATG Commerce Programming Guide.

Note: The features available with Commerce’s B2B module will not function correctly within Commerce Service

Center.

8 2 Commerce Service Center Server Architecture

3 Installing and Configuring the Commerce Service Center Server 9

3 Installing and Configuring the

Commerce Service Center Server

This section discusses the installation of Commerce Service Center. It is strongly suggested that you install

Commerce Service Center using the Configuration and Installation Manager (CIM).

Requirements for Commerce Service Center

Before you proceed, you must have the following installed or configured:

• Java JDK 1.6.0_25 or the latest supported version. Refer to the Oracle ATG Web Commerce Supported

Environments Matrix document in the My Oracle Support knowledge base. Ensure that the JAVA_HOME and

JAVA_HOME/bin variables are set in your path correctly

• A supported application server, such as Oracle WebLogic. Consult the ATG Installation and Configuration Guide

for your application server

• A supported database, such as Oracle. Create two database users for your database to use, for example admin

and svcagent users

• The Oracle ATG Web Commerce Platform 10.2

• Oracle ATG Web Commerce 10.2 or Oracle ATG Web Commerce Reference Store 10.2

Note: Commerce Service Center does not enable the Commerce B2B features. Any orders that contain cost

center, purchase order, invoice requests, order approvals or organization information will be read-only and

cannot be modified by an agent.

Database and Schema Requirements

Commerce Service Center requires two different database user accounts for database configuration. Create the

following accounts before configuring the database:

Database Schema Contents

svcagent

(Agent)

Versioned repository tables. Referred to in this document as the agent schema.

This schema is accessed from the agent-facing servers.

10 3 Installing and Configuring the Commerce Service Center Server

Database Schema Contents

svcadmin

(Production)

Unversioned repository tables. Referred to in this document as the production

schema. This schema is accessed from the customer-facing servers.

Databases can be configured with their tables on separate machines, separate table spaces or partitions, or in

other configurations.

The following table outlines the template files used by the CIM installation process, the SQL files that are called

from that template, and the schema to which the SQL files will be pointed:

Template SQL Files Schema

production-ddl-template DCS-CSR_ddl.sql,

DCS-CSR_ticketing_ddl.sql

unversioned_DCS-CSR_site_ddl.sql

Production

agent-ddl-template DCS-CSR_logging_ddl.sql,

DCS-CSR_profile_ddl.sql,

DCS-CSR_approvals_ddl.sql

Agent

management-ddl-template versioned_DCS-CSR_site_ddl.sql Management

Installing with the Configuration and Installation Manager

CIM simplifies product configuration by providing scripts that configure Commerce Service Center. The

scripts allow you to identify the components used within your environment, as well as to add on additional

applications. Using CIM ensures that all necessary steps are completed and are performed in the correct order.

Note: It is best to install Commerce Service Center using CIM.

CIM handles the following configuration steps:

• Creates data sources according to the database connection information you supplied, including those needed

for applications you may add

• Creates database tables and imports initial data

• Creates and configures ATG application servers, including a dedicated indexing server, a lock manager and

required loader servers

• Assembles your application EAR files for each ATG server, including modules for the Agent, Production and

Data Warehouse load servers, as well as DCS-CSR, Fulfillment and UI modules

• Deploys EAR files to your application server and allows you to start up the agent-facing, customer-facing and

load servers

3 Installing and Configuring the Commerce Service Center Server 11

• Allows you to add custom modules

Refer to the CIM script help and the ATG Installation and Configuration Guide for additional information on CIM.

To install Commerce Service Center using CIM, do the following:

1. Install your application server.

2. Install your application files.

3. To start CIM, go to <ATG10dir>/home/bin and launch the CIM script:

./cim.sh | bat

4. Select the products you want to install.

5. Select the add-ons that you want to install.

6. Follow the CIM script according to the prompts. You can type H at any prompt for additional information.

For detailed information on Commerce Service Center CIM installations, refer to the Appendix C, CIM

Configuration Components (page 173)

Repositories

Repositories are configured using the CIM Database Configuration menu. The Commerce Service Center

database tables are used by several repositories. Depending on your needs, you may need to change the

configuration of these repositories, such as their data sources. For information on configuring repositories, refer

to the ATG Repository Guide.

The following repositories are shared between your customer-facing server and Commerce Service Center:

• /atg/commerce/catalog/ProductCatalog

• /atg/commerce/claimable/ClaimableRepository

• /atg/commerce/contracts/Contracts

• /atg/commerce/custsvc/CsrRepository

• /atg/commerce/custsvc/approvals/ApprovalsRepository

• /atg/commerce/gifts/Giftlists

• /atg/commerce/inventory/InventoryRepository

• /atg/commerce/locations/LocationRepository

• /atg/commerce/order/OrderRepository

• /atg/commerce/pricing/priceLists/PriceLists

• /atg/userprofiling/PersonalizationRepository

CIM configures all repositories to use the /atg/dynamo/service/jdbc/JTDataSource_production

data source, which should reference the production schema.

12 3 Installing and Configuring the Commerce Service Center Server

For each repository, CIM configures the following properties by default. If you create new repositories, you

should ensure that these properties are configured:

Property Suggested Value

dataSource /atg/dynamo/service/jdbc/JTDataSource_production

idGenerator /atg/dynamo/service/IdGenerator_production

lockManager /atg/dynamo/service/ClientLockManager_production

eventServer /atg/dynamo/server/SQLRepositoryEventServer_production

subscriberRepository /atg/dynamo/service/jdbc/SQLRepository_production

Using IDGenerators

CIM ensures that all repositories share the same IDGenerator component. By default, any repository defined in

the customer-facing cluster should use the /atg/dynamo/service/

IDGenerator_production IDGenerator component on the agent-facing server.

For detailed information on the IDGenerator component, refer to the ATG Platform Programming Guide.

Understanding Lock Management

CIM allows you to configure dedicated lock manager servers during the installation process.

Lock servers synchronize caches among ATG servers to maintain data integrity, even if an item is modified

at the same time by different servers. CIM configures the ClientLockManager.properties and the

ServerLockManager.properties files to ensure all servers are using the correct ports. For additional

information on ClientLockManager and ServerLockManager properties, refer to the SQL Repository Caching

section in the ATG Repository Guide.

CIM locates the default client lock manager to LockManager=/atg/dynamo/

service/ClientLockManager. By default, the ClientLockManager component has its useLockServer

property set to false, which disables the lock server. To use locked mode repository caching, this property must

be set to true. For example:

$class=atg.service.lockmanager.ClientLockManager
lockServerAddress=tartini,corelli
lockServerPort=9010,9010
useLockServer=true

ServerLockManager on the Customer-Facing Server

The customer-facing server cluster defines a primary ServerLockManager instance. Additionally, there is a

defined ClientLockManager, which points to the primary ServerLockManager.

You can configure backup ServerLockManager instances for redundancy if needed. The following diagram

shows a typical customer-facing configuration with three commerce servers that have ClientLockManagers

that each point to the primary ServerLockManager:

3 Installing and Configuring the Commerce Service Center Server 13

Customer-Facing Lock Management

For information on setting up the ServerLockManager, refer to the ATG Installation and Configuration Guide

and the ATG Repository Guide.

ClientLockManagers on the Agent-Facing Server

Agent-facing servers use the customer-facing server lock manager for any shared repositories, and individually

scheduled services.

The agent-facing clusters define a ClientLockManager_production, which points to the

ServerLockManager used by the customer-facing server. The following diagram displays both the customer-

facing server described above and the agent-facing server configuration. The agent-facing configuration

displays the two Service Center instances that each contain a ClientLockManager_production that points

to the ServerLockManager used by the three customer-facing commerce servers. The two Service Center

instances contain their own ClientLockManagers that each point to the agent-facing ServerLockManager:

Customer and Agent-Facing Lock Management

For detailed information on configuring LockManagers, refer to the ATG Repository Guide.

Accessing Commerce Service Center

Before you can access Commerce Service Center, you must start the servers by entering the appropriate run

command in your application server. Refer to your application server documentation for further information.

Once your servers are running in accordance with your application server, you can access the Commerce Service

Center application using the following URL:

http://hostname:port/agent

14 3 Installing and Configuring the Commerce Service Center Server

The hostname is the name of the machine on which Commerce Service Center is running. The port is the port

number that your application server uses to listen for requests; see the ATG Installation and Configuration Guide

for your application server for the default port number.

Working with Multiple Sites

If you have multiple customer-facing sites created, you can configure Commerce Service Center, using Site

Administration, to share data between the sites. Sites can be used for such things as providing localized store

information, branded segments, or creating running promotions.

Multiple sites within Commerce Service Center allow the agent to select a specific site, search throughout sites,

and to set site context. Site context ensures that configuration of the current site will affect the Commerce

Service Center display and control the availability of assets such as products, SKUs, catalogs, and price lists.

When an agent changes from one site to another the site context and potentially the available assets will also

change.

When configuring your system, you identify the assets that are available to each site using Site Administration or

Commerce Merchandising. The sites that can be accessed by Commerce Service Center are configured using Site

Administration in the Business Control Center. These settings include:

• Enabled Site – Sites that are available to ATG applications such as Commerce Service Center

• Commerce Site – Sites that are displayed in a Commerce application

• Site Icon – An icon that identifies each site. The pixel limit for icons is 16x16

• Default Site – Sets the site context when the agent logs in. This information is obtained from the site

repository

• Default Catalog – The catalog to use with a site unless other selection logic is available

• Default Price List and Sale Price List – Price lists to use with a site unless other selection logic is available

• Site Priority – Identifies the priority of the site if it is a member of multiple sites

For additional information on configuring Commerce Service Center using Site Administration, refer to the ATG

Multisite Administration Guide.

Enabling Multisite

Commerce Service Center can be configured to recognize and use multiple sites with the siteManager

multiSiteEnabled property. The isMultiSiteEnabled method allows you to conditionally render the

Commerce Service Center UI for multiple sites. Refer to the ATG Multisite Administration Guide for additional

information.

Configuring the Default Site

To configure the default site, use the /atg/commerce/custsvc/util/CSRConfigurator component to set

the defaultSiteId property. This sets the default current site when agents log into Commerce Service Center.

3 Installing and Configuring the Commerce Service Center Server 15

Refer to the Using the CSRConfigurator Component (page 47) section for additional information. To load an

agent-specific default site, override the getAgentDefaultSiteId method in CSRAgentTools.

Configuring the Default Site Icon

Commerce Service Center can display a default site icon, should a site not have an associated icon. Use the /

atg/commerce/custsvc/util/CSRConfigurator component to set the defaultSiteIconURL property to

display the default icon. Refer to the Using the CSRConfigurator Component (page 47) section for additional

information.

Configuring a Site Icon

You can configure site icons to display on specific pages. The images are configured for each site within the

site repository and must be downloaded to their appropriate location. To set a site icon, you must update the

siteConfiguration item descriptor and add a siteIcon property with the location. The following example

sets a siteIcon property value for Site A and for Site B:

<update-item item-descriptor="siteConfiguration" id="SiteA">
 <set-property name="siteIcon">
 <![CDATA[/DCS-CSR/images/icons/icon_site_a.gif]]>
 </set-property>
</update-item>

<update-item item-descriptor="siteConfiguration" id="SiteB">
 <set-property name="siteIcon"><![CDATA[/DCS-CSR/images/icons/icon_site_b.gif]]>
 </set-property>
</update-item>

Configuring Shareables

When you configure Commerce, you identify the shareables that are used in both Commerce and Commerce

Service Center. For information on configuring these shareables, refer to the ATG Commerce Programming Guide

and the ATG Multisite Administration Guide.

16 3 Installing and Configuring the Commerce Service Center Server

4 Configuring Order and Profile Search 17

4 Configuring Order and Profile

Search

This chapter describes the following Commerce Service Center configurations for configuring order and profile

searches.

Setting Up Order and Profile Search

Commerce Service Center uses an embedded search method for orders and customer profile searches that

does not require the installation and set up of a Search Administration server. Instead, this search method is

configured and administered using the Dynamo Server Admin.

Note: This search process is not used for ticket, product or catalog searches.

To run order and profile searches, add the DCS.Search.Order.Index module to your EAR file on each

customer-facing and management server when you run the CIM scripts. The DPS.Search.Index module,

which is included when you install DCS.Search.Order, runs profile searches. DCS.Search.Order.Index runs

order searches. These modules capture changes that are made from the storefront. If these modules are not

installed, profiles or orders that are added or updated will not be indexed and will not be searchable.

Using Live Indexing and Endeca MDEX Catalog Search

When using both live indexing and the Endeca MDEX catalog search, your live indexing instances must not

run the ATG Endeca MDEX modules. If you have ATG Search configuration changes in the storefront module

that are required on the live indexing server, you must package and install those configurations in a separate

module. This allows them tobe included on the live indexing instance without including additional store front

configuration information.

Order and Profile Search Overview

The order and profile search configuration is comprised of the following:

• A Routing Component – The routing component allows you to create and administer search environments, as

well as handle the live updates of the index

• Indexing Output Configurations – An indexing output configuration (IOC) is the /atg/userprofiling/

search/ProfileOutputConfig or the /atg/commerce

18 4 Configuring Order and Profile Search

/search/OrderOutputConfig component with an associated definition file. The definition file is a standard

XML document that defines the repository items, such as fields, that create the search index. Separate indices

are created for orders and profiles, and, as such, a definition document is created for each index: profile-

output-config.xml and order-output-config.xml. For detailed information on Indexing Output

Configurations, refer to the Creating XHTML Documents from Repository Items section of the ATG Search

Administration Guide

• An Indexing Service – The indexing service racks updates in a particular environment and passes information

to the routing component to ensure the index is updated

• Indexed Items Groups – The indexed items group defines the type of items that will be included in the index.

By default, only submitted orders will be indexed

Indexing Methods

Order and profile search support both incremental and bulk indexing. Incremental indexing occurs in real time,

and as such, does not require an index deployment.

• Incremental Indexing – Enabled by default, it is configured using the indexing service to check for

modifications to orders and profiles every five seconds from multiple environments. During some operations,

such as modification, backup or restoration of an environment, incremental indexing is not available. During

these operations, incremental updates are queued until incremental indexing is restored

• Bulk Indexing – Started from the /atg/userprofiling/search/

ProfileOutputConfig or the /atg/commerce/search/OrderOutputConfig component, bulk indexing

recreates the complete index and is performed in a temporary staging environment. When the bulk indexing

job is completed, the temporary staging environment is swapped with the live environment. During the time

that the bulk index is running, searches are performed in the live environment. However, incremental updates

are queued and not applied until the bulk indexing job has completed and the environments are swapped

Order and Profile searches require separate Search projects. This allows both orders and profiles to be indexed

concurrently, as indexing jobs from separate search environments can be run in parallel.

Note: You cannot search for incomplete orders. Incomplete orders, or orders that have yet to be submitted, are

not indexed, and as such, are not contained within the search index.

Order and Profile Search Components

The following components from DAF.Search.Index are used for order and profile searches. For additional

information on these components, refer to the ATG Search Installation and Configuration Guide.

• /atg/search/repository/IncrementalItemQueue

• /atg/search/repository/IncrementalItemQueueRepository

• /atg/search/repository/ConfigStatePersister

• /atg/search/repository/ConfigAndRepositoryPersister

• /atg/search/repository/IncrementalLoader – DPS.Search.Index appends the

ProfileOutputConfig to the monitoredOutputConfig property. DCS.Search.Order.Index

appends the OrderOutputConfig to the monitoredOutputConfig property. When the

IndexingPeriodicService runs, the IncrementalLoader will process queued indexing requests for

each of the /atg/userprofiling/search/ProfileOutputConfig or the /atg/commerce/search/

OrderOutputConfig components.

• /atg/search/repository/BulkLoader

4 Configuring Order and Profile Search 19

• /atg/search/repository/IndexingPeriodicService – Configured in DPS.Search.Index to run

every two seconds by default. All servers are configured with the IndexingPeriodicService enabled

but they only index any /atg/userprofiling/search/ProfileOutputConfig or /atg/commerce/

search/OrderOutputConfig component that has the component enableIncrementalLoading=true

and incrementalUpdateSeconds > 0. As such, you should only set the incrementalUpdateSeconds > 0

on servers that will be used for indexing.

The OrderOutputConfig.incrementalUpdateSeconds is set to 30 by default to ensure that at least one

server will process the queued incremental indexing requests. In a production environment, it is best to set

incrementalUpdateSeconds=-1 on the agent-facing server and configure incrementalUpdateSeconds

> 0 on the management server. Incremental indexing can be enabled on any background server that is

running DPS.Search.Index, and DCS.Search.Order.Index for servers.

The IndexingPeriodicService clears any expired configuration claim locks each time it runs using the

checkExpiredConfigurationClaimsIntervalSeconds property, which checks for expired configuration

claim locks every n seconds. Each time the IndexingPeriodicService runs, it checks to see if the time

elapsed has exceeded this interval.

The following components are also used in the order and profile search process:

Component Description

/atg/userprofiling/search/

ProfileOutputConfig

The profile Indexing Output Component. Defined in the

DPS.Search.Index module so that an indexing request

can be queued wherever a profile is added or updated. The

component creates the profile-output-config.xml

definition file.

/atg/commerce/search/

OrderOutputConfig

The order Indexing Output Component. Defined in the

DCS.Search.Order.Index module so that an order

indexing request can be queued wherever an order is added

or updated. The component creates the order-output-

config.xml definition file.

/atg/search/repository/

LiveDocumentSubmitter

A special document submitter that updates the index

in near real time. This component is defined in the

DAF.Search.Index module.

/atg/commerce/search/

OrderProfileIdPropertyAccessor

Uses the atg.repository.search.indexing.

accessor.ItemIdPropertyAccessor class that retrieves

properties from an item where the item is referenced by ID.

In this case, the order item references the user item by Profile

ID.

/atg/userprofiling/search/

AddressPropertyAccessor

Uses the atg.repository.search.indexing.

accessor.ConcatenatePropetyAccessor class to

concatenate address1, address2 and address3 into a

single indexed address meta property.

/atg/search/repository/

AlphaNumericPropertyAccessor

Removes non-alpha-numeric characters from the indexed

meta property. Used to strip white space and punctuation

from phoneNumber to promote better search consistency.

20 4 Configuring Order and Profile Search

Component Description

/atg/search/routing/respository/

SearchConfigurationRepository

The shardConfig and shard properties store configuration

information on how to shard your search environment,

where to store the logical partitions and what information is

stored in each shard.

Configuring Live Indexing for Oracle ATG Web Commerce Search

Important: When configuring a live indexing server, please note that it must run on a separate dedicated server.

Live indexing cannot run on your Commerce Service Center servers or storefront servers, which use simple

caching mode for items within both the Order and Profile Adapter repositories. Indexing servers must disable

caching. If the indexing server does not disable caching, updates to orders and profiles will not be indexed.

For every server that creates, updates or deletes profiles or orders you must perform the following:

1. Add DPS.Search.Index (which includes the DCS.Search.Order.Index module) to the EAR file on the

agent-facing servers, if not already present. Also, add these modules to the EAR file for your customer-facing

and management servers.

2. During your CIM installation, you identified an internal server that is your live indexing server. To create a full

index, the indexing engine requires a clean partition. The clean partition is a file from which all indexes are

created. As such, you need to identify the location of the clean partition by creating a /localconfig/atg/

search/routing/

Configuration.properties file. Use the cleanPhysicalPartitionPath property to identify the full

path to the clean partition.

There is a copy of the clean partition located at <Searchdir>/SearchEngine/

operatingsystem/data/initial.index. To resolve the path correctly, use a relative path to identify the

clean partition location as a local copy. For example:

cleanPhysicalPartitionPath =../data/initial.index

Creating Search Indexing Environments

Each Search project creates an indexing environment on the local machine. Configuration of order and profile

search is done using the Dynamo Server Admin. For additional information on search environments, refer to the

Managing Search Environments chapter of the ATG Search Administration Guide.

1. On your Search server, start the remote server by running the /Search/Search10.2/SearchAdmin/bin/

startRemoteLauncher script.

2. Open the Dynamo Server Admin at http://hostname: port/dyn/admin/nucleus/atg/search/

routing/LiveIndexingService/

3. Click the Create a New Live Indexing Environment link. Two buttons appear for creating order and profile

search environments.

4. Click the buttons to create one of the environments and enter the details of your search engine. You can

either select the checkbox for your existing machine or enter the address of another machine.

4 Configuring Order and Profile Search 21

5. Repeat steps 3 and 4 to create additional indexing environments.

6. Enter the IndexingOutputConfig path to use.

7. If creating shards, enter the number of days per shard and the number of shards to create. For information

on shards, refer to the Purging Older Orders (page 22)section. This enables you to add hosts to a logical

partition or shard.

Note:Sharding can be enabled by setting the /atg/commerce/search/

OrderOutputConfig.shardingEnabled property to true on the live indexing server.

8. Click the Environments link to display the current default environments. Two environments, a live indexing

environment and a bulk indexing environment, are created for both Profile and Order processes.

Note: If you choose different environment names than the default ATGProfile and ATGOrder, you must

edit the /atg/userprofiling/search/

ProfileSearchConfiguration and /atg/commerce/search/

OrderSearchConfiguration components to reflect the search environment names and corresponding

logical partition names.

22 4 Configuring Order and Profile Search

9. You can select a specific environment to manage from the list.

For additional information, refer to the Configuring Remote Indexing Engines section in the ATG Search

Installation and Configuration Guide.

Preloading the Index

If you would like to preload the index with existing orders and/or profiles, perform the following steps:

1. Using the Dynamo Server Admin, open the /atg/commerce/search/

OrderOutputConfig component to preload orders, or the /atg/userprofiling/

search/ProfileOUtputConfig component to preload profiles.

2. Invoke the bulkload method by selecting it from the Methods list. This will recreate the index with orders

and/or profiles that are already in the repository.

Enhancing Performance of Bulk Loads

In environments where you are working with large data volumes, you can enhance the performance of the

bulkLoad indexing process. By default, the /atg/commerce/search/OrderOutputConfig/

threadedItemQueueBatchSize is set to 4, which is equal to twenty thousand orders retrieved for batch

processing. This results in a high number of unconstrained executions of the SQL query used to initiate the

bulkLoad indexing process.

To reduce the number of unconstrained SQL query requests and improve bulkLoad performance, increase the

threadedItemQueueBatchSize parameter to no more than 20. Setting the value higher than 20 could result

in Out of Memory exceptions and database time out exceptions.

Purging Older Orders

You can purge older orders from the index using sharding, which horizontally partitions orders into separate

logical partitions. Each of these partitions is represented by a single shard, which defines an indexed date range

of orders by order creation date.

For example, if you have more than a full year of orders, you could divide the order into five separate shards that

each contain 90 days of orders. The five shards are assigned date ranges based upon the date that the index was

created. The date range for each shard is fixed, which keeps orders in a known logical partition, allowing orders

to be updated quickly.

Continuing with the example, you would have the following shards and logical partitions configured:

Shard/Logical Partition Date Ending Date Starting

LP5 4/5/2011 1/5/2011

LP4 1/5/2011 10/7/2010

LP3 10/7/2010 7/9/2010

LP2 7/9/2010 4/10/2010

4 Configuring Order and Profile Search 23

Shard/Logical Partition Date Ending Date Starting

LP1 4/10/2010 1/10/2010

Every 90 days, the oldest logical partition will be deleted, and a new logical partition will be created to index

new items:

Shard/Logical Partition Date Ending Date Starting

LP6 7/6/2011 4/5/2011

LP5 4/5/2011 1/5/2011

LP4 1/5/2011 10/7/2010

LP3 10/7/2010 7/9/2010

LP2 7/9/2010 4/10/2010

LP1 (deleted) 4/10/2010 1/10/2010

Note that a sixth shard is required to index future orders, as all existing shards already hold data.

The Sharding Process

By default, sharding is disabled, but can be enabled using the shardingEnabled property in atg/commerce/

search/OrderOutputConfig. Note that shards are created based on the creation date of the order, not the

completion date of the order. The /atg/commerce/search/

OrderSharder implements the sharding of orders and the /atg/commerce/search/

OrderShardRotationService component’s daysBeforeExpiration property defines how many days prior

to the shard’s expiration date the shard should be rotated.

The /atg/search/routing/respository/SearchConfigurationRepository contains the following

shard items:

• shardConfig – Defines the shard configuration. Both the bulk and live search environments have their own

shardConfig

• shard – Defines the date range for the shard and the name of the logical partition for the shard

Once a bulkLoad method has been run using /atg/commerce/search/OrderOutputConfig, the shard

information will appear when you select the ATGOrder search environment. For example:

24 4 Configuring Order and Profile Search

Search Environment Information

Configuring Shards for Production Systems

Because each shard represents a logical partition, you must set the AEConfig.xml settings to accommodate

for the largest period of activity. The AEConfig.xml file configures the search engine’s MemoryReserveSize

setting, which defines how much memory is reserved for an index. This memory may not be allocated until the

index grows.

For example, if each shard contains three months of orders, but one shard holds holiday orders, that shard

may hold double the amount of orders than the other two shards. You must set the MemoryReserveSize

to support the maximum number of orders within the shard date range. In this example, you would set the

MemoryReserveSize site to hold the largest number of orders that might occur during the year, or the holiday

season. This ensures that shards created during peak order times have enough memory reserved.

For additional information on setting the MemoryReserveSize, refer to the Adjusting Physical Partition Size

section in the ATG Search Installation and Configuration Guide.

The amount of memory needed is equal to the amount of memory required to index the content, plus the

MemoryThreshold and heap size per process. It is best that you allocate a minimum of two cores per engine

(per physical partition). Use the following formula to determine the number of required CPUs:

2 x P_partitions x ((N_days / M_range) + 1)

• P_partitions – The number of physical partitions per shard. If all items in a shard fit in a single physical

partition, then P_partitions = 1

• N_days – The total number of days to index

• M_range – The number of days per shard

For example, for 360 days of orders, you might divide them into four partitions of 90 days each. Including

the additional extra partition for future orders, and assuming that all items in a shard fit into a single physical

partition, the formula could look like this:

2 x 1 x ((360/90) + 1) = 10 cores

4 Configuring Order and Profile Search 25

Note that this example only takes into account the order live indexing processes and does not count other

processes such as the Java application server, profile live indexing or other indexes, such as catalog search,

solutions, etc.

Performing a Manual Re-Index

It is possible to manually re-index orders or profiles. By default, you can re-index using a date range or an ID.

The /atg/commerce/search/OrderOutputConfig contains the manualIndexRequests property that

enumerates the types of queries used to manually re-index orders. The default queries perform indexing by

creation date, last modified date, submitted date, or ID:

manualIndexRequests=\
 /atg/commerce/search/OrderManualIndexRequestByCreationDateRange,\
 /atg/commerce/search/OrderManualIndexRequestByLastModifiedDateRange,\
 /atg/commerce/search/OrderManualIndexRequestBySubmittedDateRange,\
 /atg/commerce/search/OrderManualIndexRequestById

The /atg/userprofiling/search/ProfileOutputConfig contains the manualIndexRequests property.

By default, queries perform indexing for profiles by last modification date or by ID:

manualIndexRequests=\
 /atg/userprofiling/search/ProfilesManualIndexRequestById,\
 /atg/userprofiling/search/
 ProfileManualIndexRequestByLastModifiedDateRange

Each of the ManualIndexRequests defines an RQL query that sets the criteria for the indexing request.

To manually re-index:

1. Using the Dynamo Server Admin, access the OrderOutputConfig component to re-index orders, or the

ProfileOutputConfig component to re-index profiles.

2. Select Manually Re-Index a Subset of Orders or Profiles.

3. Enter the parameters for performing a re-index. The following example displays a manual re-indexing of a

subset of orders that have been modified between January 1, 2010 and November 30, 2010.

Note: The date range must be entered in the yyyy-mm-dd hh:mm:ss format and must include the time. For

example, February 28th at 7:30 p.m. would be 2011-02-28 19:30:00.

26 4 Configuring Order and Profile Search

4. Click Submit to begin the re-indexing process.

The screen will present a message indicating how many items were queued for indexing.

To review the orders being indexed, enable the loggingDebug property in /atg/commerce/

search/OrderLiveDocumentSubmitter. To review the profiles being indexed, enable the loggingDebug

property in /atg/userprofiling/search/ProfileLiveDocumentSubmitter.

Customizing Manual Indexing

By default, manual re-indexing searches for date ranges and IDs. However, you can customize

the re-indexing process. To do this, define an RQL query, or write a custom class that

implements the atg.search.routing.ManualIndexReqest interface referenced by the

atg.repository.search.indexing.IndexingOutputConfig class. For information on writing RQL queries,

refer to the ATG Repository Guide. For information on extending and working with the IndexingOutputConfig

class, refer to the ATG Search Administration Guide.

Adding Searchable Properties

When you perform searches, you may want to sort your search results by a specific criterion. The criterion you

select must be indexed before it can be used to sort search results. If the existing index does not contain the

property that you want to use for sorting, you must add it. The following section provides information on how to

add a property to an index.

The IndexingOutputConfig component is defined using the following properties:

• repository – The repository referenced by the definition file

• definitionFile – An XML indexing definition file that configures the repository item types and properties

that are included in the indexing document

For example, the /atg/commerce/search/OrderOutputConfig component has the following configuration,

which can be accessed using the Dynamo Server Admin:

definitionFile=/atg/commerce/search/order-output-config.xml
repository=/atg/commerce/order/OrderRepository

4 Configuring Order and Profile Search 27

The /atg/userprofiling/search/ProfileOutputConfig component has the following configuration,

which can be accessed using the Dynamo Server Admin:

definitionFile=/atg/userprofiling/search/profile-output-config.xml
repository=/atg/userprofiling/ProfileAdapterRepository

For detailed information on modifying IndexingOutputConfig components, refer to the Configuring Remote

Indexing Engines section in the ATG Search Installation and Configuration Guide.

Working with Definition Files

You can add properties to be indexed by appending them to the definition file associated with the component.

The definition file starts by identifying a top-level item element that specifies the item-descriptor to use,

and then lists the properties of that item type to include within the index. The properties appear as property

elements within a meta-properties element.

When you specify a meta property in the definition file, you can use the store-as-meta-index Boolean

attributes to specify how to structure the index. If set to true, the value of the property is used as a key in a

lookup table, which enables faster retrieval of the document.

For example, the following is a portion of the ProfileOutputConfig definition file:

<item item-descriptor-name="user" is-document="true">
 <title property-name="login"/>
 <meta-properties>
 <property name="$repositoryId" type="string"/>
 <property name="$url" type="string"/>
 <property name="$baseUrl" type="string" suppress="true"/>
 <property name="$itemDescriptor.itemDescriptorName" type="string"
 suppress="true"/>
 <property name="$repository.repositoryName" type="string" suppress="true"/>
 <property name="login" type="string" store-as-meta-index="true"/>
 <property name="email" type="string" store-as-meta-index="true"/>
 <property name="firstName" type="enum" store-as-meta-index="true"/>
 <property name="lastName" type="string" store-as-meta-index="true"/>
 </meta-properties>
</item>

Using the above example, the ProfileOutputConfig component is configured by default to use store-as-

meta-index for the email property of the login item. Since each e-mail value is unique, if a query includes an

exact match “starts with” constraint that specifies the email value, the correct profile is retrieved without having

to search the entire index. Properties that should be displayed in a results list, or that you want to use to sort the

results, should set the store-as-meta-index="true" attribute.

Extending the Definition File

To index additional order or profile properties, extend the definition file associated with the

IndexingOutputConfig component using xml-combine.

By adding a new definition file that contains the same Nucleus path to your customization directory, you can

layer new property information onto the existing IndexingOutputConfig component definition file.

For example, you can create a /liveconfig /atg/userprofiling/search/profile-output-config.xml

file that appends the default /atg/userprofiling/search/profile-output-config.xml file by adding

the middleName property to the index:

28 4 Configuring Order and Profile Search

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE item PUBLIC //DTD RepositoryOuput Specifier 1.0//EN"
"http://www.atg.com/dtds/search/indexing-dependency-schema.dtd">

<!—Indexing Schema for External Profiles
 XML combines to append the middleName property to the index
-->

<item item-descriptor-name="user" >
 <meta-properties>
 <property name="middleName" type="string" store-as-meta-index="true"/>
 </meta-properties>
</item>

When you build your customization module, the system will run xml-combine and combine these files into one

file. Note that you do not need to explicitly set the xml-combine attribute. By default, the contents of the tag

in the second file are appended to the contents of the tag in the first file. Refer to the ATG Platform Programming

Guide for information on combining XML files.

Once you have rebuilt your customization module, invoke the bulkLoad method on the

IndexingOutputConfig component. You can then review the ProfileOutputConfig component’s

definition file in the Dynamo Server Admin. The definition file will display the XML value after the combination

of the two XML files.

Using the previous examples, the definition file of the ProfileOutputConfig component now contains the

default properties, as well as the custom middleName property you created in your customization module.

Note: The following is an example that contains modified path names for demonstration purposes:

4 Configuring Order and Profile Search 29

Profile Output Configuration Example

Once you have added a property to an index, it can now be used to sort search results.

30 4 Configuring Order and Profile Search

5 Configuring Catalog Search 31

5 Configuring Catalog Search

Commerce Service Center, by default, uses SQL for searching the product catalog. It is possible to extend the

search capabilities of the catalog search feature by integrating with Endeca’s MDX search engine.

When you configure your Commerce Service Center using CIM, you can select the option to install Endeca

Catalog Search. Commerce Service Center uses the Experience Manager configuration that you have established

for storefront applications, which generates the same search results for the agent as produced for the storefront.

Commerce Service Center provides a generic, yet customizable, presentation of the search results.

Configuring catalog search using the Endeca MDX search engine enables an agent to perform the same search

as a customer. An Endeca MDX search engine-based catalog search:

• Displays the same search results to the agent as displayed to the customer

• Provides guided navigation to the agent with result paging and sorting

• Allows an agent to add search term queries and obtain auto suggestions

• Provide site-based catalog configuration and filtering

• Uses Commerce Service Center-specific page displays, such as dimensions, breadcrumbs and search

refinements

Catalog Search with Endeca MDEX Prerequisites

Before you can configure Commerce Service Center catalog search to work with the Endeca MDX engine,

you must have installed and configured an Endeca MDX server. Commerce Service Center’s implementation

depends upon the storefront’s integration with Endeca MDEX and the Experience Manager configurations

that have already been created. Refer to Endeca documentation for additional information on setting up and

configuring an Endeca server.

The DCS-CSR-UI.Endeca module contains the configuration property files that Commerce Service Center uses

to integrate with the storefront’s MDEX engine. To continue performing SQL catalog browses and searches, do

not include the DCS-CSR-UI.Endeca module in the startup list and use only the DCS-CSR-UI module.

Using Live Indexing and Endeca MDEX Catalog Search

To use both live indexing for order and profile search and the Endeca MDEX catalog search, your live indexing

instances must not run the ATG Endeca MDEX modules. If you have ATG Search configuration changes in the

storefront module that are required on the live indexing server, you must package those configurations in a

32 5 Configuring Catalog Search

separate module so that they may be included on the live indexing instance without including additional store

front configuration information.

Overview of Catalog Search with Endeca MDEX

The search process starts with Commerce Service Center issuing a request, based upon the search criteria

entered by the agent. The request incorporates the following:

• Issues a service framework request for the search results panel stack. The request may optionally contain an

Endeca content URI as an input parameter. A default URI is used when one is not provided

• The search result panel invokes the CSRInvokeAssembler droplet, which issues the search request to the

Endeca Assembler using the given content URI

• The search results, in the storefront’s format, is parsed into a map of content items that is keyed by the

content item type

• A series of page fragments render the content items by type. For example, there are fragments that render

Breadcrumbs, RefinementMenus and ResultList content items

• Any follow-on content URIs rendered in the result, such as NavigationActions, are wrapped in a service

framework request for the search result panel stack by the ContentRequestURI droplet

Initiating an Endeca MDEX Catalog Search Request

Requests for search content are made through the catalog search panel stack. The cmcProductCatalogSearch

panel JSP, /panels/catalog/endeca/

productCatalogSearch.jsp calls the CSRInvokeAssembler servlet bean and includes all of the page

fragments used to display product records, dimensions, refinements, paging controls, sorting controls and the

search term query form.

Note: Auto Suggestions are sent through a separate request. For information on how auto suggestions work

refer to the Configuring Auto-Suggestions (page 40) section.

Determining Content URI

The productCatalogSearch page determines the correct content URI using the contentURI parameter.

If the contentURI is not found, the page looks at the cached content URI from the SearchState,

which is a session-scoped component that holds data on the most recently requested content URI. If the

contentURI is still not found, the page uses the defaultcontentURI value that has been entered in the

configuration.properties file. It then updates the cache contentURI in the SearchState:

<c:if test="${empty endecaContentURI}">
 <c:set var="endecaContentURI" value="${searchState.lastContentURI}"/>
 <c:if test="${empty endecaContentURI}">
 <c:set var="endecaContentURI"
 value="${endecaConfig.defaultContentURI}"/>

5 Configuring Catalog Search 33

 </c:if>
</c:if>
<dsp:setvalue bean="/atg/commerce/custsvc/catalog/
 endeca/SearchState.lastContentURI" value="${endecaContentURI}"/>

Filtering the Requests

The Endeca site and catalog filters are applied during all requests to ensure that the correct data is returned. The

CSRSiteFilterBuilder extends SiteFilterBuilder to set the current site filter based on the current site

scope in the search state object. The CSRCatalogFilterBuilder sets the catalog filter based on the current

site scope, using either the current catalog, or all of the catalogs in the current cart sharing group. For detailed

information on the SiteFilterBuilder and CatalogFilterBuilder, refer to the ATG-Endeca Integration

Guide.

UI Page Fragments

A PageFragment is a component that defines the URL path and servlet context for a specific JSP page. A number

of these components are used to render the Endeca catalog browse and navigation. These components are

located under /atg/commerce/custsvc/ui/fragments/catalog/endeca.

The following is an example of the ResultsListContentItem page fragment:

$class=atg.web.PageFragment
URL=/include/catalog/endeca/displayResultListContentItem.jsp
servletContext=DCS-CSR

Note that the URL and servlet context can be changed when making customizations to the UI. For defaulted

information on working with page fragments, refer to the ATG Page Developer's Guide. For additional information

on working with customizing catalog search page fragments, refer to the Customizing Search Results (page

42) section.

Encoding Framework URL

All navigation requests to the Commerce Service Center UI must use the framework.jsp servlet bean.

Therefore, the service framework URL is encoded on all anchor tags, forms and navigation requests. For example,

the following URL navigates to the catalog search page:

/framework.jsp?ps=cmcCatalogPS&p=cmcProductCatalogSearch

Each request for search results also includes an Endeca content URI, such as “/browse”. The content URI is

encoded on the service framework URL as a URL parameter. For example:

/framework.jsp?_windowid=1&ps=cmcCatalogPS&p=cmcCatalogSearchP&contentURI=/browse/_/
N-1z141n6

This encoding is performed on all anchor tags or success URLs that generate search results. The

contentRequestURL droplet can be used to generate URLs for requesting search results. Refer to the Content

Request URL Droplet Servlet Bean (page 37) section.

34 5 Configuring Catalog Search

Defining Navigation Actions

Endeca NavigationActions objects contain the meta data for changing the current navigation state, such as

selecting a refinement, or paging through the result screens.

The following is an example of a refinement NavigationAction in JSON format.

"@class": "com.endeca.infront.cartridge.model.Refinement",
"multiSelect": true,
"navigationState": "/Canyon/_/N-1z141qc?Nrpp=12&format=json",
"contentPath": "/browse",
"count": 13,
"siteRootPath": "/pages",
"label": "Canyon",
"properties": { }

The content URI for a NavigationAction is constructed by the ContentRequestUrlDroplet. Using the

above example, the content URI result would be:

/browse/Canyon/_/N-1z141qc?Nrpp=12&format=json

And the resulting URL would be:

/framework.jsp?_windowid=1&ps=cmcCatalogPS&p=cmcCatalogSearchP&contentURI=/browse/_/
N-1z141qc&Nrpp=12&format=json

CSRInvokeAssembler

Commerce Service Center uses the CSRInvokeAssembler servlet bean to make the request to the Endeca

Assembler. The servlet bean parses the result from Endeca into a map of ContentItems keyed by type

(Map<String.List<? ContentItem), which is included as an output parameter named contentItemMap.

The raw search results are also returned as an output parameter. The contentItemMap is a convenience object

used for quickly accessing specific content items in the result:

<dsp:droplet name="/atg/commerce/custsvc/catalog/endeca/InvokeAssembler">
 <dsp:param name="includePath" value="${endecaContentURI}"/>
 <dsp:oparam name="output">
 <dsp:getvalueof var="contentItemResult" param="contentItem"/>
 <dsp:getvalueof var="contentItemMap" param="contentItemMap"/>
 </dsp:oparam>
</dsp:droplet>

Setting the Agent Profile

Because Commerce Service Center is an agent-facing application, the agent’s internal profile is the active

session profile for all requests. To generate customer-specific results from the Assembler, Commerce Service

Center swaps the active customer profile for the duration of the call to the Assembler. To do this, Commerce

Service Center implements the Assembler’s GenericInvokeAssemblerCallbackImp callback interface. This

implementation is configured using the AssemblerTools component:

5 Configuring Catalog Search 35

AssemblerTools.properties:
callbacks=+ProfileInvokeAssemblerCallback

Configuring an Endeca MDEX Catalog Search

Once the content items and types are identified, they are associated with a page fragment through the /atg/

commerce/custsvc/catalog/endeca/configuration.properties file. This configuration file contains

the following properties, which are used to configure various aspects of catalog search:

Property Description

alternateResultContentItemTypes A list of content item types that, if located in the results,

will be displayed in the result area of the UI just below

the traditional results list. This list also defines the order

in which they are displayed. For example:

alternatResultsContentItemTypes=

MyContentItem

autoSuggestMinLength The minimum number of characters that must be typed

into the search term box before auto suggestions occur.

The default is 3.

autoSuggestURI The URI used for requesting auto suggestion content. If

null, the auto suggestion feature is disabled.

breadcrumbContentItemType The content item type used for breadcrumbs. The

default is Breadcrumbs.

collectionPropertyNames Identifies which property name of the content item

contains the collection to display.

defaultContentURI The root URI for Endeca search requests. The default

content URI is expected to be the “root” content URI,

which is set in /atg/commerce/custsvc/catalog/

endeca/configuration.properties using the

defaultContentURI property. Refer to theConfiguring

Catalog Search (page 31) section for additional

information. The default value is /browse.

defaultObjectRenderingPageFragment Identifies the page fragment used to render objects

from the collection on a result content item. By

default, all objects will be handled as products.

If multiple record types are being returned in

the collection, you can perform type-specific

rendering by specifying page fragments using the

objectRenderingPageFragmentsByType property.

36 5 Configuring Catalog Search

Property Description

defaultResultContentItemPageFragment The page fragment used by default to render

result content items. The default fragment displays

a collection of records or repository items that

are attached to the content item. The property

that contains the collection is specified by the

collectionPropertyName property.

endecaResourcedValuePropertyNames This property maps the UI key name to a property name.

The map is then used to display resource values in the

UI. For example, the refinementMenu.title key

determines the property name of the content item that

contains the text to display on a refinement menu title.

There are three resourced value property names used by

default in Commerce Service Center:

refinementMenu.title=displayName

sortOption.label=label

dimensionSearchGroup.displayName=

displayName

endecaResourceValuesResourceBundle Identifies the resource bundle to use if the

showRawEndecaResourceValue is false.

objectRenderingPageFragmentsByType This property maps objects types to a page fragment

used to render the object in the display. To render by

type, Endeca records must have a record type property

defined by recordTypePropertyName.

recordProductIdPropertyName Specifies the key in the record attribute map that

references the Product ID. This property is used by the

page fragment that renders a record as a product.

recordTypePropertyName Specifies the key in the record attribute map that

contains the type value, which is required to specify

different rendering page fragments by type.

refinementMenuContentItemType The content item type used for refinement menus. The

default is RefinementMenu.

resultContentItemPageFragments Use this property to map custom page

fragments to specific result content item

types. If a type is not specified in the map, the

defaultResultContentItemPagFragment

is used. The default setting for this property is

resultContentItemPageFragments=

ResultsList=/atg/commerce/custsvc/ui/

fragments/catalog/endeca/

ResultListContentItem

5 Configuring Catalog Search 37

Property Description

defaultResultContentItemPageFragment Identifies the page fragment used to render a

content item when its type is not configured by the

resultContentItemPageFragments property.

resultContentItemTitleLookupKeys Looks up the property name that contains the title for

the records contained in the content item displayed in

the results.

resultsListContentItemType The content item type used for the result list. The default

is ResultsList.

showRawEndecaResourcedValues Displays the value of the Endeca property in its raw form

when true. If false, the value will be used as a key to look

up a resourced value in the configured resource bundle.

Catalog Search Servlet Beans and Form Handlers

The following servlet beans and form handlers are used for Endeca Catalog Search.

Content Request URL Droplet Servlet Bean

The ContentRequestUrlDroplet, which extends the FrameworkUrlDroplet, generates a URL with the

content URI or content collection name encoded as a URL parameter. The droplet generates URLs for category

browse navigation links, default and follow-on content URIs, as well as the auto suggest collection content.

Class atg.commerce.csr.catalog.endeca.ContentRequestUrlDroplet

Components /atg/commerce/custsvc/catalog/endeca/ContentRequestUrlDroplet

The servlet bean identifies the default URL for the search results page using the searchResultsPageURL

property. By default, the value is set to /framework.jsp?ps=cmcCatalogPS&

p=cmcProductCatalogSearch. The ContentRequestUrlDroplet contains the following parameters. Note

that only a single dimensionId, contentPath or navigationAction parameter can be used to determine

the content URI. If no value is provided for contentPath or navigationAction, the default content URI will be

used:

Input Parameters

• url – Optional. The base URL on which the ContentURI parameter will be encoded. If this parameter is not

provided, the value will default to the configured searchResultsPageURL

• dimensionId – Optional. This identifies the dimension ID. When an value is specified, the default content URI

is used with a navigation filter parameter (N=x) to specify the dimension value

38 5 Configuring Catalog Search

• contentPath – Optional. This parameter specifies a value to use as the content URI in the resulting URL

• navigationAction – Optional. An Endeca NavigationAction object from which to construct the content

URI

• recordOffset – Optional. The result record offset for paging. When a value is provided, the

navigationAction should be a paging template where record offset can be substituted into the URI

• recordsPerPage – Optional. Specifies the number of records per page for the results. When a value is

provided, the navigationAction should be a paging template where records per page can be substituted

into the URI

Open Parameters

• output – This parameter is rendered only once.

Examples

The following example identifies the defaultContentURI as the content path:

<dsp:droplet name="ContentRequestURLDroplet">
 <dsp:param name="contentPath" value="${endecaConfig.defaultContentURI}" />
 <dsp:oparam name="output">
 <dsp:getvalueof var="contentURL" bean="ContentRequestURLDroplet.url" />
 </dsp:oparam>
</dsp:droplet>

The following example uses a navigationAction:

<dsp:droplet name="ContentRequestUrlDroplet">
 <dsp:param name="navigationAction" value="${sortOption}" />
 <dsp:oparam name="output">
 <dsp:getvalueof var="contentURL" bean="ContentRequestURLDroplet.url" />
 </dsp:oparam>
</dsp:droplet>

The following is an example of a navigation action with a record offset:

<dsp:droplet name="ContentRequestURLDroplet">
<dsp:param name="navigationAction"
 value="${resultsListContentItem['pagingActionTemplate']}"/>
<dsp:param name="recordOffset" value="${pageRecordIndex}"/>
<dsp:param name="recordsPerPage" value="${recsPerPage}"/>
<dsp:oparam name="output">
 <dsp:getvalueof var="contentURL" bean="ContentRequestURLDroplet.url"/>

 <c:out value="${pageNumber}"/>
</dsp:oparam>
</dsp:droplet>

Content Item Results Droplet

This servlet bean iterates over a collection of objects referenced by a ContentItem and determines the page

fragment that should be used to render each object in the collection.

5 Configuring Catalog Search 39

Class atg.commerce.csr.catalog.endeca.ContentItemResultslDroplet

Components /atg/commerce/custsvc/catalog/endeca/ContentItemResultsDroplet

Input Parameters

• contentItem – The contentItem containing the collection

Output Parameters

• renderingPageFragment – The PageFragment for rendering the object in the collection.

• objectType – The type of the object in the collection, which is either a repository item descriptor name, or

an Endeca record type

Paging Droplet

This servlet bean is used to render the paging controls for catalog search results. Refer to the ATG API Reference

for Commerce Service Center for additional information on the servlet bean.

Class atg.commerce.csr.catalog.endeca.PagingDroplet

Components /atg/commerce/custsvc/catalog/endeca/PagingDroplet

Input Parameters

• recordsPerPage – The number of records displayed on a page

• currentRecordOffset – The index of the first record displayed

• totalRecords – The total number of records returned in the result

Open Parameters

• prevPageGroup – Rendered once if there is a previous record group. A previous record group is the group of

records previous to the current record group. For example, if the current page group is 4,5,6, a previous page

group exists for pages 1,2,3. If the current page group is 1,2,3, this oparam would not be rendered because

you are currently on the first page group

• page – Rendered once for each page in the current page group with the exception of the current page, which

has its own oparam so that it can be uniquely identified

• currentPage – Rendered once for the current page

• nextPageGroup – Rendered once when there is a next record group. The next record group is the group next

in line from the current record group. For example, if the current page group is 7,8,9, the next page group

would be 10,11,12. If there is no page 10, the nextPageGroup is not rendered

Output Parameters

40 5 Configuring Catalog Search

• prevPageGroupRecordIndex – The record index of the first record on the last page of the previous page

group

• nextPageGroupRecordIndex – The record index of the first record on the first page of the next page group

• pageNumber – The page number

• pageRecordIndex – The record index for the first record on the page

Site Scope Form Handler

The SiteScopeFormHandler is responsible for setting the SearchState’s siteScope value, which is used to

filter the search results by site.

Form Handler /atg/commerce/csr/catalog/Endeca/SiteScopeFormHandler

Components /atg/commerce/custsvc/catalog/Endeca/SiteScopeFormHandler

Configuring Auto-Suggestions

The search term page performs term queries as well as dynamic auto-suggestions. Note: The auto-suggestion

feature must be enabled in your Endeca MDEX configuration before it can be configured in Commerce Service

Center. Refer to your Endeca documentation for information.

If auto-suggestions are configured, when an agent enters a search term, the UI will automatically provide

dimension suggestions based on the terms entered.

Implementing Auto-Suggestions

Auto-suggestions are generated using a dimension search based on a search terms entered by the agent. Auto-

suggestions are not accessed using the catalog search results page, but the autoSuggestJson.jsp page,

which is designed specifically for requesting auto-suggestion content collections from the Assembler and then

rendering the results.

Auto-suggestions in Commerce Service Center are enabled by setting the autoSuggestURI property in

the /atg/commerce/custsvc/catalog/endeca/configuration.properties file. The URI of the auto-

suggestion content collection is used to create the URL that requests auto-suggestions. The number of

characters that an agent enters into a search field before being provided with suggestions is set using the

autoSuggestMinLength property in the configuration.properties file.

Displaying Auto-Suggestions

The autoSuggestJson.jsp page requests the auto-suggestions from the Assembler and renders the

dimension search values. The ContentRequestURLDroplet is used to create a URL for each dimension search

value.

5 Configuring Catalog Search 41

<json:object name="dimensionSearchResults">
 <json:array name="dimensionSearchGroups" var="content"
 items="${contentItemMap['AutoSuggestPanel']}">
 <c:forEach var="autoSuggest" items="${content['autoSuggest']}">
 <c:forEach var="dimensionSearchGroup"
 items="${autoSuggest['dimensionSearchGroups']}">
 <json:object>
 <json:property name="displayName">
 <dsp:include src="${displayEndecaResourcedValueFragment.URL}"
 otherContext="${displayEndecaResourcedValueFragment.
 servletContext}">
 <dsp:param name="key" value="dimensionSearchGroup.displayName"/>
 <dsp:param name="contentItem" value="${dimensionSearchGroup}"/>
 </dsp:include>
 </json:property>
 <json:array name="dimensionSearchValues"
 items="${dimensionSearchGroup['dimensionSearchValues']}"
 var="dimensionSearchValue">
 <json:object>
 <dsp:droplet name="ContentRequestURLDroplet">
 <dsp:param name="url"
 value="${UIConfig.contextRoot}${searchResultPageURL}"/>
 <dsp:param name="navigationAction" value="${dimensionSearchValue}"/>
 <dsp:oparam name="output">
 <dsp:getvalueof var="contentURL"
 bean="ContentRequestURLDroplet.url"/>
 </dsp:oparam>
 </dsp:droplet>

DimensionSearchValues are NavigationActions that populate the pop-up search term page that is

displayed to the agent. The page uses the displayEndecaResourcedValueFragment to display the auto-

suggestion resource values.

Working with Endeca MDEX Breadcrumbs

Breadcrumbs are elements that display in the Selections section of the menu, identifying the search constraints

entered into the query. The breadcrumbs content item is identified by the BreadcrumbContentItemType

parameter in the configuration file. Endeca breadcrumb content items reference either search or refinement

breadcrumbs. The breadcrumb page fragment uses the type of the breadcrumb to determine the correct JSP

renderer.

Search breadcrumbs contain information about an active keyword search, such as a search term, and is rendered

by the search breadcrumb page fragment at /atg/commerce/custsvc/ui/fragments/

catalog/Endeca/SearchCrumb.

Refinement breadcrumbs contain information about a refinement and is rendered by the refinement

breadcrumb page fragment located at /atg/commerce/custsvc/ui/fragments/

catalog/Endeca/RefinementCrumb.

42 5 Configuring Catalog Search

The following example shows how refinement breadcrumbs are displayed:

<c:forEach items="${refinementCrumbs}" var="refinementCrumb">
 <dsp:include src="${refinementCrumbDisplayFragment.URL}"
 otherContext="${refinementCrumbDisplayFragment.servletContext}">
 <dsp:param name="refinementCrumb" value="${refinementCrumb}"/>
 <dsp:param name="breadCrumb" value="${breadCrumb}"/>
 <dsp:param name="contentItemMap" value="${contentItemMap}"/>
 <dsp:param name="contentItemResult" value="${contentItemResult}"/>
 </dsp:include>
</c:forEach>

Customizing Search Results

You can customize the way that the search results are displayed, including paging and navigation, by working

with page fragments. For detailed information on working with page fragments, refer to the ATG Page

Developer's Guide.

Catalog Search Page Fragments

The main container page for search results is the productCatalogSearch.jsp page. All catalog search page

fragments exist in the /atg/commerce/custsvc/ui/fragments/catalog/endeca name space:

Page Fragment Description

AutoSuggestJson Displays the auto-suggestion page and pop-up.

Breadcrumbs Display the current refinement selections.

CategoryTree Displays the top three levels of the category tree and navigation

components.

DisplayCollectionWithTitle Renders a collection of objects in a content item as a table with a

title in the Results area.

5 Configuring Catalog Search 43

Page Fragment Description

DisplayEndecaResourcedValue Displays a resourced value, such as a refinement menu or a sort

option label.

DisplayProduct Renders the product information from an Endeca record or

product repository item in the Results area.

DisplayResultContentTitle Displays the heading title for the table of results.

DisplaySubcategories Displays sub-category trees in the browser popup menu.

NoResults Displays when no result list or alternate content is found in the

results.

RefinementCrumb Display and individual refinement breadcrumb.

Refinements Displays the refinement menus. Each refinement menu contains

of list of refinement navigation actions. Refinements also display

More and Less links for displaying addition or less data.

ResultListContentItem Displays the ResultList content item.

Results Displays the results area.

ResultsPaging Displays the paging controls for the results.

ResultsSortOptions Displays the sort options from the ResultsList.

RootCategories Displays a root category list for browse pop-up menu.

SearchCrumb Displays an individual search term breadcrumb.

SearchTermInput Displays the search term input controls.

SiteScope Displays the site scope selection controls.

SubCategories Displays subcategories for a root category in the browse popup

menu.

The /panels/catalog/endeca/productCatalogSearch.jsp file is the page associated with the results

panel and can be changed by modifying the serviceFramework.xml configuration file. The following example

is a definition of the results panel:

<panel-definition>
 <id>
 cmcProductCatalogSearchP
 </id>
 <title-key>
 cmcEndecaCatalogSearchP
 </title-key>
 <content-url>
 /panels/catalog/endeca/productCatalogSearch.jsp
 </content-url>

44 5 Configuring Catalog Search

</panel-definition>

Using Endeca Resourced Values

There are values that are displayed in the results UI that can be localized into the agent’s language. The

refinement titles, sort option labels and dimension search group labels are values that can be localized for

display.

Commerce Service Center provides two ways to deal with the display of these values. You can display the raw

value from the Endeca result, or you can treat the value as a key to a value in a resource bundle. The following

components and configuration define how these resources are displayed:

• DisplayEndecaResourcedValue - This page fragment component defines the JSP page for rendering the

resource values. This fragments takes the following parameters:

• key – the UI key for the value being resourced. These are Commerce Service Center-defined values that

identify the Endeca resource values. This key is used to identify the configured property name in the

content item that contains the resourced value

• contentItem – The content item that contains the resourced value

For example:

<dsp:include src="${displayEndecaResourcedValueFragment.URL}"

otherContext="${displayEndecaResourcedValueFragment.servletContext}">

<dsp:param name="key" value="refinementMenu.title"/>

<dsp:param name="contentItem" value="${refinementMenu}"/>

</dsp:include>

• endecaResourcedValuePropertyName – This configuration maps the Commerce Service Center UI key to a

content item property name. For example:

endecaResourcedValuePropertyNames=refinementMenu.title=displayName,\

sortOption.label=label,\

dimensionSearchGroup.displayName=displayName

• showRawEndecaResourcedValues – This Boolean configuration value determines if the content item’s raw

value is display in the UI. If false, the content item’s raw value is used as a key to a resource bundle lookup

• endecaResourcedValuesResourceBundle – This configuration value provides the name on the resource

bundle for doing lookups

Displaying Alternate Content

Commerce Service Center provides a configurable way to render content in the results area other than the

traditional results list. For example, depending on the current refinements, the Assembler may produce results

that do not include a traditional ResultList content item, but may include other content that should be

displayed to the agent. Or, you may want to render some content in addition to the traditional result list. This

feature is referred to as displaying alternate content.

To display alternate content on the results page, perform the following:

1. Identify the content item types that contain the data to be displayed. By default, the alternate content will be

displayed below the standard result list display when it is present.

5 Configuring Catalog Search 45

2. Edit the configuration file to add your new content item:

alternateResultContentItemTypes=NewContentItemType1, NewContentItemType2,

NewContentItemType3

Note: If you are creating multiple new content item types, the order they are listed in the configuration will

determine the order that they are displayed.

3. Define a PageFragment component that identifies the JSP for rendering the alternate content. Configure this

page in Commerce Service Center:

resultsContentItemPageFragments=NewContentItemType1=/com/app/

NewContentItemType1PageFragment

4. Commerce Service Center provides a default page fragment for rendering the alternate content. This default

page assumes that there is a collection of product records or repository items on the content item and

renders them as a list with a title heading. The property name containing the new list must be configured to

use this default page:

collectionPropertyNames=+ NewContentItemType1=records

5. Configure the property containing the title:

resultsContentItemTitlePropertyName+=

NewContentItemType1=newContentItemTitleProperty

Configuring Oracle for SQL Catalog Searching

If you are configuring your system to perform SQL catalog searches using an Oracle database, you must perform

the following:

1. Configure your Oracle ConText settings to index the columns that the catalog search queries.

2. You can also set the simulateTextSearchQueries of your Product Catalog to TRUE.

Note: When running on a production environment, do not set the simulateTextSearchQueries to TRUE,

as it will affect performance.

3. Add a new index:

create index

dcs_prd_chldsku_sid_idx on dcs_prd_chldsku (sku_id) indextype is

ctxsys.context;

This is needed because the following SQL is generated when searching by SKU:

SELECT DISTINCT t1.product_id,t1.product_type

FROM dcs_product t1, dcs_prd_chldsku t2, dcs_prd_catalogs t3

WHERE t2.product_id=t1.product_id

AND t3.product_id=t1.product_id

AND (CONTAINS(t2.sku_id,'xsku1126',0) > 1

AND t3.catalog_id = 'masterCatalog')

46 5 Configuring Catalog Search

6 Programming Commerce Service Center 47

6 Programming Commerce Service

Center

Commerce Service Center can be modified to fit the needs of your environment. There are a number of ways in

which you may customize Commerce Service Center. You can modify the properties of Nucleus components to

enable or disable functionality, or you can extend Commerce Service Center classes and create new components

from these classes.

The CSRConfigurator component is used to set and customize a number of Nucleus component properties

that configure Commerce Service Center.

Using the CSRConfigurator Component

The /atg/commerce/custsvc/util/CSRConfigurator component configures Commerce Service Center

settings, through the following properties:

Property Name Description

cartShareableTypeId Checks if two sites are in the same cart sharing site

group. Also finds sites in the cart sharing site group.

This variable is used with environment management. For

information on environment management, refer to the

ATG Ticketing User Guide.

catalogTools Specifies the catalogTools component to use. The

default is /atg/commerce/catalog

/CatalogTools, For information on the catalogTools

component, refer to the ATG Commerce Programming

Guide.

commerceSiteType Indicates the Site Type, as configured in the Site

Administration Console in the BCC Home page. The

default for Commerce Service Center is set to commerce.

For additional information on site types, refer to the ATG

Multisite Administration Guide.

48 6 Programming Commerce Service Center

Property Name Description

defaultAppeasementLimits Sets the default appeasement limit that an agent can

offer. The default format for the limit is USD=500.00. For

additional information on this property, refer to Setting

Global Appeasement Limits (page 72).

defaultCatalogId Identifies the default catalog to use when an anonymous

user profile is created. For additional information on this

property, refer to Configuring Current Catalog and Price

Lists (page 89).

defaultSiteIconURL Sets a default icon to use if there is no icon identified for

the site. For additional information on this property, refer

to Configuring the Default Site Icon (page 15).

defaultSiteId Specifies the global default site that is loaded when

the agent logs in. For additional information on this

property, refer to Configuring the Default Site (page 14).

maximumAlmostQualifiedFor

PromotionsInShortList

The number of promotion closeness qualifiers to display

on the shopping cart. The default number is set to 10.

paymentGroupTypeConfigurations Identifies the payment group type configurations to

display. For additional information on this property, refer

to Customizing a Payment Group Type (page 116).

paymentGroupTypesToBeInitialized The type of payment groups that can be initialized by

the Payment Group Droplet. These include creditCard,

storeCredit and giftCertificate. For additional

information on this property, refer to Customizing a

Payment Group Type (page 116).

pricingTools Sets the location of the pricing tools used for the running

commerce application. The default location is set

to /atg/commerce/pricing/PricingTools. For

additional information on pricingTools, refer to the

ATG Commerce Programming Guide.

processReturnRequestImmediately If set to true, then the return request process will begin

immediately. The default is set to false.

quantityInputTagMaxLength The maximum number of characters that the quantity

field will accept. The default number is set to 10.

quantityInputTagSize The display size of the quantity input field. If the

quantityInputTagMaxLength size is set to 10, yet the

quantityInputTagSize is set to 5, the user will be able

to enter 10 characters, but only 5 of the 10 characters will

be displayed. The default number is set to 10.

shippingGroupTypeConfigurations Identifies the shipping group type configurations to

display. For additional information on this property, refer

to Customizing a Shipping Group Type (page 110).

6 Programming Commerce Service Center 49

Property Name Description

shippingGroupTypeToBeInitialized The type of shipping groups that can be

initialized by the Shipping Group Droplet.

This includes hardgoodShippingGroup and

electronicShippingGroup. For additional

information on this property, refer to Customizing a

Shipping Group Type (page 110).

supportedPaymentGroupTypes Identifies the supported payment group types for

modified orders. If an order has a type that is not in the

configuration file, it will not load the order. For additional

information on this property, refer to Customizing a

Payment Group Type (page 116).

usingGiftLists If set to true, indicates that the running commerce

application uses gift lists. For additional information

on this property, refer to Working with Wish and Gift

Lists (page 51).

usingInStorePickup Specifies if the Commerce In Store Pickup

features are enabled. The default is true. In Store

Pickup uses the InStorePickupPaymentGroup

and CashPaymentGroup, as well as the

InStoreShippingGroup. Refer to the Working with

Shipping and Payment Groups (page 105) section for

information. For setting up In Store Pickup features, refer

to the ATG Commerce Programming Guide.

usingOrderApprovals Specifies if Order Approvals are enabled. The default is

true. For additional information on this property, refer

to Enabling the Order Approval Process (page 72).

usingPriceLists If set to true, indicates that the running commerce

application uses price lists. For additional information

on this property, refer to the Using the Current Price

List (page 90).

usingSalesPriceLists Indicates if a sales price list has been enabled. For

information on this property, refer to the Add On

Modifications (page 174) section of Appendix C, CIM

Configuration Components (page 173)

usingScheduledOrders Specifies if Scheduled Orders are enabled. The default

is true. For additional information on this property,

refer to Enabling and Disabling Scheduled Orders (page

61)

50 6 Programming Commerce Service Center

7 Working with Wish and Gift Lists 51

7 Working with Wish and Gift Lists

Gift and wish lists are core Commerce features that allow customers who visit your site to add items to a list

that can be accessed by other customers, or saved and referenced for future purchases. Commerce Service

Center extends this functionality by enabling an agent to assist a registered customer with the creation and

management of their lists. Agents can also assist a customer who wants to search and purchase items from

another customer’s list. However, agents cannot create gift or wish lists for anonymous shoppers, nor can they

delete an item from a gift list, or delete a gift registry.

For detailed information on working with gift and wish lists in Commerce, refer to the Setting up Gift Lists and

Wish Lists section of the ATG Commerce Programming Guide.

Modifying Gift List Forms

Within Commerce Service Center, agents create gift lists using the Gift List menu in the customer’s profile. This

form is displayed if the usingGiftlists property of the CSRConfigurator is enabled. Refer to theUsing the

CSRConfigurator Component (page 47) section for additional information.

Note that the agent must also have access rights that enable them to create a gift or wish list. Refer to Setting Up

Internal Access Control (page 77) for information on agent access rights.

By default, agents can create a new gift list by providing the following information:

• Event Name

• Event Description

• Event Date

• Event Type

• Shipping Address

• Public or Private List

• Special Instructions

The gift list form can be modified to include fields or information. There are two properties files that can be

configured, the default configuration and the extended configuration.

The default configuration for the Create Gift List form, which is located in /DCS-CSR-UI/config/

atg/commerce/custsvc/ui/fragments/gift/GiftListCreateDefault.properties, contains the

following settings:

52 7 Working with Wish and Gift Lists

URL=/include/gift/giftlist/giftlistCreateUIFragment.jsp
servletContext=DCS-CSR

The JSP file that creates the Gift List form is located at /panels/gift/giftlistCreate.jsp and is configured

to import the following page fragments:

<dsp: importbean var="defaultPageFragment"
 bean="/atg/commerce/custsvc/ui/fragments/gift/GiftListCreateDefault" />

<dsp: importbean var="extendedPageFragment"
 bean="/atg/commerce/custsvc/ui/fragments/gift/GiftListCreateExtended" />

The extended configuration properties file, GiftListCreateExtended.properties, does not contain a

reference to a JSP file.

For additional information on configuring and modifying page fragments, refer to the ATG Service Center UI

Programming Guide.

Rendering Gift Lists

Gift lists are rendered using the DCS-CSR-UI module and the /atg/commerce/custsvc/ui/

renderers/ProductSkuRenderer component pageOptions property:

pageOptions=\
 actionRenderer=/renderers/order/sku/skuBrowserAction.jsp,\
 giftlistActionRenderer=/renderers/gift/skuGiftlistBrowserAction.jsp,\
 formHandler=/atg/commerce/custsvc/order/CartModifierFormHandler,\
 successPanelStacks=cmcCatalogPS,\
 errorPanelStacks=cmcCatalogPS,\
 successUrlProperty=addItemToOrderSuccessURL,\
 errorUrlProperty=addItemToOrderErrorURL

The skuGiftlistBrowserAction.jsp file defines the drop-down menu that displays available gift lists, as

well as the controls that allow agents to add to lists.

The /atg/commerce/custsvc/gifts/CSRGiftlistFormHandler, which is located in the DCS-CSR module,

extends the Commerce GiftlistFormHandler, and enables agents to create and add lists. For information on

the CSRGiftlistFormHandler, refer to the CSRGiftlistFormHandler (page 55) section.

Displaying Gift List Information

The DCS-CSR-UI module’s /atg/commerce/custsvc/ui/fragments/gift/

GiftlistDetailsViewDefault page fragment displays list information.

7 Working with Wish and Gift Lists 53

$class=atg.web.PageFragment
URL=/include/gift/giftlist/giftlistDetailsViewUIFragment.jsp
servletContext=DCS-CSR

The JSP displays the following information:

• Event Name

• Event Type

• Event Date

• Status (Public or Private)

• Site (If running in multisite mode)

• Shipping Address

When items are contained within gift or wish lists , they are displayed in one of two components that use the

servlet bean atg.svc.agent.ui.tables.TableConfiguration. The components are located in the /atg/

commerce/custsvc/ui/tables/gift/ directory:

List View Results Edit Results

Gift

Lists

/giftlist/GiftlistViewResultsTable /giftlist/GiftlistEditResultsTable

Wish

Lists

/wishlist/WishlistViewResultsTable /wishlist/WishlistEditResultsTable

The following is an example of the GiftlistViewResultsTable:

$class=atg.svc.agent.ui.tables.TableConfiguration
$scope=global
columns=\
 /atg/commerce/custsvc/ui/tables/gift/giftlist/Site,\
 /atg/commerce/custsvc/ui/tables/gift/giftlist/ItemImage,\
 /atg/commerce/custsvc/ui/tables/gift/giftlist/ItemDescription,\
 /atg/commerce/custsvc/ui/tables/gift/giftlist/Desired,\
 /atg/commerce/custsvc/ui/tables/gift/giftlist/Purchased

tablePath=/atg/commerce/custsvc/ui/tables/gift/giftlist/GiftlistViewResultsTable
tablePage=/atg/commerce/custsvc/ui/tables/gift/giftlist/GiftlistTablePage

Configuring Gift List Search

The gift list search instance can be customized to include additional fields or information. Both default and

extended properties files can be modified.

54 7 Working with Wish and Gift Lists

The default configuration property file is available at /DCS-CSR-UI/config/atg/commerce/

custsvc/ui/fragments/gift/GiftListSearchDefault.properties and contains the following:

URL=/include/gift/search/giftlistSearchUIFragment.jsp
servletContext=DCS-CSR

The following JSP files are used for configuring the Gift List Search form:

JSP File Description

/panels/gift/

giftlistsearch.jsp

Calls the following page fragments:

<dsp: importbean var="defaultPageFragment"

bean="/atg/commerce/custsvc/ui/fragments/gift/

GiftListSearchDefault" />

<dsp: importbean var="extendedPageFragment"

bean="/atg/commerce/custsvc/ui/fragments/gift/

GiftListSearchExtended" />

/panels/gift/

searchResults.jsp

Calls the following page fragments:

<dsp: importbean var="defaultPageFragment"

bean="/atg/commerce/custsvc/ui/fragments/gift/

GiftListSearchResultsDefault" />

<dsp: importbean var="extendedPageFragment"

bean="/atg/commerce/custsvc/ui/fragments/gift/

GiftListSearchResultsExtended" />

The /panels/gift/giftListSearchGrid.jsp provides the gift list search results grid:

/atg/commerce/custsvc/ui/tables/gift/GiftlistGrid.properties
$class=atg.svc.agent.ui.tables.GridConfiguration
columns=\
 /atg/commerce/custsvc/ui/tables/gift/search/EventName,\
 /atg/commerce/custsvc/ui/tables/gift/search/LastName,\
 /atg/commerce/custsvc/ui/tables/gift/search/FirstName,\
 /atg/commerce/custsvc/ui/tables/gift/search/CustomerID,\
 /atg/commerce/custsvc/ui/tables/gift/search/EventType,\
 /atg/commerce/custsvc/ui/tables/gift/search/EventDate,\
rowsPerPage=10
gridHeight=450px
gridInstanceId=atg.commerce.csr.gift.giftlistInstance
gridPath=/atg/commerce/custsvc/ui/tables/gift/search/GiftlistGrid
gridWidgetId=atg_commerce_csr_customer_gift_GiftlistTable
progressNodeId=atg_commerce_csr_gift_GiftlistGridStatus
searchFormId=atg_commerce_csr_giftlistSearchForm
dataModelPage=/atg/commerce/custsvc/ui/tables/gift/search/GiftsistDataPage
gridPage=/atg/commerce/custsvc/ui/tables/gift/search/GiftlistGridPage

The extended configuration property, GiftListSearchExtended.properties, does not contain links to a JSP

file.

7 Working with Wish and Gift Lists 55

Gift List Form Handlers

The following form handlers can be used when customizing gift list forms:

CSRGiftlistFormHandler

This form handler sets the messaging, environment and profile tools, as well as populates the gift lists with the

gift items. This form handler extends the GifListFormHandler.

Form Handler atg.commerce.csr.gifts.CSRGiftlistFormHandler

Components /atg/commerce/custsvc/gifts/CSRGiftlistFormHandler.properties

GiftlistTableFormHandler

This form handler populates the customer gift list grid on the customer view page.

Form Handler atg.commerce.csr.gifts.GiftlistTableFormHandler

Components /atg/commerce/custsvc/gifts/GiftlistTableFormHandler.properties

This form handler uses the following properties:

• DoOwnerSearch – By default, this property is set to true indicating that the search query will always return

results based on the gift list owner property

• DoSiteFilterSearch – By default, this property is set to true so when multisite is enabled the search query

will only return results that have a valid site. By default, any gift list with a site that has been disabled will still

be returned as part of the search results

• IncludeDisabledSites – Can be set to false to omit Disabled Sites from the search results

For more information on Commerce Service Center specific Gift List form handlers, refer to the ATG API Reference

for Commerce Service Center.

Auditing Gift Lists

Audit events are created for gift and wish lists whenever lists are created or deleted, or whenever items are

added or removed from a list. Audit events are also created whenever quantities are changed within a list. The

audit events are stored in the csr_giftlist_event table. For information on this table, refer to the Appendix

A, Commerce Service Center Database Tables (page 157).

56 7 Working with Wish and Gift Lists

Recorded events are configured in the GiftItemEventRecorder.properties file. By default, the properties

recorded are giftlistId, eventName, catalogRefId, OldQuantity and newQuantity.

For information on configuring auditing, refer to the Reporting and Logging (page 141) section.

8 Issuing Returns, Exchanges and Refunds 57

8 Issuing Returns, Exchanges and

Refunds

The following sections provide information on the returns and exchange processes and calculators that are

specific to Commerce Service Center.

Commerce Service Center extends the Commerce Returns features for generating returns. Refer to the ATG

Commerce Programming Guide for detailed information on the Returns process.

Commerce Service Center-Specific Return Components

Return Form Handler

This form handler contains Commerce Service Center-specific UI handlers and extensions of the

BaseReturnFormHandler.

Form Handler atg.commerce.csr.returns.ReturnFormHandler

Components /atg/commerce/custsvc/returns/ReturnFormHandler.properties

This form handler uses the following properties and components:

Components Description

handleReceiveReturnItems This handler receives items that are being returned.

postConfirmReturn Sends email notifications, associates the active ticket with

the replacement order and creates a new active order in the

Commerce Service Center environment.

For more information on this form handler, refer to the ATG API Reference for Commerce Service Center.

58 8 Issuing Returns, Exchanges and Refunds

Is Item Returnable Droplet Servlet Bean

This servlet bean extends the Commerce IsReturnable servlet bean and identifies is an item is returnable in

Commerce Service Center.

Class atg.commerce.csr.order.IsItemReturnable

Components /atg/commerce/cstsvc/order/IsItemReturnable.properties

Order Is Returnable Droplet Servlet Bean

This servlet bean determines in an order is in a state where a return or exchange can occur in Commerce Service

Center.

Class atg.commerce.csr.order.OrderIsReturnable

Components /atg/commerce/cstsvc/order/OrderIsReturnable.properties

The OrderIsReturnable servlet bean contains the following:

Input Parameters

• order– The ID of the order

Oparams

• true – Rendered if there is a return in progress

• false – Rendered if there is no return in progress

• error – Rendered if there is an error

Prepare Replacement Order Pipeline

This pipeline chain, which is defined in Commerce, is executed when an exchange is confirmed. It prepares the

replacement order for submission and includes the following processors:

Processor Description

ExecuteValidateForCheckoutChain Executes a Commerce pipeline that validates that the

order is ready for checkout.

RemoveEmptyShippingGroups Removes shipping groups without relationships.

RemoveEmptyPaymentGroups Removes payment groups without relationships.

8 Issuing Returns, Exchanges and Refunds 59

Processor Description

CreateImplicitRelationships Creates relationships for orders that have a single

shipping or payment group with no relationships.

SetPaymentGroupAmount Sets the amount of the payment groups based of the

group’s relationships.

AuthorizePayment Authorizes payment groups in the order.

SetSalesChannel Sets the sales channel of the replacement order based

on the CSC extra parameter. Identifies where the order

was submit. The BaseFormHandler sets the sales

channel extra parameter Map to its configured value.

The ReturnFormHandler for CSC will set the sales

channel to contactCenter.

UpdateReplacementOrderStateOnConfirm Updates the replacement order state to “pending

customer return”.

AddOrderToRepository Adds the replacement order to the repository.

Working with Exchange Orders

When an agent initiates a return and exchange, three working orders are used to calculate the correct refund

amount and exchange item prices. For detailed information on these working orders, refer to the ATG Commerce

Programming Guide.

Exchange Calculators

Commerce Service Center adds four calculators which are used for pricing exchange orders. There are two item

pricing post calculators in /atg/commerce/custsvc/pricing/calculators:

• ExchangePromotionEvaluationUpdateCalculator – This calculator executes the process that updates

the Promotion Evaluation Order. This process copies the exchange items into the Promotion Evaluation Order

and then re-prices it. This results in exchange item pricing in accordance to other items still owned by the

customer and any item promotions that may apply

• ExchangeItemAdjustmentCalculator – This calculator copies pricing information for each exchange item

from the Promotion Evaluation Order to the exchange order

There are two order pricing post calculators in /atg/commerce/custsvc/pricing/calculators:

• ExchangeOrderAdjustmentCalculator – This calculator applies order promotions to the exchange order

that are applied to the Promotion Evaluation Order. The promotion adjustment value is based on the order

discount share value applied to the exchange items

• ExchangeOrderDiscountCalculator – This calculator applies manual adjustments that are applied to the

Promotion Evaluation Order to the exchange order. The manual adjustment value is based on the manual

adjustment share value applied to the exchange items

60 8 Issuing Returns, Exchanges and Refunds

The ItemPricingEngine configuration contains the ExchangeItemAdjustmentCalculator item pricing

calculator. This calculator adjusts the ItemPriceInfo of an item in the Exchange Order based on pricing of the

corresponding item in the PEO and copies that information from the PEO to the ItemPriceInfo created for

the exchange item. This includes the amount, all PricingAdjustments and DetailedItemPricingInfos.

This prices the item in the Exchange Order with the exact pricing it received in the PEO, including any item level

promotions that may have been applied.

If manual adjustments are applied to the Promotion Evaluation Order, they are applied to the exchange order

by the OrderPricingEngine post calculator OrderAdjustmentCalculator. This calculator implements

priceOrder to trigger the calculation or the manual adjustment value map when pricing an Exchange Order,

then determines if manual adjustments should be applied to the exchange order. If necessary, the calculator

overrides the adjustOrderSubTotal to adjust the order subtotal based on the pre-calculated value of each

manual adjustment.

Tiered Pricing and Exchanges

When you work with exchanges, tiered pricing produces the correct results, but exhibits the following behavior

as a result of how the cost of exchange items is determined.

For example, in an order with a quantity of 7 items within the same tier levels, the original item would be priced

at 2 at 50, 3 at 40, 2 at 30. In an exchange of 1 for 1, the expected refund would be $30 and the exchange order

item would be $30, with a net no charge. However, because of the methodology used in pricing the exchange

items in the promotion evaluation order, the exchange order item is priced at 50, and the refund is calculated

at $50. This results in the expected net no charge for the 1 item in the exchange order. Additionally, if exchange

order quantity increases to 2, the total would be $100 and the refund would be $70, with an expected net

change of $30 for the additional item.

For additional information on pricing calculators, refer to the Pricing Overview section of the ATG Commerce

Programming Guide.

Applying Promotions to Exchange Orders

No new promotions will be applied to an exchange order. New promotions include all promotions available to

the shopper for their next new order checkout. Promotions that were applied to the original purchase can still

be applied to the exchange order. For example, a promotion that is “buy X and get Y free” will still be applied if Y

is exchanged for another Y.

However, once a promotion no longer applies to the order it cannot be applied on subsequent exchanges.

For example, a promotion that is “buy X and get Y free” will not be applied if Y is exchanged for Z, and

then Z is exchanged for Y. The system calculates and saves the changes in the promotion value within the

ReturnRequest. This value is also saved in the repository with the return request item.

9 Working with Scheduled Orders 61

9 Working with Scheduled Orders

Scheduled Orders is a feature available in Commerce that sets up automated recurring orders. For additional

information on scheduled orders, refer to the ATG Commerce Programming Guide. Agents can assist customers

with setting up scheduled orders.

Configuring Scheduled Orders

A scheduled order is comprised of a template order and a schedule. A template order contains all of the order

information but is not submitted. A template can be associated with one or many schedules. Based on the

schedule(s) associated with the template, the template object is cloned to create an order object, which is then

submitted.

Agents can create scheduled order templates using the new order checkout process, or by copying an existing

order. Scheduled orders can be reviewed from the customer’s profile. Agents can also display all schedules for a

specific template, and submit an ad hoc order from a scheduled order.

Agents set up scheduled orders based on a daily, weekly, or monthly schedule. The schedule may be periodic,

which is based on an interval of time between each scheduled run, or calendar-based, which is based on specific

day to run. For periodic schedules, Commerce Service Center allows an agent to choose intervals based on a

number of days or weeks. For calendar-based schedules, Commerce Service Center allows an agent to specify

days of the week or dates of the month. A schedule also defines a start end date, which can be used to limit the

period of time that the schedule is active.

Enabling and Disabling Scheduled Orders

Scheduled orders are enabled by default. To disable the scheduled orders feature, modify the

CSRConfigurator component, setting usingScheduledOrders to false.

For example, to disable scheduled orders:

$class=atg.commerce.csr.util.CSRConfigurator
scope=global

usingScheduledOrders=false

The usingScheduledOrders option controls the availability of the scheduling options at the end of checkout,

the scheduled orders panel on the Profile View screen and the scheduled order view screen for template orders.

62 9 Working with Scheduled Orders

Configuring Price Lists

Note: If your site uses price lists, you must configure the use of price lists as outlined in Defining the Default

Price List (page 91) later in this document.

The following section describes configuration that affects the pricing of scheduled orders when using price lists

in combination with scheduled orders. This configuration affects the pricing of scheduled orders when:

• Pricing a new scheduled order for submission

This occurs in Commerce via the ScheduledOrderService and ScheduledOrderTools components when

scheduled orders are automatically created and submitted based on their pre-defined schedules.

• Pricing a scheduled order template for view in Commerce Service Center

Scheduled order templates are priced whenever an agent selects one for viewing on the scheduled order

view. This ensures that the agent always views the current day pricing when looking at a scheduled order

template. The result of this pricing operation is not saved to the repository, and is only temporary for the view.

• Pricing a new scheduled order instance when the agent clicks Submit Now in Commerce Service Center

The Submit Now process allows an agent to manually create and submit an order from a scheduled order

template.

Working with Scheduled Order Templates

Commerce Service Center always uses the CustomerPricingModels PricingModelHolder for pricing order

templates. Scheduled order templates are priced this way to provide the agent with pricing information that

reflects the current day pricing. This gives the agent an accurate representation of the order total if an order

were to be submitted from the template on that day.

Modifying scheduled order templates also uses clone editing and therefore, pricing changes are not saved to the

template unless the post create checkout process is completed for the template.

Scheduled Order Templates are also unique because they are priced before being viewed by an agent. For

example, if an agent views the contents of a template in read-only mode before actually selecting the template

to work on, the view would reflect current day pricing for the template. However, any pricing changes made

for viewing the template are not persisted to the repository; they are only performed to provide the agent with

current day pricing in the view.

ScheduledOrderTools

This Commerce component automatically generates and submits scheduled orders based on their pre-defined

schedules and contains configuration specific to the pricing of the scheduled orders they have submitted.

The property useOrderPriceListsFirst controls how ScheduledOrderTools determines the correct price

lists to use. Set by default to false, the price list assignment is determined by looking at the price lists assigned

to the customer profile that owns the scheduled order. Because price list assignments are an optional feature in

Commerce, if price list assignments are not implemented, the price list will come from the PriceListManager

default configuration of defaultPriceList and defaultSalesPricelist. For additional information on

Commerce price lists, refer to the Using Price Lists section of the ATG Commerce Programming Guide.

If ScheduledOrderTools.isUseOrderPriceListsFirst is set to true, it will first attempt to get the

price lists by extracting them from the template. Pricing information must be stored with the scheduled

order template when it is created to be able to extract price lists from order templates. It may not be possible

to extract both price lists from the template. If the items in the order are all on sale, the list price cannot

9 Working with Scheduled Orders 63

be determined. Conversely, if no items are on sale, the sale price list cannot be determined. If the price list

cannot be determined from the template, the price list assignment is obtained from the customer profile that

owns the scheduled order. If price list assignments are not implemented, the price list will come from the

PriceListManager default configuration of defaultPriceList and defaultSalesPricelist.

If running in a multisite environment, the getPriceListFromSite method determines the price list for the

site associated with the order. The useSitePriceLists property retrieves price lists from the site using the

scheduled order and defaults to true.

It is important to note that there are situations that may occur when using either of these methods:

• When a site changes customer price list assignments based on storefront selection, it is possible for an agent

to set up a scheduled order based on the current assignments for a customer. If the customer switches

storefronts, any new scheduled orders will be priced using the new assignments

• If the price list on a customer’s profile is updated, and Commerce Service Center has been configured to

obtain price lists from the order items first, the change will not be applied to any scheduled orders

Customizing Scheduled Orders

Once you have enabled your site to use scheduled orders the following customizations can be made. For

additional information on customization of scheduled orders, refer to the ATG Commerce Programming Guide.

Scheduled Order Form Handler

The CSRScheduledOrderFormHandler creates two variables, the CalendarSchedule variable used

for specific days, and the PeriodicSchedule that is used for interval schedules. Additionally, the

CSRScheduledOrderFormHandler is responsible for creating and updating the scheduled order repository

item based on the input provided from the agent.

In addition to these two schedule types, Commerce Service Center provides an additional N number of

intervals option used with PeriodicSchedule that an agent can use to limit the number of scheduled

intervals. This schedule option automatically calculates the schedule’s end date by calculating the schedule’s

nextRunTime n number of times starting from the specified start time.

Note: The number of intervals is used only to calculate the end date and will not be available when a schedule is

viewed or updated.

CSRScheduledOrderFormHandler contains the following configurable values for controlling the default

selections on the schedule creation form.

Property Description

defaultScheduleType Identifies the default schedule type. Possible values are Calendar or

Interval.

defaultDaysOption Controls which CalendarSchedule day selection is the default.

Possible values are allDays, selectedDays, or selectedDates.

64 9 Working with Scheduled Orders

Property Description

defaultMonthsOption Controls which CalendarSchedule month selection is the default.

Possible values are allMonths or selectedMonths.

defaultEndDateOption Controls which Schedule End Date option is the default. Possible

values are none, endBy or endAfterOccurrences.

defaultOccurrencesOption Controls which CalendarSchedule occurrences option

is the default. Possible values are allOcurrences or

selectedOccurrences.

defaultInterval Controls the default interval for an PeriodicSchedule.

defaultIntervalOption Controls the default interval option for PeriodicSchedules.

Possible values are days or weeks.

Displaying Scheduling Information

Commerce Service Center provides an extension to the Commerce ScheduledOrderInfo servlet bean that

provides additional output parameters that describe the contents of the schedule. Refer to the ATG Commerce

Programming Guide for information on ScheduledOrderInfo.

CSCScheduledOrderInfo has the following additional output parameters:

• readableDays

• readableDates

• readableHours

• readableMinutes

• readableMonths

• readableOccurrences

Scheduled Order Components

The following components are all members of the atg.commerce.csr.order.scheduled class located in the

/atg/commerce/custsvc/order/scheduled/ directory and are used for scheduled orders:

Components Description

CSRScheduledOrderTools Contains various helper APIs.

CSRScheduledOrderFormHandler Form handler used to create and update schedules.

DuplicateAndSubmit Form handler used by the Submit Now feature.

IsScheduledOrder Servlet bean used to determine if an order is a scheduled

order template.

9 Working with Scheduled Orders 65

Components Description

ScheduledOrderTableFormHandler Form handler used to generate the content displayed in the

customer’s scheduled orders panel.

SchedulesTableFormHandler Form handler used to generate the content displayed in the

scheduled order view’s schedules panel.

SubmittedOrdersTableFormHandler Form handler used to generate the content displayed in the

scheduled order view’s submitted orders panel.

ActivateSchedule Form handler used in the LoadAndExecuteAction class to

activate a schedule from the schedule order view.

DeactivateSchedule Form handler used in the LoadAndExecuteAction class to

deactivate a schedule from the schedule order view.

Scheduled Orders Pipeline Additions

The following are additions to the commercepipeline.xml that defines various purchase process pipelines

used by Commerce Service Center.

Pipeline Chain Description

initScheduledOrderEdit This chain is executed by the CloneEditManager to prepare for updating

a previously created scheduled order template.

reconcileScheduledOrder This chain is executed by the CloneEditManager to reconcile changes

made to a previously created scheduled order template.

processTemplateOrder This chain is executed by the CSRCommitOrderFormHandler when the

Schedule option is used at the end of new order checkout. It validates that

a new order is ready to be saved as a scheduled order template.

66 9 Working with Scheduled Orders

10 Issuing Promotions 67

10 Issuing Promotions

Commerce Service Center allows agents to access a number of promotion methods. Promotions such a are

displayed to the agent in the promotions browser. For detailed information on configuring promotions, refer to

the ATG Commerce Programming Guide.

Providing Promotions Browser Access

The Promotions Browser allows an agent to view all of the promotions that are available, or may become

available, to a user. Agents can view promotions that have been granted and the discount amount applied by

each promotion. Additionally, agents can search through promotions and grant a promotion manually.

For an agent to access the Promotions Browser, they must have the cmcPromotionsP and commerce-

custsvs-browse-promotions-privilege access rights. These access rights are provided in the csrOrders

role. For additional information on configuring access rights, refer to .

Customizing Gift with Purchase Promotions

In addition to the standard promotions that are available to customers, Commerce Service Center supports the

Commerce Gift with Purchase promotion. This promotion can automatically add a free item to the shopping cart

when the order qualifies for a promotion. The gifts can be defined as an SKU, product or a single selection from a

category or content group.

When an agent adds an item to an order that qualifies it for a free gift, the free gift is automatically added to the

cart with the total price of the item set to $0.00. Note: The gift is added automatically only if the gift is defined as

an SKU or product. When a gift is part of a multiple selection, it cannot be automatically added to the cart.

If an agent adds an item to the order that qualifies it for a gift that must be selected from multiple choices, a gift

selector becomes available. Once the selected gift has been added to the cart, a Change Gift option is available if

the agent needs to make any changes.

Gift With Purchase Page Fragments

The following three PageFragment components are used to render the Gift with Purchase links on the cart page

and the gift selection pop-up. The page fragments are stored in the /DCS-CSR-UI/config/

68 10 Issuing Promotions

atg/commerce/custsvc/ui/fragments/gwp directory:

• ChangeGiftListPageFragment – This fragment renders the Change Gift link next to an item when it

contains a gift that has multiple choices

• SelectGiftLinkPageFragment – This fragment renders a gift selection link for any gift that has not yet

been added to the order. The fragment uses the GiftWithPurchaseSelectionsDroplet to obtain the

GiftWithPurchaseSelection objects for the current order. Any GiftWithPurchaseSelection that is

found with a quantityMissingFromOrder greater than 0 will have a link rendered for it. If the giftType

is category or contentGroup, a selection link is rendered for each unit that is missing from the order. If the

giftType is sku or product, a single selection is rendered that adds the entire missing quantity to the cart

• SelectGiftPopupPageFragment – The SelectGiftPopupPageFragment is used to render the gift

selection pop-up. It requires several input parameters for determining the gift choices and initializing the

GiftWithPurchaseFormHandler values:

• itemId – Indicates which commerce item references the changed gift selection. The value is optionally

provided to the GiftWithPurchaseFormHandler

• promotionId – The ID of the promotion. Required by the GiftWithPurchaseFormHandler

• quantity – Required by the GiftWithPurhcaseFormHandler, this provides the quantity of the gift

selection

• giftHashCode – Required by the GiftWithPurchaseFormHandler, this identifies the promotion hash

code

• giftType – Identifies the gift type, and is required for the

GiftWithPurchaseSelectionChoicesDroplet

• giftDetail – Provides gift detail information and is required for the

GiftWithPurchaseSelectionChoicesDroplet

For additional information on the GiftWithPurchaseSelectionChoicesDroplet, refer to the ATG Commerce

Programming Guide.

Should the agent proceed with checkout without first selecting eligible gifts for the order, the

postMoveToPutchaseInfo method in the CSRCartModifierFormHandler will issue a message to inform the

agent that the order qualifies for the gifts that are missing from the order.

The Commerce GWPManager queries all Gift with Purchase selections for the order. If any of them have a

quantityMissingFromOrder greater than 0, an informational message is posted for the agent, such as “This

order qualifies for a free gift that has not yet been selected.”

For additional information on Gift with Purchase configuration, refer to the Extending Objects for Cloning (page

134) section.

Returns and Exchanges of Gifts with Purchases

If an item that qualified a promotion is returned, by default, the gift will not be automatically removed from

the order. It will be left in the order and re-priced at full value, offsetting the value of the refund. For additional

information on how the returns and exchange pricing engine works, refer to the Pricing in Commerce Service

Center (page 99) section.

To provide gift selection links in the cart view of the change order, Commerce Service Center generates

GiftWithPurchaseSelection objects based on the gifts being returned and then stores them in the

10 Issuing Promotions 69

ReturnRequest. Commerce Service Center extends the GiftWithPruchaseSelectionsDroplet to return

the ReturnRequest selection objects when rendering the selection links in the cart view of the exchange order.

Each time the cart view is rendered, the generated GiftWithPurhcaseSelection objects are filtered by the

ReturnManager generateFilteredReturnRequestSelections API to ensure that selection links are not

rendered for gifts that may have already been selected in the exchange order. For detailed information on gift

with purchase exchange orders, refer to the Working with Exchange Orders (page 59) section.

Reconciling Gift with Purchase Orders

The Gift with Purchase feature extends the CommerceItem object to store Gift with Purchase meta data within

repository markers.

Commerce Service Center’s clone editing feature supports the cloning and reconciliation of the Gift with

Purchase Commerce item markers when an order containing gifts is modified by an agent.

The SubPropertyHandler interface defines the requirements for implementing a CloneEditHandler for

objects referenced by a sub-property of another parent object. The parent object is the CommerceItem and the

markers are the objects referenced by the sub-property gwpMarkers.

The subclass CollectionSubPropertyEditHandler extends the CollectionEditHandler class and

implements a SubPropertyHandler for handling collection sub-properties.

The CommerceItemMarkerEditHandler class extends the CollectionSubPropertyHandler class to handle

a collection property that contains Commerce item markers. A component of this type, which is named /atg/

commerce/custsvc/order/edit/CommerceItemGWPMarkerHandler, is defined by Commerce Service

Center to handle clone and reconciliation of Gift with Purchase Commerce item markers.

The following is an example of the CommerceItemGWPMarkerHandler:

$class=atg.commerce.order.edit.CommerceItemMarkerEditHandler

keyPropertyName=repositoryId
sortPropertyName=creationDate
collectionPropertyName=gwpMarkers
cloneEditManager=/atg/commerce/custsvc/order/edit/CloneEditManager

propertiesToCopyOnUpdate=\
 gwpCommerceItemMarker=key,,value,,data,,targetedQuantity,,
 automaticQuantity,,selectedQuantity

The CollectionEditHandler implementation supports the integration of multiple SubPropertyHandler

components. These components are configured on the CollectionEditHandler through the

subPropertyHandlers property.

The /atg/commerce/custsvc/order/edit/CommerceItemHandler contains a CollectionEditHandler

that handles Commerce items and references the SubPropertyHandler for GWP markers:

$class=atg.commerce.csr.order.edit.CSRCommerceItemEditHandler
subPropertyHandlers=/atg/commerce/custsvc/order/edit/CommerceItemMarkerHandler,\
 /atg/commerce/custsvc/order/edit/CommerceItemGWPMarkerHandler

Note that the CommerceItemHandler references two subPropertyHandlers; one for each marker property

defined on a CommerceItem.

70 10 Issuing Promotions

Note: The Commerce Service Center Copy Order and Submit Now features exclude Commerce item markers

when making a copy of the order. This means that no Gift with Purchase related information, such as which

items are manually selected gifts, will be carried over to the new order.

11 Using Order Approvals 71

11 Using Order Approvals

Agents can provide appeasements for customers by providing price overrides and manual adjustments in

orders.

Configuring Order Approval

When the order is submitted, the total of the order’s price overrides and manual adjustments can be verified

against a preset appeasement limit. If the appeasement surpasses the limit, an approval is required to continue

the order submission.

The approval system for Commerce Service Center is based on the ATG platform approval process, and provides

the process for submitting new orders that have appeasement discounts. The system consists of processes that

determine:

• If an approval is required

• Saves the data required to complete the action when approved

• Interrupts the action

• Approves or rejects the action after review

For detailed information on the ATG platform approval process, refer to the ATG Commerce Programming Guide.

The Commerce Service Center approval system generates instances of atg.commerce.csr.approvals.

Approval class to create an Order Approval object that is verified by the /atg/commerce/custsvc/

approvals/order/OrderApprovalHandler, which is the ApprovalHandler that processes order approvals.

The pipeline CheckIfOrderApprovalRequired processor calls into the ApprovalHandler to determine if the

approval is required.

The atg.commerce.csr.approvals.ApprovalsManager class calls other classes that create new approval

objects and repository items, determine if an approval is required, save or load approval objects to or from

their corresponding repository items, query the approvals repository and approve or reject an approval item.

The ApprovalManager also maintains the state of the approval, which can be PENDING, APPROVED, or

REJECTED. The ApprovalsManager uses the ApprovalType property of the Approval object to determine

which ApprovalHandler to use. The ApprovalHandler determines if approval is required. If approval is

required, the object will be saved in the approvals repository. Refer to the Commerce Service Center Order

Approval Tables (page 158) for information on the repository files.

Agent access to the approvals process is granted through the cmcApprovals access right, which is incorporated

into the CSR-Manager role. For additional information on access rights, refer to Setting Up Internal Access

Control (page 77).

72 11 Using Order Approvals

The OrderApprovalHandler checks to see if the agent placing the order does not require approval by

checking that they have the cmcApprovals access right. Then the handler checks that an appeasement limit

exists by first checking the agent’s appeasement for the currency in question and then checking the default

appeasement limit for the currency in question. Finally the handler totals the price overrides and manual

adjustments and compares them with the appeasement limit.

After the order has been sent through the approval process, an e-mail is generated using the e-mail address

associated with the approval record and e-mail templates OrderApprovalAcceptedTemplate and

OrderApprovalRejectedTemplate. The sendConfirmationEmailmethod of CSRAgentTools creates the e-

mail. If there is no e-mail address associated with the approval record, e-mail will not be sent.

Enabling the Order Approval Process

The use of appeasement limits is configured with the /atg/commerce/custsvc/util/

CSRConfigurator component usingOrderApprovals property. The default setting of this property, which is

true, enables the order approval process. You can disable the process by setting the property to false.

Setting Global Appeasement Limits

An agent’s profile defines their appeasement limit. If an agent does not have a specified appeasement limit

available in their profile, Commerce Service Center will use the global default appeasement limit for that

currency. The default appeasement limit is configured in the /atg/commerce/custsvc/util/

CSRConfigurator component with the defaultAppeasementLimits property. The appeasement limit is

based upon the currency of the order, such as:

defaultAppeasementLimits=USD=500.00

To allow an agent to have an unlimited appeasement limit, set the defaultAppeasementLImits to a value of

-1, or update the agent’s access rights to contain the cmcApprovals access right.

Modifying Individual Appeasement Limits

User profiles contain an extension that allows you to set appeasement limits in multiple values. Limits can

be set per currency. If no appeasement limit is set, the limit will default to the appeasement limits set in the

CSRConfigurator component.

By default, the appeasement limit for individuals is set to -1 in US Dollars. This removes all appeasement

verification.

To Modify an Agent’s Appeasement Limit

1. Open the BCC Home page > Access Control > Users panel. Select the agent.

2. Scroll to the General pane.

3. Click the Add button to add the appeasement limits. Enter the appeasement limit key and value.

4. Save the agent’s profile.

11 Using Order Approvals 73

Providing Approval Authorization

The cmcApprovals access right controls the agent’s ability to see the Order Approvals panel. The

cmcApprovals access right is listed in the CSR-Manager role. Agents that are granted the cmcApprovals

access right or the CSR-Manager role will be able to review orders that need approval, as well as the ability to

approve and reject orders. Appeasement limits that are applied against agents with these rights will be ignored.

Servlet Beans and Form Handlers for Approving Orders

The following servlet beans and form handlers are used for approving orders.

Find Pending Approvals Droplet Servlet Bean

Returns all approval items for the given approvalType with a state of PENDING. If no approvalType is

provided, all approvalTypes are returned.

Class atg.commerce.csr.approvals.FindPendingApprovalsDroplet

Components /atg/commerce/custsvc/approvals/FindPendingApprovalsDroplet

The FindPendingApprovalsDroplet contains the following:

Input Parameters:

• approvalType – Looks for items that are pending

• elementName – The name of the return element

Oparams:

• output – if an order has any appeasements

• empty – if there are no appeasements

Output Parameters

• element – the total appeasements for the order

Get Total Approvals For State Droplet Servlet Bean

This servlet bean queries the approvals repository and returns the total number of results for a given type of

approval.

Class atg.commerce.csr.approvals.GetTotalApprovalsForStateDroplet

Components /atg/commerce/custsvc/approvals/order/

GetTotalPendingOrderApprovalsDroplet

The GetTotalPendingOrderApprovalsDroplet contains the following:

74 11 Using Order Approvals

Input Parameters

• elementName – The name of the return element

Oparams

• output – if an order has any appeasements

• empty – if there are no appeasements

Output Parameters

• element – the total appeasements for the order

Is Order Pending Approval Droplet Servlet Bean

This servlet bean determines if an order is currently pending approval and returns the approval ID that is

associated with the order.

The servlet bean is used on confirmation pages to determine if an order emerged from the submission process

in a PENDING approval state. It is also used on the Order View page to determine if “Approve” or “Reject”

elements should appear.

Class atg.commerce.csr.approvals.order.IsOrderPendingApprovalDroplet

Components /atg/commerce/custsvc/approvals/order/

IsOrderPendingApprovalDroplet

The IsOrderPendingApprovalDroplet contains the following:

Input Parameters

• orderId

• elementName – The name of the return element

Oparams

• true – if an approval is found for the order

• false – If no approval is found for the order

• error – If an error occurred while looking up the approval

Output Parameters

• element – If found, the approval item for the order.

The following is an example of the droplet:

<dsp:droplet name="/atg/commerce/custsvc/approvals/order/IsOrderPendingApproval">
 <dsp:param name="orderId" value="orderId">
 <dsp:oparam name="output">
 <dsp:valueof param="element"/>
 </dsp:oparam>

11 Using Order Approvals 75

</dsp:droplet>

Get Total Order Appeasements Droplet Servlet Bean

This servlet bean determines if an order has any appeasements applied to it, and returns the total number of

appeasements if any are found.

Class atg.commerce.csr.order.GetTotalOrderAppeasementsDroplet

Components /atg/commerce/custsvc/order/

GetTotalAppeasementsForOrderDroplet.properties

The GetTotalOrderAppeasementDroplet contains the following:

Input Parameters

• order – The ID of the order

• elementName – The name of the return element

Oparams

• output – if an order has any appeasements

• empty – if there are no appeasements

Output Parameters

• element – the total appeasements for the order

For example:

<dsp:droplet name="/atg/commerce/custsvc/approvals/order/
 GetTotalOrderAppeasements">
 <dsp:param name="order" value="order">
 <dsp:oparam name="output">
 <dsp:valueof param="element"/>
 </dsp:oparam>
</dsp:droplet>

Order Approval Form Handler

The OrderApprovalFormHandler generates the order approval within the UI and extends the

EnvironmentChangeFormHandler. This form handler provides handlers for both approving and rejecting an

approval request. It also contains e-mail templates for approvals and rejections.

Form Handler atg.commerce.csr.approvals.order.OrderApprovalFormHandler

Components /atg/commerce/custsvc/approvals/order/OrderApprovalFormHandler

76 11 Using Order Approvals

Approval Repository Query Form Handler

The ApprovalRepositoryQueryFormHandler finds approvals of a specified state and type. It handles the

search request from the UI and returns a list of search results, as well as handles paging of the search results. This

form handler extends the RepositoryQueryTableFormHandler.

Form Handler atg.commerce.csr.approvals.order.

ApprovalRepositoryQueryFormHandler

Components /atg/commerce/custsvc/approvals/order/

ApprovalRepositoryQueryFormHandler

Update Order Approval Customer Email Form Handler

The UpdateOrderApprovalCustomerEmailFormHandler updates the customer e-mail address on an order

approval object.

Form Handler atg.commerce.csr.approvals.order.

UpdateOrderApprovalCustomerEmailFormHandler

Components /atg/commerce/custsvc/approvals/order/

UpdateOrderApprovalCustomerEmailFormHandler

For more information on Commerce Service Center specific Gift List form handlers, refer to the ATG API Reference

for Commerce Service Center.

12 Setting Up Internal Access Control 77

12 Setting Up Internal Access Control

When Commerce Service Center is installed, it is preconfigured with various access rights, global roles, and

access controllers. These elements are used to restrict access to certain pages in Commerce Service Center.

Access Control Overview

Access control in Commerce Service Center is enables you to provide different levels of access to the application

depending on the job that agents are performing. When you set up access control, you are controlling who

can access which part of the Commerce Service Center application. There are several elements connected with

access control:

• Users – Each individual, or agent, is an internal user. Each internal user is given access to the Commerce

Service Center application by an administrator. Users are members of an organization that has associated

roles, allowing them access to the Commerce Service Center application

Your customers are defined as external users. Note: Configuring customer access to different sites or shops

is done by creating segments, as described in the ATG Personalization Programming Guide and/or by creating

scenarios and targeters, as described in the ATG Personalization Guide for Business Users

• Organizations – You can group users by making them members of an organization. For example, you could

set up organizations that are based on different geographic areas, or on different business units within your

company. For additional information on creating and working with Organizations, refer to the ATG Business

Control Center Administration and Development Guide

• Roles – Roles determine the set of rights that are assigned to a user. Once you have created roles, you

associate rights and users to the role. There are Global Roles, which work across all users and organizations,

and there are organization-based roles, that usually correspond to tasks or a specific function

• Access Rights – Access rights define tasks that the user can perform, for example, creating a new customer

profile. Access rights are granted to a role. Commerce Service Center comes preconfigured with access rights

that have been designed based on specific CSR agent activities. A subset of these rights is assigned to each

Commerce Service Center role, and you assign the appropriate roles to agents to give them the access rights

they need

For further information on access rights for agents, refer to theAppendix B, Commerce Service Center Access

Rights (page 169)

78 12 Setting Up Internal Access Control

Default Internal User Access Control Configuration

The default internal user access control configuration provided with Commerce Service Center includes a

number of access controllers. The access controllers are Nucleus components that are added to your installation

when you install Commerce Service Center. The access rights and roles are repository data that you import into

your database (from supplied XML files) as a configuration step after you install Commerce Service Center. For

more information about installing and configuring Commerce Service Center, see Installing and Configuring the

Commerce Service Center Server (page 9).

Commerce Service Center Roles

Commerce Service Center comes preconfigured with four global roles for setting access rights granted to

agents. The Commerce Service Center roles use these roles as template to simplify their configuration:

• csrTicketing – Includes the access rights necessary to access the Commerce Service Center application and

to use the ticketing components

• csrOrders – Includes the access rights needed to create and modify orders. In addition, this role includes

csrTicketing as a template role, so all ticketing access rights are included. This role also includes the access

rights necessary to grant promotions using the Promotions Browser. This role does not provide authorization

to create new customer profiles, or the other rights specific to csrProfiles

• csrProfiles – Includes the access rights needed to create and modify customer profiles, set up and review

gift lists and respond to customers via e-mail. In addition, this role includes csrTicketing as a template

role, so all ticketing access rights are included. This role does not include the scheduling access rights that are

included in csrOrders

• csrManager – Includes all of the rights within both csrOrders (and thus csrTicketing) and

csrProfiles, as well as allowing price overrides

For a list of all access rights for each role, and a description of the access right, refer toAppendix B, Commerce

Service Center Access Rights (page 169).

When you create an agent’s profile in the Internal User Profile Repository, you assign the agent a role that

corresponds to the tasks the agent is authorized to perform. For example, a typical agent may be able to create

and modify orders, but only a manager can override prices and issue credits.

Access Controllers

The following table summarizes the Commerce Service Center access controllers that can be configured using

the security properties files:

ID Name

issueCredit commerce-custsvc-issue-credit-privilege

adjustPrice commerce-custsvc-adjust-price-privilege

Adjust Password commerce-custsvc-change-customer-password-privilege

viewProfile commerce-custsvc-view-profiles-privilege

12 Setting Up Internal Access Control 79

ID Name

Return commerce-custsvc-create-return-privilege

Record Return commerce-custsvc-record-merchandise—return-privilege

Change Password commerce-custsvc-change-customer-password-privilege

Create Order commerce-custsvc-create-orders-privilege

Create Profile commerce-custsvc-create-profiles-privilege

Edit Order commerce-custsvc-edit-orders-privilege

Edit Profile commerce-custsvc-edit-profiles-privilege

Issue Credit commerce-custsvc-issue-credit-privilege

browsePromotions Commerce-custsvc-browse-promotions-privilege

For more information regarding access rights and controllers, refer to the ATG Personalization Programming

Guide.

Creating New Roles

If you have requirements that none of the existing roles meet, you can create new roles.

To create new roles:

1. Open the Agent Server BCC Home page > Access Control page.

2. Select Roles to display Role Folders.

3. Select the location to store the role, or create a new role folder by accessing the + action menu.

4. Use the + action menu to create the new role.

5. Enter the name and description of the new role.

6. In the Access Rights pane add existing access rights, or create new access rights by specifying Direct Access

Rights or incorporating the access rights from existing roles by using the Template Role field.

7. Once you are finished, click Save to save your settings.

For additional information on creating roles, refer to the ATG Business Control Center Administration and

Development Guide.

Creating Agent Profiles

By default, Commerce Service Center is not preconfigured with any agent profiles. As part of setting up

Commerce Service Center, you need to:

80 12 Setting Up Internal Access Control

1. Create the necessary organization, organizational roles, global roles and access rights. Refer to the ATG

Business Control Center Administration and Development Guide for information on creating these objects.

2. Create a profile in the Internal User Profile Repository for each agent.

3. Assign each profile the necessary roles.

Note: When working in a multisite environment, you cannot set security to limit an agent per site.

Note: This account should be added only to the database that is provided with the ATG platform for evaluation

purposes. You should not include it in a production database, as this is a serious security risk.

For additional information on creating users, refer to the ATG Business Control Center User's Guide.

1. Using the Agent Server BCC Home Page, select Access Control.

2. Click the + action icon to create a new Internal User.

3. Enter the agent information.

4. Click the Orgs & Roles tab, set the agent’s organization and roles. You can also set site restrictions and user

preferences. Once you have finished, click Create.

For example, to create an agent who can work with existing orders but not create new customers, you would

select the csrOrders template role. This role contains all of the order access permissions needed to see

orders and work with orders, yet it does not contain the create customer profile permissions. Note: Both the

csrOrders and csrProfiles roles include the csrTicketing role, which allows access to the application,

the log in screen, etc. For a list of all of the access rights, refer to theAppendix B, Commerce Service Center

Access Rights (page 169)

5. You can select the user to review their rights. If you need to add additional rights, you must create a

corresponding role, and then add the role to the user profile.

Creating a New Agent Role

You can create new roles based on the requirements of your agents. You can manually create a new role and

add the Direct Access Rights individually to the role, or you can copy an existing role and modify the copy. The

following steps use the example of copying an existing role and then creating an access right for a Summer-only

agent who does not have the ability to modify orders or perform scheduled orders, exchanges or returns.

1. Open the Dynamo Server Admin and select the /atg/userprofiling/

InternalProfileRepositoy. Select the Roles component.

2. To copy one of the roles, use the <print-item> command. For example, to copy the csrManager role:

<print-item item-descriptor="role" id="csrManager"/>

This returns the following:

<add-item item-descriptor="role" id="csrManager">

<set-property name="description"><![CDATA[Role for the CSR

manager]]></set-property>

<set-property name="accessRights"><![CDATA[cmcConfirmReturnP,

cmcOrderReturnsP,issueCredit,cmcProductViewP,cmcRelatedTicketsP,

cmcApprovals,cmcConfirmNewScheduleP,cmcCustomerCreateP,adjustPrice,

cmcOrderHistoryP,cmcPromotionsP,cmcMoreCatalogsP,cmcShoppingCartP,

cmcScheduleCreateP,cmcRefundTypeP,cmcGiftlistsViewP,cmcReturnItemsP,

cmcOrderSearchP,cmcOrderResultsP,cmcSubmittedOrdersP,

12 Setting Up Internal Access Control 81

cmcCustomerResultsP,cmcConfirmOrderP,cmcAddProductByIdP,

cmcConfirmExchangeP,cmcBillingP,cmcCompleteOrderP,cmcReturnsHistoryP,

commerceTab,cmcProductCatalogSearchP,cmcShippingMethodP,cmcSchedulesP,

cmcExchangeSummaryP,cmcReturnSummaryP,cmcPurchasedItemsHistoryP,

cmcGiftlistViewPurchaseModeP,cmcRelatedOrdersP,

cmcExistingScheduledOrderP,cmcCrossSellP,cmcCustomerInfoP,

cmcTicketHistoryP,cmcCompleteExchangeP,cmcScheduleUpdateP,

cmcMorePriceListsP,cmcConfirmUpdateScheduleP,cmcReturnDetailsP,

cmcGiftlistSearchP,cmcExistingOrderP,cmcShippingAddressP,

RespondComposeMessagePanel,cmcCompleteReturnP,respondTab,

cmcScheduledOrdersP,cmcPurchaseHistoryP,cmcMultisiteSelectionPickerP,

cmcProductCatalogBrowseP,cmcCustomerSearchP,cmcCustomerP]]>

</set-property>

<!-- rdonly <set-property name="version"><![CDATA[2]]></set-property> -->

<set-property name="templateRoles"><![CDATA[csrOrders,csrProfiles]]>

</set-property>

<set-property name="name"><![CDATA[CSR-Manager]]></set-property>

</add-item>

3. Copy and paste this into the Run XML Operations Tag field.

4. Rename the ID, Description and Name. For example, change all references to CSR Manager to CSR Summer.

The renamed references are shown as bold in the following step.

5. Remove any access rights you do not want. For example, modify the existing CSRManager role by removing

rights for approvals, exchanges, returns and any other rights that the agent should not have. For example:

<add-item item-descriptor="role" id="csrSummer">

<set-property name="description"><![CDATA[Role for the CSR

Summer Staff]]></set-property>

<set-property name="accessRights"><![CDATA[cmcConfirmReturnP,

cmcProductViewP,cmcRelatedTicketsP,cmcCustomerCreateP,

cmcOrderHistoryP,cmcPromotionsP,cmcMoreCatalogsP,cmcShoppingCartP,

cmcGiftlistsViewP,cmcOrderSearchP,cmcOrderResultsP,

cmcSubmittedOrdersP,cmcCustomerResultsP,cmcConfirmOrderP,

cmcAddProductByIdP,cmcBillingP,cmcCompleteOrderP,cmcReturnsHistoryP,

commerceTab,cmcProductCatalogSearchP,cmcShippingMethodP,

cmcPurchasedItemsHistoryP,cmcGiftlistViewPurchaseModeP,

cmcRelatedOrdersP,cmcCrossSellP,cmcCustomerInfoP,cmcTicketHistoryP,

cmcMorePriceListsP,cmcGiftlistSearchP,cmcExistingOrderP,

cmcShippingAddressP,cmcPurchaseHistoryP,cmcMultisiteSelectionPickerP,

cmcProductCatalogBrowseP,cmcCustomerSearchP,cmcCustomerP]]>

</set-property>

<!-- rdonly <set-property name="version"><![CDATA[2]]></set-property> -->

<set-property name="templateRoles"><![CDATA[csrOrders,csrProfiles]]>

</set-property>

<set-property name="name"><![CDATA[CSR-Summer]]></set-property>

</add-item>

6. Click Enter to add the new role. Once the role is added, you can modify or edit it using the BCC Home page.

7. Log into the BCC Home page on the Agent Server.

8. Using the Access Control screen, select the new role.

9. Make any modifications to the role that you require and add it to the agents’ profile.

82 12 Setting Up Internal Access Control

Default Roles

The csrOrder role contains the access rights from csrTicketing, as well as four additional roles. These roles

allow the agent to browse promotions and work with Scheduled Orders. To create an agent that does not

have the ability to edit orders or to perform returns, exchanges, or appeasements, the role might contain the

following rights:

Direct Access Right Allows User to Access the…

browsePromotions Customer’s available promotions

CustomerInformationPanel Information panel on Customer page

CustomerOrderHistoryPanel Order History panel on Customer page

CustomerResultsPanel Customer Search Results panel on Customer page

CustomerSearchPanel Customer Search Panel on Customer page

CustomerTicketHistoryPanel Ticket History panel on Customer page

GlobalPanel General Preferences panel in Preferences

HelpfulOpenByIDPanel Open Solution panel in Helpful Panels

HelpfulRecentTicketsPanel Recent Tickets Panel in Helpful Panels

HelpfulTicketHistoryPanel Case History panel in Helpful Panels

HelpfulTicketSummary Case Summary panel in Helpful Panels

TasksAllTicketPanel All Tickets panel in Tickets page

TasksMyTicketPanel My Tickets panel in Tickets page

TicketActivityPanel Ticket History panel in Tickets page

TicketsCustomerInformationPanel Customer Information panel in Tickets page

TicketsResultsPanel Ticket Search Results panel in Tickets page

TicketsSearchPanel Ticket Search panel in Tickets page

TicketsSummaryPanel Ticket Summary panel in Tickets page

cmcAddProductByIdP Add Product by ID panel

cmcBillingP Billing panel

cmcCompleteExchangeP Complete Exchange panel

cmcCompleteOrderP Complete Order panel

cmcConfirmNewScheduleP Confirm New Schedule panel

12 Setting Up Internal Access Control 83

Direct Access Right Allows User to Access the…

cmcConfirmOrderP Confirm Order panel

cmcConfirmUpdateScheduleP Confirm Updated Schedule panel

cmcCrossSellP Cross Sell panel

cmcCustomerCraeteP Customer Create panel

cmcCustomerInfoP Customer Information panel

cmcCustomerP Customer panel

cmcCustomerResultsP Customer Results panel

cmcCustomerSearchP Customer Search panel

cmcExistingOrderP Exiting Order panel

cmcExistingScheduledOrderP Existing Schedule Order panel

cmcMoreCatalogsP More Catalogs panel

cmcMorePriceListsP More Price Lists panel

cmcMultisiteSelectionPickerP Multisite Site picker

cmcOrderHistoryP Order History panel

cmcOrderReulstsP Order Results panel

cmcOrderSearchP Order Search panel

cmcProductCatalogBrowserP Catalog Browser panel

cmcProductCatalogSearchP Search Catalog panel

cmcProductViewP Product View panel

cmcPromotionsP Promotions panel

cmcPurchaseHistoryP Purchase History panel

cmcPurchaseItemsHisotyrP Purchased Items History panel

cmcRelatedOrdersP Related Orders panel

cmcRelatedTicketsP Related Tickets panel

cmcScheduleCreateP Create Schedule Order panel

cmcScheduledOrdersP Scheduled Orders panel

cmcScheduleUpdateP Update Scheduled Orders panel

84 12 Setting Up Internal Access Control

Direct Access Right Allows User to Access the…

cmcScheduelsP Scheduled panel

cmcShippingAddressP Shipping Address Panel

cmcShippingMethodP Shipping Method panel

cmcShoppingCartP Shopping Cart panel

cmcSubmittedOrdersP Submitted Orders panel

cmcTicketHistoryP Ticket History panel

commerceDesignTab Commerce Design page

commerceTab Commerce page

customersTab Customers page

tasksTab Tasks page

ticketsTab Tickets page

workspaceLogin Workspace Login screen

Customizing the Default Landing Page

You can create a default landing page for the agents by configuring /DCS-CSR/install/

data/csrOptions file. Change the defaultValue property of the GlobalOption item-descriptor with the

id="AgentUserDefaultHomeTab” to the desired value.

For example, change the <set-property name="defaultValue" value="commerceTab"/> to <set-

property name="defaultValue" value="orderTab"/> to change the default landing page to the order

page.

13 Configuring E-mail 85

13 Configuring E-mail

Customizing E-Mail

Note: These components are modified using the ACC.

Configuring E-mail Notifications

When an agent creates a new customer profile, a password is automatically generated for the customer’s

account, and a notification is typically sent to the customer’s e-mail address. The /atg/svc/agent/UI/

Formhandlers/CustomerProfileFormHandler component uses the following properties to manage new

account e-mail notifications:

Property Name Description

newAccountTemplateEmailInfo The atg/svc/email/

DefaultTemplateEmailInfo component creates

the e-mail message.

persistNewAccountEmails If true, new account e-mails are persisted in the

customer’s profile before they are sent. Default is

false.

sendNewAccountEmailInSeparateThread If it is a new account, e-mail is sent in a separate

thread. The default is true.

sendNewAccountEmails If true, an e-mail containing the new account login

and password is generated and sent to the customer.

Default is true.

For information about configuring a TemplateEmailInfo component, see the ATG Personalization

Programming Guide.

Automatically Sending E-mail for Orders

To configure an automatic e-mail to be sent when an order is created or updated, use the /atg/commerce/

custsvc/order/CommitOrderFormHandler.properties:

Confirmation Email Settings

86 13 Configuring E-mail

autoSendEmail=false
autoSendNewOrderEmail=false
autoSendUpdateOrderEmail=false

By default, these properties are set to false. To enable an automatic e-mail whenever a new order is created,

the autoSendEmail and autoSendNewOrderEmail properties should be set to true. To enable an automatic

e-mail whenever an order is updated, the autoSendEmail and autoSendUpdateOrderEmail properties

should be set to true.

Configuring New Passwords

When an agent generates a new password for a customer in the Commerce Service Center, the customer’s

profile must have a valid e-mail address so the new password can be e-mailed to the customer. The /atg/svc/

agent/UI/Formhandlers/CustomerProfileFormHandler component uses the following properties to

manage passwords:

Property Name Description

persistResetPasswordEmails If true, new passwords are persisted in the

customer’s profile before they are sent. Default is

false.

resetPasswordtemplateEmailInfo The resetPasswordTemplateEmailInfo

component that creates the e-mail message. Default

is ForgotEmailTemplateInfo (in /atg/svc/

email/).

sendResetPasswordEmailInSeparateThread If true, the reset password e-mail is sent in a

separate thread. The default is true.

sendResetPasswordEmails If true, an e-mail containing the new password is

generated and sent to the customer. Default is true.

For information about configuring a TemplateEmailInfo component, see the ATG Personalization

Programming Guide.

Configuring Order Confirmation E-Mails

It is possible to configure e-mail confirmations that occur once an order has been placed. The /atg/commerce/

custsvc/util/CSRAgentTools component configurationEmailMap allows you to configure order

confirmation e-mails.

Property Name Description

APPROVAL_ACCEPTED /atg/commerce/custsvc/profile/ApprovalAcceptedEmailInfo

APPROVAL_REJECTED /atg/commerce/custsvc/profile/ApprovalRejectedEmailInfo

13 Configuring E-mail 87

Property Name Description

NEW_ORDER /atg/commerce/custsvc/profile/NewOrderEmailInfo

ORDER_EXCHANGE /atg/commerce/custsvc/profile/OrderExchangeEmailInfo

ORDER_RETURN /atg/commerce/custsvc/profile/OrderReturnEmailInfo

ORDER_UPDATE /atg/commerce/custsvc/profile/OrderUpdateEmailInfo

SCHEDULED_ORDER

_UPDATE

/atg/commerce/custsvc/profile/

ScheduledOrderUpdateEmailInfo

SCHEDULED_ORDER_ADD /atg/commerce/custsvc/profile/ScheduledOrderAddEmailInfo

A new e-mail information component can be associated with any of the keys to override the default e-mail

component.

If you are working in a multisite environment, you can configure the site in the order objects to include site

information in different parts of the configuration e-mail. For example, you could enter all of the From field

values into a branch based on the order’s submit site. Additionally, you could add a property to the From site

object and reference that property based on the order’s submit site.

Configuring E-Mail Templates

The TemplateEmailSender service is responsible for sending template-based e-mail. Using

TemplateEmailInfo, it renders the page specified using the templateURL. For information on working with e-

mail notifications and templates, refer to the ATG Personalization Programming Guide.

Commerce Service Center provides a default e-mail template implementation for each of the following actions:

• New Account Registration

• New Account Registration Following Checkout

• Password Reset

• New Order Confirmation

• Order Modification Confirmation

• Return Confirmation

• Exchange Confirmation

The e-mail information component can be reconfigured to use a different templateURL property, which points

to a different JSP page specifying a different template.

To change an e-mail template, modify the templateURL property of any of the following TemplateEmailInfo

components:

• /atg/svc/email/NewAccountTemplateEmailInfo

• /atg/commerce/custsvc/profile/NewAccountEmailInfo

88 13 Configuring E-mail

• /atg/svc/email/ResetPasswordTemplateEmailInfo

• /atg/commerce/custsvc/profile/NewOrderEmailInfo

• /atg/commerce/custsvc/profile/OrderExchangeEmailInfo

• /atg/commerce/custsvc/profile/OrderReturnEmailInfo

• /atg/commerce/custsvc/profile/OrderUpdateEmailInfo

14 Using Catalogs and Price Lists 89

14 Using Catalogs and Price Lists

The following section provides information on configuring catalogs and price lists in Commerce Service Center.

Configuring Current Catalog and Price Lists

Commerce Service Center contains two global environment objects used by the application to manage catalogs

and orders: current catalog and current price list. The current settings of these objects can be viewed and

changed in the Commerce page submenu.

The current catalog and price list used are specified in the agent’s profile. The catalog and price list

are initialized using information from the current customer. When the agent logs in, the current

catalog and price list are initialized based on the CSRConfigurator.defaultCatalogId and

PriceListManager.defaultPriceList settings. However, when the agent selects a new customer, the

current catalog and price list settings automatically adjust to whatever has been assigned to the customer.

Using the Current Catalog

The current catalog determines which catalog is used by the agent when browsing and searching the catalog. If

using a multisite environment, the catalogs are site-aware.

The value of the current catalog can be set by the following actions:

• When the agent first logs in, a new, transient profile is automatically loaded as the active customer. The

current catalog is set from the new profile’s assigned catalog. If the profile does not have an assigned catalog,

the current catalog is set based on the CSRConfigurator defaultCatalogId property

• When the agent selects a customer from the profile repository to be the active customer, the current catalog

is set based on the selected profile’s assigned catalog

• If multisite has been enabled, when an agent selects a site, the default catalog associated with that site will

become the current catalog

• The agent can manually select a different catalog using the UI. Once an agent has explicitly selected a catalog,

that catalog remains active even if a new customer with a different assigned catalog is selected from the

repository. Starting a new call will reset the current catalog and remove the agent’s explicitly selected catalog

90 14 Using Catalogs and Price Lists

Using the Current Price List

The current price list is only used when the price lists are employed. It determines which price list is used for

catalog and order pricing operations. It is also used to determine the pricing locale.

The CSRConfigurtor has a property called usingPriceLists, which must be set to true when the

application is using price lists.

The values of the current price list can be set by the following actions:

• When the agent first logs in, a new, transient profile is automatically loaded as the active customer. The

current price list is set from the new profile’s assigned price list. If the profile doesn’t have an assigned price

list, the current price list is set based on the PriceListManager defaultPriceList

• When the agent selects a customer from the profile repository to be the active customer, the current price list

is set based on the selected profile’s assigned price list

• When the agent selects an order from the repository to be the active order, the current price list is set based

on the first commerce item in the order with a price list assigned. A commerce item’s price info contains a

reference to the price list used to the price it

• If multisite is enabled, when the agent selects a site, the price list will change to the price list for that site

• The agent can manually select a different price list using the UI. Once an agent has explicitly selected a price

list, that price list remains active even if a new customer with a different assigned price list is selected from the

repository. Starting a new call will also reset the current price list and remove the agent’s explicitly selected

price list

CSREnvironmentTools

This component contains the API for gaining access to the current catalog and current price list.

Class atg.commerce.csr.environment.CSREnvironmentTools

Component /atg/commerce/custsvc/environment/CSREnvironmentTools

CSRAgentTools

This component contains the API for generating a parameter map for pricing operations that contains the active

price list.

Class atg.commerce.csr.util.CSRAgentTools

Component /atg/commerce/custsvc/util/CSRAgentTools

ChangeCatalogAndPricelist Form Handler

This form handler component is used to manually change the catalog and price list through the UI.

14 Using Catalogs and Price Lists 91

Form Handler atg.svc.agent.environment.EnvironmentChangeFormHandler

Component /atg/commerce/custsvc/environment/

ChangeCatalogAndPricelist

Defining the Default Catalog

The catalog displayed to the user is derived from the catalog assigned in their profile. If there is no catalog

assigned, the defaultCatalogId property of the /atg/commerce/custsvc/util/CSRConfigurator

component specifies the catalog to use for anonymous shoppers.

Defining the Default Price List

If your site uses price lists, you must configure the following:

• The /atg/commerce/custsvc/util/CSRConfigurator component property usingPriceLists must be

set to true. This enables the use of price lists

• Each customer must be assigned a price list. The defaultPriceListId property of the /atg/commerce/

pricing/pricelists/PriceListManager component specifies the price list to use for anonymous

shoppers

Setting the Pricing Locale

The active customer pricing locale drives the currency and currency codes of prices used in Commerce Service

Center. The active pricing locale may be customized based on the supported currencies of the store. This

component is modified using CRSAgentTools.

Class atg.commerce.csr.util.CSRAgentTools

Component /atg/commerce/custsvc/util/CSRAgentTools

The getActiveCustomerPricingLocale() method provides access to the pricing locale and will return the

price list locale (if one is specified and price lists are being used). If the price list locale is unavailable, the locale

stored in the customer profile is used. Failing that, if /atg/commerce/custsvc/util/

CSRAgentTools.useRequestLocale=true, the current request locale is used. If all of these attributes are

unavailable, the value of the /atg/commerce/pricing/PricingTools.defaultLocale is used.

Specifying Quick Access Catalogs and Price Lists

Quick access catalogs and price lists are available as sub-navigational menus from the catalog and price list

menus, allowing agents quick access to the most commonly used catalogs and price lists.

Quick access catalogs and price lists are configured by creating SiteOption items in the /atg/svc/option/

OptionRepository and specifying the catalog or price list IDs of the catalogs or price lists that should appear

92 14 Using Catalogs and Price Lists

in the quick-access menus. The defaultValue property specifies a list of catalog or price list IDs for the catalogs

or price lists to display.

The following is an example of a quick-access catalog site:

 <add-item item-descriptor="SiteOption" id="QuickAccessCatalogs">
 <set-property name="name" value="QuickAccessCatalogs"/>
 <set-property name="accessRight" value="serviceAdminDefaultRight"/>
 <set-property name="multiValued" value="true"/>
 <set-property name="dataType" value="String"/>
 <set-property name="defaultValue" value="catalog10002,masterCatalog"/>
 </add-item>

The following is an example of a quick-access price list site:

 <add-item item-descriptor="SiteOption" id="QuickAccessPriceLists">
 <set-property name="name" value="QuickAccessPriceLists"/>
 <set-property name="accessRight" value="serviceAdminDefaultRight"/>
 <set-property name="multiValued" value="true"/>
 <set-property name="dataType" value="String"/>
 <set-property name="defaultValue" value="listPrices,plist20003,salePrices"/>
 </add-item>

For additional information on configuring catalogs and price lists, refer to the ATG Commerce Programming

Guide.

15 Understanding Environment Monitoring 93

15 Understanding Environment

Monitoring

An environment is the collective state of an agent’s current working context. Environment monitoring defines

the integration of applications within an environment and coordinates changes to global environment objects.

Overview of Environment Monitoring

Commerce Service Center exposes the following global objects to the environment management system:

• Current Order – The order the agent is currently working on

• Current Catalog – The catalog context the agent is current working in

• Current Pricelist – The currently selected price list. This price list is used for pricing operations on the catalog,

cart and checkout pages

• Current Site – The currently selected site. Agent actions, such as change order, or start new call will maintain

the appropriate state per site

• Site versus Catalog Mapping – In the product catalog page, by default the site’s default catalog is used for

browsing and searching. If the agent chooses a different catalog for the site, the currently selected catalog

is used for browse and product searches. The mapping is cleared when the agent switches from the current

sharing group to another sharing group

Environment Monitoring Components

The following components are used to configure environment monitoring.

94 15 Understanding Environment Monitoring

CSREnvironmentTools

Class atg.commerce.csr.environment.CSREnvironmentTools

Component /atg/commerce/custsvc/environment/CSREnvironmentTools

This component provides the core API for applying changes to the Commerce Service Center environment

objects. It also provides the API for accessing the Commerce Service Center-managed environment objects.

The CSRENvironmentTools component contains the doSitesShare method, which checks to see if the

current site and the desired new site share the same site group. If both sites share the same site group, the

method returns true.

CSREnvironmentMonitor

Class atg.commerce.csr.environment.CSREnvironmentMonitor

Component /atg/commerce/custsvc/environment/CSREnvironmentMonitor

This component detects changes, generates warnings and applies changes for Commerce Service Center-

managed objects.

The CSREnviornmentMonitor component contains the following methods:

• getUsersCatalog() calls the core Commerce API to find the right catalog

• getUsersPriceList() calls the core Commerce API to find the right price list

• getUsersSalePriceList() calls the core Commerce API to find the right sales pricelist

• generateDependentDetailsForActiveSiteChange() will change the order, catalog, pricelist and sale

price list if the site is changed

• generateSiteChangeForOrderChange() generates the site change for the order change. If the order

contains the submitted state, the submitted site is loaded as the current site

CSREnvironmentConstants

Class atg.commerce.csr.environment.CSREnvironmentConstants

This static class exposes the environment change keys and their input parameters defined by Commerce

Service Center. The orderId parameter is an example of an input parameter name required to execute the

changeOrder change.

15 Understanding Environment Monitoring 95

EnvironmentChangeFormHandler, ChangeOrder

These components are used to perform Commerce Service Center environment changes from UI gestures.

Form Handler atg.svc.agent.environment.EnvironmentChangeFormHandler

atg.commerce.csr.environment.ChangeOrder

Components /atg/commerce/custsvc/environment/ChangeCatalogAndPriceList

/atg/commerce/custsvc/environment/ChangeOrder

/atg/commerce/custsvc/environment/CreateNewOrder

/atg/svc/agent/environment/ChangeSiteFormHandler

The existing EnvironmentChangeFormHandler is used to change a site. The following is the sample form for

changing sites:

<svc-ui: frameworkUrl var="errorURL" panelStacks=""/>
 <svc-ui: frameworkUrl var="successfulSiteChangeURL"
 panelStacks="globalPanels,cmcShoppingCartPS" tab="commerceTab"/>
 <%/*form used to change a site */%>
 <dsp: form style="display: none" id="atg_commerce_csr_loadExistingSiteForm"
 formid="atg_commerce_csr_loadExistingSiteForm">
 <dsp: input type="hidden" name="errorURL" value="${errorURL}"
 bean="/atg/svc/agent/environment/ChangeSiteFormHandler.errorURL" />
 <dsp: input type="hidden" name="successURL" value="${successfulSiteChangeURL}"
 bean="/atg/svc/agent/environment/ChangeSiteFormHandler.successURL" />
 <dsp: input type="hidden" name="siteId" bean="/atg/svc/agent/environment/
 ChangeSiteFormHandler.inputParameters.siteId" value=""/>
 <dsp: input type="hidden" priority="-10"
 bean="/atg/svc/agent/environment/ChangeSiteFormHandler.changeEnvironment"
 value=""/>
 </dsp: form>

The following is the ChangeSiteFormHandler.properties configuration for changing sites:

/atg/svc/agent/environment/ChangeSiteFormHandler.properties
$class=atg.svc.agent.environment.EnvironmentChangeFormHandler
$scope=request
 environmentTools=/atg/svc/agent/environment/EnvironmentTools
 transactionManager=/atg/dynamo/transaction/TransactionManager
 messageTools=/atg/web/messaging/MessageTools
 confirmURL=include/environment/confirm.jsp
 confirmPromptURL=include/environment/changePrompt.jsp
 environmentChangeKey=changeSite
 environmentChangeState=/atg/svc/agent/environment/EnvironmentChangeState
 doWarnings=true
 doTicketDispositionPrompt=true
 applicationName^=/atg/svc/agent/environment/
 EnvironmentTools.agentApplicationName
 ticketingTools=/atg/svc/agent/ticketing/TicketingTools

For additional information on this form handler, refer to the ATG API Reference for Commerce Service Center.

96 15 Understanding Environment Monitoring

Ticket Disposition Monitoring

Commerce Service Center includes the ability to automatically handle the disposition of the current ticket

whenever it changes. Whenever a different ticket will be loaded into the environment because of a change

request, one of several disposition options must be selected for the ticket being replaced (e.g. the current ticket).

For detailed information on ticket disposition, refer to the ATG Ticketing User Guide.

Commerce Service Center uses the /atg/commerce/custsvc/ticketing/

CSRTicketDispositionMonitor, which it adds to the ticketing manager’s ticketDispositionMonitors

property. This ticketing monitor’s shouldDiscard() and shouldDiscardImmediately()

methods both return false if a ticket contains any of the activity types listed in the monitor’s

nonDiscardableActivityTypes property.

This property is an array of activity type names. By default, nonDiscardableActivityTypes is set to a list

of all Commerce activity types, which means that CSRTicketDispositionMonitor will not allow a ticket

to be discarded if there are any Commerce activities associated with the ticket. You can change this behavior

by setting the value of this property to a different list of activity types. For detailed information on discarding

tickets, refer to the Discarding Tickets section of the ATG Ticketing User Guide.

EnvironmentTools

When you are creating a multiple site environment, changing one environment object may affect another

environment object. For example, if you change an order, it may change the site, price list, sale price list, user,

ticket or other environment-managed objects.

In a multisite setting, environment management recognizes site support and manages site-related effects.

Because basic site environment management support is added to Service Center, functions like pricing model

holder initialization, site dependent changes or order dependent changes are supported using the /atg/svc/

agent/environment/EnvironmentTools API.

The atg.svc.agent.environment.EnvironmentTools API is configured as follows:

/atg/svc/agent/environment/EnvironmentTools.java
 public void addChangeSiteDetail(String pNewSiteId,
EnvironmentChangeState
 pEnvironmentChangeState) throws EnvironmentChangeDetailConflict,
 EnvironmentException {}
 public Site getCurrentSite() throws EnvironmentException {}
 public void setCurrentSite(Site pSite) throws EnvironmentException {}

The following methods are used to get or set site information:

• addChangeSiteDetail – This method adds site change details

• getCurrentSite – This method obtains the current site from the CurrentSiteHolder

• setCurrentSite – This method sets the current site in the CurrentSiteHolder

The ServiceEnvironmentMonitor API also sets site information:

/atg/svc/agent/environment/ServiceEnvironmentMonitor.java
 protected void
 generateInitialChangesForChangeSite(EnvironmentChangeState
 pEnvironmentChangeState) throws EnvironmentException {}

15 Understanding Environment Monitoring 97

 public void revertSiteChangeDetail(EnvironmentChangeDetail
 pEnvironmentChangeDetail,EnvironmentChangeState
 pEnvironmentChangeState) {}
 public void applySiteChangeDetail(EnvironmentChangeDetail
 pEnvironmentChangeDetail, EnvironmentChangeState
 pEnvironmentChangeState)throws EnvironmentException {}

The ServiceEnvironmentMonitor uses the following methods:

• generateInitialChangesForChangeSite – generates initial changes for the change site

• applySiteChangeDetail – This method applies the site change information in the CurrentSiteHolder

• revertSiteChangeDetail – This method reverts site details to the old site details that are set in the

CurrentSiteHolder

Environment Management and Site Context

Sites are defined with a Site ID. Environment management monitors the site environment using the

CurrentSiteHolder object. Whenever the site is changed, the CurrentSiteHolder is updated with the

current site.

For each request siteContext is set using the CurrentSiteContextRuleFilter component in

atg.multisite.SiteContextPipelineServlet. If CurrentSiteContextRuleFilter returns a siteId,

then the siteId is set as the site context for the entire request. The CurrentSiteContextRuleFilter gets

the current site from the CurrentSiteHolder.

If the CurrentSiteHolder.currentSite is empty, then the site context is not set. If the site context is not set,

then environment management picks the catalog and price list based on the current user. If the site context is

set, then environment management picks the catalog and price list based on the current site and user.

98 15 Understanding Environment Monitoring

16 Pricing in Commerce Service Center 99

16 Pricing in Commerce Service Center

The following section outlines how pricing is performed in Commerce Service Center and describes the

components and API that can be used or modified to change pricing behavior. For information on core

Commerce pricing, refer to the ATG Commerce Programming Guide.

Loading Orders and Pricing

When a modifiable order is loaded into the current global context, or selected by an agent, it is priced by

Commerce Service Center using the CSREnvironmentMonitoring component. The entire order is priced using

PricingConstants.OP_REPRICE_ORDER_TOTAL as the pricing operation.

Only modifiable orders are priced when selected for the global context, however, it is possible to configure

which orders can be modified by Commerce Service Center based on the state of the order. CSRAgentTools

contains API and configurable properties for determining which orders are considered modifiable by state.

Determining if Orders are Modifiable

The CSRAgentTools.isOrderModifiable(Order pOrder) method determines if an order is modifiable by

comparing the order’s current state to the configured values and can be extended if necessary.

An order is not modifiable when:

• Any items in the order have been shipped

• Any payment groups in the order are in a non-modifiable state

• The order is in a non-modifiable order state

The following example displays the configurable properties in /atg/commerce/custsvc/util/

CSRAgentTools:

#both nonModifiableOrderStates and nonModifiablePaymentGroupStates are
#used to determine a non-modifiable order.

#states that indicate an order cannot be modified
nonModifiableOrderStates=REMOVED,\
 QUOTED,\
 NO_PENDING_ACTION,\
 PENDING_REMOVE,\
 PENDING_CUSTOMER_RETURN,\

100 16 Pricing in Commerce Service Center

 AGENT_REJECTED

nonModifiablePaymentGroupStates^=\
/atg/commerce/order/PaymentGroupManager.nonModifiablePaymentGroupStates=REMOVED,\
 SETTLED

Determining if Orders are Submitted

The CSRAgentTools.isOrderSubmitted method determines if an order is in a submitted state. Submitted

order states are configured using the submittedOrderStates property of CSRAgentTools:

submitedOrderStates=SUBMITTED, PROCESSING, PENDING MERCHANT ACTION

Commerce Service Center uses this API to:

• Determine which pipelines to use for clone edit initialization and reconciliation. All orders that the API

considers submitted use pipelines configured for the submitted state

• Determine if the original order prices should be used to price the order

• Present dynamic page content when working on a submitted order. For example, disabling the Promotion

Browser when working on a submitted order

Price Lists and Pricing

When configured to use price lists, Commerce Service Center provides two global context price lists: one for list

prices and another for sale prices. Commerce Service Center takes advantage of a Commerce feature that allows

the price lists to be passed into the pricing engine through the extra parameter map to override the default

behavior that determines which price list to use. The following Commerce PricingTools API is used for pricing

orders. For additional information, refer to the ATG Commerce Programming Guide. Note the Map parameter that

is included on the API:

public OrderPriceInfo priceOrderTotal(Order pOrder,
 PricingModelHolder pPricingModels,
 Locale pLocale,
 RepositoryItem pProfile,
 Map pExtraParameters)

The CSRAgentTools API generates a map that contains the IDs of the current global context price list

selections. This API is used by Commerce Service Center to generate the extra parameter map for pricing

operations. Commerce Service Center has also extended createRepriceParameterMap of all the

PurchaseProcessFormHandlers to call this API:

public Map addPriceListParameter(Map pExtraParameters)

The CSRAgentTools API is used for pricing an order that will call addPriceListParameter as part of the

process:

16 Pricing in Commerce Service Center 101

public void repriceOrder(String pRepricingOperation, Order pOrder,
 PricingModelHolder pUserPricingModels,
 Locale pLocale, RepositoryItem pCustomerProfile,
 RepositoryItem pAgentProfile,Map pExtraParameters,
 PipelineErrorHandler pErrorHandler)

When loading an order into the global context, Commerce Service Center attempts to extract the correct

price lists from the order itself. If the price lists can be determined from the order, they will load into the global

context at the same time as the order.

CSREnvironmentTools contains the API for accessing the global context price list selections, setting new

global context price list selections and extracting a price list from an order:

public RepositoryItem getCurrentPriceList()
public RepositoryItem getCurrentSalePriceList()
public void setCurrentPriceList(RepositoryItem pPriceList)
public void setCurrentSalePriceList(RepositoryItem pPriceList)
public RepositoryItem getListPriceListFromOrder(Order pOrder)
public RepositoryItem getSaleListPriceListFromOrder(Order pOrder)

For additional information on environment monitoring, refer to the Understanding Environment Monitoring (page

93) section.

Automatic Removal of Items

If Commerce Service Center is configured to use price lists, it will automatically remove items from the order that

cannot be priced by the current global context price list. This avoids pricing errors when the order is first loaded.

When loading an order into global context, Commerce Service Center attempts to determine the correct price

lists (list price list and sale price list) to use by extracting them from the order being loaded. This helps eliminate

the problem of removing items from an order because an incorrect price list is in global context when the order

is loaded. Commerce Service Center automatically changes the global context price list selections to match

those found in the order.

Promotions

Commerce Service Center defines two PricingModelHolders for pricing orders. Commerce Service Center

decides which one to use based on the state of the order and each holder is initialized with promotions

differently.

• atg/commerce/custsvc/pricing/CustomerPricingModels – this holder is used when pricing

incomplete orders. It is initialized with the active customer’s current promotions

• atg/commerce/custsvc/pricing/SubmittedOrderPricingModels – this holder is used when pricing

submitted orders. It is initialized with the order’s applied promotions

102 16 Pricing in Commerce Service Center

Incomplete Orders or Schedule Order Templates

Commerce Service Center uses the active customer’s current promotions when pricing incomplete (e.g. orders

not submitted) orders.

Submitted Orders

For orders that have already been submitted to fulfillment, Commerce Service Center uses the promotions that

were originally applied to the order when it was submitted.

Note that this is not the same as the promotions that were available at the time the order was submitted. It only

includes the promotions that were applied to the order when it was submitted. For example, if a buy-two-get-

one-free promotion was available when the order was submitted but only one was purchased and therefore

not applied to the order, that promotion will not be in the SubmittedOrderPricingModels when the order is

modified after submission to add the second item.

Determining the Correct PricingModelHolder

CSREnvironmentTools contains an API that returns the correct pricing model holder for the order currently

loaded into the global context. CSREnvironmentMonitor and all of the Commerce Service Center extensions

to the PurchaseProcessFormHandler call this API to determine the correct pricing model holder for pricing

operations.

public PricingModelHolder getCurrentOrderPricingModelHolder

Configuring Manual Pricing Adjustments

It is possible to adjust an order total by a fixed amount. Adjustments can either be a fixed increase (debit) or

decrease (credit) to the order total. The details of a manual adjustment such as the amount, adjustment type and

reason code are permanently stored within the database. For information on the corresponding Commerce API,

refer to the ATG Commerce Programming Guide.

All manual adjustments are created as transient repository items. Subsequent processing in the updateOrder

pipeline determines if the adjustments is permanently added to the repository based on the following rules.

• All adjustments created for submitted orders are unconditionally persisted to the repository. As configured by

default, this is the only time Commerce and Commerce Service Center unconditionally saves adjustments to

the repository

• All adjustments created for persistent, incomplete orders are conditionally saved based on configuration.

Commerce Service Center uses a Boolean configuration setting, whose default value is false, that

determines if adjustments should be saved immediately for persistent, incomplete orders

The Commerce updateOrder pipeline contains a processor that saves the manual adjustment items to the

repository when appropriate. saveManualAdjustment executes the atg/commerce/order/

16 Pricing in Commerce Service Center 103

processor/SaveManualAdjustments processor with the following two processor configurations:

#
The processor will save the manual adjustments to the repository for
orders in these states, depending on the value of saveIncomplete
saveForIncompleteOrders
#
incompleteStates^=/atg/commerce/order/OrderLookupService.incompleteStates
#
The processor will save the manual adjustments to the repository for
orders in the configured incomplete states if this property is true.
Otherwise, the manual adjustments are not saved for incomplete orders.
#
saveIncompleteOrderAdjustments=false

Important: Be aware of a condition that may occur when saving incomplete manual adjustments. Manual

adjustments are, by default, applied unconditionally. Once added to the order, manual adjustments affect the

order’s price despite the contents of the order. This is important if an incomplete order is saved with manual

adjustments as subsequent changes to the order at checkout time will not change any adjustments that have

been applied. For example, if an agent applies a $20 credit adjustment to an order with $100 merchandise and

saves it in an incomplete state, the customer could return and remove $80 worth of merchandise from the order

and checkout with a $0 total. As such, the processor is configured by default to not save manual adjustments for

incomplete orders.

The OrderAdjustmentCalculator adjusts the order’s subtotal based on the manual adjustments associated

with the order. The /atg/commerce/pricing/calculators/

OrderAdjustmentCalculator component contains the following configuration:

$class=atg.commerce.pricing.OrderAdjustmentCalculator
pricingTools=/atg/commerce/pricing/PricingTools

The adjustment calculator is added as a postCalculator in the /atg/commerce/pricing/

OrderPricingEngine. As such, the calculator runs after the pre-calculators and all calculators associated with

any promotions for the order. The configuration for the OrderPricingEngine is:

postCalculators+=\
 calculators/OrderAdjustmentCalculator

For additional information on pricing and calculators, refer to the Working with Exchange Orders (page 59)

section and the ATG Commerce Programming Guide.

104 16 Pricing in Commerce Service Center

17 Working with Shipping and Payment Groups 105

17 Working with Shipping and

Payment Groups

Commerce Service Center supports, by default, three shipping group types: Hard Goods, Electronic and In Store

Pickup. Commerce Service Center also supports, by default, the following payment group types: Gift Certificate,

Credit Card, Store Credit, Pay In-Store and Cash.

You can customize shipping groups and payment groups to do things such as add custom fields or add support

for a new shipping group type. For additional information on working with shipping and payment groups, refer

to the ATG Commerce Programming Guide.

For detailed information on working with the Service Center UI and using page fragments, refer to the ATG

Service Center UI Programming Guide.

Shipping Group Page Fragments

Shipping and payment group configuration is defined using the atg.commerce.csr.order.

CommerceTypeConfiguration class. The class contains the following:

protected PageFragment mAddPageFragment;
protected PageFragment mEditPageFragment;
protected PageFragment mDisplayPageFragment;
protected PageFragment mImagePageFragment;
protected String mResourceBundle;
protected String mType;
protected String mAddPageFragmentTitleKey;
protected String mEditPageFragmentTitleKey;
protected String mImageHoverTextKey;

The CommerceTypeConfiguration class uses the following properties:

Property Description

addPageFragment Adds a specific shipping or payment group type.

editPageFragment Edits a specific shipping or payment group type.

106 17 Working with Shipping and Payment Groups

Property Description

displayPageFragment Displays a specific shipping or payment group type.

imagePageFragment Displays an image used with a specific shipping or payment group type.

resourceBundle The configuration used to obtain the resourced values.

type The primary key used to identify the shipping or payment group type

configuration. The key is used as a map key for the system-generated

shipping or payment group configuration map, which locates the

configuration type.

addPageFragmentTitleKey Defines the text used in the AddPageFragment title.

editPageFragmentTitleKey Defines the text used in the EditPageFragment title.

imageHoverTextKey Defines the text displayed when a user hovers over the image defined in

the ImagePageFragment.

Commerce Service Center provides the following default shipping group types: hard goods, electronic goods

and in-store pickup. Shipping group types are configured using the atg.commerce.csr.order.

CommerceTypeConfiguration class. The following information describes how to reconfigure the default

shipping group types or to configure new types.

The shipping group configuration files and the shipping group page fragment configuration files are available at

the following locations:

File Location

Configuration File /DCS-CSR-UI/config/atg/commerce/custsvc/ui/

Page Fragments /DCS-CSR-UI/j2ee-apps/DCS-CSR-UI/include/order/

Display JSPs /DCS-CSR-UI/j2ee-apps/DCS-CSR-UI/include/order/

Add and Edit JSPs /DCS-CSR-UI/j2ee-apps/DCS-CSR-UI/panels/order/shipping/

Working with Shipping Group Page Fragments

To change how your shipping groups are displayed, you must modify the displayPageFragment property

page fragment file. Each shipping group type defines three display values that appear on various pages. A

display value consists of a title and content and is configured in the display page fragment JSP file, where the

three display values are identified in the file as value1, value2 and status.

You can customize the default display values for the existing shipping group types. However, if you create new

shipping group types, each new shipping group type must have a defined set of display values.

The following display values are configured for the hard good shipping type:

17 Working with Shipping and Payment Groups 107

Value Title Content Example

Value1 Shipping Address [first] [last]

[address 1]

[address 2]

[city], [state] [zip code]

[country]

[phone number]

Bob Smith

119 Grand Street

Apt. 1509

Brooklyn, NY 10023

USA

212-555-4321

Value2 Shipping Method [shipping method] Ground

Status Status [shipping group status] Ready to Ship

The following display details are configured for the electronic shipping group type:

Value Title Content Example

Value1 Electronic Address [email address] bsmith@company.com

Value2 Blank [blank] Blank

Status Status [shipping group status] Emailed

The following display values are configured for the in-store pickup shipping group type:

Value Title Content Example

Value1 Store Address [store name]

[address 1]

[address 2]

[city], [state] [zip code]

[country]

[phone number]

The Big Store

11 Flatbush Street

Suite 1509

Brooklyn, NY 10023

USA

212-555-9874

Value2 Blank [blank] Blank

Status Status [shipping group status] The goods are ready for

pickup.

Display details are used on the following pages for all shipping group types, unless otherwise indicated:

108 17 Working with Shipping and Payment Groups

Display Location Value1 Value2 Status

Shipping Addresses Page

Shipping Method Page (hard good only)

Billing

X

Order Review Page

Return Items Page

Confirmation Emails

X X

Order View Page

Scheduled Orders Page

X X X

The /DCS-CSR-UI/atg/commerce/custsvc/ui/HardGoodShippingGroupConfiguration.

properties, ElectronicGoodShippingGroupConfiguration.properties and

InStorePickupShippingGroupConfiguration.properties files hold all of the properties of the page

fragments. The following is an example of the HardGoodShippingGroupConfiguration.properties file:

$class=atg.commerce.csr.order.CommerceTypeConfiguration

addPageFragment=/atg/commerce/custsvc/ui/fragments/order/
 AddHardgoodShippingGroup
editPageFragment=/atg/commerce/custsvc/ui/fragments/order/
 EditHardgoodShippingGroup
displayPageFragment=/atg/commerce/custsvc/ui/fragments/order/
 DisplayHardgoodShippingGroup
imagePageFragment=/atg/commerce/custsvc/ui/fragments/order/
 HardgoodShippingGroupImage
type=hardgoodShippingGroup
addPageFragmentTitleKey=addHardgoodShippingGroupTitle
editPageFragmentTitleKey=editHardgoodShippingGroupTitle
imageHoverTextKey=hardgoodShippingGroupImageHoverText
resourceBundle=atg.commerce.csr.order.WebAppResources

The DisplayHardgoodShippingGroupConfiguration.properties file identifies the location of your page

fragment JSP file and the servletContext. For example:

$class=atg.web.PageFragment

URL=/include/order/displayHardgoodShippingGroup.jsp
servletContext=DCS-CSR

The displayHardgoodShippingGroup.jsp file contains the values for the display details, including the title

and the content. You must modify the value1, value2 and status properties with your custom information.

The combination of these parameters defines one display value, such as value1:

• displayValue – This optional parameter is used to display the value of the desired field

• displayHeading – This optional parameter is used to display the heading of the desired field

17 Working with Shipping and Payment Groups 109

Example: Shipping Group Display Page Fragment Components

The following is a portion of the default configuration of the displayhardgoodShippingGroup.jsp file. In

this example, the displayHeading parameter, which defines the display value1 title, is set to use the Shipping

Address header. The displayValue parameter, which defines the display value1 content, is set to use the

addressView.jsp fragment:

<c: if test="${propertyName == 'value1'}">
 <c: if test="${displayHeading == true}">
 <fmt: message key="shipping.address.header"/>
 </c: if>
 <c: if test="${displayValue == true}">
 <dsp: include src="/include/addresses/addressView.jsp"
 otherContext="${csrConfigurator.contextRoot}">
 <dsp: param name="address" value="${address}"/>
 </dsp: include>
 </c: if>

To display your customized shipping group title and content, modify the displayHeading and

displayValues accordingly. For example, in the displayElectronicShippingGroup.jsp file, the value1

title has been modified to define the displayHeading as Electronic Address and the displayValue as

emailAddress:

<c: if test="${propertyName == 'value1'}">
 <c: if test="${displayHeading == true}">
 <fmt: message key='shippingSummary.electronicAddress.header'/>
 </c: if>
 <c: if test="${displayValue == true}">

 <c: out value="${shippingGroup.emailAddress}"/>

 </c: if>
</c: if>

As noted above, the title and content for value1 is shown on the Shipping Addresses, Shipping Method (hard

good only), Order Review, Return Items, Order View, Scheduled Orders pages and on confirmation e-mails. You

may also modify the value2 property as needed. Note that electronic shipping groups do not use the value2

property by default, so it is left blank. You may add the displayHeading and displayvalues to the property

as required.

Other components that can be customized within the display page fragment include the status property.

This property is used to identify the status of the group object and displayed only on the Order View and the

Scheduled Order pages. The default title for both the hard good and electronic shipping group is Status, and the

content defaults to shippingGroup.stateAsString. Modify the heading of the display value to point to your

customized information as needed:

<c: if test="${propertyName == 'status'}">
 <c: if test="${displayHeading == true}">
 <fmt: message key='shippingSummary.shippingStatus.header'/>
 </c: if>
 <c: if test="${displayValue == true}">
 <dsp: droplet name="ShippingGroupStateDescriptions">
 <dsp: param name="state" value="${shippingGroup.stateAsString}"/>
 <dsp: param name="elementName" value="stateDescription"/>
 <dsp: oparam name="output">

110 17 Working with Shipping and Payment Groups

 <dsp: droplet name="IsHighlightedState">
 <dsp: param name="obj" value="${shippingGroup}"/>
 <dsp: oparam name="true">
 <dsp: valueof
 param="stateDescription"></dsp: valueof>
 </dsp: oparam>
 <dsp: oparam name="false">
 <dsp: valueof param="stateDescription"></dsp: valueof>
 </dsp: oparam>
 </dsp: droplet>
 </dsp: oparam>
 </dsp: droplet>
 </c: if>
</c: if>

The selectOptionText property is used to identify the information that is presented in the address drop down

on the Ship to Multiple Addresses and Split Quantity pages. By setting the displayValue, you configure what

address information is presented in the drop down. For example, the default configuration for the hard good

shipping group contains the following:

<c: if test="${propertyName == 'selectOptionText'}">
 <c: if test="${displayValue == true}">
 ${fn: escapeXml(address.address1)}${!empty address.address2 ? ' ' : ''
 }${!empty address.address2 ? fn: escapeXml(address.address2) : '' }
 </c: if>
</c: if>

The electronic shipping group selectOptionText property has been modified to include the following:

<c: if test="${propertyName == 'selectOptionText'}">
 <c: if test="${displayValue == true}">
 ${fn: escapeXml (shippingGroup.emailAddress)}
 </c: if>
</c: if>

Modify the display value with your customized page fragment.

Customizing a Shipping Group Type

For additional information on creating customized Shipping Groups, refer to the Working with Purchase Process

Objects chapter of the ATG Commerce Programming Guide.

1. Refer to the Order Tools section of the ATG Commerce Programming Guide to create a new shipping group

type. This includes defining the type-to-class name mapping for ShippingGroup objects.

2. Refer to the Create a Shipping Group section of the ATG Commerce Programming Guide to create the shipping

group.

Note: If you do not want to initialize the custom shipping group types using the ShippinGroupDroplet,

continue on to step 5.

3. Write a new ShippingGroupInitializer implementation. The initializeShippingGroups() method

should gather the user’s ShippingGroups by type and add them to the ShippingGroupMapContainer

referenced by the ShippingGroupFormHandler.

17 Working with Shipping and Payment Groups 111

4. Open your custom application and modify ShippingGroupDroplet.properties

shippingGroupInitializers parameter by adding your new shipping group type. For example:

/DCS-CSR-UI/atg/commerce/custsvc/order/ShippingGroupDroplet.properties

ServiceMap of shippingGroupTypes to ShippingGroupInitializer

Nucleus components

shippingGroupInitializers+=\

newShippingGroup=/atg/commerce/custsvc/order/NewShippingGroupInitializer

5. Update the /atg/commerce/custsvc/util/CSRConfigurator.properties file

shippingGroupTypesToBeInitialized property and shippingGroupTypeConfigurations property

to include your new shipping group type. This configuration initializes shipping group types in the

ShippingGroupDroplet.

Initialize your new shipping group type by adding your new shipping group type to the

shippingGroupTypesToBeInitialized property. For example:

/atg/commerce/custsvc/util/CSRConfigurator.properties

Shipping group fragment settings

shippingGroupTypesToBeInitialized= newShippingGroup

shippingGroupTypeConfigurations+=\

/atg/commerce/custsvc/ui/NewShipingGroupConfiguration

6. Add the CommerceTypeConfiguration component to the shippingGroupTypeConfigurations

property for any new supported shipping group type.

Payment Group Page Fragments

Payment group type configuration is defined using the atg.commerce.csr.order.

PaymentGroupTypeConfiguration class. The class contains the following:

atg.commerce.csr.order.PaymentGroupTypeConfiguration extends
 atg.commerce.csr.order.CommerceTypeConfiguration
 protected PageFragment mEditRefundMethodPageFragment;
 protected PageFragment mDisplayRefundMethodPageFragment;
 mEditRefundMethodPageFragmentTitleKey;

The PaymentGroupTypeConfiguration class configures the payment group and refund methods. The base

class properties configure the payment group. The refund methods are used for the returns and exchange

pages. For detailed information on the PaymentGroupTypeConfiguration class, refer to the ATG API Reference

for Commerce Service Center.

Payment group types are provided in these locations:

File Location

Configuration File /DCS-CSR-UI/config/atg/commerce/custsvc/ui/

Page Fragments /DCS-CSR-UI/j2ee-apps/DCS-CSR-UI/include/order/

112 17 Working with Shipping and Payment Groups

File Location

Display JSPs /DCS-CSR-UI/j2ee-apps/DCS-CSR-UI/include/order/

Add and Edit JSPs /DCS-CSR-UI/j2ee-apps/DCS-CSR-UI/panels/order/billing/

There are five default payment group types: Credit Card, Store Credit, Gift Certificate, PayInStore and Cash. These

are defined in the SupportedPaymentGroupTypes property of the CSRConfigurator. If an order contains a

payment group type that is not listed, the order will not be loaded.

Note: Commerce Service Center does not support or display Commerce B2B payment group types. Because

Commerce Service Center runs orders through multiple validations, customizations made to support B2B

payment group types, such as B2B Approvals, may generate errors.

Working with Payment Group Page Fragments

To make customizations, you can modify the page fragments and override the component

or page fragment properties. Payment group information is displayed on a number of pages,

including the billing, order view, e-mail and refund method pages. Payment group information

is displayed using the PaymengGroupTypeConfiguration.displayPageFragment and

PaymentGroupTypeConfiguration.displayRefundMethodPageFragment property values.

The following table provides display information on Credit Card type payment groups:

Value Title Content Example

Value1 Type [credit card type] – [last four

digits of card]

Visa – 2112

Value2 Expiration Date [card expiration year] / [card

expiration year]

11/12

Value3 Billing Address [first] [last]

[address 1]

[address 2]

[city], [state] [zip code]

[country]

[phone number]

Bob Smith

119 Grand Street

Apt. 1509

Brooklyn, NY 10023

USA

212-555-4321

Status Status [payment group status] Authorization

succeeded

The following table provides display information on Store Credit type payment groups:

Value Title Content Example

Value1 Type Store Credit – Store Credit Number Store Credit – 1c1123

17 Working with Shipping and Payment Groups 113

Value Title Content Example

Value2 Amt. Remaining [store credit remaining] 15.32

Value3 Blank [blank] blank

Status Status [payment group status] Debited

The following table provides display information on Gift Certificate type payment groups:

Value Title Content Example

Value1 Type Gift Certificate – Gift

Certificate Number

Gift Certificate – 1g4332

Value2 Amt. Remaining [amount remaining] 15.32

Value3 Blank [blank] blank

Status Status [payment group status] Debited

The following table provides display information on Pay In-store type payment groups:

Value Title Content Example

Value1 Type Pay In Store Pay In Store

Value2 Blank [blank] blank

Value3 Blank [blank] blank

Status Blank [blank] blank

The following table provides display information on Cash type payment groups:

Value Title Content Example

Value1 Type Cash Cash

Value2 Blank [blank] blank

Value3 Blank [blank] blank

Status Blank [blank] blank

114 17 Working with Shipping and Payment Groups

The display values are used in the following locations:

Display Pages Value1 Value2 Value3 Status

Billing

Order Review

Refund Type

Confirmation Emails

X X X

Order View

Scheduled Orders

Refund Review

X X X X

The /atg/commerce/custsvc/ui/CreditCardConfiguration.properties,

StoreCreditConfiguration.properties and GiftCertificateConfiguration.properties files in

the /DCS-CSR-UI directory hold all of the properties of the page fragments. The configuration file contains the

page fragment location.

The following examples use the Credit Card payment group; however, all three payment group types have

corresponding files.

The following is an example of the CreditCardConfiguration.properties file:

$class=atg.commerce.csr.order.PaymentGroupTypeConfiguration
addPageFragment=/atg/commerce/custsvc/ui/fragments/order/AddCreditCard
editPageFragment=/atg/commerce/custsvc/ui/fragments/order/EditCreditCard
displayPageFragment=/atg/commerce/custsvc/ui/fragments/order/
 DisplayCreditCard

type=creditCard
addPageFragmentTitleKey=addCreditCardTitle
editPageFragmentTitleKey=editCreditCardTitle
resourceBundle=atg.commerce.csr.order.WebAppResources

editRefundMethodPageFragment=/atg/commerce/custsvc/ui/fragments/order/
 EditCreditCardRefundMethod
displayRefundMethodPageFragment=/atg/commerce/custsvc/ui/fragments/order/
 DisplayCreditCardRefundMethod
editRefundMethodPageFragmentTitleKey=editCreditCardRefundMethodTitle

The CreditCardConfiguration.properties file identifies the location of the page fragment, which in turn,

defines your page fragment JSP file and the servletContext. For example:

$class=atg.web.PageFragment

URL=/include/order/displayCreditCard.jsp
servletContext=DCS-CSR

The displayCreditCard.jsp file contains the values for the display details, including the title and the

content. You must modify the default value1, value2, value3 and status properties with your custom

information. The combination of these parameters defines one display value, such as value1:

17 Working with Shipping and Payment Groups 115

• displayValue – This optional parameter is used to display the value of the desired field

• displayHeading – This optional parameter is used to display the heading of the desired field

Example: Payment Group Display Page Fragment Components

The following is a portion of the default configuration of the displayCreditCard.jsp file. In this example,

the displayHeading parameter, which defines the display value1 title, is set to use the Billing Summary

header. The displayValue parameter, which defines the display value1 content, is set to display the credit

card information:

<c: if test="${propertyName == 'value1'}">
 <c: if test="${displayHeading == true}">
 <fmt: message key='billingSummary.commerceItem.header.type'/>
 </c: if>
 <c: if test="${displayValue == true}">
 <csr: displayCreditCardType creditCard="${paymentGroup}"/>
 </c: if>
</c: if>

To display your customized payment group title and content, modify the displayHeading and

displayValues accordingly. For example, in the GiftCertificate.jsp file, the value1 title has

been modified to use the same displayHeading but the displayValue has been modified to use the

newOrderBilling gift certificate value:

<c: if test="${propertyName == 'value1'}">
 <c: if test="${displayHeading == true}">
 <fmt: message key='billingSummary.commerceItem.header.type'/>
 </c: if>
 <c: if test="${displayValue == true}">
 <fmt: message
 key="newOrderBilling.displayPaymentMethods.giftCertificate"/>
 <c: if test="${!empty paymentGroup && !empty
 paymentGroup.giftCertificateNumber }">
 <fmt: message key="common.hyphen"/>

 <c: out value="${paymentGroup.giftCertificateNumber}"/>
 </c: if>
 </c: if>
</c: if>

As noted above, the title and content for value1 is shown on the Billing, Order Review, Refund Type, Order

View, Scheduled Orders, and Refund Review pages as well as on confirmation e-mails. You may also modify the

value2 and value3 property as needed. Note that Store Credit and Gift Certificate payment groups do not use

the value3 property by default, so it is left blank. You may add the displayHeading and displayvalues to

the property as required.

Other properties that can be customized within the display page fragment include the status property. This

property is used to identify the status of the group object and is displayed only on the Order View, Scheduled

Orders and Refund Review pages. The default title for all payment groups is Status. Modify the display value to

point to your customized information as needed. The following is an example of the displayCreditCard.jsp

status:

<c: if test="${propertyName == 'status'}">
 <c: if test="${displayHeading == true}">

116 17 Working with Shipping and Payment Groups

 <fmt: message key='billingSummary.commerceItem.header.state/>
 </c: if>
 <c: if test="${displayValue == true}">
 <dsp: droplet name="PaymentGroupStateDescriptions">
 <dsp: param name="state" value="${paymentGroup.stateAsString}"/>
 <dsp: param name="elementName" value="stateDescription"/>
 <dsp: oparam name="output">
 <dsp: droplet name="IsHighlightedState">
 <dsp: param name="obj" value="${paymentGroup}"/>
 <dsp: oparam name="true">
 <dsp: valueof
 param="stateDescription"></dsp: valueof>
 </dsp: oparam>
 <dsp: oparam name="false">
 <dsp: valueof param="stateDescription"></dsp: valueof>
 </dsp: oparam>
 </dsp: droplet>
 </dsp: oparam>
 </dsp: droplet>
 </c: if>
</c: if>

Note that there are DSP tag files that, once copied into your customization library, can be used to extend default

JSP files. For example, the displayCreditCardType.tag file displays the credit card name and renders the

last four digits of the credit card number. For information on working with DSP tag files, refer to the ATG Page

Developer's Guide.

Customizing a Payment Group Type

For additional information on creating customized Payment Groups, refer to the Working with Purchase Process

Objects chapter of the ATG Commerce Programming Guide.

1. Refer to the Order Tools section of the ATG Commerce Programming Guide to create a new payment group

type. This includes defining the type-to-class name mapping for PaymentGroup objects.

2. Refer to the Extending the Payment Process to Support a New Payment Method section of the ATG Commerce

Programming Guide to create the payment group.

Note: If you do not want to initialize the customer payment group type using the PaymentGroupDroplet,

continue to Step 5.

3. Write a new PaymentGroupInitializer implementation. The initializePaymentGroups() method

should gather the user’s PaymentGroups by type and add them to the PaymentGroupMapContainer

referenced by the PaymentGroupFormHandler.

4. Within your custom application, create a new PaymentGroupInitializer implementation and add it to the

ServiceMap in the PaymentGroupDroplet.properties file paymentGroupInitializers property. For

example:

/atg/commerce/custsvc/order/PaymentGroupDroplet.properties

ServiceMap of paymentGroupTypes to PaymentGroupInitializer

Nucleus components

paymentGroupInitializers+=\

newPayment=/atg/commerce/custsvc/order/NewPaymentInitializer

5. Update the /atg/commerce/custsvc/util/CSRConfigurator.properties file

17 Working with Shipping and Payment Groups 117

paymentGroupTypesToBeInitialized and paymentGroupTypeConfigurations properties to include

your new payment group type.

This configuration initializes payment group types in the PaymentGroupDroplet. By default, this

property initializes the creditCard and storeCredit types. To initialize a new payment group

type, add your new payment group type to the paymentGroupTypesToBeInitialized and

paymentGroupTypeConfigurations properties. For example:

/atg/commerce/custsvc/util/CSRConfigurator.properties

Payment group fragment settings

paymentGroupTypesToBeInitialized=creditCard,storeCredit,newPayment

paymentGroupTypeConfigurations+=\

/atg/commerce/custsvc/ui/NewPaymentGroupConfiguration

Note: Ensure that the payment group type value matches the key defined in

OrderTools.paymentTypeClassMap property.

Limiting Amounts for Payment Groups

When working on the Billing page an agent can enter any amount for a payment group. If the payment group is

associated with a claimable item, the agent will not be allowed to enter more than the remaining or maximum -

allowed amount.

You can limit the amount of your customized payment group types by extending the

CSRPaymentGroupRemainingAmount servlet group droplet to set the payment group maximum-allowed and

remaining amount limits.

CSR Payment Group Remaining Amount Servlet Bean Droplet

The CSRPaymentGroupRemainingAmount servlet bean droplet returns both the remaining and maximum-

allowed amounts for the payment group. This droplet sets a maximum -allowed amount limitation in the Billing

page and displays the remaining amount of the payment group on the Billing, Order View and Order Review

pages.

Class atg.commerce.csr.order.CSRPaymentGroupRemainingAmount

Components /atg/commerce/custsvc/order/

GetTotalAppeasementsForOrderDroplet.properties

The GetTotalOrderAppeasementDroplet contains the following:

Input Parameters

• order –(Optional) This parameter is added for custom extensions that may need to work with the order.

• paymentGroup – (Required) This parameter obtains the remaining and max allowed amount

Oparams

• output – if an order has any payment groups

Output Parameters

118 17 Working with Shipping and Payment Groups

• remainingAmount – The remaining amount is calculated for the payment group and returned in this

parameter. The remaining amount is only calculated for store credit and gift certificates. This parameter

returns the PaymentGroup remaining amount that is backed by the claimable item

• maxAllowedAmount – This parameter calculates and returns the maximum-allowed amount for the payment

group. This parameter is used only in the billing page

You can calculate the remaining or maximum-allowed amounts for any custom payment groups by extending

the getRemainingAmount() and getMaxAllowedAmount() methods within the droplet.

Copying Payment Group Types

When an agent starts the exchange process an exchange order is created. Relevant payment groups must

be copied from the original order to the exchange order. The following payment groups are copied from the

original order:

• Credit Card – copied by default from the original to the exchange order

• Store Credit – copied if there a remaining amount

• Gift Certificate – copied if there is a remaining amount

To copy additional payment group types, add the payment group type to the

PaymentGroupCopyManager.properties file.

/atg/commerce/custsvc/returns/PaymentGroupCopyManager.properties
ServiceMap of paymentGroupTypes to Copier Nucleus components
copiers+=\newPaymentGroupType=Component to copy new payment group

Note: The newPaymentGroupType should be one of the supported payment group types, outlined in the atg/

commerce/order/OrderTools.paymentTypeClassMap file.

Configuring Shipping Addresses

You must configure shipping addresses for the following types of addresses:

• Returns

• Electronic

Configuring Return Shipping Addresses

To configure the shipping address for returns, perform the following steps:

1. Create a JSP file that contains your shipping address. For example:

<ul class="atg_commerce_csr_simpleList">

Ship return items to:

17 Working with Shipping and Payment Groups 119

My Company

Attn: Returns

100 Main Street

My City, My State

My Zip

2. Open the atg/commerce/custsvc/ui/renderers/

ReturnShippingAddressRenderer.properties file and provide the location of the new JSP file and the

contextRoot variable. For example:

This is the default renderer for the returns line item page, default

renderers will all have their id property set to "default". This

property is primarily useful in targeting rules.

id=default

The JSP that renders the returns line item

url=/panels/order/returns/NewreturnShippingAddress.jsp

contextRoot=/NewDCS-CSR

3. Save the ReturnShippingAddressRenderer.properties file.

For additional information on working with renderers, refer to the ATG Service Center UI Programming Guide.

Shipping and Payment Group Servlet Beans and Form

Handlers

This section discusses some of the classes in Commerce Service Center that you may want to extend.

Available Priced Shipping Methods Droplet Servlet Bean

This droplet provides the available shipping method with price. Displays the available shipping methods with

pricing for a particular shipping group. This extends the atg.commerce.pricing.

AvailableShippingMethodsDroplet.

Class atg.commerce.csr.pricing.AvailablePricedShippingMethodsDroplet

Components /atg/commerce/custsvc/pricing/

AvailablePricedShippingMethodsDroplet

The AvailablePricedShippingMethodsDroplet contains the following:

Input Parameters

• shippingGroup – The shipping group that requires pricing

• order – The order that is being priced

120 17 Working with Shipping and Payment Groups

• pricingModels – A collection of shipping pricing models

• profile – The user RepositoryItem requesting the shipping method

• locale – Optional. The locale of the user requesting the shipping method

Oparams

• error – Contains any errors that occur

• output – Includes the availablePricedShippingMethods

Output Parameters

• availablePricedShippingMethods – The remaining amount is calculated for the payment group and

returned in this parameter. The remaining amount is only calculated for store credit and gift certificates. This

parameter returns the PaymentGroup remaining amount that is backed by the claimable item

• errorMessage – The message of any error that may have occurred

CSRShippingGroupFormHandler

The CSRShippingGroupFormHandler class is a form handler that manages single and multiple shipping

stages of the checkout process. The CSRShippingGroupFormHandler extends the Commerce class

atg.commerce.order.purchase.ShippingGroupFormHandler and allows you to add shipping-related

audit-logging events.

Form Handler atg.commerce.csr.order.CSRShippingGroupFormHandler

Component /atg/commerce/custsvc/order/

ShippingGroupFormHandler

For additional information on this form handler, refer to the ATG API Reference for Commerce Service Center.

CSRPaymentGroupFormHandler

The CSRPaymentGroupFormHandler class is a form handler that manages the billing stage

of the checkout process. The CSRPaymentGroupFormHandler extends the Commerce class

atg.commerce.order.purchase.PaymentGroupFormHandler and provides the ability to claim a store

credit, gift certificate or coupon. By default, the allowCouponClaim flag is set to false.

Form Handler atg.commerce.csr.order.CSRPaymentGroupFormHandler

Component /atg/commerce/custsvc/order/

PaymentGroupFormHandler

For additional information on this form handler, refer to the ATG API Reference for Commerce Service Center.

17 Working with Shipping and Payment Groups 121

Configuring In-Store Pickup

In-store pickup is a Commerce feature that allows your customers to choose to receive merchandise they order

at a local store. Commerce Service Center uses and extends these Commerce components to enable agents to

assist with these types of orders.

When in-store pickup is enabled, agents can identify an item to be picked up in store. This launches the

Commerce GeolocatorServices, which can either list all applicable stores, or provide a form that the agent

can use to search for stores located at specified distances.

In addition to the stores location, Commerce Service Center can retrieve the store’s inventory status for the

product selected. Refer to the ATG Commerce Programming Guide for information on configuring Commerce

locations, and setting inventory to work with in-store pickup.

When an agent views a product, the Pickup In-Store button is displayed for items that are eligible for in-store

pickup. Items are eligible when they are recognized as hard goods, and are not flagged as available online only.

Items are flagged as online only in Commerce using the isOnlineOnly method in CatalogTools. For detailed

information on setting this flag, refer to the ATG Commerce Programming Guide.

When the agent continues through the checkout process, any in-store pickup items are displayed as such.

The items are identified as part of the InStorePickupShippingGroup and one of two of the in-store pickup

payment groups: InStorePaymentPaymentGroup , or Cash.

The InStorePaymentPaymentGroup acts as a place holder for payment until the recipient

picks up the order. The InStorePaymentPaymentGroup, which is based on the Commerce

allowInStorePaymentWhenOtherShippingGroupTypesExist, displays the Pay In Store payment option

on the billing page. When the customer has picked up and paid for the merchandise, the payment group type

changes to credit card or cash.

The Cash payment group type supports in-store pickup orders that were paid for in cash when the recipient

picked up the item. This payment group cannot be used when the agent is generating a Web order, and is only

available on submitted orders.

Enabling In-Store Pickup

To enable in-store pickup, use the CSRConfigurator.usingInStorePickup property. By default, this is set to

true. To disable, set the property to false.

Setting Distances for Searches

When the /atg/commerce/locations/GeoLocatorService.provider is set to null, the service returns all

available stores. If the GeoLocatorService is set to use a provider that you have configured, a search form is

displayed to the agent. The search form supports either a city/state search, or a postal code search.

To configure the list of distances used in the search criteria drop down menu, modify the /atg/commerce/

order/purchase/InStorePIckupDistanceList.distances property in the DCS-CSR-UI module. For

example:

$class=atg.commerce.order.purchase.InStorePickupDistanceList
$scope=global
distances=\
 5,\
 10,\

122 17 Working with Shipping and Payment Groups

 25,\
 50,\
 100

For information on the GeoLocatorService and setting up a provider, refer to the ATG Commerce Programming

Guide and the ATG Commerce Guide to Setting Up a Store.

Setting Recipient Authorization for In-Store Pickup

Setting up authorization ensures that the correct recipient gets the item when it is received in a store. Agents

can identify authorized recipients by entering their first and last names on the shipping methods page. Set the /

atg/commerce/custsvc/order/ShippingGroupFormHandler

authorizedRecipientForInStorePickupRequired property to true to display the authorization form.

Displaying the Cash Payment Group

Use the Dynamo Server Admin to configure the InStorePaymentGroup to display the Cash payment group.

Run the following XML operation tag on the /atg/commerce/order/OrderRepository component to

identify the payment group as cash. In this example, pg1900020 is the payment group ID.

Note that the CashPaymentGroup is not included in the PaymentGroupDroplet.

atg/commerce/order/OrderRepository
<update-item item-descriptor="paymentGroup" id="pg1900020">
 <set-property name="paymentGroupClassType" value="cash"/>
 <set-property name="paymentMethod" value="cash"/>
</update-item>

Working with Addresses

An address item can be referenced by more than one profile property. Commerce Service Center allows you to

configure how these address items are copied or shared between profile properties.

Enabling and Disabling Copies

Because multiple profile properties, such as defaultBilling, defaultShipping and secondaryAddresses,

can reference the same address item, Commerce Service Center supports cascade-delete data relationships.

For example, you want to move the default billing address to the secondaryAddress, and the

defaultBilling property specifies cascade="delete" in the repository definition file. When you change

the default billing address item in the customer profile, the current default address item is copied to the

secondaryAddress map before being deleted from the defaultBilling property. To disable the automatic

copying of addresses, set cascade-delete property to false.

For detailed information on repository data relationship and cascade-delete, refer to the ATG Repository

Guide.

17 Working with Shipping and Payment Groups 123

Disabling Address Sharing

Commerce Service Center allows you to identify an address as requiring exclusive access, or preventing multiple

properties from sharing the same address. Using the AddressCollectionReferenceManager, you can set the

exclusiveReferenceProperties to indicate which properties require an exclusive reference to an address.

This disables the sharing of addresses between properties.

For example, to indicate that the secondaryAddresses cannot be the same as the creditCardAddresses,

you would set the following:

AddressCollectionReferenceManger.properties:
properties of the Profile
exclusiveReferenceProperties=creditCards.address,secondaryAddresses

To indicate that all properties require an exclusive reference, configure the following:

AddressCollectionReferenceManger.properties:
properties of the Profile
exclusiveReferenceProperties=*

To indicate that single-value addresses require exclusive references, use the

DefaultAddressReferenceManager to set the exclusiveReference property to true.

124 17 Working with Shipping and Payment Groups

18 Working with Submitted Orders 125

18 Working with Submitted Orders

Commerce Service Center allows the modification of orders that have been submitted but not yet fulfilled. When

an agent modifies an order, the order’s state determines how the edit process is handled.

Modifying Submitted Orders

When a submitted order is modified, the order is cloned into a transient order that captures all of the

modifications made by the agent. The transient order is then reconciled with the original order in a single

transaction. Updates are not committed to the original order unless the reconciliation process is successful. If the

agent abandons the transient order, any modifications made will be lost.

The cloning technique is performed on selected orders based on their state. The CSROrderHolder

shouldCloneOrder(Order pOrder) API determines if a particular order qualifies for this process. This API

returns a result based on the following criteria:

• CSRAgentTools.isOrderModifiable – Compares the order’s state against the listed non-modifiable states

• CSRAgentTools.cloneEditOrderStates – Compares the order’s state against the listed states that may

be cloned. The configured states include: SUBMITTED, PROCESSING, PENDING_MERCHANT_ACTION, TEMPLATE

and PENDING_AGENT_APPROVAL

Additional states can be added by modifying these two properties in CSRAgentTools.

CSROrderHolder

This class defines the shopping cart used by an agent to modify customer orders. It provides an API for

determining when the application is in clone edit mode, for storing the clone edit state object and for masking

the current working order ID with the original order ID. The loadOrder(Order) API initiates the clone edit

process for a given order and stores the clone edit state object.

Classes atg.commerce.csr.order.CSROrderHolder

Components /atg/commerce/custsvc/order/ShoppingCart

CSRAgentTools

This class provides the more generic API used by the application. This includes the configuration for submitted

order states and the API for determining if an order should used the cloning feature.

126 18 Working with Submitted Orders

Classes atg.commerce.csr.util.CSRAgentTools

Components /atg/commerce/custsvc/util/CSRAgentTools

CSRCommitOrderFormHandler

This form handler class provides the handlers for triggering the reconciliation process.

Form Handler atg.commerce.csr.order.CSRCommitOrderFormHandler

Components /atg/commerce/custsvc/order/CommitOrderFormHandler

For additional information on this form handler, refer to the ATG API Reference for Commerce Service Center.

Handling and Fulfillment

When a site that uses the Fulfillment module submits an order, the order and some of its contained objects will

change state once the notification is received by the fulfillment sub-system.

Note: You must run the Fulfillment modules on both the Agent and Production clusters.

Object State after submit State after received by fulfillment

Order Submitted to

Fulfillment

Processing

ShippingGroup Initial Pending shipment

ShippingGroupRelationship Initial Pending delivery

A pipeline is executed to reconcile the changes with the original order. At the end of this chain there is a link

that triggers the fulfillment notification messages. This process creates and sends the fulfillment Modification

objects for changes made to the original order.

When the submitted order is modified by the Agent in the UI, new shipping groups and relationships may be

created as a result. In this case, the new shipping groups and shipping group relationships will be saved in their

Initial state. An application must extend the reconciliation process to perform any state modifications to

these objects (for example, to mark them in their pending shipment and pending delivery states). This could be

accomplished by either extending the reconciliation pipeline chain or responding the modification fulfillment

events generated by the process.

For additional information on handling and fulfillment, refer to the ATG Commerce Programming Guide.

18 Working with Submitted Orders 127

Fulfillment Notification for Order Modifications

Commerce Service Center sends standard fulfillment notification messages for all changes made to the order.

They are sent out in the form of the following Commerce objects:

atg.commerce.fulfillment.PaymentGroupUpdate
atg.commerce.fulfillment.ShippingGroupUpdate
atg.commerce.fulfillment.GenericAdd
atg.commerce.fulfillment.GenericRemove

Commerce Service Center uses the Commerce OrderFulfillmentTools API to create these objects.

For example, when a new payment group is added, Commerce Service Center calls the following

OrderFulfillmentTools API to generate the modification object.

createGenericAddValueToValueModification(Modification.TARGET_PAYMENT_
GROUP, pPaymentGroup, Modification.TARGET_ORDER, pOrder);

For new Commerce items, shipping groups and payment groups Commerce Service Center sends GenericAdd

messages. For updated Commerce items, shipping groups and payment groups, Commerce Service Center

sends GenericUpdate, ShippingGroupUpdate and PaymentGroupUpdate objects respectively. Commerce

items are the only objects for which Commerce Service Center sends GenericRemove events. For updates made

to other Order properties, Commerce Service Center generates GenericUpdate events.

All the events are generated by the clone edit handlers during the reconciliation process that occurs when an

agent commits his updates from the order review page.

Customizing Order Fulfillment

Commerce Service Center emits fulfillment ModifyOrderNotification events for the changes made to the

order. Each event has an array of Modification objects attached that provide detail about the changes. The

reconciliation pipeline triggers the creation of these objects:

<pipelinelink name="sendFulfillmentNotifications"
 transaction="TX_MANDATORY">
<processor jndi="/atg/commerce/custsvc/order/edit/processor/
 SendFulfillmentNotifications"/>
<transition returnvalue="1" link="sendAgentEvents"/>
</pipelinelink>

OrderFulfillmentTools contains the API for generating ModifyOrderNotification and Modification

objects. The Commerce Service Center CloneEditHandlers use this API to generate the Modification

objects based on the changes they manage on the order.

For example, when a payment group is added to the order, the payment group edit handler might generate a

Modification object like this:

Modification mod =
 fullfillmentTools.createGenericAddValueToValueModification
(Modification.TARGET_PAYMENT_GROUP,pPaymentGroup,Modification.
 TARGET_ORDER,pOrder);

128 18 Working with Submitted Orders

The modification would be attached to a ModifyOrderNotification event, along with all the other

Modification objects, and then sent.

ModifyOrderNotification msg = new ModifyOrderNotification();
msg.setOrderId(order.getId());
msg.setModifications(pArrayOfModifications);
sendCommerceMessage(msg);

Cloning Orders

The order is cloned in an initialization pipeline that uses Repository cloning from RepositoryUtils. The order

repository item is cloned to make a copy, and the copy is then loaded using OrderManager loadOrder API.

When the order has been cloned for modification, the application is in clone-edit mode. When an agent

is working on a clone order there will be no indication in the UI. The UI always shows the original order

ID. The isCloneEditMode() API in the CSROrderHolder determines when this mode is active. The

getOriginalOrder() API returns the original order when required.

Cloning Pipeline Chains

The entire cloning process is facilitated by a pair of pipeline chains, which are defined in the /atg/commerce/

commercepipeline.xml file:

• The initSubmittedOrderEdit chain prepares the order for editing by creating the

clone copy. The pipeline that will be executed is determined by the order’s state and the

CloneEditManager.reconcileOrderChains property

• The reconcileSubmittedOrder chain reconciles the changes with the original order when everything

is committed by the agent. The pipeline that will be executed is determined by the order’s state and the

CloneEditManager.

reconcileOrderChain property

These two chains are executed based on the state of the order. For example, different chains could be defined

for handling orders in different states. Commerce provides one set of chains for handling all orders in a

submitted state as defined by the submitted order states configured in CSRAgentTools. These two chains can

be modified using standard configuration override techniques.

When clone editing orders, the orders are copied into a transient state for the edit process, and any changes

applied by initial pricing operations on the order are not immediately saved to the repository. This maintains the

integrity of the original order.

The CloneEditManager component contains the configuration for mapping order states to the chain names

using the initializeEditChains and reconcileOrderChains properties. The following describes each link

in the two chains.

Chain: initSubmittedOrderEdit – executed at the start of the edit process:

18 Working with Submitted Orders 129

Link Processor Component Description

cloneOrderForEdit /atg/commerce/custsvc/

order/edit/processor/

CloneOrderForEdit

Performs the cloning of the order

at the repository level and creates

the Commerce objects from the

newly created order item by calling

loadOrder.

validateCloneForEdit /atg/commerce/custsvc/

order/edit/processor/

ValidateCloneForEdit

Validates the clone order after it has

been created.

initializeCloneEdit

State

/atg/commerce/custsvc/

order/edit/processor/

InitializeCloneEdit

State

Initializes a state object based on

the two orders, which is used to later

reconcile the changes back to the

original order.

setOriginalOrder

PromotionCounts

/atg/commerce/custsvc/

order/edit/processor/

SetOriginalOrder

PromotionCounts

Stores the original promotion counts

in the clone edit state so that they can

be compared to the promotion counts

after applying updates. Changes in the

promotion count are used to identify the

promotions to consume.

saveCouponTracking /atg/commerce/custsvc/

order/edit/processor/

SaveCouponTracking

Saves coupon tracking meta-data in the

clone edit state so that it can be restored

after applying updates in reconciliation.

Chain: reconcileSubmittedOrder – execute to reconcile the changes with the original order:

Link Processor Component Description

initialize

Reconcilitation

/atg/commerce/custsvc/

order/edit/processor/

Initialize

Reconciliation

Prepares the state object for

reconciliation.

applyChanges /atg/commerce/custsvc/

order/edit/processor/

ApplyChanges

Copies the changes to the original order

based on the contents of the clone order

and information stored in the clone edit

state object created in the initialization

pipeline.

executeValidate

OriginalOrder

/atg/commerce/order/

processor/Execute

ValidateForCheckout

Chain

Executes the core commerce process

that validates the original order for

checkout.

130 18 Working with Submitted Orders

Link Processor Component Description

removeEmptyShipping

GroupsFromOriginal

/atg/commerce/order/

processor/RemoveEmpty

ShippingGroups

Executes the core commerce process

that removes empty shipping groups

from the original order.

removeEmptyPayment

GroupsFromOriginal

/atg/commerce/order/

processor/RemoveEmpty

PaymentGroups

Executes the core commerce process

that removes empty payment groups

from the original order.

createImplicit

RelationshipsFor

Original

/atg/commerce/order/

processor/

CreateImplicit

Relationships

Executes the core commerce process

that creates implied relationships

between commerce objects in the

original order.

setPaymentGroup

AmountsOnOriginal

/atg/commerce/order/

processor/SetPayment

GroupAmount

Executes the core commerce process

that sets the amount of the payment

groups based on relationship in the

original order.

authorizePayment

Groups

/atg/commerce/custsvc/

order/edit/processor/

AuthorizePaymentGroups

Executes a process that adjusts for the

authorized amounts of the payment

groups in the original. For example, new

payment groups are authorized and

changed payment groups have their

authorized amounts adjusted.

restoreCoupon

References

/atg/commerce/custsv/

order/edit/processor/

RestoreCouponReferences

Restores the original coupon references

on the pricing adjustments using the

meta-data saved in the clone edit during

initialization.

updateAdjustments

WithCouponOn

Original

/atg/commerce/order/

processor/Update

AdjustmentsWithCoupon

Updates the coupon references on

the pricing adjustments for any new

coupons that were claimed during the

update.

updateOriginal

Order

/atg/commerce/order/

processor/UpdateOrder

Calls updateOrder on the original order.

reconcileGiftlist

Repository

/atg/commerce/custsvc/

order/edit/processor/

ReconcileGiftList

Repository

Reconciles gift list quantities for changes

made to the original order.

consumePromotions /atg/commerce/custsvc/

order/edit/processor/

ConsumePromotions

Consumes coupon promotions that may

have been claimed and used during the

edit process.

sendCouponPromotion

UsedMessages

/atg/commerce/custsvc/

order/edit/processor/

SendCouponPromotion

UsedMessages

Sends the core commerce

PromotionUsed JMS event for each

consumed promotion identified by the

previous processor.

18 Working with Submitted Orders 131

Link Processor Component Description

sendFulfillment

Notifications

/atg/commerce/custsvc/

order/edit/processor/

SendFulfillment

Notifications

Sends fulfillment JMS events for each

change applied to the original order.

sendAgentEvents /atg/commerce/custsvc/

order/edit/processor/

SendAgentEvents

Sends agent audit events for each

change made to the original order.

Submitted Orders and Clone Editing

When an agent selects an order that is considered modifiable, Commerce Service Center makes a copy of that

order when it is considered to be in a clone edit state.

Because the order is copied into a transient state for the edit process, the changes applied by initial pricing

operations on the order are not immediately saved to the repository. They are only saved if the agent completes

the post-submit checkout of the order.

Cloning Core Classes

The following describes a few of the core classes and components that implement the clone edit feature and are

the likely places for applications to apply overrides and extensions.

Clone Edit Manager

The CloneEditManager class provides the API for executing the pipeline chains and performing call backs to

the CloneEditHandlers throughout the entire process. First, the original order is cloned at the repository level

and executed, and then the changes in the clone order are reconciled with the original order. Refer to the ATG

Platform API Reference for detailed information. These handlers are accessed using the main DCS module.

Classes atg.commerce.order.edit.CloneEditManager

Component /atg/commerce/custsvc/returns

Configuration cloneEditHandlers provide a list of CloneEditHandler components.

intializeEditChains is a map of pipeline chains used in the initialization process.

Keyed by order state.

reconcileOrderChains is a map of pipeline chains used in the reconciliation

process. Keyed by order state.

Clone Edit Handler

This abstract class is used for creating application classes that participate in the entire process through a callback

interface. Components of this type are configured in the core Commerce CloneEditManager class and are

executed at various points in the initialization and reconciliation processes. This handler is accessed through the

DCS module.

132 18 Working with Submitted Orders

Class atg.commerce.order.edit.CloneEditHandler

Subclasses atg.commerce.order.edit.CollectionEditHandler

atg.commerce.order.edit.CommerceItemEditHandler

atg.commerce.order.edit.CommerceItemMarkerEditHandler

atg.commerce.order.edit.PaymentGroupEditHandler

atg.commerce.order.edit.ShippingGroupEditHandler

atg.commerce.order.edit.ManualAdjustmentEditHandler

atg.commerce.order.edit.RelationshipEditHandler

atg.commerce.order.edit.HandlingInstructionEditHandler

atg.commerce.order.edit.MarkerEditHandler

atg.commerce.order.edit.OrderPropertyEditHandler

Components /atg/commerce/custsvc/order/edit/

CommerceItemHandler

ShippingGroupHandler

PaymentGroupHandler

CSR Clone Edit Handler

This class is used for extends the core Commerce CloneEditHandler class. Components of this type

are configured in the CSRCloneEditManager and are executed at various points in the initialization and

reconciliation processes. These handlers are accessed through the DCS-CSR module.

Class atg.commerce.order.edit.CSRCloneEditHandler

Subclasses atg.commerce.order.edit.CollectionEditHandler

atg.commerce.order.edit.CSRCommerceItemEditHandler

atg.commerce.order.edit.CSRPaymentGroupEditHandler

atg.commerce.order.edit.CSRShippingGroupEditHandler

atg.commerce.order.edit.CSRManualAdjustmentEditHandler

atg.commerce.order.edit.AgentCommentEditHandler

Components /atg/commerce/custsvc/order/edit/

AgentCommentHandler

CloneEditManager

CommerceItemGWPMakerHandler

CommerceItemHandler

CommerceItemMarkerHandler

GWPOrderMarkerHandler

HandlingInstructionHandler

ManualAdjustmentHandler

MarkerHandler

OrderPropertyHandler

PaymentGroupHandler

RelationshipHandler

ShippingGroupHandler

The CloneEditHandlers components are called during various points in the clone edit process:

18 Working with Submitted Orders 133

1. Post-repository cloning.

The handlers are called just after the original order is cloned at the repository level. You can extend the

cloneOrder method to customize cloning of data.

2. Verifying the clone.

The validateCloneOrder handlers are called after the clone order has been created and loaded.

3. Initializing the CloneEditState.

Once the clone order has been generated and verified, the initializeCloneEditState handlers are called

to initialize any meta-data or objects that are needed for the CloneEditState object. For example, this

is where the CommerceItemHandler maps the commerce items in the original order to those used in the

clone order. These maps are used in the reconciliation process to identify those items that have been added,

deleted or updated.

4. Reconciling the clone.

After all updates are completed on the clone order, the reconciliation process executes the handlers

to perform reconciliation of the data between the clone and the original order. For example, the

CommerceItemHandler determines which items were added, removed or updated and updates the original

order accordingly.

5. Creating post-reconciliation process events.

After the reconciliation process is complete, the handlers are called to generate any fulfillment notification

events for any changes they may have applied to the original order.

Clone Edit State

This class defines the state object used by the clone edit process. It provides access to the original and

clone orders, as well as the API for adding and retrieving state information. It is created and returned by the

initialization process and is required as input to the reconciliation process.

Classes atg.commerce.order.edit.CloneEditState

Commerce Service Center stores this object in the window scoped CSROrderHolder, which can be accessed

using the getCloneEditState API.

CSR Order Holder

This class defines the shopping cart used by an agent to modify customer orders. It provides an API for

determining when the application is in clone edit mode, for storing the clone edit state object and for masking

the current working order ID with the original order ID. The loadOrder(Order) API initiates the clone edit

process for a given order and stores the clone edit state object.

Classes atg.commerce.csr.order.CSROrderHolder

Components /atg/commerce/custsvc/order/ShoppingCart

134 18 Working with Submitted Orders

For more information on this component, refer to the ATG API Reference for Commerce Service Center.

CSR Agent Tools

This class provides the more generic API used by the application. This includes the configuration for submitted

order states and the API for determining if an order should used the cloning feature.

Classes atg.commerce.csr.util.CSRAgentTools

Components /atg/commerce/custsvc/util/CSRAgentTools

For more information on this component, refer to the ATG API Reference for Commerce Service Center.

CSR Commit Order Form Handler

This form handler class provides the handlers for triggering the reconciliation process.

Classes atg.commerce.csr.order.CSRCommitOrderFormHandler

Components /atg/commerce/custsvc/order/CommitOrderFormHandler

For more information on this form handler, refer to the ATG API Reference for Commerce Service Center.

Extending Objects for Cloning

When an application has added new properties to the core Commerce objects, it may be necessary to modify

the cloning process. Usually, all repository items referenced by the cloned item are also cloned into new

transient repository items. This is known as the deep clone. However, you may want a shallow cloning of new

properties or you may want to eliminate certain properties entirely from the cloning process.

Adding Objects for Cloning

You may extend core Commerce objects, for example: Order, ShippingGroup, PaymentGroup, Relationship.

For example, you may have extended the default OrderImpl object type by creating a MyOrderImpl to add

new properties. The configuration of the clone editing components may require adjustments or you may have

to create class extensions.

If you have extended the core Commerce objects, the new object type and its new properties must be identified

to the clone editing feature so that the new properties are copied to their original order counterpart during

the reconciliation process. You must map which properties should be copied based on the type of object. The

following is an example of the configuration for the atg.commerce.order.OrderImpl object type.

/atg/commerce/custsvc/order/edit/OrderPropertyHandler.properties$
$class=atg.commerce.order.edit.OrderPropertyEditHandler

cloneEditManager=/atg/commerce/custsvc/order/edit/CloneEditManager
keyPropertyName=id

18 Working with Submitted Orders 135

map of payment group properties that are copied from the clone to the original
during reconcilation. The class name is the key
propertiesToCopyOnUpdate=\
 atg.commerce.order.OrderImpl=description,,state,,stateDetail,,taxPriceInfo
 ,,priceInfo,,specialInstructions

To add a new object type named MyOrderImpl, you would create an /atg/commerce/custsvc/

order/edit/OrderPropertyHandler.properties file in your customization directory and add the new

object type and its properties, which will be appended to the default OrderPropertyHandler file:

propertiesToCopyOnUpdate=\
myapp.commerce.order.MyOrderImpl=language,,locale

Note: Only new properties of the class need to be defined as all inherited properties are already covered by

the super-type configurations. Additionally, it is not necessary to specify any new properties that will not be

updated during the modification process.

The same type of configuration change is needed for extensions to the CommerceItem, ShippingGroup,

PaymentGroup and Relationship objects. See CommerceItemHandler, ShippingGroupHandler,

PaymentGroupHandler and RelationshipHandler respectively.

There are two ways that the repository cloning process can be managed: By excluding properties entirely from

the cloning process, or by specifying which properties should use deep versus shallow cloning.

Excluding Properties from Cloning

The cloning feature can be configured to exclude certain properties from the clone process in the

atg/commerce/custsvc/order/edit/processor/CloneOrderForEdit component. The

excludedOrderProperties property maps order repository item types to a list of properties that should be

excluded from the cloning process. The following is the default configuration that excludes the pricelist and

pricingModel properties from the cloning process:

excludedOrderProperties=
 itemPriceInfo=priceList,
 pricingAdjustment=pricingModel

In this example, all properties that reference an item type of itemPriceInfo or pricingAdjustment will be

cloned, but the pricelist and pricingModel properties will not be cloned and will be left null.

To exclude multiple properties:

excludedOrderProperties=
 itemPriceInfo=priceList|discounted|currencyCode

Specifying Deep Versus Shallow Clone

To specify the level of clone, extend the CloneOrderForEdit processor’s

createCloningPropExceptionsMap API to create a hierarchical map that specifies which properties have

special handling called property exceptions.

The keys used in this map are property names while values are null or another map if the property is an item.

136 18 Working with Submitted Orders

The following example performs a shallow clone on any property named priceinfo:

Map priceInfoExc = new HashMap();
priceInfoExc.put("priceInfo",null);
return priceInfoExc;

The following example performs a shallow clone of only the property named pricelist on any item found in a

property named priceInfo:

Map priceInfoExc = new HashMap();
Map priceInfoProps = new HashMap();
priceInfoProps.put("pricelist",null);
priceInfoExc.put("priceInfo", priceInfoProps);
return priceInfoExc;

An application can also introduce a custom CloneEditHandler to perform special handling on any

application-specific properties. For example, an application may want to exclude a custom property from the

repository and handle the cloning process another way. The CloneEditHandler callback interface is executed

after the repository cloning process is finished and provides an opportunity for applications to execute post-

cloning logic.

19 Configuring Scenarios 137

19 Configuring Scenarios

Using Scenarios

You can use scenarios to configure actions that are taken when internal users perform various tasks. Scenarios

are also used to configure events that are available to external users, such as cross-sells or promotions. For

general information on creating and working with scenarios, refer to the ATG Personalization Guide for Business

Users. For information on scenarios used with Commerce, refer to the Using Commerce Elements in Scenarios

chapter of the ATG Commerce Guide to Setting Up a Store.

Configuring Scenario Events

When you use the ACC scenario editor on an ATG instance running Commerce Service Center, the scenarios you

create are internal scenarios that respond to actions performed by internal users such as agents, not external

users such as customers.

Commerce Service Center includes a number of scenario events that can be triggered by agent activities. You

can incorporate these events in internal scenarios that you create.

The following table lists the scenario events included with Commerce Service Center:

Event display name Triggered when . . .

Agent adds item to order Agent adds an item to an order.

Agent adds payment group Agent adds a payment group to an order.

Agent adds shipping group Agent adds a shipping group to an order.

Agent cancels order Agent cancels an order.

Agent changes item quantity Agent changes an item’s quantity.

Agent claims item Agent claims a coupon, gift certificate, or store credit.

Agent create order Agent creates a new order.

Agent creates an order comment Agent creates a new order comment.

Agent edits payment group Agent edits a payment group.

Agent edits shipping group Agent edits a shipping group.

138 19 Configuring Scenarios

Event display name Triggered when . . .

Agent exchanges order Agent exchanges an order.

Agent issues store credit Agent issues a store credit to a customer.

Agent overrides a price Agent overrides the price of a shipping group or commerce item.

Agent receives a return item Agent receives an item that has been returned.

Agent removes item from order Agent removes an item from an order.

Agent returns order Agent returns an order.

Agent splits a shipping group Agent splits a shipping group’s commerce items between shipping

groups.

Agent submits order Agent submits an order.

Agent views credit card Agent views a credit card.

Agent views order Agent views an order.

Agent views order payment Agent views an order’s payment information.

Agent views order returns Agent views order return information.

Working with Scenario Managers

Scenarios are managed and run by the Scenario Manager services, ScenarioManager and

InternalScenarioManager. Depending on the subject of the scenario, the agent or the customer, you must

know which Scenario Manager to run.

ScenarioManager and InternalScenarioManager

Just as you need to be aware of whether your slots and scenarios are displaying content targeted to the agent

or the customer they are helping, you need to be aware of where those scenarios need to be created. In a

production environment, ATG applications run on an internal server cluster and your external website runs on an

external server cluster. Each instance in the internal cluster uses two separate scenario managers: the standard

scenario manager, ScenarioManager, which handles scenarios in which the main subject of the scenario is

the customer and the internal scenario manager, InternalScenarioManager, which handles scenarios in

which the main subject of the scenario is the agent. Each instance of the external cluster only has a standard

scenario manager in which you create scenarios where the main subject of the scenario is the customer. When

you author a scenario that populates a slot, the scenario must be created in the appropriate cluster (internal or

external) depending on its use.

• Scenarios in which the customer is the subject of the scenario belong in the standard scenario manager.

These scenarios should be created in the external cluster. (Examples include when the customer’s profile

drives the scenario, or the customer’s behavior on the external website drives the scenario)

• Scenarios in which the agent is the subject of the scenario belong in the internal scenario manager. These

scenarios should be created in the internal cluster. (Examples include when the agent’s profile drives the

scenario, or if actions the agent takes in Service Center drives the scenario)

19 Configuring Scenarios 139

This means that you will have to create one set of scenarios for delivering content in which the agent is the

subject of the scenario (in the InternalScenarioManager service) and one set of scenarios for delivering

content in which the customer is the subject of the scenario (in the ScenarioManager service).

As with any environment in which you are using scenarios, one of the scenario instances in each cluster will have

to be configured as the Scenario Editor Server. Internal scenarios are created and updated while pointing to

the Scenario Editor Server designated for the internal cluster. External scenarios are created and updated while

pointing to the Scenario Editor Server designated for the external cluster.

Scenario Managers in a Development Environment

If you are working in a development environment where the external and internal environments are running

on the same machine, you will need to point your ACC to either the standard Scenario Manager or the

InternalScenarioManager service. The ACC can only display one of these at a time; it is configured to

show the Standard ScenarioManager by default. You must manually configure the ACC to point to the

InternalScenarioManager to create scenarios for the internal environment. See Configuring the ACC to Point

to the InternalScenarioManager (page 139) for instructions on how to do this.

Scenario Managers in a Production Environment

If you have a production environment running, you will have two clusters: one for your internal applications

(such as the ATG application) and one for your external sites (such as your external website). In this situation,

the ACC in the internal cluster can still point to both the InternalScenarioManager and the standard

ScenarioManager. However, the external cluster, which uses only the standard ScenarioManager, should be

used to create or update scenarios in which the customer is the main subject.

The ScenarioManager on the external cluster shares the same database as the ScenarioManager on

the internal cluster. This enables you to create your customer-subject scenarios in just one place. The

scenarios created in the ScenarioManager on the external cluster will not show up automatically in the

ScenarioManager for the internal cluster. You must update the scenarios across the clusters.

Updating Scenarios Across Clusters

If you create or update any of the scenarios running on the ScenarioManager in the external cluster, you

will need to manually update the ScenarioManager in the internal cluster. This update ensures that the two

ScenarioManagers are not out of sync.

To make this update you will need to go to the Dynamo Server Admin console and navigate to the

ProcessUpdateService component and invoke the updateAllProcesses method. This will update all

scenarios in all instances of the ScenarioManager in the internal cluster.

The path to the ProcessUpdateService component is:

<ATG10dir>/nucleus/atg/svc/scenario/ProcessUpdateService/

If you are running in a development environment and/or are not using an external website, you do not need to

worry about using the ProcessUpdateService to communicate scenario changes across clusters.

Configuring the ACC to Point to the InternalScenarioManager

In a development environment you must configure the ACC to point to the InternalScenarioManager. To do

this you need to specifically include the DSS.InternalUser.ACC module when creating your environment.

For detailed information on working with scenarios, refer to the ATG Personalization Programming Guide.

140 19 Configuring Scenarios

Configuring Process Editor Servers

The agent-facing server is configured with two Scenario Manager Configuration files, where you specify the

location of the Process Editor Server and any global servers:

• /atg/scenario/scenarioManager.xml – configuration for external users

• /atg/scenario/internalScenarioManager.xml – configuration for internal users

Configuring the Customer-Facing Scenario Manager

The management server is aware of scenarios only for external users (users of the customer-facing website). You

configure the scenarioManager.xml file to have one Process Editor Server, which is an Service Center instance:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<process-manager-configuration>
 <process-editor-server>
 <server-name>ATG CSC_Host: 8851</server-name>
 </process-editor-server>
</process-manager-configuration>

Configuring the Agent-Facing Scenario Managers

The agent-facing server is aware of scenarios for both internal users and external users. You must configure the

agent-facing server as follows:

• internalScenarioManager.xml – include the Service Center server as a Process Editor Server, so that you

can create and edit scenarios for internal users:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<process-manager-configuration>

<process-editor-server>

<server-name>ATG CSC_Host:8851</server-name>

</process-editor-server>

</process-manager-configuration>

• scenarioManager.xml – include a management server as a Process Editor Server, so that you can create and

edit scenarios for external users:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<process-manager-configuration>

<process-editor-server>

<server-name>ATG Customer-facing_Host:8851</server-name>

</process-editor-server>

</process-manager-configuration>

20 Reporting and Logging 141

20 Reporting and Logging

Commerce Service Center provides the ability to configure reporting and logging of a number of customer and

agent actions.

Commerce Service Center Reporting Framework

The reporting framework used by Commerce Service Center is similar to the framework used by Commerce.

Commerce Service Center gathers log files that contains order and agent information and loads it into the

warehouse. For information on setting up and configuring the Commerce reporting framework, refer to the

Preparing to Use Commerce Reporting section in the ATG Commerce Programming Guide. For information on using

Commerce Service Center reports, refer to the ATG Reports Guide.

Data Collection Overview

As with all reporting, Commerce Service Center reporting data collection starts with the firing of a log-

worthy event. The EventListener listens for the events, gets the appropriate object and passes it to

the LogEntryQueueSink. The EventListener Nucleus component is configured with the property

dataListeners=LogEntryQueueSink.

The LogEntryQueueSink property is a DataCollectorQueue type property and ensures the correct

timing of writing to the log files. The LogEntryQueueSink component is configured with the property

dataListeners=LogEntryGenerator to ensure that message will be passed on to the LogEntryGenerator.

The LogEntryGenerator property is used to generate a LogEntry object. This object is passed to the

LogEntryLogger that has been configured with the parameters dataListeners=LogEntryFileLogger. The

LogEntryLogger component of the RotationAwareFormattingFileLogger class logs items to the named

file, and then rotates the log file based on a schedule and data threshold. It also contains a formatFields

property that is used to indicate properties that should be written to the file.

Returns and Exchanges Data Collection Properties

The returns and exchange data collection process starts with the firing of the return/exchange event. The

ReturnFormHandler fires the ReturnOrder event. The ReturnEventListener listens to the events.

The ReturnEventListener file is configured as follows:

$class=atg.commerce.reporting.ReturnEventListener
enabled^=/atg/dynamo/service/DWDataCollectionConfig.enabled

142 20 Reporting and Logging

dataListeners=ReturnLogEntryQueueSink
returnOrderJMSType=atg.commerce.csr.ReturnOrder
exchangeOrderJMSType=atg.commerce.csr.ExchangeOrder

The ReturnLogEntryQueueSink listens to messages from event listener and queues the log entries

to avoid performance bottleneck. Calls made to this component are queued and then passed to the

ReturnLogEntryGenerator. The ReturnLogEntryQueue configuration file is configured as follows:

$class=atg.service.datacollection.DataCollectorQueue
dataListeners=ReturnLogEntryGenerator

The LogEntryQueue passes the data to the ReturnLogEntryGenerator that generates the ReturnLogEntry

and passes it to the ReturnLogEntryLogger. The ReturnLogEntryGenerator file is configured as follows:

$class=atg.commerce.reporting.ReturnLogEntryGenerator
dataListeners=ReturnFileLogger
enabled^=/atg/dynamo/service/DWDataCollectionConfig.enabled

The ReturnFileLogger component is responsible for writing logs items to the named file, as well as rotating

log files based on schedule and data thresholds. The ReturnFileLogger component also has formatFields

property that indicates which properties should be written to file. The ReturnFileLoggerLogger

configuration file contains the following:

#class
$class=atg.service.datacollection.RotationAwareFormattingFileLogger
directory and file name of log file
logFileName=csc_return_
Rotate log files automatically every 1 hour
schedule=every 1 hour
Or rotate when there are 10,000 records in the file
dataItemThreshold=10000
The directory to place all the log data files
defaultRoot^=/atg/dynamo/service/DWDataCollectionConfig.defaultRoot
The centralized Dynamo scheduler
scheduler=/atg/dynamo/service/Scheduler
Add a timestamp to all the names of the log files
timestampLogFileName=true
Use this extension after the timestamp
logFileExtension=.data
Format the time stamp like so (month-day-year_hour-minute-second-
millisecond)
timestampDateFormat=MM-dd-yyyy_HH-mm-ss-SS
properties to log (in order)
formatFields=timestampAsDate: MM/dd/yyyy HH: mm: ss,
returnOrder.returnRequestId
enabled^=/atg/dynamo/service/DWDataCollectionConfig.enabled
Add a Unique ID to all the names of the log files
UIDLogFileName=true
IdGenerator
idGenerator=/atg/dynamo/service/IdGenerator
The JMS message type
logRotationMessageType=atg.reporting.ReturnOrder
The messageSource component to send log rotation message
messageSource=/atg/dynamo/service/LogRotationMessageSource

20 Reporting and Logging 143

Returns and exchanges log files are written to the /atg/dynamo/service/

DWDataCollectionConfig.defaultRoot directory.

Call Data Collection Properties

When a call is initiated, a unique call ID is generated and assigned for each call. The call ID is used

when starting and ending call events. The atg.agent.events.CallEvent event extends the

atg.agent.events.AgentEvent event by adding callId, startTime and endTime properties. The

startTime and endTime properties are recorded to the database as audit logs, while the callId is added to

the audit database record.

The /atg/agent/logging/AgentAuditQueue listens for all agent events and passes the control to the

AgentAuditLogger and provides an additional AgentFileLogger listener. This listener writes the data item to

the file system. The TypedEventDataListener contains the AgentAuditLogger, the AgentFileLogger and

the SelfServiceAuditLogger components.

The CallLogEntry and CallLogEntryGenerator classes provide the ability to add additional data to the log

processes.

The CallFileLogger logs the data to the file system and creates an entry for the end call event. This logger

will not log an entry for the start call event. When an agent ends a call the end call event is fired. Should an

agent forget to end the call, when the window is closed or the CallState component is out of scope, the

doStopService method will end the call event.

The CallFileLogger is configured with the following:

#class
$class=atg.service.datacollection.RotationAwareFormattingFileLogger
directory and file name of log file
logFileName=svc_end_call_
Rotate log files automatically every 1 hour
schedule=every 1 hour
#Or rotate when there are 10,000 records in the file
dataItemThreshold=10000
The directory to place all the log data files
defaultRoot^=/atg/dynamo/service/DWDataCollectionConfig.defaultRoot
The centralized Dynamo scheduler
scheduler=/atg/dynamo/service/Scheduler
Add a timestamp to all the names of the log files
timestampLogFileName=true
Use this extension after the timestamp
logFileExtension=.data
Format the time stamp like so (month-day-year_hour-minute-second-
millisecond)
timestampDateFormat=MM-dd-yyyy_HH-mm-ss-SS
properties to log (in order)
formatFields=timestampAsDate: MM/dd/yyyy HH: mm: ss, callId,
startTimeAsDate: MM/dd/yyyy HH: mm: ss, endTimeAsDate: MM/dd/yyyy
HH: mm:ss,customerId, agentId
enabled^=/atg/dynamo/service/DWDataCollectionConfig.enabled
Add a Unique ID to all the names of the log files
UIDLogFileName=true
IdGenerator
idGenerator=/atg/dynamo/service/IdGenerator
The JMS message type
logRotationMessageType=atg.reporting.svc.Call
The messageSource component to send log rotation message
messageSource=/atg/dynamo/service/LogRotationMessageSource

144 20 Reporting and Logging

Loader Pipeline Overview

Loading the return item into a transactional fact table is a process that requires a number of stages to obtain and

work with the data in different ways. To clarify this process, it is presented as a data flow in which data flows from

one processor to the next. Along the way the data is transformed until the final processor records the data into

the transactional fact table.

Data loading starts with the implementation of the Loader. The atg.reporting.datawarehouse.

loader.Loader.Loader component uses the queueName property to point to a log file. The Loader runs

using a scheduler, creates a log file reader for returned items and invokes the processReader method of the

PipelineDriver component.

The PipelineDriver reads delimited lines from the log file then parses them and populates a pipeline

parameter. The parameter is then sent down a pipeline chain. The atg.reporting.datawarehouse.

loader.FilePipelineDriver.PipelineDriver component uses the properties paramPropertyNames and

paramClasses properties to specify the names and types of parameters that are read.

The PipelineManager runs the pipeline chain described in the pipeline.xml file. Pipelines consist of several

processors. These processors collect data, prepare line items and insert them in into the data warehouse.

Returns and Exchanges Pipeline Processors

The following processors are used in the Submit Return pipeline:

Pipeline Link Description

fetchReturn

/atg/reporting/datawarehouse/

processes/custsvc/

FetchReturnProcessor

$class=atg.reporting.datawarehouse.

commerce.csr.FetchReturnProcessor

Uses the return ID to look up the return/exchange in

the repository.

returnRequestLookup

atg/reporting/datawarehouse/process/

custsvc/ReturnRequestLookupProcessor

$class=atg.reporting.datawarehouse.

process.LookupPipelineProcessor

This processor fetches all return items in the

warehouse for the current return ID. If there are return

items the parameter map entry is created for the

resultPropertyName value.

checkReturnExists

/atg/reporting/datawarehouse/process/

WarehouseItemExistsProcessor

$class=atg.reporting.datawarehouse.

process.WarehouseItemExistsProcessor

This processor allows a switch to be implemented in

the pipeline by determining if a warehouse item exists

in the properties. If a warehouseItemPropertyName

value exists in the parameter map, the current log

record does not need to be processed. If the map

entry does not exist the pipeline will process the next

link.

20 Reporting and Logging 145

Pipeline Link Description

createReturnLineItems

/atg/reporting/datawarehouse/process/

custsvc/

CreateReturnLineItemsProcessor

$class=atg.reporting.datawarehouse.

commerce.csr.CreateLineItemsProcessor

This processor creates an array or the returned items

map.

allocateOtherRefund

/atg/reporting/datawarehouse/process/

custsvc/OtherRefundAllocatorProcessor

.properties

$class=atg.reporting.datawarehouse.

commerce.AmountAllocatorProcessor

This processor gets refund information from

returnRequest.

actualOtherRefund and then distributes the refund

amount based on return item refund amount or

quantity. The ItemRefundLineItemAlocator looks

at the return item refund subtotal. If the subtotal

is greater than zero, then it distributes the amount

based on the item refund amount.

allocateReturnFee

/atg/reporting/datawarehouse/process/

custsvc/ReturnFeeAllocatorProcessor.

properties

$class=atg.reporting.datawarehouse.

commerce.AmountAllocatorProcessor

This processor gets the return fee from

returnRequest.

returnFee and uses the

ItemRefundLineItemAlocator to distribute the

return fee across all return items.

calculateTotalAdjustments

/atg/reporting/datawarehouse/process/

custsvc/LineItemTotalAdjustments

Processor

$class=atg.reporting.datawarehouse.

commerce.ComputerLineItemTotal

Processor

This process sums up all adjustments for each

returned item, such as shipping share, tax share, and

other return fee allocation amounts. The suggested

shares are used to calculate the actual share. If the

suggested share is zero, the share will be calculated

based on the return item’s quantity.

calculateTotal

/atg/reporting/datawarehouse/process/

custsvc/LineItemTotalRefundProcessor

$class=atg.reporting.datawarehouse.

commerce.ComputerLineItemTotal

Processor

This processor sums up all total adjustments and item

refund items.

localCurrencyLookup

/atg/reporting/datawarehouse/process/

custsvc/LocalCurrencyLookupProcessor

$class=atg.reporting.datawarehouse.

commerce.CurrencyConverterProcessor

This processor converts local currency to standard

currency values.

146 20 Reporting and Logging

Pipeline Link Description

CurrencyConverter

/atg/reporting/datawarehouse/process/

custsvc/CurrencyConverterProcessor

$class=atg.reporting.datawarehouse.

commerce.CurrencyConverterProcessor

This processor converts shipping, tax and other

refunds, the return fee, total adjustments and refunds.

dayLookup

/atg/reporting/datawarehouse/process/

custsvc/DayLookupPipelineProcessor

$class=atg.reporting.datawarehouse.

process.DayLookupProcessor

This processor looks for the ID of the day for a given

time stamp. This processor uses the return request

createdDate property to return the ID.

timeLookup

/atg/reporting/datawarehouse/process/

custsvc/TimeLookupPipelineProcessor

$class=atg.reporting.datawarehouse.

process.TimeLookupProcessor

This processor looks for the ID of the time for a given

time stamp. This processor uses the return request

createdDate property to return the ID.

customerLookup

/atg/reporting/datawarehouse/process/

custsvc/CustomerLookupProcessor

$class=atg.reporting.datawarehouse.

process.RepositoryItemLookupProcessor

$scope=global

This processor gets the customer ID from the

returnRequest.

order.profileId. If the customer is not found in the

data warehouse, it will look in the production schema.

If found in neither schemas, the processor will return

Unspecified.

agentLookup

/atg/reporting/datawarehouse/process/

custsvc/InternalUserLookupProcessor

$class=atg.reporting.datawarehouse.

process.InternalUserLookupProcessor

$scope=global

This processor gets the agent ID from the

returnRequest.

agent.repositoryId. If the agent is not found

in the data warehouse, it will look in the production

schema. If found in neither schemas, the processor will

return Unspecified.

returnSalesChannelLookup

/atg/reporting/datawarehouse/process/

custsvc/ReturnSalesChannelLookup

Processor

$class=atg.reporting.datawarehouse.

process.EnumeratedPropertyLookup

Processor

This processor looks up the return channel ID in the

data warehouse.

20 Reporting and Logging 147

Pipeline Link Description

runReturnLineItemPipelineChain

/atg/reporting/datawarehouse/process/

custsvc/ReturnItemPipelineProcessor

This processor runs the return item pipeline for each

element of the LineItems array.

The following processors are available in the returnItem chain:

Pipeline Link Description

lookupReturnSku

/atg/reporting/datawarehouse/process/

custsvc/SkuLookupProcessor

$class=atg.reporting.datawarehouse.

process.LookupPipelineProcessor

This processor looks up the SKU ID for each return

item in the data warehouse.

lookupReturnProduct

/atg/reporting/datawarehouse/process/

custsvc/ProductLookupProcessor

$class=atg.reporting.datawarehouse.

process.LookupPipelineProcessor

This processor looks up the product ID for each return

item in the data warehouse.

lookupReturnReason

/atg/reporting/datawarehouse/process/

custsvc/ReturnReasonLookupProcessor

$class=atg.reporting.datawarehouse.

process.LookupPipelineProcessor

This processor looks up the return reason ID for each

return item in the data warehouse.

logReturnItem

/atg/reporting/datawarehouse/process/

custsvc/ReturnItemLoggerProcessor

$class=atg.reporting.datawarehouse.

process.RepositoryLoggerProcessor

This processor creates a repository item for the logged

data that is based upon the lookup properties.

Calls Pipeline Processors

The following processors are used in the call pipeline chain:

148 20 Reporting and Logging

Pipeline Link Description

callLookup

/atg/reporting/datawarehouse/process

/svc/CallLookupProcessor.properties

$class=atg.reporting.datawarehouse.

process.LookupPipelineProcessor

This processor obtains the call item for the call ID.

If the call item exists, the parameter map entry is

created for the resultPropertyName.

checkCallExists

/atg/reporting/datawarehouse/process/

WarehouseItemExistsProcessor

$class=atg.reporting.datawarehouse.

process.WarehouseItemExistsProcessor

This processor implements a switch in the pipeline

by determining if a warehouse item exists in the

properties. If a warehouseItemPropertyName value

exists in the parameter map, the current log record

does not need to be processed. If the map entry does

not exist, the pipeline will process the next link.

customerLookup

/atg/reporting/datawarehouse/process/

custsvc/CustomerLookupProcessor

$class=atg.reporting.datawarehouse.

process.RepositoryItemLookupProcessor

$scope=global

This processor gets the customer ID from the

parameter map. If the customer is not found in the

data warehouse, it will look in the production schema.

If found in neither schemas, the processor will return

Unspecified.

agentLookup

/atg/reporting/datawarehouse/process/

custsvc/InternalUserLookupProcessor

$class=atg.reporting.datawarehouse.

process.InternalUserLookupProcessor

$scope=global

This processor gets the agent ID from the parameter

map. If the agent is not found in the data warehouse,

it will look in the production schema. If found

in neither schemas, the processor will return

Unspecified.

dayLookup

/atg/reporting/datawarehouse/process/

custsvc/DayLookupPipelineProcessor

$class=atg.reporting.datawarehouse.

process.DayLookupProcessor

This processor looks for the start time timestamp

from the parameter map as well as the lookup for the

day of the time stamp.

timeLookup

/atg/reporting/datawarehouse/process/

custsvc/TimeLookupPipelineProcessor

$class=atg.reporting.datawarehouse.

process.TimeLookupProcessor

This processor looks for the start time timestamp

from the parameter map as well as the lookup for the

time of the time stamp.

20 Reporting and Logging 149

Pipeline Link Description

enddayLookup

/atg/reporting/datawarehouse/process/

custsvc/DayLookupPipelineProcessor

$class=atg.reporting.datawarehouse.

process.DayLookupProcessor

This processor looks for the end time timestamp from

the parameter map as well as the lookup for the end

day of the time stamp.

endtimeLookup

/atg/reporting/datawarehouse/process/

custsvc/TimeLookupPipelineProcessor

$class=atg.reporting.datawarehouse.

process.TimeLookupProcessor

This processor looks for the end time timestamp from

the parameter map as well as the lookup for the end

time of the time stamp.

totalTime This processor calculates the total amount of call time

in seconds.

callLogger

$class=atg.reporting.datawarehouse.

process.RepositoryLoggerProcessor

This processor creates a repository item for the

logged data based on the lookup properties.

Configuring Audit Logging

Commerce Service Center uses audit logging to record actions performed by Commerce Service Center agents

in the agent audit repository.

Audit log records are saved in a standard GSA repository /atg/agent/logging/AuditRepository. The audit

log repository items provide an audit trail of actions performed by the agent.

Although audit log repository items can be added, update, or removed using the standard GSA repository API, a

series of components and classes are available to standardize the process of adding new items to the repository.

Note: There is no public API, other than direct GSA access, to update or remove audit log repository items.

Viewing Audit Logs

Commerce Service Center uses a system called audit logging to record actions performed by agents. Each type

of action has a corresponding repository item type. These repository item types are used to log agent activity in

the agent audit repository.

You can use the ACC to view these repository items:

1. Select the Content task area from the main ACC menu.

2. Select AuditAgentRepository from the submenu.

3. From the Items of Type drop-down list, select the type of item to view, and then click List.

150 20 Reporting and Logging

If you select the first entry in the drop-down list, Agent Audit Record, the system displays all of the items

in the repository, regardless of type. If you select any other entry, the system displays only the items of the

specified type.

4. In the left pane, click the item to view.

The system displays the log information in the right pane. For example:

Adding a New Agent Audit Log Record

The following steps occur when creating an audit log record:

1. Generate an atg.agent.events.AgentEvent event object that contains all the relevant data to be

recorded. The AgentEvent identifies the item-descriptor type of audit record and has properties containing

relevant information for the log.

2. Fire the AgentEvent object through the AgentMessageSource.sendAgentEventMessage API.

AgentMessageSource is defined as the message source for all AgentEvent events.

3. The AgentAuditLogger component is defined as a message sink and receives the AgentEvent and queues

it for distribution to the appropriate AgentAuditRecorder instance.

4. AuditLogRecorder receives the AgentEvent from the AgentAuditLogger and creates the appropriate

RepositoryItem sub-type of the agent_audit item-descriptor, as defined in the AgentEvent's type

property. The AuditLogRecorder then, sets the item’s properties from the AgentEvent data, and adds it to

the AuditRepository.

When creating new audit log records, you must extend the AgentEvent class to pass your new event

properties. You should then extend the agent_audit item-descriptor with a new sub-type to store your

properties. Finally, you should extend the AgentAuditRecorder.populateCustomProperties() method to

copy your custom AgentEvent's properties to your agent_event RepositoryItem sub-type.

Creating a New Agent Audit Log Record

The process outlined below uses creating a loyalty point redemption event as an example.

1. Add a new AgentAudit event subclass for the new audit record.

This may not be necessary if the AgentAudit class has all the necessary properties. In this case, you only

need to set the proper type of the event. Every event must extend AgentEvent. The following is an example

of a RedeemedLoyaltyPointsEvent:

package atg.commerce.csr.events;

import atg.agent.events.AgentEvent;

20 Reporting and Logging 151

public class RedeemedLoyaltyPointsEvent extends AgentEvent {

public static final String CLASS_VERSION = "$Id: $$Change: $";

private static final long serialVersionUID = -5747213631038504108L;

int mPointsRedeemed;

public void setPointsRedeemed(int pPointsRedeemed) {

mPointsRedeemed = pPointsRedeemed;

}

public int getPointsRedeemed() {

return mPointsRedeemed;

}

2. Add the new audit log repository item definition for the new type.

Add an item-descriptor to the audit repository for the new agent audit in the/atg/agent/logging/

auditrepository.properties file. Add an option to auditType property of the agent_audit item

descriptor. For example:

//Add the item descriptor

<item-descriptor name="RedeemedLoyaltyPoints" super-type="agent_audit"

sub-type-value="RedeemedLoyaltyPoints">

<table name="csr_loyalty" id-column-name="id">

<property name="pointsRedeemed" data-type="int" column-

name="points_redeemed" display-name-resource="pointsRedeemed"/>

<property name="orderId" data-type="string" column-name="order_id"

display-name-resource="orderId"/>

</table>

</item-descriptor>

//Add the auditType

<option value="RedeemedLoyaltyPoints" code="1020"/>

3. Create an AgentAuditLogger component using one of the base classes provided or an extension. This

component will receive the AgentAudit events of the new type. For example:

/atg/commerce/custsvc/logging/RedeemedLoyaltyPointsEventRecorder

$class=atg.agent.logging.ConfigurableAgentAuditRecorder

customProperties=\

pointsRedeemed=pointsRedeemed,\

orderId=orderId

ConfigurableAgentAuditRecorder provides a convenient way of defining a recorder where the

properties of the event map directly to the properties on the audit log repository item.

4. Configure the AgentAuditLogger with the new AgentAuditRecorder component mapped to the

appropriate audit type. Add an entry into the eventTypeToRecorderMap property of the /atg/agent/

logging/

AgentAuditLogger.properties component to provide information on the new event recorder. For

example,

eventTypeToListenerMap+=RedeemedLoyaltyPoints=/atg/commerce/custsvc/

logging/RedeemedLoyaltyPointsEventRecorder

5. Create an instance of the AgentAudit object and send it using the

AgentMessagesource.sendAgentEventMessage API.

private void sendRedeemedLoyaltyPointsEvent

(

152 20 Reporting and Logging

String pAgentId,

String pCustomerId,

String pOrderId,

int pPointsRedeemed,

String pTicketId

)

{

RedeemedLoyaltyPointsEvent redeemedLoyaltyPointsEvent = null;

redeemedLoyaltyPointsEvent =

getAgentMessagingTools().createRedeemedLoyaltyPointsEvent();

redeemedLoyaltyPointsEvent.setActivityType

CSRAgentMessagingTools.REDEEMED_LOYALTY_POINTS_TYPE);

redeemedLoyaltyPointsEvent.setPointsRedemeed (pPointsRedeemed);

getAgentMessagingTools().getAgentMessageSource().sendAgentEventMessage

(redeemedLoyaltyPointsEvent, null,

"myApp.events.RedeemedLoyaltyPoint");

return;

}

Disabling Audit Logging Events

To reduce the amount of data stored, you may want the audit logging system to record only certain activities

and not others.

You can disable logging of an individual activity type by adding it to the disabledTypes property of the /atg/

agent/logging/AgentAuditLogger component. This property is an array of the names of the activity types

for which recording is disabled. For example, if you want to disable the recording of profile view events and

order view events, you could set this property to ProfileViewed, ViewOrder.

If you want to disable audit logging entirely, set the logEvents property of AgentAuditLogger to false. The

following is a list of the eventTypeToListenerMap properties:

Event Type Recorder in /atg/commerce/custsvc/

logging/

ActivateScheduledOrder ScheduledOrderEventRecorder

AddOrderFixedAmountAdjustment OrderManualAdjustmentRecorder

AddPaymentGroup PaymentGroupEventRecorder

AddShippingGroup ShippingGroupEventRecorder

ApproveOrder OrderEventRecorder

CancelOrder OrderEventRecorder

ClaimItem ClaimItemRecorder

CreateGiftlist GiftlistEventRecorder

CreateOrder OrderEventRecorder

20 Reporting and Logging 153

Event Type Recorder in /atg/commerce/custsvc/

logging/

CreateOrderComment CreateOrderCommentRecorder

DeactivateScheduledOrder ScheduledOrderEventRecorder

EditPaymentGroup PaymentGroupEventRecorder

EditShippingGroup ShippingGroupEventRecorder

ExchangeOrder ReturnOrderRecorder

GiftItemAddedToGiftlist GiftitemEventRecorder

GiftItemQuantityChanged GiftitemEventRecorder

GiftItemRemovedFromGiftList GiftitemEventRecorder

GrantAppeasement GrantAppeasementRecorder

GrantPromotionEvent GrantPromotionEventRecorder

IgnorePromotionEvent IgnorePromotionEventRecorder

ItemAddedToOrder CommerceItemEventRecorder

ItemQuantityChanged CommerceItemEventRecorder

ItemRemovedFromOrder CommerceItemEventRecorder

ModifyGiftlist GiftlistEventRecorder

OrderApprovalAddedEvent OrderApprovalRecorder

OrderApprovalApprovedEvent OrderApprovalRecorder

OrderApprovalRejectedEvent OrderApprovalRecorder

PriceOverride PriceOverrideRecorder

PriceReturnItem PriceReturnItemRecorder

ReceiveReturnItem ReceiveReturnItemRecorder

RejectOrder OrderEventRecorder

RemoveOrderFixedAmountAdjustment OrderManualAdjustmentRecorder

RemovePaymentGroup PaymentGroupEventRecorder

RemoveShippingGroup ShippingGroupEventRecorder

ReturnOrder ReturnOrderRecorder

SaveOrder OrderEventRecorder

154 20 Reporting and Logging

Event Type Recorder in /atg/commerce/custsvc/

logging/

SplitCostCenter SplitCostCenterRecorder

SplitShippingGroup SplitShippingGroupRecorder

SubmitOrder OrderEventRecorder

UpdateScheduledOrder ScheduledOrderEventRecorder

ViewCreditCard ViewCreditCardRecorder

ViewOrder OrderEventRecorder

ViewOrderCostCenters OrderEventRecorder

ViewOrderPayment OrderEventRecorder

ViewOrderPromotions OrderEventRecorder

ViewOrderReturns OrderEventRecorder

ViewOrderShipping OrderEventRecorder

Using Window Scoped Failover

With window scoped failover, upon server failure, an agent working on Commerce Service Center remains

logged in with the current order, ticket, and profile information displayed in the global context area. The agent

sees no change because of the failover.

Properties of window scoped components can be targeted for window backup by adding them to the

windowBackupPropertyList property of the /atg/dynamo/servlet/pipeline/

WindowScopeManager component. Upon session failover, the configured property values will be restored.

These component property values must implement Serializable to be properly backed up.

The following components are failed over by default:

• /atg/commerce/custsvc/order/ShoppingCart.current

• /atg/commerce/custsvc/order/ShoppingCart.restorableOrders

• /atg/commerce/custsvc/order/ShoppingCart.cloneEditState

• /atg/commerce/custsvc/order/ShoppingCart.loadTime

• /atg/commerce/custsvc/order/ShoppingCart.returnRequest

• /atg/commerce/custsvc/order/ViewOrderHolder.current

• /atg/commerce/custsvc/order/ViewOrderHolder.restorableOrders

• /atg/commerce/custsvc/order/ConfirmationInfo.order

20 Reporting and Logging 155

• /atg/commerce/custsvc/order/ConfirmationInfo.profile

• /atg/commerce/custsvc/order/ConfirmationInfo.toEmailAddress

• /atg/commerce/custsvc/order/ConfirmationInfo.templateName

• /atg/commerce/custsvc/order/ConfirmationInfo.

autoConfirmationEmailAddress

• /atg/commerce/custsvc/order/ConfirmationInfo.extraData

• /atg/commerce/custsvc/returns/ReturnsDataHolder.returnRequestID

• /atg/commerce/custsvc/environment/CurrentPriceListHolder

• /atg/commerce/custsvc/environment/CurrentCatalogHolder

• /atg/commerce/custsvc/profile/AddressHolder.addresses

• /atg/svc/agent/environment/CurrentSiteHolder.currentSite

The following are also window scoped:

• /atg/commerce/order/purchase/PaymentGroupContainerService

• /atg/commerce/order/purchase/ShippingGroupContainerService

Adding Additional Components

Note: Making modifications to the existing window scoped and session scoped properties files may cause

failover to not work as expected.

Add failover components for any customized code that you have written by modifying the

WindowScopeManager.properties file in your custom module to add your customized components into the

windowBackupPropertyList+=/new/custom/component.properties list.

156 20 Reporting and Logging

Appendix A. Commerce Service Center Database Tables 157

Appendix A. Commerce Service Center

Database Tables

This appendix describes the database tables used by Commerce Service Center.

Commerce Service Center Core Tables

Commerce Service Center uses the following database tables to store customer service information. These

tables are installed when you run the CIM script.

The csr_order_cmts table is used by the Commerce order repository. The Nucleus component for this

repository is /atg/commerce/order/OrderRepository. The rest of the tables described in this section are

used by the Commerce Service Center returns and exchanges repository (/atg/commerce/custsvc/

CsrRepository).

csr_order_cmts

This table stores agent comments associated with orders.

Column Data Type Constraint Description

comment_id (primary

key)

varchar(40) not null The unique ID associated with the comment.

order_id (primary key) varchar(40) not null The ID of the order the comment is associated

with. References dcspp_order (order_id).

agent_id varchar(40) null The profile ID of the agent who submitted the

comment.

comment_data varchar

(2500)

not null The text of the comment.

creation_date timestamp null The date and time when the comment was

submitted.

version integer not null The GSA version of the repository item.

158 Appendix A. Commerce Service Center Database Tables

Commerce Service Center Order Approval Tables

Commerce Service Center uses the following database tables to store order approval information. These

are stored in the approvals repository located in /atg/commerce/custsvc/approvals/approvals-

repository.

csr_approval

This table stores information about the approval process.

Column Data Type Constraint Description

approval_id

(primary key)

varchar (40) not null The unique ID of the approval.

ticket_id varchar (40) not null The ID of the ticket.

agent_id varchar (40) not null The ID of the agent.

approver_id varchar (40) not null The unique ID of the approver.

type int not null The type of approval. The value is

orderApproval.

approval_state int not null The state of the approval. Values can be

identified by code with the useCodeForValue

attribute:

17011 PENDING

17012 APPROVED

12013 REJECTED

site_id varchar (40) null The unique ID of the site.

customer_id varchar (40) null The unique ID of the customer.

creation_date timestamp not null The date the approval was created.

completion_date timestamp null The date the approval was completed.

csr_order_approval

This table stores information specific to an order approval.

Column Data Type Constraint Description

approval_id

(primary key)

varchar (40) not null The ID of the approval.

order_id varchar (40) not null The ID of the order.

Appendix A. Commerce Service Center Database Tables 159

Column Data Type Constraint Description

customer_email

(primary key)

varchar (40) null The e-mail of the customer.

appeasement_total double-precision not null The total appeasements.

order_total

(primary key)

double-precision not null The total of the order.

Commerce Service Center Profile Tables

Commerce Service Center uses the following database tables to store agent approval information.

These tables are installed by the <ATG10dir>/CSC10.2/DCS-CSR/sql/

db_components/database-vendor/DCS-CSR_profile_ddl.sql script.

csr_agent_app_limit

This table stores the approval limits for agents.

Column Data Type Constraint Description

agent_id varchar(40) not null The ID of the agent.

currency varchar(3) not null The ID of the order.

app_limit

(primary key)

numeric(19) null The limit that an agent can approve.

Commerce Service Center Logging Tables

Commerce Service Center uses the following database tables to store audit logging information.

These tables are installed by the <ATG10dir>/CSC10.2/DCS-CSR/sql/

db_components/database-vendor/DCS-CSR_logging_ddl.sql script.

The tables described in this section are all used by the agent audit repository. The Nucleus component for this

repository is /atg/agent/logging/AuditRepository.

csr_grant_appease

This table stores log records about the granting of appeasements (store credits).

160 Appendix A. Commerce Service Center Database Tables

Column Data Type Constraint Description

id (primary key) varchar(40) not null The unique ID of the log record.

appeasement_id varchar(40) null The ID of the store credit.

amount double

precision

null The amount of the store credit.

csr_price_override

This table stores log records of manual price overrides.

Column Data Type Constraint Description

id (primary key) varchar(40) not null The unique ID of the log record.

order_id varchar(40) null The ID of the order containing the price override.

component_id varchar(40) null The ID of the order component (item or shipping group)

whose price was overridden.

component_type varchar(40) null The type of the order component whose price

was overridden. Possible values: commerceItem,

shippingGroup.

old_price double

precision

null The previous price of the item or shipping group.

new_price double

precision

null The new price of the item or shipping group.

csr_order_event

This table stores log records about orders that have been modified.

Column Data Type Constraint Description

id

(primary key)

varchar(40) not null The unique ID of the log record.

order_id varchar(40) null The ID of the modified order.

amount double

precision

null The total cost of the order.

Appendix A. Commerce Service Center Database Tables 161

csr_return_order

This table stores log records of returned orders.

Column Data Type Constraint Description

id

(primary key)

varchar(40) not null The unique ID of the log record.

ret_req_id varchar(40) null The ID of the return request.

repl_order_id varchar(40) null The ID of the replacement order (for an exchange).

csr_recv_rtrn_item

This table stores log records of receipt of returned items.

Column Data Type Constraint Description

id

(primary key)

varchar(40) not null The unique ID of the log record.

item_id varchar(40) null The commerce item ID of the returned item.

quantity integer null The quantity of the item that was returned.

csr_claim_item

This table stores log records of the claiming of coupons, gift certificates, and store credits.

Column Data Type Constraint Description

id

(primary key)

varchar(40) not null The unique ID of the log record.

claimable_id varchar(40) null The ID of the coupon, gift certificate, or store credit.

claimable_type varchar(40) null Type of item claimed (coupon, gift certificate, or store

credit).

csr_ci_event

This table stores log records about changes to the quantities of items in orders.

162 Appendix A. Commerce Service Center Database Tables

Column Data Type Constraint Description

id

(primary key)

varchar(40) not null The unique ID of the log record.

item_id varchar(40) null The ID of the commerce item whose quantity was

changed.

old_quantity integer null The previous quantity of the item.

new_quantity integer null The new quantity of the item.

csr_pg_event

This table stores log records about changes to payment groups in orders.

Column Data Type Constraint Description

id

(primary key)

varchar(40) not null The unique ID of the log record.

pay_group_id varchar(40) null The ID of the payment group that was changed.

update_type one digit not null The type of update performed.

0=modify

1=remove

2=add

csr_split_sg

This table stores log records about splitting up items in orders among multiple shipping groups.

Column Data Type Constraint Description

id

(primary key)

varchar(40) not null The unique ID of the log record.

src_ship_group_id varchar(40) null The shipping group the item was moved from.

dest_ship_group_id varchar(40) null The shipping group the item was moved to.

commerce_item_id varchar(40) null The ID of the commerce item that was moved.

quantity integer not null The quantity of the item that was moved.

Appendix A. Commerce Service Center Database Tables 163

csr_split_cc

This table stores log records about splitting up item costs among multiple cost centers.

Column Data Type Constraint Description

id

(primary key)

varchar(40) not null The unique ID of this log record.

src_cost_ctr_id varchar(40) null The cost center that the item’s costs were moved

from.

dest_cost_ctr_id varchar(40) null The cost center that the item’s costs were moved

into.

commerce_ident_id varchar(40) null The ID of the commerce item whose costs were

moved.

quantity integer not null The quantity of the item whose costs were moved.

csr_sg_event

This table stores log records about changes to shipping groups in orders.

Column Data Type Constraint Description

id

(primary key)

varchar(40) not null The unique ID of the log record.

ship_group_id varchar(40) null The ID of the shipping group that was changed.

update_type integer not null The type of update performed.

0=modify

1=remove

2=add

csr_upd_props

This table stores log records about changes to properties of repository items.

Column Data Type Constraint Description

id

(primary key)

varchar(40) not null The unique ID of the log record.

164 Appendix A. Commerce Service Center Database Tables

Column Data Type Constraint Description

audit_id varchar(40) null The ID of the log record this change is associated with.

(For example, if the change is to a shipping group, this

value is the ID of the log record in the csr_sg_event

table.)

property_name varchar(40) null The name of the property that was modified.

old_value varchar(255) null The previous value of the property.

new_value varchar(255) null The new value of the property.

version integer not null The GSA version of the modified property.

csr_order_comment

This table stores log records about order comments submitted by agents.

Column Data Type Constraint Description

id

(primary key)

varchar(40) not null The unique ID of the log record.

comment_id varchar(40) null The ID of the comment.

csr_view_card

This table stores log records of agents viewing customers’ credit card information.

Column Data Type Constraint Description

id

(primary key)

varchar(40) not null The unique ID of the log record.

cc_number varchar(20) null The credit card number of the card that was viewed.

csr_oma_event

This table stores log records about order adjustments submitted by agents.

Appendix A. Commerce Service Center Database Tables 165

Column Data Type Constraint Description

id

(primary key)

varchar(40) not null The unique ID of the log record.

man_adj_id varchar(40) null The unique ID of the manual adjustment.

adjustment_type Integer not null The type of adjustment.

update_type integer null The type of update performed.

reason one-digit null The reason for the adjustment

csr_schd_event

This table stores log records of scheduled events.

Column Data Type Constraint Description

id

(primary key)

varchar(40) not null The unique ID of the log record.

sch_order_id varchar(40) null The unique ID of the scheduled order.

update_type one-digit not null The type of update.

csr_appr_event

This table stores log records about order approvals requested by agents.

Column Data Type Constraint Description

id (primary key) varchar(40) not null The unique ID of the log record.

approval_id varchar(40) not null The unique ID of the approval request.

update_type Integer null The type of update performed.

csr_order_appr_event

This table stores log records about order adjustments requested by agents.

Column Data Type Constraint Description

id (primary key) varchar(40) not null The unique ID of the log record.

166 Appendix A. Commerce Service Center Database Tables

Column Data Type Constraint Description

order_id varchar(40) not null The unique ID of the order.

csr_grt_prom_event

This table stores log records about order promotions.

Column Data Type Constraint Description

id (primary key) varchar(40) not null The unique ID of the log record.

promo_id varchar(40) null The unique ID of the promotion.

csr_ign_prom_event

This table stores log records about order promotions.

Column Data Type Constraint Description

id (primary key) varchar(40) not null The unique ID of the log record.

promo_id varchar(40) null The unique ID of the promotion.

order_id varchar(40) null The unique ID of the order.

csr_gl_event

This table stores log records about gift list events.

Column Data Type Constraint Description

id (primary key) varchar(40) not null The unique ID of the log record.

giftlist_id varchar(40) null The unique ID of the gift list.

event_name varchar(64) null The type of event.

csr_gi_event

This table stores log records about gift items

Appendix A. Commerce Service Center Database Tables 167

Column Data Type Constraint Description

id (primary key) varchar(40) null The unique ID of the log record.

catalog_ref_id varchar(40) not null The unique ID of the catalog.

old_quantity Integer not null The amount of the previous quantity.

new_quantity integer not null The amount of the new quantity.

168 Appendix A. Commerce Service Center Database Tables

Appendix B. Commerce Service Center Access Rights 169

Appendix B. Commerce Service Center

Access Rights

The following table displays the access rights for the Commerce Service Center roles:

Rights csr

Ticketing

csr

Manager

csr

Order

csr

Profile

cmcAddProductByIdP x x x x

Allowed to Create New Profile x x

cmcApprovals x

cmcBillingP x x x x

commerce-custsvc-adjust-price-privilege x

commerce-custsvc-browse-promotions-

privilege

x x

commerce-custsvc-issue-credit-privilege x

commerceDesignTab x x x x

commerceTab x x x x

cmcCompleteExchangeP x x x x

cmcCompleteOrderP x x x x

cmcCompleteReturnP x x x x

cmcConfirmExchangeP x x x x

cmcConfirmNewScheduleP x x

cmcConfirmOrderP x x x x

cmcConfirmReturnP x x x x

170 Appendix B. Commerce Service Center Access Rights

Rights csr

Ticketing

csr

Manager

csr

Order

csr

Profile

cmcConfirmOrderP x x x x

cmcConfirmOrderP x x x x

cmcConfirmUpdateScheduleP x x

cmcCrossSellP x x x x

cmcCustomerAccountPanel x x x x

cmcCustomerCreateP x x x x

cmcCustomerInfoP x x x x

CustomerInformationPanel x x x x

CustomerOrderHistoryPanel x x x x

cmcCustomerP x x x x

cmcCustomerResultsP x x x x

CustomerResultsPanel x x x x

cmcCustomerSearchP x x x x

CustomerSearchPanel x x x x

customersTab x x x x

CustomerTicketHistoryPanel x x x x

cmcExchangeSummaryP x x x x

cmcExistingOrdcerP x x x x

cmcExistingSchedulcedOrderP x x x x

cmcGiftlistSearchP x x

cmcGiftlistsViewP x x

cmcGiftlistViewPurchaseModeP x x

GlobalPanel x x x x

HelpfulOpenByIDPanel x x x x

HelpfulRecentTicketsPanel x x x x

HelpfulTicketHistoryPanel x x x x

HelpfulTicketSummary x x x x

Appendix B. Commerce Service Center Access Rights 171

Rights csr

Ticketing

csr

Manager

csr

Order

csr

Profile

cmcMoreCatalogsP x x x x

cmcMorePriceListsP x x x x

cmcMultisiteSelectionPickerP x x x x

cmcOrderHistoryP x x x x

cmcOrderResultsP x x x x

cmcOrderReturnsP x x x x

cmcOrderSearchP x x x x

cmcProductCatalogBrowseP x x x x

cmcProductCatalogSearchP x x x x

cmcProductViewP x x x x

cmcPromotionsP x x x x

cmcPurchasedItemsHistoryP x x x x

cmcPurchaseHistoryP x x x x

cmcRefundTypeP x x x x

cmcRelatedOrdersP x x x x

cmcRelatedTicketsP x x x x

RespondComposeMessagePanel x x

respondTab x x

cmcReturnDetailsP x x x x

cmcReturnItemsP x x x x

cmcReturnsHistoryP x x x x

cmcReturnSummaryP x x x x

cmcScheduleCreateP x x

cmcScheduledOrdersP x x x x

cmcSchedulesP x x x x

cmcScheduleUpdateP x x

cmcShippingAddressP x x x x

172 Appendix B. Commerce Service Center Access Rights

Rights csr

Ticketing

csr

Manager

csr

Order

csr

Profile

cmcShippingMethodP x x x x

cmcShoppingCartP x x x x

cmcSubmittedOrdersP x x x x

TasksAllTicketsPanel x x x x

TasksMyTicketsPanel x x x x

tasksTab x x x x

TicketActivityPanel x x x x

cmcTicketHistoryP x x x x

TicketsCustomerInformationPanel x x x x

TicketsResultsPanel x x x x

TicketsSearchPanel x x x x

TicketsSummaryPanel x x x x

ticketsTab x x x x

workspaceLogin x x x x

For additional information, refer to the Setting Up Internal Access Control (page 77) chapter.

Appendix C. CIM Configuration Components 173

Appendix C. CIM Configuration

Components

The Configuration and Installation Manager script configures your Commerce Service Center environment.

When using CIM, you have the option to install a number of ATG applications, including Commerce Service

Center. Depending on your requirements, you can run a single Commerce Service Center installation or install

additional components to run your Commerce Service Center environment.

CIM also allows you to configure servers, including staging, preview and dedicated lock servers.

Available Added Functionality

The following functionality add-ons can also be configured when installing Commerce Service Center.

• Oracle Endeca Commerce Catalog Search

• Oracle Click-to-Connect On Demand

• Data Warehouse (Reporting)

• Multisite

• Publishing deployment and switching data sources for catalogs and price lists

• Live Index Server horizontal sharding of the Search index for orders

Server Instances

The following server instances are configured when running CIM:

174 Appendix C. CIM Configuration Components

Server

Instance

Module List Required Data Sources

Agent Fulfillment

DCS.AbandonedOrderServices

DCS-CSR-UI

DAF.Search.Base.QueryConsole

JTDataSource

JTDataSource_production

Production DCS-CSR-UI

DCS.AbandonedOrderServices

JTDataSource

Production and

Management

DCS-CSR.Management

DCS.Search.Order.Index

DCS.Search.Order.LiveIndex

JTDataSource

JTDataSource_production

Add On Modifications

The following modifications occur to the server instances when using these optional add-ons:

Add On Server Instance Changes to Server Instance

Data Warehouse Data Warehouse

and Data

Warehouse

Loader

Adds DCS.DW, Service.DW and DCS-CSR.DW DDLs

Adds DCS-CSR.DW to module list

This adds the atg/reporting/datawarehouse/

JTDataSource and atg/reporting/datawarehouse/loader/

JTDataSource values.

Price Lists Agent Sets /atg/commerce/custsvc/util/

CSRConfigurator.usingPriceLists=true and /atg/

commerce/custsvc/util/

CSRConfigurator.usingSalePriceLists=true

Endeca Catalog

Search

Agent Adds the DCS-CSR-UI.Endeca module, which enables

communication with Endeca MDEX servers for catalog search.

ClickToConnect Agent and

Production

Adds the DCS-CSR.ClickToConnect module and the

JTDataSource and JTDataSource_production values.

Merch UI Publishing If using Oracle ATG Web Commerce Merchandising, Commerce

Service Center must be added to the deployment topology as

a deployment target. Additionally, if switching data sources are

enabled in Commerce, ATG Publishing must be aware of this to

perform a switch on deployment

Multisite All Sets multisite capabilities by enabling multisite and setting the

default Site ID and default Catalog ID in the /atg/commerce/

custsvc/util/CSRConfigurator.

Appendix C. CIM Configuration Components 175

Add On Server Instance Changes to Server Instance

Sharding All Enables horizontal sharding of the search index for orders by setting

the /atg/commerce/search/’s shardingEnabled property to

true.

Data Source Configuration

The following data source information is configured for each of the server instances.

JTDataSource for Agent

The following information is configured for the agent JTDataSource. The JTDataSource information for the

agent is stored in the DCS-CSR startup module.

SQL File

The SQL file used for the JTDataSource is <ATG10dir>/CSC10.2/DCS-CSR/sql/

db_components/vendor/DCS-CSR_logging_ddl.sql.

Data Imports

The following files are imported using the DCS-CSR module:

Repository Imported File Versioned

/atg/userprofiling/

InternalProfileRepository

<ATG10dir>/CSC/DCS-CSR/

install/data/internalUserData.xml

No

/atg/svc/option/OptionRepository <ATG10dir>/CSC/DCS-CSR/

install/data/csrOptions.xml

Yes

/atg/svc/option/

OptionRepository_production

<ATG10dir>/CSC/DCS-CSR/

install/data/csrOptions.xml

No

JTDataSource for Production

The following information is configured for the production JTDataSource, which is the

JTDataSource_production data source in the agent instance. The JTDataSource information for production

is stored in the DCS-CSR startup module.

SQL File

The SQL files used for the JTDataSource are:

<ATG10dir>/CSC/DCS-CSR/sql/db_components/vendor/DCS-CSR_ddl.sql and <ATG10dir>/CSC/DCS-

CSR/sql/db_components/vendor/DCS-CSR_ticketing_ddl.sql

176 Appendix C. CIM Configuration Components

Switching Data Source

The following information is configured for the switching data sources, which configures the JTDataSource

data source in the production instance. The switchingdatasource add-on adds the switching

switchingCore data source, as well as switchingA and switchingB data sources.

Note: Using a switching data source will also impact the catalog and pricing data sources for Commerce Service

Center.

Data Imports

The following files are imported:

Repository Imported File

/atg/userprofiling/

InternalProfileRepository

<ATG10dir>/CSC/DCS-CSR/

install/data/internalUserData.xml

/atg/svc/option/OptionRepository <ATG10dir>/CSC/DCS-CSR/

install/data/csrOptions.xml

CIM File Configuration

When running CIM, the following files are configured using these default settings:

Production Server File Configurations

The following property file configurations are set for the production server.

Search Property File Configuration

The LaunchingService.properties file searchEngine and deployShare properties are installed on the

Commerce Service Center production server.

The IndexingPeriodicService.properties file is set to enable=true to identify the production server as a

server that will be used by the indexing server to queue profile and order indexing requests.

The /atg/userprofiling/search/ProfileOutputConfig.incrementalUpdateSeconds and the /atg/

commerce/search/OrderOutputConfig.incrementalUpdateSeconds properties, which determine the

frequency for live indexing requests, are set to 5 seconds.

Note: If the server on which this is being configured is not the indexing server, set the

incrementalUpdateSeconds to -1. It is best to configure a non-DRP server as your indexing server.

Agent Server File Configurations

The following configuration changes are made on the agent server.

Appendix C. CIM Configuration Components 177

Search Property File Configuration

The LaunchingService.properties file searchEngine and deployShare properties are installed on the

Commerce Service Center agent server.

The IndexingPeriodicService.properties file is set to enable=true to identify the management server

as a server that will perform queuing of index changes.

The /atg/userprofiling/search/ProfileOutputConfig.incrementalUpdateSeconds and the /atg/

commerce/search/OrderOutputConfig.incrementalUpdateSeconds properties, which determine the

frequency for live indexing requests, are set to 5 seconds.

Note: If the server on which this is being configured is not the indexing server, set the

incrementalUpdateSeconds to -1. It is best to configure a non-DRP server as your indexing server.

Price Lists Add On Configuration

The following information is configured if installing Price Lists. The following information is stored in the /atg/

commerce/custsvc/util/CSRConfigurator.properties file:

usingPriceLists=true
usingSalesPriceLists=true

Prerequisites for Running CIM

You will need the following Commerce Service Center information before running the CIM process:

1. Four Oracle database accounts, such as: agent, production, publishing and reporting _loader_data-

warehouse

2. If you are configuring a switching data source, you will need two additional Oracle database accounts:

Switching_A and Switching_B

3. Ensure that the supported version of your Web application server is installed.

4. Ensure that the supported version of the Java JDK is installed.

5. Ensure that the correct product versions have been installed in your environment using the ATG Installer. For

information on installing these products, refer to your ATG documentation:

• Oracle 11g client / drivers (ojdbc5.jar or ojdbc6.jar)

• The Oracle ATG Web Commerce platform

• Oracle ATG Web Commerce Reference Store or Oracle ATG Web Commerce

• Oracle ATG Web Commerce Search

Note: If Commerce Service Center has previously been installed, you must drop each of the schemas before

recreating them. You can do this by using cim.sh in the existing installation to drop the schemas. You will also

need to rename the old ATG directory if this exists.

178 Appendix C. CIM Configuration Components

You will also need to remove any servers you have previously created in your Web application, as running CIM

will create new server instances.

Running CIM

When running the CIM script, you will be prompted to install all products or just Commerce Service Center. For

information on installing ATG applications, refer to your application documentation, and the ATG Installation and

Configuration Guide.

CIM presents you with a sequence of menus and menu options that allow you to configure installed products.

Multiple selections can be separated by a space. You can confirm your selections by typing D for Done.

To start CIM in the current window, run the following command:

./cim.sh or cim.bat

Once the products have been downloaded and installed, use CIM to configure them. If you wish to keep a record

of your selections for future reference, CIM can create an output file.

When you run the CIM script, use the –record option to create an output file that records your selections that

you can use to recreate your environment.

Appendix D. Configuring Oracle Click-to-Call On Demand 179

Appendix D. Configuring Oracle Click-to-

Call On Demand

Oracle Click-to-Call On Demand is an optional application that, when integrated with Commerce Service Center,

initiates and manages telephone communication between agents and customers.

Overview

A Click-to-Call integration with Commerce Service Center enables customers to initiate phone calls with agents.

Once configured, Click-to-Call uses a page instrumentation engine to add JavaScript into your customer-facing

Web pages. The JavaScript presents an icon and/or link to the customer who uses this link to enter a phone

number that the Live Help On Demand Webcare system or an optional telephony (CTI) system uses to return

their call. Commerce Service Center presents the agent with the customer’s order information and profile,

allowing the agent to assist the customer with their order.

Detailed information regarding the configuration and set up of Live Help On Demand features discussed in this

section can be found in the Live Help On Demand documentation.

Initiating a Call

When the customer initiates a call, their customer and order information is written to the database and the

customer’s phone number is sent to Webcare. This information is transmitted using a token that creates a

unique identifier that correlates the call with the customer’s call data. The token is passed to the Click-to-

Call system and is used later to obtain the data for the call, including the appropriate customer and order

information, as well as the appropriate landing page for the agent.

Once Click-to-Call has obtained the token it establishes a call with both the telephony system (CTI) and the

customer. The telephony system initiates the call with the agent.

Using a CTI System

Click-to-Call and Commerce Service Center can be configured to work with or without a CTI system. With a CTI

system, once the unique call information has been obtained, the CTI system initiates a browser screen. The

browser invokes a URL that passes the caller ID as a query parameter. Commerce Service Center looks up the call

token from Webcare using the caller ID, looks up the customer information using the call token, and configures

the agent’s environment with the customer and order information.

180 Appendix D. Configuring Oracle Click-to-Call On Demand

Commerce Service Center also provides a mechanism for your CTI system to authenticate an agent. The CTI

system can be configured to pass the a concatenation of the user name, the FTCallID, the caller’s telephone

number and the hash key to Commerce Service Center for authentication. The authentication process requires

that this hash key is the same on both servers. If you do not wish to configure authentication, agents can log in

to Commerce Service Center manually using the Commerce Service Center log in screen.

You can integrate your CTI system using the Live Help On Demand Agent Console to obtain the caller ID

information from a screen scrape. To use the Agent Console, you need to install and configure it on each agent’s

desktop.

Specifying Links and Pop-Ups

Webcare creates and configures links that are presented to the customer. These pop-up icons and call

information screens can be customized using logos, graphics and other UI components that are stored locally on

your servers.

Links and pop-ups can be static or based upon rules that you create using the Live Help On Demand

Engagement Engine Editor or the Oracle ATG Web Commerce rule process. For example, you can create a rule

that presents a link when a customer is from a specific country, or that pops up a Click-to-Call icon if a customer’s

shopping cart has reached a specific amount.

Automatic Initialization of the Agent’s Working Environment

Part of the process of receiving a call in Commerce Service Center is to initialize the agent’s working

environment with the correct set of objects.

By default, the following values are saved when a call is initiated on the storefront and then used to pre-

populate the agent’s working environment with the correct set of the objects:

• Profile ID – Used to load the active customer

• Order ID – Used to load the active order

• List Pricelist ID – Used to load the active list price list

• Sale Pricelist ID – Used to load the active sale price list

• Catalog ID – Used to load the active catalog

• Site ID – Used to load the active site if using multisite

Click-to-Call Requirements

To use Click-to-Call, you must have an active Click-to-Call account that includes access to the Webcare

Engagement Engine Editor and the Live Help On Demand Agent Console. Contact your Oracle Support

representative for further information.

The following modules are required to run Click-to-Call and should be installed on the agent-facing server:

DCS-CSR.ClickToConnect

Appendix D. Configuring Oracle Click-to-Call On Demand 181

Service.ClickToConnect

The following modules should be installed on the customer-facing server:

DCS.ClickToConnect

Refer to the Oracle Live Help On Demand documentation for information on Oracle Live Help On Demand

Webcare and Oracle Live Help On Demand Agent Console requirements.

IBM WebSphere Requirements

If you are using Click-to-Call with an IBM WebSphere application server over SSL, you must ensure that the

correct signing certificates are provided to WAS from Click-to-Call. To do this, you must set up the remote host

and SSL port information from which WAS will retrieve the signer certificates. Refer to the IBM WebSphere

application server documentation for information on obtaining certificate identification.

Oracle WebLogic Requirements

If you are using Click-to-Call with an Oracle WebLogic application server over SSL, you must ensure that the

correct signing certificates are provided to allow WebLogic to recognize the Click-to-Call certificate. You must

set up the Oracle Certificate Signing Request to obtain a certificate for the WebLogic server. Refer to the Oracle

WebLogic documentation for information on obtaining certificate identification.

Configuring the Click-to-Call Account

Before you can set up Click-to-Call on either your store-facing pages or Commerce Service Center, you must

provide Commerce Service Center with your account information.

Note: Before completing these steps, you must have a valid and active account for Live Help On Demand. Refer

to your Oracle Support representative for information.

1. Configure Commerce Service Center to recognize your account information by editing the localconfig/

atg/clicktoconnect/Configuration.properties file.

2. Add your account number, user name and password to the file.

Your ClickToConnect account ID

accountId=Click to Connect Account ID

The ClickToConnect username

username=Click to Connect User Name

The ClickToConnect password

password=Click to Connect Password

3. Save the file when you have finished.

182 Appendix D. Configuring Oracle Click-to-Call On Demand

Adding an Agent to Commerce Service Center

Agents who use the Live Help On Demand Agent Console must be added to Commerce Service Center. Note

that the login name for agents must be the same on both for Click-to-Call and Commerce Service Center. Use

the Business Control Center to add agents to Commerce Service Center. Refer to the ATG Business Control Center

User's Guide for additional information on creating agents.

Adding Agent Phone Numbers

When creating pop-ups and links using the Live Help On Demand Engagement Engine Editor, you need to

provide the phone number of the call center, and if necessary, extension information. Refer to the Live Help On

Demand Engagement Engine Editor documentation for additional information.

Configuring Commerce Service Center Pages

To run Click-to-Call with Commerce Service Center, you must add automatic page instrumentation filters. To

create static links, you must create the button or link tag that will access Click-to-Call on your customer-facing

store Web pages.

Configuring Automatic Page Instrumentation

Automatic page instrumentation allows you to automatically tag each of your customer-facing Web pages with

the ATG JavaScript library references, as well as to output other parameters that are used for data persistence

purposes, without changing any code for your site. When configuring automatic page instrumentation, set the

page instrumentation filters that are used to add the Click-to-Call code to your pages.

The page instrumentation engine writes JavaScript variables to the Web page. These variables are used to

identify the customer’s environment and to store information that allows you to create customized rules that

display links and pop-ups based on specific criteria. For example:

var _atg_estara_call_token\=100001-1234;
var _atg_estara_locale=en_US;

Adding Automatic Page Instrumentation

To add automatic page instrumentation, add the following to your customer-facing store’s web.xml file:

<filter>
 <filter-name>ADCDataInsertFilter</filter-name>
 <filter-class>atg.adc.filter.ADCDataInsertFilter</filter-class>
 <init-param>
 <param-name>loggingDebug</param-name>
 <param-value>false</param-value>
 </init-param>
 <init-param>
 <param-name>loggingWarning</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>

Appendix D. Configuring Oracle Click-to-Call On Demand 183

 <param-name>loggingError</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>loggingInfo</param-name>
 <param-value>true</param-value>
 </init-param>
</filter>
<filter-mapping>
 <filter-name>ADCDataInsertFilter</filter-name>
 <url-pattern>*.jsp</url-pattern>
</filter-mapping>

Configuring a Static Link

To configure a static link, or a link that remains within a navigational pane or frame within your Web pages, you

must add a <div> tag in the page HTML where the link should appear. This section holds information that you

create in the Live Help On Demand Engagement Engine Editor. The following example inserts a <div> that has a

specific border style.

<div id="atg_ClickToCall_Link" style="border: 1px solid rgb(0, 0, 0);"></div>

Once you have created a <div>, the <div> tag ID is used by the link definitions that you define in the Live

Help On Demand Engagement Engine Editor. Refer to the Live Help On Demand Engagement Engine Editor

documentation for detailed information.

Disabling the Orphaned Session Service

The OrphanedSessionService removes orphaned session items from the ClickToConnect session

repository. By default, the service is configured with the DCS.ClickToConnect module set to enabled=true

and the Service.ClickToConnect configuration set to enabled=false. This service should be started on any

instance where you have installed the DCS.ClickToConnect module and disabled on any instance configured

with the Service.ClickToConnect module.

You can disable the service by setting the /atg/clicktoconnect/OrphanedSessionService.

properties file enabled property to false in your /localconfig directory.

Creating Click-to-Call Links

Using the Live Help On Demand Engagement Engine Editor, you create links that customers use to initiate a

call. Click-to-Call links can be generic, which present the same links to all of your customers, or they can be

customized for specific audiences or locations.

Creating a Link

Click-to-Call links live within the HTML of your customer-facing Web page. For example, you can place a static

link in one of your existing navigational menus using a <div> tag.

184 Appendix D. Configuring Oracle Click-to-Call On Demand

When creating a static Click-to-Call link, you create a Timeout Link that has the agent phone number and a time

out and close length of zero (0), indicating that the link is displayed whenever the page is rendered.

For detailed information on creating links, refer to the Live Help On Demand Engagement Engine Editor

documentation.

Creating a Rule

Once you have create a link, you must create a rule that will display your newly created link. Using the

Engagement Engine Editor, create a new rule with the Rule Evaluation Order of 1. Set the Do This Actions to Live

Help and Display Call Invitation. You can insert a button by selecting your link and using the Insert Click-to-Call

Button in Div radio button. Enter the ID of your <div> tag and Alt Display Text.

For detailed information on creating links, refer to the Live Help On Demand Engagement Engine Editor

documentation.

Creating a Site

After you have set up the links and rules that will display the links for Click-to-Call, you must add a site using the

Engagement Engine Editor. The site controls when a page that contains a pre-defined URL, IP address or page

title will initiate a rule.

For detailed information on creating and publishing sites, refer to the Live Help On Demand Engagement Engine

Editor documentation.

Configuring the Click to Connect Token

Using the Live Help On Demand Engagement Engine Editor create the following rule that will save Click to

Connect information and pass the token to Commerce Service Center. This rule configures the following

information:

Appendix D. Configuring Oracle Click-to-Call On Demand 185

• clickToConnectSave() - The clickToConnectSave() function is a JavaScript call that is located

on each page of your customer-facing site. The function persists both order and token information

in Commerce Service Center. The clickToConnectSave function is created automatically when

you run page instrumentation and does not need to be added manually to every page. However, the

clickToConnectSave function can also be configured using the Live Help On Demand Engagement Engine

Editor.

• ATGCallToken - When the customer clicks the Click-to-Call link or button, a unique token ID is

generated and stored using the clickToConnectSave function. This token, which is stored in the

_atg_estara_call_token identifies the information that the customer was viewing.

For additional information on creating rules, refer to the Live Help On Demand Engagement Engine Editor

documentation.

Creating the Rule

1. Log into Webcare.

Note: In order to log into Webcare, you must have an existing account.

2. From the Setup menu, select Engagement Engine Editor.

3. Click the Add a New Rule button.

4. In the Name field enter ClickToConnectSave.

5. Set the Rule Evaluation Order to 2.

6. In the Do This section, select Custom Data and then Populate from JavaScript Variable.

7. Set the Populate Custom Data Dropdown to 1, and enter the name of the call token, which is

_atg_estara_call_token.

8. Create another Do This action. Select Custom JavaScript and then Run Custom JavaScript. Enter

clickToConnectSave() and select the JavaScript Function radio button.

9. Add a condition that sets Live Help: Invitation. Add the Click-to-Call link you created earlier and select Has

Been Offered in the drop down menu.

186 Appendix D. Configuring Oracle Click-to-Call On Demand

10.Save and then publish the rule in the Engagement Engine Editor.

Example: Creating a Link based on Locale

The following example outlines how to display a French language link to a customer in France. Remember

that page instrumentation adds JavaScript variables to your Web page, and one of the variables added is the

_atg_estara_locale variable, which identifies the customer’s locale.

1. Create a link that displays the French call invitation.

2. Use the Webcare Engagement Engine Editor to create a new rule that determines when the French language

links are displayed.

3. In the Conditions section, select Web Page Content and then JavaScript Variable.

4. Select Text Variable from the drop down menu, and enter _atg_estara_locale to identify the variable, and

then fr_FR to identify the value.

5. Create a Do This action that selects Live Help and then Display Call Invitation. Select the French link from the

Select Invitation drop down menu.

6. Save and deploy the rule.

For detailed information on customizing links and rules, refer to the Live Help On Demand Engagement Engine

Editor documentation.

Using Live Help On Demand Agent Console

The Live Help On Demand Agent Console is the agent-facing console that manages agent and customer

interactions. The Agent Console can be used with an existing CTI infrastructure to allow your agents to interact

with customers.

Integrating with the Live Help On Demand Agent Console

Using client-side integration, a browser window that points to a Commerce Service Center URL is displayed

within the Agent Console. Integration between the Agent Console and Commerce Service Center is regulated

using a hash key.

To create the browser window that links your Live Help On Demand system to both the Commerce Service

Center and Click-to-Call systems, you must define a call integration panel in the Agent Console. Refer to the Live

Help On Demand documentation for creating an integration panel.

To point the integration panel to Commerce Service Center, enter the URL of the Commerce Service Center

server in the following format:

http://CSC_Server_Name:CSC_Server_Port/agent/main.jsp?
clickToCallInit=true&UserTelephoneNumber=[%CALLERNUMBER%]&username=
 [%CSRUSERNAME%]
&estara_fsguid=[%ESTARAFSGUID%]&callid=[%CALLERID%]&hash=[%CSCAUTHTOKEN%]
&token=[%VARIABLEFIELD1%]&referrer=[%ORIGINURL%]

Appendix D. Configuring Oracle Click-to-Call On Demand 187

Refer to the Oracle Live Help On Demand Agent Console User Guide for detailed information on configuring

Commerce Service Center integration with authentication and hash functions.

Integrating without Live Help On Demand Agent Console

When you integrate Click-to-Call and Commerce Service Center with an external CTI system, you need to provide

the CTI system with a URL that accesses the Click-to-Call information. Before you can configure the Commerce

Service Center portion of the configuration, ensure that your external CTI system can produce a hash that

Commerce Service Center will be able to reproduce.

The hash key can be set manually or set in a system repository. By default, hash keys are not available in clear

text in a configuration file. Hash keys that are set in a system repository can be obtained using the C2CTools

property from the Dynamo Server Admin.

One you have the hash key, generate a script. For example:

/**
 *
 * Generates the URL that is used to spawn a CSC instance passing the required
 * parameters for a Click To Connect Session
 *
 * @param pURL
 * The initial part of the CSC URL e.g. http: //foo: 8080/agent/main
 * @param pUsername
 * The username of the CSC user
 * @param pCallerID
 * The caller id of the customer
 * @return The fully qualified URL
 *
 */
public URL generateURL(String pURL, String pUsername, String pCallerID) throws \
MalformedURLException, UnsupportedEncodingException {

// hashKey is the secret key used to salt the hash, this secret key is also
//configured within CSC and should be identical to what is used here.
final String hashKey = "mySecretKey";

// hashingAlgorithim is the algorithm used to create the hash. The algorithm
//should be the same as is configured within CSC in order for CSC to recreate the
//hash.
final String hashingAlgoritim = "SHA1";

// hashText is the information that the hash is created from, the Agent username,
//customer telephone number and the hashKey.
String hashText = pUsername + pCallerID + hashKey;
String clickToCallURLString = "";
String hashString = "";

/*
 * Create hash of the username, callerID and the hashKey. The Hashing algorithm
 * used is SHA1, matching the hashing algorithm that CSC is configured to use.
 */
try {
 MessageDigest m = MessageDigest.getInstance(hashingAlgoritim);
 m.update(hashText.getBytes(), 0, hashText.length());
 hashString = new BigInteger(1, m.digest()).toString(16).trim();
} catch (NoSuchAlgorithmException nsae) {
}

188 Appendix D. Configuring Oracle Click-to-Call On Demand

/*
 * The URL is created from the initial CSC URL e.g http: //foo: 8080/agent, the
 * clickToCallInit parameter, the Agent username, the hash value, and the
 * telephone number of the shopper who initiated the Click-to-Call session
 */
clickToCallURLString += pURL + "?clickToCallInit=true&username="
 + URLEncoder.encode(pUsername, "UTF-8") + "&hash="
 + URLEncoder.encode(hashString, "UTF-8") + "&UserTelephoneNumber="
 + URLEncoder.encode(pCallerID, "UTF-8");

URL clickToCallURL = new URL(clickToCallURLString);

return clickToCallURL;
}

Once you have verified that your CTI system can produce the necessary hash and URL, create a script that

integrates your system. The script should:

1. Get the username, user telephone number, secret key, and Commerce Service Center URL variables.

2. Create a hash of the username, user telephone number, and the secret key.

3. Set the checkFTCallID property of the /atg/svc/clicktoconnect/C2CTools component to false on

the Commerce Service Center server.

4. Generate a Web browser with a URL made up of the following:

Commerce Service Center URL (http://cscserver: port/agent/main.jsp)

The clickToCallInit=true variable

• The agent user name

• The hash made earlier

• The customer telephone number

5. The following is an example of a URL:

http://mycommerceservicecenterserver:8090/main.jsp?clickToCallInit=

true&username=bsmith&hash=5dd9701wtf3f&estara_fsguid=03891CD515C19&

callid=newgui_58478%3A122.1.34%2A80%3A05504.2118&

UserTelephoneNumber=4411411414

Configuring Commerce Service Center Authentication with

the Agent Console

Commerce Service Center authenticates the data request and the agent user ID before transferring any data.

Commerce Service Center authentication uses values that are calculated based on values in the request and a

secret key value. You specify the secret key value when working with Oracle Support to set up your Oracle On

Demand Live Help account.

Note: Ensure that your Webcare account is linked to your Live Help On Demand Agent Console

Appendix D. Configuring Oracle Click-to-Call On Demand 189

Enabling Commerce Service Center Auto-Authentication

You can enable automatic authentication by performing the following:

1. You can configure Commerce Service Center to automatically authenticate an agent setting the atg/

dynamo/servlet/daf/pipeline/

AuthenticationServlet.properties file property enabled to true.

The AuthenticationServlet.properties file also contains the following:

Login parameter name

loginParamName=username

caller ID parameter name, this is the user telephone number

callerIDParamName=UserTelphoneNumber

Unique caller ID, this is not the telephone number

FTCallIDParamName=called

Hash parameter name

hashParamName=hash

salt for the hash that's generated

hashKey=secretKey

enable the AuthenticationServlet

enabled=true

enable the FTCallID check

checkFTCallID=true

2. A salted hash is generated by your CTI application or by Live Help On Demand and then verified by Click-to-

Call to ensure authenticity. The secret key must be configured identically on both Commerce Service Center

and your CTI or Live Help On Demand system. The property secretKeyForHashCompare in the /atg/svc/

clicktoconnect/C2CTools file should be set to the value of this key.

Key that is included when calculating the has value...

secretKeyForHashCompare=secretKey

Note: If no secret key has been generated, Commerce Service Center will generate its own key, which can be

found using the Dynamo Server Admin, and selecting atg/svc/clicktoconnect/C2CTools.

3. Live Help On Demand agents must be added with an identical login name for both Commerce Service Center

and Webcare for automatic authentication. Use the Business Control Center and Webcare to ensure that

agent names are the same in both applications. Ensure that you have a Customer Service Representative who

has access to Commerce Service Center.

Note: If you are not using the Agent Console, set the checkFTCallID property to false in the /

localconfig/atg/svc/clicktoconnect/C2CTools file.

4. Use Webcare to add the agents. Note that each agent must have access to the Agent Console that is used to

route telephone calls on their system. For information on creating Webcare agents, refer to your Live Help On

Demand documentation.

Configuring Commerce Service Center Integration

Once you have obtained the secret key, you must configure the authenticated hash information so that Agents

can access CSC through the Live Help On Demand Agent Console.

1. Log into Live Help On Demand In-House Administration. For detailed information on working with Live Help

On Demand administration, refer to the Live Help On Demand Administration documentation.

190 Appendix D. Configuring Oracle Click-to-Call On Demand

2. Search for and then select your account number. In the CSC Integration section, enter the authenticated

shared secret key.

3. From the Hash Function drop down menu, select SHA-1.

4. Save the changes and log out.

Disabling Commerce Service Center Auto-Authentication

You can disable Commerce Service Center authentication by setting the enabled property in the atg/dynamo/

servlet/daf/pipeline/AuthenticaionServlet.properties to false. Once authentication has been

disabled, the agent must log in for each session of Commerce Service Center.

Configuring Commerce Service Center Landing Page

Components

Landing pages are used to control which page is initially viewed by the agent at the start of the Click-to-Call

session. Typically, landing pages are determined based on the URL viewed on the storefront when the call was

initiated. However, the Landing Page components provide a generic interface that allows you to determine a

landing page based on other values, and not just the storefront URL.

Because most of the time the landing page is determined by the storefront URL at the time the call was initiated

by the customer, Commerce Service Center provides a number of LandingPage and LandingPageHandlers

pre-configured to land on specific views within the Commerce Service Center application. This includes a default

landing page that is used when no other landing page is provided.

LandingPage configurations are available for landing the follow views in Commerce Service Center. Any one of

the provided LandingPages can be mapped to one or more storefront URLs.

• The shopping cart view of the active order

• The customer profile view of the active customer

• The existing order view for a given order

• The product view for a given product

• The main catalog browse view

Default Landing Page

The Default Landing Page determines which page is initially viewed when no other landing page can be

determined. By default, the Default Landing Page is configured with the shopping cart view.

Customizing Landing Page Components

You can change the default tab or panel that is presented to the agent when Click-to-Call presents a new call.

The following section describes the components and configurations for this feature.

Appendix D. Configuring Oracle Click-to-Call On Demand 191

The landing page configuration consists of the LandingPageManager, the LandingPageHandler, and the

LandingPage components.

The LandingPageManager Component

The /atg/svc/clicktoconnect/LandingPageManager component contains the configurations for all of

the LandingPageHandlers and executes them to determine the correct landing page for the Click-to-Call

request. It polls all LandingPageHandlers until one of them returns a LandingPage object. If no landing page

is returned, the defaultLandingPageHandler is used.

These LandingPageManager properties are configurable as follows. If the LandingPageManager does not

successfully determine a LandingPage, the agent’s normal login landing page will be the default landing page:

• landingPageHandlers – an array of LandingPageHandler components

• defaultLandingPageHandler – the LandingPageHandler that is executed when no other

LandingPageHandler has provided a landing page

For example:

landingPageHandlers+=
 /atg/commerce/custsvc/clicktoconnect/ProductViewLandingPageHandler,\
 /atg/commerce/custsvc/clicktoconnect/OrderViewLandingPageHandler,\
 /atg/commerce/custsvc/clicktoconnect/CategoryViewLandingPageHandler
defaultLandingPageHandler=/atg/commerce/custsvc/clicktoconnect/
 DefaultLandingPageHandler

The LandingPageHandler Components

The LandingPageHandler components, which are integrated with LandingPageManager, return a

LandingPage based on the values of the Click-to-CallRequestData object.

The following LandingPageHandler properties are configurable:

• landingPage – the landingPage object that is returned by the

LandingPageHandler

• URIMatches – this property is available to LandingPageHandlers that determine the landing page based

on the current storefront URL

Note: When configuring the URIMatches property, you must supply the full file path, for example /

commerce2/myaccount/profile.jsp.

Component Description

/atg/svc/clicktoconnect/

ProfileViewLanding

PageHandler

This component returns a landing page if the storefront URL starts

with any one the strings specified by the URIMatches property.

The profile viewed will be the same as the profile saved when

initializing the call on the storefront.

For example:

URIMatches=/ondemand/myaccount/profile.jsp

192 Appendix D. Configuring Oracle Click-to-Call On Demand

Component Description

/atg/commerce/custsvc/

clicktoconnect/CategoryView

LandingPageHandler

This component returns a landing page if the storefront URL starts

with any one the strings specified by the URIMatches property.

This component will land the agent on the catalog browse main

page.

For example:

URIMatches=/ondemand/subcategory.jsp?categoryId=

/atg/commerce/custsvc/

clicktoconnect/OrderView

LandingPageHandler

This component returns a landing page if the storefront URL

starts with any one the strings specified by the URIMatches

property. The order ID is identified by a parameter on the

storefront URL with the name specified by the property

orderIdParameterName. This component has a LandingPage

configuration for standard orders and another for scheduled

orders.

For example:

URIMatches=/ondemand/myaccount/myOrders.jsp

/atg/commerce/custsvc/

clicktoconnect/ProductView

LandingPageHandler

This component returns a landing page if the storefront URL

starts with any one the strings specified by the URIMatches

property. The product ID is identified by a parameter on

the storefront URL with the name specified by the property

productIdParameterName.

For example:

URIMatches=/ondemand/productDetailWithPicker.jsp?

productId=

/atg/commerce/custsvc/

clicktoconnect/

DefaultLandingPageHandler

This component returns a landing page when no other landing

page is provided. If the order is modifiable, the cart view page is

used, otherwise the order view page is used.

For example:

scheduledOrderViewLandingPage=

ScheduledOrderViewLandingPage

orderViewLandingPage=OrderViewLandingPage

cartViewLandingPage=CartViewLandingPage

The LandingPage Component

A LandingPage object provides all of the information required for the LandinPageManager to initialize the

agent UI on a specific view. Commerce Service Center provides a number of pre-configuration LandingPage

components that are used by the LandingPageHandlers. However, LandingPage objects can be constructed

dynamically at runtime.

The following properties are configurable in the LandingPage component:

• tabId

• panelStackIds

• panelIds

Appendix D. Configuring Oracle Click-to-Call On Demand 193

• dynamicIncludes

• treeTableIds

The following LandingPage components can be configured:

Component Description

/atg/svc/clicktoconnect/

ProfileViewLandingPage

Identifies the values required to land on the

customer tab’s profile view page.

/atg/commerce/custsvc/clicktoconnect/

CategoryViewLandingPage

Identifies the values required to land on the

commerce tab’s catalog view page.

/atg/commerce/custsvc/clicktoconnect/

ProductViewLandingPage

Identifies the values required to land on the

commerce tab’s product view page.

/atg/commerce/custsvc/clicktoconnect/

OrderViewLandingPage

Provides the values needed to land on the

commerce tab’s order view page.

/atg/commerce/custsvc/clicktoconnect/

ScheduledOrderViewLandingPage

Identifies the values needed to land on the

commerce tab’s scheduled order view page.

/atg/commerce/custsvc/clicktoconnect/

CartViewLandingPage

Provides the values required to land on the

commerce tab’s cart page.

194 Appendix D. Configuring Oracle Click-to-Call On Demand

Index 195

Index

A
access controllers, 78, 78

access rights, 77

agent, 78

approval, 73

customer profiles, 78

Internal User, 78

manager level, 78

orders, 78

Ticketing, 78

with roles, 169

address, 122

copying, 122

multiple shipping, 110

sharing, 123

shipping group page fragment, 106

shipping header, 109

shipping, configuring, 118

adjustments, 71

exchange calculations, 59

manual price, 102

admin database, 9

agent, 79

-facing lock management, 13

-facing scenarios, 140

-facing server, 5, 7

access rights, 78

access to Promotion Browser, 67

appeasement limits, 72

approval access, 71

Click-to-Call environment, 180

configuring default landing page, 84

database, 9

profiles, creating, 79

appeasements (see approvals)

Approval Management System, 71

approvals, 71

enabling process, 72

form handlers, 73

global limits, 72

limits, 72

setting authorization, 73

ATG Configuration and Installation Manager (see CIM)

ATG Search, 20

configuring environment, 20

audit logging, 149, 149

database, 143

auto-suggestions, 32, 40

B
breadcrumbs, 41

C
calculators, 99

exchange item adjustment, 60

exchange order pricing, 59

order adjustment, 103

catalog, 45

configuring current, 89

configuring default, 91

configuring quick access, 91

Endeca MDEX search configuration, 35

generating search URL, 37

search alternate results, 44

search localized results, 44

search page fragments, 33, 42

search with auto-suggestions, 32, 40

search with Endeca MDEX, 32

searches with Oracle, 45

SQL search, 31

with multisite, 14

CIM, 9, 10

add-ons, 174

configuration components, 173

clean partition, 20

Click-to-Call, 179

agents, 180

configuring authentication, 188

creating account, 181

creating links, 182, 183

creating store-facing links, 184

CTI, with, 187

customer-facing store, 182

default landing page, 190

integrating Agent Console, 186

landing page, 190

links, 180, 183

orphaned sessions, disabling, 183

page instrumentation, 182

phone numbers, 182

token information, 179, 185, 185

cloning, 125

core classes, 131

extended, 134

196 Index

pipelines, 128

CSRConfigurator, 47, 47

CSREnvironmentTools, 101

csrManager role, 78

csrOrders role, 78

csrProfiles role, 78

csrTicketing role, 78

customer profile, 122

access rights to, 78

and gift lists, 51

and price locale, 91

and scheduled orders, 62

e-mail configuration, 85

search, 17

customer-facing, 5

lock management, 12

scenarios, 140

server, 5

store with Click-to-Call, 182

D
data sharing, 14

multiple sites, 14

sites, 93

data sources, 10, 11, 173, 175

agent-facing, 7

configuring with CIM, 10

database, 9, 10, 11

admin, 9

agent, 9

audit log, 143

core tables, 157

logging tables, 158, 159, 159

Oracle, 45

scenario manager, 139

security, 80

tables, 157

user accounts, 9, 9

default landing page, 84

E
e-mail, 85

address for approvals, 72

order confirmation, 86

password, 86

templates, 87

EAR files, 10

configuring for searches, 17

indexing, 20

Endeca Experience Manager (see Endeca MDEX)

Endeca MDEX

Assembler, 34

breadcrumbs, 41

catalog browse with page fragments, 33

catalog filters, 33

catalog search, 17

catalog search and live indexing, 31

content URI, 32, 33

navigation actions, 34

navigation with page fragments, 33

search configuration, 35

search engine, 31

site filters, 33

environment monitoring, 93

form handlers, 95

site context and, 97

tickets, 96

exchanges, 68

and promotions, 60

customizing, 57

pricing, 59

F
failover, 154

form handlers

approval, 73

catalog and price list, 90

environment monitoring, 95

gift list, 55

payment group, 119

reconciliation process, 126, 134

scheduled order, 63

fulfillment of orders, 126

G
GeoLocatorService, 121, 121

gift lists, 51

access right, 78

configuring search, 53

form handlers, 55

modifying form, 51

properties, 51

Gift Registry Search, 53

gift with purchase, 67

form handlers, 67

returns and exchanges, 68

I
IDGenerator, 12

in-store pickup, 121

authorization, 122

enable, 121

item eligability, 121

payment groups, 121

setting locations, 121

shipping group, 121

Index 197

indexing, 18

adding a property to, 26

ATG Search with Live Indexing, 20

bulk, 18

clean partition, 20

configuring environments, 20

configuring servers, 20

incremental, 18

manual, 26

memory requirements, 24

modules required for, 17

preloading, 22

purging old orders, 22

re-indexing, 25

server requirements, 20

installation, 9

prerequisites, 3

using CIM, 9

inventory status, 121

J
Java version required, 9

L
landing page, 84

Live Help On Demand Agent Console, 182, 186

live indexing, 20

and Endeca MDEX search engine, 31

lock managers, 12

on agent-facing server, 13

on customer-facing server, 12

server, 12

with CIM, 10

logical partitions, 24

logs, 149

audit, 152

database tables, 158, 159, 159

M
manual adjustments, 71

multiple sites

and environment objects, 96

enabling, 14

O
orders, 9

access rights, 80

and promotions, 102

approval rights, 73

approvals, enabling, 72

configuring automatic e-mail, 85

confirmation e-mail, 86

indexing, 20

manual adjustments of, 102

modifiable, 99

modification and fulfillment, 127

modifying, 125

price adjustments, 71

pricing, 99, 100

promotions and exchanges, 60

scheduled, 61

scheduled, configuring, 63

scheduled, templates, 62

searching, 17

submitted, 100, 102, 125

P
page fragments, 106

catalog search, 33, 42

default payment group types, 114

example, 109

gift list, 52

gift with purchase, 67

shipping group configuration, 106

shipping groups, 112

passwords, e-mailing, 86

payment group, 105

cash, 113, 121, 122

credit card, 112

customization, 111

default, 111

form handlers, 119

gift certificate, 105, 113

limiting amounts of, 117

pay in store, 113

store credit, 112

payment group types, 116, 118

price lists, 100

and site context, 97

configuring current, 89

configuring default, 91

configuring quick access, 91

configuring with scheduled orders, 62

with multisite, 14

price overrides, 71

pricing, 99

errors, 101

locale, 91

manual adjustments, 102

promotions, 101

scheduled orders, 62

profiles, 7

agent, 79

customer, password, 86

customers, pricing locale, 91

198 Index

indexing, 20

promotions, 101

and submitted orders, 102

applying item level, 60

gift with purchase, 67

viewing, 67

with exchanges, 60

Promotions Browser, 67

R
reporting, 141

data collection, 141

load pipeline, 144

repositories, 9

approval, 71

configuring, 11

settings, 12

shared, 11

user profile, 78

returns

customizing, 57

gift with purchase, 68

roles, 77

agent, creating, 80

and access rights, 169

creating, 79

csrManager, 78

csrOrders, 78

csrProfiles, 78

csrTicketing, 78

default, 82

preconfigured, 78

S
scenarios, 137

configuring, 140

scheduled orders, 61

components, 64

customizing, 63

form handler, 63

ScheduledOrderTools, 62

templates, 62

searches, 93

adding properties, 26

customer profile, 17

Oracle catalog, 45

order, 17

server, 5

agent-facing, 7

customer-facing, 5

sharding, 22, 23

shareables, 15

shipping group, 105

customization, 105, 106

default types, 106

electronic, 105

hard goods, 105

page fragments, 112

types, 105

Site Administration, 14

sites

context, 14, 97

default, 14

icons, 15

properties, 14

SQL files, 10

T
tables, 9

core tables, 157

database, 11, 157

logging, 158, 159, 159

templates

e-mail, 72, 75, 85

installation, 10

order, 61

role, 78

scheduled order, 61, 62

U
URLs

Commerce Service Center, 13

generating catalog search, 37

W
Webcare (see Click-to-Call)

wish lists, 51

	ATG Commerce Service Center Installation and Programming Guide
	Table of Contents
	1 Introduction
	Audience
	Documentation Conventions
	Related Documents
	Before You Begin
	Browser and Environment Requirements

	2 Commerce Service Center Server Architecture
	Customer-Facing Server Configuration
	Agent-Facing Server Configuration

	3 Installing and Configuring the Commerce Service Center Server
	Requirements for Commerce Service Center
	Database and Schema Requirements

	Installing with the Configuration and Installation Manager
	Repositories
	Using IDGenerators
	Understanding Lock Management

	Accessing Commerce Service Center
	Working with Multiple Sites
	Enabling Multisite
	Configuring the Default Site
	Configuring the Default Site Icon
	Configuring a Site Icon
	Configuring Shareables

	4 Configuring Order and Profile Search
	Setting Up Order and Profile Search
	Using Live Indexing and Endeca MDEX Catalog Search
	Order and Profile Search Overview
	Configuring Live Indexing for Oracle ATG Web Commerce Search
	Creating Search Indexing Environments
	Preloading the Index
	Purging Older Orders
	Performing a Manual Re-Index
	Adding Searchable Properties

	5 Configuring Catalog Search
	Catalog Search with Endeca MDEX Prerequisites
	Using Live Indexing and Endeca MDEX Catalog Search

	Overview of Catalog Search with Endeca MDEX
	Initiating an Endeca MDEX Catalog Search Request
	Determining Content URI
	Filtering the Requests
	UI Page Fragments
	Encoding Framework URL
	Defining Navigation Actions
	CSRInvokeAssembler
	Setting the Agent Profile

	Configuring an Endeca MDEX Catalog Search
	Catalog Search Servlet Beans and Form Handlers
	Content Request URL Droplet Servlet Bean
	Content Item Results Droplet
	Paging Droplet
	Site Scope Form Handler

	Configuring Auto-Suggestions
	Implementing Auto-Suggestions
	Displaying Auto-Suggestions

	Working with Endeca MDEX Breadcrumbs
	Customizing Search Results
	Catalog Search Page Fragments
	Using Endeca Resourced Values
	Displaying Alternate Content

	Configuring Oracle for SQL Catalog Searching

	6 Programming Commerce Service Center
	Using the CSRConfigurator Component

	7 Working with Wish and Gift Lists
	Modifying Gift List Forms
	Rendering Gift Lists
	Displaying Gift List Information
	Configuring Gift List Search
	Gift List Form Handlers
	CSRGiftlistFormHandler
	GiftlistTableFormHandler

	Auditing Gift Lists

	8 Issuing Returns, Exchanges and Refunds
	Commerce Service Center-Specific Return Components
	Return Form Handler
	Is Item Returnable Droplet Servlet Bean
	Order Is Returnable Droplet Servlet Bean
	Prepare Replacement Order Pipeline

	Working with Exchange Orders
	Exchange Calculators
	Tiered Pricing and Exchanges
	Applying Promotions to Exchange Orders

	9 Working with Scheduled Orders
	Configuring Scheduled Orders
	Enabling and Disabling Scheduled Orders
	Configuring Price Lists

	Customizing Scheduled Orders
	Scheduled Order Form Handler
	Displaying Scheduling Information
	Scheduled Order Components
	Scheduled Orders Pipeline Additions

	10 Issuing Promotions
	Providing Promotions Browser Access
	Customizing Gift with Purchase Promotions
	Gift With Purchase Page Fragments
	Returns and Exchanges of Gifts with Purchases
	Reconciling Gift with Purchase Orders

	11 Using Order Approvals
	Configuring Order Approval
	Enabling the Order Approval Process
	Setting Global Appeasement Limits
	Modifying Individual Appeasement Limits
	Providing Approval Authorization
	Servlet Beans and Form Handlers for Approving Orders

	12 Setting Up Internal Access Control
	Access Control Overview
	Default Internal User Access Control Configuration
	Commerce Service Center Roles
	Access Controllers
	Creating New Roles

	Creating Agent Profiles
	Creating a New Agent Role
	Default Roles
	Customizing the Default Landing Page

	13 Configuring E-mail
	Customizing E-Mail
	Configuring E-mail Notifications
	Configuring New Passwords
	Configuring Order Confirmation E-Mails
	Configuring E-Mail Templates

	14 Using Catalogs and Price Lists
	Configuring Current Catalog and Price Lists
	Using the Current Catalog
	Using the Current Price List
	Defining the Default Catalog
	Defining the Default Price List
	Setting the Pricing Locale
	Specifying Quick Access Catalogs and Price Lists

	15 Understanding Environment Monitoring
	Overview of Environment Monitoring
	Environment Monitoring Components
	CSREnvironmentTools
	CSREnvironmentMonitor
	CSREnvironmentConstants
	EnvironmentChangeFormHandler, ChangeOrder
	Ticket Disposition Monitoring
	EnvironmentTools
	Environment Management and Site Context

	16 Pricing in Commerce Service Center
	Loading Orders and Pricing
	Determining if Orders are Modifiable
	Determining if Orders are Submitted

	Price Lists and Pricing
	Automatic Removal of Items
	Promotions
	Incomplete Orders or Schedule Order Templates
	Submitted Orders

	Determining the Correct PricingModelHolder
	Configuring Manual Pricing Adjustments

	17 Working with Shipping and Payment Groups
	Shipping Group Page Fragments
	Working with Shipping Group Page Fragments
	Customizing a Shipping Group Type

	Payment Group Page Fragments
	Working with Payment Group Page Fragments
	Customizing a Payment Group Type
	Limiting Amounts for Payment Groups
	Copying Payment Group Types

	Configuring Shipping Addresses
	Configuring Return Shipping Addresses

	Shipping and Payment Group Servlet Beans and Form Handlers
	Available Priced Shipping Methods Droplet Servlet Bean
	CSRShippingGroupFormHandler
	CSRPaymentGroupFormHandler

	Configuring In-Store Pickup
	Enabling In-Store Pickup
	Setting Distances for Searches
	Setting Recipient Authorization for In-Store Pickup
	Displaying the Cash Payment Group

	Working with Addresses
	Enabling and Disabling Copies
	Disabling Address Sharing

	18 Working with Submitted Orders
	Modifying Submitted Orders
	Handling and Fulfillment
	Fulfillment Notification for Order Modifications

	Cloning Orders
	Cloning Pipeline Chains
	Cloning Core Classes
	Extending Objects for Cloning

	19 Configuring Scenarios
	Using Scenarios
	Configuring Scenario Events
	Working with Scenario Managers

	Configuring Process Editor Servers
	Configuring the Customer-Facing Scenario Manager
	Configuring the Agent-Facing Scenario Managers

	20 Reporting and Logging
	Commerce Service Center Reporting Framework
	Data Collection Overview
	Loader Pipeline Overview

	Configuring Audit Logging
	Viewing Audit Logs
	Adding a New Agent Audit Log Record
	Disabling Audit Logging Events

	Using Window Scoped Failover
	Adding Additional Components

	Appendix A. Commerce Service Center Database Tables
	Commerce Service Center Core Tables
	Commerce Service Center Order Approval Tables
	Commerce Service Center Profile Tables
	Commerce Service Center Logging Tables

	Appendix B. Commerce Service Center Access Rights
	Appendix C. CIM Configuration Components
	Available Added Functionality
	Server Instances
	Add On Modifications

	Data Source Configuration
	JTDataSource for Agent
	JTDataSource for Production
	Switching Data Source

	CIM File Configuration
	Production Server File Configurations
	Agent Server File Configurations

	Prerequisites for Running CIM
	Running CIM

	Appendix D. Configuring Oracle Click-to-Call On Demand
	Overview
	Initiating a Call
	Using a CTI System
	Specifying Links and Pop-Ups
	Automatic Initialization of the Agent’s Working Environment

	Click-to-Call Requirements
	IBM WebSphere Requirements
	Oracle WebLogic Requirements

	Configuring the Click-to-Call Account
	Adding an Agent to Commerce Service Center
	Adding Agent Phone Numbers

	Configuring Commerce Service Center Pages
	Configuring Automatic Page Instrumentation
	Configuring a Static Link
	Disabling the Orphaned Session Service

	Creating Click-to-Call Links
	Creating a Link
	Creating a Rule
	Creating a Site

	Configuring the Click to Connect Token
	Example: Creating a Link based on Locale

	Using Live Help On Demand Agent Console
	Integrating with the Live Help On Demand Agent Console
	Integrating without Live Help On Demand Agent Console

	Configuring Commerce Service Center Authentication with the Agent Console
	Enabling Commerce Service Center Auto-Authentication
	Configuring Commerce Service Center Integration
	Disabling Commerce Service Center Auto-Authentication

	Configuring Commerce Service Center Landing Page Components
	Default Landing Page
	Customizing Landing Page Components

	Index

