
Endeca® Deployment Template
Usage Guide

Version 3.2.1 • December 2011

Contents

Preface...9
About this guide..9
Who should use this guide..9
Conventions used in this guide...10
Contacting Endeca Customer Support...10

Chapter 1: System Requirements and Installation................................11
Endeca software compatibility..11
Java requirements..11
Perl requirements..11
Platform requirements..11
Installation...12
Migrating from a previous version...12

Chapter 2: Application Deployment...13
Deployment pre-requisites..13
EAC applications...13

Deploying an EAC application on Windows...13
Deploying an EAC application on UNIX...15
Configuring an automated/file-based deployment...16

Custom applications...17
Custom application descriptors...17
Configuring an automated/file-based deployment for a custom application..20

Usage and development...20
Displaying the Deployment Template version...20
Configuring an application..21
Running the sample baseline update scripts..22
Running the sample partial update scripts...23
Communicating with SSL-enabled Endeca components..23
Customizations...26

Chapter 3: Application Configuration...31
About application configuration...31

Global application settings...31
Hosts...32
Lock Manager..32
Fault tolerance and polling interval properties...32
Forges..35
Dgidxs..36
Agidxs..37
Dgraphs...38
Agraphs...43
Log server..45
Report Generators...46
Configuration Manager..46

Agraph notes...48
Configuration overrides...48

Chapter 4: Scripts...51
Provisioning scripts...51
Dgraph baseline update script..52
Dgraph partial update script..55
Agraph without parallel Forge baseline update script...57
Agraph with parallel Forge baseline update script..60
Configuration update script...64
Report generation...65

iii

Chapter 5: Endeca Workbench Integration and Deployment................69
Endeca Workbench Integration functions...69
Configuration management..69
About updating the Endeca Workbench configuration..70
About extending the Endeca Workbench configuration..70
About promoting configuration to production..70
Process control...71

No Workbench integration...71
Endeca Workbench deployed in a preview environment...72
Configuring an Endeca Workbench deployment in a preview environment...72
Endeca Workbench deployed with a preview Dgraph..73
Overriding the default behavior of the update functionality..74
Endeca Workbench deployed in a production environment...76
Reporting...76

Chapter 6: Integrating and Running CAS Crawls..................................79
About storage types for CAS crawls...79
About Deployment Template files for both storage types..80
EAC Component API methods for CAS..80
Integrating and running CAS crawls that write to Record Store instances...81

Creating a CAS crawl..82
Specifying a CAS Server as a custom component for Record Store output..82
Specifying a pipeline to run in AppConfig.xml (for Record Store output) ..83
Add code to run a CAS crawl...84
Running a CAS crawl...85

Integrating and running CAS crawls that write to record output files..86
Creating a CAS crawl..87
Specifying a CAS Server host...87
Specifying a CAS Server as a custom component for record output files...87
Specifying a pipeline to run in AppConfig.xml (for record output files)..88
Editing fetchCasCrawlDataConfig.xml for your crawling environment...89
Creating a CAS crawl script using make_cas_crawl_scripts ..90
Running a baseline or incremental CAS crawl to record output files...90
Loading crawl record output files for use in the sample CAS pipeline...92
Running the sample CAS pipeline using the CAS crawl record output files..93
Crawler scripts for record output files..96

Chapter 7: Inserting a Custom Pipeline..107
About the sample pipelines...107
Sample pipeline overview...107
Location of pipeline configuration files..108
Creating a new project..108
Modifying an existing project...110
Configuring a record specifier...111
Forge flags ...112
Input record adapters..113
Dimension adapters..113
Indexer adapters...114
Output record adapters...114
Dimension servers..115
Common errors...115

Appendix A: EAC Development Toolkit...117
EAC Development Toolkit distribution and package contents...117
EAC Development Toolkit usage...118

Appendix B: Application Configuration File..119
Spring framework..119
XML schema...119

Application elements...120
Hosts...120
Components..121

Endeca® Deployment Templateiv

Utilities...126
Customization/extension within the toolkit's schema...127
Customization/extension beyond the toolkit's schema..128

Appendix C: BeanShell Scripting..131
Script implementation...131
BeanShell interpreter environment...131
About implementing logic in BeanShell..133

Appendix D: Command Invocation...135
Invoke a method on an object...135
Identify available methods..135
Update application definition...137
Remove an application...137
Display component status...137

v

Contents

Copyright and disclaimer

Product specifications are subject to change without notice and do not represent a commitment on
the part of Endeca Technologies, Inc. The software described in this document is furnished under a
license agreement.The software may not be reverse engineered, decompiled, or otherwise manipulated
for purposes of obtaining the source code. The software may be used or copied only in accordance
with the terms of the license agreement. It is against the law to copy the software on any medium
except as specifically allowed in the license agreement.

No part of this document may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying and recording, for any purpose without the express written
permission of Endeca Technologies, Inc.

Copyright © 2003-2011 Endeca Technologies, Inc. All rights reserved. Printed in USA.

Portions of this document and the software are subject to third-party rights, including:

Corda PopChart® and Corda Builder™ Copyright © 1996-2005 Corda Technologies, Inc.

Outside In® Search Export Copyright © 2011 Oracle. All rights reserved.

Rosette® Linguistics Platform Copyright © 2000-2011 Basis Technology Corp. All rights reserved.

Teragram Language Identification Software Copyright © 1997-2005 Teragram Corporation. All rights
reserved.

Trademarks

Endeca, the Endeca logo, Guided Navigation, MDEX Engine, Find/Analyze/Understand, Guided
Summarization, Every Day Discovery, Find Analyze and Understand Information in Ways Never Before
Possible, Endeca Latitude, Endeca InFront, Endeca Profind, Endeca Navigation Engine, Don't Stop
at Search, and other Endeca product names referenced herein are registered trademarks or trademarks
of Endeca Technologies, Inc. in the United States and other jurisdictions. All other product names,
company names, marks, logos, and symbols are trademarks of their respective owners.

The software may be covered by one or more of the following patents: US Patent 7035864, US Patent
7062483, US Patent 7325201, US Patent 7428528, US Patent 7567957, US Patent 7617184, US
Patent 7856454, US Patent 7912823, US Patent 8005643, US Patent 8019752, US Patent 8024327,
US Patent 8051073, US Patent 8051084, Australian Standard Patent 2001268095, Republic of Korea
Patent 0797232, Chinese Patent for Invention CN10461159C, Hong Kong Patent HK1072114, European
Patent EP1459206, European Patent EP1502205B1, and other patents pending.

vii

Preface

Endeca® InFront enables businesses to deliver targeted experiences for any customer, every time, in
any channel. Utilizing all underlying product data and content, businesses are able to influence customer
behavior regardless of where or how customers choose to engage — online, in-store, or on-the-go.
And with integrated analytics and agile business-user tools, InFront solutions help businesses adapt
to changing market needs, influence customer behavior across channels, and dynamically manage a
relevant and targeted experience for every customer, every time.

InFront Workbench with Experience Manager provides a single, flexible platform to create, deliver,
and manage content-rich, multichannel customer experiences. Experience Manager allows non-technical
users to control how, where, when, and what type of content is presented in response to any search,
category selection, or facet refinement.

At the core of InFront is the Endeca MDEX Engine,™ a hybrid search-analytical database specifically
designed for high-performance exploration and discovery. InFront Integrator provides a set of extensible
mechanisms to bring both structured data and unstructured content into the MDEX Engine from a
variety of source systems. InFront Assembler dynamically assembles content from any resource and
seamlessly combines it with results from the MDEX Engine.

These components — along with additional modules for SEO, Social, and Mobile channel support —
make up the core of Endeca InFront, a customer experience management platform focused on delivering
the most relevant, targeted, and optimized experience for every customer, at every step, across all
customer touch points.

About this guide
The Deployment Template is a collection of operational components that provides a starting point for
development and application deployment.

Representing the best practices recommended by Endeca, the template includes the complete directory
structure required for deployment, including Endeca Application Controller (EAC) scripts, configuration
files, and batch files or shell scripts that wrap common script functionality.

Who should use this guide
This guide is for developers starting to deploy new Endeca applications using the Deployment Template.

This template includes functionality required for a Dgraph deployment powered by the EAC and the
Java EAC Development Toolkit, including support for baseline and partial index updates, Endeca
Workbench integration, and support for Endeca CAS Server file system and CMS crawls.

This template also includes functionality required for an Agraph deployment powered by the EAC and
the Java EAC Development Toolkit with support for baseline index updates with or without Parallel
Forge enabled, and optional integration with Endeca Workbench.This document describes directories
and script functionality and identifies touch-points where developers may need to configure or extend
the template for their projects.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace
font. In the case of long lines of code, or when inline monospace text occurs at the end of a line, the
following symbol is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

Contacting Endeca Customer Support
The Endeca Support Center provides registered users with important information regarding Endeca
software, implementation questions, product and solution help, training and professional services
consultation as well as overall news and updates from Endeca.

You can contact Endeca Standard Customer Support through the Support section of the Endeca
Developer Network (EDeN) at http://eden.endeca.com.

Endeca ConfidentialEndeca® Deployment Template Usage Guide

| Preface10

http://eden.endeca.com

Chapter 1

System Requirements and Installation

This section describes the Deployment Template requirements and the installation procedure.

Endeca software compatibility
To determine the compatibility of the Deployment Template with other Endeca installation packages,
see the Endeca InFront Compatibility Matrix available on EDeN.

Java requirements
The EAC Development Toolkit requires Sun's Java 5 JRE or newer. By default, the Deployment
Template will use the Java 6 JRE included in the Platform Services installation.

Perl requirements
The template requires Perl 5.8.3, which is included in the Platform Services installation.

Platform requirements
The Deployment Template supports all system architectures and operating systems that are supported
by the Endeca Information Access Platform.

When installed on a UNIX system, the Deployment Template requires an English locale.

Note: Mixed-platform deployments may require customization of the default Deployment Template
scripts and components. For example, paths are handled differently on Windows and on UNIX,
so paths and working directories are likely to require customization if a deployment includes
servers running both of these operating systems.

Installation
The Deployment Template is distributed as a zip file, deploymentTemplate-[VERSION].zip.

The zip file should be unpacked using WinZip or an alternate decompression utility, and may be
unzipped into any location. The package will unpack into a self-contained directory structure tree:

Endeca\Solutions\deploymentTemplate-[VERSION]\

It is recommended that the package be unzipped to install into the same directory as the Endeca
software. For example, if you have installed Endeca Platform Services on Windows in the following
location:

C:\Endeca\PlatformServices\6.1.0\

This project should be unzipped into C:\ so that the template installs into:

C:\Endeca\Solutions\deploymentTemplate-[VERSION]\

Migrating from a previous version
This topic provides high-level instructions on how to migrate your deployment application to the current
version of the Deployment Template.

Due to the flexible nature of the Deployment Template and the opportunities for customization, specifying
a comprehensive migration path to Deployment Template 3.2 from a previous version is not possible.
It is the job of Deployment Template users to know how they have customized their deployment so
that the appropriate modifications can be retained.

However, it is possible to follow high-level steps that guide your migration path. Above all, you must
be aware of the customizations that you made to the previous Deployment Template files so that you
can port them to the newer version.

To upgrade to Deployment Template 3.2 from a previous release:

1. Upgrade to Platform Services 6.1 and Endeca Workbench 2.1.

2. Optionally, upgrade to Content Acquisition System 2.2.

3. Install Deployment Template 3.2, as documented in the "Installation" topic in this chapter.

Make sure you read the new release notes to see if any changes will affect your application.

4. Run the Deployment Template 3.2 deploy script to generate a new application folder.

5. Port the changes that you made to the old AppConfig.xml over to the Deployment Template 3.2
AppConfig.xml.

6. Replace the Deployment Template 3.2 pipeline with your custom pipeline.

7. Place your input source data in the appropriate directory.

8. Drop any custom Java packages into the Deployment Template lib/java directory.

9. Run the initialize_services script, load the source data, and run a baseline update.

If everything runs correctly, you can then migrate other components of your application, such as your
CAS crawl configurations.

Endeca ConfidentialEndeca® Deployment Template Usage Guide

System Requirements and Installation | Installation12

Chapter 2

Application Deployment

This section describes the application deployment tasks.

Deployment pre-requisites
Before beginning application deployment, ensure that the Endeca components have been installed
on all servers that will make up your deployment environment and that environment variables used
by the Endeca software (including ENDECA_ROOT) are set.

For more details about setting up your deployment environment, see the Endeca Getting Started
Guide.

EAC applications
In order to begin development, the template must be deployed onto the primary controller server in
the deployment environment. Installation scripts have been provided for Windows and UNIX, relying
on a common Perl installer to perform the deployment steps.

In every deployment environment, one server serves as the primary control machine and hosts the
EAC Central Server, while all other servers act as agents to the primary server and host EAC Agent
processes that receive instructions from the Central Server. Both the EAC Central Server and the EAC
Agent run as applications inside the Endeca HTTP Service. The Deployment Template only needs to
be installed on the selected primary server, which typically is the machine that hosts the Central Server

Deploying an EAC application on Windows
This section describes the steps for deploying an EAC application in a Windows environment using
the provided deploy.bat file.

Before deployment, unpack the Deployment Template package on the primary server. Five directories
- bin, conf, data, doc, and lib - are installed into the deploymentTemplate-[VERSION] directory.

The batch script in the bin directory is used in the following deployment steps to configure and distribute
the template files into the deployment directory structure.

To deploy the application:

1. On the primary server, execute the batch script to deploy the application:

deploymentTemplate-[VERSION]\bin\deploy.bat

The template identifies the location and version of your Endeca Platform Services install based on
the ENDECA_ROOT environment variable. If the information presented by the installer does not
match the version or location of the software you plan to use for the deployment, stop the installation,
reset your ENDECA_ROOT environment variable, and start again. Note that the installer may not be
able to parse the Platform Services version from the ENDECA_ROOT path if it is installed in a
non-standard directory structure. It is not necessary for the installer to parse the version number,
so if you are certain that the ENDECA_ROOT path points to the correct location, proceed with the
installation.

2. Specify whether your application is going to be a Dgraph deployment or an Agraph deployment.

a) If an Agraph deployment was selected, specify whether your application is going to use Parallel
Forge.

3. Specify a short name for your application. The name should consist of lower- or uppercase letters,
or digits between zero and nine.

4. Specify the full path into which your application should be deployed.

This directory must already exist.The installation creates a folder inside of the deployment directory
with the name of your application and the application directory structure and files will be deployed
there. For example, if your application name is MyApp, specifying the deployment directory as
C:\Endeca\apps installs the template for your application into C:\Endeca\apps\MyApp.

5. Specify the port number of the EAC Central Server.

By default, the installer assumes that the Central Server host is the machine on which it is being
run and that all EAC Agents are running on the same port. All of these settings can be configured
to reflect a different environment configuration once the application is deployed.

6. Specify whether your application will use Endeca Workbench for configuration management.

Integration can be enabled or disabled after deployment, but enabling it deploys a default set of
scripts that manage configuration integration from Endeca Workbench.

7. Specify the port number of Endeca Workbench.

By default, the installer assumes that the Workbench host is the machine on which it is being run,
but this can be re-configured once the application is deployed.

8. The installer can be configured to prompt the user for custom information specific to the deployment.

By default, Dgraph deployments use this functionality to prompt the user for Dgraph and Log Server
port numbers, while the Agraph deployment also ask for Agraph (and Forge server, if using Parallel
Forge) port numbers.

If the application directory already exists, the installation script archives the existing directory, to avoid
accidental loss of data. For example, if the installer finds that C:\Endeca\apps\MyApp already
exists, it renames the existing directory to C:\Endeca\apps\MyApp.[timestamp].bak and installs
the new deployment into a new MyApp directory. Note that in the case of deployments that use a large
amount of disk space, it is important to remove archived deployment directories to clear up disk space.

Related Links
Deploying an EAC application on UNIX on page 15

This section describes the steps for deploying an EAC application in a UNIX environment
using the provided deploy.sh file.

Integrating and running CAS crawls that write to Record Store instances on page 81
This section describes the high-level steps for integrating and running a CAS crawl that writes
output to a Record Store instance.

Integrating and running CAS crawls that write to record output files on page 86

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Application Deployment | EAC applications14

This section describes the high-level steps for integrating and running a CAS crawl that writes
output to a record output file.

Deploying an EAC application on UNIX
This section describes the steps for deploying an EAC application in a UNIX environment using the
provided deploy.sh file.

Before deployment, unpack the Deployment Template package on the primary server. Five directories
- bin, conf, data, doc, and lib - are installed into the deploymentTemplate-[VERSION] directory.

The shell script in the bin directory is used in the following deployment steps to configure and distribute
the template files into the deployment directory structure.

To deploy the application:

1. On the primary server, execute the batch script to deploy the application:

deploymentTemplate-[VERSION]/bin/deploy.sh

The template identifies the location and version of your Endeca Platform Services install based on
the ENDECA_ROOT environment variable. If the information presented by the installer does not
match the version or location of the software you plan to use for the deployment, stop the installation,
reset your ENDECA_ROOT environment variable, and start again. Note that the installer may not be
able to parse the Platform Services version from the ENDECA_ROOT path if it is installed in a
non-standard directory structure. It is not necessary for the installer to parse the version number,
so if you are certain that the ENDECA_ROOT path points to the correct location, proceed with the
installation.

2. Specify whether your application is going to be a Dgraph deployment or an Agraph deployment.

a) If an Agraph deployment was selected, specify whether your application is going to use Parallel
Forge.

3. Specify a short name for your application. The name should consist of lower- or uppercase letters,
or digits between zero and nine.

4. Specify the full path into which your application should be deployed.

This directory must already exist.The installation creates a folder inside of the deployment directory
with the name of your application and the application directory structure and files will be deployed
there. For example, if your application name is MyApp, specifying the deployment directory as
/localdisk/apps installs the template for your application into /localdisk/apps/myapp.

5. Specify the port number of the EAC Central Server.

By default, the installer assumes that the Central Server host is the machine on which it is being
run and that all EAC Agents are running on the same port. All of these settings can be configured
to reflect a different environment configuration once the application is deployed.

6. Specify whether your application will use Endeca Workbench for configuration management.

Integration can be enabled or disabled after deployment, but enabling it deploys a default set of
scripts that manage configuration integration from Endeca Workbench.

7. Specify the port number of Endeca Workbench.

By default, the installer assumes that the Workbench host is the machine on which it is being run,
but this can be re-configured once the application is deployed.

8. The installer can be configured to prompt the user for custom information specific to the deployment.

Endeca® Deployment Template Usage GuideEndeca Confidential

15Application Deployment | EAC applications

By default, Dgraph deployments use this functionality to prompt the user for Dgraph and Log Server
port numbers, while the Agraph deployment also ask for Agraph (and Forge server, if using Parallel
Forge) port numbers.

If the application directory already exists, the installation script archives the existing directory, to avoid
accidental loss of data. For example, if the installer finds that /localdisk/apps/myapp already
exists, it renames the existing directory to /localdisk/apps/myapp.[timestamp].bak and
installs the new deployment into a new myapp directory. Note that in the case of deployments that
use a large amount of disk space, it is important to remove archived deployment directories to clear
up disk space.

Related Links
Deploying an EAC application on Windows on page 13

This section describes the steps for deploying an EAC application in a Windows environment
using the provided deploy.bat file.

Integrating and running CAS crawls that write to Record Store instances on page 81
This section describes the high-level steps for integrating and running a CAS crawl that writes
output to a Record Store instance.

Integrating and running CAS crawls that write to record output files on page 86
This section describes the high-level steps for integrating and running a CAS crawl that writes
output to a record output file.

Configuring an automated/file-based deployment
The installer script provides a file-based configuration option to simplify the deployment and installation
of the Deployment Template. This may be especially useful during development, when the same
deployment process must be repeated many times.

A sample configuration file is provided in the conf subdirectory of the
deploymentTemplate-[VERSION] install directory. The install configuration file should specify the
deployment type, application name and deployment path.The following example specifies the installation
of a Dgraph deployment with Workbench integration enabled:

<install app-name="MyApp" >
 <deployment-path>C:\Endeca</deployment-path>
 <base-module type="dgraph" />
 <options>
 <option name="eac-port">8888</option>
 <option name="workbench-enabled">true</option>
 <option name="workbench-port">8006</option>
 <option name="dgraph1Port">15000</option>
 <option name="dgraph2Port">15001</option>
 <option name="logserverPort">15010</option>
 </options>
</install>

The following example specifies the installation of an Agraph deployment with Parallel Forge enabled
and Workbench integration disabled:

<install app-name="MyApp" >
 <deployment-path>C:\Endeca</deployment-path>
 <base-module type="agraph" />
 <options>
 <option name="eac-port">8888</option>
 <option name="workbench-enabled">false</option>
 <option name="parallel-forge">true</option>

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Application Deployment | EAC applications16

 <option name="dgraph1Port">15000</option>
 <option name="dgraph2Port">15001</option>
 <option name="agraph1Port">14000</option>
 <option name="agraph2Port">14001</option>
 <option name="forgeServerPort">14099</option>
 <option name="logserverPort">15010</option>
 </options>
</install>

To specify an install configuration file:

Specify the --install-config flag to the deploy batch or shell script to specify the location of
an install configuration file.
The following example specifies that argument to the Windows installation script:

deploymentTemplate-[VERSION]\bin\deploy.bat --install-config ..\conf\in¬
stall_config.xml

When a configuration file is specified for the installer, the deployment attempts to retrieve and validate
required information from the document before proceeding. If any information is missing or invalid, the
installer prompts for that information, as described in previous sections. To truly automate the install
process, the --no-prompt flag may be passed to the installer, instructing it to fail (with error messages)
if any information is missing and to bypass interactive verification of the Endeca version.

Custom applications
This section provides information about deploying custom applications.

Custom application descriptors
The Deployment Template installer is driven off of application descriptor XML documents that describe
the directory structure associated with the deployment as well as the files to distribute during the
installation process.

By default, the installer is shipped with application descriptor files for Agraph and Dgraph deployments
powered by the EAC Development Toolkit (located in the conf subdirectory of the deploymentTem¬
plate-[VERSION] install directory).

This document describes the directory structure of the deployment as well as the copying that is done
during the installation to distribute files into the new directories. Additionally, this document describes
whether files are associated with a Windows or UNIX deployment, and whether copied files should be
updated to replace tokens in the format @@TOKEN_NAME@@ with text strings specified to the
installer.

The following tokens are handled by the installer by default:

• @@EAC_PORT@@ - EAC Central Server port.
• @@HOST@@ - Hostname of the server on which the deploy script is invoked.
• @@PROJECT_DIR@@ - Absolute path of the target deployment directory.
• @@ESCAPED_PROJECT_DIR@@ - Absolute path of the target deployment directory using only

forward slashes.
• @@PROJECT_NAME@@ - Name of the application to deploy.
• @@ENDECA_ROOT@@ - Absolute path of the ENDECA_ROOT environment variable.
• @@SCRIPT_SUFFIX@@ - ".bat" for Windows, ".sh" for Linux installs.

Endeca® Deployment Template Usage GuideEndeca Confidential

17Application Deployment | Custom applications

• @@SLASH@@ - "\" for Windows, "/" for Linux installs.
• @@PARALLEL_FORGE_ENABLED@@ - "true" or "false," indicating whether parallel forge is

enabled for the Agraph deployment.
• @@WORKBENCH_ENABLED@@ - "true" or "false," indicating whether Workbench integration

is enabled for the application.
• @@WORKBENCH_PORT@@ - Endeca Workbench port.

In addition to these default tokens, users can specify custom tokens to substitute in their files. Tokens
are specified in the application descriptor file, including the name of the token to substitute as well as
the question with which to prompt the user or the installer configuration option to parse to retrieve the
value to substitute for the token. The default application descriptors use this functionality to request
the port number for Dgraphs, Agraphs, Log Servers and Forge servers.

Projects that deviate from the Deployment Template directory structure may find it useful to create a
custom application descriptor document, so that the Deployment Template installer can continue to
be used for application deployment.

Custom deployment descriptors may also be used to define add-on modules on top of a base install.
For example, sample applications (such as the Sample Term Discovery and Clustering application)
are shipped with a custom deployment descriptor file, which describes the additional files and directories
to install on top of a base Dgraph deployment. Modules may be installed using the deploy batch or
shell script, specifying the --app argument with the location of the application descriptor document.
For example:

deploy.bat --app \
C:\Endeca\Solutions\sampleTermDiscovery-[VERSION]\data\deploy.xml

The installer prompts you to specify whether it should install the module as a standalone installation
or if it should be installed on top of the base Dgraph deployment. Multiple add-on modules may be
specified to the installer script, though only one of them may be a base install (that is, all but one of
them should specify an attribute of update= "true").

The following excerpt from the Dgraph deployment application descriptor identifies the document's
elements and attributes:

<!--
 Deployment Template installer configuration file. This file defines the
directory structure to create and the copies to perform to distribute files
 into the new directory structure.

 The update attribute of the root install element indicates whether this
is a core installation or an add-on module. When set to false or unspecified,
 the installation requires the removal of an existing target install direc¬
tory (if present). When update is set to true, the installer preserves any
 existing directories, adding directories as required and distributing files
 based on the specified copy pattern.
-->
<app-descriptor update="false" id="Dgraph">

 <custom-tokens>
 <!-- Template custom token:
 <token name="MYTOKEN">
 <prompt-question>What is the value to substitute for token MYTO¬
KEN?</prompt-question>
 <install-config-option>myToken</install-config-option>
 <default-value>My Value</default-value>
 </token>

 This will instruct the installer to look for the "myToken" option
 in a specified install config file (if one is specified) or to

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Application Deployment | Custom applications18

 prompt the user with the specified question to submit a value. If a
 value is entered/retrieved, the installer will substitute instances
 of @@MYTOKEN@@ with the value.
 -->
 </custom-tokens>

 <dir-structure>
 <!-- Template directory:
 <dir platform="unix" primary="true"></dir>

 primary builds directory only on primary server installs

 platform builds directory only on specified platform.
 Valid values: "win" and "unix"
 -->
 </dir-structure>

 <!—
 Copy source directory is specified relative to this file's directory
 -->
 <copy-pattern src-root="../data ">
 <!-- Template copy pattern:
 <copy clear-dest-dir="true" recursive="true"
 preserve-subdirs="true" filter-files="true"
 primary="true" platform="win" endeca-version="480">
 <src-dir></src-dir>
 <src-file></src-file>
 <dest-dir></dest-dir>
 </copy>

 src-dir source directory, relative to root of deployment
 template package.

 src-file source filename or pattern (using '*' wildcard
 character) to copy from source dir

 dest-dir destination directory, relative to root of target
 deployment directory.

 clear-dest-dir removes all files in target dir before copying

 recursive copies files matching pattern in subdirectories
 of the specified source dir

 preserve-subdirs copies files, preserving dir structure. Only
 applicable to recursive copies

 filter-files filters file contents and file names by replacing

 tokens (format @@TOKEN@@) with specified
 strings.

 mode applies the specified permissions to the files
 after the copy. Mode string should be 3 octal
 digits with an optional leading zero to
 indicate octal, e.g. 755, 0644. Not relevant
 for Windows deployments.

 platform applies copy to specified platform. Valid
 values: "win" "unix"

Endeca® Deployment Template Usage GuideEndeca Confidential

19Application Deployment | Custom applications

 endeca-version applies copy to specified endeca version Valid
 values: "460" "470" "480" "500"
 -->
 </copy-pattern>
</app-descriptor>

Configuring an automated/file-based deployment for a custom
application

The install configuration file discussed in previous sections may be used to specify the location of
custom application descriptor documents in lieu of the --app command line argument to the installer.

The following example shows how to install the Sample Term Discovery and Clustering application
on top of the base Dgraph deployment.

<install app-name="MyApp" >
 <deployment-path>C:\Endeca</deployment-path>
 <base-module type="dgraph" />
 <additional-module type="custom">
 C:\Endeca\Solutions\sampleTermDiscovery-[VERSION]\data\deploy.xml
 </additional-module>
 <options>
 <option name="eac-port">8888</option>
 <option name="workbench-enabled">false</option>
 <option name="dgraph1Port">15000</option>
 <option name="dgraph2Port">15001</option>
 <option name="logserverPort">15010</option>
 </options>
</install>

Usage and development
Once installed, the Deployment Template includes all of the scripts and configuration files required to
create an index and start a cluster of MDEX Engines.

The template includes the pipeline configuration files and data extract files from the
sample_wine_data reference project that ships with the Endeca Platform Services. It also includes
a pipeline configuration intended for file system and CMS crawls. The following sections document
the process of configuring the installed deployment to run your application.

Displaying the Deployment Template version
You can print out the version number of the Deployment Template from the command line.

The runcommand script has a --version flag that prints the version number of the Deployment
Template and exits.The command actually prints the version number of the EAC Development Toolkit.

Displaying the version is important if you have to report a Deployment Template problem to Endeca
Support.

To display the version of the Deployment Template:

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Application Deployment | Usage and development20

1. From a command prompt, navigate to the [appdir]\control directory on Windows
([appdir]/control on UNIX).

2. Run the runcommand script with the --version flag, as in this Windows example:

C:\Endeca\Apps\control>runcommand --version

The command prints the version, as in this sample output:

EAC Toolkit: 3.1.734 - 2009-05-18T08:11:11-0400

The third number ("734" in the example) is the build number, followed by the build date/time.

Configuring an application
This section guides you through the process of configuring the deployment to run your application.

1. Start the EAC on each server in the deployment environment.

If this is a UNIX deployment, use the $ENDECA_ROOT/tools/server/bin/startup.sh shell
script to start the EAC with the configuration files specified in your $ENDECA_CONF directory. If this
is a Windows deployment, ensure the Endeca HTTP service is running, as it is the parent service
that contains the EAC.The files in the workspace directory specify the settings for the EAC, including
the port of the EAC Central Server and the EAC Agent server ports (on all servers, including the
primary server) and SSL settings for the EAC.

If the application is intended to integrate with Endeca Workbench, ensure that the Workbench is
running.

2. Edit the AppConfig.xml file in [appdir]/config/script to reflect the details of your
environment. Specifically:

• Ensure that the eacHost and eacPort attributes of the app element specify the correct host
and port of the EAC Central Server.

• Ensure that the host elements specify the correct host name or names and EAC ports of all
EAC Agents in your environment.

• Ensure that the ConfigManager component specifies the correct host and port for Endeca
Workbench, or that Workbench integration is disabled.

In addition to checking the host and port settings, you should configure components (for example,
add or remove Dgraphs to specify an appropriate Dgraph cluster for your application), adjust process
flags if necessary, and select appropriate ports for each Dgraph and Logserver.

3. Run the initialize_services script to initialize each server in the deployment environment
with the directories and configuration required to host your application.

This script removes any existing provisioning associated with this application in the EAC and then
adds the hosts and components in your provisioning document to the EAC, creating the directory
structure used by these components on all servers. In addition, if Workbench integration is enabled,
this script initializes Endeca Workbench by uploading the application's configuration files.

• On Windows:

[appdir]\control\initialize_services.bat

• On UNIX:

[appdir]/control/initialize_services.sh

Endeca® Deployment Template Usage GuideEndeca Confidential

21Application Deployment | Configuring an application

Use caution when running this script. The script forces any components that are defined for this
application to stop, which may lead to service interruption if executed on a live environment. The
script also removes any current Workbench configuration and removes any rules not maintained
in [appdir]/config/pipeline.

4. Upload forge_input configuration to the primary server.

Replace the sample wine configuration files in [appdir]/config/pipeline with the configuration
files created in Developer Studio for your application. For details about inserting your custom project
pipeline into the Deployment Template, refer to the section Inserting a Custom Pipeline on page
107.

5. If necessary, upload new source data to the primary server.

Replace the sample wine data (wine_data.txt.gz) in [appdir]/test_data/baseline
with the data used by your application. Similarly, replace the partial update data in
[appdir]/test_data/partial with your application's partial data.

This step is not necessary if your application does not use data extracts (for example, if your
application retrieves data directly from a database via ODBC or JDBC or from a CAS crawl). If this
is the case, remove the wine_data.txt.gz file from [appdir]/test_data/baseline.

If no script customization is required, the application is now ready for use. During development, use
the load_baseline_test_data script to simulate the data extraction process (or data readiness
signal, in the case of an application that uses a non-extract data source). This script delivers the data
extract in [appdir]/test_data/baseline and runs the set_baseline_data_ready_flag
script, which sets a flag in the EAC indicating that data has been extracted and is ready for baseline
update processing. In production, this step should be replaced with a data extraction process that
delivers extracts into the incoming directory and sets the "baseline_data_ready" flag in the EAC.
This flag can be set by making a Web service call to the EAC or by running the provided
set_baseline_data_ready_flag script.

Related Links
Integrating and running CAS crawls that write to Record Store instances on page 81

This section describes the high-level steps for integrating and running a CAS crawl that writes
output to a Record Store instance.

Integrating and running CAS crawls that write to record output files on page 86
This section describes the high-level steps for integrating and running a CAS crawl that writes
output to a record output file.

Running the sample baseline update scripts
Run the sample test scripts to create your first index and start the MDEX Engines in your deployment
environment.

To run a baseline update:

1. Run the load_baseline_test_data script.

• On Windows:

[appdir]\control\load_baseline_test_data.bat

• On UNIX:

[appdir]/control/load_baseline_test_data.sh

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Application Deployment | Running the sample baseline update scripts22

2. Run the baseline_update script.

• On Windows:

[appdir]\control\baseline_update.bat

• On UNIX:

[appdir]/control/baseline_update.sh

Related Links
Running the sample partial update scripts on page 23

In addition to the baseline update scripts, the deployment template provides a set of sample
partial update scripts.

Running the sample partial update scripts
In addition to the baseline update scripts, the deployment template provides a set of sample partial
update scripts.

To run a partial update:

1. Run the load_partial_test_data script.

• On Windows:

[appdir]\control\load_partial_test_data.bat

• On UNIX:

[appdir]/control/load_partial_test_data.sh

2. Run the partial_update script.

• On Windows:

[appdir]\control\partial_update.bat

• On UNIX:

[appdir]/control/partial_update.sh

Related Links
Running the sample baseline update scripts on page 22

Run the sample test scripts to create your first index and start the MDEX Engines in your
deployment environment.

Communicating with SSL-enabled Endeca components
The Deployment Template supports enabling SSL to communicate securely with the EAC Central
Server and with the CAS Server for version 3.0.x and later. (Secure communication between the
Deployment Template and the CAS Server is not supported in CAS 2.2.x.)

Endeca® Deployment Template Usage GuideEndeca Confidential

23Application Deployment | Running the sample partial update scripts

For details about enabling SSL in the EAC Central Server or Agent, refer to the Endeca Security Guide.
For details about enabling SSL in CAS, refer to the CAS Developer's Guide.

To use the template with an SSL-enabled Central Server:

1. Update runcommand.bat/.sh to load your SSL keystore and truststore.

Note: To enable secure communication, you must have already followed the documentation
to create a Java keystore and truststore, containing your generated certificates. Upload a
copy of these certificates to the server on which your Deployment Template scripts will run.
Edit the runcommand file to specify the locations of these files.

• On Windows, edit runcommand.bat to add the following lines:

...

set JAVA_ARGS=%JAVA_ARGS% "-Djava.util.logging.config.file=%~dp0..\con¬
fig\script\logging.properties"

if exist [\path\to\truststore] (
 set TRUSTSTORE=[\path\to\truststore]
) else (
 echo WARNING: Cannot find truststore at [path\to\truststore]. Secure
 EAC communication may fail.
)

if exist [\path\to\keystore] (
 set KEYSTORE=[\path\to\keystore]
) else (
 echo WARNING: Cannot find keystore at [\path\to\keystore]. Secure
EAC communication may fail.
)

set JAVA_ARGS=%JAVA_ARGS% "-Djavax.net.ssl.trustStore=%TRUSTSTORE%" "-
Djavax.net.ssl.trustStoreType=JKS" "-Djavax.net.ssl.trustStorePass¬
word=[truststore password]"

set JAVA_ARGS=%JAVA_ARGS% "-Djavax.net.ssl.keyStore=%KEYSTORE%" "-
Djavax.net.ssl.keyStoreType=JKS" "-Djavax.net.ssl.keyStorePassword=[key¬
store password]"

set CONTROLLER_ARGS=--app-config AppConfig.xml

...

Note that the final two new lines (beginning with "set JAVA_ARGS" are wrapped to fit the page
size of this document, but each of those two lines should have no line breaks. Also note that
you need to fill in the locations and passwords of your keystore and truststore files in the locations
indicated by the placeholders in italics.

• On UNIX, edit runcommand.sh as follows:

...

JAVA_ARGS="${JAVA_ARGS} -Djava.util.logging.config.file=${WORK¬
ING_DIR}/../config/script/logging.properties"

if [-f "[/path/to/truststore]"] ; then
 if [-f "[/path/to/keystore]"] ; then
 TRUSTSTORE=[/path/to/truststore]
 KEYSTORE=[/path/to/keystore]

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Application Deployment | Communicating with SSL-enabled Endeca components24

 JAVA_ARGS="${JAVA_ARGS} -Djavax.net.ssl.trustStore=${TRUSTSTORE}"
 JAVA_ARGS="${JAVA_ARGS} -Djavax.net.ssl.trustStoreType=JKS"
 JAVA_ARGS="${JAVA_ARGS} -Djavax.net.ssl.trustStorePassword=[trust¬
store password]"
 JAVA_ARGS="${JAVA_ARGS} -Djavax.net.ssl.keyStore=${KEYSTORE}"
 JAVA_ARGS="${JAVA_ARGS} -Djavax.net.ssl.keyStoreType=JKS"
 JAVA_ARGS="${JAVA_ARGS} -Djavax.net.ssl.keyStorePassword=[keystore
 password]"
 else
 echo "WARNING: Cannot find keystore at [/path/to/keystore]. Secure
 EAC communication may fail."
 fi
else
 echo "WARNING: Cannot find truststore at [/path/to/truststore]. Secure
 EAC communication may fail."
fi

CONTROLLER_ARGS="--app-config AppConfig.xml"

...

2. In the app element of the AppConfig.xml document, update the sslEnabled attribute to true.

The sslEnabled attribute is a application-wide setting that applies to the EAC and to CAS (if used
in your application).

3. Specify the SSL-enabled port for the EAC.

The Endeca HTTP service uses a separate port to communicate securely. For example, the default
non-SSL connector is on port 8888 and the default SSL connector listens on port 8443. The SSL
port should be specified in the eacPort attribute of the app element in the AppConfig.xml
document.

4. If you are using CAS in your application, specify the SSL-enabled port for CAS.

The Endeca CAS service uses a separate port to communicate securely. For example, the default
non-SSL port is 8500 and the default SSL port is 8505. The SSL port should be specified in the
value attribute of casPort.

5. Specify the non-SSL connector for hosts.

Internally, the EAC Central Server always initiates communication with Agents by communicating
with the non-SSL connector. When the Agent is SSL-enabled, the non-secure port redirects
communication to the secure port. In both cases, the appropriate configuration is to specify the
non-secure port for provisioned hosts.

6. Specify the non-SSL connector for Endeca Workbench.

In the ConfigManager component, the property webStudioPort should specify the non-secure
connector for the Endeca Tools Service, as communication with Endeca Workbench configuration
store always uses the unsecured channel.

The following excerpt from the AppConfig.xml document shows a sample configuration for an
SSL-enabled application.

<!—
###
Global variables

Endeca® Deployment Template Usage GuideEndeca Confidential

25Application Deployment | Communicating with SSL-enabled Endeca components

#
-->
<app appName="MySslApp" eacHost="host-lt1" eacPort="8443"
 dataPrefix="MySslApp" sslEnabled="true" lockManager="LockManager">
 <working-dir>C:\Endeca\Apps\MySslApp</working-dir>
 <log-dir>./logs</log-dir>
</app>

<!--
##
Servers/hosts
#
-->
<host id="ITLHost" hostName="myhost1.company.com" port="8888" />
<host id="MDEXHost" hostName="myhost2.company.com" port="8888" />

<!--
##
Content Acquisition System Server
#

<custom-component id="CAS" host-id="CASHost" class="com.endeca.eac.toolk¬
it.component.cas.ContentAcquisitionServerComponent">
 <properties>
 <property name="casHost" value="localhost" />
 <property name="casPort" value="8505" />
 </properties>
</custom-component>

-->

Customizations
The standard processing and script operations of the Deployment Template are sufficient to support
the operational requirements of most projects. Some applications require customization to enable
custom processing steps, script behavior, or even directory structure changes.

Developers are encouraged to use the template as a starting point for customization. The scripts and
modules provided with the template incorporate Endeca's best practice recommendations for
synchronization, archiving, and update processing. The Deployment Template is intended to provide
a set of standards on which development should be founded, while allowing the flexibility to develop
custom scripts to meet specific project needs.

The following list describes a number of customization approaches that can be implemented to extend
the existing functionality or add new functionality to the template. For further details about configuration
and customization in the AppConfig.xml document, refer to Appendix A ("EAC Development Toolkit").

• Configure AppConfig.xml - The simplest form of configuration consists of editing the
AppConfig.xml configuration document to change the behavior of components or to add or
remove components. This type of configuration includes the addition of removal of Dgraphs to the
main cluster or even the creation of additional clusters. In addition, this category includes adjustment
of process arguments (for example, adding a Java classpath for the Forge process in order to
enable the use of a Java Manipulator), custom properties and directories (for example, changing
the number of index archives that are stored on the indexing server).

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Application Deployment | Customizations26

• Change behavior of existing BeanShell scripts - Scripts are written in the Java scripting language
BeanShell. Scripts are defined in the AppConfig.xml document and are interpreted at runtime
by the BeanShell interpreter. This allows developers and system administrators to adjust the
behavior of the baseline, partial, and configuration update scripts by simply modifying the
configuration document. For example, if a deployment uses JDBC to read data into the Forge
pipeline instead of using extracted data files, the following changes would be implemented in the
BaselineUpdate script:

1. Remove the line that retrieves data and configuration for Forge: Forge.getData();
2. Insert a new copy command to retrieve configuration for Forge to process:

...
// get Web Studio config, merge with Dev Studio config
ConfigManager.downloadWsConfig();
ConfigManager.fetchMergedConfig();

// fetch extracted data files, run ITL
srcDir = PathUtils.getAbsolutePath(Forge.getWorkingDir(),
 Forge.getConfigDir()) + "/*";
destDir = PathUtils.getAbsolutePath(Forge.getWorkingDir(),
 Forge.getInputDir());

dimensionCopy = new CopyUtility(Forge.getAppName(),
 Forge.getEacHost(), Forge.getEacPort(), Forge.isSslEnabled());
dimensionCopy.init("copy_dimensions", Forge.getHostId(),
 Forge.getHostId(), srcDir, destDir, true);
dimensionCopy.run();

Forge.getData();
Forge.run();
Dgidx.run();
...

Note that this amended BeanShell script imports two classes from the classpath, references
variables that point to elements in the AppConfig.xml document (e.g. Forge, Dgidx) and defines
new variables without specifying their type (e.g. srcDir, destDir). Details about BeanShell scripting
can be found in Appendix A of this guide.

• Write new BeanShell scripts - Some use cases may call for greater flexibility than can easily be
achieved by modifying existing BeanShell scripts. In these cases, writing new BeanShell scripts
may accomplish the desired goal. For example, the following BeanShell script extends the previous
example by pulling the new functionality into a separate script:

<script id="CopyConfig">
 <bean-shell-script>
 <![CDATA[

 // fetch extracted data files, run ITL
 srcDir = PathUtils.getAbsolutePath(Forge.getWorkingDir(),
 Forge.getConfigDir()) + "/*";
 destDir = PathUtils.getAbsolutePath(Forge.getWorkingDir(),
 Forge.getInputDir());

 dimensionCopy = new CopyUtility(Forge.getAppName(),
 Forge.getEacHost(), Forge.getEacPort(), Forge.isSslEnabled());
 dimensionCopy.init("copy_dimensions", Forge.getHostId(),
 Forge.getHostId(), srcDir, destDir, true);
 dimensionCopy.run();

Endeca® Deployment Template Usage GuideEndeca Confidential

27Application Deployment | Customizations

]]>
 </bean-shell-script>
</script>

Once the new script is defined, the BaselineUpdate script simplifies to the following:

...
// get Web Studio config, merge with Dev Studio config
ConfigManager.downloadWsConfig();
ConfigManager.fetchMergedConfig();

// fetch extracted data files, run ITL
CopyConfig.run();
Forge.getData();
Forge.run();
Dgidx.run();
...

• Define utilities in AppConfig.xml - A common use case for customization is to add or adjust the
functionality of utility invocation. Our previous example demonstrates the need to invoke a new
copy utility when the Forge implementation changes. Other common use cases involve invoking
a data pre-processing script from the shell and archiving a directory. In order to enable this, the
Deployment Template allows utilities to be configured in the AppConfig.xml document. To
configure the copy defined above in the document, use the copy element:

<copy id="CopyConfig" src-host-id="ITLHost" dest-host-id="ITLHost"
 recursive="true">
 <src>./data/complete_index_config/*</src>
 <dest>./data/processing</dest>
</copy>

Once configured, this copy utility is invoked using the same command that was previously added
to the BaselineUpdate to invoke the custom BeanShell script: CopyConfig.run();

• Extend the Java EAC Development Toolkit - In rare cases, developers may need to implement
complex custom functionality that would be unwieldy and difficult to maintain if implemented in the
AppConfig.xml document. In these cases, developers can extend objects in the toolkit to create
new Java objects that implement the desired custom functionality. Staying with the previous
example, the developer might implement a custom Forge object to change the behavior of the
getData() method to simply copy configuration without looking for extracted data files.

package com.endeca.soleng.eac.toolkit.component;

import java.util.logging.Logger;
import com.endeca.soleng.eac.toolkit.exception.*;

public class MyForgeComponent extends ForgeComponent
{
 private static Logger log =
 Logger.getLogger(MyForgeComponent.class.getName());

 protected void getData() throws AppConfigurationException,
 EacCommunicationException, EacComponentControlException,
 InterruptedException
 {

 // get dimensions for processing
 getConfig();

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Application Deployment | Customizations28

 }
}

Obviously, this trivial customization is too simple to warrant the development of a new class.
However, this approach can be used to override the functionality of most methods in the toolkit or
to implement new methods.

In order to use the new functionality, the developer will compile the new class and ensure that it
is included on the classpath when invoking scripts. The simplest way to do this is to deploy the
compiled .class file to the [appdir]/config/script directory. Once on the classpath, the
new component can be loaded in place of the default Forge component by making the following
change to the Forge configuration in AppConfig.xml:

<forge class="com.endeca.soleng.eac.toolkit.component.MyForgeComponent"

 id="Forge" host-id="ITLHost">
...
</forge>

Some types of customization will require more complex configuration. Refer to Appendix A ("EAC
Development Toolkit") for information about configuring custom Java classes using the Spring
Framework namespace in the AppConfig.xml document.

Endeca® Deployment Template Usage GuideEndeca Confidential

29Application Deployment | Customizations

Chapter 3

Application Configuration

This section provides an overview of the elements defined in the configuration document.

About application configuration
The application configuration document [appdir]/config/script/AppConfig.xml defines the
hosts and components that make up an EAC application and the scripts that orchestrate updates by
executing the defined components.

Multiple configuration documents may be used to define distinct parts of an application, to separate
scripts from component provisioning, or for other purposes. The Deployment Template provides a
single AppConfig.xml file for the deployment type you choose. However, any number of --app-
config arguments may be specified the Controller class in the EAC development toolkit. All of the
objects in the files will be read and processed and scripts can refer to components, hosts, or other
scripts defined in other files.

The following sections describe each portion of the application configuration document.

Global application settings
This first section of the configuration document defines global application-level configuration, including
the host and port of the EAC Central Server, the application name and whether or not SSL is to be
used when communicating with the Central Server.

In addition, a default working and log directory are specified and a default lockManager is specified
for use by other elements defined in the document. All elements inherit these settings or override them.

<!—
##
Global variables
#
-->
 <app appName="MyApp" eacHost="myhost1.company.com" eacPort="8888"
 dataPrefix="MyApp" sslEnabled="false" lockManager="LockManager">
 <working-dir>C:\Endeca\MyApp</working-dir>

 <log-dir>./logs/baseline</log-dir>
 </app>

Hosts
All servers in a deployment are enumerated in the host definition portion of the document.

Each host must be given a unique ID. The port specified for each host is the port on which the EAC
Agent is listening, which is the Endeca HTTP service port on that server.

<!—
##
Servers/hosts
#
-->
 <host id="ITLHost" hostName="myhost1.company.com" port="8888" />
 <host id="MDEXHost" hostName="myhost2.company.com" port="8888" />

Lock Manager
The LockManager component is used to obtain and release locks and to set and remove flags using
the EAC's synchronization Web service.

A LockManager object is associated with the elements in the application to enable a centralized access
point to locks, allowing multiple objects to test for the existence of locks and flags. When a script or
component invocation fails, the Deployment Template attempts to release all locks acquired during
the invocation for a LockManager configured to release locks on failure. Multiple LockManager
components may be configured, if it is appropriate for some locks to be released on failure while others
remain.

<!—
##
Lock manager, used to set/remove/test flags and obtain/release
locks
#
-->
 <lock-manager id="LockManager" releaseLocksOnFailure="true" />

Fault tolerance and polling interval properties
Two sets of configurable properties set the behavior of the Deployment Template fault tolerance
mechanism and the frequency of status checks for components.

Fault tolerance property

You can now configure fault tolerance (i.e., retries) for any component (such as Forge, Dgidx, and
Dgraph) when invoked through the EAC. This functionality also extends to the CAS server when
running a crawl with the CAS component.The name of the fault-tolerance property is maxMissedSta¬
tusQueriesAllowed.

When components are run, the Deployment Template instructs the EAC to start a component, then
polls on a regular interval to check if the component is running, stopped, or failed. If one of these status
checks fails, the Deployment Template assumes the component has failed and the script ends. The
maxMissedStatusQueriesAllowed property allows a configurable number of consecutive failures
to be tolerated before the script will end.

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Application Configuration | About application configuration32

The following is an example of a Forge component configured to tolerate a maximum of ten consecutive
failures:

<forge id="Forge" host-id="ITLHost">
 <properties>
 <property name="numStateBackups" value="10"/>
 <property name="numLogBackups" value="10"/>

 <property name="maxMissedStatusQueriesAllowed" value="10"/>
 </properties>
 ...
</forge>

The default number of allowed consecutive failures is 5. Note that these status checks are consecutive,
so that every time a status query returns successfully, the counter is reset to zero.

Keep in mind that you can use different fault-tolerance settings for your components. For example,
you could set a value of 10 for the Forge component, a value of 8 for Dgidx, and a value of 6 for the
Dgraph.

Polling interval properties

As described in the previous section, the Deployment Template polls on a regular interval to check if
a started component is running, stopped, or failed. A set of four properties is available to configure
each component for how frequently the Deployment Template polls for status while the component is
running. Because each property has a default value, you can use only those properties that are
important to you.

The polling properties are as follows:

• minWaitSeconds specifies the threshold (in seconds) when slow polling switches to standard
(regular) polling. The default is -1 (i.e., no threshold, so the standard polling interval is used from
the start).

• slowPollingIntervalMs specifies the interval (in milliseconds) that status queries are sent as
long as the minWaitSeconds time has not elapsed.The default slow polling interval is 60 seconds.

• standardPollingIntervalMs (specified in milliseconds) is used after the minWaitSeconds
time has passed. If no minWaitSeconds setting is specified, the standardPollingIntervalMs
setting is always used. The default standard polling interval is 1 second.

• maxWaitSeconds specifies the threshold (in seconds) when the Deployment Template gives up
asking for status and assumes that it has failed. The default is -1 (i.e., no threshold, so the
Deployment Template will keep trying indefinitely).

Here is an example configuration for a long-running Forge component that typically takes 8 hours to
complete:

<forge id="Forge" host-id="ITLHost">
 <properties>
 <property name="numStateBackups" value="10"/>
 <property name="numLogBackups" value="10"/>

 <property name="standardPollingIntervalMs" value="60000"/>
 <property name="slowPollingIntervalMs" value="600000"/>
 <property name="minWaitSeconds" value="28800"/>
 <property name="maxMissedStatusQueriesAllowed" value="10"/>
 </properties>
 ...
</forge>

The result of this configuration would be that for the first 8 hours (minWaitSeconds=28800), Forge’s
status would be checked every 10 minutes (slowPollingIntervalMs=600000), after which time

Endeca® Deployment Template Usage GuideEndeca Confidential

33Application Configuration | About application configuration

the status would be checked every minute (standardPollingIntervalMs=60000). If a status
check fails, a maximum of 10 consecutive retries will be attempted, based on the standardPolling¬
IntervalMs setting.

Keep in mind that these values can be set independently for each component.

Fault tolerance and polling interval for utilities

Fault tolerance and polling interval values can also be set for these utilities:

• copy
• shell
• archive
• rollback

You set the new values by adjusting the BeanShell script code that is used to construct and invoke
the utility.You adjust the code by using these setter methods from the EAC Toolkit's Utility class:

• Utility.setMinWaitSeconds()

• Utility.setMaxWaitSeconds()

• Utility.setMaxMissedStatusQueriesAllowed()

• Utility.setPollingIntervalMs()

• Utility.setSlowPollingIntervalMs()

• Utility.setMaxMissedStatusQueriesAllowed()

If you do not use any of these methods, then the utility will use the default values listed in the two
previous sections.

For example, here is a default utility invocation in the CAS crawl scripts:

// create the target dir, if it doesn't already exist
mkDirUtil = new CreateDirUtility(CAS.getAppName(),
 CAS.getEacHost(), CAS.getEacPort(), CAS.isSslEnabled());
mkDirUtil.init(Forge.getHostId(), destDir, CAS.getWorkingDir());
mkDirUtil.run();

You would then add these methods before calling the run() method, so that the code would now
look like this:

// create the target dir, if it doesn't already exist
mkDirUtil = new CreateDirUtility(CAS.getAppName(),
 CAS.getEacHost(), CAS.getEacPort(), CAS.isSslEnabled());
mkDirUtil.init(Forge.getHostId(), destDir, CAS.getWorkingDir());
mkDirUtil.setMinWaitSeconds(30);
mkDirUtil.setMaxWaitSeconds(120);
mkDirUtil.setMaxMissedStatusQueriesAllowed(10);
mkDirUtil.setPollingIntervalMs(5000);
mkDirUtil.setSlowPollingIntervalMs(30000);
mkDirUtil.run();

Alternatively, if your utility was defined in your AppConfig.xml like this:

<copy id=”MyCopy” src-host-id=”ITLHost” dest-host-id=”MDEXHost” recur¬
sive=”true”>
 <src>./path/to/files</src>
 <dest>./path/to/target</dest>
</copy>

You would add the same type of lines as above, before calling the run() method; for example:

MyCopy.setMaxMissedStatusQueriesAllowed(10);
 MyCopy.run();

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Application Configuration | About application configuration34

For more information on the Utility methods, see the Javadocs for the EAC Toolkit package.

Forges
One or many Forge components are defined for baseline update processing and partial update
processing depending on the deployment type you choose.

If an Agraph deployment type is chosen, a Forge cluster component is defined. This object is used to
apply actions to an entire cluster of Forges, rather than manually iterating over a number of Forges.
In addition, the object contains logic associated with executing Forges in parallel based on Forge
groups, which are described below. Multiple Forge clusters can be defined, with no restriction around
which Forges belong to each cluster or how many clusters a Forge belongs to.

A Forge cluster is configured with references to all Forges that belong to that cluster. In addition, the
cluster can be configured to copy data in parallel or serially. This setting applies to copies that are
performed to retrieve source data and configuration to each server that hosts a Forge component. By
default, the template sets this value to true.

<!--
##
Forge Cluster
#
-->
<forge-cluster id="ForgeCluster" getDataInParallel="true">
 <forge ref="ForgeServer" />
 <forge ref="ForgeClient1" />
 <forge ref="ForgeClient2" />
</forge-cluster>

In addition to standard Forge configuration settings and process arguments, the Deployment Template
uses several configurable properties and custom directories during processing:

• numLogBackups - Number of log directory backups to store.
• numStateBackups - Number of autogen state directory backups to store.
• numPartialsBackups - Number of cumulative partials directory backups to store. It is

recommended that you increase the default value of 5. The reason is that the files in the updates
directory for the Dgraph are automatically deleted after partials are applied to the Dgraph. The
number you choose depends on how often you run partial updates and how many copies you want
to keep.

• incomingDataHost - Host to which source data files are extracted.
• incomingDataDir - Directory to which source data files are extracted.
• incomingDataFileName - Filename of the source data files that are extracted.
• configHost - Host from which configuration files and dimensions are retrieved for Forge to

process.
• configDir - Directory from which configuration files and dimensions are retrieved for Forge to

process.
• cumulativePartialsDir - Directory where partial updates are accumulated between baseline

updates.
• wsTempDir - Temp Endeca Workbench directory to which post-Forge dimensions are copied to

be uploaded to the Workbench.
• skipTestingForFilesDuringCleanup - Used for directory-cleaning operations. If set to "true",

will skip the directory-contents test and instead proceed directly to cleaning the directory. The
default behavior is to test the directory contents and skip cleanup if the directory is not empty.

• The properties documented in the "Fault tolerance and polling interval properties" topic.

Endeca® Deployment Template Usage GuideEndeca Confidential

35Application Configuration | About application configuration

This excerpt combines properties from both the baseline and partial update Forge to demonstrate the
use of all of these configuration settings.

<properties>
 <property name="forgeGroup" value="A" />
 <property name="incomingDataHost">ITLHost</property>
 <property name="incomingDataFileName">project_name-part0-*</property>
 <property name="configHost">ITLHost</property>
 <property name="numStateBackups" value="10" />
 <property name="numLogBackups" value="10" />
 <property name="numPartialsBackups" value="5" />
 <property name="skipTestingForFilesDuringCleanup" value="true" />
</properties>
<directories>
 <directory name="incomingDataDir">./data/partials/incoming</directory>
 <directory name="configDir">./config/pipeline</directory>
 <directory name="cumulativePartialsDir">
 ./data/partials/cumulative_partials
 </directory>
 <directory name="wsTempDir">./data/web_studio/temp</directory>
</directories>

In addition to standard Forge configuration and process arguments, Forge processes add a custom
property used to define which Forge processes run in parallel with each other when they belong to a
Forge cluster.

forgeGroup - Indicates the Forge's membership in a Forge group. When the run method on a Forge
cluster is executed, Forge processes within the same Forge group are run in parallel. Forge group
values are arbitrary strings.The Forge cluster iterates through the groups in alphabetical order, though
non-standard characters may result in groups being updated in an unexpected order.

Dgidxs
One or many Dgidx components are defined depending on the deployment type you choose.

If an Agraph deployment type is chosen, an indexing cluster component is defined.This object is used
to apply actions to an entire cluster of Dgidxs, rather than manually iterating over a number of Dgidxs.
In addition, the object contains logic associated with executing Dgidxs in parallel based on Dgidx
groups, which are described below. Multiple indexing clusters can be defined, with no restriction around
which Dgidx belongs to each cluster or how many clusters a Dgidx belongs to.

An indexing cluster is configured with references to all Dgidxs that belong to that cluster. In addition,
the cluster can be configured to copy data in parallel or serially. This setting applies to copies that are
performed to retrieve source data and configuration to each server that hosts a Dgidx component. By
default, the template sets this value to true.

<!--
##
Indexing Cluster
#
-->
<indexing-cluster id="IndexingCluster" getDataInParallel="true">
 <agidx ref="Agidx1" />
 <dgidx ref="Dgidx1" />
 <dgidx ref="Dgidx2" />
</indexing-cluster>

In addition to standard Dgidx configuration settings and process arguments, the Deployment Template
uses several configurable properties and custom directories during processing:

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Application Configuration | About application configuration36

• numLogBackups - Number of log directory backups to store.
• numIndexbackups - Number of index backups to store.
• incomingDataHost - Host to which source data files are extracted.
• incomingDataDir - Directory to which source data files are extracted.
• incomingDataFileName - Filename of the source data files that are extracted.
• configHost - Host from which configuration files and dimensions are retrieved for Dgidx to

process.
• configDir - Directory from which configuration files and dimensions are retrieved for Dgidx to

process.
• configFileName - Filename of the configuration files and dimensions that are retrieved for Dgidx

to process.
• skipTestingForFilesDuringCleanup - Used for directory-cleaning operations. If set to "true",

will skip the directory-contents test and instead proceed directly to cleaning the directory. The
default behavior is to test the directory contents and skip cleanup if the directory is not empty.

• The properties documented in the "Fault tolerance and polling interval properties" topic.

In addition to standard Dgidx configuration and process arguments, Dgidx processes add a custom
property used to define which Dgidx processes run in parallel with each other when they belong to an
indexing cluster.

dgidxGroup - Indicates the Dgidx's membership in a Dgidx group. When the run method on an
indexing cluster is executed, Dgidx processes within the same Dgidx group are run in parallel. Dgidx
group values are arbitrary strings. The indexing cluster iterates through the groups in alphabetical
order, though non-standard characters may result in groups being updated in an unexpected order.

Agidxs
An Agidx component is defined. An indexing cluster is used to simplify common operations across
multiple Agidxs. The indexing cluster is described in the previous Dgidx section.

In addition to standard Agidx configuration settings and process arguments, the Deployment Template
uses several configurable properties and custom directories during processing.

• numLogBackups - Number of log directory backups to store.
• numIndexbackups - Number of index backups to store.
• incomingPreviousOutputHost - Host to which source data files are extracted.
• incomingPreviousOutputDir - Directory to which source data files are extracted.
• skipTestingForFilesDuringCleanup - Used for directory-cleaning operations. If set to "true",

will skip the directory-contents test and instead proceed directly to cleaning the directory. The
default behavior is to test the directory contents and skip cleanup if the directory is not empty.

• The properties documented in the "Fault tolerance and polling interval properties" topic.

In addition to standard Agidx configuration and process arguments, Agidx processes add a custom
property used to define which Agidx processes run in parallel with each other when they belong to an
indexing cluster.

agidxGroup - Indicates the Agidx's membership in an Agidx group. When the run method on an
indexing cluster is executed, Agidx processes within the same Agidx group are run in parallel. Agidx
group values are arbitrary strings. The indexing cluster iterates through the groups in alphabetical
order, though non-standard characters may result in groups being updated in an unexpected order.

Endeca® Deployment Template Usage GuideEndeca Confidential

37Application Configuration | About application configuration

Dgraphs
If a Dgraph deployment type is chosen, a Dgraph cluster component is defined.

This object is used to apply actions to an entire cluster of Dgraphs, rather than manually iterating over
a number of Dgraphs. In addition, the object contains logic associated with Dgraph restart strategies,
which are described below. Multiple Dgraph clusters can be defined, with no restriction around which
Dgraphs belong to each cluster or how many clusters a Dgraph belongs to.

A Dgraph cluster is configured (via the dgraph-cluster element) with references to all Dgraphs
that belong to that cluster. In addition, the cluster can be configured to copy data in parallel or serially.
This setting applies to copies that are performed to distribute a new index, partial updates or
configuration updates to each server that hosts a Dgraph. By default, the template sets this value to
true.

<!--
##
Dgraph Cluster
#
-->
<dgraph-cluster id="DgraphCluster" getDataInParallel="true">
 <dgraph ref="Dgraph1" />
 <dgraph ref="Dgraph2" />
</dgraph-cluster>

Two Dgraphs are defined by the template by default.

Global Dgraph settings

In order to avoid defining shared configuration for multiple Dgraphs in each Dgraph's XML configuration,
the document provides the dgraph-defaults element, where shared settings can be configured
and inherited (or overridden) by each Dgraph defined in the document. This defaults object specifies
a number of custom configuration properties that are used by the update scripts to define operational
functionality.

• numLogBackups - Number of log directory backups to store.
• shutdownTimeout - Number of seconds to wait for a component to stop (after receiving a stop

command).
• numIdleSecondsAfterStop - Number of seconds to pause/sleep after a component is stopped.

Typically, this will be used to ensure that log file locks are release by the component before
proceeding.

• srcIndexDir - Location from which a new index will be copied to a local directory on the Dgraph's
host.

• srcIndexHostId - Host from which a new index will be copied to a local directory on the Dgraph's
host.

• localIndexDir - Local directory to which a single copy of a new index is copied from the source
index directory on the source index host.

• srcPartialsDir - Location from which a new partial update will be copied to a local directory
on the Dgraph's host.

• srcCumulativePartialsDir - Location from which all partial updates accumulated since the
last baseline update will be copied to a local directory on the Dgraph's host.

• srcPartialsHostId - Host from which partial updates will be copied to a local directory on the
Dgraph's host.

• localCumulativePartialsDir - Local directory to which partial updates are copied from the
source (cumulative) partials directory on the source partials host.

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Application Configuration | About application configuration38

• srcDgraphConfigDir - Location from which Dgraph configuration files will be copied to a local
directory on the Dgraph's host.

• srcDgraphConfigHostId - Host from which Dgraph configuration files will be copied to a local
directory on the Dgraph's host.

• localDgraphConfigDir - Local directory to which Dgraph configuration files are copied from
the source Dgraph config directory on the source Dgraph config host.

• srcXQueryHostId - Host from which XQuery modules will be copied to a local directory on the
Dgraph's host.

• srcXQueryDir - Location from which XQuery modules will be copied to a local directory on the
Dgraph's host.

• localXQueryDir - Local directory to which XQuery modules are copied from the source Dgraph
XQuery directory on the source Dgraph XQuery modules host.

• skipTestingForFilesDuringCleanup - Used for directory-cleaning operations. If set to "true",
will skip the directory-contents test and instead proceed directly to cleaning the directory. The
default behavior is to test the directory contents and skip cleanup if the directory is not empty.

• The properties documented in the "Fault tolerance and polling interval properties" topic.

<!--
###
Global Dgraph settings, inherited by all dgraphs
#
-->
<dgraph-defaults>
 <properties>
 <property name="srcIndexDir" value="./data/dgidx_output" />
 <property name="srcIndexHostId" value="ITLHost" />
 <property name="srcPartialsDir" value="./data/partials/forge_output"
/>
 <property name="srcPartialsHostId" value="ITLHost" />
 <property name="srcCumulativePartialsDir" value="./data/partials/cumu¬
lative_partials" />
 <property name="srcCumulativePartialsHostId" value="ITLHost" />
 <property name="srcDgraphConfigDir" value="./data/web_studio/dgraph_con¬
fig" />
 <property name="srcDgraphConfigHostId" value="ITLHost" />
 <property name="srcXQueryHostId" value="ITLHost" />
 <property name="srcXQueryDir" value="./config/lib/xquery" />
 <property name="numLogBackups" value="10" />
 <property name="shutdownTimeout" value="30" />
 <property name="numIdleSecondsAfterStop" value="0" />
 </properties>
 <directories>
 <directory name="localIndexDir">./data/dgraphs/local_dgraph_input</di¬
rectory>
 <directory name="localCumulativePartialsDir">./data/dgraphs/local_cumu¬
lative_partials</directory>
 <directory name="localDgraphConfigDir">./data/dgraphs/local_dgraph_con¬
fig</directory>
 <directory name="localXQueryDir">./data/dgraphs/local_xquery</directory>

 </directories>
 <args>
 <arg>--threads</arg>
 <arg>2</arg>
 <arg>--spl</arg>
 <arg>--dym</arg>
 <arg>--xquery_path</arg>
 <arg>./data/dgraphs/local_xquery</arg>

Endeca® Deployment Template Usage GuideEndeca Confidential

39Application Configuration | About application configuration

 </args>
 <startup-timeout>120</startup-timeout>
</dgraph-defaults>

Each Dgraph defined in the document (via the dgraph element) inherits from the settings defined in
the dgraph-defaults element, and also specifies settings that are unique to the Dgraph.

Note: As of version 3.1 of the Deployment Template, the numCacheWarmupSeconds and of¬
flineUpdate properties are ignored (and warning messages generated) because they are not
supported in the 6.1.x MDEX Engine.

Restart and update custom properties

In addition to standard Dgraph configuration and process arguments, the dgraph element adds two
custom properties that define restart and update strategies:

• restartGroup

• updateGroup

The restartGroup property indicates the Dgraph's membership in a restart group. When applying
a new index or configuration updates to a cluster of Dgraphs (or when updating a cluster of Dgraphs
with a provisioning change such as a new or modified process argument), the Dgraph cluster object
applies changes simultaneously to all Dgraphs in a restart group.

Similarly, the updateGroup property indicates the Dgraph's membership in an update group. When
applying partial updates, the Dgraph cluster object applies changes simultaneously to all Dgraphs in
an update group.

This means that a few common restart strategies can be applied as follows:

• To restart/update all Dgraphs at once: specify the same restartGroup/updateGroup value for each
Dgraph.

• To restart/update Dgraphs one at a time: specify a unique restartGroup/updateGroup value for
each Dgraph, or omit one or both of the custom properties on all Dgraphs (causing the template
to assign a unique group to each Dgraph).

• To restart/update Dgraphs on each server simultaneously: specify the same
restartGroup/updateGroup value for each Dgraph on a physical server.

• To restart Dgraphs one at a time but apply partial updates to all Dgraphs at once: specify a unique
restartGroup value for each Dgraph and specify the same updateGroup value for each Dgraph.

<dgraph id="Dgraph1" host-id="MDEXHost" port="15000">
 <properties>
 <property name="restartGroup" value="A" />
 <property name="updateGroup" value="a" />
 </properties>
 <log-dir>./logs/dgraphs/Dgraph1</log-dir>
 <input-dir>./data/dgraphs/Dgraph1/dgraph_input</input-dir>
 <update-dir>./data/dgraphs/Dgraph1/dgraph_input/updates</update-dir>
</dgraph>

Restart and update group values are arbitrary strings.The DgraphCluster will iterate through the groups
in alphabetical order, though non-standard characters may result in groups being updated in an
unexpected order.

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Application Configuration | About application configuration40

Running scripts

Dgraph components can specify the name of a script to invoke prior to shutdown and the name of a
script to invoke after the component is started.These optional attributes must specify the ID of a Script
defined in the XML file(s). These BeanShell scripts are executed just before the Dgraph is stopped or
just after it is started. The scripts behave identically to other BeanShell scripts, except that they have
an additional variable, invokingObject, which holds a reference to the Dgraph that invoked the script.
This functionality is typically used to implement calls to a load balancer, adding or removing a Dgraph
from the cluster as it is updated.

The following example shows two dummy scripts (which just log a message, but could be extended
to call out to a load balancer) provisioned to run pre-shutdown and post-startup for Dgraph1.

<dgraph id="Dgraph1" host-id="MDEXHost" port="15000"
 pre-shutdown-script="DgraphPreShutdownScript"
 post-startup-script="DgraphPostStartupScript">
 <properties>
 <property name="restartGroup" value="A" />
 </properties>
 <log-dir>./logs/dgraphs/Dgraph1</log-dir>
 <input-dir>./data/dgraphs/Dgraph1/dgraph_input</input-dir>
 <update-dir>./data/dgraphs/Dgraph1/dgraph_input/updates</update-dir>
</dgraph>

<script id="DgraphPreShutdownScript">
 <bean-shell-script>
 <![CDATA[
 id = invokingObject.getElementId();
 hostname = invokingObject.getHost().getHostName();
 port = invokingObject.getPort();
 log.info("Removing dgraph with id " + id + " (host: " + hostname +
 ", port: " + port + ") from load balancer cluster.");
]]>
 </bean-shell-script>
</script>

<script id="DgraphPostStartupScript">
 <bean-shell-script>
 <![CDATA[
 id = invokingObject.getElementId();
 hostname = invokingObject.getHost().getHostName();
 port = invokingObject.getPort();
 log.info("Adding dgraph with id " + id + " (host: " + hostname +
 ", port: " + port + ") to load balancer cluster.");
]]>
 </bean-shell-script>
</script>

The following log excerpt shows these scripts running when a new index is being applied to the dgraph:

[03.10.08 10:03:28] INFO: Applying index to dgraphs in restart group 'A'.
[03.10.08 10:03:28] INFO: [MDEXHost] Starting shell utility 'mkpath_dgraph-
input-new'.
[03.10.08 10:03:30] INFO: [MDEXHost] Starting copy utility 'copy_in¬
dex_to_temp_new_dgraph_input_dir_for_Dgraph1'.
[03.10.08 10:03:35] INFO: Removing dgraph with id Dgraph1 (host: mdex1.my¬
company.com, port: 15000) from load balancer cluster.
[03.10.08 10:03:35] INFO: Stopping component 'Dgraph1'.
[03.10.08 10:03:37] INFO: [MDEXHost] Starting shell utility 'move_dgraph-
input_to_dgraph-input-old'.
[03.10.08 10:03:39] INFO: [MDEXHost] Starting shell utility 'move_dgraph-

Endeca® Deployment Template Usage GuideEndeca Confidential

41Application Configuration | About application configuration

input-new_to_dgraph-input'.
[03.10.08 10:03:40] INFO: [MDEXHost] Starting backup utility 'back¬
up_log_dir_for_component_Dgraph1'.
[03.10.08 10:03:42] INFO: [MDEXHost] Starting component 'Dgraph1'.
[03.10.08 10:03:45] INFO: Adding dgraph with id Dgraph1 (host: mdex1.mycompa¬
ny.com, port: 15000) to load balancer cluster.
[03.10.08 10:03:45] INFO: [MDEXHost] Starting shell utility 'rmdir_dgraph-
input-old'.

Note that the dgraph-default element can also specify the use of pre-shutdown and post-startup
scripts as attributes, allowing all Dgraphs in an application to execute the same scripts. For example:

<dgraph-defaults pre-shutdown-script="DgraphPreShutdownScript"
 post-startup-script="DgraphPostStartupScript">

 ...

</dgraph-defaults>

Deploying XQuery modules

The Deployment Template supports the distribution of XQuery modules to each Dgraph in the group.
The [appdir]config/lib/xquery directory is provided for users to store their XQuery modules.
In addition, a LoadXQueryModules script (in the AppConfig.xml file) distributes the XQuery modules
to Dgraph servers and instructs the Dgraphs to load the modules.

The procedure to deploy the XQuery modules is:

1. Make certain that the dgraph-defaults section of the AppConfig.xml file has the XQuery
properties set. These global Dgraph setting properties are srcXQueryHostId, srcXQueryDir,
and localXQueryDir.

2. Make certain that the Dgraph --xquery_path flag is specified as an argument in the dgraph-
defaults section.

3. Place all the XQuery code in the [appdir]/config/lib/xquery and
[appdir]/config/lib/xquery/lib directories.

4. Execute the runcommand script with the LoadXQueryModules argument, as in this Windows
example:

C:\Endeca\Apps\control>runcommand LoadXQueryModules

The XQuery modules are distributed to the Dgraphs in the deployment and they are instructed to
reload/compile the modules.

Specifying arguments for the Dgraphs

Both the dgraph and dgraph-defaults elements allow you to use the args sub-element to pass
command-line flags to the Dgraphs. However, if you use an args section in both the dgraph and
dgraph-defaults configurations, the results are not cumulative.

Instead, the args section for an individual Dgraph completely overrides the dgraph-defaults
definition (i.e., it does not inherit the parameters that are specified in the dgraph-defaults section
and then add the ones that are unique for that Dgraph).

Enabling SSL for the Dgraph

You can configure the Dgraph for SSL by using the following elements to define the certificates to use
for SSL:

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Application Configuration | About application configuration42

• cert-file specifies the path of the eneCert.pem certificate file that is used by the Dgraph to
present to any client.This is also the certificate that the Application Controller Agent should present
to the Dgraph when trying to talk to the Dgraph.

• ca-file specifies the path of the eneCA.pem Certificate Authority file that the Dgraph uses to
authenticate communications with other Endeca components.

• cipher specifies an optional cipher string (such as RC4-SHA) that specifies the minimum
cryptographic algorithm that the Dgraph uses during the SSL negotiation. If you omit this setting,
the SSL software tries an internal list of ciphers, beginning with AES256-SHA. See the Endeca
Security Guide for more information.

All three elements are first-level children of the <dgraph-defaults> element.

The following example shows the three SSL elements being used within the dgraph-default
element:

<dgraph-defaults>
...
 <cert-file>
 C:\Endeca\PlatformServices\workspace\etc\eneCert.pem
 </cert-file>
 <ca-file>
 C:\Endeca\PlatformServices\workspace\etc\eneCA.pem
 </ca-file>
 <cipher>AES128-SHA</cipher>
</dgraph-defaults>

Agraphs
If an Agraph deployment type is chosen, an Agraph cluster component is defined.

This object is used to apply actions to an entire cluster of Agraphs and their associated Dgraphs, rather
than manually iterating over a number of graphs. In addition, the object contains logic associated with
Agraph restart strategies, which are described below. Multiple Agraph clusters can be defined, with
no restriction around which graphs belong to each cluster or how many clusters a graph belongs to.

An Agraph cluster is configured with references to all Agraphs and Dgraphs that belong to that cluster.
In addition, the cluster can be configured to copy data in parallel or serially. This setting applies to
copies that are performed to distribute a new index, partial updates or configuration updates to each
server that hosts a graph. By default, the template sets this value to true.

<!--
##
Agraph Cluster
#
-->
<agraph-cluster id="AgraphCluster" getDataInParallel="true">
 <agraph ref="Agraph1" />
 <agraph ref="Agraph2" />
 <dgraph ref="Dgraph1" />
 <dgraph ref="Dgraph2" />
</agraph-cluster>

In an Agraph deployment, two Agraphs and two Dgraphs are defined by the template by default. In
order to avoid defining shared configuration for multiple Agraphs in each Agraph's XML configuration,
the document provides an agraph-defaults element, where shared settings can be configured and
inherited (or overridden) by each Agraph defined in the document. This defaults object specifies a
number of custom configuration properties that are used by the update scripts to define operational
functionality.

Endeca® Deployment Template Usage GuideEndeca Confidential

43Application Configuration | About application configuration

• numLogBackups - Number of log directory backups to store.
• shutdownTimeout - Number of seconds to wait for a component to stop (after receiving a stop

command).
• numIdleSecondsAfterStop - Number of seconds to pause/sleep after a component is stopped.

Typically, this will be used to ensure that log file locks are release by the component before
proceeding.

• srcIndexDir - Location from which a new index will be copied to a local directory on the Dgraph's
host.

• srcIndexHostId - Host from which a new index will be copied to a local directory on the Dgraph's
host.

• localIndexDir - Local directory to which a single copy of a new index is copied from the source
index directory on the source index host.

• skipTestingForFilesDuringCleanup - Used for directory-cleaning operations. If set to "true",
will skip the directory-contents test and instead proceed directly to cleaning the directory. The
default behavior is to test the directory contents and skip cleanup if the directory is not empty.

• The properties documented in the "Fault tolerance and polling interval properties" topic.

 <!--
 ##

 # Global Agraph settings, inherited by all agraphs
 #
 -->
 <agraph-defaults>
 <properties>
 <property name="srcIndexDir" value="./data/agidx_output" />
 <property name="srcIndexHostId" value="ITLHost" />
 <property name="numLogBackups" value="10" />
 </properties>
 <directories>
 <directory name="localIndexDir">./data/agraphs/local_agraph_input</di¬
rectory>
 </directories>
 <args>
 <arg>--no-partial</arg>
 </args>
 <startup-timeout>120</startup-timeout>
 </agraph-defaults>

Each Agraph defined in the document inherits from the settings defined in the agraph-defaults element,
and also specifies settings that are unique to the Agraph. In addition to standard Agraph configuration
and process arguments, Agraphs add a custom property used to define a restart strategy.

restartGroup - Indicates the Agraph's membership in a restart group. When applying a new index
or configuration updates to a cluster of graphs (or when updating a cluster of graphs with a provisioning
change such as a new or modified process argument), the Agraph cluster object applies changes
simultaneously to all graphs in a restart group. This means that a few common restart strategies can
be applied as follows:

1. Restart/update all Agraphs at once: specify the same restartGroup value for each Agraph and
associated Dgraphs.

2. Restart/update Agraphs one at a time: specify a unique restartGroup value for each Agraph
and associated Dgraphs.

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Application Configuration | About application configuration44

3. Restart/update Agraphs on each server simultaneously: specify the same restartGroup value
for each Agraph and associated Dgraphs on a physical server.

<agraph id="Agraph1" host-id="MDEXHost" port="14000">
 <properties>
 <property name="restartGroup" value="A" />
 </properties>
 <dgraph-children>
 <dgraph-child>Dgraph1</dgraph-child>
 <dgraph-child>Dgraph2</dgraph-child>
 </dgraph-children>
 <log-dir>./logs/agraphs/Agraph1</log-dir>
 <input-dir>./data/agraphs/Agraph1/agraph_input</input-dir>
</agraph>

Restart group values are arbitrary strings.The Agraph cluster iterates through the groups in alphabetical
order, though non-standard characters may result in groups being updated in an unexpected order.

The Agraph component (and agraph-defaults) can specify pre-shutdown and post-startup scripts in
the same way as the Dgraph component. Refer to the previous section for details.

Enabling SSL for the Agraph

As with the Dgraph, three SSL elements can be included in the Agraph provisioning definition to specify
the certificates to use. The cert-file element (for the eneCert.pem certificate), the ca-file
element (for the eneCA.pem Certificate Authority file), and the optional cipher element can be used.
as shown in this example:

<agraph id="Agraph1" host-id="MDEXHost" port="14000">
...
 <cert-file>
 C:\Endeca\PlatformServices\workspace\etc\eneCert.pem
 </cert-file>
 <ca-file>
 C:\Endeca\PlatformServices\workspace\etc\eneCA.pem
 </ca-file>
 <cipher>AES128-SHA</cipher>
</agraph>

Related Links
Agraph notes on page 48

There are several important things to note about Agraph deployments.

Log server
A LogServer component is defined.

In addition to standard LogServer configuration settings and process arguments, the Deployment
Template uses a configurable property for log archiving.

• numLogBackups - Number of log directory backups to store.
• shutdownTimeout - Number of seconds to wait for a component to stop (after receiving a stop

command).
• numIdleSecondsAfterStop - Number of seconds to pause/sleep after a component is stopped.

Typically, this will be used to ensure that log file locks are release by the component before
proceeding.

• targetReportGenDir - Directory to which logs will be copied for report generation.
• targetReportGenHostId - Host to which logs will be coped for report generation.

Endeca® Deployment Template Usage GuideEndeca Confidential

45Application Configuration | About application configuration

• skipTestingForFilesDuringCleanup - Used for directory-cleaning operations. If set to "true",
will skip the directory-contents test and instead proceed directly to cleaning the directory. The
default behavior is to test the directory contents and skip cleanup if the directory is not empty.

• The properties documented in the "Fault tolerance and polling interval properties" topic.

<logserver id="LogServer" host-id="ITLHost" port="15010">
 <properties>
 <property name="numLogBackups" value="10" />
 <property name="targetReportGenDir" value="./reports/input" />
 <property name="targetReportGenHostId" value="ITLHost" />
 </properties>
 <log-dir>./logs/logservers/LogServer</log-dir>
 <output-dir>./logs/logserver_output</output-dir>
 <startup-timeout>120</startup-timeout>
 <gzip>false</gzip>
</logserver>

Report Generators
Four report generator components are defined.

In addition to standard Report Generator configuration settings and process arguments, the Deployment
Template uses a configurable property for log archiving, as well as these configurable properties:

• skipTestingForFilesDuringCleanup - Used for directory-cleaning operations. If set to "true",
will skip the directory-contents test and instead proceed directly to cleaning the directory. The
default behavior is to test the directory contents and skip cleanup if the directory is not empty.

• The properties documented in the "Fault tolerance and polling interval properties" topic.

The configuration file includes the name of an output file for each report generator, which defaults to
report.html or report.xml. This file name is never used when the report generation scripts in
the AppConfig.xml file are used. During execution, the script re-provisions the report generator to
output a file named with a date stamp. This means that the provisioning in the file will always be "out
of synch" with the provisioning in the EAC.This will result in the Report Generator's definition changing
repeatedly as scripts are executed.

<report-generator id="WeeklyReportGenerator" host-id="ITLHost">
 <log-dir>./logs/report_generators/WeeklyReportGenerator</log-dir>
 <input-dir>./reports/input</input-dir>
 <output-file>./reports/weekly/report.xml</output-file>
 <stylesheet-file>
 ./config/report_templates/tools_report_stylesheet.xsl
 </stylesheet-file>
 <settings-file>
 ./config/report_templates/report_settings.xml
 </settings-file>
 <time-range>LastWeek</time-range>
 <time-series>Daily</time-series>
 <charts-enabled>true</charts-enabled>
 </report-generator>

Configuration Manager
The Configuration Manager component is a custom component that does not correlate to an Endeca
process.

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Application Configuration | About application configuration46

Instead, this object implements logic used to manage configuration files. Specifically, the current
implementation supports retrieving and merging configuration from Developer Studio with files
maintained in Endeca Workbench.

The following configuration properties and custom directories are used to implement the logic of the
Config Manager component.

• webStudioEnabled - "true" or "false," indicating whether integration with Endeca Workbench is
enabled.

• webStudioHost - Hostname of the server on which Endeca Workbench is running.
• webStudioPort - Port on which Endeca Workbench listens. This is the port of the Endeca Tools

Service on the Endeca Workbench host.
• webStudioMaintainedFile* - Specifies the name of a file that will be maintained in Endeca

Workbench. The ConfigManager respects all properties prefixed with "webStudioMaintainedFile"
but requires that all properties have unique names. When configuring files, each should be given
a unique suffix. Note that the names of files specified may use wildcards (e.g. <property
name="webStudioMaintainedFile1" value="merch_rule_group_*.xml" />).

• devStudioConfigDir - Directory from which Developer Studio configuration files are retrieved.
• webStudioConfigDir - Directory to which Workbench configuration files are downloaded.
• webStudioDgraphConfigDir - Directory from which Developer Studio configuration files are

retrieved.
• mergedConfigDir - Directory to which merged configuration is copied.
• webStudioTempDir - Temporary directory used for Workbench interaction. Post-Forge dimensions

are uploaded from this directory to the Workbench.
• skipTestingForFilesDuringCleanup - Used for directory-cleaning operations. If set to "true",

will skip the directory-contents test and instead proceed directly to cleaning the directory. The
default behavior is to test the directory contents and skip cleanup if the directory is not empty.

• The properties documented in the "Fault tolerance and polling interval properties" topic.

<!--
###
Config Manager. Manages Dev Studio and Web Studio config sources.
#
-->
<custom-component id="ConfigManager" host-id="ITLHost"
 class="com.endeca.soleng.eac.toolkit.component.ConfigManagerComponent">
 <properties>
 <property name="webStudioEnabled" value="true" />
 <property name="webStudioHost" value="ws.mycompany.com" />
 <property name="webStudioPort" value="8006" />
 <property name="webStudioMaintainedFile1"
 value="thesaurus.xml" />
 <property name="webStudioMaintainedFile2"
 value="merch_rule_group_default.xml" />
 <property name="webStudioMaintainedFile3"
 value="merch_rule_group_default_redirects.xml" />
 </properties>
 <directories>
 <directory name="devStudioConfigDir">
 ./config/pipeline
 </directory>
 <directory name="webStudioConfigDir">
 ./data/web_studio/config
 </directory>
 <directory name="webStudioDgraphConfigDir">
 ./data/web_studio/dgraph_config
 </directory>

Endeca® Deployment Template Usage GuideEndeca Confidential

47Application Configuration | About application configuration

 <directory name="mergedConfigDir">
 ./data/complete_index_config
 </directory>
 <directory name="webStudioTempDir">
 ./data/web_studio/temp
 </directory>
 </directories>
</custom-component>

Agraph notes
There are several important things to note about Agraph deployments.

Split pipeline

In a Parallel Forge Agraph deployment it is necessary to split the data prior to executing the parallel
Forge. The Deployment Template uses Forge to accomplish this. It first runs a single Forge on all the
data with a rollover element specified in the pipeline which tells Forge to split the data into a number
of pieces. Each one of those individual pieces of data is then used as incoming data for its corresponding
Parallel Forge client. In some cases some other means of splitting the data may be used or the data
may come from its source pre-split. In these cases the split Forge step can be removed and replaced
with the alternate splitting method.

Multiple Agidxs

The default Agraph deployment has a single Agidx specified.This is because all of the Dgidx processes
are set to run on the same machine. In a more complex deployment you may have Dgidx processes
running on a number of machines. This would require you to define an Agidx for each machine that
has one or more Dgidx processes running to it. Each Agidx process would run in serial and would
specify the previous Agidx processes' output as part of its input.

Agraph and Dgraph restart groups

Each Agraph and Dgraph can specify its own restart group. In most cases, an Agraph and all of its
children Dgraphs should specify the same restart group. There is currently no technical restriction
requiring this but it is recommended to ensure standard expected graph restart behavior.

Related Links
Agraphs on page 43

If an Agraph deployment type is chosen, an Agraph cluster component is defined.

Configuration overrides
The Deployment Template allows the use of one or more configuration override files.

These files can be used to override or substitute values into the configuration documents. For example,
developers may want to separate the specification of environment-specific configuration (e.g. hostnames,
ports, etc.) from the application configuration and scripts. This may be useful for making configuration
documents portable across environments and for dividing ownership of configuration elements between
system administrators and application developers.

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Application Configuration | Agraph notes48

Override files are specified by using the --config-override flag to the EAC development toolkit's
controller. For example, the runcommand script in the template includes an environment.properties
file by default, though this file only contains examples of overrides and does not specify any active
overrides.

Two types of properties can be specified in an override file:

1. [object].[field] = [value] - This style of override specifies the name of an object and
field and sets the value for that field, overriding any value specified for that field in the XML
configuration document or documents. For example:

Dgraph1.port = 16000
Dgraph1.properties['restartGroup'] = B
ITLHost.hostName = itl.mycompany.com

2. [token] = [value] - This style of override specifies the name of a token defined in the XML
config file and substitutes the specified value for that token. For example, if the AppConfig.xml
defines the following host:

<host id="ITLHost" hostName="${itl.host}" port="${itl.port}" />

The override can specify the values to substitute for these tokens:

itl.host = it.mycompany.com
itl.port = 8888

It is important to note that both styles of substitution are attempted for every value defined in the
override file.When a token fails to match, a low-severity warning is logged and ignored.This is required
because most tokens will only match one of the two styles of substitution. It may be important to avoid
using token names that coincide with object names. For example, defining the token ${Forge.tem¬
pDir} will cause the corresponding value to substitute for both the token as well as the tempDir
field of the Forge component.

Endeca® Deployment Template Usage GuideEndeca Confidential

49Application Configuration | Configuration overrides

Chapter 4

Scripts

This section describes the scripts included with the Deployment Template and provides information
about running and configuring them.

Provisioning scripts
The EAC allows scripts to be provisioned and invoked via Web service calls. A script is provisioned
by specifying a working directory, a log directory into which output from the script is recorded, and a
command to execute the script.

The AppConfig.xml document allows defined scripts to be provisioned by specifying the command
used to invoke the script from the command line. When the provisioning configuration information is
included, the script is provisioned and becomes available for invocation via Web service calls or from
the EAC Admin console in Endeca Workbench. When excluded, the script is not provisioned.

 <script id="BaselineUpdate">
 <log-dir>./logs/provisioned_scripts</log-dir>
 <provisioned-script-command>
 ./control/baseline_update.bat
 </provisioned-script-command>
 <bean-shell-script>
 <![CDATA[
...
]]>
 </bean-shell-script>
 </script>

The command line used to invoke scripts can always be specified in this form, relative to the default
Deployment Template working directory:

./control/runcommand.[sh|bat] [script id]

Dgraph baseline update script
The baseline update script defined in the AppConfig.xml document for a Dgraph deployment is
included in this section, with numbered steps indicating the actions performed at each point in the
script.

<script id="BaselineUpdate">
 <![CDATA[
 log.info("Starting baseline update script.");

1. Obtain lock. The baseline update attempts to set an "update_lock" flag in the EAC to serve as
a lock or mutex. If the flag is already set, this step fails, ensuring that the update cannot be started
more than once simultaneously, as this would interfere with data processing. The flag is removed
in the case of an error or when the script completes successfully.

 // obtain lock
 if (LockManager.acquireLock("update_lock")) {

2. Validate data readiness. Check that a flag called "baseline_data_ready" has been set in the
EAC. This flag is set as part of the data extraction process to indicate that files are ready to be
processed (or, in the case of an application that uses direct database access, the flag indicates
that a database staging table has been loaded and is ready for processing). This flag is removed
as soon as the script copies the data out of the data/incoming directory, indicating that new
data may be extracted.

 // test if data is ready for processing
 if (Forge.isDataReady()) {

3. If Workbench integration is enabled, download and merge Workbench configuration.The Config¬
Manager copies all Developer Studio config files to the complete_index_config directory.
Then, all Workbench-maintained configuration files are downloaded. Any files that are configured
in the ConfigManager component to be maintained by the Endeca Workbench are copied to the
complete_index_config directory, overwriting the Developer Studio copy of the same file, if
one exists. The final result is a complete set of configuration files for Forge to use. If Workbench
integration is not enabled, the ConfigManager copies all Developer Studio config files to the
complete_index_config directory.

 if (ConfigManager.isWebStudioEnabled()) {
 // get Web Studio config, merge with Dev Studio config
 ConfigManager.downloadWsConfig();
 ConfigManager.fetchMergedConfig();
 } else {
 ConfigManager.fetchDsConfig();
 }

4. Clean processing directories. Files from the previous update are removed from the
data/processing, data/forge_output, data/temp, data/dgidx_output and
data/partials/cumulative_partials directories.

 // clean directories
 Forge.cleanDirs();
 PartialForge.cleanCumulativePartials();
 Dgidx.cleanDirs();

5. Copy data to processing directory. Extracted data in data/incoming is copied to
data/processing.

 // fetch extracted data files to forge input
 Forge.getIncomingData();

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Scripts | Dgraph baseline update script52

6. Release Lock. The "baseline_data_ready" flag is removed from the EAC, indicating that the
incoming data has been retrieved for baseline processing.

 LockManager.releaseLock("baseline_data_ready");

7. Copy config to processing directory. Configuration files are copied from
data/complete_index_config to data/processing.

 // fetch config files to forge input
 Forge.getConfig();

8. Archive Forge logs. The logs/forges/Forge directory is archived, to create a fresh logging
directory for the Forge process and to save the previous Forge run's logs.

 // archive logs
 Forge.archiveLogDir();

9. Forge. The Forge process executes.

 Forge.run();

10. Archive Dgidx logs. The logs/dgidxs/Dgidx directory is archived, to create a fresh logging
directory for the Dgidx process and to save the previous Dgidx run's logs.

 // archive logs
 Dgidx.archiveLogDir();

11. Dgidx. The Dgidx process executes.

 Dgidx.run();

12. Distribute index to each server. A single copy of the new index is distributed to each server that
hosts a Dgraph. If multiple Dgraphs are located on the same server but specify different srcIn¬
dexDir attributes, multiple copies of the index are delivered to that server.

13. Update MDEX Engines. The Dgraphs are updated. Engines are updated according to the
restartGroup property specified for each Dgraph. The update process for each Dgraph is as
follows:

a. Create dgraph_input_new directory.
b. Create a local copy of the new index in dgraph_input_new.
c. Stop the Dgraph.
d. Archive Dgraph logs (e.g. logs/dgraphs/Dgraph1) directory.
e. Rename dgraph_input to dgraph_input_old.
f. Rename dgraph_input_new to dgraph_input.
g. Start the Dgraph.
h. Remove dgraph_input_old.

This somewhat complex update functionality is implemented to minimize the amount of time that
a Dgraph is stopped. This restart approach ensures that the Dgraph is stopped just long enough
to rename two directories.

 // distributed index, update Dgraphs
 DistributeIndexAndApply.run();

<script id="DistributeIndexAndApply">
 <bean-shell-script>
 <![CDATA[
 DgraphCluster.cleanDirs();
 DgraphCluster.copyIndexToDgraphServers();
 DgraphCluster.applyIndex();
]]>

Endeca® Deployment Template Usage GuideEndeca Confidential

53Scripts | Dgraph baseline update script

 </bean-shell-script>
 </script>

14. If Workbench integration is enabled, upload post-Forge dimensions to Endeca Workbench. The
latest dimension values generated by the Forge process are uploaded to Endeca Workbench, to
ensure that any new dimension values (including values for autogen dimensions and external
dimensions) are available to Endeca Workbench for use in, for example, dynamic business rule
triggers.

Note: This action does not add new dimensions or remove existing dimensions. These
changes can be made by invoking the update_web_studio_config.[bat|sh] script.

 // if Web Studio is integrated, update Web Studio with latest
 // dimension values
 if (ConfigManager.isWebStudioEnabled()) {
 ConfigManager.cleanDirs();
 Forge.getPostForgeDimensions();
 ConfigManager.updateWsDimensions();
 }

15. Archive index and Forge state.The newly created index and the state files in Forge's state directory
are archived on the indexing server.

 // archive state files, index
 Forge.archiveState();
 Dgidx.archiveIndex();

16. Cycle LogServer. The LogServer is stopped and restarted. During the downtime, the LogServer's
error and output logs are archived.

 // cycle LogServer
 LogServer.cycle();

17. Release Lock. The "update_lock" flag is removed from the EAC, indicating that another update
may be started.

 // release lock
 LockManager.releaseLock("update_lock");

 log.info("Baseline update script finished.");
 } else {
 log.warning("Failed to obtain lock.");
 }
]]>
 </bean-shell-script>
</script>

Related Links
Dgraph partial update script on page 55

The partial update script defined in the AppConfig.xml document for a Dgraph deployment
is included in this section, with numbered steps indicating the actions performed at each point
in the script.

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Scripts | Dgraph baseline update script54

Dgraph partial update script
The partial update script defined in the AppConfig.xml document for a Dgraph deployment is included
in this section, with numbered steps indicating the actions performed at each point in the script.

<script id="PartialUpdate">
 <bean-shell-script>
 <![CDATA[

1. Obtain lock. The partial update attempts to set an "update_lock" flag in the EAC to serve as a
lock or mutex. If the flag is already set, this step fails, ensuring that the update cannot be started
more than once simultaneously, as this would interfere with data processing. The flag is removed
in the case of an error or when the script completes successfully.

 log.info("Starting partial update script.");
 // obtain lock
 if (LockManager.acquireLock("update_lock")) {

2. Validate data readiness.Test that the EAC contains at least one flag with the prefix "partial_ex¬
tract::". One of these flags should be created for each successfully and completely extracted
file, with the prefix "partial_extract::" prepended to the extracted file name (e.g. "partial_ex¬
tract::adds.txt.gz"). These flags are deleted during data processing and must be created
as new files are extracted.

 // test if data is ready for processing
 if (PartialForge.isPartialDataReady()) {

3. Archive partial logs. The logs/partial directory is archived, to create a fresh logging directory
for the partial update process and to save the previous run's logs.

 // archive logs
 PartialForge.archiveLogDir();

4. Clean processing directories. Files from the previous update are removed from the
data/partials/processing, data/partials/forge_output, and data/temp directories.

 // clean directories
 PartialForge.cleanDirs();

5. Move data and config to processing directory. Extracted files in data/partials/incoming with
matching "partials_extract::" flags in the EAC are moved to data/partials/processing.
Configuration files are copied from config/pipeline to data/processing.

 // fetch extracted data files to forge input
 PartialForge.getPartialIncomingData();

 // fetch config files to forge input
 PartialForge.getConfig();

6. Forge. The partial update Forge process executes.

 // run ITL
 PartialForge.run();

7. Apply timestamp to updates.The output XML file generated by the partial update pipeline is renamed
to include a timestamp, to ensure it is processed in the correct order relative to files generated by
previous or following partial update processes.

 // timestamp partial, save to cumulative partials dir
 PartialForge.timestampPartials();

Endeca® Deployment Template Usage GuideEndeca Confidential

55Scripts | Dgraph partial update script

8. Copy updates to cumulative updates. The timestamped XML file is copied into the cumulative
updates directory.

 PartialForge.fetchPartialsToCumulativeDir();

9. Distribute update to each server. A single copy of the partial update file is distributed to each server
specified in the configuration.

 // distribute partial update, update Dgraphs
 DgraphCluster.copyPartialUpdateToDgraphServers();

10. Update MDEX Engines. The Dgraph processes are updated. Engines are updated according to
the updateGroup property specified for each Dgraph. The update process for each Dgraph is as
follows:

a. Copy update files into the dgraph_input/updates directory.
b. Trigger a configuration update in the Dgraph by calling the URL admin?op=update.

 DgraphCluster.applyPartialUpdates();

11. Archive cumulative updates. The newly generated update file (and files generated by all partial
updates processed since the last baseline) are archived on the indexing server.

 // archive partials
 PartialForge.archiveCumulativePartials();

12. Release Lock. The "update_lock" flag is removed from the EAC, indicating that another update
may be started.

 // release lock
 LockManager.releaseLock("update_lock");
 log.info("Partial update script finished.");
 }
 else {
 log.warning("Failed to obtain lock.");
 }
]]>
 </bean-shell-script>
</script>

Preventing non-nillable element exceptions

When running the partial updates script, you may see a Java exception similar to this example:

INFO: Starting copy utility 'copy_partial_update_to_host_MDEXHost1'.
Oct 20, 2008 11:46:37 AM org.apache.axis.encoding.ser.BeanSerializer seri¬
alize
SEVERE: Exception:
java.io.IOException: Non nillable element 'fromHostID' is null.
...

If this occurs, make sure that the following properties are defined in the AppConfig.xml configuration
file:

<dgraph-defaults>
 <properties>
 ...
 <property name="srcPartialsDir" value="./data/partials/forge_output"
 />
 <property name="srcPartialsHostId" value="ITLHost" />
 <property name="srcCumulativePartialsDir" value="./data/partials/cu¬
mulative_partials" />

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Scripts | Dgraph partial update script56

 <property name="srcCumulativePartialsHostId" value="ITLHost" />
 ...
 </properties>
 ...
</dgraph-defaults>

The reason is that the script is obtaining the fromHostID value from this section.

Running partial updates with parallel Forge

If you have a configuration with two MDEX Engine servers each of which hosts two Dgraphs, you may
want to run partial updates on each of these servers in parallel. This would require you to customize
jobs for the EAC to make this happen. If you do this, keep in mind that the EAC Server expects all
jobs sent to it to be unique across all servers.

Therefore, if you are customizing more than one job to the EAC Server, ensure that the jobs are created
with a different name. This is because, even though each of these jobs runs on a separate MDEX
Engine server and is unique on that server, the EAC Server expects all jobs to be unique across all
servers.

Related Links
Dgraph baseline update script on page 52

The baseline update script defined in the AppConfig.xml document for a Dgraph deployment
is included in this section, with numbered steps indicating the actions performed at each point
in the script.

Agraph without parallel Forge baseline update script
The baseline update script defined in the AppConfig.xml document for an Agraph without parallel
Forge deployment is included in this section, with numbered steps indicating the actions performed
at each point in the script.

<script id="BaselineUpdate">
 <![CDATA[
 log.info("Starting baseline update script.");

1. Obtain lock. The baseline update attempts to set an "update_lock" flag in the EAC to serve as
a lock or mutex. If the flag is already set, this step fails, ensuring that the update cannot be started
more than once simultaneously, as this would interfere with data processing. The flag is removed
in the case of an error or when the script completes successfully.

 // obtain lock
 if (LockManager.acquireLock("update_lock")) {

2. Validate data readiness. Check that a flag called "baseline_data_ready" has been set in the
EAC. This flag is set as part of the data extraction process to indicate that files are ready to be
processed (or, in the case of an application that uses direct database access, the flag indicates
that a database staging table has been loaded and is ready for processing). This flag is removed
as soon as the script copies the data out of the data/incoming directory, indicating that new
data may be extracted.

 // test if data is ready for processing
 if (Forge1.isDataReady())
 {

Endeca® Deployment Template Usage GuideEndeca Confidential

57Scripts | Agraph without parallel Forge baseline update script

3. If Workbench integration is enabled, download and merge Endeca Workbench configuration. The
ConfigManager copies all Developer Studio config files to the complete_index_config
directory. Then, all Workbench-maintained configuration files are downloaded. Any files that are
configured in the ConfigManager component to be maintained by Endeca Workbench are copied
to the complete_index_config directory, overwriting the Developer Studio copy of the same
file, if one exists.The final result is a complete set of configuration files for Forge to use. If Workbench
integration is not enabled, the ConfigManager copies all Developer Studio config files to the
complete_index_config directory.

 if (ConfigManager.isWebStudioEnabled()) {
 // get Web Studio config, merge with Dev Studio config
 ConfigManager.downloadWsConfig();
 ConfigManager.fetchMergedConfig();
 } else {
 ConfigManager.fetchDsConfig();
 }

4. Clean processing directories. Files from the previous update are removed from the
data/processing, data/forge_output, data/temp,
data/dgidxs/[DgidxID]/dgidx_output, and data/agidx_outputdirectories.

 // clean directories
 Forge1.cleanDirs();
 IndexingCluster.cleanDirs();

5. Copy data to processing directory. Extracted data in data/incoming is copied to
data/processing.

 // fetch extracted data files to forge input
 Forge1.getIncomingData();

6. Release Lock. The "baseline_data_ready" flag is removed from the EAC, indicating that the
incoming data has been retrieved for baseline processing.

 LockManager.releaseLock("baseline_data_ready");

7. Copy config to processing directory. Configuration files are copied from
data/complete_index_config to data/processing.

 // fetch config files to forge input
 Forge1.getConfig();

8. Archive Forge logs. The logs/forges/Forge1 directory is archived, to create a fresh logging
directory for the Forge process and to save the previous Forge's logs.

 // archive logs and run ITL
 Forge1.archiveLogDir();

9. Forge. The Forge process executes.

 Forge1.run();

10. Copy data to dgidx_input directories. Forged data in data/forge_output is copied to
data/dgidxs/[DgidxID]/dgidx_input directories.

 IndexingCluster.getDgidxIncomingData();

11. Copy config to dgidx_input directories. Configuration files in data/forge_output are copied
to data/ dgidxs/[DgidxID]/dgidx_input directories.

 IndexingCluster.getDgidxConfig();

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Scripts | Agraph without parallel Forge baseline update script58

12. Archive Dgidx and Agidx logs. The logs /dgidx/[DgidxID] and logs/agidx/[AgidxID]
directories are archived, to create a fresh logging directory for the indexing processes and to save
the previous indexing processes' logs.

 IndexingCluster.archiveLogDir();

13. Dgidx and Agidx. The Dgidx processes and Agidx process execute.

 IndexingCluster.run();

14. Distribute index to each server. A single copy of the new index is distributed to each server that
hosts a graph. If multiple graphs are located on the same server but specify different srcIndexDir
attributes, multiple copies of the index will be delivered to that server.

15. Update MDEX Engines. The graphs are updated. Engines are updated according to the
restartGroup property specified for each graph.The update process for each graph in the restart
group is as follows:

a. Create agraph_input_new and create a local copy of the new index in agraph_input_new
for each Agraph.

b. Create dgraph_input_new and create a local copy of the new index in dgraph_input_new
for each Dgraph.

c. Stop each Agraph.
d. Stop each Dgraph.
e. Rename dgraph_input to dgraph_input_old for each Dgraph.
f. Rename dgraph_input_new to dgraph_input for each Dgraph.
g. Rename agraph_input to agraph_input_old for each Agraph.
h. Rename agraph_input_new to agraph_input for each Agraph.
i. Archive each Dgraph logs (e.g. logs/dgraphs/Dgraph1) directory.
j. Archive each Agraph logs (e.g. logs/agraphs/Agraph1) directory.
k. Start each Dgraph.
l. Start each Agraph.
m. Remove dgraph_input_old for each dgraph.
n. Remove agraph_input_old for each Agraph.

This somewhat complex update functionality is implemented to minimize the amount of time that
a graph is stopped. This restart approach ensures that the graphs are stopped just long enough
to rename two directories for each Dgraph.

 // distributed index, update graphs
 DistributeIndexAndApply.run();

 <script id="DistributeIndexAndApply">
 <bean-shell-script>
 <![CDATA[
 AgraphCluster.cleanDirs();
 AgraphCluster.copyIndexToAgraphServers();
 AgraphCluster.copyIndexToDgraphServers();
 AgraphCluster.applyIndex();
]]>
 </bean-shell-script>
 </script>

16. If Workbench integration is enabled, upload post-Forge dimensions to Endeca Workbench. The
latest dimensions generated by the Forge process are uploaded to Endeca Workbench, to ensure

Endeca® Deployment Template Usage GuideEndeca Confidential

59Scripts | Agraph without parallel Forge baseline update script

that any new dimensions (including autogen dimensions and external dimensions) are available to
Endeca Workbench for use in, for example, dynamic business rule triggers.

 // if Web Studio is integrated, update Web Studio with latest
 // dimension values
 if (ConfigManager.isWebStudioEnabled()) {
 ConfigManager.cleanDirs();
 Forge1.getPostForgeDimensions();
 ConfigManager.updateWsDimensions();
 }

17. Archive index and Forge state.The newly created index and the state files in Forge's state directory
are archived on the indexing servers.

 // archive state files, index
 Forge1.archiveState();
 IndexingCluster.archiveIndex();

18. Cycle LogServer. The LogServer is stopped and restarted. During the downtime, the LogServer's
error and output logs are archived.

 // cycle LogServer
 LogServer.cycle();
 }
 else
 {
 log.warning("Baseline data not ready for processing.");
 }

19. Release Lock. The "update_lock" flag is removed from the EAC, indicating that another update
may be started.

 // release lock
 LockManager.releaseLock("update_lock");

 log.info("Baseline update script finished.");
 }
 else {
 log.warning("Failed to obtain lock.");
 }
]]>
 </bean-shell-script>
</script>

Related Links
Agraph with parallel Forge baseline update script on page 60

The baseline update script defined in the AppConfig.xml document for an Agraph with
parallel Forge deployment is included in this section, with numbered steps indicating the
actions performed at each point in the script.

Agraph with parallel Forge baseline update script
The baseline update script defined in the AppConfig.xml document for an Agraph with parallel Forge
deployment is included in this section, with numbered steps indicating the actions performed at each
point in the script.

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Scripts | Agraph with parallel Forge baseline update script60

<script id="BaselineUpdate">
 <![CDATA[
 log.info("Starting baseline update script.");

1. Obtain lock. The baseline update attempts to set an "update_lock" flag in the EAC to serve as
a lock or mutex. If the flag is already set, this step fails, ensuring that the update cannot be started
more than once simultaneously, as this would interfere with data processing. The flag is removed
in the case of an error or when the script completes successfully.

 // obtain lock
 if (LockManager.acquireLock("update_lock")) {

2. Validate data readiness. Check that a flag called "baseline_data_ready" has been set in the
EAC. This flag is set as part of the data extraction process to indicate that files are ready to be
processed (or, in the case of an application that uses direct database access, the flag indicates
that a database staging table has been loaded and is ready for processing). This flag is removed
as soon as the script copies the data out of the data/incoming directory, indicating that new
data may be extracted.

 // test if data is ready for processing
 if (ForgeSplitData.isDataReady())
 {

3. If Workbench integration is enabled, download and merge Endeca Workbench configuration. The
ConfigManager copies all Developer Studio config files to the complete_index_config
directory. Then, all Workbench-maintained configuration files are downloaded. Any files that are
configured in the ConfigManager component to be maintained by Endeca Workbench are copied
to the complete_index_config directory, overwriting the Developer Studio copy of the same
file, if one exists.The final result is a complete set of configuration files for Forge to use. If Workbench
integration is not enabled, the ConfigManager copies all Developer Studio config files to the
complete_index_config directory.

 if (ConfigManager.isWebStudioEnabled()) {
 // get Web Studio config, merge with Dev Studio config
 ConfigManager.downloadWsConfig();
 ConfigManager.fetchMergedConfig();
 } else {
 ConfigManager.fetchDsConfig();
 }

4. Clean processing directories. Files from the previous update are removed from the
data/processing, data/forge_output, data/temp,
data/forges/[ForgeID]/processing, data/forges/[ForgeID]/forge_output,
data/forges/[ForgeID]/temp, data/dgidxs/[DgidxID]/dgidx_output, and
data/agidx_outputdirectories.

 // clean directories
 ForgeSplitData.cleanDirs();
 ForgeCluster.cleanDirs();
 IndexingCluster.cleanDirs();

5. Copy data to processing directory. Extracted data in data/incoming is copied to
data/processing.

 // fetch extracted data files to forge input
 ForgeSplitData.getIncomingData();

6. Release Lock. The "baseline_data_ready" flag is removed from the EAC, indicating that the
incoming data has been retrieved for baseline processing.

 LockManager.releaseLock("baseline_data_ready");

Endeca® Deployment Template Usage GuideEndeca Confidential

61Scripts | Agraph with parallel Forge baseline update script

7. Copy config to processing directory. Configuration files are copied from
data/complete_index_config to data/processing.

 // fetch config files to forge input
 ForgeSplitData.getConfig();

8. Archive Forge logs.The logs/forges/ForgeSplitData directory is archived, to create a fresh
logging directory for the Forge process and to save the previous Forge's logs.

 // archive logs and run ITL
 ForgeSplitData.archiveLogDir();

9. Forge. The Forge process that splits the extracted data executes.

 ForgeSplitData.run();

10. Copy split data to processing directory. Split data in data/forge_output is copied to
data/forges/[ForgeID]/processing for each Forge in the Parallel Forge cluster.

 ForgeCluster.getData();

11. Archive Parallel Forge logs. The logs/forges/[ForgeID] directories are archived, to create a
fresh logging directory for the Forge processes and to save the previous Forge processes' logs.

 ForgeCluster.archiveLogDir();

12. Forge in parallel. The Forge server and Forge client processes execute in parallel.

 ForgeCluster.run();

13. Copy data to dgidx_input directories. Forged data in
data/forges/[ForgeID]/forge_output is copied to
data/dgidxs/[DgidxID]/dgidx_input directories.

 IndexingCluster.getDgidxIncomingData();

14. Copy config to dgidx_input directories. Configuration files in
data/forges/[ForgeID]/forge_output are copied to
data/dgidxs/[DgidxID]/dgidx_input directories.

 IndexingCluster.getDgidxConfig();

15. Archive Dgidx and Agidx logs. The logs/dgidx/[DgidxID] and logs/agidx/[AgidxID]
directories are archived to create a fresh logging directory for the indexing processes and to save
the previous processes' logs.

 IndexingCluster.archiveLogDir();

16. Dgidx and Agidx. The Dgidx processes and Agidx process execute.

 IndexingCluster.run();

17. Distribute index to each server. A single copy of the new index is distributed to each server that
hosts a graph. If multiple graphs are located on the same server but specify different srcIndexDir
attributes, multiple copies of the index will be delivered to that server.

18. Update MDEX Engines. The graphs are updated. Engines are updated according to the
restartGroup property specified for each graph.The update process for each graph in the restart
group is as follows:

a. Create agraph_input_new and create a local copy of the new index in agraph_input_new
for each Agraph.

b. Create dgraph_input_new and create a local copy of the new index in dgraph_input_new
for each Dgraph.

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Scripts | Agraph with parallel Forge baseline update script62

c. Stop each Agraph.
d. Stop each Dgraph.
e. Rename dgraph_input to dgraph_input_old for each Dgraph.
f. Rename dgraph_input_new to dgraph_input for each Dgraph.
g. Rename agraph_input to agraph_input_old for each Agraph.
h. Rename agraph_input_new to agraph_input for each Agraph.
i. Archive each Dgraph logs (e.g. logs/dgraphs/Dgraph1) directory.
j. Archive each Agraph logs (e.g. logs/agraphs/Agraph1) directory.
k. Start each Dgraph.
l. Start each Agraph.
m. Remove dgraph_input_old for each dgraph.
n. Remove agraph_input_old for each Agraph.

This somewhat complex update functionality is implemented to minimize the amount of time that
a graph is stopped. This restart approach ensures that the graphs are stopped just long enough
to rename two directories for each Dgraph.

 // distributed index, update graphs
 DistributeIndexAndApply.run();

 <script id="DistributeIndexAndApply">
 <bean-shell-script>
 <![CDATA[
 AgraphCluster.cleanDirs();
 AgraphCluster.copyIndexToAgraphServers();
 AgraphCluster.copyIndexToDgraphServers();
 AgraphCluster.applyIndex();
]]>
 </bean-shell-script>
 </script>

19. If Workbench integration is enabled, upload post-Forge dimensions to Endeca Workbench. The
latest dimensions generated by the Forge process are uploaded to Endeca Workbench, to ensure
that any new dimensions (including autogen dimensions and external dimensions) are available to
Endeca Workbench for use in, for example, dynamic business rule triggers.

 // if Web Studio is integrated, update Web Studio with latest
 // dimension values
 if (ConfigManager.isWebStudioEnabled()) {
 ConfigManager.cleanDirs();
 ForgeServer.getPostForgeDimensions();
 ConfigManager.updateWsDimensions();
 }

20. Archive index and Forge state.The newly created index and the state files in Forge's state directory
are archived on the indexing servers.

 // archive state files, index
 ForgeCluster.archiveState();
 IndexingCluster.archiveIndex();

21. Cycle LogServer. The LogServer is stopped and restarted. During the downtime, the LogServer's
error and output logs are archived.

 // cycle LogServer
 LogServer.cycle();
 }
 else

Endeca® Deployment Template Usage GuideEndeca Confidential

63Scripts | Agraph with parallel Forge baseline update script

 {
 log.warning("Baseline data not ready for processing.");
 }

22. Release Lock. The "update_lock" flag is removed from the EAC, indicating that another update
may be started.

 // release lock
 LockManager.releaseLock("update_lock");

 log.info("Baseline update script finished.");
 }
 else {
 log.warning("Failed to obtain lock.");
 }
]]>
 </bean-shell-script>
</script>

Related Links
Agraph without parallel Forge baseline update script on page 57

The baseline update script defined in the AppConfig.xml document for an Agraph without
parallel Forge deployment is included in this section, with numbered steps indicating the
actions performed at each point in the script.

Configuration update script
The configuration update script defined in the AppConfig.xml document is included in this section,
with numbered steps indicating the actions performed at each point in the script.

Note that the script starts by checking if Endeca Workbench integration is enabled, taking no action
(other than logging a message) if disabled.

<script id="ConfigUpdate">
 <bean-shell-script>
 <![CDATA[
 log.info("Starting dgraph config update script.");
 if (ConfigManager.isWebStudioEnabled()) {

1. Download the Endeca Workbench Dgraph config files. Download Workbench-maintained
configuration files that can be applied to a Dgraph. Remove any files from this set that are not
configured to be maintained in Endeca Workbench in the ConfigManager component.

ConfigManager.downloadWsDgraphConfig();

2. Clean working directories. Clear any files in the local Dgraph configuration directories to which files
are distributed on each Dgraph server.

DgraphCluster.cleanLocalDgraphConfigDirs();

3. Distribute configuration files to each server. A single copy of the Dgraph configuration files is
distributed to each server specified in the configuration.

DgraphCluster.copyDgraphConfigToDgraphServers();

4. Update MDEX Engines. The Dgraph processes are updated. Engines are updated according to
the restartGroup property specified for each Dgraph. The update process for each Dgraph is
as follows:

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Scripts | Configuration update script64

Copy configuration files into the dgraph_input directory.a.
b. Trigger a configuration update in the Dgraph by calling the URL config?op=update.
c. Flush the Dgraph's dynamic cache to ensure the new configuration is applied by calling the URL

admin?op=flush.

This somewhat complex update functionality is implemented to minimize the amount of time that
a graph is stopped. This restart approach ensures that the graphs are stopped just long enough
to rename two directories for each Dgraph.

 DgraphCluster.applyConfigUpdate();
 } else {
 log.warning("Web Studio integration is disabled. No action will be
 taken.");
 }
 log.info("Finished updating dgraph config.");
]]>
 </bean-shell-script>
 </script>

Report generation
Four report generation scripts are defined in the AppConfig.xml document.

Two of the scripts are used to generate XML reports for Endeca Workbench and two generate HTML
reports that can be viewed in a browser. All scripts share similar functionality, so only one is included
below, with numbered steps indicating the actions performed at each point in the script.

 <script id="DailyReports">
 <bean-shell-script>
 <![CDATA[
 log.info("Starting daily Web Studio report generation script.");

1. Obtain lock. The report generation script attempts to set a "report_generator_lock" flag in
the EAC to serve as a lock or mutex. If the flag is already set, this step fails, ensuring that the report
generator cannot be started more than once simultaneously, as the default report generators share
input directories and working directories. The flag is removed in the case of an error or when the
script completes successfully.

 if (LockManager.acquireLock("report_generator_lock")) {

2. Clean working directories. Clear any files in the report generator's input directory.

 // clean report gen input dir
 DailyReportGenerator.cleanInputDir();

3. Distribute configuration files to each server. A single copy of the Dgraph configuration files is
distributed to each server specified in the configuration.

DgraphCluster.copyDgraphConfigToDgraphServers();

4. Roll LogServer. If the LogServer is actively writing to a file and the file is required for the specified
time range, the LogServer needs to be rolled in order to free up the log file. This code handles that
test and invokes the roll administrative URL command on the LogServer, if necessary.

 // roll the logserver, if the report requires the active log file
 if (LogServer.isActive() &&
 LogServer.yesterdayIncludesLatestLogFile()) {
 LogServer.callLogserverRollUrl();
 }

Endeca® Deployment Template Usage GuideEndeca Confidential

65Scripts | Report generation

5. Retrieve logs for specified report. The LogServer identifies log files in its output directory that are
required to generate a report for the requested date range. Those files are copied to the target
directory configured for the LogServer. Note that this step could be modified to include retrieving
logs from multiple LogServers, if more than one is deployed.

 // retrieve required log files for processing
 LogServer.copyYesterdayLogFilesToTargetDir();

6. Update Report Generator to the appropriate time range and output file name. Endeca Workbench
requires reports to be named according to a time stamp convention. The Report Generator
component’s provisioning is updated to specify the appropriate time range, time series and output
filename. The output file path in the existing provisioning is updated to use the same path, but to
use the date stamp as the filename. Files default to a “.xml” extension, though the component will
attempt to retain a “.html” extension, if specified in the AppConfig.xml.

 // update report generator to the appropriate dates, time series
 // and to output a timestamped file, as required by Web Studio
 DailyReportGenerator.updateProvisioningForYesterdayReport();

7. Archive logs. If one or more files were copied into the report generator's input directory, report
generation will proceed. Start by archiving logs associated with the previous report generator
execution.

 if (DailyReportGenerator.reportInputDirContainsFiles()) {
 // archive logs
 DailyReportGenerator.archiveLogDir();

8. Run report generator. Execute the report generation process.

 // generate report
 DailyReportGenerator.run();

9. Copy report to Endeca Workbench report directory. By default, Endeca Workbench reads reports
from a directory in its workspace. Typically, the directory is
[ENDECA_TOOLS_CONF]/reports/[appName]/daily or
[ENDECA_TOOLS_CONF]/reports/[appName]/weekly. Starting in Endeca Workbench 1.0.1,
this location can be configured by provisioning a host named "webstudio" with a custom directory
named "webstudio-report-dir." The Deployment Template provisions this directory and
delivers generated reports to that location for Workbench to read. The report file (and associated
charts) will be copied to this directory, as specified in the AppConfig.xml, which defaults to
[appdir]/reports. Note that this step is not necessary for HTML reports, as those reports are
not viewed in Endeca Workbench.

 // copy generated report and charts to web studio directory
 // defined in "webstudio" host and its "webstudio-report-dir"
 // directory
 reportHost = "webstudio";
 absDestDir = PathUtils.getAbsolutePath(webstudio.getWorkingDir(),

 webstudio.getDirectory("webstudio-report-dir"));
 isDaily = true;
 DailyReportGenerator.copyReportToWebStudio(reportHost,
 absDestDir, isDaily);
 }
 else {
 log.warning("No log files for report generator to process.");
 }

 LockManager.releaseLock("report_generator_lock");
 log.info("Finished daily Web Studio report generation.");
 }

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Scripts | Report generation66

 else {
 log.warning("Failed to obtain lock.");
 }
]]>
 </bean-shell-script>
 </script>

Endeca® Deployment Template Usage GuideEndeca Confidential

67Scripts | Report generation

Chapter 5

Endeca Workbench Integration and
Deployment

This section describes the Deployment Template functionality that allows deployments to integrate
with Endeca Workbench.

Endeca Workbench Integration functions
The Deployment Template scripts include functionality that allows deployments to integrate with Endeca
Workbench. Integration involves three functions: configuration management, process control, and
reporting.

• Configuration management. Endeca Workbench is primarily a tool that allows business users to
maintain a subset of application configuration files. Scripts that integrate with Endeca Workbench
need to retrieve configuration files from the Workbench configuration store and manage the process
of merging those configuration files with ones created and maintained by developers in Developer
Studio. In addition, scripts may need to upload configuration into the Workbench, to ensure that
the tool is up to date with the configuration being used in the production environment.

• Process control. Endeca Workbench requires an Endeca instance in order to apply and preview
changes to the configuration files maintained in the tool. Scripts that integrate with the Workbench
must define and maintain an MDEX Engine that the Workbench will use to preview changes before
they are applied to the production environment.

• Reporting. Endeca Workbench provides a convenient interface for viewing reports produced by
the Report Generator. Scripts that generate reports need to deliver files to a location from which
Endeca Workbench will load reports in order for users to view them.

Configuration management
The Deployment Template implements a configuration management approach based on a simple
business process.

The template requires that all configuration files be managed in a single location. That is, files are
either maintained by Endeca Workbench or by Developer Studio, but multiple sources of configuration
for the same file are not allowed. Given this rule, the template assumes that all files are maintained in
Developer Studio with the exception of those explicitly identified (in the ConfigManager component
definition) as being maintained in Endeca Workbench. When creating the complete configuration of
the application, the Deployment Template takes the Developer Studio copy of each configuration file,

overwriting those that are to be maintained in Endeca Workbench with the copies downloaded from
the Workbench.

About updating the Endeca Workbench configuration
One implication of the single-source business process is that configuration does not need to be
uploaded to Endeca Workbench after it is initially uploaded.

That is, the Workbench is used as the primary source of configuration for a subset of files, and need
not be updated with configuration from other sources. Because of this, the Deployment Template does
not upload configuration settings to the Workbench during baseline or partial update scripts. It is
expected that the Endeca Workbench is initialized with configuration when the application is deployed
and that additional configuration updates are uploaded manually when necessary.

When deploying the application, users who have enabled integration with Endeca Workbench will run
the initialize_services.[bat|sh] script to upload configuration to the Workbench. On an ad
hoc basis, configuration can be uploaded to the Workbench to update any files that are not maintained
by the Workbench. For example, if a new rule group is created and needs to be made available in
Endeca Workbench, users can run the update_web_studio_config.[bat|sh] script to upload
the latest configuration files to the Workbench. Note that this script merges the configuration files
according to the previously defined process (skipping the merge step if no files are retrieved from the
Workbench) before uploading to the Workbench, ensuring that only files that are not maintained in the
Workbench are updated, and all changes developed and maintained in the Workbench remain there.
The process of uploading configuration to Endeca Workbench requires obtaining locks on all Workbench
configuration resources. This means that no locks may be held by users. The update script does not
attempt to break locks, expecting that system administrators will ensure that Endeca Workbench is
free of users before attempting to update the tool with new configuration.

About extending the Endeca Workbench configuration
As with any other component in the template, configuration management may be modified and extended
to meet the needs of the project.

In cases where the business process defined by the Deployment Template is not suitable to a project,
a new Configuration Management object can be implemented to perform more complex tasks such
as comparing and merging files maintained in both Developer Studio and Endeca Workbench.

About promoting configuration to production
The Deployment Template BaselineUpdate script retrieves Workbench-maintained configuration
files and applies them when the update is being processed.

In addition, the ConfigUpdate script retrieves Workbench-maintained Dgraph configuration files (i.e.
files that do not require a baseline update to apply) and applies them to the Dgraph cluster.

The default behavior is to promote saved configuration with regularly scheduled baseline index updates.
Users may also want to automate the ConfigUpdate script to promote changes more frequently. In
some cases, it may be appropriate to expose an interface for allowing users to promote changes on
demand. The ConfigUpdate script is provisioned and can be executed via a Web service invocation

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Endeca Workbench Integration and Deployment | About updating the Endeca Workbench configuration70

(through any tool or custom UI that can make a Web service call) or from the EAC Admin console in
the Endeca Workbench.

Process control
Different project and deployment needs require varying deployment approaches to meet a project's
requirements.The following sections describe a few approaches to deploying Endeca Workbench and
how the Deployment Template can be configured for each approach.

Related Links
No Workbench integration on page 71

Some deployments do not require Workbench integration.

Endeca Workbench deployed in a preview environment on page 72
This deployment approach calls for an environment outside of production to be deployed for
Endeca Workbench.

Configuring an Endeca Workbench deployment in a preview environment on page 72
This deployment approach requires a standalone Deployment Template installation, which
runs its own baseline and partial index updates.

Endeca Workbench deployed with a preview Dgraph on page 73
This deployment approach calls for a new Dgraph to be configured in the production
environment to serve as the Workbench preview Dgraph.

Overriding the default behavior of the update functionality on page 74
By default, Endeca Workbench uses an EAC script to update MDEX Engines with new
configuration each time the Save Changes button is pressed. With the preview Dgraph
deployment approach, the default functionality would update each production Dgraph in
addition to the preview Dgraph. There are two ways to override this default behavior.

Endeca Workbench deployed in a production environment on page 76
This deployment approach calls for Endeca Workbench to act directly on the production
Dgraph cluster.

Reporting on page 76
Endeca Workbench provides an interface for viewing and analyzing reports produced by the
Report Generator.

No Workbench integration
Some deployments do not require Workbench integration.

These simple cases require a single configuration change in the AppConfig.xml document. This
change can be selected during installation, when the user is prompted about whether Endeca
Workbench integration should be enabled.

The following configuration should be changed in the ConfigManager component to disable
Workbench integration:

<property name="webStudioEnabled" value="false" />

Endeca® Deployment Template Usage GuideEndeca Confidential

71Endeca Workbench Integration and Deployment | Process control

Endeca Workbench deployed in a preview environment
This deployment approach calls for an environment outside of production to be deployed for Endeca
Workbench.

This environment requires a standalone Deployment Template installation, which runs its own baseline
and partial index updates. In the separate production environment, configuration files are retrieved
from Endeca Workbench and promoted to the production cluster during updates.

By default, Endeca Workbench uses an EAC script to update MDEX Engines with new configuration
each time the Save Changes button is pressed. The default implementation of this script applies
configuration to each Dgraph provisioned in the EAC for the application with which the Workbench
application is associated. With this deployment approach, this functionality is appropriate as the
application deployed in the preview environment is dedicated to preview and any Dgraphs associated
with the deployment can be updated by the Workbench.

Related Links
Configuring an Endeca Workbench deployment in a preview environment on page 72

This deployment approach requires a standalone Deployment Template installation, which
runs its own baseline and partial index updates.

Endeca Workbench deployed with a preview Dgraph on page 73
This deployment approach calls for a new Dgraph to be configured in the production
environment to serve as the Workbench preview Dgraph.

Configuring an Endeca Workbench deployment in a preview environment
This deployment approach requires a standalone Deployment Template installation, which runs its
own baseline and partial index updates.

To configure this type of deployment, install the Deployment Template on the server or servers
designated as the preview environment.

The following configuration update should be specified in the AppConfig.xml document in this
preview environment.

1. Remove the step that uploads post-Forge dimensions to Endeca Workbench during the baseline
update.

This step should only be performed in production, to ensure that new dimension values are only
generated in the production environment and that all configuration created in Endeca Workbench
is based on dimension values in the production environment.

The following lines should be removed from the preview environment's baseline update script.

ConfigManager.cleanDirs();
Forge.getPostForgeDimensions();
ConfigManager.updateWsDimensions();

2. In the separate production environment, the following configuration is required:

a) Update AppConfig.xml to specify the host and port of Endeca Workbench in the preview
environment.

b) As these deployments may end up on different sides of a production firewall, this deployment
may also require opening the Endeca Workbench port for communication through the firewall.
This communication goes in both directions, as the production environment needs to retrieve
files from Endeca Workbench and also update dimension values in the Workbench.

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Endeca Workbench Integration and Deployment | Process control72

3. In addition to these configuration changes, it may be necessary to keep the preview environment
up to date with the latest data and configuration changes applied to production. The following
approaches may be taken to fulfill this requirement.

• Deploy the production index on the preview server. Each time a new index is built by the
production baseline update process, the index can be copied to the preview environment and
applied to the preview Dgraph(s). This approach may require deploying partial updates onto
the preview server as they are processed in production, if it is important for Endeca Workbench
to see these partial updates while previewing.

• Deploy production data and configuration on the preview server. Each time new data is made
available for processing in production or new configuration files are deployed to production, the
same data and configuration should be made available to the preview environment. With this
approach, the preview environment runs baseline and partial updates to process the same data
as production, ensuring that the same index is built in the preview environment just after that
index is built or updated in production. This approach may also require copying the Forge
autogen state file from the production environment to the preview environment, so that the
dimension values used in the preview index are identical to those used in production.To ensure
that no new values are generated in the preview environment, the --noAutoGen may be added
to the Forge processes in the preview environment.

Related Links
Endeca Workbench deployed in a preview environment on page 72

This deployment approach calls for an environment outside of production to be deployed for
Endeca Workbench.

Endeca Workbench deployed with a preview Dgraph
This deployment approach calls for a new Dgraph to be configured in the production environment to
serve as the Workbench preview Dgraph.

This Dgraph is updated along with others in the production environment each time an update is
processed, but it does not serve traffic for the production application. Instead, this Dgraph is used for
preview by Endeca Workbench.

By default, Endeca Workbench uses an EAC script to update MDEX Engines with new configuration
each time the Save Changes button is pressed.With this deployment approach, the default functionality
would update each production Dgraph in addition to the preview Dgraph.There are two ways to override
this default behavior.

Related Links
Overriding the default behavior of the update functionality on page 74

By default, Endeca Workbench uses an EAC script to update MDEX Engines with new
configuration each time the Save Changes button is pressed. With the preview Dgraph
deployment approach, the default functionality would update each production Dgraph in
addition to the preview Dgraph. There are two ways to override this default behavior.

Endeca Workbench deployed in a preview environment on page 72
This deployment approach calls for an environment outside of production to be deployed for
Endeca Workbench.

Endeca® Deployment Template Usage GuideEndeca Confidential

73Endeca Workbench Integration and Deployment | Process control

Overriding the default behavior of the update functionality
By default, Endeca Workbench uses an EAC script to update MDEX Engines with new configuration
each time the Save Changes button is pressed. With the preview Dgraph deployment approach, the
default functionality would update each production Dgraph in addition to the preview Dgraph. There
are two ways to override this default behavior.

• A script may be provisioned with a reserved name, instructing Endeca Workbench to execute the
custom script rather than using its default update script.
The following configuration excerpt demonstrates how this script might be implemented.

<script id="EndecaMDEXUpdateScript">
 <log-dir>./logs</log-dir>
 <provisioned-script-command>
 ./control/runcommand.bat EndecaMDEXUpdateScript
 </provisioned-script-command>
 <bean-shell-script>
 <![CDATA[
 log.info("Applying config to Web Studio preview dgraph.");

 // don't filter, apply all rules to preview dgraph
 filterInactiveRules = false;

 // download MDEX config from Web Studio to
 // preview dgraph's input directory
 getWsDgraphFiles = new GetWSDgraphFilesUtility(WSDgraph.getAppName(),

 WSDgraph.getEacHost(), WSDgraph.getEacPort(),
 WSDgraph.isSslEnabled(), WSDgraph.getDataPrefix());
 getWsDgraphFiles.init(WSDgraph.getHostId(), ConfigManager.getWsHost(),

 ConfigManager.getWsPort(), WSDgraph.getInputDir(),
 filterInactiveRules, WSDgraph.getWorkingDir());
 getWsDgraphFiles.run();

 // trigger config update (and cache flush) in preview dgraph
 WSDgraph.callDgraphConfigUpdateUrl();

 log.info("Web Studio preview dgraph updated.");
]]>
 </bean-shell-script>
</script>

Note that this script has the ID "EndecaMDEXUpdateScript." This is the reserved script name
that must be used when provisioning the script, to ensure that Endeca Workbench recognizes and
invokes the script when saving configuration changes.

a) In addition, note that the script updates a Dgraph named WSDgraph, which can be configured
as follows:

<dgraph id="WSDgraph" host-id="ITLHost" port="1">
 <properties>
 <property name="restartGroup" value="WebStudio" />
 </properties>
 <log-dir>./logs/dgraphs/WSDgraph</log-dir>
 <input-dir>./data/dgraphs/WSDgraph/dgraph_input</input-dir>
 <update-dir>./data/dgraphs/WSDgraph/dgraph_input/updates</update-dir>

 <app-config-dir>./data/dgraphs/WSDgraph/dgraph_input</app-config-dir>
</dgraph>

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Endeca Workbench Integration and Deployment | Process control74

b) The new Dgraph should also be added to the DgraphCluster, so that it is updated along with
other Dgraphs during baseline and partial updates.

<dgraph-cluster id="DgraphCluster" getDataInParallel="true">
 <dgraph ref="WSDgraph" />
 <dgraph ref="Dgraph1" />
 <dgraph ref="Dgraph2" />
</dgraph-cluster>

Once these changes have been made, the environment has a Dgraph dedicated to Workbench
preview and uses the BaselineUpdate, PartialUpdate, and ConfigUpdate script to apply
changes saved in the Workbench to the production Dgraphs.

Note: Endeca Workbench's dynamic business rule preview functionality always selects the
first Dgraph provisioned for the application to test which business rules have fired. In order
to have this select the dedicated Endeca Workbench preview Dgraph, the WSDgraph should
be specified first in the AppConfig.xml file definition of the DgraphCluster.This ensures
that, when provisioning the cluster, the Workbench Dgraph is added first, and is selected by
the Workbench to determine status messages when previewing rules.

• By provisioning one or more Dgraphs with a pre-defined set of properties, Endeca Workbench can
be instructed to perform its default update operation on that subset of Dgraphs. To configure a
WSDgraph as described above, start by configuring all other Dgraphs not to be updated by Endeca
Workbench. This can be done by setting the property "WebStudioSkipConfigUpdate" in the
DgraphDefaults:

 <dgraph-defaults>
 <properties>
...
 <property name="WebStudioSkipConfigUpdate" value="true" />
 </properties>
...
 </dgraph-defaults>

Note that this property can also be set individually for each Dgraph, rather than in the defaults.
Once set, the property must be set to “false” for the WSDgraph, to ensure it is updated by the
Endeca Workbench. In addition, another property, “WebStudioMDEX” should be set on the WSD¬
graph to indicate to Endeca Workbench that this is the Dgraph to use when previewing the rules
that have been triggered.

<dgraph id="WSDgraph" host-id="ITLHost" port="1">
 <properties>
 <property name="restartGroup" value="WebStudio" />
 <property name="WebStudioSkipConfigUpdate" value="false" />
 <property name="WebStudioMDEX" value="true" />
 </properties>
 <log-dir>./logs/dgraphs/WSDgraph</log-dir>
 <input-dir>./data/dgraphs/WSDgraph/dgraph_input</input-dir>
 <update-dir>./data/dgraphs/WSDgraph/dgraph_input/updates</update-dir>
 <app-config-dir>./data/dgraphs/WSDgraph/dgraph_input</app-config-dir>
</dgraph>

For details about these properties, refer to the Endeca Workbench Administrator's Guide.

There are two implications to deploying either of these approaches that should be considered.

• When using the first approach, the custom EndecaMDEXUpdateScript implementation will take
longer to execute than default Workbench implementation. The script described above is simple
and executes relatively quickly, but cannot execute as quickly as native Workbench code. Business

Endeca® Deployment Template Usage GuideEndeca Confidential

75Endeca Workbench Integration and Deployment | Process control

users should expect a brief delay when saving changes in Endeca Workbench. For this reason,
the second approach (configuring the default Endeca Workbench script) may be a better choice.

• For both approaches, the preview Dgraph's index is updated simultaneously with the production
Dgraph cluster. This means that Endeca Workbench changes that require a baseline update to
apply are not previewed, but are immediately applied to production. This includes changes to stop
word configuration.

Related Links
Endeca Workbench deployed with a preview Dgraph on page 73

This deployment approach calls for a new Dgraph to be configured in the production
environment to serve as the Workbench preview Dgraph.

Endeca Workbench deployed in a production environment
This deployment approach calls for Endeca Workbench to act directly on the production Dgraph cluster.

Note: This approach is often not recommended, as it allows changes to be made to a production
application and requires unregulated updates to the production Dgraph cluster. However, some
deployments may not find these concerns significant and may choose to deploy with this approach.

Without any configuration, the Deployment Template integrates with a Workbench in its local
environment and Endeca Workbench assumes direct control of all of the Dgraphs provisioned for the
deployed application.This means that no further configuration is required when deploying this approach
in production.

It is important to note that most changes saved in Endeca Workbench are deployed to the production
servers immediately when the Save Changes button is clicked in the Workbench. There are two
exceptions to this behavior.

1. Changes that require a baseline update to apply are picked up by a scheduled baseline update.
This includes changes to stop word configuration.

2. Changes to dynamic business rules must go through Endeca Workbench approval workflow before
they are exposed in the production Dgraph. These changes are applied to the production Dgraphs
when the Save Changes button is pressed, but may not be exposed to the end user until they
have been approved in Endeca Workbench.

Reporting
Endeca Workbench provides an interface for viewing and analyzing reports produced by the Report
Generator.

In order for Endeca Workbench to display these reports, report files and associated charts need to be
created and delivered to a directory in Endeca Workbench's workspace. Alternatively, a "webstudio"
host can be provisioned with a "webstudio-report-dir" custom directory, which indicates to
Endeca Workbench where it should read reports for the application. In addition, the files need to be
named with a date stamp to conform to Endeca Workbench's naming convention. The Deployment
Template includes report generation scripts that perform these naming and copying steps to deliver
reports for Endeca Workbench to read. Common extension or customization of this functionality may
occur when one or more of the components in the reporting lifecycle run in different environments.
The AppConfig.xml allows components to work independently of each other. Specifically, the
LogServer can be configured to deliver files to an arbitrary directory, from where the files can be copied
to another environment for report generation. Similarly, the Report Generator's output report can be

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Endeca Workbench Integration and Deployment | Process control76

delivered to an arbitrary target directory, from where the files can be copied to another environment
for display in Endeca Workbench.

Endeca® Deployment Template Usage GuideEndeca Confidential

77Endeca Workbench Integration and Deployment | Process control

Chapter 6

Integrating and Running CAS Crawls

The Deployment Template provides support for running CAS crawls. This section describes the
configuration changes necessary to integrate and run CAS crawls using the Deployment Template.
You must upgrade the Deployment Template with the CAS WSDL client stub files for CAS integration
to work. If you have not upgraded the Deployment Template, see the CAS Installation Guide before
continuing with this chapter.

About storage types for CAS crawls
The Content Acquisition System can write output from a crawl to either a Record Store instance (the
default) or to a record output file. The configuration of the Deployment Template varies depending on
whether a crawl is configured to write output to a Record Store instance or configured to store crawl
output in record output files. This topic describes the main differences between the storage types as
they affect the operations of the Deployment Template.

Note: Although both storage types are fully supported, Endeca recommends configuring a CAS
crawl to write to a Record Store instance rather than a record output file.This approach simplifies
both the operational model and Deployment Template configuration.

Characteristics of a Record Store instance versus record output files

• Files - In a Record Store instance, there are no individual files to manipulate. For crawls that write
to record output files, there are one or more files to manipulate for both full and incremental crawls.
You do not need to fetch files for a baseline crawl that is configured to write Endeca records to a
Record Store instance. In crawls that write to a Record Store instance, a baseline pipeline uses a
custom record adapter to read records directly from a Record Store instance. There is no fetching
or copying record output files. For details about configuring a custom record adapter to read from
a Record Store instance, see the CAS Developer's Guide.

• Operational instructions - A crawl that writes output to a Record Store instance does not require
Deployment Template configuration for output destinations, file names, or require instructions to
move, copy, or fetch files. A crawl that writes to record output files requires configuration output
destinations, file names, and instructions to move, copy, or fetch files.

• Configuration properties - For crawls that write to a Record Store instance, the CAS server
configuration properties in the custom-component need to specify the host and port of the CAS
Server. No properties are required for output destinations. For crawls that write to a record output
file, the CAS server configuration properties in the custom-component need to specify the host
and port of the CAS Server, and output destinations for full and incremental crawl files.

About Deployment Template files for both storage types
This topic describes the files you modify in order to integrate and run CAS crawls as part of the
Deployment Template.

Deployment Template files for CAS crawls that write to a Record Store instance

For crawls that write output to a Record Store instance, there are no additional configuration or script
files. This is because the operational model interacting with a Record Store is relatively simple: there
are no files to fetch, move, copy and so on.You edit AppConfig.xml to specify the required CAS
Server host, the pipeline, and the baseline or incremental crawl that you want to run.

Deployment Template files for CAS crawls that write to record output files

For crawls that write output to record output files, the associated configuration and script files are in
the [appdir]/config/script directory and their purpose is as follows:

• The [appdir]/config/script/fetchCasCrawlDataConfig.xml file is the global CAS
crawl configuration for the application. The file provides two major functions. First, it provides set
of global configuration settings that are used for all file system and CMS crawls, such as the location
of the CAS Server. Second, it provides two scripts for fetching baseline and incremental output
files (i.e., transferring the crawl output files to the source data destination directories).

• There is a [crawlname]CasCrawlConfig.xml document for each configured CAS crawl. For
example, the sample endecaCasCrawlConfig.xml is for a crawl that was created with a name
of "endeca". The document contains two scripts: one for baseline crawls and one for incremental
crawls.

EAC Component API methods for CAS
In your AppConfig.xml code, you can coordinate CAS crawls and baseline or partial updates using
the methods available in ContentAcquisitionServerComponent.

The more important methods available in ContentAcquisitionServerComponent are listed in
the following table and are used in examples throughout this chapter.

DescriptionMethod

Runs a full CAS crawl to completion. This method starts the
crawl and also calls waitForFinished() to check for

runBaselineCasCrawl()

completion. The method throws an exception if the crawl does
not complete successfully.

Starts a baseline crawl but does not check for completion. If the
crawl is not already provisioned, or if the CAS can't be reached,
this method throws an exception.

startBaselineCasCrawl()

Runs an incremental crawl to completion. This method starts
the crawl and calls waitForFinished() to check for

runIncrementalCasCrawl()

completion. The method throws an exception if the crawl does
not complete successfully.

Starts an incremental crawl but does not check for completion.
If the crawl is not already provisioned, or if the CAS Service can't
be reached, this method throws an exception.

startIncrementalCasCrawl()

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Integrating and Running CAS Crawls | About Deployment Template files for both storage types80

DescriptionMethod

Waits for the specified crawl to finish (to be in a non-active state)
or for the maximum amount of wait time to elapse. (The wait

waitForFinished()

time is specified by the maxCasCrawlWaitSeconds property.
The default is -1 which indicates the script should wait
indefinately until the CAS crawl completes.) While waiting, the
method thread sleeps, swallowing any InterruptedExcep¬
tions that are caught.

Retrieves the status of the specified crawl.getCrawlStatus()

Test whether the crawl is active (running or stopping).isCrawlActive()

Exports dimension value Id mappings from a Dimension Value
Id Manager to a CSV file at the path specified on the CAS Server.

exportDimensionValueIdMap¬
pings()

Imports dimension value Id mappings from a CSV file located
at the specified path to a specified Dimension Value Id Manager.

importDimensionValueIdMap¬
pings()

For additional details about ContentAcquisitionServerComponent, see the Javadoc installed
in CAS\<version>\doc\cas-dt-javadoc.

Integrating and running CAS crawls that write to Record
Store instances

This section describes the high-level steps for integrating and running a CAS crawl that writes output
to a Record Store instance.

This section assumes you have done the following:

• Installed and started the CAS Service and CAS Console.
• Installed an EAC Agent and started it on the server running the CAS Service.
• Deployed an application using the template.
• Configured an application by editing the AppConfig.xml.

The steps below are described in their own topics.

1. Create a CAS crawl.
2. Specify a CAS Server host in AppConfig.xml.
3. Specify a CAS Server as a custom component.
4. Specify a pipeline to run in AppConfig.xml.
5. Add code to run a CAS crawl (full or incremental).
6. Run a CAS crawl (full or incremental).
7. Coordinate CAS crawls and baseline or partial updates.

Related Links
Deploying an EAC application on UNIX on page 15

This section describes the steps for deploying an EAC application in a UNIX environment
using the provided deploy.sh file.

Deploying an EAC application on Windows on page 13
This section describes the steps for deploying an EAC application in a Windows environment
using the provided deploy.bat file.

Endeca® Deployment Template Usage GuideEndeca Confidential

81Integrating and Running CAS Crawls | Integrating and running CAS crawls that write to Record Store
instances

Configuring an application on page 21
This section guides you through the process of configuring the deployment to run your
application.

Creating a CAS crawl
Create and configure a CAS crawl using either the Endeca CAS Console, the CAS Server API, or the
CAS Server Command-line Utility. For details about creating and configuring a CAS crawl, see the
Endeca CAS Developer's Guide or the Endeca CAS API Guide.

Specifying a CAS Server as a custom component for Record Store output
A custom-component element defines the configuration properties of a specific CAS Server. This
topic describes the configuration properties for a CAS Server that writes output to a Record Store
instance.

Note: The configuration examples below show the CAS 3.0.x deployment template component
name (i.e. the class attribute) rather than the CAS 2.2.x deployment template component.

Note: The Deployment Template checks the host and port definition in AppConfig.xml,
NameCasCrawlConfig.xml, and fetchCasCrawlDataConfig.xml. If host or port information
conflicts in any of these three files, errors will occur. Either make sure the host and port
configuration is same in the three files, or comment out host and port configuration in both
NameCasCrawlConfig.xml and fetchCasCrawlDataConfig.xml and put the configuration
in AppConfig.xml.

To specify a CAS Server as a custom component for Record Store output:

1. Open fetchCasCrawlDataConfig.xml in a text editor and cut out the custom component for
the Content Acquisition System Server configuration. (This prevents configuration conflicts as
described in the note above.)
For example, remove the following from fetchCasCrawlDataConfig.xml:

<!--

##

 # Content Acquisition System Server
 #

 <custom-component id="CAS" host-id="CASHost" class="com.endeca.eac.toolk¬
it.component.cas.ContentAcquisitionServerComponent">
 <properties>
 <property name="casHost" value="localhost" />
 <property name="casPort" value="8500" />
 <property name="casCrawlFullOutputDestDir" value="./data/com¬
plete_cas_crawl_output/full" />
 <property name="casCrawlIncrementalOutputDestDir" value="./data/com¬
plete_cas_crawl_output/incremental" />
 <property name="casCrawlOutputDestHost" value="CASHost" />
 </properties>
 </custom-component>

 -->

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Integrating and Running CAS Crawls | Integrating and running CAS crawls that write to Record Store
instances

82

2. Open the AppConfig.xml file in a text editor and paste in the custom component for the Content
Acquisition System Server configuration.

3. In the Content Acquisition System Server configuration, remove the properties for directories and
keep the properties that specify the Record Store instance host and port. Ensure that the following
attributes are set correctly:

• An id attribute that assigns a unique ID to a specific CAS Server. (The example in this
documentation use CAS for the id.)

• The host-id attribute points back to the id attribute of the host global configuration element.
• The class attribute specifies the class that implements the CAS deployment template

component. If you are using CAS 2.2.x, specify class="com.endeca.soleng.eac.toolk¬
it.component.ContentAcquisitionServerComponent". If you are using CAS 3.0.x,
specify class="com.endeca.eac.toolkit.component.cas.ContentAcquisition¬
ServerComponent".

• A casHost property to indicate the CAS Server which manages the crawls.
• A casPort property to indicate the port on which the CAS Server is listening. This is the port

number you specified when you installed CAS.

For example:

<!--

##

 # Content Acquisition System Server
 #

 <custom-component id="CAS" host-id="CASHost" class="com.endeca.eac.toolk¬
it.component.cas.ContentAcquisitionServerComponent">
 <properties>
 <property name="casHost" value="localhost" />
 <property name="casPort" value="8500" />
 </properties>
 </custom-component>

 -->

Specifying a pipeline to run in AppConfig.xml (for Record Store output)
The devStudioConfigDir attribute in the ConfigManager custom component specifies the Forge
pipeline to run. By default, the Deployment Template checks the [appdir]/config/pipeline for
the Forge pipeline to run. This includes baseline updates and partial updates. It is simplest to put your
pipeline files in this directory.

You specify the Forge pipeline that you configured to read from one or more Record Store instances.
(For details about creating a Forge pipeline, see the Endeca CAS Developer's Guide.)

To specify a Forge pipeline to run in AppConfig.xml:

1. Ensure that your Forge pipeline files are located in [appdir]/config/pipeline.

2. Alternatively, modify the devStudioConfigDir property in the ConfigManager custom
component to reference the pipeline directory. Also, modify the configDir property in the Partial
update Forge section to reference the pipeline directory.

Endeca® Deployment Template Usage GuideEndeca Confidential

83Integrating and Running CAS Crawls | Integrating and running CAS crawls that write to Record Store
instances

In this example, the Forge pipeline is stored in the pipeline directory:

<custom-component id="ConfigManager" host-id="ITLHost"
 class="com.endeca.soleng.eac.toolkit.component.ConfigManagerComponent">

 <properties>
 ...
 </properties>
 <directories>
 <directory
 name="devStudioConfigDir">./config/pipeline
 </directory>
 ...
 </directories>

Add code to run a CAS crawl
Add code to AppConfig.xml that specifies the CAS crawl to run. Depending on your environment,
you may need a script that runs a full CAS crawl and a script that runs an incremental CAS crawl. In
either case, the code typically locks the crawl (to wait for any running crawls to complete), runs the
crawl, and release the lock.

To add code to run a CAS crawl:

1. Open the AppConfig.xml file in a text editor.

2. To run a full CAS crawl, add code that locks the crawl, runs the crawl, and releases the lock.
For example:

<!--

##

 # full crawl script
 #
 -->

 <script id="endeca_fullCasCrawl">
 <log-dir>./logs/provisioned_scripts</log-dir>
 <provisioned-script-command>./control/runcommand.bat endeca_full¬
CasCrawl run</provisioned-script-command>
 <bean-shell-script>
 <![CDATA[
 crawlName = "endeca";

 log.info("Starting full CAS crawl '" + crawlName + "'.");

 // obtain lock
 if (LockManager.acquireLock("crawl_lock_" + crawlName)) {

 CAS.runBaselineCasCrawl(crawlName);

 LockManager.releaseLock("crawl_lock_" + crawlName);
 }
 else {
 log.warning("Failed to obtain lock.");
 }

 log.info("Finished full CAS crawl '" + crawlName + "'.");
]]>

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Integrating and Running CAS Crawls | Integrating and running CAS crawls that write to Record Store
instances

84

 </bean-shell-script>
 </script>

3. To run a incremental CAS crawl, add code that locks the crawl, runs the crawl, and releases the
lock.
For example:

 <!--

##

 # incremental crawl script
 #
 -->
 <script id="endeca_incrementalCasCrawl">
 <log-dir>./logs/provisioned_scripts</log-dir>
 <provisioned-script-command>./control/runcommand.bat endeca_incremen¬
talCasCrawl run</provisioned-script-command>
 <bean-shell-script>
 <![CDATA[
 crawlName = "endeca";

 log.info("Starting incremental CAS crawl '" + crawlName + "'.");

 // obtain lock
 if (LockManager.acquireLock("crawl_lock_" + crawlName)) {

 CAS.runIncrementalCasCrawl(crawlName);

 LockManager.releaseLock("crawl_lock_" + crawlName);
 }
 else {
 log.warning("Failed to obtain lock.");
 }

 log.info("Finished incremental CAS crawl '" + crawlName + "'.");
]]>
 </bean-shell-script>
 </script>

Running a CAS crawl
You can run either a full or incremental CAS crawl script to produce records in the Record Store
instance.

Alternatively, you can run the CAS crawl as part of a baseline or partial update as described in
#unique_80.

To run a CAS crawl script:

1. To run a full crawl, run the full crawl script you specified in AppConfig.xml and specify the name
of the crawl.
For example:

C:\Endeca\apps\DocApp\control>runcommand.bat endeca_fullCasCrawl

2. To run an incremental crawl, run the incremental crawl script you specified in AppConfig.xml
and specify the name of the crawl.

Endeca® Deployment Template Usage GuideEndeca Confidential

85Integrating and Running CAS Crawls | Integrating and running CAS crawls that write to Record Store
instances

For example:

C:\Endeca\apps\DocApp\control>runcommand.bat endeca_incrementalCasCrawl

Integrating and running CAS crawls that write to record
output files

This section describes the high-level steps for integrating and running a CAS crawl that writes output
to a record output file.

This section assumes you have done the following:

• Installed and started the CAS Service and CAS Console.
• Installed an EAC Agent and started it on the server running the CAS Service.
• Deployed an application using the template.
• Configured an application by editing the AppConfig.xml.

The steps below are described in their own topics.

1. Create a CAS crawl.
2. Specify a CAS Server host in AppConfig.xml.
3. Specify a CAS Server as a custom component for any CAS crawl that writes to record output files.
4. Specify a pipeline to run in AppConfig.xml.
5. Edit fetchCasCrawlDataConfig.xml to reflect the details of your crawling environment.
6. Create a CAS crawl script, for the crawl you created in step 1, by running the

[appdir]/control/cas/make_cas_crawl_scripts script.
7. Run a baseline CAS crawl (a full crawl) using the sample CAS crawl pipeline. If the baseline update

runs without failing, you can start to make further modifications to your deployment, such as using
your custom pipeline.

8. Optionally, run an incremental CAS crawl.These steps verify that your configuration files are correct.
9. Load the crawl files generated in the previous step to be processed by the sample CAS crawl

pipeline.
10. Run a baseline update using the sample CAS crawl pipeline with the new crawl record output files.

Note: The instructions provided in this section apply to the Dgraph deployment type. If your are
using an Agraph, all of the file system crawl integration components are deployed and work the
same way, but you need to customize the cas_crawl_pipeline (or create your own pipeline)
to process the crawl data into an Agraph. Essentially, the crawl functionality works exactly the
same way, but the Deployment Template does not provide a sample pipeline for the Agraph
case.

Related Links
Deploying an EAC application on UNIX on page 15

This section describes the steps for deploying an EAC application in a UNIX environment
using the provided deploy.sh file.

Deploying an EAC application on Windows on page 13
This section describes the steps for deploying an EAC application in a Windows environment
using the provided deploy.bat file.

Configuring an application on page 21

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Integrating and Running CAS Crawls | Integrating and running CAS crawls that write to record output
files

86

This section guides you through the process of configuring the deployment to run your
application.

Creating a CAS crawl
Create and configure a CAS crawl using either the Endeca CAS Console, the CAS Server API, or the
CAS Server Command-line Utility. For details about creating and configuring a CAS crawl, see the
Endeca CAS Developer's Guide or the Endeca CAS API Guide.

Specifying a CAS Server host
The host element defines the specifics of the machine on which the CAS crawls are deployed. The
host configuration is the same for crawls that write output to a Record Store instance and crawls that
write to a record output file.

The hostName is set automatically when you run the deployment script.You therefore do not typically
have to change the hostname unless you decide to start using a CAS Server on another machine.

Note: The Deployment Template checks the host and port definition in AppConfig.xml,
NameCasCrawlConfig.xml, and fetchCasCrawlDataConfig.xml. If host or port information
conflicts in any of these three files, errors will occur. Either make sure the host and port
configuration is same in the three files, or comment out host and port configuration in both
NameCasCrawlConfig.xml and fetchCasCrawlDataConfig.xml and put the configuration
in AppConfig.xml.

To specify a CAS Server host:

1. Open the AppConfig.xml file in a text editor.

2. Within the <spr:beans> tag, add a section with a host element and specify a unique ID in the
id attribute (such as "CASHost" in the example).

<!—
##
CAS servers/hosts
-->
<host id="CASHost" hostName="WEB009.mycompany.com" port="8888" />

The hostName attribute specifies the name of the machine on which the EAC Agent is running
("WEB009.mycompany.com" in the example).

The port attribute specifies for the host the port on which it is listening, which is the Endeca HTTP
Service port on that server (8888 in the example).

Specifying a CAS Server as a custom component for record output files
The custom-component section defines the configuration properties of a specific CAS Server. This
topic describes the configuration properties for a CAS crawl that writes output to a record output file.

Note: The configuration example below shows the CAS 3.0.x deployment template component
name (i.e. the class attribute) rather than the CAS 2.2.x deployment template component.

To specify a CAS Server as a custom component for record output files:

Endeca® Deployment Template Usage GuideEndeca Confidential

87Integrating and Running CAS Crawls | Integrating and running CAS crawls that write to record output
files

Add custom-component with the following configuration:

• An id attribute that assigns a unique ID to a specific CAS Server.
• The host-id attribute points back to the id attribute of the host global configuration element.
• The class attribute specifies the class that implements the CAS deployment template

component. If you are using CAS 2.2.x, specify class="com.endeca.soleng.eac.toolk¬
it.component.ContentAcquisitionServerComponent". If you are using CAS 3.0.x,
specify class="com.endeca.eac.toolkit.component.cas.ContentAcquisition¬
ServerComponent".

• A casHost property to indicate the CAS Service which manages the file system and CMS
crawls.

• A casPort property to indicate the port on which the CAS Service is listening.The port number
must match the com.endeca.cas.port value that is used in the cas-server startup script.
The cas-server startup configuration is in Endeca\CAS\workspace\conf\jetty.xml. Be
sure to change the port number if it is not the same as the com.endeca.cas.port value.

• A casCrawlFullOutputDestDir property to indicate the destination directory to which the
crawl output file will be copied after a baseline crawl. Note that this is not the directory to which
the CAS crawl writes its output; that output directory is set as part of the crawl configuration.

• A casCrawlIncrementalOutputDestDir property to indicate the destination directory to
which the crawl output file will be copied after an incremental crawl. As with the previous property,
this is not the directory to which the CAS crawl writes its output. If you run incremental crawls,
the default settings assume that the output format will be compressed binary files.

• A casCrawlOutputDestHost property to indicate the ID of the host on which the destination
directories (specified by the previous two properties) reside.

For example:

<!—
##
Content Acquisition System Server
#
-->
<custom-component id="CAS" host-id="CASHost" class="com.endeca.eac.toolk¬
it.component.cas.ContentAcquisitionServerComponent">
 <properties>
 <property name="casHost" value="WEB009.mycompany.com" />
 <property name="casPort" value="8500" />
 <property name="casCrawlFullOutputDestDir"
 value="./data/complete_cas_crawl_output/full" />
 <property name="casCrawlIncrementalOutputDestDir"
 value="./data/complete_cas_crawl_output/incremental" />
 <property name="casCrawlOutputDestHost" value="CASHost" />
 </properties>
< /custom-component>

Specifying a pipeline to run in AppConfig.xml (for record output files)
The devStudioConfigDir attribute in the ConfigManager custom component specifies the pipeline
to run. This topic describes the how to specify a pipeline for record output file configurations. Sample
scripts are provided for record output file configuration.

To specify a pipeline to run in AppConfig.xml:

1. Edit the value of the devStudioConfigDir attribute in the ConfigManager custom component
to reference the config/cas_crawl_pipeline directory.

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Integrating and Running CAS Crawls | Integrating and running CAS crawls that write to record output
files

88

For example:

<custom-component id="ConfigManager" host-id="ITLHost"
 class="com.endeca.soleng.eac.toolkit.component.ConfigManagerComponent">

 <properties>
 ...
 </properties>
 <directories>
 <directory
 name="devStudioConfigDir">./config/cas_crawl_pipeline
 </directory>
 ...
 </directories>

2. Edit the value of the configDir attribute in the Partial update Forge section to reference the
config/cas_crawl_pipeline directory.
For example:

<!—
##
Partial update Forge
-->
<forge id="PartialForge" host-id="ITLHost">
 <properties>
 ...
 </properties>
 <directories>
 ...
 <directory name="configDir">./config/cas_crawl_pipeline</directory>
 ...
 </directories>

Editing fetchCasCrawlDataConfig.xml for your crawling environment
The [appdir]/config/script/fetchCasCrawlDataConfig.xml file is the global CAS crawl
configuration for the application.

Note: The configuration examples below show the CAS 3.0.x deployment template component
name (i.e. the class attribute) rather than the CAS 2.2.x deployment template component.

To edit fetchCasCrawlDataConfig.xml for your crawling environment:

Check the settings of the following sections:

• CAS Server port: The custom-component section defines the configuration properties of a
specific CAS Server. In particular, check the port number specified in the casPort property,
and check the class attribute. It specifies the class that implements the CAS deployment
template component. If you are using CAS 2.2.x, specify class="com.ende¬
ca.soleng.eac.toolkit.component.ContentAcquisitionServerComponent". If
you are using CAS 3.0.x, specify class="com.endeca.eac.toolkit.component.cas.Con¬
tentAcquisitionServerComponent" :

<custom-component id="CAS" host-id="CASHost" class="com.endeca.eac.toolk¬
it.component.cas.ContentAcquisitionServerComponent">
 <properties>
 <property name="casHost" value="WEB009.mycompany.com" />
 <property name="casPort" value="8500" />

Endeca® Deployment Template Usage GuideEndeca Confidential

89Integrating and Running CAS Crawls | Integrating and running CAS crawls that write to record output
files

 <property name="casCrawlFullOutputDestDir"
 value="./data/complete_cas_crawl_output/full" />
 <property name="casCrawlIncrementalOutputDestDir"
 value="./data/complete_cas_crawl_output/incremental" />
 <property name="casCrawlOutputDestHost" value="CASHost" />
 </properties>
< /custom-component>

If the port on which the CAS Service was started is not the default 8500 number, change the
value of the property.

• Incremental output definition: If you run incremental crawls, the default settings assume that
the output format are compressed binary files. If your crawls are configured to use other output
formats (uncompressed binary, compressed XML, or uncompressed XML), you must make the
following changes.

For an XML output format (either compressed or uncompressed), locate the <script
id="fetchIncrementalCasCrawlData"> section of the script and change the filename
extension of the placeholder file from "placeholder.bin" to "placeholder.xml", so that
the code looks like this:

if (! fileUtil.dirContainsFiles(incrDestDir, Forge.getHostId())) {
 placeholder = incrDestDir + "/placeholder.xml";

For uncompressed formats (either binary or XML), remove or comment out these statements
that run a shell script to compress the placeholder file:

shell.init("zip_incremental_cas_crawl_placeholder",
 Forge.getHostId(), zipCmd, Forge.getWorkingDir());
shell.run();

Creating a CAS crawl script using make_cas_crawl_scripts

After you have created a CAS crawl, use the [appdir]/control/cas/make_cas_crawl_scripts
script to create a CAS crawl script for your deployment.

To create a CAS crawl script:

Run the [appdir]/control/cas/make_cas_crawl_scripts script and specify the name of
the file system or CMS crawl you created previously.
In this Windows example, "MyCrawl" is the name of the file system or CMS crawl you have created
and you are currently in the [appdir]/control/cas directory.

C:\Endeca\Apps\WineApp\control\cas>make_cas_crawl_scripts MyCrawl

As a result, the script creates a configuration file (named MyCrawlCasCrawlConfig.xml) in the
[appdir]/config/script directory. Note that the script does not need to be customized, so it can
be used as-is.

Running a baseline or incremental CAS crawl to record output files
Use one of the scripts located in the [appdir]/control/cas directory to run a CAS crawl.

To run a baseline or an incremental CAS crawl:

1. To run a baseline, run the baseline_cas_crawl script and specify the name of the crawl to run.

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Integrating and Running CAS Crawls | Integrating and running CAS crawls that write to record output
files

90

Note that a baseline crawl will remove any existing incremental crawl output files. After running a
baseline crawl, you can run multiple incremental crawls, because an incremental crawl will not
remove any previous incremental data.

2. To run an incremental crawl, run the incremental_cas_crawl script and specify the name of
the crawl to run.

Note: Note that you cannot specify multiple crawl names. To run multiple crawls, you will need
to invoke the command multiple times. Multiple crawls can be run simultaneously, sequentially,
or completely independently with this approach.

When a baseline crawl runs, the following happens:

1. The script deletes the previous baseline and incremental output files from the crawl output directory
configured for the CAS crawl.

2. The CAS Server first writes the output file to the output directory configured for the crawl. The
filename uses the naming convention specified for the crawl (for example,
CrawlerOutput-FULL-sgmt000.bin.gz).

3. The script prepends the crawl name to the output filename (for example, the name becomes
MyCrawl_CrawlerOutput-FULL-sgmt000.bin.gz).

4. The script deletes the previous baseline and incremental output files (i.e., the files in the
casCrawlFullOutputDestDir and casCrawlIncrementalOutputDestDir directories).

5. The script copies the baseline output file to the directory specified by the casCrawlFullOutput¬
DestDir property.

When an incremental crawl runs, the following happens:

1. The script deletes the previous baseline and incremental output files from the crawl output directory
configured for the CAS crawl.

2. The CAS Server first writes the output file to the output directory configured for the crawl. The
filename uses the naming convention specified in the crawl configuration (for example,
CrawlerOutput-INCR-sgmt000.bin.gz).

3. The script prepends both the crawl name and a timestamp to the output filename (for example,
MyCrawl_2008.02.26.04.49.39_CrawlerOutput-INCR-sgmt000.bin.gz).

4. The script copies the incremental output file to the directory specified by the casCrawlIncremen¬
talOutputDestDir property.

Note: Because the incremental output files are timestamped, previous incrementals are not
deleted.

The following example shows a baseline crawl being run on a Windows machine:

C:\Endeca\Apps\WineApp\control\cas>baseline_cas_crawl MyCrawl
[07.17.08 14:42:40] INFO: Checking definition from AppConfig.xml,
MyCrawlCasCrawlConfig.xml, fetchCasCrawlDataConfig.xml against
existing EAC provisioning.
[07.17.08 14:42:47] INFO: Setting definition for host 'CASHost'.
[07.17.08 14:43:17] INFO: Setting definition for script
'MyCrawl_baselineCasCrawl'.
[07.17.08 14:43:18] INFO: Setting definition for script
'MyCrawl_incrementalCasFileSystemCrawl'.
[07.17.08 14:43:20] INFO: Setting definition for custom component 'CAS'.
[07.17.08 14:43:20] INFO: Updating provisioning for host 'CASHost'.
[07.17.08 14:43:20] INFO: Updating definition for host 'CASHost'.
[07.17.08 14:43:22] INFO: [CASHost] Starting shell utility

Endeca® Deployment Template Usage GuideEndeca Confidential

91Integrating and Running CAS Crawls | Integrating and running CAS crawls that write to record output
files

'mkpath_-data-complete-cas-crawl-output-incremental'.
[07.17.08 14:43:27] INFO: [CASHost] Starting shell utility
'mkpath_-data-complete-cas-crawl-output-full'.
[07.17.08 14:43:30] INFO: Setting definition for script
'fetchFullCasCrawlData'.
[07.17.08 14:43:32] INFO: Setting definition for script
'fetchIncrementalCasCrawlData'.
[07.17.08 14:43:32] INFO: Definition updated.
[07.17.08 14:43:33] INFO: Starting full CAS crawl 'MyCrawl'.
[07.17.08 14:43:33] INFO: Acquired lock 'crawl_lock_MyCrawl'.
[07.17.08 14:43:33] INFO: Starting baseline CAS crawl with id 'MyCrawl'.
[07.17.08 14:45:05] INFO: Acquired lock
'complete_cas_crawl_data_lock'.
[07.17.08 14:45:06] INFO: [CASHost] Starting copy utility
'copy_MyCrawl_crawl_output_to_dest_dir'.
[07.17.08 14:45:07] INFO: Released lock
'complete_cas_crawl_data_lock'.
[07.17.08 14:45:08] INFO: Released lock 'crawl_lock_MyCrawl'.
[07.17.08 14:45:08] INFO: Finished full CAS crawl 'MyCrawl'.

Loading crawl record output files for use in the sample CAS pipeline
To move the crawl output files to the appropriate incoming directory, use one of the scripts located in
the [appdir]/control/cas directory.

To load crawl record output files for use in the sample CAS pipeline:

1. To load baseline crawl data to the incoming/full directory and also copy any incremental data
to the incoming/incremental directory, run the load_full_cas_crawl_data script.

The record adapters in the pipeline look in these directories for the data files. Use this script if you
are running baseline updates or delta updates.

2. To load incremental crawl data to the data/partials/incoming directory, run the
load_incremental_cas_crawl_data script.

This script is used for partial updates.

Note that by default, the load_full_cas_crawl_data script renames the incremental data files
when they are copied to the incoming/incremental directory. For example, this file in the
data/complete_cas_crawl_output/incremental directory:

MyCrawl_2008.07.18.02.46.15_CrawlerOutput-INCR-sgmt000.bin.gz

will be renamed to this when copied to the incoming/incremental directory:

000001_MyCrawl_2008.07.18.02.46.15_CrawlerOutput-INCR-sgmt000.bin.gz

The reason is that the delta update pipeline must keep the most up-to-date copy of any incremental
record. To make sure this happens, the incremental crawl files must be read in reverse chronological
order (i.e., the file order must be reversed) so that the first copy of each record read (which is the only
record the pipeline keeps) is the most recent copy.

This reordering is not required for a partial update pipeline, which reads the incremental files in
chronological order and creates updates that will be progressed by the Dgraph in the same order
(effectively applying the most recent updates). Therefore, incremental files being copied to the
data/partials/incoming directory are not renamed.

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Integrating and Running CAS Crawls | Integrating and running CAS crawls that write to record output
files

92

Running the sample CAS pipeline using the CAS crawl record output
files

The Deployment Template includes a sample CAS crawl pipeline that is located in the
[appdir]/config/cas_crawl_pipeline directory.

Make sure that you have updated the AppConfig.xml file to use the sample CAS crawl pipeline
located in [appdir]/config/cas_crawl_pipeline. Specifically, you will need to update the
devStudioConfigDir property in the ConfigManager section of the document.

Also, make sure you revise both pipeline.epx and partial_pipeline.epx so that the record
adapter reads records in the format that the CAS crawl output.The format can be either XML or binary
and the URL indicates whether the format is compressed or uncompressed. See the FORMAT and URL
attributes in the following XML. For example, the following record adapter reads compressed XML:

<RECORD_ADAPTER COL_DELIMITER="" COMPRESSION_LEVEL="1" DIRECTION="INPUT"
FILTER_EMPTY_PROPS="TRUE" FORMAT="XML" FRC_PVAL_IDX="FALSE"
MULTI="TRUE" NAME="LoadFullCrawls" PREFIX="" REC_DELIMITER="" REQUIRE_DA¬
TA="FALSE" ROW_DELIMITER="" STATE="FALSE" URL="./full/*.xml.gz">
<COMMENT></COMMENT>
</RECORD_ADAPTER>

The pipeline is configured for delta updates, so that it reads in a baseline crawl data file (or multiple
baseline crawl data files, if you create and run multiple crawls in the CAS Server) and one or more
incremental crawl data files.

The pipeline looks as follows:

Endeca® Deployment Template Usage GuideEndeca Confidential

93Integrating and Running CAS Crawls | Integrating and running CAS crawls that write to record output
files

As mentioned above, the LoadFullCrawls record adapter reads in the baseline crawl data while
the LoadIncrementalCrawls record adapter reads in all the incremental data. A record assembler
performs a First Record join on all the data sets, while the RemoveDeletes record manipulator
removes any record whose Endeca.Action property has a value of "DELETE".

To run the sample CAS pipeline using the CAS crawl record output files:

Run the baseline_update script located in [appdir]/control.

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Integrating and Running CAS Crawls | Integrating and running CAS crawls that write to record output
files

94

The baseline_update script displays the following informational message when the process is
complete:

INFO: Baseline update script finished.

After completion, the Dgraph should be running on the host and port specified in the AppConfig.xml
configuration file.

About running partial updates

The sample CAS crawl pipeline also supports partial updates, as an alternative way to apply incremental
CAS crawl updates to a Dgraph.

The partial pipeline looks as follows:

The LoadIncrementalCrawls record adapter reads in the incremental crawl data.

The main work is done by the UpdateManipulator (a record manipulator), which uses expressions
that evaluate the value of the Endeca.Action property on a record:

• If the value of the Endeca.Action property is "UPSERT", then use an UPDATE_RECORD expression
with an action of ADD_OR_REPLACE in order to add or update the record.

• If the value of the Endeca.Action property is "DELETE", then use an UPDATE_RECORD expression
with an action of DELETE_OR_IGNORE in order to remove the record.

Endeca® Deployment Template Usage GuideEndeca Confidential

95Integrating and Running CAS Crawls | Integrating and running CAS crawls that write to record output
files

A partial update can only be run after a full crawl has been run and processed with a baseline update.
In addition, if partial updates are being used, the baseline pipeline should be run only after a full crawl
and not after incremental crawls.

Note: For completeness, when using partial updates, the sample baseline pipeline should be
updated so that it no longer reads and joins incremental crawl files (i.e., the delta functionality
should be removed from the pipeline), since the incremental files will be processed and applied
as partial updates instead.

Running partial updates using record output files

The Deployment Template includes a sample CAS crawl pipeline that you can also use to run partial
updates.

Make sure that you have updated the AppConfig.xml file to use the sample CAS crawl pipeline
located in [appdir]/config/cas_crawl_pipeline. Specifically, you will need to update the
configDir in the PartialForge section of the document.

To run the sample partial update pipeline:

1. Run the load_incremental_cas_crawl_data located in the [appdir]/control/cas
directory.

This script copies incremental crawl data to the data/partials/incoming directory.

2. Run the partial_update script located in [appdir]/control.

The partial_update script displays the following informational message when the process is
complete:

INFO: Partial update script finished.

The Dgraph should now be updated with the changes from your incremental crawls.

Note on running partial updates with XML input files

If you are using uncompressed XML files as the source files for partial updates, you should keep in
mind that the data/partials/processing directory also contains other XML files (i.e., the project
configuration XML files).

Therefore, if you are using a wildcard in the URL field for the input record adapter, you must make
sure that it does not also reference the configuration XML files.

For example, avoid specifying a URL setting like this:

URL: *.xml

Instead, you should use a URL setting that references the INCR prefix of the output filename, similar
to this example:

URL: *-INCR.xml

This will load files such as CrawlerOutput-INCR.xml but not the configuration files. See the Endeca
CAS Developer's Guide for details on the naming format of the crawl output files.

Crawler scripts for record output files
There are four Deployment Template scripts that are used with CAS crawls that write output to record
output files. This section describes how to configure the scripts to manage record output files.

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Integrating and Running CAS Crawls | Integrating and running CAS crawls that write to record output
files

96

• Baseline crawl script (in [crawlname]CasCrawlConfig.xml)
• Incremental crawl script (in [crawlname]CasCrawlConfig.xml)
• Baseline update fetch script (in fetchCasCrawlDataConfig.xml). Used for baseline updates

that may or may not use incremental (delta) updates.
• Incremental fetch script (in fetchCasCrawlDataConfig.xml). Used for partial updates.

Baseline crawl script

This topic describes how to set up a baseline crawl script that manages record output files.

Because the script is basically the same for all file system and CMS crawl configurations, the
endecaCasCrawlConfig.xml sample is used to illustrate the script (for a crawl named endeca).

<script id="endeca_baselineCasCrawl">
 <![CDATA[
 crawlName = "endeca";

1. Check if the crawl is set to write output to a record output file, and throw an exception if the crawl
is set to output to a Record Store instance.

 if (!CAS.isCrawlFileOutput(crawlName)) {
 throw new UnsupportedOperationException("The crawl " + crawlName
+
 " does not have a File System output type. The only supported
 output type for this script is File System.");
 }
 log.info("Starting full CAS crawl '" + crawlName + "'.");

2. Obtain a lock on the crawl. The baseline crawl attempts to set a flag in the EAC to serve as a lock
or mutex. The name of the flag is the string "crawl_lock_" plus the name of the crawl (such as
"crawl_lock_endeca" for this example). If the flag is already set, this step fails, ensuring that a
crawl (either baseline or incremental) cannot be started more than once simultaneously, as this
would interfere with data processing. The flag is removed in the case of an error or when the script
completes successfully.

 // obtain lock
 if (LockManager.acquireLock("crawl_lock_" + crawlName)) {

3. Clean the output directories. Baseline and incremental crawl output files from the previous crawls
are removed from the crawl's configured output directory.

 CAS.cleanOutputDir(crawlName);

4. Run the baseline crawl. The baseline crawl is run with the crawl name as the ID.

 CAS.runBaselineCasCrawl(crawlName);

5. Rename the output file. The baseline crawl output file is renamed by prefixing the crawl name.

 CAS.renameBaselineCrawlOutput(crawlName);

6. Obtain a second lock on the complete crawl data directory.The script attempts to set a flag to serve
as a lock on the data/complete_cas_crawl_output directory. If the flag is already set, this
step idles for up to ten minutes, waiting for the flag to become available. If the flag remains set for
10 minutes, this action fails, meaning that the renamed output file is not copied. This step ensures
that access to the directory is synchronized, so that a downstream process like the baseline update
does not retrieve a half-delivered crawl file.

 // try to acquire a lock on the complete crawl data directory
 // for up to 10 minutes
 if (LockManager.acquireLockBlocking("complete_cas_crawl_data_lock",
 600))

Endeca® Deployment Template Usage GuideEndeca Confidential

97Integrating and Running CAS Crawls | Integrating and running CAS crawls that write to record output
files

7. Get the path of the output destination directory. The path of the destination directory (to which the
baseline crawl output file will be copied) is obtained. The directory name is specified by the
casCrawlFullOutputDestDir property in the fetchCasCrawlDataConfig.xml file, which
is data/complete_cas_crawl_output/full by default.

 destDir = PathUtils.getAbsolutePath(CAS.getWorkingDir(),
 CAS.getCasCrawlFullOutputDestDir());

8. Create the destination directory. The destination directory for the crawl output file is created if it
does not exist. The name is in the destDir variable.

 // create the target dir, if it doesn't already exist
 mkDirUtil = new CreateDirUtility(CAS.getAppName(),
 CAS.getEacHost(), CAS.getEacPort(), CAS.isSslEnabled());
 mkDirUtil.init(Forge.getHostId(), destDir, CAS.getWorkingDir());
 mkDirUtil.run();

9. Delete existing baselines.To ensure that no previous baseline crawl files are left, all baseline output
files (if they exist) must be removed.

 // clear the destination dir of full crawl files, in case
 // we are not overwriting the same file such as when the
 // crawl output format has changed.
 CAS.clearFullCrawlOutputFromDestinationDir(crawlName);

10. Delete existing incrementals. Because this is a baseline crawl, existing incremental output files
must be removed.

 // remove previously collected incremental crawl files,
 // which are expected to be incorporated in this full crawl
 CAS.clearIncrementalCrawlOutputFromDestinationDir(crawlName);

11. Copy the output file to the destination directory. The renamed baseline crawl output file is copied
from the original output directory to the destination directory (
data/complete_cas_crawl_output/full by default).

 // deliver crawl output to destination directory
 CAS.copyBaselineCrawlOutputToDestinationDir(crawlName);

12. Release the second lock. The "complete_cas_crawl_data_lock" flag is removed from the
EAC, indicating that the copy operation was successful.

 // release lock on the crawl data directory
 LockManager.releaseLock("complete_cas_crawl_data_lock");

13. Release the first lock. The "crawl_lock_endeca" flag is removed from the EAC (indicating that
the crawl operation was successful) and a "finished" message is logged.

 LockManager.releaseLock("crawl_lock_" + crawlName);
 ...
 log.info("Finished full CAS crawl '" + crawlName + "'.");

Incremental crawl script

This topic describes how to set up an incremental crawl script that manages record output files.

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Integrating and Running CAS Crawls | Integrating and running CAS crawls that write to record output
files

98

Because the script is basically the same for all file system and CMS crawl configurations, the
endecaCasCrawlConfig.xml sample is used to illustrate the script (for a crawl named endeca).

<script id="endeca_incrementalCasCrawl">
 <![CDATA[
 crawlName = "endeca";

1. Check if the crawl is set to write output to a record output file, and throw an exception if the crawl
is set to output to a Record Store instance.

 if (!CAS.isCrawlFileOutput(endeca)) {
 throw new UnsupportedOperationException("The crawl " +
 crawlName + " does not have a File System output type.
 The only supported output type for this script is
 File System.");
 }
 log.info("Starting incremental CAS crawl '" + crawlName + "'.");

2. Obtain a lock on the crawl. The incremental crawl attempts to set a flag in the EAC to serve as a
lock or mutex. The name of the flag is the string "crawl_lock_" plus the name of the crawl (such
as "crawl_lock_endeca" for this example). If the flag is already set, this step fails, ensuring that
a crawl (either baseline or incremental) cannot be started more than once simultaneously, as this
would interfere with data processing. The flag is removed in the case of an error or when the script
completes successfully.

 // obtain lock
 if (LockManager.acquireLock("crawl_lock_" + crawlName)) {

3. Clean the output directories. Any previous crawl output file (either baseline or incremental) is
removed from the crawl's configured output directory (that is, the output directory that was configured
when the crawl was created).The data/complete_cas_crawl_output directory is not affected.

 CAS.cleanOutputDir(crawlName);

4. Run the incremental crawl. The incremental crawl is run with the crawl name as the ID.

 CAS.runIncrementalCasCrawl(crawlName);

5. Rename the output file. The incremental crawl output file is renamed by prefixing the crawl name
and a timestamp, to indicate the order in which the incremental crawl file was generated relative
to others.

 CAS.renameIncrementalCrawlOutput(crawlName);

6. Obtain a second lock on the complete crawl data directory. The script will attempt to set a flag to
serve as a lock on the data/complete_cas_crawl_output directory. If the flag is already set,
this step will idle for up to ten minutes, waiting for the flag to become available. If the flag remains
set for 10 minutes, this action will fail, meaning that the renamed output file is not copied. This step
ensures that access to the directory is synchronized, so that a downstream process like the baseline
update does not retrieve a half-delivered crawl file.

 // try to acquire a lock on the complete crawl data directory
 // for up to 10 minutes
 if (LockManager.acquireLockBlocking("complete_cas_crawl_data_lock",
 600))

7. Get the path of the output destination directory. The path of the destination directory (to which the
incremental crawl output file will be copied) is obtained. The directory name is specified by the
casCrawlIncrementalOutputDestDir property (which is

Endeca® Deployment Template Usage GuideEndeca Confidential

99Integrating and Running CAS Crawls | Integrating and running CAS crawls that write to record output
files

data/complete_cas_crawl_output/incremental by default) in the
fetchCasCrawlDataConfig.xml file.

 destDir = PathUtils.getAbsolutePath(CAS.getWorkingDir(),
 CAS.getFsCrawlIncrementalOutputDestDir());

8. Create the destination directory. The destination directory for the crawl output file is created if it
does not exist. The name is in the destDir variable.

 // create the target dir, if it doesn't already exist
 mkDirUtil = new CreateDirUtility(CAS.getAppName(),
 CAS.getEacHost(), CAS.getEacPort(), CAS.isSslEnabled());
 mkDirUtil.init(Forge.getHostId(), destDir, CAS.getWorkingDir());
 mkDirUtil.run();

9. Copy the output file to the destination directory.The renamed incremental crawl output file is copied
from the original output directory to the destination directory
(data/complete_cas_crawl_output/incremental by default).

 // deliver crawl output to destination directory
 CAS.copyIncrementalCrawlOutputToDestinationDir(crawlName);

10. Release the second lock. The "complete_cas_crawl_data_lock" flag is removed from the
EAC, indicating that the copy operation was successful.

 // release lock on the crawl data directory
 LockManager.releaseLock("complete_cas_crawl_data_lock");

11. Release the first lock. The "crawl_lock_endeca" flag is removed from the EAC (indicating that
the crawl operation was successful) and a "finished" message is logged.

 LockManager.releaseLock("crawl_lock_" + crawlName);
 ...
 log.info("Finished incremental CAS crawl '" + crawlName +
 "'.");

Fetch baseline crawl data script

This fetch script is used to copy the crawl data to the appropriate directories for all baseline update
operations, including those performed with a delta update pipeline.The script is included in this section,
with numbered steps indicating the actions performed at each point in the script.

Note that the script does not actually perform the baseline update itself; that update operation is
managed by scripts in the AppConfig.xml document.

<script id="fetchFullCasCrawlData">
 <![CDATA[
 log.info("Fetching full CAS crawl data for processing.");

1. Obtain a lock on the complete crawl data directory. The script attempts to set a flag to serve as a
lock on the data/complete_cas_crawl_output directory. If the flag is already set, this step
idles for up to ten minutes, waiting for the flag to become available. If the flag remains set for 10
minutes, this action fails, meaning that the renamed output file is not copied. This step ensures
that access to the directory is synchronized, so that a downstream process like the baseline update
does not retrieve a half-delivered crawl file.

 // try to acquire a lock on the complete crawl data directory
 // for up to 10 minutes
 if (LockManager.acquireLockBlocking("complete_cas_crawl_data_lock",
 600))

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Integrating and Running CAS Crawls | Integrating and running CAS crawls that write to record output
files

100

2. Release the baseline data ready lock. The "baseline_data_ready" flag is removed from the
EAC, which ensures that the baseline update does not start until all the data sources have been
copied to the proper directories.

 // remove baseline data ready flag, ensuring baseline doesn't start
 // before data is completely copied and ready for processing
 LockManager.removeFlag("baseline_data_ready");

3. Get the paths of the source data directories.The paths of the source data directories are obtained.
The directory names are set by the fsCrawlFullOutputDestDir and fsCrawlIncremen¬
talOutputDestDir properties of the custom-component section.

 fullSrcDir = PathUtils.getAbsolutePath(CAS.getWorkingDir(),
 CAS.getCasCrawlFullOutputDestDir()) + "/*";
 incrSrcDir = PathUtils.getAbsolutePath(CAS.getWorkingDir(),
 CAS.getCasCrawlIncrementalOutputDestDir()) + "/*";

4. Get the paths of the destination directories.The paths of the destination directories (to which crawl
output files will be copied) are obtained.The directory name is specified by the IncomingDataDir
property (./data/incoming is the default) in the Forge section of the AppConfig.xml file.
Note that /full and /incremental will be added to the incoming name.

 fullDestDir = PathUtils.getAbsolutePath(Forge.getWorkingDir(),
 Forge.getIncomingDataDir()) + "/full";
 incrDestDir = PathUtils.getAbsolutePath(Forge.getWorkingDir(),
 Forge.getIncomingDataDir()) + "/incremental";

5. Create the destination directories. The destination directories for the source data files are created
if they do not exist. The directory names are in the fullDestDir and incrDestDir variables.

 // create destination directories
 mkDirUtil = new CreateDirUtility(Forge.getAppName(),
 Forge.getEacHost(), Forge.getEacPort(), Forge.isSslEnabled());
 mkDirUtil.init(Forge.getHostId(), fullDestDir, Forge.getWorkingDir());

 mkDirUtil.run();

 mkDirUtil.init(Forge.getHostId(), incrDestDir, Forge.getWorkingDir());

 mkDirUtil.run();

6. Copy the source data to the destination directories. Instantiate a CopyUtility object (named
crawlDataCopy) and use it to copy the full and incremental source data to the data/incoming
directories.

 crawlDataCopy = new CopyUtility(Forge.getAppName(),
 Forge.getEacHost(), Forge.getEacPort(), Forge.isSslEnabled());

 // copy full crawl data
 crawlDataCopy.init("copy_complete_cas_full_crawl_data",
 CAS.getCasCrawlOutputDestHost(),Forge.getHostId(), fullSrcDir,
 fullDestDir, true);
 crawlDataCopy.run();

 // copy incremental crawl data
 crawlDataCopy.init("copy_complete_cas_incremental_crawl_data",
 CAS.getCasCrawlOutputDestHost(),Forge.getHostId(), incrSrcDir,
 incrDestDir, true);
 crawlDataCopy.run();

7. If no incremental files exist, create a dummy file. Forge will fail when running the delta pipeline if
there are no incremental files. Therefore, verify whether incremental files exist and, if none exist,

Endeca® Deployment Template Usage GuideEndeca Confidential

101Integrating and Running CAS Crawls | Integrating and running CAS crawls that write to record output
files

create a dummy file named "placeholder.bin.gz". If at least one incremental file exists, skip
to Step 11 (the else statement). Note that the comments in the following code were added to explain
the steps.

Note: This step is required to support the behavior of the default pipeline included with the
Deployment Template. Specifically, the baseline pipeline always expects to read a set of full
crawl files and a set of incremental crawl files and joins these by keeping the most recent
copy of each record that's available between the files. Forge fails when no incremental files
are available, so this dummy file ensures that the pipeline works when a full crawl has been
run, but no incremental crawls have been run. For pipeline implementations that do not require
such a dummy file (e.g., pipelines that only process full crawls), this step can be removed.

 // test for existing incremental files, since the dummy file is only
 // needed when there are no real incremental files
 if (! fileUtil.dirContainsFiles(incrDestDir, Forge.getHostId())) {
 // create a variable for the dummy file name and location
 placeholder = incrDestDir + "/placeholder.bin";
 // create Unix touch and gzip commands
 touchCmd = "touch " + placeholder;
 zipCmd = "gzip " + placeholder;
 // for Windows platforms, rewrite the commands using Win commands
 if (System.getProperty("os.name").startsWith("Win")) {
 touchCmd = "%ENDECA_ROOT%\\utilities\\touch.exe " + placeholder;
 zipCmd = "%ENDECA_ROOT%\\utilities\\gzip.exe " + placeholder;
 }
 // use a ShellUtility to touch (i.e. create) the dummy file
 shell = new ShellUtility(Forge.getAppName(), Forge.getEacHost(),
 Forge.getEacPort(), Forge.isSslEnabled());
 shell.init("create_incremental_cas_crawl_placeholder",
 Forge.getHostId(),touchCmd, Forge.getWorkingDir());
 shell.run();
 // use the same ShellUtility to produce a .bin.gz compressed file
 shell.init("zip_incremental_cas_crawl_placeholder",
 Forge.getHostId(),zipCmd, Forge.getWorkingDir());
 shell.run();
 } // end of if clause

8. Else rename the incremental files. If the test at Step 7 showed the incremental directory was not
empty, the incremental files (which have timestamped names) must be renamed so they are read
in reverse chronological order.This means that the name of the latest (most recent) file must begin
with 000001, the next one with 000002, and so on.

Note: As with the previous step, this logic is required to support the behavior of the default
pipeline.This step ensures that Forge keeps the most up-to-date copy of any record, ignoring
any older copies. Since files are read and processed in alphanumeric order, renaming them
ensures that the most recent records are processed first.

 // incremental files do exist, so rename them
 else {
 // get the number of files, to be used to generate the prefix
 incrFiles = fileUtil.getDirContents(incrDestDir, Forge.getHostId());

 fileNum = incrFiles.size();
 // import Java classes we will use for the renaming
 import java.text.NumberFormat;
 import java.text.DecimalFormat;
 import java.util.SortedMap;
 import java.util.TreeMap;

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Integrating and Running CAS Crawls | Integrating and running CAS crawls that write to record output
files

102

 import java.io.File;
 // instantiate a NumberFormat to format the prefix name
 NumberFormat formatter = new DecimalFormat("000000");
 // instantiate a SortedMap and add the file names,
 // which will be in an ascending key order
 SortedMap sortedFiles = new TreeMap();
 sortedFiles.putAll(incrFiles);
 // loop through the sorted treemap
 for (incrFile : sortedFiles.keySet()) {
 // generate a filename prefix, based on the number of files left
 prefix = formatter.format(fileNum);
 // get the original filename and prepend the generated prefix
 origFileName = PathUtils.getFileNameFromPath(incrFile);
 newFileName = prefix + "_" + origFileName;
 // generate the pathname to which we will rename the file
 absNewFile = PathUtils.getAbsolutePath(Forge.getWorkingDir(),
 Forge.getIncomingDataDir()) + File.separator + "incremental" +
 File.separator + newFileName;
 // use the LocalMoveUtility to rename the file
 renameUtil = new LocalMoveUtility(Forge.getAppName(),
 Forge.getEacHost(), Forge.getEacPort(), Forge.isSslEnabled());
 renameUtil.init(Forge.getHostId(), incrFile, absNewFile,
 Forge.getWorkingDir());
 renameUtil.run();
 // decrease the fileNum variable by one so that the name of the
 // next file will be numerically more recent
 fileNum--;
 } // end of for loop
 } // end of else clause

9. Set the baseline data ready flag. Set the "baseline_data_ready" flag in the EAC, which means
that baseline updates can be performed at any time.

 // (re)set flag indicating that the baseline can process incoming data

 LockManager.setFlag("baseline_data_ready");

10. Release the lock. The “complete_cas_crawl_data_lock” flag is removed from the EAC,
indicating that the fetch operation was successful. A “finished” message is also logged.

 // release lock on the crawl data directory
 LockManager.releaseLock("complete_cas_crawl_data_lock");
 ...
 log.info("Crawl data fetch script finished.");

Fetch incremental crawl data script

This fetch script is used to copy the incremental crawl output files to the appropriate directory for a
partial update.The script is included in this section, with steps indicating the actions performed at each
point in the script.

Endeca® Deployment Template Usage GuideEndeca Confidential

103Integrating and Running CAS Crawls | Integrating and running CAS crawls that write to record output
files

The script does not actually perform the partial update itself; that update operation is managed by
scripts in the AppConfig.xml document.

<script id="fetchIncrementalCasCrawlData">
 <![CDATA[
 log.info("Fetching incremental CAS crawl data for processing.");

1. Obtain a lock on the complete crawl data directory. The script will attempt to set a flag to serve as
a lock on the data/complete_cas_crawl_output directory. The flag will be removed in the
case of an error or when the script completes successfully.

 // try to acquire a lock on the complete crawl data directory
 // for up to 10 minutes
 if (LockManager.acquireLockBlocking("complete_cas_crawl_data_lock",
 600))

2. Get the path of the source data directory. The path of the source data directory is obtained. The
directory name is set by the casCrawlIncrementalOutputDestDir property of the
custom-component section.

 incrSrcDir = PathUtils.getAbsolutePath(CAS.getWorkingDir(),
 CAS.getCaCrawlIncrementalOutputDestDir()) + "/*";

3. Get the path of the destination directory.The path of the destination directory (to which incremental
output files will be copied) is obtained. The directory name is specified by the IncomingDataDir
property (./data/partials/incoming is the default) in the PartialForge section of the
AppConfig.xml file.

 incrDestDir = PathUtils.getAbsolutePath(PartialForge.getWorkingDir(),
 PartialForge.getIncomingDataDir());

4. Copy the incremental source data to the destination directory. Instantiate a CopyUtility object
(named crawlDataCopy) and use it to copy the incremental source data to the
data/partials/incoming directories.

 // copy incremental crawl data
 crawlDataCopy = new CopyUtility(PartialForge.getAppName(),
 PartialForge.getEacHost(), PartialForge.getEacPort(),
 PartialForge.isSslEnabled());
 crawlDataCopy.init("copy_complete_cas_incremental_crawl_data",
 CAS.getFsCrawlOutputDestHost(),PartialForge.getHostId(), incrSrcDir,

 incrDestDir, true);
 crawlDataCopy.run();

5. Set flags to indicate that files are ready for partial update processing. Default partial update
functionality in the AppConfig.xml script expects flags to be set to indicate which files are ready
for partial update processing. For each file delivered in the previous step, a flag is set with the name
of the file prefixed by the string "partial_extract::".

 // (re)set flags indicating which partial update files are ready
 // for processing -- convention is "partial_extract::[filename]"
 fileUtil = new FileUtility(PartialForge.getAppName(),
 PartialForge.getEacHost(), PartialForge.getEacPort(),
 PartialForge.isSslEnabled());
 dirContents = fileUtil.getDirContents(incrDestDir,
 PartialForge.getHostId());

 for (file : dirContents.keySet()) {
 fileName = PathUtils.getFileNameFromPath(file);
 LockManager.setFlag("partial_extract::" + fileName);
 }

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Integrating and Running CAS Crawls | Integrating and running CAS crawls that write to record output
files

104

6. Release the lock. The "complete_cas_crawl_data_lock" flag is removed from the EAC,
indicating that the fetch operation was successful. A "finished" message is also logged .

 // release lock on the crawl data directory
 LockManager.releaseLock("complete_cas_crawl_data_lock");
 ...
 log.info("Crawl data fetch script finished.");

Endeca® Deployment Template Usage GuideEndeca Confidential

105Integrating and Running CAS Crawls | Integrating and running CAS crawls that write to record output
files

Chapter 7

Inserting a Custom Pipeline

This section describes how to modify an existing pipeline or create a new pipeline that takes advantage
of the Deployment Template structure.

About the sample pipelines
For testing purposes, the Deployment Template includes two sets of pipelines and configuration files.

The two sets of pipelines and configuration files are located in two sub-directories of the
[appdir]/config directory:

• The pipeline directory contains configuration files from the sample_wine_data reference project
that ships with the Endeca Information Access Platform. The corresponding source data is in the
[appdir]/test_data directory.

Note: This guide assumes that you will be placing the configuration files for your pipeline
in this directory.

• The cas_crawl_pipeline directory contains a delta update pipeline that is tailored for Endeca
CAS Server file system and CMS crawls. No source data is provided, so you will have to run a
crawl.

While these sample pipelines facilitate testing of the deployment template, these files are intended to
be replaced with project-specific files immediately after a deployment template has been properly
configured.

This document describes how to modify or create a pipeline that is designed for integration within the
deployment template operational structure. This includes pipeline naming requirements, common
errors encountered, etc.

This document assumes that the reader has created a new deployment template application in the
[appdir] directory, and has run the deployment script (deploy.bat or deploy.sh). Note that the
usage guide also documents how to configure and run CAS crawls using the deployment scripts.

Sample pipeline overview
This section describes the high-level steps that are necessary to integrate a new/existing pipeline with
a deployment template.

Additional detail on each of these steps is provided in later sections.

1. Ensure that the application name and pipeline configuration prefix match the data prefix configured
in the deployment template.

2. Place pipeline configuration files in the [appdir]/config/pipeline/ directory of the primary
server.

3. In order to enable partial updates, ensure that the project is configured with a record spec (i.e., a
unique record identifier property).

4. Ensure that any input Record Adapters requiring filenames specify the file location relative to the
[appdir]/data/processing/ (or [appdir]/data/partials/processing) directory.

Location of pipeline configuration files
A deployment template's pipeline configuration files should be located on the primary server (i.e., the
server on which the deployment template is installed, and usually the server hosting the EAC Central
Server).

Agent servers in a standard deployment template do not require copies of the pipeline configuration
file.

Pipeline configuration files can be found in the following location:

Primary Server: [appdir]/config/pipeline/*

Note: When inserting a project-specific pipeline into a deployment template, make sure to first
delete the existing contents of the config/pipeline directory.

Creating a new project
Once the reference configuration files have been deleted, a new pipeline configuration project can be
created.

When creating a new project using the Endeca Developer Studio, the user will be prompted with the
following dialog box:

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Inserting a Custom Pipeline | Location of pipeline configuration files108

To create a new project:

1. In order for a new pipeline to be run properly within the deployment template, the following must
be properly specified:

a) The Project Name field must be the same as the data prefix specified for the "app" element in
[appdir]/config/script/AppConfig.xml. By default, this data prefix will have been set
to the name of the application that was specified when running deploy.bat or deploy.sh.

b) Recall that the [appname] specified was also used to create the base [appdir] directory.
For example, if "myapp" was supplied as the [appname], and "c:\Endeca\apps" was supplied
as the Deployment Directory, then [appdir] would be c:\Endeca\apps\myapp. In this
example, the Project Name should also be specified as "myapp".

2. The Save Project As field should be [appdir]\config\pipeline\[appname].esp

In the example above, the Save Project As field would be
c:\Endeca\apps\myapp\config\pipeline\myapp.esp.

Endeca® Deployment Template Usage GuideEndeca Confidential

109Inserting a Custom Pipeline | Creating a new project

After clicking the "OK" button, a number of files will be created in the [appdir]/config/pipeline/
directory. The primary files to be concerned with are listed below:

DescriptionFile name

This is the main pipeline file that the deployment
template will reference when running forge.

pipeline.epx

This is the Developer Studio project file that will
be used whenever reopening the project. Although

[appname].esp

this file does not actually require the [appname]
prefix, it is good practice to keep it consistent with
other project files.

These are the various configuration files that will
be used later by the indexer and MDEX Engine

[appname].*.xml

processes. It is important that they have the same
prefix as the deployment template Application
Name.

This is the dimension file referenced by the default
Dimension Adapter.

dimensions.xml

Modifying an existing project
Modifying an existing Developer Studio project to match a new deployment template application is a
somewhat tedious task. In fact, it is often easier to simply create a new deployment template application
instead.

The important key is that the [appname].*.xml files share the same [appname] as the deployment
template project. Since there are 30+ XML files, you can either:

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Inserting a Custom Pipeline | Modifying an existing project110

• Rename each of the XML files with a new prefix, and update the [appname].esp file to reference
each new file.

• Update the deployed application's AppConfig.xml file to specify the [appname] of your
configuration files. For example, if your configuration files are named myapp.*.xml, update the
configuration as follows:

 <app appName="myapp" eacHost="host1.company.com" eacPort="8888"
 dataPrefix="myapp" sslEnabled="false"
 lockManager="LockManager">
 <working-dir>c:\endeca\apps\myapp</working-dir>
 <log-dir>./logs/baseline</log-dir>
 </app>

In most cases, the appName attribute and the dataPrefix attribute will be identical. However, this
is not required and an application can be configured to support files with a data prefix other than the
application name. If the data prefix is not specified, the application defaults to using the application
name.

Note that opening an existing project in the Endeca Developer Studio and using the Save As feature
will not rename the corresponding *.xml files. It will only rename the [appname].esp file.The prefix
for the XML files can only be specified when a new project is created.

Related Links
Common errors on page 115

This section provides troubleshooting information for commonly received errors.

Configuring a record specifier
The deployment includes support for both baseline and partial index updates. In order to support partial
updates, an application must include a record specifier, which is a property marked as the unique
identifier of records in the index.

For details about the record specifier property, refer to the Endeca Forge Guide.

When configuring your application, identify a property for which each record will have a unique assigned
value. For example, in the reference sample_wine_data project, each record in the data set includes
a unique Wine ID.

To enable the use of that property as a record spec:

1. Open the Property dialog box in Developer Studio.

2. Check the box labeled "Use for record spec."

Endeca® Deployment Template Usage GuideEndeca Confidential

111Inserting a Custom Pipeline | Configuring a record specifier

Forge flags
In order to reduce the amount of configuration required to integrate a pipeline into a deployment
template, a standard deployment template application runs the primary and partial update Forge
processes with an abbreviated set of flags.

Since the deployment template already specifies directory structures and file prefixes, the following
flags are used to override a pipeline's input and output components, specifying the appropriate
directories and prefixes for either reading or writing data.

Primary Forge flags

DescriptionFlag

[appdir]/data/processing--inputDir

[appdir]/data/state--stateDir

[appdir]/data/forge_temp--tmpDir

[appdir]/logs/baseline--logDir

[appdir]/data/forge_output--outputDir

[dataPrefix]--outputPrefix

Partial update Forge flags

DescriptionFlag

[appdir]/data/partials/processing--inputDir

[appdir]/data/state--stateDir

[appdir]/data/forge_temp--tmpDir

[appdir]/logs/partial--logDir

[appdir]/data/partials/forge_output--outputDir

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Inserting a Custom Pipeline | Forge flags112

DescriptionFlag

[dataPrefix]--outputPrefix

Input record adapters
The record adapters load the source data.

To start, here is a quick review of how sample data included with the deployment template is processed.
The sample wine application includes a sample dataset in the [appdir]/test_data/baseline directory.
When processing the sample wine data, the load_baseline_test_data.bat or load_baseline_test_data.sh
scripts are used to copy the contents of this directory into the [appdir]/data/incoming/ directory, as well
as to set a flag in the EAC.This flag, named baseline_data_ready, indicates to the deployment template
scripts that the data extraction process is complete and data is ready for processing. Once that has
occurred, the deployment template's baseline update process copies these files into the
[appdir]/data/processing/ directory before running the primary Forge process.

When using a default deployment template application, it is therefore necessary for all input record
adapters to look in the [appdir]/data/processing/ directory for incoming data extracts. The deployment
template handles this automatically by specifying the --inputDir flag when running the primary forge
process. This flag overrides any absolute path specified for specific input adapters with the proper
deployment template path: [appdir]/data/processing/. However, the --inputDir flag respects relative
paths, resolving them relative to the path specified as the input directory.

The URL property of any record adapter component therefore only needs to specify the relative path
to a specific file or subdirectory within the [appdir]/data/incoming/ directory. (Remember that files and
subdirectories in the incoming directory are copied to the processing directory by the deployment
template before Forge is run.)

For example, if a single extract file called data.txt is copied into the [appdir]/data/incoming/ directory
before running a baseline, the URL property of that data's input record adapter should specify a URL
of data.txt.

For a more complex deployment where, for instance, multiple text extract files are copied into the
[appdir]/data/incoming/extracted_data/ directory before running a baseline update, the URL property
of a single input record adapter configured to read these files should be set to extracted_data/*.txt.

Related Links
Output record adapters on page 114

Output record adapters are often used to generate debug or state information. By default,
the location to which this data is written will be overridden by the --outputDir flag.

Dimension adapters
The --inputDir flag specified to forge overrides the input URL for dimension adapters.

Since the dimensions for a project are usually stored in the [appdir]/config/pipeline directory
along with other configuration files, the deployment template copies these files into the
[appdir]/data/processing/ directory before running the Forge process. The URLs specified in
dimension adapters should follow the same rules as those described for input record adapters, specifying
dimension XML file URLs relative to the --inputDir directory. In most cases, this is as simple as

Endeca® Deployment Template Usage GuideEndeca Confidential

113Inserting a Custom Pipeline | Input record adapters

specifying the URL for the main dimension adapter as Dimensions.xml, which is the value used by
the default "Dimensions" adapter created by Developer Studio's project template.

More complex deployments that include multiple dimension adapters or external delivery of dimension
files should ensure that the dimension XML files are copied into the [appdir]/data/incoming/
directory before the forge process runs.

Indexer adapters
Since --outputPrefix and --outputDir flags are both included, the deployment template will
override any values specified for the Indexer Adapter "URL" and "Output prefix" properties.

Therefore, it is unnecessary to modify these properties in most cases.

For Agraph deployments, the PROP_NAME attribute of the ROLLOVER element in your indexer adapter
must be specified. It should be set to a property which is the unique identifier for records in your data
set. For standard Forge deployments, this element should be specified in the main pipeline. For Parallel
Forge deployments, this element should be specified in the data splitter pipeline.

Note: The number of partitions for Agraph deployments need not be set in the pipeline, as the
value will be specified as a forge command line argument, overriding the value in the pipeline.
However, the rollover key on which data will be partitioned must be specified as described above.

Output record adapters
Output record adapters are often used to generate debug or state information. By default, the location
to which this data is written will be overridden by the --outputDir flag.

In most cases, however, it is undesirable for these files to be written to the same location as the Forge
output files.

In these cases, an output record adapter can be configured to instead respect the --stateDir flag
by selecting the "Maintain State" checkbox.

Now any files generated by this output record adapter will be written to the [appdir]/data/state/
directory.

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Inserting a Custom Pipeline | Indexer adapters114

Note that the output file name must still be specified in the "URL" property of the record adapter. The
--outputPrefix flag only overrides the indexer adapter output file names, not output record adapter
file names.

Related Links
Input record adapters on page 113

The record adapters load the source data.

Dimension servers
The --stateDir flag will override the URL value for all Dimension Server components, and place
any autogen state files in the [appdir]/data/state/ directory.

Common errors
This section provides troubleshooting information for commonly received errors.

Unable to Find Pipeline.epx

If Forge fails, check the logs ([appdir]/logs/baseline/err.forge) to make sure that Forge
was able to find the pipeline.epx file in its proper location. Remember that a basic deployment
template application assumes that it will find the project's pipeline.epx file in
[appdir]\config\pipeline\.

On UNIX platforms, file names are case sensitive. The deployment template expects the primary
pipeline file to be named pipeline.epx and the partial update pipeline (if one is required for the
deployed application) to be named partial_pipeline.epx. Ensure that the files in your deployment
use this capitalization.

Missing Configuration Files

This more common error is also more difficult to detect. Since all pipelines created by the Endeca
Developer Studio typically contain a Pipeline.epx file, it is unlikely that the Forge process will be
unable to find the file, unless it was placed in the wrong directory. If the XML configuration files,
however, have a different prefix from the deployment template [appname], these files will not be
copied into the [appdir]/data/forge_output/ , [appdir]/data/dgidx_output/, and
[appdir]/data/dgraphs/*/dgraph_input/ directories. All processes will likely complete
successfully, but any configuration information specified by these XML files, such as search interfaces,
business rules, sort keys, etc. will be missing from the resulting MDEX Engine.To correct this problem,
check the XML files located in [appdir]/config/pipeline/ and make sure they have the correct
prefix. Also check the directories mentioned above to make sure that these XML files are being properly
copied.

MDEX Engine Fails to Start

If an MDEX Engine fails to start, check the log for the appropriate Dgraph in
[appdir]/logs/dgraphs/[dgraph]/[dgraph].log. If the log indicates that the Dgraph failed
to start because no record specifier was found, follow the steps in this document to create a unique
record specifier property for you project.

Endeca® Deployment Template Usage GuideEndeca Confidential

115Inserting a Custom Pipeline | Dimension servers

Record Adapter Unable to Open File

Another common error may occur if a record adapter is unable to find or open a specified file for either
input or output. In this case, the Forge error log ([appdir]/logs/baseline/err.forge) should
specify which file or directory could not be found. To correct this problem, make sure the files or
directories specified by the record adapters correspond to the directory structure established by the
deployment template application. Note that this error may be masked if the "Require Data" property
is not checked for a given input adapter, since Forge will only log a warning instead of a fatal error.

Related Links
Input record adapters on page 113

The record adapters load the source data.

Output record adapters on page 114
Output record adapters are often used to generate debug or state information. By default,
the location to which this data is written will be overridden by the --outputDir flag.

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Inserting a Custom Pipeline | Common errors116

Appendix A

EAC Development Toolkit

The EAC Development Toolkit provides a common set of objects, a standard and robust configuration
file format and a lightweight controller implementation that developers can leverage in order to implement
operational controller applications.The toolkit is designed to enable quick deployment, while providing
complete flexibility for developers to extend and override any part of the implementation to create
custom, project-specific functionality.

EAC Development Toolkit distribution and package contents
The EAC Development Toolkit is distributed as a set of JAR files bundled with the Deployment Template.

The toolkit consists of three JAR files and depends on two others that are distributed with this package.
The following sections describe the JAR files. Details about classes and methods can be found in
Javadoc distributed with the EAC Development Toolkit. These JAR files must be on the classpath of
any application built using the EAC Development Toolkit.

eacToolkit.jar

This JAR contains the source and compiled class files for the core EAC Development Toolkit classes.
These classes encompass core EAC functionality, from which all component implementations extend.
Included are low-level classes that access the EAC's central server via SOAP calls to its Web Service
interface as well as higher level objects that wrap logic and data associated with hosts, components,
scripts and utilities. In addition, this JAR includes the controller implementation used to load the Toolkit's
application configuration file, and to invoke actions based on the configuration and the user's command
line input.

eacComponents.jar

This JAR contains the source and compiled class files for common implementations of Endeca
components. These classes extend core functionality in eacToolkit.jar and implement standard
versions of Forge, Dgidx, Dgraph and other components of an Endeca deployment.

eacHandlers.jar

This JAR contains the source and compiled class files for parsing application configuration documents.
In addition, the EAC Dev Toolkit's application configuration XML document format is defined by an
XSD file packaged with this JAR. Finally, the JAR includes files required to register the schema and
the toolkit's namespace with Spring, the framework used to load the toolkit's configuration.

spring.jar

The toolkit uses the Spring framework for configuration management.

bsh-2.0b4.jar

The toolkit uses BeanShell as the scripting language used by developers to write scripts in their
application configuration documents.

EAC Development Toolkit usage
The EAC Development Toolkit provides a library of classes that developers can use to develop and
configure EAC scripts.

Classes in the library expose low level access to the EAC's web services and implement high level
functionality common to many EAC scripts. Developers may implement applications by simply
configuring functionality built in the toolkit or by extending the toolkit at any point to develop custom
functionality.

This document discusses the toolkit's configuration file format, BeanShell scripting, command invocation
and logging.This document does not provide a reference of the classes in the toolkit, or the functionality
implemented in various objects and methods. Developers should refer to Javadoc or Java source files
distributed with this package for details about the implementation.

Endeca ConfidentialEndeca® Deployment Template Usage Guide

EAC Development Toolkit | EAC Development Toolkit usage118

Appendix B

Application Configuration File

The EAC toolkit uses an XML configuration file to define the elements that make up an application. In
most deployments, this document will serve as the primary interface for developers and system
administrators to configure, customize, and maintain a deployed application.

Spring framework
The EAC Development Toolkit uses the Spring Framework's Inversion of Control container to load an
EAC application based on configuration specified in an XML document.

A great deal of functionality and flexibility is provided in Spring's IoC Container and in the default bean
definition XML file handled by Spring's XmlBeanDefinitionReader class. For details about either
of these, refer to Spring Framework documentation and JavaDoc.

The EAC Development Toolkit uses a customized document format and includes a schema and custom
XML handlers to parse the custom document format. It uses Spring to convert this customized
configuration metadata into a system ready for execution. Specifically, the toolkit uses Spring to load
a set of objects that represent an EAC application with the configuration specified for each object in
the configuration document.

XML schema
A customized document format is used to provide an intuitive configuration format for EAC script
developers and system administrators.

However, this customization restricts the flexibility of the configuration document.The following sections
describe elements available in the custom namespace defined by the eacToolkit.xsd XML schema.
Each element name is followed by a brief description and an example configuration excerpt. For details,
refer to the eacToolkit.xsd schema file distributed within the file eacHandlers.jar.

Related Links
Application elements on page 120

This section describes the application elements available in the custom namespace defined
by the eacToolkit.xsd XML schema.

Hosts on page 120
This section describes the host element available in the custom namespace defined by the
eacToolkit.xsd XML schema.

Components on page 121
This section describes the component elements available in the custom namespace defined
by the eacToolkit.xsd XML schema.

Utilities on page 126
This section describes the utility elements available in the custom namespace defined by the
eacToolkit.xsd XML schema.

Customization/extension within the toolkit's schema on page 127
Most configuration tasks are performed by simply altering an element in the configuration
document, by adding elements to the document, or by removing elements from the
configuration.

Customization/extension beyond the toolkit's schema on page 128
Customization approaches within the existing schema will be sufficient for the majority of
applications, but some developers will require even greater flexibility than can be supported
by the XML document exposed by the toolkit.

Application elements
This section describes the application elements available in the custom namespace defined by the
eacToolkit.xsd XML schema.

For more details, refer to the eacToolkit.xsd schema file distributed within the file
eacHandlers.jar.

DescriptionElement

This element defines the global application settings inherited by all other objects in
the document, including application name, EAC central server host and port, data

app

file prefix, the lock manager used by the application and whether or not SSL is
enabled. In addition, this object defines global defaults for the working directory and
the logs directory, which can be inherited or overridden by objects in the document.

<app appName="myApp" eacHost="devhost.company.com" eac¬
Port="8888"
 dataPrefix="myApp" sslEnabled="false" lockManager="Lock¬
Manager" >
 <working-dir>C:\Endeca\apps\myApp</working-dir>
 <log-dir>./logs/baseline</log-dir>
</app>

This element defines a LockManager object used by the application to interact with
the EAC's synchronization web service. Lock managers can be configured to release

lock-manag¬
er

locks when a failure is encountered, ensuring that the system returns to a "neutral"
state if a script or component fails. Multiple lock managers can be defined.

<lock-manager id="LockManager" releaseLocksOnFailure="true"
/>

Hosts
This section describes the host element available in the custom namespace defined by the
eacToolkit.xsd XML schema.

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Application Configuration File | XML schema120

The host element defines a host associated with the application, including the ID, hostname and
EAC agent port of the host. Multiple host elements can be defined.

<host id="ITLHost" hostName="itlhost.company.com" port="8888" />

Components
This section describes the component elements available in the custom namespace defined by the
eacToolkit.xsd XML schema.

For more details, refer to the eacToolkit.xsd schema file distributed within the file
eacHandlers.jar.

DescriptionElement

This element defines a Forge component, including attributes that define the
functionality of the Forge process as well as custom properties and directories

forge

used to configure the functionality of the Forge object's methods. Multiple forge
elements can be defined.

<forge id="Forge" host-id="ITLHost">
 <properties>
 <property name="numStateBackups" value="10" />
 <property name="numLogBackups" value="10" />
 </properties>
 <directories>
 <directory name="incomingDataDir">./data/incoming</di¬
rectory>
 <directory name="configDir">./data/complete_config</di¬
rectory>
 <directory name="wsTempDir">./data/web_stu¬
dio_temp_dir</directory>
 </directories>
 <args>
 <arg>-vw</arg>
 </args>
 <input-dir>./data/processing</input-dir>
 <output-dir>./data/forge_output</output-dir>
 <state-dir>./data/state</state-dir>
 <temp-dir>./data/temp</temp-dir>
 <num-partitions>1</num-partitions>
 <pipeline-file>./data/processing/pipeline.epx</pipeline-
file>
</forge>

This element defines a Forge cluster, including a list of ID references to the
Forge components that belong to this cluster. This object can be configured to
distribute data to Forge servers serially or in parallel.

<forge-cluster id="ForgeCluster" getDataInParallel="true">

forge-cluster

 <forge ref="ForgeServer" />
 <forge ref="ForgeClient1" />
 <forge ref="ForgeClient2" />
</forge-cluster>

Endeca® Deployment Template Usage GuideEndeca Confidential

121Application Configuration File | XML schema

DescriptionElement

This element defines a Dgidx component, including attributes that define the
functionality of the Dgidx process as well as custom properties and directories

dgidx

used to configure the functionality of the Dgidx object's methods. Multiple dgidx
elements can be defined.

<dgidx id="Dgidx" host-id="ITLHost">
 <args>
 <arg>-v</arg>
 </args>
 <input-dir>./data/forge_output</input-dir>
 <output-dir>./data/dgidx_output</output-dir>
 <temp-dir>./data/temp</temp-dir>
 <run-aspell>true</run-aspell>
</dgidx>

This element defines an indexing cluster, including a list of ID references to the
Dgidx and Agidx components that belong to this cluster. This object can be
configured to distribute data to indexing servers serially or in parallel.

<indexing-cluster id="IndexingCluster" getDataInParal¬
lel="true">

indexing-clus¬
ter

 <agidx ref="Agidx1" />
 <dgidx ref="Dgidx1" />
 <dgidx ref="Dgidx2" />
</indexing-cluster>

This element defines an Agidx component, including attributes that define the
functionality of the Agidx process as well as custom properties and directories

agidx

used to configure the functionality of the Agidx object's methods. Multiple agidx
elements can be defined.

<agidx id="Agidx1" host-id="ITLHost">
 <properties>
 <property name="agidxGroup" value="A" />
 <property name="numLogBackups" value="10" />
 <property name="numIndexBackups" value="3" />
 </properties>
 <args>
 <arg>-v</arg>
 </args>
 <input-prefix-list>
 <input-prefix>
 ./data/dgidxs/Dgidx1/dgidx_output/project_name-part0

 </input-prefix>
 <input-prefix>
 ./data/dgidxs/Dgidx2/dgidx_output/project_name-part1

 </input-prefix>
 </input-prefix-list>
 <log-dir>./logs/agidxs/Agidx1</log-dir>
 <output-dir>./data/agidx_output</output-dir>
</agidx>

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Application Configuration File | XML schema122

DescriptionElement

This element defines a Dgraph component, including attributes that define the
functionality of the Dgraph process as well as custom properties and directories

dgraph

used to configure the functionality of the Dgraph object's methods. Multiple
dgraph elements can be defined. Each dgraph element inherits, and potentially
overrides, configuration specified in the dgraph-defaults element (see
below).

<dgraph id="Dgraph1" host-id="MDEXHost" port="15000">
 <properties>
 <property name="restartGroup" value="A" />
 <property name="updateGroup" value="a" />
 </properties>
 <log-dir>./logs/dgraphs/Dgraph1</log-dir>
 <input-dir>./data/dgraphs/Dgraph1/dgraph_input</input-
dir>
 <update-dir>./data/dgraphs/Dgraph1/dgraph_input/up¬
dates</update-dir>
 </dgraph>

This element defines the default settings inherited by all dgraph elements
specified in the document. This enables a single point of configuration for

dgraph-defaults

common Dgraph configuration such as command line arguments, and script
directory configuration. Only one dgraph-defaults element can be defined.

<dgraph-defaults>
 <properties>
 <property name="srcIndexDir" value="./data/dgidx_out¬
put" />
 <property name="srcIndexHostId" value="ITLHost" />
 <property name="numLogBackups" value="10" />
 </properties>
 <directories>
 <directory name="localIndexDir">
 ./data/dgraphs/local_dgraph_input
 </directory>
 </directories>
 <args>
 <arg>--threads</arg>
 <arg>2</arg>
 <arg>--spl</arg>
 <arg>--dym</arg>
 </args>
 <startup-timeout>120</startup-timeout>
</dgraph-defaults>

This element defines a Dgraph cluster, including a list of ID references to the
Dgraph components that belong to this cluster. This object can be configured
to distribute data to Dgraph servers serially or in parallel.

<dgraph-cluster id="DgraphCluster" getDataInParal¬
lel="true">

dgraph-cluster

 <dgraph ref="Dgraph1" />
 <dgraph ref="Dgraph2" />
</dgraph-cluster>

Endeca® Deployment Template Usage GuideEndeca Confidential

123Application Configuration File | XML schema

DescriptionElement

This element defines an Agraph component, including attributes that define the
functionality of the Agraph process as well as custom properties and directories

agraph

used to configure the functionality of the Agraph object's methods. Multiple
agraph elements can be defined. Each agraph element inherits, and potentially
overrides, configuration specified in the agraph-defaults element (see
below).

<agraph id="Agraph1" host-id="MDEXHost" port="14000">
 <properties>
 <property name="restartGroup" value="A" />
 </properties>
 <dgraph-children>
 <dgraph-child>Dgraph1</dgraph-child>
 <dgraph-child>Dgraph2</dgraph-child>
 </dgraph-children>
 <log-dir>./logs/agraphs/Agraph1</log-dir>
 <input-dir>./data/agraphs/Agraph1/agraph_input</input-
dir>
 </agraph>

This element defines the default settings inherited by all agraph elements
specified in the document. This enables a single point of configuration for

agraph-defaults

common Agraph configuration such as command line arguments, and script
directory configuration. Only one agraph-defaults element can be defined.

<agraph-defaults>
 <properties>
 <property name="srcIndexDir" value="./data/agidx_out¬
put" />
 <property name="srcIndexHostId" value="ITLHost" />
 <property name="numLogBackups" value="10" />
 </properties>
 <directories>
 <directory name="localIndexDir">
 ./data/agraphs/local_agraph_input
 </directory>
 </directories>
 <args>
 <arg>--no-partial</arg>
 </args>
 <startup-timeout>120</startup-timeout>
</agraph-defaults>

This element defines an Agraph cluster, including a list of ID references to the
Agraph and Dgraph components that belong to this cluster. This object can be
configured to distribute data to graph servers serially or in parallel.

<agraph-cluster id="AgraphCluster" getDataInParal¬
lel="true">

agraph-cluster

 <agraph ref="Agraph1" />
 <agraph ref="Agraph2" />
 <dgraph ref="Dgraph1" />
 <dgraph ref="Dgraph2" />
</agraph-cluster>

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Application Configuration File | XML schema124

DescriptionElement

This element defines a LogServer component, including attributes that define
the functionality of the LogServer process as well as custom properties and

logserver

directories used to configure the functionality of the LogServer object's methods.
Multiple logserver elements can be defined.

<logserver id="LogServer" host-id="ITLHost" port="15002">

 <properties>
 <property name="numLogBackups" value="10" />
 <property name="targetReportGenDir" value="./reports/in¬
put" />
 <property name="targetReportGenHostId" value="ITLHost"
 />
 </properties>
 <log-dir>./logs/logserver</log-dir>
 <output-dir>./logs/logserver_output</output-dir>
 <startup-timeout>120</startup-timeout>
 <gzip>false</gzip>
</logserver>

This element defines a ReportGenerator component, including attributes that
define the functionality of the ReportGenerator process as well as custom

report-genera¬
tor

properties and directories used to configure the functionality of the
ReportGenerator object's methods. Multiple report-generator elements
can be defined.

<report-generator id="WeeklyReportGenerator" host-
id="ITLHost">
 <properties>
 <property name="webStudioReportDir"
value="C:\Endeca\MDEXEngine\workspace/reports/MyApp" />
 <property name="webStudioReportHostId" value="ITLHost"
 />
 </properties>
 <log-dir>./logs/report_generators/WeeklyReportGenera¬
tor</log-dir>
 <input-dir>./reports/input</input-dir>
 <output-file>./reports/weekly/report.xml</output-file>
 <stylesheet-file>
 ./config/report_templates/tools_report_stylesheet.xsl

 </stylesheet-file>
 <settings-file>
 ./config/report_templates/report_settings.xml
 </settings-file>
 <time-range>LastWeek</time-range>
 <time-series>Daily</time-series>
 <charts-enabled>true</charts-enabled>
</report-generator>

This element defines a custom component, including custom properties and
directories used to configure the functionality of the custom component object's

custom-compo¬
nent

methods. Multiple custom-component elements can be defined, though each

Endeca® Deployment Template Usage GuideEndeca Confidential

125Application Configuration File | XML schema

DescriptionElement

must specify the name of the implemented class that extends
com.endeca.soleng.eac.toolkit.component.CustomComponent.

<custom-component id="ConfigManager" host-id="ITLHost"
 class="com.endeca.soleng.eac.toolkit.component.ConfigMan¬
agerComponent">
 <properties>
 <property name="webStudioHost" value="sshusteff-
lt1.ne.endeca.com" />
 <property name="webStudioPort" value="8888" />
 <property name="webStudioMaintainedFile1" value="the¬
saurus.xml" />
 <property name="webStudioMaintainedFile2"
 value="merch_rule_group_default.xml" />
 <property name="webStudioMaintainedFile3"
 value="merch_rule_group_default_redirects.xml" />
 </properties>
 <directories>
 <directory name="mergedConfigDir">./data/complete_con¬
fig</directory>
 <directory name="devStudioConfigDir">./con¬
fig/pipeline</directory>
 <directory name="webStudioConfigDir">
 ./data/web_studio/config
 </directory>
 <directory name="webStudioDgraphConfigDir">
 ./data/web_studio/dgraph_config
 </directory>
 <directory name="webStudioTempDir">
 ./data/web_studio_temp_dir
 </directory>
 </directories>
</custom-component>

Related Links
Display component status on page 137

The controller provides a convenience method for displaying the status of all components
defined in the configuration document.

Utilities
This section describes the utility elements available in the custom namespace defined by the
eacToolkit.xsd XML schema.

For more details, refer to the eacToolkit.xsd schema file distributed within the file
eacHandlers.jar.

DescriptionElement

This element defines a copy utility invocation, including the source and destination and
whether or not the source pattern should be interpreted recursively. Multiple copy
elements can be defined.

<copy id="CopyData" src-host-id="ITLHost" dest-host-id="ITLHost"

copy

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Application Configuration File | XML schema126

DescriptionElement

 recursive="true" >
 <src>./data/incoming/*.txt</src>
 <dest>./data/processing/</dest>
</copy>

This element defines a shell utility invocation, including the command to execute and
the host on which the command will be executed. Multiple shell elements can be
defined.

<shell id="ProcessData" host-id="ITLHost" >
 <command>perl procesDataFiles.pl ./data/incoming/data.txt</com¬

shell

mand>
</shell>

This element defines a backup utility invocation, including the directory to archive, how
many archives should be saved and whether the archive should copy or move the
source directory. Multiple backup elements can be defined.

<backup id="ArchiveState" host-id="ITLHost" move="true" num-
backups="5">

backup

 <dir>C:\Endeca\apps\myApp\data\state</dir>
</backup>

This element defines a rollback utility invocation, including the directory whose archive
should be recovered. Multiple rollback elements can be defined.

<rollback id="RollbackState" host-id="ITLHost">
 <dir>./data/state</dir>
</rollback>

rollback

Customization/extension within the toolkit's schema
Most configuration tasks are performed by simply altering an element in the configuration document,
by adding elements to the document, or by removing elements from the configuration.

These three actions enable users to alter the behavior of objects in their application, change which
objects make up their application and change the way scripts acts on the objects in their application.

In addition to these simple actions, users can customize the behavior of objects in their application or
create new objects while continuing to use the EAC development toolkit's XML configuration document
format.The following are examples of customization that are possible within the constructs of the XML
schema defined in the eacToolkit.xsd schema file.

Implement a custom component

Users can develop new custom components by extending the class
com.endeca.soleng.eac.toolkit.component.CustomComponent. This class and its associated XML
element allow any number of properties and directories to be specified and accessed by methods in
the object. This customization method may be appropriate for cases where functionality needs to be
developed that is not directly associated with an Endeca process.

Endeca® Deployment Template Usage GuideEndeca Confidential

127Application Configuration File | XML schema

Extend an existing object

Users can implement customizations on top of existing objects by creating a new class that extends
an object in the toolkit. Most elements in the configuration document (with the notable exception of
the "app" element, which specifies global configuration, but does not directly correspond to an object
instance) can specify a class attribute to override the default class associated with each element. For
example, a user could implement a MyForgeComponent class by extending the toolkit's ForgeCom¬
ponent class.

package com.endeca.soleng.eac.toolkit.component;

import java.util.logging.Logger;

import com.endeca.soleng.eac.toolkit.exception.AppConfigurationException;
import com.endeca.soleng.eac.toolkit.exception.EacCommunicationException;
import com.endeca.soleng.eac.toolkit.exception.EacComponentControlException;

public class MyForgeComponent extends ForgeComponent
{
 private static Logger log =
 Logger.getLogger(MyForgeComponent.class.getName());

 protected void getIncomingData() throws AppConfigurationException,
 EacCommunicationException, EacComponentControlException,
 InterruptedException
 {

 // custom data retrieval implementation

 }
}

The new class can override method functionality to customize the behavior of the object. As long as
the new object does not require configuration elements unknown to the ForgeComponent from which
it inherits, it can continue to use the forge element in the XML document to specify object configuration.

<forge class="com.endeca.soleng.eac.toolkit.component.MyForgeComponent"
 id="CustomForge" host-id="ITLHost">
...
</forge>

Implement custom functionality in BeanShell scripts

Users can implement custom functionality by writing new code in the XML document in new or existing
BeanShell scripts. This form of customization can be used to add new functionality or to override
functionality that is built in to toolkit objects. While this customization approach is very flexible, it can
become unwieldy and hard to maintain and debug if a large amount of custom code needs to be
written.

Customization/extension beyond the toolkit's schema
Customization approaches within the existing schema will be sufficient for the majority of applications,
but some developers will require even greater flexibility than can be supported by the XML document
exposed by the toolkit.

This type of customization can still be achieved, by switching out of the default eacToolkit namespace
in the XML document and leveraging the highly flexible and extensible Spring Framework bean definition
format.

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Application Configuration File | XML schema128

As an example, a developer might implement a new class, PlainOldJavaObject, which needs to
be loaded and accessed by EAC scripts. If the object is implemented, compiled and added to the
classpath, it can be loaded based on configuration in the XML document by specifying its configuration
using the "spr" namespace.

<spr:bean id="MyPOJO" class="com.company.PlainOldJavaObject">
 <spr:constructor-arg>true</spr:constructor-arg>
 <spr:property name="Field1" value="StrValue" />
 <spr:property name="Map1">
 <spr:map>
 <spr:key>one</spr:key>
 <spr:value>1</spr:value>
 <spr:key>two</spr:key>
 <spr:value>2</spr:value>
 </spr:map>
 </spr:property>
</spr:bean>

Endeca® Deployment Template Usage GuideEndeca Confidential

129Application Configuration File | XML schema

Appendix C

BeanShell Scripting

The EAC Development Toolkit uses BeanShell to interpret and execute scripts defined in the app
configuration document. The following sections describe the toolkit's use of the BeanShell interpreter
and provide sample BeanShell script excerpts.

Script implementation
In the toolkit, the com.endeca.soleng.eac.toolkit.script.Script class implements scripts.

This class exposes simple execution logic that either uses a BeanShell interpreter to execute the script
specified in the configuration file or, if no BeanShell script is specified in the script's configuration, uses
the Script object's scriptImplementation method. By default, the scriptImplementation
method has no logic and must be overridden by an extending class to take any action. This allows
developers to leverage BeanShell to implement their scripts or to extend the Script object, overriding
and implementing the scriptImplementation method.

By implementing scripts as BeanShell scripts configured in the toolkit's XML configuration document,
developers can quickly develop and adjust scripts, and system administrators can adjust script
implementations without involving developers. The scripting language should be familiar to any Java
developer, as it is a Java based scripting language that can interpret strict Java code (i.e. code that
could be compiled as a Java class). BeanShell also provides a few flexibilities that are not available
in Java; for example, BeanShell allows developers to import classes at any point in the script, rather
than requiring all imports to be defined up front. In addition, BeanShell allows variables to be declared
without type specification.

Note: For details about BeanShell and ways in which it differs from Java, developers should
refer to BeanShell documentation and Javadoc.

BeanShell interpreter environment
The most common use of BeanShell scripts in the EAC Development Toolkit is to orchestrate the
elements defined in the application configuration document.

More precisely, BeanShell scripts are used to orchestrate the execution of methods on the objects
that are loaded from the configuration document. In order to enable this, when the toolkit constructs
the BeanShell Interpreter environment, it sets internal variables associated with each element defined

in the configuration document. While additional variables can be declared at any point in a script, this
allows scripts to immediately act on objects defined in the document without declaring any variables.

Take, for example, the following configuration document:

<app appName="myApp" eacHost="devhost.company.com" eacPort="8888"
 dataPrefix="myApp" sslEnabled="false" lockManager="LockManager" >
 <working-dir>C:\Endeca\apps\myApp</working-dir>
 <log-dir>./logs/baseline</log-dir>
</app>

<host id="ITLHost" hostName="itlhost.company.com" port="8888" />

<copy id="CopyData" src-host-id="ITLHost" dest-host-id="ITLHost"
 recursive="true" >
 <src>./data/incoming/*.txt</src>
 <dest>./data/processing/</dest>
</copy>

<backup id="ArchiveState" host-id="ITLHost" move="true" num-backups="5">
 <dir>C:\Endeca\apps\myApp\data\state</dir>
</backup>

<forge id="Forge" host-id="ITLHost">
 <properties>
 <property name="numStateBackups" value="10" />
 <property name="numLogBackups" value="10" />
 </properties>
 <directories>
 <directory name="incomingDataDir">./data/incoming</directory>
 <directory name="configDir">./data/processing</directory>
 </directories>
 <args>
 <arg>-vw</arg>
 </args>
 <input-dir>./data/processing</input-dir>
 <output-dir>./data/forge_output</output-dir>
 <state-dir>./data/state</state-dir>
 <temp-dir>./data/temp</temp-dir>
 <num-partitions>1</num-partitions>
 <pipeline-file>./data/processing/pipeline.epx</pipeline-file>
</forge>

A BeanShell script defined in this document will have five variables immediately available for use:
ITLHost, CopyData, ArchiveState, Forge, and log. Note that there is no variable associated
with the app element in the document, as this element does not correspond to an object instance.
Each of the other elements is instantiated, loaded with data based on its configuration and made
available in the BeanShell interpreter. In addition, a special variable called log is always created for
each script with a java.util.Logger instance.

A simple BeanShell script can then be written without importing a single class or instantiating a single
variable.

<script id="SimpleForgeScript">
 <bean-shell-script>
 <![CDATA[
 log.info("Starting Forge script.");
 CopyData.run();
 Forge.run();
 ArchiveState.setNumBackups(Forge.getProperty("numStateBackups"));
 ArchiveState.run();

Endeca ConfidentialEndeca® Deployment Template Usage Guide

BeanShell Scripting | BeanShell interpreter environment132

 log.info("Finished Forge script.");
]]>
 </bean-shell-script>
</script>

In addition to exposing objects defined in the document, the toolkit imports and executes a default
script each time a BeanShell script is invoked. If a file named "beanshell.imports" is successfully
loaded as a classpath resource, that file is executed each time a BeanShell script is executed. This
allows a default set of imports to be defined. For example, the following default file imports all of the
classes in the toolkit, exposing them to BeanShell scripts:

import com.endeca.soleng.eac.toolkit.*;
import com.endeca.soleng.eac.toolkit.application.*;
import com.endeca.soleng.eac.toolkit.base.*;
import com.endeca.soleng.eac.toolkit.component.*;
import com.endeca.soleng.eac.toolkit.component.cluster.*;
import com.endeca.soleng.eac.toolkit.exception.*;
import com.endeca.soleng.eac.toolkit.host.*;
import com.endeca.soleng.eac.toolkit.logging.*;
import com.endeca.soleng.eac.toolkit.script.*;
import com.endeca.soleng.eac.toolkit.utility.*;
import com.endeca.soleng.eac.toolkit.utility.perl.*;
import com.endeca.soleng.eac.toolkit.utility.webstudio.*;
import com.endeca.soleng.eac.toolkit.utility.wget.*;
import com.endeca.soleng.eac.toolkit.utils.*;

About implementing logic in BeanShell
BeanShell scripts will typically be used to orchestrate method execution for objects defined in the
configuration document.

However, scripts can also implement logic, instantiating objects to provide a simple point of extension
for developers to implement new logic without compiling additional Java classes.

For example, the following script excerpt demonstrates how a method can be defined and referenced
in a script:

<script id="Status">
 <bean-shell-script>
 <![CDATA[

 // define function for printing component status
 import com.endeca.soleng.eac.toolkit.component.Component;
 void printStatus(Component component) {
 log.info(component.getAppName() + "." +
 component.getElementId() + ": " +
 component.getStatus().toString());
 }

 // print status of forge, dgidx, logserver
 printStatus(Forge);
 printStatus(Dgidx);
 printStatus(LogServer);

 // print status for dgraph cluster
 dgraphs = DgraphCluster.getDgraphs().iterator();
 while(dgraphs.hasNext()) {
 printStatus(dgraphs.next());
 }

Endeca® Deployment Template Usage GuideEndeca Confidential

133BeanShell Scripting | About implementing logic in BeanShell

]]>
 </bean-shell-script>
 </script>

Endeca ConfidentialEndeca® Deployment Template Usage Guide

BeanShell Scripting | About implementing logic in BeanShell134

Appendix D

Command Invocation

The toolkit provides a simple interface for invoking commands from the command line.

Invoke a method on an object
By default, the controller tries to invoke a method called "run" with no arguments on the specified
object.

The following simple command invokes the run method on the BaselineUpdate script object:

java Controller --app-config AppConfig.xml BaselineUpdate

If a method name is specified, the controller looks for a method with that name on the specified object
and invokes it. For example, the following command executes the applyIndex method on the
DgraphCluster object:

java Controller --app-config AppConfig.xml DgraphCluster applyIndex

In addition to no-argument method invocation, the controller allows any number of String arguments
to be passed to a method. The following example shows the releaseLock method being invoked
on the LockManager object with the single String argument "update_lock" specifying the name of
the lock to release:

java Controller --app-config AppConfig.xml LockManager releaseLock
 update_lock

Identify available methods
In order to help users identify the objects and methods available for invocation, the controller provides
a help argument that can be called to list all available objects or methods available on an object.

If specified with an app configuration document, the help command displays usage and available
objects:

java Controller --app-config AppConfig.xml --help

...

The following objects are defined in document 'AppConfig.xml':
[To see methods available for an object, use the --help command line argument
 and specify the name of the object.]

 [com.endeca.soleng.eac.toolkit.base.LockManager]
 LockManager
 [com.endeca.soleng.eac.toolkit.component.ConfigManagerComponent]
 ConfigManager
 [com.endeca.soleng.eac.toolkit.component.DgidxComponent]
 Dgidx
 [com.endeca.soleng.eac.toolkit.component.DgraphComponent]
 Dgraph1
 Dgraph2
 [com.endeca.soleng.eac.toolkit.component.ForgeComponent]
 Forge
 PartialForge
 [com.endeca.soleng.eac.toolkit.component.LogServerComponent]
 LogServer
 [com.endeca.soleng.eac.toolkit.component.ReportGeneratorComponent]
 WeeklyReportGenerator
 DailyReportGenerator
 [com.endeca.soleng.eac.toolkit.component.cluster.DgraphCluster]
 DgraphCluster
 [com.endeca.soleng.eac.toolkit.host.Host]
 ITLHost
 MDEXHost
 [com.endeca.soleng.eac.toolkit.script.Script]
 BaselineUpdate
 DistributeIndexAndApply
 PartialUpdate
 DistributePartialsAndApply
 ConfigUpdate

The name of each object loaded from the configuration document is printed along with the object's
class. To identify the available methods, the help command can be invoked again with the name of
an object in the document:

java Controller --app-config AppConfig.xml --help DgraphCluster
...

The following methods are available for object 'DgraphCluster':
[Excluded: private, static and abstract methods; methods inherited from
Object; methods with names that start with 'get', 'set' or 'is'. For details,
 refer to Javadoc for class com.endeca.soleng.eac.toolkit.component.clus¬
ter.DgraphCluster.]

 start(), stop(), removeDefinition(), updateDefinition(), cleanDirs(),
 applyIndex(), applyPartialUpdates(), applyConfigUpdate(),
 cleanLocalIndexDirs(), cleanLocalPartialsDirs(),
 cleanLocalDgraphConfigDirs(), copyIndexToDgraphServers(),
 copyPartialUpdateToDgraphServers(),
 copyCumulativePartialUpdatesToDgraphServers(),
 copyDgraphConfigToDgraphServers(), addDgraph(DgraphComponent)

Note that not all methods defined for the class com.endeca.soleng.eac.toolkit.compo¬
nent.cluster.DgraphCluster are displayed. As the displayed message notes, methods declared
as private, static or abstract are excluded, as are methods inherited from Object, getters and setters,
and a few reserved methods that are known not to be useful from the command line.These restrictions
are intended to make the output of this help command as useful as possible, but there are likely to be
cases when developers will need to refer to Javadoc to find methods that are not displayed using the
help command.

Endeca ConfidentialEndeca® Deployment Template Usage Guide

Command Invocation | Identify available methods136

Update application definition
By default, the controller will test the application definition in the configuration document against the
provisioned definition in the EAC and update EAC provisioning if the definition in the document has
changed.

This will happen by default any time any method is invoked on the command line.

System administrators may find it useful to update the definition without invoking a method.To facilitate
this, a flag has been provided to perform the described definition update and exit.

java Controller --app-config AppConfig.xml --update-definition

In addition, there may be a need to invoke a method without testing the application definition.This can
be accomplished by using an alternate command line argument:

java Controller --app-config AppConfig.xml --skip-definition
 BaselineUpdate

Remove an application
The controller provides a convenience method for removing an application from the EAC's central
store.

When invoked, this action checks whether the application loaded from the configuration document is
defined in the EAC. If it is, all active components are forced to stop and the application's definition is
completely removed from the EAC.

java Controller --remove-app --app-config AppConfig.xml

Display component status
The controller provides a convenience method for displaying the status of all components defined in
the configuration document.

When the following method is invoked, the controller iterates over all defined components, querying
the EAC for the status of each one and printing it.

java Controller --print-status --app-config AppConfig.xml

Related Links
Components on page 121

This section describes the component elements available in the custom namespace defined
by the eacToolkit.xsd XML schema.

Endeca® Deployment Template Usage GuideEndeca Confidential

137Command Invocation | Update application definition

Index

A

Agraph
enabling SSL 45
multiple Agidxs 48
notes 48
restart groups 48
split pipeline 48

Agraph clusters 43
Agraph deployment 35, 36
Agraph with parallel Forge baseline update script 61
Agraph without parallel Forge baseline update script 57
Application configuration 31
Application descriptors 17
Application development 13
Application settings

Report Generator 46
Agidx 37
Agraphs 43
Configuration Manager 47
Dgidx 36
Dgraphs 38
Forges 35
global 31
hosts 32
Lock Manager 32
log server 45

Applications, custom 17
Automated deployments 16

custom 20

B

Baseline crawl script 97
Baseline update

Forge flags 112
running sample scripts 22

Baseline update script
Agraph with parallel Forge 61
Agraph without parallel Forge 57

BeanShell scripting
about implementing logic 133
interpreter environment 131
script implementation 131

C

CAS crawl
create a crawl script 90
creating 82, 87
global CAS crawl configuration 89
load crawl files 92
run sample pipeline 93

CAS crawl (continued)
update the AppConfig.xml 83, 88

CAS Server crawl configuration 80
CAS Server crawl scripts

baseline crawl script 97
fetch baseline crawl data script 100
fetch incremental crawl data script 104
full crawl script for Record Store 84
incremental crawl script for output files 99

CAS Server integration
custom-component for Record Stores 82

Command invocation
display component status 137
identify available methods 135
method on an object 135
remove an application 137
update application definition 137

Configuration document, application 31
Configuration files for pipeline, location of 108
Configuration Manager 47
Configuration overrides 48
Configuration update script 64
Configuring an application 21
customizations

commonly used 26
introduced 26

D

Deploying
EAC application 13, 15
on UNIX 15
on Windows 13

Deployment Template, See Endeca Deployment
Template
Development Toolkit, See EAC Development Toolkit
Dgraph

clusters 38
enabling SSL 43
partial update script 55
restart groups 48

Dimension adapters 113
Dimension servers 115

E

EAC
applications 13
deploying an EAC application 13, 15
SSL-enabled 24

EAC Development Toolkit
application configuration file 119
BeanShell scripting 131, 133

EAC Development Toolkit (continued)
command invocation 135, 137
distribution 117
package contents 117
Spring framework 119
usage 118
XML schema 119, 120, 121, 126, 127, 128

Endeca Deployment Template
Agraph with parallel Forge baseline update script
61
Agraph without parallel Forge baseline update script
57
automated deployment 16, 20
baseline crawl script 97
CAS Server crawl integration 80
configuration overrides 48
configuration update script 64
deploying XQuery modules 42
Dgraph partial update script 55
displaying version 20
distribution 12
Endeca requirements 11
fetch baseline crawl data script 100
fetch incremental crawl data script 104
full crawl script for Record Store 84
incremental crawl script for output files 99
installation 12
integration with Endeca Workbench 69, 70, 71
integration with Endeca Workbench, none 71
integration with Endeca Workbench, preview 72
integration with Endeca Workbench, preview Dgraph
73
integration with Endeca Workbench, production 76
integration with Endeca Workbench, reporting 76
Java requirements 11
migrating 12
Perl requirements 11
Platform requirements 11
provisioning scripts 51
report generation script 65
sample pipelines 107
standard Forge flags 112
usage and development 20
with SSL-enabled EAC 24

Endeca Workbench
about extending configuration 70
about promoting configuration to production 70
about updating configuration 70
configuration management 69
configuring in a preview environment 72
in a preview environment 72
in a production environment 76
integration with Endeca Deployment Template 69
override task for preview Dgraph 74
process control 71
reporting 76
with a preview Dgraph 73, 74

F

fault tolerance for components, configuring 32
Fetch baseline crawl data script 100
Fetch incremental crawl data script 104
File-based deployment 16

custom 20
Forge cluster 35
Forge flags 112
Full crawl script for Record Store 84

G

Global application settings 31

I

Incremental crawl script for output files 99
Indexer adapters 114
Indexing cluster 36, 37
Installer tokens 17

L

LockManager
configuring 32
default 31

Log directory, default 31

M

Multiple Agidxs 48

O

Output record adapters 114

P

Partial updates
Dgraph scripts 55
Forge flags 112
running sample scripts 23

Pipeline configuration
creating a new project 108
location of files 108
modifying a project 110
record spec 111

polling intervals for components, configuring 33

R

Report generation script 65
Report Generator 46
Requirements

Endeca 11
Java 11

Endeca® Deployment Template140

Index

Requirements (continued)
Perl 11
Platform 11

Restart groups 48

S

Sample CAS crawl pipeline
about running partial updates 95
running partial updates 96

Sample pipeline
common errors 115
creating a new project 108
dimension adapters 113
dimension servers 115
Forge flags 112
indexer adapters 114
modifying a project 110
output record adapters 114
overview 108
record spec 111

sample scripts
baseline update script 22
partial update script 23

Split pipeline 48
Spring framework 119
SSL-enabled deployments 24

U

Update script, configuration 64
utilities, setting fault tolerance and polling intervals for
34

V

version of Deployment Template, displaying 20

W

Working directory, default 31

X

XML schema 119
application elements 120
components 121
customization 127, 128
extension 127, 128
hosts 121
utility elements 126

XQuery modules, deploying 42

141

Index

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Endeca Customer Support

	System Requirements and Installation
	Endeca software compatibility
	Java requirements
	Perl requirements
	Platform requirements
	Installation
	Migrating from a previous version

	Application Deployment
	Deployment pre-requisites
	EAC applications
	Deploying an EAC application on Windows
	Deploying an EAC application on UNIX
	Configuring an automated/file-based deployment

	Custom applications
	Custom application descriptors
	Configuring an automated/file-based deployment for a custom application

	Usage and development
	Displaying the Deployment Template version
	Configuring an application
	Running the sample baseline update scripts
	Running the sample partial update scripts
	Communicating with SSL-enabled Endeca components
	Customizations

	Application Configuration
	About application configuration
	Global application settings
	Hosts
	Lock Manager
	Fault tolerance and polling interval properties
	Forges
	Dgidxs
	Agidxs
	Dgraphs
	Agraphs
	Log server
	Report Generators
	Configuration Manager

	Agraph notes
	Configuration overrides

	Scripts
	Provisioning scripts
	Dgraph baseline update script
	Dgraph partial update script
	Agraph without parallel Forge baseline update script
	Agraph with parallel Forge baseline update script
	Configuration update script
	Report generation

	Endeca Workbench Integration and Deployment
	Endeca Workbench Integration functions
	Configuration management
	About updating the Endeca Workbench configuration
	About extending the Endeca Workbench configuration
	About promoting configuration to production
	Process control
	No Workbench integration
	Endeca Workbench deployed in a preview environment
	Configuring an Endeca Workbench deployment in a preview environment
	Endeca Workbench deployed with a preview Dgraph
	Overriding the default behavior of the update functionality
	Endeca Workbench deployed in a production environment
	Reporting

	Integrating and Running CAS Crawls
	About storage types for CAS crawls
	About Deployment Template files for both storage types
	EAC Component API methods for CAS
	Integrating and running CAS crawls that write to Record Store instances
	Creating a CAS crawl
	Specifying a CAS Server as a custom component for Record Store output
	Specifying a pipeline to run in AppConfig.xml (for Record Store output)
	Add code to run a CAS crawl
	Running a CAS crawl

	Integrating and running CAS crawls that write to record output files
	Creating a CAS crawl
	Specifying a CAS Server host
	Specifying a CAS Server as a custom component for record output files
	Specifying a pipeline to run in AppConfig.xml (for record output files)
	Editing fetchCasCrawlDataConfig.xml for your crawling environment
	Creating a CAS crawl script using make_cas_crawl_scripts
	Running a baseline or incremental CAS crawl to record output files
	Loading crawl record output files for use in the sample CAS pipeline
	Running the sample CAS pipeline using the CAS crawl record output files
	About running partial updates
	Running partial updates using record output files
	Note on running partial updates with XML input files

	Crawler scripts for record output files
	Baseline crawl script
	Incremental crawl script
	Fetch baseline crawl data script
	Fetch incremental crawl data script

	Inserting a Custom Pipeline
	About the sample pipelines
	Sample pipeline overview
	Location of pipeline configuration files
	Creating a new project
	Modifying an existing project
	Configuring a record specifier
	Forge flags
	Input record adapters
	Dimension adapters
	Indexer adapters
	Output record adapters
	Dimension servers
	Common errors

	EAC Development Toolkit
	EAC Development Toolkit distribution and package contents
	EAC Development Toolkit usage

	Application Configuration File
	Spring framework
	XML schema
	Application elements
	Hosts
	Components
	Utilities
	Customization/extension within the toolkit's schema
	Customization/extension beyond the toolkit's schema

	BeanShell Scripting
	Script implementation
	BeanShell interpreter environment
	About implementing logic in BeanShell

	Command Invocation
	Invoke a method on an object
	Identify available methods
	Update application definition
	Remove an application
	Display component status

	Index

