
Endeca® Platform Services
Data Foundry Expression Reference

Version 6.1.1• December 2011

Contents

Preface...7
About this guide..7
Who should use this guide..7
Conventions used in this guide...7
Contacting Endeca Customer Support...8

Chapter 1: About Data Foundry expressions...9
XML syntax for EXPRESSION elements..9

EXPRESSION...9
EXPRNODE..11
EXPRBODY...12

DVAL expressions...12
DVAL CONST..12
DVAL MATCH ...13
DVAL PERL...14

FLOAT expressions...14
FLOAT CONST..14
FLOAT MATH...15

INTEGER expressions..16
INTEGER AND..16
INTEGER CONST...16
INTEGER MATH..17
INTEGER PERL ...19
INTEGER PROP_EXISTS...20

PROPERTY expressions..21
PROPERTY ALL..21
PROPERTY DVAL ..21
PROPERTY IDENTITY ...21
PROPERTY NVL...22
PROPERTY PERL...22

VOID expressions...23
VOID ADD_DVAL...23
VOID ADD_DVAL_PROP..23
VOID CLEAN_DVALS..24
VOID CONVERTTOTEXT..25
VOID CREATE ..25
VOID EXPORT_PROP..26
VOID ID_LANGUAGE..26
VOID IF..27
VOID IMPORT_PROP ..29
VOID PARSE_DOC ..30
VOID PERL..31
VOID REMOVE..32
VOID REMOVE_EXPORTED_PROP..32
VOID REMOVE_RECORD..33
VOID RENAME..33
VOID RETRIEVE_URL ...33
VOID SPLIT...34
VOID STRATIFY..35
VOID UNIQUE...36
VOID UPDATE...36
VOID UPDATE_RECORD...37

STRING expressions..38
STRING CONCAT...38
STRING CONST...38
STRING DIGEST...39
STRING FORMAT...39
STRING PERL...40

iii

STRING REPLACE...40

Chapter 2: Data Foundry language support...43
Language Support Table ..43

Endeca® Platform Servicesiv

Copyright and disclaimer

Product specifications are subject to change without notice and do not represent a commitment on
the part of Endeca Technologies, Inc. The software described in this document is furnished under a
license agreement.The software may not be reverse engineered, decompiled, or otherwise manipulated
for purposes of obtaining the source code. The software may be used or copied only in accordance
with the terms of the license agreement. It is against the law to copy the software on any medium
except as specifically allowed in the license agreement.

No part of this document may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying and recording, for any purpose without the express written
permission of Endeca Technologies, Inc.

Copyright © 2003-2011 Endeca Technologies, Inc. All rights reserved. Printed in USA.

Portions of this document and the software are subject to third-party rights, including:

Corda PopChart® and Corda Builder™ Copyright © 1996-2005 Corda Technologies, Inc.

Outside In® Search Export Copyright © 2011 Oracle. All rights reserved.

Rosette® Linguistics Platform Copyright © 2000-2011 Basis Technology Corp. All rights reserved.

Teragram Language Identification Software Copyright © 1997-2005 Teragram Corporation. All rights
reserved.

Trademarks

Endeca, the Endeca logo, Guided Navigation, MDEX Engine, Find/Analyze/Understand, Guided
Summarization, Every Day Discovery, Find Analyze and Understand Information in Ways Never Before
Possible, Endeca Latitude, Endeca InFront, Endeca Profind, Endeca Navigation Engine, Don't Stop
at Search, and other Endeca product names referenced herein are registered trademarks or trademarks
of Endeca Technologies, Inc. in the United States and other jurisdictions. All other product names,
company names, marks, logos, and symbols are trademarks of their respective owners.

The software may be covered by one or more of the following patents: US Patent 7035864, US Patent
7062483, US Patent 7325201, US Patent 7428528, US Patent 7567957, US Patent 7617184, US
Patent 7856454, US Patent 7912823, US Patent 8005643, US Patent 8019752, US Patent 8024327,
US Patent 8051073, US Patent 8051084, Australian Standard Patent 2001268095, Republic of Korea
Patent 0797232, Chinese Patent for Invention CN10461159C, Hong Kong Patent HK1072114, European
Patent EP1459206, European Patent EP1502205B1, and other patents pending.

v

Preface

Endeca® InFront enables businesses to deliver targeted experiences for any customer, every time, in
any channel. Utilizing all underlying product data and content, businesses are able to influence customer
behavior regardless of where or how customers choose to engage — online, in-store, or on-the-go.
And with integrated analytics and agile business-user tools, InFront solutions help businesses adapt
to changing market needs, influence customer behavior across channels, and dynamically manage a
relevant and targeted experience for every customer, every time.

InFront Workbench with Experience Manager provides a single, flexible platform to create, deliver,
and manage content-rich, multichannel customer experiences. Experience Manager allows non-technical
users to control how, where, when, and what type of content is presented in response to any search,
category selection, or facet refinement.

At the core of InFront is the Endeca MDEX Engine,™ a hybrid search-analytical database specifically
designed for high-performance exploration and discovery. InFront Integrator provides a set of extensible
mechanisms to bring both structured data and unstructured content into the MDEX Engine from a
variety of source systems. InFront Assembler dynamically assembles content from any resource and
seamlessly combines it with results from the MDEX Engine.

These components — along with additional modules for SEO, Social, and Mobile channel support —
make up the core of Endeca InFront, a customer experience management platform focused on delivering
the most relevant, targeted, and optimized experience for every customer, at every step, across all
customer touch points.

About this guide
This reference describes the Data Foundry expressions available for use in a record manipulator
component in Developer Studio.

Who should use this guide
This reference is intended for developers who are building Data Foundry pipelines using Endeca
Developer Studio.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace
font. In the case of long lines of code, or when inline monospace text occurs at the end of a line, the
following symbol is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

Contacting Endeca Customer Support
The Endeca Support Center provides registered users with important information regarding Endeca
software, implementation questions, product and solution help, training and professional services
consultation as well as overall news and updates from Endeca.

You can contact Endeca Standard Customer Support through the Support section of the Endeca
Developer Network (EDeN) at http://eden.endeca.com.

Endeca ConfidentialEndeca® Platform Services Data Foundry Expression Reference

| Preface8

http://eden.endeca.com

Chapter 1

About Data Foundry expressions

XML syntax for EXPRESSION elements

EXPRESSION
An EXPRESSION element instructs Forge about how to modify records. An expression consists of an
EXPRESSION element with TYPE and NAME attributes.

Expressions may contain EXPRNODE sub-elements, which have NAME and VALUE attributes, to supply
additional configuration information. Expressions may also contain other expressions; the contained
expressions may provide values used by the containing expression, or the containing expression may
provide control over which of the contained expressions are evaluated.

Endeca recommends that you perform record manipulation with a Perl manipulator rather than use a
record manipulator and EXPRESSION elements. However, if you need to access and modify dimension
sources (such as a dimension adapter or dimension server), you should still use expressions such as
DVAL PERL. The Perl manipulator does not access dimension sources. For more information about
using a Perl manipulator, see the Endeca Developer Studio Help.

DTD

<!ELEMENT EXPRESSION

 (COMMENT?
 , EXPRBODY?
 , (EXPRNODE | EXPRESSION)*
)
>
<!ATTLIST EXPRESSION
 TYPE (PROPERTY
 | DVAL
 | INTEGER
 | STRING
 | STREAM
 | VOID
 | FLOAT) #REQUIRED
 NAME CDATA #REQUIRED
 LABEL CDATA #IMPLIED
 URL CDATA #IMPLIED
>

Attributes

The following points describe the EXPRESSION element's attributes.

• TYPE - Describes the return value for the expression. For example, a FLOAT expression returns
a floating point number. The valid values for TYPE are as follows: PROPERTY, DVAL, INTEGER,
STRING, VOID, and FLOAT.

Note: STREAM is used internally by the MDEX Engine.

• NAME - Describes the operation being performed. Expressions are typically referred to by the
combination of their TYPE and NAME values (for example DVAL CONST). This combination helps
to distinguish cases where there are several expressions with different TYPE values but the same
NAME value (for example, DVAL CONST, FLOAT CONST, and INTEGER CONST).

• URL - Used in PERL expressions. Specifies the URL (file) from which an expression can read Perl
code. The code can be up to 65534 characters long.

Sub-elements

The following table provides a brief overview of the EXPRESSION sub-elements.

DescriptionSub-element

Associates a comment with a parent element and
preserves the comment when the file is rewritten.

COMMENT

This element provides an alternative to using inline
XML comments of the form .

Contains Perl code that manipulates records.EXPRBODY

Provides a generic way of sending a variety of
information to an EXPRESSION.

EXPRNODE

Instructs Forge about how to modify records.EXPRESSION

Example

This example shows a mathematical expression that adds two constant values (5 and 6).

<EXPRESSION TYPE="INTEGER" NAME="MATH">
 <EXPRNODE NAME="TYPE" VALUE="INTEGER"/>
 <EXPRNODE NAME="OPERATOR" VALUE="ADD"/
 <EXPRESSION TYPE="INTEGER" NAME="CONST">
 <EXPRNODE NAME="VALUE" VALUE="5"/>
 </EXPRESSION>
 <EXPRESSION TYPE="INTEGER" NAME="CONST">
 <EXPRNODE NAME="VALUE" VALUE="6"/>
 </EXPRESSION>
</EXPRESSION>

This example adds a dimension value ID to the current record. The dimension value ID is determined
by the mapping between the value of the P_Score property in the source data and the dimension
values contained in the dimension with ID equal to 9.

<EXPRESSION NAME="ADD_DVAL" TYPE="VOID">
 <EXPRESSION NAME="MATCH" TYPE="DVAL">
 <EXPRNODE NAME="DIMENSION_ID" VALUE="9"/>
 <EXPRESSION NAME="IDENTITY" TYPE="PROPERTY">
 <EXPRNODE NAME="PROP_NAME" VALUE="P_Score"/>

Endeca ConfidentialEndeca® Platform Services Data Foundry Expression Reference

About Data Foundry expressions | XML syntax for EXPRESSION elements10

 </EXPRESSION>
 </EXPRESSION>
</EXPRESSION>

EXPRNODE
An EXPRNODE element provides a generic way of sending a variety of information to an EXPRESSION.
The information could be descriptions, data types, constant values (parameters), and so on.
Comparatively speaking, this information is similar to a parameter for a function.

DTD

<!ELEMENT EXPRNODE (EXPRNODE*)>
<!ATTLIST EXPRNODE
 NAME CDATA #REQUIRED
 VALUE CDATA #IMPLIED
>

Attributes

The following points describe the EXPRNODE element's attributes.

• NAME - Describes the EXPRNODE element. Because EXPRNODE can be so broadly used to modify
an expression, the NAME attribute varies in relation to the expression that it modifies. For example,
NAME can specify a variety of values such as TYPE, NAME, OPERATOR, AUTO_GEN, OPERATION,
and so on. See an expression's help topic for details about how the NAME attribute of an expression
node modifies an expression.

• VALUE - Provides a value that corresponds to the NAME attribute. Because EXPRNODE can be so
broadly used, the VALUE attribute can specify a variety of values. For example, INTEGER may
correspond to TYPE; SUM may correspond to NAME; ADD may correspond to OPERATOR and so on.
See an expression's help topic for details about how the VALUE attribute of an expression node
modifies an expression.

Sub-elements

The EXPRNODE element can contain additional EXPRNODE elements as sub-elements.

Example

This example shows an expression adding a dimension value ID to the current record. The second
and third expressions use EXPRNODE to provide name and value information for the parent EXPRES¬
SION.

<EXPRESSION NAME="ADD_DVAL" TYPE="VOID">
 <EXPRESSION NAME="MATCH" TYPE="DVAL">
 <EXPRNODE NAME="DIMENSION_ID" VALUE="9"/>
 <EXPRESSION NAME="IDENTITY" TYPE="PROPERTY">
 <EXPRNODE NAME="PROP_NAME" VALUE="P_Score"/>
 </EXPRESSION>
 </EXPRESSION>
</EXPRESSION>

Endeca® Platform Services Data Foundry Expression ReferenceEndeca Confidential

11About Data Foundry expressions | XML syntax for EXPRESSION elements

EXPRBODY
An EXPRBODY element contains Perl code that manipulates data. Perl code is often useful if a data
manipulation task is too complicated to perform using the Data Foundry expressions. EXPRBODY is a
child of EXPRESSION.

Endeca recommends that you perform record manipulation with a Perl manipulator rather than with a
record manipulator that uses EXPRESSION elements. However, if you need to access and modify
dimension sources (e.g., a dimension adapter or dimension server), you should still use expressions
such as DVAL PERL. The Perl manipulator does not access dimension sources. For more information
about using a Perl manipulator, see the Endeca Developer Studio Help.

DTD

<!ELEMENT EXPRBODY (#PCDATA)>

Attributes

The EXPRBODY element has no attributes.

Sub-elements

The EXPRBODY element has no sub-elements.

Example

This example shows the outline of an expression using Perl.

<EXPRESSION TYPE=”VOID” NAME=”PERL”>
 <EXPRBODY>
 ...Perl code here...
 </EXPRBODY>
</EXPRESSION>

DVAL expressions

DVAL CONST
DVAL expressions return dimension values. DVAL CONST expressions return the dimension value (or
set of dimension values), specified in DIMENSION_ID/DVAL_ID expression node pairs.

For example, using a DVAL CONST expression within a VOID ADD_DVAL expression instructs Forge
to add the dimension value to each record processed. The DIMENSION_ID and DVAL_ID expression
nodes may be repeated in pairs to create sets of dimension values. Forge then adds the set of dimension
values to each record processed.

See the EXPRESSION element for DTD and attribute information.

Example

This example adds the dimension value to the record being processed.

<EXPRESSION TYPE="VOID" NAME="ADD_DVAL">
 <EXPRESSION TYPE="DVAL" NAME="CONST">
 <EXPRNODE NAME="DIMENSION_ID" VALUE="2090"/>

Endeca ConfidentialEndeca® Platform Services Data Foundry Expression Reference

About Data Foundry expressions | DVAL expressions12

 <EXPRNODE NAME="DVAL_ID" VALUE="2091"/>
 </EXPRESSION>
</EXPRESSION>

DVAL MATCH
DVAL expressions return dimension values. Although the DVAL MATCH expression is not deprecated,
we strongly recommend that you use the PROP_MAPPER element to perform property and dimension
value mapping operations.

The DVAL MATCH expression is used to perform text matching within one or more dimensions. The
dimensions are specified in DIMENSION_ID EXPRNODE elements. Specify the values to match in one
or more PROPERTY expressions. The expression returns a set of matching dimension values. This is
useful within a VOID ADD_DVAL expression that contains PROPERTY IDENTITY sub-expressions,
to assign the dimension values matching each record’s property values to the record.

You can adjust the behavior of the DVAL MATCH expression by nesting EXPRNODE elements within
the DVAL MATCH expression. The nested expression node has a NAME attribute that specifies how to
adjust the behavior.

The following list provides the supported values of the NAME attribute and describes their effects on
the behavior of DVAL MATCH.

• AUTO_GEN - Causes new dimension values to be generated automatically to match property values
that do not already match dimension values within the dimension.The VALUE attribute for AUTO_GEN
may be either TRUE or FALSE. The default value is TRUE.

• DEFAULT_SIFT_HIER_DEPTH - Builds a auto-generated sift hierarchy to the depth specified in
the VALUE attribute. For example, <EXPRNODE NAME="DEFAULT_SIFT_HIER_DEPTH" VAL¬
UE="2"/> builds to a depth of two. See "Working with Large Dimension Hierarchies" in the Endeca
Developer Studio Help for details.

• LOG - Identifies the LOG to which MATCH errors should be written.To avoid duplicate error messages,
this is normally a unique log. See the LOG element's TYPE attribute to specify unique error message
logging.

• MATCH_EMPTY_PROPS - Specifies that Forge create an empty dimension value for any empty
property value Forge finds during matching. This empty property to dimension value matching
occurs when you use AUTO_GEN with MATCH_EMPTY_PROPS set to TRUE. If this expression node
is set to FALSE or omitted, Forge ignores empty properties.

• MUST_MATCH - Specifies that every property value must match a dimension value within the
specified dimensions. If a property value does not have a match, an error is written out to the log
named in the LOG expression node. Note that MUST_MATCH should not be used in combination
with AUTO_GEN, because all property values match if AUTO_GEN is specified.

• REMOVE_PROP - Removes the properties used for the MATCH from the current record after the
match is performed. This is useful if the dimension is being indexed, but not the source property.

• SIFT_MATCH - SIFT_MATCH is a special variation of AUTO_GEN. See the Endeca Basic
Development Guide for details.

• SYN_MATCH - Uses the name of the first property value that matches a dimension value as the
synonym name for any property values that do not match to a dimension value.The Forge matching
process goes as follows: First, AUTO_GEN must set be FALSE. During matching, if more than one
property value matches a dimension value, Forge logs an error. If a property value does not match
a dimension value, Forge creates a new dimension value using the property value as its name.
All the non-matching property values are turned into synonyms of this dimension value.

See the EXPRESSION element for DTD and attribute information.

Endeca® Platform Services Data Foundry Expression ReferenceEndeca Confidential

13About Data Foundry expressions | DVAL expressions

Example

This example assigns the dimension value 2090 to records with the property name FORMAT.

<EXPRESSION TYPE="VOID" NAME="ADD_DVAL">
 <EXPRESSION TYPE="DVAL" NAME="MATCH">
 <EXPRNODE NAME="DIMENSION_ID" VALUE="2090"/>
 <EXPRESSION TYPE="PROPERTY" NAME="IDENTITY">
 <EXPRNODE NAME="PROP_NAME" VALUE="FORMAT"/>
 <EXPRNODE NAME="LOG" VALUE="salog"/>
 </EXPRESSION>
 </EXPRESSION>
</EXPRESSION>

DVAL PERL
DVAL expressions return dimension values. The DVAL PERL expression uses Perl to manipulate the
data.

The Perl code is contained in an EXPRBODY element. The Zinc Perl module provides classes and
methods for gaining access to and manipulating the current record. Objects accessed from Perl are
copies of the current data; changing the Perl objects has no effect on the current data until a function
is called to explicitly copy the Perl objects back.

See the EXPRESSION element for DTD and attribute information.

Example

This example assigns the dimension value 2090 to records with the property name FORMAT.

<EXPRESSION TYPE="DVAL" NAME="PERL">
 <EXPRBODY>
 ...your Perl code here. The VOID PERL topic has an example...
 </EXPRBODY>
</EXPRESSION>

FLOAT expressions

FLOAT CONST
FLOAT expressions return floating point (fractional) numbers. The FLOAT CONST expression returns
the same floating-point number, specified in the VALUE attribute of an EXPRNODE sub-element.

For example, using a FLOAT CONST expression within a VOID CREATE expression adds the new
property whose value is the constant specified to each record processed.

See the EXPRESSION element for DTD and attribute information.

Example

This example deletes discount properties if they are less than 20%. The FLOAT CONST expression
defines the value for the percentage.

<EXPRESSION TYPE="VOID" NAME="IF">
 <EXPRESSION TYPE="INTEGER" NAME="MATH">
 <EXPRNODE NAME="TYPE" VALUE="FLOAT"/>

Endeca ConfidentialEndeca® Platform Services Data Foundry Expression Reference

About Data Foundry expressions | FLOAT expressions14

 <EXPRNODE NAME="OPERATOR" VALUE="LT"/>
 <EXPRESSION TYPE="PROPERTY" NAME="IDENTITY">
 <EXPRNODE NAME="PROP_NAME" VALUE="DISCOUNT"/>
 </EXPRESSION>
 <EXPRESSION TYPE="FLOAT" NAME="CONST">
 <EXPRNODE NAME="VALUE" VALUE="20.00"/>
 </EXPRESSION>
 </EXPRESSION>
 <EXPRESSION TYPE="VOID" NAME="REMOVE">
 <EXPRNODE NAME="PROP_NAME" VALUE="DISCOUNT"/>
 </EXPRESSION>
</EXPRESSION>

FLOAT MATH
FLOAT expressions return floating point (fractional) numbers. The FLOAT MATH expression performs
a floating-point arithmetic operation on two values.

The operation to be performed is supplied in the VALUE attribute of an EXPRNODE element.The values
to be operated on are supplied in two sub-expressions.

The possible operations that may be specified in the VALUE attribute are as follows:

• ADD

• SUBTRACT - expression 1 minus expression 2.
• MULTIPLY

• DIVIDE - expression 1 divided by expression 2.
• POWER - expression 1 raised to the power of expression 2.
• PERCENT - the percentage expression 1 is of expression 2 (100 * (expression 1 / expression 2)).

The sub-expressions can be PROPERTY, STRING, INTEGER, or FLOAT expressions (use PROPERTY
expressions to retrieve values from the current record). The values returned by the sub-expressions
are converted to floating-point numbers prior to performing the parent operation.

See the EXPRESSION element for DTD and attribute information.

Example

This example subtracts to constants and returns a floating point result.

<EXPRESSION TYPE="FLOAT" NAME="MATH">
 <EXPRNODE NAME="OPERATOR" VALUE="SUBTRACT"/>
 <EXPRESSION TYPE="FLOAT" NAME="CONST">
 <EXPRNODE NAME="VALUE" VALUE="9.25"/>
 </EXPRESSION>
 <EXPRESSION TYPE="FLOAT" NAME="CONST">
 <EXPRNODE NAME="VALUE" VALUE="11.75"/>
 </EXPRESSION>
</EXPRESSION>

Endeca® Platform Services Data Foundry Expression ReferenceEndeca Confidential

15About Data Foundry expressions | FLOAT expressions

INTEGER expressions

INTEGER AND
INTEGER expressions return integers (whole numbers).INTEGER expressions can be used to combine
expressions, do arithmetic, and test conditions for conditional evaluation.The INTEGER AND expression
evaluates one or more INTEGER expressions, returning 1 if all the sub-expressions return non-zero
values, and otherwise returning 0.

The evaluation of sub-expressions stops as soon as one returns 0. INTEGER AND is the equivalent
of the “&&” operator in Perl and C. Used in conjunction with an IF expression, an AND expression can
check for more than one condition. The syntax requires one or more nested INTEGER expressions.

See the EXPRESSION element for DTD and attribute information.

Example

This example uses an INTEGER AND expression to evaluate whether the records processed have a
subject and sales rank property. If the records do not such properties, the REMOVE_RECORD deletes
them.

<EXPRESSION TYPE="VOID" NAME="IF">
 <EXPRESSION TYPE="INTEGER" NAME="AND">
 <EXPRESSION TYPE="INTEGER" NAME="MATH">
 <EXPRNODE NAME="TYPE" VALUE="INTEGER"/>
 <EXPRNODE NAME="OPERATOR" VALUE="EQUAL"/>
 <EXPRESSION TYPE="INTEGER" NAME="PROP_EXISTS">
 <EXPRNODE NAME="PROP_NAME" VALUE="CATEGORY_ID"/>
 </EXPRESSION>
 <EXPRESSION TYPE="INTEGER" NAME="CONST">
 <EXPRNODE NAME="VALUE" VALUE="0"/>
 </EXPRESSION>
 </EXPRESSION>
 <EXPRESSION TYPE="INTEGER" NAME="MATH">
 <EXPRNODE NAME="TYPE" VALUE="INTEGER"/>
 <EXPRNODE NAME="OPERATOR" VALUE="EQUAL"/>
 <EXPRESSION TYPE="INTEGER" NAME="PROP_EXISTS">
 <EXPRNODE NAME="PROP_NAME" VALUE="SALESRANK"/>
 </EXPRESSION>
 <EXPRESSION TYPE="INTEGER" NAME="CONST">
 <EXPRNODE NAME="VALUE" VALUE="0"/>
 </EXPRESSION>
 </EXPRESSION>

 </EXPRESSION>
 <EXPRESSION TYPE="VOID" NAME="REMOVE_RECORD"/>
</EXPRESSION>

INTEGER CONST
INTEGER expressions return integers (whole numbers).INTEGER expressions can be used to combine
expressions, do arithmetic, and test conditions for conditional evaluation. The INTEGER CONST
expression returns the same integer constant, specified in the VALUE attribute of an EXPRNODE element.

For example, using an INTEGER CONST expression within a VOID CREATE expression adds a new
property, whose value is the specified constant to each record processed.

Endeca ConfidentialEndeca® Platform Services Data Foundry Expression Reference

About Data Foundry expressions | INTEGER expressions16

See the EXPRESSION element for DTD and attribute information.

Example

As part of an INTEGER AND expression, this example uses an INTEGER CONST sub-expression to
test whether the PROP_NAME value equals the constant value.

<EXPRESSION TYPE="VOID" NAME="IF">
 <EXPRESSION TYPE="INTEGER" NAME="AND">
 <EXPRESSION TYPE="INTEGER" NAME="MATH">
 <EXPRNODE NAME="TYPE" VALUE="INTEGER"/>
 <EXPRNODE NAME="OPERATOR" VALUE="EQUAL"/>
 <EXPRESSION TYPE="INTEGER" NAME="PROP_EXISTS">
 <EXPRNODE NAME="PROP_NAME" VALUE="CATEGORY_ID"/>
 </EXPRESSION>
 <EXPRESSION TYPE="INTEGER" NAME="CONST">
 <EXPRNODE NAME="VALUE" VALUE="0"/>
 </EXPRESSION>
 </EXPRESSION>
 <EXPRESSION TYPE="INTEGER" NAME="MATH">
 <EXPRNODE NAME="TYPE" VALUE="INTEGER"/>
 <EXPRNODE NAME="OPERATOR" VALUE="EQUAL"/>
 <EXPRESSION TYPE="INTEGER" NAME="PROP_EXISTS">
 <EXPRNODE NAME="PROP_NAME" VALUE="SALESRANK"/>
 </EXPRESSION>
 <EXPRESSION TYPE="INTEGER" NAME="CONST">
 <EXPRNODE NAME="VALUE" VALUE="0"/>
 </EXPRESSION>
 </EXPRESSION>
 </EXPRESSION>
 <EXPRESSION TYPE="VOID" NAME="REMOVE_RECORD"/>
</EXPRESSION>

INTEGER MATH
INTEGER expressions return integers (whole numbers).INTEGER expressions can be used to combine
expressions, do arithmetic, and test conditions for conditional evaluation. The INTEGER MATH
expression can perform a variety of operations on two values, including arithmetic, Boolean tests, and
string comparison.

Although the returned value is always an integer, the operation itself can be performed using a variety
of data types. A TYPE expression node tells the MATH expression what type to convert its
sub-expressions into prior to performing the operation. The operation to be performed is supplied in
an OPERATOR expression node; the values to be operated on are supplied in two sub-expressions.

In the TYPE expression node, the VALUE attribute has the following supported values:

• STRING

• INTEGER

• FLOAT

The following OPERATOR expression node require that the TYPE attribute of their sub-expressions
have a value of either INTEGER or FLOAT:

• ADD

• SUBTRACT - expression 1 minus expression 2.
• MULTIPLY

• DIVIDE - expression 1 divided by expression 2.

Endeca® Platform Services Data Foundry Expression ReferenceEndeca Confidential

17About Data Foundry expressions | INTEGER expressions

• POWER - expression 1 raised to the power of expression 2.
• PERCENT - the percentage expression 1 is of expression 2 (100 * (expression 1 / expression 2)).
• MOD - the remainder of expression 1 divided by expression 2.

The following OPERATOR expression nodes require that the TYPE attribute of their two sub-expressions
have a value of INTEGER, FLOAT, or STRING.

• EQUAL - returns 1 if expression 1 and expression 2 are equal, 0 otherwise.
• NE - returns 1 if expression 1 and expression 2 are not equal, 0 otherwise.
• GT - returns 1 if expression 1 is greater than expression 2, 0 otherwise.
• GTE - returns 1 if expression 1 is greater than or equal to expression 2, 0 otherwise.
• LT - returns 1 if expression 1 is less than expression 2, 0 otherwise.
• LTE - returns 1 if expression 1 is less than or equal to expression 2, 0 otherwise.
• CMP - returns 1 if expression 1 is greater than expression 2, 0 if the expressions are equal, –1 if

expression 1 is less than expression 2.

The following OPERATOR expression nodes require that the TYPE attribute of their two sub-expressions
have a value of STRING:

• CMP_SUBSTR - returns 1 if expression 1 contains expression 2 as a sub-string, 0 otherwise.
• CMP_START - returns 1 if expression 1 starts with expression 2, 0 otherwise.
• CMP_END - returns 1 if expression 1 ends with expression 2, 0 otherwise.

In the OPERATOR expression nodes, the following two values of the VALUE attribute have slightly
different behavior for STRING than for INTEGER:

• AND - used with STRING, returns 1 if neither expression 1 nor expression 2 is empty, 0 otherwise.
Used with INTEGER, returns 1 if neither expression 1 nor expression 2 is not equal to 0.

• OR - used with STRING, returns 1 if either expression 1 or expression 2 is not empty, 0 otherwise.
Used with INTEGER, returns 1 if either expression 1 or expression 2 does not equal 0. See Example
2 for the use of this operator.

See the EXPRESSION element for DTD and attribute information.

Example 1

As part of an INTEGER AND expression, this example uses two INTEGER MATH sub-expressions to
test whether the PROP_NAME value equals the constant value.

<EXPRESSION TYPE="VOID" NAME="IF">
 <EXPRESSION TYPE="INTEGER" NAME="AND">
 <EXPRESSION TYPE="INTEGER" NAME="MATH">
 <EXPRNODE NAME="TYPE" VALUE="INTEGER"/>
 <EXPRNODE NAME="OPERATOR" VALUE="EQUAL"/>
 <EXPRESSION TYPE="INTEGER" NAME="PROP_EXISTS">
 <EXPRNODE NAME="PROP_NAME" VALUE="CATEGORY_ID"/>
 </EXPRESSION>
 <EXPRESSION TYPE="INTEGER" NAME="CONST">
 <EXPRNODE NAME="VALUE" VALUE="0"/>
 </EXPRESSION>
 </EXPRESSION>
 <EXPRESSION TYPE="INTEGER" NAME="MATH">
 <EXPRNODE NAME="TYPE" VALUE="INTEGER"/>
 <EXPRNODE NAME="OPERATOR" VALUE="EQUAL"/>
 <EXPRESSION TYPE="INTEGER" NAME="PROP_EXISTS">
 <EXPRNODE NAME="PROP_NAME" VALUE="SALESRANK"/>
 </EXPRESSION>
 <EXPRESSION TYPE="INTEGER" NAME="CONST">
 <EXPRNODE NAME="VALUE" VALUE="0"/>

Endeca ConfidentialEndeca® Platform Services Data Foundry Expression Reference

About Data Foundry expressions | INTEGER expressions18

 </EXPRESSION>
 </EXPRESSION>
 </EXPRESSION>
 <EXPRESSION TYPE="VOID" NAME="REMOVE_RECORD"/>
</EXPRESSION>

Example 2

This example illustrates the use of an OR in the OPERATOR expression node. The example reads: If
Category equals "A" or Category equals "B", then create a new instance of the property "ABCompanies"
with the value from the Company property. The syntax implicitly selects the first value of a given
property if the property is multi-assigned. "IDENTITY" gets the actual value of the property, while
"CONST" is a literal.

<EXPRESSION LABEL="" NAME="IF" TYPE="VOID" URL="">
 <EXPRESSION LABEL="" NAME="MATH" TYPE="INTEGER" URL="">
 <EXPRNODE NAME="TYPE" VALUE="INTEGER"/>
 <EXPRNODE NAME="OPERATOR" VALUE="OR"/>
 <EXPRESSION LABEL="" NAME="MATH" TYPE="INTEGER" URL="">
 <EXPRNODE NAME="TYPE" VALUE="STRING"/>
 <EXPRNODE NAME="OPERATOR" VALUE="EQUAL"/>
 <EXPRESSION LABEL="" NAME="IDENTITY" TYPE="PROPERTY" URL="">
 <EXPRNODE NAME="PROP_NAME" VALUE="Category"/>
 </EXPRESSION>
 <EXPRESSION LABEL="" NAME="CONST" TYPE="STRING" URL="">
 <EXPRNODE NAME="VALUE" VALUE="A"/>
 </EXPRESSION>
 </EXPRESSION>
 <EXPRESSION LABEL="" NAME="MATH" TYPE="INTEGER" URL="">
 <EXPRNODE NAME="TYPE" VALUE="STRING"/>
 <EXPRNODE NAME="OPERATOR" VALUE="EQUAL"/>
 <EXPRESSION LABEL="" NAME="IDENTITY" TYPE="PROPERTY" URL="">
 <EXPRNODE NAME="PROP_NAME" VALUE="Category"/>
 </EXPRESSION>
 <EXPRESSION LABEL="" NAME="CONST" TYPE="STRING" URL="">
 <EXPRNODE NAME="VALUE" VALUE="B"/>
 </EXPRESSION>
 </EXPRESSION>
 </EXPRESSION>
 <EXPRESSION LABEL="" NAME="CREATE" TYPE="VOID" URL="">
 <EXPRNODE NAME="PROP_NAME" VALUE="ABCompanies"/>
 <EXPRESSION LABEL="" NAME="IDENTITY" TYPE="PROPERTY" URL="">
 <EXPRNODE NAME="PROP_NAME" VALUE="Company"/>
 </EXPRESSION>
 </EXPRESSION>
</EXPRESSION>

INTEGER PERL
INTEGER expressions return integers (whole numbers).INTEGER expressions can be used to combine
expressions, do arithmetic, and test conditions for conditional evaluation. The INTEGER PERL
expression uses Perl to manipulate the data.

The Perl code is contained in an EXPRBODY element. The Zinc Perl module provides classes and
methods for gaining access to and manipulating the current record. Objects accessed from Perl are
copies of the current data; changing the Perl objects has no effect on the current data until a function
is called to explicitly copy the Perl objects back.

Endeca® Platform Services Data Foundry Expression ReferenceEndeca Confidential

19About Data Foundry expressions | INTEGER expressions

Endeca recommends that you perform record manipulation with the PERL_MANIPULATOR element
rather than with the EXPRESSION and RECORD_MANIPULATOR elements. However, if you need to
access and modify dimension sources (such as a dimension adapter or dimension server) you should
still use expressions such as DVAL PERL. The Perl manipulator does not access dimension sources.

See the EXPRESSION element for DTD and attribute information.

Example

<EXPRESSION TYPE="INTEGER" NAME="PERL">
 <EXPRBODY>
 ...your Perl code here. The VOID PERL topic has an example...
 </EXPRBODY>
</EXPRESSION>

INTEGER PROP_EXISTS
INTEGER expressions return integers (whole numbers).INTEGER expressions can be used to combine
expressions, do arithmetic, and test conditions for conditional evaluation.The INTEGER PROP_EXISTS
expression checks for a specified property on each record being processed.

The name of the property is specified in a PROP_NAME expression node. The expression returns the
number of values of the property on each record. For example, if a record has three values from the
“Color” property, the PROP_EXISTS expression would return 3. If the record has no values for the
“Color” property, it would return 0. INTEGER PROP_EXISTS is useful as the condition expression in a
VOID IF expression.

See the EXPRESSION element for DTD and attribute information.

Example

As part of an INTEGER AND expression, this example uses two INTEGER PROP_EXISTS
sub-expressions to test whether the specified PROP_NAME exists.

<EXPRESSION TYPE="VOID" NAME="IF">
 <EXPRESSION TYPE="INTEGER" NAME="AND">
 <EXPRESSION TYPE="INTEGER" NAME="MATH">
 <EXPRNODE NAME="TYPE" VALUE="INTEGER"/>
 <EXPRNODE NAME="OPERATOR" VALUE="EQUAL"/>
 <EXPRESSION TYPE="INTEGER" NAME="PROP_EXISTS">
 <EXPRNODE NAME="PROP_NAME" VALUE="CATEGORY_ID"/>
 </EXPRESSION>
 <EXPRESSION TYPE="INTEGER" NAME="CONST">
 <EXPRNODE NAME="VALUE" VALUE="0"/>
 </EXPRESSION>
 </EXPRESSION>
 <EXPRESSION TYPE="INTEGER" NAME="MATH">
 <EXPRNODE NAME="TYPE" VALUE="INTEGER"/>
 <EXPRNODE NAME="OPERATOR" VALUE="EQUAL"/>
 <EXPRESSION TYPE="INTEGER" NAME="PROP_EXISTS">
 <EXPRNODE NAME="PROP_NAME" VALUE="SALESRANK"/>
 </EXPRESSION>
 <EXPRESSION TYPE="INTEGER" NAME="CONST">
 <EXPRNODE NAME="VALUE" VALUE="0"/>
 </EXPRESSION>
 </EXPRESSION>
 </EXPRESSION>

Endeca ConfidentialEndeca® Platform Services Data Foundry Expression Reference

About Data Foundry expressions | INTEGER expressions20

 <EXPRESSION TYPE="VOID" NAME="REMOVE_RECORD"/>
</EXPRESSION>

PROPERTY expressions

PROPERTY ALL
PROPERTY expressions return properties (name-value pairs). They are typically used to provide data
to other expressions. The PROPERTY ALL expression returns all the values from all the properties on
the current record.

There are no EXPRNODE elements to configure it.

See the EXPRESSION element for DTD and attribute information.

Example

<EXPRESSION TYPE="PROPERTY" NAME="ALL"/>

PROPERTY DVAL
PROPERTY expressions return properties (name-value pairs). They are typically used to provide data
to other expressions. The PROPERTY DVAL expression creates a property value for each dimension
value the current record has from the specified dimension.

A PROP_NAME expression node specifies the name of the property to be created. The dimension can
be specified using either a DIMENSION_ID or a DIMENSION_NAME expression node. By default,
values for the property are created containing the name of each dimension value assigned to the
record from the specified dimension. If the FULL_PATH expression node is specified with a value of
TRUE, then the names of all dimension values in the path from the dimension root to the assigned
dimension value are concatenated (separated by ‘/’) and used instead of the dimension value name.

See the EXPRESSION element for DTD and attribute information.

Example

This example creates the Price property for the specified dimension value in the record being processed.

<EXPRESSION TYPE="VOID" NAME="ADD_PROP">
 <EXPRESSION TYPE="PROPERTY" NAME="DVAL">
 <EXPRNODE NAME="DIMENSION_ID" VALUE="300"/>
 <EXPRNODE NAME="PROP_NAME" VALUE="Price"/>
 <EXPRNODE NAME="FULL_PATH" VALUE="TRUE"/>
 </EXPRESSION>
</EXPRESSION>

PROPERTY IDENTITY
PROPERTY expressions return properties (name-value pairs). They are typically used to provide data
to other expressions. The PROPERTY IDENTITY expression returns the specified property from the
current record.

The name of the property to return is specified in a PROP_NAME expression node.

Endeca® Platform Services Data Foundry Expression ReferenceEndeca Confidential

21About Data Foundry expressions | PROPERTY expressions

See the EXPRESSION element for DTD and attribute information.

Example

This example assigns the dimension value 2090 to records with the property name FORMAT. The
property name is specified within the PROPERTY IDENTITY sub-expression.

<EXPRESSION TYPE="VOID" NAME="ADD_DVAL">
 <EXPRESSION TYPE="DVAL" NAME="MATCH">
 <EXPRNODE NAME="DIMENSION_ID" VALUE="2090"/>
 <EXPRESSION TYPE="PROPERTY" NAME="IDENTITY">
 <EXPRNODE NAME="PROP_NAME" VALUE="FORMAT"/>
 <EXPRNODE NAME="LOG" VALUE="salog"/>
 </EXPRESSION>
 </EXPRESSION>
</EXPRESSION>

PROPERTY NVL
PROPERTY expressions return properties (name-value pairs). They are typically used to provide data
to other expressions. The PROPERTY NVL expression evaluates its sub-expressions and returns the
properties from the first sub-expression that has a non-empty result.

This is useful if there are several different properties that a record may or may not have, but only one
of them should be used in an expression. For example, a record may have a property for a home
address or for a business address. PROPERTY NVL expression evaluates each possibility and returns
the first address it locates.

Note that a sub-expression that returns empty strings is returning values (empty values). For example,
a record may not have a value for the “Color” property; however, if the FILTER_EMPTY_PROPS attribute
of the RECORD_ADAPTER is not set to true, an identity expression referencing the property "Color” still
has a return value (that is, the property name “Color” with an empty value).

An NVL expression may therefore return properties with empty values; it skips only properties that do
not exist. There are no EXPRNODE elements to configure PROPERTY NVL.

See the EXPRESSION element for DTD and attribute information.

Example

As suggested in the above example, this expression returns the first address property that Forge
locates in the record.

<EXPRESSION TYPE="PROPERTY" NAME="NVL">
 <EXPRESSION TYPE="PROPERTY" NAME="IDENTITY">
 <EXPRNODE NAME="PROP_NAME" VALUE="address_home"/>
 </EXPRESSION>
 <EXPRESSION TYPE="PROPERTY" NAME="IDENTITY">
 <EXPRNODE NAME="PROP_NAME" VALUE="address_work"/>
 </EXPRESSION>
</EXPRESSION>

PROPERTY PERL
PROPERTY expressions return properties (name-value pairs). They are typically used to provide data
to other expressions. The PROPERTY PERL expression uses Perl to manipulate the data.

Endeca ConfidentialEndeca® Platform Services Data Foundry Expression Reference

About Data Foundry expressions | PROPERTY expressions22

The Perl code is contained in an EXPRBODY element. The Zinc Perl module provides classes and
methods for gaining access to and manipulating the current record. Objects accessed from Perl are
copies of the current data; changing the Perl objects has no effect on the current data until a function
is called to explicitly copy the Perl objects back.

Endeca recommends that you perform record manipulation with the PERL_MANIPULATOR element
rather than with the EXPRESSION and RECORD_MANIPULATOR elements. However, if you need to
access and modify dimension sources (such as a dimension adapter or dimension server) you should
still use expressions such as DVAL PERL. The Perl manipulator does not access dimension sources.

See the EXPRESSION element for DTD and attribute information.

Example

<EXPRESSION TYPE="PROPERTY" NAME="PERL">
 <EXPRBODY>
 ...your Perl code here. The VOID PERL topic has an example...
 </EXPRBODY>
</EXPRESSION>

VOID expressions

VOID ADD_DVAL
VOID expressions return no value but are used to perform other work.The VOID ADD_DVAL expression
adds dimension values to the current record.

The dimension values to add are given by one or more sub-expressions of type DVAL.

See the EXPRESSION element for DTD and attribute information.

Example

This example adds the dimension value to the record being processed.

<EXPRESSION TYPE="VOID" NAME="ADD_DVAL">
 <EXPRESSION TYPE="DVAL" NAME="CONST">
 <EXPRNODE NAME="DIMENSION_ID" VALUE="2090"/>
 <EXPRNODE NAME="DVAL_ID" VALUE="2091"/>
 </EXPRESSION>
</EXPRESSION>

Related Links
VOID expressions on page 23

VOID ADD_DVAL_PROP
VOID expressions return no value but are used to perform other work. The VOID ADD_DVAL_PROP
expression adds dimension value attributes to a dimension value.

This expression is unique in that it does not modify the current record. The attributes are information
for an Endeca application's user interface; the attributes are not record processing information for
Forge or the MDEX Engine. For example, you might use attributes to indicate the display color or
location of a dimension value. See the Endeca Basic Development Guide for details.

Endeca® Platform Services Data Foundry Expression ReferenceEndeca Confidential

23About Data Foundry expressions | VOID expressions

The dimension to modify can be given in either a DIMENSION_NAME or a DIMENSION_ID expression
node; the dimension value to modify can be given in either a DVAL_PATH or DVAL_ID expression
node. The properties to be added are given by one or more PROPERTY sub-expressions.

By default, if the dimension value already has attributes attached, the new attributes are simply added.
If the optional REPLACE expression node is set to TRUE, any duplicate attributes are removed prior to
adding the new ones.

By default, the modifications are made to the dimension value immediately. In some cases (for example
with AutoGen), the specified dimension value may not exist at the time the expression is evaluated,
so Forge should wait and make the specified changes after all records have been processed. To do
this, the optional DELAY expression node should be set to TRUE.

See the EXPRESSION element for DTD and attribute information.

Example

This expression adds an attribute named display to the Red dimension value.

<EXPRESSION TYPE="VOID" NAME="ADD_DVAL_PROP">
 <EXPRNODE NAME="DIMENSION_NAME" VALUE="Colors"/>
 <EXPRNODE NAME="DVAL_PATH" VALUE="Colors/Red"/>
 <EXPRESSION TYPE="PROPERTY" NAME="IDENTITY">
 <EXPRNODE NAME="PROP_NAME" VALUE="display"/>
 </EXPRESSION>
</EXPRESSION>

VOID CLEAN_DVALS
VOID expressions return no value but are used to perform other work. The VOID CLEAN_DVALS
expression removes ancestor classifications from records.

CLEAN_DVALS requires one or more DIMENSION_ID expression nodes to tell it which dimensions to
clean.You can also specify dimensions from more than one DIMENSION_SOURCE if necessary. One
DIMENSION_SOURCE is required.

If a dimension value and one or more of its ancestors are assigned to a record, a CLEAN_DVALS
expression deletes the ancestor dimension values, leaving only the child dimension value on the
record. A dimension value and one or more of its ancestors would be assigned to a record in a situation
where an ancestor and dimension leaf value are both properties of a single record. This is the case
in the following example for the properties “Blue” and “Sky Blue”.

For example, suppose one navigation path within a “Colors” dimension looked like this:
Colors->Blue->Sky Blue. If a record has a property value of “Blue” and a property value of “Sky Blue”,
then both the parent dimension value “Blue” and its child “Sky Blue” will be assigned to it. A
CLEAN_DVALS expression would remove the dimension value “Blue” from the record. If there were
more levels of hierarchy (for example, if the dimension value “Blue” were a grandparent or
great-grandparent), the CLEAN_DVALS expression would work in the same way; only the child dimension
value “Sky Blue” would remain on the record.

See the EXPRESSION element for DTD and attribute information.

Example

This example cleans ancestor dimension values from the indicated dimension.

<EXPRESSION TYPE="VOID" NAME="CLEAN_DVALS">
 <EXPRNODE NAME="DIMENSION_ID" VALUE="70000" />

Endeca ConfidentialEndeca® Platform Services Data Foundry Expression Reference

About Data Foundry expressions | VOID expressions24

 <EXPRNODE NAME="DIMENSION_SOURCE" VALUE="DimensionServer" />
</EXPRESSION>

VOID CONVERTTOTEXT
VOID expressions return no value but are used to perform other work. The VOID CONVERTTOTEXT
expression extracts document content, converts it to text, and assigns the text to a record.

This expression is available as part of the optional Document Conversion Module. Recall that the RE¬
TRIEVE_URL expression fetches a document's content and writes the content to a file. The Ende¬
ca.Document.Body property stores the absolute path of the file that contains the document's content.
CONVERTTOTEXT read the path and converts the content of the indicated file to text. The text is then
assigned to a record as a property with the name Endeca.Document.Text. If the expression fails,
a warning is logged, and the property is not assigned to the record.

The following optional expression nodes modify the behavior of VOID CONVERTTOTEXT:

• TIMEOUT - Specifies the maximum time allowed to convert a document. The default value is 300
seconds.

• RESPONSE_TIMEOUT - Specifies the messaging time out between Forge and the converter process.
The default value is 30 seconds.

• CONVERT_EMBEDDED - If set to TRUE, specifies that embedded documents will also be extracted
and converted. If this option is not used, the default is FALSE.

See the EXPRESSION element for DTD and attribute information.

Example

This example converts Endeca.Document.Body to text if the property exists.

<EXPRESSION TYPE="VOID" NAME="IF">
 <EXPRESSION TYPE="INTEGER" NAME="PROP_EXISTS">
 <EXPRNODE NAME="PROP_NAME" VALUE="Endeca.Document.Body"/>
 </EXPRESSION>
 <EXPRESSION TYPE="VOID" NAME="CONVERTTOTEXT"/>
</EXPRESSION>

This example shows how to use the CONVERT_EMBEDDED option to process embedded documents.

<EXPRESSION TYPE="VOID" NAME="CONVERTTOTEXT">
 <EXPRNODE NAME="CONVERT_EMBEDDED" VALUE="TRUE" />
</EXPRESSION>

VOID CREATE
VOID expressions return no value but are used to perform other work.The VOID CREATE expression
creates a new property on the current record.

The name of the property is specified either by a PROP_NAME expression node, or by the first
sub-expression, which may be of type STRING, PROPERTY, INTEGER, or FLOAT. The value for the
property comes from a second sub-expression of type STRING, PROPERTY, INTEGER, or FLOAT.

See the EXPRESSION element for DTD and attribute information.

Endeca® Platform Services Data Foundry Expression ReferenceEndeca Confidential

25About Data Foundry expressions | VOID expressions

Example

This example creates a new property called Document-Digest.

<EXPRESSION TYPE="VOID" NAME="CREATE">
 <EXPRNODE NAME="PROP_NAME" VALUE="Document-Digest"/>
 <EXPRESSION TYPE="STRING" NAME="DIGEST">
 <EXPRESSION TYPE="PROPERTY" NAME="IDENTITY">
 <EXPRNODE NAME="PROP_NAME" VALUE="Endeca.Document.Body"/>
 </EXPRESSION>
 </EXPRESSION>
</EXPRESSION>

VOID EXPORT_PROP
VOID expressions return no value but are used to perform other work. The VOID EXPORT_PROP
expression writes a given property to a file and replaces the property value with the value of the newly
created file’s URL.

Writing a property value to a file is useful when the property is a long text description.You can save
memory by writing the property to a file and accessing the file only when necessary via the new URL
property value.You can use VOID REMOVE_EXPORTED_PROP to delete this file and the property
pointing to the file.

The property to export can be specified in either one of the following ways:

• Use the PROP_NAME expression node to specify the name of the property to export.
• Use a STRING expression to generate the name of the file to export. This mode is useful when

crawling files: the file name is generated using a STRING DIGEST of the Endeca.Identifier
property and the expression generates a different file name for each URL identifier.

The following expression nodes can modify EXPORT_PROP:

• URL - Specifies the base URL that files are written to. This value may be either an absolute path
or a path relative to the location of Pipeline.epx.

• PREFIX - Specifies a file name prefix to use when Forge writes the property value to a file.

See the EXPRESSION element for DTD and attribute information.

Example

This example exports properties Prop1 and Prop2 from the props directory.

<EXPRESSION TYPE="VOID" NAME="EXPORT_PROP">
 <EXPRNODE NAME="PROP_NAME" VALUE="Prop1"/>
 <EXPRNODE NAME="PROP_NAME" VALUE="Prop2"/>
 <EXPRNODE NAME="URL" VALUE="props"/>
 <EXPRNODE NAME="PREFIX" VALUE="out."/>
</EXPRESSION>

VOID ID_LANGUAGE
VOID expressions return no value but are used to perform other work. The VOID ID_LANGUAGE
expression identifies the language of a specified property and then adds a language identifier property
to a record.

By default, the language identifier property is named Endeca.Document.Language. The value of
the property is the ISO 639 code that corresponds to the language. For example, for Japanese the

Endeca ConfidentialEndeca® Platform Services Data Foundry Expression Reference

About Data Foundry expressions | VOID expressions26

value of Endeca.Document.Language would be JA. For English, the value of Endeca.Docu¬
ment.Language would be EN.

The VOID ID_LANGUAGE expression can identify 118 language and encoding pairs as described in
the Language Support Table. See the RECORD_ADAPTER and its ENCODING attribute for more
information about language encoding support for source data.

This expression is particularly useful if you want to use language types to control linguistic features of
your Endeca-enabled application. For example, Forge can tag records with the identified language,
and you can present language as a navigation parameter in an Endeca-enabled application. Similarly,
language identification can be used to only show, for example, Italian documents to a user in an Italian
user interface.

If you have a SPIDER set up to extract the body of a document, whose contents are stored by default
as a property value of Endeca.Document.Text, you can then run ID_LANGUAGE against Ende¬
ca.Document.Text to identify the language of the document contents.

The following expression nodes modify ID_LANGUAGE:

• PROPERTY - Specifies the name of the property on which to perform language identification.
• LANG_PROP_NAME - Specifies the name of the property to store the language. The default value

is Endeca.Document.Language.
• LANG_ID_BYTES - Specifies the number of bytes Forge uses to determine the language. A larger

number provides a more accurate determination, but requires more processing time. The default
value is 300 bytes.

See the EXPRESSION element for DTD and attribute information.

Example

This example exports properties Prop1 and Prop2 from the props directory.

<EXPRESSION TYPE="VOID" NAME="ID_LANGUAGE">
 <EXPRNODE NAME="PROPERTY" VALUE="Description"/>
 <EXPRNODE NAME="LANG_PROP_NAME" VALUE="Endeca.Document.Language"/>
</EXPRESSION>

VOID IF
VOID expressions return no value but are used to perform other work. The VOID IF expression
provides a way to perform conditional evaluation.

The sub-expressions are grouped into clauses: the first clause consists of all the sub-expressions up
to the first EXPRNODE element (if any) and any subsequent clauses consist of the sub-expressions
between EXPRNODE elements. The first clause is an IF clause; the first sub-expression is a condition,
and must be of type INTEGER. Subsequent sub-expressions form the action, and must be of type
VOID. If the condition evaluates to anything other than zero, then all of the actions are evaluated, in
order. If the condition evaluates to zero, then processing moves to the next clause.

A clause introduced by an ELSE_IF expression node (EXPRNODE) behaves just like the initial IF
clause. ELSE_IF clauses are optional. If included, there may be any number. For a sample usage,
see the second example below. In a clause introduced by an ELSE expression node, all sub-expressions
form an action, and must be of type VOID. The actions are evaluated in order. The ELSE clause is
optional. If included, it must come last. There can be at most one ELSE clause.

See the EXPRESSION element for DTD and attribute information.

Endeca® Platform Services Data Foundry Expression ReferenceEndeca Confidential

27About Data Foundry expressions | VOID expressions

Example 1

This example evaluates whether the Region property is equal to the constant Other Italy. If two are
equal, then the REMOVE expression deletes the property.

<EXPRESSION TYPE="VOID" NAME="IF">
 <EXPRESSION TYPE="INTEGER" NAME="MATH">
 <EXPRNODE NAME="TYPE" VALUE="STRING"/>
 <EXPRNODE NAME="OPERATOR" VALUE="EQUAL"/>
 <EXPRESSION TYPE="PROPERTY" NAME="IDENTITY">
 <EXPRNODE NAME="PROP_NAME" VALUE="Region"/>
 </EXPRESSION>
 <EXPRESSION TYPE="STRING" NAME="CONST">
 <EXPRNODE NAME="VALUE" VALUE="Other Italy"/>
 </EXPRESSION>
 </EXPRESSION>
 <EXPRESSION TYPE="VOID" NAME="REMOVE">
 <EXPRNODE NAME="PROP_NAME" VALUE="Region"/>
 </EXPRESSION>
</EXPRESSION>

Example 2

This example implements the following logic using ELSE and ELSE_IF expression nodes:

 if (Endeca.Title == "Ad Rotator Test")
 Create Property AdRotate with Property Value "Yes"
 else if (Endeca.Title == "Sample Pages")
 Create Property "An Index" with Property Value "Yes"
 else
 Create Property "NoMatch" with Property Value "Nothing"
 end if

The example is as follows:

<EXPRESSION LABEL="" NAME="IF" TYPE="VOID" URL="">

 <EXPRESSION LABEL="" NAME="MATH" TYPE="INTEGER" URL="">
 <EXPRNODE NAME="TYPE" VALUE="STRING"/>
 <EXPRNODE NAME="OPERATOR" VALUE="EQUAL"/>
 <EXPRESSION LABEL="" NAME="IDENTITY" TYPE="PROPERTY" URL="">
 <EXPRNODE NAME="PROP_NAME" VALUE="Endeca.Title"/>
 </EXPRESSION>
 <EXPRESSION LABEL="" NAME="CONST" TYPE="STRING" URL="">
 <EXPRNODE NAME="VALUE" VALUE="Ad Rotator Test"/>
 </EXPRESSION>
 </EXPRESSION>

 <EXPRESSION LABEL="" NAME="CREATE" TYPE="VOID" URL="">
 <EXPRNODE NAME="PROP_NAME" VALUE="AdRotate"/>
 <EXPRESSION LABEL="" NAME="CONST" TYPE="STRING" URL="">
 <EXPRNODE NAME="VALUE" VALUE="Yes"/>
 </EXPRESSION>
 </EXPRESSION>

 <EXPRNODE NAME="ELSE_IF" VALUE=""/>

 <EXPRESSION LABEL="" NAME="MATH" TYPE="INTEGER" URL="">
 <EXPRNODE NAME="TYPE" VALUE="STRING"/>
 <EXPRNODE NAME="OPERATOR" VALUE="EQUAL"/>
 <EXPRESSION LABEL="" NAME="IDENTITY" TYPE="PROPERTY" URL="">
 <EXPRNODE NAME="PROP_NAME" VALUE="Endeca.Title"/>

Endeca ConfidentialEndeca® Platform Services Data Foundry Expression Reference

About Data Foundry expressions | VOID expressions28

 </EXPRESSION>
 <EXPRESSION LABEL="" NAME="CONST" TYPE="STRING" URL="">
 <EXPRNODE NAME="VALUE" VALUE="Sample Pages"/>
 </EXPRESSION>
 </EXPRESSION>

 <EXPRESSION LABEL="" NAME="CREATE" TYPE="VOID" URL="">
 <EXPRNODE NAME="PROP_NAME" VALUE="An Index"/>
 <EXPRESSION LABEL="" NAME="CONST" TYPE="STRING" URL="">
 <EXPRNODE NAME="VALUE" VALUE="Yes"/>
 </EXPRESSION>
 </EXPRESSION>

 <EXPRNODE NAME="ELSE" VALUE=""/>

 <EXPRESSION LABEL="" NAME="CREATE" TYPE="VOID" URL="">
 <EXPRNODE NAME="PROP_NAME" VALUE="NoMatch"/>
 <EXPRESSION LABEL="" NAME="CONST" TYPE="STRING" URL="">
 <EXPRNODE NAME="VALUE" VALUE="Nothing"/>
 </EXPRESSION>
 </EXPRESSION>

</EXPRESSION>

VOID IMPORT_PROP
VOID expressions return no value but are used to perform other work. The VOID IMPORT_PROP
expression imports a property value from a specified file.

Typically, files containing property values were created using the complementary expression VOID
EXPORT_PROP. Another typical use of IMPORT_PROP is to read a document body created by VOID
RETRIEVE_URL. (This is useful for HTML pre-processing with a spider.)

The property to import can be specified in either one of the following ways:

• Use the PROP_NAME expression node to specify the name of the property to import. The current
value of the property is the file name. The current value is replaced with the value read from the
file. All properties with a given name are affected in this mode.

• Use a STRING expression to generate the name of the file to import. Typically, the file name is
generated using a STRING DIGEST of the Endeca.Identifier property. If this expression is present,
then one property can be imported per record. This expression generates a different file name for
each record. Existing values are untouched.

The following expression nodes modify IMPORT_PROP. Several of these nodes are the same as those
used to identify the property during export in EXPORT_PROP.

• URL - Specifies the URL that files are imported from. This value may be either an absolute path
or a path relative to the location of Pipeline.epx.

• PREFIX - Specifies any prefix used in the file name to remove. This value often corresponds to
the value of PREFIX in the VOID EXPORT_PROP expression.

• REMOVE_FILES - Specifies whether to delete files, after importing their property values. When set
to TRUE, the files are deleted. The default value is FALSE.

• ENCODING - Specifies the encoding that should be used during import. If desired, this encoding
may be overriden by ENCODING_PROP.

• ENCODING_PROP - Specifies the name of the property containing the encoding.The RETRIEVE_URL
expression creates this property with a default property name of Endeca.Document.Encoding.

Endeca® Platform Services Data Foundry Expression ReferenceEndeca Confidential

29About Data Foundry expressions | VOID expressions

• ENCODING_ID_BYTES - Specifies the number of bytes used to identify the encoding. This value
defaults to its maximum of 1 MB and can be reduced if necessary to optimize performance.

See the EXPRESSION element for DTD and attribute information.

Example

This example imports properties Prop1 and Prop2 from the props directory. After importing, the
expression deletes the files.

<EXPRESSION TYPE="VOID" NAME="IMPORT_PROP">
 <EXPRNODE NAME="PROP_NAME" VALUE="Prop1"/>
 <EXPRNODE NAME="PROP_NAME" VALUE="Prop2"/>
 <EXPRNODE NAME="URL" VALUE="props"/>
 <EXPRNODE NAME="PREFIX" VALUE="out."/>
 <EXPRNODE NAME="REMOVE_FILES" VALUE="TRUE"/>
</EXPRESSION>

VOID PARSE_DOC
VOID expressions return no value but are used to perform other work. The VOID PARSE_DOC
expression obtains metadata and extracts text from documents and adds the metadata and document
text in the form of property values to a record.

Both text/plain and text/html files can be extracted from documents by this expression; other file types
are passed to the Document Conversion Module converters for parsing. See "Implementing the Endeca
Crawler" in the Endeca Forge Guide for a description of each generated property that PARSE_DOC
adds to the record.

The following list describes the optional expression nodes that can modify PARSE_DOC:

• FILE_PATH - Specifies whether the expression interprets the property value as a file path (to the
contents of the file) or the contents of the file itself. TRUE interprets the property value as a file
path. FALSE interprets the property value as the contents of the file.

• PARSE_META - Indicates whether to extract metadata of a document. TRUE extracts metadata;
FALSE does not. The default value is TRUE.

• PARSE_TEXT - Indicates whether to extract the body text of a document.TRUE extracts text;FALSE
does not. The default value is TRUE.

• MIMETYPE_PROP - Describes the name of the property containing the content type. The RE¬
TRIEVE_URL expression creates this property with a default property name of Endeca.Docu¬
ment.MimeType.You do not need to modify this name unless desired.

• ENCODING_PROP - Describes the name of the property containing the encoding. The RE¬
TRIEVE_URL expression creates this property with a default property name of Endeca.Docu¬
ment.Encoding.You do not need to modify this name unless desired.

• BODY_PROP - Describes the name of the property containing the document body. The RE¬
TRIEVE_URL expression creates this property with a default property name of Endeca.Docu¬
ment.Body.You do not need to modify this name unless desired.

• TEXT_PROP Describes the name of the property to put document text into. The RETRIEVE_URL
expression creates this property with a default property name of Endeca.Document.Text.You
do not need to modify this name unless desired.

See the EXPRESSION element for DTD and attribute information.

Endeca ConfidentialEndeca® Platform Services Data Foundry Expression Reference

About Data Foundry expressions | VOID expressions30

Example

This example parses the property and adds the contents to the record being processed.

<EXPRESSION TYPE="VOID" NAME="PARSE_DOC">
 <EXPRNODE NAME="BODY_PROP" VALUE="Endeca.Document.Body"/>
 <EXPRNODE NAME="FILE_PATH" VALUE="TRUE"/>
</EXPRESSION>

VOID PERL
VOID expressions return no value but are used to perform other work. The VOID PERL expression
uses Perl to manipulate the data.

The Perl code is contained in an EXPRBODY element. The Zinc Perl module provides classes and
methods for gaining access to and manipulating the current record.

Objects accessed from Perl are copies of the current data; changing the Perl objects has no effect on
the current data until a function is called to explicitly copy the Perl objects back.

Endeca recommends that you perform record manipulation with the PERL_MANIPULATOR element
rather than with the EXPRESSION and RECORD_MANIPULATOR elements. However, if you need to
access and modify dimension sources (such as a dimension adapter or dimension server) you should
still use expressions such as DVAL PERL. The Perl manipulator does not access dimension sources.

See the EXPRESSION element for DTD and attribute information.

Example

<EXPRESSION TYPE=”PROPERTY” NAME=”PERL”>
 <EXPRBODY>
 <![CDATA[
 ### IF ITEM HAS "LPRINT" PROPERTY WITH VALUE OF "Y",
 ### REMOVE CURRENT "FORMAT" PROPERTY,
 ### AND CREATE NEW ONE WITH VALUE OF "LP"

 my @lprint = get_props_by_name("LPRINT");

 my @format = get_props_by_name("FORMAT");

 if (-1 != $#lprint) {
 my $large = ($lprint[0])->value();
 if ($large =~ /Y/) {
 if (-1 != $#format) {
 remove_props("FORMAT");
 }

 my $new_prop = new Zinc::PropVal("FORMAT", "LP");

 add_props($new_prop);
 }
 }

]]>
 </EXPRBODY>
</EXPRESSION>

Endeca® Platform Services Data Foundry Expression ReferenceEndeca Confidential

31About Data Foundry expressions | VOID expressions

VOID REMOVE
VOID expressions return no value but are used to perform other work. The VOID REMOVE expression
removes the specified properties from the current record.

The names of the properties to be removed are given in PROP_NAME expression nodes.

See the EXPRESSION element for DTD and attribute information.

Example

This example evaluates whether the Region property is equal to the constant Other Italy. If two are
equal, then the REMOVE expression deletes the property.

<EXPRESSION TYPE="VOID" NAME="IF">
 <EXPRESSION TYPE="INTEGER" NAME="MATH">
 <EXPRNODE NAME="TYPE" VALUE="STRING"/>
 <EXPRNODE NAME="OPERATOR" VALUE="EQUAL"/>
 <EXPRESSION TYPE="PROPERTY" NAME="IDENTITY">
 <EXPRNODE NAME="PROP_NAME" VALUE="Region"/>
 </EXPRESSION>
 <EXPRESSION TYPE="STRING" NAME="CONST">
 <EXPRNODE NAME="VALUE" VALUE="Other Italy"/>
 </EXPRESSION>
 </EXPRESSION>
 <EXPRESSION TYPE="VOID" NAME="REMOVE">
 <EXPRNODE NAME="PROP_NAME" VALUE="Region"/>
 </EXPRESSION>
</EXPRESSION>

VOID REMOVE_EXPORTED_PROP
VOID expressions return no value but are used to perform other work. The VOID REMOVE_EXPORT¬
ED_PROP expression deletes the file containing the value of an exported property and also the property
value itself, if desired.

Use REMOVE_EXPORTED_PROP to remove a file created by the VOID EXPORT_PROP or VOID RE¬
TRIEVE_URL expressions. The following expression nodes can modify REMOVE_EXPORTED_PROP:

• PROP_NAME - Specifies the name of the property to remove.
• URL - Specifies the URL that files were written to. This value may be either an absolute path or a

path relative to the location of Pipeline.epx.
• PREFIX - Specifies any prefix used in the file name to remove. This value often corresponds to

the value of PREFIX in the VOID EXPORT_PROP expression.
• REMOVE_PROPS - Specifies whether to remove the property from the record after deleting the file

where the property was stored. TRUE removes the property from the record after removing the
corresponding file. FALSE does not remove the property.

See the EXPRESSION element for DTD and attribute information.

Example

As the COMMENT element indicates, this example removes the temporary file created by EXPORT_PROP.

<EXPRESSION TYPE="VOID" NAME="REMOVE_EXPORTED_PROP">
<COMMENT>This expression removes the temporary file that is created
on disk by the RETRIEVE_URL expression.</COMMENT>
 <EXPRNODE NAME="PROP_NAME" VALUE="Endeca.Document.Body"/>

Endeca ConfidentialEndeca® Platform Services Data Foundry Expression Reference

About Data Foundry expressions | VOID expressions32

 <EXPRNODE NAME="REMOVE_PROPS" VALUE="TRUE"/>
</EXPRESSION>

VOID REMOVE_RECORD
VOID expressions return no value but are used to perform other work. The VOID REMOVE_RECORD
expression removes the current record.

Processing of the record stops, and the next record is retrieved. REMOVE_RECORD is typically used
within an IF expression to remove records that meet or do not meet certain criteria.

See the EXPRESSION element for DTD and attribute information.

Example

This example removes the record if the value of Name and Text are the same.

<EXPRESSION TYPE="VOID" NAME="IF">
 <EXPRESSION TYPE="INTEGER" NAME="MATH">
 <EXPRNODE NAME="TYPE" VALUE="STRING"/>
 <EXPRNODE NAME="OPERATOR" VALUE="EQUAL"/>
 <EXPRESSION TYPE="PROPERTY" NAME="IDENTITY">
 <EXPRNODE NAME="PROP_NAME" VALUE="Name"/>
 </EXPRESSION>
 <EXPRESSION TYPE="PROPERTY" NAME="IDENTITY">
 <EXPRNODE NAME="PROP_NAME" VALUE="Text"/>
 </EXPRESSION>
 </EXPRESSION>
 <EXPRESSION TYPE="VOID" NAME="REMOVE_RECORD"/>
</EXPRESSION>

VOID RENAME
VOID expressions return no value but are used to perform other work. The VOID RENAME expression
changes the name of the specified property for the current record.

The name of the property to change is given in an OLD_NAME expression node, and the new name is
given in a NEW_NAME expression node. Only the property name is affected—the property values stay
the same.

See the EXPRESSION element for DTD and attribute information.

Example

This example renames PropPrice to Price.

<EXPRESSION TYPE="VOID" NAME="RENAME">
 <EXPRNODE NAME="OLD_NAME" VALUE="PropPrice"/>
 <EXPRNODE NAME="NEW_NAME" VALUE="Price"/>
</EXPRESSION>

VOID RETRIEVE_URL
VOID expressions return no value but are used to perform other work. The VOID RETRIEVE_URL
expression processes records that have a URL property by retrieving the URL, its corresponding
document content, and metadata.

Endeca® Platform Services Data Foundry Expression ReferenceEndeca Confidential

33About Data Foundry expressions | VOID expressions

RETRIEVE_URL requires a STRING sub-expression that names a file created to store the document
content from the URL. The STRING DIGEST expression is typically used to generate the file.

Forge adds the location of the file, the document content, and other values to the record as property
values. The file containing the document content must be unique for each record or Forge overwrites
the content when processing subsequent records.

Parameters that affect how this expression retrieves URLs can be expressed as record properties to
configure URL retrieval.These parameters include connection time outs (Endeca.Fetch.Connect¬
Timeout), data transfer rates (Endeca.Fetch.TransferRateLowSpeedLimit), the use of proxy
servers (Endeca.Fetch.Proxy), and so on. See "Implementing the Endeca Crawler" in the Endeca
Forge Guide for information about metadata properties and configuration properties that the expression
retrieves or stores with the record.

The following optional expression nodes modify the behavior of VOID RETRIEVE_URL:

• BODY_PROP_NAME - Specifies the name of the property containing the document body.The default
value of this property is Endeca.Document.Body.

• URL_PROP_NAME - Specifies the name of the property that contains the URL to retrieve. Only one
URL is retrieved per record. The default value of this property is Endeca.Identifier.

• REVISION_PROP_NAME - Specifies the name of the property that contains the URL's revision
information. The default value of this property is Endeca.Document.Revision.

• KEY_RING - Specifies the path to a Key_ring.xml file that contains the authentication information
which a SPIDER uses when communicating with a host computer. Specify the path to this file in
the VALUE attribute. The path to the file may be absolute or relative to the location of the
Pipeline.epx file.

See the EXPRESSION element for DTD and attribute information.

Example

This example generates a file name for the retrieved file and it specifies that a Key_ring.xml should
be used for authentication.

<EXPRESSION TYPE="VOID" NAME="RETRIEVE_URL">
 <!-- this expression generates a filename for the retrieved file -->
 <EXPRESSION TYPE="STRING" NAME="CONCAT">
 <EXPRESSION TYPE="STRING" NAME="CONST">
 <EXPRNODE NAME="VALUE" VALUE="&cwd;"/>
 </EXPRESSION>
 <EXPRESSION TYPE="STRING" NAME="DIGEST">
 <EXPRESSION TYPE="PROPERTY" NAME="IDENTITY">
 <EXPRNODE NAME="PROP_NAME" VALUE="Endeca.Identifier"/>
 </EXPRESSION>
 </EXPRESSION>
 </EXPRESSION>
 <!-- this expression node specifies the path to the key ring file -->
 <EXPRNODE NAME="KEY_RING" VALUE="key_ring.xml"/>
</EXPRESSION>

VOID SPLIT
VOID expressions return no value but are used to perform other work. The VOID SPLIT expression
splits the values of a single property into multiple values of a new property, or into multiple properties.

Configure the expression as follows:

• Specify the property to split in an OLD_NAME expression node.

Endeca ConfidentialEndeca® Platform Services Data Foundry Expression Reference

About Data Foundry expressions | VOID expressions34

• Specify the property to contain the new values in a NEW_NAME expression node.
• Specify the delimiter to split on in a SPLIT expression node.

After performing the split, Forge trims leading and trailing white space from the new property values,
so leading or trailing spaces do not have to be included in the delimiter. For example, if the value of
the “Colors” property for a certain record is “red, blue, green”, and you split that value on the comma
delimiter, with a new name of “Hue”, the output is three separate properties: “Hue1”=“red”,
“Hue2”=“blue”, “Hue3”=“green”.

The default value of the optional ENUMERATE expression node is TRUE. If ENUMERATE is set to FALSE,
all of the new values are assigned to a single new property. In the previous example, the result would
be a single “Hue” property with the values “red”, “blue”, and “green," instead of three separate properties.

See the EXPRESSION element for DTD and attribute information.

Example

The example described above is expressed as follows:

<EXPRESSION TYPE="VOID" NAME="SPLIT">
 <EXPRNODE NAME="OLD_NAME" VALUE="Colors"/>
 <EXPRNODE NAME="NEW_NAME" VALUE="Hue"/>
 <EXPRNODE NAME="SPLIT" VALUE=","/>
 <EXPRNODE NAME="ENUMERATE" VALUE="TRUE"/>
</EXPRESSION>

VOID STRATIFY
VOID expressions return no value but are used to perform other work.The VOID STRATIFY expression
identifies a Stratify Classification Server that classifies Endeca records.

For each record that passes through the record manipulator, the STRATIFY expression requests that
the Stratify Classification Server classify a document indicated by Endeca.Document.Body. Forge
sends the document as an attachment to a Stratify Classification Server. The Stratify Classification
Server examines the document including the document’s structure and classifies it according to the
classification model you developed in Stratify Taxonomy Manager.You indicate the classification
model in the HIERARCHY_ID expression node. The Classification Server then sends back property
values containing a Stratify topic name, a unique ID, and a confidence rating of the classification.
Forge appends these values to the record for the document.

The following expression nodes are required in VOID STRATIFY:

• STRATIFY_HOST - Specifies the machine name or IP address of the Stratify Classification Server.
• STRATIFY_PORT - Specifies the port on which the Stratify Classification Server listens for requests

from Forge.
• HIERARCHY_ID - Specifies the identifier of a Stratify classification model.To determine the VALUE

of HIERARCHY_ID: First, navigate to the working directory of the Stratify Classification Server that
contains your classification model and taxonomy files. This directory is typically located at
<Stratify Install
Directory>\ClassificationServer\ClassificationServer\ClassificationServerWorkDir\Taxonomy-N,
where N is the number of the directory that contains the classification model you want to use with
your Endeca project. (Your environment may have multiple \Taxonomy-N directories each
containing different classification model and taxonomy files.) Second, note the number at the end
of the of \Taxonomy-N directory. This number is the value of HIERARCHY_ID. For example, if
the classification model you want to use is stored in ...\Taxonomy-2, then HIERARCHY_ID
should have VALUE="2".

Endeca® Platform Services Data Foundry Expression ReferenceEndeca Confidential

35About Data Foundry expressions | VOID expressions

• IDENTIFIER_PROP_NAME - Specifies the unique ID for the Endeca record being processed. The
default is Endeca.Identifier.

• BODY_PROP_NAME - Specifies the property that the Stratify Classification Server examines to
classify the document. The default property is Endeca.Document.Body.You can provide either
Endeca.Document.Body or Endeca.Document.Text. However, specifying Endeca.Docu¬
ment.Body provides better classification because Forge can send the document to Stratify
Classification Server as an attachment, and Stratify Classification Server can use the attachment
to determine structural information of the document that aids in classification. If you specify Ende¬
ca.Document.Text, Forge sends the converted text of the document without any of its structural
information.

See the EXPRESSION element for DTD and attribute information.

Example

This example connects to the indicated Stratify Classification Server and requests that it classify the
document indicated by Endeca.Document.Body using against hierarchy ID 1.

<EXPRESSION NAME="STRATIFY" TYPE="VOID" >
 <EXPRNODE NAME="STRATIFY_HOST" VALUE="10.0.0.999"/>
 <EXPRNODE NAME="STRATIFY_PORT" VALUE="7021"/>
 <EXPRNODE NAME="HIERARCHY_ID" VALUE="1"/>
 <EXPRNODE NAME="IDENTIFIER_PROP_NAME" VALUE="Endeca.Identifier"/>
<EXPRNODE NAME="BODY_PROP_NAME" VALUE="Endeca.Document.Body"/>

VOID UNIQUE
VOID expressions return no value but are used to perform other work. The VOID UNIQUE expression
deletes every value of a property except the first.

The name of the property is given in a PROP_NAME expression node. For example, if the “Color”
property has three values, “red”, “blue”, and “green”, then the UNIQUE expression removes the values
“blue” and “green”, leaving just the value “red”.

See the EXPRESSION element for DTD and attribute information.

Example

The example described above is expressed as follows:

<EXPRESSION TYPE="VOID" NAME="UNIQUE">
 <EXPRNODE NAME="PROP_NAME" VALUE="Color"/>
</EXPRESSION>

VOID UPDATE
VOID expressions return no value but are used to perform other work. The VOID UPDATE expression
changes the value of a property.

The name of the property to update is given in a PROP_NAME expression node, and the new value is
given in a sub-expression of type INTEGER, FLOAT, STRING, or PROPERTY. If the property has multiple
values, all values are changed.

See the EXPRESSION element for DTD and attribute information.

Endeca ConfidentialEndeca® Platform Services Data Foundry Expression Reference

About Data Foundry expressions | VOID expressions36

Example

This example updates records with the Endeca.Document.Body property by replacing "cwd" in
paths with the actual current working directory.

<EXPRESSION TYPE="VOID" NAME="UPDATE">
 <EXPRNODE NAME="PROP_NAME" VALUE="Endeca.Document.Body"/>
 <EXPRESSION TYPE="STRING" NAME="REPLACE">
 <EXPRNODE NAME="TARGET" VALUE="[cwd]"/>
 <EXPRNODE NAME="REPLACEMENT" VALUE="&cwd;"/>
 <EXPRESSION TYPE="PROPERTY" NAME="IDENTITY">
 <EXPRNODE NAME="PROP_NAME" VALUE="Endeca.Document.Body"/>
 </EXPRESSION>
 </EXPRESSION>
</EXPRESSION>

VOID UPDATE_RECORD
VOID expressions return no value but are used to perform other work. The VOID UPDATE_RECORD
expression is used as part of a partial update pipeline.epx file to update existing records by adding,
removing, or replacing dimensions, dimension values, or property values.

See the Endeca Partial Updates Guide for details about partial update processing. UPDATE_RECORD
requires an ACTION expression node to indicate the type of update to perform.You can add additional
PROP_ACTION, DIM_ACTION, and DVAL_ACTION expression nodes depending upon whether you
want to modify properties, dimensions, or dimension values of the record. The following list further
describes the expression nodes that refine the behavior of the UPDATE_RECORD expression:

• ACTION - Indicates the type of update to perform on a record. Valid values of the VALUE attribute
are ADD, ADD_OR_REPLACE, DELETE, DELETE_OR_IGNORE, REPLACE, and UPDATE.

• PROP_ACTION - Modifies a property on the record. Valid values of the VALUE attribute are ADD,
DELETE, REPLACE. A PROP_ACTION expression node must be followed by a PROP_NAME
expression node that specifies the property to modify.

• DIM_ACTION - Modifies a dimension on the record. Valid values of the VALUE attribute are ADD,
DELETE, REPLACE. A DIM_ACTION expression node must be followed by a DIMENSION_ID
expression node that specifies the dimension ID of the dimension to modify.

• DVAL_ACTION - Modifies a dimension value on the record. The only valid value of the VALUE
attribute is DELETE. A DVAL_ACTION expression node must be followed by a DVAL_ID expression
node that specifies the dimension value ID of the dimension value to remove.

See the EXPRESSION element for DTD and attribute information.

Example

This example updates records in the Dgraph by replacing them with the values specified below.

<EXPRESSION TYPE="VOID" NAME="UPDATE_RECORD">
 <EXPRNODE NAME="ACTION" VALUE="UPDATE"/>
 <EXPRNODE NAME="PROP_ACTION" VALUE="REPLACE"/>
 <EXPRNODE NAME="PROP_NAME" VALUE="P_WineType1"/>
 <EXPRNODE NAME="PROP_ACTION" VALUE="REPLACE"/>
 <EXPRNODE NAME="PROP_NAME" VALUE="P_WineType2"/>
 <EXPRNODE NAME="DIM_ACTION" VALUE="REPLACE"/>
 <EXPRNODE NAME="DIMENSION_ID" VALUE="8000"/>
 <EXPRNODE NAME="PROP_ACTION" VALUE="REPLACE"/>
 <EXPRNODE NAME="PROP_NAME" VALUE="P_PriceStr"/>
</EXPRESSION>

Endeca® Platform Services Data Foundry Expression ReferenceEndeca Confidential

37About Data Foundry expressions | VOID expressions

STRING expressions

STRING CONCAT
STRING expressions return text strings. They are used to manipulate non-numeric data. The STRING
CONCAT expression returns a string that is the concatenation of two or more values.

The values to be concatenated are given by sub-expressions, which can be of type STRING, INTEGER,
FLOAT, or PROPERTY. There are no EXPRNODE elements to configure STRING CONCAT.

See the EXPRESSION element for DTD and attribute information.

Example

This example concatenates the value of the property ChapterNum and ChapterTitle with a space
between them.

<EXPRESSION TYPE="VOID" NAME="CREATE">
 <EXPRNODE NAME="PROP_NAME" VALUE="ChapterNumTitle"/>
 <EXPRESSION TYPE="STRING" NAME="CONCAT">
 <EXPRESSION TYPE="PROPERTY" NAME="IDENTITY">
 <EXPRNODE NAME="PROP_NAME" VALUE="ChapterNum"/>
 </EXPRESSION>
 <EXPRESSION TYPE="STRING" NAME="CONST">
 <EXPRNODE NAME="VALUE" VALUE=" "/>
 </EXPRESSION>
 <EXPRESSION TYPE="PROPERTY" NAME="IDENTITY">
 <EXPRNODE NAME="PROP_NAME" VALUE="ChapterTitle"/>
 </EXPRESSION>
 </EXPRESSION>
</EXPRESSION>

STRING CONST
STRING expressions return text strings. They are used to manipulate non-numeric data. The STRING
CONST expression returns the same string constant, specified in a VALUE expression node.

See the EXPRESSION element for DTD and attribute information.

Example

This example creates a property called Name by concatenating three values, one of which is a constant
functioning as a term separator.

<EXPRESSION NAME="CREATE" TYPE="VOID">
 <EXPRNODE NAME="PROP_NAME" VALUE="Name"/>
 <EXPRESSION NAME="CONCAT" TYPE="STRING">
 <EXPRESSION NAME="IDENTITY" TYPE="PROPERTY">
 <EXPRNODE NAME="PROP_NAME" VALUE="file_name"/>
 </EXPRESSION>
 <EXPRESSION NAME="CONST" TYPE="STRING">
 <EXPRNODE NAME="VALUE" VALUE=", rev "/>
 </EXPRESSION>
 <EXPRESSION NAME="IDENTITY" TYPE="PROPERTY">
 <EXPRNODE NAME="PROP_NAME" VALUE="revision"/>
 </EXPRESSION>

Endeca ConfidentialEndeca® Platform Services Data Foundry Expression Reference

About Data Foundry expressions | STRING expressions38

 </EXPRESSION>
</EXPRESSION>

STRING DIGEST
STRING expressions return text strings. They are used to manipulate non-numeric data. The STRING
DIGEST expression creates a property identifier that is a digest of a specified PROP_NAME expression
node.

STRING DIGEST generates Message Digest 5 (MD5) digest strings, also called MD5 hashes and
message digests. A STRING DIGEST expression requires a PROP_NAME expression node. Typically,
a file name is generated using a STRING DIGEST of the Endeca.Identifier property.

See the EXPRESSION element for DTD and attribute information.

Examples

This example creates a digest identifier based on the Endeca.Identifier property.

<EXPRESSION TYPE="STRING" NAME="DIGEST">
 <EXPRESSION TYPE="PROPERTY" NAME="IDENTITY">
 <EXPRNODE NAME="PROP_NAME" VALUE="Endeca.Identifier"/>
 </EXPRESSION>
</EXPRESSION>

This example shows how to use a STRING DIGEST expression as a sub-expression of the VOID
RETRIEVE_URL expression, which is used to retrieve a document from its URL and store it in a file
on disk.

<EXPRESSION LABEL="" NAME="RETRIEVE_URL" TYPE="VOID" URL="">
 <COMMENT>Retrieve the document and store it as a temporary
 file in the state directory, named with the digest (MD5 hash)
 of its URL.
 </COMMENT>
 <EXPRESSION LABEL="" NAME="CONCAT" TYPE="STRING" URL="">
 <EXPRESSION LABEL="" NAME="CONST" TYPE="STRING" URL="">
 <EXPRNODE NAME="VALUE" VALUE="../partition0/state/"/>
 </EXPRESSION>
 <EXPRESSION TYPE="STRING" NAME="DIGEST">
 <EXPRESSION TYPE="PROPERTY" NAME="IDENTITY">
 <EXPRNODE NAME="PROP_NAME" VALUE="Endeca.Identifier"/>
 </EXPRESSION>
 </EXPRESSION>
 </EXPRESSION>
</EXPRESSION>

STRING FORMAT
STRING expressions return text strings. They are used to manipulate non-numeric data. The STRING
FORMAT expression returns the value from its sub-expression, converted to a floating-point number,
and formatted as specified.

The sub-expression may be a PROPERTY, STRING or FLOAT expression. A PRECISION expression
node sets the number of significant digits to include, and a SHOW_SIGN expression node sets whether
or not to show the sign of the number.

See the EXPRESSION element for DTD and attribute information.

Endeca® Platform Services Data Foundry Expression ReferenceEndeca Confidential

39About Data Foundry expressions | STRING expressions

Example

This example takes a value 8.99, formats it with 3 significant digits, and returns 8.990.

<EXPRESSION TYPE="STRING" NAME="FORMAT">
 <EXPRNODE NAME="PRECISION" VALUE="3"/>
 <EXPRNODE NAME="SHOW_SIGN" VALUE="FALSE"/>
 <EXPRESSION TYPE="FLOAT" NAME="CONST">
 <EXPRNODE NAME="VALUE" VALUE="8.99"/>
 </EXPRESSION>
</EXPRESSION>

STRING PERL
STRING expressions return text strings. They are used to manipulate non-numeric data. The STRING
PERL expression uses Perl to manipulate the data.

The Perl code is contained in an EXPRBODY element. The Zinc Perl module provides classes and
methods for gaining access to and manipulating the current record. Objects accessed from Perl are
copies of the current data; changing the Perl objects has no effect on the current data until a function
is called to explicitly copy the Perl objects back.

Endeca recommends that you perform record manipulation with the PERL_MANIPULATOR element
rather than with the EXPRESSION and RECORD_MANIPULATOR elements. However, if you need to
access and modify dimension sources (such as a dimension adapter or dimension server) you should
still use expressions such as DVAL PERL. The Perl manipulator does not access dimension sources.

See the EXPRESSION element for DTD and attribute information.

Example

<EXPRESSION TYPE="STRING" NAME="PERL">
 <EXPRBODY>
 ...your Perl code here. The VOID PERL topic has an example...
 </EXPRBODY>
</EXPRESSION>

STRING REPLACE
STRING expressions return text strings. They are used to manipulate non-numeric data. The STRING
REPLACE expression returns a string where sections of the string have been replaced by another
string.

The replacement occurs by taking an input string from a sub-expression, and replacing all occurrences
of a sub-string specified by a TARGET expression node, with a replacement sub-string, specified by a
REPLACEMENT expression node. The sub-expression may be a PROPERTY or a STRING expression.

See the EXPRESSION element for DTD and attribute information.

Example

This example replaces "cwd" in paths with the current working directory.

<EXPRESSION TYPE="VOID" NAME="UPDATE">
 <EXPRNODE NAME="PROP_NAME" VALUE="Endeca.Document.Body"/>
 <EXPRESSION TYPE="STRING" NAME="REPLACE">
 <EXPRNODE NAME="TARGET" VALUE="[cwd]"/>
 <EXPRNODE NAME="REPLACEMENT" VALUE="&cwd;"/>

Endeca ConfidentialEndeca® Platform Services Data Foundry Expression Reference

About Data Foundry expressions | STRING expressions40

 <EXPRESSION TYPE="PROPERTY" NAME="IDENTITY">
 <EXPRNODE NAME="PROP_NAME" VALUE="Endeca.Document.Body"/>
 </EXPRESSION>
 </EXPRESSION>
</EXPRESSION>

Endeca® Platform Services Data Foundry Expression ReferenceEndeca Confidential

41About Data Foundry expressions | STRING expressions

Chapter 2

Data Foundry language support

Language Support Table
Using the VOID ID_LANGUAGE expression, Forge can identify the following 118 language and encoding
pairs.

ARABIC CP1256 Microsoft Code Page 1256

ARABIC UTF-8 Unicode UTF-8

CATALAN ASCII ASCII

CATALAN ISO-8859-1 ISO-8859-1 (Latin 1)

CATALAN CP1252 Microsoft Code Page 1252

CATALAN UTF-8 Unicode UTF-8

CHINESE ASCII GB-Roman

CHINESE ASCII CNS-Roman

CHINESE GB GB2312-80

CHINESE CNS CNS 11643-1986

CHINESE EUC-CN EUC-CN

CHINESE BIG5 Big Five

CHINESE EUC DEC Hanzi Encoding

CHINESE BIG5-CP950 Microsoft Code Page 950

CHINESE Unicode Unicode UCS-2

CHINESE Unicode Unicode UTF-8

CZECH Latin2 ISO-8859-2 (Latin 2)

CZECH Latin2 Microsoft Code Page 1250

CZECH UTF-8 Unicode UTF-8

DANISH ASCII ASCII

DANISH ISO-8859-1 ISO-8859-1 (Latin 1)

DANISH CP1252 Microsoft Code Page 1252

DANISH UTF-8 Unicode UTF-8

DUTCH ASCII ASCII

DUTCH ISO-8859-1 ISO-8859-1 (Latin 1)

DUTCH CP1252 Microsoft Code Page 1252

DUTCH UTF-8 Unicode UTF-8

ENGLISH ASCII ASCII

ENGLISH ISO-8859-1 ISO-8859-1 (Latin 1)

ENGLISH CP1252 Microsoft Code Page 1252

ESTONIAN Latin4 ISO-8859-4 (Latin 4)

ESTONIAN Latin4 Microsoft Code Page 1257

ESTONIAN UTF-8 Unicode UTF-8

FINNISH ASCII ASCII

FINNISH ISO-8859-1 ISO-8859-1 (Latin 1)

FINNISH CP1252 Microsoft Code Page 1252

FINNISH UTF-8 Unicode UTF-8

FRENCH ASCII ASCII

FRENCH ISO-8859-1 ISO-8859-1 (Latin 1)

FRENCH CP1252 Microsoft Code Page 1252

FRENCH UTF-8 Unicode UTF-8

GERMAN ASCII ASCII

GERMAN ISO-8859-1 ISO-8859-1 (Latin 1)

GERMAN CP1252 Microsoft Code Page 1252

GERMAN UTF-8 Unicode UTF-8

GREEK Greek ISO-8859-7

GREEK Greek Microsoft Code Page 1253

GREEK UTF-8 Unicode UTF-8

HEBREW Hebrew ISO-8859-8

HEBREW Hebrew Microsoft Code Page 1255

HEBREW UTF-8 Unicode UTF-8

HUNGARIAN Latin2 ISO-8859-2 (Latin 2)

HUNGARIAN Latin2 Microsoft Code Page 1250

HUNGARIAN UTF-8 Unicode UTF-8

ICELANDIC ASCII ASCII

ICELANDIC ISO-8859-1 ISO-8859-1 (Latin 1)

ICELANDIC CP1252 Microsoft Code Page 1252

ICELANDIC UTF-8 Unicode UTF-8

Endeca ConfidentialEndeca® Platform Services Data Foundry Expression Reference

Data Foundry language support | Language Support Table44

ITALIAN ASCII ASCII

ITALIAN ISO-8859-1 ISO-8859-1 (Latin 1)

ITALIAN CP1252 Microsoft Code Page 1252

ITALIAN UTF-8 Unicode UTF-8

JAPANESE ASCII JIS-Roman

JAPANESE JIS ISO-2022-JP

JAPANESE JIS JIS X 0201-1976

JAPANESE JIS JIS X 0201-1997

JAPANESE JIS JIS X 0208-1983

JAPANESE JIS JIS X 0208-1990

JAPANESE JIS JIS X 0212-1983

JAPANESE JIS JIS X 0212-1990

JAPANESE EUC-JP EUC-JP

JAPANESE SJS Shift-JIS

JAPANESE JIS DEC Kanji

JAPANESE CP932 Microsoft Code Page 932

JAPANESE Unicode Unicode UCS-2

JAPANESE Unicode Unicode UTF-8

KOREAN ASCII KS-Roman

KOREAN KSC KS C 5861-1992

KOREAN KSC EUC-KR

KOREAN Unicode Unicode UCS-2

KOREAN Unicode Unicode UTF-8

LATVIAN Latin4 ISO-8859-4

LATVIAN Latin4 Microsoft Code Page 1257

LITHUANIAN Latin4 ISO-8859-4

LITHUANIAN Latin4 Microsoft Code Page 1257

LITHUANIAN UTF-8 Unicode UTF-8

NORWEGIAN ASCII ASCII

NORWEGIAN ISO-8859-1 ISO-8859-1 (Latin 1)

NORWEGIAN CP1252 Microsoft Code Page 1252

NORWEGIAN UTF-8 Unicode UTF-8

POLISH Latin2 ISO-8859-2 (Latin 2)

POLISH Latin2 Microsoft Code Page 1250

POLISH UTF-8 Unicode UTF-8

PORTUGUESE ASCII ASCII

Endeca® Platform Services Data Foundry Expression ReferenceEndeca Confidential

45Data Foundry language support | Language Support Table

PORTUGUESE ISO-8859-1 ISO-8859-1 (Latin 1)

PORTUGUESE CP1252 Microsoft Code Page 1252

PORTUGUESE UTF-8 Unicode UTF-8

ROMANIAN Latin2 ISO-8859-2 (Latin 2)

ROMANIAN Latin2 Microsoft Code Page 1250

ROMANIAN UTF-8 Unicode UTF-8

RUSSIAN ISO-8859-5 ISO-8859-5

RUSSIAN KOI8R KOI 8-R

RUSSIAN CP1251 Microsoft Code Page 1251

RUSSIAN UTF-8 Unicode UTF-8

SLOVAK Latin2 ISO-8859-2 (Latin 2)

SLOVAK UTF-8 Unicode UTF-8

SPANISH ASCII ASCII

SPANISH ISO-8859-1 ISO-8859-1 (Latin 1)

SPANISH CP1252 Microsoft Code Page 1252

SPANISH UTF-8 Unicode UTF-8

SWEDISH ASCII ASCII

SWEDISH ISO-8859-1 ISO-8859-1 (Latin 1)

SWEDISH CP1252 Microsoft Code Page 1252

SWEDISH UTF-8 Unicode UTF-8

THAI CP874 Microsoft Code Page 874

THAI UTF-8 Unicode UTF-8

TURKISH CP1254 Microsoft Code Page 1254

TURKISH UTF-8 Unicode UTF-8

Endeca ConfidentialEndeca® Platform Services Data Foundry Expression Reference

Data Foundry language support | Language Support Table46

Index

D

DVAL
CONST 12
MATCH 13
PERL 14

E

EXPRBODY 12
EXPRESSION 9
expressions

about
EXPRNODE 11

F

FLOAT
CONST 14
MATH 15

I

INTEGER
AND 16
CONST 16
MATH 17
PERL 19
PROP_EXISTS 20

L

language support 43

P

PROPERTY
ALL 21
DVAL 21

PROPERTY (continued)
IDENTITY 21
NVL 22
PERL 23

S

STRING
CONCAT 38
CONST 38
DIGEST 39
FORMAT 39
PERL 40
REPLACE 40

V

VOID
ADD_DVAL 23
ADD_DVAL_PROP 23
CLEAN_DVALS 24
CONVERTTOTEXT 25
CREATE 25
EXPORT_PROP 26
ID_LANGUAGE 26
IF 27
IMPORT_PROP 29
languages supported 43
PARSE_DOC 30
PERL 31
REMOVE 32
REMOVE_EXPORTED_PROP 32
REMOVE_RECORD 33
RENAME 33
RETRIEVE_URL 34
SPLIT 34
STRATIFY 35
UNIQUE 36
UPDATE 36
UPDATE_RECORD 37

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Endeca Customer Support

	About Data Foundry expressions
	XML syntax for EXPRESSION elements
	EXPRESSION
	EXPRNODE
	EXPRBODY

	DVAL expressions
	DVAL CONST
	DVAL MATCH
	DVAL PERL

	FLOAT expressions
	FLOAT CONST
	FLOAT MATH

	INTEGER expressions
	INTEGER AND
	INTEGER CONST
	INTEGER MATH
	INTEGER PERL
	INTEGER PROP_EXISTS

	PROPERTY expressions
	PROPERTY ALL
	PROPERTY DVAL
	PROPERTY IDENTITY
	PROPERTY NVL
	PROPERTY PERL

	VOID expressions
	VOID ADD_DVAL
	VOID ADD_DVAL_PROP
	VOID CLEAN_DVALS
	VOID CONVERTTOTEXT
	VOID CREATE
	VOID EXPORT_PROP
	VOID ID_LANGUAGE
	VOID IF
	VOID IMPORT_PROP
	VOID PARSE_DOC
	VOID PERL
	VOID REMOVE
	VOID REMOVE_EXPORTED_PROP
	VOID REMOVE_RECORD
	VOID RENAME
	VOID RETRIEVE_URL
	VOID SPLIT
	VOID STRATIFY
	VOID UNIQUE
	VOID UPDATE
	VOID UPDATE_RECORD

	STRING expressions
	STRING CONCAT
	STRING CONST
	STRING DIGEST
	STRING FORMAT
	STRING PERL
	STRING REPLACE

	Data Foundry language support
	Language Support Table

	Index

