
Endeca® Content Assembler
Page Builder Developer's Guide

Version 2.1.x • December 2011

Contents

Preface...7
About this guide..7
Who should use this guide..7
Conventions used in this guide...8
Contacting Endeca Customer Support...8

Chapter 1: Developing Applications with Template-Based Pages.........9
Overview of roles..9
About cartridges...9
About templates and Page Builder...10
About content items and the Content Assembler API...11
A typical workflow for creating a template-based application...12
Page Builder and Content Assembler API architecture..12

Chapter 2: Working with Templates for Dynamic Pages.......................15
Template prerequisites..15

About dynamic pages and rule groups..15
About using zones with dynamic pages...16
Creating a zone for dynamic pages...16
Creating a style for dynamic pages...17
About maintaining consistent dimension value IDs...17

About creating templates..18
About template validation..18
About the type and ID for a template...19
Specifying the zone and style for a template...20
Specifying custom rule properties for a template..20
About using thumbnail images in Page Builder...21
Specifying the description and thumbnail image for a template..21
About saving templates...22

About defining content properties...22
Specifying the default name for a ContentItem..23
About content properties...23
Types of property elements...25
Adding a string property..26
Adding a Boolean property..27
Adding a navigation refinements property...27
About record properties...29
Adding a navigation records property..29
Adding a record list property..31
Adding a content item property..32
Adding a content item list property..33

About defining the editing interface for properties..34
Adding a string editor...35
Adding a combo box editor..37
Adding an image preview..40
Adding a checkbox editor..42
Adding a navigation refinements selector..43
Adding a navigation records editor..44
Adding a record selector..47
About cartridge selectors...49
Adding a group label..49

About using XML pass-through properties...50
About using pass-through content properties..50
About passing arbitrary XML to the front-end application..52

Chapter 3: Supporting Page Builder...53

iii

Making templates available in Page Builder...53
Uploading templates to Page Builder..53
About modifying templates that are used by existing pages..54
About updating templates..55
Updating templates in Page Builder..56
Retrieving the current templates from Page Builder..56
About removing templates...57
Removing templates from Page Builder..58

Troubleshooting problems with uploading templates..58
Troubleshooting invalid templates...60
Troubleshooting invalid pages...61
File hosting and security considerations...62

Chapter 4: Extending Page Builder with Community Editors...............65
About Page Builder editors...65
Scenarios for extending Page Builder and the Content Assembler..66
What is the Page Builder Editor SDK?..67
About the Page Builder Editor API..68

About Page Builder editor representation in the API...68
The Page Builder Editor API content model..69
About eventing in Page Builder..71
Compile-time and runtime dependencies..71

About setting up the sample editor...72
About Flex..73
Setting up your development environment using the sample project..73
Hosting the sample editor module...74
Modifying the sample editor configuration file..75
Modifying webstudio.properties to enable the sample editor...75
Incorporating the sample cartridge..76

About developing editors..76
The editor creation workflow..76
About the Page Builder editor life cycle...78
About editor instantiation...80
About configuring editors...81
About binding an editor to multiple properties...83
Working with the content model...83
About handling changes to the content model..85
Working with custom XML properties..86
About read-only mode...88
About handling error conditions...88
About handling conflicts between content and editor definitions...88
About writing editor components outside of Flex...89
About client-server communication in editors..91
About debugging an editor...91

Installing an editor...92
Specifying editors for Page Builder..92
Enabling the editor configuration file..94
Using editors in templates...95
About using SSL and editors...96

Troubleshooting an editor..97
About using the Page Builder XML View...97
Ensuring Page Builder loads the current editor modules...98
Changes to the appearance of Page Builder when using community editors......................................98

Endeca® Content Assembleriv

Copyright and disclaimer

Product specifications are subject to change without notice and do not represent a commitment on
the part of Endeca Technologies, Inc. The software described in this document is furnished under a
license agreement.The software may not be reverse engineered, decompiled, or otherwise manipulated
for purposes of obtaining the source code. The software may be used or copied only in accordance
with the terms of the license agreement. It is against the law to copy the software on any medium
except as specifically allowed in the license agreement.

No part of this document may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying and recording, for any purpose without the express written
permission of Endeca Technologies, Inc.

Copyright © 2003-2011 Endeca Technologies, Inc. All rights reserved. Printed in USA.

Portions of this document and the software are subject to third-party rights, including:

Corda PopChart® and Corda Builder™ Copyright © 1996-2005 Corda Technologies, Inc.

Outside In® Search Export Copyright © 2011 Oracle. All rights reserved.

Rosette® Linguistics Platform Copyright © 2000-2011 Basis Technology Corp. All rights reserved.

Teragram Language Identification Software Copyright © 1997-2005 Teragram Corporation. All rights
reserved.

Trademarks

Endeca, the Endeca logo, Guided Navigation, MDEX Engine, Find/Analyze/Understand, Guided
Summarization, Every Day Discovery, Find Analyze and Understand Information in Ways Never Before
Possible, Endeca Latitude, Endeca InFront, Endeca Profind, Endeca Navigation Engine, Don't Stop
at Search, and other Endeca product names referenced herein are registered trademarks or trademarks
of Endeca Technologies, Inc. in the United States and other jurisdictions. All other product names,
company names, marks, logos, and symbols are trademarks of their respective owners.

The software may be covered by one or more of the following patents: US Patent 7035864, US Patent
7062483, US Patent 7325201, US Patent 7428528, US Patent 7567957, US Patent 7617184, US
Patent 7856454, US Patent 7912823, US Patent 8005643, US Patent 8019752, US Patent 8024327,
US Patent 8051073, US Patent 8051084, Australian Standard Patent 2001268095, Republic of Korea
Patent 0797232, Chinese Patent for Invention CN10461159C, Hong Kong Patent HK1072114, European
Patent EP1459206, European Patent EP1502205B1, and other patents pending.

v

Preface

Endeca® InFront enables businesses to deliver targeted experiences for any customer, every time, in
any channel. Utilizing all underlying product data and content, businesses are able to influence customer
behavior regardless of where or how customers choose to engage — online, in-store, or on-the-go.
And with integrated analytics and agile business-user tools, InFront solutions help businesses adapt
to changing market needs, influence customer behavior across channels, and dynamically manage a
relevant and targeted experience for every customer, every time.

InFront Workbench with Experience Manager provides a single, flexible platform to create, deliver,
and manage content-rich, multichannel customer experiences. Experience Manager allows non-technical
users to control how, where, when, and what type of content is presented in response to any search,
category selection, or facet refinement.

At the core of InFront is the Endeca MDEX Engine,™ a hybrid search-analytical database specifically
designed for high-performance exploration and discovery. InFront Integrator provides a set of extensible
mechanisms to bring both structured data and unstructured content into the MDEX Engine from a
variety of source systems. InFront Assembler dynamically assembles content from any resource and
seamlessly combines it with results from the MDEX Engine.

These components — along with additional modules for SEO, Social, and Mobile channel support —
make up the core of Endeca InFront, a customer experience management platform focused on delivering
the most relevant, targeted, and optimized experience for every customer, at every step, across all
customer touch points.

About this guide
This guide describes the major tasks involved in supporting content administrators using Endeca Page
Builder and creating templates to drive dynamic pages. It also covers extending Page Builder
functionality using the Page Builder Editor SDK.

This guide assumes that you have read the Endeca Commerce Suite Getting Started Guide or Endeca
Publishing Suite Getting Started Guide and that you are familiar with Endeca’s terminology and basic
concepts.

This guide covers only the features of the Content Assembler API, and is not a replacement for the
available material documenting other Endeca products and features. For a list of recommended reading,
please refer to the section "Who should use this guide."

Who should use this guide
This guide is intended for developers who are building Endeca applications using the Endeca Workbench
and the Content Assembler API.

If you are a new user of the Endeca Commerce Suite or the Endeca Publishing Suite and you are not
familiar with developing Endeca applications, Endeca recommends reading the following guides prior
to this one:

1. Endeca Commerce Suite Getting Started Guide or Endeca Publishing Suite Getting Started Guide

2. Endeca Basic Development Guide
3. Endeca Advanced Development Guide

Once you have familiarized yourself with the concepts in this Page Builder Developer's Guide, Endeca
recommends reading one of the following:

• Endeca Content Assembler API and Reference Application Guide for Java (Content Assembler
API for Java users)

• Endeca Content Assembler API and Reference Application Guide for the RAD Toolkit for ASP.NET
(Content Assembler API for the RAD Toolkit for ASP.NET users)

If you are an existing user of the Endeca Information Access Platform or the Endeca Commerce Suite
and you are familiar with developing Endeca applications, Endeca recommends reading the Endeca
Commerce Suite Getting Started Guide before this guide.

Remember: All documentation is available on the Endeca Developer Network (EDeN) at
http://eden.endeca.com.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace
font. In the case of long lines of code, or when inline monospace text occurs at the end of a line, the
following symbol is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

Contacting Endeca Customer Support
The Endeca Support Center provides registered users with important information regarding Endeca
software, implementation questions, product and solution help, training and professional services
consultation as well as overall news and updates from Endeca.

You can contact Endeca Standard Customer Support through the Support section of the Endeca
Developer Network (EDeN) at http://eden.endeca.com.

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

| Preface8

http://eden.endeca.com
http://eden.endeca.com

Chapter 1

Developing Applications with
Template-Based Pages

This section provides an overview of working with Page Builder and the Content Assembler API to
create an Endeca application with template-driven dynamic pages.

Overview of roles
This introduction discusses several roles involved in creating a Web application with template-based
pages.

• Application developers, who create a set of custom templates as well as a front-end application
that can render template-based content.

• Content administrators, who are typically site editors responsible for managing the information
presented in the Web application. In the case of an eCommerce site, this role may be filled by
merchandisers.

• Managers who are responsible for approving pages for publication. These managers may have
titles such as Editorial Director or Director of Merchandising.

• A creative team, which may consist of an art director, Web designer, and graphic artist, or any
combination of those roles.

About cartridges
A cartridge is a functional component that a content administrator can place on a dynamic page using
Page Builder. Examples of cartridges may include a Guided Navigation cartridge, results list cartridge,
or rotating banner cartridge.

A cartridge is comprised of several parts:

• A configuration file (XML template) that defines the content structure and the editing interface in
Page Builder. Page Builder ships with a collection of reference templates, but application developers
should customize these for their specific needs.

• Zero or more Page Builder editors that allow the content administrator to configure cartridge
content. Page Builder ships with several standard editors, but application developers can develop
editors that are tailored to particular business needs if so desired.

• One or more Content Assembler tag handlers to do additional query processing before returning
results to the application. The Content Assembler ships with several standard tag handlers.

Developing tag handlers is usually not necessary, but can be useful for interfacing with third-party
systems.

• Rendering code to display the content in the Web application. Each template is associated with
a particular piece of rendering code, enabling developers to build applications (and content
administrators to configure their content) in a modular fashion.

Templates serve as a basis for the dynamic pages that content administrators create in Page Builder.
The templates are XML documents that define the content structure of a dynamic page, or part of a
page. A template can be thought of as a content object definition that declares what properties the
content contains, and how those properties can be configured in Page Builder.

Because a template defines the properties in the content objects, you can write code that is tailored
to render the content driven by a specific template. For example, one cartridge template may contain
properties for a banner image and a link, while another template may be designed to contain several
records.The corresponding cartridge code for each of these templates then uses the configured values
of these properties to create a banner promotion or a Content Spotlighting section of a page.

By building cartridges and associating specific rendering logic with every template in the application,
developers ensure that the application can render any page configuration created in Page Builder.
This enables content administrators to flexibly combine content in a modular manner while maintaining
a consistent look-and-feel throughout an entire site.

For more information about writing editors for Page Builder, see "Extending Page Builder with
Community Editors" in this guide. For more information about writing tag handlers for the Content
Assembler, see the Content Assembler API Developer's Guide.

About templates and Page Builder
Templates can either define the content structure of an entire page or a section of a page.

Page templates drive the content of an entire Web page.They define parts of the page called sections.

Sections can be thought of as slots that can be filled with content such as a banner image, Content
Spotlighting, or search results). Typically, they represent a physical area on the page, but can also
represent content that is not visible (for example, meta keywords used for search engine optimization).
They can also represent content that may be rendered in a number of ways (for example, a page
element that may display in the left or right column of a page depending on context).

The content in sections is also driven by templates known as cartridge templates.The following diagram
shows a page template that includes two sections, and the cartridge templates that can be applied to
each section.

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Developing Applications with Template-Based Pages | About templates and Page Builder10

A template defines what kinds of content can be placed in each of its sections. In this example, the
SimpleImageBanner, FlashBanner, and RotationalBanner cartridges can be inserted in any section
of type HorizontalBanner. A page template may include multiple sections of the same type. The same
type of section can also be used in multiple templates. Cartridge templates can in turn define sections
within them.

Content administrators configure dynamic pages in Page Builder by selecting cartridges to insert into
sections and then populating the cartridges with content. The interface for populating cartridges in
Page Builder is driven by the template definition. Some cartridges may be prepopulated by the
application developer with information that the application can use to render predefined content, without
the need for additional configuration by the content administrator. Such prepopulated cartridges can
still present contextually relevant content through the use of Endeca query refinements.

About content items and the Content Assembler API
When a content administrator creates pages in Page Builder, the resulting configurations are saved
as XML documents in the MDEX Engine.

If a template is seen as a content object definition, then these page configurations represent instances
of the content objects that have specific values for the properties defined in the template.

The Content Assembler retrieves these page configurations, evaluates the XML and returns content
item objects based on the configuration and any additional queries that need to be made. For example,
if the template defines a record list property and a content administrator specifies a navigation query

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

11Developing Applications with Template-Based Pages | About content items and the Content Assembler
API

to populate that property, the assembler executes that query to return specific records in the content
item object.

Each template corresponds to a single content item object, which may contain other content items
within it. In other words, the entire page is returned by the Content Assembler API as a single root
content item, and each cartridge within the page is returned as a nested content item property within
the parent content item.

A typical workflow for creating a template-based application
Applications built with template-based pages present dynamic content with a consistent look and feel,
while Page Builder enables updates to that content with relatively little maintenance.

The process of developing the application generally begins with the creative team.This team develops
mockups of the page layouts that are used throughout the application, as well as any custom images
or rich media that the design requires. Although there may be several variations, the set of layouts for
a site typically follow a common high-level structure that results in a unified appearance across an
entire site. For example, certain elements (such as a logo or banner) may always be present in the
same location, or the proportions or relative position of various areas of the page may remain constant
even if the content within those areas changes.

The application developer then creates cartridges based on the layouts from the creative team. This
involves writing templates that describe the overall content structure of a page, including page sections
that can be filled by certain cartridges.Typically, an application has only a few top-level page templates
that define the overall page layouts that are used in the site, and many cartridge templates that drive
the behavior of specific parts of a page. For each template, the developer writes code for the front-end
application that can render the content items based on that template. Because templates define the
kinds of content that are allowed in a page, an application that is aware of the templates being used
within the site can include very specific rendering logic for pages based on those templates.

The developer uploads the templates to Page Builder, and specifies an application that uses the
cartridge code as the preview application in Endeca Workbench.

A content administrator can then use Page Builder to create and configure dynamic pages.The content
administrator can control the conditions under which a page should display by applying triggers based
on navigation state, search terms, date ranges, or user profiles. Configuring a page in the Page Builder
consists of associating it with a particular trigger or set of triggers, and designating the content to
display by inserting and configuring cartridges in each section. Cartridges can contain content that is
either static or dynamically populated based on queries to the MDEX Engine.

Page Builder allows the content administrator to save progress incrementally and also to preview
dynamic pages to make sure that the application renders the content as desired.

Once a page configuration is complete, the content administrator can request that a manager activate
the page. Once the manager activates the page in Page Builder, it is published and accessible to the
end users of the Web site. The workflow model within Page Builder also allows content administrators
to make dramatic changes to pages in the tool and request re-activation from their manager without
the need for any changes in the application code.

Page Builder and Content Assembler API architecture
Page Builder and the Content Assembler API combine to enable the creation and display of dynamic
pages.

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Developing Applications with Template-Based Pages | A typical workflow for creating a template-based
application

12

This diagram shows the life cycle of a dynamic page that is created using Page Builder and rendered
by an application built with the Content Assembler API:

The application developer creates cartridges based on designs from the creative team and incorporates
the cartridge code into a Web application.

Based on the templates that have been uploaded to Page Builder, the content administrator configures
specific pages and sets them to display based on a set of criteria such as navigation state, user profile,
and date range. Page Builder outputs these page configurations as XML documents that are stored
in the MDEX Engine.

As users search or navigate within the site, the application queries the MDEX Engine using the Content
Assembler API, retrieves the dynamic page content that applies at the appropriate navigation state,
and renders the content.

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

13Developing Applications with Template-Based Pages | Page Builder and Content Assembler API
architecture

Chapter 2

Working with Templates for Dynamic Pages

This section describes the process of creating templates that are used to drive dynamic pages.

Template prerequisites
Page Builder leverages functionality from dynamic business rules such as triggers, priority, and workflow
to manage dynamic pages. Because dynamic pages are stored as dynamic business rules in the
MDEX Engine, some of the same supporting configuration is required for pages as for rules.

Before you create templates for use in the Page Builder, you must have the following in place for the
dynamic pages in your application:

• One or more rule groups (the "default" rule group is automatically created)
• One or more rule zones
• A rule style

You specify the zone and style for a page in the top-level page templates that you create.

About dynamic pages and rule groups
Dynamic pages use the same group mechanism as dynamic business rules.

You can use one rule group for all your dynamic pages, or you can use multiple groups to organize
the pages in your application, for example, into an Electronics group and a Jewelry group. Multiple
groups also allow you to manage permissions independently for each rule group.

If you are using both traditional dynamic business rules and dynamic pages in your application, create
rule groups for use with dynamic pages that are distinct from those used for dynamic business rules.
For example, if you group your rules and pages by category, you can have separate rule groups for
"Sports rules" and "Sports pages." For details about creating rule groups, see the Endeca Developer
Studio Help.

The Group List pages of both the Rule Manager and Page Builder display all groups that a user has
permission to view, regardless of whether they are used for dynamic business rules or dynamic pages.
Within a rule group, only rules that represent dynamic pages display in Page Builder. Both dynamic
business rules and dynamic pages display in the Rule Manager, but dynamic pages are read-only in
the Rule Manager for all users regardless of rule group permissions. Users who have the pages role
should have permissions to access groups that you have set up for use with dynamic pages, and users
with the rules role should have permissions for groups that are used only for dynamic business rules.

Workflow, resource locks, and priority for groups with dynamic pages function exactly as they do for
dynamic business rules. For more information about rule groups, see the Endeca Advanced
Development Guide.

About using zones with dynamic pages
Zones enable the display of dynamic pages in the application.While a single zone is usually sufficient,
multiple zones can enable finer-grained control over the display of dynamic pages.

Unlike dynamic business rules, which generally control only one aspect of a page that is divided up
into zones, dynamic pages drive the presentation of the page as a whole. In the context of dynamic
pages, sections represent the parts of a page and zones enable you to provide different perspectives
on the same page.

For example, if you want to present a tabbed pane that displays either product details or user reviews
of the same product (or summaries of different information for products based on the same navigation
state), you can use separate zones for each view. In this example, you would create a ProductDetails
zone and a UserReviews zone, with associated templates for each zone.

Related Links
Creating a zone for dynamic pages on page 16

Dynamic pages must be assigned a rule zone in order to display.You should create at least
one zone in your application for use exclusively with dynamic pages.

Creating a zone for dynamic pages
Dynamic pages must be assigned a rule zone in order to display.You should create at least one zone
in your application for use exclusively with dynamic pages.

Although the procedure to create a zone for dynamic pages is the same as for dynamic business rules,
there are certain properties you should set for dynamic page zones.

To create a zone for use with dynamic pages:

1. In the Project Explorer of Developer Studio, expand Dynamic Business Rules.

2. Double-click Zones to open the Zones view.

3. Click New to open the New Zone editor.

4. In the Name field, provide a unique name for the zone.

5. In the Rule Limit field, enter 1.

6. Select Valid for search.

Leave Shuffle rules and Unique by this dimension/property unselected.

Note: If you have both dynamic pages and business rules in your application, be aware that
conflicts may occur if a zone being used for dynamic pages is assigned to a business rule. If a
rule and a page within the same zone have overlapping triggers and the rule has higher priority,
the page may never display. In order to avoid this situation, assign names to the zones being
used for pages that clearly indicate that such zones are to be used for dynamic pages only so
that users do not assign them to dynamic business rules in the Rule Manager.

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Working with Templates for Dynamic Pages | Template prerequisites16

Creating a style for dynamic pages
Before you create dynamic pages, you must have at least one style defined in your application.

Endeca recommends that you create one style exclusively for use with dynamic pages. The style that
you assign to a dynamic page does not affect how it displays; it is only required to make the rule that
contains the page configuration valid.

Although the procedure to create a style for dynamic pages is the same as for dynamic business rules,
there are certain properties you should set for dynamic page styles.

To create a style for use with dynamic pages:

1. In the Project Explorer of Developer Studio, expand Dynamic Business Rules.

2. Double-click Styles to open the Styles view.

3. Click New to open the New Style editor.

4. In the Name field, provide a unique name for the style.

The style Title is optional, and does not display in Page Builder.

5. In the Records area:

a) For the Minimum value, enter 0.
b) For the Maximum value, enter 1.

About maintaining consistent dimension value IDs
Because the trigger locations for landing pages and the dynamic queries for record list cartridges are
both stored based on the ID of the selected dimension value, it is important that these IDs remain
stable.

If dimension value IDs change after landing pages have already been created based on the old IDs,
then the following may occur:

• IDs referenced in triggers and dynamic record lists for existing pages may be reassigned to a
different dimension value. In this case, the affected pages behave as if they were configured to
trigger or return results based on the new dimension value rather than the one designated by the
content administrator.

• If a landing page has a trigger with an invalid dimension value ID (that is, one that no longer
corresponds to a dimension value), then content administrators cannot save any changes that
they make to the landing page by clicking OK in the Edit View. This situation may occur if the
selected dimension value is deleted or the original dimension value is assigned a new ID and no
other dimension value is assigned the old ID.

• If any landing page in a landing page group has a trigger with an invalid dimension value ID, content
administrators cannot save changes they make to any page in that group by clicking Save All
Changes in the List View.

• A page with an invalid ID in the trigger never fires because the trigger criteria cannot be satisfied.
A page with an invalid ID specified for a dynamic record list cartridge returns zero records for that
cartridge.

The Endeca ITL process generally ensures that dimension value IDs remain consistent across updates.
However, if your application uses externally managed taxonomies, dimension value IDs may change
if you make changes to the dimension hierarchy. In order to avoid the problems caused by invalid and
inconsistent dimension value IDs, follow the recommendations in "Node ID requirements and identifier
management in Forge" in the Endeca Forge Guide.

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

17Working with Templates for Dynamic Pages | Template prerequisites

About creating templates
Templates are XML documents that define the content structure of a dynamic page or part of a page
and enable content administrators to specify page content in Page Builder.

Top-level templates, which define an entire page, and cartridge templates, which drive the content of
sections, share the same structure and are defined by the same schema.

Templates can be broken down into three parts:

• General information such as the template type, ID, description, and thumbnail image. This
information is used in Page Builder to help the content administrator select the appropriate template
for a page or section. For top-level page templates, this part of the template also allows you to
specify a zone and style, which the tool assigns to any pages that are created from that template.

• Property definitions. In this part of the template, you explicitly declare all the properties of the
ContentItem object that a template represents. Some properties also allow you to specify default
values.

• Property editors. These allow you to specify whether a property can be configured and some
attributes of the editing interface in Page Builder.

Properties may include simple string properties, record lists, or template sections. Most properties are
configurable and enable content administrators to define the behavior of pages that they build within
the tool. However, properties can also be used to pass information directly to the front-end application,
for example details about how to render the content within a template. By defining the properties in
the template along with how they can be configured in the tool, you ensure that the content items
returned by the Content Assembler API can be properly handled by the presentation logic in your
application.

In general, when creating page templates, you have a page layout provided by your creative team.
Working from a sample design or mockup, identify the high-level structure of the page -- this structure
informs the sections you define in your page template. Recall that the structure of each section is in
turn driven by a cartridge template, so if one portion of your page can contain either a large banner
image or a three-column content area, you can implement this as one page template with a section
that allows two different cartridge templates, rather than two different top-level templates.

Then, for each section, identify the information that your front-end application uses to render the content
in that section.This information is then modeled in the cartridge template as properties that the content
administrator can configure.

While most template properties and sections affect the visual appearance of the page, keep in mind
that they can also represent page elements that are not visible in the application. For example, a
property could contain meta keywords used for search engine optimization, or include embedded code
that does not render in the page but enables functionality such as Web analytics reporting. Sections
can also represent content that may be rendered in a number of ways (for example, a page element
that may display in the left or right column of a page depending on context).

About template validation
Templates are validated against the Page Builder template schemas when you upload them to Page
Builder.

Before you upload your templates to Page Builder, ensure that the templates validate against the
template schema. All templates must include the following schema declaration:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 type="PageTemplate" id="ThreeColumnNavigationPage">

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Working with Templates for Dynamic Pages | About creating templates18

Although the <RuleInfo> element is not required by the schema, it is required by Page Builder for
all top-level page templates. If the <RuleInfo> element is missing in a page template, or if a zone
or style specified in the element attributes does not exist in the application's instance configuration,
the template is not available in the Page Builder and an error is written to webstudio.log.

A copy of the template schema (content-template.xsd) and associated content schemas
(content.xsd and content-tags.xsd) is located for your reference in \doc\schemas (on
Windows) or /doc/schemas (on UNIX) in your Content Assembler API installation. In general, the
template schema describes the format of page and cartridge templates, while the content schemas
describe the format of the page configurations created in Page Builder, although the content-tags
schema is also used for some types of template configuration.

Related Links
Troubleshooting problems with uploading templates on page 58

Template errors are returned to the emgr_update command line call and detailed in the
webstudio.log file.

About the type and ID for a template
Each template is required to have a type and a unique id.

The template type determines where a template can be applied. There are two general categories of
templates.Top-level, or page templates, describe the structure of an entire Web page.These templates
can include sections, which are placeholders for content driven by templates known as cartridge
templates. Cartridge templates can in turn include sections within them to allow for further nested
content.

Page templates are identified by a special type string. Any template designed to be a top-level template
must be of type PageTemplate.

Cartridge templates can be of any type you specify. This allows you to constrain the cartridges that
can be inserted in a particular section. For example, if you have a page or cartridge template that
includes a "HorizontalBanner" section, only cartridges of type "HorizontalBanner" are available to insert
into that section in Page Builder.

The template id is a string that is used to identify the template. It must be unique within your application;
templates with non-unique IDs do not display in Page Builder. The value should be as descriptive as
possible to help the user select the appropriate template, for instance, "ThreeColumnWithLargeBanner"
or "HolidaySalePromotion."

Type and id are specified as required attributes on the <ContentTemplate> element. For example:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="PageTemplate" id="ThreeColumnNavigationPage">

Note: The type and id attributes are defined as type xs:Name in the template schema. This
means that valid values for these attributes must:

• be a single string token (no spaces or commas)
• begin with a letter, a colon (:), or a hyphen (-)

Numbers are allowed as long as they do not appear at the beginning of the string.

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

19Working with Templates for Dynamic Pages | About creating templates

Specifying the zone and style for a template
Page templates are required to specify a rule zone and a style.When a page is created in Page Builder,
the zone and style are applied to any pages based on that template.

Zones and styles are only used for page templates, not cartridge templates.

To specify the zone and style for a page template:

Insert a <RuleInfo> element immediately after the opening <ContentTemplate> tag as in the
following example:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 type="PageTemplate" id="ThreeColumnNavigationPage">
<RuleInfo zone="NavigationPageZone" style="PageStyle"/>
<!-- additional elements deleted from this example -->

</ContentTemplate>

The value of the zone attribute must be the exact name of the zone that is defined in your
application's instance configuration and that you want to apply to all pages created with this template.

The value of the style attribute is the exact name of any style that is defined in your application's
instance configuration. Endeca recommends that you create one style exclusively for use with all
dynamic pages. Styles are required to make pages valid, but do not affect their display.

Specifying custom rule properties for a template
You can optionally specify custom rule properties in any page template. When a page is created in
Page Builder, the rule properties are applied to any pages based on that template.

Before specifying custom properties, you must already have inserted a <RuleInfo> element in your
template.

Rule properties are key-value pairs that are passed back to the application along with query results.
They allow you to associate supplementary information with a landing page or to exclude certain
landing pages from consideration by the MDEX Engine.

Custom rule properties are only used for page templates, not cartridge templates.

To specify custom rule properties for a page template:

1. Insert a <Property> element within <RuleInfo> as in the following example:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 type="PageTemplate" id="ThreeColumnNavigationPage">
 <RuleInfo zone="NavigationPageZone" style="PageStyle">

<Property name="my.property.name" value="My property value"/>
 </RuleInfo>
<!-- additional elements deleted from this example -->

</ContentTemplate>

The value of the name attribute can be any string you choose to use for a property key. The name
cannot begin with the string endeca.internal. (this prefix is reserved for use by Endeca
components only).

The value of the value attribute can be any string.

2. Insert additional <Property> elements to specify additional rule properties for pages based on
this template.

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Working with Templates for Dynamic Pages | About creating templates20

For more information about using rule properties with landing pages, see the Content Assembler API
and Reference Application Guide.

About using thumbnail images in Page Builder
You can specify thumbnail images for page templates and section templates that display along with
the template description in the template selector and cartridge selector dialog boxes in Page Builder.
These images can help the content administrator identify the appropriate template to use for the pages
they create.

The Content Assembler sample application includes a Web application for hosting the thumbnail
images for the sample templates in the Endeca Tools Service.You can add your own thumbnail images
to this application, or the images may be hosted on a separate Web server from your Page Builder
instance. If the thumbnail image for a template is either not specified or not accessible, a default image
displays in the dialog box.

The suggested size for thumbnail images is 81 x 81 pixels; smaller images are stretched to fill this
size and larger images are cropped to show only the top left corner.

Related Links
File hosting and security considerations on page 62

Page Builder occasionally needs to access files hosted on a different server. Certain security
issues may apply.

Specifying the description and thumbnail image for a template
The description and thumbnail image for a template display in the template selector and cartridge
selector dialog boxes in Page Builder. Adding a description and thumbnail image to a template is
optional.

To specify the description and thumbnail image for a template:

Insert the following elements within <ContentTemplate>:

DescriptionElement

One or two sentences to help the content administrator identify the template
in Page Builder. This can include information about the visual layout of the

<Description>

template ("Three-column layout with large top banner") or its intended purpose
("Back to school promotion").

The absolute URL to a thumbnail image that shows a sample page or section
that is based on the template. The images are hosted on a Web server
accessible from the Page Builder server.

<ThumbnailUrl>

Note: If your thumbnails are hosted on the same server as Endeca
Workbench, you can omit http://<host>:<port> from the URL.

Example

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 type="PageTemplate" id="ThreeColumnNavigationPage">
 <RuleInfo zone="NavigationPageZone" style="PageStyle"/>
<Description>A page layout with left and right sidebars intended for

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

21Working with Templates for Dynamic Pages | About creating templates

general category pages.</Description>

<ThumbnailUrl>http://images.mycompany.com/thumbnails/PageTemplate/Three¬
ColumnNavigationPage.png</ThumbnailUrl>
<!-- additional elements deleted from this example -->

</ContentTemplate>

About saving templates
Templates are saved as XML files that are then uploaded to the Page Builder.

It is possible to have multiple templates in a single file, however, for ease of maintenance Endeca
recommends the following practices:

• Each template, whether it is a page template or a cartridge template, should be in a separate file.
• Name each template file using the following format: TemplateType-TemplateID.xml. For

example, PageTemplate-ThreeColumnNavigationPage.xml or
HorizontalBanner-ImageMap.xml

Note: Template file names cannot have spaces in them.

Endeca also recommends that you treat page and cartridge templates as part of your application's
configuration and store them in a version control system. It can also be useful to include a template
version number in a property for debugging purposes.

About defining content properties
When you create a template, you specify all the properties that are necessary to render a page or
section. These properties are returned as part of the content item object in the Content Assembler
API.

You define properties within the <ContentItem> element in the template. Each <ContentItem>
must have a <Name> property. In addition, you can define any number of properties for use by your
front-end application. For each property, you specify a name and a property type. In some cases, you
can optionally specify a default value for the property.

Properties can be associated with editing interfaces that enable configuration within Page Builder.
Content properties may include text, image URLs, or records that the content administrator can specify.
One type of property is a section, which allows content administrators to insert a cartridge to drive the
content of a specific part of a page.

You can choose not to expose a particular property in Page Builder and simply pass its value to your
front-end application. Examples of this usage can include a reference to the cartridge code that should
be used to render the template content, or queries to the MDEX Engine that are hidden from the
content administrator in the tool.

Related Links
About defining the editing interface for properties on page 34

After you have defined the content properties in your template, you can define how those
properties can be configured by the content administrator in Page Builder.

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Working with Templates for Dynamic Pages | About defining content properties22

Specifying the default name for a ContentItem
Name is a required property on a ContentItem. Generally the content administrator provides a value
for it in Page Builder, but you can specify a default name as a placeholder.

To specify a default name for a ContentItem:

Insert the <Name> element inside <ContentItem> as in the following example:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 type="PageTemplate" id="ThreeColumnNavigationPage">
 <RuleInfo zone="NavigationPageZone" style="PageStyle"/>
 <Description>A page layout with left and right sidebars intended for
general category pages.</Description>
 <ThumbnailUrl>http://images.mycompany.com/thumbnails/PageTemplate/Three¬
ColumnNavigationPage.png</ThumbnailUrl>
<ContentItem>

 <Name>New three-column page</Name>
<!-- additional elements deleted from this example -->

</ContentItem>
<!-- additional elements deleted from this example -->

</ContentTemplate>

<Name> is a required element, but you do not need to specify a value for the name. If you insert
an empty <Name/> element, an empty text field displays in Page Builder and the content
administrator supplies a value.

About content properties
You can define the properties of a page or section by nesting any number of <Property> elements
within the <ContentItem> element.

Each property must have a name that is unique within the template. This is the key by which your
application can access that property through the Content Assembler API.The name is specified in the
name attribute of the <Property> element.

Note: The name attribute is defined as type xs:Name in the template schema. This means that
valid values for these attributes must:

• be a single string token (no spaces or commas)
• begin with a letter, a colon (:), or a hyphen (-)

Numbers are allowed as long as they do not appear at the beginning of the string.

The child elements of <Property> allow you to specify the type of property. The template schema
provides several basic property types, such as <String>, <Boolean>, and <RecordList>. Additional
property types including <NavigationRefinements> and <NavigationRecords> are defined in
the content-tags schema.

The <ContentItem> element within <Property> allows you to define a section property. As the
template structure suggests, a section is in essence a placeholder for a nested content item defined
by a separate cartridge template. (Recall that each template, whether it is a page template or cartridge
template, defines a corresponding content item.)

In addition, the <Property> element can also contain content pass-through elements that cannot be
configured in Page Builder or arbitrary XML that is passed directly to your front-end application.

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

23Working with Templates for Dynamic Pages | About defining content properties

The following example shows the properties of a page template that defines several cartridge sections.

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="PageTemplate" id="ThreeColumnNavigationPage">
<!-- additional elements deleted from this example -->

 <ContentItem>
 <Name>New Three-Column Navigation Page</Name>
 <Property name="autogen_meta">
 <Boolean>true</Boolean>
 </Property>
 <Property name="title">
 <String>Endeca Content Assembler Reference Application</String>
 </Property>
 <Property name="meta_keywords">
 <String>content assembler reference application</String>
 </Property>
 <Property name="meta_description">
 <String>Endeca Content Assembler reference application.</String>
 </Property>
 <Property name="Header">
 <ContentItemList type="FullWidthContent"/>
 </Property>
 <Property name="LeftColumn">
 <ContentItemList type="SidebarItem" />
 </Property>
 <Property name="CenterColumn">
 <ContentItemList type="MainColumnContent" />
 </Property>
 <Property name="RightColumn">
 <ContentItemList type="SidebarItem" />
 </Property>
 <Property name="Footer">
 <ContentItemList type="FullWidthContent"/>
 </Property>
 </ContentItem>
<!-- additional elements deleted from this example -->

</ContentTemplate>

Each of the <ContentItemList> sections accept cartridges. For example, the properties of the left
column section may look similar to the following:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="SidebarItem" id="ThreeRecordBox">
<!-- additional elements deleted from this example -->

 <ContentItem>
 <Name>New Three Record Spotlight Box</Name>
 <Property name="title">
 <String>Featured Items</String>
 </Property>
 <Property name="record_list">
 <RecordList/>
 </Property>
 <Property name="link_text">
 <String/>
 </Property>
 </ContentItem>
<!-- additional elements deleted from this example -->

</ContentTemplate>

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Working with Templates for Dynamic Pages | About defining content properties24

Types of property elements
Each property type corresponds with a particular object type that is returned by the Content Assembler
API.

Configurable content properties

These property types can be associated with property editors to enable configuration by the content
administrator in Page Builder.

Object type returned by API (RAD
Toolkit for ASP.NET)

Object type returned by API
(Java)

Template element

booljava.lang.Boolean<Boolean>

Endeca.Data.Content.ICon¬
tentItem

com.endeca.content.Con¬
tentItem

<ContentItem>

Endeca.Data.Content.ICon¬
tentItemList

com.endeca.content.Con¬
tentItemList

<ContentItemList>

Endeca.Data.Content.Naviga¬
tion.INavigationRecords

com.endeca.con¬
tent.ene.Navigation¬
Records

<NavigationRecords>

Endeca.Data.DimensionStatesRe¬
sult

com.endeca.naviga¬
tion.DimensionList

<NavigationRefine¬
ments>

System.Collections.ObjectMod¬
el.ReadOnlyCollection<Record>

com.endeca.naviga¬
tion.ERecList

<RecordList>

stringjava.lang.String<String>

Pass-through content properties

These properties cannot be exposed for configuration in the Page Builder tool. They allow you to
embed MDEX Engine query results in the content item object that your application accesses through
the Content Assembler API.

Object type returned by API (RAD
Toolkit for ASP.NET)

Object type returned by API
(Java)

Template element

Endeca.Data.NavigationResultcom.endeca.naviga¬
tion.ENEQueryResults

<NavigationResult>

System.Collections.ObjectMod¬
el.ReadOnlyCollection<Record>

com.endeca.naviga¬
tion.ERecList

<NavQuery>

System.Collections.ObjectMod¬
el.ReadOnlyCollection<Record>

com.endeca.naviga¬
tion.ERecList

<RecordQuery>

Endeca.Data.BusinessRulecom.endeca.naviga¬
tion.Supplement

<Supplement>

System.Collections.ObjectMod¬
el.ReadOnlyCollection<Record>

com.endeca.naviga¬
tion.ERecList

<UrlEneQuery>

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

25Working with Templates for Dynamic Pages | About defining content properties

Custom property elements

You can insert your own arbitrary XML within a <Property> element. In this case, the API returns
the contained element directly as an org.w3c.dom.Element (in Java) or a string (for the RAD
Toolkit for ASP.NET).

Related Links
About passing arbitrary XML to the front-end application on page 52

You can nest arbitrary XML in templates within a <Property> element.

Adding a string property
String properties are very flexible and can be used to specify information such as text to display on a
page, URLs for banner images, or meta keywords for search engine optimization.

To add a string property to a template:

1. Insert a <String> element inside a <Property> element.

2. Optionally, you can specify the default value for the property as the content of the <String>
element.

The following example shows a variety of string properties:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="PageTemplate" id="ThreeColumnNavigationPage">
<!-- additional elements deleted from this example -->

 <ContentItem>
 <Name>New Three-Column Navigation Page</Name>
 <Property name="title">
 <String>Endeca Content Assembler Reference Application</String>
 </Property>
 <Property name="meta_keywords">
 </String>
 </Property>
 <Property name="meta_description">
 </String>
 </Property>
 </Property>
 </ContentItem>
<!-- additional elements deleted from this example -->

</ContentTemplate>

Related Links
Adding a string editor on page 35

You add a string editor to enable configuration of string properties. The string editor displays
in the Page Builder interface as a text field or text area depending on the configuration.

Adding an image preview on page 40
An image preview displays an image in the Page Builder interface based on a URL.

Adding a combo box editor on page 37
Predefining values through a combo box editor allows you more control over page content
and provides a more efficient mechanism for populating templates and cartridges in the editing
interface.

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Working with Templates for Dynamic Pages | About defining content properties26

Adding a Boolean property
Boolean properties represent a true or false value and can be used to enable or disable features in
your application.

To add a Boolean property to a template:

1. Insert a <Boolean> element inside a <Property> element.

2. Optionally, you can specify the default value for the property.

 <Property name="eligibleFreeShipping">
 <Boolean>true</Boolean>
 </Property>

Any value other than the string "true" (case insensitive) defaults to a value of false.

The following examples show different uses of Boolean properties:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="PageTemplate" id="ThreeColumnNavigationPage">
<!-- additional elements deleted from this example -->

 <Name>New Three-Column Navigation Page</Name>
 <Property name="autogen_meta">
 <Boolean>true</Boolean>
 </Property>
 </ContentItem>
<!-- additional elements deleted from this example -->

</ContentTemplate>

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="MainColumnContent" id="DimensionSearchResults">
<!-- additional elements deleted from this example -->

 <ContentItem>
 <Name>New Dimension Search Results</Name>
 <Property name="display_compound_dimensions">
 <Boolean>true</Boolean>
 </Property>
 </ContentItem>
<!-- additional elements deleted from this example -->

</ContentTemplate>

Related Links
Adding a checkbox editor on page 42

Checkbox editors provide Page Builder users with a quick and efficient way to specify the
value of a Boolean property.

Adding a navigation refinements property
When you add a navigation refinements property, the content administrator can use the default
dimension order returned by the Endeca MDEX Engine or specify a custom default dimension order.

To add a navigation refinements property to a template:

1. Insert a <NavigationRefinements> element inside a <Property> element.

2. Specify the content-tags schema xmlns attribute for <NavigationRefinements>.
For example:<NavigationRefinements xmlns="http://endeca.com/schema/content-
tags/2008" />

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

27Working with Templates for Dynamic Pages | About defining content properties

3. Specify a default ordering:

• To accept the default dimension order returned by the Endeca MDEX Engine, leave the <Nav¬
igationRefinements> element empty.

• To create a custom dimension list, insert a <DimensionList> element.

4. Optionally, insert zero or more <Dimension> elements inside the <DimensionList> element
with the dimension ID set as the id attribute.
For example: <Dimension id="123"/>.

Note: You can leave the <DimensionList> element empty to create an empty dimension
list.

The following example shows the definition of a navigation refinement property using the MDEX
Engine default dimension order:

<?xml version="1.0" encoding="UTF-8"?>
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="Cartridge25PercentWidth" id="GuidedNavigation">
<!-- additional elements deleted from this example -->
 <ContentItem>
 <Name>New Guided Navigation</Name>
 <Property name="refinements">
 <NavigationRefinements xmlns="http://endeca.com/schema/content-
tags/2008" />
 </Property>
 </ContentItem>
<!-- additional elements deleted from this example -->
</ContentTemplate>

The following example shows the definition of a navigation refinement property with an empty dimension
list. In this case, the Dimension Selector dialog box in Page Builder displays with an unpopulated
Selected Dimensions list.

<?xml version="1.0" encoding="UTF-8"?>
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="Cartridge25PercentWidth" id="GuidedNavigation">
<!-- additional elements deleted from this example -->
 <ContentItem>
 <Name>New Guided Navigation</Name>
 <Property name="refinements">
 <NavigationRefinements xmlns="http://endeca.com/schema/content-
tags/2008" >
 <DimensionList/>
 </NavigationRefinements>
 </Property>
 </ContentItem>
<!-- additional elements deleted from this example -->
</ContentTemplate>

The following example shows the definition of a navigation refinement property with a custom default
dimension order:

<?xml version="1.0" encoding="UTF-8"?>
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="Cartridge25PercentWidth" id="GuidedNavigation">
<!-- additional elements deleted from this example -->
 <ContentItem>
 <Name>New Guided Navigation</Name>

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Working with Templates for Dynamic Pages | About defining content properties28

 <Property name="refinements">
 <NavigationRefinements xmlns="http://endeca.com/schema/content-
tags/2008" >
 <DimensionList>
 <Dimension id="146"/>
 <Dimension id="212"/>
 <Dimension id="123"/>
 </DimensionList>
 </NavigationRefinements>
 </Property>
 </ContentItem>
<!-- additional elements deleted from this example -->
</ContentTemplate>

Related Links
Adding a navigation refinements selector on page 43

You add a navigation refinements selector to enable an interface in Page Builder for content
administrators to choose and order specific dimensions to display for a landing page.

About record properties
There are two types of content properties that enable a content administrator to customize the display
of records on a page: navigation records and record lists.

Navigation records represent the main results of a search or navigation query based on an end user's
navigation state. Content administrators can specify configuration options for navigation records such
as sort, relevance ranking, and number of records to display per page.

Record lists represent supplemental queries, for example, to populate promotions or Content Spotlighting
cartridges. Content administrators can designate either specific records or a navigation query that
returns records for spotlighting.

Adding a navigation records property
When you add a navigation records property, a content administrator can configure the display of the
main results of an end user's query.

To add a navigation records property to a template:

1. Insert a <NavigationRecords> element inside a <Property> element.

2. Specify the content-tags schema xmlns attribute for <NavigationRecords>.
For example: <NavigationRecords xmlns="http://endeca.com/schema/content-
tags/2008" />

3. Optionally, you can specify default sort, relevance ranking, and records-per-page behavior.

4. To specify a default sort, insert a <Sort> element inside <NavigationRecords>. For example:

<Sort>P_Price</Sort>

The content of the element is the name of the property by which to sort.The <Sort> element takes
the following optional attributes:

DescriptionAttribute

A Boolean value specifying whether the records should be sorted in
ascending order. Default is true.

ascending

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

29Working with Templates for Dynamic Pages | About defining content properties

DescriptionAttribute

The latitude value of a geocode sort key for geospatial sorting.latitude

The longitude value of a geocode sort key for geospatial sorting.longitude

If you specify more than one default <Sort>, the sorts are applied in order. If no sort order is
explicitly specified for this property, the default sorting behavior from the MDEX Engine is used.

5. To specify a default relevance ranking strategy, insert a <RelevanceRanking> element inside
<NavigationRecords>. For example:

<RelevanceRanking>freq</RelevanceRanking>

The content of the element is an MDEX Engine URL relevance ranking strategy string. For details
about the format of these strings, see "Controlling relevance ranking at the query level" in the
Endeca Advanced Development Guide. If no relevance ranking strategy is explicitly specified for
this property, the default relevance ranking behavior from the MDEX Engine is used.

6. To specify a default number of records to return per page, specify a value for the optional
recordsPerPage attribute. For example:

<NavigationRecords recordsPerPage="12"/>

The value of recordsPerPage should be an integer greater than or equal to 1. If the value is less
than 1 or if it is outside the valid range specified by the navigation records editor, the value is
discarded and the field is left empty in Page Builder by default. If no value for records per page is
explicitly specified for this property, the default is 10.

The following example shows the definition of a navigation records property with no defaults defined:

<?xml version="1.0" encoding="UTF-8"?>
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="MainColumnContent" id="ResultsList">
<!-- additional elements deleted from this example -->
 <ContentItem>
 <Name>New Results List</Name>
 <Property name="navigation_records">
 <NavigationRecords xmlns="http://endeca.com/schema/content-tags/2008"
 />
 </Property>
 </ContentItem>
<!-- additional elements deleted from this example -->
</ContentTemplate>

The following example shows the definition of a navigation records property with defaults for sort,
relevance ranking, and records per page:

<?xml version="1.0" encoding="UTF-8"?>
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="MainColumnContent" id="ResultsGrid">
<!-- additional elements deleted from this example -->
 <ContentItem>
 <Name>New Results Grid</Name>
 <Property name="navigation_records_with_defaults">
 <NavigationRecords recordsPerPage="12"
 xmlns="http://endeca.com/schema/content-tags/2008">
 <Sort ascending="false">P_Score</Sort>
 <RelevanceRanking>static(P_SalesRank,descend),exact</RelevanceRank¬
ing>
 <NavigationRecords>

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Working with Templates for Dynamic Pages | About defining content properties30

 </Property>
 </ContentItem>
<!-- additional elements deleted from this example -->
</ContentTemplate>

Note: If you specify a default sort or relevance ranking strategy, ensure that the option is also
available in the associated navigation records editor. If the sort or relevance ranking strategy
is not specified in the editor, Page Builder discards the default property value and defaults to
an empty <Sort> or <RelevanceRanking> element, representing the default MDEX Engine
behavior.

Related Links
About record properties on page 29

There are two types of content properties that enable a content administrator to customize
the display of records on a page: navigation records and record lists.

Adding a navigation records editor on page 44
You add a navigation records editor to enable an interface in the Page Builder to configure
the display of record results on a landing page.

Adding a record list property
A record list property can contain one or more Endeca records for merchandising or Content
Spotlighting.

To add a record list property to a template:

Insert a <RecordList> element inside a <Property> element.

Note: Although you cannot specify a default value for the <RecordList> element, you can
specify default records or queries using pass-through content elements.

The following example shows the definition of a record list property:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="SidebarItem" id="ThreeRecordBox">
<!-- additional elements deleted from this example -->

 <ContentItem>
 <Name>New Three Record Spotlight Box</Name>

<!-- additional properties deleted from this example -->
 <Property name="record_list">
 <RecordList/>
 </Property>
 </ContentItem>
<!-- additional elements deleted from this example -->

</ContentTemplate>

You can configure behavior such as the maximum number of records that can be returned or whether
record filters are applied to this property when you add the record selector to the template.

Related Links
About record properties on page 29

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

31Working with Templates for Dynamic Pages | About defining content properties

There are two types of content properties that enable a content administrator to customize
the display of records on a page: navigation records and record lists.

Adding a record selector on page 47
You add a record selector to enable an interface in the Page Builder to specify featured
records or queries for a record list property.

Adding a content item property
A content item property defines a template section by creating a placeholder for a nested content item.

Recall that each template corresponds to a content item object, so a cartridge template is returned by
the Content Assembler API as a nested content item. Content administrators can configure a section
in Page Builder by choosing a cartridge to insert in the section then configuring the properties of the
cartridge.

To add a content item property to a template:

1. Insert a <ContentItem> element inside a <Property> element.

2. Specify the section type.

Only cartridge templates with a type that matches the section type are presented as options for the
content administrator to choose from in Page Builder. For example, when a content administrator
goes to choose the cartridge to insert in a RecommendedContent section, only templates of type
RecommendedContent display in the Select Cartridge dialog box . (Recall that the cartridge
template is the part of a cartridge that is exposed in the Page Builder). Because the type of the
section property and cartridge templates must match exactly, the type attribute is also defined as
type xs:Name in the schema and all restrictions to template types apply to section types.

The following example defines two sections within a template. Note that more than one section in a
template can have the same type, as long as your front-end application expects this kind of content.

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="PageTemplate" id="ThreeColumnNavigationPage">
<!-- additional elements deleted from this example -->

 <ContentItem>
 <Name>New Three-Column Navigation Page</Name>

<!-- additional properties deleted from this example -->
 <Property name="LeftColumn">
 <ContentItem type="SidebarItem" />
 </Property>
 <Property name="RightColumn">
 <ContentItem type="SidebarItem" />
 </Property>
 </ContentItem>
<!-- additional elements deleted from this example -->

</ContentTemplate>

Related Links
About cartridge selectors on page 49

Unlike other types of content properties, section properties are always editable; you do not
need to explicitly specify an editor in the template.

Adding a content item list property on page 33
A content item list allows Page Builder users to add an arbitrary number of items to a section
and to reorder those items within the list using the Content Tree in Page Builder.

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Working with Templates for Dynamic Pages | About defining content properties32

Adding a content item list property
A content item list allows Page Builder users to add an arbitrary number of items to a section and to
reorder those items within the list using the Content Tree in Page Builder.

Using content item properties to define the subsections of a cartridge restricts the number of subsections
available to the content administrator in Page Builder. For example, the right column of this page
template must contain four sections:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="PageTemplate" id="ThreeColumnNavigationPage">
<!-- additional elements deleted from this example -->

 <ContentItem>
 <Name>New Three-Column Navigation Page</Name>
<!-- additional elements deleted from this example -->
 <Property name="RightColumn1">
 <ContentItem type="SidebarItem" />
 </Property>
 <Property name="RightColumn2">
 <ContentItem type="SidebarItem" />
 </Property>
 <Property name="RightColumn3">
 <ContentItem type="SidebarItem" />
 </Property>
 <Property name="RightColumn4">
 <ContentItem type="SidebarItem" />
 </Property>
 </ContentItem>
<!-- additional elements deleted from this example -->
</ContentTemplate>

Using a content item list removes the restriction and allows the content administrator to add an arbitrary
number of content items to the right column of the page:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="PageTemplate" id="ThreeColumnNavigationPage">
<!-- additional elements deleted from this example -->

 <ContentItem>
 <Name>New Three-Column Navigation Page</Name>
<!-- additional elements deleted from this example -->
 <Property name="RightColumn">
 <ContentItemList type="SidebarItem" />
 </Property>
 </ContentItem>
<!-- additional elements deleted from this example -->
</ContentTemplate>

To add a content item list to a template:

1. Insert a <ContentItemList> element inside a <Property> element.

2. Specify the template type.

Only cartridge templates with a type that matches the content item list type are presented as options
for the content administrator to choose from in Page Builder. In the above example, when a content
administrator goes to choose a cartridge to insert in a banners section, only templates of type
BuyingGuideSection display in the Select Cartridge dialog box.

3. Optionally, specify a maximum number of content items using the attribute maxContentItems.

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

33Working with Templates for Dynamic Pages | About defining content properties

For example:

 <Property name="RightColumn">
 <ContentItemList type="SidebarItem" maxContentItems="4"/>
 </Property>

By default maxContentItems="0", which means that there is no limit to the number of content
items in a content item list.

Related Links
Adding a content item property on page 32

A content item property defines a template section by creating a placeholder for a nested
content item.

About defining the editing interface for properties
After you have defined the content properties in your template, you can define how those properties
can be configured by the content administrator in Page Builder.

You add content editors inside the <EditorPanel> element in the template. The <BasicCon¬
tentItemEditor> element enables you to specify individual property editors that display in Page
Builder and associate them with a particular property.

The template schema provides elements that define editors for string and record list properties. For
example, this excerpt from a sample template defines a configurable string property named title:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="PageTemplate" id="ThreeColumnNavigationPage">
<!-- additional elements deleted from this example -->

 <ContentItem>
 <Name>New Three-Column Navigation Page</Name>
 <Property name="title">
 <String/>
 </Property>

<!-- additional properties deleted from this example -->
 </ContentItem>
 <EditorPanel>
 <BasicContentItemEditor>
 <StringEditor propertyName="title" label="Title"/>
 </BasicContentItemEditor>

<!-- additional editors deleted from this example -->
 </EditorPanel>
</ContentTemplate>

The propertyName is a required attribute and specifies the property that this editor is associated
with. The property must be defined in the <ContentItem> part of the template, and must be of the
appropriate type for that editor. For example, a <StringEditor> cannot be associated with a
<RecordList> property. If you define a content editor for a property that does not exist, or that is of
the wrong type, an warning displays in Page Builder when a content administrator attempts to configure
the content.

Property editors do not have to be defined in the same order as the properties in the template. The
<BasicContentItemEditor> renders the editors in a vertical layout in Page Builder, in the order
in which you define them in the template. If you do not want a property to be exposed in Page Builder
interface, do not define an editor associated with it.

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Working with Templates for Dynamic Pages | About defining the editing interface for properties34

It is possible to create more than one editor associated with the same property for primitive property
types (such as String and Boolean). However, be aware that all editors that you define in the template
are displayed in Page Builder, which may be confusing to the content administrator. When the value
of a property is changed, any other editors associated with that property are instantly updated with
the new value. For complex Endeca property types such as navigation refinements, navigation records,
and record list, you can associate only one editor with each complex property in the template.

Related Links
About defining content properties on page 22

When you create a template, you specify all the properties that are necessary to render a
page or section.These properties are returned as part of the content item object in the Content
Assembler API.

Adding a group label on page 49
In the Page Builder interface, group labels can serve as a visual cue that several properties
are related.

Adding a string editor
You add a string editor to enable configuration of string properties. The string editor displays in the
Page Builder interface as a text field or text area depending on the configuration.

String editors enable content administrators to supply arbitrary values for a string property. If you want
to constrain the input to a specific enumeration of values, use a combo box.

To add a string editor to a template:

1. Insert a <StringEditor> element within <BasicContentItemEditor>.

2. Specify additional attributes for the string editor:

DescriptionAttribute

Required. The name of the string property that this editor is associated with.
This property must be declared in the same template as the string editor.

propertyName

This attribute allows you to specify a more descriptive label for this field in
Page Builder. If no label is specified, the property name is used by default.

label

If set to false, this attribute makes the property read-only so that the value
of the property displays in the Content Details Panel in Page Builder, but

enabled

cannot be edited. Use this option only if you specify a default value in the
definition of the string property. Properties are enabled by default.

If this attribute is set to true, word wrap is enabled for long strings in the
Page Builder text field. Word wrap is enabled by default.

wordWrap

The width in pixels of the text field presented in the Page Builder interface.
The default width is 300 pixels.

width

The height in pixels of the text field presented in the the Page Builder interface.
The default height is 24 pixels. Set this higher to enable a multiline text area.

height

Note: If the expected value of a string editor is an image URL, you may want to add an image
preview to display that image within Page Builder.

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

35Working with Templates for Dynamic Pages | About defining the editing interface for properties

The following example shows a variety of editing options for string properties:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="FullWidthContent" id="ImageSiteBanner">
<!-- additional elements deleted from this example -->
<!-- First define all the content properties -->

 <ContentItem>
 <Name>New Site Banner</Name>
 <Property name="image_src">
 <String>/images/WineDemoImages/site-banner-barrels.jpg</String>
 </Property>
 <Property name="image_href">
 <String/>
 </Property>
 <Property name="image_alt">
 <String/>
 </Property>
 </ContentItem>
<!-- Define editors for properties that should be configurable -->

 <EditorPanel>
 <BasicContentItemEditor>
 <!--
 # This example allows the content administrator to
 # specify an image URL.
 # A default value was provided above as a placeholder,
 # and it is editable in Page Builder.
 -->
 <StringEditor propertyName="image_src" label="Image name" en¬
abled="true"/>

 <!--
 # The image_href property allows a content administrator
 # to specify an image link URL.
 # This property is editable, but there is no default
 # value.
 -->
 <StringEditor propertyName="image_href" label="Image link URL" en¬
abled="true"/>

 <!--
 # This example allows the content administrator to
 # specify an alternative image text.
 -->
 <StringEditor propertyName="image_alt" label="Image alt text" en¬
abled="true"/>

 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

Note: Neither Page Builder nor the Content Assembler API applies HTML escaping to strings.
This enables content administrators to specify HTML formatted text in Page Builder and have it
rendered appropriately. If you intend to treat a string property as plain text, be sure to add HTML
escaping to your application logic in order to avoid invalid characters and non-standards-compliant
HTML.

Related Links
Adding a string property on page 26

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Working with Templates for Dynamic Pages | About defining the editing interface for properties36

String properties are very flexible and can be used to specify information such as text to
display on a page, URLs for banner images, or meta keywords for search engine optimization.

Adding an image preview on page 40
An image preview displays an image in the Page Builder interface based on a URL.

Adding a combo box editor on page 37
Predefining values through a combo box editor allows you more control over page content
and provides a more efficient mechanism for populating templates and cartridges in the editing
interface.

Adding a combo box editor
Predefining values through a combo box editor allows you more control over page content and provides
a more efficient mechanism for populating templates and cartridges in the editing interface.

Combo box editors affect the value of a string property. For example, you might use a combo box to
provide image options:

 <ComboBox propertyName="image_src" label="Image name" usePrompt="false"
 editable="true" >
 <ComboBoxItem data="/images/WineDemoImages/one-record-banner-empty-
glass.jpg" label="Empty glass with strawberries"/>
 <ComboBoxItem data="/images/WineDemoImages/one-record-banner-green-
grapes.jpg" label="Green grapes"/>
 <ComboBoxItem data="/images/WineDemoImages/one-record-banner-wine-
being-poured.jpg" label="Rose wine being poured"/>
 </ComboBox>

To add a combo box editor:

1. Insert a <ComboBox> element within <BasicContentItemEditor>.

2. Specify additional attributes for the combo box editor:

DescriptionAttribute

Required. The name of the string property that this editor is associated with.
This property must be declared in the same template as the combo box editor.

propertyName

If set to true, this attribute allows Page Builder users to specify custom string
values. By default, combo boxes are not editable.

editable

If set to false, the combo box displays in the Page Builder but the value
cannot be changed by the user. By default, combo boxes are enabled.

enabled

This attribute allows you to specify a more descriptive label for this field in
Page Builder. If no label is specified, the property name is used by default.

label

If usePrompt is set to false, the first ComboBoxItem in the list is used as
the displayed value. If the first ComboBoxItem is not set as the default

usePrompt

property value, it is not saved if the content administrator exits the Edit View
without selecting a value.

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

37Working with Templates for Dynamic Pages | About defining the editing interface for properties

DescriptionAttribute

By default, this attribute is set to true, and a prompt displays at the top of
the combo box editor.

Specifies a custom prompt. The default prompt is "Select one..."
prompt

Specifies the maximum number of rows appearing in a drop down list before
a scroll bar displays. The default value is 5.

rows

Controls with width in pixels of the editor. The default value is 300.
maxWidth

3. Specify one or more menu options for the combo box by adding <ComboBoxItem> elements.
<ComboBoxItem> takes the following attributes:

DescriptionAttribute

Required.The string value to assign to the associated property if this <ComboBox¬
Item> is selected.

data

This attribute allows you to specify a more descriptive label for this option in the
drop down list. If no label is specified, the value for data is used by default.You

label

must either specify a label for all of the combo box items or none of them.You
cannot have labels for some items and not others.

Note: If you choose to make a combo box editable, you should not use the
label attribute for combo box items. Instead, the combo box should display
the raw value of the string so that users entering custom values can see the
expected format of the string property.

4. Optionally, set a default value in the corresponding <ContentItem> property.
For example, to specify the image of wine being poured
(/images/WineDemoImages/one-record-banner-wine-being-poured.jpg) as the default
choice for a combo box with propertyName="image_src":

<Property name="image_src">
 <String>/images/WineDemoImages/one-record-banner-wine-being-
poured.jpg</String>
</Property>

Note: Ensure that the default value for the property is one of the options defined for the
combo box in a <ComboBoxItem> element.

The following example illustrates a combo box with a custom prompt ("Please select an image"):

<EditorPanel>
 <BasicContentItemEditor>
<!-- additional elements deleted from this example -->
 <ComboBox propertyName="image_src" label="Image name" prompt="Please
 select an image">
 <ComboBoxItem data="/images/WineDemoImages/one-record-banner-empty-

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Working with Templates for Dynamic Pages | About defining the editing interface for properties38

glass.jpg" label="Empty glass with strawberries"/>
 <ComboBoxItem data="/images/WineDemoImages/one-record-banner-green-
grapes.jpg" label="Green grapes"/>
 <ComboBoxItem data="/images/WineDemoImages/one-record-banner-wine-
being-poured.jpg" label="Rose wine being poured"/>
 </ComboBox>
 </BasicContentItemEditor>
 </EditorPanel>

The following example depicts a combo box configured as "editable." The combo box displays the
image options specified in the <ComboBoxItem> elements, but also allows a Page Builder user to
enter an image URL.

<EditorPanel>
 <BasicContentItemEditor>
<!-- additional elements deleted from this example -->
 <ComboBox propertyName="image_src" label="Image name" use¬
Prompt="false" editable="true">
 <ComboBoxItem data="/images/WineDemoImages/one-record-banner-empty-
glass.jpg" label="Empty glass with strawberries"/>
 <ComboBoxItem data="/images/WineDemoImages/one-record-banner-green-
grapes.jpg" label="Green grapes"/>
 <ComboBoxItem data="/images/WineDemoImages/one-record-banner-wine-
being-poured.jpg" label="Rose wine being poured"/>
 </ComboBox>
 </BasicContentItemEditor>
 </EditorPanel>

The following example shows a combo box configured with a default value. The selected value when
the editor is first instantiated is /images/WineDemoImages/one-record-banner-green-
grapes.jpg, which displays with the label "Green grapes" in the drop-down menu. Page Builder
users can choose to select a different image.

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="MainColumnContent" id="OneRecordBanner">
<!-- additional elements deleted from this example -->

 <ContentItem>
 <Name>New One Record Banner</Name>

<!-- additional properties deleted from this example -->
 <Property name="image_src">
 <String>/images/WineDemoImages/one-record-banner-green-
grapes.jpg<String/>
 </Property>
 </ContentItem>
<!-- additional elements deleted from this example -->

 <EditorPanel>
 <BasicContentItemEditor>
<!-- additional elements deleted from this example -->
 <ComboBox propertyName="image_src" label="Image name" >
 <ComboBoxItem data="/images/WineDemoImages/one-record-banner-empty-
glass.jpg" label="Empty glass with strawberries"/>
 <ComboBoxItem data="/images/WineDemoImages/one-record-banner-green-
grapes.jpg" label="Green grapes"/>
 <ComboBoxItem data="/images/WineDemoImages/one-record-banner-wine-
being-poured.jpg" label="Rose wine being poured"/>
 </ComboBox>
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

39Working with Templates for Dynamic Pages | About defining the editing interface for properties

Related Links
Adding a string property on page 26

String properties are very flexible and can be used to specify information such as text to
display on a page, URLs for banner images, or meta keywords for search engine optimization.

Adding a string editor on page 35
You add a string editor to enable configuration of string properties. The string editor displays
in the Page Builder interface as a text field or text area depending on the configuration.

Adding an image preview on page 40
An image preview displays an image in the Page Builder interface based on a URL.

Adding an image preview
An image preview displays an image in the Page Builder interface based on a URL.

You can construct an image preview URL from a hard-coded value, or from any number of string
properties.

Image preview supports JPEG, GIF, and PNG image formats. Note that if the images are hosted on
a different server from Workbench, you may have to enable the Flash player to access those resources.

To add an image preview to a template:

1. Insert an <ImagePreview> element within <BasicContentItemEditor>.

2. Specify additional attributes for the image preview:

DescriptionAttribute

Required.The source of the image URL.You can construct urlExpres¬
sion from any number of string properties, or you can enter a static
value.

urlExpression

A description for the image preview. There is no default value.label

The height in pixels of the image preview presented in the Page Builder
interface. The default value is 100.

maxHeight

The width in pixels of the image preview presented in the Page Builder
interface. The default value is 300.

maxWidth

A boolean indicating whether to display the processed URL.The default
value is true.

displayUrl

If you are using more than one string property to compose the URL, you may want to use a group
label to indicate to Page Builder users that these properties are related.

The following examples show options for constructing an image preview.

In the first example, an image_src property is created:

 <Property name="image_src">
 <String/>
 </Property>

Then, in the <EditorPanel>, urlExpression takes the value of the image_src property, specified
in a <StringEditor> above the <ImagePreview> element:

 <StringEditor propertyName="image_src" label="Image name" en¬
abled="true"/>

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Working with Templates for Dynamic Pages | About defining the editing interface for properties40

 <ImagePreview
 urlExpression="http://localhost:8006/ContentAssemblerRefApp/{im¬
age_src}"
 label="Site banner image"
 maxWidth="200"
 maxHeight="100" />

In the second example, urlExpression parses some of the image URL from string properties
determined by values selected in combo boxes above the <ImagePreview> element:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="ContentCartridge" id="ThreeRecordBanner-Advanced">
<!-- additional elements deleted from this example -->
<!-- First define all the content properties -->
 <ContentItem>
 <Name>Three Record Banner</Name>
 <Property name="title">
 <String>Recommended</String>
 </Property>
 <Property name="image_collection">
 <String/>
 </Property>
 <Property name="image_src">
 <String/>
 </Property>
 <Property name="record_list">
 <RecordList/>
 </Property>
 </ContentItem>
 <EditorPanel>
 <BasicContentItemEditor>
 <GroupLabel label="Image configuration"/>
 <StringEditor propertyName="title" label="Banner Title"/>
 <ComboBox propertyName="image_collection" label="Image Collection">
 <ComboBoxItem data="images/stock" label="Stock Photos"/>
 <ComboBoxItem data="images/promo" label="Promotional Images"/>
 <ComboBoxItem data="images/promo/product" label="Product Images"/>

 <ComboBoxItem data="web/images" label="Web Graphics"/>
 <ComboBoxItem data="web/logos" label="Logos"/>
 </ComboBox>
 <StringEditor propertyName="image_src" label="Image Name"/>
 <ImagePreview urlExpression="http://www.example.com/{image_collec¬
tion}/{image_src}" label="Image Preview" />
 <RecordSelector propertyName="record_list" label="Featured Records"
 maxRecords="3"/>
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

Related Links
File hosting and security considerations on page 62

Page Builder occasionally needs to access files hosted on a different server. Certain security
issues may apply.

Adding a string property on page 26
String properties are very flexible and can be used to specify information such as text to
display on a page, URLs for banner images, or meta keywords for search engine optimization.

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

41Working with Templates for Dynamic Pages | About defining the editing interface for properties

Adding a string editor on page 35
You add a string editor to enable configuration of string properties. The string editor displays
in the Page Builder interface as a text field or text area depending on the configuration.

Adding a combo box editor on page 37
Predefining values through a combo box editor allows you more control over page content
and provides a more efficient mechanism for populating templates and cartridges in the editing
interface.

About the urlExpression for image preview

This section contains guidelines for constructing the urlExpression for an image preview.

• Any string within {braces} is treated as the name of a string property defined in the same template.
• All string properties that the urlExpression depends on must be specified in Page Builder before

the preview renders. There is no way to specify an "optional" property.
• If the URL that you specify is a relative rather than absolute path, this is interpreted for preview

purposes as relative to Page Builder (and not, for example, relative to the front-end application
server).

Adding a checkbox editor
Checkbox editors provide Page Builder users with a quick and efficient way to specify the value of a
Boolean property.

For example, you might use a checkbox editor to give the content administrator the choice to
auto-generate metadata information.

<CheckBox propertyName="autogen_meta" label="Auto-generate meta information"
 />

To add a checkbox editor:

1. Insert a <CheckBox> element within <BasicContentItemEditor>.

2. Specify additional attributes for the combo box editor:

DescriptionAttribute

Required. The name of the Boolean property that this editor is associated
with.This property must be declared in the same template as the checkbox
editor.

propertyName

If set to false, the checkbox displays in Page Builder but the value cannot
be changed by the user. By default, checkboxes are enabled.

enabled

This attribute allows you to specify a more descriptive label for this field in
Page Builder. If no label is specified, the property name is used by default.

label

The following example illustrates an "autogen_meta" checkbox with a default value of "true":

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="PageTemplate" id="ThreeColumnNavigationPage">
<!-- additional elements deleted from this example -->

 <ContentItem>
 <Name>New Three-Column Navigation Page</Name>

<!-- additional properties deleted from this example -->
 <Property name="autogen_meta">

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Working with Templates for Dynamic Pages | About defining the editing interface for properties42

 <Boolean>true</Boolean>
 </Property>
 </ContentItem>
<!-- additional elements deleted from this example -->

 <EditorPanel>
 <BasicContentItemEditor>
<!-- additional elements deleted from this example -->
 <CheckBox propertyName="autogen_meta" label="Auto-generate meta in¬
formation" />
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

Related Links
Adding a Boolean property on page 27

Boolean properties represent a true or false value and can be used to enable or disable
features in your application.

Adding a navigation refinements selector
You add a navigation refinements selector to enable an interface in Page Builder for content
administrators to choose and order specific dimensions to display for a landing page.

To add a navigation refinements selector to a template:

1. Insert a <NavigationRefinementsSelector> element within <BasicContentItemEditor>.

2. Specify additional attributes for the dimension selector:

DescriptionAttribute

Required. The name of the navigation refinements property that this editor
is associated with.This property must be declared in the same template as
the navigation refinements selector.

propertyName

This attribute allows you to specify a more descriptive label for this editor
in Page Builder. If no label is specified, the property name is used by default.

label

The following example shows a navigation refinements selector associated with a "refinements"
property.

<?xml version="1.0" encoding="UTF-8"?>
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="Cartridge25PercentWidth" id="GuidedNavigation">
<!-- additional elements deleted from this example -->
 <ContentItem>
 <Name>New Guided Navigation</Name>
 <Property name="refinements">
 <NavigationRefinements xmlns="http://endeca.com/schema/content-
tags/2008" />
 <DimensionList>
 <Dimension id="146"/>
 <Dimension id="212"/>
 <Dimension id="123"/>
 <DimensionList/>
 <NavigationRefinements/>
 </Property>

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

43Working with Templates for Dynamic Pages | About defining the editing interface for properties

 </ContentItem>
 <EditorPanel>
 <BasicContentItemEditor>
 <NavigationRefinementsSelector propertyName="refinements" label="Re¬
finements" />
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

Related Links
Adding a navigation refinements property on page 27

When you add a navigation refinements property, the content administrator can use the
default dimension order returned by the Endeca MDEX Engine or specify a custom default
dimension order.

Adding a navigation records editor
You add a navigation records editor to enable an interface in the Page Builder to configure the display
of record results on a landing page.

The navigation records editor is a collection of controls that enable a content administrator to specify
sort order, relevance ranking, and the number of records to display per page.

To add a navigation records editor to a template:

1. Insert a <NavigationRecordsEditor> element within <BasicContentItemEditor>.

2. Specify additional attributes for the navigation records editor:

DescriptionAttribute

Required. The name of the navigation records property that this editor is
associated with. This property must be declared in the same template as
the navigation records editor.

propertyName

This attribute enables you to specify a more descriptive label for this editor
in Page Builder. If no label is specified, the property name is used by default.

label

3. Specify sort options by inserting a <SortChoices> element within <NavigationRecordsEdi¬
tor>.

<SortChoices> takes the following optional attributes:

DescriptionAttribute

If set to false, the default sort order displays in the Content Details Panel in
Page Builder, but the content administrator cannot configure the sort order
for this cartridge. Sort order configuration is enabled by default.

enabled

This attribute enables you to specify a more descriptive label for this drop
down menu in Page Builder. If no label is specified, the default is Sort by.

label

If you omit the <SortChoices> element, the drop down menu to specify sort order does not display
in Page Builder.

4. Specify the available sort options by inserting one or more <SortChoice> elements within
<SortChoices>.

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Working with Templates for Dynamic Pages | About defining the editing interface for properties44

<SortChoice> takes a required label attribute to specify a more descriptive label, such as Name
(A-Z), for this option in the drop down list.

<SortChoice> can contain one or more <Sort> elements. The content of the element is the
name of the property by which to sort. The <Sort> element takes the following optional attributes:

DescriptionAttribute

A Boolean value specifying whether the records should be sorted in
ascending order. Default is true.

ascending

The latitude value of a geocode sort key for geospatial sorting.latitude

The longitude value of a geocode sort key for geospatial sorting.longitude

If you specify more than one <Sort> within a <SortChoice>, selecting that option applies the
sorts in order. For example, the following sort choice applies a record sort in descending order of
price followed by sales rank:

<SortChoice label="Price (Descending) then Sales Rank (Descending)">
 <Sort ascending="false">P_Price</Sort>
 <Sort ascending="false">P_SalesRank</Sort>
</SortChoice>

5. Specify relevance ranking options by inserting a <RelevanceRankingChoices> element within
<NavigationRecordsEditor>.

<RelevanceRankingChoices> takes the following optional attributes:

DescriptionAttribute

If set to false, the default relevance ranking strategy displays in the Content
Details Panel in Page Builder, but the content administrator cannot configure

enabled

relevance ranking for this cartridge. Relevance ranking configuration is enabled
by default.

This attribute enables you to specify a more descriptive label for this drop down
list in Page Builder. If no label is specified, the default is Relevance ranking.

label

If you omit the <RelevanceRankingChoices> element, the drop down menu to specify relevance
ranking strategy does not display in the Page Builder.

6. Specify the available relevance ranking options by inserting one or more <RelevanceRanking¬
Choice> elements within <RelevanceRankingChoices>.

<RelevanceRankingChoice> takes the following attributes:

DescriptionAttribute

Required. This attribute enables you to specify a more descriptive label
for this option in the drop down list.

label

Required. The value of this attribute is an MDEX Engine URL relevance
ranking strategy string. For details about the format of these strings, see

relevanceRanking

"Controlling relevance ranking at the query level" in the Endeca Advanced
Development Guide.

Note: If you use certain relevance ranking strategies across several templates, you can
create a search interface in Developer Studio to define commonly used combinations of
relevance ranking modules. For details, see the Endeca Developer Studio Help.

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

45Working with Templates for Dynamic Pages | About defining the editing interface for properties

7. Enable a field for specifying the number of records to return per page by inserting a
<RecordsPerPage> element within <NavigationRecordsEditor>.

<RecordsPerPage> takes the following optional attributes:

DescriptionAttribute

If set to false, the default records per page value (if you specified one for
the property in the template) displays in the Content Details Panel in Page

enabled

Builder. However, the content administrator cannot configure records per
page for this cartridge. Configuration of records per page is enabled by
default.

This attribute enables you to specify a more descriptive label for this field in
Page Builder. If no label is specified, the default is Records per page.

label

The minimum value for records per page that can be specified in Page
Builder. Must be an integer greater than or equal to 1.

minimumRecords

The maximum value for records per page that can be specified in Page
Builder. Must be an integer greater than the value of minimumRecords.

maximumRecords

If you omit the <RecordsPerPage> element, the field to specify the number of records per page
does not display in Page Builder.

The following example shows a navigation results editor that enables configuration of sort, relevance
ranking, and records per page:

<?xml version="1.0" encoding="UTF-8"?>
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="MainColumnContent" id="ResultsList">
<!-- additional elements deleted from this example -->
 <ContentItem>
 <Name>New Results List</Name>
 <Property name="navigation_records">
 <NavigationRecords xmlns="http://endeca.com/schema/content-tags/2008"
 />
 </Property>
 </ContentItem>
 <EditorPanel>
 <BasicContentItemEditor>
 <NavigationRecordsEditor propertyName="navigation_records"
 label="Record List">
 <SortChoices label="Sorts">
 <SortChoice label="Score (Ascending)">
 <Sort ascending="true">P_Score</Sort>
 </SortChoice>
 <SortChoice label="Score (Descending)">
 <Sort ascending="false">P_Score</Sort>
 </SortChoice>
 <SortChoice label="Price (Ascending)">
 <Sort ascending="true">P_Price</Sort>
 </SortChoice>
 <SortChoice label="Price (Descending)">
 <Sort ascending="false">P_Price</Sort>
 </SortChoice>
 <SortChoice label="Sales Rank (Ascending)">
 <Sort ascending="true">P_SalesRank</Sort>
 </SortChoice>
 <SortChoice label="Sales Rank (Descending)">

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Working with Templates for Dynamic Pages | About defining the editing interface for properties46

 <Sort ascending="false">P_SalesRank</Sort>
 </SortChoice>
 </SortChoices>
 <RelevanceRankingChoices label="Relevance ranking">
 <RelevanceRankingChoice label="First"
 relevanceRanking="first" />
 <RelevanceRankingChoice label="By Sales Rank (Static)"
 relevanceRanking="static(P_SalesRank)" />
 <RelevanceRankingChoice label="By Price (Static)"
 relevanceRanking="static(P_Price)" />
 <RelevanceRankingChoice label="Frequency"
 relevanceRanking="freq" />
 </RelevanceRankingChoices>
 <RecordsPerPage label="Records per page" minimumRecords="1"
 maximumRecords="100" />
 </NavigationRecordsEditor>
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

Related Links
About record properties on page 29

There are two types of content properties that enable a content administrator to customize
the display of records on a page: navigation records and record lists.

Adding a navigation records property on page 29
When you add a navigation records property, a content administrator can configure the display
of the main results of an end user's query.

Adding a record selector
You add a record selector to enable an interface in the Page Builder to specify featured records or
queries for a record list property.

The record selector dialog box allows a content administrator to designate specific records to spotlight
in a section, or to specify a query to return a dynamic list of records. If the content administrator
designates a record ID that does not exist, an error message displays.

To add a record selector to a template:

1. Insert a <RecordSelector> element within <BasicContentItemEditor>.

2. Specify additional attributes for the record selector:

DescriptionAttribute

Required. The name of the record list property that this editor is associated
with. This property must be declared in the same template as the record
selector.

propertyName

This attribute allows you to specify a more descriptive label for this editor in
Page Builder. If no label is specified, the property name is used by default.

label

Sets the maximum number of records that this property can contain. If the
content administrator designates specific records in the Page Builder, the

maxRecords

number of records cannot exceed the value of maxRecords. If the content
administrator specifies a query, Page Builder returns no more than this number
of records. When configuring this property, the content administrator may

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

47Working with Templates for Dynamic Pages | About defining the editing interface for properties

DescriptionAttribute

choose to designate fewer static records or to further limit the number of
records returned by a query. The default value for maxRecords is 10.

If set to true, record filters are applied to the query that is used to evaluate
the associated record list property. The default value is true.

augmentRecord¬
Filter

This attribute allows you to specify a more descriptive label for the record ID
field in the Record Selector dialog box. For example, previewRecordIdLa¬

previewRecordId¬
Label

bel="SKU" prompts a content administrator to enter a SKU number. The
default label is Record ID.

3. Optionally, specify one or more PreviewProperty elements.

If a preview property is specified, an additional column appears in the Record Selector dialog box
to showcase the preview properties. Preview properties display relevant information about records,
allowing content administrators to confirm that they are entering the correct record IDs. Preview¬
Property takes the following attributes:

DescriptionAttribute

Required. Specify the property to display with record IDs in the Record Selector
dialog box.

name

Note: You must specify a property; dimensions cannot be used.

This attribute allows you to specify a more descriptive label for this property in
the Record Selector dialog box. If no label is specified, the value for name is
used by default.

label

The following example shows a Record Selector associated with a "record_list" property. This allows
a content administrator to specify up to three specific records (SKU numbers) or a query that returns
up to three records. If a content administrator chooses to enter SKU numbers, the name and year of
each chosen record displays in the Record Selector dialog box.

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="SidebarItem" id="ThreeRecordBox">
<!-- additional elements deleted from this example -->

 <ContentItem>
 <Name>New Three Record Spotlight Box</Name>

<!-- additional properties deleted from this example -->
 <Property name="record_list">
 <RecordList/>
 </Property>
 </ContentItem>
 <EditorPanel>
 <BasicContentItemEditor>

<!-- additional editors deleted from this example -->
 <RecordSelector propertyName="record_list" label="Featured records"
 maxRecords="3">
 <PreviewProperty name="P_Name" label="Name"/>
 </RecordSelector>
 </BasicContentItemEditor>

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Working with Templates for Dynamic Pages | About defining the editing interface for properties48

 </EditorPanel>
</ContentTemplate>

Related Links
About record properties on page 29

There are two types of content properties that enable a content administrator to customize
the display of records on a page: navigation records and record lists.

Adding a record list property on page 31
A record list property can contain one or more Endeca records for merchandising or Content
Spotlighting.

About sort options for the record selector

The record selector enables the content administrator to designate either specific featured records or
a query that returns a dynamic list of records for spotlighting. When selecting dynamic records, the
content administrator can specify a sort order for the records.

Unlike the navigation records editor, the sort options for the record selector are not specified in the
template. The sort keys that are available in the record selector are all the properties or dimensions
that are configured for precomputed sort (that is, those that have the Prepare Sort Offline option
selected in Developer Studio). For more information about configuring properties and dimensions for
precomputed sort, see the Endeca Developer Studio Help.

Only one sort key can be applied to the query for each dynamic spotlighting cartridge. It is not possible
to specify a default sort order for the record list property.

About cartridge selectors
Unlike other types of content properties, section properties are always editable; you do not need to
explicitly specify an editor in the template.

In Page Builder, content administrators can select cartridges to insert in sections either by clicking the
cartridge Add button in the content detail panel or by right-clicking the section in the content tree. Both
options bring up the cartridge selector dialog box and are enabled automatically when you define a
section in the template.

Related Links
Adding a content item property on page 32

A content item property defines a template section by creating a placeholder for a nested
content item.

Adding a group label
In the Page Builder interface, group labels can serve as a visual cue that several properties are related.

Group labels are only used to provide additional context in the editing interface of Page Builder and
do not affect rendering in the front-end application. Group labels are optional.

One use of group labels is to give the content administrator information about properties that they
need to configure the cartridge. For example, if a template defines properties that are required in order
to render the content properly, you can indicate these with a descriptive group label so that the content
administrator can easily identify the required fields in the Page Builder.

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

49Working with Templates for Dynamic Pages | About defining the editing interface for properties

The editor panel in Page Builder includes a default heading of "Section settings." This heading includes
the required Name field and the read-only type of a template, as well as any properties that are defined
before the first group label.

To add a group label to the editor panel:

Insert the <GroupLabel> element inside <BasicContentItemEditor> as in the following
example:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
 type="BuyingGuideSection" id="BuyingGuideSection">
<!-- additional elements deleted from this example -->

 <EditorPanel>
 <BasicContentItemEditor>

<GroupLabel label="Page metadata"/>
 <CheckBox propertyName="autogen_meta" label="Auto-generate meta
information" />
 <StringEditor propertyName="title" label="Title" enabled="true"/>
 <StringEditor propertyName="meta_keywords" label="Meta keywords"
enabled="true" height="72"/>
 <StringEditor propertyName="meta_description" label="Meta descrip¬
tion" enabled="true" height="72"/>

<GroupLabel label="Configuration"/>
 <StringEditor propertyName="title" label="Banner title" en¬
abled="true"/>
 <RecordSelector propertyName="record_list" label="Featured records"
 maxRecords="3">
 <PreviewProperty name="P_Name" label="Name"/>
 </RecordSelector>
 <StringEditor propertyName="link_text" label="See-all link text"
enabled="true"/>
 </BasicContentItemEditor>
 </EditorPanel>
</ContentTemplate>

<GroupLabel> is an empty tag that allows you to specify the label text with the label attribute.

About using XML pass-through properties
In addition to configurable content properties, the template schema also allows you to define
non-configurable properties that are passed directly to the front-end application.

While you can use hidden string properties to pass simple pieces of information to the application,
pass-through properties can be useful if the following conditions apply:

• The property never needs to be configured or exposed in Page Builder.
• The property contains structured data that can be represented in XML.

Pass-through properties may take the form of pass-through content properties or any arbitrary XML
that does not conform to the template schema, as long as you specify a different namespace from the
Endeca template and content schemas.

About using pass-through content properties
Pass-through content properties allow you to embed MDEX Engine query results in the content item
object that you can access through the Content Assembler API.

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Working with Templates for Dynamic Pages | About using XML pass-through properties50

Pass-through content properties follow the same schema as the page configurations generated by
Page Builder. When the Content Assembler processes these properties with the values you specified
in the template, it evaluates them and executes any necessary queries exactly as if the property had
been configured with specific values by a content administrator in Page Builder.

The schema to use for pass-through content properties is located in
doc\schemas\content-tags.xsd (on Windows) or doc/schemas/content-tags.xsd (on
UNIX) in your Content Assembler API installation.You must specify the namespace for the content-tags
schema in order for the Content Assembler to evaluate the properties as if they were content properties.

Note: The <NavigationRefinements> and <NavigationRecords> properties in the
content-tags schema are configurable in Page Builder (via the <NavigationRefinementsS¬
elector> and <NavigationRecordsEditor>, respectively). Other properties defined in the
content-tags schema do not have editors available in Page Builder.<NavigationRefinements>
and <NavigationRecords> can be used as pass-through properties by specifying defaults
in the property definition without defining an associated editor in the template.

The following example shows several types of pass-through content properties:

 <Property name="sample_navigation_query">
 <NavQuery xmlns="http://endeca.com/schema/content-tags/2008"
 augment="true" maxRecords="7">
 <DimensionValue id="60" dimensionId="2"/>
 <DimensionValue id="40" dimensionId="1"/>
 </NavQuery>
 </Property>

 <Property name="sample_urlenequery">
 <UrlEneQuery xmlns="http://endeca.com/schema/content-tags/2008"
 maxRecords="3">N=8021&Ns=P_Price</UrlEneQuery>
 </Property>

 <Property name="sample_supplement_property">
 <Supplement xmlns="http://endeca.com/schema/content-tags/2008">
 <SupplementId>547</SupplementId>
 </Supplement>
 </Property>

 <Property name="another_sample_supplement_property">
 <Supplement xmlns="http://endeca.com/schema/content-tags/2008">
 <Zone>ZoneOne</Zone>
 <Style>StyleOne</Style>
 </Supplement>
 </Property>

 <!-- In the unusual case that you need specific records
 hard-coded into the template -->
 <Property name="sample_record_query">
 <RecordQuery xmlns="http://endeca.com/schema/content-tags/2008">
 <RecordId>123</RecordId>
 <RecordId>456</RecordId>
 <RecordId>789</RecordId>
 <RecordId>abc</RecordId>
 </RecordQuery>
 </Property>

 <!-- <NavigationResult> is an empty tag that enables access to
 query results from nested content items -->

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

51Working with Templates for Dynamic Pages | About using XML pass-through properties

 <Property name="navigation_results">
 <NavigationResult xmlns="http://endeca.com/schema/content-tags/2008"/>

 </Property>

About passing arbitrary XML to the front-end application
You can nest arbitrary XML in templates within a <Property> element.

Embedding arbitrary XML in template properties allows you to pass structured data to your application
such as configuration for third-party packages used by your front-end application. If the Content
Assembler does not recognize a tag, it returns the XML as an org.w3c.dom.Element (in Java) or
a string (for the RAD Toolkit for ASP.NET).

The only requirement is that the namespace must be different from any of the Endeca template or
content schemas located in doc\schemas\ (on Windows) or doc/schemas/ (on UNIX) in your
Content Assembler API installation. Additionally, the Content Assembler API must be able to access
the namespace that you specify.

Note: Page Builder does not perform any validation on XML within a different namespace from
the content-template or content-tags schemas. If you are using custom XML pass-through
properties, be sure to validate your templates before uploading them.

The following example shows XML inserted within a property:

 <Property name="sample_XML_pass-through">
 <widget xmlns="http://mycompany.com/schema/widgets">
 <name>Example widget</name>
 <description>Sample for embedded XML in a template</description>
 <icon src="icons/example.png" />
 <content src="index.html"/>
 <access network="true"/>
 </widget>
 </Property>

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Working with Templates for Dynamic Pages | About using XML pass-through properties52

Chapter 3

Supporting Page Builder

This section describes the tasks needed to enable content administrators to create pages in Page
Builder.

Making templates available in Page Builder
This section describes how to manage Page Builder templates using the emgr_update utility.

The emgr_update utility assists you in updating the instance configuration of a production system
based on the changes made with the Endeca tools in a staging environment.You can also use
emgr_update to add, retrieve, and remove templates from Page Builder.

For a complete list of accepted emgr_update syntax, refer to the Endeca IAP Administrator's Guide.

Uploading templates to Page Builder
Before Page Builder users can access new templates, you must upload them using the emgr_update
utility.

Note: Template file names cannot have spaces in them.

To upload a new template:

1. Open a command prompt or UNIX shell.

2. Run emgr_update with the --action of set_templates and the following parameters:

ValueParameter

The machine name and port for the staging Endeca Workbench
environment, in the format host:port.

--host

The name of the application to which you want the templates to apply.--app_name

The path to the local directory where your templates are stored.--dir

The following is a Windows example:

emgr_update.bat --action set_templates --host localhost:8006
--app_name My_application --dir c:\endeca-app\templates\

The following is a UNIX example:

emgr_update --action set_templates --host localhost:8006
--app_name My_application --dir /apps/endeca/templates/

If templates do not display in Page Builder after uploading them using emgr_update, check the log in
%ENDECA_TOOLS_CONF%\logs\webstudio.log (on Windows) or
$ENDECA_TOOLS_CONF/logs/webstudio.log (on UNIX) for possible causes.

Related Links
Updating templates in Page Builder on page 56

Updating templates using emgr_update is a multi-step process.

About updating templates on page 55
When updating templates in Page Builder, you should be aware of how conflicts are handled.

Troubleshooting invalid templates on page 60
Some templates may be successfully uploaded to Workbench, but still contain errors that
lead to unexpected behavior in Page Builder.

About modifying templates that are used by existing pages
During the development and testing phase of your application deployment, you may need to make
adjustments to your page or cartridge templates and update them in Page Builder.

When Page Builder populates the Content Detail Panel for a landing page or cartridge, it checks the
content XML of the loaded page against the template XML. If the template has been changed such
that it is no longer compatible with the content, Page Builder displays a warning and upgrades existing
content to fit the new editor definition.

For example, a record list editor can be altered in a landing page template to have its maxRecords
value lowered from five to two. In this case, if the content administrator has previously selected more
than two static records, Page Builder removes the excess record selections the next time it loads the
record list editor. Any such changes are saved when the content administrator manually saves the
page.

Note: Existing page configurations are not upgraded to the new template until a content
administrator edits and saves the affected page or cartridge in Page Builder.

Page Builder does the following to ensure that the content and template are in sync:

• If a property has not changed its name or type, the existing values are migrated to the new template.
• If new properties are added to a template, any corresponding property editors become available

in Page Builder when a content administrator edits a page or cartridge based on the updated
template. If you specify default values for the new properties, they are applied when a content
administrator edits and saves the page or cartridge using the updated template.

• If properties are removed from a template, the corresponding property editors no longer display
in Page Builder when a content administrator edits a page or cartridge based on the updated
template. The properties and their values are deleted from the page configuration.

• If the type of a property has changed (for example from string to record list) within a template, the
corresponding property editor (if one is specified) becomes available in the Page Builder when a

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Supporting Page Builder | Making templates available in Page Builder54

content administrator edits a page or cartridge based on the updated template. The existing value
for the property does not display in Page Builder and is replaced when the content administrator
saves the content.

• If a content item property has changed to specify a different cartridge type, then any existing
cartridge in that section is ejected and its configured properties deleted.

• If the default value of an existing property has changed, whether it is one of the built-in content
properties or a custom XML property, it is only applied to new pages or cartridges based on the
updated template. In existing pages, the previously saved value of the property (even if it is an
empty string) is preserved regardless of whether it was originally a default or user-specified value.

Note: Changing the name of a property is equivalent to removing the property with the old name
and adding a property with the new name. Avoid changing the names of properties that are being
used by existing pages. To change the display name of a property on Page Builder, use the
label attribute instead.

Editor-specific behavior

Some editors impose constraints on the content that can be allowed for a particular page or cardtridge:

• If the maxRecords value for a record selector is lower than the previous value and the content
administrator had specified static records to display, any records beyond the new maximum value
are deleted.

Managing template changes

Because existing content is not automatically updated to the new templates, and both XML pass-through
and default values are never updated in existing pages, any changes that you make to your rendering
code to reflect changes to a template should be backward-compatible.You can trigger the content
upgrade process manually by accessing all relevant content, but this approach is not recommended.

For this reason, you should avoid making changes to existing templates that are being used in
production.You should limit updates to templates to the early stages of application development when
you have little or no legacy content to support.

Related Links
About updating templates on page 55

When updating templates in Page Builder, you should be aware of how conflicts are handled.

Updating templates in Page Builder on page 56
Updating templates using emgr_update is a multi-step process.

About updating templates
When updating templates in Page Builder, you should be aware of how conflicts are handled.

Page Builder uses the most recently uploaded template. If you have an existing template in Page
Builder and upload a template with the same file name, the new template replaces the previously
uploaded template.

However, if you upload two template files with the same ID but different file names, then two separate
templates are stored in Page Builder but neither one displays to content administrators. For this reason,
you should avoid renaming template files after they have been uploaded to Page Builder unless you
make sure to remove the old template first. In general, it is a best practice to remove templates from
Page Builder and upload a complete set of templates whenever you need to update templates.

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

55Supporting Page Builder | Making templates available in Page Builder

Related Links
About modifying templates that are used by existing pages on page 54

During the development and testing phase of your application deployment, you may need to
make adjustments to your page or cartridge templates and update them in Page Builder.

Updating templates in Page Builder on page 56
Updating templates using emgr_update is a multi-step process.

Updating templates in Page Builder
Updating templates using emgr_update is a multi-step process.

Note: Before updating templates in Page Builder, be sure you have a backup of the current set
of templates. Endeca recommends that you store page and cartridge templates in a version
control system.

When removing or updating templates, make sure that all users are logged out of Page Builder.

To update existing templates in Page Builder:

1. Retrieve the current set of templates from Page Builder.

2. Make any necessary edits to the templates on your local machine.

3. Remove all templates from Page Builder.

4. Upload the revised templates from your local directory to the Page Builder.

Related Links
About modifying templates that are used by existing pages on page 54

During the development and testing phase of your application deployment, you may need to
make adjustments to your page or cartridge templates and update them in Page Builder.

About updating templates on page 55
When updating templates in Page Builder, you should be aware of how conflicts are handled.

Uploading templates to Page Builder on page 53
Before Page Builder users can access new templates, you must upload them using the
emgr_update utility.

Retrieving the current templates from Page Builder on page 56
If you need to view or edit an existing template on a local machine, use emgr_update to copy
the templates from Page Builder into a local directory.

Removing templates from Page Builder on page 58
You can remove all the templates from Page Builder using the emgr_update utility.

Retrieving the current templates from Page Builder
If you need to view or edit an existing template on a local machine, use emgr_update to copy the
templates from Page Builder into a local directory.

If you need to retrieve the current set of templates:

1. Open a command prompt or UNIX shell.

2. Run emgr_update with the --action of get_templates and the following parameters:

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Supporting Page Builder | Making templates available in Page Builder56

ValueParameter

The machine name and port for the staging Endeca Workbench
environment, in the format host:port.

--host

The name of the application from which you want to retrieve the
templates.

--app_name

The path to the local directory to which you want the templates copied.--dir

The following is a Windows example:

emgr_update.bat --action get_templates --host localhost:8006
--app_name My_application --dir c:\endeca-app\templates\

The following is a UNIX example:

emgr_update --action get_templates --host localhost:8006
--app_name My_application --dir /apps/endeca/templates/

About removing templates
If you remove a page or cartridge template that is being used for an existing page, the properties of
the page or section are no longer editable in Page Builder.

When a content administrator attempts to edit an existing page that uses a missing template, one of
the following occurs:

• If the missing template is the page template, then the top-level page properties cannot be edited
in the content details panel, but the content tree is still active. The content administrator can still
change or edit the cartridges in that page as long as their corresponding templates are available.

• If the missing template is a cartridge template, the properties of that cartridge cannot be edited in
the content details panel. All other cartridges, including cartridges that are nested within the missing
cartridge, can still be edited via the content tree.

In both cases, all the configured values of the missing template's properties are preserved unless the
content administrator removes or changes the template.

The content administrator has the following options:

• Leave the existing content as is. The Content Assembler continues to evaluate and process page
configurations regardless of whether the template exists in Page Builder, and existing pages
continue to display in the front-end application as long as the appropriate rendering code is still in
place.

• Replace the missing template or cartridge with another template.This action deletes all configured
properties of the template as well as any nested cartridges.

• The existing content can be re-enabled for editing by uploading the missing template.

Note: Changing the ID of a template is equivalent to removing the template with the old ID and
creating a new template with the new ID. Avoid changing the ID of templates that are being used
for existing pages.

Related Links
Removing templates from Page Builder on page 58

You can remove all the templates from Page Builder using the emgr_update utility.

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

57Supporting Page Builder | Making templates available in Page Builder

Removing templates from Page Builder
You can remove all the templates from Page Builder using the emgr_update utility.

Note: Before removing templates from Page Builder, be sure you have a backup of the current
set of templates. Endeca recommends that you store page and cartridge templates in a version
control system.

When removing or updating templates, make sure that all users are logged out of Page Builder.

The emgr_update --action remove_templates command removes all templates from an
application, not specific templates. Removing specific templates from Page Builder consists of the
following steps:

1. Retrieving the current set of templates from Page Builder.
2. Deleting the templates that are no longer needed from your local copy.
3. Removing all templates from Page Builder using the procedure below.
4. Uploading the remaining templates to Page Builder.

To remove templates from Page Builder:

1. Open a command prompt or UNIX shell.

2. Run emgr_update with the --action of remove_templates and the following parameters:

ValueParameters

The machine name and port for the staging Endeca Workbench
environment, in the format host:port.

--host

The name of the application from which you want to remove the
templates.

--app_name

The following is a Windows example:

emgr_update.bat --action remove_templates --host localhost:8006
--app_name My_application

The following is a UNIX example:

emgr_update --action remove_templates --host localhost:8006
--app_name My_application

Related Links
About removing templates on page 57

If you remove a page or cartridge template that is being used for an existing page, the
properties of the page or section are no longer editable in Page Builder.

Troubleshooting problems with uploading templates
Template errors are returned to the emgr_update command line call and detailed in the
webstudio.log file.

The webstudio.log file is located in:

• %ENDECA_TOOLS_CONF%\logs on Windows platforms
• $ENDECA_TOOLS_CONF/logs on UNIX platforms

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Supporting Page Builder | Troubleshooting problems with uploading templates58

Uploading templates can fail for the following reasons:

Schema validation

Schema validation failure issues an error returned to the emgr_update command line call similar to
the following:

C:\Endeca\apps\ContentAssemblerRefApp\config\page_builder_templates
ERROR: The template "NavigationPage.xml" is invalid (org.xml.sax.SAXParse¬
Exception: cvc-complex-type.4: Attribute 'id' must appear on element 'Con¬
tentTemplate'.)
ERROR: Failed to set app config. Make sure you can connect to http://local¬
host:8006.

Each template that fails validation appears as a separate component. The error is also written to the
webstudio.log file at the WARN level.

In the case of malformed XML, a similar error is output to both the command line and the
webstudio.log file. For a file with multiple validation errors, only the first failure is logged.

Missing <RuleInfo> element

A template of type PageTemplate that does not have a <RuleInfo> element passes schema
validation but is still an invalid template. When such a template is uploaded to Page Builder, it is
unavailable to content administrators and an error message is returned to the emgr_update command
line call similar to the following:

The template "ThreeColumnNavigationPage" is missing a required <RuleInfo>
element.

The error is also written to the webstudio.log file at the SEVERE level.

Invalid zone or style

If a template is uploaded and refers to an invalid zone or style, the template is unavailable in Page
Builder and an error message is returned to the emgr_update command line call similar to the following:

[ERROR 1] The template "NavigationPage" has an invalid style ("PageStyle3").
[ERROR 2] The template "NavigationPage" has an invalid zone ("Navigation¬
PageZone3").

The error is also written to the webstudio.log file at the SEVERE level.

The zone and style attributes of the <RuleInfo> element must correspond to one of the zones
and styles defined in the instance configuration of the application that you specified in the emgr_update
call. Note that you may also see this message when the name of application you specified does not
exist in the EAC.

Duplicate template ID

If you upload two template files with the same ID but different file names, then two separate templates
are stored in Page Builder but neither one displays to content administrators. An error message is
returned to the emgr_update command line call similar to the following:

ERROR: 2 errors follow:
[ERROR 1] The template "HorizontalBanner-ImageMap.xml" has a non-unique ID
 ("ImageMap").
[ERROR 2] The template "VerticalBanner-ImageMap.xml" has a non-unique ID
("ImageMap").
ERROR: Failed to set app config. Make sure you can connect to http://local¬
host:8006.

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

59Supporting Page Builder | Troubleshooting problems with uploading templates

The error is also written to the webstudio.log file at the SEVERE level.

To re-enable the templates, edit the id attribute of the <ContentTemplate> element so that each
template ID is unique, remove the templates from Page Builder, and re-upload the templates. In
general, it is a best practice to remove templates from the Page Builder and upload a complete set of
templates whenever you need to update templates.

Invalid filename or directory path

If the template file or containing directories include a space, the emgr_update command line call issues
an error similar to the following (in this case, for a file named Copy of TestA.xml):

ERROR: 09/22/09 15:54:36.795 UTC (1253634876795) EMGR_MKPKG
{emgr_mkpkg}: Unknown file type "of" specified for filename "C:\Ende¬
ca\apps\ContentAssemblerRefApp\config\page_builder_templates\Copy". Valid
file types are: AENE_OP_CONFIG ANALYTICS_CONFIG CONTENT CRAWLER_DEFAULTS
CRAWLER_GLOBAL_CONFIG CRAWL_PROFILE CRAWL_PROFILES CRAWL_PROFILE_CON¬
FIGCRAWL_PROFILE_URL_LIST DERIVED_PROPS DIMENSIONS DIMENSION_GROUPS DIMEN¬
SION_REFS DIMSEARCH_CONFIG DIMSEARCH_INDEX DVAL_RANKS DVAL_REFS ENEIDX_OP_CON¬
FIG ENE_OP_CONFIG FORGEOUTDIMS FORGE_OP_CONFIG KEYWORD_REDIRECT_GROUP
KEY_PROPS LANGUAGES MERCHSTYLES MERCHZONES MERCH_RULES MERCH_RULE_GROUP
PHRASES PIPELINE PIPELINE_PARTIAL PRECEDENCE_RULES PRECOMPUTE PROFILES
PROP_REFS RECORD_FILTER RECORD_ID_PROP RECORD_SORT_CONFIG RECORD_SPEC REC¬
SEARCH_CONFIG RECSEARCH_INDEXES REFINEMENT_CONFIG RELRANK_STRATEGIES REN¬
DER_CONFIG ROLLUPS SEARCH_CHARS STEMMING STOP_WORDS THESAURUS VIEWS RESOURCE

To avoid this error, make sure that your file and directory names do not include spaces.

Empty directory

When uploading templates, if the specified directory does not contain any XML files, the emgr_update
command line call displays the following message:

There are no templates in the specified directory.

If you receive this message, check to make sure that you specified the correct directory.

Related Links
About template validation on page 18

Templates are validated against the Page Builder template schemas when you upload them
to Page Builder.

Troubleshooting invalid templates
Some templates may be successfully uploaded to Workbench, but still contain errors that lead to
unexpected behavior in Page Builder.

The main scenario is when a property is associated with an editor with constraints, such as a combo
box or a navigation records editor, and the default value of the property does not meet the editor's
constraints. For example:

• A default value for a string property that is not specified as one of the options in a combo box editor
(unless the combo box is editable)

• A default sort order for navigation records that is not specified as one of the options in the navigation
records editor

• A default relevance ranking strategy that is not specified as one of the options in the navigation
records editor

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Supporting Page Builder | Troubleshooting invalid templates60

• A default number of records per page that is outside the specified range for the navigation records
editor

In the case of the navigation records editor, Page Builder discards the default value and the following
messsage displays in the content details panel when a user adds the cartridge to a page:

Some fields or cartridges within this cartridge may have been
updated or removed. Your content has been converted to the new cartridge.
To accept these changes click OK and Save All Changes from the List View.
To reject these changes, click Cancel. For more information, see
"Troubleshooting pages" in the Merchandising Workbench Help.

To avoid this message, ensure that all property defaults are also available as options in the associated
property editor.

Related Links
Adding a combo box editor on page 37

Predefining values through a combo box editor allows you more control over page content
and provides a more efficient mechanism for populating templates and cartridges in the editing
interface.

Adding a navigation records property on page 29
When you add a navigation records property, a content administrator can configure the display
of the main results of an end user's query.

Adding a navigation records editor on page 44
You add a navigation records editor to enable an interface in the Page Builder to configure
the display of record results on a landing page.

Troubleshooting invalid pages
If a page is displaying in Page Builder as invalid, it is using a template with invalid zones or styles.

To determine whether the template is referring an invalid style or an invalid zone:

1. Retrieve the currently loaded instance configuration using one of the following methods:

• Using the "Get Instance Configuration" feature of Developer Studio, copy the configuration files
into the project folder.

• Using the emgr_update utility, specify a destination directory.

2. In the destination directory, locate and open the appname.merch_rule_group_groupname.xml
file that corresponds to the invalid template's rule group.
For example, if the application name is "wineapp" and the rule group is "dynamicpages", the file
would be wineapp.merch_rule_group_dynamicpages.xml.

3. Look for the invalid.zone or invalid.style properties:

//Invalid zone property:
 <PROP NAME ="endeca.internal.landingpage.invalid.zone">
 <PVAL>true</PVAL>
 </PROP>

//Invalid style property:
 <PROP NAME ="endeca.internal.landingpage.invalid.style">
 <PVAL>true</PVAL>
 </PROP>

These properties are for debugging purposes only, and can be safely removed.

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

61Supporting Page Builder | Troubleshooting invalid pages

4. Locate the zone and style configuration for the rule:
For example:

<MERCH_RULE ID="17" TITLE="Champagne Landing Page"
ZONE_NAME="NavigationPageZone" STYLE_NAME="PageStylee"

 SHUFFLE_RECS="FALSE" SELF_PIVOT="TRUE">

Once you have identified the invalid zone or style, you can either restore the zone or style or edit the
rule to use a valid zone or style.You must run a baseline update for your changes to appear in the
preview application.

Related Links
Creating a zone for dynamic pages on page 16

Dynamic pages must be assigned a rule zone in order to display.You should create at least
one zone in your application for use exclusively with dynamic pages.

About using zones with dynamic pages on page 16
Zones enable the display of dynamic pages in the application. While a single zone is usually
sufficient, multiple zones can enable finer-grained control over the display of dynamic pages.

File hosting and security considerations
Page Builder occasionally needs to access files hosted on a different server. Certain security issues
may apply.

Page Builder makes an anonymous request to the file server to fetch resources. That is, even though
content administrators are authenticated when they log in to Page Builder, the tool does not use their
credentials when requesting images, editors, or other files.

Page Builder also respects the cross-domain policy file of the server hosting the external files. To
ensure that Page Builder can load these files, place a crossdomain.xml file on the file server. This
file allows you to enable access to media on this server from a specific IP address, a specific domain,
or any domain. If this policy file does not allow access from the Page Builder server, a security error
similar to the following displays when Page Builder attempts to load the resource:

Error #2044: Unhandled securityError:. text=Error #2048: Security sandbox
violation: http://pagebuilder.mycompany.com/tmgr/tmgr.swf cannot load data
 from http://www.example.com/images/3column.gif.

The following example of a crossdomain.xml file enables access from any domain to files hosted
on www.example.com:

<?xml version="1.0"?>
<!-- http://www.example.com/crossdomain.xml -->
<cross-domain-policy>
 <allow-access-from domain="*" />
</cross-domain-policy>

You can also restrict access to specific domains or IP addresses, for instance, for the server on which
Page Builder is running. Wildcards are allowed in domain names but not IP addresses. The following
example shows a policy file for www.example.com that allows access from anywhere in the example.com
domain, www.customer.com, and 105.216.0.40. It includes a by-content-type meta-policy that
allows policy files with a Content-Type of exactly text/x-cross-domain-policy:

<?xml version="1.0"?>
<!-- http://www.example.com/crossdomain.xml -->
<cross-domain-policy>

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Supporting Page Builder | File hosting and security considerations62

 <site-control permitted-cross-domain-policies="by-content-type"/>
 <allow-access-from domain="*.example.com" />
 <allow-access-from domain="www.customer.com" />
 <allow-access-from domain="105.216.0.40" />
</cross-domain-policy>

Important: In addition to cross-domain policy files, you must set up a meta-policy for each
server. These are configuration settings that manage what cross-domain policies are allowed
on a server. Using the default configuration without an explicit policy file is allowed by Flash
version 9, but a meta-policy is required with the use of version 10.

For more information about meta-policies and cross-domain policy files, see the Adobe Flash
documentation.

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

63Supporting Page Builder | File hosting and security considerations

Chapter 4

Extending Page Builder with Community
Editors

The Page Builder Editor SDK enables application developers to introduce new functionality into Page
Builder via community editors. This enables merchandisers to manage content in a way that makes
sense to them, and takes into account their existing business processes.

About Page Builder editors
Page Builder ships with a set of standard editors that address most common use cases.You can
extend the functionality of the Page Builder interface by writing editors to support a specific use case
or business process.

Page Builder editors are Flex components that provide a graphical interface for the content administrator
to configure properties in Page Builder.

Editors are registered with Page Builder through a configuration file that describes available editor
modules. These modules exist as compiled SWFs. A single module may be able to instantiate several
kinds of editors.

The editors themselves consist of Flex MXML and ActionScript that together specify editor behavior,
and drive the user interface for creating and editing content. Editors can use the Flex ExternalIn¬
terface class to invoke JavaScript, which can in turn call methods implemented in other languages.

Editors use the content model provided by the API to manipulate content. When a landing page is
loaded in Page Builder, its content is deserialized into ActionScript objects that can be programmatically
manipulated using the interfaces provided by the Page Builder Editor API.

Standard editors are included as part of the Page Builder product, and cannot be removed or modified.
Additional editors developed by the Endeca community (including Endeca Professional Services,
partners, or customers) using the Page Builder Editor API are called community editors.

Note: For the purposes of this section, all references to Page Builder editors refer to community
editors, unless specifically stated otherwise.

What can editors do?

The Page Builder Editor API enables editors to perform the following actions:

• They can edit one or more properties on a content item, including both standard and custom XML
property types.

• They can locate templates based on a template type and instantiate content items.
• They can access children of a content item, or anything lower in the content tree.

Editors have the following limitations:

• They cannot access trigger or other rule information, and therefore cannot modify rule properties.
• They cannot access the parent of the content item, or anything higher in the content tree.
• They cannot add or remove <Property> elements from a template.

Scenarios for extending Page Builder and the Content
Assembler

You can use either community editors on their own, community tag handlers on their own, or both of
them in combination to extend the functionality of Page Builder.

A tag handler enables you to extend the processing logic in the Content Assembler for custom XML
property types.

Following are some common scenarios and their implications for community editors or tag handlers:

Use community tag handler?Use community editor?Scenario

NoNoInclude application-specific
information in the template as a
pass-through XML property.

The Content Assembler returns
the XML to the rendering code
for your application.

If content administrators do not
need to modify the configuration
of a property on a per-page
basis, you do not need to write a
specialized editor.

Example: Information that the
application uses to render the
cartridge, but is of no interest to
the content administrator.

YesNoInclude external configuration in
the template as a pass-through
XML property.

The Content Assembler uses the
information contained in the XML

If content administrators do not
need to modify the content of a

to query a third-party system, andproperty on a per-page basis, youExample: Hard-coded
configuration for a third-party returns the results to the

rendering code.
do not need to write a specialized
editor.system that applies to any page

that uses this template.

NoYesProvide a new interface for
content administrators to

The community editor outputs
standard Endeca content XML,

This editor is bound to a standard
property. (In the example, the

configure existing Page Builder
properties.

which is processed by theeditor modifies a <RecordList>
property.)Example: A variation of the

record selector dialog box that
standard tag handler for record
lists. No additional work is
necessary.enables content administrators

to browse for featured records,
instead of entering a record ID.

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Extending Page Builder with Community Editors | Scenarios for extending Page Builder and the Content
Assembler

66

Use community tag handler?Use community editor?Scenario

There are two options:YesProvide an interface to configure
functionality that is not supported
by Page Builder out-of-the-box.

NoThe editor provides a specialized
interface for selecting data to

The Content Assembler returns
the XML to the application's

populate a cartridge. The
configuration is saved as a
custom XML property.

Example: An editor that enables
content administrators to specify
reviews to display for a particular
navigation state, including

rendering code, which can then
fetch the reviews from the CMS
where they are stored.

number of reviews, sort order,
and additional filtering options. Yes (preferred)

The Content Assembler fetches
the reviews from the CMS before
returning the content results to
the rendering code for your
application.

Similarly, you can use a tag
handler and community editor to
send customized queries to an
MDEX Engine and return results
to the rendering code.

Related Links
Working with custom XML properties on page 86

You can use the IXMLProperty interface to retrieve and manipulate custom XML properties.

What is the Page Builder Editor SDK?
The Page Builder Editor SDK consists of the following components:

• Page Builder Editor API — A programmatic interface for managing and instantiating Page Builder
editors and accessing and manipulating the underlying content model.

• Sample Editor — A Flex Builder project and source code for a sample rich text editor module.
• Page Builder Editor API Reference — The generated ActionScript documentation for the Page

Builder Editor API.

The pagebuilderEditorSDK.zip archive is included in the reference directory of the Workbench
installation. When extracted, it contains the following:

ContentsDirectory

This directory contains the Page Builder Editor API Reference documentation.asdoc

The sample_editors.xml editor configuration file is included here for
reference.

sample-editor-config

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

67Extending Page Builder with Community Editors | What is the Page Builder Editor SDK?

ContentsDirectory

This directory includes a sample Flex Builder project that you can import into
your workspace in order to view, modify, and build the sample rich text editor
module.

sample-editor-project

The SidebarItem-RichText.xml file is provided as an example of a
cartridge that uses the rich text editor.

sample-page-templates

The included editor-config.xsd file defines the schema for editor
configuration files.You can use this file to validate your own editor
configuration files.

schema

About the Page Builder Editor API
There are three main parts to the Page Builder Editor API: the first includes interfaces for editors and
modules, and allows you to manage and instantiate editors. The second is a set of interfaces to the
content model. The third is the Page Builder eventing model, which allows you to dispatch different
types of events on the content model.

About Page Builder editor representation in the API
The images below show the Page Builder editor interface and its basic implementation.

The following image shows how the Page Builder Editor API represents editors.The interface is shown
in the top box, with the basic implementation provided in PageBuilderEditorAPI.swc shown
below:

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Extending Page Builder with Community Editors | About the Page Builder Editor API68

This basic implementation is included with Page Builder, and is designed to support most common
uses cases.

If you write your own implementation of these interfaces, note that EditorModule must be a Module
or a subclass of Module. If you encounter a runtime error where an editor in the Content Details
Panel is stuck in the "loading" state, check that the EditorModule has been implemented as a
Module rather than an Application.

Related Links
About developing editors on page 76

This section includes information on writing editors in Flex and MXML, as well as editors that
use Flex to communicate with JavaScript.

The Page Builder Editor API content model
The diagram below shows the Page Builder Editor API content model.

Page Builder reads and outputs XML representing a landing page. This XML content document gets
deserialized into ActionScript objects, which you can access via a set of interfaces that are provided
by the Page Builder Editor API. These interfaces provide structured programmatic access to an
object-based representation of the content document that is the landing page. The IContentMod¬
elFactory interface allows editors to create any required objects, such as properties and content
items. The individual object interfaces provide methods for manipulating them.

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

69Extending Page Builder with Community Editors | About the Page Builder Editor API

The above image is meant to illustrate the structure and relationships of objects in the content model;
it is not a comprehensive reference for the Page Builder Editor API. Note the recursive nature of the
content document, as defined by the relationship between content items and properties.

The content model includes interfaces for manipulating all standard Page Builder property types. In
addition, the IXMLProperty enables editors to output custom XML properties.

For complete information regarding the Page Builder Editor API, please refer to the Page Builder Editor
API Reference.

Related Links
Working with the content model on page 83

To modify any content model object, you must retrieve it from the content item after your
editor has been instantiated.

Working with custom XML properties on page 86

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Extending Page Builder with Community Editors | About the Page Builder Editor API70

You can use the IXMLProperty interface to retrieve and manipulate custom XML properties.

About eventing in Page Builder
Page Builder uses a standard Flex eventing model that includes the events below:

UsageStringconst

Page Builder dispatches contentMod¬
elChange events in response to
changes to the content model.

contentModelChangeContentModelEvent.CHANGE

You can use event listeners or bind
your editor properties to content model
objects if you want them to update
automatically in response to changes
to the content model.

If a template has been changed such
that it is no longer compatible with the

contentUpgradeContentModelEvent.UPGRADE

content that uses that template, an
editor can dispatch this event to display
a warning that the content may have
changed.

Page Builder dispatches this event
after it has instantiated an editor and

editorReadyEditorEvent.READY

set the info, factory, and con¬
tentItem properties on it.

Editors should be set to listen for this
event in order to retrieve and validate
whatever properties they manipulate
on the content item.

An editor can dispatch a Edi¬
torEvent.ERROR event to display an

editorErrorEditorEvent.ERROR

error message in place of the editor
interface.

Compile-time and runtime dependencies
The main Page Builder SWF and Page Builder editor modules rely on the same Editor API, but have
different compile time and runtime dependencies.

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

71Extending Page Builder with Community Editors | About the Page Builder Editor API

The following dependencies exist among the Page Builder components that are used to implement
editors:

• Page Builder relies on the Page Builder Editor API library, PageBuilderEditorAPI.swc, as a
compile-time resource. It is compiled into the Page Builder SWF in its entirety.

• During development, Page Builder editor modules require PageBuilderEditorAPI.swc as a
compile-time resource.

• When you build editor modules for use in Page Builder, you should configure
PageBuilderEditorAPI.swc as a dynamically linked library, rather than compiling it into the
SWF.You can do this by setting the link type to External in Flex Builder.Your editors will use the
SWC compiled into Page Builder at runtime.

About setting up the sample editor
The Workbench installation includes a sample editor project and associated template and configuration
files. This section assumes that you have one or more applications deployed in Workbench that you
can use to test the sample editor.

The sample rich text editor is a simple, all-Flex editor that should be bound to a property that contains
a string. Before setting up the sample editor, you must set up your development environment so that
you can generate the sample editor module from the provided source code.

Note: The rich text editor uses the Flex RichTextEditor control and outputs a string property
that contains escaped Flex HTML text. This is a subset of HTML that is supported by Flash
player and AIR, with the addition of a <textformat> tag, which is not standard HTML. The
Content Assembler reference application does not include rendering code that is intended to
handle strings in Flex HTML text format. To see the markup generated by the rich text editor,
click the XML View tab and scroll to the rich_text property within the content tree. For more
information about Flex HTML text, refer to the Adobe documentation.

After you have written and compiled your editor module, making the sample editor available to Page
Builder requires the following steps:

• Make the editor available via a URL.
• Add an entry for the editor to the editor configuration file.
• Configure Workbench to specify the location of the editor configuration file.

Using the editor requires the following steps:

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Extending Page Builder with Community Editors | About setting up the sample editor72

• Create or modify a template to use the editor.
• Upload the template to Page Builder using the emgr_update utility.
• In Page Builder, create a cartridge using the above-mentioned template.

About Flex
Page Builder editor modules should be written and compiled in Adobe Flex 3.2. Other versions are
unsupported and may cause editors to fail at runtime.

Flex is an open source development framework created and maintained by Adobe. It supports common
design patterns and is based on MXML and ActionScript 3.

This section assumes that you are comfortable working with Flex. If not, you may find the following
resources helpful:

• http://www.adobe.com/products/flex/overview — The Adobe Flex website provides an overview
of the Flex development framework and includes download links to the Flex SDK.

• http://www.adobe.com/support/documentation/en/flex — The Adobe Flex resources page contains
links to Flex documentation, including the Adobe Flex Language Reference and Flex 3 Developer
Guide.

• http://opensource.adobe.com/wiki/display/flexsdk/Coding+Conventions — The Adobe Open Source
wiki page on Flex SDK best practices and coding conventions provides a set of standards for
coding in Flex.

Setting up your development environment using the sample project
The Workbench installation includes a sample Flex project that you can use as a starting point for
development. Once you have installed Adobe Flex Builder 3, you can import the project from the
reference directory of your Workbench installation.

The sample project demonstrates the use of the EditorModule class, and is configured to use the
PageBuilderEditorAPI.swc as an external library.

Before starting development on your external editors, you should have an application provisioned in
Workbench that you can use to test the sample editor.You can use the Content Assembler reference
application for this purpose; see "Working with the Sample Application" in the Endeca Commerce
Suite Getting Started Guide for details.

To set up your development environment using the sample project:

1. Install Adobe Flex Builder 3 either as a standalone IDE or an Eclipse Plug-in.

Ensure that you are developing against the latest stable build of Adobe Flex SDK 3.2. As of this
writing, the recommended build is available from the following link:
http://opensource.adobe.com/wiki/display/flexsdk/download?build=3.2.0.3794&pkgtype=1

2. Navigate to the reference subfolder of your Workbench installation and select the
pagebuilderEditorSDK.zip archive.

If you installed Workbench to the default location, this will be under
%ENDECA_TOOLS_ROOT%\reference on Windows, or $ENDECA_TOOLS_ROOT\reference on
UNIX.

3. Extract the archive to a location of your choice.

4. Open Flex Builder and select File > Import > Flex Project....

5. Make sure the Project folder radio button is selected, and click Browse.

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

73Extending Page Builder with Community Editors | About setting up the sample editor

http://www.adobe.com/products/flex/overview/
http://www.adobe.com/support/documentation/en/flex/
http://opensource.adobe.com/wiki/display/flexsdk/Coding+Conventions
http://opensource.adobe.com/wiki/display/flexsdk/download?build=3.2.0.3794&pkgtype=1

6. Navigate to the location where you extracted the archive in Step 3 and select the
sample-editor-project directory.

7. Click Finish.

8. Confirm that the PageBuilderEditorAPI.swc is configured as a dynamically linked library.

a) In Flex Builder, right-click the sample-editors project and select Properties from the drop-down
menu.

b) Select Flex Build Path from the tree control in the left panel.
c) Select the Library path tab from the Flex Build Path panel on the right.
d) Expand the libs folder in the Build path libraries view.
e) Ensure that the Link Type is set to External.

9. Click Finish.
Flex Builder creates the new project.

Hosting the sample editor module
After you have built the editor module, you must host the module on a server that can be accessed
by Page Builder.

For simplicity, this procedure describes hosting the sample editor module in the Endeca Tools Service,
which allows you to bypass some security configuration. This is sufficient for working with the sample
project in a development environment.

Note: In a production environment, hosting editors in the Workbench container is unsupported,
and causes them to compete with Workbench for resources.

To add your sample editor application to the Endeca Tools Service:

1. Navigate to %ENDECA_TOOLS_ROOT%\server\webapps on Windows, or
$ENDECA_TOOLS_ROOT/server/webapps on UNIX.

2. Create a new directory, sample_editor_app.

3. Open the sample project in Flex Builder 3.

a) Select the sample_editor_app directory you created in Step 2 as the output location.
b) Build the sample editor SWF.

4. Navigate to %ENDECA_TOOLS_CONF%\conf\Standalone\localhost on Windows, or
$ENDECA_TOOLS_CONF/conf/Standalone/localhost on UNIX.

5. Create a new context file inside the directory, sample_editor_app.xml, and include the following
(Note that the docBase path given is for a default Windows installation):

<!-- Context file for the sample editor application -->
<Context
 path="/sample_editor_app"
 docBase="C:\Endeca\Workbench\2.1.0\server/webapps/sample_editor_app"
 debug="0"
 privileged="false">
</Context>

6. Save and close the file.

After you create the context configuration file and add the editor module to your sample_editor_app
directory, you need to modify the sample editor configuration file.

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Extending Page Builder with Community Editors | About setting up the sample editor74

Modifying the sample editor configuration file
You must update the editor configuration file to specify the location of the sample editor module.

To specify the current location of the editor module:

1. Navigate to %ENDECA_TOOLS_ROOT%\reference on Windows, or
$ENDECA_TOOLS_ROOT/reference on UNIX.

2. Extract the sample editor configuration file, sample_editors.xml, from the
pagebuilderEditorSDK.zip archive.

The sample editor configuration file is located in the
pagebuilder-editor-sdk\sample-editor-config directory.

3. Open the file.

4. Locate the line that specifies the url of the editor module, as in the example below:

<EditorModule url="http://example.com:8080/test-editors.swf"
 crossDomainUrl="http://example.com:8080/crossdomain.xml">

5. Modify the url attribute to point to the new location of the editor module, for example:

<EditorModule url="http://localhost:8006/sample_editor_app/sample_edi¬
tors.swf">

6. Save the modified editor configuration file inside the
%ENDECA_TOOLS_ROOT%\server\webapps\sample_editor_app directory on Windows, or
$ENDECA_TOOLS_ROOT/server/webapps/sample_editor_app directory on UNIX.

After updating the editor configuration file, you must specify its location in webstudio.properties.

Modifying webstudio.properties to enable the sample editor
In order for Page Builder to use the sample editor configuration file, you must specify the location of
the file in webstudio.properties.

To specify the location of the editor configuration file:

1. Stop the Endeca Tools Service.

2. Navigate to %ENDECA_TOOLS_CONF%\conf (on Windows) or $ENDECA_TOOLS_CONF/conf/
(on UNIX).

3. Open the webstudio.properties file.

4. Find the line that specifies the location of the editor configuration file, for example:

The URL from which to load editor configuration for Page Builder
#com.endeca.webstudio.pagebuilder.editors.config=http://my.compa¬
ny.com/2009/myeditors.xml

5. Uncomment and change it to point to the absolute URL of your editor configuration file,
sample_editors.xml:

The URL from which to load editor configuration for Page Builder
com.endeca.webstudio.pagebuilder.editors.config=http://localhost:8006/sam¬
ple_editor_app/sample_editors.xml

6. Save and close the file.

7. Start the Endeca Tools Service.

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

75Extending Page Builder with Community Editors | About setting up the sample editor

Incorporating the sample cartridge
The Workbench installation includes a sample cartridge that uses the sample editor.You can add it
to your application's template directory and use the emgr_update utility to upload it to Page Builder.

To add the sample cartridge to your Web application:

1. Navigate to %ENDECA_TOOLS_ROOT%\reference on Windows, or
$ENDECA_TOOLS_ROOT/reference on UNIX.

2. Navigate to the location where you extracted the pagebuilderEditorSDK.zip archive.

3. Copy the sample cartridge, SidebarItem-RichText.xml, from the
pagebuilder-editor-sdk\sample-page-templates directory to the template directory of
your application.

4. Run the emgr_update utility to upload the templates to Page Builder.

The example below is for the Content Assembler Reference Application installed with defaults in
Windows:

emgr_update.bat --action set_templates --host localhost:8006
--app_name ContentAssemblerRefApp --dir C:\Endeca\apps\ContentAssembler¬
RefApp\config\page_builder_templates

5. Log in to Workbench.

6. Create or modify a landing page to use the RichTextEditor Sidebar Item.

Note: If you encounter a security sandbox violation error when Page Builder tries to load your
editor, confirm that your security certificates are set up correctly and that your browser accepts
the validity of your certificates.

About developing editors
This section includes information on writing editors in Flex and MXML, as well as editors that use Flex
to communicate with JavaScript.

The editor creation workflow
This section provides an overview of the steps required to create and use an editor.

The steps involved in creating and installing an editor are as follows:

1. Create or open a Flex Builder project.

The Workbench installation includes a sample project that you can use for editor development
against the Page Builder SDK.

2. Create a new Flex component or modify an existing editor.

This component should implement the IEditor interface.

3. In the MXML that represents your EditorModule, add an entry for your editor similar to the
following:

 <editor:EditorEntry
 uri="http://endeca.com/sample/2010"
 localName="MyEditor"
 editor="com.endeca.tools.pagebuilder.samples.editors.MyEditor" />

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Extending Page Builder with Community Editors | About developing editors76

4. Configure PageBuilderEditorAPI.swc as a dynamically linked library by setting the link type
to External in Flex Builder.

5. Build the Flex project to generate the editor module.

6. Upload your editor module to a chosen host.

Note: If you are hosting your editor module on a different security domain from the editor
configuration file, you must also create a cross-domain policy file for the editor module.

7. Specify the location of the editor module (and its cross-domain policy file, if you created one) in
your editor configuration file.

8. Edit the webstudio.properties file, located in %ENDECA_TOOLS_CONF%\conf (on Windows)
or $ENDECA_TOOLS_CONF/conf (on UNIX) to specify the following:

• The location of the editor configuration file
• The cross-domain policy file for the editor configuration file

Unless you change the location of the editor configuration file or its associated crossdomain.xml
file, this step only needs to be taken once.

9. Add the editor to a Page Builder template, either by creating a new template, or modifying an
existing one.

Note that the element name and namespace together form the QName that you specified for the
editor in the editor configuration file.

10. Use the emgr_update utility to upload your new or updated templates to Page Builder.

11. Test the editor by logging into Page Builder.

If the editor is valid and configured properly in Page Builder, it displays in the Content Detail Panel
when the appropriate cartridge is selected.

Note the following:

• If you make changes to webstudio.properties, you must restart the Endeca Tools Service.
• If you update the editor configuration file, you need to reload the main Page Builder SWF.
• If you update the editor module, you need to reload the main Page Builder SWF.
• Changes to the editor SWF may not be loaded if your browser is using a cached version of the

SWF. Check your browser settings for options related to checking for new versions of cached
content, or clear your cache manually to resolve the issue.

Related Links
File hosting and security considerations on page 62

Page Builder occasionally needs to access files hosted on a different server. Certain security
issues may apply.

Uploading templates to Page Builder on page 53
Before Page Builder users can access new templates, you must upload them using the
emgr_update utility.

About modifying templates that are used by existing pages on page 54
During the development and testing phase of your application deployment, you may need to
make adjustments to your page or cartridge templates and update them in Page Builder.

Specifying editors for Page Builder on page 92
The editor configuration file lists the editors available to Page Builder.

Enabling the editor configuration file on page 94

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

77Extending Page Builder with Community Editors | About developing editors

In order for Page Builder to use the editor configuration file, you must set up a
crossdomain.xml file and specify the locations of both the cross-domain policy file and
the editor configuration file in webstudio.properties.

Using editors in templates on page 95
Adding editors to a template is similar to adding standard editors, except that you must specify
a non-Endeca namespace for your editor name.

About the Page Builder editor life cycle
This section provides an overview of the processes within Page Builder that govern the instantiation
and life cycle of editors.

1. At startup, Page Builder populates an internal editor registry based on the editor configuration file
specified in webstudio.properties:

The URL from which to load editor configuration for Page Builder
com.endeca.webstudio.pagebuilder.editors.config=http://my.compa¬
ny.com/2009/myeditors.xml

2. When the content administrator navigates to the Edit View and selects a content item in the Content
Tree, Page Builder loads editors according to the information in the <EditorPanel> element of
the template XML:

<EditorPanel>
 <BasicContentItemEditor>
 <GroupLabel label="Page metadata"/>
 <CheckBox propertyName="autogen_meta" label="Auto-generate meta in¬
formation" />
 ...
 <MyEditor xmlns="http://my.company.com/2009" propertyName="meta_de¬
scription" label="Meta description" enabled="true" height="72"/>
 </BasicContentItemEditor>
</EditorPanel>

3. When Page Builder encounters an editor in the <EditorPanel> element, it concatenates the
namespace and name to form a qualified name:

<MyEditor xmlns="http://my.company.com/2009"... />

4. Page Builder then refers to the editor registry in memory, and searches for the first match to the
qualified name in order to identify the correct editor module:

<EditorModule url="http://localhost/foo/bar/myeditors.swf">
 <editor name="http://my.company.com/2009:MyEditor"/>
</EditorModule>

5. Page Builder reads the url attribute of the <EditorModule> element to locate the community
editor module:

<EditorModule url="http://localhost/foo/bar/myeditors.swf">
 <editor name="http://my.company.com/2009:MyEditor"/>
</EditorModule>

6. Page Builder loads the editor module.

Note: Once an editor module has been loaded, Page Builder does not unload or reload it
unless you reload the Page Builder SWF. Browser caching settings may interfere with this
behavior. For more information, please see the "Troubleshooting an editor" section.

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Extending Page Builder with Community Editors | About developing editors78

7. Page Builder uses the newly created editor module to instantiate the appropriate editor object.
8. After instantiating the editor, Page Builder sets the info, factory, and contentItem properties

on it.

Note: Page Builder always passes an editor the entire ContentItem, so that the editor can
modify multiple properties if desired.

9. Once all three properties have been set, Page Builder dispatches an editorReady event.Typically,
editors listen for this event to retrieve and validate specific properties from the content item.

10. Page Builder adds the rendered editor to the Content Detail Panel on the right side of the Content
Editor Pane.

11. The content administrator uses the editor interface to make any desired changes. Saved changes
are serialized into the content XML that represents the landing page.

12. All editor objects are destroyed when the content administrator selects another content item in the
content tree or navigates away from the Edit View.

Related Links
Ensuring Page Builder loads the current editor modules on page 98

After you update a hosted editor module, Web browsers may continue to load cached versions
of the old editor module.

Page Builder editor life cycle diagram

Below is a sequence diagram that depicts the Page Builder editor life cycle.

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

79Extending Page Builder with Community Editors | About developing editors

About editor instantiation
Generally, you should set your editor to listen for the EditorEvent.READY event that Page Builder
dispatches when an editor is instantiated.

The EditorEvent.READY event signals that an editor can access its configuration to retrieve and
validate whatever properties it manipulates on the content item. This event is only dispatched after
Page Builder has set the following properties on a newly instantiated editor:

The factory object of type IContentModelFactory, which the editor can use
to create content model objects.

factory

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Extending Page Builder with Community Editors | About developing editors80

An object of type IEnvironmentInfo that includes environmental and
configuration information, which Page Builder uses to determine how to render
the editor.

info

The IContentItem object that contains the property or properties that the editor
modifies. The getPropertyByName method on the ContentItem object can
be used to retrieve a property by name.

contentItem

The sample rich text editor uses the editorReadyHandler() method below, which retrieves the
property name that the editor is linked to, and sets up a listener for ContentModelEvent.CHANGE
events to monitor the property for changes:

private function editorReadyHandler(event:EditorEvent):void
{
 if (contentItem != null && info.templateConfig != null)
 {
 var prop:IProperty = contentItem.getPropertyByName(info.templateCon¬
fig.@propertyName);
 property.addEventListener("contentModelChange", contentModelChangeHan¬
dler());
 }
}

About configuring editors
You can specify editor configuration information in one of three places.

When configuring your editors, you should consider the impact of specifying configuration information
in one of the three available locations:

• Hardcoded — specifying configuration in the editor source ensures consistent behavior across
all instances of that editor.

• Editor Configuration File — specifying configuration in the editor configuration file results in
consistent behavior for a given Workbench installation. This is useful for information that may vary
across installations, such as URL and user credentials for a third-party service.

• Landing Page Template — adding configuration information to the template ensures consistency
for that template only.

Page Builder sets global, editor-specific, and template-specific configuration information as properties
of an IEnvironmentInfo object when an editor is instantiated.

Related Links
Adding editor configuration information to the editor configuration file on page 93

You can specify arbitrary configuration information in the editor configuration file. This can
be done on a global or per-editor basis.

Using editors in templates on page 95
Adding editors to a template is similar to adding standard editors, except that you must specify
a non-Endeca namespace for your editor name.

About retrieving editor configuration information

The info property provides information regarding the environment in which an editor is created. This
includes global, template-specific, and editor-specific configuration.

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

81Extending Page Builder with Community Editors | About developing editors

Each of the three configuration types is returned as an XML object:

UsageObject

This includes configuration specified in the editor configuration file on a global
level, either as attributes or nested elements of the <GlobalEditorConfig>
tag:

<EditorConfig xmlns="...">
<GlobalEditorConfig username="u" password="p">

globalEditorCon¬
fig

 <ExampleCustomGlobalConfigXML />
 </GlobalEditorConfig>
 ...
 <Editor ...>
 </Editor>
</EditorConfig>

This includes configuration specified in the editor configuration file on a
per-editor basis:

<Editor name="http://my.company.com/2009/editors:MyEdi¬
tor">

editorConfig

<EditorConfig>
 <Arbitrary foo="bar" size="10" resizeable="false"/>
 </EditorConfig>
</Editor>

This includes configuration that is specified in a landing page template as
attributes of the editor tag:

<MyEditor xmlns="..." propertyName="meta_description"
label="Meta description" enabled="true" height="72"/>

templateConfig

For example:

/*
* The property name is stored in the propertyName attribute of the
* templateConfig (in this case, the RichTextEditor element in the
* page template). In the sample template the RichTextEditor
* templateConfig looks like this:
*
* <RichTextEditor propertyName="rich_text"
* xmlns="http://endeca.com/sample/2010" />
*/
 var prop:IProperty = contentItem.getPropertyByName(info.templateCon¬
fig.@propertyName);

For more details about the IEnvironmentInfo interface, refer to the Page Builder Editor API
Reference.

Related Links
About configuring editors on page 81

You can specify editor configuration information in one of three places.

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Extending Page Builder with Community Editors | About developing editors82

About retrieving the Page Builder MDEX host name and port

The info property includes the Page Builder MDEX host name and port as part of the environment
information it provides to an editor.

Page Builder refers to the MDEX properties specified in the Endeca Application Controller for MDEX
hostname and port information.You can access these properties on the IEnvironmentInfo object,
as with the example below:

var hostname:String = info.webstudioMDEXHostname;
var port:uint = info.webstudioMDEXPort;

queryMDEX(hostname, port, query);

For more information on specifying which MDEX Engine to use with Workbench, see the Workbench
Administrator's Guide.

About binding an editor to multiple properties
You can bind an editor to multiple properties by specifying multiple property attributes in the <editor>
element of a landing page or cartridge template.

For example, a landing page template can include an editor element with multiple properties specified
as attributes, as in the example below:

<MyEditor xmlns="..." propOne="foo" propTwo="bar"/>

After your editor is instantiated, you can retrieve the names of these properties from the template¬
Config property of the IEnvironmentInfo object. With these names, you can access the property
objects by calling the ContentItem.getpropertyByName() method:

var propOne:IProperty = contentItem.getPropertyByName(info.templateCon¬
fig.@propOne);
var propTwo:IProperty = contentItem.getPropertyByName(info.templateCon¬
fig.@propTwo);

Note: If you need to be notified of any changes to either property, you can listen for content
model events on the content item that has these two properties.

Working with the content model
To modify any content model object, you must retrieve it from the content item after your editor has
been instantiated.

Page Builder instantiates an IContentItem object based on the <ContentItem> definition in the
template and sets it as the contentItem property on the editor. Editors cannot add or remove
properties from the content item.

The code below assumes that the name of the property containing the object is specified in the
propertyName attribute of the editor configuration in the template. The value of the propertyName
attribute from the template configuration is retrieved from the info property, assigned to a variable,
and passed into the content item getPropertyByName() method.

// Retrieve the name of the property to be used by this
// editor from the template XML.
var propertyName:String = info.templateConfig.@propertyName;

// Now, retrieve the property itself from our content item.

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

83Extending Page Builder with Community Editors | About developing editors

var prop:IProperty = contentItem.getPropertyByName(propertyName);

// If the property is null or the wrong type, then the template has
// been misconfigured and there is nothing we can do here except
// dispatch an error event.
if (prop == null || !(prop is INavigationRecordsProperty))
{
 dispatchEvent(EditorEvent.createErrorEvent("Invalid property"));
 return;
}

// Otherwise, we can retrieve and use the value of the property.
var property:INavigationRecordsProperty = INavigationRecordsProperty(prop);

displayToUser(property.navigationRecords);

// We can also replace it with a new value which we create using
// the content model factory...
if (property.navigationRecords == null)
{
 property.navigationRecords = factory.createNavigationRecords();
}

// ...and modify it.
property.navigationRecords.recordsPerPage = 15;

For more information, see "About the content model interfaces" in the Page Builder Editor API
Reference.

Related Links
About retrieving editor configuration information on page 81

The info property provides information regarding the environment in which an editor is
created. This includes global, template-specific, and editor-specific configuration.

About handling error conditions on page 88
An editor dispatches an EditorEvent.ERROR event ito display an error message in place
of the editor.

Working with IRecordListProperties

Unlike other objects in the content model, the IRecordListProperty object does not simply contain
a RecordList property. Instead, it has a query property that can be of type INavQuery or
IRecordQuery.

A community editor can create both record queries and navigation queries for a record list property:

• A navigation query populates the record list property by returning all records that match a selected
navigation state (dynamic records).

• A record query populates the record list property by taking a specific list of record IDs (featured
records).

Each query type contains query parameters that the Content Assembler can use to populate the record
list before returning the results to your application.

In order to specify queries, you must first retrieve the IRecordListProperty from the content item
after your editor has been instantiated. The code below assumes that the name of the property is
specified in the propertyName attribute of the editor configuration in the template:

// Get the property associated with this editor in the template XML
var prop:IProperty = contentItem.getPropertyByName(info.templateConfig.@prop¬

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Extending Page Builder with Community Editors | About developing editors84

ertyName);
var property:IRecordListProperty = IRecordListProperty(prop);

Below is an example of how you can add a navigation query to a record list property:

//Create a new navigation query for this property
var navQuery:INavQuery = factory.createNavQuery();
navQuery.dimensionValues.addItem(factory.createDimensionValue("5564","12"));
navQuery.maxRecords = 12;
navQuery.sort = factory.createRecordSort("Price", true);
property.query = navQuery;

The following example shows how you can add a record query to a record list property:

//Create a new record query for this property
var recordQuery:IRecordQuery = factory.createRecordQuery();
recordQuery.recordIds.addItem("16342");
recordQuery.recordIds.addItem("28314");
property2.query = recordQuery;

For additional information about record list properties and the query objects, see the Page Builder
Editor API Reference.

About handling changes to the content model
Page Builder dispatches a ContentModelEvent.CHANGE when an object in the content model is
changed in any way.

Listening for content model change events

Note that a ContentModelEvent.CHANGE event dispatched within the content model hierarchy
bubbles up, triggering any listeners on objects higher up in the hierarchy.

This event includes the following information:

• The source of the change within the content model
• The property on an object that was changed, including the oldValue and newValue
• The kind of change; possible values are UPDATE, ADD, MOVE, REMOVE, REPLACE, REFRESH,
RESET, and null

For more details about the ContentModelEvent class, refer to the Page Builder Editor API Reference.

You can rely on standard Flex bindings to update property values with any changes. The example
below shows a standard checkbox component whose selected property is bound to the boolean
property of a BooleanProperty object:

<mx:CheckBox id="propertyValueCheckBox"
change="booleanProperty.boolean = propertyValueCheckBox.selected;"
selected="{booleanProperty.boolean}" />

The selected property binding ensures that whenever a ContentModelEvent.CHANGE event is
dispatched by mBooleanProperty, the check box selected value is updated to reflect the new
value.

Note: All content model objects that represent collections of objects (such as Record¬
Query.recordIds) implement the mx.collections.IList interface.You can bind these
objects in the same fashion as any other built-in Flex construct that implements an IList
interface.

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

85Extending Page Builder with Community Editors | About developing editors

If you want to call a method in response to content model changes, you can use an event listener to
monitor a property for changes. For example, if you have an editor that displays an image preview,
you can add a listener on the property or properties that represent the image URL so that you can
update the preview to reflect any changes.

Dispatching content model change events

Page Builder dispatches events for changes to all objects in the content model. This includes objects
of type IXMLProperty when the xml property is set directly. However, changes to the underlying
XML object itself do not trigger an event. If you modify the object in this manner, you must dispatch a
ContentModelEvent.CHANGE event as part of your code:

/*
* Setting the "xml" property of an IXMLProperty object automatically
* dispatches an event with type ContentModelEvent.CHANGE.
*/
 xmlProperty.xml = foo;

/*
* Making changes to the object which is referred to by the "xml" property
* does not dispatch a ContentModelEvent.CHANGE event. You must dispatch
* the event manually.
*/
xmlProperty.xml.bar[0] = <baz/>;
xmlProperty.dispatchEvent(new ContentModelEvent(
 ContentModelEvent.CHANGE, null, null, null, null, null, xmlProperty.xml));

Working with custom XML properties
You can use the IXMLProperty interface to retrieve and manipulate custom XML properties.

Adding custom XML to your templates enables you to work outside of the standard content object
model. For example, you can:

• Create properties similar to standard Endeca properties, such as a MyRecordList property with
a roll-up key for aggregate records.

• Pass in any other information your application requires, such as configuration for a third-party
application.

To add custom XML to an editor:

1. Create a <Property> tag inside the <ContentItem> in your template.

2. Add custom XML to the <Property> element as nested attributes:

<ContentItem>
 <Property name="custom">
 <Milkshake xmlns="http://mycompany.com/schema/2010/data"
 flavor="vanilla"/>
 </Property>
</ContentItem>

Explicitly define a namespace for your custom XML that is not one of the following Endeca
namespaces:

• http://endeca.com/schema/content/2008
• http://endeca.com/schema/content-template/2008
• http://endeca.com/schema/content-tags/2008

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Extending Page Builder with Community Editors | About developing editors86

Note: Because Page Builder does not perform validation on XML that is not in one of the
Endeca namespaces, Endeca recommends validating any templates that contain custom or
pass-through XML properties prior to uploading them.

3. Add your editor to the <EditorPanel> and bind it to your custom XML property:

<EditorPanel>
 <BasicContentItemEditor>
 <CustomXMLEditor propertyName="custom" xmlns="http://mycompa¬
ny.com/schema/2010/editors"/>
 </BasicContentItemEditor>
</EditorPanel>

4. After your editor is instantiated and its properties are set, Page Builder dispatches the editorReady
event. To modify the XML in an IXMLProperty, use the getPropertyByName method and
specify the propertyName from the <EditorPanel> that ties your editor to the custom XML
property.You can set the XML directly, or modify the underlying object:

var customProperty:IXMLProperty = IXMLProperty(contentItem.getPropertyBy¬
Name(info.templateConfig.@propertyName));

/*
* Set the XML directly. Page Builder automatically dispatches a
* contentModelChange event
*/
customProperty.xml = <Milkshake xmlns="http://mycompany.com/schema/2010/da¬
ta" flavor="vanilla">
 A tall, frosty beverage
 </Milkshake>

/*
* Modify the underlying object and manually dispatch a
* contentModelChange event
*/
customProperty.xml.@flavor = "banana";
customProperty.dispatchEvent(new ContentModelEvent(ContentMod¬
elEvent.CHANGE, null, null, null, null, null, customProperty.xml));

Note: Keep in mind when modifying the XML property that only the setter method
automatically dispatches a ContentModelEvent.CHANGE event.The content model cannot
detect internal changes to an XML object. If you modify the XML data by reference, you must
manually dispatch a ContentModelEvent.CHANGE event.

The custom XML is passed to the Content Assembler as part of the overall page configuration.You
may also consider writing a tag handler for your custom XML. A tag handler enables you to extend
the processing logic in the Content Assembler before it returns the content results to your application.
For more information, see the Content Assembler API Developer's Guide.

Related Links
Scenarios for extending Page Builder and the Content Assembler on page 66

You can use either community editors on their own, community tag handlers on their own,
or both of them in combination to extend the functionality of Page Builder.

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

87Extending Page Builder with Community Editors | About developing editors

About read-only mode
If a user does not have sufficient privileges to make modifications to a landing page, or a selected
landing page group is locked by another Workbench user, Page Builder enters read-only mode.Your
editor needs to respect read-only mode by placing any UI controls it contains into a read-only mode
as well.

When a landing page is in read-only mode, all its child content items and properties are also in read-only
mode. Attempting to modify them results in a runtime exception.

You can place your UI controls in read-only mode by binding any relevant attributes to the readOnly
property of the content item or any of its child objects in the Flex code. Which attributes you bind in
this manner will depend on the UI control you are using. See the Adobe Flex documentation for details.

The example below shows a TextArea UI control. The enabled and editable attributes are set
to the negated value of the string property's readOnly property (which is inherited from the content
item):

<mx:TextArea id="propertyValueTextInput"
 text="{stringProperty.string}"
 enabled="{!stringProperty.readOnly}"
 editable="{!stringProperty.readOnly}"
 change="stringProperty.string = propertyValueTextInput.text;" />

The TextArea is only editable if the content item associated with the editor is not in read-only mode.

Note: If your UI controls allow the modification of read-only objects, and the content administrator
tries to modify those objects, Page Builder throws an error that is presented to the content
administrator.

About handling error conditions
An editor dispatches an EditorEvent.ERROR event ito display an error message in place of the
editor.

You can do this in the case of an irrecoverable error, for example, when the requisite property on a
content item does not exist, or the property exists, but is of the wrong type.

Below is an example that dispatches an editorError event:

dispatchEvent(EditorEvent.createErrorEvent(errorMessage));

About handling conflicts between content and editor definitions
You can dispatch a ContentModelEvent.UPGRADE event to display a message box that alerts the
content administrator of changes to the content.

When Page Builder populates the Content Detail Panel for a landing page or cartridge, it checks the
content XML of the loaded page against the template XML. If the template has been changed such
that it is no longer compatible with the content, Page Builder displays a warning and updates existing
content that is bound to standard editors to fit the current template definition.

You can add similar logic to your editor, and display a warning by using the eventing model.

Note that you should dispatch ContentModelEvent.UPGRADE events from the IProperty that
has been modified. The events bubble up the hierarchy to the appropriate content model object.

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Extending Page Builder with Community Editors | About developing editors88

Below is an example:

property.dispatchEvent(ContentModelEvent.createContentModelUpgradeEvent(prop¬
erty));

Related Links
About modifying templates that are used by existing pages on page 54

During the development and testing phase of your application deployment, you may need to
make adjustments to your page or cartridge templates and update them in Page Builder.

About writing editor components outside of Flex
An editor can use the Flex ExternalInterface API to enable a Web application to interact with
the Page Builder SWF. This is one method of implementing external editor functionality with minimal
use of ActionScript.

Due to JavaScript domain issues, any Web application that uses JavaScript to interact with the Page
Builder SWF must be hosted on the same domain as Workbench. These are the same restrictions
that exist for the preview application in Workbench.

Calling JavaScript from ActionScript

ExternalInterface includes a call() method that allows ActionScript to call a function in the
container application. This method requires at least one parameter:

• The first, required parameter is the name of the function to call.
• Any additional parameters are passed, in order, as arguments to the function being called.

The example below calls the JavaScript window.open() method to open a window that displays a
Web application:

ExternalInterface.call("window.open", <external application URL>,
<window title>,<JavaScript window.open arguments>);

If you use this approach, you should specify the Flex portion of the editor in the editor configuration
file.

Calling ActionScript from JavaScript

The Flex ExternalInterface class provides an addCallback() method that registers an
ActionScript function so that it can be called by JavaScript. This method takes two parameters:

• A string, which is the function name you call from your JavaScript
• An ActionScript function, which executes when your Web application makes a JavaScript call

matching the specified string

The following example shows how you can combine the use of addCallback() and call() to
communicate with your Web application via JavaScript.

The editor includes the ActionScript below:

private function openExternalWindow(event:Event):void
{
 // When addRecord() is called on the editor, the
 // list of records in the Page Builder editor is
 // updated to include the given record if it doesn't already.

 // Calling ExternalInterface.addCallback() adds a JavaScript
 // callback to the Page Builder SWF.
 ExternalInterface.addCallback("addRecord",

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

89Extending Page Builder with Community Editors | About developing editors

 function(recordSpec:String):void
 {
 if(!records.contains(recordSpec)) {
 records.addItem(recordSpec);
 }
 property.dispatchEvent(new Event("featuredRecordsChange"));
 });
 // Open the window. Calling the JavaScript window.open()
 // method opens a window displaying the Web application
 // you want to use to call addRecord() on the Page Builder SWF.
 ExternalInterface.call("window.open", http://mycompany.com/we¬
bapp/record_browser, "featuredRecordsEditor",
 "menubar=1,resizeable=1,width=1000,height=800,loca¬
tion=yes,menubar=yes,scrollbars=1,toolbar=1");
}

In the Web application, the call to addRecord() is treated as though a local function is being called.
The following JavaScript is used to execute this call on the Page Builder SWF:

function addRecord(recordSpec) {
 var movie;
 try {
 // the Page Builder movie is called “pagebuilder”. Firefox and
 // IE provide different ways to access it – check for both
 // Firefox and IE

 // Check IE
 if(window.opener.pagebuilder != undefined)
 {
 movie = window.opener.pagebuilder;
 }
 // Check Firefox
 else
 {
 movie = window.opener.document.pagebuilder;
 }
 // Call the JavaScript method addRecord() on the Page Builder SWF
 movie.addRecord(recordSpec);
 }
 catch(e) {
 alert("error opening window or movie: " + e.description);
 }
}

Note: For additional information about the ExternalInterface class, consult the Adobe
documentation.

Related Links
Adding editor configuration information to the editor configuration file on page 93

You can specify arbitrary configuration information in the editor configuration file. This can
be done on a global or per-editor basis.

About JavaScript domain considerations

Web applications that use JavaScript to interact with the Page Builder SWF rely on the same mechanism
for managing the JavaScript domain as the preview application.You must host any such applications
on the same domain as Workbench.

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Extending Page Builder with Community Editors | About developing editors90

In order to enable JavaScript communication, you must ensure that the document.domain in both
the Workbench preview application and your editor application are set to the same value. This value
must be the first common domain shared by Workbench, the preview application, and your editor.

For example, if the JSP editor is on foo.company.com, the preview application is on
bar.company.com, and Workbench is on bar.company.com, both the editor domain setting and
the preview application domain setting must be set to company.com :

document.domain = "company.com";

Additionally, if either the Workbench or editor container is running in SSL mode, the other must be set
to SSL mode as well for the two to communicate. Editors written in Flex do not have this limitation.

The Preview App Settings page in Endeca Workbench provides a field where you must enter the
JavaScript domain information for the preview application. This is analogous to declaring the domain
in your Javascript headers.You must enter this information correctly regardless of whether you are
actually using the preview application. This setting also applies to your editor application.

For more information about configuring JavaScript domain settings in the preview application, consult
the Endeca Workbench Administrator's Guide.

Related Links
About using SSL and editors on page 96

If your Workbench server is running in SSL mode, you must enable communication with any
remote editor modules by configuring the module server's cross-domain policy file.

About client-server communication in editors
After Page Builder loads editor modules, the Flash player treats module code as if it originates from
the host where Page Builder is served, regardless of the location where the editor module is hosted.
If your editor includes client-server communication, you need to set up a cross-domain policy file that
allows the instance of the Page Builder client to talk to your server-side code.

For security purposes, when the modules are first loaded, Page Builder checks the cross-domain
policy file for the location where the editor module is hosted.

Related Links
File hosting and security considerations on page 62

Page Builder occasionally needs to access files hosted on a different server. Certain security
issues may apply.

About debugging an editor
Because the Page Builder SWF is not compiled and shipped in debug mode, compiling your editor
modules in debug mode does not expose any additional information.You can write your own application
SWF for step-through debugging purposes. Additionally, Endeca recommends that you use a debugging
version of Flash Player.

Setting up a debug-mode application SWF

When a module in debug mode is loaded by an application SWF that was not compiled in debug mode,
debugging information for that module is not exposed.You can debug your editors by compiling your
own simple application SWF in debug mode, loading in a debugging version of your editor module,
and supplying the editor with a mock content item.

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

91Extending Page Builder with Community Editors | About developing editors

Using a debugging version of Flash Player

Regardless of whether you are using a debug-mode application SWF, a debugging version of Flash
Player displays a dialog box when it encounters an ActionScript error in your code, giving you some
useful traceback information. A non-debugging Flash player fails silently and can potentially leave
your application in an incomplete state.

You may find the following resources helpful for setting up a debugging version of Flash Player:

• http://www.playerversion.com — This site is a good place to look for various versions of Flash
Player.

• http://www.pluginswitcher.de — The Kewbee Plugin Switcher tracks the versions of all your installed
players, and allows you to revert to earlier installed versions. It can differentiate between debugging
and non-debugging players.

Installing an editor
In order to use an editor module in Page Builder, it must be described in the configuration file and
hosted in a location where Page Builder can access it.

You can specify your editor modules within the editor configuration file. To enable them, you must
configure the webstudio.properties file to point to the configuration file. In order for content
administrators to use a new editor to configure content in Page Builder, you must create a template
that uses that editor.

Specifying editors for Page Builder
The editor configuration file lists the editors available to Page Builder.

You can specify multiple editor modules in your editor configuration file; each module is associated
with one or more editors and contains the factory methods for instantiating those editors.

To specify editor modules:

1. Insert an <EditorModule> element within <EditorConfig>.

2. Set the url attribute of the <EditorModule> element to the fully qualified URL of the compiled
editor module you wish to use. For example:

<EditorModule url="http://localhost:8080/foo/bar/myeditors.swf">
 ...
</EditorModule>

3. Insert an <editor> element inside the <EditorModule> element for each editor within the
module that you want to enable.

4. Set the name attribute of each <editor> element to a qualified name that includes the namespace
and the local name for the editor. For example:

<editor name="http://my.company.com/2009/editors:MyEditor"/>

The specified local name must exactly match the one to be used in Page Builder templates. For
the above example, the <EditorPanel> element in a template that used MyEditor would have
to include a line similar to the one below:

<MyEditor xmlns="http://my.company.com/2009/editors" propertyName="foo"/>

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Extending Page Builder with Community Editors | Installing an editor92

http://www.playerversion.com
http://www.pluginswitcher.de

Note: In the case of multiple editors with the same qualified name, Page Builder defaults to
the first instance of a given editor. Endeca recommends unique qualified names for each
editor.

5. Repeat steps 2-5 for any additional editor modules.

6. If your editor module is hosted on a different security domain from the editor configuration file, you
must specify the location of its cross-domain policy file. Insert a crossDomainUrl attribute inside
the <EditorModule> element and specify the absolute URL to the crossdomain.xml file, as
in the example below:

<EditorModule url="http://<host>:<port>/foo/bar/myeditors.swf"
crossDomainUrl="http://<host>:<port>/foo/bar/crossdomain.xml">

 ...
</EditorModule>

Note: The cross-domain policy file may be located on the server root, or within another
directory on the server, depending on your server configuration. Consult the Adobe Flash
documentation for additional information.

7. Save and close the file.

8. Upload the editor configuration file to a server where Page Builder can access it.

The following example shows a sample editor list with a cross-domain policy file specified:

<?xml version="1.0" encoding="utf-8"?>
<EditorConfig>
 <EditorModule url="http://localhost:8080/foo/bar/myeditors.swf"
 crossDomainUrl="http://localhost:8080/foo/bar/crossdomain.xml">
 <Editor name="http://my.company.com/2009/editors:MyEditor"/>
 <Editor name="http://my.company.com/2009/editors:MyOtherEditor"/>
 </EditorModule>
</EditorConfig>

You should validate your editor configuration file against the schema file, editor-config.xsd, to
ensure that it conforms to the schema definition. This file is available in the
pagebuilder-editor-sdk\schema directory of the pageBuilderEditorSDK.zip archive,
located in the reference directory of your Workbench installation.

Related Links
File hosting and security considerations on page 62

Page Builder occasionally needs to access files hosted on a different server. Certain security
issues may apply.

Adding editor configuration information to the editor configuration file

You can specify arbitrary configuration information in the editor configuration file. This can be done
on a global or per-editor basis.

Adding editor configuration information to the editor configuration file results in the same behavior for
all instances of a specific editor in a given Workbench installation. Global configuration applies to all
editors for a given Workbench installation.

To add configuration information to the editor configuration file:

1. Stop the Endeca Tools Service.

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

93Extending Page Builder with Community Editors | Installing an editor

2. Navigate to your editor configuration file.

3. To add configuration information to a single editor:

a) Insert an <EditorConfig> element directly inside the <Editor> tag of the editor you wish
to modify.

b) Add your arbitrary configuration information.

The example below includes the configuration inside a nested element, but you can also specify
the information as attributes of the EditorConfig element:

<Editor name="http://my.company.com/2009/editors:MyEditor">
<EditorConfig>

 <Arbitrary foo="bar" size="10" resizeable="false"/>
 </EditorConfig>
</Editor>

4. To add global configuration information:

a) Insert a <GlobalEditorConfig> tag directly inside the main <EditorEditorConfig>
element.

b) Add your arbitrary configuration information.

The example below includes configuration both as attributes of GlobalEditorConfig, and
as nested elements.You may use either approach, or both:

<EditorConfig xmlns="...">
<GlobalEditorConfig username="u" password="p">

 <ExampleCustomGlobalConfigXML />
 </GlobalEditorConfig>
 ...
 <Editor ...>
 </Editor>
</EditorConfig>

5. Save and close the file.

6. Start the Endeca Tools Service.

The editor can access this information through the editorConfig and globalEditorConfig
properties of the IEnvironmentInfo object.

Related Links
About retrieving editor configuration information on page 81

The info property provides information regarding the environment in which an editor is
created. This includes global, template-specific, and editor-specific configuration.

Enabling the editor configuration file
In order for Page Builder to use the editor configuration file, you must set up a crossdomain.xml
file and specify the locations of both the cross-domain policy file and the editor configuration file in
webstudio.properties.

Before updating webstudio.properties in your server configuration, make sure you have uploaded
both the editor configuration file and its cross-domain policy file to the desired location.

To specify the location of the editor configuration:

1. Stop the Endeca Tools Service.

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Extending Page Builder with Community Editors | Installing an editor94

2. Navigate to %ENDECA_TOOLS_CONF%\conf (on Windows) or $ENDECA_TOOLS_CONF/conf (on
UNIX).

3. Open the webstudio.properties file.

4. Find the line that specifies the location of the editor configuration file, for example:

The URL from which to load editor configuration for Page Builder
#com.endeca.webstudio.pagebuilder.editors.config=http://my.company.com/ed¬
itors/myeditors.xml

5. Uncomment and change it to point to the absolute URL of your editor configuration file, for example:

The URL from which to load editor configuration for Page Builder
com.endeca.webstudio.pagebuilder.editors.config=http://<host>:<port>/re¬
sources/config/myeditors.xml

6. Find the line that specifies the location of the cross-domain policy file for your editor configuration
file, for example:

The URL from which to load the crossdomain.xml policy file (necessary
 when the above file is on a server that is distinct from the Page Builder
 server)
#com.endeca.webstudio.pagebuilder.editors.crossdomain=http://my.compa¬
ny.com/editors/crossdomain.xml

7. Uncomment and change it to point to the absolute URL of your cross-domain policy file, for example:

The URL from which to load the crossdomain.xml policy file (necessary
 when the above file is on a server that is distinct from the Page Builder
 server)
com.endeca.webstudio.pagebuilder.editors.config=http://<host>:<port>/cross¬
domain.xml

8. Save and close the file.

9. Start the Endeca Tools Service.

Once you have specified the location of the editor configuration file and its crossdomain.xml file,
you can alter the editor configuration file without restarting the Endeca Tools Service, but you must
reload the main Page Builder SWF for the configuration changes to take effect. If you make any
changes to webstudio.properties, you must restart the Endeca Tools Service for those changes
to take effect.

Related Links
File hosting and security considerations on page 62

Page Builder occasionally needs to access files hosted on a different server. Certain security
issues may apply.

Using editors in templates
Adding editors to a template is similar to adding standard editors, except that you must specify a
non-Endeca namespace for your editor name.

To add an editor to a landing page template:

1. Include any necessary property definitions and default values for your template.

2. Add your editor to the template's <EditorPanel> element and specify a non-Endeca namespace.

Page Builder uses the following three Endeca namespaces:

• http://endeca.com/schema/content/2008

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

95Extending Page Builder with Community Editors | Installing an editor

• http://endeca.com/schema/content-template/2008
• http://endeca.com/schema/content-tags/2008

3. Set any additional configuration information for your editor.

You can include this information either as attributes of the editor element, or as nested elements.
When an editor is instantiated, this information is included in the info property.

As part of your configuration information, you can choose to map your editors to properties using
attributes. In the example below, the propertyName attribute maps the editor to the myProperty
property:

<EditorPanel>
 <BasicContentItemEditor>
 <MyEditor xmlns="http://my.company.com/editors" propertyName="myProp¬
erty" label="editor_label"/>
 </BasicContentItemEditor>
</EditorPanel>

Note: Endeca recommends the use of a formal schema to define your editor configuration
and validate your templates, but you must perform this validation before uploading your
templates to Page Builder. Page Builder does not validate any XML outside of standard
Endeca schemas.

Related Links
About defining the editing interface for properties on page 34

After you have defined the content properties in your template, you can define how those
properties can be configured by the content administrator in Page Builder.

About using SSL and editors
If your Workbench server is running in SSL mode, you must enable communication with any remote
editor modules by configuring the module server's cross-domain policy file.

The following possible configurations exist when serving editor modules:

NotesEditor
Modules

Workbench

You do not need to make any changes to your cross-domain policy
file with this setup. If you use this configuration, a browser warning

no SSLSSL

may display informing users that the site contains both secure and
non-secure items.

Endeca recommends this approach if you are using SSL. This
configuration requires the secure attribute of <allow-access-

SSLSSL

from domain> to be "true". Because "true" is the default value,
you do not need to make any changes to your cross-domain policy
file unless you have previously modified the secure attribute.

This configuration requires you to set the secure attribute of <al¬
low-access-from domain> to "false".

SSLno SSL

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Extending Page Builder with Community Editors | Installing an editor96

NotesEditor
Modules

Workbench

Note: This configuration can compromise your server's security.
See the Adobe documentation for details.

If your Web application includes non-Flex editors that use JavaScript to communicate with Page
Builder, then all of the application containers must use the same SSL mode (enabled or disabled) for
the communication to take place.

For more information about configuring Workbench to use SSL, see the Workbench Administrator's
Guide.

Related Links
File hosting and security considerations on page 62

Page Builder occasionally needs to access files hosted on a different server. Certain security
issues may apply.

Troubleshooting an editor
Common problems and their solutions are outlined in this section. For editor-specific issues, editors
must rely on their own error handling code.

Related Links
About handling error conditions on page 88

An editor dispatches an EditorEvent.ERROR event ito display an error message in place
of the editor.

About using the Page Builder XML View
You can use the Page Builder XML View to evaluate the XML representation of the landing page.

You can access the Page Builder XML View by clicking the XML View tab alongside the Content
Editor Pane in the Edit View.

Content XML and Rule XML

You can select the Content XML view to see only the content XML for the landing page.

The Rule XML view shows the XML representation for the rule that contains this page configuration.
In this representation, the content XML tags are encoded.

Saved Copy and Working Copy

You can switch between your current page XML and the version that was most recently saved in Page
Builder by using the Saved Copy and Working Copy toggle buttons. The saved copy is updated only
when you click Save All Changes in the Page Builder List View.

In the case of a landing page that has had its template updated, any automatic changes made to the
content are reflected in the Working Copy.

Endeca® Content Assembler Page Builder Developer's GuideEndeca Confidential

97Extending Page Builder with Community Editors | Troubleshooting an editor

Ensuring Page Builder loads the current editor modules
After you update a hosted editor module, Web browsers may continue to load cached versions of the
old editor module.

When you roll out updated versions of community editor modules, you should instruct your users to
clear their browser cache.

In a development environment where you may be iterating rapidly on editor modules, you can avoid
clearing your cache manually by setting Internet Explorer to automatically check for updates to cached
pages.

To set Internet Explorer to check for updates to cached assets:

1. From the menu, select Tools > Internet Options.
The Internet Options window opens to the General tab.

2. Access the caching settings:

UI ControlBrowser

In the Temporary Internet Files section, click the Settings button.IE6

In the Browsing History section, click the Settings button.IE7 or IE8

3. Set the browser to check for new versions of the page on each visit:

UI ControlBrowser

Under Check for newer versions of stored pages, select the Every visit
to page radio button.

IE6

Under Check for newer versions of stored pages, select the Every time
I visit the web page radio button.

IE7 or IE8

Changes to the appearance of Page Builder when using community
editors

The last styles loaded into Page Builder take precedence. Because community editor modules are
loaded after the main Page Builder SWF, this can lead to styles defined in community editors overriding
Page Builder styles.

Styling a common component, such as mx.controls.Button, can lead to unexpected behavior in
Page Builder. In order to avoid conflicting with Page Builder styles, you should use a unique styleName
for any Flex component you wish to apply styles to. Endeca recommends prefixing styles with a unique
identifier, such as your company name.

Endeca ConfidentialEndeca® Content Assembler Page Builder Developer's Guide

Extending Page Builder with Community Editors | Troubleshooting an editor98

Index

A

application development
roles 9
workflow 12
architecture 13

C

cartridges 10
definition 9

cartridges types 19
checkbox editor 42
combo box editor 37
community editors

about 65
API 69
binding multiple properties 83
configuring 81, 93
creating 76
dependencies 72
developing 73
installing 92
overview 76
prerequisites 73
scenarios 66
specifying 92
SSL 96
tools 73

community tag handlers
scenarios 66

content administrator
introduced 9

Content Assembler API
architecture 13

Content Assembler API and property types defined in
template 25
content item list 33
content items

introduced 11
content XML 11
cross-domain policy file 62

D

dynamic pages, troubleshooting 61

E

editor API
basic implementation 68
interface 68

Editor API 69

editor configuration file 92, 93
enabling 94
updating 92

editors
client-server editors 91
communicating with the MDEX 83
community editors 65
content model 83
custom XML 86
debugging 91
developing 68, 76
development environment 73
eventing 71, 80, 85, 88
in templates 95
JavaScript domain issues 91
life cycle 78, 80
non-Flex editors 89
read-only mode 88
retrieving configuration 82
retrieving MDEX information 83
SDK 67
standard editors 65
troubleshooting 97

emgr_update
get_templates 56
introduced 53
remove_templates 58
set_templates 53
updating templates 56

G

group labels 49

I

IRecordList 84

N

navigation records
compared to record lists 29
property 29

navigation refinements 27

P

Page Builder 10
architecture 13

properties
content item 32
defining 22

properties (continued)
overview 23
record list 31
types 25
and configuration in Page Builder 34
boolean 27
content item list 33
navigation records 29
navigation refinements 27
string 26
template section 32, 33
using arbitrary XML 52
using pass-through content properties 51
XML pass-through 50

property editors
grouping 49
introduced 34
section 49
cartridge selector 49
checkbox 42
combo box 37
default value 35
image preview 40, 42, 62
navigation records editor 44
navigation refinements selector 43
record selector 47
string 35

R

record filters 47
record lists, compared to navigation records 29
remote editors 96
rule groups 15
rule properties for page templates, specifying 20
rule styles 15

and invalid pages 61
and invalid templates 58
creating 17
specifying for page templates 20

S

sample editors
editor configuration file 75
enabling the configuration file 75
hosting 74
in templates 76
setup 72

styles 98
See also rule styles

T

template description, specifying 21

template property types returned by API 25
templates 9, 10

modifying 54, 55, 56
Name property 23
page templates 10, 20
prerequisites 15
properties 23

See also properties
property types 25
removing from Page Builder 57, 58
retrieving from Page Builder 56
troubleshooting 58
troubleshooting default values 60
updating 54, 55, 56
uploading 53
validation 18, 58
cartridge templates 10
creating 18
defining editors 34

See also property editors
defining properties 22
defining sections 32, 33
id 19
managing in Page Builder 53
page templates 10, 20
pages based on missing templates 57
removing from Page Builder 57, 58
saving 22
schema 18
type 19
updating 54, 55, 56
using community editors 95
validation 18, 58

thumbnail images
specifying 21
using 21

troubleshooting
browser cache 98
loading outdated modules 98

X

XML tab 97

Z

zones 15
and invalid pages 61
and invalid templates 58
creating 16
specifying for page templates 20

zones, and dynamic pages overview 16

Endeca® Content Assembler100

Index

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Endeca Customer Support

	Developing Applications with Template-Based Pages
	Overview of roles
	About cartridges
	About templates and Page Builder
	About content items and the Content Assembler API
	A typical workflow for creating a template-based application
	Page Builder and Content Assembler API architecture

	Working with Templates for Dynamic Pages
	Template prerequisites
	About dynamic pages and rule groups
	About using zones with dynamic pages
	Creating a zone for dynamic pages
	Creating a style for dynamic pages
	About maintaining consistent dimension value IDs

	About creating templates
	About template validation
	About the type and ID for a template
	Specifying the zone and style for a template
	Specifying custom rule properties for a template
	About using thumbnail images in Page Builder
	Specifying the description and thumbnail image for a template
	About saving templates

	About defining content properties
	Specifying the default name for a ContentItem
	About content properties
	Types of property elements
	Adding a string property
	Adding a Boolean property
	Adding a navigation refinements property
	About record properties
	Adding a navigation records property
	Adding a record list property
	Adding a content item property
	Adding a content item list property

	About defining the editing interface for properties
	Adding a string editor
	Adding a combo box editor
	Adding an image preview
	About the urlExpression for image preview

	Adding a checkbox editor
	Adding a navigation refinements selector
	Adding a navigation records editor
	Adding a record selector
	About sort options for the record selector

	About cartridge selectors
	Adding a group label

	About using XML pass-through properties
	About using pass-through content properties
	About passing arbitrary XML to the front-end application

	Supporting Page Builder
	Making templates available in Page Builder
	Uploading templates to Page Builder
	About modifying templates that are used by existing pages
	About updating templates
	Updating templates in Page Builder
	Retrieving the current templates from Page Builder
	About removing templates
	Removing templates from Page Builder

	Troubleshooting problems with uploading templates
	Troubleshooting invalid templates
	Troubleshooting invalid pages
	File hosting and security considerations

	Extending Page Builder with Community Editors
	About Page Builder editors
	Scenarios for extending Page Builder and the Content Assembler
	What is the Page Builder Editor SDK?
	About the Page Builder Editor API
	About Page Builder editor representation in the API
	The Page Builder Editor API content model
	About eventing in Page Builder
	Compile-time and runtime dependencies

	About setting up the sample editor
	About Flex
	Setting up your development environment using the sample project
	Hosting the sample editor module
	Modifying the sample editor configuration file
	Modifying webstudio.properties to enable the sample editor
	Incorporating the sample cartridge

	About developing editors
	The editor creation workflow
	About the Page Builder editor life cycle
	Page Builder editor life cycle diagram

	About editor instantiation
	About configuring editors
	About retrieving editor configuration information
	About retrieving the Page Builder MDEX host name and port

	About binding an editor to multiple properties
	Working with the content model
	Working with IRecordListProperties

	About handling changes to the content model
	Working with custom XML properties
	About read-only mode
	About handling error conditions
	About handling conflicts between content and editor definitions
	About writing editor components outside of Flex
	About JavaScript domain considerations

	About client-server communication in editors
	About debugging an editor

	Installing an editor
	Specifying editors for Page Builder
	Adding editor configuration information to the editor configuration file

	Enabling the editor configuration file
	Using editors in templates
	About using SSL and editors

	Troubleshooting an editor
	About using the Page Builder XML View
	Ensuring Page Builder loads the current editor modules
	Changes to the appearance of Page Builder when using community editors

	Index

