Endeca® Content Assembler API
Developer's Guide for the RAD Toolkit for ASP.NET

‘Q

Contents

[(=] = To TP PP TTRTRPPPO 7
ADOUL ThiS QUILE....ceiiiieiee ittt ettt et e e e oo e o e oo b h bbb et e et e e e e e e e saaaannbbbbeaeeeeaaaeeeeaaannn 7
WHhO ShOUId USE thiS QUIAE.uueeiiiiiie it e e e e e e s e s e e e e e e e e e e e s e s snnberteneeeeaaaeeeeannnnnns 7
Conventions Used iN thiS DOOK..............u e e e e e e e 8
Contacting ENdeca CUSIOMET SUPPOI.ciiuriiiieiiiiiiiee ittt e st e e st e e e e e s s e e e e s snnr e e e e s nnnneeeesnnnneees 8
Chapter 1: Developing Applications with Template-Based Pages......... 9
OVEIVIEW OF TOIES.....eeiiiiiie ittt ettt e s et e ek e e e s e e e asr e e e e s e e e aa b et e e sn e e e an e e e saneeennreeennnees
About the ENdeca Page BUIIIET ...ttt e e e e e e nnees
About the Content ASSEMDIET APL......ooo et e e e e s b e e e e s arreeeeeaaes
F Y 0T 10 | A o= U 1 o [0 =R .
About templates and the Page BUIlder.............ocuiviiiiiiiiiiiiiee e
About content items and the Content Assembler API
A typical workflow for creating a template-based appliCation..............coccciiiiiiiiireee e 12
Page Builder and Content Assembler APl @rChiteCIUIE...........cuueiiiiiiiiiiiei e 12
Chapter 2: Working with Templates for Dynamic Pages....................... 15
TEMPIALE PIrEIEOUISITES. ... eeteeeeieiee ettt e e e oottt ettt e e e e e e e e e s e e aatbeeeeeeeeeaeaaaesaaansnsbsseeeeeaaaaaeaesaaannne 15
About dynamic pages and rUIE grOUPS.........cccccuuiiiieiieiie e e e e e s ee et r e e e e e e e s e s sa st ereeaaeesseasnnensrnneeees 15
About using zones With dyNamIC PAGES.uuiiii ittt e e st ee e e s sbaeeeeeaae 16
Creating a zone for dYNAMIC PAOES.oiiiueiiiiiiii ettt e e e e e e e et e e et e e e e e e e e e aannbabeeeeeaeaaaaaans 16
DyNnamiC Pages @nd SEYIES.........coiiieiiiiiiiie e e e e e e e e raaaeeea e e aanan 17
ADOUL Creating tEMPIALES.eiii ittt e e ettt e e s sttt e e e s eabb e e e e s abbeeeeessabbeeeeeane 17
About template ValidAtION.eeieiiiiiii ettt et e e e e e e e r e e e e e e e e e e e e ne e e eeeeas 18
About the type and ID for @ tEMPIALE........ccoi i e e e 18
Specifying the zone and style for a template...........cooiiiiiii e 19
About using thumbnail images in the Page BUilder..............ooouiiiiiiiiii e 20
Specifying the description and thumbnail image for a template............ccccoiiieii e, 21
ADOUL SAVING TEIMPIALES.coiiiiiiiii ittt e e et e e e s sbb e e e e e s sabaeeeeeane 21
About definiNng CONTENT PrOPEITIES.ccei ittt e e e e e e e ettt et e e e e e e e e s s aannsbabeeeeeaaaaaeaeaaaannnes 22
Specifying the default name for @ CONtENTIEM...........ooiiiiiiec e a e 22
ADOUL CONTENT PrOPEITIES. ..ceiiiiieiie ettt e e e bt e e e s st b e e e e e s st bb e e e e s sbbeeeeesanbbeeeeeaaes 23
Types Of ProPerty EIEMENTS. ittt e e e e e e et e e e e e e e e e e e e e e nenereeeeeas 24
PN (o [1aTo I= TR] o I o] (o] 0= o oV USROS 25
AddiNg @ reCOrd lIST PrOPEITY......eeiie ittt e et e e e e ra b b e e e s abb e e e e e s snbbeeeeeanes 26
PaXe (o1 gTo = Weto] a1 (=T o A1 (T g I o] 0] 01T 4 2R R TR 26
About defining the editing interface for Properties..........ccciiiiiiiiiiie e e e 27
F oo (o o I T3 (T g To [=T 1 (o] SO PPPPPPPPPPPNS 28
PaXe (o100 = W (= ToTo] (o IET=] [Tor (o) RSP 30
P\ oJo 10| aor- U 1[0 [o [SIEST=1 [=Tox (o) £ TSR 31
AddING @ GroUP TADEL.... .. e et e e e b b eeeeaae 31
About using XML pasS-throUgh PrOPEITIES.uiii ittt e aannnes 32
About using pass-through CoONteNnt ProPErtieS.........uueiiiieiiii i 32
About passing arbitrary XML to the front-end appliCation.............cooiiiiiiiiiiiiie e 34
Chapter 3: Supporting the Page Builder..........cccccooooviiiiiiiiiiiiii e
Making templates available in the Page BUilder.............c..ooiiiiiiiiii e
Uploading templates to the Page BUIIEr..........ccooi i e e e e e e e e e e e e e aeaaaaes
About modifying templates that are used by existing pages
About Updating tEMPIALES.veieiiiiii e
Updating templates in the Page BUilder..........ccccooooieiiiiiiiiiiie e .
Retrieving the current templates from the Page Builder.............cccccooiiiiiiiin e,
ADOUL reMOVING tEMPIALES. ... ittt e et e e e s e b e e e s abb e e e e e s snbneeeeeaae
Removing templates from the Page BUIIEr............coooo oo e e
Troubleshooting INValid tEMPIALES.uuiii et sb e e e
TroublesShootiNg INVALIA PAGES.uiiiiiiiiie ettt et e e ek e e e et e e e e e e bt e e e e e e aabr e e e e e aneees

AbouUt the PrevieW apPliCALION.iie it e e e e s e s e e e e e e e e e s s e srnsrnereerreeeeeeeesannnnne 42

Chapter 4: Working with the Content Assembler API................c......... 45
Overview of the Content ASSEMDIET APcooi i r e e e e e e e e e s snre e eeeees 45
Content ASsembler AP] COMPONENTS.uuiiiiiiiiiiae et e et e e e e e e e e s anbbbbeeeeeaaaaeaeas 45
Installing the Content Assembler API and reference application............cccccovviieieie e 46
Prerequisites for installing the Content ASSembler APL...........cooiiiiiiiiii e 46
Installing the Content ASSSEMDBIEr AP ... e 46
Installation PACKAGE CONLENTScc..uiiiiiiiie e e e e e e e s s e e e e e e e e e e e s asanarbraaeereaeaeeesesannnnnes 47
Adding the Content Assembler API to Visual StUAIOccooiuiiiiiiiiiiiiieie e 48
About the Content Assembler reference appliCation.............oocuuuiiiiiiiiiiii e 48
Deploying the Content Assembler reference appliCation.............coccciiiiiiiiieie e 49
Using the Content Assembler reference appliCation.............oooiiiiiiiiiiiiiii e 50
Uninstalling the Content Assembler reference application.............cccuuueiiiiiiiiiiiii e 50
Uninstalling the Content ASSEMDIET AP.........cooi i e e e e e e e e e e s e s ennnes 51
Writing applications with the Content ASSEMDIEr APcoo i 51
About using the Content Assembler with the RAD Toolkit for ASP.INETcccuuiiiiiiiiiiiiiiiiiieeeee, 51
Creating a ContentNavigationDataSource CONIOlcccuviiiiiiiiiie e e 51
About setting the CONENT FUIE ZONE.......ccoi it e b e e e e 52
About coNteNt XML VAIAALION.eeiiiiiiiieee it e e e et e e e e e e e e s e e snb b e eeeeas 53
Building cartridges to render template-based CONtENt...........ccuviiiiiiiiiiie e 53
About Working With CONTENT IIEIMS.........oiiiiii et e e 53
Using the Content Assembler reference application CONtrolS.............uuuiiiiiiiiiiiiiiie s 54
Writing user controls to render dynamic CONTENTccviieii i e e e e e 54
About the DynamicCoNtENICONIIOL..........c.iiuuiiiiiiiii et rbre e e e 56
Using the DynamicContentControl t0 reNAer PAgES.uuuueiia et e e e e e e e e e e 56
Using the DynamicContentControl to render cartridge CONtENt............uuvevveieeeeiiiiiiiiiieeier e e e e e 57
Using the Content Assembler API for programmatic QUETYINGcueeeieiiiiiiieeiiiiiie et 59

iv Endeca® Content Assembler API

Copyright and disclaimer

Product specifications are subject to change without notice and do not represent a commitment on
the part of Endeca Technologies, Inc. The software described in this document is furnished under a
license agreement. The software may not be reverse engineered, decompiled, or otherwise manipulated
for purposes of obtaining the source code. The software may be used or copied only in accordance
with the terms of the license agreement. It is against the law to copy the software on any medium
except as specifically allowed in the license agreement.

No part of this document may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying and recording, for any purpose without the express written
permission of Endeca Technologies, Inc.

Copyright © 2003-2008 Endeca Technologies, Inc. All rights reserved. Printed in USA.

Portions of this document and the software are subject to third-party rights, including:

Corda PopChart® and Corda Builder™ Copyright © 1996-2005 Corda Technologies, Inc.

Outside In® Search Export Copyright © 1991, 2007 Oracle.

Rosette® Globalization Platform Copyright © 2003-2005 Basis Technology Corp. All rights reserved.

Teragram Language Ildentification Software Copyright © 1997-2005 Teragram Corporation. All rights
reserved.

Trademarks

Endeca, the Endeca logo, Guided Navigation, Endeca — The Next Generation of Search and Information
Access, Find/Analyze/Understand, MDEX Engine, Endeca Latitude, Endeca Profind, Endeca Navigation
Engine, and other Endeca product names referenced herein are registered trademarks or trademarks
of Endeca Technologies, Inc. in the United States and other jurisdictions.

All other product names, company names, marks, logos, and symbols are trademarks of their respective
owners.

Endeca Content Assembler API Developer's Guide for the RAD Toolkit for ASP.NET ¢ June 2008

Preface

The Endeca® Information Access Platform is the foundation for building applications that help people
understand complex information, fostering discovery and improving daily decision-making. These
applications instantly summarize data and content for users -- even for unanticipated requests. The
Guided Summarization experience leads to unexpected insights in millions of everyday decisions,
increasing revenue, decreasing costs, and accelerating operations.

The Endeca Information Access Platform is powered by MDEX Engine™ technology, a new class of
database designed for exploring information, not managing transactions. The MDEX Engine is supported
by:

« The Information Transformation Layer that unites and enriches disparate sources of information
while maintaining, augmenting, and even creating structures across the data and content.

« An adaptive application component library that enables the rapid development of information access
applications that automatically adapt to changes in the data and content.

« A Web-based management suite that empowers managers to highlight the right information at the
right time to end users through adaptive presentation rules and dynamic pages.

These essential capabilities are delivered as an enterprise-class platform, with the scalability, reliability,
and security that leading organizations demand.

About this guide

This guide describes the major tasks involved in developing an Endeca application using the Content
Assembler API for the RAD Toolkit for ASP.NET.

This guide assumes that you have read the Endeca Getting Started Guide and that you are familiar
with Endeca’s terminology and basic concepts.

This guide covers the features of the Content Assembler API for the RAD Toolkit for ASP.NET. This
guide is not a replacement for Endeca Developer's Guide for .NET or the RAD Toolkit for ASP.NET
Developer's Guide.

Who should use this guide

This guide is intended for developers who are building Endeca applications using the Content Assembler
API for the RAD Toolkit for ASP.NET.

If you are a new user of the Endeca Information Access Platform or you are not familiar with developing
Endeca applications with the RAD Toolkit for ASP.NET, read this guide in conjunction with:

» The Endeca Developer's Guide for .NET located in YENDECA_ROOT%\doc (in a default installation,
thatis C:\Endeca\MDEXEngine\5.1.3\doc), which provides detailed feature descriptions that
are not covered in this guide.

» The RAD Toolkit for ASP.NET Developer's Guide, which covers using the Endeca RAD Toolkit for
ASP.NET to build Web applications.

If you are an existing user of the Endeca Information Access Platform and you are familiar with
developing Endeca applications with the RAD Toolkit for ASP.NET, this guide should provide enough

8

| Preface

information to help you build a new application using the Content Assembler API for the RAD Toolkit
for ASP.NET.

Also, see the Endeca API Reference for the Content Assembler API for the RAD Toolkit for ASP.NET.
In a default installation, this is located in the C:\Endeca\ContentAssemblerAPIs\RAD Toolkit
for ASP.NET\1.0.0\doc directory. This file contains reference information for the Content Assembler
API classes, and is also available on the Endeca Developer Network (EDeN) at http://eden.endeca.com.

Conventions used in this book

This book uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace
font. In the case of long lines of code, or when inline monospace text occurs at the end of a line, the
following symbol is used to show that the content continues on to the next line: =

When copying and pasting such examples, ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

Contacting Endeca Customer Support

The Endeca Support Center provides registered users with important information regarding Endeca
software, implementation questions, product and solution help, training and professional services
consultation as well as overall news and updates from Endeca.

You can contact Endeca Standard Customer Support through the online Endeca Support Center
https://support.endeca.com.

Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

https://support.endeca.com

Chapter 1

Developing Applications with
Template-Based Pages

This section provides an overview of working with the Page Builder and the Content Assembler API
to create an Endeca application with template-driven dynamic pages.

Overview of roles

This introduction discusses several roles involved in creating a Web application with template-based
pages.

 Application developers, who create a set of custom templates as well as a front-end application
that can render template-based content.

« Content administrators, who are typically site editors responsible for managing the information
presented in the Web application. In the case of an eCommerce site, this role may be filled by
merchandisers.

» Managers who are responsible for approving pages for publication. These managers may have
tittes such as Editorial Director or Director of Merchandising.

« A creative team, which may consist of an art director, Web designer, and graphic artist, or any
combination of those roles.

About the Endeca Page Builder

The Endeca Page Builder is a powerful template-based tool that enables the rapid creation of rich,
data-driven pages. The Page Builder is part of the Endeca Workbench suite of tools.

With the Page Builder, content administrators can create dynamic pages based on a set of custom
templates, such as landing pages for a particular search term or navigation state. The ability to combine
content in a modular fashion within a template framework allows a wide degree of flexibility in crafting
pages while maintaining a consistent look-and-feel across an entire site.

For the content administrator, the tool offers a holistic interface to manage the placement and display
of content (including rich media, refinements, promotions, or Content Spotlighting) all within the overall
context of a page, rather than as isolated content sections. Each dynamic page can be used in any
number of locations across a site while presenting content that is contextually relevant to an end user's
navigation state. This functionality greatly decreases the time and effort normally associated with the
creation and maintenance of custom pages.

10 Developing Applications with Template-Based Pages | About the Content Assembler API

About the Content Assembler API

The Content Assembler API provides a simple interface to access template-driven content for rendering
in Web-based applications.

The Content Assembler API enables a Web application to query the MDEX Engine and retrieve the
appropriate dynamic content based on a user's navigation state or other triggers. The Content Assembler
returns both Endeca query results familiar from the Presentation APl or RAD API as well as a content
item object that encapulates the page configuration specified by the content administrator. All the
content for a page, including the results of any additional queries needed for spotlighting or
merchandising, are wrapped in the content item object, simplifying the logic in the front-end application
by reducing the need to manage sub-queries in the application layer.

About cartridges

A cartridge consists of a template and its associated rendering code, separating the structure of
dynamic page content from its presentation.

Templates serve as a basis for the dynamic pages that content administrators create in the Page
Builder. The templates are XML documents that define the content structure of a dynamic page, or
part of a page. A template can be thought of as a content object definition that declares what properties
the content contains, and how those properties can be configured in the Page Builder.

Because a template defines the properties in the content objects, you can write code that is tailored
to render the content driven by a specific template. For example, one cartridge template may contain
properties for a banner image and a link, while another template may be designed to contain several
records. The corresponding cartridge code for each of these templates then uses the configured values
of these properties to create a banner promotion or a Content Spotlighting section of a page.

By building cartridges and associating specific rendering logic with every template in the application,
developers ensure that the application can render any page configuration created in the Page Builder.
This enables content administrators to flexibly combine content in a modular manner while maintaining
a consistent look-and-feel throughout an entire site.

About templates and the Page Builder

Templates can either define the content structure of an entire page or a section of a page.
Page templates drive the content of an entire Web page. They define parts of the page called sections.

Sections can be thought of as slots that can be filled with content such as a banner image, Content
Spotlighting, or search results). Typically, they represent a physical area on the page, but can also
represent content that is not visible (for example, meta keywords used for search engine optimization).
They can also represent content that may be rendered in a number of ways (for example, a page
element that may display in the left or right column of a page depending on context).

The content in sections is also driven by templates known as cartridge templates. The following diagram
shows a page template that includes two sections, and the cartridge templates that can be applied to
each section.

Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

Developing Applications with Template-Based Pages | About content items and the Content Assembler

APl 11
SimplelmageBanner \
HorizontalBanner
ﬁ FlashBanner * ot Section Tall
Image
Banner
|
RotationalBaner
|
Page Template
Right-
Sidebar
Section | Box
\ [Sidebar
with | Box
boxes
= Box

A template defines what kinds of cartridges can be used in each of its sections. In this example, the
SimplelmageBanner, FlashBanner, and RotationalBanner cartridges can be inserted in any section
of type HorizontalBanner. A page template may include multiple sections of the same type. The same
type of section can also be used in multiple templates. Cartridge templates can in turn define sections
within them.

Content administrators configure dynamic pages in the Page Builder by selecting cartridges to insert
into sections and then populating the cartridges with content. The interface for populating cartridges
in the Page Builder is driven by the template definition. Some cartridges may be prepopulated by the
application developer with information that the application can use to render predefined content, without
the need for additional configuration by the content administrator. Such prepopulated cartridges can
still present contextually relevant content through the use of Endeca query refinements.

About content items and the Content Assembler API

When a content administrator creates pages in the Page Builder, the resulting configurations are saved
as XML documents in the MDEX Engine.

If a template is seen as a content object definition, then these page configurations represent instances
of the content objects that have specific values for the properties defined in the template.

The Content Assembler retrieves these page configurations, evaluates the XML and returns content
item objects based on the configuration and any additional queries that need to be made. For example,
if the template defines a record list property and a content administrator specifies a navigation query
to populate that property, the assembler executes that query to return specific records in the content
item object.

Endeca Confidential Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

12 Developing Applications with Template-Based Pages | A typical workflow for creating a template-based
application

Each template corresponds to a single content item object. In other words, the entire page is returned
by the Content Assembler API as a single root content item, and each cartridge within the page is
returned as a nested content item property within the parent content item.

A typical workflow for creating a template-based application

Applications built with template-based pages present dynamic content with a consistent look and feel,
while the Page Builder enables updates to that content with relatively little maintenance.

The process of developing the application generally begins with the creative team. This team develops
mockups of the page layouts that are used throughout the application, as well as any custom images
or rich media that the design requires. Although there may be several variations, the set of layouts for
a site typically follow a common high-level structure that results in a unified appearance across an
entire site. For example, certain elements (such as a logo or banner) may always be present in the
same location, or the proportions or relative position of various areas of the page may remain constant
even if the content within those areas changes.

The application developer then creates cartridges based on the layouts from the creative team. This
involves writing templates that describe the overall content structure of a page, including page sections
that can be filled by certain cartridges. Typically, an application has only a few top-level page templates
that define the overall page layouts that are used in the site, and many cartridge templates that drive
the behavior of specific parts of a page. For each template, the developer writes code for the front-end
application that can render the content items based on that template. Because templates define the
kinds of content that are allowed in a page, an application that is aware of the templates being used
within the site can include very specific rendering logic for pages based on those templates.

The developer uploads the templates to the Page Builder, and specifies an application that uses the
cartridge code as the preview application in Endeca Workbench.

A content administrator can then use the Page Builder to create and configure dynamic pages. The
content administrator can control the conditions under which a page should display by applying triggers
based on navigation state, search terms, date ranges, or user profiles. Configuring a page in the Page
Builder consists of associating it with a particular trigger or set of triggers, and designating the content
to display by inserting and configuring cartridges in each section. Cartridges can contain content that
is either static or dynamically populated based on queries to the MDEX Engine.

The Page Builder allows the content administrator to save progress incrementally and also to preview
dynamic pages to make sure that the application renders the content as desired.

Once a page configuration is complete, the content administrator can request that a manager activate
the page. Once the manager activates the page in the Page Builder, it is published and accessible to
the end users of the Web site. The workflow model within the Page Builder also allows content
administrators to make dramatic changes to pages in the tool and request re-activation from their
manager without the need for any changes in the application code.

Page Builder and Content Assembler API architecture

The Page Builder and the Content Assembler APl combine to enable the creation and display of
dynamic pages.

This diagram shows the life cycle of a dynamic page that is created using the Page Builder and rendered
by an application built with the Content Assembler API:

Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

Developing Applications with Template-Based Pages | Page Builder and Content Assembler API architecture
13

creates

. ﬁ}eates
) ’ application developer .
¥
templates II 1
content ™ \ custom Web
administrator cuﬁﬁgures) application
content using (uses
'.___ | /
\) Content »
' uploaded to
\ PO " | Assembler API
queries
A 4 4
v J
returns
— L= content results
“~_generates page ¥
Page Builder configurations MDEX Engine

stored in

The application developer creates cartridges based on designs from the creative team and incorporates
the cartridge code into a Web application.

Based on the templates that have been uploaded to the Page Builder, the content administrator
configures specific pages and sets them to display based on a set of criteria such as navigation state,
user profile, and date range. The Page Builder outputs these page configurations as XML documents
that are stored in the MDEX Engine.

As users search or navigate within the site, the application queries the MDEX Engine using the Content
Assembler API, retrieves the dynamic page content that applies at the appropriate navigation state,
and renders the content.

Endeca Confidential Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

Chapter 2
Working with Templates for Dynamic Pages

This section describes the process of creating templates that are used to drive dynamic pages.

Template prerequisites

The Page Builder leverages functionality from dynamic business rules such as triggers, priority, and
workflow to manage dynamic pages. Because dynamic pages are stored as dynamic business rules
in the MDEX Engine, some of the same supporting configuration is required for pages as for rules.

Before you create templates for use in the Page Builder, you must have the following in place for the
dynamic pages in your application:

< One or more rule groups (the "default" rule group is automatically created)
* One or more rule zones
* Arule style

You specify the zone and style for a page in the top-level page templates that you create.

About dynamic pages and rule groups
Dynamic pages use the same group mechanism as dynamic business rules.

You can use one rule group for all your dynamic pages, or you can use multiple groups to organize
the pages in your application, for example, into an Electronics group and a Jewelry group. Multiple
groups also allow you to manage permissions independently for each rule group.

If you are using both traditional dynamic business rules and dynamic pages in your application, create
rule groups for use with dynamic pages that are distinct from those used for dynamic business rules.
For example, if you group your rules and pages by category, you can have separate rule groups for
"Sports rules" and "Sports pages." For details about creating rule groups, see the Endeca Developer
Studio Help.

The Group List pages of both the Rule Manager and the Page Builder display all groups that a user
has permission to view, regardless of whether they are used for dynamic business rules or dynamic
pages. Within a rule group, only rules that represent dynamic pages display in the Page Builder. Both
dynamic business rules and dynamic pages display in the Rule Manager, but dynamic pages are
read-only in the Rule Manager for all users regardless of rule group permissions. Users who have the
pages role should have permissions to access groups that you have set up for use with dynamic pages,
and users with the rules role should have permissions for groups that are used only for dynamic
business rules.

16 Working with Templates for Dynamic Pages | Template prerequisites

Workflow, resource locks, and priority for groups with dynamic pages function exactly as they do for
dynamic business rules. For more information about rule groups, see "Grouping rules" in the Endeca
Developer's Guide.

About using zones with dynamic pages

Zones enable the display of dynamic pages in the application. While a single zone can be sufficient,
multiple zones allow finer-grained control over the display of dynamic pages.

Unlike dynamic business rules, which generally control only one aspect of a page that is divided up
into zones, dynamic pages drive the presentation of the page as a whole. In the context of dynamic
pages, sections represent the parts of a page and zones allow you to provide different perspectives
on the same page. Two common use cases for using multiple zones are for search results and for
switching between views for the same data, such as product listings and reviews.

Search results

Dynamic pages are generally configured to display based on a navigation trigger. This means however
that the page for a particular location displays even if a user has entered a search term on your Web
site from that location. For example, you may have set up a highly branded dynamic page to display
as your site's home page (at location N=0) that does not include any search results. This page displays
even if a user has performed a search from the home page location, unless a page has been configured
specifically to trigger on that search term. In an application with a single zone, generic search results
pages may never display.

You can enable more robust handling of search results pages by creating a separate zone for searches.
You then create a template that uses the search zone and the content administrator creates a search
results page based on this template. In the simplest case, you can have one search results page in
this zone that applies everywhere. When your application receives a search query, it displays the page
for the search zone rather than the navigation zone.

Switching between views

Another use of multiple zones is to enable different views on the same data. For example, if you want
to present a tabbed pane that displays either product details or user reviews of the same product, you
can use separate zones for each view. In this example, you would create a ProductDetails zone and
a UserReviews zone, with associated templates for each zone.

* Creating a zone for dynamic pages on page 16
Dynamic pages must be assigned a rule zone in order to display. You should create at least
one zone in your application for use exclusively with dynamic pages.

» Specifying the zone and style for a template on page 19
Page templates are required to specify a rule zone and a style. When a page is created in
the Page Builder, the zone and style are applied to any pages based on that template.

Creating a zone for dynamic pages

Dynamic pages must be assigned a rule zone in order to display. You should create at least one zone
in your application for use exclusively with dynamic pages.

Although the procedure to create a zone for dynamic pages is the same as for dynamic business rules,
there are certain properties you should set for dynamic page zones.

To create a zone for use with dynamic pages:

Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

Working with Templates for Dynamic Pages | About creating templates 17

In the Project Explorer of Developer Studio, expand Dynamic Business Rules.
Double-click Zones to open the Zones view.

Click New to open the Zone editor.

In the Name field, provide a unique name for the zone.

In the Rule Limit field, enter 1.

Select Valid for search.

Leave Shuffle rules and Unique by this dimension/property unselected.

o g s~ wbd R

4 Note: If you have both dynamic pages and business rules in your application, be aware that
conflicts may occur if a zone being used for dynamic pages is assigned to a business rule. If a
rule and a page within the same zone have overlapping triggers and the rule has higher priority,
the page may never display. In order to avoid this situation, assign names to the zones being
used for pages that clearly indicate that such zones are to be used for dynamic pages only so
that users do not assign them to dynamic business rules in the Rule Manager.

Dynamic pages and styles
Before you create dynamic pages, you must have at least one style defined in your application.

Endeca recommends that you create one style exclusively for use with dynamic pages. The style that
you assign to a dynamic page does not affect how it displays; it is only required to make the rule that
contains the page configuration valid.

About creating templates

Templates are XML documents that define the content structure of a dynamic page or part of a page
and enable content administrators to specify page content in the Page Builder.

Top-level templates, which define an entire page, and cartridge templates, which drive the content of
sections, share the same structure and are defined by the same schema.

Templates can be broken down into three parts:

« General information such as the template type, ID, description, and thumbnail image. This
information is used in the Page Builder to help the content administrator select the appropriate
template for a page or section. For top-level page templates, this part of the template also allows
you to specify a zone and style, which the tool assigns to any pages that are created from that
template.

» Property definitions. In this part of the template, you explicitly declare all the properties of the
Contentltem object that a template represents. Some properties also allow you to specify default
values.

» Property editors. These allow you to specify whether a property can be configured and some
attributes of the editing interface in the Page Builder.

Properties may include simple string properties, record lists, or template sections. Most properties are
configurable and enable content administrators to define the behavior of pages that they build within
the tool. However, properties can also be used to pass information directly to the front-end application,
for example details about how to render the content within a template. By defining the properties in
the template along with how they can be configured in the tool, you ensure that the content items

Endeca Confidential Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

18 Working with Templates for Dynamic Pages | About creating templates

returned by the Content Assembler API can be properly handled by the presentation logic in your
application.

In general, when creating page templates, you have a page layout provided by your creative team.
Working from a sample design or mockup, identify the high-level structure of the page -- this structure
informs the sections you define in your page template. Recall that the structure of each section is in
turn driven by a cartridge template, so if one portion of your page can contain either a large banner
image or a three-column content area, you can implement this as one page template with a section
that allows two different cartridge templates, rather than two different top-level templates.

Then, for each section, identify the information that your front-end application uses to render the content
in that section. This information is then modeled in the cartridge template as properties that the content
administrator can configure.

While most template properties and sections affect the visual apperance of the page, keep in mind
that they can also represent page elements that are not visible in the application. For example, a
property could contain meta keywords used for search engine optimization, or include embedded code
that does not render in the page but enables functionality such as Web analytics reporting. Sections
can also represent content that may be rendered in a number of ways (for example, a page element
that may display in the left or right column of a page depending on context).

About template validation

Templates are validated when they are uploaded to the Page Builder.

Before you upload your templates to the Page Builder, ensure that the templates validate against the
template schema. All templates must include the following schema declaration:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="PageTemplate'" id="ThreeColumnNavigationPage'>

A copy of the schema is located for reference in \doc\schema\content-template.xsd (on
Windows) or /doc/schema/content-template.xsd (on UNIX) in your Content Assembler API
installation.

Although the <RuleInfo> element is not required by the schema, it is required by the Page Builder
for all top-level page templates. If the <Rule Info> element is missing in a page template, or if a zone
or style specified in the element attributes does not exist in the application's instance configuration,
the template is not available in the Page Builder and an error is written to webstudio. log.

« Specifying the zone and style for a template on page 19
Page templates are required to specify a rule zone and a style. When a page is created in
the Page Builder, the zone and style are applied to any pages based on that template.

» Troubleshooting invalid templates on page 40
Some template errors are returned to the emgr_update command line call, but all errors are
detailed in the emgr . log or webstudio. log files.

About the type and ID for a template
Each template is required to have a type and a unique id.

The template type determines where a template can be applied. There are two general categories of
templates. Top-level, or page templates, describe the structure of a entire Web page. These templates
can include sections, which are placeholders for content driven by templates known as cartridge

Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

Working with Templates for Dynamic Pages | About creating templates 19

templates. cartridge templates can in turn include sections within them to allow for further nested
content.

Page templates are identified by a special type string. Any template designed to be a top-level template
must be of type PageTemplate.

Cartridge templates can be of any type you specify. This allows you to constrain the cartridgesw that
can be inserted in a particular section. For example, if you have a page or cartridge template that
includes a "HorizontalBanner" section, only cartridges of type "HorizontalBanner" are available to insert
into that section in the Page Builder.

The template id is a string that is used to identify the template. It must be unique within your application;
templates with non-unique IDs do not display in the Page Builder. The value should be as descriptive
as possible to help the user select the appropriate template, for instance,
"ThreeColumnWithLargeBanner" or "HolidaySalePromotion."

Type and id are specified as required attributes on the <ContentltemTemplate> element. For
example:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="PageTemplate' id="ThreeColumnNavigationPage'>

> -
77" Note: The type and id attributes are defined as type xs:Name in the template schema. This
means that valid values for these attributes must:

¢ be a single string token (no spaces or commas)
« begin with a letter, a colon (:), or a hyphen (-)

Numbers are allowed as long as they do not appear at the beginning of the string.

» About templates and the Page Builder on page 10
Templates can either define the content structure of an entire page or a section of a page.

Specifying the zone and style for a template

Page templates are required to specify a rule zone and a style. When a page is created in the Page
Builder, the zone and style are applied to any pages based on that template.

Zones and styles are only used for page templates, not cartridge templates.

To specify the zone and style for a page template:

Insert a <Rulelnfo> element immediately after the opening <ContentltemTemplate> tag as
in the following example:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type=""PageTemplate" id="ThreeColumnNavigationPage'>
<Rulelnfo zone="NavigationPageZone" style="PageStyle"/>
<l-- additional elenents deleted fromthis exanple -->
</ContentltemTemplate>

The value of the zone attribute must be the exact name of the zone that is defined in your
application's instance configuration and that you want to apply to all pages created with this template.

The value of the sty l e attribute is the exact name of any style that is defined in your application's
instance configuration. Endeca recommends that you create one style exclusively for use with all
dynamic pages. Styles are required to make pages valid, but do not affect their display.

* Creating a zone for dynamic pages on page 16

Endeca Confidential Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

20 Working with Templates for Dynamic Pages | About creating templates

Dynamic pages must be assigned a rule zone in order to display. You should create at least
one zone in your application for use exclusively with dynamic pages.

» About using zones with dynamic pages on page 16
Zones enable the display of dynamic pages in the application. While a single zone can be
sufficient, multiple zones allow finer-grained control over the display of dynamic pages.

About using thumbnail images in the Page Builder

You can specify thumbnail images for page templates and section templates that display along with
the template description in the template selector and cartridge selector dialog boxes in the Page
Builder. These images can help the content administrator identify the appropriate template to use for
the pages they create.

The images may be hosted on a separate Web server from your Page Builder instance. If the thumbnail
image for a template is either not specified or not accessible, a default image displays in the dialog
box.

The suggested size for thumbnail images is 81 x 81 pixels; smaller images are stretched to fill this
size and larger images are cropped to show only the top left corner.

Hosting and security considerations

The images must be hosted on a Web server accessible from the Page Builder server. The Page
Builder makes an anonymous request to the image server to fetch the images. That is, even though
content administrators are authenticated when they log in to the Page Builder, the tool does not use
their credentials when requesting thumbnail images.

The Page Builder also respects the cross-domain policy file of the server hosting the images. To ensure
that the Page Builder can load the images, place a crossdomain.xml file in the root directory of the
image server. This file allows you to enable access to media on this server from a specific IP address,
a specific domain, or any domain. If this policy file does not allow access from the Page Builder server,
a security error similar to the following displays in the Page Builder when the template selector or
cartridge selector dialog box attempts to load the images:

Error #2044: Unhandled securityError:. text=Error #2048: Security sandbox
violation: http://pagebuilder.mycompany.com/tmgr/tmgr.swf cannot load data
from http://www.example.com/images/3column.gif.

The following example of a crossdomain.xml file enables access from any domain to files hosted
on www.example.com:

<?xml version="1.0"?>
<I-- http://www.example.com/crossdomain.xml -->
<cross-domain-policy>

<allow-access-from domain=""*" />
</cross-domain-policy>

You can also restrict access to specific domains or IP addresses, for instance, for the server on which
the Page Builder is running. Wildcards are allowed in domain names but not IP addresses. The following
example shows a policy file for www.example.com that allows access from anywhere in the example.com
domain, www.customer.com, and 105.216.0.40:

<?xml version="1.0"?>
<l-- http://www.example.com/crossdomain.xml -->
<cross-domain-policy>
<allow-access-from domain="*_example.com" />
<allow-access-from domain="'www.customer.com" />

Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

Working with Templates for Dynamic Pages | About creating templates 21

<allow-access-from domain="'105.216.0.40" />
</cross-domain-policy>

For more information about cross-domain policy files, see the Adobe Flash documentation.

Specifying the description and thumbnail image for a template

The description and thumbnail image for a template display in the template selector and cartridge
selector dialog boxes in the Page Builder. Adding a description and thumbnail image to a template is
optional.

To specify the description and thumbnail image for a template:

Insert the following elements within <ContentltemTemplate>:
Element Description

<Description> One or two sentences to help the content administrator identify the template
in the Page Builder. This can include information about the visual layout of
the template ("Three-column layout with large top banner") or its intended
purpose ("Back to school promotion™).

<ThumbnailUrl> The absolute URL to a thumbnail image that shows a sample page or section
that is based on the template. The images are hosted on a Web server
accessible from the Page Builder server.

Example

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type=""PageTemplate" id="ThreeColumnNavigationPage'>
<Rulelnfo zone="NavigationPageZone'" style=""PageStyle"/>
<Description>A page layout with left and right sidebars intended for
general category pages.</Description>

<Thumbnai lUr1>http://images.mycompany.com/thumbnails/PageTemplate/Three-
ColumnNavigationPage.png</Thumbnai lUrl>

<I-- additional elements deleted fromthis exanple -->
</ContentltemTemplate>

About saving templates
Templates are saved as XML files that are then uploaded to the Page Builder.

It is possible to have multiple templates in a single file, however, for ease of maintenance Endeca
recommends the following practices:

« Each template, whether it is a page template or a cartridge template, should be in a separate file.

* Name each template file using the following format: Tenpl at eType-Tenpl at el D.xml. For
example, PageTemplate-ThreeColumnNavigationPage.xml or
HorizontalBanner-ImageMap.xml

s
Note: Template file names cannot have spaces in them.

Endeca Confidential Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

22 Working with Templates for Dynamic Pages | About defining content properties

Endeca also recommends that you treat page and cartridge templates as part of your application's
configuration and store them in a version control system. It can also be useful to include a template
version number in a property for debugging purposes.

About defining content properties

When you create a template, you specify all the properties that are necessary to render a page or
section. These properties are returned as part of the content item object in the Content Assembler
API.

You define properties within the <Contentltem> element in the template. Each <Contentltem>
must have a <Name> property. In addition, you can define any number of properties for use by your
front-end application. For each property, you specify a name and a property type. In some cases, you
can optionally specify a default value for the property.

Properties can be associated with editing interfaces that enable configuration within the Page Builder.
Content properties may include text, image URLS, or records that the content administrator can specify.
One type of property is a section, which allows content administrators to insert a cartridge to drive the
content of a specific part of a page.

You can choose not to expose a particular property in the Page Builder and simply pass its value to

your front-end application. Examples of this usage can include a reference to the cartridge code that
should be used to render the template content, or queries to the MDEX Engine that are hidden from
the content administrator in the tool.

» About defining the editing interface for properties on page 27
After you have defined the content properties in your template, you can define how those
properties can be configured by the content administrator in the Page Builder.

Specifying the default name for a Contentltem

Name is a required property on a Contentltem. Generally the content administrator provides a value
for it in the Page Builder, but you can specify a default name as a placeholder.

To specify a default name for a Contentltem:

Insert the <Name> element inside <Contentltem> as in the following example:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type=""PageTemplate" id="ThreeColumnNavigationPage'>
<Rulelnfo zone="'NavigationPageZone" style="PageStyle"/>
<Description>A page layout with left and right sidebars intended for
general category pages.</Description>
<Thumbnai lUrI>http://images.mycompany.com/thumbnails/PageTemplate/Three-
ColumnNavigationPage . png</ThumbnailUrl>
<Contentltem>
<Name>New three-column page</Name>
<l-- additional elenents deleted fromthis exanple -->
</Contentltem>
<l-- additional elenents deleted fromthis exanple -->
</ContentltemTemplate>

<Name> is a required element, but you do not need to specify a value for the name. If you insert
an empty <Name/> element, an empty text field displays in the Page Builder and the content
administrator supplies a value.

Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

Working with Templates for Dynamic Pages | About defining content properties 23

About content properties

You can define the properties of a page or section by nesting any number of <Property> elements
within the <Contentltem> element.

Each property must have a name that is unique within the template. This is the key by which your
application can access that property through the Content Assembler API. The name is specified in the
name attribute of the <Property> element.

&
77 Note: The name attribute is defined as type xs:Name in the template schema. This means that
valid values for these attributes must:

¢ be a single string token (no spaces or commas)
« begin with a letter, a colon (:), or a hyphen (-)

Numbers are allowed as long as they do not appear at the beginning of the string.

The child elements of <Property> allow you to specify the type of property. The template schema
provides several basic property types. A <String> element specifies a string property, and a
<RecordList> specifies a property that can contain one or more Endeca records.

The <Contentltem> element within <Property> allows you to define a section property. As the
template structure suggests, a section is in essence a placeholder for a nested content item defined
by a separate cartridge template. (Recall that each template, whether it is a page template or cartridge
template, defines a corresponding content item.)

In addition, the <Property> element can also contain special content pass-through elements or
arbitrary XML that is passed directly to your front-end application.

The following example shows the properties of a cartridge template that defines a buying guide. This
buying guide can contain three subsections that spotlight specific products.

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="HorizontalBanner"™ i1d="BuyingGuide'>
<I-- additional elements deleted fromthis exanple -->
<Contentl tem>
<Name>New Buying Guide</Name>
<Property name="ui_code">
<String>/HorizontalBanner/BuyingGuide. jsp</String>
</Property>
<Property name="title">
<String/>
</Property>
<Property name="‘header">
<String/>
</Property>
<Property name=""footer'>
<String/>
</Property>
<Property name="sectionl'>
<Contentltem type=""BuyingGuideSection"/>
</Property>
<Property name="section2'>
<Contentltem type="'BuyingGuideSection"/>
</Property>
<Property name="section3'>
<Contentltem type=""BuyingGuideSection"/>
</Property>
</Contentltem>

Endeca Confidential Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

24

Working with Templates for Dynamic Pages | About defining content properties

<I-- additional elements deleted fromthis exanple -->
</ContentltemTemplate>

The properties of the buying guide sections may look similar to the following:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type=""BuyingGuideSection" id="BuyingGuideSection'>
<l-- additional elenents deleted fromthis exanple -->
<Contentltem>
<Name>New Buying Guide Section</Name>
<Property name=""title">
<String/>
</Property>
<Property name="'header''>
<String/>
</Property>
<Property name="img_src'>
<String/>
</Property>
<Property name="'footer_text''>
<String/>
</Property>
<Property name=""footer_href'>
<String/>
</Property>
<Property name="'products'>
<RecordList/>
</Property>
</Contentltem>
<I-- additional elements deleted fromthis exanple -->
</ContentltemTemplate>

Types of property elements

Each property type corresponds with a particular object type that is returned by the Content Assembler
API.

Configurable content properties

These property types can be associated with property editors to enable configuration by the content
administrator in the Page Builder.

Template element Object type returned by API | Object type returned by API (RAD
(Java) Toolkit for ASP.NET)

<String> java.lang.String string

<RecordList> com.endeca.naviga- System._Collections.ObjectMod-
tion.ERecList el _.ReadOnlyCol lection<Record>

<Contentltem> com.endeca.content.Con- | Endeca.Data.Content. I1Con-
tentltem tentltem

Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

Working with Templates for Dynamic Pages | About defining content properties 25

Pass-through content properties

These properties cannot be exposed for configuration in the Page Builder tool. They allow you to
embed MDEX Engine query results in the content item object that your application accesses through
the Content Assembler API.

Template element Object type returned by API | Object type returned by API (RAD
(Java) Toolkit for ASP.NET)

<UrlEneQuery> com.endeca.naviga- System.Collections.ObjectMod—
tion._ERecList el _ReadOnlyCol lection<Record>

<Supplement> com.endeca.naviga- Endeca.Data.BusinessRule
tion.Supplement

<RecordQuery> com.endeca.naviga- System.Collections.ObjectMod-
tion._ERecList el _.ReadOnlyCollection<Record>

<NavQuery> com.endeca.naviga- System.Collections.ObjectMod-
tion.ERecList el _.ReadOnlyCol lection<Record>

<NavigationResult> com.endeca.naviga- Endeca.Data.NavigationResult

tion_ENEQueryResults

Custom property elements

You can insert your own arbitrary XML within a <Property> element. In this case, the API returns
the contained element directly as an org.w3c.dom.Element (in Java) or a string (for the RAD
Toolkit for ASP.NET).

» About working with content items on page 53
You can access the 1Contentltem that contains dynamic page content from a Content-
NavigationDataSource.

Adding a string property

String properties are very flexible and can be used to specify information such as text to display on a
page, URLs for banner images, or meta keywords for search engine optimization.

To add a string property to a template:

1. Insert a <String> element inside a <Property> element.

2. Optionally, you can specify the default value for the property as the content of the <String>
element.

The following example shows a variety of string properties:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type=""PageTemplate'" id="ThreeColumnNavigationPage'>
<l-- additional elenents deleted fromthis exanple -->
<Contentltem>
<Name>New Three-Column Navigation Page</Name>
<Property name="ui_code">
<String>/ThreeColumnNavigationPage. jsp</String>
</Property>
<Property name="title">
<String>Endeca Wine Superstore</String>

Endeca Confidential Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

26 Working with Templates for Dynamic Pages | About defining content properties

</Property>
<Property name="meta_keywords'>
<String/>
</Property>
<Property name="meta_description'>
<String/>
</Property>
</Contentltem>
<l-- additional elenents deleted fromthis exanple -->
</ContentltemTemplate>

» Adding a string editor on page 28
You add a string editor to enable configuration of string properties in the Page Builder.

Adding a record list property

A record list property can contain one or more Endeca records.

To add a record list property to a template:

Insert a <RecordList> element inside a <Property> element.

& . .
~7" Note: Although you cannot specify a default value for the <RecordList> element, you can
specify default records or queries using pass-through content elements.

The following example shows the definition of a record list property:

<ContentTemplate xmlIns="http://endeca.com/schema/content-template/2008"
type=""BuyingGuideSection" id="BuyingGuideSection'>
<I-- additional elements deleted fromthis exanple -->
<Contentltem>
<Name>New Buying Guide Section</Name>
<I-- additional properties deleted fromthis exanple -->
<Property name="products'>
<RecordList/>
</Property>
</Contentltem>
<l-- additional elenents deleted fromthis exanple -->
</ContentltemTemplate>

» Adding a record selector on page 30
You add a record selector to enable an interface in the Page Builder to specify featured
records or queries.

Adding a content item property

A content item property defines a template section by creating a placeholder for a nested content item.

Recall that each template corresponds to a content item object, so a cartridge template is returned by
the Content Assembler API as a nested content item. Content administrators can configure a section
in the Page Builder by choosing a cartridge to insert in the section then configuring the properties of
the cartridge.

Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

Working with Templates for Dynamic Pages | About defining the editing interface for properties 27

To add a content item property to a template:

1. Insert a <Contentltem> element inside a <Property> element.
2. Specify the section type.

Only cartridge templates with a type that matches the section type will be presented as options for
the content administrator to choose from in the Page Builder. For example, when a content
administrator goes to choose the cartridge to insert in a RecommendedContent section, only
templates of type RecommendedContent will display in the Select Cartridge dialog box . (Recall
that the cartridge template is the part of a cartridge that is exposed in the Page Builder.) Because
the type of the section property and cartridge templates must match exactly, the type attribute is
also defined as type xs:Name in the schema and all restrictions to template types apply to section

types.

The following example defines three sections within a template. Note that more than one section in a
template can have the same type, as long as your front-end application expects this kind of content.

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type=""PageTemplate" id="ThreeColumnNavigationPage'>

<l-- additional elenents deleted fromthis exanple -->
<Contentltem>

<Name>New three-column page</Name>

<l-- additional properties deleted fromthis exanple -->

<Property name=""top"'>
<Contentltem type="'HorizontalBanner'/>
</Property>
<Property name=""left">
<Contentltem type="VerticalBanner"/>
</Property>
<Property name="'right'>
<Contentltem type="VerticalBanner"/>
</Property>
</Contentltem>
<I-- additional elements deleted fromthis exanple -->
</ContentltemTemplate>

» About cartridge selectors on page 31
Unlike string and record list properties, section properties are always editable; you do not
need to explicitly specify an editor in the template.

* About content items and the Content Assembler API on page 11
When a content administrator creates pages in the Page Builder, the resulting configurations
are saved as XML documents in the MDEX Engine.

About defining the editing interface for properties

After you have defined the content properties in your template, you can define how those properties
can be configured by the content administrator in the Page Builder.

You add content editors inside the <EditorPanel> element in the template. The <BasicCon-
tentltemEditor> allows you to specify individual property editors that display in the Page Builder
and associate them with a particular property.

Endeca Confidential Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

28 Working with Templates for Dynamic Pages | About defining the editing interface for properties

The template schema provides elements that define editors for string and record list properties. For
example, this excerpt from a sample template defines a configurable string property named title:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="PageTemplate' id="ThreeColumnNavigationPage'>
<I-- additional elenents deleted fromthis exanple -->
<Contentltem>
<Name>New Sample Section</Name>
<Property name="title">
<String/>
</Property>
<I-- additional properties deleted fromthis example -->
</Contentltem>
<EditorPanel>
<BasicContentltemEditor>
<StringEditor propertyName="title" label="Title"/>
</BasicContentltemEditor>
<I-- additional editors deleted fromthis exanple -->
</EditorPanel>
</ContentTemplate>

The propertyName is a required attribute and specifies the property that this editor is associated
with. The property must be defined in the <Contentltem> part of the template, and must be of the
appropriate type for that editor. For example, a <StringEditor> cannot be associated with a
<RecordList> property. If you define a content editor for a property that does not exist, or that is of
the wrong type, an warning displays in the Page Builder when a content administrator attempts to
configure the content.

Property editors do not have to be defined in the same order as the properties in the template. The
<BasicContentltemEditor> renders the editors in a vertical layout in the Page Builder, in the
order in which you define them in the template. If you do not want a property to be exposed in the
Page Builder interface, do not define an editor associated with it.

It is possible to create more than one editor associated with the same property, however, be aware
that all editors that you define in the template display in the Page Builder, which may be confusing to
the content administrator. When the value of a property is changed, any other editors associated with
that property are instantly updated with the new value.

» About defining content properties on page 22
When you create a template, you specify all the properties that are necessary to render a
page or section. These properties are returned as part of the content item object in the Content
Assembler API.

» Adding a group label on page 31
In the Page Builder interface, group labels can serve as a visual cue that several properties
are related.

Adding a string editor

You add a string editor to enable configuration of string properties in the Page Builder.

To add a string editor to a template:

1. Insert a <StringEditor> element within <BasicContentltemEditor>.
2. Specify additional attributes for the string editor:

Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

Working with Templates for Dynamic Pages | About defining the editing interface for properties 29

Attribute Description

propertyName Required. The name of the string property that this editor is associated with.

label

This property must be declared in the same template as the string editor.

This attribute allows you to specify a more descriptive label for this field in
the Page Builder. If no label is specified, the property name is used by default.

editable If setto False, this attribute makes the property read-only in the Page Builder

width

so that the value of the property is visible, but it cannot be edited. Use this
option only if you specify a default value in the definition of the string property.
Properties are editable by default.

The width in pixels of the text field presented in the Page Builder interface.
The default width is 300 pixels.

height The height in pixels of the text field presented in the Page Builder interface.

The default height is 24 pixels.

The following example shows a variety of editing options for string properties:

#
#
#
#

Endeca Confidential

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type=""PageTemplate'" id="ThreeColumnNavigationPage'>

<I-- additional elements deleted fromthis exanple -->
<l-- First define all the content properties -->
<Contentltem>

<Name>New Sample Page</Name>

<Property name=""title">
<String>Page Title</String>

</Property>

<Property name="meta_keywords'>
<String/>

</Property>

<Property name="img_src'>
<String>/imgs/logo. jpg</String>

</Property>

<Property name="ui_code">
<String>~/Resources/UserControls/HorizontalBanner/SamplePage.as-

cx</String>
</Property>
</Contentltem>
<I-- Define editors for properties that should be configurable -->
<EditorPanel>
<BasicContentltemEditor>
<l--
This example allows the content administrator to
specify the title of the page.
A default value was provided above as a placeholder,
and it is editable in the Page Builder. The label
indicates that this field must be filled in by the
content administrator.

===
<StringEditor propertyName="title" label="Title (required)'/>

<1_-

The meta.keywords property allows a content administrator
to specify keywords for search engine optimization that the
application can insert into the meta tags when it renders
a page. The default width and height values have been

Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

30 Working with Templates for Dynamic Pages | About defining the editing interface for properties

overridden to provide a larger text box to enter content.
This property is editable, but there is no default
value.
-——>
<StringEditor propertyName="meta_keywords"
label="Meta keywords"™ width="300" height="120"/>

<I--

In this example the template includes a particular

Image that displays on every page that is created

using this template. This information can be

displayed in the Page Builder for information only

but it cannot be edited or deleted.

===

<StringEditor propertyName="img_src'" label="Logo URL"
editable="false"/>

<I--
Because the app.code property is used only by the
front-end application and is not of interest to the
content administrator, there is no editor to expose
1t In the Page Builder.
-—>
</BasicContentltemEditor>
</EditorPanel>
</ContentltemTemplate>

e Adding a string property on page 25
String properties are very flexible and can be used to specify information such as text to
display on a page, URLSs for banner images, or meta keywords for search engine optimization.

Adding a record selector

You add a record selector to enable an interface in the Page Builder to specify featured records or
queries.

The record selector dialog box allows a content administrator to designate specific records to spotlight
in a section, or to specify a query to return a dynamic list of records.

To add a record selector to a template:

1. Insert a <RecordSelector> element within <BasicContentltemEditor>
2. Specify additional attributes for the record selector:
Attribute Description

propertyName Required.The name of the record list property that this editor is associated with.
This property must be declared in the same template as the record selector.

label This attribute allows you to specify a more descriptive label for this editor in the
Page Builder. If no label is specified, the property name is used by default.

maxRecords Sets the maximum number of records that this property can contain. If the content
administrator designates specific records in the Page Builder, the number of
records cannot exceed the value of maxRecords. If the content administrator
specifies a query, it will return no more than this number of records. When
configuring this property, the content administrator may choose to designate

Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

Working with Templates for Dynamic Pages | About defining the editing interface for properties 31

Attribute Description

fewer static records or to further limit the number of records returned by a query.
The default value for maxRecords is 10.

The following example shows a record selector associated with a "recommended" property. This allows
a content administrator to specify up to three specific records or a query that returns up to three records.

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type=""BuyingGuideSection" id="BuyingGuideSection">

<l-- additional elenents deleted fromthis exanple -->
<Contentltem>
<Name>New Buying Guide Section</Name>
<I-- additional properties deleted fromthis exanple -->
</Property>
<Property name="'products'>
<RecordList/>
</Property>
</Contentltem>
<EditorPanel>
<BasicContentltemEditor>
<I-- additional editors deleted fromthis exanple -->

<RecordSelector propertyName="products"™ label="Products"
maxRecords="3"/>
</BasicContentltemEditor>
</EditorPanel>
</ContentTemplate>

» Adding a record list property on page 26
A record list property can contain one or more Endeca records.

About cartridge selectors

Unlike string and record list properties, section properties are always editable; you do not need to
explicitly specify an editor in the template.

In the Page Builder, content administrators can select cartridges to insert in sections either by clicking
the cartridge Add button in the content detail panel or by right-clicking the section in the content tree.
Both options bring up the cartridge selector dialog box and are enabled automatically when you define
a section in the template.

» Adding a content item property on page 26
A content item property defines a template section by creating a placeholder for a nested
content item.

Adding a group label

In the Page Builder interface, group labels can serve as a visual cue that several properties are related.

Group labels are only used to provide additional context in the editing interface of the Page Builder
and do not affect rendering in the front-end application. Group labels are optional.

One use of group labels is to give the content administrator information about properties that they
need to configure the cartridge. For example, if a template defines properties that are required in order

Endeca Confidential Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

32 Working with Templates for Dynamic Pages | About using XML pass-through properties

to render the content properly, you can indicate these with a descriptive group label so that the content
administrator can easily identify the required fields in the Page Builder.

The editor panel in the Page Builder includes a default heading of "Section settings." This heading
includes the required Name field and the read-only type of a template, as well as any properties that
are defined before the first group label.

To add a group label to the editor panel:

Insert the <GroupLabel> element inside <BasicContentltemEditor> as in the following
example:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="BuyingGuideSection" i1d="BuyingGuideSection">
<I-- additional elenments deleted fromthis exanple -->
<EditorPanel>
<BasicContentltemEditor>
<GroupLabel label="Image info'/>
<StringEditor propertyName="title" label="Title"/>
<StringEditor propertyName="header' label="Header text"/>
<StringEditor propertyName=""img_src' label="Image file"/>
<GroupLabel label="Mouse-over info'/>
<StringEditor propertyName="footer_text" label="Footer text"/>
<StringEditor propertyName="footer_ href" label="Footer link"/>
<RecordSelector propertyName="products' label="Products"
maxRecords="3"/>
</BasicContentltemEditor>
</EditorPanel>
</ContentTemplate>

<GroupLabel> is an empty tag that allows you to specify the label text with the Iabel attribute.

About using XML pass-through properties

In addition to configurable content properties, the template schema also allows you to define
non-configurable properties that are passed directly to the front-end application.

While you can use hidden string properties to pass simple pieces of information to the application,
pass-through properties can be useful if the following conditions apply:

» The property never needs to be configured or exposed in the Page Builder.

« The property contains structured data that can be represented in XML.

Pass-through properties may take the form of pass-through content properties or any arbitrary XML
that does not conform to the template schema as long as you specify a different namespace from the
template schema.

%
Note: The Page Builder does not perform any validation on XML within a different namespace
from the template schema. If you are using pass-through properties, be sure to validate your
templates before uploading them.

About using pass-through content properties

Pass-through content properties allow you to embed MDEX Engine query results in the content item
object that you can access through the Content Assembler API.

Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

Working with Templates for Dynamic Pages | About using XML pass-through properties 33

Pass-through content properties follow the same schema as the page configurations generated by
the Page Builder. When the Content Assembler processes these properties, it evaluates them and

executes any necessary queries exactly as if the property had been configured with specific values
by a content administrator in the Page Builder.

The schema for pass-through content properties is located in doc\schema\content-tags.xsd
(on Windows) or doc/schema/content-tags.xsd (on UNIX) in your Content Assembler API
installation. You must specify the namespace for the content tags in order for the Content Assembler
to evaluate the properties as if they were content properties.

The following example shows several types of pass-through content properties:

<Property name="'sample_navigation_query"'>
<NavQuery xmlns="http://endeca.com/schema/content-tags/2008"
augment=""true'" maxRecords="7"">
<DimensionValue id="60" dimensionld="2"/>
<DimensionValue id="40" dimensionld="1"/>
</NavQuery>
</Property>

<Property name="'sample_urlenequery'>
<UrlEneQuery xmlns="http://endeca.com/schema/content-tags/2008"
maxRecords="3">N=8021&Ns=P_Price</Ur 1EneQuery>
</Property>

<Property name="'sample_supplement_property'>
<Supplement xmIns="http://endeca.com/schema/content-tags/2008">
<Supplementld>547</Supplementld>
</Supplement>
</Property>

<Property name="another_sample_supplement_property'>
<Supplement xmIns="http://endeca.com/schema/content-tags/2008">
<Zone>ZoneOne</Zone>
<Style>StyleOne</Style>
</Supplement>
</Property>

<I-- In the unusual case that you need specific records
hard-coded into the template -->
<Property name="'sample_record_query'>
<RecordQuery xmlns="http://endeca.com/schema/content-tags/2008">
<Recordld>123</Recordld>
<Recordld>456</Recordld>
<Recordld>789</Recordld>
<Recordld>abc</Recordld>
</RecordQuery>
</Property>

<I-- <NavigationResult> is an empty tag that enables access to
query results from nested content items -->
<Property name="‘navigation_results'>
<NavigationResult xmIns="http://endeca.com/schema/content-tags/2008"/>

</Property>

Endeca Confidential Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

34 Working with Templates for Dynamic Pages | About using XML pass-through properties

About passing arbitrary XML to the front-end application

You can nest arbitrary XML in templates within a <Property> element.

Embedding arbitrary XML in template properties allows you to pass structured data to your application
such as configuration for third-party packages used by your front-end application. If the Content
Assembler does not recognize a tag, it returns the XML as an org.w3c.dom.Element (in Java) or
a string (for the RAD Toolkit for ASP.NET) .

The only requirement is that the namespace must be different from any of the template or content
schemas located in doc\schema\ (on Windows) or doc/schema/ (on UNIX) in your Content
Assembler APl installation. The Page Builder does not perform any validation on XML within a different
namespace from the template schema. However, the Content Assembler APl must be able to access
the namespace that you specify.

The following example shows XML inserted within a property:

<Property name="'sample_ XML_pass-through'>
<widget xmlns="http://mycompany.com/schema/widgets'>
<name>Example widget</name>
<description>Sample for embedded XML in a template</description>
<icon src="icons/example.png" />
<content src="index.html"/>
<access network="true"/>
</widget>
</Property>

Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

Chapter 3
Supporting the Page Builder

This section describes the tasks needed to enable content administrators to create pages in the Page
Builder.

Making templates available in the Page Builder

This section describes how to manage Page Builder templates using the emgr_update utility.

The emgr_update utility assists you in updating the instance configuration of a production system
based on the changes made with the Endeca tools in a staging environment. You can also use
emgr_update to add, retrieve, and remove templates from the Page Builder.

For a complete list of accepted emgr_update syntax, refer to "emgr_update syntax" in the Endeca
Administrator's Guide.

Uploading templates to the Page Builder

Before Page Builder users can access new templates, you must upload them using the emgr_update
utility.

Note: Template file names cannot have spaces in them.

To upload a new template:

1. Open a command prompt or UNIX shell.
2. Run emgr_update with the -—action of set_templates and the following parameters:

Parameter Value

--host The machine name and port for the staging Endeca Workbench
environment, in the format host:port.

—-—app_name The name of the application to which you want the templates to apply.

--dir The path to the local directory where your templates are stored.

The following is a Windows example:

emgr_update.bat --action set_templates --host localhost:8888
-—app_name My application --dir c:\endeca-app\templates\

36

Supporting the Page Builder | Making templates available in the Page Builder

The following is a UNIX example:

emgr_update --action set templates --host localhost:8888
-—app_name My application --dir /apps/endeca/templates/

If templates do not display in the Page Builder after uploading them using emgr_update, check the
log in %ENDECA_CONF%\logs\webstudio. log (on Windows) or
$ENDECA CONF/logs/webstudio. log (on UNIX) for possible causes.

« Updating templates in the Page Builder on page 38
Updating templates using emgr_update is a multi-step process.

e About updating templates on page 37
When updating templates in the Page Builder, you should be aware of how conflicts are
handled.

» Troubleshooting invalid templates on page 40
Some template errors are returned to the emgr_update command line call, but all errors are
detailed in the emgr . log or webstudio. log files.

About modifying templates that are used by existing pages

During the development and testing phase of your application deployment, you may need to make
adjustments to your page or cartridge templates and update them in the Page Builder.

When updating templates, you should be aware of the following effects on existing pages that use an
updated template:

%
Note: Existing page configurations are not updated to the new template until a content
administrator edits and saves the affected page or cartridge in the Page Builder.

If a template has new properties that did not previously exist, any corresponding property editors
become available in the Page Builder when a content administrator edits a page or cartridge based
on the updated template. If you specify any default values for new properties, they are applied
when a content administrator edits and saves the page or cartridge using the updated template.
If a template no longer contains properties that previously existed, the corresponding property
editors no longer display in the Page Builder when a content administrator edits a page or cartridge
based on the updated template. The properties and their values are deleted from the page
configuration.

If the type of a property has changed (for example from string to record list) within a template, the
corresponding property editor (if one is specified) becomes available in the Page Builder when a
content administrator edits a page or cartridge based on the updated template. The existing value
for the property does not display in the Page Builder and is deleted or replaced when the content
administrator saves the content.

If a content item property has changed to specify a different cartridge type, then any existing
cartridge in that section is ejected and its configured properties deleted.

If a property has not changed its name or type, the existing values are migrated to the new template.
If the maxRecords value for a record selector is lower than the previous value and the content
administrator had specified static records to display, any records beyond the new maximum value
are deleted.

If XML pass-through properties have been changed, they are updated when a content administrator
edits and saves the page or cartridge using the updated template.

If the default value of an existing property has changed, it is only applied to new pages or cartridges
based on the updated template. In existing pages, the previously saved value of the property (even

Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

Supporting the Page Builder | Making templates available in the Page Builder 37

if it is an empty string) is preserved regardless of whether it was originally a default or user-specified

value.

« Changing the name of a property is equivalent to removing the property with the old name and
adding a property with the new name. Avoid changing the names of properties that are being used
by existing pages. To change the display name of a property on the Page Builder, use the label
attribute instead.

4 Note: Because existing content is not automatically updated to the new templates, and default
values can never be updated in existing pages, any changes that you make to your rendering
code to reflect changes to a template must be backward-compatible. For this reason, you should
avoid making changes to existing templates that are being used in production. You should limit
updates to templates to the early stages of application development when you have little or no
legacy content to support.

If you do need to update templates that are being used in production, you can include a version
number in a property that your code can check so that it can render the content appropriately.
In order for this number to be updated when existing content is updated to a new version of a
template, it must be stored as the template name or as an XML pass-through property.

» About updating templates on page 37
When updating templates in the Page Builder, you should be aware of how conflicts are
handled.

» Updating templates in the Page Builder on page 38
Updating templates using emgr_update is a multi-step process.

About updating templates

When updating templates in the Page Builder, you should be aware of how conflicts are handled.

The Page Builder uses the most recently uploaded template. If you have an existing template in the
Page Builder and upload a template with the same file name, the new template replaces the previously
uploaded template.

Templates with non-unique IDs do not display in the template selector or cartridge selector dialog box.
If you upload two template files with the same ID but different file names, then two separate templates
are stored in the Page Builder but neither one displays to content administrators. For this reason, you
should avoid renaming template files after they have been uploaded to the Page Builder unless you
make sure to remove the old template first.

If atemplate is created with a duplicate ID, no error message is returned to the emgr_update command
line call when uploading templates. Instead, an error message is written to the webstudio. log file
similiar to the following:

Jan 1, 2008 12:34:56 AM com.endeca.etools.io.ConfigStoreAPl loadContentTem-
plates

SEVERE: The template ""HorizontalBanner-ImageMap.xml' has a non-unique ID
('ImageMap™™) .

Jan 1, 2008 12:34:56 AM com.endeca.etools.io.ConfigStoreAPl loadContentTem-
plates

SEVERE: The template 'VerticalBanner-ImageMap.xml'™ has a non-unique ID
('ImageMap™) -

To re-enable the templates, edit the id attribute of the <ContentTemplate> element so that each
template ID is unique, remove the templates from the Page Builder, and re-upload the templates. In

Endeca Confidential Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

38 Supporting the Page Builder | Making templates available in the Page Builder

general, it is a best practice to remove templates from the Page Builder and upload a complete set of
templates whenever you need to update templates.

» About modifying templates that are used by existing pages on page 36
During the development and testing phase of your application deployment, you may need to
make adjustments to your page or cartridge templates and update them in the Page Builder.

» Updating templates in the Page Builder on page 38
Updating templates using emgr_update is a multi-step process.

Updating templates in the Page Builder

Updating templates using emgr_update is a multi-step process.

& . . .
" Note: Before updating templates in the Page Builder, be sure you have a backup of the current

set of templates. Endeca recommends that you store page and cartridge templates in a version
control system.

When removing or updating templates, make sure that all users are logged out of the Page
Builder.

To update existing templates in the Page Builder:

Retrieve the current set of templates from the Page Builder.

Make any necessary edits to the templates on your local machine.
Remove all templates from the Page Builder.

Upload the revised templates from your local directory to the Page Builder.

PR

About modifying templates that are used by existing pages on page 36
During the development and testing phase of your application deployment, you may need to
make adjustments to your page or cartridge templates and update them in the Page Builder.

» About updating templates on page 37
When updating templates in the Page Builder, you should be aware of how conflicts are
handled.

« Uploading templates to the Page Builder on page 35
Before Page Builder users can access new templates, you must upload them using the
emgr_update utility.

» Retrieving the current templates from the Page Builder on page 38
If you need to view or edit an existing template on a local machine, use emgr_update to copy
the templates from the Page Builder into a local directory.

Removing templates from the Page Builder on page 40
You can remove all the templates from the Page Builder using the emgr_update utility.

Retrieving the current templates from the Page Builder

If you need to view or edit an existing template on a local machine, use emgr_update to copy the
templates from the Page Builder into a local directory.

If you need to retrieve the current set of templates:

1. Open a command prompt or UNIX shell.

Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

Supporting the Page Builder | Making templates available in the Page Builder 39

2. Run emgr_update with the ——action of get_templates and the following parameters:

Parameter Value

--host The machine name and port for the staging Endeca Workbench
environment, in the format host:port.

--app_name The name of the application from which you want to retrieve the
templates.

--dir The path to the local directory to which you want the templates copied.

The following is a Windows example:

emgr_update.bat --action get templates --host localhost:8888
—-—app_name My application --dir c:\endeca-app\templates\

The following is a UNIX example:

emgr_update --action get_templates --host localhost:-8888
-—app_name My application --dir /apps/endeca/templates/

About removing templates

If you remove a page or cartridge template that is being used for an existing page, the properties of
the page or section are no longer editable in the Page Builder.

When a content administrator attempts to edit an existing page that uses a missing template, one of
the following occurs:

« If the missing template is the page template, then the top-level page properties cannot be edited
in the content details panel, but the content tree is still active. The content administrator can still
change or edit the cartridges in that page as long as their corresponding templates are available.

« If the missing template is a cartridge template, the properties of that cartridge cannot be edited in
the content details panel. All other cartridges, including cartridges that are nested within the missing
cartridge, can still be edited via the content tree.

In both cases, all the configured values of the missing template's properties are preserved unless the
content administrator removes or changes the template.

The content administrator has the following options:

« Leave the existing content as is. The Content Assembler continues to evaluate and process page
configurations regardless of whether the template exists in the Page Builder, and existing pages
continue to display in the front-end application as long as the appropriate rendering code is still in
place.

« Replace the missing template or cartridge with another template. This action deletes all configured
properties of the template as well as any nested cartridges.

» The existing content can be re-enabled for editing by uploading the missing template.

> . : . . .
7~ Note: Changing the ID of a template is equivalent to removing the template with the old ID and

creating a new template with the new ID. Avoid changing the ID of templates that are being used
for existing pages.

* Removing templates from the Page Builder on page 40
You can remove all the templates from the Page Builder using the emgr_update utility.

Endeca Confidential Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

40 Supporting the Page Builder | Troubleshooting invalid templates

Removing templates from the Page Builder

You can remove all the templates from the Page Builder using the emgr_update utility.

»

Note: Before removing templates from the Page Builder, be sure you have a backup of the
current set of templates. Endeca recommends that you store page and cartridge templates in a
version control system.

When removing or updating templates, make sure that all users are logged out of the Page
Builder.

The emgr_update --action remove_ templates command removes all templates from an
application, not specific templates. Removing specific templates from the Page Builder consists of the
following steps:

1. Retrieving the current set of templates from the Page Builder.

2. Deleting the templates that are no longer needed from your local copy.

3. Removing all templates from the Page Builder using the procedure below.
4. Uploading the remaining templates to the Page Builder.

To remove templates from the Page Builder:

1. Open a command prompt or UNIX shell.
2. Run emgr_update with the ——action of remove_templates and the following parameters:

Parameters Value

--host The machine name and port for the staging Endeca Workbench
environment, in the format host:port.

—-—app_name The name of the application from which you want to remove the
templates.

The following is a Windows example:

emgr_update.bat --action remove_templates --host localhost:8888
—-—app_name My application

The following is a UNIX example:

emgr_update --action remove_templates --host localhost:8888
—-—app_name My application

« About removing templates on page 39

If you remove a page or cartridge template that is being used for an existing page, the
properties of the page or section are no longer editable in the Page Builder.

Troubleshooting invalid templates

Some template errors are returned to the emgr_update command line call, but all errors are detailed
in the emgr. log or webstudio. log files.

The emgr . log and webstudio. log files are located in:

* %ENDECA_CONF%\ logs on Windows platforms
* $ENDECA_CONF/logs on UNIX platforms

Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

Supporting the Page Builder | Troubleshooting invalid pages 41

Uploading templates can fail for the following reasons:

Schema validation

Schema validation failure issues an error returned to the emgr_update command line call similar to
the following:
C:\Endeca\ContentAssemblerAPlJava\l.0.0\reference\templates>emgr_update --
host localhost:8888 --app_name wine --action set templates --dir
\apps\myapp\template

ERROR: Failed to set the following components: type="CONTENT" loca-
tor="PageTemplate-ThreeColumnPage.xml® size="2236" , type="CONTENT" loca-
tor="Banner-ImageMap.xml*® size®2034" ,

ERROR: Failed to set app config. Make sure you can connect to http://local-
host:8888.

Each template that fails validation will appear as a separate component. If you receive a schema
validation message, check the emgr . 1og file for a more detailed validation error.

Invalid zone or style

If a template is uploaded and refers to an invalid zone or style, no error message is returned to the
emgr_update command line call, but the template is not available in the Page Builder. An error message
is written to the webstudio. log file similiar to the following:

Jan 1, 2008 12:34:56 AM com.endeca.etools.io.ConfigStoreAPl loadContentTem-
plates

SEVERE: The template ""NavigationPage™ has an invalid style('PageStyle3™).
Jan 1, 2008 12:34:56 AM com.endeca.etools.io.ConfigStoreAPl loadContentTem-
plates

SEVERE: The template "NavigationPage™ has an invalid zone('NavigationPage-
Zone3'™).

The zone and style attributes of the <Rulelnfo> element must correspond to one of the zones
and styles defined in your application's instance configuration in Endeca Workbench.

Empty directory
When uploading templates, if the specified directory does not contain any XML files, the emgr_update
command line call displays a message similar to the following:

C:\Endeca\ContentAssemblerAPlJava\l.0.0\reference\templates>emgr_update --
host localhost:8888 --app_name wine --action set templates --dir
\apps\myapp\template

There are no templates in the specified directory.

If you receive this message, check to make sure that you specified the correct directory.

* About template validation on page 18
Templates are validated when they are uploaded to the Page Builder.

» Specifying the zone and style for a template on page 19
Page templates are required to specify a rule zone and a style. When a page is created in
the Page Builder, the zone and style are applied to any pages based on that template.

Troubleshooting invalid pages

If a page is displaying in the Page Builder as invalid, it is using a template with invalid zones or styles.

Endeca Confidential Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

42 Supporting the Page Builder | About the preview application

To determine whether the template is referring an invalid style or an invalid zone:

1. Retrieve the currently-loaded instance configuration.

» Using the "Get Instance Configuration" feature of Developer Studio, copy the configuration files
into the project folder.

« Using the emgr_update utility, specify a destination directory.

2. In the destination directory, locate and open the appname.merch_rule_group_groupname.xml file
that corresponds to the invalid template's rule group.
For example, if the application name is "wineapp" and the rule group is "dynamicpages", the file
would be wineapp.merch_rule_group_dynamicpages.xml

3. Look for the invalid zone or invalid style properties:

//Invalid zone property:
<PROP NAME ="endeca.internal.landingpage.invalid.zone">
<PVAL>true</PVAL>
</PROP>

//Invalid style property:
<PROP NAME ="endeca.internal.landingpage.invalid.style">
<PVAL>true</PVAL>
</PROP>

These properties are for debugging purposes only, and can be safely removed.

Once you have identified the invalid zone or style, you can either restore the zone or style or edit the
rule to use a valid zone or style. You must run a baseline update for your changes to appear in the
preview application.

» Creating a zone for dynamic pages on page 16
Dynamic pages must be assigned a rule zone in order to display. You should create at least
one zone in your application for use exclusively with dynamic pages.

» Specifying the zone and style for a template on page 19
Page templates are required to specify a rule zone and a style. When a page is created in
the Page Builder, the zone and style are applied to any pages based on that template.

* About using zones with dynamic pages on page 16
Zones enable the display of dynamic pages in the application. While a single zone can be
sufficient, multiple zones allow finer-grained control over the display of dynamic pages.

About the preview application

The preview application in the Page Builder allows content administrators to verify the behavior of the
pages they create. The Page Builder shares the same preview application as the Rule Manager.

Before content administrators create pages in the Page Builder, be sure to replace the default preview
application with one that can render pages appropriately based on the templates you have created.
This ensures that the preview application can provide an accurate representation of the way pages
display in the final front-end application. In addition, in order to allow content administrators to save
their progress and preview pages incrementally, the application should be able to gracefully handle
empty sections or cartridges that have not been fully configured.

Note that if your preview application is not instrumented, the status messages for dynamic pages do
not update when previewing by navigating in the preview application, making it difficult to determine

Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

Supporting the Page Builder | About the preview application 43

why a page may not be firing. (The status messages do update when previewing through the Location
links in the List View.) For more information about setting up a preview application, see the Endeca
Administrator's Guide.

Endeca Confidential Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

Chapter 4
Working with the Content Assembler API

This section provides information on working with the Endeca Content Assembler API classes and
server controls.

Overview of the Content Assembler API

The Content Assembler API for the RAD Toolkit for ASP.NET extends the Endeca RAD Toolkit for
ASP.NET to enable access to dynamic page content.

The Content Assembler retrieves the appropriate page configuration (created by a content administrator
in the Page Builder) based on search, navigation state (also known as refinement state), date, and
user profile triggers. The Assembler then executes any additional queries specified by that configuration,
such as navigation or record queries for spotlighted content, and returns the assembled page content
as a IContentltem object. Content items can contain various properties including strings, records,
and nested content items as specified in the page or cartridge templates.

Content Assembler APl components

The Content Assembler API for the RAD Toolkit for ASP.NET provides some additional classes and
controls for accessing and rendering dynamic page content.

Content Assembler RAD API
The Content Assembler API includes the following additions to the RAD API:

« The IContentltem interface defines a content item that represents the dynamic page content
configured in the Page Builder.

« Content items contain a collection of IProperty objects that represent the properties defined in
the template and configured by the content administrator.

« The NavigationContentltemCreator generates content item objects from a RAD Toolkit for
ASP.NET NavigationCommand and NavigationResult.

The ContentNavigationDataSource control

The Content Assembler APl includes a new server control. The ContentNavigationDataSource
extends the NavigationDataSource control to enable access to dynamic page content.

46 Working with the Content Assembler API | Installing the Content Assembler API and reference
application

Reference application controls
In addition, the following controls are included with the Content Assembler reference application:

« The DynamicContentControl dynamically loads other user controls in order to render
template-based content.

« The IContentControl interface defines a content item-aware user control for rendering section
content.

Installing the Content Assembler API and reference
application

This section describes the prerequisites and installation tasks for the Content Assembler API and
reference application for the RAD Toolkit for ASP.NET.

Prerequisites for installing the Content Assembler API

This topic provides system requirements for installing the Content Assembler APl and reference
application for the RAD Toolkit for ASP.NET.

The Content Assembler API for the RAD Toolkit for ASP.NET is compatible with Endeca Information
Access Platform version 5.1.3 and the RAD Toolkit for ASP.NET version 1.1.0.

The following software must be installed before you install the Content Assembler API for the RAD
Toolkit for ASP.NET:

« Microsoft .NET Framework. The following versions are supported: 2.0 with SP1, 3.0, and 3.5
(including the 32-bit and 64-bit versions).
* Microsoft Visual Studio 2005 with Service Pack 1 (any edition) or Visual Studio 2008.

* On machines running the Content Assembler reference application, you need Internet Information
Services (1IS) 5.1 or later.

Additional requirements

The Endeca Page Builder, a component of the Endeca Workbench suite of tools, is required for content
administrators to configure template-based pages. For details about installing Endeca Workbench,
see the Endeca Merchandising Workbench Installation and Migration Guide.

Installing the Content Asssembler API
This topic describes how to install the Content Asssembler API for the RAD Toolkit for ASP.NET.

4 Note: The RAD Toolkit for ASP.NET version 1.1.0 and the Endeca Presentation and Logging
APIs for .NET version 5.1.3 are part of the Content Assembler API installation. When building
applications using the Content Assembler API, you must use the assemblies that are included
in the Content Assembler API installation.

To install the Content Asssembler API for the RAD Toolkit for ASP.NET:

1. In your local environment, locate the Content Assembler API package that you downloaded from
the Endeca Support Center (https://support.endeca.com).

Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

https://support.endeca.com

Working with the Content Assembler API | Installing the Content Assembler API and reference application

47

The Content Assembler API package is named ContentAssemblerRADNET-ver si on.msi,
where version is the version number of the Content Assembler API.

2. Double click the installation file, and on the Welcome screen, click Next.

3. On the Select Installation Folder screen, either accept the default installation location, or click
Browse... and browse to the directory where you want to install. Endeca recommends that you
accept the default installation path of C:\Endeca\ContentAssemblerAPIs\RAD Toolkit

for ASP_NET\1.0.0.

4. On the Ready to Install screen, click Install.

5. Click Finish.

To complete setup of your development environment for the Content Assembler API, add the Endeca

server controls and assembilies to Visual Studio.

¢ Adding the Content Assembler API to Visual Studio on page 48
This procedure adds the Endeca data source controls and Endeca user interface controls to
the Toolbox window of Visual Studio and also adds references from your Web site project to

Endeca assemblies.

» Deploying the Content Assembler reference application on page 49
These instructions assume a typical system configuration that includes IIS 5.1, IIS 6 Manager,
and the .NET Framework 2.0. There may be minor configuration differences if you are using
other versions of IIS, IS Manager, or the .NET Framework.

Installation package contents

This topic describes in detail the directories that are created in the Content Assembler APl installation.

The \ContentAssemblerAPIs\RAD Toolkit for ASP.NET\1.0.0 directory contains the
release notes for the RAD Toolkit for ASP.NET (README_RAD. txt) and the Content Assembler API
(README_CARN. txt) as well as the following directories:

Directory

\bin

\doc

\doc\schemas

\reference\ContentAspNetReT

\reference\templates

Contents

The assemblies for the Content Assembler API for
the RAD Toolkit for ASP.NET.

The documentation for the RAD Toolkit for
ASP.NET and the Content Assembler API.

The XML schema documents for templates
(content-template.xsd) and for the page
configurations generated by the Page Builder
(content.xsd and content-tags.xsd).

The Content Assembler reference application for
the RAD Toolkit for ASP.NET.

A collection of sample templates for use with the
Page Builder and the Content Assembler API.

Endeca Confidential Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

48 Working with the Content Assembler API | Installing the Content Assembler API and reference
application

Adding the Content Assembler API to Visual Studio

This procedure adds the Endeca data source controls and Endeca user interface controls to the
Toolbox window of Visual Studio and also adds references from your Web site project to Endeca
assemblies.

This procedure describes how to add the RAD Toolkit and Content Assembler API to Visual Studio
2005. The procedure may be slightly different in Visual Studio 2008.

To add the RAD Toolkit for ASP.NET and the Content Assembler API to Visual Studio:

Start Visual Studio and open your Web site.

In the Toolbox window, right-click and select Add Tab.

Type Endeca Content Assembler API.

Right-click in the grey box under the entry for the Content Assembler API.
The grey box contains the text "There are no usable controls in this group...”

P owbd PR

5. Select Choose Items...
After a short delay, the Choose Toolbox Items dialog box displays.

6. On the .NET Framework Components tab of the Choose Toolbox Items dialog box, click
Browse....

7. Browse to the bin directory of your Content Assembler APl installation. In a typical installation,
this is C:\Endeca\ContentAssemblerAPI1s\RAD Toolkit for ASP_NET\1.0.0\bin\

8. Select Endeca.Web.Content.dll and click Open.
Repeat the previous step for Endeca.Web.dl'l and Endeca.Web .Ul .WebControlls.dll.

10. Click OK.
The Endeca data source controls, user interface controls, and Content Assembler controls display
in the Toolbox under Endeca Content Assembler.

. In the Solution Explorer window, right-click your Web site.

. Select Add Reference....

. In the Add Reference dialog, select the Browse tab.

. Browse to the bin directory of your Content Assembler API installation.

. Select Endeca.Data.Content.dll, Endeca.Data.dll, Endeca.Logging.-dll,
Endeca.Navigation.AccessControl .dll, and Endeca.Navigation.dll.You do not
need to select Endeca.Web.Content.dll, Endeca.Web.dll or

Endeca.Web._.Ul .WebControls.dll.

Visual Studio copies the selected files into the Web site project.

©

GERBRE

About the Content Assembler reference application

The Content Assembler API distribution includes a modified version of the RAD Toolkit for ASP.NET
reference application for use with the Page Builder and the Content Assembler API.

The Content Assembler reference application is intended primarily as a validation and diagnostic tool
for developers. Although it demonstrates how to query the MDEX Engine using the Content Assembler
API, the reference application does not represent the best practices for building an ASP.NET application
using cartridges.

The reference application enables you to browse your data in the same way as the reference application
for the RAD Toolkit for ASP.NET. In addition, the Content Assembler reference application features

a new section called ContentControl.ascx that allows you to browse the content items that are
returned by the Content Assembler API based on your navigation state.

Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

Working with the Content Assembler API | Installing the Content Assembler API and reference application
49

The ContentRadAspNetRef\App_Code\ContentRadAspNetReT directory also includes the Dy
namicContentControl and the IContentControl. These controls are provided as a starting
point for building applications that can dynamically load user controls to render page content, although
the reference application does not demonstrate how to use these controls.

» Using the Content Assembler reference application controls on page 54
The DynamicContentControl and the IContentControl work together to allow you to
dynamically load user controls to render page content.

Deploying the Content Assembler reference application

These instructions assume a typical system configuration that includes 1I1S 5.1, 1IS 6 Manager, and
the .NET Framework 2.0. There may be minor configuration differences if you are using other versions
of IS, IIS Manager, or the .NET Framework.

To deploy the Content Assembler reference application for the RAD Toolkit for ASP.NET:

1. From the Windows Control Panel, select Administrative Tools > Internet Information Services
(11S6) Manager.

2. Inthe IIS tree pane, expand the machine icon for the local machine, then expand the Web Sites
directory.
3. Right click the Default Web Site and select New > Virtual Directory....
4. Complete the Virtual Directory Creation Wizard as follows:
a) Click Next.
b) Type an alias name such as ContentAssembler.
c) Click Next.

d) In the Web Site Content Directory screen, click Browse and locate the reference application
that is packaged with the Content Assembler API for the RAD Toolkit for ASP.NET. In a typical
installation, this is in C:\Endeca\ContentAssemblerAPIsS\RAD Toolkit for
ASP _NET\1.0.0\reference\ContentRadAspNetRef.

e) Click Next.
f) Inthe Access Permissions window, leave the default settings in place.
g) Click Next, and then click Finish.

5. Inthe IIS tree pane, expand the machine icon and locate the virtual directory named
ContentAssembler that you created in the step above.
6. Right click ContentAssembler and select Properties.
7. Select the Virtual Directory tab and perform the following tasks:
a) Under the Application Settings section, click Create.
b) From the Execute permissions list, select Scripts only.
c) Click Apply.
8. Select the Documents tab and perform the following tasks:
a) Check Enable default content page.
b) Click Add....
c) In the Default content page field, type GuidedNavigation.aspx.
d) Click OK.
e) Select GuidedNavigation.aspx and click Move Up until the file is at the top position.
f) Click OK.

9. Select the ASP.NET tab and from the ASP.NET version list, select 2.0.x or later.

Endeca Confidential Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

50 Working with the Content Assembler API | Installing the Content Assembler API and reference

application

10. Restart IIS.

Using the Content Assembler reference application

The Content Assembler reference application allows you to browse the content items that are returned
by the Content Assembler API based on your navigation state.

In order to use the reference application to view dynamic page results, you must first have created
dynamic page configurations in the Page Builder.

After connecting the reference application to an MDEX Engine, you can choose to run the application
in Postback mode, the URL mode, the RAD Toolkit Server Controls Postback mode, or the RAD Toolkit
Server Controls URL mode by clicking the corresponding link in header of the reference application.

To view dynamic page results in the reference application:

1.

e

On your Windows machine, start Internet Explorer and navigate to
http://host/ContentAssembler/GuidedNavigation.aspx.

Replace host with the host name or IP address of the server running the reference application and
ContentAssembler with the name of the virtual directory in IIS.

If you have an MDEX Engine running and want to view its records in the reference application,
provide the host and port information of the machine running an MDEX Engine and click Go.

Search or navigate to a location that triggers a dynamic page.

Select a zone from the Content Rule Zone drop-down list in the ContentControl.ascx area.
" Note: Choose the zone that corresponds to the zone for the page you want to view. The
zone is set based on the zone specified in the page template. Only the zones that have rules
triggered by the current navigation state display in the list, although not all the rules contain

dynamic page content.

If there is a dynamic page in the specified zone for the current navigation state, an XML
representation of the content item returned at that navigation state displays. Otherwise, the following
message displays: There are no content results for zone "ZoneNane"™ at the
current navigation state.

Search or navigate to another location trigger (resetting the zone as necessary) to view the page
content that is returned for each trigger.

Note: The XML that displays in the reference application is not the same as the XML that
represents the page configuration in the MDEX Engine. Rather, it is an XML representation of
the content items that are returned by the API after the Content Assembler has evaluated the
page configurations and includes the results of any additional queries the Assembler makes to
the MDEX Engine.

Uninstalling the Content Assembler reference application

If you wish to uninstall the Content Assembler reference application, remove the virtual directories in
11S.

To uninstall the Content Assembler reference application for the RAD Toolkit for ASP.NET:

Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

Working with the Content Assembler API | Writing applications with the Content Assembler APl 51

1. From the Windows Control Panel, select Administrative Tools > Internet Information Services
Manager.

2. Inthe IIS tree pane, expand the machine icon for the local machine, then expand the Web Sites
directory.

3. Select Default Web Site.

4. In the right pane, right-click ContentAssembler, or the name of your application’s site, click Delete,
and click Yes to confirm the deletion.

5. Close the Internet Information Services window.

Uninstalling the Content Assembler API
This topic describes how to uninstall the Endeca RAD Toolkit from a system.
To uninstall the Content Assembler API for the RAD Toolkit for ASP.NET:
From the Windows Control Panel, select Add or Remove Programs.
Select Endeca Content Assembler for RAD Toolkit for ASP.NET from the list of installed software.

Click Remove and click Yes to confirm the removal.
Start Visual Studio and open your Web site.
In the Toolbox window, right-click the Endeca Content Assembler API tab and select Delete Tab.

a s w Dn e

Writing applications with the Content Assembler API

This section describes how to use the Content Assembler API for the RAD Toolkit for ASP.NET to
query the MDEX Engine and access dynamic page content.

About using the Content Assembler with the RAD Toolkit for ASP.NET
The Content Assembler APl is used in conjunction with the RAD Toolkit for ASP.NET.

Use a ContentNavigationDataSource in place of a NavigationDataSource to access content
results from the Content Assembler in addition to MDEX Engine record data.

If you are using the RAD API for programmatic querying, you can access content items from the results
of a NavigationCommand. The Content Assembler is not intended for use with records detail,
dimension search, or metadata queries.

Creating a ContentNavigationDataSource control

You create and configure a ContentNavigationDataSource control in order to provide dynamic page
content and MDEX Engine records to other controls in your Web site.

The ContentNavigationDataSource provides the same design time functionality to populate the other
controls (e.g. user interface controls) with Endeca record properties as a NavigationDataSource,
with the addition of the content items returned by the Content Assembler.

%
Note: For more information about configuring NavigationDataSource controls, see the Endeca
RAD Toolkit for ASP.NET Developer's Guide.

Endeca Confidential Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

52 Working with the Content Assembler API | Writing applications with the Content Assembler API

To create and configure an Endeca ContentNavigationDataSource control:

Open your Web site in Visual Studio.
In the Toolbox window, expand the Endeca RAD Toolkit tab.
Drag the ContentNavigationDataSource on to the Design tab of your Web page.

From the smart tag, check Preview Endeca data to populate other controls you add later with
representative data from the MDEX Engine.

From the smart tag, select Configure Data Source....

6. On the Choose Endeca server screen, specify the host and port on which the MDEX Engine is
running.

M owbdpR

o

7. At this point, you can either click Finish to finish configuring the data source, or you can click Next
to continue through the wizard and configure optional data source parameters and specify optional
Analytics query information. Adding data source parameters makes them available to other controls
on the page.

8. In the Properties window of Visual Studio, modify the properties for the data source control if
necessary. Many of the properties are set when you run the Configure Data Source... wizard.

a) Specify a value for the ContentRuleZone property. This property is required and corresponds
to the zone that is specified on the template for the dynamic pages that you want to access with
this data source.

The code generated on the Source tab is similar to the following:

<ccl:ContentNavigationDataSource
ID=""ContentNavigationDS1"
runat="'server"
MdexPort="7900"
MdexHostName=""smith-690"
ContentRuleZone="NavigationPageZone"
ContentValidation="false">
<PermanentRefinementConfigs>
<end:RefinementConfig DimensionValueld="3">
</end:RefinementConfig>
</PermanentRefinementConfigs>
</ccl:ContentNavigationDataSource>

» About setting the content rule zone on page 52
When querying the MDEX Engine using the Content Assembler API, you must specify the
zone that corresponds to that of the dynamic page content that you want to retrieve.

» About content XML validation on page 53
You can enable XML validation of page configurations by setting the ContentValidation
property of the ContentNavigationDataSource to true.

About setting the content rule zone

When querying the MDEX Engine using the Content Assembler API, you must specify the zone that
corresponds to that of the dynamic page content that you want to retrieve.

Using multiple zones can enable your application to implement more fine-grained trigger functionality
than is provided by the dynamic business rules feature of the MDEX Engine. For example, zones can
allow the front-end application to retrieve dynamic content based on:

Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

Working with the Content Assembler API | Building cartridges to render template-based content 53

« Searches (Ntt and Ntk parameters) for terms that are not designated as specific search term
triggers, including search within results.

« Record offset (No parameter) to present different content when a user is browsing subsequent
pages of search results.

« Different views of the same content, for example to present different content depending on whether
a user is viewing product details or a product reviews page.

Your front-end application can set the zone for the content query based on conditions like the ones
above. However, because the zone for a dynamic page is set based on the zone attribute of the
<Rulelnfo> element in the page template, the content administrator must have set up a page intended
for a particular condition based on a template that uses the appropriate zone. You can provide
information in the template id (for example, ThreeColumnPage-Search) or description to help
the content administrator select the appropriate template.

» Specifying the zone and style for a template on page 19
Page templates are required to specify a rule zone and a style. When a page is created in
the Page Builder, the zone and style are applied to any pages based on that template.

About content XML validation

You can enable XML validation of page configurations by setting the ContentValidation property of
the ContentNavigationDataSource to true.

Validation can be useful in a testing environment for debugging purposes, particularly if templates are
changing often. Because of the performance impact of validating content XML, this option should never
be used in production. XML validation is disabled in the ContentNavigationDataSource by default.

Building cartridges to render template-based content

Cartridges consist of cartridge templates and their associated rendering code, allowing you to separate
the structure of dynamic page content from its presentation.

Building an ASP.NET application based on cartridges involves the following tasks:

< Writing user controls to render content items based on each template.

« For controls that render content items that contain nested content items, adding logic to load the
appropriate user control to render the nested content.

The examples in this section use the DynamicContentControl and the 1ContentControl provided
with the reference application. You can use these controls as a starting point for writing applications
to render dynamic page content and extend them with further functionality as needed.

About working with content items

You can access the 1Contentltem that contains dynamic page content from a ContentNaviga—
tionDataSource.

An IContentltem contains a KeyedCollection of IProperty objects. An 1Property can contain
any type of object returned by the MDEX Engine. The type of object depends on the property elements
specified in the template. Common object types include:

e string

Endeca Confidential Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

54 Working with the Content Assembler API | Building cartridges to render template-based content

« ReadOnlyCol lection<Record>

e IContentltem

* NavigationResult
Because the properties are defined by the template on which a content item is based, you can access
the content properties directly based on the property name defined in the template. Typically, you

access a specific property value using Contentltem.Properties[''nane'].Value and castitto
the appropriate object type.

» Types of property elements on page 24
Each property type corresponds with a particular object type that is returned by the Content
Assembler API.

Using the Content Assembler reference application controls

The DynamicContentControl and the IContentControl work together to allow you to dynamically
load user controls to render page content.

These controls are provided with the reference application code, although the reference application
does not demonstrate how to use these controls.

To use the reference application controls in your application:

1. Open Windows explorer and navigate to the reference application directory. In a typical installation
this is C:\Endeca\ContentAssemblerAPIs\RAD Toolkit for
ASP _NET\1.0.0\reference\ContentRadAspNetRef\

2. Navigate to the following subdirectory: App_Code\ContentRadAspNetRef

3. Copy the DynamicContentControl.cs and IContentControl .cs files to a directory of your
choice within your Web site directory structure.

When using a DynamicContentControl, you must add the following line to your code:
<%@ Register TagPrefix="end" Namespace="'ContentRadAspNetRef" %>

Writing user controls to render dynamic content

User controls designed to render template-based content must implement the 1ContentControl
interface. This allows a DynamicContentControl to load this control and pass a reference to the
content item it should render.

To create user control to render dynamic content:

1. Add the following includes at the top of your code:

using System_Web._UI;
using Endeca.Data.Content;
using Endeca.Web.Content._Ul;

2. Implement the 1ContentControl interface.
This example shows the code-behind for a basic implementation:

public partial class ContentUserControl : UserControl, IContentControl

public string BaseContentNavigationDataSourcelD

{
get

Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

Working with the Content Assembler API | Building cartridges to render template-based content 55

return baseDataSourcelD;

3
set
baseDataSourcelD = value;
3
3
public IContentltem Contentltem
{
get
{
return contentltem;
3
set
{
contentltem = value;
3
3

private string baseDataSourcelD;
private IContentltem contentltem;

}

3. Inthe in-line code, access the properties of the content item for rendering.

For example, if you have the following properties defined in a cartridge template:
<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"

type=""BuyingGuideSection" id="BuyingGuideSection">
<l-- additional elenments not shown in this exanple -->
<Contentltem>
<Name>New Buying Guide Section</Name>
<Property name="title">
<String/>
</Property>
<Property name="header">
<String/>
</Property>
<Property name="'img_src'>
<String/>
</Property>
<Property name="'products''>
<RecordList/>
</Property>
</Contentltem>
<l-- additional elenents not shown in this exanple -->
</ContentTemplate>

The code to render content items based on this template could look like the following:

<div class="header">
<hl><asp:Literal runat="'server"
Text="<%# Contentltem_Properties["title"].Value %>" /></h1>
<p><asp:Literal runat="server"
Text="<%# Contentltem._Properties["header'].Value %>" /></p>
<img src="<asp:Literal runat="server"
Text="<%# Contentltem.Properties['img_src'].Value %>" />"/>

Endeca Confidential Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

56 Working with the Content Assembler API | Building cartridges to render template-based content

</div>
<div class="bg_products'>

<asp:Repeater ID="recordsRepeater' runat='"server"
DataSource="<%# Contentltem.Properties["products'].Value %>">
<ltemTemplate>
<li class="record">
<h3><%# ((Record)Container._Dataltem).Properties['P_Name'].Value
%></h3>
<div><%# ((Record)Container.Dataltem).Properties["P_Price"].Val-
ue %></div>

</ltemTemplate>
</asp:Repeater>

</div>

About the DynamicContentControl

You use a DynamicContentControl when rendering dynamic pages or any cartridges that have
nested content items within them.

The DynamicContentControl is a data-bound control that automatically loads a user control to
handle nested cartridge content. Using the DynamicContentControl class assumes that you have
included a hidden property in each template specifying the name of a user control that should be used
to render any content based on that template. For example:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type=""PageTemplate'" id="ThreeColumnPage'>
<I-- additional elenents renoved fromthis exanple -->
<Contentl tem>
<Name>New Three-Column Navigation Page</Name>
<Property name="'ui_code">
<String>~/Resources/UserControls/ThreeColumnPage.ascx</String>

</Property>
<l-- additional properties renoved fromthis example -->
</Contentltem>
<l-- additional elenents renoved fromthis exanple -->
</ContentTemplate>

The ~ indicates that the path is relative to the Web site root.

Using the DynamicContentControl to render pages

Because a content administrator specifies the template that drives a page, you need to be able to
dynamically load the appropriate code to render them.

Typically, you will have a generic page that includes a ContentNavigationDataSource and a
single DynamicContentControl to load the code that handles the actual rendering of the page.

To render pages based on different templates:

1. Add and configure a ContentNavigationDataSource control.
2. Add a DynamicContentControl and set the following properties:

Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

Working with the Content Assembler API | Building cartridges to render template-based content 57

Property Value
DataSourcelD The 1D of the ContentNavigationDataSource to use.
DataMember The string ""Contentltem™.

ControlPathPropertyName The name of the property on the content item that contains the
name of the .ascx file to use to render the page. This file should
contain a user control that implements 1ContentControl.

BaseContentNavigationData—~ Set this property to the same value as the DataSourcelD.
SourcelD

The following example shows a simple ContentNavigationDataSource and a DynamicContent-
Control that will load the appropriate code to render dynamic page content.

<%@ Register TagPrefix=""end" Namespace="'ContentRadAspNetRef" %>

<end:DynamicContentControl
ID=""dynamicContent"
runat="'server"
DataSourcelD=""dsNav"
DataMember="Contentltem"
ControlPathPropertyName="ui_code"
BaseContentNavigationDataSourcelD=""dsNav" />

<end:ContentNavigationDataSource
ID=""dsNav"'
runat=""server"
MdexPort="7900"
MdexHostName=""smith-690""
ContentRuleZone="NavigationPageZone"
ContentValidation="false" />

Using the DynamicContentControl to render cartridge content

When working with content items that contain nested content items, you can use a DynamicContent-
Control to load the appropriate user control to render the nested content.

%
Note: This procedure assumes that you have a ContentNavigationDataSource defined
further up in the control hierarchy.

The DynamicContentControl loads the control to render cartridges in the same way as it loads
the appropriate control to render dynamic pages. The only difference is that you do not need to specify
a DataSourcelD or DataMember, as you are setting the data source via the Content I tem property.

To use the DynamicContentControl to render cartridge content:

1. Add a DynamicContentControl and set the following properties:

Property Value
ControlPathPropertyName The name of the property on the content item that contains the

name of the .ascx file to use to render the page. This file should
contain a user control that implements 1ContentControl .

Endeca Confidential Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

58 Working with the Content Assembler API | Building cartridges to render template-based content

Property Value
Contentltem The Contentl tem object that the loaded control should render.

BaseContentNavigation—- The BaseContentNavigationDataSourcelD of the current
DataSourcelD user control, which is passed to the new user control that is loaded.

2. Repeat the previous step for each nested content item that the current content item can contain.
For example, if your template defines sections called top, left, middle, and right, you would
add four DynamicContentControl controls, one to handle each nested content item.

The following example shows a page template and the corresponding user control that uses a
DynamicContentControl to render cartridge content:

If the template (PageTemplate-ThreeColumnPage.xml) includes the following:

<ContentTemplate xmlns="http://endeca.com/schema/content-template/2008"
type="PageTemplate" id="ThreeColumnPage'>
<l-- additional elenents renoved fromthis exanple -->
<Contentltem>
<Name>New Three-Column Page</Name>
<Property name="ui_code">
<String>~/Resources/UserControls/ThreeColumnPage.ascx</String>

</Property>
<l-- additional properties renoved fromthis exanple -->
<Property name=""title">
<String/>
</Property>

<Property name="'left">
<Contentltem type="VerticalBanner"/>
</Property>
<Property name="middle">
<Contentltem type="HorizontalBanner"/>
</Property>
<Property name="'right'>
<Contentltem type="VerticalBanner"/>
</Property>
</Property>
</Contentltem>
<I-- additional elements removed fromthis exanple -->
</ContentTemplate>

The code for the associated user control (ThreeColumnPage . ascx) may look similar to the following:
<%@ Register TagPrefix="end" Namespace="'ContentRadAspNetRef" %>

<div class="header'><hl><asp:Literal runat="server"
Text="<W# Contentltem_Properties["title"].Value %>" /></hl1></div>

<div class="left">
<end:DynamicContentControl
ID=""DynamicContentControl_left"
runat="'server"
Contentltem="<%# Contentltem.Properties["left"].Value %>"
ControlPathPropertyName="ui_code"
BaseContentNavigationDataSourcelD=
"<W# BaseContentNavigationDataSourcelD %>" />
</div>

<div class="middle">

Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

Working with the Content Assembler API | Using the Content Assembler API for programmatic querying
59

<end:DynamicContentControl
ID=""DynamicContentControl_middle"
runat="'server"
Contentltem="<%# Contentltem.Properties["middle'].Value %>"
ControlPathPropertyName="ui_code"
BaseContentNavigationDataSourcelD=
"<W# BaseContentNavigationDataSourcelD %>" />
</div>

<div class="right">
<end:DynamicContentControl
ID=""DynamicContentControl_right"
runat="'server"
Contentltem="<%# Contentltem.Properties[' right'].Value %>"
ControlPathPropertyName="ui_code"
BaseContentNavigationDataSourcelD=
"<W# BaseContentNavigationDataSourcelD %>" />
</div>

Using the Content Assembler API for programmatic
querying

This example code connects to an MDEX Engine, creates and executes a NavigationCommand,
and retrieves the root content item for a query.

To retrieve content results from a NavigationCommand

1. Add the following includes at the top of your code:

using System.Collections.ObjectModel;

using System.Collections.Generic;

using Endeca.Data;

using Endeca.Data.Provider;

using Endeca.Data.Provider.PresentationApi;
using Endeca.Data.Content;

using Endeca.Data.Content.Navigation;

2. Create and execute a NavigationCommand.

// A PresentationApiConnection is an EndecaConnection that uses
// the Presentation APl as a transport.
// Future EndecaConnections can use XQuery or other transport mechanisms
PresentationApiConnection conn =
new PresentationApiConnection("'localhost', 8000);

// A NavigationCommand represents a query to the engine that requests
// everything except record/aggregate record details and single/compound
// dimension search

NavigationCommand cmd = new NavigationCommand(conn);

// ... additional code not shown to set Navigation Command values ...
// NavigationResult contains Records, AggregateRecords, Dimensions,
// Breadcrumbs, Analytics, BusinessRules, MetaData, and Supplemental

// Objects.
NavigationResult res = cmd.Execute();

Endeca Confidential Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET

60 Working with the Content Assembler API | Using the Content Assembler API for programmatic querying

3. Get the root content item.

IContentltem contentltem = NavigationContentltemCreator.Create(cmd,
res, '""NavigationPageZone', false)

In the Create () method, the third parameter is the content rule zone and the final parameter
controls content XML validation. Validation should never be enabled in a production environment.

For more details on using the RAD API for programmatic querying, see the Endeca RAD Toolkit for
ASP.NET Developer's Guide.

» About setting the content rule zone on page 52
When querying the MDEX Engine using the Content Assembler API, you must specify the
zone that corresponds to that of the dynamic page content that you want to retrieve.

» About content XML validation on page 53
You can enable XML validation of page configurations by setting the ContentValidation
property of the ContentNavigationDataSource to true.

Endeca® Content Assembler APl Developer's Guide for the RAD Toolkit for ASP.NET Endeca Confidential

Index

A

application development
architecture 12
roles 9
workflow 12

C

cartridges 10, 18, 53, 54
and user controls 54
building 53
definition 10
rendering code 54
type 18
content administrator
introduced 9
Content Assembler API
and property types defined in template 24
and RAD API 59
architecture 12
introduced 10
Content Assembler API for the RAD Toolkit for ASP.NET
and the RAD Toolkit for ASP.NET 51
components 45
directory structure 47
installing 46, 48
overview 45
system prerequisites 46
uninstalling 51
Content Assembler reference application
deploying 49
introduced 48
uninstalling 50
using 50
Content Assembler reference application controls
using 54
content items
introduced 11
and Content Assembler API 53
content properties
accessing 53
content query
and content rule zone 52
and content XML validation 53
executing 59
results 59
content XML 11
ContentNavigationDataSource
and content rule zone 52
and content XML validation 53
ContentNavigationDataSourceControl 51

D

dynamic pages 9, 42

and preview application 42
troubleshooting 42

DynamicContentControl 54, 56, 57

E

introduced 56
using 56, 57

emgr_update

get_templates 38
introduced 35
remove_templates 40
set_templates 35
updating templates 38

Endeca Support

G

contacting 8

group labels 31

IContentControl 54
installing 46, 48

P

Page Builder 9, 10, 12

architecture 12
introduced 9

preview application 42
properties 22, 23, 24, 25, 26, 27, 32, 33, 34

and configuration in Page Builder 27
content item 26

defining 22

overview 23

record list 26

string 25

template section 26

types 24

using arbitrary XML 34

using pass-through content properties 33
XML pass-through 32

property editors 27, 28, 30, 31

cartridge selector 31
default value 28
grouping 31
introduced 27

Index

property editors (continued)
record selector 30
section 31
string 28

R

rule groups 15

rule styles 15, 17, 19, 40, 42
and invalid pages 42
and invalid templates 40
specifying for page templates 19

S

styles, See rule styles
system prerequisites 46

T

template description
specifying 21
template properties
and types returned by API 24
templates 10, 15, 17, 18, 19, 21, 22, 23, 24, 26, 27, 35,
36, 37, 38, 39, 40
cartridge templates 10
defining editors 27
See also property editors
defining properties 22
defining sections 26
managing in Page Builder 35
modifying 36, 37, 38
Name property 22
page templates 10, 19
pages based on missing templates 39
prerequisites 15

62

templates (continued)
properties 23
See also properties
property types 24
removing from Page Builder 39, 40
retrieving from Page Builder 38
saving 21
troubleshooting 40
updating 36, 37, 38
uploading 35
validation 18, 40
creating 17
id 18
page templates 10, 19
schema 18
type 18
validation 18, 40
thumbnail images

specifying 21
using 20
U
uninstalling
Content Assembler API for the RAD Toolkit for
ASP.NET 51
Content Assembler reference application 50
Z

zones 15, 16, 19, 40, 42, 52

and content query 52

and invalid pages 42

and invalid templates 40

creating 16

specifying for page templates 19
zones, and dynamic pages overview 16

Endeca® Content Assembler API

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this book
	Contacting Endeca Customer Support

	Developing Applications with Template-Based Pages
	Overview of roles
	About the Endeca Page Builder
	About the Content Assembler API
	About cartridges
	About templates and the Page Builder
	About content items and the Content Assembler API
	A typical workflow for creating a template-based application
	Page Builder and Content Assembler API architecture

	Working with Templates for Dynamic Pages
	Template prerequisites
	About dynamic pages and rule groups
	About using zones with dynamic pages
	Creating a zone for dynamic pages
	Dynamic pages and styles

	About creating templates
	About template validation
	About the type and ID for a template
	Specifying the zone and style for a template
	About using thumbnail images in the Page Builder
	Specifying the description and thumbnail image for a template
	About saving templates

	About defining content properties
	Specifying the default name for a ContentItem
	About content properties
	Types of property elements
	Adding a string property
	Adding a record list property
	Adding a content item property

	About defining the editing interface for properties
	Adding a string editor
	Adding a record selector
	About cartridge selectors
	Adding a group label

	About using XML pass-through properties
	About using pass-through content properties
	About passing arbitrary XML to the front-end application

	Supporting the Page Builder
	Making templates available in the Page Builder
	Uploading templates to the Page Builder
	About modifying templates that are used by existing pages
	About updating templates
	Updating templates in the Page Builder
	Retrieving the current templates from the Page Builder
	About removing templates
	Removing templates from the Page Builder

	Troubleshooting invalid templates
	Troubleshooting invalid pages
	About the preview application

	Working with the Content Assembler API
	Overview of the Content Assembler API
	Content Assembler API components

	Installing the Content Assembler API and reference application
	Prerequisites for installing the Content Assembler API
	Installing the Content Asssembler API
	Installation package contents
	Adding the Content Assembler API to Visual Studio
	About the Content Assembler reference application
	Deploying the Content Assembler reference application
	Using the Content Assembler reference application
	Uninstalling the Content Assembler reference application
	Uninstalling the Content Assembler API

	Writing applications with the Content Assembler API
	About using the Content Assembler with the RAD Toolkit for ASP.NET
	Creating a ContentNavigationDataSource control
	About setting the content rule zone
	About content XML validation

	Building cartridges to render template-based content
	About working with content items
	Using the Content Assembler reference application controls
	Writing user controls to render dynamic content
	About the DynamicContentControl
	Using the DynamicContentControl to render pages
	Using the DynamicContentControl to render cartridge content

	Using the Content Assembler API for programmatic querying

	Index

