
Endeca® URL Optimization API for
Java

Developer's Guide

Version 2.1.0 • December 2011

Contents

Preface...7
About this guide..7
Who should use this guide..7
Conventions used in this guide...8
Contacting Endeca Customer Support...8

Chapter 1: Installation..9
System requirements..9
Installing the URL Optimization API..9
Package contents...10

Chapter 2: Introduction..13
Introduction to URL optimization...13
Overview of the URL Optimization API capabilities..13
About URL canonicalization..15

Chapter 3: Setting up the Reference Application..................................17
About the reference application..17
Reference application prerequisites..17
Installing the reference application...18
Testing your reference Web application..19

Chapter 4: Preparing your application..21
Preparing your dimensions...21
Preparing your properties...21
Handling images and external JavaScript files...22
URL transitioning..22

Chapter 5: Building URLs with the URL Optimization API....................25
Core components in the URL Optimization API..25
Overview of building URLs using the URL Optimization API..25
Parsing an incoming query and sending it to an MDEX Engine...26
Informing the UrlState of the navigation state...26
Creating link URLs from a UrlState...27

Chapter 6: Configuring URLs..29
Anatomy of an optimized Endeca URL ..29
About the URL configuration file...30
Creating a URL configuration file..31
About optimizing the misc-path...34

Formatting misc-path strings in optimized URLs...35
Optimizing URLs for navigation pages..37
Canonicalization configuration options..41
Optimizing URLs for record detail pages...44
Optimizing URLs for aggregate record detail pages..48

Configuring the path-param-separator..51
About optimizing the path-params and query string...52

Moving Endeca parameters out of the query string...53
Encoding Endeca parameters...54
Removing session-scope parameters...55
About passing non-Endeca parameters to the API..56

Using the URL configuration file with your application..56

Chapter 7: Integrating with the Sitemap Generator...............................57

iii

The Sitemap Generator urlconfig.xml file...57
Adding custom dimensions to the Sitemap Generator configuration..57
Using the URL Optimization API urlconfig.xml file for sitemap generation...58

Endeca® URL Optimization API for Javaiv

Copyright and disclaimer

Product specifications are subject to change without notice and do not represent a commitment on
the part of Endeca Technologies, Inc. The software described in this document is furnished under a
license agreement.The software may not be reverse engineered, decompiled, or otherwise manipulated
for purposes of obtaining the source code. The software may be used or copied only in accordance
with the terms of the license agreement. It is against the law to copy the software on any medium
except as specifically allowed in the license agreement.

No part of this document may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying and recording, for any purpose without the express written
permission of Endeca Technologies, Inc.

Copyright © 2003-2011 Endeca Technologies, Inc. All rights reserved. Printed in USA.

Portions of this document and the software are subject to third-party rights, including:

Corda PopChart® and Corda Builder™ Copyright © 1996-2005 Corda Technologies, Inc.

Outside In® Search Export Copyright © 2011 Oracle. All rights reserved.

Rosette® Linguistics Platform Copyright © 2000-2011 Basis Technology Corp. All rights reserved.

Teragram Language Identification Software Copyright © 1997-2005 Teragram Corporation. All rights
reserved.

Trademarks

Endeca, the Endeca logo, Guided Navigation, MDEX Engine, Find/Analyze/Understand, Guided
Summarization, Every Day Discovery, Find Analyze and Understand Information in Ways Never Before
Possible, Endeca Latitude, Endeca InFront, Endeca Profind, Endeca Navigation Engine, Don't Stop
at Search, and other Endeca product names referenced herein are registered trademarks or trademarks
of Endeca Technologies, Inc. in the United States and other jurisdictions. All other product names,
company names, marks, logos, and symbols are trademarks of their respective owners.

The software may be covered by one or more of the following patents: US Patent 7035864, US Patent
7062483, US Patent 7325201, US Patent 7428528, US Patent 7567957, US Patent 7617184, US
Patent 7856454, US Patent 7912823, US Patent 8005643, US Patent 8019752, US Patent 8024327,
US Patent 8051073, US Patent 8051084, Australian Standard Patent 2001268095, Republic of Korea
Patent 0797232, Chinese Patent for Invention CN10461159C, Hong Kong Patent HK1072114, European
Patent EP1459206, European Patent EP1502205B1, and other patents pending.

v

Preface

Endeca® InFront enables businesses to deliver targeted experiences for any customer, every time, in
any channel. Utilizing all underlying product data and content, businesses are able to influence customer
behavior regardless of where or how customers choose to engage — online, in-store, or on-the-go.
And with integrated analytics and agile business-user tools, InFront solutions help businesses adapt
to changing market needs, influence customer behavior across channels, and dynamically manage a
relevant and targeted experience for every customer, every time.

InFront Workbench with Experience Manager provides a single, flexible platform to create, deliver,
and manage content-rich, multichannel customer experiences. Experience Manager allows non-technical
users to control how, where, when, and what type of content is presented in response to any search,
category selection, or facet refinement.

At the core of InFront is the Endeca MDEX Engine,™ a hybrid search-analytical database specifically
designed for high-performance exploration and discovery. InFront Integrator provides a set of extensible
mechanisms to bring both structured data and unstructured content into the MDEX Engine from a
variety of source systems. InFront Assembler dynamically assembles content from any resource and
seamlessly combines it with results from the MDEX Engine.

These components — along with additional modules for SEO, Social, and Mobile channel support —
make up the core of Endeca InFront, a customer experience management platform focused on delivering
the most relevant, targeted, and optimized experience for every customer, at every step, across all
customer touch points.

About this guide
This guide describes the major tasks involved in developing an application that utilizes the Endeca
URL Optimization API for Java.

This guide assumes that you are familiar with Endeca’s terminology and basic concepts.

This guide covers only the features of the Endeca URL Optimization API for Java, and is not a
replacement for the available material documenting other Endeca products and features.

Who should use this guide
This guide is intended for developers who are building applications that leverage the Endeca URL
Optimization API.

This document assumes that the reader has a working knowledge of the following software and
concepts:

• Basic Endeca concepts such as dimensions, dimension values, refinements, ancestors, records,
aggregated records, etc.

• Configuring Endeca dimensions using Developer Studio
• Endeca Presentation API, specifically:

• UrlGen class
• ENEQueryToolkit class

• Guided Navigation classes, e.g. DimVal, Dimension, DimLocation, etc.

If you are using the Endeca URL Optimization API in conjunction with the Sitemap Generator, please
read the Sitemap Generator Developer's Guide in addition to this guide.This guide is not a replacement
for the Sitemap Generator Developer's Guide.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace
font. In the case of long lines of code, or when inline monospace text occurs at the end of a line, the
following symbol is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

Contacting Endeca Customer Support
The Endeca Support Center provides registered users with important information regarding Endeca
software, implementation questions, product and solution help, training and professional services
consultation as well as overall news and updates from Endeca.

You can contact Endeca Standard Customer Support through the Support section of the Endeca
Developer Network (EDeN) at http://eden.endeca.com.

Endeca ConfidentialEndeca® URL Optimization API for Java Developer's Guide

| Preface8

http://eden.endeca.com

Chapter 1

Installation

This section describes the installation procedure for the Endeca URL Optimization API.

System requirements
Below is a list of minimum system requirements for the Endeca URL Optimization API for Java.

Software requirements

The Endeca URL Optimization API for Java requires the following software:

• Platform Services
• MDEX Engine
• The Endeca HTTP service or a standalone Java application server

Note: While the Endeca URL Optimization API reference Web application can be installed into
any standalone Java application server, this guide assumes that you are installing into an existing
instance of the Endeca HTTP service.

To determine the compatibility of the URL Optimization API with other Endeca installation packages,
see the Endeca InFront Compatibility Matrix available on EDeN.

Supported operating systems

The URL Optimization API is supported on all hardware and operating system platforms that are
supported by Endeca Platform Services.

The URL Optimization API for Java can be run on any of the supported platforms, using these versions
of Java:

• Sun JDK 1.4.2, 5.0 (1.5), and 6.0 (1.6)
• IBM JDK 1.4.2, 5.0 (1.5), and 6.0 (1.6)

Installing the URL Optimization API
The URL Optimization API for Java is distributed as a zip file,
UrlOptimizationAPIJava-version.zip.

The package unpacks into a self-contained directory structure tree:

Endeca\SEM\URL Optimization APIs\Java\version\

1. Extract the zip package using WinZip or an alternate decompression utility.

Endeca recommends that you install the URL Optimization API to the same directory as your
Endeca installation. For example:

extract zip archive to:Endeca location (6.x)

C:\C:\Endeca\PlatformServices\version\

/usr/local//usr/local/endeca/PlatformServices/version/

2. Stop the Endeca HTTP service.

3. Navigate to the \lib subdirectory of your URL Optimization API installation directory.
For example: C:\Endeca\SEM\URL Optimization APIs\Java\version\lib

4. Copy the urlFormatterSeo.jar and the urlFormatterCore.jar into the WEB-INF/lib
subdirectory of your Web application directory.
For example: C:\Endeca\MyApps\WEB-INF\lib

5. Add urlFormatterSeo.jar and urlFormatterCore.jar to your application's classpath.

6. Start the Endeca HTTP service.

After installing the URL Optimization API, you must integrate it with your Web application to see results.
See "Setting up a Reference Application" in this guide for an example of how to integrate URL
Optimization with the Content Assembler Reference Application.

Package contents
The URL Optimization API package includes a number of components.

The C:\Endeca\SEM\URLOptimizationAPIs\Java\version directory is the root for URL
Optimization API for Java. The directory contains the following components:

DescriptionComponent

Contains the release notes README_UOJ.txt.Root directory

Contains the Licensing Guide and generated API
documentation for the core and SEO Java library
files.

\doc

Contains the urlFormatterSeo.jar and the
urlFormatterCore.jar files. These are the

\lib

Java library files that contain the full
implementation of the URL Optimization API. The
urlFormatterSeo.jar contains the
SEO-specific classes and is dependant upon the
urlFormatterCore.jar which contains the
basic formatting classes.

Contains the urlformatter_jspref.xml
context file as well as the

\webapps

Endeca ConfidentialEndeca® URL Optimization API for Java Developer's Guide

Installation | Package contents10

DescriptionComponent

urlformatter_jspref reference application
subdirectory.

Contains the reference Web application that
demonstrates the full functionality of the URL

\webapps\urlformatter_jspref

Optimization API within the context of a traditional
Endeca application.The sample URL configuration
file (urlconfig.xml) is included in the
\WEB-INF subdirectory.

Endeca® URL Optimization API for Java Developer's GuideEndeca Confidential

11Installation | Package contents

Chapter 2

Introduction

This section provides an introduction to the URL Optimization API and its capabilities.

Introduction to URL optimization
Dynamically generated URLs that are comprised of meaningless strings and no keywords may
negatively impact search engine ranking as well as user experience. As an answer to this problem,
the Endeca URL Optimization API enables users to create site links using directory-style URLs that
include keywords and store the dynamic information in the base URL rather than in the query string.

The resulting URLs do not contain any URL query parameters. Instead, all of the necessary Endeca
values are stored in the URL path, resulting in search engine-friendly URLs.

Overview of the URL Optimization API capabilities
The URL Optimization API is designed to help increase your natural search engine rankings by enabling
the creation of search engine-friendly URLs.

Integration of keywords into the URL string

Many search engines take URL strings in as part of their relevancy ranking strategy. Generating URLs
that include keywords can increase your natural search engine ranking as well as create visitor-friendly
URLs that are easier for front-end users to understand.

Using the URL Optimization API, you can configure the following strings to display in the URL:

• Dimension names
• Dimension value names
• Ancestor names
• Record property strings
• Text search strings

For example, the base URL for the Merlot page can be configured to include ancestors in the string:
http://localhost/ContentAssemblerRefApp/Content.aspx/Wine-Red-Merlot/

The optimized URL is more comprehensible to front-end users and more search-engine friendly than
the traditional URL which contains no keywords:http://localhost:8888/endeca_jspref/con¬
troller.jsp?sid=122C7EA4C912&Ne=6200&enePort=15000&eneHost=localhost&N=8025

Canonicalizing the URL string

Dynamic sites often produce syntactically different URLs for the same page. Multiple variant URLs
result in duplicate content and therefore lower natural search engine ranking.

For example, users might be able to reach the Napa white wine page by first clicking on “Napa” and
then clicking on “White”, or by first clicking on “White” and then “Napa.” This creates two syntactically
unique links pointing to the same Napa White page:

• http://localhost:8888/urlformatter_jspref/controller/Wine-White/Region-
Germany/_/N-1z141vcZ66t

• http://localhost:8888/urlformatter_jspref/controller/Region-Germany/Wine-
White/_/N-1z141vcZ66t

To ensure that only one version of the URL per page is used in links throughout the site, the URL
Optimization API provides provides options for canonicalizing URLs.

Configuring the word separator string

It is possible to customize the word separator for each keyword string in the URLs. By default, the
word separator is the dash character "-":

http://localhost:8888/urlformatter_jspref/controller/Wine-White/Region-
Germany/_/N-1z141vcZ66t

Moving Endeca URL parameters out of the query string

In order to create directory-style URLs, you can limit the number of Endeca parameters in the query
string by moving them from the query string and into the path-params section of the URL.

For example, the following URL has the Endeca parameters N, Ntk, Ntt, and Ntx in the query string:

http://localhost/ContentAssemblerRefApp/Content.aspx/Bor¬
deaux?N=4294966952&fromsearch=false&Ntk=All&Ntt=red&Ntx=mode%2bmatchallpar¬
tial

Using the URL Optimization API, you can move Endeca parameters into the path-params section of
the URL. For example, the following URL includes the N and Ntt parameters in the base URL:

http://localhost/ContentAssemblerRefApp/Content.aspx/Bordeaux/_/N-
4294966952/Ntt-red?fromsearch=false&Ntk=All&Ntx=mode%2bmatchallpartial

Encoding Endeca Parameters

In order to shorten URLs, the URL Optimization API allows base-36 encoding of Endeca parameters.

For example, the following URL for Vintage > 1996 contains the dimension value ID for 1996
(4294962059):

http://localhost/ContentAssemblerRefApp/Content.aspx/_/N-4294962059

By base-36 encoding the N parameter, you can shorten the URL:

http://localhost/ContentAssemblerRefApp/Content.aspx/_/N-1z13xxn

Endeca ConfidentialEndeca® URL Optimization API for Java Developer's Guide

Introduction | Overview of the URL Optimization API capabilities14

About URL canonicalization
Dynamic sites often produce syntactically different URLs for the same page. Multiple variant URLs
result in duplicate content and therefore lower natural search engine ranking. Canonicalizing your
URLs reduces that duplicate content and improves search engine ranking.

Many search engines base their relevancy ranking algorithms on the number and quality of links that
point to a particular page. The more links there are that point to a particular page, the higher the page
rank. Dynamic URLs can dilute the link value of a page by creating multiple versions of a URL.

For example, users might be able to reach the Napa Red wine page by first clicking on “Napa” and
then clicking on “Red”, or by first clicking on “Red” and then “Napa.” This creates two syntactically
unique links pointing to the same Napa Red page:

• http://localhost:8888/urlformatter_jspref/controller/Wine-Red/Region-Na¬
pa/_/N-1z141vcZ66t

• http://localhost:8888/urlformatter_jspref/controller/Region-Napa/Wine-
Red/_/N-1z141vcZ66t

To the search engine, each version of the URL appears to be its own unique page with identical or
near-identical content, and each page takes a portion of the link references.

To improve quality, search engines try to minimize the appearance of largely similar pages within
results sets. Among other strategies, all indexed pages are evaluated for duplicates and near-duplicates
before a page is selected to be displayed in the search results. In the case of the Napa Red page,
only one of the two URLs would be selected -- and therefore only half of the link references are
evaluated. This link dilution of the Napa Red page may result in a lower position within search results.
Multiple parameters in URLs have the same effect.

In order to avoid multiple versions of URLs per page, links throughout the site should be standardized
(canonicalized), and requests for a non-standard version of the URL should be redirected to the
canonical version via a "301" (permanent) redirect.

By design, the URL Optimization API prevents the creation of syntactically different URLs by
canonicalizing keywords, ensuring that equivalent pages have URLs with the same syntax even if they
can be navigated to through different paths.You can choose from a number of configuration options
to control the arrangement of keywords. For example, you can configure your UrlFormatter to
arrange dimensions alphabetically in an ascending order:

• http://localhost:8888/urlformatter_jspref/controller/Region-Napa/Wine-
Red/_/N-1z141vcZ66t

Now even if a user navigates to "Red" before "Napa", the link still appears as /Region-Napa/Wine-
Red.

Related Links
Canonicalization configuration options on page 41

You can customize the canonicalization of URLs for navigation pages by choosing a sort
method, for example by dimension name or dimension ID, and then a sort direction.

Endeca® URL Optimization API for Java Developer's GuideEndeca Confidential

15Introduction | About URL canonicalization

Chapter 3

Setting up the Reference Application

The reference Web application included with the URL Optimization API is a means to demonstrate
the functionality of the URL Optimization API. It contains a sample configuration that is specifically
designed to work with the Endeca wine data set.

About the reference application
The URL Optimization API reference Web application demonstrates the basic capabilities of the URL
Optimization API.

The URL Optimization API reference application is designed to show a typical approach to URL
optimization. The reference application relies on the urlconfig.xml file, which uses the Spring
Framework to configure optimized URLs. While the URL Optimization API does not require the Spring
Framework, it supplies a convenient and flexible mechanism for configuring optimized URLs.

The reference application may be used as a starting point for your own application code.You can
customize it to suit your data and business requirements and extend its functionality as needed.

Reference application prerequisites
Before installing the URL Optimization API reference application, you must have a properly configured
MDEX Engine running with the Endeca wine data set.

For information about setting up the sample wine data project, please refer to the Endeca Commerce
Suite Getting Started Guide.

Once you have the sample wine data project set up, ensure that the following dimensions are configured
to Show with record and Show with record list in Developer Studio.

• Wine Type
• Region
• Winery
• Vintage
• Designation

Related Links
Preparing your dimensions on page 21

If you intend to display dimensions or dimension values in your URLs, you must configure
each of the dimensions to Show with record and Show with record list.

Preparing your properties on page 21
If you intend to display record properties in your URLs, you must configure each property to
Show with record and Show with record list.

Installing the reference application
While the Endeca URL Optimization API reference Web application can be installed into any standalone
Java application server, this section assumes that you are installing into an existing instance of the
Endeca Tools Service.

Before proceeding with the installation, you must have a properly configured MDEX Engine running
with the wine data set.

The URL Optimization API Web application is distributed and unpacked with the zip file
UrlOptimizationAPIJava-version.zip.

To install the reference Web application:

1. Stop the Endeca Tools Service.

2. Navigate to the \lib\java subdirectory of your Endeca installation, for example:

C:\Endeca\PlatformServices\version\lib\java

3. Copy and transfer the commons-logging-1.0.4.jar, endeca_navigation.jar, and
endeca_logging.jar files into the \webapps\urlformatter_jspref\WEB-INF\lib
subdirectory of your URL Optimization API installation directory.

For example: C:\Endeca\SEO\URL Optimization
APIs\Java\version\webapps\urlformatter_jspref\WEB-INF\lib

4. Navigate to the \webapps subdirectory of your URL Optimization API installation.

For example: C:\Endeca\SEO\URL Optimization APIs\Java\version\webapps

5. Copy and transfer the urlformatter_jspref.xml file into
\%ENDECA_TOOLS_CONF%\conf\Standalone\localhost.

6. In the urlformatter_jspref.xml file, edit the value of the docBase attribute so that it points
to the location of the \webapps\urlformatter_jspref subdirectory of the URL Optimization
API installation.
For example:

<Context
 path="/urlformatter_jspref"
 docBase="C:\Endeca\Solutions\urlOptimizationApiJava-1.2.0\webapps\url¬
formatter_jspref"
 debug="0"
 privileged="false"
/>

7. Start the Endeca Tools Service.

Endeca ConfidentialEndeca® URL Optimization API for Java Developer's Guide

Setting up the Reference Application | Installing the reference application18

Testing your reference Web application
Once you have installed the URL Optimization API and configured the reference Web application, you
can verify that the reference application URLs are optimized.

To test the reference application:

1. In your Web browser, navigate to the reference application.

The default URL is http://localhost:8006/urlformatter_jspref/controller

2. If the MDEX Engine for your reference application is not running on the default host and port (lo¬
calhost:15000), specify the correct host and port values.

3. Navigate to Wine Type > Red.
You should see an optimized URL similar to the following: http://localhost:8888/urlfor¬
matter_jspref/controller/Wine-Red/_/N-66t/Ne-4s8

The traditional Endeca URL for the Wine Type > Red page displays as:http://localhost:8888/en¬
deca_jspref/controller.jsp?sid=122C75137F30&enePort=15000&Ne=6200&eneHost=lo¬
calhost&N=8021. Notice that the optimized URL includes the dimension names Wine and Red, and
does not contain the host and port values or the session ID.

Endeca® URL Optimization API for Java Developer's GuideEndeca Confidential

19Setting up the Reference Application | Testing your reference Web application

http://localhost:8006/urlformatter_jspref/controller

Chapter 4

Preparing your application

This section describes the basic requirements and recommendations for writing your application.

Preparing your dimensions
If you intend to display dimensions or dimension values in your URLs, you must configure each of the
dimensions to Show with record and Show with record list.

You only need to configure the dimensions you intend to include in URLs. Configuring all dimensions
to Show with record and Show with record list may have performance implications.

To configure a dimension to Show with record and Show with record list:

1. Open your project in Endeca Developer Studio.

2. From the Project Explorer on the left, click Dimensions.
The Dimensions dialog displays.

3. Select the dimension you need to edit.

4. Select the Show with record list checkbox.

5. Select the Show with record checkbox.

6. Click OK.

7. Save your changes.

For more information, please refer to the Endeca Developers Studio Help documentation.

Preparing your properties
If you intend to display record properties in your URLs, you must configure each property to Show
with record and Show with record list.

You only need to configure the properties you intend to include in URLs. Configuring all properties to
Show with record and Show with record list may have performance implications.

To configure a property to Show with record and Show with record list:

1. Open your project in Endeca Developer Studio.

2. From the Project Explorer on the left, click Dimensions.
The Dimensions dialog displays.

3. Select the dimension you need to edit.

4. Select the Show with record list checkbox.

5. Select the Show with record checkbox.

6. Click OK.

7. Save your changes.

For more information, please refer to the Endeca Developers Studio Help documentation.

Handling images and external JavaScript files
When you modify your application to produce optimized URLs, it is important to ensure that the server
can still locate resources requested by the application, such as image files, JavaScript files, and CSS
files.

Relative URLs are partial URLs that omit host and port information. There are two types of relative
URLs:

• "Site-relative" URLs are relative to the root directory on the site that hosts the Web page, for
example: /sitemap.htm

• "Non-site-relative" URLs are relative to their parent pages, for example: ../sitemap.htm

Because relative paths are relative to the URL that is requested, not the URL that is ultimately resolved,
optimized URLs may create unresolved links when external resources are referenced. When using
the URL Optimization API, Endeca recommends replacing non-site-relative URLs with site-relative
URLs to ensure that links resolve properly.

The URL Optimization API reference Web application uses a constant base path for all URLs in order
to ensure that external references do not break. To review this logic, open the constants.jsp file
located in the \webapps\urlformatter_jspref subdirectory of your URL Optimization API
installation. For example:

C:\Endeca\SEO\URL Optimization APIs\Java\version\webapps\urlformatter_jspref\

Locate the FILE_PATH code:

// Specifies path to image files, js files.
private static String FILE_PATH = "/urlformatter_jspref/";

URL transitioning
Managing redirects is an important aspect of search engine optimization. In order to maintain page
rank for resources within your website, you need an effective strategy to manage URL changes.

As you transition from traditional Endeca URLs to optimized Endeca URLs, or when you change the
configuration of optimized URLs, it is important to ensure that:

• Links throughout your Web site are updated
• Links to external resources (such as image files, CSS, or Javascript files) are updated
• External links to your Web site are permanently redirected to the new URLs

Links throughout your own Web site and to your own external resources can simply be updated to the
new URLs. However, external references to your site must be redirected in order to prevent unresolved
links.

Endeca ConfidentialEndeca® URL Optimization API for Java Developer's Guide

Preparing your application | Handling images and external JavaScript files22

The URL Optimization API is responsible for transforming URLs into Endeca search and navigation
queries, and vice-versa. It does not implement redirect logic. In order to redirect incoming requests,
you must include the appropriate logic in your application controller. By comparing an inbound URL
to the canonical (optimized) form, you can redirect to the canonical URL in cases where the inbound
URL is different.

Endeca recommends including HTTP 301 redirects. Unlike HTTP 302 redirects, which collect ranking
information and index content on a site against the source URL, 301 redirects apply this information
to the destination URL.

Endeca® URL Optimization API for Java Developer's GuideEndeca Confidential

23Preparing your application | URL transitioning

Chapter 5

Building URLs with the URL Optimization
API

This section describes the basic tasks for using the URL Optimization API to build search
engine-optimized URLs.

Core components in the URL Optimization API
The primary classes and interfaces of the URL Optimization API are UrlState, UrlFormatter, and
QueryBuilder.

UrlState

A UrlState instance represents the URL, including any parameters, for a particular navigation state
in your Endeca application.You typically create a UrlState by using a UrlFormatter to parse a
URL string.You then inform the UrlState of the navigation state that it represents by passing it a
set of Endeca query results. Once the UrlState is informed, you can modify it in order to generate
URLs representing links to other states in your application, such as selecting refinements.

UrlFormatter

A UrlFormatter is responsible for parsing URL strings into UrlState objects and transforming
UrlState objects back into URLs. The SeoUrlFormatter is a highly configurable implementation
of UrlFormatter that parses and generates search engine-optimized URLs.

QueryBuilder

A QueryBuilder marshals UrlState objects into MDEX Engine queries.The BasicQueryBuilder
is an implementation of QueryBuilder that creates ENEQuery objects from a given UrlState.

For further information about these and other classes in the URL Optimization API, please refer to the
URL Optimization API Reference.

Overview of building URLs using the URL Optimization API
The URL Optimization API requires a different approach to building Endeca URLs than you would use
to build URLs with the Endeca Presentation API.

The high-level process is as follows:

1. Set up your basic application configuration with a BasicQueryBuilder and SeoUrlFormatter.

How you create and configure the QueryBuilder and UrlFormatter may vary depending on
your application, but they should be should be scoped at a global or application level.

2. Handle requests by parsing the incoming query and sending it to an MDEX Engine.

3. Inform a UrlState object of the navigation state.

4. Modify the UrlState object by adding or removing URL parameters.

5. Generate a URL from the UrlState.

Parsing an incoming query and sending it to an MDEX
Engine

Because it is possible for optimized URLs not to contain query string parameters (these parameters
can be stored in the path), you cannot rely on the UrlENEQuery class to create an ENEQuery object
from a URL.

Instead, use a UrlFormatter to parse the incoming request URL in order to populate the UrlState
with the current URL query parameters, then use a QueryBuilder to create the ENEQuery from the
UrlState.

To parse an incoming request and query an MDEX Engine:

1. Parse the request into a UrlState instance.

For example:

 UrlState requestUrlState = urlFormatter.parseRequest(request);

2. Build an ENEQuery based on the UrlState.

For example:

 ENEQuery eneQuery = queryBuilder.buildQuery(requestUrlState);

3. Execute the request and retrieve the results.

For example:

 HttpENEConnection conn = new HttpENEConnection(mdexHost, mdexPort);
 ENEQueryResults eneQueryResults = conn.query(eneQuery);

Informing the UrlState of the navigation state
Informing is the process of providing the UrlState object with information about the current query
results.

From this information, the UrlState object creates either a NavStateUrlParam if the query results
are from a navigation query, an ERecUrlParam if the query results are from a record detail query, or
an AggrERecUrlParam if the query results are from an aggregated record detail query.

Endeca ConfidentialEndeca® URL Optimization API for Java Developer's Guide

Building URLs with the URL Optimization API | Parsing an incoming query and sending it to an MDEX
Engine

26

The SeoUrlFormatter can use the extra information in these objects to generate customized URLs
based on the current navigation state or properties and dimensions associated with these results.

To inform a UrlState of the current navigation state:

Add code similar to the following:

 urlState.inform(eneQueryResults);

You can generate properly formatted URLs representing either the current navigation state, a record
detail link, or an aggregated record detail link. Note that of these three possiblities, only the record
detail link is guaranteed to be complete when calling inform on an empty UrlState. A navigation
URL would be correct but, without further modification, only reflects the selected dimension values
(the N parameter values). An aggregated record detail URL would not work without adding the required
An and Au parameters.

The intent of the inform() method is to give the UrlFormatter and UrlState access to property
and dimension information, not to copy your query. In some cases a complete query URL can only be
created through a combination of using UrlFormatter.parseRequest() on the initial request and
calling UrlState.setParam() as needed in addition to using inform().

Creating link URLs from a UrlState
In order to create link URLs on a particular page to different navigation states within your application,
you modify the UrlState and then transform the modified UrlState to a URL string.

This procedure assumes that you already have an informed UrlState that represents the current
navigation state of your page.

To create a link URL:

1. Modify the UrlState to reflect a different navigation state in your application.

For example, you can use the following to create a refinement link for a Guided Navigation
component in your application:

 UrlState refinedUrlState =
 informedUrlState.selectRefinement(refDim, refDimVal, true);

The final parameter indicates whether the modification should be performed on a cloned version
of the current UrlState, and should typically be true. For instance, in the case of a Guided
Navigation component, you would loop through the possible refinements and create a modified
UrlState based on the current UrlState for each refinement link. If you wanted to select several
refinements in the same URL, you would pass false as the value of this parameter.

For further details about additional methods that can be used to modify a UrlState, please refer
to the URL Optimization API Reference.

2. Generate the URL string from the modified UrlState.

 String refinedUrl = refinedUrlState.toString();

The UrlState.toString() method calls the formatString() method of the UrlFormatter
that constructed the UrlState instance.

Endeca® URL Optimization API for Java Developer's GuideEndeca Confidential

27Building URLs with the URL Optimization API | Creating link URLs from a UrlState

Chapter 6

Configuring URLs

The following sections provide information about creating and using a URL configuration file similiar
to the urlconfig.xml file included with the URL Optimization API to optimize your URLs. The
information and examples provided in this section relate to basic URL configuration tasks, and do not
cover the entire breadth of the URL Optimization API capabilities. Endeca recommends consulting
the API documentation as you develop your application.

Anatomy of an optimized Endeca URL
An optimized Endeca URL is made up of four configurable sections.

General URL References

When referring to URLs in general, the URL Optimization API documentation may use the terms "base
URL" and "URL query parameters." The "base URL" is the part of the URL that precedes the question
mark.

For example, in the URL:

http://www.example.com/pathparam1/pathparam2/pathparam3/results?queryparam=123

the base URL is the string that displays before the question mark:

http://www.example.com/pathparam1/pathparam2/pathparam3/results

Optimized Endeca URLs

For reference purposes, the documentation identifies four distinct sections of optimized Endeca URLs:

• misc-path
• path-param-separator
• path-params
• query string

For example, the following URL is broken down into subsections:

http://localhost:8888/controller[/Wine-Red-Merlot/Napa/Pine-Ridge/_/N-12ZafZfd?Ne=123]

The sections of the URL encased in square brackets can be broken down into the following components:

[/<misc-path>][/<path-param-separator>][/<path-params>][?<query-string>]

The components correspond to the following strings:

StringSection

Wine-Red-Merlot/Napa/Pine-Ridgemisc-path

_path-param-separator

N-12ZafZfdpath-params

Ne=123query string

misc-path

This section of the URL incorporates keywords into the URL in order to create user-friendly and search
engine-optimized URLs. The misc-path section of the optimized URL can be generated based on
dimension names, dimension values, ancestor names, and record properties.The misc-path component
is largely ignored by the application.

path-param-separator

The path-param-separator component is used to identify the end of the misc-path and the starting
point for path parameters. This string is configurable.

path-params

Together with the query string, the path-params segment of the URL represents the current state of
the application. This may include the numerical representation of the navigation state or a specific
record, as well as any other parameter key-value pairs that have an effect on the displayed content.
This component can be configured to contain several parameters that would typically be included as
part of the query string in traditional Endeca URLs, such as the N, Ne, Ntt, and R parameters.

query string

The query string component of the URL follows the question mark character. The combination of the
path-params and query string represents the current state of the application. Endeca parameters such
as N, Ne, Ntt, and R that are not configured to display in the path-params section of the URL display
in the query string.

About the URL configuration file
The URL Optimization API reference application uses an XML file named urlconfig.xml to configure
the format of the URLs that it generates.

The reference application uses the Spring Framework for this configuration file. Although the URL
Optimization API does not require the Spring Framework, it supplies a convenient and flexible
configuration mechanism. In addition, if you plan to use the Sitemap Generator with your application,
Endeca strongly recommends using the urlconfig.xml file to configure your optimized URLs,
because the Sitemap Generator relies on the same format for configuration. If you need further
information about the Spring Framework syntax, please consult the documentation provided with the
Spring Framework.

The URL configuration file contains basic configurations for the following objects:

• A BasicQueryBuilder to transform UrlState objects into ENEQuery objects
• An SeoUrlFormatter to transform UrlState objects into optimized URL strings

Endeca ConfidentialEndeca® URL Optimization API for Java Developer's Guide

Configuring URLs | About the URL configuration file30

By specifying settings for additional components in the configuration file, you can configure the following
aspects of your URLs:

• the dimension values and properties to display in the misc-path
• canonicalization options for dimensions in the misc-path
• the path-param-separator
• Endeca parameters to be included in the path-params instead of the query string
• base-36 encoding for numeric Endeca parameters

Creating a URL configuration file
A simple URL configuration file defines a BasicQueryBuilder and a top-level SeoUrlFormatter.

To create a URL configuration file:

1. Create a basic query builder that invokes the com.endeca.soleng.urlformatter.basic.Ba¬
sicQueryBuilder class:
For example:

 <bean id="queryBuilder" class="com.endeca.soleng.urlformatter.basic.Ba¬
sicQueryBuilder">
 </bean>

2. Add the following properties:

DescriptionOption

Specifies the query encoding. For example:<value>UTF-8</value>queryEncoding

Sets the baseUrLENEQuery. This query is used to create the
UrlENEQuery if the UrlState is not associated with a record or
navigation state. If this value is <null/>, a new query is created.

baseUrlENEQuery

Sets the baseNavigationUrlENEQuery.This query is used to create
the UrlENEQuery if the UrlState is associated with a navigation

baseNaviga¬
tionUrlENEQuery

state (but not a record or aggregate record). If this value is <null/>,
a new query is created.

Sets the baseERecUrlENEQuery. This query is used to create the
UrlENEQuery if the UrlState is associated with a record (but not
an aggregate record). If this value is <null/>, a new query is created.

baseERecUrlENEQuery

Sets the baseAggrERecUrlENEQuery. This query is used to create
the UrlENEQuery if the UrlState is associated with an aggregate
record. If this value is <null/>, a new query is created.

baseAggrERecUrlENE¬
Query

Sets the detaultUrlENEQuery. This query is used to create the
UrlENEQuery if the UrlState contains no parameters.

defaultUrlENEQuery

For example:

 <bean id="queryBuilder" class="com.endeca.soleng.urlformatter.basic.Ba¬
sicQueryBuilder">

 <property name="queryEncoding">
 <value>UTF-8</value>
 </property>

Endeca® URL Optimization API for Java Developer's GuideEndeca Confidential

31Configuring URLs | Creating a URL configuration file

 <property name="baseUrlENEQuery">
 <value><![CDATA[N=0&Ns=P_Price|1&Nr=8020]]></value>
 </property>

 <property name="baseNavigationUrlENEQuery">
 <value><![CDATA[N=0&Ns=P_Price|1&Nr=8020]]></value>
 </property>

 <property name="baseERecUrlENEQuery">
 <null/>
 </property>

 <property name="baseAggrERecUrlENEQuery">
 <value>An=0</value>
 <null/>
 </property>

 <property name="defaultUrlENEQuery">
 <value>N=0</value>
 </property>

 </bean>

3. Create a top-level seoUrlFormatter bean to invoke the com.endeca.soleng.urlformat¬
ter.seo.SeoUrlFormatter class:
For example:

 <bean id="seoUrlFormatter" class="com.endeca.soleng.urlformat¬
ter.seo.SeoUrlFormatter">
 </bean>

4. Add the following properties:

DescriptionOption

Specifies the default query encoding. For example: <val¬
ue>UTF-8</value>

defaultEncoding

Specifies the character used to separate the misc-path from the
path-params section in URLs.

pathSeparatorToken

Specifies the character used to separate key-value pairs in the
path parameter section of the URL.

pathKeyValueSeparator

For example:

 <bean id="seoUrlFormatter" class="com.endeca.soleng.urlformat¬
ter.seo.SeoUrlFormatter">

 <property name="defaultEncoding">
 <value>UTF-8</value>
 </property>

 <property name="pathSeparatorToken">
 <value>_</value>
 </property>

 <property name="pathKeyValueSeparator">
 <value>-</value>
 </property>

<!-- additional elements deleted from this example --!>

Endeca ConfidentialEndeca® URL Optimization API for Java Developer's Guide

Configuring URLs | Creating a URL configuration file32

 </bean>

5. Set any required properties to specify configuration beans.

Note: The instructions in this chapter explain which of beans are required for each task.You
can set these properties on your SeoUrlProvider object as you work through the chapter.

For example:

 <bean id="seoUrlFormatter" class="com.endeca.soleng.urlformat¬
ter.seo.SeoUrlFormatter">

 <property name="pathParamKeys">
 <list>
 <value>R</value>
 <value>A</value>
 <value>An</value>
 <value>Au</value>
 <value>N</value>
 <value>No</value>
 <value>Np</value>
 <value>Nu</value>
 <value>D</value>
 <value>Ntt</value>
 <value>Ne</value>
 </list>
 </property>

 <property name="navStateFormatter">
 <ref bean="navStateFormatter"/>
 </property>

 <property name="ERecFormatter">
 <ref bean="erecFormatter"/>
 </property>

 <property name="aggrERecFormatter">
 <ref bean="aggrERecFormatter"/>
 </property>

 <property name="navStateCanonicalizer">
 <ref bean="navStateCanonicalizer"/>
 </property>

 <property name="urlParamEncoders">
 <list>
 <ref bean="N-paramEncoder"/>
 <ref bean="Ne-paramEncoder"/>
 <ref bean="An-paramEncoder"/>
 </list>
 </property>

 </bean>

After you have created the basic URL configuration file, you create additional beans to specify further
configuration for the misc-path and path-params. Follow the procedures in the sections below to
complete your URL configuration.

Endeca® URL Optimization API for Java Developer's GuideEndeca Confidential

33Configuring URLs | Creating a URL configuration file

About optimizing the misc-path
With the URL Optimization API you can configure dimensions, dimension values, record properties,
and aggregate record properties to display in the misc-path of URLs.You can also specify the order
in which dimension and dimension values display. The urlconfig.xml file provides a simple and
convenient method for configuring these options.

navStateFormatter

The navStateFormatter bean invokes the com.endeca.soleng.urlformatter.seo.SeoN¬
avStateFormatter class to define dimLocationFormatters for each dimension that you want
to configure.

Using the dimLocationFormatters defined in the navStateFormatter bean, you can configure
URLs for navigation pages to include dimension names, roots, ancestors, and dimension value names
in the misc-path of URLs for navigation pages.

For example, the following URL is for the navigation state Region > Napa:

http://localhost:8888/endeca_jspref/controller.jsp?&Ne=8&N=4294967160

Using URL Optimization API, that same URL can be formatted as follows:

http://localhost:8888/urlformatter_jspref/controller/Napa/_/N-1z141vc/Ne-8

navStateCanonicalizer

The navStateCanonicalizer bean invokes the com.endeca.soleng.urlformatter.seo.SeoN¬
avStateCanonicalizer to order the dimension and dimension value names included in the misc-path
for navigation pages. For example, an end user can reach the Wine Type > Red, Region > Napa page
by navigating first to Wine Type > Red and then to Region > Napa, or by navigating to Region > Napa
and then Wine Type > Red. To avoid two syntactically different URLs for the same Wine Type > Red,
Region > Napa page, you can use the navStateCanonicalizer to standardize the order of dimension
and dimension values in the misc-path.

Note: By design, the URL Optimization API prevents the creation of syntactically different URLs
by canonicalizing keywords.You can choose from a number of configuration options to control
the arrangement of keywords, but the URLs are always canonicalized.

erecFormatter

URL optimization for record detail pages is configured separately from navigation pages and aggregate
record details pages. The erecFormatter bean invokes the com.endeca.soleng.urlformat¬
ter.seo.SeoERecFormatter class to define dimLocationFormatters for each dimension that
you want to configure.

The same options for including dimension names, roots, ancestors, and dimension value names are
available for record detail pages as are available for navigation pages. While the urlconfig.xml
configuration file uses the same dimLocationFormatters for the erecFormatter and the ag¬
gErecFormatter as are used for the navStateFormatter, this is not a requirement.You can
create separate dimLocationFormatters for navigation pages, record detail pages, and aggregate
record detail pages.

Endeca ConfidentialEndeca® URL Optimization API for Java Developer's Guide

Configuring URLs | About optimizing the misc-path34

aggrERecFormatter

URL optimization for aggregate record detail pages is configured separately from navigation pages
and record details pages as are available for navigation pages. The aggrERecFormatter bean
invokes the com.endeca.soleng.urlformatter.seo.SeoAggrERecFormatter class to define
dimLocationFormatters for each dimension that you want to configure. The same options for
including dimension names, roots, ancestors, a nd dimension value names are available for aggregate
record detail pages.While the urlconfig.xml configuration file uses the same dimLocationFor¬
matters for the aggrERecFormatter and the erecFormatter as are used for the navStateFor¬
matter, this is not a requirement.You can create separate dimLocationFormatters for navigation
pages, record detail pages, and aggregate record detail pages.

Formatting misc-path strings in optimized URLs
The SeoNavStateFormatter, SeoERecFormatter, and SeoAggrERecFormatter use
StringFormatter objects to format dimension and record property strings that display in URLs.

You can format the strings in the misc-path section of a URL by using string formatters that are
predefined in the URL Optimization API. Formatting may include changing capitalization or applying
a regular expression to replace portions of the string.

There are several StringFormatter objects in the URL Optimization API:

• LowerCaseStringFormatter — formats path-keyword data into lower case.
• UpperCaseStringFormatter— formats path-keyword data into upper case.
• UrlEncodedStringFormatter — URL-encodes strings.
• RegexStringFormatter — You can create a new RegexStringFormatter object and

customize the pattern, replacement, and replaceAll properties to perform custom string
formatting. For more information on the properties, please refer to the generated API documentation
for the api-seo library.

To define StringFormatter objects in the urlconfig.xml file:

1. Create a bean to invoke a StringFormatter class.
This example shows the configuration for a RegexStringFormatter that replaces all non-word
character sequences with a single "-" character:

 <bean class="com.endeca.soleng.urlformatter.seo.RegexStringFor¬
matter">
 <property name="pattern">
 <value><![CDATA[[\W_&&[^\u00C0-\u00FF]]+]]></value>
 </property>

 <property name="replacement">
 <value>-</value>
 </property>

 <property name="replaceAll">
 <value>true</value>
 </property>
 </bean>

2. Optionally, you can build a StringFormatterChain to apply more than one StringFormatter
to a string in series.

Endeca® URL Optimization API for Java Developer's GuideEndeca Confidential

35Configuring URLs | About optimizing the misc-path

The following example shows the defaultStringFormatterChain that is used throughout the
sample urlconfig.xml file.

 <bean name="defaultStringFormatterChain"
 class="com.endeca.soleng.urlformatter.seo.StringFormatterChain">

 <property name="stringFormatters">
 <list>
 <!--
 ##

 # replace all non-word character sequences with a single '-'
 #
 -->
 <bean class="com.endeca.soleng.urlformatter.seo.RegexStringFor¬
matter">
 <property name="pattern">
 <value><![CDATA[[\W_&&[^\u00C0-\u00FF]]+]]></value>
 </property>

 <property name="replacement">
 <value>-</value>
 </property>

 <property name="replaceAll">
 <value>true</value>
 </property>
 </bean>

 <!--
 ##

 # trim leading and trailing '-' characters (if any)
 #
 -->
 <bean class="com.endeca.soleng.urlformatter.seo.RegexStringFor¬
matter">
 <property name="pattern">
 <value><![CDATA[^-?([\w\u00C0-\u00FF][\w-\u00C0-
\u00FF]*[\w\u00C0-\u00FF])-?$]]></value>
 </property>

 <property name="replacement">
 <value>$1</value>
 </property>

 <property name="replaceAll">
 <value>false</value>
 </property>
 </bean>

 </list>
 </property>
 </bean>

Note that because StringFormatterChain implements StringFormatter, you can nest chains.
For example:

 <bean class="com.endeca.soleng.urlformatter.seo.StringFormatterChain">

Endeca ConfidentialEndeca® URL Optimization API for Java Developer's Guide

Configuring URLs | About optimizing the misc-path36

 <property name="stringFormatters">
 <list>

 <!-- replace 'Wine Type' with 'Wine' -->

 <bean class="com.endeca.soleng.urlformatter.seo.RegexStringFor¬
matter">
 <property name="pattern">
 <value>Wine Type</value>
 </property>

 <property name="replacement">
 <value>Wine</value>
 </property>

 <property name="replaceAll">
 <value>false</value>
 </property>
 </bean>

 <!-- execute the default string formatter chain -->

 <ref bean="defaultStringFormatterChain"/>

 </list>
 </property>
 </bean>

Optimizing URLs for navigation pages
Using the URL Optimization API, you can include dimension and dimension value names in the
misc-path of URLs.You can also choose to canonicalize these dimension and dimension value names
in order to avoid duplicate content and to increase your natural search rankings.

Note: For dimensions to display properly in the URL, they must be enabled for display with the
record list.

You must create a URL configuration file before completing this procedure.

To optimize URLs for navigation pages:

1. Create a navStateFormatter bean to invoke the com.endeca.soleng.urlformat¬
ter.seo.SeoNavStateFormatter:

For example:

 <bean id="navStateFormatter" class="com.endeca.soleng.urlformat¬
ter.seo.SeoNavStateFormatter">
 </bean>

2. Add a navStateFormatter property to your top-level seoUrlFormatter bean.
For example:

 <bean id="seoUrlFormatter" class="com.endeca.soleng.urlformat¬
ter.seo.SeoUrlFormatter">

<!-- additional elements deleted from this example --!>

Endeca® URL Optimization API for Java Developer's GuideEndeca Confidential

37Configuring URLs | About optimizing the misc-path

 <property name="navStateFormatter">
 <ref bean="navStateFormatter"/>
 </property>

 </bean>

3. Add a useDimensionNameAsKey property on the navStateFormatter.
For example:

 <bean id="navStateFormatter" class="com.endeca.soleng.urlformat¬
ter.seo.SeoNavStateFormatter">

 <property name="useDimensionNameAsKey">
 <value>true</value>
 </property>
 </bean>

Setting the useDimensionNameAsKey to false creates a key on the dimension ID numbers.

4. Add a dimLocationFormatters property and list each dimLocationFormatter bean you
plan to define.
For example:

 <bean id="navStateFormatter" class="com.endeca.soleng.urlformat¬
ter.seo.SeoNavStateFormatter">

 <property name="useDimensionNameAsKey">
 <value>true</value>
 </property>

 <property name="dimLocationFormatters">
 <list>
 <ref bean="wineTypeFormatter"/>
 <ref bean="regionFormatter"/>
 <ref bean="wineryFormatter"/>
 <ref bean="flavorsFormatter"/>
 </list>
 </property>

 </bean>

5. Create a dimLocationFormatter for each of the dimensions in the dimLocationFormatters
list.
For example:

 <bean id="regionFormatter"
 class="com.endeca.soleng.urlformatter.seo.SeoDimLocationFormatter">

 </bean>

Note: The sample urlconfig.xml file uses the same dimLocationFormatter for
navigation pages, record detail pages, and aggregate record detail pages.You can choose
to create unique dimLocationFormatters for each page type.

6. Add the following properties to each dimLocationFormatter:

DescriptionProperty

In the navStateFormatter bean, the useDimensionNameAsKey
property sets the key type. If you set the useDimensionNameAsKey to

key

true, then use the dimension name as the value for this property (for

Endeca ConfidentialEndeca® URL Optimization API for Java Developer's Guide

Configuring URLs | About optimizing the misc-path38

DescriptionProperty

example <value>Region</value>). If you set the useDimension¬
NameAsKey to false, use the dimension ID number.

Specifies whether or not to append root dimension values to the URL. Set
to true to append root dimension values.

appendRoot

Specifices whether or not to append ancestor dimension values to the URL.
Set to true to append ancestor dimension values.

appendAncestors

Specifies whether or not to append the selected or descriptor dimension
values to the URL. Set to true to append selected or descriptor dimension
values.

appendDescriptor

Specifies the character used to separate dimension roots, ancestors, and
descriptor values.

separator

Specifies the bean to format the dimension name.The reference application
uses a defaultStringFormatterChain bean to invoke the com.en¬
deca.soleng.urlformatter.seo.StringFormatterChain.

rootStringFormat¬
ter

Specifies the bean to format the dimension value names. The reference
application uses a defaultStringFormatterChain bean to invoke

dimValStringFor¬
matter

the com.endeca.soleng.urlformatter.seo.StringFormatter¬
Chain. The examples below also use a defaultStringFormatter¬
Chain bean.

For example:

 <bean id="regionFormatter"
 class="com.endeca.soleng.urlformatter.seo.SeoDimLocationFormatter">

 <property name="key">
 <value>Region</value>
 </property>

 <property name="appendRoot">
 <value>false</value>
 </property>

 <property name="appendAncestors">
 <value>false</value>
 </property>

 <property name="appendDescriptor">
 <value>true</value>
 </property>

 <property name="separator">
 <value>-</value>
 </property>

 <property name="rootStringFormatter">
 <ref bean="defaultStringFormatterChain"/>
 </property>

 <property name="dimValStringFormatter">
 <ref bean="defaultStringFormatterChain"/>
 </property>

Endeca® URL Optimization API for Java Developer's GuideEndeca Confidential

39Configuring URLs | About optimizing the misc-path

 </bean>

7. Create a navStateCanonicalizer bean to invoke the com.endeca.soleng.urlformat¬
ter.seo.SeoNavStateCanonicalizer class.
For example:

 <bean name="navStateCanonicalizer" class="com.endeca.soleng.urlformat¬
ter.seo.SeoNavStateCanonicalizer">
 </bean>

Note: Canonicalizing the dimension and dimension value names in the misc-path also
changes the order in which they appear in the path-params section of the URL. For example,
if Napa is configured to display before Red in the misc-path, the Napa dimension value ID
displays before the Red dimension value ID in the path-params section.

8. Add a navStateCanonicalizer property to your top-level seoUrlFormatter bean.
For example:

 <bean id="seoUrlFormatter" class="com.endeca.soleng.urlformat¬
ter.seo.SeoUrlFormatter">

<!-- additional elements deleted from this example --!>

 <property name="navStateCanonicalizer">
 <ref bean="navStateCanonicalizer"/>
 </property>

 </bean>

9. Configure the navStateCanonicalizer.
For example, the following configuration creates URLs sorted by dimension ID in descending order:

 <bean name="navStateCanonicalizer" class="com.endeca.soleng.urlformat¬
ter.seo.SeoNavStateCanonicalizer">

 <property name="sortByName">
 <value>false</value>
 </property>

 <property name="sortByDimension">
 <value>true</value>
 </property>

 <property name="ascending">
 <value>false</value>
 </property>

 </bean>

Note: There a number of possible configuration options for canonicalization.

Related Links
Preparing your dimensions on page 21

If you intend to display dimensions or dimension values in your URLs, you must configure
each of the dimensions to Show with record and Show with record list.

Preparing your properties on page 21

Endeca ConfidentialEndeca® URL Optimization API for Java Developer's Guide

Configuring URLs | About optimizing the misc-path40

If you intend to display record properties in your URLs, you must configure each property to
Show with record and Show with record list.

About URL canonicalization on page 15
Dynamic sites often produce syntactically different URLs for the same page. Multiple variant
URLs result in duplicate content and therefore lower natural search engine ranking.
Canonicalizing your URLs reduces that duplicate content and improves search engine ranking.

Formatting misc-path strings in optimized URLs on page 35
The SeoNavStateFormatter, SeoERecFormatter, and SeoAggrERecFormatter use
StringFormatter objects to format dimension and record property strings that display in
URLs.

Canonicalization configuration options
You can customize the canonicalization of URLs for navigation pages by choosing a sort method, for
example by dimension name or dimension ID, and then a sort direction.

The following example configurations use the dimensions:

• Wine Type (dimension ID: 6200)
• region (dimension ID: 8)

and the dimension values:

• red (dimension value ID: 8021)
• Napa (dimension value ID: 4294967160)

Endeca® URL Optimization API for Java Developer's GuideEndeca Confidential

41Configuring URLs | About optimizing the misc-path

Sort direction

Example base URL (sorted by
dimension ID)

ConfigurationSort
Direction

http://localhost/urlformat¬
ter_jspref/controller/region-
Napa/Wine-red/

<property name="ascending">
 <value>true</value>
</property>

Ascending

http://localhost/urlformat¬
ter_jspref/controller/Wine-
red/region-Napa/

<property name="ascending">
 <value>false</value>
</property>

Descending

Sort method

Example base URL (sort direction
ascending)

ConfigurationSort by

http://localhost/urlformat¬
ter_jspref/controller/Wine-
red/region-Napa/

<property name="sortByName">
 <value>true</value>
</property>

Dimension
name, case
sensitive

<property name="sortByDimension">

 <value>true</value>
</property>

<property name="ignoreCase">
 <value>false</value>
</property>

http://localhost/urlformat¬
ter_jspref/controller/region-
Napa/Wine-red/

<property name="sortByName">
 <value>true</value>
</property>

Dimension
name, case
insensitive

<property name="sortByDimension">

 <value>true</value>
</property>

<property name="ignoreCase">
 <value>true</value>
</property>

http://localhost/urlformat¬
ter_jspref/controller/region-
Napa/Wine-red/

<property name="sortByName">
 <value>false</value>
</property>

Dimension
ID

<property name="sortByDimension">

 <value>true</value>
</property>

http://localhost/urlformat¬
ter_jspref/controller/region-

<property name="sortByName">
 <value>true</value>

Dimension
value name,

Endeca ConfidentialEndeca® URL Optimization API for Java Developer's Guide

Configuring URLs | About optimizing the misc-path42

Example base URL (sort direction
ascending)

ConfigurationSort by

</property>case
sensitive

Napa/Wine-red/

<property name="sortByDimension">

 <value>false</value>
</property>

<property name="ignoreCase">
 <value>false</value>
</property>

http://localhost/urlformat¬
ter_jspref/controller/region-
Napa/Wine-red/

<property name="sortByName">
 <value>true</value>
</property>

Dimension
value name,
case
insensitive

<property name="sortByDimension">

 <value>false</value>
</property>

<property name="ignoreCase">
 <value>true</value>
</property>

http://localhost/urlformat¬
ter_jspref/controller/Wine-
red/region-Napa/

<property name="sortByName">
 <value>false</value>
</property>

Dimension
value ID

<property name="sortByDimension">

 <value>false</value>
</property>

Example 1: the following code sample creates a canonicalized URL that sorts by dimension name,
case sensitive, in an ascending order:

<bean name="navStateCanonicalizer" class="com.endeca.soleng.urlformat¬
ter.seo.SeoNavStateCanonicalizer">

 <property name="sortByName">
 <value>true</value>
 </property>

 <property name="sortByDimension">
 <value>true</value>
 </property>

 <property name="ascending">
 <value>true</value>
 </property>

 <property name="ignoreCase">
 <value>false</value>
 </property>

Endeca® URL Optimization API for Java Developer's GuideEndeca Confidential

43Configuring URLs | About optimizing the misc-path

 </bean>

The resulting base URL: http://localhost/urlformatter_jspref/controller/Wine-
red/region-Napa/

Example 2: the following code sample creates a canonicalized URL that sorts by dimension value ID
in a descending order:

<bean name="navStateCanonicalizer" class="com.endeca.soleng.urlformat¬
ter.seo.SeoNavStateCanonicalizer">

 <property name="sortByName">
 <value>false</value>
 </property>

 <property name="sortByDimension">
 <value>true</value>
 </property>

 <property name="ascending">
 <value>false</value>
 </property>

 </bean>

The resulting base URL: http://localhost/urlformatter_jspref/controller/region-
Napa/Wine-red/

Note: Canonicalizing the dimension and dimension value names in the misc-path changes the
order in which they appear in the path-params section of the URL. For example, if Napa is
configured to display before Red in the misc-path, the Napa dimension value ID displays before
the Red dimension value ID in the path-params section.

Optimizing URLs for record detail pages
Using the URL Optimization API, you can include dimension names, dimension value names, and
record properties in the misc-path of URLs for record detail pages.

Note: For dimensions to display properly in the URL, they must be enabled for display with the
record list.

You must create a URL configuration file before completing this procedure.

To optimize URLs for record detail pages:

1. Create an erecFormatter bean to invoke the com.endeca.soleng.urlformatter.seo.Seo¬
ERecFormatter:

For example:

 <bean id="erecFormatter" class="com.endeca.soleng.urlformatter.seo.Seo¬
ERecFormatter">
 </bean>

2. Add an ERecFormatter property to your top-level seoUrlFormatter bean.

Endeca ConfidentialEndeca® URL Optimization API for Java Developer's Guide

Configuring URLs | About optimizing the misc-path44

For example:

 <bean id="seoUrlFormatter" class="com.endeca.soleng.urlformat¬
ter.seo.SeoUrlFormatter">

<!-- additional elements deleted from this example --!>

 <property name="ERecFormatter">
 <ref bean="erecFormatter"/>
 </property>

 </bean>

3. Add a useDimensionNameAsKey property on the erecFormatter.
For example:

 <bean id="erecFormatter" class="com.endeca.soleng.urlformatter.seo.Seo¬
ERecFormatter">

 <property name="useDimensionNameAsKey">
 <value>true</value>
 </property>

 </bean>

Setting useDimensionNameAsKey to false creates a key on the dimension ID numbers.

4. Add a propertyKeys property to include record properties in the URLs of record details pages.
For example:

 <bean id="erecFormatter" class="com.endeca.soleng.urlformatter.seo.Seo¬
ERecFormatter">

 <property name="useDimensionNameAsKey">
 <value>true</value>
 </property>

 <property name="propertyKeys">
 <list>
 <value>P_Name</value>
 </list>
 </property>

 </bean>

5. Add a propertyFormatter property to format record properties included in the URLs of record
details pages.
For example:

 <bean id="erecFormatter" class="com.endeca.soleng.urlformatter.seo.Seo¬
ERecFormatter">

 <property name="useDimensionNameAsKey">
 <value>true</value>
 </property>

 <property name="propertyKeys">
 <list>
 <value>P_Name</value>
 </list>
 </property>

Endeca® URL Optimization API for Java Developer's GuideEndeca Confidential

45Configuring URLs | About optimizing the misc-path

 <property name="propertyFormatter">
 <ref bean="defaultStringFormatterChain"/>
 </property>

 </bean>

6. Add a dimLocationFormatters property and list each dimLocationFormatter bean you
plan to define.
For example:

 <bean id="erecFormatter" class="com.endeca.soleng.urlformatter.seo.Seo¬
ERecFormatter">

 <property name="useDimensionNameAsKey">
 <value>true</value>
 </property>

 <property name="dimLocationFormatters">
 <list>
 <ref bean="regionFormatter"/>
 <ref bean="wineryFormatter"/>
 <ref bean="wineTypeFormatter"/>
 <ref bean="vintageFormatter"/>
 </list>
 </property>

 <property name="propertyKeys">
 <list>
 <value>P_Name</value>
 </list>
 </property>

 <property name="propertyFormatter">
 <ref bean="defaultStringFormatterChain"/>
 </property>

 </bean>

7. Create a dimLocationFormatter for each of the dimensions in the dimLocationFormatters
list.
For example:

 <bean id="regionFormatter"
 class="com.endeca.soleng.urlformatter.seo.SeoDimLocationFormatter">

 </bean>

Note: The sample urlconfig.xml file uses the same dimLocationFormatter for
navigation pages, record detail pages, and aggregate record detail pages.You can choose
to create unique dimLocationFormatters for each page type.

8. Add the following properties to each dimLocationFormatter:

DescriptionProperty

In the navStateFormatter bean, the useDimensionNameAsKey
property sets the key type. If you set the useDimensionNameAsKey to

key

true, then use the dimension name as the value for this property (for
example <value>Region</value>). If you set the useDimension¬
NameAsKey to false, use the dimension ID number.

Endeca ConfidentialEndeca® URL Optimization API for Java Developer's Guide

Configuring URLs | About optimizing the misc-path46

DescriptionProperty

Specifies whether or not to append root dimension values to the URL. Set
to true to append root dimension values.

appendRoot

Specifices whether or not to append ancestor dimension values to the URL.
Set to true to append ancestor dimension values.

appendAncestors

Specifies whether or not to append the selected or descriptor dimension
values to the URL. Set to true to append selected or descriptor dimension
values.

appendDescriptor

Specifies the character used to separate dimension roots, ancestors, and
descriptor values.

separator

Specifies the bean to format the dimension name.The reference application
uses a defaultStringFormatterChain bean to invoke the com.en¬
deca.soleng.urlformatter.seo.StringFormatterChain.

rootStringFormat¬
ter

Specifies the bean to format the dimension value names. The reference
application uses a defaultStringFormatterChain bean to invoke

dimValStringFor¬
matter

the com.endeca.soleng.urlformatter.seo.StringFormatter¬
Chain. The examples below also use a defaultStringFormatter¬
Chain bean.

For example:

 <bean id="regionFormatter"
 class="com.endeca.soleng.urlformatter.seo.SeoDimLocationFormatter">

 <property name="key">
 <value>Region</value>
 </property>

 <property name="appendRoot">
 <value>false</value>
 </property>

 <property name="appendAncestors">
 <value>false</value>
 </property>

 <property name="appendDescriptor">
 <value>true</value>
 </property>

 <property name="separator">
 <value>-</value>
 </property>

 <property name="rootStringFormatter">
 <ref bean="defaultStringFormatterChain"/>
 </property>

 <property name="dimValStringFormatter">
 <ref bean="defaultStringFormatterChain"/>
 </property>

 </bean>

Endeca® URL Optimization API for Java Developer's GuideEndeca Confidential

47Configuring URLs | About optimizing the misc-path

Related Links
Preparing your dimensions on page 21

If you intend to display dimensions or dimension values in your URLs, you must configure
each of the dimensions to Show with record and Show with record list.

Preparing your properties on page 21
If you intend to display record properties in your URLs, you must configure each property to
Show with record and Show with record list.

Formatting misc-path strings in optimized URLs on page 35
The SeoNavStateFormatter, SeoERecFormatter, and SeoAggrERecFormatter use
StringFormatter objects to format dimension and record property strings that display in
URLs.

Optimizing URLs for aggregate record detail pages
Using the URL Optimization API, you can include dimension names, dimension value names, and
record properties in the misc-path of URLs for aggregate record detail pages. These are configured
separately from the optimizations for navigation pages.

Note: For dimensions to display properly in the URL, they must be enabled for display with the
record list.

You must create a URL configuration file before completing this procedure.

To optimize URLs for aggregate record detail pages:

1. Create an aggrERecFormatter bean to invoke the com.endeca.soleng.urlformat¬
ter.seo.SeoAggrERecFormatter class:

For example:

 <bean id="aggrERecFormatter" class="com.endeca.soleng.urlformat¬
ter.seo.SeoAggrERecFormatter">
 </bean>

2. Add an aggrERecFormatter property to your top-level seoUrlFormatter bean.
For example:

 <bean id="seoUrlFormatter" class="com.endeca.soleng.urlformat¬
ter.seo.SeoUrlFormatter">

<!-- additional elements deleted from this example --!>

 <property name="aggrERecFormatter">
 <ref bean="aggrERecFormatter"/>
 </property>

 </bean>

3. Add a useDimensionNameAsKey property on the aggrERecFormatter.
For example:

 <bean id="aggrERecFormatter" class="com.endeca.soleng.urlformat¬
ter.seo.SeoAggrERecFormatter">

 <property name="useDimensionNameAsKey">
 <value>true</value>

Endeca ConfidentialEndeca® URL Optimization API for Java Developer's Guide

Configuring URLs | About optimizing the misc-path48

 </property>
 </bean>

Setting the useDimensionNameAsKey to false creates a key on the dimension ID numbers.

4. Add a propertyKeys property to include record properties in the URLs of record details pages.
For example:

 <bean id="aggrERecFormatter" class="com.endeca.soleng.urlformat¬
ter.seo.SeoAggrERecFormatter">

 <property name="useDimensionNameAsKey">
 <value>true</value>
 </property>

 <property name="propertyKeys">
 <list>
 <value>P_Name</value>
 </list>
 </property>

 </bean>

5. Add a propertyFormatter property to format record properties included in the URLs of record
details pages.
For example:

 <bean id="aggrERecFormatter" class="com.endeca.soleng.urlformat¬
ter.seo.SeoAggrERecFormatter">

 <property name="useDimensionNameAsKey">
 <value>true</value>
 </property>

 <property name="propertyKeys">
 <list>
 <value>P_Name</value>
 </list>
 </property>
 <!-- use default string formatter chain -->

 <property name="propertyFormatter">
 <ref bean="defaultStringFormatterChain"/>
 </property>

 </bean>

6. Add a dimLocationFormatters property and list each dimLocationFormatter bean you
plan to define.
For example:

 <bean id="aggrERecFormatter" class="com.endeca.soleng.urlformat¬
ter.seo.SeoAggrERecFormatter">

 <property name="useDimensionNameAsKey">
 <value>true</value>
 </property>

 <property name="dimLocationFormatters">
 <list>
 <ref bean="regionFormatter"/>
 <ref bean="wineryFormatter"/>

Endeca® URL Optimization API for Java Developer's GuideEndeca Confidential

49Configuring URLs | About optimizing the misc-path

 </list>
 </property>

 <property name="propertyKeys">
 <list>
 <value>P_Name</value>
 </list>
 </property>

 <property name="propertyFormatter">
 <ref bean="defaultStringFormatterChain"/>
 </property>

 </bean>

Note: The sample urlconfig.xml file uses the same dimLocationFormatter for
navigation pages, record detail pages, and aggregate record detail pages.You can choose
to create unique dimLocationFormatters for each page type.

7. Create a dimLocationFormatter for each of the dimensions in the dimLocationFormatters
list.
For example:

 <bean id="regionFormatter"
 class="com.endeca.soleng.urlformatter.seo.SeoDimLocationFormatter">

 </bean>

8. Add the following properties to each dimLocationFormatter:

DescriptionProperty

In the navStateFormatter bean, the useDimensionNameAsKey
property sets the key type. If you set the useDimensionNameAsKey to

key

true, then use the dimension name as the value for this property (for
example <value>Region</value>). If you set the useDimension¬
NameAsKey to false, use the dimension ID number.

Specifies whether or not to append root dimension values to the URL. Set
to true to append root dimension values.

appendRoot

Specifices whether or not to append ancestor dimension values to the URL.
Set to true to append ancestor dimension values.

appendAncestors

Specifies whether or not to append the selected or descriptor dimension
values to the URL. Set to true to append selected or descriptor dimension
values.

appendDescriptor

Specifies the character used to separate dimension roots, ancestors, and
descriptor values.

separator

Specifies the bean to format the dimension name.The reference application
uses a defaultStringFormatterChain bean to invoke the com.en¬
deca.soleng.urlformatter.seo.StringFormatterChain.

rootStringFormat¬
ter

Specifies the bean to format the dimension value names. The reference
application uses a defaultStringFormatterChain bean to invoke

dimValStringFor¬
matter

the com.endeca.soleng.urlformatter.seo.StringFormatter¬
Chain. The examples below also use a defaultStringFormatter¬
Chain bean.

Endeca ConfidentialEndeca® URL Optimization API for Java Developer's Guide

Configuring URLs | About optimizing the misc-path50

For example:

 <bean id="regionFormatter"
 class="com.endeca.soleng.urlformatter.seo.SeoDimLocationFormatter">

 <property name="key">
 <value>Region</value>
 </property>

 <property name="appendRoot">
 <value>false</value>
 </property>

 <property name="appendAncestors">
 <value>false</value>
 </property>

 <property name="appendDescriptor">
 <value>true</value>
 </property>

 <property name="separator">
 <value>-</value>
 </property>

 <property name="rootStringFormatter">
 <ref bean="defaultStringFormatterChain"/>
 </property>

 <property name="dimValStringFormatter">
 <ref bean="defaultStringFormatterChain"/>
 </property>

 </bean>

Related Links
Preparing your dimensions on page 21

If you intend to display dimensions or dimension values in your URLs, you must configure
each of the dimensions to Show with record and Show with record list.

Preparing your properties on page 21
If you intend to display record properties in your URLs, you must configure each property to
Show with record and Show with record list.

Formatting misc-path strings in optimized URLs on page 35
The SeoNavStateFormatter, SeoERecFormatter, and SeoAggrERecFormatter use
StringFormatter objects to format dimension and record property strings that display in
URLs.

Configuring the path-param-separator
You can customize the string that displays between the misc-path and the path-params components
of URLs.

Endeca® URL Optimization API for Java Developer's GuideEndeca Confidential

51Configuring URLs | Configuring the path-param-separator

The sample urlconfig.xml file provided with the URL Optimization API uses an underscore to
separate the misc-path from the path-params in URLs. For example: http://localhost/urlfor¬
matter_jspref/controller/Wine-Red-Pinot-Noir/_/N-66w

You must create a URL configuration file before completing this procedure.

To change the path-param-separator string:

1. Locate the top-level URL formatter bean in your URL configuration file.
For example:

 <bean id="seoUrlFormatter" class="com.endeca.soleng.urlformat¬
ter.seo.SeoUrlFormatter">
 </bean>

2. Customize the value of the pathSeparatorToken property:
For example:

 <bean id="seoUrlFormatter" class="com.endeca.soleng.urlformat¬
ter.seo.SeoUrlFormatter">
 <property name="pathSeparatorToken">
 <value>separator</value>
 </property>
 </bean>

The new URL displays as: http://localhost/urlformatter_jspref/controller/Wine-
Red-Pinot-Noir/separator/N-66w

About optimizing the path-params and query string
The URL Optimization API provides functionality for encoding path parameters and moving Endeca
path parameters from the query string into the path-params section of the URL.

Moving Endeca parameters out of the query string

In order to create directory-style URLs, you can limit the number of parameters in the query string by
configuring a list of Endeca parameters to move from the query string and into the path-params section
of the URL. For example, the following URL has the Endeca parameters N, Ntk, Ntt, and Ntx in the
query string:

http://localhost/ContentAssemblerRefApp/Content.aspx/Bor¬
deaux?N=4294966952&fromsearch=false&Ntk=All&Ntt=red&Ntx=mode%2bmatchallpar¬
tial

Using the URL Optimization API, you can move Endeca parameters into the path-params section of
the URL. For example, the following URL includes the N and Ntt parameters in the base URL:

http://localhost/ContentAssemblerRefApp/Content.aspx/Bordeaux/_/N-
4294966952/Ntt-red?fromsearch=false&Ntk=All&Ntx=mode%2bmatchallpartial

Note: To ensure the best possible natural search-engine ranking, it is recommended that you
limit the number of parameters you include in the path-params section.

Encoding Endeca parameters

In order to shorten URLs, the URL Optimization API allows base-36 encoding of Endeca parameters.

Endeca ConfidentialEndeca® URL Optimization API for Java Developer's Guide

Configuring URLs | About optimizing the path-params and query string52

For example, the following URL for Region > Napa contains the dimension value ID for Napa
(4294966952):

http://localhost/ContentAssemblerRefApp/Content.aspx/Napa/_/N-4294966952

By base-36 encoding the N parameter, you can shorten the URL:

http://localhost/ContentAssemblerRefApp/Content.aspx/Napa/_/N-1z141pk

Note: Only the numeric Endeca parameters can be encoded:

• N
• Ne
• An
• Dn

Removing session-scope parameters

In order to simplify the URLs, session-scope parameters should be removed from the URL string and
stored as session objects. This might include any parameters that do not change value during the
session, such as the session ID or MDEX Host and Port values.

Passing non-Endeca parameters to the API

You can add non-Endeca parameters to URLs by passing them through the API.

Moving Endeca parameters out of the query string
In order to create directory-style URLs, you can limit the number of parameters in the query string by
configuring a list of Endeca parameters to move from the query string and into the path-params section
of the URL.

You must create a URL configuration file before completing this procedure.

To move Endeca parameters out of the query string and into the path-params section of the URL:

1. In your URL configuration file, locate the top-level URL formatter.
For example:

 <bean id="seoUrlFormatter" class="com.endeca.soleng.urlformat¬
ter.seo.SeoUrlFormatter">

 <property name="defaultEncoding">
 <value>UTF-8</value>
 </property>

 <property name="pathSeparatorToken">
 <value>_</value>
 </property>

 <!-- additional elements deleted from this example --!>

 </bean>

2. Add a pathParamKeys property.
For example:

 <bean id="seoUrlFormatter" class="com.endeca.soleng.urlformat¬
ter.seo.SeoUrlFormatter">

Endeca® URL Optimization API for Java Developer's GuideEndeca Confidential

53Configuring URLs | About optimizing the path-params and query string

 <property name="pathParamKeys">
 </property>

 </bean>

3. Add a list attribute containing all of the Endeca parameters you want moved from the query
string.
For example:

 <bean id="seoUrlFormatter" class="com.endeca.soleng.urlformat¬
ter.seo.SeoUrlFormatter">

 <property name="pathParamKeys">
 <list>
 <value>R</value>
 <value>A</value>
 <value>An</value>
 </list>
 </property>

 </bean>

Encoding Endeca parameters
You can use the URL Optimization API to apply base-36 encoding to numeric Endeca parameters.

You must create a URL configuration file before completing this procedure.

Only the numeric Endeca parameters can be encoded:

• N
• Ne
• An
• Dn

The following procedure provides instructions for applying base-36 encoding to the An parameter.You
can apply base-36 encoding to any numeric Endeca parameter, but each parameter requires a
separately configured paramEncoder bean.

To encode numeric Endeca parameters:

1. Create a paramEncoder bean to invoke the com.endeca.soleng.urlformatter.seo.SeoN¬
avStateEncoder:
For example:

 <bean name="An-paramEncoder" class="com.endeca.soleng.urlformat¬
ter.seo.SeoNavStateEncoder">
 </bean>

Remember: You need to create a separate paramEncoder bean for each numeric Endeca
parameter you want to encode.

2. Add a paramKey property to specify which numeric Endeca parameter to encode.
For example:

 <bean name="An-paramEncoder" class="com.endeca.soleng.urlformat¬
ter.seo.SeoNavStateEncoder">

Endeca ConfidentialEndeca® URL Optimization API for Java Developer's Guide

Configuring URLs | About optimizing the path-params and query string54

 <property name="paramKey">
 <value>An</value>
 </property>
 </bean>

3. Repeat steps one and two for each Endeca parameter you want to encode.

4. Locate the top-level URL formatter bean in your URL configuration file.
For example:

 <bean id="seoUrlFormatter" class="com.endeca.soleng.urlformat¬
ter.seo.SeoUrlFormatter">
 </bean>

5. Add a urlParamEncoders property:

 <bean id="seoUrlFormatter" class="com.endeca.soleng.urlformat¬
ter.seo.SeoUrlFormatter">
 <property name="urlParamEncoders">
 </property>
 </bean>

6. Add a list attribute and specify each of the parameter encoder beans.
For example:

 <bean id="seoUrlFormatter" class="com.endeca.soleng.urlformat¬
ter.seo.SeoUrlFormatter">
 <property name="urlParamEncoders">
 <list>
 <ref bean="N-paramEncoder"/>
 <ref bean="Ne-paramEncoder"/>
 <ref bean="An-paramEncoder"/>
 </list>
 </property>
 </bean>

Removing session-scope parameters
In order to simplify the URLs, session-scope parameters should be removed from the URL string and
stored as session objects.

This might include any parameters that do not change value during the session, such as the session
ID or MDEX Host and Port values. For example, the following URL contains information about the the
MDEX Host and Port:

http://localhost:8888/endeca_jspref/controller.jsp?N=0&eneHost=local¬
host&enePort=15002

You can remove the MDEX Host and Port values from the URL and store them as session objects.
The resulting URL is simplified:

http://localhost:8888/endeca_jspref/controller.jsp

The following procedure provides instructions for removing the MDEX Host and Port values from the
URL, but this procedure can be adapted as necessary to remove other session-scope parameters.

To remove the MDEX Host and Port values from the URL and store them as session attribute values:

1. To set the attribute, use the following code:

 session.setAttribute("eneHost", eneHost);

Endeca® URL Optimization API for Java Developer's GuideEndeca Confidential

55Configuring URLs | About optimizing the path-params and query string

2. To retrieve the attribute value, use the following code:

 eneHost = (String)session.getAttribute("eneHost");

About passing non-Endeca parameters to the API
You can add non-Endeca parameters to URLs by passing them through the API.

For example, you could add information about how many records per page should display in each
results set:

In the reference application's controller.jsp file, find the following section:

 UrlState baseUrlState = urlFormatter.parseRequest(request);

 ENEQuery usq = queryBuilder.buildQuery(baseUrlState);

and add code similar to the following:

 baseUrlState.setParam("records_per_page", "25");

Note: Endeca recommends limiting the number of parameters that display in URLs. It is
recommended that session-scope parameters be removed from the URL and stored as session
objects.

Using the URL configuration file with your application
Before you can create optimized URLs with your own application, you need to include the URL
configuration file in your application's classpath.

To use the URL configuration file with your application:

1. Stop the Endeca HTTP service.

2. Locate your URL configuration file.

3. Copy the URL configuration file into the WEB-INF subdirectory of your Web application directory.
For example: C:\Endeca\MyApps\WEB-INF

4. Start the Endeca HTTP service.

To verify that the URL configurations are working properly, open a Web browser and navigate to your
Web application. Check that the URLs display as you configured them with the URL configuration file.

Related Links
Creating a URL configuration file on page 31

A simple URL configuration file defines a BasicQueryBuilder and a top-level SeoUrlFor¬
matter.

Creating a URL configuration file on page 31
A simple URL configuration file defines a BasicQueryBuilder and a top-level SeoUrlFor¬
matter.

Endeca ConfidentialEndeca® URL Optimization API for Java Developer's Guide

Configuring URLs | Using the URL configuration file with your application56

Chapter 7

Integrating with the Sitemap Generator

The Sitemap Generator creates an index of your Web site based on information stored in your MDEX
Engine, not information stored on your application server. Because of this, you need to ensure that
the URLs produced by the Sitemap Generator match the URLs in your application. To make certain
that the URLs match, you need to configure the Sitemap Generator's urlconfig.xml file to make
the same customizations to URLs that the URL Optimization API configurations are making.

The Sitemap Generator urlconfig.xml file
The Sitemap Generator uses a URL configuration file that must mirror your URL configurations in order
to output a sitemap that matches your Web application.

The Sitemap Generator creates a site map by issuing a single bulk query against the MDEX Engine
to retrieve the necessary record, dimension, and dimension value data. It uses this information to build
an index of pages. The formatting of the URLs it creates is controlled by the urlconfig.xml file
located in the \conf subdirectory of your Sitemap Generator installation directory. For example:
C:\Endeca\SEM\SitemapGenerator\version\conf

To ensure that the URLs in the sitemap are consistent with the URLs produced by the URL Optimization
API, any configurations made in with the URL Optimization API must be configured appropriately in
the Sitemap Generator's urlconfig.xml file.

Because the urlconfig.xml file included with the Sitemap Generator uses the same format as the
sample urlconfig.xml file for the URL Optimization API, you can use your URL Optimization API
urlconfig.xml file for sitemap generation.

Adding custom dimensions to the Sitemap Generator
configuration

In order for dimensions to display in the URLs produced by the Sitemap Generator, they must be
specified in the <QUERY_FIELD_LIST> in the Sitemap Generator's conf.xml file.

The <QUERY_FIELD_LIST> in the conf.xml of the Sitemap Generator is configured for the Endeca
wine data set. Before you can generate a sitemap for your own data set, you need to specify your own
dimensions to the <QUERY_FIELD_LIST>.

To specify dimensions in the Sitemap Generator <QUERY_FIELD_LIST>:

1. Open the conf.xml file located in the \conf subdirectory of your Sitemap Generator installation
directory.
For example: C:\Endeca\SEM\SitemapGenerator\version\conf

2. Locate the <QUERY_FIELD_LIST>.
For example:

<!-- additional elements deleted from this sample -->
<QUERY_FIELD_LIST>
 <QUERY_FIELD>P_Name</QUERY_FIELD>
 <QUERY_FIELD>Wine Type</QUERY_FIELD>
 <QUERY_FIELD>Region</QUERY_FIELD>
 <QUERY_FIELD>Winery</QUERY_FIELD>
 <QUERY_FIELD>Vintage</QUERY_FIELD>
 <QUERY_FIELD>P_Winery</QUERY_FIELD>
 <QUERY_FIELD>Flavors</QUERY_FIELD>
 <QUERY_FIELD>Designation</QUERY_FIELD>
</QUERY_FIELD_LIST>
<!-- additional elements deleted from this sample -->

3. Replace the existing wine data dimensions with dimensions specific to your application.

For more information about the Sitemap Generator conf.xml file, please refer to the Endeca Sitemap
Generator Developer's Guide.

Using the URL Optimization API urlconfig.xml file for
sitemap generation

You can use the same urlconfig.xml file you created for URL optimization as the URL configuration
file for sitemap generation.

To use the URL Optimization API URL configuration file with the Sitemap Generator:

1. Open the conf.xml file located in the \conf\ subdirectory of your Sitemap Generator installation
directory.
For example: C:\Endeca\SEM\SitemapGenerator\version\conf

2. Locate the URL_FORMAT_FILE:
For example:

<URL_FORMAT_FILE>urlconfig.xml</URL_FORMAT_FILE>

3. Edit the <URL_FORMAT_FILE> value so that it points to the urlconfig.xml file you created with
the URL Optimization API.
For example:

<URL_FORMAT_FILE>C:\Endeca\SEM\URL Optimization
APIs\Java\version\webapps\urlformatter_jspref\WEB-INF\urlcon¬
fig.xml</URL_FORMAT_FILE>

4. Save and close the conf.xml file.

You can also copy your URL Optimization API urlconfig.xml file to the \conf\ subdirectory of
your Sitemap Generator installation directory. If you choose to do this, you need to make sure that the
two urlconfig.xml files maintain identical configurations.

Endeca ConfidentialEndeca® URL Optimization API for Java Developer's Guide

Integrating with the Sitemap Generator | Using the URL Optimization API urlconfig.xml file for sitemap
generation

58

For more information about the Sitemap Generator, please refer to the Endeca Sitemap Generator
Developer's Guide.

Related Links
Creating a URL configuration file on page 31

A simple URL configuration file defines a BasicQueryBuilder and a top-level SeoUrlFor¬
matter.

About the URL configuration file on page 30
The URL Optimization API reference application uses an XML file named urlconfig.xml
to configure the format of the URLs that it generates.

Endeca® URL Optimization API for Java Developer's GuideEndeca Confidential

59Integrating with the Sitemap Generator | Using the URL Optimization API urlconfig.xml file for sitemap
generation

Index

301 redirects 22

A

aggERecFormatter 48
aggregate record detail pages 48
aggrERecFormatter 34

B

baseUrlState 56
basic query builder 31

C

canonicalization 15, 37, 41
canonicalizing

keywords 13
configuring URLs
CSS

handling 22

D

dimensions
preparing 21

dimLocationFormatters 34
directory-style URLs 52, 53
duplicate content 15

E

Endeca parameters
base-36 encoding 54
encoding 13, 52
moving 52, 53
moving out of the query string 13

Endeca Sitemap Generator
integrating with Endeca URL Optimization API
URL configuration file 57, 58
urlconfig.xml 57, 58

Endeca URL Optimization API
application recommendations
basic application requirements
configuring URLs
external resources 22
installation
installing 10
integrating with Endeca Sitemap Generator
introduction 13
overview 13
package contents 10

Endeca URL Optimization API (continued)
preparing your application
reference application
system requirements 9
unpacking 10
URL configuration
using 56

erecFormatter 34, 44
external resources

handling 22

I

images
handling 22

installation
Endeca URL Optimization API
reference application 18

Installation
installing

Endeca URL Optimization API 10
reference application 18

introduction
Endeca URL Optimization API 13

J

Javascript files
handling 22

K

keywords
adding 34
canonicalizing 13
integrating into URLs 13

M

misc-path
optimizing 34

N

navigation pages 37
navStateCanonicalizer 34
navStateFormatter 34, 37
non-Endeca parameters

passing 52, 56

O

optimized URLs
overview 29

overview
Endeca URL Optimization API 13

P

package contents
Endeca URL Optimization API 10

paramEncoder 54
parameters

encoding 52, 54
Endeca 52, 53, 54
non-Endeca 52, 56
session-scope 52, 55

path-param-separator
optimizing 52

path-params
optimizing 52

pathParamKeys 53
pathSeparatorToken 52
prerequisites

reference application 17
properties

preparing 21

Q

query string
optimizing 52

R

record detail pages 44
reference application

about 17
installing 18
introduction 17
prerequisites 17
setting up
testing 19

reference Web application, See reference application
relative URLs 22

S

sample application, See reference application
SeoNavStateEncoder 54
session objects 55, 56
session-scope parameters

removing 52, 55

show with record 21
show with record list 21
Sitemap Generator, See Endeca Sitemap Generator
supported operating systems 9
supported software 9
system requirements 9

T

testing
reference application 19

U

URL
anatomy 29
components 29

URL canonicalization, See canonicalization
URL configuration

aggregate record detail pages 48
canonicalization 15, 37, 41
keywords 34
misc-path 34, 37, 44, 48
navigation pages 37
path-param-separator 52
path-params 52
query string 52
record detail pages 44

URL configuration file
creating 31
using 56
using with Endeca Sitemap Generator 58
using with Endeca URL Optimization API 58

URL formatter 31
URL formatting 31

See also URL configuration
URL Optimization API, See Endeca URL Optimization
API
URL transitioning 22
urlconfig.xml 31

See also URL configuration file
Endeca Sitemap Generator 57
using 56
using with Endeca Sitemap Generator 58
using with Endeca URL Optimization API 58

See also URL configuration file
URLs

directory-style 52, 53

W

word separator
configuring 13

Endeca® URL Optimization API for Java62

Index

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Endeca Customer Support

	Installation
	System requirements
	Installing the URL Optimization API
	Package contents

	Introduction
	Introduction to URL optimization
	Overview of the URL Optimization API capabilities
	About URL canonicalization

	Setting up the Reference Application
	About the reference application
	Reference application prerequisites
	Installing the reference application
	Testing your reference Web application

	Preparing your application
	Preparing your dimensions
	Preparing your properties
	Handling images and external JavaScript files
	URL transitioning

	Building URLs with the URL Optimization API
	Core components in the URL Optimization API
	Overview of building URLs using the URL Optimization API
	Parsing an incoming query and sending it to an MDEX Engine
	Informing the UrlState of the navigation state
	Creating link URLs from a UrlState

	Configuring URLs
	Anatomy of an optimized Endeca URL
	About the URL configuration file
	Creating a URL configuration file
	About optimizing the misc-path
	Formatting misc-path strings in optimized URLs
	Optimizing URLs for navigation pages
	Canonicalization configuration options
	Optimizing URLs for record detail pages
	Optimizing URLs for aggregate record detail pages

	Configuring the path-param-separator
	About optimizing the path-params and query string
	Moving Endeca parameters out of the query string
	Encoding Endeca parameters
	Removing session-scope parameters
	About passing non-Endeca parameters to the API

	Using the URL configuration file with your application

	Integrating with the Sitemap Generator
	The Sitemap Generator urlconfig.xml file
	Adding custom dimensions to the Sitemap Generator configuration
	Using the URL Optimization API urlconfig.xml file for sitemap generation

	Index

