
Endeca® URL Optimization API for
the RAD Toolkit for ASP.NET

Developer's Guide

Version 2.1.2 • December 2011

Contents

Preface...7
About this guide..7
Who should use this guide..7
Conventions used in this guide...8
Contacting Endeca Customer Support...8

Chapter 1: Installation..9
System requirements..9
Installing the URL Optimization API..10
Package contents...10

Chapter 2: Introduction..13
Introduction to URL optimization...13
Overview of the URL Optimization API capabilities..13
Duplicate content and URL canonicalization..15

Chapter 3: Setting up a Reference Application......................................17
Reference application prerequisites..17
About the sample UrlProvider...17
Integrating the URL Optimization API with the Content Assembler reference application..........................18

Chapter 4: Implementing URL optimization...21
Implementing URL optimization with a new application..21
Modifying an existing application built with the RAD Toolkit for ASP.NET...22

Chapter 5: Preparing your application..25
Preparing your dimensions...25
Preparing your properties...25
Handling images and external JavaScript files in optimized URLs...26
URL transitioning..26

Chapter 6: Building URLs with the URL Optimization API....................27
About using multiple UrlManagers..27

Working with multiple UrlManagers...27
Working with multiple UrlProviders..28
Invalid command combinations...29

About avoiding invalid URLs...30
About ensuring that URLs are optimized..30

Building an optimized URL to select a dimension value from a BusinessRule object.........................31
Building an optimized URL to an aggregate record detail page..31
Building optimized URLs without using convenience methods..32

Chapter 7: Configuring URLs..35
Anatomy of an optimized Endeca URL ..35
Creating an SEO UrlProvider..36
About optimizing the misc-path...38

Optimizing URLs for navigation pages..39
Canonicalization configuration options..43
Optimizing URLs for record detail pages...44
Optimizing URLs for aggregate record detail pages..48

Configuring the path-param-separator..52
About optimizing the path-params and query string...53

Moving Endeca parameters out of the query string...54
Modifying Endeca parameters...55

iii

Encoding Endeca parameters...56
Removing session-scope parameters...57
About passing non-Endeca parameters to the API..58
Characters that should be excluded from the URL path..58

Using the SeoUrlProvider with your application..59

Chapter 8: Integrating with the Sitemap Generator...............................61
The Sitemap Generator urlconfig.xml file...61
Sample SeoUrlProvider and sample urlconfig.xml mapping...61

About using regular expressions in string formatters with the Sitemap Generator..............................65
Adding custom dimensions to the Sitemap Generator configuration..65
Modifying the root query...66
Example Sitemap Generator integration...68
Integrating the URL configuration files with the Sitemap Generator...70

Endeca® URL Optimization API for the RAD Toolkit for ASP.NETiv

Copyright and disclaimer

Product specifications are subject to change without notice and do not represent a commitment on
the part of Endeca Technologies, Inc. The software described in this document is furnished under a
license agreement.The software may not be reverse engineered, decompiled, or otherwise manipulated
for purposes of obtaining the source code. The software may be used or copied only in accordance
with the terms of the license agreement. It is against the law to copy the software on any medium
except as specifically allowed in the license agreement.

No part of this document may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying and recording, for any purpose without the express written
permission of Endeca Technologies, Inc.

Copyright © 2003-2011 Endeca Technologies, Inc. All rights reserved. Printed in USA.

Portions of this document and the software are subject to third-party rights, including:

Corda PopChart® and Corda Builder™ Copyright © 1996-2005 Corda Technologies, Inc.

Outside In® Search Export Copyright © 2011 Oracle. All rights reserved.

Rosette® Linguistics Platform Copyright © 2000-2011 Basis Technology Corp. All rights reserved.

Teragram Language Identification Software Copyright © 1997-2005 Teragram Corporation. All rights
reserved.

Trademarks

Endeca, the Endeca logo, Guided Navigation, MDEX Engine, Find/Analyze/Understand, Guided
Summarization, Every Day Discovery, Find Analyze and Understand Information in Ways Never Before
Possible, Endeca Latitude, Endeca InFront, Endeca Profind, Endeca Navigation Engine, Don't Stop
at Search, and other Endeca product names referenced herein are registered trademarks or trademarks
of Endeca Technologies, Inc. in the United States and other jurisdictions. All other product names,
company names, marks, logos, and symbols are trademarks of their respective owners.

The software may be covered by one or more of the following patents: US Patent 7035864, US Patent
7062483, US Patent 7325201, US Patent 7428528, US Patent 7567957, US Patent 7617184, US
Patent 7856454, US Patent 7912823, US Patent 8005643, US Patent 8019752, US Patent 8024327,
US Patent 8051073, US Patent 8051084, Australian Standard Patent 2001268095, Republic of Korea
Patent 0797232, Chinese Patent for Invention CN10461159C, Hong Kong Patent HK1072114, European
Patent EP1459206, European Patent EP1502205B1, and other patents pending.

v

Preface

Endeca® InFront enables businesses to deliver targeted experiences for any customer, every time, in
any channel. Utilizing all underlying product data and content, businesses are able to influence customer
behavior regardless of where or how customers choose to engage — online, in-store, or on-the-go.
And with integrated analytics and agile business-user tools, InFront solutions help businesses adapt
to changing market needs, influence customer behavior across channels, and dynamically manage a
relevant and targeted experience for every customer, every time.

InFront Workbench with Experience Manager provides a single, flexible platform to create, deliver,
and manage content-rich, multichannel customer experiences. Experience Manager allows non-technical
users to control how, where, when, and what type of content is presented in response to any search,
category selection, or facet refinement.

At the core of InFront is the Endeca MDEX Engine,™ a hybrid search-analytical database specifically
designed for high-performance exploration and discovery. InFront Integrator provides a set of extensible
mechanisms to bring both structured data and unstructured content into the MDEX Engine from a
variety of source systems. InFront Assembler dynamically assembles content from any resource and
seamlessly combines it with results from the MDEX Engine.

These components — along with additional modules for SEO, Social, and Mobile channel support —
make up the core of Endeca InFront, a customer experience management platform focused on delivering
the most relevant, targeted, and optimized experience for every customer, at every step, across all
customer touch points.

About this guide
This guide describes the major tasks involved in developing an application that utilizes the Endeca
URL Optimization API for the RAD Toolkit for ASP.NET.

This guide assumes that you are familiar with Endeca’s terminology and basic concepts.

This guide covers only the features of the Endeca URL Optimization API for the RAD Toolkit for
ASP.NET, and is not a replacement for the available material documenting other Endeca products
and features.

Who should use this guide
This guide is intended for developers who are building applications that leverage both the Endeca
URL Optimization API and the Endeca RAD Toolkit for ASP.NET.

This document assumes that the reader has a working knowledge of the following software and
concepts:

• Basic Endeca concepts such as dimensions, dimension values, refinements, ancestors, records,
aggregate records, etc.

• Configuring Endeca dimensions using Developer Studio
• Endeca RAD Toolkit for ASP.NET, specifically the following objects:

• UrlManager

• UrlBuilder

• Dimension

• DimensionValue

• DimensionState

If you are using the Endeca URL Optimization API in conjunction with the Sitemap Generator, please
read the Sitemap Generator Usage Guide in addition to this URL Optimization API Guide. This guide
is not a replacement for the Sitemap Generator Usage Guide.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace
font. In the case of long lines of code, or when inline monospace text occurs at the end of a line, the
following symbol is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

Contacting Endeca Customer Support
The Endeca Support Center provides registered users with important information regarding Endeca
software, implementation questions, product and solution help, training and professional services
consultation as well as overall news and updates from Endeca.

You can contact Endeca Standard Customer Support through the Support section of the Endeca
Developer Network (EDeN) at http://eden.endeca.com.

Endeca ConfidentialEndeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's Guide

| Preface8

http://eden.endeca.com

Chapter 1

Installation

This section describes installation procedures for the Endeca URL Optimization API.

System requirements
This section provides a list of minimum system requirements for the Endeca URL Optimization API
for the RAD Toolkit for ASP.NET.

Endeca software requirements

The Endeca URL Optimization API for the RAD Toolkit for ASP.NET requires the following Endeca
packages:

• Platform Services
• MDEX Engine
• RAD Toolkit for ASP.NET

Note: The Endeca Presentation and Logging APIs for .NET are part of the required RAD Toolkit
installation and are installed into <installation
path>\Endeca\RADToolkits\<version>\ASP.NET\bin.

To determine the compatibility of the URL Optimization API with other Endeca installation packages,
see the Endeca InFront Compatibility Matrix available on EDeN.

Other software requirements

The following third party software must be installed before you install the URL Optimization API for
the RAD Toolkit for ASP.NET:

• Microsoft .NET Framework.The URL Optimization API for the RAD Toolkit for ASP.NET is supported
for all versions of the Microsoft .NET Framework that are supported by the RAD Toolkit for ASP.NET.

• Microsoft Visual Studio 2005 with Service Pack 1 (any edition) or Visual Studio 2008.
• On machines running the RAD Toolkit for ASP.NET reference application, you need Internet

Information Services (IIS) 5.1 or later.

Supported operating systems

The URL Optimization API is supported on Windows Server 2003 and Windows Server 2008.

Installing the URL Optimization API
The URL Optimization API for the RAD Toolkit for ASP.NET is distributed as a zip file,
UrlOptimizationAPIRADNET-[version].zip. The zip file should be unpacked using WinZip or
an alternate decompression utility, and may be unzipped into any location.

The package will unpack into a self-contained directory structure tree:

Endeca\SEM\URLOptimizationAPIs\RAD Toolkit for ASP.NET [VERSION]\

1. Unpack the UrlOptimizationAPIRADNET-[version].zip into the same directory as your
Endeca software.

For example, if you have installed Endeca Platform Services on Windows in the following location:
C:\Endeca\PlatformServices\version\

Then the URL Optimization API project should be unzipped into C:\ so that the template installs
into: C:\Endeca\SEM\URLOptimizationAPIs\RAD Toolkit for ASP.NET\ VERSION\

2. Navigate to the \bin subdirectory of the URL Optimization API.
For example: C:\Endeca\SEM\URLOptimizationAPIs\RAD Toolkit for
ASP.NET\VERSION\bin

3. Copy the Endeca.Web.Url.Seo.dll and the Endeca.Web.Url.Seo.xml files into the \bin
directory of your own application.
For example: C:\Apps\MyApp\bin

After installing the URL Optimization API, you must integrate it with your Web application to see results.
See "Setting up a Reference Application" in this guide for an example of how to integrate URL
Optimization with the Content Assembler Reference Application.

Package contents
The URL Optimization API package includes a number of components. This section is a summary of
the information included in each of these components and a description of their location in the distribution
directory.

The C:\Endeca\SEM\URLOptimizationAPIs\RAD Toolkit for ASP.NET\version directory
is the root for URL Optimization API. The directory contains the following components:

DescriptionComponent

Contains the release notes README_UORAD.txt.Root directory

Contains the Endeca.Web.Url.Seo.dll and
the Endeca.Web.Url.Seo.xml files.These files

\bin

contain the full implementation of the URL
Optimization API.

Contains the Licensing Guide and the generated
API documentation.

\doc

Contains the sample form rewriter, the sample
SeoUrlProvider, the sample Sitemap Generator
integration files and the sample Web site files.

\samples

Endeca ConfidentialEndeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's Guide

Installation | Installing the URL Optimization API10

DescriptionComponent

Contains a example SeoUrlProvider and
example Sitemap Generator files to exhibit URL

\Sample\SitemapGeneratorIntegration

Optimization API and Sitemap Generator
integration.

Contains the sample SeoUrlProvider.\samples\UrlProvider

Endeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's GuideEndeca Confidential

11Installation | Package contents

Chapter 2

Introduction

This section provides an introduction to the URL Optimization API and its capabilities.

Introduction to URL optimization
Dynamically generated URLs that are comprised of meaningless strings and no keywords may
negatively impact search engine ranking as well as user experience. As an answer to this problem,
the Endeca URL Optimization API enables users to create site links using directory-style URLs that
include keywords and store the dynamic information in the base URL rather than in the query string.

The resulting URLs do not contain any URL query parameters. Instead, all of the necessary Endeca
values are stored in the URL path, resulting in search engine-friendly URLs.

Overview of the URL Optimization API capabilities
The URL Optimization API is designed to help increase your natural search engine rankings by enabling
the creation of search engine-friendly URLs.

Integration of keywords into the URL string

Many search engines take URL strings in as part of their relevancy ranking strategy. Generating URLs
that include keywords can increase your natural search engine ranking as well as create visitor-friendly
URLs that are easier for front-end users to understand.

Using the URL Optimization API, you can configure the following strings to display in the URL:

• Dimension names
• Dimension value names
• Ancestor names
• Record property strings
• Text search strings

For example, the base URL for the Merlot page can be configured to include ancestors in the string:
http://localhost/ContentAssemblerRefApp/Content.aspx/Wine-Red-Merlot/

The optimized URL is more comprehensible to front-end users and more search-engine friendly than
the traditional URL which contains no keywords:http://localhost:8888/endeca_jspref/con¬
troller.jsp?sid=122C7EA4C912&Ne=6200&enePort=15000&eneHost=localhost&N=8025

Canonicalizing the URL string

Dynamic sites often produce syntactically different URLs for the same page. Multiple variant URLs
result in duplicate content and therefore lower natural search engine ranking.

For example, users might be able to reach the Napa white wine page by first clicking on “Napa” and
then clicking on “White”, or by first clicking on “White” and then “Napa.” This creates two syntactically
unique links pointing to the same Napa White page:

• http://localhost:8888/urlformatter_jspref/controller/Wine-White/Region-
Germany/_/N-1z141vcZ66t

• http://localhost:8888/urlformatter_jspref/controller/Region-Germany/Wine-
White/_/N-1z141vcZ66t

To ensure that only one version of the URL per page is used in links throughout the site, the URL
Optimization API provides provides options for canonicalizing URLs.

Configuring the word separator string

It is possible to customize the word separator for each keyword string in the URLs. By default, the
word separator is the dash character "-":

http://localhost:8888/urlformatter_jspref/controller/Wine-White/Region-
Germany/_/N-1z141vcZ66t

Moving Endeca URL parameters out of the query string

In order to create directory-style URLs, you can limit the number of Endeca parameters in the query
string by moving them from the query string and into the path-params section of the URL.

For example, the following URL has the Endeca parameters N, Ntk, Ntt, and Ntx in the query string:

http://localhost/ContentAssemblerRefApp/Content.aspx/Bor¬
deaux?N=4294966952&fromsearch=false&Ntk=All&Ntt=red&Ntx=mode%2bmatchallpar¬
tial

Using the URL Optimization API, you can move Endeca parameters into the path-params section of
the URL. For example, the following URL includes the N and Ntt parameters in the base URL:

http://localhost/ContentAssemblerRefApp/Content.aspx/Bordeaux/_/N-
4294966952/Ntt-red?fromsearch=false&Ntk=All&Ntx=mode%2bmatchallpartial

Encoding Endeca Parameters

In order to shorten URLs, the URL Optimization API allows base-36 encoding of Endeca parameters.

For example, the following URL for Vintage > 1996 contains the dimension value ID for 1996
(4294962059):

http://localhost/ContentAssemblerRefApp/Content.aspx/_/N-4294962059

By base-36 encoding the N parameter, you can shorten the URL:

http://localhost/ContentAssemblerRefApp/Content.aspx/_/N-1z13xxn

Related Links
About optimizing the misc-path on page 38

With the URL Optimization API you can configure dimensions, dimension values, record
properties, and aggregate record properties to display in the misc-path of URLs.You can
also specify the order in which dimensions and dimension values display on navigation pages.

Endeca ConfidentialEndeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's Guide

Introduction | Overview of the URL Optimization API capabilities14

About optimizing the path-params and query string on page 53
The URL Optimization API provides functionality for encoding path parameters and moving
Endeca path parameters from the query string into the path-params section of the URL.

Configuring the path-param-separator on page 52
Using the PathSeparatorToken property in the BaseSeoUrlProvider constructor, you
can configure the path-params-separator string.

Anatomy of an optimized Endeca URL on page 35
An optimized Endeca URL is made up of four configurable sections.

Duplicate content and URL canonicalization
Dynamic sites often produce syntactically different URLs for the same page. Multiple variant URLs
result in duplicate content and therefore lower natural search engine ranking. Canonicalizing your
URLs reduces that duplicate content and improves search engine ranking.

Many search engines base their relevancy ranking algorithms on the number and quality of links that
point to a particular page. The more links there are that point to a particular page, the higher the page
rank. Dynamic URLs can dilute the link value of a page by creating multiple versions of a URL.

For example, users might be able to reach the Napa Red wine page by first clicking on “Napa” and
then clicking on “Red”, or by first clicking on “Red” and then “Napa.” This creates two syntactically
unique links pointing to the same Napa Red page:

• http://localhost/ContentAssemblerRefApp/Content.aspx/Wine-Red/Region-Na¬
pa/_/N-1z141vcZ66t

• http://localhost/ContentAssemblerRefApp/Content.aspx/Region-Napa/Wine-
Red/_/N-1z141vcZ66t

To the search engine, each version of the URL appears to be its own unique page, and each page
takes a portion of the link references.

To improve quality, search engines try to minimize the appearance of largely similar pages within
results sets. Among other strategies, all indexed pages are evaluated for duplicates and near-duplicates
before a page is selected to be displayed in the search results. In the case of the Napa Red page,
only one of the two URLs would be selected -- and therefore only half of the link references are
evaluated. This link dilution of the Napa Red page may result in a lower position within search results.
Multiple parameters in URLs have the same effect.

In order to avoid multiple versions of URLs per page, links throughout the site should be standardized
(canonicalized), and requests for a non-standard version of the URL should be redirected to the
canonical version via a "301" (permanent) redirect.

The URL Optimization API provides functionality to canonicalize URLs.With canonicalization enabled,
equivalent pages appear with the same syntax even if they are navigated to through different paths.
For example, you can configure your UrlProvider to arrange dimensions alphabetically in an
ascending order:

• http://localhost/ContentAssemblerRefApp/Content.aspx/Region-Napa/Wine-
Red/_/N-1z141vcZ66t

Now even if a user navigates to "Red" before "Napa", the link still appears as "/Region-Napa/Wine-Red."

Note: There are a number of configuration options for URL canonicalization.

Related Links

Endeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's GuideEndeca Confidential

15Introduction | Duplicate content and URL canonicalization

About optimizing the misc-path on page 38
With the URL Optimization API you can configure dimensions, dimension values, record
properties, and aggregate record properties to display in the misc-path of URLs.You can
also specify the order in which dimensions and dimension values display on navigation pages.

Endeca ConfidentialEndeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's Guide

Introduction | Duplicate content and URL canonicalization16

Chapter 3

Setting up a Reference Application

This section describes the sample SeoUrlProvider included with the URL Optimization API, and
provides instructions for integrating it into an existing Endeca Content Assembler reference application.

Reference application prerequisites
Before integrating URL Optimization API with an existing Endeca Content Assembler reference
application, you must have the reference application running on a properly configured MDEX Engine
with the Endeca wine data set.

For information about setting up the Endeca Content Assembler sample wine data project, please
refer to the Endeca Commerce Suite Getting Started Guide.

Once you have the sample wine data project set up, ensure that the following dimensions are configured
to Show with record and Show with record list in Developer Studio.

• Wine Type
• Region
• Winery
• Vintage
• Designation

Related Links
Preparing your dimensions on page 25

If you intend to display dimensions or dimension values in your URLs, you must configure
each of the dimensions to Show with record and Show with record list.

Preparing your properties on page 25
If you intend to display record properties in your URLs, you must configure each property to
Show with record and Show with record list.

About the sample UrlProvider
The sample UrlProvider (Endeca.Web.Url.Seo.Sample.SeoUrlProvider) included with the
URL Optimization API is an SeoUrlProvider intended to demonstrate the capabilities to the URL
Optimization API for the RAD Toolkit for ASP.NET.

The sample SeoUrlProvider is configured for the standard Endeca wine data set so that you
integrate it into an Endeca Content Assembler reference application. This allows you to explore the
functionality provided by the URL Optimization API.

While it is not the required approach, the sample SeoUrlProvider uses Factory methods to instantiate
member variables of the BaseSeoUrlProvider.

Note: The sample SeoUrlProvider is provided for reference only and is not part of the
supported software.

Integrating the URL Optimization API with the Content
Assembler reference application

This section provides instructions for integrating the URL Optimization API with the Endeca Content
Assembler reference application.

Important: You must install the RAD Toolkit for ASP.NET 2.1.0 before implementing URL
optimization.

This procedure assumes that you have already set up the Content Assembler 2.1.0 reference
application. For more information about the Content Assembler reference application, please refer to
the Endeca Commerce Suite Getting Started Guide.

To enable URL Optimization in your Content Assembler reference application:

1. Navigate to the bin subdirectory of your URL Optimization API installation directory.
For example: C:\Endeca\SEM\URLOptimizationAPIs\RAD Toolkit for
ASP.NET\version\bin

2. Copy the Endeca.Web.Url.Seo.dll and Endeca.Web.Url.Seo.xml to the bin subdirectory
of your Content Assembler API reference application directory.
For example: C:\Endeca\ContentAssemblerAPIs\RAD Toolkit for
ASP.NET\2.0.0\reference\ContentAssemblerRefApp\bin

3. Navigate to the bin subdirectory of your RAD Toolkit for ASP.NET installation directory.
For example: C:\Endeca\RADToolkits\2.1.0.version\ASP.NET\bin

4. Copy the following files to the bin subdirectory of your Content Assembler API reference application
directory.

• Endeca.Data.dll

• Endeca.Data.XML

• Endeca.Web.dll

• Endeca.Web.XML

• Endeca.Web.UI.WebControls.dll

• Endeca.Web.UI.WebControls.xml

5. Navigate to the samples\UrlProvider subdirectory of your URL Optimization API installation
directory.
For example: C:\Endeca\SEM\URLOptimizationAPIs\RAD Toolkit for
ASP.NET\version\samples\UrlProvider

Endeca ConfidentialEndeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's Guide

Setting up a Reference Application | Integrating the URL Optimization API with the Content Assembler
reference application

18

6. Copy the sample SeoUrlProvider.cs to the
reference\ContentAssemblerRefApp\App_Code subdirectory of your Content Assembler
API installation directory.
For example: C:\Endeca\ContentAssemblerAPIs\RAD Toolkit for
ASP.NET\version\reference\ContentAssemblerRefApp\App_Code

7. Navigate to the reference\ContentAssemblerRefApp subdirectory of your Content Assembler
API installation and open the Web.config.

8. Locate the following section:

 <endeca.web>
 <urlProvider defaultType="Endeca.Web.Url.BasicUrlProvider,Endeca.Web"
 />
 </endeca.web>

9. Replace the urlProvider defaultType.

For example:

<endeca.web>
 <urlProvider defaultType="Endeca.Web.Url.Seo.Sample.SeoUrlProvider,En¬
deca.Web.Url.Seo" />
</endeca.web>

10. Clear your Web browser cache. If you do not clear the cache, unoptimized URLs that have been
cached may display as you navigate within the updated application.

11. Restart IIS.

12. (Optional) Open a Web browser and navigate to your Content Assembler reference application to
verify the deployment: http://localhost/ContentAssemblerRefApp/Content.aspx.

Replace ContentAssemblerRefApp with the name of the virtual directory in IIS.

13. Navigate to Wine Type > Red.

The URL that displays should be similar to the following:

http://localhost/ContentAssemblerRefApp/Content.aspx/Wine-Red/_/N-66t

Note that keywords display in the misc-path of the URL.

Remember: If you choose to enable URL optimization in your Content Assembler reference
application, you cannot use the same instance of the reference application as your preview
application in Endeca Workbench.

Endeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's GuideEndeca Confidential

19Setting up a Reference Application | Integrating the URL Optimization API with the Content Assembler
reference application

http://localhost/ContentAssemblerRefApp/Content.aspx

Chapter 4

Implementing URL optimization

You can implement URL optimization with a new Endeca application or you can modify an existing
application built with the Endeca RAD Toolkit for ASP.NET to create optimized URLs.

Implementing URL optimization with a new application
This section provides a high-level overview of the tasks required to implement URL optimization with
a new Endeca application built using the RAD Toolkit for ASP.NET.

To implement URL optimization for a new Endeca application:

1. Ensure that you have installed the required Endeca software, including:

• Platform Services 6.1.0
• MDEX Engine 6.1.3
• RAD Toolkit for ASP.NET 2.1.0

2. Ensure that any properties and dimensions that you want to display in optimized URLs are configured
to Show with record and Show with record list.

3. Create multiple UrlManager instances to handle different commands and register your data
sources with the appropriate UrlManager.

The URL Optimization API does not support using certain combinations of commands with a single
UrlManager. Therefore, you must use multiple UrlManager instances in your application.

4. When building search engine-optimized URLs, use the UrlBuilder convenience methods, such
as SelectDimensionValue or SelectRecord. If you use the UrlBuilder.BuildUrl method
directly, use UrlBuilder.BuildUrl((Action(CommandActionInfo)), IIndexProvider,
string) rather than BuildUrl(Action(CommandActionInfo)).

5. Write a custom UrlProvider or, alternatively, modify the sample SeoUrlProvider included in
this software distribution.

The URL Optimization API implements serialization logic that enables you to easily create a custom
UrlProvider to build search engine-optimized Endeca URLs. The sample SeoUrlProvider
provides a good starting point for your implementation.

Note: The URL Optimization API generates URLs that are compatible with the Endeca
Sitemap Generator. It is also possible to write a UrlProvider using your own serialization
logic, although in this case the Endeca Sitemap Generator can no longer create valid sitemaps
for your application.

6. Integrate the custom UrlProvider into your application.

For more details about the UrlManager and UrlProvider classes, as well as the general tasks
involved with building URLs with the RAD Toolkit for ASP.NET, please refer to the RAD Toolkit for
ASP.NET Developer's Guide.

Related Links
System requirements on page 9

This section provides a list of minimum system requirements for the Endeca URL Optimization
API for the RAD Toolkit for ASP.NET.

Preparing your dimensions on page 25
If you intend to display dimensions or dimension values in your URLs, you must configure
each of the dimensions to Show with record and Show with record list.

Preparing your properties on page 25
If you intend to display record properties in your URLs, you must configure each property to
Show with record and Show with record list.

About using multiple UrlManagers on page 27
In order to generate URLs with the URL Optimization API for the RAD Toolkit for ASP.NET,
you may need to use multiple UrlManager instances.

About ensuring that URLs are optimized on page 30
In cases where a UrlManager does not have enough information to generate an optimized
URL, the URL Optimization API generates a URL that is correct, but not search-engine
optimized.

Creating an SEO UrlProvider on page 36
While there are a number of ways to configure URL optimization with the URL Optimization
API, this guide documents the approach taken by the sample SeoUrlProvider.The following
sections describe the procedure for creating and customizing a UrlProvider similar to the
sample SeoUrlProvider included with the URL Optimization API.

Using the SeoUrlProvider with your application on page 59
Once you have created and configured your custom SeoUrlProvider, you need to integrate
the UrlProvider into you application.

Modifying an existing application built with the RAD Toolkit
for ASP.NET

This section provides a high-level overview of the modifications you must make to an existing application
built using the RAD Toolkit for ASP.NET in order to implement URL optimization.

This procedure assumes that your application uses URLs instead of postbacks to manage state
transitions.

To modify an existing application to use the URL Optimization API:

1. Upgrade the RAD Toolkit for ASP.NET to version 2.1.0.

2. Ensure that any properties and dimensions that you want to display in optimized URLs are configured
to Show with record and Show with record list.

3. Convert your application to use multiple UrlManager instances to handle different commands and
register your data sources with the appropriate UrlManager.

Endeca ConfidentialEndeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's Guide

Implementing URL optimization | Modifying an existing application built with the RAD Toolkit for ASP.NET22

The URL Optimization API does not support using certain combinations of commands with a single
UrlManager. Therefore, you must use multiple UrlManager instances in your application.

Note that the MultipleRecordDetailsCommand, which is used in the RAD Toolkit for ASP.NET
reference application, is not supported by the URL Optimization API. If your application uses the
MultipleRecordDetailsCommand, you must register it with a separate UrlManager that uses
the BasicUrlProvider from the RAD Toolkit for ASP.NET. Alternatively, you can modify your
application to use a RecordDetailsCommand to retrieve several Record objects sequentially.

4. When building search engine-optimized URLs, use the UrlBuilder convenience methods, such
as SelectDimensionValue or SelectRecord. If you use the UrlBuilder.BuildUrl method
directly, use UrlBuilder.BuildUrl((Action(CommandActionInfo)), IIndexProvider,
string) rather than BuildUrl(Action(CommandActionInfo)).

5. Write a custom UrlProvider or, alternatively, modify the sample SeoUrlProvider included in
this software distribution.

The URL Optimization API implements serialization logic that enables you to easily create a custom
UrlProvider to build search engine-optimized Endeca URLs. The sample SeoUrlProvider
provides a good starting point for your implementation.

Note: The URL Optimization API generates URLs that are compatible with the Endeca
Sitemap Generator. It is also possible to write a UrlProvider using your own serialization
logic, although in this case the Endeca Sitemap Generator can no longer create valid sitemaps
for your application.

6. Integrate the custom UrlProvider into your application.

For more details about the UrlManager and UrlProvider classes, as well as the general tasks
involved with building URLs with the RAD Toolkit for ASP.NET, please refer to the RAD Toolkit for
ASP.NET Developer's Guide.

Related Links
System requirements on page 9

This section provides a list of minimum system requirements for the Endeca URL Optimization
API for the RAD Toolkit for ASP.NET.

Preparing your dimensions on page 25
If you intend to display dimensions or dimension values in your URLs, you must configure
each of the dimensions to Show with record and Show with record list.

Preparing your properties on page 25
If you intend to display record properties in your URLs, you must configure each property to
Show with record and Show with record list.

About using multiple UrlManagers on page 27
In order to generate URLs with the URL Optimization API for the RAD Toolkit for ASP.NET,
you may need to use multiple UrlManager instances.

About ensuring that URLs are optimized on page 30
In cases where a UrlManager does not have enough information to generate an optimized
URL, the URL Optimization API generates a URL that is correct, but not search-engine
optimized.

Creating an SEO UrlProvider on page 36
While there are a number of ways to configure URL optimization with the URL Optimization
API, this guide documents the approach taken by the sample SeoUrlProvider.The following

Endeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's GuideEndeca Confidential

23Implementing URL optimization | Modifying an existing application built with the RAD Toolkit for ASP.NET

sections describe the procedure for creating and customizing a UrlProvider similar to the
sample SeoUrlProvider included with the URL Optimization API.

Using the SeoUrlProvider with your application on page 59
Once you have created and configured your custom SeoUrlProvider, you need to integrate
the UrlProvider into you application.

Endeca ConfidentialEndeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's Guide

Implementing URL optimization | Modifying an existing application built with the RAD Toolkit for ASP.NET24

Chapter 5

Preparing your application

This section describes the basic requirements and recommendations for writing your application.

Preparing your dimensions
If you intend to display dimensions or dimension values in your URLs, you must configure each of the
dimensions to Show with record and Show with record list.

You only need to configure the dimensions you intend to include in URLs. Configuring all dimensions
to Show with record and Show with record list may have performance implications.

To configure a dimension to Show with record and Show with record list:

1. Open your project in Endeca Developer Studio.

2. From the Project Explorer on the left, click Dimensions.
The Dimensions dialog displays.

3. Select the dimension you need to edit.

4. Select the Show with record list checkbox.

5. Select the Show with record checkbox.

6. Click OK.

7. Save your changes.

For more information, please refer to the Endeca Developers Studio Help documentation.

Preparing your properties
If you intend to display record properties in your URLs, you must configure each property to Show
with record and Show with record list.

You only need to configure the properties you intend to include in URLs. Configuring all properties to
Show with record and Show with record list may have performance implications.

To configure a property to Show with record and Show with record list:

1. Open your project in Endeca Developer Studio.

2. From the Project Explorer on the left, click Dimensions.
The Dimensions dialog displays.

3. Select the dimension you need to edit.

4. Select the Show with record list checkbox.

5. Select the Show with record checkbox.

6. Click OK.

7. Save your changes.

For more information, please refer to the Endeca Developers Studio Help documentation.

Handling images and external JavaScript files in optimized
URLs

When you modify your application to produce optimized URLs, it is important to ensure that the server
can still locate resources requested by the application, such as image files, JavaScript files, and CSS
files.

Relative URLs are partial URLs that omit host and port information. There are two types of relative
URLs:

• "Site-relative" URLs are relative to the root directory on the site that hosts the Web page, for
example: /sitemap.htm

• "Non-site-relative" URLs are relative to their parent pages, for example: ../sitemap.htm

Because relative paths are relative to the URL that is requested, not the URL that is ultimately resolved,
optimized URLs may create unresolved links when external resources are referenced. When using
the URL Optimization API, Endeca recommends replacing non-site-relative URLs with site-relative
URLs to ensure that links resolve properly.

URL transitioning
Managing redirects is an important aspect of search engine optimization. In order to maintain page
rank for resources within your website, you need an effective strategy to manage URL changes.

As you transition from traditional Endeca URLs to optimized Endeca URLs, or when you change the
configuration of optimized URLs, it is important to ensure that:

• Links throughout your Web site are updated
• Links to external resources (such as image files, CSS, or Javascript files) are updated
• External links to your Web site are permanently redirected to the new URLs

Links throughout your own Web site and to your own external resources can simply be updated to the
new URLs. However, external references to your site must be redirected in order to prevent unresolved
links.

The URL Optimization API is responsible for transforming URLs into Endeca search and navigation
queries, and vice-versa. It does not implement redirect logic. In order to redirect incoming requests,
you must include the appropriate logic in your application controller. By comparing an inbound URL
to the canonical (optimized) form, you can redirect to the canonical URL in cases where the inbound
URL is different.

Endeca recommends including HTTP 301 redirects. Unlike HTTP 302 redirects, which collect ranking
information and index content on a site against the source URL, 301 redirects apply this information
to the destination URL.

Endeca ConfidentialEndeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's Guide

Preparing your application | Handling images and external JavaScript files in optimized URLs26

Chapter 6

Building URLs with the URL Optimization
API

The URL Optimization API leverages the core functionality of the RAD Toolkit for ASP.NET in order
to build search engine-optimized URLs. However, there are some important differences in how you
use the API in order to ensure that the URLs in your application are properly optimized.

About using multiple UrlManagers
In order to generate URLs with the URL Optimization API for the RAD Toolkit for ASP.NET, you may
need to use multiple UrlManager instances.

The URL Optimization API does not support using certain combinations of commands with a single
UrlManager. If you register any of the unsupported combinations with the same instance of a Url¬
Manager, the URL Optimization API throws an exception.Therefore, depending on the kinds of queries
in your application, you may need the following distinct UrlManager instances:

• One to handle NavigationCommand, DimensionSearchCommand, CompoundDimension¬
SearchCommand, and MetadataCommand

• One to handle RecordDetailsCommand
• One to handle AggregateRecordDetailsCommand

Although you must have separate UrlManager instances, they can all use the same UrlProvider
to serialize the command state into search engine-optimized URLs.

Note that the URL Optimization API does not support the MultipleRecordDetailsCommand. If
you need to create URLs for a MultipleRecordDetailsCommand, you need to register it with its
own UrlManager that uses the BasicUrlProvider to serialize URLs. In this case, the URLs for
the MultipleRecordDetailsCommand are not search-engine optimized.

Related Links
Invalid command combinations on page 29

If you register any of the following combinations with the same instance of a UrlManager,
the URL Optimization API throws an exception.

Working with multiple UrlManagers
The URL Optimization API requires the use of multiple UrlManager instances in order to properly
generate links for all the pages in your application.

This section assumes that you are familiar with building URLs using the RAD Toolkit for ASP.NET.
For more details about working with the UrlManager class, please refer to the RAD Toolkit for
ASP.NET Developer's Guide.

In this example, one UrlManager is used to register a NavigationDataSource and Dimension¬
SearchDataSource, while a separate UrlManager is used to register a RecordDetailsData¬
Source. It assumes you have already created data sources or commands in your application and
assigned them an ID, as in the following:

 <end:NavigationDataSource
 ID="dsNav"
 runat="server"
 MdexHostName="<%$ Snippet:_mdex.MdexHostName %>"
 MdexPort="<%$ Snippet:_mdex.MdexPort %>">
 </end:NavigationDataSource>

 <end:DimensionSearchDataSource
 ID="dsDimensionSearch"
 runat="server"
 MdexHostName="<%$ Snippet:_mdex.MdexHostName %>"
 MdexPort="<%$ Snippet:_mdex.MdexPort %>">
 </end:DimensionSearchDataSource>

 <end:RecordDetailsDataSource
 ID="dsRecordDetails"
 runat="server"
 MdexHostName="<%$ Snippet:_mdex.MdexHostName %>"
 MdexPort="<%$ Snippet:_mdex.MdexPort %>">
 </end:RecordDetailsDataSource>

1. Register the NavigationDataSource and DimensionSearchDataSource with the UrlMan¬
ager named "Default."

UrlManager.Default.Register(dsNav);
UrlManager.Default.BaseUrl = "~/Content.aspx";
UrlManager.Default.Register(dsDimensionSearch);
UrlManager.Default.InitializeFrom(Request.Url);

2. Create another UrlManager named "RecordDetail" and register the RecordDetailsDataSource
with it.

UrlManager recordDetailUrlManager = UrlManager.Get("RecordDetail");
recordDetailUrlManager.Register(dsRecordDetails);
recordDetailUrlManager.BaseUrl = "~/Content.aspx";
recordDetailUrlManager.InitializeFrom(Request.Url);

3. When generating links, be sure to use the correct UrlManager instance. For example, when
creating the URL for a record detail page, use the recordDetailUrlManager.

UrlManager recordDetailUrlManager = UrlManager.Get("RecordDetail");
String url = recordDetailUrlManager.Urls.SelectRecord(RecordDetailsData¬
SourceID, (Record)record)

Working with multiple UrlProviders
You can specify more than one UrlProvider in your application, for example if you need to generate
URLs for commands that are not supported by the URL Optimization API.

Endeca ConfidentialEndeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's Guide

Building URLs with the URL Optimization API | About using multiple UrlManagers28

Each UrlManager uses only one UrlProvider. However, if you use multiple UrlManager instances,
you can specify a different UrlProvider for each one. In general, you want to use a single Url¬
Provider to serialize all the URLs in your application.

You specify the assembly-qualified type name for the UrlProvider classes in the application's
Web.config file. In this example, all instances of UrlManager use the SeoUrlProvider except
for the UrlManager designed to handle MultipleRecordDetailsCommand, which is not supported
by the URL Optimization API.

<endeca.web>
 <urlProviders>
 <add urlManagerId="Default" type="Endeca.Web.Url.Seo.Sample.SeoUrl¬
Provider,Endeca.Web.Url.Seo" />
 <add urlManagerId="RecordDetail" type="Endeca.Web.Url.Seo.Sample.SeoUrl¬
Provider,Endeca.Web.Url.Seo" />
 <add urlManagerId="AggrRecordDetail" type="Endeca.Web.Url.Seo.Sam¬
ple.SeoUrlProvider,Endeca.Web.Url.Seo" />
 <add urlManagerId="MultiRecordDetail" type="Endeca.Web.Url.BasicUrl¬
Provider,Endeca.Web" />
 </urlProviders>
</endeca.web>

You can also set the UrlProvider on the UrlManager programmatically, for example:

UrlManager multiRecordDetailUrlManager = UrlManager.Get("MultiRecordDetail");
multiRecordDetailUrlManager.UrlProvider = new BasicUrlProvider();

Invalid command combinations
If you register any of the following combinations with the same instance of a UrlManager, the URL
Optimization API throws an exception.

The URL Optimization API requires the use of multiple UrlManager instances in order to properly
generate links for all the pages in your application.

Invalid combinationCommand

RecordDetailsCommandNavigationCommand

AggregateRecordDetailsCommandNavigationCommand

AggregateRecordDetailsCommandRecordDetailsCommand

DimensionSearchCommandRecordDetailsCommand

CompoundDimensionSearchCommandRecordDetailsCommand

MetadataCommandRecordDetailsCommand

DimensionSearchCommandAggregateRecordDetailsCommand

CompoundDimensionSearchCommandAggregateRecordDetailsCommand

MetadataCommandAggregateRecordDetailsCommand

Note: The MultipleRecordDetailsCommand is not supported by the URL Optimization API.

Related Links
Working with multiple UrlManagers on page 27

Endeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's GuideEndeca Confidential

29Building URLs with the URL Optimization API | About using multiple UrlManagers

The URL Optimization API requires the use of multiple UrlManager instances in order to
properly generate links for all the pages in your application.

About avoiding invalid URLs
Using the URL Optimization API makes it possible to inadvertently create URLs that exceed the
MAX_PATH limit of the .NET Framework.

The .NET Framework imposes a limit of 260 characters on the physical path in URLs. Any attempt to
access a link that violates this limit returns an HTTP 400 (Bad Request) code. This error is logged in
the IIS logs along with the URL that was requested.

The URL Optimization API may produce long URLs in cases such as the following:

• many dimensions set to display as part of the misc-path
• deep dimensions set to display the full hierarchy as part of the misc-path
• very long dimension names set to display as part of the misc-path

In order to ensure that end users do not encounter errors while browsing your site, you should wrap
any calls to BuildUrl or the UrlBuilder helper methods with logic that checks the length of the
path and shortens the misc-path if necessary. Note that the protocol, server information, application
name, and query string are not included in the 260-character limit.

About ensuring that URLs are optimized
In cases where a UrlManager does not have enough information to generate an optimized URL, the
URL Optimization API generates a URL that is correct, but not search-engine optimized.

The UrlBuilder class provides a number of convenience methods that can be used to perform
common actions on a command and generate the resulting URL string. In the vast majority of cases,
these convenience methods guarantee that you are passing in enough information to the UrlManager
to build an optimized URL. Therefore, for common use cases, it is recommended that you use these
convenience methods to generate URLs.

For example, the following call to UrlBuilder generates a link to select a dimension value:

 string url = UrlManager.Default.Urls.SelectDimensionValue(
 NavigationDataSourceID, dval);

where NavigationDataSourceID is a string containing the ID of the NavigationDataSource,
and dval is the DimensionValue object to select.

The UrlBuilder class is part of the Endeca RAD API. For further information about using the Url¬
Builder helper methods, please refer to the RAD Toolkit for ASP.NET Developer's Guide and the
API Reference for the RAD Toolkit for ASP.NET.

The following sections describe certain situations in which the convenience methods do not always
ensure that the UrlManager can generate an optimized URL.

Endeca ConfidentialEndeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's Guide

Building URLs with the URL Optimization API | About avoiding invalid URLs30

Building an optimized URL to select a dimension value from a
BusinessRule object

BusinessRule objects store their navigation state as a collection of DisconnectedDimensionVa¬
lue objects, which do not contain enough information for the UrlManager to build an optimized URL.

Calling UrlBuilder.SelectDimensionValue with a DisconnectedDimensionValue results
in a functional but non-optimized URL.When selecting dimension values returned with a BusinessRule
object, you must use the UrlBuilder.SelectDisconnectedDimensionValue method to build
optimized URLs.

For example:

 string url = UrlManager.Default.Urls.SelectDisconnectedDimensionValue(
 NavigationDataSourceID, disconnectedDimensionValue, record);

where NavigationDataSourceID is a string containing the ID of the NavigationDataSource,
disconnectedDimensionValue is the DisconnectedDimensionValue object to select, and
record is a Record object that is returned with the business rule that fired. This Record object
contains a DimensionValue object that corresponds to the DisconnectedDimensionValue, and
that DimensionValue object is used to generate an optimized URL.

Building an optimized URL to an aggregate record detail page
Using the URL Optimization API affects the way that you build URLs to select an aggregate record.

Two pieces of information are needed to create a URL for an aggregate record detail page: The ID of
the aggregate record to be selected and the aggregation key. The aggregation key is usually present
on the NavigationDataSource representing a navigation state that includes the aggregate records.

The UrlBuilder class exposes several convenience methods that can be used to select an aggregate
record. The SelectAggregateRecord(AggregateRecordDetailsDataSourceID, Naviga¬
tionDataSourceID, aggRec) method assumes that your NavigationDataSource and Aggre¬
gateRecordDetailDataSource are registered with the same URL manager. However, with the
URL Optimization API, you are required to use separate instances of UrlManager to handle the
NavigationDataSource and AggregateRecordDetailDataSource, and you should use the
following convenience method to build URLs for aggregate records:

 string url = UrlManager.Default.Urls.SelectAggregateRecord(
 AggregateRecordDetailsDataSourceID, navigationDataSource, aggRec);

where AggregateRecordDetailsDataSourceID is the string containing the ID of the Aggre¬
gateRecordDetailsDataSource, navigationDataSource is the NavigationDataSource
object containing the appropriate aggregation key, and aggRec is the AggregateRecord object to
select.

An alternate approach is to select an aggregate record by setting the aggregation key directly on the
AggregateRecordDetailsDataSource, as in the following example:

 // Find both your aggregate record details data source
 // and the navigation data source containing the appropriate
 // aggregation key.
 AggregateRecordDetailsDataSource aggrRecDataSource =
 BindingUtility.FindDataSource<AggregateRecordDetailsDataSource>(
 "dsAggregateRecordDetails", this);
 NavigationDataSource navDS =
 BindingUtility.FindDataSource<NavigationDataSource>("dsNav", this);

Endeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's GuideEndeca Confidential

31Building URLs with the URL Optimization API | About ensuring that URLs are optimized

 // set the aggregation key on the aggregate record details data
 // source to be that on the navigation data source
 aggrRecDataSource.AggregationKey = navDS.AggregationKey;

 // call the UrlBuilder.SelectAggregateRecord method with the
 // aggregate record detail data source id and the AggregateRecord
 // object to select.
 string url = UrlManager.Default.Urls.SelectAggregateRecord(
 AggregateRecordDetailsDataSourceID, aggRec);

This is equivalent to calling the UrlBuilder.BuildUrl method as follows:

 string url = aggrRecordDetailUrlManager.Urls.BuildUrl(
 delegate (CommandActionInfo commands)
 {
 AggregateRecordDetailsCommand aggCommand =
 commands.Get<AggregateRecordDetailsCommand>(
 AggregateRecordDetailsDataSourceID);
 aggCommand.Identifier = aggRec.Id;
 aggCommand.AggregationKey = navDS.AggregationKey;
 }, new IndexedAggregateRecord(aggRec), AggregateRecordDetailsDataSour¬
ceID);

Building optimized URLs without using convenience methods
In situations for which the UrlBuilder class does not provide convenience methods, you must take
care to pass sufficient information to the BuildUrl method to generate optimized URLs.

For example, there is no convenience method to copy the state of one NavigationCommand to
another, as when building a "see-all" link for a dynamic spotlight cartridge in the Content Assembler
API.

In a typical Content Assembler application (without URL optimization), you would create the link using
the BuildUrl method as follows:

 UrlManager.Default.Urls.BuildUrl(
 delegate(CommandActionInfo commands)
 {
 NavigationCommand navCmd =
 commands.Get<NavigationCommand>(NavigationDataSourceID);
 navCmd.CopyFrom(spotlightNavCommand);
 });

where spotlightNavCommand is the NavigationCommand object returned by the Content Assembler
as part of the IRecordListProperty object that represents the spotlighting results. However,
because the UrlManager relies on its data sources to provide the information to create optimized
URLs, and the spotlighting results typically are not associated with any data source in the application,
this method generates a non-optimized URL.

To provide the UrlManager with enough information to create an optimized URL, first retrieve the
NavigationResult object from the IRecordListProperty object and use it to create an IInd¬
exProvider object. Then pass in this IIndexProvider with the call to UrlBuilder.BuildUrl
as in the following example:

 UrlManager.Default.Urls.BuildUrl(
 delegate(CommandActionInfo commands)
 {
 NavigationCommand navCmd =
 commands.Get<NavigationCommand>(NavigationDataSourceID);
 navCmd.CopyFrom(spotlightNavCommand);

Endeca ConfidentialEndeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's Guide

Building URLs with the URL Optimization API | About ensuring that URLs are optimized32

 }, new IndexedNavigationResult(spotlightNavResult), NavigationDataSour¬
ceID);

This call to BuildUrl uses the dimension values in this indexed result object to create an optimized
URL representing the navigation state associated with the spotlight cartridge.

The same general process applies to any use case for which a convenience method does not already
exist in UrlBuilder. When constructing the IIndexProvider, ensure that the object you index
has all the information necessary to create an optimized URL. This may vary depending on the
information you want to display in the URL and the kind of link you are constructing. For example,
when building a URL to select a dimension value, make sure that the object that you pass to the
IIndexProvider constructor contains that dimension value.

Endeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's GuideEndeca Confidential

33Building URLs with the URL Optimization API | About ensuring that URLs are optimized

Chapter 7

Configuring URLs

This section provides information about creating and using a UrlProvider similiar to the SeoUrl¬
Provider included with the URL Optimization API to optimize URLs in applications built with the
Endeca RAD Toolkit for ASP.NET. The information and examples provided in this section relate to
basic URL configuration tasks, and do not cover the entire breadth of the URL Optimization API
capabilities. Endeca recommends consulting the API documentation as you develop your application.

Anatomy of an optimized Endeca URL
An optimized Endeca URL is made up of four configurable sections.

General URL References

When referring to URLs in general, the URL Optimization API documentation may use the terms "base
URL" and "URL query parameters." The "base URL" is the part of the URL that precedes the question
mark.

For example, in the URL:

http://www.example.com/pathparam1/pathparam2/pathparam3/results?queryparam=123

the base URL is the string that displays before the question mark:

http://www.example.com/pathparam1/pathparam2/pathparam3/results

Optimized Endeca URLs

For reference purposes, the documentation identifies four distinct sections of optimized Endeca URLs:

• misc-path
• path-param-separator
• path-params
• query string

For example, the following URL is broken down into subsections:

http://localhost:8888/controller[/Wine-Red-Merlot/Napa/Pine-Ridge/_/N-12ZafZfd?Ne=123]

The sections of the URL encased in square brackets can be broken down into the following components:

[/<misc-path>][/<path-param-separator>][/<path-params>][?<query-string>]

The components correspond to the following strings:

StringSection

Wine-Red-Merlot/Napa/Pine-Ridgemisc-path

_path-param-separator

N-12ZafZfdpath-params

Ne=123query string

misc-path

This section of the URL incorporates keywords into the URL in order to create user-friendly and search
engine-optimized URLs. The misc-path section of the optimized URL can be generated based on
dimension names, dimension values, ancestor names, and record properties.The misc-path component
is largely ignored by the application.

path-param-separator

The path-param-separator component is used to identify the end of the misc-path and the starting
point for path parameters. This string is configurable.

path-params

Together with the query string, the path-params segment of the URL represents the current state of
the application. This may include the numerical representation of the navigation state or a specific
record, as well as any other parameter key-value pairs that have an effect on the displayed content.
This component can be configured to contain several parameters that would typically be included as
part of the query string in traditional Endeca URLs, such as the N, Ne, Ntt, and R parameters.

query string

The query string component of the URL follows the question mark character. The combination of the
path-params and query string represents the current state of the application. Endeca parameters such
as N, Ne, Ntt, and R that are not configured to display in the path-params section of the URL display
in the query string.

Related Links
About optimizing the misc-path on page 38

With the URL Optimization API you can configure dimensions, dimension values, record
properties, and aggregate record properties to display in the misc-path of URLs.You can
also specify the order in which dimensions and dimension values display on navigation pages.

About optimizing the path-params and query string on page 53
The URL Optimization API provides functionality for encoding path parameters and moving
Endeca path parameters from the query string into the path-params section of the URL.

Configuring the path-param-separator on page 52
Using the PathSeparatorToken property in the BaseSeoUrlProvider constructor, you
can configure the path-params-separator string.

Creating an SEO UrlProvider
While there are a number of ways to configure URL optimization with the URL Optimization API, this
guide documents the approach taken by the sample SeoUrlProvider.The following sections describe

Endeca ConfidentialEndeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's Guide

Configuring URLs | Creating an SEO UrlProvider36

the procedure for creating and customizing a UrlProvider similar to the sample SeoUrlProvider
included with the URL Optimization API.

Note: The procedures documented in this section are based on the sample SeoUrlProvider
which uses Factory methods to instantiate member variables derived from the BaseSeoUrl¬
Provider parent class. These Factory classes are not part of the URL Optimization API, but
provide a simple and flexible mechanism for instantiating objects and organizing code for reuse.
You are not required to use Factory classes to instantiate objects.

To create an SeoUrlProvider:

1. Include the following libraries in your SeoUrlProvider:

using Endeca.Web.Url.Seo.Formatting;
using System.Collections.ObjectModel;
using System.Collections.Specialized;
using System;
using System.Collections.Generic;
using Endeca.Web.Url.Seo.Utility;
using Endeca.Web.Url.Seo.Canonicalizers;
using Endeca.Data;

2. Create a namespace for your SeoUrlProvider class.
For example, the sample SeoUrlProvider included with the URL Optimization API uses the
following namespace:

namespace Endeca.Web.Url.Seo.Sample

3. Create an SeoUrlProvider class that inherits from the BaseSeoUrlProvider class:
For example:

 public class SeoUrlProvider : BaseSeoUrlProvider
 {
 }

In order to begin optimizing URLs, you need to set certain required properties in the constructor of the
SeoUrlProvider object. For example:

 public class SeoUrlProvider : BaseSeoUrlProvider
 {

 public SeoUrlProvider()
 : base()
 {
 this.NavigationCommandFormatter = NavigationCommandFormatterFacto¬
ry.Create();
 this.RecordDetailsCommandFormatter = RecordDetailsCommandFormatter¬
Factory.Create();
 this.AggregateRecordDetailsCommandFormatter = AggregateRecordDe¬
tailsCommandFormatterFactory.Create();
 this.NavigationCommandCanonicalizer = DimensionValueCollectionCanon¬
icalizerFactory.Create();
 this.ParameterEncoders = ParameterEncodersFactory.Create();
 this.PathParameters = PathParameterFactory.Create();
 }

 }

Endeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's GuideEndeca Confidential

37Configuring URLs | Creating an SEO UrlProvider

The instructions in this chapter explain which of the derived properties are required for each task.You
can set these properties on your SeoUrlProvider object as you work through the chapter.

About optimizing the misc-path
With the URL Optimization API you can configure dimensions, dimension values, record properties,
and aggregate record properties to display in the misc-path of URLs.You can also specify the order
in which dimensions and dimension values display on navigation pages.

NavigationCommandFormatter

The NavigationCommandFormatter is responsible for configuring dimension names, roots,
ancestors, and dimension value names in the misc-path of URLs for navigation pages.Navigation¬
CommandFormatters use DimensionValuePathFormatters to format the individual dimension
and dimension values to be displayed in the URL.

For example, the following URL is for the navigation state Region > Napa:

http://localhost/ContentAssemblerRefApp/Content.aspx/?&Ne=8&N=4294967160

Using URL Optimization API, that same URL can be formatted as follows:

http://localhost/ContentAssemblerRefApp/Content.aspx/Napa/_/N-1z141vc

NavigationCommandCanonicalizer

The NavigationCommandCanonicalizer is responsible for ordering the dimension and dimension
value names included in the misc-path for navigation pages. For example, an end-user can reach the
Wine Type > Red, Region > Napa page by navigating first to Wine Type > Red and then to Region >
Napa, or by navigating to Region > Napa and then Wine Type > Red.To avoid two syntactically different
URLs for the same Wine Type > Red, Region > Napa page, you can use the NavigationCommand¬
Canonicalizer to standardize the order of dimension and dimension values in the misc-path.

Note: There are a number of configuration options available for the arrangement of the dimension
and dimension value names.

RecordDetailsCommandFormatter

URL optimization for record detail pages is configured separately from navigation pages and aggregate
record detail pages. In addition to dimension names, roots, ancestors, and dimension value names,
you can also include record properties in the URL string for record detail pages.

AggregateRecordDetailsCommandFormatter

URL optimization for aggregate record detail pages is configured separately from navigation pages
and record detail pages. In addition to dimension names, roots, ancestors, and dimension value names,
you can also include record properties in the URL string for aggregate record detail pages.

Related Links
Duplicate content and URL canonicalization on page 15

Dynamic sites often produce syntactically different URLs for the same page. Multiple variant
URLs result in duplicate content and therefore lower natural search engine ranking.
Canonicalizing your URLs reduces that duplicate content and improves search engine ranking.

Endeca ConfidentialEndeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's Guide

Configuring URLs | About optimizing the misc-path38

Anatomy of an optimized Endeca URL on page 35
An optimized Endeca URL is made up of four configurable sections.

Optimizing URLs for navigation pages
Using the URL Optimization API, you can include dimension and dimension value names in the
misc-path of URLs. Dimension and dimension value names, also referred to as "keywords," are
canonicalized to prevent duplicate content.

Note: For dimensions to display properly in the URL, they must be configured to show with
record and show with record list.

Before you begin optimizing URLs, create an SeoUrlProvider.

To optimize URLs for navigation pages:

1. Set the NavigationCommandFormatter and NavigationCommandCanonicalizer properties
in the constructor of the SeoUrlProvider object:

 public SeoUrlProvider()
 : base()
 {
 this.NavigationCommandFormatter = NavigationCommandFormatterFac¬
tory.Create();
 this.NavigationCommandCanonicalizer = DimensionValueCollection¬
CanonicalizerFactory.Create();
 }

2. Use the NavigationCommandFormatterFactory to instantiate a NavigationCommandFor¬
matter object.
For example:

 public static class NavigationCommandFormatterFactory
 {
 public static NavigationCommandFormatter Create()
 {
 NavigationCommandFormatter formatter = new NavigationCommandFor¬
matter();
 }

 }

3. Set a UseDimensionNameAsKey property on the NavigationCommandFormatter object.
For example:

 public static class NavigationCommandFormatterFactory
 {
 public static NavigationCommandFormatter Create()
 {
 NavigationCommandFormatter formatter = new NavigationCommandFor¬
matter();
 formatter.UseDimensionNameAsKey = true;
 }

 }

Setting the useDimensionNameAsKey to false creates a key on the dimension ID numbers.

4. Set a DimensionValuePathFormatters property NavigationCommandFormatter object.

Endeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's GuideEndeca Confidential

39Configuring URLs | About optimizing the misc-path

For example:

 public static class NavigationCommandFormatterFactory
 {
 public static NavigationCommandFormatter Create()
 {
 NavigationCommandFormatter formatter = new NavigationCommandFor¬
matter();
 formatter.UseDimensionNameAsKey = true;
 formatter.DimensionValuePathFormatters = DimensionValuePathFor¬
mattersFactory.CreateForNavigationCommand();
 return formatter;
 }

 }

5. Use a DimensionValuePathFormattersFactory to instantiate a DimensionValuePathFor¬
matters object for the NavigationCommandFormatter.
For example:

 public static class DimensionValuePathFormattersFactory
 {
 public static Dictionary<string, IDimensionValuePathFormatter>
CreateForNavigationCommand()
 {
 Dictionary<string, IDimensionValuePathFormatter> dimValPaths =
 new Dictionary<string, IDimensionValuePathFormatter>();

 }

6. Add a DimensionValuePathFormatter for each dimension that you intend to include in the
DimensionValuePathFormattersFactory.

Note: Use the dimValPaths.Add method call to key each DimensionValuePathFor¬
matter. If you set the useDimensionNameAsKeyDimensionValuePathFormatter
as false in step three, be sure to use the dimension ID instead of the dimension name.

For example:

 public static Dictionary<string, IDimensionValuePathFormatter>
CreateForNavigationCommand()
 {
 Dictionary<string, IDimensionValuePathFormatter> dimValPaths =
 new Dictionary<string, IDimensionValuePathFormatter>();

 DimensionValuePathFormatter wineTypeFormatter = DimensionVal¬
uePathFormatterFactory.Create(true, true, true);
 DimensionValuePathFormatter regionFormatter = DimensionValuePath¬
FormatterFactory.Create(false, false, true);
 DimensionValuePathFormatter wineryFormatter = DimensionValuePath¬
FormatterFactory.Create(false, false, true);

 dimValPaths.Add("Wine Type", wineTypeFormatter);
 dimValPaths.Add("Region", regionFormatter);
 dimValPaths.Add("Winery", wineryFormatter);

 }

Note: The DimensionValuePathFormatterFactory.Create(bool, bool, bool);
method is defined in step seven.

Endeca ConfidentialEndeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's Guide

Configuring URLs | About optimizing the misc-path40

7. Use a DimensionValuePathFormatterFactory to instantiate a DimensionValuePathFor¬
matter and add the following formatters:

DescriptionFormatter

Specifies whether or not to append root dimension values to the URL.
Set to true to append root dimension values.

AppendRoot

Specifies whether or not to append ancestor dimension values to the
URL. Set to true to append ancestor dimension values.

AppendAncestors

Specifies whether or not to append the selected or descriptor dimension
values to the URL. Set to true to append ancestor dimension values.

AppendDimensionVal¬
ue

Sets the IStringFormatter to customize URL formatting for
dimension roots in the URL. If the value is null, roots do not display in
the URL.

RootFormatter

Sets the IStringFormatter to customize URL formatting for
dimension, ancestor, and dimension value names. If the value is null,

PathFormatter

dimension, ancestor, and dimension value names do not display in the
URL.

For example:

 public static class DimensionValuePathFormatterFactory
 {
 public static DimensionValuePathFormatter Create(bool appendRoot,
 bool appendAncestors, bool appendDimVals)
 {
 DimensionValuePathFormatter formatter = new DimensionValuePath¬
Formatter();
 formatter.AppendRoot = appendRoot;
 formatter.AppendAncestors = appendAncestors;
 formatter.AppendDimensionValue = appendDimVals;

 formatter.RootFormatter = StringFormatterFactory.CreateDefault¬
StringFormatter();
 formatter.PathFormatter = StringFormatterFactory.CreateDefault¬
StringFormatter();

 return formatter;

 }

 }

8. Use the StringFormatterFactory to instantiate an IStringFormatter object.
For example:

 public static class StringFormatterFactory
 {
 public static IStringFormatter CreateDefaultStringFormatter()
 {

9. Instantiate a RegexReplacementStringFormatter to replace non-word characters.

 public static class StringFormatterFactory
 {
 public static IStringFormatter CreateDefaultStringFormatter()
 {
 // Convert non word characters to '-'

Endeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's GuideEndeca Confidential

41Configuring URLs | About optimizing the misc-path

 RegexReplacementStringFormatter nonWordCharsToDashFormatter
 //character class subtraction, whitespace character excluding
 the unicode characters
 = new RegexReplacementStringFormatter(@"(?:[\W-[\u00C0-
\u00FF]])+", "-");

 }

10. Instantiate a second RegexReplacementStringFormatter to remove leading and trailing
characters created by the RegexReplacementStringFormatter nonWordCharsToDashFor¬
matter.

 public static class StringFormatterFactory
 {
 public static IStringFormatter CreateDefaultStringFormatter()
 {
 // Convert non word characters to '-'
 RegexReplacementStringFormatter nonWordCharsToDashFormatter
 //character class subtraction, whitespace character excluding
 the unicode characters
 = new RegexReplacementStringFormatter(@"(?:[\W-[\u00C0-
\u00FF]])+", "-");

 // Trim leading and trailing '-' characters
 RegexReplacementStringFormatter trimDashCharsFormatter
 = new RegexReplacementStringFormatter(@"^-?([\w\u00C0-
\u00FF][\w-\u00C0-\u00FF]*[\w\u00C0-\u00FF])-?$", "$1");

 return new CompositeStringFormatter(nonWordCharsToDashFormatter,
 trimDashCharsFormatter);

 }

11. Use a DimensionValueCollectionCanonicalizerFactory to instantiate an IDimension¬
ValueCollectionCanonicalizer.
For example:

public static IDimensionValueCollectionCanonicalizer Create()
 {
 DimensionValueCollectionCanonicalizer canonicalizer = new Dimen¬
sionValueCollectionCanonicalizer();
 canonicalizer.Identifier = DimensionValueCollectionCanonicaliz¬
er.CanonicalIdentity.DimensionName;
 canonicalizer.Direction = SortDirection.Descending;

 return canonicalizer;

 }

Note: By design, the URL Optimization API prevents the creation of syntactically different
URLs by canonicalizing keywords.You can choose from a number of configuration options
to control the arrangement of canonicalized keywords.

Related Links
Preparing your dimensions on page 25

If you intend to display dimensions or dimension values in your URLs, you must configure
each of the dimensions to Show with record and Show with record list.

Preparing your properties on page 25

Endeca ConfidentialEndeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's Guide

Configuring URLs | About optimizing the misc-path42

If you intend to display record properties in your URLs, you must configure each property to
Show with record and Show with record list.

Canonicalization configuration options
The canonicalizer.Identifier and canonicalizer.Direction properties on the IDimen¬
sionValueCollectionCanonicalizer object determine the method and direction of dimension
ordering for navigation page URLs.

The canonicalizer.Identifier property determines how the dimensions should be sorted.The
canonicalizer.Direction property determines in which direction to sort them.

For example, the following code sample creates a canonicalized URL that sorts by dimension ID in
an ascending order:

 public static class DimensionValueCollectionCanonicalizerFactory
 {
 public static IDimensionValueCollectionCanonicalizer Create()
 {
 DimensionValueCollectionCanonicalizer canonicalizer = new Dimen¬
sionValueCollectionCanonicalizer();
 canonicalizer.Identifier = DimensionValueCollectionCanonicaliz¬
er.CanonicalIdentity.DimensionValueName;
 canonicalizer.Direction = SortDirection.Descending;

 return canonicalizer;

 }

 }

The following example configurations use the dimensions:

• Wine Type (dimension ID: 6200)
• region (dimension ID: 8)

and the dimension values:

• Red (dimension value ID: 8021)
• napa (dimension value ID: 4294967160)

Canonical Identity

Example base URL (sort direction
ascending)

DescriptionCanonical Identity value

http://localhost/Con¬
tentAssemblerRefApp/Con¬

Sorts alphabetically by
dimension name. Capital
letters are given precedence.

DimensionName

tent.aspx/Wine-red/region-
Napa/

http://localhost/Con¬
tentAssemblerRefApp/Con¬

Sorts alphabetically by
dimension name, giving no
regard to capitalization.

DimensionNameCaseInsensi¬
tive

tent.aspx/region-Na¬
pa/Wine-red/

Endeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's GuideEndeca Confidential

43Configuring URLs | About optimizing the misc-path

Example base URL (sort direction
ascending)

DescriptionCanonical Identity value

http://localhost/Con¬
tentAssemblerRefApp/Con¬

Sorts by dimension ID.DimensionId

tent.aspx/region-Na¬
pa/Wine-red/

http://localhost/Con¬
tentAssemblerRefApp/Con¬

Sorts alphabetically by
dimension value name.
Capital letters are given
precedence.

DimensionValueName

tent.aspx/region-Na¬
pa/Wine-red/

http://localhost/Con¬
tentAssemblerRefApp/Con¬

Sorts alphabetically by
dimension value name, giving
no regard to capitalization.

DimensionValueNameCaseIn¬
sensitive

tent.aspx/region-Na¬
pa/Wine-red/

http://localhost/Con¬
tentAssemblerRefApp/Con¬

Sorts by dimension value ID.DimensionValueId

tent.aspx/Wine-red/region-
Napa/

SortDirection

Example base URL (sorted by dimension
ID)

Descriptioncanonicalizer.Direc¬
tion value

http://localhost/ContentAssem¬
blerRefApp/Content.aspx/region-
Napa/Wine-red/

Sorts in an ascending order
based on the canonicaliz¬
er.Identifier.

Ascending

http://localhost/ContentAssem¬
blerRefApp/Content.aspx/Wine-
red/region-Napa/

Sorts in a descending order
based on the canonicaliz¬
er.Identifier.

Descending

Note: Canonicalizing the dimension and dimension value names in the misc-path changes the
order in which they appear in the path-params section of the URL. For example, if Napa is
configured to display before Red in the misc-path, the Napa dimension value ID displays before
the Red dimension value ID in the path-params section.

Optimizing URLs for record detail pages
Using the URL Optimization API, you can include dimension names, dimension value names, and
record properties in the misc-path of URLs for record detail pages.

Note: For dimensions to display properly in the URL, they must be configured to show with
record and show with record list.

Before you begin optimizing URLs, create an SeoUrlProvider.

To optimize URLs for record detail pages:

Endeca ConfidentialEndeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's Guide

Configuring URLs | About optimizing the misc-path44

1. Set the RecordDetailsCommandFormatter property in the constructor of the SeoUrlProvider
object:

 public SeoUrlProvider()
 : base()
 {
 this.RecordDetailsCommandFormatter = RecordDetailsCommandFormat¬
terFactory.Create();
 }

2. Use the RecordDetailsCommandFormatterFactory to instantiate a RecordDetailsCom¬
mandFormatter.
For example:

 public static class RecordDetailsCommandFormatterFactory
 {
 public static RecordDetailsCommandFormatter Create()
 {
 RecordFormatter recordFormatter = new RecordFormatter();

 }

 }

3. Set a UseDimensionNameAsKey property on the RecordDetailsCommandFormatter.
For example:

 public static class RecordDetailsCommandFormatterFactory
 {
 public static RecordDetailsCommandFormatter Create()
 {
 RecordFormatter recordFormatter = new RecordFormatter();

 recordFormatter.UseDimensionNameAsKey = true;
 }

 }

Setting the useDimensionNameAsKey to false creates a key on the dimension ID numbers.

4. Set a DimensionValuePathFormatters property on the RecordDetailsCommandFormatter.
For example:

 public static class RecordDetailsCommandFormatterFactory
 {
 public static RecordDetailsCommandFormatter Create()
 {
 RecordFormatter recordFormatter = new RecordFormatter();

 recordFormatter.UseDimensionNameAsKey = true;
 recordFormatter.DimensionValuePathFormatters = DimensionValuePath¬
FormattersFactory.CreateForRecordDetailsCommand();

 }

 }

5. Use a DimensionValuePathFormattersFactory to instantiate a DimensionValuePathFor¬
matters object for the RecordDetailsCommandFormatter.

Endeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's GuideEndeca Confidential

45Configuring URLs | About optimizing the misc-path

For example:

 public static Dictionary<string, IDimensionValuePathFormatter>
CreateForRecordDetailsCommand()
 {
 Dictionary<string, IDimensionValuePathFormatter> dimValPaths =
 new Dictionary<string, IDimensionValuePathFormatter>();

 }

6. Add a DimensionValuePathFormatter for each dimension that you intend to include in the
URLs.

Note: Use the dimValPaths.Add method call to key each DimensionValuePathFor¬
matter. If you set the useDimensionNameAsKeyDimensionValuePathFormatter
as false in step three, be sure to use the dimension ID instead of the dimension name.

For example:

 public static Dictionary<string, IDimensionValuePathFormatter>
CreateForRecordDetailsCommand()
 {
 Dictionary<string, IDimensionValuePathFormatter> dimValPaths =
 new Dictionary<string, IDimensionValuePathFormatter>();

 DimensionValuePathFormatter wineTypeFormatter = DimensionVal¬
uePathFormatterFactory.Create(true, true, true);
 DimensionValuePathFormatter regionFormatter = DimensionValuePath¬
FormatterFactory.Create(false, false, true);
 DimensionValuePathFormatter wineryFormatter = DimensionValuePath¬
FormatterFactory.Create(false, false, true);

 dimValPaths.Add("Wine Type", wineTypeFormatter);
 dimValPaths.Add("Region", regionFormatter);
 dimValPaths.Add("Winery", wineryFormatter);

 }

Note: If you have already followed the steps for optimizing navigation pages and want to
reuse the dimension value path formatters and string formatters for your record detail pages,
you can skip to step eleven.

7. Use a DimensionValuePathFormatterFactory to instantiate a DimensionValuePathFor¬
matter object and add the following formatters:

DescriptionFormatter

Specifies whether or not to append root dimension values to the URL.
Set to true to append root dimension values.

AppendRoot

Specifies whether or not to append ancestor dimension values to the
URL. Set to true to append ancestor dimension values.

AppendAncestors

Specifies whether or not to append the selected or descriptor dimension
values to the URL. Set to true to append ancestor dimension values.

AppendDimensionVal¬
ue

Sets the IStringFormatter to customize URL formatting for
dimension roots in the URL. If the value is null, roots do not display in
the URL.

RootFormatter

Endeca ConfidentialEndeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's Guide

Configuring URLs | About optimizing the misc-path46

DescriptionFormatter

Sets the IStringFormatter to customize URL formatting for
dimension, ancestor, and dimension value names. If the value is null,

PathFormatter

dimension, ancestor, and dimension value names do not display in the
URL.

For example:

 public static class DimensionValuePathFormatterFactory
 {
 public static DimensionValuePathFormatter Create(bool appendRoot,
 bool appendAncestors, bool appendDimVals)
 {
 DimensionValuePathFormatter formatter = new DimensionValuePath¬
Formatter();
 formatter.AppendRoot = appendRoot;
 formatter.AppendAncestors = appendAncestors;
 formatter.AppendDimensionValue = appendDimVals;

 formatter.RootFormatter = StringFormatterFactory.CreateDefault¬
StringFormatter();
 formatter.PathFormatter = StringFormatterFactory.CreateDefault¬
StringFormatter();

 return formatter;

 }

 }

8. Use the StringFormatterFactory to instantiate an IStringFormatter object.
For example:

 public static class StringFormatterFactory
 {
 public static IStringFormatter CreateDefaultStringFormatter()
 {

9. Instantiate a RegexReplacementStringFormatter to replace non-word characters.

 public static class StringFormatterFactory
 {
 public static IStringFormatter CreateDefaultStringFormatter()
 {
 // Convert non word characters to '-'
 RegexReplacementStringFormatter nonWordCharsToDashFormatter
 //character class subtraction, whitespace character excluding
 the unicode characters
 = new RegexReplacementStringFormatter(@"(?:[\W-[\u00C0-
\u00FF]])+", "-");

 }

10. Instantiate a second RegexReplacementStringFormatter to remove leading and trailing
characters created by the RegexReplacementStringFormatter nonWordCharsToDashFor¬
matter.

 public static class StringFormatterFactory
 {
 public static IStringFormatter CreateDefaultStringFormatter()

Endeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's GuideEndeca Confidential

47Configuring URLs | About optimizing the misc-path

 {
 // Convert non word characters to '-'
 RegexReplacementStringFormatter nonWordCharsToDashFormatter
 //character class subtraction, whitespace character excluding
 the unicode characters
 = new RegexReplacementStringFormatter(@"(?:[\W-[\u00C0-
\u00FF]])+", "-");

 // Trim leading and trailing '-' characters
 RegexReplacementStringFormatter trimDashCharsFormatter
 = new RegexReplacementStringFormatter(@"^-?([\w\u00C0-
\u00FF][\w-\u00C0-\u00FF]*[\w\u00C0-\u00FF])-?$", "$1");

 return new CompositeStringFormatter(nonWordCharsToDashFormatter,
 trimDashCharsFormatter);

 }

11. Optionally, configure the recordFormatter to include record properties in the record detail URLs.

a) Add a propertyKeys property on the recordFormatter.
b) Instantiate a list of propertyKeys.
c) Add any record properties that you want to include in the URL string to the list of propertyKeys.

For example:

 public static class RecordDetailsCommandFormatterFactory
 {
 public static RecordDetailsCommandFormatter Create()
 {
 RecordFormatter recordFormatter = new RecordFormatter();

 recordFormatter.UseDimensionNameAsKey = true;
 recordFormatter.DimensionValuePathFormatters = DimensionValuePath¬
FormattersFactory.CreateForRecordDetailsCommand();

 List<string> propertyKeys = new List<string>();
 propertyKeys.Add("P_Name");
 recordFormatter.PropertyKeys = propertyKeys;

 }

This sample code adds the record name to the URL. For example, if an end-user navigates to the
Alenquer record detail page, "Alenquer" displays in the misc-path.

Related Links
Preparing your dimensions on page 25

If you intend to display dimensions or dimension values in your URLs, you must configure
each of the dimensions to Show with record and Show with record list.

Preparing your properties on page 25
If you intend to display record properties in your URLs, you must configure each property to
Show with record and Show with record list.

Optimizing URLs for aggregate record detail pages
Using the URL Optimization API, you can include dimension and dimension value names in the URLs
for aggregate record detail pages.These are configured separately from the optimizations for navigation
pages.

Endeca ConfidentialEndeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's Guide

Configuring URLs | About optimizing the misc-path48

Note: For dimensions to display properly in the URL, they must be configured to show with
record and show with record list.

Before you begin optimizing URLs, create an SeoUrlProvider.

To optimize URLs for aggregate record detail pages:

1. Set the AggregateRecordDetailsCommandFormatter property in the constructor of the
SeoUrlProvider object:

 public SeoUrlProvider()
 : base()
 {
 this.AggregateRecordDetailsCommandFormatter = AggregateRecordDe¬
tailsCommandFormatterFactory.Create();
 }

2. Use the AggregateRecordDetailsCommandFormatterFactory to instantiate an Aggre¬
gateRecordDetailsCommandFormatter.
For example:

 public static class AggregateRecordDetailsCommandFormatterFactory
 {
 public static AggregateRecordDetailsCommandFormatter Create()
 {
 RecordFormatter recordFormatter = new RecordFormatter();

 }

 }

3. Set a UseDimensionNameAsKey property on the AggregateRecordDetailsCommandFormat¬
ter.
For example:

 public static class AggregateRecordDetailsCommandFormatterFactory
 {
 public static AggregateRecordDetailsCommandFormatter Create()
 {
 RecordFormatter recordFormatter = new RecordFormatter();

 recordFormatter.UseDimensionNameAsKey = true;
 }

 }

Setting the useDimensionNameAsKey to false creates a key on the dimension ID numbers.

4. Use a DimensionValuePathFormattersFactory to instantiate a DimensionValuePathFor¬
matters object for the AggregateRecordDetailsCommandFormatter.
For example:

 public static Dictionary<string, IDimensionValuePathFormatter>
CreateForAggregateRecordDetailsCommand()
 {
 Dictionary<string, IDimensionValuePathFormatter> dimValPaths =
 new Dictionary<string, IDimensionValuePathFormatter>();

 }

Endeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's GuideEndeca Confidential

49Configuring URLs | About optimizing the misc-path

5. Add a DimensionValuePathFormatter for each dimension that you intend to include in the
URLs.

Note: Use the dimValPaths.Add method call to key each DimensionValuePathFor¬
matter. If you set the useDimensionNameAsKeyDimensionValuePathFormatter
as false in step three, be sure to use the dimension ID instead of the dimension name.

For example:

 public static Dictionary<string, IDimensionValuePathFormatter>
CreateForAggregateRecordDetailsCommand()
 {
 Dictionary<string, IDimensionValuePathFormatter> dimValPaths =
 new Dictionary<string, IDimensionValuePathFormatter>();

 DimensionValuePathFormatter wineTypeFormatter = DimensionVal¬
uePathFormatterFactory.Create(true, true, true);
 DimensionValuePathFormatter regionFormatter = DimensionValuePath¬
FormatterFactory.Create(false, false, true);
 DimensionValuePathFormatter wineryFormatter = DimensionValuePath¬
FormatterFactory.Create(false, false, true);

 dimValPaths.Add("Wine Type", wineTypeFormatter);
 dimValPaths.Add("Region", regionFormatter);
 dimValPaths.Add("Winery", wineryFormatter);

 }

Note: If you have already followed the steps for optimizing navigation pages and want to
reuse the dimension value path formatters and string formatters for your aggregate record
detail pages, you can skip to step eleven.

6. Use a DimensionValuePathFormatterFactory to instantiate a DimensionValuePathFor¬
matter and add the following formatters:

DescriptionFormatter

Specifies whether or not to append root dimension values to the URL.
Set to true to append root dimension values.

AppendRoot

Specifies whether or not to append ancestor dimension values to the
URL. Set to true to append ancestor dimension values.

AppendAncestors

Specifies whether or not to append the selected or descriptor dimension
values to the URL. Set to true to append ancestor dimension values.

AppendDimensionVal¬
ue

Sets the IStringFormatter to customize URL formatting for
dimension roots in the URL. If the value is null, roots do not display in
the URL.

RootFormatter

Sets the IStringFormatter to customize URL formatting for
dimension, ancestor, and dimension value names. If the value is null,

PathFormatter

dimension, ancestor, and dimension value names do not display in the
URL.

For example:

 public static class DimensionValuePathFormatterFactory
 {
 public static DimensionValuePathFormatter Create(bool appendRoot,

Endeca ConfidentialEndeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's Guide

Configuring URLs | About optimizing the misc-path50

 bool appendAncestors, bool appendDimVals)
 {
 DimensionValuePathFormatter formatter = new DimensionValuePath¬
Formatter();
 formatter.AppendRoot = appendRoot;
 formatter.AppendAncestors = appendAncestors;
 formatter.AppendDimensionValue = appendDimVals;

 formatter.RootFormatter = StringFormatterFactory.CreateDefault¬
StringFormatter();
 formatter.PathFormatter = StringFormatterFactory.CreateDefault¬
StringFormatter();

 return formatter;

 }

 }

7. Use the StringFormatterFactory to instantiate an IStringFormatter object.
For example:

 public static class StringFormatterFactory
 {
 public static IStringFormatter CreateDefaultStringFormatter()
 {

8. Instantiate a RegexReplacementStringFormatter to replace non-word characters.

 public static class StringFormatterFactory
 {
 public static IStringFormatter CreateDefaultStringFormatter()
 {
 // Convert non word characters to '-'
 RegexReplacementStringFormatter nonWordCharsToDashFormatter
 //character class subtraction, whitespace character excluding
 the unicode characters
 = new RegexReplacementStringFormatter(@"(?:[\W-[\u00C0-
\u00FF]])+", "-");

 }

9. Instantiate a second RegexReplacementStringFormatter to remove leading and trailing
characters created by the RegexReplacementStringFormatter nonWordCharsToDashFor¬
matter.

 public static class StringFormatterFactory
 {
 public static IStringFormatter CreateDefaultStringFormatter()
 {
 // Convert non word characters to '-'
 RegexReplacementStringFormatter nonWordCharsToDashFormatter
 //character class subtraction, whitespace character excluding
 the unicode characters
 = new RegexReplacementStringFormatter(@"(?:[\W-[\u00C0-
\u00FF]])+", "-");

 // Trim leading and trailing '-' characters
 RegexReplacementStringFormatter trimDashCharsFormatter
 = new RegexReplacementStringFormatter(@"^-?([\w\u00C0-
\u00FF][\w-\u00C0-\u00FF]*[\w\u00C0-\u00FF])-?$", "$1");

Endeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's GuideEndeca Confidential

51Configuring URLs | About optimizing the misc-path

 return new CompositeStringFormatter(nonWordCharsToDashFormatter,
 trimDashCharsFormatter);

 }

10. Optionally, configure the recordFormatter to include record properties in the aggregate record
detail URLs.

a) Add a propertyKeys property on the recordFormatter.
b) Instantiate a list of propertyKeys.
c) Add any record properties that you want to include in the URL string to the list of propertyKeys.

For example:

 public static class AggregateRecordDetailsCommandFormatterFactory
 {
 public static AggregateRecordDetailsCommandFormatter Create()
 {
 RecordFormatter recordFormatter = new RecordFormatter();

 recordFormatter.UseDimensionNameAsKey = true;
 recordFormatter.DimensionValuePathFormatters = DimensionValuePath¬
FormattersFactory.CreateForAggregateRecordDetailsCommand();

 List<string> propertyKeys = new List<string>();
 propertyKeys.Add("P_Name");
 recordFormatter.PropertyKeys = propertyKeys;

 }

Related Links
Preparing your dimensions on page 25

If you intend to display dimensions or dimension values in your URLs, you must configure
each of the dimensions to Show with record and Show with record list.

Preparing your properties on page 25
If you intend to display record properties in your URLs, you must configure each property to
Show with record and Show with record list.

Configuring the path-param-separator
Using the PathSeparatorToken property in the BaseSeoUrlProvider constructor, you can
configure the path-params-separator string.

The sample SeoUrlProvider provided with the URL Optimization API uses an underscore to separate
the misc-path from the path-params in URLs. For example: http://localhost/ContentAssem¬
blerRefApp/Content.aspx/Wine-Red-Pinot-Noir/_/N-66w

You can change the string using the PathSeparatorToken property.

To change the path-param-separator character:

1. Set the PathSeparatorToken property in the constructor of the SeoUrlProvider object:
For example:

 public SeoUrlProvider()
 : base()
 {

Endeca ConfidentialEndeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's Guide

Configuring URLs | Configuring the path-param-separator52

 this.PathSeparatorToken = "_";
 }

2. Change the value of the PathSeparatorToken.
For example:

this.PathSeparatorToken = "^";

The new URL displays as: http://localhost/ContentAssemblerRefApp/Content.as¬
px/Wine-Red-Pinot-Noir/^/N-66w

Note: Be aware that certain non-URL safe characters can cause problems when included in
the path portion of the URL. Do not use any of these characters as the path-param-separator.

Related Links
Anatomy of an optimized Endeca URL on page 35

An optimized Endeca URL is made up of four configurable sections.

Characters that should be excluded from the URL path on page 58
Certain non-URL safe characters can cause problems if they are included in the path portion
of the URL. These problems range from failure of IIS to load the page to loss of information
encoded in the URL string.

About optimizing the path-params and query string
The URL Optimization API provides functionality for encoding path parameters and moving Endeca
path parameters from the query string into the path-params section of the URL.

Moving Endeca parameters out of the query string

In order to create directory-style URLs, you can limit the number of parameters in the query string by
configuring a list of Endeca parameters to move from the query string and into the path-params section
of the URL. For example, the following URL has the Endeca parameters N, Ntk, Ntt, and Ntx in the
query string:

http://localhost/ContentAssemblerRefApp/Content.aspx/Bor¬
deaux?N=4294966952&fromsearch=false&Ntk=All&Ntt=red&Ntx=mode%2bmatchallpar¬
tial

Using the URL Optimization API, you can move Endeca parameters into the path-params section of
the URL. For example, the following URL includes the N and Ntt parameters in the base URL:

http://localhost/ContentAssemblerRefApp/Content.aspx/Bordeaux/_/N-
4294966952/Ntt-red?fromsearch=false&Ntk=All&Ntx=mode%2bmatchallpartial

Modifying Endeca parameter names and values

You can customize the display of Endeca parameter names and values in URLs.

For example, you can modify the N parameter to display as "Endeca":

http://localhost/ContentAssemblerRefApp/Content.aspx/Napa/_/Endeca-4294966952

Important: If you choose to modify the display of Endeca parameter names and values, you
cannot integrate with the Sitemap Generator.

Endeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's GuideEndeca Confidential

53Configuring URLs | About optimizing the path-params and query string

Encoding Endeca parameter values

In order to shorten URLs, the URL Optimization API allows base-36 encoding of Endeca parameter
values.

For example, the following URL for Region > Napa contains the dimension value ID for Napa
(4294966952):

http://localhost/ContentAssemblerRefApp/Content.aspx/Napa/_/N-4294966952

By encoding the N parameter, you can shorten the URL:

http://localhost/ContentAssemblerRefApp/Content.aspx/Napa/_/N-1z141pk

Note: Only the numeric Endeca parameters can be encoded:

• N
• Ne
• An
• Dn

Removing session-scope parameters

In order to simplify the URLs, session-scope parameters should be removed from the URL string and
stored as session objects. This might include any parameters that do not change value during the
session, such as the session ID or MDEX Host and Port values.

Passing non-Endeca parameters to the API

The URL Optimization API can also format arbitrary (non-Endeca) parameters in URLs.

Related Links
Anatomy of an optimized Endeca URL on page 35

An optimized Endeca URL is made up of four configurable sections.

Moving Endeca parameters out of the query string
You can use the URL Optimization API to create directory-style URLs by configuring a list of Endeca
parameters to move from the query string and into the path-params section of the URL.

Before you begin optimizing URLs, create an SeoUrlProvider.

To move Endeca parameters from the query string and into the path-params section of the URL:

1. Set the PathParameters property in the constructor of the SeoUrlProvider object:
For example:

 public SeoUrlProvider()
 : base()
 {
 this.PathParameters = PathParameterFactory.Create();
 }

2. Use the PathParameterFactory to instantiate a list of Endeca parameters to move out of the
query string and into the path-params section of the URL.
For example:

 public static class PathParameterFactory
 {

Endeca ConfidentialEndeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's Guide

Configuring URLs | About optimizing the path-params and query string54

 public static List<string> Create()
 {
 List<string> pathParams = new List<string>();
 pathParams.Add("R");
 pathParams.Add("A");
 pathParams.Add("An");
 pathParams.Add("Au");
 pathParams.Add("N");
 pathParams.Add("No");
 pathParams.Add("Np");
 pathParams.Add("Nu");

 return pathParams;

 }
 }

Modifying Endeca parameters
You can customize the display of Endeca parameter names and values in URLs.

Important: If you choose to modify the display of Endeca parameter and value names, you
cannot integrate with the Sitemap Generator.

Before you begin optimizing URLs, create an SeoUrlProvider.

If you customize the display of Endeca parameter names or values in the URL, you must convert them
back to their original state to be correctly processed by the MDEX Engine.

To modify the display of Endeca parameter names or values:

1. Set the ParameterMapModifier property in the constructor of the SeoUrlProvider object:
For example:

 public SeoUrlProvider()
 : base()
 {
 this.ParameterMapModifier = new NParameterMapModifier();
 }

2. Instantiate an instance of the IParameterMapModifier.
For example:

private class NParameterMapModifier : IParameterMapModifier
 {

 public void ModifyOnConstruct(IDictionary<string, UrlParam> seri¬
alizedCommands)
 {

 }
 public void ModifyOnDeconstruct(IDictionary<string, UrlParam>
serializedCommands)
 {

3. Use the ModifyOnConstruct method to choose an Endeca parameter and to customize its
display.

Endeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's GuideEndeca Confidential

55Configuring URLs | About optimizing the path-params and query string

For example:

private class NParameterMapModifier : IParameterMapModifier
 {
 public void ModifyOnConstruct(IDictionary<string, UrlParam> seri¬
alizedCommands)
 {
 if (serializedCommands.ContainsKey("N"))
 {
 UrlParam nValue = serializedCommands["N"];
 UrlParam xValue = new UrlParam("x", nValue.Value);

 serializedCommands.Remove("N");
 serializedCommands.Add(xValue.KeyName, xValue);

 }
 }
 }

4. Use the ModifyOnDeconstruct method to return the parameter to its original state before being
passed to the Endeca MDEX Engine.
For example:

private class NParameterMapModifier : IParameterMapModifier
 {

 public void ModifyOnConstruct(IDictionary<string, UrlParam> seri¬
alizedCommands)
 {
 if (serializedCommands.ContainsKey("N"))
 {
 UrlParam nValue = serializedCommands["N"];
 UrlParam xValue = new UrlParam("x", nValue.Value);

 serializedCommands.Remove("N");
 serializedCommands.Add(xValue.KeyName, xValue);

 }
 }

 public void ModifyOnDeconstruct(IDictionary<string, UrlParam>
serializedCommands)
 {
 if (serializedCommands.ContainsKey("x"))
 {
 UrlParam xValue = serializedCommands["x"];
 serializedCommands.Remove("x");
 serializedCommands.Add("N", new UrlParam("N", xValue.Value));

 }

 }

 }

Encoding Endeca parameters
You can use the URL Optimization API to apply base-36 encoding to numeric Endeca parameters.

Endeca ConfidentialEndeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's Guide

Configuring URLs | About optimizing the path-params and query string56

You must create an SeoUrlProvider before completing this procedure.

Only the numeric Endeca parameters can be encoded:

• N
• Ne
• An
• Dn

To encode numeric Endeca parameters:

1. Set the ParameterEncoders property in the constructor of the SeoUrlProvider object:
For example:

 public SeoUrlProvider()
 : base()
 {
 this.ParameterEncoders = ParameterEncodersFactory.Create();
 }

2. Use the ParameterEncodersFactory to instantiate a list of numeric Endeca parameters to
encode.
For example:

 public static class ParameterEncodersFactory
 {
 public static IDictionary<string, IEncoder> Create()
 {

 Dictionary<string, IEncoder> encoders = new Dictionary<string,
 IEncoder>();
 encoders.Add("N", NumericBaseEncoder.Base36Encoder);
 encoders.Add("Ne", NumericBaseEncoder.Base36Encoder);
 encoders.Add("An", NumericBaseEncoder.Base36Encoder);

 return encoders;

 }
 }

Removing session-scope parameters
In order to simplify the URLs, session-scope parameters should be removed from the URL string and
stored as session objects.

This might include any parameters that do not change value during the session, such as the session
ID or MDEX Host and Port values. For example, the following URL contains information about the the
MDEX Host and Port:

http://localhost/ContentAssemblerRefApp/Content.aspx/N=0&eneHost=local¬
host&enePort=15002

You can remove the MDEX Host and Port values from the URL and store them as session objects.
The resulting URL is simplified:

http://localhost/contentAssemblerRefApp/Content.aspx

The following procedure provides instructions for removing the MDEX Host and Port values from the
URL, but this procedure can be adapted as necessary to remove other session-scope parameters.

Endeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's GuideEndeca Confidential

57Configuring URLs | About optimizing the path-params and query string

To remove the MDEX Host and Port values from the URL and store them as session attribute values:

1. Set the MDEX Host and Port as session attributes using the following code:

string eneHost = “localhost”;
Session[“eneHost”] = eneHost;

string enePort = “15002”;
Session[“enePort”] = enePort;

2. Retrieve the session attribute values using the following code:

 string eneHost = (string) Session["eneHost"];
 string enePort = (string) Session["enePort"];

About passing non-Endeca parameters to the API
The URL Optimization API can format arbitrary (non-Endeca) parameters in URLs.

Using functionality provided by the Endeca RAD Toolkit for ASP.NET, you can add arbitrary parameters
to the URL, either for all URLs produced by a UrlManager or on a per-URL basis. For details, please
refer to the RAD Toolkit for ASP.NET Developer's Guide.

By default, the additional parameters are added to the query string.You can move parameters to the
path-params section of the URL in the same way as Endeca parameters, by adding them to the
PathParameters list in your custom UrlProvider. Be aware that certain non-URL safe characters
can cause problems when included in the path portion of the URL. If these characters are present in
either the name or possible values of a parameter, do not move that parameter to the URL path.

Related Links
Moving Endeca parameters out of the query string on page 54

You can use the URL Optimization API to create directory-style URLs by configuring a list of
Endeca parameters to move from the query string and into the path-params section of the
URL.

Characters that should be excluded from the URL path
Certain non-URL safe characters can cause problems if they are included in the path portion of the
URL. These problems range from failure of IIS to load the page to loss of information encoded in the
URL string.

These problems may occur even if the characters are URL-encoded. Therefore, you should ensure
that the following unsafe characters do not appear in the name or value of any parameter that is set
to display in the path:

%percent sign

&ersand

/forward slash

\backward slash

?question mark

<less than sign

Endeca ConfidentialEndeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's Guide

Configuring URLs | About optimizing the path-params and query string58

>greater than sign

:colon

*asterisk

+plus

You should also avoid situations where the path-param-separator character appears in the URL path.
The sample SeoUrlProvider uses the underscore character ("_") as the separator character. If
there is a possibility that a parameter name or value may include the separator character, configure
your custom UrlProvider to use a different separator, or do not include that parameter in the path.

Related Links
Configuring the path-param-separator on page 52

Using the PathSeparatorToken property in the BaseSeoUrlProvider constructor, you
can configure the path-params-separator string.

Using the SeoUrlProvider with your application
Once you have created and configured your custom SeoUrlProvider, you need to integrate the
UrlProvider into you application.

To integrate your UrlProvider into your application:

1. Locate your custom SeoUrlProvider.

2. Add your SeoUrlProvider to the shared code folder of your application.
For example, the Content Assembler reference application uses an App_Code directory:
C:\Endeca\ContentAssemblerAPIs\RAD Toolkit for
ASP.NET\version\reference\ContentAssemblerRefApp\App_Code

3. If your application uses a Web.config file (or a similar configuration file) to configure Url¬
Providers, update the Web.config file for the new SeoUrlProvider.

For information about using a Web.config to register a UrlProvider, please see the Endeca
RAD Toolkit for ASP.NET Developer's Guide.

4. Clear your Web browser cache.

If you do not clear your Web browser cache, the browser may determine that the content of a page
has not changed and display the old, unoptimized URL.

5. Restart IIS.

Endeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's GuideEndeca Confidential

59Configuring URLs | Using the SeoUrlProvider with your application

Chapter 8

Integrating with the Sitemap Generator

The Sitemap Generator creates an index of your Web site based on information stored in your MDEX
Engine, not information stored on your application server. Because of this, you need to ensure that
the URLs produced by the Sitemap Generator match the URLs in your application. To make certain
that the URLs match, you need to configure the Sitemap Generator's urlconfig.xml file to make
the same customizations to URLs that the URL Optimization API configurations are making.

The Sitemap Generator urlconfig.xml file
The Sitemap Generator uses an XML configuration file that must mirror your URL configurations in
order to output a sitemap that matches your Web application.

The Sitemap Generator creates a site map by issuing a single bulk query against the MDEX Engine
to retrieve the necessary record, dimension, and dimension value data. It uses this information to build
an index of pages. The formatting of the URLs it creates is controlled by the urlconfig.xml file
located in the \conf subdirectory of your Sitemap Generator installation directory. For example:
C:\Endeca\SEM\SitemapGenerator\version\conf

To ensure that the URLs in the sitemap are consistent with the URLs produced by the URL Optimization
API, any configurations made in with the URL Optimization API must be mapped and configured
appropriately in the Sitemap Generator's urlconfig.xml file.

Sample SeoUrlProvider and sample urlconfig.xml mapping
In order to integrate your URL optimizations with the Sitemap Generator, you must mirror these
customizations in the Sitemap Generator urlconfig.xml file. This section provides mappings
between the sample SeoUrlProvider and the sample urlconfig.xml Sitemap Generator configuration
file.

The following table maps the objects and properties used in the sample SeoUrlProvider to their
equivalent beans and properties in the sample urlconfig.xml file. Any changes outside the scope
of these sample files, for example custom beans or custom DimensionValuePathFormatters,
are not captured in this table.

For those cases where an object maps to more than one bean in the urlconfig.xml file, a list of
all relevant beans is provided.

Navigation Command Formatter

Sitemap Generator Sample urlconfig.xml
Equivalents

URL Optimization API sample SeoUrlProvider

PropertyBean IDPropertyObject

navStateFormat¬
ter

NavigationCom¬
mandFormatter

useDimensionNameAsKeyUseDimension¬
NameAsKey

dimLocationFormattersDimensionValuePath¬
Formatters

Navigation Command Canonicalizer

Sitemap Generator sample urlconfig.xml
equivalents

URL Optimization API sample SeoUrlProvider

PropertyBean IDPropertyObject

navStateCanoni¬
calizer

NavigationCom¬
mandCanonicaliz¬
er

sortByName, sortByDi¬
mension, ignoreCase

DimensionValueCol¬
lectionCanonicaliz¬
er.Identity

ascendingDimensionValueCol¬
lectionCanonicaliz¬
er.Direction

Record Details Command Formatter

Sitemap Generator sample urlconfig.xml
equivalents

URL Optimization API sample SeoUrlProvider

PropertyBean IDPropertyObject

erecFormatterRecordDetailsCom¬
mandFormatter

useDimensionNameAsKeyUseDimension¬
NameAsKey

dimLocationFormattersDimensionValuePath¬
Formatters

propertyKeysPropertyKeys

propertyFormatterPropertyFormatter

Endeca ConfidentialEndeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's Guide

Integrating with the Sitemap Generator | Sample SeoUrlProvider and sample urlconfig.xml mapping62

Aggregate Record Details Command Formatter

Sitemap Generator sample urlconfig.xml
equivalents

URL Optimization API sample SeoUrlProvider

PropertyBean IDPropertyObject

aggrERecFormat¬
ter

AggregateRecord¬
DetailsCommand¬
Formatter

useDimensionNameAsKeyUseDimension¬
NameAsKey

dimLocationFormattersDimensionValuePath¬
Formatters

propertyKeysPropertyKeys

propertyFormatterPropertyFormatter

Parameter Encoder

Sitemap Generator sample urlconfig.xml
equivalents

URL Optimization API sample SeoUrlProvider

PropertyBean IDPropertyObject

seoUrlFormatterParameterEn¬
coders

urlParamEncodersNumericBaseEn¬
coder.Base36En¬
coder

Path Parameters

Sitemap Generator sample urlconfig.xml
equivalents

URL Optimization API sample SeoUrlProvider

PropertyBean IDPropertyObject

pathParamKeysseoUrlFormatterPathParameters

Dimension Value Path Formatter

Sitemap Generator sample urlconfig.xml
equivalents

URL Optimization API sample SeoUrlProvider

PropertyBean IDPropertyObject

•• wineTypeFormat¬
ter

wineTypeFormat¬
ter

• •regionFormat¬
ter

regionFormat¬
ter

•• wineryFormat¬
ter

wineryFormat¬
ter

Endeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's GuideEndeca Confidential

63Integrating with the Sitemap Generator | Sample SeoUrlProvider and sample urlconfig.xml mapping

Sitemap Generator sample urlconfig.xml
equivalents

URL Optimization API sample SeoUrlProvider

PropertyBean IDPropertyObject

• flavorsFormat¬
ter

• vintageFormat¬
ter

appendRootAppendRoot

appendAncestorsAppendAncestors

appendDescriptorAppendDimensionVal¬
ue

rootStringFormatterRootFormatter

dimValStringFormat¬
ter

PathFormatter

separatorSeparator

Once you have created custom DimensionValuePathFormatters for your SeoUrlProvider,
you need to replace the dimension formatters in the Sitemap Generator urlconfig.xml file with
formatters that are specific to your application.

String Formatters

Sitemap Generator sample urlconfig.xml
equivalentsRemember:

URL Optimization API sample SeoUrlProvider

PropertyBean IDPropertyObject

defaultStringFor¬
matterChain

CompositeString¬
Formatter

recordFormat¬
ter.PropertyFormat¬
ter

recordFormat¬
ter.PropertyFormat¬
ter

formatter.RootFor¬
matter

formatter.PathFor¬
matter

wineTypeFormatterRegexReplace¬
mentStringFormat¬
ter

Endeca ConfidentialEndeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's Guide

Integrating with the Sitemap Generator | Sample SeoUrlProvider and sample urlconfig.xml mapping64

Sitemap Generator sample urlconfig.xml
equivalentsRemember:

URL Optimization API sample SeoUrlProvider

PropertyBean IDPropertyObject

rootStringFormatterwineTypeToWineFor¬
matter

Related Links
Canonicalization configuration options on page 43

The canonicalizer.Identifier and canonicalizer.Direction properties on the
IDimensionValueCollectionCanonicalizer object determine the method and direction
of dimension ordering for navigation page URLs.

Adding custom dimensions to the Sitemap Generator configuration on page 65
In order for dimensions to display in the URLs produced by the Sitemap Generator, they must
be specified in the <QUERY_FIELD_LIST> in the Sitemap Generator's conf.xml file.

Example Sitemap Generator integration on page 68
This section provides an example of a modified SeoUrlProvider and the equivalent changes
that must be made to the Sitemap Generator URL configuration file.

About using regular expressions in string formatters with the Sitemap
Generator

The Sitemap Generator uses Java syntax for regular expressions, which differs slightly from the format
of regular expressions in the .NET Framework.

For example, the default string formatter included in the sample SeoUrlProvider uses an expression
similar to the following to replace non-word characters with dashes:

 [\W-[\u00C0-\u00FF]]+

The equivalent expression in Java is as follows:

 [\W&&[^\u00C0-\u00FF]]+

If you use a RegexReplacementStringFormatter to format the URL path, take care to ensure
that you are specifying the equivalent Java expression for the matching string formatter bean in the
Sitemap Generator configuration file. For more details about the format of regular expressions in Java,
please refer to the documentation from Sun at http://java.sun.com/docs/books/tutorial/essential/regex/.

Adding custom dimensions to the Sitemap Generator
configuration

In order for dimensions to display in the URLs produced by the Sitemap Generator, they must be
specified in the <QUERY_FIELD_LIST> in the Sitemap Generator's conf.xml file.

The <QUERY_FIELD_LIST> in the conf.xml of the Sitemap Generator is configured for the Endeca
wine data set. Before you can generate a sitemap for your own data set, you need to specify your own
dimensions to the <QUERY_FIELD_LIST>.

Endeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's GuideEndeca Confidential

65Integrating with the Sitemap Generator | Adding custom dimensions to the Sitemap Generator
configuration

http://java.sun.com/docs/books/tutorial/essential/regex/

To specify dimensions in the Sitemap Generator <QUERY_FIELD_LIST>:

1. Open the conf.xml file located in the \conf subdirectory of your Sitemap Generator installation
directory.
For example: C:\Endeca\SEM\SitemapGenerator\version\conf

2. Locate the <QUERY_FIELD_LIST>.
For example:

<!-- additional elements deleted from this sample -->
<QUERY_FIELD_LIST>
 <QUERY_FIELD>P_Name</QUERY_FIELD>
 <QUERY_FIELD>Wine Type</QUERY_FIELD>
 <QUERY_FIELD>Region</QUERY_FIELD>
 <QUERY_FIELD>Winery</QUERY_FIELD>
 <QUERY_FIELD>Vintage</QUERY_FIELD>
 <QUERY_FIELD>P_Winery</QUERY_FIELD>
 <QUERY_FIELD>Flavors</QUERY_FIELD>
 <QUERY_FIELD>Designation</QUERY_FIELD>
</QUERY_FIELD_LIST>
<!-- additional elements deleted from this sample -->

3. Replace the existing wine data dimensions with dimensions specific to your application.

For more information about the Sitemap Generator conf.xml file, please refer to the Endeca Sitemap
Generator Developer's Guide.

Related Links
Example Sitemap Generator integration on page 68

This section provides an example of a modified SeoUrlProvider and the equivalent changes
that must be made to the Sitemap Generator URL configuration file.

Modifying the root query
If you have modified the root query for your application using the Endeca RAD Toolkit for ASP.NET,
you need to make the same changes to the Sitemap Generator configuration.

You must make these changes in the Sitemap Generator conf.xml file and the Sitemap Generator
urlconfig.xml file.

Note: For information using the Endeca RAD Toolkit for ASP.NET to modify root queries, please
see the Endeca RAD Toolkit for ASP.NET Developer's Guide.

To modify the Sitemap Generator root query settings:

1. Open the conf.xml file located in the \conf subdirectory of your Sitemap Generator installation
directory.
For example: C:\Endeca\SEM\SitemapGenerator\version\conf

2. Locate the <MDEX_ENGINES> settings.
For example:

<!-- additional elements deleted from this sample -->
<MDEX_ENGINES>
 <ENGINE>

Endeca ConfidentialEndeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's Guide

Integrating with the Sitemap Generator | Modifying the root query66

 <HOST>localhost</HOST>
 <PORT>15000</PORT>
 <ROOT_QUERY><![CDATA[N=0]]></ROOT_QUERY>
 </ENGINE>
</MDEX_ENGINES>
<!-- additional elements deleted from this sample -->

3. Modify the <ROOT_QUERY> value so that it matches your application's root query settings.
For example:

<!-- additional elements deleted from this sample -->
<MDEX_ENGINES>
 <ENGINE>
 <HOST>localhost</HOST>
 <PORT>15000</PORT>
 <ROOT_QUERY><![CDATA[N=0&Nr=OR(Wine Type:Red)]]></ROOT_QUERY>
 </ENGINE>
</MDEX_ENGINES>
<!-- additional elements deleted from this sample -->

Note: The value for ROOT_QUERY must be specified in the Presentation API URL format.
For more information, see the "Endeca Presentation API URL Query Syntax" section of the
Endeca Basic Development Guide or the Endeca Developer's Guide for .NET.

4. Open the urlconfig.xml file located in the \conf subdirectory of your Sitemap Generator
installation directory.
For example: C:\Endeca\SEM\SitemapGenerator\version\conf

5. Locate the queryBuilder bean.
For example:

<!-- additional elements deleted from this sample -->
 <bean id="queryBuilder" class="com.endeca.soleng.urlformatter.basic.Ba¬
sicQueryBuilder">

 <property name="queryEncoding">
 <value>UTF-8</value>
 </property>

 <property name="baseUrlENEQuery">
 <null/>
 </property>

 <property name="baseNavigationUrlENEQuery">
 <null/>
 </property>

 <property name="baseERecUrlENEQuery">
 <null/>
 </property>

 <property name="baseAggrERecUrlENEQuery">
 <null/>
 </property>

 <property name="defaultUrlENEQuery">
 <null/>
 </property>

Endeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's GuideEndeca Confidential

67Integrating with the Sitemap Generator | Modifying the root query

 </bean>
<!-- additional elements deleted from this sample -->

6. Modify the queryBuilder bean so that all of the UrlENEQuery settings match your application
settings.
For example:

<!-- additional elements deleted from this sample -->
 <bean id="queryBuilder" class="com.endeca.soleng.urlformatter.basic.Ba¬
sicQueryBuilder">

 <property name="queryEncoding">
 <value>UTF-8</value>
 </property>

 <property name="baseUrlENEQuery">
 <null/>
 </property>

 <property name="baseNavigationUrlENEQuery">
 <value><![CDATA[N=0&Ns=P_Price|1&Nr=8020]]></value>
 <null/>
 </property>

 <property name="baseERecUrlENEQuery">
 <null/>
 </property>

 <property name="baseAggrERecUrlENEQuery">
 <value>An=0</value>
 <null/>
 </property>

 <property name="defaultUrlENEQuery">
 <value>N=0</value>
 </property>

 </bean>
<!-- additional elements deleted from this sample -->

Related Links
Example Sitemap Generator integration on page 68

This section provides an example of a modified SeoUrlProvider and the equivalent changes
that must be made to the Sitemap Generator URL configuration file.

Example Sitemap Generator integration
This section provides an example of a modified SeoUrlProvider and the equivalent changes that
must be made to the Sitemap Generator URL configuration file.

There are sample Sitemap Generator integration files located in the
Sample\SitemapGeneratorIntegration subdirectory of your URL Optimization API installation
directory:

Endeca ConfidentialEndeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's Guide

Integrating with the Sitemap Generator | Example Sitemap Generator integration68

• The SeoUrlProvider located in the Sample\SitemapGeneratorIntegration\UrlProvider
subdirectory

• The Sitemap Generator files conf.xml and urlconfig.xml located in the
Sample\SitemapGeneratorIntegration\SitemapGenerator subdirectory

You can either review the files included in the \SitemapGeneratorIntegration subdirectory, or
manually make the changes described in this section.

SeoUrlProvider

Make the following changes to the sample SeoUrlProvider:

• Uncomment the vintageFormatter (line 144)
• Instantiate the designationFormatter (line 145)
• Uncomment adding the vintageFormatter (line 150)
• Add the designationFormatter to the Dictionary<string, IDimensionValueFormat¬
ter> (line 151)

• Instantiate the designationFormatter (line 178)
• Add the designationFormatter to the Dictionary<string, IDimensionValueFormat¬
ter> (line 183)

• Add the property key for P_Winery (line 229)
• Change Canonicalization Identity to DimensionValueName (line 357)
• Change Canonicalization Direction to Descending (line 358)

Sitemap Generator urlconfig.xml file

In order to mirror the changes to the SeoUrlProvider, make the following changes to the Sitemap
Generator urlconfig.xml file (located in the \conf subdirectory of your Sitemap Generator
installation directory):

• Uncomment the vintageFormatter (line 172)
• Add a reference to the designationFormatter to the navStateFormatter's dimLocation¬
Formatters (line 173)

• Change sortByDimension to false (line 195)
• Change ascending to false (line 196)
• Add a reference to the designationFormatter to the erecFormatter's dimLocationFor¬
matters (line 271)

• Add P_Winery to the property keys of the erecFormatter (line 278)
• Add a designationFormatter

Sitemap Generator conf.xml file

In order for the new dimension "Designation" to display in the URLs produced by the Sitemap Generator,
"Designation" must also be added to the <QUERY_FIELD_LIST> in the Sitemap Generator's conf.xml
file (Lines 89-98). The conf.xml file is located in the \conf subdirectory of your Sitemap Generator
installation directory).

Endeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's GuideEndeca Confidential

69Integrating with the Sitemap Generator | Example Sitemap Generator integration

Integrating the URL configuration files with the Sitemap
Generator

Once you have customized the urlconfig.xml and conf.xml files for your application, you can
use them with the Sitemap Generator to create an accurate sitemap.

To use the URL configuration files with the Sitemap Generator:

1. Locate the conf.xml and urlconfig.xml files that you customized for your Sitemap Generator
integration.

2. Copy your conf.xml and urlconfig.xml files to the \conf\ subdirectory of your Sitemap
Generator installation directory.
For example: C:\Endeca\SEM\SitemapGenerator\[version]\conf

For more information about the Sitemap Generator, please refer to the Endeca Sitemap Generator
Developer's Guide.

Related Links
Example Sitemap Generator integration on page 68

This section provides an example of a modified SeoUrlProvider and the equivalent changes
that must be made to the Sitemap Generator URL configuration file.

Endeca ConfidentialEndeca® URL Optimization API for the RAD Toolkit for ASP.NET Developer's Guide

Integrating with the Sitemap Generator | Integrating the URL configuration files with the Sitemap
Generator

70

Index

301 redirects 26

A

aggregate record detail pages 49
AggregateRecordDetailsCommandFormatter 38, 49

B

base-36 encoding 53
building URLs

C

canonicalization 39, 43
about 15

canonicalizing
keywords 13

configuring URLs
Content Assembler reference application for the RAD

Toolkit for ASP.NET
URL Optimization 18

CSS
handling 26

D

degenerate URLs
avoiding 30

dimensions
preparing 25

duplicate content
about 15
avoiding 15

E

Endeca parameter
encoding 53
modifying parameter names and values 53
moving 53

Endeca parameters
encoding 13, 57
modifying 55
moving 54
moving out of the query string 13

Endeca Sitemap Generator
integrating with Endeca URL Optimization API
URL configuration file 61, 70
urlconfig.xml 61, 70

Endeca URL Optimization API
application recommendations

Endeca URL Optimization API (continued)
basic application requirements
configuring the path-param-separator 52
creating an SeoUrlProvider 37
external resources 26
implementing
installation
installing 10
integrating with Endeca Sitemap Generator
introduction 13
modifying the root query 66
overview 13
package contents 10
preparing your application
setting up a reference application
Sitemap Generator integration 68
Sitemap Generator integration mapping 61
using SeoUrlProvider 59

Endeca URL Optimization API for the RAD Toolkit for
ASP.NET

installation prerequisites 9
external resources

handling 26

H

HTTP 400 error 30

I

IIndexProvider 32
images

handling 26
implementing

with a new application 21
with an existing application 22

Implementing URL Optimization
Installation

Endeca URL Optimization API
installation prerequisites 9
Installing

Endeca URL Optimization API 10
introduction

Endeca URL Optimization API 13
invalid URLs 30

J

Javascript files
handling 26

K

keywords
canonicalizing 13
integrating into URLs 13

M

misc-path
about optimizing 38

N

navigation pages 39
NavigationCommandCanonicalizer 38, 39
NavigationCommandFormatter 38, 39
non-Endeca parameters

and non-safe characters 58
passing to the API 53, 58

O

optimized URLs
overview 35

overview
Endeca URL Optimization API 13

P

package contents
Endeca URL Optimization API 10

paramEncoder 57
ParameterMapModifier 55
parameters

encoding 57
Endeca 57
session-scope 57

path-param-separator
unsafe characters 58
configuring 52

PathParameters 54
unsafe characters 58

PathSeparatorToken 52
prerequisites

reference application 17
properties

preparing 25

Q

query
modifying 66

R

record detail pages 44
RecordDetailsCommandFormatter 38, 44

reference application
prerequisites 17
setting up

reference application for the RAD Toolkit for ASP.NET
URL Optimization 18

relative URLs 26
root query

modifying 66

S

sample SeoUrlProvider
about 18

sample UrlProvider, See sample SeoUrlProvider
SeoNavStateEncoder 57
SeoUrlProvider

creating 37
sample urlconfig.xml mapping 61
using with your application 59

session objects 57
session-scope parameters

removing 53, 57
show with record 25
show with record list 25
Sitemap Generator

See also Endeca Sitemap Generator
and regular expressions 65
Endeca URL Optimization API integration mapping
61
URL Optimization API integration 68

See also Endeca Sitemap Generator

U

URL
anatomy 35
components 35

URL canonicalization
See also canonicalization
about 15

See also canonicalization
URL configuration

aggregate record detail pages 49
canonicalization 39, 43
misc-path 39, 44, 49
navigation pages 39
record detail pages 44

URL configuration file
using with Endeca Sitemap Generator 70
using with Endeca URL Optimization API 70

URL optimization
misc-path 38

URL Optimization 18
URL Optimization API

building URLs
configuring URLs

URL path, unsafe characters 58
URL transitioning 26

Endeca® URL Optimization API for the RAD Toolkit for ASP.NET72

Index

UrlBuilder
BuildUrl method 32
convenience methods 30
SelectAggregateRecord method 31
SelectDisconnectedDimensionValue method 31

urlconfig.xml
Endeca Sitemap Generator 61
SeoUrlProvider mapping 61
using with Endeca Sitemap Generator 70
using with Endeca URL Optimization API 70

UrlManager
invalid command combinations 29
using multiple instances 27, 28

UrlProvider
using multiple instances 29

V

version compatibility 9

W

word separator
configuring 13

73

Index

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Endeca Customer Support

	Installation
	System requirements
	Installing the URL Optimization API
	Package contents

	Introduction
	Introduction to URL optimization
	Overview of the URL Optimization API capabilities
	Duplicate content and URL canonicalization

	Setting up a Reference Application
	Reference application prerequisites
	About the sample UrlProvider
	Integrating the URL Optimization API with the Content Assembler reference application

	Implementing URL optimization
	Implementing URL optimization with a new application
	Modifying an existing application built with the RAD Toolkit for ASP.NET

	Preparing your application
	Preparing your dimensions
	Preparing your properties
	Handling images and external JavaScript files in optimized URLs
	URL transitioning

	Building URLs with the URL Optimization API
	About using multiple UrlManagers
	Working with multiple UrlManagers
	Working with multiple UrlProviders
	Invalid command combinations

	About avoiding invalid URLs
	About ensuring that URLs are optimized
	Building an optimized URL to select a dimension value from a BusinessRule object
	Building an optimized URL to an aggregate record detail page
	Building optimized URLs without using convenience methods

	Configuring URLs
	Anatomy of an optimized Endeca URL
	Creating an SEO UrlProvider
	About optimizing the misc-path
	Optimizing URLs for navigation pages
	Canonicalization configuration options
	Optimizing URLs for record detail pages
	Optimizing URLs for aggregate record detail pages

	Configuring the path-param-separator
	About optimizing the path-params and query string
	Moving Endeca parameters out of the query string
	Modifying Endeca parameters
	Encoding Endeca parameters
	Removing session-scope parameters
	About passing non-Endeca parameters to the API
	Characters that should be excluded from the URL path

	Using the SeoUrlProvider with your application

	Integrating with the Sitemap Generator
	The Sitemap Generator urlconfig.xml file
	Sample SeoUrlProvider and sample urlconfig.xml mapping
	About using regular expressions in string formatters with the Sitemap Generator

	Adding custom dimensions to the Sitemap Generator configuration
	Modifying the root query
	Example Sitemap Generator integration
	Integrating the URL configuration files with the Sitemap Generator

	Index

