
Endeca® Platform Services
Security Guide

Version 6.1.1• December 2011

Contents

Preface...7
About this guide..7
Who should use this guide..7
Conventions used in this guide...7
Contacting Endeca Customer Support...8

Chapter 1: Introduction to Endeca Security Features.............................9
Endeca Access Control System...9

LDAP directory authentication...9
File-based authentication..10
Stacked authentication..10

Endeca Access Control Lists for records..11
Tagging Endeca records..11

SSL...11
Using SSL for encrypted communications...12
Mutual authentication between Endeca components..12

SSL certificate utilities...12

Chapter 2: SSL Configuration..15
Endeca system communications..15

Authentication among components...16
Configuring SSL for the EAC..16

Creating Application Controller certificates..17
Enabling SSL security in the EAC...17
Enabling SSL for EAC clients..19

SSL interactions in an EAC environment..22
Configuring stronger encryption..24
Configuring SSL on the application server...25
Configuring SSL for the MDEX Engine...26

Application Controller configuration...26
Configuring the MDEX Engine for SSL in Endeca Workbench..27
Specifying cipher strings..28

Configuring SSL for JSP applications...28
Writing a HostnameVerifier class...29
Creating a JKS-Format keystore certificate...30
Configuring the SSL connector..30
Starting the application server with the keystores...30
Using PKCS12 keystores..31

Configuring SSL for ASP.NET Applications..32
Converting the private certificate to the DER format...32
Importing the certificates to the local machine store...33
Give permissions to the ASP.NET account..34
Modifying the application’s entry-point file...35

Chapter 3: Using Endeca SSL Certificate Utilities.................................37
Certificate files used by Endeca components...37
Generating SSL certificates..38

Generating standard SSL certificates on UNIX...38
Generating standard SSL certificates on Windows...38
Generating custom certificates..39
Copying the SSL certificates to other machines..40

Importing SSL certificates in Internet Explorer...40
Converting PEM-format keys to JKS format...41
Enabling .NET SSL communication with EAC..42

Modifying the ICertificatePolicy interface...42

iii

Chapter 4: Access Control System Configuration................................43
About the Access Control System..43
Authentication framework...43
Access Control configuration file...44

Configuration entry parameters...45
Specifying the location of the configuration file..46

Configuring the LDAPLoginModule plug-in...47
LDAPLoginModule templates..47
LDAPLoginModule required parameters for Java..48
LDAPLoginModule required parameters for .NET...49
LDAPLoginModule optional configuration parameters..49
LDAPLoginModule configuration examples...51

Configuring the FileLoginModule plug-in..52
FileLoginModule configuration parameters..52
Password file format..52
FileLoginModule configuration examples..53

Chapter 5: Using Record Permissions..55
Using ACLs for document access control...55
Refinements and spelling with Access Control...56
Creating the crawler pipeline..57

Configuring a Binary or XML record adapter...57
Adding a record manipulator...57
Creating the Endeca.ACL.Allow.Read property...58
Configuring the property mapper...59

Creating the Access Rules component...60
Making MDEX Engine queries..62

Chapter 6: User Authentication with LDAP..65
Overview of the LDAP user authentication process..65
Obtaining the user information..66
Instantiating an MDEX Engine connection object...67
Querying the LDAP server..68
User entitlement filter..69
Making a secure MDEX Engine query..69
Using stacked authentication..70

Chapter 7: File-based User Authentication..73
FileLoginModule configuration..73
File-based user authentication process..73
Obtaining the user identity..74
Instantiating an MDEX Engine connection object...74
Authenticating the user against the password file...75
User entitlement filter..75
Making a secure MDEX Engine query..76

Endeca® Platform Servicesiv

Copyright and disclaimer

Product specifications are subject to change without notice and do not represent a commitment on
the part of Endeca Technologies, Inc. The software described in this document is furnished under a
license agreement.The software may not be reverse engineered, decompiled, or otherwise manipulated
for purposes of obtaining the source code. The software may be used or copied only in accordance
with the terms of the license agreement. It is against the law to copy the software on any medium
except as specifically allowed in the license agreement.

No part of this document may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying and recording, for any purpose without the express written
permission of Endeca Technologies, Inc.

Copyright © 2003-2011 Endeca Technologies, Inc. All rights reserved. Printed in USA.

Portions of this document and the software are subject to third-party rights, including:

Corda PopChart® and Corda Builder™ Copyright © 1996-2005 Corda Technologies, Inc.

Outside In® Search Export Copyright © 2011 Oracle. All rights reserved.

Rosette® Linguistics Platform Copyright © 2000-2011 Basis Technology Corp. All rights reserved.

Teragram Language Identification Software Copyright © 1997-2005 Teragram Corporation. All rights
reserved.

Trademarks

Endeca, the Endeca logo, Guided Navigation, MDEX Engine, Find/Analyze/Understand, Guided
Summarization, Every Day Discovery, Find Analyze and Understand Information in Ways Never Before
Possible, Endeca Latitude, Endeca InFront, Endeca Profind, Endeca Navigation Engine, Don't Stop
at Search, and other Endeca product names referenced herein are registered trademarks or trademarks
of Endeca Technologies, Inc. in the United States and other jurisdictions. All other product names,
company names, marks, logos, and symbols are trademarks of their respective owners.

The software may be covered by one or more of the following patents: US Patent 7035864, US Patent
7062483, US Patent 7325201, US Patent 7428528, US Patent 7567957, US Patent 7617184, US
Patent 7856454, US Patent 7912823, US Patent 8005643, US Patent 8019752, US Patent 8024327,
US Patent 8051073, US Patent 8051084, Australian Standard Patent 2001268095, Republic of Korea
Patent 0797232, Chinese Patent for Invention CN10461159C, Hong Kong Patent HK1072114, European
Patent EP1459206, European Patent EP1502205B1, and other patents pending.

v

Preface

Endeca® InFront enables businesses to deliver targeted experiences for any customer, every time, in
any channel. Utilizing all underlying product data and content, businesses are able to influence customer
behavior regardless of where or how customers choose to engage — online, in-store, or on-the-go.
And with integrated analytics and agile business-user tools, InFront solutions help businesses adapt
to changing market needs, influence customer behavior across channels, and dynamically manage a
relevant and targeted experience for every customer, every time.

InFront Workbench with Experience Manager provides a single, flexible platform to create, deliver,
and manage content-rich, multichannel customer experiences. Experience Manager allows non-technical
users to control how, where, when, and what type of content is presented in response to any search,
category selection, or facet refinement.

At the core of InFront is the Endeca MDEX Engine,™ a hybrid search-analytical database specifically
designed for high-performance exploration and discovery. InFront Integrator provides a set of extensible
mechanisms to bring both structured data and unstructured content into the MDEX Engine from a
variety of source systems. InFront Assembler dynamically assembles content from any resource and
seamlessly combines it with results from the MDEX Engine.

These components — along with additional modules for SEO, Social, and Mobile channel support —
make up the core of Endeca InFront, a customer experience management platform focused on delivering
the most relevant, targeted, and optimized experience for every customer, at every step, across all
customer touch points.

About this guide
This guide describes the Endeca security features and the major tasks involved in using them to
develop a secure Endeca implementation.

Who should use this guide
This guide is for developers who are responsible for implementing security features in Endeca
applications.

Conventions used in this guide
This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace
font. In the case of long lines of code, or when inline monospace text occurs at the end of a line, the
following symbol is used to show that the content continues on to the next line: ¬

When copying and pasting such examples, ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

Contacting Endeca Customer Support
The Endeca Support Center provides registered users with important information regarding Endeca
software, implementation questions, product and solution help, training and professional services
consultation as well as overall news and updates from Endeca.

You can contact Endeca Standard Customer Support through the Support section of the Endeca
Developer Network (EDeN) at http://eden.endeca.com.

Endeca ConfidentialEndeca® Platform Services Security Guide

| Preface8

http://eden.endeca.com

Chapter 1

Introduction to Endeca Security Features

This section provides a high-level look at the security features that are available in the Endeca
Information Access Platform.

Endeca Access Control System
The Endeca Access Control System is used to authenticate a user’s identity against and obtain
authorization information from a variety of external systems, such as an LDAP directory. The
authorization information is used to control which records are retrieved during a query.

In any application that protects secure information, one of the first requirements is to clearly identify
those users who should be granted access. By using the Endeca Access Control System, you can
authenticate an end-user’s identity against an external directory.The security architecture of the Access
Control System is based on the Java Authentication and Authorization Service (JAAS) or the .NET
Framework.

The Access Control System permits the Endeca Information Access Platform to support multiple
authentication mechanisms in a simple plug-in fashion. Currently, the Endeca Information Access
Platform supplies two authentication plug-ins:

• LDAPLoginModule plug-in
• FileLoginModule plug-in

In both cases, the authentication is performed at the Endeca Presentation API layer.

The authentication plug-ins also provide the application programmer with flexibility in how credentials
are obtained from the user. The plug-ins are configured via a common configuration file.

Related Links
Access Control System Configuration on page 43

This section describes how to configure the Endeca Access Control System for your
implementation.

LDAP directory authentication
The first method of authentication is to store user-relevant information in an LDAP directory.

The LDAP (Lightweight Directory Access Protocol) directory typically stores security-related information,
such as a user’s login name and what groups that user belongs to. Once login information is received

from the end user, it is passed to the Endeca LDAPLoginModule plug-in, which then communicates
with the LDAP server, which performs the actual validation against its LDAP directory.

The LDAP server can also return a user’s group membership information, if it is stored in the LDAP
directory. This information will later be used to define the user’s access privileges in the Endeca
implementation.

The LDAP-based plug-in is implemented with the Presentation API LDAPLoginModule class.

Related Links
User Authentication with LDAP on page 65

This section explains how to authenticate users via the Endeca LDAPLoginModule plug-in.

File-based authentication
A second method of authentication is to store user-relevant information in a file.

The Access Control System provides a second login plug-in for a standalone directory local to the
Endeca environment. A file in this native directory can store the names, passwords, and group
memberships of valid users, similar to a UNIX /etc/passwd file that contains basic user attributes.

This type of user directory can be used if no other security infrastructure exists. However, its most
common use is to allow developers to test security solutions quickly and simply as an Endeca
implementation is being developed. If the site has access to an LDAP server, then the implementation
can easily be switched to use the LDAP authentication described in the previous section.

The file-based authentication plug-in is implemented with the Presentation API FileLoginModule
class.

Related Links
File-based User Authentication on page 73

This section explains how to authenticate users via the Endeca FileLoginModule plug-in.
This plug-in handles logins authenticated against a password file.

Stacked authentication
The Java version of the Endeca Access Control System supports stacked authentication.

In the stacked authentication configuration, both login plug-ins are used to authenticate the user.

For example, you can use the LDAPLoginModule plug-in to authenticate the username and password
of the end-user and then use the FileLoginModule plug-in to retrieve that end user’s group affiliations.

This flexibility is important to a site that has a master LDAP directory, but wants to allow additional
access control to a small number of users who can be supported by one administrator.The administrator
can specify group membership via the local file, which is simple to maintain.

Related Links
Using stacked authentication on page 70

The Java version of the Endeca Access Control System also supports the notion of stacked
authentication.

Endeca ConfidentialEndeca® Platform Services Security Guide

Introduction to Endeca Security Features | Endeca Access Control System10

Endeca Access Control Lists for records
Endeca records can contain ACL properties.

A user's entitlement filter defines the Endeca records that the user may access via the Endeca MDEX
Engine. The entitlement filter works in the context of permission properties that are tagged on those
records.

For example, if a record’s Endeca.ACL.Allow.Read property is set to the “research” group, then
only users whose entitlement filter identifies them as being members of “research” will have access
to that record.

A record can have multiple users or groups in its permission properties. If there are none, the record
will not be matched by any entitlement filters and it will not be accessible to anyone. In contrast, to
make a record available to all users, it must be tagged with a group or collection of groups that
encompasses all users.

Related Links
Using ACLs for document access control on page 55

The Endeca Access Control System allows sensitive information to be indexed and presented
in a MDEX Engine in such a way that only authorized personnel can search and navigate
those records.

Tagging Endeca records
Record permissions are assigned during processing of the source data by the Endeca Data Foundry.

A source document’s permissions are represented by an ACL (Access Control List) property.

Typically, these permissions are extracted from the source document’s Windows or UNIX file system
information by the Endeca Crawler and then mapped to Endeca ACL properties by the pipeline’s
property mapper. The permissions may also be set in the pipeline with an Access Rules component.

The Endeca ACL properties and the user entitlement filter thus assure that authenticated users can
access only those records to which they have permission.

Related Links
Configuring the property mapper on page 59

The property mapper maps a record’s source properties to Endeca properties or dimensions.

SSL
The Endeca IAP software supports SSL communications for its components.

Safe and trusted communication among the various components of your Endeca implementation
ensures that the data being transmitted will not be compromised.

The Endeca software allows you configure Version 3.0 of the Secure Sockets Layer (SSL) protocol
for the important communication endpoints.You can configure:

• Base SSL only, using encryption for keys up to 4096 bits. This configuration does not use mutual
authentication between components.

• Mutually authenticated SSL, using both encryption and certificates for authentication of a component.

Endeca® Platform Services Security GuideEndeca Confidential

11Introduction to Endeca Security Features | Endeca Access Control Lists for records

Using SSL for encrypted communications
The Endeca IAP software allows you to configure SSL between other Endeca components in several
flexible combinations.

As an example of this flexibility, the EAC (Endeca Application Controller) can use SSL communication
in three places:

• Between the EAC Central Server and the public Web service interface.
• Between the EAC Central Server and its Agents.
• With the MDEX Engine.

These SSL features are easily turned on and off via configuration settings in the EAC configuration
files.

Note that the Endeca components that do not currently support SSL are the Log Server and Developer
Studio.

Related Links
SSL Configuration on page 15

This section describes how to configure your Endeca implementation to use SSL connections
among the various Endeca components.

Mutual authentication between Endeca components
You can configure mutual authentication for your SSL connections.

In addition to encryption, you can impose a higher level of security by configuring the SSL-enabled
Endeca components to require mutual authentication.You can use an Endeca utility to create a
Certification Authority (CA), which is then used to sign certificates for use by the various components.

During communication initialization, each component confirms that the certificate it is receiving from
the other party has been signed by the CA. A bearer’s possession of a signed certificate implicitly
grants full access to the Endeca component it is contacting.

You create the CA file with the enecerts utility.

SSL certificate utilities
The standard Endeca MDEX Engine installation includes an enecerts utility.

This utility allows you to perform the following SSL certificate operations:

• Generate your own set of SSL certificate files.
• Create custom certificates with private keys that are larger or smaller than the default 1024-bit

size.
• Provide your own CA file to use for mutual authentication among Endeca components.

With these SSL certificate files, you can configure SSL communications among Endeca components,
such as an SSL-enabled EAC Central Server.

The Endeca software also includes a utility that can convert a PEM-format key to a standard Java
KeyStore (JKS) format.

Related Links
Using Endeca SSL Certificate Utilities on page 37

Endeca ConfidentialEndeca® Platform Services Security Guide

Introduction to Endeca Security Features | SSL certificate utilities12

This section describes how to use the Endeca enecerts utility to generate standard and
custom SSL certificate files to be used for SSL connections between the various Endeca
components. It also documents an Endeca utility that can convert a PKCS12-format key to
a standard Java KeyStore (JKS) format.

Endeca® Platform Services Security GuideEndeca Confidential

13Introduction to Endeca Security Features | SSL certificate utilities

Chapter 2

SSL Configuration

This section describes how to configure your Endeca implementation to use SSL connections among
the various Endeca components.

Endeca system communications
The SSL (Secure Sockets Layer) protocol is designed to help protect the privacy and integrity of data
while it is transferred across a network.

In an Endeca system, network communication occurs at multiple points. In addition to the connections
that are established with the user’s browser and with the LDAP server, there are other connections
that are established between individual Endeca components.

Note: For information about configuring Endeca Workbench to use SSL for Web browser
connections, see the Workbench Administrator’s Guide. For information about configuring SSL
to work with the deprecated Control Interpreter, see the Control System Guide.

In a standard Endeca implementation, these communication links can be unencrypted. However, for
highly secure implementations, these links may be encrypted with mutually-authenticated SSL.

The following illustration shows what type of communications can exist among the components of an
Endeca secure implementation in an Endeca Application Controller (EAC) environment. It is important
to keep in mind that the Application Controller can use SSL communication in three places:

• Between the EAC Central Server and its clients
• Between the EAC Central Server and its Agents
• With the MDEX Engine

In each case, because authentication is mutual, the host or client must contain both the keystore and
the truststore.

As the illustration shows, not all components can use SSL. For example, the Endeca Log Server
currently cannot be configured to use SSL.

Authentication among components
In addition to providing encryption, the SSL connections allow communicating Endeca components
to mutually authenticate and implement a passport model of access control.

By using the enecerts utility, you can create a Certification Authority (CA) that can be used to sign
certificates for use by the various components.

During communication initialization, each component confirms that the certificate it is receiving from
the other party has been signed by the CA. A bearer’s possession of a signed certificate (its passport)
implicitly grants full access to the Endeca component it is contacting.

For example, when the Endeca Presentation API in the front-end contacts an Endeca MDEX Engine,
it is allowed to make queries because both components have exchanged certificates.

Configuring SSL for the EAC
Making SSL work with the Endeca Application Controller involves generating a set of certificates and
specifying their location in various configuration files (along with other configuration information).

The Endeca Application Controller can use SSL to mutually encrypt the HTTP channel between the
EAC Central Server and its client (such as eaccmd or Endeca Workbench), as well as between the
Central Server and its Agents. The following topics describe how to implement these connections.

Endeca ConfidentialEndeca® Platform Services Security Guide

SSL Configuration | Configuring SSL for the EAC16

Creating Application Controller certificates
You must create SSL keystores and truststores for the EAC components.

This task requires the use of the enecerts utility.

The following set of SSL keystores and truststores are necessary to configure SSL for the EAC:

• A keystore file (named eac.ks in the examples below).
• A truststore file (named ca.ks in the examples below).

Both files should be stored in the $ENDECA_CONF\conf directory on UNIX (%ENDECA_CONF%\conf
on Windows). Because these certificates are not shipped with the Endeca IAP, you must generate
them.

To create the SSL keystores and truststores for EAC:

1. Run the enecerts utility to generate a set of SSL certificates, among which are the eneCert.pem
and eneCA.pem certificates.

The enecerts utility is documented in Chapter 3 of this guide.

2. Run the endeca-key-importer utility to convert the eneCert.pem certificate to a keystore.ks
keystore and the eneCA.pem Certificate Authority file to a truststore.ks truststore.

The endeca-key-importer utility is also documented in Chapter 3 of this guide.

3. Rename the certificates as follows:

• Rename the keystore.ks keystore to eac.ks.
• Rename the truststore.ks truststore to ca.ks.

4. Copy both files to the $ENDECA_CONF\conf directory on UNIX (%ENDECA_CONF%\conf on
Windows).

Alternatively at step 3, you can choose other filenames or retain the generated filenames. In this case,
you would specify those names in the configuration files that are described in the following topics. For
the purposes of the SSL configuration procedures in later topics, the eac.ks and ca.ks filenames
will be used.

Enabling SSL security in the EAC
After creating the keystore and truststore certificates, you can configure the EAC components for SSL.

SSL in the Endeca Application Controller is disabled by default. To enable SSL security (between the
client and the EAC Central Server, between the Central Server and an Agent, or between Agents),
you need to:

• Enable the SSL version of the appropriate EAC WAR file (eac-ssl.war replaces eac.war for
the Central Server and eac-agent-ssl.war replaces eac-agent.war for the Agent).

• Modify the server.xml file for the Tomcat that is hosting the EAC.

These procedures are explained in the following two topics.

Configuring the SSL version of the EAC WAR file

The SSL version of the EAC WAR file must be used for SSL.

When you install the EAC Central Server or Agent, the non-SSL version of the EAC WAR file is installed
by default. After creating the SSL certificates, you must configure the SSL version of this file.

Endeca® Platform Services Security GuideEndeca Confidential

17SSL Configuration | Configuring SSL for the EAC

To enable the SSL version of the EAC WAR files:

1. Stop the Endeca HTTP Service.

2. Navigate to %ENDECA_CONF%\conf\Standalone\localhost (on Windows) or
$ENDECA_CONF/conf/Standalone/localhost (on UNIX).

3. Open the eac.xml file, which is for the Central Server.

4. In the docBase attribute, replace the eac-<buildNumber>.war with the
eac-<build-number>-ssl.war version.
This file now points to the SSL-enabled version of the WAR file for the Central Server.

5. Save and close the eac.xml file.

6. In the same directory, open the eac-agent.xml file, which is for the Agent.

7. In the docBase attribute, replace the eac-agent-<buildNumber>.war with the
eac-agent-<buildNumber>-ssl.war version.
This file now points to the SSL-enabled version of the WAR file for the Agent.

8. Save and close the eac-agent.xml file.

9. Restart the Endeca HTTP Service.

If you want to restore the non-SSL versions at a later date, you can edit eac.xml or eac-agent.xml
as needed.

Modifying the server.xml

You must modify the server.xml file for the Tomcat that is hosting the EAC.

Before you can use SSL with the EAC, you must edit its server.xml file as described below. Before
beginning, make sure that you have generated keystore and truststore certificates for the EAC.

To enable the HTTPS connector in Tomcat:

1. Stop the Endeca HTTP Service.

2. Navigate to %ENDECA_CONF%\conf (on Windows) or $ENDECA_CONF/conf (on UNIX).

3. Open the server.xml file.

4. Remove the comments around the Connector element for port 8443, so that the result looks like
this:

<!-- Define a SSL HTTP/1.1 Connector on port 8443 -->
<Connector port="8443" maxHttpHeaderSize="8192" SSLEnabled="true"
 maxThreads="150" minSpareThreads="25" maxSpareThreads="75"
 enableLookups="false" disableUploadTimeout="true"
 acceptCount="100" scheme="https" secure="true"
 clientAuth="true" sslProtocol="TLS"
 keystoreFile="conf/eac.ks" keystorePass="eacpass"
 truststoreFile="conf/ca.ks" truststorePass="eacpass"
 URIEncoding="UTF-8"/>

5. For the keystorePass and truststorePass attributes, make sure that the passphrases match
those in the certificates.

6. Optionally, change the port number to something other than 8443 if you do not want to use that
default.

7. Change the redirectPort attribute on the regular HTTP connector to point to this same port.
Alternatively, you can comment out the non-SSL connector in the server.xml file.

Endeca ConfidentialEndeca® Platform Services Security Guide

SSL Configuration | Configuring SSL for the EAC18

Note: If you are using eaccmd, do not comment out the non-SSL connector in the EAC
Central Server’s server.xml file.

8. Save and close the server.xml file.

9. Restart the Endeca HTTP Service.

The tag specifies an explicit location for the Java keystore and a passphrase to allow it to use the
Application Controller keystore in the Tomcat conf directory. If you remove these attributes, Tomcat
uses the default keystore in the user’s home directory and assumes a passphrase of "changeit".

Enabling SSL for EAC clients
EAC clients should also be enabled for SSL.

In addition to implementing SSL on the EAC Central Server, you must also configure its client (such
as eaccmd or Endeca Workbench) to use SSL. Clients and servers each require both a truststore and
a keystore to communicate using SSL mutual authentication.

Replacing the default certificate files with custom keys

In a production environment, you may want to obtain certificates from a certificate authority, such as
Verisign.

If you do obtain obtain certificates from a certificate authority, keep in mind that ca.ks has to have
the CA key of the certificate authority needed to verify the server certificate. In the case of most major
certificate authorities, the CA certificates are already stored in the default Java keystore
(<java_sdk_installation>\jre\lib\security\cacerts) and should be used automatically.

In the case of the keystore, you can do either of the following:

• Create a new keystore and name it eac.ks.
• Alternatively, update the server.xml file to point to a different keystore that you already use.

The latter method requires the name of the host, the type of keystore, and the password in the
server.xml file.

For information on how to import a certificate, see the Java keytool reference at:

http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/keytool.html

Enabling SSL for eaccmd and EAC Web services

The eaccmd and EAC Web services scripts use command-line JVM arguments to enable SSL.

Enabling SSL for eaccmd

The eaccmd script (eaccmd.bat on Windows, or eaccmd.sh on UNIX) contains two JVM arguments
that tell it to use the keystore and truststore.

Because they do not affect non-SSL operation, eaccmd passes these arguments by default:

IF EXIST %ENDECA_CONF%\conf\ca.ks (
 SET TRUSTSTORE=%ENDECA_CONF%\conf\ca.ks
) ELSE (
 SET TRUSTSTORE=%EAC_ROOT%\..\workspace\conf\ca.ks
)

Endeca® Platform Services Security GuideEndeca Confidential

19SSL Configuration | Configuring SSL for the EAC

http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/keytool.html

IF EXIST %ENDECA_CONF%\conf\eac.ks (
 SET KEYSTORE=%ENDECA_CONF%\conf\eac.ks
) ELSE (
 SET KEYSTORE=%EAC_ROOT%\..\workspace\conf\eac.ks
)
...
SET JVM_ARGS=%JVM_ARGS% -Djavax.net.ssl.trustStore=%TRUSTSTORE%
 -Djavax.net.ssl.trustStoreType=JKS
 -Djavax.net.ssl.trustStorePassword=eacpass
SET JVM_ARGS=%JVM_ARGS% -Djavax.net.ssl.keyStore=%KEYSTORE%
 -Djavax.net.ssl.keyStoreType=JKS
 -Djavax.net.ssl.keyStorePassword=eacpass

Enabling SSL for the EAC Web services

The same SET JVM_ARGS command line-arguments documented above can be used with any AXIS
client.

SSL settings in the eac.properties file

The eac.properties file contains SSL-related settings.

The eac.properties file is the general configuration file for the Endeca Application Controller. The
following section describes the SSL-related settings you can specify in eac.properties and provides
a configuration file example.

The SSL keystores in the eac.properties file are used when the EAC Central Server or Agent is
acting as a client to other Agents, and not when the Agent is acting as a server. In the latter case, the
SSL configuration information resides in the server.xml file.

DescriptionSSL Setting

Path to the JKS keystore.com.endeca.eac.sslKeyStore

The passphrase associated with the keystore.com.endeca.eac.sslKey¬
StorePassphrase

Path to the JKS truststore.com.endeca.eac.sslTrustStore

The passphrase associated with the truststore.com.endeca.eac.sslTrust¬
StorePassphrase

UNIX Example

...
This must be a JKS key store type
com.endeca.eac.sslKeyStore=/usr/local/endeca/PlatformSer¬
vices/workspace/conf/eac.ks
com.endeca.eac.sslKeyStorePassphrase=eacpass

This must be a JKS trust store type
com.endeca.eac.sslTrustStore=/usr/local/endeca/PlatformSer¬
vices/workspace/conf/ca.ks
com.endeca.eac.sslTrustStorePassphrase=eacpass

Windows Example

...
This must be a JKS key store type

Endeca ConfidentialEndeca® Platform Services Security Guide

SSL Configuration | Configuring SSL for the EAC20

com.endeca.eac.sslKeyStore=C:\\Endeca\\PlatformSer¬
vices\\workspace/conf/eac.ks
com.endeca.eac.sslKeyStorePassphrase=eacpass

This must be a JKS trust store type
com.endeca.eac.sslTrustStore=C:\\Endeca\\PlatformSer¬
vices\\workspace/conf/ca.ks
com.endeca.eac.sslTrustStorePassphrase=eacpass

Configuring SSL between Endeca Workbench and the Central Server

Endeca Workbench can be configured to communicate with a Central Server using mutually
authenticated SSL.

Endeca Workbench reads in its configuration from the webstudio.properties file. Among other
things, the file contains a set of properties and default values that specify the location of the SSL
truststore and keystores used by Endeca Workbench. The webstudio.properties file is stored
in:

• %ENDECA_TOOLS_CONF%\conf (on Windows)
• $ENDECA_TOOLS_CONF/conf (on UNIX)

To enable SSL communication with the Central Server in Endeca Workbench:

1. Generate your own EAC certificates.

2. Upload the keystore and truststore files to the Endeca Workbench server. Store the files in
%ENDECA_TOOLS_CONF%\conf (on Windows) or $ENDECA_TOOLS_CONF/conf (on UNIX).

3. Open the webstudio.properties file and uncomment the properties in the SSL section. On
Windows machines, make sure that each backslash in a path is escaped with a preceding backslash,
as in this example:

The SSL settings for connecting to an SSL-enabled EAC
Configure your key store and trust store information here.
javax.net.ssl.trustStore=C:\\Endeca\\Workbench\\workspace/conf/ca.ks
javax.net.ssl.trustStoreType=JKS
javax.net.ssl.trustStorePassword=eacpass
javax.net.ssl.keyStore=C:\\Endeca\\Workbench\\workspace/conf/eac.ks
javax.net.ssl.keyStoreType=JKS
javax.net.ssl.keyStorePassword=eacpass

4. Update the properties to reference the paths, names, and passphrases of your custom keystore
and truststore.

DescriptionSetting

Absolute path to the JKS truststore.javax.net.ssl.trustStore

The type of truststore. Must be JKS.javax.net.ssl.trustStoreType

The passphrase for the truststore.javax.net.ssl.trustStorePassword

Absolute path to the JKS keystore.javax.net.ssl.keyStore

The type of keystore. Must be JKS.javax.net.ssl.keyStoreType

The passphrase for the truststore.javax.net.ssl.keyStorePassword

Endeca® Platform Services Security GuideEndeca Confidential

21SSL Configuration | Configuring SSL for the EAC

Configuring Endeca Workbench to use the SSL port for the Central Server

There are two ways of configuring the SSL port for Endeca Workbench.

By default, Endeca Workbench uses the non-SSL port to initiate connections with the EAC Central
Server, which is then forwarded to the SSL port using an internal redirect, thereby establishing a
mutually authenticated connection.

If you have disabled the non-SSL port on the EAC Central Server, or if you do not want to rely on this
redirect, Endeca Workbench can initiate an HTTPS connection directly to the SSL port of the Application
Controller.You can configure this behavior in Endeca Workbench by specifying the SSL port for the
EAC Central Server, and selecting the Use HTTPS option. For more information about specifying the
EAC Central Server in Endeca Workbench, see the Endeca Workbench Help.

If Endeca Workbench attempts to connect to the Application Controller on the SSL port with HTTP, or
on the non-SSL port with HTTPS, the connection fails and an error message displays.

SSL interactions in an EAC environment
This section outlines the configuration requirements to run the Endeca Application Controller with
various SSL elements enabled.

SSL may be on or off on a per-Agent basis, as long as the EAC Central Server or any other Agent
needing to communicate with an SSL-enabled Agent have the appropriate client-side SSL configuration
settings in the eac.properties file.

In all of the following examples, we assume two machines:

• Host A, which is running both an EAC Central Server and an EAC Agent
• Host B, which is running only an EAC Agent

Example One: SSL enabled everywhere

In the case where SSL is enabled everywhere, the configuration would be as follows:

Host BHost A

1. The SSL-enabled version of the Agent,
eac-agent-ssl.war.

1. The SSL-enabled version of the EAC Central
Server, eac-ssl.war.

2. SSL settings in eac.properties:2. The SSL-enabled version of the Agent,
eac-agent-ssl.war. • a. Keystore identifying this server.

• b. Truststore identifying the CA shared by all
servers.

3. The Tomcat SSL connector enabled in
server.xml as follows:

3. SSL settings in eac.properties:

• a. Keystore identifying this server.
• a. The same keystore as in 2a.

Endeca ConfidentialEndeca® Platform Services Security Guide

SSL Configuration | SSL interactions in an EAC environment22

Host BHost A

• b. Truststore identifying the CA shared by all
servers.

• b. The same truststore as in 2b.
• c. Client authentication turned on.

4. The Tomcat SSL connector enabled in
server.xml as follows:

• a. The same keystore as in 3a.
• b. The same truststore as in 3b.
• c. Client authentication turned on.

Note: When the Agents are communicating with the EAC Central Server via SSL, you might
note some related exceptions in the log file. These messages are benign and can safely be
ignored.

Example Two: SSL disabled everywhere

In the case where SSL is disabled everywhere, the configuration would be as follows:

Host BHost A

1. The non-SSL version of the Agent,
eac-agent.war.

1.The non-SSL version of the EAC Central Server,
eac.war.

2. No SSL settings in eac.properties.2. The non-SSL version of the Agent,
eac-agent.war.

3. The Tomcat SSL connector disabled in
server.xml.

3. No SSL settings in eac.properties.

4. The Tomcat SSL connector disabled in
server.xml.

Note: In the eac.properties file, it is a good idea to comment the SSL settings out, rather
than remove them, in case you choose to enable SSL at a later time.

Example Three: SSL enabled on the EAC Central Server only

In this scenario, the EAC Central Server is SSL-enabled, but the Agents are not.

Note: The SSL configuration for the EAC Central Server does not affect the Agent on the same
server.

Host BHost A

1. The non-SSL version of the Agent,
eac-agent.war.

1. The SSL-enabled version of the EAC Central
Server, eac-ssl.war.

2. No SSL settings in eac.properties.2. The non-SSL version of the Agent,
eac-agent.war.

3. The Tomcat SSL connector disabled in
server.xml.

3. No SSL settings in eac.properties.

Endeca® Platform Services Security GuideEndeca Confidential

23SSL Configuration | SSL interactions in an EAC environment

Host BHost A

4. The Tomcat SSL connector enabled in
server.xml as follows:

• a. Keystore identifying this server.
• b. Truststore identifying the CA shared by all

servers.
• c. Client authentication turned on.

Example Four: SSL enabled on the EAC Agents only

In this scenario, the EAC Central Server is not SSL-enabled, but both Agents are SSL-enabled.

Host BHost A

1. The SSL-enabled version of the Agent,
eac-agent-ssl.war.

1.The non-SSL version of the EAC Central Server,
eac.war.

2. SSL settings in eac.properties, for EAC
Agent to Agent communication.

2. The SSL-enabled version of the Agent,
eac-agent-ssl.war.

3. The Tomcat SSL connector enabled in
server.xml as follows:

3. SSL settings in eac.properties, for EAC
Central Server to Agent communication and Agent
to Agent communication. • a. Keystore identifying this server.

• b. Truststore identifying the CA shared by all
servers.

• c. Client authentication turned on.

4. The Tomcat SSL connector enabled in
server.xml as follows:

• a. Keystore identifying this server.
• b. Truststore identifying the CA shared by all

servers.
• c. Client authentication turned on.

Configuring stronger encryption
You can configure stronger encryption by using the BCC package.

The Bouncy Castle Crypto (BCC) package is included in your Endeca Information Access Platform
installation. This package is a Java implementation of cryptographic algorithms and provides stronger
encryption than the native JCE implementation. For example, RSA authentication and key exchange
is supported for up to 4096-bit keys.

The package also contains the BCC provider, which is a JCE-compliant provider that is a wrapper
built on top of the BCC light-weight API.

Before you integrate the BCC package, make sure that you are running Java 2 SDK version 1.4.x or
later. Earlier versions of the Java 2 SDK do not support the stronger cryptographic capabilities of the
BCC package.

To integrate the BCC package:

Endeca ConfidentialEndeca® Platform Services Security Guide

SSL Configuration | Configuring stronger encryption24

1. Find the BCC JAR file, which should have a name similar to the following:
bcprov-jdk14-121.jar (the exact name of the file depends on its version number).

Note: This file is shipped in the $ENDECA_ROOT/lib/java directory on UNIX
(%ENDECA_ROOT%\lib\java on Windows).You may notice that the version of the JDK that
is shipped with the Platform Services package is higher than the version indicated in this file's
name. It is important to note that this file is compatible with the later version of the JDK with
which it is shipped.

2. Copy the BCC JAR file to the [JAVA_HOME]/jre/lib/ext directory.

3. The JCE policy files shipped with the Java 2 SDK allow strong but limited cryptography to be used.
To use the stronger encryption, replace them with the JCE Unlimited Strength Jurisdiction Policy
Files, which you can download from the java.sun.com site (e.g.,
http://java.sun.com/j2se/1.4.2/download.html).

4. Unpack the JCE Unlimited Strength policy files (named local_policy.jar and
US_export_policy.jar) and copy them to the [JAVA_HOME]/jre/lib/security directory.
Note that they will be overwriting files of the same name, so you may want to first move the original
files to another location.

5. Edit the [JAVA_HOME]/jre/lib/security/java.security file to add the Bouncy Castle
provider. To add the Bouncy Castle provider to the java.security file, use an entry with this format
(where n is the preference order of the provider):

security.provider.n=org.bouncycastle.jce.provider.BouncyCastleProvider

It is recommended that you not put the Bouncy Castle provider as the first name in the preference
order. It is up to you to determine the actual order of the providers, but the following example is
one recommended ordering.

Example of ordering providers

List of providers and their preference orders
security.provider.1=sun.security.provider.Sun
security.provider.2=com.sun.crypto.provider.SunJCE
security.provider.3=sun.security.jgss.SunProvider
security.provider.4=org.bouncycastle.jce.provider.BouncyCastleProvider
security.provider.5=com.sun.net.ssl.internal.ssl.Provider

Configuring SSL on the application server
The application server should be configured to use SSL.

In order to implement a secure application, you need to configure your application server to use SSL
between the application server and client browsers.You may want to configure SSL as mutual (two-way)
authentication in which both the server and the client browser are required to present a certificate to
each other in order to successfully negotiate an SSL connection.

Because the exact details of configuring SSL differ from one application server to another, please
consult your application server documentation for instructions.

Endeca® Platform Services Security GuideEndeca Confidential

25SSL Configuration | Configuring SSL on the application server

http://java.sun.com/j2se/1.4.2/download.html

Configuring SSL for the MDEX Engine
You can configure the MDEX Engine to use SSL and, optionally, mutual authentication when
communicating with the Presentation API and other Endeca system components.

When configuring the MDEX Engine for SSL, keep in mind that you will be using the following two
certificate files:

• eneCert.pem – The certificate used by all clients and servers to specify their identity when using
SSL.This certificate file should be thought of as the identity of the Endeca system, or as the identity
of all components of the Endeca system.

• eneCA.pem – The Certificate Authority (CA) file used by all clients and servers that wish to
authenticate the other endpoint of a communication channel.

Likewise, you can configure Forge to use SSL between the Forge server and Forge client in a parallel
Forge implementation. However, you must use a control script for this configuration because there is
no Forge SSL interface in Endeca Workbench. For details, see the Endeca Control System Guide.

Application Controller configuration
The EAC Agent that controls the MDEX Engine should also be SSL-enabled.

When a Dgraph or Agraph is configured to require SSL connections, the Endeca Application Controller
Agent that runs that program uses mutually authenticated SSL to communicate with it.

Note: In the Application Controller, there is no explicit interface for implementing SSL security
for the Forge component. Instead, you must use command-line options.

Provisioning security for the Dgraph or Agraph

When a Dgraph or Agraph is provisioned to use SSL, when that component is started, it is given
arguments on the command line that instruct the server to require mutually authenticated SSL for
communication.

The Dgraph and Agraph components both include a section in their provisioning to define certificates
to use for SSL.You configure this capability in the component definitions for the Dgraph and Agraph
by adding the ssl-configuration element.

The settings are as follows:

• cert-file – The cert-file setting specifies the path of the eneCert.pem certificate file that
is used by the MDEX Engine processes (Dgraph or Agraph) to present to any client. This is also
the certificate that the Application Controller Agent should present to the MDEX Engine when trying
to talk to the MDEX Engine. The file name can be a path relative to the component’s working
directory.

• ca-file – The ca-file setting specifies the path of the eneCA.pem Certificate Authority file
that the MDEX Engine processes (Dgraph or Agraph) uses to authenticate communications with
other Endeca components. If SSL has been enabled, using this setting will turn on mutual
authentication. The file name can be a path relative to the component’s working directory.

• cipher – The cipher setting is an optional cipher string (such as RC4-SHA) that specifies the
minimum cryptographic algorithm that the Dgraph/Agraph processes will use during the SSL
negotiation. If you omit this setting, the SSL software will try an internal list of ciphers, beginning
with AES256-SHA.

Endeca ConfidentialEndeca® Platform Services Security Guide

SSL Configuration | Configuring SSL for the MDEX Engine26

The following is an example of an ssl-configuration element:

<ssl-configuration>
 <cert-file>/usr/local/endeca/workspace/etc/eneCert.pem</cert-file>
 <ca-file>/usr/local/endeca/workspace/etc/eneCA.pem</ca-file>
 <cipher>AES128-SHA</cipher>
</ssl-configuration>

Making changes to certificate values

The certificate values used are the ones that were specified by the configured files on disk at the time
that the component was started. If the contents of these files change to specify different certificates
after the component has been started, it has no effect on the running component. However, the next
time the component is started, the new values are used.

Configuring the MDEX Engine for SSL in Endeca Workbench
In Endeca Workbench, you use the EAC Admin Console to configure the MDEX Engine (and Aggregated
MDEX Engine) for SSL.

The EAC Admin Console page will let you specify the location of the SSL certificate files and the SSL
cipher for the MDEX Engine. By clicking the Show Advanced Options of the MDEX Engine component,
you will see three SSL-related fields: SSL Cert File, SSL CA File, and SSL Cipher. The following table
lists the meanings of the SSL fields.

DescriptionSSL Field

The path of the eneCert.pem certificate that the MDEX Engine presents to
any client.This is also the certificate that the Application Controller Agent should

SSL Cert File

present to the MDEX Engine when trying to communicate with the MDEX Engine.
The file name can be a path relative to the component’s working directory.

The path of the eneCA.pem Certificate Authority file that the MDEX Engine
uses to authenticate communications with other Endeca components. The file
name can be a path relative to the component’s working directory.

SSL CA File

An optional cipher string (such as RC4-SHA) that specifies the minimum
cryptographic algorithm that the MDEX Engine will use during the SSL

SSL Cipher

negotiation. If you leave this field blank, the SSL software will try to obtain a
working cryptographic algorithm from its internal list of ciphers, beginning with
AES256-SHA.

To configure SSL for the Endeca Workbench:

1. Log in to Endeca Workbench with the application that you want to administer.

2. Click the EAC Administration link.

3. Expand the MDEX Engine component and click Show Advanced Options.

4. In the SSL Cert File field, enter the full path of the SSL certificate file.

5. In the SSL CA File field, enter the full path of the SSL certificate authority file.

6. In the SSL Cipher field, either leave it empty or enter an SSL cipher string.

7. To save the configuration, click Update.

Note: If the MDEX Engine is running, you must stop it before you can save your changes.

Endeca® Platform Services Security GuideEndeca Confidential

27SSL Configuration | Configuring SSL for the MDEX Engine

Specifying cipher strings
When configuring SSL for the MDEX Engine and Forge, you should specify a cipher string to indicate
which type of cryptographic algorithm will be used.

You set this cipher string in the cipher element when you provision the components, either in a
provisioning file or in Endeca Workbench.

Keep in mind that the cipher string specifies the minimum cryptographic algorithm that you want to
use. If, during the SSL negotiation between components, the Endeca system determines that a stronger
algorithm is needed, then it will automatically use a stronger cipher suite. For example, if you specify
the AES128-SHA cipher string, the system may actually use the stronger AES256-SHA cryptographic
algorithm to make the SSL connection.

If you omit the cipher element, the SSL software will try to obtain a working cryptographic algorithm
from its internal list of ciphers, starting with the AES256-SHA cipher. To make sure that you get the
exact cryptographic algorithm that you want, you should specifically set it via the cipher element.

Some of the available cipher strings are listed in the following table.

Resulting cryptographic algorithmCipher string

KeyExchange=RSA, Authentication=RSA, Encryption=AES (128-bit),
MessageDigestHash=SHA-1

AES128-SHA

KeyExchange=RSA, Authentication=RSA, Encryption=AES (256-bit),
MessageDigestHash=SHA-1

AES256-SHA

KeyExchange=RSA, Authentication=RSA, Encryption=3DES (168-bit),
MessageDigestHash=SHA-1

DES-CBC3-SHA

KeyExchange=RSA, Authentication=RSA, Encryption=RC4 (128-bit),
MessageDigestHash=SHA-1

RC4-SHA

KeyExchange=RSA, Authentication=RSA, Encryption=RC4 (128-bit),
MessageDigestHash=MD5

RC4-MD5

Configuring SSL for JSP applications
You can configure your JSP application to use SSL for communications with the MDEX Engine.

The application used as an example in this section is based on the JSP version of the Endeca reference
implementation. Tomcat is used as the application server, with the JSP implementation being located
in the Tomcat webapps directory.

To successfully run the user authentication process, you must perform the following tasks to set up
the application server:

1. Write a HostnameVerifier class.
2. Create a JKS-format keystore certificate.
3. Configure an SSL connector on which the application can be accessed.
4. Start the application server with the appropriate keystore and truststore system properties.

These tasks are described in the following sections. An additional section also explains how to use
PKCS12 certificates instead of JKS-format keystores.

Endeca ConfidentialEndeca® Platform Services Security Guide

SSL Configuration | Configuring SSL for JSP applications28

Writing a HostnameVerifier class
You need to write a host name verifier that validates the host.

A host name verifier validates that the host to which an SSL connection is made is the intended or
authorized party. In an Endeca JSP application, you use the
AuthHttpENEConnection.setHostnameVerifier() method to set the host name verifier.
Because this method takes a javax.sun.net.ssl.HostnameVerifier object type , you must
create your own HostnameVerifier class.

During testing, you may want to use a null version of the HostnameVerifier class, which always
returns true.The Java code for such a class is used in the example below. In a production environment,
you would want to write a class that actually verifies that the host name is an acceptable match with
the server's authentication scheme.

To write and implement your HostnameVerifier class:

1. Create a .java file with the following Java code. Note that the example creates a package named
myverifier.

package myverifier;
import javax.net.ssl.HostnameVerifier;
import javax.net.ssl.SSLSession;
/**
 * Create a class to trust all hosts, so always returns true
 */

public class NullHostnameVerifier implements HostnameVerifier {
 public boolean verify(String urlHostname, SSLSession sslSession) {
 return true;
 }
}

2. Compile the .java file, as in the following example.

javac NullHostnameVerifier.java

3. Place the resulting .class file where it can be imported into your application. For example, if your
application is located in the C:\Tomcat\webapps\endeca_jspref directory, then place the
.class file in the following location.

C:\Tomcat\webapps\endeca_jspref\WEB-INF\classes\myverifier

4. Import the class into your application, as in the following example.

<%@ page errorPage="error.jsp" %>
<%@ page import="com.endeca.navigation.*" %>
<%@ page import="com.endeca.logging.*" %>
<%@ page import="myverifier.NullHostnameVerifier" %>

When the AuthHttpENEConnection.setHostnameVerifier() method is used in your application,
your NullHostnameVerifier class provides the verifier object:

//Instantiate a connection object for the MDEX Engine
AuthHttpENEConnection nec = new AuthHttpENEConnection(emeHost, emePort);
// Enable the SSL connection with our NullHostnameVerifier class
nec.setHostnameVerifier(new NullHostnameVerifier());

Endeca® Platform Services Security GuideEndeca Confidential

29SSL Configuration | Configuring SSL for JSP applications

Creating a JKS-Format keystore certificate
The application in this example uses a certificate in the standard Java KeyStore (JKS) format.

You can produce a JKS-format client certificate by converting the eneCert.p12 certificate key that
you generated with the enecerts utility.You will need a third-party utility to convert the key.

The following sections will assume that eneCert.jks is the name of the resulting JKS-format client
certificate.

Configuring the SSL connector
You must enable an SSL HTTP/1.1 connector on the application server.

The JSP application will run on the port of this SSL HTTP/1.1 connector.

To enable the SSL connector, modify the Tomcat server.xml file with an entry similar to this example:

<!-- Define a SSL HTTP/1.1 Connector on port 8443 -->
<Connector port="8443" maxHttpHeaderSize="8192" SSLEnabled="true"
 maxThreads="150" minSpareThreads="25" maxSpareThreads="75"
 enableLookups="false" disableUploadTimeout="true"
 acceptCount="100" debug="0" scheme="https" secure="true"
 clientAuth="false" sslProtocol="TLS"
 keystoreFile="C:\Endeca\PlatformServices\workspace\conf\eneCert.jks"
 keystorePass="endeca"
 truststoreFile="C:\Endeca\PlatformServices\workspace\conf\eneCert.jks"
 truststorePass="endeca"
 URIEncoding="UTF-8"/>

The example uses port 8443 and uses the eneCert.jks file as both the keystore and truststore file.
However, mutual authentication is not enabled because the clientAuth attribute is set to false.

When the application server is running, you can access the application by using https in the browser
URL, along with the host name, SSL port number, and name of the application, as in the following
example:

Starting the application server with the keystores
When you start the Tomcat application server, you must specify the location and passphrase of the
keystore and truststore files.

You used the following JVM java -D system property command arguments to specify the keystore
and truststore files:

• -Djavax.net.ssl.keyStore specifies the keystore file.
• -Djavax.net.ssl.keyStorePassword specifies the passphrase of the keystore.

Endeca ConfidentialEndeca® Platform Services Security Guide

SSL Configuration | Configuring SSL for JSP applications30

• -Djavax.net.ssl.trustStore specifies the truststore file to use to validate client certificates.
• -Djavax.net.ssl.trustStorePassword specifies the passphrase to access the truststore

file.

One way to set these system properties is to use the java command from the command line.

A second method is to set the command arguments to the value of the Tomcat CATALINA_OPTS
environment variable. This variable provides Java runtime options when the server is started.

You can set the CATALINA_OPTS environment variable in an existing Tomcat startup file (.bat on
Windows or .sh on UNIX) or create a wrapper file that sets the variable and then calls the Tomcat
startup file.

For example, the following Windows batch file can be placed in the Tomcat bin directory and used
to start the server:

@echo off
setlocal

set CLIENT_CERT=C:\Endeca\PlatformServices\workspace\etc\eneCert.jks
set CATALINA_OPTS=-Djavax.net.ssl.keyStore=%CLIENT_CERT%
 -Djavax.net.ssl.keyStorePassword=endeca
 -Djavax.net.ssl.trustStore=%CLIENT_CERT%
 -Djavax.net.ssl.trustStorePassword=endeca
cd c:\tomcat\bin
call c:\tomcat\bin\startup.bat
endlocal

Note that the values for the set CATALINA_OPTS command are on separate lines for ease of reading,
but should be on the same command line in the batch file.

Using PKCS12 keystores
You can use PKCS12 keystores instead of JKS-format client certificates.

The previous sections assume that the Tomcat application server is using a JKS-format client certificate.
However, the Tomcat server version 5.0 and higher supports the use of PKCS12 keystores.Therefore,
you can use the eneCert.p12 certificate key that you generated with the enecerts utility.

To set up a PKCS12 keystore on a Tomcat server:

1. Edit the JAVA_HOME/jre/lib/security/java.security file and change the default keystore
type:

Default keystore type.
keystore.type=pkcs12

2. Configure the SSL connector by editing the Tomcat server.xml file with an entry similar to the
following example. Note that the keystoreType and truststoreType attributes are set to
"PKCS12" because you are not using the default JKS format.

<!-- Define a SSL Coyote HTTP/1.1 Connector on port 8443 -->
<Connector port="8443"
 maxThreads="150" minSpareThreads="25" maxSpareThreads="75"
 enableLookups="false" disableUploadTimeout="true"
 acceptCount="100" debug="0" scheme="https" secure="true"
 clientAuth="false" sslProtocol="TLS"
 keystoreType="PKCS12"
 keystoreFile="C:\Endeca\MDEXEngine\workspace\etc\eneCert.p12"
 keystorePass="endeca"
 truststoreType="PKCS12"

Endeca® Platform Services Security GuideEndeca Confidential

31SSL Configuration | Configuring SSL for JSP applications

 truststoreFile="C:\Endeca\MDEXEngine\workspace\etc\eneCert.p12"
 truststorePass="endeca" />

3. Start Tomcat with a batch file or script similar to the following Windows batch file example. (Note
that the values for the set CATALINA_OPTS command are on separate lines for ease of reading,
but should be on the same command line in the batch file.)

@echo off
setlocal
set CLIENT_CERT=C:\Endeca\MDEXEngine\workspace\etc\eneCert.p12
set CATALINA_OPTS=-Djavax.net.ssl.keyStoreType=PKCS12
 -Djavax.net.ssl.keyStore=%CLIENT_CERT%
 -Djavax.net.ssl.keyStorePassword=endeca
 -Djavax.net.ssl.trustStore=%CLIENT_CERT%
 -Djavax.net.ssl.trustStorePassword=endeca
cd c:\tomcat\bin
call c:\tomcat\bin\startup.bat
endlocal

Configuring SSL for ASP.NET Applications
You can configure your ASP.NET application to use SSL for communications with the MDEX Engine.

The general procedure for configuring your ASP.NET application is:

1. Configure the MDEX Engine to run SSL.
2. Convert your private certificate (eneCert.pem) to a DER format.
3. Import one or both of your certificates (eneCert.p12 and eneCA.pem) to your local machine store

(that is, the Local Computer/Personal certificate store).
4. Give the ASP.NET process permission to use the certificate.
5. Modify the application’s entryp-point file to use SSL.

Except for step 1, the steps are explained in detail in the following sections.

Converting the private certificate to the DER format
You need to convert your private certificate into a DER (Distinguished Encoding Rules) format.

The DER format, which is one of the formats for X.509 certificates, provides a platform-independent
method of encoding certificates for transmission between devices and applications. For these
instructions, it is assumed that the certificate to be converted is the eneCert.pem certificate that you
created with the enecerts utility and stored in the %ENDECA_CONF%\etc directory.

Use the openssl.exe program (in the %ENDECA_MDEX_ROOT%\bin directory) to convert the certificate.
Assuming that you have opened a command prompt and have navigated to the %ENDECA_CONF%\etc
directory, the conversion command is:

openssl x509 -inform PEM -outform DER -in eneCert.pem -out eneCert.der

The eneCert.der certificate will be later used in the controller.aspx file.

Endeca ConfidentialEndeca® Platform Services Security Guide

SSL Configuration | Configuring SSL for ASP.NET Applications32

Importing the certificates to the local machine store
Your Personal Information Exchange (PKCS12-format) key file must be imported to your Local
Computer\Personal certificate store.

The procedure in this section assumes that you are using the eneCert.p12 private key that that you
created with the enecerts utility and stored in the %ENDECA_CONF%\etc directory.

Using the Microsoft Management Console

To import the certificates, use the Microsoft Management Console (MMC) with the Certificates snap-in.

If your MMC does not have the Certificates snap-in, add it as follows:

1. Start the MMC by selecting Run from the Start menu, typing in MMC, and then clicking OK.

2. From the File menu, select Add/Remove Snap-in.

3. At the Add/Remove Snap-in dialog, select a name from the Snap-ins added to drop-down box.
This procedure assumes that you have selected the default, Console Root.

4. At the Add/Remove Snap-in dialog, click Add.The Add Standalone Snap-in dialog box is displayed
with a list of the snap-ins that are installed on your computer.

5. At the Add Standalone Snap-in dialog, select Certificates and click Add.

6. At the Certificates snap-in dialog, select Computer account and click Next.

7. At the Select Computer dialog, select Local computer and click Finish.

8. You are returned to the Add Standalone Snap-in dialog. Click Close.

9. You are returned to the Add/Remove Snap-in dialog. The dialog should have Certificates
(Local Computer) in the list. Click OK.

As a result, the Console Root window now has the Certificates (Local Computer) snap-in rooted at
the Console Root folder, as shown in this example:

Importing the private certificate

The procedure to import the eneCert.p12 certificate is described in this topic.

To import the eneCert.p12 (PKCS12) private certificate:

Endeca® Platform Services Security GuideEndeca Confidential

33SSL Configuration | Configuring SSL for ASP.NET Applications

1. Start the MMC by selecting Run from the Start menu, typing in MMC, and then clicking OK.

2. In the console tree, expand Certificates (Local Computer) and right-click on Personal.

3. Point to All Tasks and then click Import to start the Certificate Import Wizard.

4. In the wizard, follow these steps:

a) In the Welcome dialog, click Next.
b) In the File to Import dialog, click Browse and navigate to the eneCert.p12 private key. After

you open the key, click Next.
c) In the Password dialog, type the password used to encrypt the private key and click Next.
d) In the Certificate Store dialog, select the Place all certificates in the following store button

and select Personal as the certificate store. When you have done this, click Next.
e) To exit the Certificate Store Wizard, click Finish. Click OK when you get the confirmation

message.

To verify that the PKCS12-format key was successfully imported, click the Local
Computer\Personal\Certificates link. The right-hand panel should list a key that was issued to
"Endeca User".

Give permissions to the ASP.NET account
The account that runs the ASP.NET process must be given permission to use the PKCS12-format key
that was imported to the local machine store.

The name of the the ASP.NET account is typically "NETWORK SERVICE" (although it may use another
name on your system).

To assign the permissions, you must first download and install the Microsoft Windows HTTP Services
Certificate Configuration Tool, which is available at the following Microsoft Web site:

http://www.microsoft.com/downloads/details.aspx?familyid=c42e27ac-3409-40e9-
8667-c748e422833f

The tool installs to the C:\Program Files\Windows Resource Kits\Tools directory by default;
winhttpcertcfg.exe is the name of the executable.

To run the tool, open a command prompt, navigate to the tool’s installation directory, and issue this
command:

WinHttpCertCfg -g -c LOCAL_MACHINE\MY -s "Endeca" -a "NETWORK SERVICE"

If the command is successful, you should see output like this:

Microsoft (R) WinHTTP Certificate Configuration Tool
Copyright (C) Microsoft Corporation 2001.

Matching certificate:
E=support@endeca.com
CN=Endeca User
O=Endeca Technologies
C=US

Granting private key access for account:
 NT AUTHORITY\NETWORK SERVICE

Endeca ConfidentialEndeca® Platform Services Security Guide

SSL Configuration | Configuring SSL for ASP.NET Applications34

http://www.microsoft.com/downloads/details.aspx?familyid=c42e27ac-3409-40e9-8667-c748e422833f
http://www.microsoft.com/downloads/details.aspx?familyid=c42e27ac-3409-40e9-8667-c748e422833f

Modifying the application’s entry-point file
The controller.aspx file must be modified with new function calls.

In the ASP.NET reference implementation, the controller.aspx file is the entry point into the
Endeca application. If your application uses a different file structure, the information in this section will
apply to the entry-point file for your application.

To enable SSL for the application, you must add two function calls to the file:

• The HttpENEConnection.EnableSSL() method enables an SSL connection to the MDEX
Engine, using a previously-created X.509 v.3 certificate.

• AcceptAllCertificatePolicy class.

The next sections describe the syntax of these calls.

After modifying the controller.aspx file, you can run the application in the same way as before.

EnableSSL method

The signature of the HttpENEConnection.EnableSSL() method is:

HttpENEConnection.enableSSL(X509Certificate clientCertificate)

where clientCertificate is an X509Certificate object (from the .NET Framework Class Library) that
is an implementation of an X.509 v.3 certificate.

The .NET X509Certificate.CreateFromCertFile method was used to create the
clientCertificate object from the eneCert.der certificate (the ASN.1 DER format is the only
certificate format supported by this class).

You should place the EnableSSL() method immediately after the HttpENEConnection connection
object is instantiated, as shown in the example below.

AcceptAllCertificatePolicy class

The AcceptAllCertificatePolicy class is intended for situations where you want to prevent
Host Not Found exceptions that are thown if the host name on the certificate does not match the
name of the server. One example is if you are using the certificates that you generated with the
enecerts utility. Note that you may not want to use this class if you are using your own custom
certificates and want to verify the host name.

The signature of the AcceptAllCertificatePolicy class is:

AcceptAllCertificatePolicy(X509Certificate certificateToAccept)

where certificateToAccept is the same X509Certificate object used with the
HttpENEConnection.EnableSSL() method. The X.509 certificate is set by the .NET Framework
ServicePointManager.CertificatePolicy property to override any host name mismatches.

You can put the code after the X509 certificate is created from the DER-format version.

Example of a modified controller.aspx file

// Set the MDEX Engine connection
HttpENEConnection nec = new HttpENEConnection(ENEHost, ENEPort);
// Create the X509 certificate from the DER version
X509Certificate privateCert =
 X509Certificate.CreateFromCertFile(@"C:\Endeca\MyCerts\eneCert.der");
// Enable SSL for the connection, using the new X509 certificate.
nec.EnableSSL(privateCert);
// Now update the certificate validation with a custom policy.

Endeca® Platform Services Security GuideEndeca Confidential

35SSL Configuration | Configuring SSL for ASP.NET Applications

// Required because Endeca certificates throw Host Not Found exceptions.
ServicePointManager.CertificatePolicy =
 new AcceptAllCertificatePolicy(privateCert);
// Create an ENEQuery for the MDEX Engine.
...

Endeca ConfidentialEndeca® Platform Services Security Guide

SSL Configuration | Configuring SSL for ASP.NET Applications36

Chapter 3

Using Endeca SSL Certificate Utilities

This section describes how to use the Endeca enecerts utility to generate standard and custom SSL
certificate files to be used for SSL connections between the various Endeca components. It also
documents an Endeca utility that can convert a PKCS12-format key to a standard Java KeyStore (JKS)
format.

Certificate files used by Endeca components
You configure SSL among the standard Endeca components by using a set of certificate files.

The certificate files are listed in the following table:

DescriptionCertificate file

Certificate file used by all Endeca clients and servers to specify their
identity when using SSL. This certificate should be thought of as the

eneCert.pem

identity of the Endeca system, or as the identity of all components of the
Endeca system.

Certificate authority file used by all Endeca clients and servers to
authenticate the other endpoint of a communication channel.

eneCA.pem

Private key that is used by the enecerts certificate authority program
to sign the eneCert.pem certificate.

eneCA.key

Certificate authority file for import into browsers such as Microsoft Internet
Explorer.

eneCA.cer

Personal Information Exchange (PKCS12-format) key file for import into
browsers such as Microsoft Internet Explorer.

eneCert.p12

Because these certificate files are not provided in the Endeca IAP packages, you must use the
Endeca-provided enecerts utility (documented in the next topic) to generate them. When you do,
you should store them in the following directory:

• On UNIX: $ENDECA_CONF/etc
• On Windows: %ENDECA_CONF%\etc

In addition to the files listed above, the Endeca Application Controller keystore (eac.ks) and the client
truststore (ca.ks) can be produced by the endeca-key-importer utility. This utility converts the
eneCert.pem and eneCA.pem certificates from a PEM format to the standard Java KeyStore (JKS)
format.

For .NET-based applications, you can use these files to secure connections between the .NET client
and the EAC Central Server.

Generating SSL certificates
You can use the enecerts utility program to generate new SSL certificate files.

The two typical scenarios for generating SSL certificates are:

• You are setting up SSL for the first time and need to generate the set of standard certificates.
• You want to generate custom certificates, such as those with a private key size greater than the

default 1024 bits.

The enecerts utility resides in the $ENDECA_MDEX_ROOT/bin directory (%ENDECA_MDEX_ROOT%\bin
on Windows) under the name enecerts (enecerts.exe on Windows).

Generating standard SSL certificates on UNIX
This procedure shows how to generate the set of standard certificates with a 1024-bit private key size
on UNIX platforms.

To generate the SSL certificates on a UNIX machine:

1. Make sure that the $ENDECA_MDEX_ROOT environment variable is set on your machine.

2. Change to the $ENDECA_CONF/etc directory, where the certificate files should reside.

3. Run the enecerts utility that creates the certificates:

$ENDECA_MDEX_ROOT/bin/enecerts

4. Enter an export password of your choice.

If the programs finishes successfully, it displays the list of certificates that it generated.

Generating standard SSL certificates on Windows
This procedure shows how to generate the set of standard certificates with a 1024-bit private key size
on Windows platforms.

To generate the SSL certificates on a Windows machine:

1. Open a command prompt.

Note: Make sure you are using a new command prompt window, not one that is left over
from earlier tasks.

2. To ensure that the MDEX Engine environment variables are set for this user process, change to
the MDEX Engine root directory and run the mdex_setup.bat script.

3. Change to the %ENDECA_CONF%\etc directory.

4. Run the enecerts utility that creates the certificates:

%ENDECA_MDEX_ROOT%\bin\enecerts

5. Enter an export password of your choice.

Endeca ConfidentialEndeca® Platform Services Security Guide

Using Endeca SSL Certificate Utilities | Generating SSL certificates38

If the programs finishes successfully, it displays the list of certificates that it generated.

Generating custom certificates
You can use the enecerts utility to generate customized certificates.

You can generate two types of customized certificates by:

• Specifying a private key size larger or smaller than the default 1024-bit size.
• Using your own CA file and private key to generate the eneCert.pem certificate.

The next two sections describe these operations.

Specifying a different certificate key size

The --keysize flag of the enecerts utility lets users specify the size of the generated private key.
The flag syntax is:

--keysize bits

where bits is the private key size in bits (default value is 1024).

For example, the following Windows command creates certificates with a private key size of 2048 bits:

enecerts --keysize 2048

Keep in mind that using larger keys will slow system performance. A recommended alternative to the
default 1024-bit size is a key size of 512 bits, which will give you a good balance between security
and performance considerations.

Using your CA file to generate certificates

By default, the enecerts utility produces the eneCert.pem certificate (used by all clients and servers
to specify their identity when using SSL) and the eneCA.pem CA certificate (used by all clients and
servers that wish to authenticate the other endpoint of a communication channel).

If you have your own CA certificate and private-key files, you can use the --CAkey and --CAcert
flags to generate the eneCert.pem certificate.The private-key file (.key extension) is used to digitally
sign the public key that is generated by the enecerts utility. Both flags must be used for this operation.

The syntax for the --CAkey flag is:

--CAkey private-key

where private-key is your own .key file with the private key for the CA that should be used to sign the
generated certificate.

The syntax for the --CAcert flag is:

--CAcert cert-pem

where cert-pem is your CA certificate (.pem extension). This file is the same type of file as the default
eneCA.pem CA certificate.

For example, the following Windows command creates a signed certificate file using your own CA
certificate and private-key files:

enecerts --CAkey myCA.key --CAcert myCA.pem

You would then use the resulting eneCert.pem certificate and your CA file (myCA.pem in the example)
to configure SSL for your Endeca components. If you have multiple machines in your deployment, you
must also copy these files to the other machines.

Endeca® Platform Services Security GuideEndeca Confidential

39Using Endeca SSL Certificate Utilities | Generating SSL certificates

Copying the SSL certificates to other machines
All machines that are running your deployment must use the same SSL certificates.

If you have multiple machines in your deployment, the standard or custom SSL certificates should be
created only once, on one machine.You must then copy them to the $ENDECA_CONF/etc directory
(on UNIX) or the %ENDECA_CONF%\etc directory (on Windows) on all other machines. All of the
machines must use the same SSL certificates.

Importing SSL certificates in Internet Explorer
Depending on the details of your deployment, you may have to import the SSL certificates to your
browser.

Typically, you do not need to import the SSL certificates in the Internet Explorer browser. For example,
you can run the Endeca reference implementations without importing SSL certificates to your browser.

However, you must import the certificates in Internet Explorer if you are using the deprecated Endeca
JCD with SSL and you want to connect directly to it via your browser. For details, see the Endeca
Control System Guide.

To import the SSL certificates in Internet Explorer:

1. If you created the SSL certificates on a UNIX machine, copy the eneCert.p12 and eneCA.cer
files to the Windows machine.

2. Open Internet Explorer. From the Tools menu, choose Internet Options.

3. In the Internet Options dialog box, click the Content tab and then the Certificates button to display
the Certificates dialog box.

4. If imported certificates are listed from any previous Endeca installations, delete them.

5. In the Certificates dialog box, click Import to launch the Certificate Import wizard. This allows you
to import the standard or custom SSL certificates that you created using the enecerts utility. Follow
these steps:

a) In the Welcome screen, click Next.
b) In the File to Import screen, browse to eneCA.cer, which is located in the %ENDECA_CONF%\etc

directory or the directory to which you copied the file.You may have to change the File of Type
option to X.509 Certificate to see the eneCA.cer file.

c) In the Certificate Store screen, choose Automatically select the certificate store
based on the type of certificate.

d) In the Completing the Certificate Import Wizard screen, click Finish. (If you receive a Security
Warning, click Yes.) When you see the confirmation message, click OK.

e) Relaunch the Certificate Import wizard.
f) In the File to Import screen, browse to the eneCert.p12 file, which is located in the same

directory as the eneCA.cer file.
g) In the Password screen, enter the password you used when you created the SSL certificates.
h) In the Certificate Store screen, choose Automatically select the certificate store

based on the type of certificate.
i) In the Completing the Certificate Import Wizard screen, click Finish. When you see the

confirmation message, click OK.

6. Close the Certificates window.

7. Click OK in the Internet Options window.

Endeca ConfidentialEndeca® Platform Services Security Guide

Using Endeca SSL Certificate Utilities | Importing SSL certificates in Internet Explorer40

If an SSL-enabled JCD is running, you can test the access to it with the imported SSL certificate files:

1. In Internet Explorer, enter a command similar to the following in the Address box to open the Endeca
JCD home page:

https://localhost:8088

2. If a Client Authentication dialog appears, select the certificate to use (for example, the Endeca
User certificate) and click Yes.

3. The browser should display a page titled Endeca JCD followed by a list of links.You can click on
any link to execute that command.

Converting PEM-format keys to JKS format
The Endeca Key Importer is a certificate conversion utility that allows you to convert PEM-format
certificates to the standard Java KeyStore (JKS) format.

With the Endeca Key Importer utility, you can:

• Convert the eneCert.pem certificate file to a keystore.ks keystore file.
• Convert the eneCA.pem Certificate Authority file to a truststore.ks truststore file.

The Java keystores can then be used for communication between Endeca components that are
configured for SSL (for example, between an EAC Agent and the MDEX Engine if both are
SSL-enabled).

The Endeca Key Importer utility is provided as a JAR file, which is named endeca-key-importer.jar
and is shipped in the $ENDECA_ROOT/lib/java directory for UNIX platforms and
%ENDECA_ROOT%\lib\java for Windows platforms.

The usage syntax for the utility is:

endeca-key-importer.jar input_dir output_dir password

where:

• input_dir is the directory that contains the eneCert.pem and eneCA.pem certificates.
• output_dir is the destination directory for the keystore.ks and truststore.ks converted files.
• password is the passphrase for the keystores. Note that this should also be the passphrase of the

original eneCA.pem certificate.

A passphrase that contains spaces or special characters may be double-quoted or escaped according
to the rules of your command shell. Note that the Key Importer utility will neither accept nor create key
materials that are not protected with a passphrase.

This example on a Windows platform shows how to run the utility:

java -jar %ENDECA_ROOT%\lib\java\endeca-key-importer.jar pems keystores
mypass

In the example, pems is the directory that contains the PEM certificates, keystores is the destination
directory for the keystores, and mypass is the password for the certificates.

When the command finishes, it outputs instructions as to how to run the Java keytool utility that you
can use to validate both resulting keystores.

Endeca® Platform Services Security GuideEndeca Confidential

41Using Endeca SSL Certificate Utilities | Converting PEM-format keys to JKS format

Enabling .NET SSL communication with EAC
You can encrypt the HTTP connection between your .NET client and the Endeca Application Manager’s
EAC Central Server.

This section assumes that you have already implemented SSL in the EAC Central Server, including
the generation of the EAC eac.ks keystore and the ca.ks client truststore. Therefore, the section
outlines what you need to do on the .NET client side.

After the certificate for the CA has been installed, you can write your .NET client. In order to enable
the .NET client code to communicate with the HTTPS file enabled in the Tomcat server.xml file on
the EAC Central Server, you must edit the URL in the generated client code so that it points to
https://<eachost>:<eacsslport> rather than the default http://<eachost>:<eacport>.

Modifying the ICertificatePolicy interface
The ICertificatePolicy interface is used to validate security certificates in a .NET application.

Because you can use the Endeca-generated certificates on different servers, the host name of the
server cannot be validated. This can result in warning or error messages.

You can modify this policy to bypass the error conditions and point to your custom implementation.
To do so, implement the ICertificatePolicy interface with a your custom policy, and then set
the SecurityPointManager.CertificatePolicy to point to it.

The following example demonstrates such an override:

class ExampleDotNetSetup
 {
 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static void Main(string[] args)
 {
 try
 {
 // Set the certificate policy if you are using endeca certs
 // to ignore hostname matching
 ServicePointManager.CertificatePolicy = new MyCertificateValida¬
tion();
 // Create service stubs change url to be https://eachost:eacsslport

 // and invoke services...
 Console.Out.WriteLine("It worked");
 }
 catch (Exception e)
 {
 Console.Out.WriteLine(e);
 }
 }
}

For more information, contact Endeca Professional Services, or see the Microsoft Developer’s Network
(MSDN) documentation on ICertificatePolicy, which is located here:

http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/cpref/html/frlrfsystemneticertificatepolicyclasstopic.asp

Endeca ConfidentialEndeca® Platform Services Security Guide

Using Endeca SSL Certificate Utilities | Enabling .NET SSL communication with EAC42

Chapter 4

Access Control System Configuration

This section describes how to configure the Endeca Access Control System for your implementation.

About the Access Control System
The Endeca Access Control System is used for the authentication and authorization of your application's
end-users.

The Endeca Access Control System can be used for two purposes:

• For authentication of users, to reliably and securely control which records an authorized user may
view.

• For authorization of users, to ensure they have the access control rights (permissions) required
to do the actions performed.

Some details of the configuration of the Access Control System depend on whether your application
is using Java or .NET. The following topics will point out these differences when applicable; otherwise,
the configuration topic under discussion will apply to both .NET and Java.

Authentication framework
The type of authentication framework used depends on whether you use the Java or .NET version of
the Presentation API.

JAAS authentication framework

To use the Endeca Access Control System on machines running the Java version of the Presentation
API, you need the Java Authentication and Authorization Service (JAAS) to function as its framework.

JAAS implements a Java version of the Pluggable Authentication Module (PAM) framework, which
permits applications to remain independent from underlying authentication technologies. The PAM
framework allows the use of new or updated authentication technologies without requiring modifications
to your application. Currently, the Endeca Information Access Platform supplies two authentication
plug-ins: an LDAP-based plug-in and a local file-based plug-in. These plug-ins are named:

• com.endeca.navigation.LDAPLoginModule

• com.endeca.navigation.FileLoginModule

You can obtain JAAS by using Java 2 SDK version 1.4.x (or later), which includes JAAS.

.NET authentication framework

To use the Endeca Access Control System on machines running the .NET version of the Presentation
API, you need the .NET Framework.The .NET Framework permits applications to remain independent
from underlying authentication technologies.

You can obtain the .NET Framework version redistributable package from the downloads section of
the Microsoft Web site.

The .NET Framework also supports the LDAP-based plug-in and the local file-based plug-in. Their
names are:

• Endeca.Navigation.AccessControl.LDAPLoginModule.LDAPLoginModule

• Endeca.Navigation.AccessControl.FileLoginModule.FileLoginModule

The plug-in classes are in the Endeca.Navigation.AccessControl.dll file, which is shipped
in the %Endeca_Root%\lib\Endeca.NET directory

Access Control configuration file
The Access Control System is configured via its own configuration file.

The Access Control System configuration file consists of one or more authentication configuration
entries that specify which type of login authentication module will be used.

The general format of the configuration entries are given in this topic. Details on the entries are in the
following topic.

Format of configuration entries for Java

If you are using the Java framework, the format for a configuration entry is:

ConfigEntryName {
 LoginModuleClass1 ModuleFlag
 ModuleOptions;
 LoginModuleClass2 ModuleFlag
 ModuleOptions;
};

The LoginModuleClass parameter is either com.endeca.navigation.LDAPLoginModule or
com.endeca.navigation.FileLoginModule. Note that in the Java version, you can specify
multiple LoginModule classes, as long as each name is unique.

Format of configuration entries for .NET

If you are using the .NET framework, the format for a configuration entry is:

ConfigEntryName {
 LoginModuleClass ModuleFlag
 ModuleOptions;
};

The LoginModuleClass parameter is either
Endeca.Navigation.AccessControl.LDAPLoginModule.LDAPLoginModule or
Endeca.Navigation.AccessControl.FileLoginModule.FileLoginModule. Note that in
the .NET version, you can specify only one LoginModule class.

Endeca ConfidentialEndeca® Platform Services Security Guide

Access Control System Configuration | Access Control configuration file44

Configuration entry parameters
An authentication configuration entry for Endeca's Access Control System has the following parameters.

The configuration parameters apply to both Java and .NET frameworks. Differences between the two
versions are noted in the table.

ValueParameter

Endeca must be used as the name of the configuration entry.ConfigEntryName

These Endeca LoginModule classes can be specified for Java
implementations:

LoginModuleClass

• com.endeca.navigation.LDAPLoginModule

• com.endeca.navigation.FileLoginModule

These Endeca LoginModule classes can be specified for .NET
implementations:

• Endeca.Navigation.AccessControl.LDAPLoginModule.LDAPLoginModule

• Endeca.Navigation.AccessControl.FileLoginModule.FileLoginModule

The ModuleFlag value controls the overall behavior as authentication
proceeds down the stack (i.e., the list of LoginModules).The value must
be one of the following:

ModuleFlag (Java
framework)

Required – The LoginModule is required to succeed. If it succeeds or
fails, authentication still continues to proceed down the LoginModule
list.

Requisite – The LoginModule is required to succeed. If it succeeds,
authentication still continues to proceed down the LoginModule list. If it
fails, control immediately returns to the application (authentication does
not proceed down the LoginModule list).

Sufficient – The LoginModule is not required to succeed. If it does
succeed, control immediately returns to the application (authentication
does not proceed down the LoginModule list). If it fails, authentication
continues down the LoginModule list.

Optional – The LoginModule is not required to succeed. If it succeeds
or fails, authentication still continues to proceed down the LoginModule
list.

The ModuleFlag value controls the overall behavior of the authentication
process. The value must be:

ModuleFlag (.NET
framework)

Required – The LoginModule is required to succeed.

See the descriptions of the LoginModules in the following topics for
details of each LoginModule’s options.

ModuleOptions

ModuleFlag values for Java

When setting the ModuleFlag value for a Java framwork, keep in mind that the overall authentication
succeeds only if all Required and Requisite LoginModules succeed. If a Sufficient LoginModule

Endeca® Platform Services Security GuideEndeca Confidential

45Access Control System Configuration | Access Control configuration file

is configured and succeeds, then only the Required and Requisite LoginModules prior to that
Sufficient LoginModule need to have succeeded for the overall authentication to succeed. If no
Required or Requisite LoginModules are configured for an application, then at least one
Sufficient or Optional LoginModule must succeed.

Configuration examples

The following is an example of an Access Control System configuration file for a Java framework
running on a UNIX machine:

Endeca {
 com.endeca.navigation.FileLoginModule required
 passwordFile="/usr/local/endeca/etc/passwd";
};

This is the .NET version of the same configuration running on a Windows machine:

Endeca {
 Endeca.Navigation.FileLoginModule.FileLoginModule required
 passwordFile="c:\\endeca\\navigationengine\\etc\\passwd";
};

In both examples, Endeca is the name of the configuration entry. The FileLoginModule is being used,
with required as its module flag. The passwordFile module option specifies the location of the
password file.

Specifying the location of the configuration file
This topic describes how the Java and .NET frameworks locate the Access Control configuration file.

A sample login configuration file (named Login.conf) is provided in the %ENDECA_CONF%\etc
directory ($ENDECA_CONF/etc on UNIX).You can modify this file (including changing the file name)
and store it in any directory.

How the Java framework finds the configuration file

In a Java framework, JAAS finds the login configuration file by examining the value of the java.se¬
curity.auth.login.config property within the Java JVM in which the Access Control System
is running. If this property is not set, the system will look for a file named .java.login.config in
the home directory of the user who started the JVM.

How you set the java.security.auth.login.config property depends on the specifics of your
application server. A common method to specify the configuration file is to use a JVM
-Djava.security.auth.login.config command-ine argument, as in this example:

java -Djava.security.auth.login.config=Login.conf weblogic.server

A second method is to edit the JAVA_HOME/jre/lib/security/java.security file and add the
name of the login configuration file, as in this Windows example:

Default login configuration file
login.config.url.1=file:C:/EndecaProjects/SSL/Login.conf

Note that even though the path is on Windows, you must use forward slashes because the path is
actually a URL.

Please consult your application server documentation for full details on how to set this property.

Endeca ConfidentialEndeca® Platform Services Security Guide

Access Control System Configuration | Access Control configuration file46

How the .NET framework finds the configuration file

The .NET Framework finds the login configuration file by examining the value of a registry setting,
which is set by the Endeca installation program to the %ENDECA_CONF%\etc\Login.conf path.

Configuring the LDAPLoginModule plug-in
The LDAPLoginModule plug-in allows the Endeca Access Control System to authenticate users and
obtain authorization information from an LDAP server.

The LDAPLoginModule has a large number of configuration parameters that allow it to be used with
most LDAP configurations.

In Java, the LDAPLoginModule is:

com.endeca.navigation.LDAPLoginModule

In .NET, the LDAPLoginModule is:

Endeca.Navigation.AccessControl.LDAPLoginModule.LDAPLoginModule

LDAPLoginModule templates
The LDAPLoginModule allows templates to be supplied for certain configuration parameters.

These templates allow values from the authentication operation (such as the username and password)
and the values from the user or group objects to be substituted into the parameter value. Any text not
appearing in a %{} escape in a template is copied literally.

The table shows how the %{} escapes are expanded. Note that the templates apply to both the Java
and .NET frameworks.

DescriptionEscape

The username value that will be provided to the
AuthHttpENEConnection.Login() method via a CallbackHandler
instance.

%{#username}

The distinguished name of the user object.%{#dn}

The username value provided by the loginName parameter for rebinding to
the LDAP server.

%{#logname}

The value in the fieldName field of the user (or group object when used in the
groupTemplate parameter) under consideration.

%{#fieldname}

Selecting values from an escape sequence

Any escape sequence can have a path field value selected from it by appending a colon and the index
of the field.

For example, if the value in the %{#dn} field is:

cn=joe,ou=People,dc=foo,dc=com

then the value "People" will be substituted for %{#dn:1}, while "joe" will be substituted for %{#dn:0}.

Endeca® Platform Services Security GuideEndeca Confidential

47Access Control System Configuration | Configuring the LDAPLoginModule plug-in

LDAPLoginModule required parameters for Java
These configuration parameters are required for the Java framework version of the LDAPLoginModule
plug-in.

DefinitionParameter

The distinguished name pattern to match to find a user. The username entered
by the user at login will be substituted for the {username} value. The default
value is:

/ou=People,dc=endeca,dc=com??sub?(cn=%{#username:1})

userPath

A template that specifies the set of objects that contain the user’s group
memberships.The resulting information is used to construct an entitlement filter

groupPath

for the user.You can specify this parameter multiple times. The default value
is:

/ou=Groups,dc=endeca,dc=com?cn?sub?(uniqueMember=%{#dn})

A template that specifies how to produce individual group names from the set
of groups returned from the groupPath query. The default value is:

%{cn}

groupTemplate

A URL specifying the name and port of the LDAP server to be used for
authentication.You can specify multiple LDAP servers. Note that the protocol

serverInfo

portion of the URL (that is, ldap://) must be in all-lowercase.The default value
is:

ldap://web1.endeca.com:1234

Prepending strings to user and group names

For login purposes, you can set up the LDAPLoginModule plug-in to prepend strings to usernames
and/or group names. Make sure to add the prepend string before the %{} escape sequence.

For example, assume you want to prepend the string "user:" to usernames and "group:" to group
names.You would specify the userPath and groupPath parameters similar to the following example:

groupTemplate="%{cn}"
userPath="/ou=People,dc=endeca,dc=com??sub?(cn=user:%{#username})"
groupPath="/ou=Groups,dc=endeca,dc=com?sub?(uniqueMember=group:%{#dn})";

Specifying Multiple LDAP Servers

You can specify multiple LDAP servers with multiple instances of the serverInfo parameter, by
using the format:

serverInfo.n = "ldap://server_url:port"

For example:

serverInfo.0="ldap://web01.endeca.com:1234"
serverInfo.1="ldap://web02.endeca.com:1230"
serverInfo.2="ldap://web03.endeca.com:1334"

If you specify multiple LDAP servers, the servers are assumed to be equivalent.

Endeca ConfidentialEndeca® Platform Services Security Guide

Access Control System Configuration | Configuring the LDAPLoginModule plug-in48

The choice of which LDAP server to contact is made randomly. If an LDAP server cannot be reached,
the LDAPLoginModule plug-in proceeds through the remaining servers in order of configuration,
wrapping if necessary.

For example, if five servers are configured and Server 3 is the first to be contacted, the remaining
order of contact is Server 4, Server 5, Server 1, and finally Server 2.

LDAPLoginModule required parameters for .NET
These configuration parameters are required for the .NET framework version of the LDAPLoginModule
plug-in.

DefinitionParameter

A template that specifies the location of the LDAP server and the distinguished
name pattern to match to find the user to be authenticated. The username

userURL

entered by the user at login will be substituted for the {username} value.
The default value is:

ldap://xyz.com/ou=People,dc=endeca,dc=com??sub?
(cn=%{#username:1})

A template that specifies the set of objects that contain the user’s group
memberships. The resulting information is used to construct an entitlement
filter for the user. The default value is:

ldap://xyz.com/ou=Groups,dc=endeca,dc=com?cn?sub?
(uniqueMember=%{#dn})

groupURL

A template that specifies how to produce individual group names from the set
of groups returned from the groupPath query. The default value is:

%{cn}

groupTemplate

LDAPLoginModule optional configuration parameters
These configuration parameters are optional for the LDAPLoginModule plug-in.

The optional parameters listed in this table apply to both the Java and .NET versions of the
LDAPLoginModule plug-in.

DefinitionParameter

If set to true, tells the LDAPLoginModule to authenticate users by rebinding
as the user to the LDAP system, thereby employing the LDAP system’s own
authentication mechanism. The default value is true.

ldapBindAuthentication

A template login name that will be used to rebind to the LDAP server if
ldapBindAuthentication is true. The default value is: %{#dn}

loginName

The name of the attribute on the user object that contains the user’s
password. Used only if ldapBindAuthentication is set to false. The

passwordAttribute

field specified must contain the user’s password in clear text. The default
value is the userPassword attribute.

Endeca® Platform Services Security GuideEndeca Confidential

49Access Control System Configuration | Configuring the LDAPLoginModule plug-in

DefinitionParameter

Tells the LDAPLoginModule whether to check passwords during logins. If
set to false, only the user name is used for logins. The default value is
true.

checkPasswords

The username of the administrator login to the LDAP server that the
LDAPLoginModule should use to find user objects. For example:

"cn=Manager,dc=foo,dc=com"

serviceUsername

If no value is specified for this option, the LDAPLoginModule will
authenticate anonymously. The default value is "".

The password to use in conjunction with the serviceUsername value.The
default value is "".

servicePassword

Tells the LDAPLoginModule whether or not to make mutually authenticated
SSL connections to the LDAP server. If you set the parameter, make sure

useSSL

that you have configured the LDAP server to use SSL. The default value is
false.

Additional parameters for Java

The following table lists the optional parameters that apply to only the Java version of the
LDAPLoginModule plug-in.

DefinitionParameter

Specifies the method of authentication that should be used in connecting to
the LDAP server as the administrator account. The supported values are
these strings:

serviceAuthentication

• none
• simple (this is the default)
• EXTERNAL

Specifies the method of authentication that should be used in connecting to
the LDAP server as a user account.The supported values are these strings:

authentication

• none
• simple (this is the default)
• EXTERNAL

Specifies the location of the Java keystore, which stores keys and certificates.
The keystore is where Java gets the certificates to be presented for

keyStoreLocation

authentication. The location of the keystore is OS-dependant, but is often
stored in a file named .keystore in the user’s home directory. The default
value is "".

Specifies the passphrase used to open the keystore file. The default value
is "".

keyStorePassphrase

Endeca ConfidentialEndeca® Platform Services Security Guide

Access Control System Configuration | Configuring the LDAPLoginModule plug-in50

LDAPLoginModule configuration examples
These sample login configuration files show how to configure the Access Control System to use an
LDAP server for authentication.

Java example using an LDAP server

Endeca {
 com.endeca.navigation.LDAPLoginModule required
 ldapBindAuthentication="false"
 serviceUsername="cn=Manager,dc=endeca,dc=com"
 servicePassword="nosecret"
 checkPasswords="false"
 groupTemplate="%{cn}"
 useSSL="true"
 serverInfo.0="ldap://web01.qa.endeca.com:1234"
 serverInfo.1="ldap://web02.qa.endeca.com:1234"
 serverInfo.2="ldap://web03.qa.endeca.com:1234"
 userPath="/ou=People,dc=endeca,dc=com??sub?(cn=%{#username})"
 groupPath="/ou=Groups,dc=endeca,dc=com?sub?(uniqueMember=%{#dn})";
 keyStoreLocation="/localdisk/endeca/ldap/keystore"
 keyStorePassphrase="changeit"
};

.NET example using an LDAP server

Endeca {
 Endeca.Navigation.AccessControl.LDAPLoginModule.LDAPLoginModule required

 ldapBindAuthentication="false"
 serviceUsername="cn=Manager,dc=endeca,dc=com"
 servicePassword="nosecret"
 checkPasswords="false"
 groupTemplate="%{cn}"
 useSSL="false"
 userURL="ldap://web01.xyz.com:1234/ou=People,
 dc=endeca,dc=com??sub?(cn=%{#username})"
 groupURL="ldap://web01.xyz.com:1234/ou=Groups,
 dc=endeca,dc=com?sub?(uniqueMember=%{#dn})";
};

.NET example using an Active Directory server

Endeca {
 Endeca.Navigation.AccessControl.LDAPLoginModule.LDAPLoginModule required

 ldapBindAuthentication="true"
 serviceUsername="Administrator@Ad.com"
 servicePassword="endeca"
 useSSL="false"
 userURL="ldap://ad.com/cn=Users,dc=AD,dc=COM??one?
 (sAMAccountName=%{#username})"
 loginName="%{#username}@ad.com"
 groupURL.0="ldap://ad.com/cn=Users,dc=AD,dc=COM?memberOf?one?
 (sAMAccountName=%{#username})"
 groupURL.1="ldap://ad.com/cn=Builtin,dc=AD,dc=COM?name?one?
 (&(objectClass=group) (member=%{#dn}))"
 groupTemplate.0="%{memberOf:0}"

Endeca® Platform Services Security GuideEndeca Confidential

51Access Control System Configuration | Configuring the LDAPLoginModule plug-in

 groupTemplate.1="%{name}";
};

Configuring the FileLoginModule plug-in
The FileLoginModule is a simple LoginModule that reads login information from a flat file.

The file contains user, password, and group information that the FileLoginModule uses to
authenticate the user.

In Java, the FileLoginModule is:

com.endeca.navigation.FileLoginModule

In .NET, the FileLoginModule is:

Endeca.Navigation.AccessControl.FileLoginModule.FileLoginModule

FileLoginModule configuration parameters
The FileLoginModule has one required parameter and one optional parameter.

The FileLoginModule parameters apply to both the Java and .NET frameworks.

DefinitionParameter

Required. Specifies the file in which user, password, and group information
is stored. There is no default. On both UNIX and Windows platforms, you

passwordFile

can use single forward slashes in the path (see Example 1 and Example 2
below). On Windows platforms, you can use double backslashes, in which
the first backslash escapes the second one (see Example 3).

Optional. Tells the FileLoginModule whether or not to check passwords
during logins. If set to false, only the user name is used for logins. The
default is true.

checkPasswords

passwordFile examples

Example 1: a file path on a UNIX platform:

passwordFile="/usr/local/endeca/PlatformServices/workspace/etc/passwd"

Example 2: a file path using forward slashes on a Windows platform:

passwordFile="c:/Endeca/PlatformServices/workspace/etc/passwd"

Example 3: a file path using backward slashes on a Windows platform:

passwordFile="c:\\Endeca\\PlatformServices\\workspace\\etc\\passwd"

Password file format
The password file contains a series of user entries that specify the password and groups of each user.

Endeca ConfidentialEndeca® Platform Services Security Guide

Access Control System Configuration | Configuring the FileLoginModule plug-in52

Each user entry uses this format:

username:cleartextpassword:group1,group2,...groupN

The three fields are delimited by colons. Note that the cleartextpassword and group fields can be
empty.

The following is a sample password file:

dave:en958:development,allcompany
sally:lopper39:development,allcompany
john:jhn931:marketing,allcompany

In this sample file:

• Dave has a password of "en958" and is allowed to see records in the development group.
• Sally has a password of "lopper39" and is also allowed to see records in the development group.
• John has a password of "jhn931" can see records in the marketing group.
• All three users can see records in the allcompany group.

FileLoginModule configuration examples
These sample login configuration files show how to configure the Access Control System to use a
password file for authentication.

Java example on a UNIX machine

Endeca {
 com.endeca.navigation.FileLoginModule required
 passwordFile="/usr/local/endeca/PlatformServices/workspace/etc/passwd"
 checkPasswords="false";
};

.NET example using forward slashes

Endeca {
 com.endeca.navigation.FileLoginModule required
 passwordFile="c:/Endeca/PlatformServices/workspace/etc/passwd"
 checkPasswords="false";
};

.NET example using backslashes

Endeca {
 com.endeca.navigation.FileLoginModule required
 passwordFile="c:\\Endeca\\PlatformServices\\workspace\\etc\\passwd"
 checkPasswords="true";
};

Endeca® Platform Services Security GuideEndeca Confidential

53Access Control System Configuration | Configuring the FileLoginModule plug-in

Chapter 5

Using Record Permissions

This section describes the Endeca Access Control System, which allows application developers to
control which records can be seen by different users.

Using ACLs for document access control
The Endeca Access Control System allows sensitive information to be indexed and presented in a
MDEX Engine in such a way that only authorized personnel can search and navigate those records.

The Access Control System controls document access by matching Access Control Lists (ACLs)
properties on records to group information associated with a user’s entitlement filter. If you are using
one of the LoginModule plug-ins for user authentication, this entitlement filter is automatically created
during the authentication process.

ACLs can be added to Endeca records like any other property during data processing. The Access
Rules component, which you can create with Developer Studio, lets you configure rules from which
Endeca ACLs can be created.

The Endeca Content Acquisition System can extract native file-system ACLs from crawled files and
directories. These extracted ACLs can be used directly or transformed by Forge pipeline components
to restrict access to records.

Each entry in an ACL extracted by the Content Acquisition System is represented by a property attached
to the Endeca record.The format of these properties depend on the type of machine (UNIX or Windows)
from which the crawl is run. An overview of the ACL formats is given in the next two sections. For a
complete list of the properties extracted by the Content Acquisition System, see the Endeca CAS
Developer's Guide, which is available on EDeN.

Windows ACLs

Crawls run from a Windows machine return one of the following name/value forms for each source
document:

Endeca.FileSystem.ACL.AllowRead = DOMAIN\principal
Endeca.FileSystem.ACL.DenyRead = DOMAIN\principal

where principal is the name of a user, group, or other principal who either has the right to read the
record (the Endeca.FileSystem.ACL.AllowRead property) or is denied that right (the Ende¬
ca.FileSystem.ACL.DenyRead property).The name of the principal is prepended with the domain
to which the name belongs.

For example, a Windows file could result in this property being set on a record:

<PROP NAME="Endeca.FileSystem.ACL.AllowRead">
 <PVAL>SALES\jbrown</PVAL>
</PROP>

This property indicates that the user named jbrown from the SALES group is granted the privilege to
read that record.

Keep in mind that the Endeca.FileSystem.ACL.AllowRead source property must be mapped to
the Endeca.ACL.Allow.Read property by a Forge pipeline component (such as with a record
manipulator or with the property mapper.

UNIX ACLs

Crawls run from a UNIX machine return the following properties on the record:

Property ValueEndeca Property Name

The name of a user or other principal who is the owner of the
document.

Endeca.FileSystem.Owner

A Boolean that indicates whether the file owner (the Ende¬
ca.FileSystem.Owner value) has read rights to the
document.

Endeca.FileSystem.IsOwn¬
erReadable

The name of a group for which permissions have been set for
the document.

Endeca.FileSystem.Group

A Boolean that indicates whether the group (the Ende¬
ca.FileSystem.Group value) has read rights to the
document.

Endeca.FileSystem.Is¬
GroupReadable

A Boolean that indicates whether everyone on the system
(world) has read rights to the document.

Endeca.FileSystem.IsWorl¬
dReadable

With UNIX ACLs, a component (such as a record manipulator or Perl manipulator) can test the value
of the Readable properties and, if true, assign the principal to the Endeca.ACL.Allow.Read property.
For example, the pseudo-code would be:

If Endeca.FileSystem.IsOwnerReadable is true
Then assign Endeca.ACL.Allow.Read to the value of Endeca.FileSystem.Owner

Refinements and spelling with Access Control
Besides access to records, the Access Control System also limits access to refinements and spelling
suggestions based upon the records that a user is allowed to access.

The MDEX Engine enforces this access as follows:

• For spelling corrections, the MDEX Engine will only suggest a word if it appears in at least one
record that the user is allowed to see.

• For refinements, the MDEX Engine will only suggest a refinement if each of its constituent dimension
values are tagged to at least one record that the user is allowed to see.

Endeca ConfidentialEndeca® Platform Services Security Guide

Using Record Permissions | Refinements and spelling with Access Control56

Creating the crawler pipeline
This section describes two pipeline components for records returned by the Endeca File System
Crawler.

The section also describes how to create the Endeca.ACL.Allow.Read property and configure the
property mapper.

Configuring a Binary or XML record adapter
The File System Crawler creates Endeca records in a format (XML or binary) ready for processing by
Forge.

To read in the output file, you can add an input record adapter with a format of either XML or binary
(depending on how you configure the output format). The URL field of the record adapter will point to
the location of the output file.

To configure the record adapter:

1. In Developer Studio, specify the following basic settings in the General tab of the Record Adapter
editor:

ValueField

Must be Input.Direction

Must be either Binary or XML.Format

Enter an input URL as a path, using a wildcard a pattern for the filename. For
example, a URL pattern of ../incoming/*.bin.gz means that Forge will

URL

read any file in the incoming directory that has the bin.gz suffix. Each file
that matches the pattern will be read in strict lexicographic order of their
filenames.

Check this box to specify that Forge can read data from more than one input
file and that the input URL is to be interpreted as a pattern.

Multi File

2. You can leave the other tabs (Sources, Record Index, and so on) in their default state.

3. Click OK to add the component.

Adding a record manipulator
Parsing, duplicate detection, and a number of other small tasks related to crawling are performed by
expressions in a record manipulator.

The expressions in a record manipulator are evaluated against each record as it flows through the
pipeline. When an expression is evaluated, it may change the current record.

For example, one way to rename the Windows Endeca.FileSystem.ACL.AllowRead source
property to the Endeca.ACL.Allow.Read property is to add a record manipulator with a RENAME
expression. The code for the expression would be similar to this:

<EXPRESSION LABEL="" NAME="RENAME" TYPE="VOID" URL="">
 <EXPRNODE NAME="OLD_NAME"
 VALUE="Endeca.FileSystem.ACL.AllowRead"/>
 <EXPRNODE NAME="NEW_NAME" VALUE="Endeca.ACL.Allow.Read"/>
</EXPRESSION>

Endeca® Platform Services Security GuideEndeca Confidential

57Using Record Permissions | Creating the crawler pipeline

You would add the record manipulator after the record adapter.

When the pipeline runs, the record manipulator changes the name of this source property:

<PROP NAME="Endeca.FileSystem.ACL.AllowRead">
 <PVAL>SALES\jbrown</PVAL>
</PROP>

to this property name in the Endeca record that is output by Forge:

<PROP NAME="Endeca.ACL.Allow.Read">
 <PVAL>SALES\jbrown</PVAL>
</PROP>

Keep in mind that if you use a record manipulator to change the property name, you do not have to
use the property mapper to rename the property. However, the property mapper still has to map the
source property to an Endeca property, even though the two names are the same.

Creating the Endeca.ACL.Allow.Read property
While the Endeca File System crawler can create many different properties from native file system
ACL information, the MDEX Engine only uses the Endeca.ACL.Allow.Read permission to determine
record access.

This requirement means that if an application’s access control policy depends upon other native ACL
information (for example, Deny information), the pipeline will need to transform these other properties
into a form that is usable by the MDEX Engine. For access control to function, the data set must contain
an Endeca.ACL.Allow.Read property that is enabled for user entitlement filters. Because this
property is not automatically created during the data processing stage, you must explicitly create it
with Developer Studio.

To create the Endeca.ACL.Allow.Read property:

1. In the Project tab of Developer Studio, double-click Properties to open the Properties view.

2. Click New. The New Property editor is displayed.

3. Configure the property as follows:

a) Enter Endeca.ACL.Allow.Read in the Name text box.
b) Select Alpha as the property type.
c) Check the Enable for Record Filters option.

These three attributes are mandatory; however, you can add other attributes if you wish.

4. Click OK. The Properties view is redisplayed with the new property listed.

5. From the File menu, choose Save.

After step 3, the New Property editor should look like this:

Endeca ConfidentialEndeca® Platform Services Security Guide

Using Record Permissions | Creating the crawler pipeline58

Configuring the property mapper
The property mapper maps a record’s source properties to Endeca properties or dimensions.

The configuration information that follows assumes that you have already created the
Endeca.ACL.Allow.Read property and have also added a property mapper to the pipeline.

To map the Endeca.ACL.Allow.Read property:

1. In the Pipeline Diagram, double-click the property mapper to open it in the Property Mapper editor.

2. In the Property Mapper editor, click Mappings.

3. In the Mappings editor, select New > Property Mapping.

4. In the Property Mapping editor, configure the mapping as follows:

ValueField

Enter the name of the source property on the record. For example, enter
Endeca.FileSystem.ACL.AllowRead for Windows ACLs.

Source property

Select Endeca.ACL.Allow.Read as the target. Note that you must have
previously created the target property before its name appears in the
drop-down list.

Target property

Enter 0 (zero) to set no limit on the length of the property value.Maximum

5. Click OK.

After step 4, the Property Mapping editor should look similar to this example:

Endeca® Platform Services Security GuideEndeca Confidential

59Using Record Permissions | Creating the crawler pipeline

Creating the Access Rules component
Another method of setting Endeca ACLs on your records is to add an Access Rules component to
your pipeline.

With an Access Rules component, you can restrict the Endeca records that a user can see by creating
a set of access rules for the Endeca properties in your implementation. Each rule states that if the
value of a property on a record is equal to a value that you specified, then that record can be seen by
any member of a group that you also have specified.

To create an Access component in Developer Studio:

1. Make sure that you have created an Endeca.ACL.Allow.Read property in your implementation.
Developer Studio will automatically add the property to the property mapper and map the property
to itself.

2. In the Pipeline Diagram, select New > Access Rules. The Access Rules editor will be displayed.

3. After naming the Access Rules component, use the Sources tab to specify its Record source as a
property mapper (or another Access Rules component) and its Dimension source as a Dimension
Server:

Endeca ConfidentialEndeca® Platform Services Security Guide

Using Record Permissions | Creating the Access Rules component60

4. On the Rules tab, add an access rule by clicking the Add button.

5. In the Edit Access Rule editor, define the rule by specifying an If-Then statement:

a) Specify the If condition clause by selecting a property (to identify records for access) and then
entering a string in the Equals text box. The string is the value of the property against which the
rule will be tested. Note that the string must be an exact match with the value of the property
on the record.

b) In the Then panel, enter the name of a group. This group is allowed access to any records that
have the property and value that you specified in the Then clause.

In this example, if the value of the P_Region property on a record equals the string value "Burgundy",
then members of the Users group can read the record:

6. When you finished adding the rules, click OK. The Rules tab should look like this example:

7. To add additional access rules, repeat steps 4 through 6.

8. Click OK to add the Access Rules component.

The Pipeline Diagram should look like this example, which has an Access Rules component named
FrenchWines:

Endeca® Platform Services Security GuideEndeca Confidential

61Using Record Permissions | Creating the Access Rules component

Making MDEX Engine queries
After you have configured the LoginModule plug-in and have extracted the document ACLs, you can
make MDEX Engine queries.

MDEX Engine URL query parameters

There are no URL parameters that are relevant to the Endeca Access Control System. All access
control information is managed by the AuthHttpENEConnection object via the user’s entitlement
filter and cannot be modified from the URL. This prevents the Access Control System from being
broken by attackers modifying URLs.

Access Control objects and method calls

To use the Access Control System, an AuthHttpENEConnection instance must be used to connect
to the MDEX Engine. (If an HttpENEConnection is used, it will not restrict user access, regardless
of whether ACLs have been defined for the MDEX Engine’s records.) Use the
AuthHttpENEConnection methods to ensure that all interfaces accessing sensitive information are
protected by the Access Control System.

The AuthHttpENEConnection class is identical in use to the HttpENEConnection class, except
that it has these additional methods:

• The login() method in Java and the Login() method in .NET.

Endeca ConfidentialEndeca® Platform Services Security Guide

Using Record Permissions | Making MDEX Engine queries62

• The logout() method in Java and the Logout() method in .NET.

After constructing the ENEConnection and setting the hostname and port as usual, the appropriate
login method must be called to authenticate the user and gather authorization information.

Performance impact

There is some overhead for the initial authentication process for a user. The length of this delay
depends upon the LoginModule plug-in that is used and on any other systems accessed by this module
(for example, if a heavily loaded LDAP system is used for authentication via the LDAPLoginModule,
a substantial login cost might be introduced).

The Endeca.ACL.Allow.Read property introduces a small index space (RAM) overhead for each
record.

Response times for the MDEX Engine requests that include Access Control are relatively unaffected.

Endeca® Platform Services Security GuideEndeca Confidential

63Using Record Permissions | Making MDEX Engine queries

Chapter 6

User Authentication with LDAP

This section explains how to authenticate users via the Endeca LDAPLoginModule plug-in.

Overview of the LDAP user authentication process
The LDAPLoginModule plug-in handles logins that are authenticated against an LDAP directory.

To ensure a high level of security, this section assumes that X.509 certificates are required from users
to identify them.

The procedures below use SSL to illustrate how you can combine the LDAP authentication and SSL
features. Keep in mind, however, that using SSL during LDAP-based user authentication is completely
independent from the user authentication procedure itself. Of course, you have to use SSL if the
useSSL parameter has been set in the Access Control configuration file.

The general flow of the user authentication process via an LDAP directory is as follows:

1. Obtain the User Information: The user establishes connection to the application server and gives
an X.509 certificate to the server. The application extracts the user identity from the user’s X.509
certificate. (Note that JSP front-ends can use the Java X509Certificate class methods.) Up to
this point, no Endeca software has been used.

2. Instantiate an MDEX Engine Connection Object:The Presentation API AuthHttpENEConnection
constructor is used to instantiate an AuthHttpENEConnection object that will be used to connect
to the MDEX Engine.

3. Query the LDAP Server: The AuthHttpENEConnection class has a login method that is used
to connect to and query an external LDAP server to authenticate the user. If the LDAP directory
has so been configured, the results can also provide the user’s group information. The Endeca
Access Control System automatically creates an entitlement filter for the user based on this group
information.

4. Make a Secure MDEX Engine Query:The Presentation API AuthHttpENEConnection class has
a query method that is used to make a query to the MDEX Engine that limits the user’s access to
what is specified in the entitlement filter.

These steps are described in detail in the following sections.

Note: User authentication via an LDAP directory is supported by the Java and .NET versions
of the Endeca Presentation API. All procedures apply to both versions, unless otherwise noted.

Obtaining the user information
The first step is for the application to extract the user identity from the user’s X.509 certificate.

Requiring X.509 certificates from your users is one way to provide secure user authentication. Although
using X.509 certificates is not a requirement for any type of authentication, it is a often used in Web
browsers that support the SSL protocol.

Java implementation

To extract the contents of the certificate, use the methods in the Java Certificate API, which is in the
java.security.cert package available from Sun. In particular, the X509Certificate class
provides a standard way to access all the attributes of an X.509 certificate.

The following JSP code fragment shows how to extract the user’s name from an X.509 certificate.

<%@ page import="java.security.cert.X509Certificate" %>
<%@ page import="java.security.Principal" %>
<%
// Later in the page...
// Get the client SSL certificates associated with the request
X509Certificate[] certs = (X509Certificate[])
request.getAttribute("javax.servlet.request.X509Certificate");
// Check that a certificate was obtained
if (certs.length < 1) {
 System.err.println("SSL not client authenticated");
 return;
}
// The base of the certificate chain contains the client's info
X509Certificate principalCert = certs[0];

// Get the Distinguished Name from the certificate
// Ex/ "E=joeuser@endeca.com, CN=joeuser, O=Endeca,
// "L=Cambridge, S=MA, C=US"
Principal principal = principalCert.getSubjectDN();

// Extract the common name (CN)
int start = principal.getName().indexOf("CN");
String tmpName, name = "";
if (start > 0) {
 tmpName = principal.getName().substring(start+3);
 int end = tmpName.indexOf(",");
 if (end > 0) {
 name = tmpName.substring(0, end);
 }
 else {
 name = tmpName;
 }
}
// Now query the LDAP server for authentication
...
%>

.NET implementation

The ASPX front end can also extract user information from X.509 certificates. The .NET Framework
includes the System.Security.Cryptography.X509Certificates namespace that contains
the X509Certificate class. For details on its usage, refer to the Microsoft .NET Framework
documentation.

Endeca ConfidentialEndeca® Platform Services Security Guide

User Authentication with LDAP | Obtaining the user information66

Instantiating an MDEX Engine connection object
An AuthHttpENEConnection object is used to connect to the MDEX Engine.

An AuthHttpENEConnection connection functions as a repository for the hostname and port
configuration for the MDEX Engine you want to query. The class methods are briefly described in the
following sections. For more information on the methods, see the Endeca API Javadocs or the Endeca
API Guide for .NET.

Java implementation

The signature for an AuthHttpENEConnection constructor looks like this:

//Instantiate a connection object for the MDEX Engine
AuthHttpENEConnection nec = new AuthHttpENEConnection(emeHost, emePort);

In the instantiation, emeHost is the host name or IP address of the Endeca MDEX Engine and emePort
is its port number.

Use the AuthHttpENEConnection.enableSSL() method if you want to enable SSL for the
connection:

//Instantiate a connection object for the MDEX Engine
AuthHttpENEConnection nec = new AuthHttpENEConnection(emeHost, emePort);
// Enable the SSL connection with our NullHostnameVerifier class
nec.setHostnameVerifier(new NullHostnameVerifier());
nec.enableSSL();

Note that at this time, an actual connection has not been opened to the MDEX Engine.

.NET implementation

For .NET, the ASPX code to instantiate an AuthHttpENEConnection object looks like this:

//Instantiate a connection object for the MDEX Engine
AuthHttpENEConnection nec = new AuthHttpENEConnection(emeHost, emePort);

In the instantiation, emeHost is the host name or IP address of the Endeca MDEX Engine and emePort
is its port number.

If you want to enable SSL for the connection for a .NET application, use the
AuthHttpENEConnection.EnableSSL() method:

// Set the MDEX Engine connection
AuthHttpENEConnection nec = new AuthHttpENEConnection(ENEHost, ENEPort);
// Create the X509 certificate from the DER version
X509Certificate privateCert =
 X509Certificate.CreateFromCertFile(@"C:\Endeca\MyCerts\eneCert.der");
// Enable SSL for the connection, using the new X509 certificate.
nec.EnableSSL(privateCert);
// Now update the certificate validation with a custom policy.
// Required because Endeca certificates throw Host Not Found exceptions.
ServicePointManager.CertificatePolicy =
 new AcceptAllCertificatePolicy(privateCert);

At this time, an actual connection has not been opened to the MDEX Engine.

Endeca® Platform Services Security GuideEndeca Confidential

67User Authentication with LDAP | Instantiating an MDEX Engine connection object

Querying the LDAP server
The AuthHttpENEConnection class has a login method to query the LDAP directory for
authentication.

Use this AuthHttpENEConnection method to establish a connection with an external LDAP server
and query the LDAP directory to authenticate the user:

• Java: the login() method
• .NET: the Login() method

These methods use the LDAPLoginModule plug-in to connect to and query the LDAP server.

The LDAP server’s URL is obtained from the serverInfo parameter (or parameters) in the Access
Control configuration file.

If the user is not in the LDAP directory, the authentication will fail and the user will not be allowed
access to the Endeca implementation.

Java implementation

If the user’s name and password have been extracted from a certificate or obtained by prompting the
user, the call to the LDAP server would be:

//Create a CallbackHandler
CallbackHandler cbh = new StaticCallbackHandler(name,pass);
// Query the LDAP server to authenticate this user
try {
 nec.login(cbh);
} catch (ENEAuthenticationException exp) {
 System.err.println(exp);
 exp.printStackTrace();
 System.err.println("LDAP Authentication failed");
 System.exit(1);
}

The StaticCallbackHandler object provides the user name and password. If the login attempt
fails, an ENEAuthenticationException exception is thrown.

.NET implementation

The .NET version of the Login method has this signature:

Login(IAuthCredentialRequestHandler handler)

where handler is an IAuthCredentialRequestHandler object instance that provides the mechanism
to obtain credentials for authentication purposes.

To use an example, if the user has supplied a username and password, the call to authenticate the
user would be:

//Authenticate the user
nec.Login(new StaticCredentialRequestHandler(user, pass));

The StaticCredentialRequestHandler object provides the user name and password. If the login
attempt fails, an ENEAuthenticationException exception is thrown.

Endeca ConfidentialEndeca® Platform Services Security Guide

User Authentication with LDAP | Querying the LDAP server68

User entitlement filter
The Endeca Access Control System automatically creates an entitlement filter for a user.

A user’s name and group membership are used to define the access rights for that user in an Endeca
implementation. After an initial query for the user’s entry in the LDAP directory, the Endeca LDAP
plug-in queries the directory again for the user’s group information.

The group information is automatically transformed into a user entitlement filter that defines the user’s
access rights to the data in the Endeca MDEX Engine. This entitlement filter is essentially a Boolean
expression describing the user’s rights.

The user entitlement filter is stored in the AuthHttpENEConnection object and therefore exists for
the lifetime of this object. As the application services the user’s requests, the entitlement filter is
automatically added to every AuthHttpENEConnection.query() Java call made to the MDEX
Engine (AuthHttpENEConnection.Query() for .NET).

The MDEX Engine uses the filter to restrict its results to only those to which the user has rights to
read. To do this, it uses the Endeca.ACL.Allow.Read properties that were previously tagged onto
the Endeca records by Forge.

Making a secure MDEX Engine query
The Presentation API AuthHttpENEConnection class methods are used to for secure queries to
the MDEX Engine.

The Endeca Basic Development Guide describes how to create an MDEX Engine query by using the
ENEQuery class and its UrlENEQuery subclass. It also describes how to execute the query with the
Java ENEConnection.query() method (ENEConnection.Query() for .NET).

When you create an MDEX Engine query, you still use the ENEQuery or UrlENEQuery class methods.
However, you use the Java AuthHttpENEConnection.query() method to make the query to the
MDEX Engine (the .NET version is the Query() method).

What makes the query secure is the presence of the user entitlement filter, which limits the query
results to records that the user is authorized to view.

The following examples show how to make the query to the MDEX Engine (the examples assume that
the user has been successfully authenticated). Note that if you use an SSL connection between the
Endeca components, the URL query parameter string will be encrypted as it is passed between the
Presentation API and the MDEX Engine.

Java example

//Create a query from the browser request query string
ENEQuery usq = new UrlENEQuery(request.getQueryString(),"UTF-8");

// Set query so that only explicitly requested refinements
// are returned
usq.setNavAllRefinements(false);

// Make the query request to the MDEX Engine over
// the SSL connection
ENEQueryResults qresults = nec.query(usq);

//Use additional calls to process the query results
...

Endeca® Platform Services Security GuideEndeca Confidential

69User Authentication with LDAP | User entitlement filter

.NET example

//Create a query from the browser request query string
String queryString = Request.Url.Query.Substring(1);
ENEQuery usq = new UrlENEQuery(queryString, "UTF-8");

// Set query so only explicitly requested refinements are returned
usq.NavAllRefinements = false;

//Make the query request to the MDEX Engine
ENEQueryResults qresults = nec.Query(usq);

//Use additional calls to process the query results
...

Using stacked authentication
The Java version of the Endeca Access Control System also supports the notion of stacked
authentication.

With stacked authentication, an Endeca implementation may be configured to use both the
LDAPLoginModule and the FileLoginModule plug-ins.

How stacked authentication works

Stacking allows a subject to authenticate to multiple services at the same time, in cases where the
integrated use of these services is necessary or desired.

For example, assume that an LDAP directory is used to store user names and passwords, but does
not maintain information about a user’s groups. The user group information is provided in a locally
configurable password file (analogous to /etc/passwd on a UNIX system).This password file (which
is used by the FileLoginModule plug-in) does not replace the LDAP authentication, but rather
augments it. As the Presentation API constructs a user’s corresponding Principal based on his LDAP
entry, it will fill in any missing fields based on the values stored in the password file. Note that in this
example, no passwords are needed in the FileLoginModule file because only group information is
stored there.

The ability to use separate sources to gather the information for a user offers important flexibility. For
example, it makes it easy to deploy an application to a small group of users supported by a single
administrator within a larger organization that maintains a master LDAP directory. The administrator
can easily support the application using the local password file to define group membership. Meanwhile,
the central LDAP directory continues to be the basis for more fundamental user information.

Configuration file for stacking

To enable stacked authentication, you must put both LoginModule entries in the Access Control System
configuration file. The order in which you place the entries is the order in which they are used for
authentication.

The following is an example of a configuration file with two stacked LoginModules:

Endeca {
 //First use the LDAP module for user name authentication
 com.endeca.navigation.LDAPLoginModule required
 ldapBindAuthentication="false"
 serviceUsername="cn=Manager,dc=endeca,dc=com"

Endeca ConfidentialEndeca® Platform Services Security Guide

User Authentication with LDAP | Using stacked authentication70

 servicePassword="nosecret"
 checkPasswords="false"
 groupTemplate="%{cn}"
 useSSL="true"
 serverInfo.0="ldap://web01.qa.endeca.com:1234"
 serverInfo.1="ldap://corona.dev.endeca.com:1234"
 serverInfo.2="ldap://web02.qa.endeca.com:1234"
 userPath="/ou=People,dc=endeca,dc=com??sub?(cn=%{#username:1})"
 groupPath="/ou=Groups,dc=endeca,dc=com?sub?(uniqueMember=%{#dn})";

 //Now get the group info from the password file
 com.endeca.navigation.FileLoginModule required
 passwordFile="c:/Endeca/PlatformServices/workspace/etc/passwd"
 checkPasswords="false";
};

Authenticating users

You authenticate users in a stacked configuration in the same way as you would if you were using the
LDAPLoginModule plug-in alone. That is, you use only one AuthHttpENEConnection.login()
method.

Related Links
File-based User Authentication on page 73

This section explains how to authenticate users via the Endeca FileLoginModule plug-in.
This plug-in handles logins authenticated against a password file.

Endeca® Platform Services Security GuideEndeca Confidential

71User Authentication with LDAP | Using stacked authentication

Chapter 7

File-based User Authentication

This section explains how to authenticate users via the Endeca FileLoginModule plug-in. This
plug-in handles logins authenticated against a password file.

FileLoginModule configuration
To use file-based authentication, the Access Control configuration file must specify the FileLogin¬
Module plug-in.

In addition, you must have set up the password file, which includes the names of all valid users, their
passwords, and their groups.

Additional information for Java implementations

If you want to use stacked authentication for your implementation, you must put both the
LDAPLoginModule and FileLoginModule plug-in entries in the JAAS configuration file.

Note that the application used as an example in this chapter is based on the JSP version of the Endeca
reference implementation. Tomcat is used as the application server, with the JSP implementation
being located in the Tomcat webapps directory.

File-based user authentication process
The FileLoginModule plug-in handles logins that are authenticated against a password file.

The general flow of the user authentication process via a password file is as follows:

1. Obtain the user information:The user establishes a connection to the application server and supplies
his or her user identity.

2. Instantiate an MDEX Engine connection object:The Presentation API AuthHttpENEConnection
constructor is used to instantiate an AuthHttpENEConnection object that will be used to connect
to the MDEX Engine.

3. Authenticate the user against the password file:The AuthHttpENEConnection class has a login
method that is used to read the password file to authenticate the user.The Endeca Access Control
System automatically creates an entitlement filter for the user based on this information.

4. Make a Secure MDEX Engine Query:The Presentation API AuthHttpENEConnection class has
a query method that is used to make a query to the MDEX Engine that limits the user’s access to
what is specified in the entitlement filter.

These steps are described in detail in the following sections.

Note: User authentication via a password file is supported by the Java and .NET versions of
the Endeca Presentation API. All procedures apply to both versions, unless otherwise noted.

Obtaining the user identity
To use the FileLoginModule plug-in, your front-end application must obtain a user name from the
person using the Endeca implementation.

This user information can be supplied in a number of ways, such as:

• Requiring X.509 certificates from your users.The contents of the certificate are extracted by using
the java.security.cert methods (for Java implementations) or the
System.Security.Cryptography.X509Certificates methods (for .NET implementations).

• Having the user enter the name in an HTML form.

The supplied name will be used to authenticate the user against the password file.

Instantiating an MDEX Engine connection object
The Presentation API AuthHttpENEConnection class is used to instantiate connection objects to
the Endeca MDEX Engine.

An AuthHttpENEConnection connection functions as a repository for the hostname and port
configuration for the MDEX Engine you want to query. The class methods are briefly described in the
following sections. For more information on the methods, see the Endeca API Javadocs or the Endeca
API Guide for .NET.

Java implementation

The signature for an AuthHttpENEConnection constructor looks like this:

//Instantiate a connection object for the MDEX Engine
AuthHttpENEConnection nec = new AuthHttpENEConnection(emeHost, emePort);

In the instantiation, emeHost is the host name or IP address of the Endeca MDEX Engine and emePort
is its port number.

.NET implementation

For .NET, the ASPX code to instantiate an AuthHttpENEConnection object looks like this:

//Instantiate a connection object for the MDEX Engine
AuthHttpENEConnection nec = new AuthHttpENEConnection(emeHost, emePort);

In the instantiation, emeHost is the host name or IP address of the Endeca MDEX Engine and emePort
is its port number.

Endeca ConfidentialEndeca® Platform Services Security Guide

File-based User Authentication | Obtaining the user identity74

Authenticating the user against the password file
The AuthHttpENEConnection class has a login method to read the password file for authentication.

Use this AuthHttpENEConnection method to authenticate the user against the password file:

• Java: the login() method
• .NET: the Login() method

These methods use the FileLoginModule plug-in to locate the password file (as specified by the
passwordFile parameter in the Access Control configuration file) and read its contents.

If the user is not in the password file, the authentication will fail (if the FileLoginModule is marked
as required in the Access Control configuration file) and the user will not be allowed access to the
Endeca implementation.

Java implementation

If the user has supplied a username and password, an example of the call to authenticate the user
would be:

// Authenticate the user via a local password file.
nec.login(new StaticCallbackHandler(name, password));

The StaticCallbackHandler object provides the user name and password. If the login attempt
fails, an ENEAuthenticationException exception is thrown.

.NET implementation

The .NET version of the Login method has this signature:

Login(IAuthCredentialRequestHandler handler)

where handler is an IAuthCredentialRequestHandler object instance that provides the mechanism
to obtain credentials for authentication purposes.

To use an example, if the user has supplied a username and password, the call to authenticate the
user would be:

//Authenticate the user
nec.Login(new StaticCredentialRequestHandler(user, pass));

The StaticCredentialRequestHandler object provides the user name and password. If the login
attempt fails, an ENEAuthenticationException exception is thrown.

User entitlement filter
The Endeca Access Control System automatically creates an entitlement filter for a user.

The FileLoginModule gets a user’s group information from the local password file and automatically
uses it to create a user entitlement filter. This filter defines the user’s access rights to the data in the
Endeca MDEX Engine.

The user entitlement filter is stored in the AuthHttpENEConnection object and therefore exists for
the lifetime of this object. As the application services the user’s requests, the entitlement filter is
automatically added to every AuthHttpENEConnection.query() Java call made to the MDEX
Engine (AuthHttpENEConnection.Query() for .NET).

Endeca® Platform Services Security GuideEndeca Confidential

75File-based User Authentication | Authenticating the user against the password file

The MDEX Engine uses the filter to restrict its results to only those to which the user has rights to
read. To do this, it uses the Endeca.ACL.Allow.Read properties that were previously tagged onto
the Endeca records by Forge.

Making a secure MDEX Engine query
The Presentation API AuthHttpENEConnection class methods are used to for secure queries to
the MDEX Engine.

The Endeca Basic Development Guide describes how to create an MDEX Engine query by using the
ENEQuery class and its UrlENEQuery subclass. It also describes how to execute the query with the
Java ENEConnection.query() method (ENEConnection.Query() for .NET).

When you create an MDEX Engine query, you still use the ENEQuery or UrlENEQuery class methods.
However, you use the Java AuthHttpENEConnection.query() method to make the query to the
MDEX Engine (the .NET version is the Query() method).

What makes the query secure is the presence of the user entitlement filter, which limits the query
results to records that the user is authorized to view.

The following examples show how to make the query to the MDEX Engine (the examples assume that
the user has been successfully authenticated). Note that if you use an SSL connection between the
Endeca components, the URL query parameter string will be encrypted as it is passed between the
Presentation API and the MDEX Engine.

Java example

//Create a query from the browser request query string
ENEQuery usq = new UrlENEQuery(request.getQueryString(),"UTF-8");

// Set query so that only explicitly requested refinements
// are returned
usq.setNavAllRefinements(false);

// Make the query request to the MDEX Engine over
// the SSL connection
ENEQueryResults qresults = nec.query(usq);

//Use additional calls to process the query results
...

.NET example

//Create a query from the browser request query string
String queryString = Request.Url.Query.Substring(1);
ENEQuery usq = new UrlENEQuery(queryString, "UTF-8");

// Set query so only explicitly requested refinements are returned
usq.NavAllRefinements = false;

//Make the query request to the MDEX Engine
ENEQueryResults qresults = nec.Query(usq);

//Use additional calls to process the query results
...

Endeca ConfidentialEndeca® Platform Services Security Guide

File-based User Authentication | Making a secure MDEX Engine query76

Index

.NET framework for Access Control System 44

A

Access Control Lists
extracting 55
overview 11

Access Control System
configuration file 44
configuring the FileLoginModule plug-in 52
configuring the LDAPLoginModule plug-in 47
definition 55
effect on refinements and spelling corrections 56
location of configuration file 46
overview 9
performance impact 63
URL parameters 62

Access Rules component, creating 60
application server, configuring SSL for 25
ASP.NET applications, configuring SSL for 32
authentication

via a password file 74
via an LDAP directory 65

authentication configuration parameter for
LDAPLoginModule 50
AuthHttpENEConnection

constructing a connection object 67
login method 68, 75

B

Bouncy Castle Crypto package, integrating 24

C

Certificate Authority file
eneCA.pem 26, 37
eneCA.pem 26, 37

certificates
converting to DER format 32
copying to other machines 40
eneCA.cer 37
eneCA.key 37
eneCA.pem 37
eneCert.p12 37
eneCert.pem 26, 37
generated set 37
generating from own private key 39
importing in Internet Explorer 40
specifying for Endeca component 27

checkPasswords configuration parameter for
FileLoginModule 52

checkPasswords configuration parameter for
LDAPLoginModule 50
convert utility for PEM certificates 41
cryptographic algorithms

specifying for Endeca components 28
specifying for MDEX Engine 27

D

DER format for private certificates 32

E

eac.properties file, SSL settings in 20
eaccmd, enabling SSL for 19
Endeca Application Controller

configuring for MDEX Engine SSL 26
creating SSL certificates 17
enabling SSL for clients 19
modifying the server.xml file for SSL 18
security overview 16

Endeca Key Importer utility 41
Endeca Workbench

configuring MDEX Engine for SSL 27
using SSL in 21

Endeca.ACL.Allow.Read property
creating with Developer Studio 58
use by entitlement filter 69, 76

eneCA.cer
description 37
importing in Internet Explorer 40

eneCA.key, description of 37
eneCA.pem

converting to truststore 41
description 37

eneCert.p12
description 37
importing in Internet Explorer 40

eneCert.pem
converting to keystore 41
description 37
generating with own private key 39

enecerts utility
changing key size 39
generating certificates with own private key 39
overview 38

F

file-based authentication
configuration 73
general process 74
overview 10

FileLoginModule
checkPasswords configuration parameter 52
configuring for Access Control System 52
passwordFile configuration parameter 52

G

groupPath configuration parameter for LDAPLoginModule
48
groupTemplate configuration parameter for
LDAPLoginModule 48, 49
groupURL configuration parameter for LDAPLoginModule
49

H

HostnameVerifier class, writing a 29

I

Internet Explorer, importing certificates in 40

J

JAAS framework for Access Control System 43
Java keystore

configuring location;certificates 50
conversion utility for 41
importing when starting application service 31

JSP applications, configuring SSL for 28

K

key size, changing private 39
keyStoreLocation configuration parameter for
LDAPLoginModule 50
keyStorePassphrase configuration parameter for
LDAPLoginModule 50

L

LDAP authentication
general process 65
overview 10
querying the LDAP server 68
use in stack-based authentication 70

LDAP server
configuration for multiple servers 48
configuring SSL 50

ldapBindAuthentication configuration parameter for
LDAPLoginModule 49
LDAPLoginModule

authentication configuration parameter 50
checkPasswords configuration parameter 50
configuring for Access Control System 47
groupPath configuration parameter 48
groupTemplate configuration parameter 48, 49
groupURL configuration parameter 49

LDAPLoginModule (continued)
keyStoreLocation configuration parameter 50
keyStorePassphrase configuration parameter 50
ldapBindAuthentication configuration parameter 49
loginName configuration parameter 49
parameter templates 47
passwordAttribute configuration parameter 49
serverInfo configuration parameter 48
serviceAuthentication configuration parameter 50
servicePassword configuration parameter 50
serviceUsername configuration parameter 50
userPath configuration parameter 48
userURL configuration parameter 49
useSSL configuration parameter 50

location of Java keystore 50
loginName configuration parameter for LDAPLoginModule
49

M

MDEX Engine
configuring SSL for 26
list of supported cryptographic algorithms 28
making SSL connection 67
SSL configuration in Endeca Workbench 27

modifying the server.xml file for SSL 18

P

password file, location of 52
passwordAttribute configuration parameter for
LDAPLoginModule 49
passwordFile configuration parameter for
FileLoginModule 52
PEM-format key conversion to JKS 41
private key for certiticates

changing size of 39
description 37

R

record adapter for File System Crawler 57
record manipulator for crawler pipeline 57
refinements and the Access Control System 56

S

serverInfo configuration parameter for LDAPLoginModule
48
serviceAuthentication configuration parameter for
LDAPLoginModule 50
servicePassword configuration parameter for
LDAPLoginModule 50
serviceUsername configuration parameter for
LDAPLoginModule 50
spelling corrections and the Access Control System 56
SSL

CA file for MDEX Engine 27

Endeca® Platform Services78

Index

SSL (continued)
certificate file for Endeca components 27
certificate set 37
component authentication 16
configuration page for MDEX Engine 27
configuring application server 25
configuring ASP.NET applications 32
configuring JSP applications 28
configuring LDAP server 50
configuring stronger encryption 24
cryptographic algorithms for MDEX Engine 27
enabling connection to MDEX Engine 67
enabling for MDEX Engine 26
interactions in the EAC 22
overview of Endeca implementation 11
overview of mutual authentication 12
overview of system communications 15
settings in eac.properties file 20
types of Endeca configurations 12
using in Endeca Workbench 21

SSL certificates, creating 17
stacked authentication, using 70

T

templates for LDAPLoginModule configuration 47

Tomcat application server
importing keystore at startup 31

truststore conversion from eneCA.pem 41

U

user authentication
via a password file 74
via an LDAP directory 65

user entitlement filter
creation during file-based authentication 75
creation during LDAP authentication 69
LDAPLoginModule configuration parameter for .NET
49
LDAPLoginModule configuration parameter for Java
48

userPath configuration parameter for LDAPLoginModule
48
userURL configuration parameter for LDAPLoginModule
49
useSSL configuration parameter for LDAPLoginModule
50

X

X.509 certificates for authentication 66, 74

79

Index

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Endeca Customer Support

	Introduction to Endeca Security Features
	Endeca Access Control System
	LDAP directory authentication
	File-based authentication
	Stacked authentication

	Endeca Access Control Lists for records
	Tagging Endeca records

	SSL
	Using SSL for encrypted communications
	Mutual authentication between Endeca components

	SSL certificate utilities

	SSL Configuration
	Endeca system communications
	Authentication among components

	Configuring SSL for the EAC
	Creating Application Controller certificates
	Enabling SSL security in the EAC
	Configuring the SSL version of the EAC WAR file
	Modifying the server.xml

	Enabling SSL for EAC clients
	Replacing the default certificate files with custom keys
	Enabling SSL for eaccmd and EAC Web services
	SSL settings in the eac.properties file
	Configuring SSL between Endeca Workbench and the Central Server
	Configuring Endeca Workbench to use the SSL port for the Central Server

	SSL interactions in an EAC environment
	Configuring stronger encryption
	Configuring SSL on the application server
	Configuring SSL for the MDEX Engine
	Application Controller configuration
	Configuring the MDEX Engine for SSL in Endeca Workbench
	Specifying cipher strings

	Configuring SSL for JSP applications
	Writing a HostnameVerifier class
	Creating a JKS-Format keystore certificate
	Configuring the SSL connector
	Starting the application server with the keystores
	Using PKCS12 keystores

	Configuring SSL for ASP.NET Applications
	Converting the private certificate to the DER format
	Importing the certificates to the local machine store
	Using the Microsoft Management Console
	Importing the private certificate

	Give permissions to the ASP.NET account
	Modifying the application’s entry-point file

	Using Endeca SSL Certificate Utilities
	Certificate files used by Endeca components
	Generating SSL certificates
	Generating standard SSL certificates on UNIX
	Generating standard SSL certificates on Windows
	Generating custom certificates
	Copying the SSL certificates to other machines

	Importing SSL certificates in Internet Explorer
	Converting PEM-format keys to JKS format
	Enabling .NET SSL communication with EAC
	Modifying the ICertificatePolicy interface

	Access Control System Configuration
	About the Access Control System
	Authentication framework
	Access Control configuration file
	Configuration entry parameters
	Specifying the location of the configuration file

	Configuring the LDAPLoginModule plug-in
	LDAPLoginModule templates
	LDAPLoginModule required parameters for Java
	LDAPLoginModule required parameters for .NET
	LDAPLoginModule optional configuration parameters
	LDAPLoginModule configuration examples

	Configuring the FileLoginModule plug-in
	FileLoginModule configuration parameters
	Password file format
	FileLoginModule configuration examples

	Using Record Permissions
	Using ACLs for document access control
	Refinements and spelling with Access Control
	Creating the crawler pipeline
	Configuring a Binary or XML record adapter
	Adding a record manipulator
	Creating the Endeca.ACL.Allow.Read property
	Configuring the property mapper

	Creating the Access Rules component
	Making MDEX Engine queries

	User Authentication with LDAP
	Overview of the LDAP user authentication process
	Obtaining the user information
	Instantiating an MDEX Engine connection object
	Querying the LDAP server
	User entitlement filter
	Making a secure MDEX Engine query
	Using stacked authentication

	File-based User Authentication
	FileLoginModule configuration
	File-based user authentication process
	Obtaining the user identity
	Instantiating an MDEX Engine connection object
	Authenticating the user against the password file
	User entitlement filter
	Making a secure MDEX Engine query

	Index

