Oracle Endeca Commerce

Tools and Frameworks Deployment Template
Usage Guide
Version 3.1.0 « July 2012

ORACLE
ENDECA

Contents

[(=] = To TP PP TTRTRPPPO 7
ADOUL ThiS QUILE....ceiiiieiee ittt ettt et e e e oo e o e oo b h bbb et e et e e e e e e e saaaannbbbbeaeeeeaaaeeeeaaannn 7
WHhO ShOUId USE thiS QUIAE.uueeiieiiie et e e e e e e s e s s r e e e e aee e e s e s s sberaeaeeeeaaeeeeesannnnns 7
Conventions USEd N thiS QUIE.........oi it e st e e s e e e s aanneees 8
(0fe] gl =T 1] o I @ = Yol (TS U] o] oo | AT TP PP TR TR OPRPP 8
Chapter 1: Deploying and initializing an EAC Application..................... 9
[D1=T 0] o)V g aT=T o1 Al o (=T (= T0 [0 TS (=T SRR
About deploying EAC apPlICALIONS.ciiiiiiii ittt e st e e e et e e e e e ebe e e e e e e
Deploying and initializing an EAC apPliCAtION.eeiiiiiiiiiiiiiiee et e e e e e e e
Configuring automated/file-based deployment..........ccccvevveeeiiiiiiciiieee e
Modifying the template files to support custom applications............cccceeeiriiiieeeininnenn.
Custom appliCAtION TESCHIPIOIS.iii ettt e et e e e e e e e et bbb e et e e e e e e e e s aannnbebeeeeeaeaaaeaens
Configuring an automated/file-based deployment for a custom application
Communicating with SSL-enabled Oracle Endeca COMPONENTS.ocuuiiiiiiiiiiiee it
Displaying the Deployment TEMPIAtE VEISION.ciiiiiii it e e e e e e e as
Chapter 2: Configuring an EAC Application...........cccccceeeiiivviiiiiiinceeeenn, 19
About configuring an EAC appliCatioN...........uuiiiiiiiieiii i e e e s e e e e e e s s s a e e e e e e e e aanaan 19
About the application configuIation filES...........ocuiiiiiiii e 19
Configuring the application configuration fileS..............ueiiiiii e 20
(€] lo] o T TR=To] o] [Tor= i 0T g IE=Y=1 111 5o [OOSR 21
L [0 1] £ TP UPPPPTTTR 21
oo L 1Y =T T To [T PP PEEPPRRT 21
Fault tolerance and polling interval ProPErtiES........cc.uuuiiiiiiiie e e e e e e e e e enanes 22
(O8N SIS Y= oY ST 24
0] (0 [T J TSP P U R PP PP PPPPUPPPTPUIN 26
D0 T D€ PSR P 27
(D0 =T o] o - F PO UR PR PPRR 28
o To IR 1T T PO UR PP PP PP PUPPPUPPON 34
Y] oo g A CT=T g [T = 1o £ T PSPPSR 34
L O U 35
WOTKDENCN IMIBINAGET ... ettt oo oottt ettt e e e e e e e e e e et e be e e e e aaaeeeaeaanneneeneeeeas 36
(Ofe] a1 iTo 0 =1 e o o 1Y, =TT Vo 1= RSP 37
Configuring the BEanShell SCIPLS.oouuiiiiiii et e e e e 38
(0] o1 iTo 8T e=1iTo] g W01 =] g0 (=SS EUR TR 41
Chapter 3: Replacing the Default Forge Pipeline..............cooiiiiiinen. 43
ADOUL the SAMPIE PIPEIINES. ... et e e e e e e e et ettt et a e e e e e e e e eaaaaaaans 43
SAMPIE PIPEINE OVEIVIEW.coiiiiiiiiiee ittt e e e et e e s et bt e e s ann bt e e e e e e bt e e e e e enbbeeeeeannees 43
SPECITYING 8 PIPEIINE .ottt e et e e s ekt e e s e s b e e e e e e nb b e e e e e e nbb e e e e e annes 43
01T 1] o = T 1=V o {0 [T ot U 44
[ToTe YT aTe = T =y (1 il g To o] o] = od FU PP PP T 46
Configuring @ reCOI SPECITIET........ ettt et e s e e e bt e e e et e e e e e annes a7
Lo 0 =T = T PPN
] o101 g=ToloT o = To F=T o] 1= &= TP PPPPRPTOPPPRR
(D)1 g [T Ry fo] g = To F= T =] £ OO PP PP TPPPPN
[T Loy S =T F=T o (= = SRS
Output record adapters
Dimension Servers........cccccceeee....
(070] 1011 4T 0 I =T 1 (o] £= PP PPTT
Chapter 4: Managing Data Operations...............ceiiieneeeeiiieeeeiiiiiiianeeen 53
Running a baseline update With teSt datauueeiiiiiieie e a e e e 53
Running a baseline update with produCtion Gataeeeiiiiiiiiiiiii e 54
Running a partial update with produCtion ataoooiiiiiiiiiiiiii e 55

RUNNING CAS CrAWIS ..oiiiiieiiiiicie ettt e et e et e e e e e e s sttt e e e e e eeeeaasaaseataeaeeeeaeaeeeesaannnssntannenaeaaaeaeas 56

Chapter 5: Script ReferenCe.........uuiiiiiiiiii e
Deployment Template SCrPt FEEIENCE.viiii et
e (0)V][] a1 g Vo JE=Tod 1] o €T PR
Forge-based data processing........cccccceveeeveeviccvnvnnnnnnn.
Dgraph baseline update script using Forge
Dgraph partial update SCrPt USING FOIGEe......cooiiiiiiiiiiiiiiie et e e e e e e
Dgraph baseline update script using Forge and a CAS full crawl SCript..........cooovvviiiiiiieiiieiee e,
Dgraph partial update script using Forge and a CAS incremental crawl script
Multiple CAS crawls and FOIrge UPAALES.cooiiiiiiiiiiiiiiiii ettt e e e e e e e e e e e e e e e e e e e aaannes
(072N T o= 151=To o b= = W o] o o7 =11 Y [o SRS
Dgraph baseline update SCript USING CAS........oiiiiiiiiii e aanneee s
Dgraph partial update SCript USING CAS ...t e e e e e e e e e e e e e e aaannes
CAS crawl scripts for RECOId StOre OULPUL..........coieuiiiiiiiiieie e e e e s secie e e e e e e e e s e s st e e e e e e e e e e s e s snrnranneeees
CAS craw!l scripts for record file OULPUL........oo.ueiiiiiiii e et
(7] 01 iTo BT e=Nilo] g U] oo F= 1T Yol § o | TP TR TP
=T 0 To T o 1= 0= = L1 o] o TSRS

Appendix A: EAC Development TOOIKIt..........cooovvviiiiiiiiiiiiiiieci
EAC Development Toolkit distribution and package CONENES..........oouuiiiiiiiiiiiie e
EAC Development TOOIKIT USAGE.uuui ittt e e e e e e e s e aeb et eeeeeeaaaeaeas

Appendix B: Application Configuration File..............oooiiiiiiiiiinn,
SPFNG FTAMEBWOTK. ...ttt e e ettt e e e e ettt e e s enn b b e e e e s anbb et e e s enbbeeeeeannees
DY [T o1 o= T PP PURPRPTRR
YN o] o] Lor= a1 =1 (=T 0 4 1=T) SR
L [0 1] £ TP UPPPPTTTR
(67011 o] o o] 0 1=T o S J TP PP P PP PPPPPPPPUPTPR
LT PP O PP PPRP TR
Customization/extension within the toolKit'S SChema............ccoiiiiii e
Customization/extension beyond the toolKit's SChema.............ccooiiiiiiiiiii e

Appendix C: BeanShell SCripting.........ccoooovvviiiiiiiiiic e
Yo g o T aa] o] (=T g LT a1 7= LT] o TR USSR
BeanShell interpreter @NVIFONMENT.oiiiiiiiiiii et e e e bt e e s aeba e e e s annnneee s
About implementing 10giC iN BEANSNEIIL............o e

Appendix D: Command INVOCAtION.............uueiiiiiiiiiiie e
Ta\Yo) I W (=11 o To B o T Tr=T o o o] [=]ox PO PSR
Identify available METNOUS.ottt e e e e e st e e e s sbneeeeeaaes
Update application definition

Remove an application.........................
DiSplay COMPONENT STATUS.ciuteiiieiiiit ittt ettt s st e e st e et e e s bbbt e e e s aabb e e e e e asbb et e e s annbneeeesannnneeens

iv Oracle Endeca Commerce

Copyright and disclaimer

Copyright © 2003, 2012, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any form, or by
any means. Reverse engineering, disassembly, or decompilation of this software, unless required by
law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government
end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation
and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed
on the hardware, and/or documentation, shall be subject to license terms and license restrictions
applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for
any damages caused by use of this software or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content,
products and services from third parties. Oracle Corporation and its affiliates are not responsible for
and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages
incurred due to your access to or use of third-party content, products, or services.

Rosette® Linguistics Platform Copyright © 2000-2011 Basis Technology Corp. All rights reserved.

Preface

Oracle Endeca's Web commerce solution enables your company to deliver a personalized, consistent
customer buying experience across all channels — online, in-store, mobile, or social. Whenever and
wherever customers engage with your business, the Oracle Endeca Web commerce solution delivers,
analyzes, and targets just the right content to just the right customer to encourage clicks and drive
business results.

Oracle Endeca Commerce is the most effective way for your customers to dynamically explore your
storefront and find relevant and desired items quickly. An industry-leading faceted search and Guided
Navigation solution, Oracle Endeca Commerce enables businesses to help guide and influence
customers in each step of their search experience. At the core of Oracle Endeca Commerce is the
MDEX Engine,™ a hybrid search-analytical database specifically designed for high-performance
exploration and discovery. The Endeca Content Acquisition System provides a set of extensible
mechanisms to bring both structured data and unstructured content into the MDEX Engine from a
variety of source systems. Endeca Assembler dynamically assembles content from any resource and
seamlessly combines it with results from the MDEX Engine.

Oracle Endeca Experience Manager is a single, flexible solution that enables you to create, deliver,
and manage content-rich, cross-channel customer experiences. It also enables non-technical business
users to deliver targeted, user-centric online experiences in a scalable way — creating always-relevant
customer interactions that increase conversion rates and accelerate cross-channel sales. Non-technical
users can control how, where, when, and what type of content is presented in response to any search,
category selection, or facet refinement.

These components — along with additional modules for SEO, Social, and Mobile channel support —
make up the core of Oracle Endeca Experience Manager, a customer experience management platform
focused on delivering the most relevant, targeted, and optimized experience for every customer, at
every step, across all customer touch points.

About this guide

This guide describes how to configure, run, and customize the Deployment Template that is included
with Tools and Frameworks.

The Deployment Template is a utility that you run to create a new Endeca application with the complete
directory structure required for deployment, including Endeca Application Controller (EAC) control
scripts, configuration files, and batch files or shell scripts that wrap common script functionality.

Some scripts created by the Deployment Template are documented in the Assembler Application
Developer's Guide, rather than this guide, because the scripts are very closely associated with
Assembler features. Similarly, some scripts are documented in the Oracle Endeca Commerce
Administrator's Guide because the scripts are very closely associated with administrative tasks such
as backing up or restoring site configuration.

Who should use this guide

This guide is for developers or administrators who create and maintain Oracle applications using the
Deployment Template.

8 | Preface

Conventions used in this guide

This guide uses the following typographical conventions:

Code examples, inline references to code elements, file names, and user input are set in monospace
font. In the case of long lines of code, or when inline monospace text occurs at the end of a line, the
following symbol is used to show that the content continues on to the next line: =

When copying and pasting such examples, ensure that any occurrences of the symbol and the
corresponding line break are deleted and any remaining space is closed up.

Contacting Oracle Support

Oracle Support provides registered users with important information regarding Oracle Endeca software,
implementation questions, product and solution help, as well as overall news and updates.

You can contact Oracle Support through Oracle's Support portal, My Oracle Support at
https://support.oracle.com.

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

https://support.oracle.com

Chapter 1
Deploying and initializing an EAC
Application

This section describes how to deploy and initialize an EAC application using the Deployment Template.

Deployment prerequisites

You must have installed Tools and Frameworks on the machine running the EAC Central Server (part
of the Platform Services package) and set environment variables used by the Oracle Endeca software
(including ENDECA_ROOQOT).

About deploying EAC applications

The Deployment Template (deploy) script is available for both Windows and UNIX platforms. The
prompts for the deploy . sh script are exactly the same as the deploy.bat script.

In every deployment environment, one server serves as the primary control machine and hosts the
EAC Central Server, while all other servers act as agents to the primary server and host EAC Agent
processes that receive instructions from the Central Server.

Both the EAC Central Server and the EAC Agent run as applications inside the Endeca HTTP Service.
(As mentioned in the prequisites, Tools and Frameworks only needs to be installed on the machine
that hosts the EAC Central Server.)

4 Note: Mixed-platform deployments may require customization of the default Deployment Template
scripts and components. For example, paths are handled differently on Windows and on UNIX,
so paths and working directories are likely to require customization if a deployment includes
servers running both of these operating systems.

Deploying and initializing an EAC application

The deploy script in the bin directory creates, configures, and distributes the EAC application files
into the deployment directory structure.

To deploy an EAC application on Windows:

10 Deploying and initializing an EAC Application | Deploying and initializing an EAC application

1. Start a command prompt (on Windows) or a shell (on UNIX).

2. Navigateto<installation path>\ToolsAndFrameworks\<version>\deployment_tem-
plate\bin or the equivalent path on UNIX.

3. From the bin directory, run the deploy script.
For example, on Windows:

C:\Endeca\ToolsAndFrameworks\3.1.0\deployment_template\bin>deploy

4. If the path to the Platform Services installation is correct, press Enter.

(The template identifies the location and version of your Platform Services installation based on
the ENDECA_ROOT environment variable. If the information presented by the installer does not
match the version or location of the software you plan to use for the deployment, stop the installation,
reset your ENDECA_ROOT environment variable, and start again. Note that the installer may not be
able to parse the Platform Services version from the ENDECA ROOT path if it is installed in a
non-standard directory structure. It is not necessary for the installer to parse the version number,
so if you are certain that the ENDECA_ROOT path points to the correct location, proceed with the
installation.)

5. Specify a short name for the application.

The name should consist of lower- or uppercase letters, or digits between zero and nine.

6. Specify the full path into which your application should be deployed.

This directory must already exist. The deploy script creates a folder inside of the deployment
directory with the name of your application and the application directory structure.

For example, if your application name is MyApp, and you specify the deployment directory as
C:\Endeca\apps, the deploy script installs the template for your application into C:\Ende-
ca\apps\MyApp.

7. Specify the port number of the EAC Central Server.
By default, the Central Server host is the machine on which you are running deploy script and
that all EAC Agents are running on the same port.
8. Specify the port number of Oracle Endeca Workbench, or press Enter to accept the default of 8006.
9. Specify the port number of the Live Dgraph, or press Enter to accept the default of 15000.
10. Specify the port number of the Authoring Dgraph, or press Enter to accept the default of 15002.

11. Specify the port number of the Log Server, or press Enter to accept the default of 15010.
If the application directory already exists, the deploy script time stamps and archives the existing
directory to avoid accidental loss of data.

12. Navigate to the control directory of the newly deployed application.

This is located under your application directory. For example: C:\Endeca\apps\<app
name>\control.

13. From the control directory, run the initialize_services script.

* On Windows:
[appdir]\control\initialize services.bat

¢ On UNIX:
[appdir]/control/initialize_services.sh

The script initializes each server in the deployment environment with the directories and configuration
required to host your application. This script removes any existing provisioning associated with this
application in the EAC and then adds the hosts and components in your application configuration

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Deploying and initializing an EAC Application | Configuring automated/file-based deployment 11

file to the EAC. Use caution when running this script. The script forces any components that are
defined for this application to stop, which may lead to service interruption if executed on a live
environment. The script also removes any current Workbench configuration and removes any rules
not maintained in [appdir]/config/pipeline.

Once deployed, an EAC application includes all of the scripts and configuration files required to create
an index and start an MDEX Engine.

If no script customization is required, the application is now ready for use. Go on to Managing Data
Operations on page 53.

However, if you need to configure an EAC application (the scripts and files) to reflect your environment
and data processing requirements, go on to Configuring an EAC Application on page 19 before
Managing Data Operations on page 53.

Configuring automated/file-based deployment

The Deployment Template supports a file-based configuration option to simplify the deployment of an
EAC Application. This automation may be especially useful during development, when the same
deployment process must be repeated many times.

You can create a deployment configuration file that contains name/values that satisfy the deploy
script prompts, so you do not have to respond to the prompts manually. You specify the deployment
configuration file as an argument to the --instal I-config flag when you run the deploy script.

The deployment configuration file should specify the application name, deployment path, deployment
type, and all ports. The following example specifies the installation of a Dgraph deployment named
Discover:

<install app-name="Discover'>
<deployment-path>/localdisk/endeca/apps</deployment-path>
<base-module type="dgraph" />
<options>
<option name="eac-port''>8888</option>
<option name="workbench-port'>8006</option>
<option name="dgraphlPort''>15000</option>
<option name="authoringDgraphPort>15002</option>
<option name="logserverPort'>15010</option>
</options>
</install>

To configure automated/file-based deployment:

1. Start a text editor, create a new text file, and copy/paste the example above.

2. If necessary, modify the default port values for the EAC Central Server, Workbench, Live Dgraph,
Authoring Dgraph, and the Log Server to new values.

3. Save and close the file.

4. Runthe deploy script and specify the --instal I-config flag and the location of the deployment
configuration file.
The following example specifies the deployment descriptor (deploy.xml) for a version of the
Discover Electronics reference application, then the —-instal l-config flag with an argument
to the deployment configuration file (pci-app-install-config.xml):
./deploy.sh --app /localdisk/endeca/ToolsAndFrameworks/*/reference/dis-

cover-data-pci/deploy.xml --install-config /localdisk/infrontSetup-
Scripts/config/pci-app-install-config.xml --no-prompt

Endeca Confidential Oracle Endeca Commerce Tools and Frameworks Deployment Template

12

Deploying and initializing an EAC Application | Modifying the template files to support custom applications

When a configuration file is specified for the Deployment Template, the deployment attempts to retrieve
and validate required information from the document before proceeding. If any information is missing
or invalid, the Deployment Template prompts for that information, as described in previous sections.
To truly automate the install process, the -—no-prompt flag may be passed to the installer, instructing
it to fail (with error messages) if any information is missing and to bypass interactive verification of the
Oracle Endeca version.

Modifying the template files to support custom applications

This section provides information about deploying custom applications.

Custom application descriptors

The Deployment Template deploys new applications based on application descriptor XML documents.
The documents describe the directory structure associated with an application as well as the files to
distribute during the deployment process.

By default, the Deployment Template ships with application descriptor files named
base_descriptor.xml located in <instal lation
path>\ToolsAndFrameworks\<version>\deployment_template\app-templates.

This document describes the directory structure of the deployment as well as the copying that is done
during the deployment to distribute files into the new directories. Additionally, this document describes
whether files are associated with a Windows or UNIX deployment, and whether copied files should be
updated to replace tokens in the format @ @ TOKEN_NAME@ @ with text strings specified to the
installer.

The following tokens are handled by the base descriptor:

* @@WORKBENCH_PORT@@ - Oracle Endeca Workbench port.
* @@DGRAPH_1 PORT @@ - Live Dgraph port.

s @@AUTHORING_DGRAPH_PORT @@ - Authoring Dgraph port.
* @@LOGSERVER_PORT@@ - Log Server port.

The following tokens are handled by the Deployment Template:

s @@EAC_PORT@@ - EAC Central Server port.

* @@HOST@@ - Hostname of the server on which the deploy script is invoked.

* @@PROJECT_DIR@@ - Absolute path of the target deployment directory.

* @@PROJECT_NAME@ @ - Name of the application to deploy.

* @@ENDECA ROOT@@ - Absolute path of the ENDECA_ROOT environment variable.
s @@SCRIPT_SUFFIX@@ - ".bat" for Windows, ".sh" for Linux installs.

In addition to these tokens, you can specify custom tokens to substitute in the files. Tokens are specified
in the application descriptor file, including the name of the token to substitute as well as the question
with which to prompt the user or the installer configuration option to parse to retrieve the value to
substitute for the token. The default application descriptors use this functionality to request the port
number for Dgraphs, Log Servers and Forge servers.

If a project deviates from the Deployment Template directory structure, it may find it useful to create
a custom application descriptor document, so that the default Deployment Template can continue to
be used for application deployment.

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Deploying and initializing an EAC Application | Modifying the template files to support custom applications 13

Custom deployment descriptors may also be used to define add-on modules on top of a base install.
For example, sample applications (such as the Sample Term Discovery and Clustering application)
are shipped with a custom deployment descriptor file, which describes the additional files and directories
to install on top of a base Dgraph deployment. Modules may be installed using the deploy batch or
shell script, specifying the ——app argument with the location of the application descriptor document.
For example:

deploy.bat —-app \
C:\Endeca\Solutions\sampleTermDiscovery-[VERSION]\data\deploy.xml

The installer prompts you to specify whether it should install the module as a standalone installation
or if it should be installed on top of the base Dgraph deployment. Multiple add-on modules may be
specified to the installer script, though only one of them may be a base install (that is, all but one of
them should specify an attribute of update= "true").

The following excerpt from the Dgraph deployment application descriptor identifies the document's
elements and attributes:

<l--
Deployment Template installer configuration file. This Ffile defines the
directory structure to create and the copies to perform to distribute Files
into the new directory structure.

The update attribute of the root install element indicates whether this
is a core installation or an add-on module. When set to false or unspecified,
the installation requires the removal of an existing target install direc-
tory (if present). When update is set to true, the installer preserves any
existing directories, adding directories as required and distributing files
based on the specified copy pattern.

S
<app-descriptor update="false'" id="Dgraph">

<custom-tokens>
<I-- Template custom token:

<token name="MYTOKEN">

<prompt-question>What is the value to substitute for token MYTO-
KEN?</prompt-question>

<install-config-option>myToken</install-config-option>
<default-value>My Value</default-value>

</token>

This will instruct the installer to look for the "myToken' option
in a specified install config file (if one is specified) or to
prompt the user with the specified question to submit a value. If a
value is entered/retrieved, the installer will substitute instances
of @@MYTOKEN@@ with the value.
-——>
</custom-tokens>

<dir-structure>
<!-- Template directory:
<dir platform="unix" primary="true'></dir>

primary builds directory only on primary server installs
platform builds directory only on specified platform.
Valid values: "win" and "unix"
-——>
</dir-structure>

<l_

Endeca Confidential Oracle Endeca Commerce Tools and Frameworks Deployment Template

14 Deploying and initializing an EAC Application | Modifying the template files to support custom applications

Copy source directory is specified relative to this file"s directory
-——>
<copy-pattern src-root="../data ''>
<I-- Template copy pattern:
<copy clear-dest-dir="true" recursive=""true"
preserve-subdirs="true" filter-files="true"
primary="true" platform="win" Endeca-version="480">
<src-dir></src-dir>
<src-file></src-file>
<dest-dir></dest-dir>

</copy>

src-dir source directory, relative to root of deployment
template package.

src-file source Filename or pattern (using "*" wildcard
character) to copy from source dir

dest-dir destination directory, relative to root of target
deployment directory.

clear-dest-dir removes all files in target dir before copying

recursive copies Tiles matching pattern in subdirectories

of the specified source dir

preserve-subdirs copies Files, preserving dir structure. Only
applicable to recursive copies

filter-files filters file contents and file names by replacing
tokens (format @@TOKEN@@) with specified
strings.

mode applies the specified permissions to the files

after the copy. Mode string should be 3 octal
digits with an optional leading zero to
indicate octal, e.g. 755, 0644. Not relevant
for Windows deployments.

platform applies copy to specified platform. Valid
values: "win" "unix"
Endeca-version applies copy to specified Oracle Endeca version
Valid
values: 460" "470" "'480" ''500"
->

</copy-pattern>
</app-descriptor>

Configuring an automated/file-based deployment for a custom
application

The configuration file discussed in previous sections may be used to specify the location of custom
application descriptor documents in place of the ——app command line argument to the installer.

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Deploying and initializing an EAC Application | Communicating with SSL-enabled Oracle Endeca 15
components

The following example shows how to install the Sample Term Discovery and Clustering application
on top of the base Dgraph deployment.

<install app-name="MyApp" >
<deployment-path>C:\Endeca</deployment-path>
<base-module type="'dgraph" />
<additional-module type="custom">
C:\Endeca\Solutions\sampleTermDiscovery-[VERSION]\data\deploy.xml
</additional-module>
<options>
<option name="eac-port''>8888</option>
<option name="'dgraphlPort''>15000</option>
<option name="logserverPort'>15010</option>
</options>
</install>

Communicating with SSL-enabled Oracle Endeca
components

The Deployment Template supports enabling SSL to communicate securely with the EAC Central
Server and with the Content Acquisition System version 3.0.x and later. (Secure communication
between the Deployment Template and CAS is not supported in CAS 2.2.x.)

For details about enabling SSL in the EAC Central Server or Agent, refer to the Oracle Endeca Security
Guide. For details about enabling SSL in CAS, refer to the CAS Developer's Guide.

To use the template with an SSL-enabled Central Server:

1. Update runcommand.bat/.sh to load your SSL keystore and truststore.
& o .
" Note: To enable secure communication, you must have already followed the documentation
to create a Java keystore and truststore, containing your generated certificates. Upload a
copy of these certificates to the server on which your Deployment Template scripts will run.
Edit the runcommand file to specify the locations of these files.

* On Windows, edit runcommand . bat to add the following lines:

set JAVA ARGS=%JAVA_ARGS% '"-Djava.util.logging.config.file=%~dp0..\con-
Fig\script\logging.properties"

if exist [\path\to\truststore] (
set TRUSTSTORE=[\path\to\truststore]

) else (
echo WARNING: Cannot find truststore at [path\to\truststore]. Secure
EAC communication may fail.

)

if exist [\path\to\keystore] (

set KEYSTORE=[\path\to\keystore]
) else (

echo WARNING: Cannot find keystore at [\path\to\keystore]. Secure
EAC communication may fail.

)

Endeca Confidential Oracle Endeca Commerce Tools and Frameworks Deployment Template

16 Deploying and initializing an EAC Application | Communicating with SSL-enabled Oracle Endeca
components

2.

set JAVA ARGS=%JAVA_ ARGS% ""-Djavax.net.ssl.trustStore=%TRUSTSTORE%' -
Djavax.net.ssl.trustStoreType=JKS" "-Djavax.net.ssl.trustStorePass-
word=[truststore password]"

set JAVA_ARGS=%JAVA_ARGS% '-Djavax.net.ssl._keyStore=%KEYSTORE%" *'-
Djavax.net.ssl ._keyStoreType=JKS" "-Djavax.net.ssl._keyStorePassword=[key-
store password]"

set CONTROLLER_ARGS=--app-config AppConfig.xml

Note that the final two new lines (beginning with "set JAVA_ARGS" are wrapped to fit the page
size of this document, but each of those two lines should have no line breaks. Also note that
you need to fill in the locations and passwords of your keystore and truststore files in the locations
indicated by the placeholders in italics.

On UNIX, edit runcommand . sh as follows:

JAVA_ARGS="${JAVA_ARGS} -Djava.util_logging.config.file=${WORK~
ING_DIR}/../config/script/logging.properties"

if [-f "[/path/to/truststore]”] ; then
if [- "[/path/to/keystore]™] ; then
TRUSTSTORE=[/path/to/truststore]
KEYSTORE=[/path/to/keystore]
JAVA ARGS=""${JAVA_ ARGS} -Djavax.net.ssl.trustStore=${TRUSTSTORE}"
JAVA_ARGS=""${JAVA_ARGS} -Djavax.net.ssl.trustStoreType=JKS"
JAVA ARGS=""${JAVA ARGS} -Djavax.net.ssl._trustStorePassword=[trust-
store password]™
JAVA _ARGS="${JAVA ARGS} -Djavax.net.ssl.keyStore=${KEYSTORE}"
JAVA ARGS=""${JAVA_ ARGS} -Djavax.net.ssl.keyStoreType=JKS"
JAVA_ARGS=""${JAVA_ARGS} -Djavax.net.ssl.keyStorePassword=[keystore
password]"
else
echo "WARNING: Cannot find keystore at [/path/to/keystore]. Secure
EAC communication may fail."
Ti
else
echo "WARNING: Cannot find truststore at [/path/to/truststore]. Secure
EAC communication may fail."
Ti

CONTROLLER_ARGS=""--app-config AppConfig.xml"

In the app element of the AppConFig.xml document, update the sslEnabled attribute to true
The ss1Enabled attribute is a application-wide setting that applies to the EAC and to CAS (if used
in your application).

Specify the SSL-enabled port for the EAC.

The Endeca HTTP Service uses a separate port to communicate securely. For example, the default
non-SSL connector is on port 8888 and the default SSL connector listens on port 8443. The SSL

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Deploying and initializing an EAC Application | Communicating with SSL-enabled Oracle Endeca 17
components

port should be specified in the eacPort attribute of the app element in the AppConfig.xml
document.

4. If you are using CAS in your application, specify the SSL-enabled port for CAS.

The Endeca CAS Service uses a separate port to communicate securely. For example, the default
non-SSL port is 8500 and the default SSL port is 8505. The SSL port should be specified in the
value attribute of casPort.

5. Specify the non-SSL connector for hosts.

Internally, the EAC Central Server always initiates communication with Agents by communicating
with the non-SSL connector. When the Agent is SSL-enabled, the non-secure port redirects
communication to the secure port. In both cases, the appropriate configuration is to specify the
non-secure port for provisioned hosts.

6. Specify the non-SSL connector for Oracle Endeca Workbench.

In the ConfigManager component, the property webStudioPort should specify the non-secure
connector for the Endeca Tools Service, as communication with Oracle Endeca Workbench
configuration store always uses the unsecured channel.

The following excerpt from the AppConfig.xml document shows a sample configuration for an
SSL-enabled application.

<rl--
M

EAC Application Definition
#

===
<app appName="'test' eacHost=""localhost" eacPort='38888"
dataPrefix=""test" sslEnabled="true" lockManager="LockManager' >
<working-dir>${ENDECA_PROJECT_DIR}</working-dir>
<log-dir>_./logs</log-dir>
</app>

<il--
M

Lock Manager - Used to set/remove/test flags and obtain/release locks

#
-

<lock-manager i1d="LockManager' releaselLocksOnFailure="true" />

<l--
BRI R R
Content Acquisition System Server

#

<custom-component id="CAS" host-id="CASHost" class="'com.Oracle Ende-
ca.eac.toolkit.component.cas.ContentAcquisitionServerComponent' >
<properties>
<property name="casHost" value=""localhost"™ />
<property name="casPort" value="8505" />
</properties>
</custom-component>

-—>

Endeca Confidential Oracle Endeca Commerce Tools and Frameworks Deployment Template

18 Deploying and initializing an EAC Application | Displaying the Deployment Template version

Displaying the Deployment Template version

You can print out the version number of the Deployment Template from the command line.

The runcommand script has a --version flag that prints the version number of the Deployment
Template and exits. The command actually prints the version number of the EAC Development Toolkit.

Displaying the version is important for troubleshooting purposes.

To display the version of the Deployment Template:

1. From a command prompt, navigate to the [appdir]\control directory on Windows
([Tappdir]/control on UNIX).

2. Run the runcommand script with the —-version flag, as in this Windows example:
C:\Endeca\Apps\control>runcommand --version

The command prints the version, as in this sample output:
Deployment Template: 3.1.0

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Chapter 2
Configuring an EAC Application

This section provides an overview of the elements defined in AppConfig.xml.

About configuring an EAC application

The standard processing and script operations of the Deployment Template are sufficient to support
the operational requirements of most projects. Some applications require customization to enable
custom processing steps, script behavior, or even directory structure changes.

Developers are encouraged to use the template as a starting point for customization. The scripts and
modules provided with the template incorporate Oracle's best practice recommendations for
synchronization, archiving, and update processing. The Deployment Template is intended to provide
a set of standards on which development should be founded, while allowing the flexibility to develop
custom scripts to meet specific project needs.

There are two ways to configure an EAC application:

« Configure AppConfig.xml files. The simplest form of configuration consists of editing the
AppConfig.xml configuration file and its associated configuration files to change the behavior
of components or to add or remove components.

This type of configuration includes the addition of removal of Dgraphs to the main cluster or even
the creation of additional clusters. In addition, this category includes adjustment of process
arguments (for example, adding a Java classpath for the Forge process in order to enable the use
of a Java Manipulator), custom properties and directories (for example, changing the number of
index archives that are stored on the indexing server).

« Change behavior of existing BeanShell scripts. Scripts are written in the Java scripting language
BeanShell. Scripts are defined in the AppConfig.xml document and are interpreted at runtime
by the BeanShell interpreter. This allows developers and system administrators to adjust the
behavior of the baseline, partial, and configuration update scripts by simply modifying the
configuration document.

About the application configuration files

The application configuration file [appdir]/config/script/AppConfig.xml and its associated
files define the hosts, components, and scripts that make up an EAC application and the that orchestrate
updates by executing the defined components.

20 Configuring an EAC Application | Configuring the application configuration files

The Deployment Template provides a single AppConfig.xml file that contains pointers to refer to
other files that define distinct parts of an application, separate scripts from component provisioning,
and are used for other purposes. The full set of application configuration files are as follows:

e InitialSetup.xml - Specifies scripts to perform initial setup tasks, such as uploading initial
configuration to Workbench.

- Datalngest.xml - Specifies data processing scripts, including the baseline update script, partial
update script, and the components to perform data processing such as Forge and Dgidx.

e DgraphDefaults.xml - Specifies default values that are inherited by all Dgraph components.
These values include host IDs, data processing paths, and Dgraph flags.

e AuthoringbDgraphCluster.xml - Specifies the Dgraphs used in the authoring environment
and a script that pushes configuration from Workbench to each Dgraph in the authoring cluster.

« LiveDgraphCluster.xml - Specifies the Dgraphs used in the live environment and a script that
pushes configuration from Workbench to each Dgraph in the live cluster.

» WorkbenchConfig.xml - Specifies the IFCR component, the Workbench Manager component,
and a script that promotes content from the authoring environment to the live environment.

« ReportGeneration.xml - Specifies the hosts used for logging and report generations, and
several scripts that produce log files at different time intervals.

In addition to these files, any number of --app-config arguments may be specified to the Controller
class in the EAC development toolkit. All of the objects in the files will be read and processed and
scripts can refer to components, hosts, or other scripts defined in other files.

Configuring the application configuration files

This topic guides you through the process of configuring an EAC application.

1. Edit the AppConfig.xml file in [appdir]/config/script to reflect the details of your
environment. Specifically, set the following values:

» Specify the eacHost and eacPort attributes of the app element with the correct host and port
of the EAC Central Server.

» Specify the host elements with the correct host name or names and EAC ports of all EAC
Agents in your environment.

» Specify the WorkbenchManager component with the correct host and port for Oracle Endeca
Workbench.

2. If necessary, edit the InitialSetup.xml file in [appdir]/config/script. This file does not
usually require any modifications.

3. Edit the Datalngest.xml file in [appdir]/config/script to reflect your data processing
requirements. Specifically, ensure that the baseline update script and partial update script are
correct and that the Forge and Dgidx components are correctly configured.

4. Edit the DgraphDefaults.xml file in [appdir]/config/script with the default values that
are inherited by all Dgraph components in both the authoring cluster and live cluster.

5. Edit the AuthoringDgraphCluster.xml file in [appdir]/config/script to ensure the
authoring Dgraph, the authoring cluster and post-startup script is correct for your environment.

6. Editthe LiveDgraphCluster.xml filein [appdir]/config/scriptto ensure the live Dgraph,
the live cluster and post-startup script is correct for your environment.

7. Edit the WorkbenchConfig.xml file in [appdir]/config/script to ensure the Workbench
Manager and IFCR components are correct for your environment.

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Configuring an EAC Application | Configuring the application configuration files 21

8. If necessary, edit the ReportGeneration.xml file in [appdir]/config/script. This file
does not usually require any modifications.

The following topics describe the components that you can define in the application configuration files.

Global application settings

This first section of the application configuration file defines global application-level configuration,
including the host and port of the EAC Central Server, the application name and whether or not SSL
is to be used when communicating with the EAC Central Server.

In addition, a default working and log directory are specified and a default lockManager is specified
for use by other elements defined in the document. All elements inherit these settings or override them.
<I—

BHHH BT R R R R R R R R R R R R R R R R

Global variables

#
-—=>
<app appName="MyApp' eacHost="myhostl.company.com" eacPort="8888"
dataPrefix="MyApp" sslEnabled="false" lockManager="LockManager">
<working-dir>C:\Endeca\MyApp</working-dir>
<log-dir>_/logs/baseline</log-dir>
</app>

Hosts

All servers in a deployment are enumerated in the host definition portion of the document.

Each host must be given a unique ID. The port specified for each host is the port on which the EAC
Agent is listening, which is the Endeca HTTP Service port on that server. This example shows a host
defined to run CAS and a host to run the MDEX Engine.

<I-

HHHH R AR A

Servers/hosts

#
-

<host i1d=""CASHost"™ hostName="myhostl.company.com™ port="8888" />
<host id="MDEXHost"™ hostName="myhost2.company.com'” port="'8888" />

Lock Manager

The LockManager component is used to obtain and release locks and to set and remove flags using
the EAC's synchronization Web service.

A LockManager object is associated with the elements in the application to enable a centralized access
point to locks, allowing multiple objects to test for the existence of locks and flags. When a script or
component invocation fails, the Deployment Template attempts to release all locks acquired during
the invocation for a LockManager configured to release locks on failure. Multiple LockManager
components may be configured, if it is appropriate for some locks to be released on failure while others
remain.

<I—
BRI R R R R A R R

Lock manager, used to set/remove/test flags and obtain/release
locks

Endeca Confidential Oracle Endeca Commerce Tools and Frameworks Deployment Template

22 Configuring an EAC Application | Configuring the application configuration files

#
-

<lock-manager id="LockManager'" releaselLocksOnFailure="true" />

Fault tolerance and polling interval properties

Two sets of configurable properties set the behavior of the Deployment Template fault tolerance
mechanism and the frequency of status checks for components.

Fault tolerance property

You can now configure fault tolerance (i.e., retries) for any component (such as Forge, Dgidx, and
Dgraph) when invoked through the EAC. This functionality also extends to the CAS server when
running a crawl with the CAS component. The name of the fault-tolerance property is maxMissedSta—
tusQueriesAl lowed.

When components are run, the Deployment Template instructs the EAC to start a component, then
polls on a regular interval to check if the component is running, stopped, or failed. If one of these status
checks fails, the Deployment Template assumes the component has failed and the script ends. The
maxMissedStatusQueriesAl lowed property allows a configurable number of consecutive failures
to be tolerated before the script will end.

The following is an example of a Forge component configured to tolerate a maximum of ten consecutive

failures:
<forge id="Forge'" host-id="ITLHost">
<properties>

<property name="numStateBackups" value="10"/>
<property name="‘numLogBackups' value='"10"/>

<property name="maxMissedStatusQueriesAllowed" value="10"/>
</properties>

</forge>

The default number of allowed consecutive failures is 5. Note that these status checks are consecutive,
so that every time a status query returns successfully, the counter is reset to zero.

Keep in mind that you can use different fault-tolerance settings for your components. For example,
you could set a value of 10 for the Forge component, a value of 8 for Dgidx, and a value of 6 for the
Dgraph.

Polling interval properties

As described in the previous section, the Deployment Template polls on a regular interval to check if
a started component is running, stopped, or failed. A set of four properties is available to configure
each component for how frequently the Deployment Template polls for status while the component is
running. Because each property has a default value, you can use only those properties that are
important to you.

The polling properties are as follows:

* minWaitSeconds specifies the threshold (in seconds) when slow polling switches to standard
(regular) polling. The default is -1 (i.e., no threshold, so the standard polling interval is used from
the start).

« slowPol linglIntervalMs specifies the interval (in milliseconds) that status queries are sent as
long as the minWaitSeconds time has not elapsed. The default slow polling interval is 60 seconds.

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Configuring an EAC Application | Configuring the application configuration files 23

« standardPol lingIntervalMs (specified in milliseconds) is used after the minWaitSeconds
time has passed. If no minWaitSeconds setting is specified, the standardPol lingIntervalMs
setting is always used. The default standard polling interval is 1 second.

« maxWaitSeconds specifies the threshold (in seconds) when the Deployment Template gives up
asking for status and assumes that it has failed. The default is -1 (i.e., no threshold, so the
Deployment Template will keep trying indefinitely).

Here is an example configuration for a long-running Forge component that typically takes 8 hours to

complete:
<forge id="Forge'" host-id="ITLHost">
<properties>

<property name="numStateBackups'" value="10"/>
<property name="‘numLogBackups’™ value="10"/>

<property name="'standardPollinglntervalMs" value="60000"/>

<property name="'slowPollinglntervalMs" value="600000"/>

<property name="minWaitSeconds" value="28800"/>

<property name="maxMissedStatusQueriesAllowed" value="10"/>
</properties>

</forge>

The result of this configuration would be that for the first 8 hours (minWaitSeconds=28800), Forge’'s
status would be checked every 10 minutes (slowPol 1ingIntervalMs=600000), after which time
the status would be checked every minute (standardPollinglIntervalMs=60000). If a status
check fails, a maximum of 10 consecutive retries will be attempted, based on the standardPol ling-
IntervalMs setting.

Keep in mind that these values can be set independently for each component.

Fault tolerance and polling interval for utilities
Fault tolerance and polling interval values can also be set for these utilities:

e copy
* shell

* archive
« rollback

You set the new values by adjusting the BeanShell script code that is used to construct and invoke
the utility. You adjust the code by using these setter methods from the EAC Toolkit's Uti lity class:

« Utility.setMinWaitSeconds()

« Utility.setMaxWaitSeconds()

o Utility.setMaxMissedStatusQueriesAllowed()

o Utility.setPollinglintervalMs()

o Utility.setSlowPollinglintervalMs()

o Utility.setMaxMissedStatusQueriesAllowed()

If you do not use any of these methods, then the utility will use the default values listed in the two
previous sections.

For example, here is a default utility invocation in the CAS crawl scripts:

// create the target dir, if it doesn™t already exist

mkDirUtil = new CreateDirUtility(CAS.getAppName(),
CAS.getEacHost(), CAS.getEacPort(), CAS.isSslEnabled());

mkDirUtil.init(Forge.getHostld(), destDir, CAS.getWorkingDir());

mkDirUtil_.run();

Endeca Confidential Oracle Endeca Commerce Tools and Frameworks Deployment Template

24 Configuring an EAC Application | Configuring the application configuration files
You would then add these methods before calling the run() method, so that the code would now
look like this:
// create the target dir, if it doesn"t already exist
mkDirUtil = new CreateDirUtility(CAS.getAppName(),

CAS.getEacHost(), CAS.getEacPort(), CAS.isSslEnabled());
mkDirUtil_init(Forge.getHostld(), destDir, CAS.getWorkingDir());
mkDirUtil _setMinWaitSeconds(30);
mkDirUtil _setMaxWaitSeconds(120);
mkDirUtil .setMaxMissedStatusQueriesAllowed(10);
mkDirUtil .setPollinglntervalMs(5000);
mkDirUtil .setSlowPollinglIntervalMs(30000);
mkDirUtil_.run();

Alternatively, if your utility was defined in your AppConfig.xml like this:
<copy 1d="MyCopy” src-host-i1d="1TLHost” dest-host-id="MDEXHost” recur-
sive=""true”’>

<src>./path/to/files</src>

<dest>./path/to/target</dest>
</copy>
You would add the same type of lines as above, before calling the run() method; for example:
MyCopy . setMaxMissedStatusQueriesAl lowed(10) ;

MyCopy . runQ);
For more information on the Uti 1 ity methods, see the Javadocs for the EAC Toolkit package.
CAS Server

The Deployment Template provides support for running CAS crawls with the CAS Server Component.
A CAS Server component is implemented as a custom-component. You configure the component
according to the output type of a crawl. The sections below describe the common configuration
properties, the output-type configuration properties, and then provide examples for each output type
including Record Store output, MDEX-compatible output, and record file output.

7 Note: The Deployment Template cannot create a new CAS crawl. You create a crawl using
CAS and run it using the Deployment Template. For details about creating a crawl, see the CAS
Developer's Guide.

The cust om conponent configuration properties

The custom-component configuration properties identify the CAS server in the Servers/hosts section
of AppConfig.xml. The properties are defined as follows:

 1d - Assigns a unique ID to a specific CAS Server.
« host-id - Points back to the id attribute of the host global configuration element.

« class - Specifies the class that implements the ContentAcquisitionServerComponent.
Specify class=""com.endeca.eac.toolkit.component.cas.ContentAcquisitionServer-
Component™.

Common configuration properties

The common configuration properties describe the host and port running CAS. The properties are
defined as follows:

» casHost - Host name of the server on which the Content Acquisition System is running.

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Configuring an EAC Application | Configuring the application configuration files 25

« casPort - Port on which the Endeca CAS Service listens. If the application is running in SSL
mode, the casPort is the SSL port of the Endeca CAS Service The port number must match the
com.endeca.cas.port value that is used in the CAS Service configuration script. Or, if the
Endeca CAS Service is configured for SSL, then the port number must match com.ende-
ca.cas.ssl._port value. The configuration script is in <install
path>\CAS\workspace\conf\jetty.xml.

Configuration properties specific to Record Store output

There are no additional configuration properties required for crawls that write to a Record Store instance.
Only the custom-component and common configuration properties are required.

Example

This example CAS Server component is configured for Record Store output:

<l--
HHH R
Content Acquisition System Server
#
<custom-component i1d="CAS" host-i1d=""CASHost™ class=""com.endeca.eac.toolk-
it.component.cas.ContentAcquisitionServerComponent'>
<properties>
<property name="'casHost" value="localhost" />
<property name="‘casPort" value="8500" />
</properties>
</custom-component>
-——>

Configuration properties specific to record file output
The configuration properties are defined as follows:

e casCrawlFul I0utputDestDir - Indicates the destination directory to which the crawl output
file will be copied after a baseline crawl. Note that this is not the directory to which the CAS crawl
writes its output; that output directory is set as part of the crawl configuration.

» casCrawl IncrementalOutputDestDir - Indicates the destination directory to which the crawl
output file will be copied after an incremental crawl. As with the previous property, this is not the
directory to which the CAS crawl writes its output. If you run incremental crawls, the default settings
assume that the output format will be compressed binary files.

e casCrawlOutputDestHost - Indicates the ID of the host on which the destination directories
(specified by the previous two properties) reside.

Example

This example CAS Server component is configured for a record file output:

<1__
HHHH A R

Content Acquisition System Server
#
-——>
<custom-component id="CAS" host-i1d=""CASHost"™ class=""com.ende-
ca.soleng.eac.toolkit.component.ContentAcquisitionServerComponent'>
<properties>
<property name="'casHost" value="localhost" />
<property name="'casPort" value="8500" />
<property name="‘casCrawlFul lOutputDestDir" value="./data/com-

Endeca Confidential Oracle Endeca Commerce Tools and Frameworks Deployment Template

26 Configuring an EAC Application | Configuring the application configuration files
plete_cas_crawl_output/full™ />
<property name="casCrawlIncrementalOutputDestDir" value="_/data/com-
plete_cas crawl_output/incremental" />
<property name="'casCrawlOutputDestHost" value="'CASHost" />
</properties>
</custom-component>
Forges

One or many Forge components are defined for baseline update processing and partial update
processing depending on the deployment type you choose.

If necessary, you can define a Forge cluster component to apply actions to an entire cluster of Forges,
rather than manually iterating over a number of Forges. You could use this feature to run several
instances of Forge in parallel to process large joins.

In addition, the object contains logic associated with executing Forges in parallel based on Forge
groups, which are described below. Multiple Forge clusters can be defined, with no restriction around
which Forges belong to each cluster or how many clusters a Forge belongs to.

A Forge cluster is configured with references to all Forges that belong to that cluster. In addition, the
cluster can be configured to copy data in parallel or serially. This setting applies to copies that are
performed to retrieve source data and configuration to each server that hosts a Forge component. By
default, the template sets this value to true.

<l--

BHPHHH T

Forge Cluster

#

-——>

<forge-cluster id="ForgeCluster" getDatalnParallel=""true">
<forge ref="ForgeServer" />
<forge ref="ForgeClientl" />
<forge ref="ForgeClient2" />

</forge-cluster>

In addition to standard Forge configuration settings and process arguments, the Deployment Template
uses several configurable properties and custom directories during processing:

* numLogBackups - Number of log directory backups to store.

* numStateBackups - Number of autogen state directory backups to store.

« numPartialsBackups - Number of cumulative partials directory backups to store. It is
recommended that you increase the default value of 5. The reason is that the files in the updates
directory for the Dgraph are automatically deleted after partials are applied to the Dgraph. The
number you choose depends on how often you run partial updates and how many copies you want
to keep.

* incomingDataHost - Host to which source data files are extracted.

» incomingDataDir - Directory to which source data files are extracted.

< incomingDataFi leName - Filename of the source data files that are extracted.

« configHost - Host from which configuration files and dimensions are retrieved for Forge to
process.

« conFigDir - Directory from which configuration files and dimensions are retrieved for Forge to
process.

e cumulativePartialsDir - Directory where partial updates are accumulated between baseline
updates.

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Configuring an EAC Application | Configuring the application configuration files 27

« wsTempDir - Temp Oracle Endeca Workbench directory to which post-Forge dimensions are
copied to be uploaded to the Workbench.

» skipTestingForFilesDuringCleanup - Used for directory-cleaning operations. If set to "true",
will skip the directory-contents test and instead proceed directly to cleaning the directory. The
default behavior is to test the directory contents and skip cleanup if the directory is not empty.

« The properties documented in the "Fault tolerance and polling interval properties” topic.

This excerpt combines properties from both the baseline and partial update Forge to demonstrate the
use of all of these configuration settings.
<properties>

<property name="forgeGroup" value="A" />

<property name=""incomingDataHost">ITLHost</property>

<property name=""incomingDataFileName'>project name-partO-*</property>

<property name="'configHost'">I1TLHost</property>

<property name="numStateBackups" value="10" />

<property name="numLogBackups' value="10" />

<property name="‘numPartialsBackups™"™ value="5" />

<property name="'skipTestingForFilesDuringCleanup™ value="true" />
</properties>
<directories>

<directory name="incomingDataDir'>./data/partials/incoming</directory>

<directory name="configDir'>./config/pipeline</directory>

<directory name="cumulativePartialsDir">

-/data/partials/cumulative_partials

</directory>

<directory name="wsTempDir'>./data/web_studio/temp</directory>
</directories>

In addition to standard Forge configuration and process arguments, Forge processes add a custom
property used to define which Forge processes run in parallel with each other when they belong to a
Forge cluster.

TforgeGroup - Indicates the Forge's membership in a Forge group. When the run method on a Forge
cluster is executed, Forge processes within the same Forge group are run in parallel. Forge group
values are arbitrary strings. The Forge cluster iterates through the groups in alphabetical order, though
non-standard characters may result in groups being updated in an unexpected order.

Dgidxs
One or many Dgidx components are defined depending on the deployment type you choose.

If necessary, you can define a Dgidx cluser to apply actions to an entire cluster of Dgidxs, rather than
manually iterating over a number of Dgidxs. In addition, the object contains logic associated with
executing Dgidxs in parallel based on Dgidx groups, which are described below. Multiple indexing
clusters can be defined, with no restriction around which Dgidx belongs to each cluster or how many
clusters a Dgidx belongs to.

An indexing cluster is configured with references to all Dgidxs that belong to that cluster. In addition,
the cluster can be configured to copy data in parallel or serially. This setting applies to copies that are
performed to retrieve source data and configuration to each server that hosts a Dgidx component. By
default, the template sets this value to true.

==

HHHHHHHHHH
Indexing Cluster

#

-——>

<indexing-cluster id="IndexingCluster" getDatalnParallel="true">

Endeca Confidential Oracle Endeca Commerce Tools and Frameworks Deployment Template

28 Configuring an EAC Application | Configuring the application configuration files
<dgidx ref="Dgidx1l" />
<dgidx ref="Dgidx2" />
</indexing-cluster>
In addition to standard Dgidx configuration settings and process arguments, the Deployment Template
uses several configurable properties and custom directories during processing:

« numLogBackups - Number of log directory backups to store.

* numlndexbackups - Number of index backups to store.

» incomingDataHost - Host to which source data files are extracted.

e incomingDataDir - Directory to which source data files are extracted.

< IncomingDataFi leName - Filename of the source data files that are extracted.

« configHost - Host from which configuration files and dimensions are retrieved for Dgidx to
process.

« configDir - Directory from which configuration files and dimensions are retrieved for Dgidx to
process.

« configFileName - Filename of the configuration files and dimensions that are retrieved for Dgidx
to process.

» skipTestingForFilesDuringCleanup - Used for directory-cleaning operations. If set to "true”,
will skip the directory-contents test and instead proceed directly to cleaning the directory. The
default behavior is to test the directory contents and skip cleanup if the directory is not empty.

» The properties documented in the "Fault tolerance and polling interval properties” topic.

In addition to standard Dgidx configuration and process arguments, Dgidx processes add a custom
property used to define which Dgidx processes run in parallel with each other when they belong to an
indexing cluster.
dgidxGroup - Indicates the Dgidx's membership in a Dgidx group. When the run method on an
indexing cluster is executed, Dgidx processes within the same Dgidx group are run in parallel. Dgidx
group values are arbitrary strings. The indexing cluster iterates through the groups in alphabetical
order, though non-standard characters may result in groups being updated in an unexpected order.
Dgraphs

If a Dgraph deployment type is chosen, a Dgraph cluster component is defined.

This object is used to apply actions to an entire cluster of Dgraphs, rather than manually iterating over
a number of Dgraphs. In addition, the object contains logic associated with Dgraph restart strategies,
which are described below. Multiple Dgraph clusters can be defined, with no restriction around which
Dgraphs belong to each cluster or how many clusters a Dgraph belongs to.

A Dgraph cluster is configured (via the dgraph-cluster element) with references to all Dgraphs
that belong to that cluster. In addition, the cluster can be configured to copy data in parallel or serially.
This setting applies to copies that are performed to distribute a new index, partial updates or
configuration updates to each server that hosts a Dgraph. By default, the template sets this value to
true.

<!--

HHHH
Dgraph Cluster

#

-—>
<dgraph-cluster id="DgraphCluster' getDatalnParallel="true">
<dgraph ref="Dgraphl" />

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Configuring an EAC Application | Configuring the application configuration files 29

<dgraph ref="Dgraph2' />
</dgraph-cluster>

Two Dgraphs are defined by the template by default.

Global Dgraph settings

In order to avoid defining shared configuration for multiple Dgraphs in each Dgraph's XML configuration,
the document provides the dgraph-defaul ts element, where shared settings can be configured
and inherited (or overridden) by each Dgraph defined in the document. This defaults object specifies
a number of custom configuration properties that are used by the update scripts to define operational
functionality.

« numLogBackups - Number of log directory backups to store.

« shutdownTimeout - Number of seconds to wait for a component to stop (after receiving a stop
command).

* numldleSecondsAfterStop - Number of seconds to pause/sleep after a component is stopped.
Typically, this will be used to ensure that log file locks are release by the component before
proceeding.

« srclIndexDir - Location from which a new index will be copied to a local directory on the Dgraph's
host.

» srclndexHostld - Host from which a new index will be copied to a local directory on the Dgraph's
host.

« local IndexDir - Local directory to which a single copy of a new index is copied from the source
index directory on the source index host.

e srcPartialsDir - Location from which a new partial update will be copied to a local directory
on the Dgraph's host.

e srcCumulativePartialsDir - Location from which all partial updates accumulated since the
last baseline update will be copied to a local directory on the Dgraph's host.

» srcPartialsHostld - Host from which partial updates will be copied to a local directory on the
Dgraph's host.

* localCumulativePartialsDir - Local directory to which partial updates are copied from the
source (cumulative) partials directory on the source partials host.

» srcDgraphConfigDir - Location from which Dgraph configuration files will be copied to a local
directory on the Dgraph's host.

» srcDgraphConfigHostld - Host from which Dgraph configuration files will be copied to a local
directory on the Dgraph's host.

» localDgraphConfigDir - Local directory to which Dgraph configuration files are copied from
the source Dgraph config directory on the source Dgraph config host.

* srcXQueryHostld - Host from which XQuery modules will be copied to a local directory on the
Dgraph's host.

e srcXQueryDir - Location from which XQuery modules will be copied to a local directory on the
Dgraph's host.

» localXQueryDir - Local directory to which XQuery modules are copied from the source Dgraph
XQuery directory on the source Dgraph XQuery modules host.

« skipTestingForFilesDuringCleanup - Used for directory-cleaning operations. If set to "true",
will skip the directory-contents test and instead proceed directly to cleaning the directory. The
default behavior is to test the directory contents and skip cleanup if the directory is not empty.

« The properties documented in the "Fault tolerance and polling interval properties" topic.

<l--

B
Global Dgraph settings, inherited by all dgraphs

Endeca Confidential Oracle Endeca Commerce Tools and Frameworks Deployment Template

30 Configuring an EAC Application | Configuring the application configuration files

#
-——>
<dgraph-defaul ts>
<properties>
<property name="'srclndexDir" value="_/data/dgidx_output" />
<property name="'srclndexHostld" value="ITLHost" />
<property name="'srcPartialsDir" value="_/data/partials/forge_output™
/>

<property name="'srcPartialsHostld" value="ITLHost" />

<property name="'srcCumulativePartialsDir" value="_/data/partials/cumu-
lative partials" />

<property name="'srcCumulativePartialsHostld" value="I1TLHost" />

<property name="srcDgraphConfigDir"” value="_/data/web_studio/dgraph_con-
fig" />

<property name="'srcDgraphConfigHostld" value="I1TLHost" />

<property name="'srcXQueryHostld" value="ITLHost" />

<property name="'srcXQueryDir" value="./config/lib/xquery" />

<property name="numLogBackups' value="10" />

<property name="'shutdownTimeout"™ value="30" />

<property name="numldleSecondsAfterStop" value="0" />

</properties>
<directories>

<directory name="local IndexDir'>_/data/dgraphs/local_dgraph_input</di-
rectory>

<directory name=""localCumulativePartialsDir'>./data/dgraphs/local_cumu-
lative partials</directory>

<directory name=""localDgraphConfigDir">./data/dgraphs/local_dgraph_con-
Ffig</directory>

<directory name="localXQueryDir'>_/data/dgraphs/local_xquery</directory>

</directories>

<args>
<arg>--threads</arg>
<arg>2</arg>

<arg>--spl</arg>
<arg>--dym</arg>
<arg>--xquery_path</arg>
<arg>./data/dgraphs/local_xquery</arg>
</args>
<startup-timeout>120</startup-timeout>
</dgraph-defaults>

Each Dgraph defined in the document (via the dgraph element) inherits from the settings defined in
the dgraph-defaults element, and also specifies settings that are unique to the Dgraph.

Note: As of version 3.1 of the Deployment Template, the numCacheWarmupSeconds and of-
flineUpdate properties are ignored (and warning messages generated) because they are not
supported in the 6.1.x MDEX Engine.

Restart and update custom properties

In addition to standard Dgraph configuration and process arguments, the dgraph element adds two
custom properties that define restart and update strategies:

e restartGroup
e updateGroup

The restartGroup property indicates the Dgraph's membership in a restart group. When applying
a new index or configuration updates to a cluster of Dgraphs (or when updating a cluster of Dgraphs

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Configuring an EAC Application | Configuring the application configuration files 31

with a provisioning change such as a new or modified process argument), the Dgraph cluster object
applies changes simultaneously to all Dgraphs in a restart group.

Similarly, the updateGroup property indicates the Dgraph's membership in an update group. When
applying partial updates, the Dgraph cluster object applies changes simultaneously to all Dgraphs in
an update group.

This means that a few common restart strategies can be applied as follows:

« To restart/update all Dgraphs at once: specify the same restartGroup/updateGroup value for each
Dgraph.

« To restart/update Dgraphs one at a time: specify a unique restartGroup/updateGroup value for
each Dgraph, or omit one or both of the custom properties on all Dgraphs (causing the template
to assign a unique group to each Dgraph).

« To restart/update Dgraphs on each server simultaneously: specify the same
restartGroup/updateGroup value for each Dgraph on a physical server.

 To restart Dgraphs one at a time but apply partial updates to all Dgraphs at once: specify a unique
restartGroup value for each Dgraph and specify the same updateGroup value for each Dgraph.

<dgraph id="Dgraphl" host-id="MDEXHost" port="'15000">
<properties>
<property name="‘restartGroup' value="A" />
<property name="‘updateGroup® value="a" />
</properties>
<log-dir>_/logs/dgraphs/Dgraphl</log-dir>
<input-dir>./data/dgraphs/Dgraphl/dgraph_input</input-dir>
<update-dir>./data/dgraphs/Dgraphl/dgraph_input/updates</update-dir>
</dgraph>

Restart and update group values are arbitrary strings. The DgraphCluster will iterate through the groups
in alphabetical order, though non-standard characters may result in groups being updated in an
unexpected order.

Running scripts

Dgraph components can specify the name of a script to invoke prior to shutdown and the name of a

script to invoke after the component is started. These optional attributes must specify the ID of a Script
defined in the XML file(s). These BeanShell scripts are executed just before the Dgraph is stopped or
just after it is started. The scripts behave identically to other BeanShell scripts, except that they have
an additional variable, invokingObject, which holds a reference to the Dgraph that invoked the script.
This functionality is typically used to implement calls to a load balancer, adding or removing a Dgraph
from the cluster as it is updated.

The following example shows two dummy scripts (which just log a message, but could be extended
to call out to a load balancer) provisioned to run pre-shutdown and post-startup for Dgraphl.

<dgraph i1d="Dgraphl" host-id="MDEXHost" port="15000"
pre-shutdown-script="DgraphPreShutdownScript"
post-startup-script="DgraphPostStartupScript">
<properties>
<property name="'restartGroup' value="A" />
</properties>
<log-dir>./logs/dgraphs/Dgraphl</log-dir>
<input-dir>./data/dgraphs/Dgraphl/dgraph_input</input-dir>
<update-dir>./data/dgraphs/Dgraphl/dgraph_input/updates</update-dir>
</dgraph>

<script id="DgraphPreShutdownScript">
<bean-shell-script>

Endeca Confidential Oracle Endeca Commerce Tools and Frameworks Deployment Template

32 Configuring an EAC Application | Configuring the application configuration files

<I[CDATAL

id = invokingObject.getElementld();

hostname = invokingObject.getHost() .getHostName();
port = invokingObject.getPort();

log.info("'Removing dgraph with id ™ + id + " (host: " + hostname +
", port: " + port + ") from load balancer cluster.™);
>
</bean-shell-script>
</script>

<script id="DgraphPostStartupScript">
<bean-shell-script>
<I[CDATAL
id = invokingObject.getElementld();
hostname = invokingObject.getHost() .getHostName();
port = invokingObject.getPort();
log.info(""Adding dgraph with id " + id + " (host: " + hostname +

", port: " + port + ') to load balancer cluster.™);
11>
</bean-shell-script>
</script>

The following log excerpt shows these scripts running when a new index is being applied to the dgraph:

[03.10.08 10:03:28] INFO: Applying index to dgraphs in restart group "A".
[03.10.08 10:03:28] INFO: [MDEXHost] Starting shell utility "mkpath_dgraph-
input-new” .

[03.10.08 10:03:30] INFO: [MDEXHost] Starting copy utility “copy_in-
dex_to_temp_new_dgraph_input_dir_for_Dgraphl®.

[03.10.08 10:03:35] INFO: Removing dgraph with id Dgraphl (host: mdexl.my-
company.com, port: 15000) from load balancer cluster.

[03.10.08 10:03:35] INFO: Stopping component "Dgraphl®.

[03.10.08 10:03:37] INFO: [MDEXHost] Starting shell utility "move_dgraph-
input_to_dgraph-input-old-.

[03.10.08 10:03:39] INFO: [MDEXHost] Starting shell utility “move_dgraph-
input-new_to dgraph-input”.

[03.10.08 10:03:40] INFO: [MDEXHost] Starting backup utility "back-
up_log_dir_for_component Dgraphl®.

[03.10.08 10:03:42] INFO: [MDEXHost] Starting component "Dgraphl®.
[03.10.08 10:03:45] INFO: Adding dgraph with id Dgraphl (host: mdex1.mycompa-
ny.com, port: 15000) to load balancer cluster.

[03.10.08 10:03:45] INFO: [MDEXHost] Starting shell utility "rmdir_dgraph-
input-old®.

Note that the dgraph-default element can also specify the use of pre-shutdown and post-startup
scripts as attributes, allowing all Dgraphs in an application to execute the same scripts. For example:

<dgraph-defaults pre-shutdown-script="DgraphPreShutdownScript"
post-startup-script="DgraphPostStartupScript">

</dgraph-defaults>

Deploying XQuery modules

The Deployment Template supports the distribution of XQuery modules to each Dgraph in the group.
The [appdir]config/lib/xquery directory is provided for users to store their XQuery modules.
In addition, a LoadXQueryModules script (in the AppConFig.xml file) distributes the XQuery modules
to Dgraph servers and instructs the Dgraphs to load the modules.

The procedure to deploy the XQuery modules is:

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Configuring an EAC Application | Configuring the application configuration files 33

1. Make certain that the dgraph-defaul ts section of the AppConfig.xml file has the XQuery
properties set. These global Dgraph setting properties are srcXQueryHostld, srcXQueryDir,
and localXQueryDir.

2. Make certain that the Dgraph —-xquery_path flag is specified as an argument in the dgraph-
defaults section.

3. Place all the XQuery code in the [appdir]/config/lib/xquery and
[appdir]/config/lib/xquery/lib directories.

4. Execute the runcommand script with the LoadXQueryModules argument, as in this Windows
example:

C:\Endeca\Apps\control>runcommand LoadXQueryModules

The XQuery modules are distributed to the Dgraphs in the deployment and they are instructed to
reload/compile the modules.

Specifying arguments for the Dgraphs

Both the dgraph and dgraph-defaults elements allow you to use the args sub-element to pass
command-line flags to the Dgraphs. However, if you use an args section in both the dgraph and
dgraph-defaults configurations, the results are not cumulative.

Instead, the args section for an individual Dgraph completely overrides the dgraph-defaults
definition (i.e., it does not inherit the parameters that are specified in the dgraph-defaults section
and then add the ones that are unique for that Dgraph).

Enabling SSL for the Dgraph

You can configure the Dgraph for SSL by using the following elements to define the certificates to use
for SSL:

» cert-Tile specifies the path of the eneCert. pem certificate file that is used by the Dgraph to
present to any client. This is also the certificate that the Application Controller Agent should present
to the Dgraph when trying to talk to the Dgraph.

« ca-TFile specifies the path of the eneCA . pem Certificate Authority file that the Dgraph uses to
authenticate communications with other Oracle Endeca components.

« cipher specifies an optional cipher string (such as RC4-SHA) that specifies the minimum
cryptographic algorithm that the Dgraph uses during the SSL negotiation. If you omit this setting,
the SSL software tries an internal list of ciphers, beginning with AES256-SHA. See the Oracle
Endeca Platform Services Security Guide for more information.

All three elements are first-level children of the <dgraph-defaults> element.

The following example shows the three SSL elements being used within the dgraph-default
element:

<dgraph-defaul ts>
<cert-file>
C:\Endeca\PlatformServices\workspace\etc\eneCert.pem
</cert-file>
<ca-file>
C:\Endeca\PlatformServices\workspace\etc\eneCA.pem
</ca-file>
<cipher>AES128-SHA</cipher>
</dgraph-defaults>

Endeca Confidential Oracle Endeca Commerce Tools and Frameworks Deployment Template

34 Configuring an EAC Application | Configuring the application configuration files

Log server

A LogServer component is defined.

In addition to standard LogServer configuration settings and process arguments, the Deployment
Template uses a configurable property for log archiving.

« numLogBackups - Number of log directory backups to store.

« shutdownTimeout - Number of seconds to wait for a component to stop (after receiving a stop
command).

« numldleSecondsAfterStop - Number of seconds to pause/sleep after a component is stopped.
Typically, this will be used to ensure that log file locks are release by the component before
proceeding.

e targetReportGenDir - Directory to which logs will be copied for report generation.

« targetReportGenHostld - Host to which logs will be coped for report generation.

» skipTestingForFilesDuringCleanup - Used for directory-cleaning operations. If set to "true",
will skip the directory-contents test and instead proceed directly to cleaning the directory. The
default behavior is to test the directory contents and skip cleanup if the directory is not empty.

» The properties documented in the "Fault tolerance and polling interval properties" topic.

<logserver i1d="LogServer" host-id="ITLHost" port="15010">
<properties>
<property name="numLogBackups' value="10" />
<property name="'targetReportGenDir" value="_/reports/input"” />
<property name="'targetReportGenHostld" value="1TLHost" />
</properties>
<log-dir>./logs/logservers/LogServer</log-dir>
<output-dir>_/logs/logserver_output</output-dir>
<startup-timeout>120</startup-timeout>
<gzip>false</gzip>
</logserver>

Report Generators

Four report generator components are defined.

In addition to standard Report Generator configuration settings and process arguments, the Deployment
Template uses a configurable property for log archiving, as well as these configurable properties:

« skipTestingForFilesDuringCleanup - Used for directory-cleaning operations. If set to "true",
will skip the directory-contents test and instead proceed directly to cleaning the directory. The
default behavior is to test the directory contents and skip cleanup if the directory is not empty.

« The properties documented in the "Fault tolerance and polling interval properties" topic.

The configuration file includes the name of an output file for each report generator, which defaults to
report._html or report._xml. This file name is never used when the report generation scripts in
the AppConfig.xml file are used. During execution, the script re-provisions the report generator to
output a file named with a date stamp. This means that the provisioning in the file will always be "out
of synch" with the provisioning in the EAC. This will result in the Report Generator's definition changing
repeatedly as scripts are executed.

<report-generator id="WeeklyReportGenerator"™ host-id="I1TLHost">
<log-dir>./logs/report_generators/WeeklyReportGenerator</log-dir>
<input-dir>./reports/input</input-dir>
<output-file>_/reports/weekly/report.xml</output-file>
<stylesheet-file>
-/config/report_templates/tools_report_stylesheet._xsl

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Configuring an EAC Application | Configuring the application configuration files 35

</stylesheet-file>
<settings-file>
-/config/report_templates/report_settings.xml

</settings-file>

<time-range>LastWeek</time-range>

<time-series>Daily</time-series>

<charts-enabled>true</charts-enabled>
</report-generator>

IFCR

The IFCR is a custom component that specifies user information for an Endeca Configuration Repository
that is running inside Oracle Endeca Workbench. The deployment template scripts use the information
to connect to an Endeca Configuration Repository and move configuration used by Authoring and Live
Dgraphs, the media MDEX reference application, and the IFCR Backup Utility.

You define an IFCR component in the WorkbenchConfig.xml file which is then referenced by
AppConfig.xml.

The cust om conponent configuration properties

The custom-component configuration properties identify the IFCR in the Data Ingest Hosts section
of Datalngest.xml.

The properties are defined as follows:

 1d - Assigns a unique ID to a specific IFCR instance.
» host-1id - Points back to the id attribute of the host global configuration element.

« class - Specifies the class that implements the IFCRComponent. Specify class=""com.ende-
ca.soleng.eac.toolkit.component. IFCRComponent".

IFCR configuration properties
The configuration properties are defined as follows:

« repositoryUrl - Specifies host, port, and ifcr directory as http://<workbench
host>:<port>/ifcr.

< username - Name of the user logging in to Oracle Endeca Workbench where the Endeca
Configuration Repository is hosted.

e password - Corresponding password for the user name.

* numExportBackups - Indicates the number of backups to keep for exported configuration of the
Endeca Configuration Repository. If this property is not configured, then no backups are retained.
The default value is 5.

Example

This example shows a typical configuration:

<1__
HHHH A R R R

IFCR - A component that interfaces with the Workbench repository.
-—>
<custom-component id="I1FCR" host-id="ITLHost" class="'com.ende-
ca.soleng.eac.toolkit.component. IFCRComponent'>
<properties>
<property name="repositoryUrl" value="http://localhost:8006/ifcr" />

Endeca Confidential Oracle Endeca Commerce Tools and Frameworks Deployment Template

36 Configuring an EAC Application | Configuring the application configuration files

<property name="‘username' value="admin" />
<property name="‘password" value="admin" />
<property name="'numExportBackups' value="3" />
</properties>
</custom-component>

Workbench Manager

The Workbench Manager is a custom component that specifies connection information for Oracle
Endeca Workbench and also a configuration directory for Oracle Endeca Workbench. The deployment
template scripts use the information to connect to Workbench and update shared configuration contained
in the configuration directory.

You define a Workbench Manager component in the WorkbenchConfig.xml file which is then
referenced by AppConfig.xml.

The cust om conponent configuration properties

The custom-component configuration properties identify the Workbench Manager in the Data Ingest
Hosts section of Datalngest.xml.

The properties are defined as follows:

« 1d - Assigns a unique ID to a specific Workbench instance.

» host-1id - Points back to the id attribute of the host global configuration element.

» class - Specifies the class that implements the WorkbenchManagerComponent. Specify
class=""com.endeca.soleng.eac.toolkit.component.WorkbenchManagerComponent™.

Workbench configuration properties
The configuration properties are defined as follows:

» workbenchHost - Host name of the server on which Oracle Endeca Workbench is running.

« workbenchPort - Port on which Workbench listens. This is the port of the Endeca Tools Service
on the Oracle Endeca Workbench host. If the application is running in SSL mode, the workbench-
Port is the SSL port of Workbench.

« configDir - Directory to which Workbench configuration files are uploaded or downloaded by
other components in the implementation.

« workbenchTempDi r - Temporary directory used for Workbench interaction. Post-Forge dimensions
are uploaded or downloaded from this directory by other components in the implementation.

Example

This example shows a typical configuration:

<I--
HHHHHHH R

WorkbenchManager - A component that interfaces with the legacy
“"web studio® configuration repository. It is used primarily during
data ingest to load post-forge dimensions into Workbench.
-——>
<custom-component id="WorkbenchManager" host-id="ITLHost" class="com.en-
deca.soleng.eac.toolkit.component.WorkbenchManagerComponent"'>
<properties>
<property name="‘workbenchHost" value="localhost"” />

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Configuring an EAC Application | Configuring the application configuration files 37

<property name="workbenchPort" value="8006" />

</properties>

<directories>
<directory name="configDir">_/config/pipeline</directory>
<directory name="workbenchTempDir''>./data/workbench/temp</directory>

</directories>
</custom-component>

Reporting

Oracle Endeca Workbench provides an interface for viewing and analyzing reports produced by the
Report Generator.

In order for Oracle Endeca Workbench to display these reports, report files and associated charts
need to be created and delivered to a directory in Oracle Endeca Workbench's workspace. Alternatively,
a "webstudio" host can be provisioned with a "webstudio-report-dir" custom directory, which
indicates to Oracle Endeca Workbench where it should read reports for the application. In addition,
the files need to be named with a date stamp to conform to Oracle Endeca Workbench's haming
convention. The Deployment Template includes report generation scripts that perform these naming
and copying steps to deliver reports for Oracle Endeca Workbench to read. Common extension or
customization of this functionality may occur when one or more of the components in the reporting
lifecycle run in different environments. The AppConfig.xml allows components to work independently
of each other. Specifically, the LogServer can be configured to deliver files to an arbitrary directory,
from where the files can be copied to another environment for report generation. Similarly, the Report
Generator's output report can be delivered to an arbitrary target directory, from where the files can be
copied to another environment for display in Oracle Endeca Workbench.

Configuration Manager

The Configuration Manager component is a custom component that does not correlate to an Oracle
Endeca process.

7~ Note: In Deployment Template 3.0, the Configuration Manager was deprecated and replaced
by Workbench Manager.

Instead, this object implements logic used to manage configuration files. Specifically, the current
implementation supports retrieving and merging configuration from Developer Studio with files
maintained in Oracle Endeca Workbench.

The following configuration properties and custom directories are used to implement the logic of the
Config Manager component.

« webStudioEnabled - "true" or "false,” indicating whether integration with Oracle Endeca
Workbench is enabled.

« webStudioHost - Hostname of the server on which Oracle Endeca Workbench is running.

« webStudioPort - Port on which Oracle Endeca Workbench listens. This is the port of the Endeca
Tools Service on the Oracle Endeca Workbench host.

« webStudioMaintainedFile* - Specifies the name of a file that will be maintained in Oracle
Endeca Workbench. The ConfigManager respects all properties prefixed with
"webStudioMaintainedFile" but requires that all properties have unique names. When configuring
files, each should be given a unique suffix. Note that the names of files specified may use wildcards
(e.g. <property name="‘webStudioMaintainedFilel” val-
ue=""merch_rule_group_*.xml" />).

Endeca Confidential Oracle Endeca Commerce Tools and Frameworks Deployment Template

38 Configuring an EAC Application | Configuring the BeanShell scripts

devStudioConfigDir - Directory from which Developer Studio configuration files are retrieved.
webStudioConfigDir - Directory to which Workbench configuration files are downloaded.
webStudioDgraphConfigDir - Directory from which Workbench configuration files are retrieved.
mergedConfigDir - Directory to which merged configuration is copied.

webStudioTempDir - Temporary directory used for Workbench interaction. Post-Forge dimensions
are uploaded from this directory to the Workbench.
skipTestingForFilesDuringCleanup - Used for directory-cleaning operations. If set to "true”,
will skip the directory-contents test and instead proceed directly to cleaning the directory. The
default behavior is to test the directory contents and skip cleanup if the directory is not empty.
The properties documented in the "Fault tolerance and polling interval properties” topic.

<l--
HHH A
Config Manager. Manages Dev Studio and Workbench config sources.

#

-——>
<custom-component id="ConfigManager'™ host-id="I1TLHost"

class=""com._Endeca.soleng.eac.toolkit.component.ConfigManagerComponent'>
<properties>

<property name="webStudioEnabled"” value="true" />

<property name="webStudioHost" value="localhost” />

<property name="webStudioPort"” value="8006" />

<property name="webStudioMaintainedFilel"
value=""thesaurus.xml" />

<property name="webStudioMaintainedFile2"
value="merch_rule_group_ default.xml" />

<property name="‘webStudioMaintainedFile3"
value="merch_rule_group_default_redirects.xml" />

</properties>
<directories>

<directory name="devStudioConfigDir">
./config/pipeline

</directory>

<directory name="webStudioConfigDir'>
-/data/web_studio/config

</directory>

<directory name="webStudioDgraphConfigDir">
./data/web_studio/dgraph_config

</directory>

<directory name="mergedConfigDir'>
-/data/complete_index_config

</directory>

<directory name="webStudioTempDir">
./data/web_studio/temp

</directory>

</directories>

</custom-component>

Configuring the BeanShell scripts

The following list describes a number of customization approaches that you can implement to extend
the existing functionality or add new functionality to the template.

For example, if a deployment uses JDBC to read data into the Forge pipeline instead of using
extracted data files, the following changes would be implemented in the BaselineUpdate script:

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Configuring an EAC Application | Configuring the BeanShell scripts 39

1. Remove the line that retrieves data and configuration for Forge: Forge.getData();
2. Insert a new copy command to retrieve configuration for Forge to process:

// get Workbench config, merge with Dev Studio config
ConfigManager.downloadWsConfig();
ConfigManager . fetchMergedConfig();

// fetch extracted data files, run ITL

srcDir = PathUtils.getAbsolutePath(Forge.getWorkingDir(),
Forge.getConfigDir()) + "/*";

destDir = PathUtils.getAbsolutePath(Forge.getWorkingDir(),
Forge.getlnputDir());

dimensionCopy = new CopyUtility(Forge.getAppName(),
Forge.getEacHost(), Forge.getEacPort(), Forge.isSslEnabled());
dimensionCopy.- init("'copy_dimensions™, Forge.getHostld(),
Forge.getHostld(), srcDir, destDir, true);
dimensionCopy.run();

Forge.getData();
Forge.run(Q);
Dgidx.-run();

Note that this amended BeanShell script imports two classes from the classpath, references
variables that point to elements in the AppConfig.xml document (e.g. Forge, Dgidx) and defines
new variables without specifying their type (e.g. srcDir, destDir). Details about BeanShell scripting
can be found in Appendix A of this guide.

« Write new BeanShell scripts - Some use cases may call for greater flexibility than can easily be
achieved by modifying existing BeanShell scripts. In these cases, writing new BeanShell scripts
may accomplish the desired goal. For example, the following BeanShell script extends the previous
example by pulling the new functionality into a separate script:

<script id="CopyConfig">
<bean-shell-script>
<V[CDATAL

// fTetch extracted data files, run ITL

srcDir = PathUtils.getAbsolutePath(Forge.getWorkingDir(),
Forge.getConfigDir()) + "/*";

destDir = PathUtils.getAbsolutePath(Forge.getWorkingDir(),
Forge.getlnputDir());

dimensionCopy = new CopyUtility(Forge.getAppName(),
Forge.getEacHost(), Forge.getEacPort(), Forge.isSslEnabled());
dimensionCopy. init(‘'copy_dimensions'", Forge.getHostld(),
Forge.getHostld(), srcDir, destDir, true);
dimensionCopy-run();

11> .
</bean-shell-script>
</script>

Once the new script is defined, the BaselineUpdate script simplifies to the following:

// get Workbench config, merge with Dev Studio config
ConfigManager .downloadWsConfig();
ConfigManager . fetchMergedConfig();

Endeca Confidential Oracle Endeca Commerce Tools and Frameworks Deployment Template

40

Configuring an EAC Application | Configuring the BeanShell scripts

// fTetch extracted data files, run ITL
CopyConfig.run(Q);

Forge.getData();

Forge.run(Q);

Dgidx.run(Q);

Define utilities in AppConFfig.xml - A common use case for customization is to add or adjust the
functionality of utility invocation. Our previous example demonstrates the need to invoke a new
copy utility when the Forge implementation changes. Other common use cases involve invoking
a data pre-processing script from the shell and archiving a directory. In order to enable this, the
Deployment Template allows utilities to be configured in the AppConfig.xml document. To
configure the copy defined above in the document, use the copy element:
<copy 1d=""CopyConfig" src-host-id="ITLHost" dest-host-id="ITLHost"
recursive=""true'">
<src>./data/complete_index_config/*</src>
<dest>./data/processing</dest>
</copy>

Once configured, this copy utility is invoked using the same command that was previously added
to the BaselineUpdate to invoke the custom BeanShell script: CopyConfig.run();

Extend the Java EAC Development Toolkit - In rare cases, you may need to implement complex
custom functionality that would be unwieldy and difficult to maintain if implemented in the
AppConfig.xml document. In these cases, you can extend objects in the toolkit to create new
Java objects that implement the desired custom functionality. Staying with the previous example,
the developer might implement a custom Forge object to change the behavior of the getData()
method to simply copy configuration without looking for extracted data files.

package com.Endeca.soleng.eac.toolkit.component;

import java.util._logging.Logger;
import com.Endeca.soleng.eac.toolkit._exception.*;

public class MyForgeComponent extends ForgeComponent

{
private static Logger log =
Logger .getLogger (MyForgeComponent.class.getName());
protected void getData() throws AppConfigurationException,
EacCommunicationException, EacComponentControlException,
InterruptedException
{
// get dimensions for processing
getConfig(Q;
}
}

Obviously, this trivial customization is too simple to warrant the development of a new class.
However, this approach can be used to override the functionality of most methods in the toolkit or
to implement new methods.

In order to use the new functionality, the developer will compile the new class and ensure that it
is included on the classpath when invoking scripts. The simplest way to do this is to deploy the
compiled .class file to the [appdir]/config/script directory. Once on the classpath, the

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Configuring an EAC Application | Configuration overrides 41

new component can be loaded in place of the default Forge component by making the following
change to the Forge configuration in AppConfig.xml:

<forge class=""com.Endeca.soleng.eac.toolkit.component.MyForgeComponent"

id=""Forge" host-id="ITLHost">

</forge>

Some types of customization will require more complex configuration. Refer to Appendix A ("EAC
Development Toolkit") for information about configuring custom Java classes using the Spring
Framework namespace in the AppConfig.xml document.

Configuration overrides

The Deployment Template allows the use of one or more configuration override files.

These files can be used to override or substitute values into the configuration documents. For example,
developers may want to separate the specification of environment-specific configuration (e.g. hostnames,
ports, etc.) from the application configuration and scripts. This may be useful for making configuration
documents portable across environments and for dividing ownership of configuration elements between
system administrators and application developers.

Override files are specified by using the -—config-override flag to the EAC development toolkit's
controller. For example, the runcommand script in the template includes an environment.properties

file by default, though this file only contains examples of overrides and does not specify any active
overrides.

Two types of properties can be specified in an override file:

1. [object].[field] = [value] - This style of override specifies the name of an object and
field and sets the value for that field, overriding any value specified for that field in the XML
configuration document or documents. For example:

Dgraphl._port = 16000
Dgraphl._properties[“restartGroup®] = B
ITLHost.hostName = itl_mycompany.com

2. [token] = [value] - This style of override specifies the name of a token defined in the XML
config file and substitutes the specified value for that token. For example, if the AppConfig.xml
defines the following host:

<host id="I1TLHost" hostName="${itl_host}" port="${itl.port}" />

The override can specify the values to substitute for these tokens:

itl.host = it.mycompany.com
itl.port = 8888

It is important to note that both styles of substitution are attempted for every value defined in the
override file. When a token fails to match, a low-severity warning is logged and ignored. This is required
because most tokens will only match one of the two styles of substitution. It may be important to avoid
using token names that coincide with object names. For example, defining the token ${Forge . tem-
pDir} will cause the corresponding value to substitute for both the token as well as the tempDir
field of the Forge component.

Endeca Confidential Oracle Endeca Commerce Tools and Frameworks Deployment Template

Chapter 3
Replacing the Default Forge Pipeline

This chapter describes how to modify or create a Forge pipeline that is designed for use within the
deployment template operational structure. This includes pipeline naming requirements, common
errors encountered, etc.

About the sample pipelines

For testing purposes, the Deployment Template includes a Developer Studio project with two pipelines
(a baseline and a partial). The sample pipelines facilitate testing the deployment template; however,
the files should be replaced with project-specific files immediately after a deployed application has
been properly configured.

The pipelines are located in [appdir]/config/pipeline. The pipeline for a baseline update
processes 10 records, and the pipeline for a partial update that adds 2 more records.

Sample pipeline overview

This section describes the high-level steps that are necessary to integrate a new/existing pipeline with
a deployment template.

Additional detail on each of these steps is provided in later sections.

1. Ensure that the application name and pipeline configuration prefix match the data prefix configured
in the deployment template.

2. Place pipeline configuration files in the [appdir]/config/pipeline/ directory of the primary
server.

3. In order to enable partial updates, ensure that the project is configured with a record spec (i.e., a
unigue record identifier property).

4. Ensure that any input Record Adapters requiring filenames specify the file location relative to the
[appdir]/data/processing/ (or [appdir]/data/partials/processing) directory.

Specifying a pipeline

By default, the Deployment Template checks the [appdir]/config/pipeline for the pipeline to
run. This includes baseline updates and partial updates. It is simplest to put your pipeline files in this

44

Replacing the Default Forge Pipeline | Creating a new project

directory. Alternatively, the devStudioConfigDir attribute in the ConfigManager custom component
specifies the pipeline to run.

To specify a pipeline to run in AppConfig.xml:

1. Ensure that your pipeline files are located in [appdir]/config/pipeline.
2. Alternatively, modify the devStudioConfigDir property in the ConfigManager custom

component to reference the pipeline directory.
In this example, the pipeline is stored in the pipel ine directory:

<custom-component id="ConfigManager"™ host-id="I1TLHost"
class=""com.Endeca.soleng.eac.toolkit.component.ConfigManagerComponent' >

<properties>
</properties>
<directories>
<directory
name=""devStudioConfigDir'>_/config/pipeline
</directory>

</directories>

. If you modified the value in step 2, also modify the value of the configDir attribute in the Partial

update Forge section to reference the config/pipeline directory.
For example:

<I-
HHHHHEHH I
Partial update Forge
-——>
<forge id="PartialForge" host-id="ITLHost">

<properties>

;}ﬁroperties>

<directories>

;85rectory name="configDir">_/config/pipeline</directory>

</directories>

Creating a new project

Once the reference configuration files have been deleted, a new pipeline configuration project can be
created.

When creating a new project using the Oracle Endeca Developer Studio, you are prompted with the
following dialog box:

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Replacing the Default Forge Pipeline | Creating a new project 45

New Project

Select a project Description

& pipeline that loads records
from a single pipe delimited
data file, maps properties into
dimensions, and outputs the
data for indexing.

Froject name:

Save project as.

‘ & Select..
% Help Ok | Cancel |

To create a new project:

1. In order for a new pipeline to be run properly within the deployment template, the following must
be properly specified:

a) The Project Name field must be the same as the data prefix specified for the "app" element in
[appdir]/config/script/AppConfig.xml. By default, this data prefix will have been set
to the name of the application that was specified when running deploy .bat or deploy.sh.

b) Recall that the [appname] specified was also used to create the base [appdir] directory.
For example, if "myapp" was supplied as the [appname], and "c : \Endeca\apps" was supplied
as the Deployment Directory, then [appdir] would be c:\Endeca\apps\myapp. In this
example, the Project Name should also be specified as "myapp".

2. The Save Project As field should be [appdir]\config\pipeline\[appname].esp

In the example above, the Save Project As field would be
c:\Endeca\apps\myapp\config\pipeline\myapp.esp.

Endeca Confidential Oracle Endeca Commerce Tools and Frameworks Deployment Template

46 Replacing the Default Forge Pipeline | Modifying an existing project

New Project

Select a project

Froject name:

Description

& pipeline that loads records
from a single pipe delimited
data file, maps properties into
dimensions, and outputs the

data for indexing.

| rvapp

Save project as.

® Help

‘ C:\Endecatappsymyappiconfigipipelinelymyapp.esp

o]

& Select..

Cancel |

After clicking the "OK" button, a number of files are created in the [appdir]/config/pipeline/
directory. The primary files to be concerned with are listed below:

File name

pipeline.epx

[appname] -esp

[appname] - *.xml

dimensions.xml

Modifying an existing project

Description

This is the main pipeline file that the deployment
template will reference when running forge.

This is the Developer Studio project file that will
be used whenever reopening the project. Although
this file does not actually require the [appname]
prefix, it is good practice to keep it consistent with
other project files.

These are the various configuration files that will
be used later by the indexer and MDEX Engine
processes. It is important that they have the same
prefix as the deployment template Application
Name.

This is the dimension file referenced by the default
Dimension Adapter.

Modifying an existing Developer Studio project to match a new deployment template application is a
somewhat tedious task. In fact, it is often easier to simply create a new deployment template application

instead.

The important key is that the [appname] - * . xml files share the same [appname] as the deployment
template project. Since there are 30+ XML files, you can either:

Oracle Endeca Commerce Tools and Frameworks Deployment Template

Endeca Confidential

Replacing the Default Forge Pipeline | Configuring a record specifier a7

« Rename each of the XML files with a new prefix, and update the [appname].esp file to reference
each new file.

» Update the deployed application's AppConfig.xml file to specify the [appname] of your
configuration files. For example, if your configuration files are named myapp.*.xml, update the
configuration as follows:

<app appName="myapp' eacHost="hostl.company.com'” eacPort="8888"
dataPrefix="myapp" sslEnabled="false"
lockManager=""LockManager* >
<working-dir>C:\Endeca\apps\myapp</working-dir>
<log-dir>_/logs/baseline</log-dir>
</app>

In most cases, the appName attribute and the dataPrefix attribute will be identical. However, this
is not required and an application can be configured to support files with a data prefix other than the
application name. If the data prefix is not specified, the application defaults to using the application
name.

Note that opening an existing project in the Oracle Endeca Developer Studio and using the Save As
feature will not rename the corresponding *.xml files. It will only rename the [appname] - esp file.
The prefix for the XML files can only be specified when a new project is created.

Related Links

Common errors on page 51
This section provides troubleshooting information for commonly received errors.

Configuring a record specifier

The deployment includes support for both baseline and partial index updates. In order to support partial
updates, an application must include a record specifier, which is a property marked as the unique
identifier of records in the index.

For details about the record specifier property, refer to the Platform Services Forge Guide.

When configuring your application, identify a property for which each record will have a unique assigned
value.

To enable the use of that property as a record spec:

1. Open the Property dialog box in Developer Studio.
2. Check the box labeled "Use for record spec.”

Endeca Confidential Oracle Endeca Commerce Tools and Frameworks Deployment Template

48 Replacing the Default Forge Pipeline | Forge flags
Property: P_WinelD
MName: Type:
[P_winelD | Alpha ~|
General | Search
[¥ Prepare sort offline [Use for record spec
[~ Rollup [Show with record list
[Enable for record filters [Show with record
Language:
| <Default= ﬂ
% Help Ok | Cancel ‘
Forge flags

Oracle Endeca Commerce

In order to reduce the amount of configuration required to integrate a pipeline into a deployment
template, a standard deployment template application runs the primary and partial update Forge
processes with an abbreviated set of flags.

Since the deployment template already specifies directory structures and file prefixes, the following
flags are used to override a pipeline's input and output components, specifying the appropriate
directories and prefixes for either reading or writing data.

Primary Forge flags

Flag
—-—inputDir
--stateDir
—-—tmpDir
--logDir
—--outputDir
—--outputPrefix

Partial update Forge flags

Flag
—-—inputDir
--stateDir
—-—tmpDir
--logDir
—--outputDir

Tools and Frameworks Deployment Template

Description
[appdir]/data/processing
[appdir]/data/state
[appdir]/data/forge_temp
[appdir]/logs/baseline
[appdir]/data/forge_output
[dataPrefix]

Description
[appdir]/data/partials/processing
[appdir]/data/state
[appdir]/data/forge_temp
[appdir]/logs/partial
[appdir]/data/partials/forge_output

Endeca Confidential

Replacing the Default Forge Pipeline | Input record adapters 49

Flag Description

--outputPrefix [dataPrefix]

Input record adapters

The record adapters load the source data.

To start, here is a quick review of how sample data included with the deployment template is processed.
The sample application includes a sample dataset in [appdir]/test_data/basel ine directory.

When processing the sample data, the load_baseline_test_data script copies the contents of

this directory into the [appdir]/data/Zincoming/ directory and sets a flag in the EAC.

This flag, named basel ine_data_ready, indicates to the deployment template scripts that the data
extraction process is complete and data is ready for processing. Once that has occurred, the baseline
update process copies these files into the [appdir]/data/processing directory before running
the Forge process.

When using a default deployment template application, it is therefore necessary for all input record
adapters to look in the [appdir]/data/processing directory for incoming data extracts. The
deployment template handles this automatically by specifying the --inputDir flag when running the
primary forge process. This flag overrides any absolute path specified for specific input adapters with
the proper deployment template path: [appdir]/data/processing. However, the -—inputDir
flag respects relative paths, resolving them relative to the path specified as the input directory.

The URL property of any record adapter component therefore only needs to specify the relative path
to a specific file or subdirectory within the [appdir]/data/incoming directory. (Remember that
files and subdirectories in the incoming directory are copied to the processing directory by the
deployment template before Forge is run.)

For example, if a single extract file called data. txt is copied into the [appdir]/data/incoming
directory before running a baseline, the URL property of that data's input record adapter should specify
a URL of data. txt.

For a more complex deployment where, for instance, multiple text extract files are copied into the
[appdir]/data/incoming/extracted_data directory before running a baseline update, the
URL property of a single input record adapter configured to read these files should be set to
extracted data/*.txt.

Related Links

Output record adapters on page 50
Output record adapters are often used to generate debug or state information. By default,
the location to which this data is written will be overridden by the --outputDir flag.

Dimension adapters

The ——inputDir flag specified to forge overrides the input URL for dimension adapters.

Since the dimensions for a project are usually stored in the [appdir]/config/pipeline directory
along with other configuration files, the deployment template copies these files into the

[appdir]/data/processing/ directory before running the Forge process. The URLs specified in
dimension adapters should follow the same rules as those described for input record adapters, specifying

Endeca Confidential Oracle Endeca Commerce Tools and Frameworks Deployment Template

50

Replacing the Default Forge Pipeline | Indexer adapters

dimension XML file URLSs relative to the ——inputDir directory. In most cases, this is as simple as
specifying the URL for the main dimension adapter as Dimensions.xml, which is the value used by
the default "Dimensions" adapter created by Developer Studio's project template.

More complex deployments that include multiple dimension adapters or external delivery of dimension
files should ensure that the dimension XML files are copied into the [appdir]/data/incoming/
directory before the forge process runs.

Indexer adapters

Because the --outputPrefix and —--outputDir flags are both included, the deployment template
will override any values specified for the Indexer Adapter "URL" and "Output prefix" properties.

Therefore, it is unnecessary to modify these properties in most cases.

Output record adapters

Output record adapters are often used to generate debug or state information. By default, the location
to which this data is written will be overridden by the --outputDir flag.

In most cases, however, it is undesirable for these files to be written to the same location as the Forge
output files.

In these cases, an output record adapter can be configured to instead respect the --stateDir flag
by selecting the "Maintain State" checkbox.

Ecodng: [~ Fsgie daka | muifle
I [Filter empty W Maintain
properties skake
[Custom compression level
L‘. 1 1 1 1 1 1 1 1 |
J5 |
% Help | O, I Cancel

Now any files generated by this output record adapter will be written to the [appdir]/data/state/
directory.

Note that the output file name must still be specified in the "URL" property of the record adapter. The
--outputPrefixflag only overrides the indexer adapter output file names, not output record adapter
file names.

Related Links

Input record adapters on page 49
The record adapters load the source data.

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Replacing the Default Forge Pipeline | Dimension servers 51

Dimension servers

The --stateDir flag will override the URL value for all Dimension Server components, and place
any autogen state files in the [appdir]/data/state/ directory.

Common errors

This section provides troubleshooting information for commonly received errors.

Unable to Find Pipeline.epx

If Forge fails, check the logs ([appdir]/logs/baseline/err.forge) to make sure that Forge
was able to find the pipeline.epx file in its proper location. Remember that a basic deployment
template application assumes that it will find the project's pipeline.epx file in
[appdir]\config\pipeline\.

On UNIX platforms, file names are case sensitive. The deployment template expects the primary
pipeline file to be named pipeline.epx and the partial update pipeline (if one is required for the
deployed application) to be named partial_pipeline.epx. Ensure that the files in your deployment
use this capitalization.

Missing Configuration Files

This more common error is also more difficult to detect. Since all pipelines created by the Oracle
Endeca Developer Studio typically contain a Pipel ine.epx file, it is unlikely that the Forge process
will be unable to find the file, unless it was placed in the wrong directory. If the XML configuration files,
however, have a different prefix from the deployment template [appname], these files will not be
copied into the [appdir]/data/forge_output/, [appdir]/data/dgidx_output/, and
[appdir]/data/dgraphs/*/dgraph_input/ directories. All processes will likely complete
successfully, but any configuration information specified by these XML files, such as search interfaces,
business rules, sort keys, etc. will be missing from the resulting MDEX Engine. To correct this problem,
check the XML files located in [appdir]/config/pipeline/ and make sure they have the correct
prefix. Also check the directories mentioned above to make sure that these XML files are being properly
copied.

MDEX Engine Fails to Start

If an MDEX Engine fails to start, check the log for the appropriate Dgraph in
[appdir]/logs/dgraphs/[dgraph]/[dgraph]. log. If the log indicates that the Dgraph failed
to start because no record specifier was found, follow the steps in this document to create a unique
record specifier property for you project.

Record Adapter Unable to Open File

Another common error may occur if a record adapter is unable to find or open a specified file for either
input or output. In this case, the Forge error log ([appdir]/logs/baseline/err.forge) should
specify which file or directory could not be found. To correct this problem, make sure the files or
directories specified by the record adapters correspond to the directory structure established by the
deployment template application. Note that this error may be masked if the "Require Data" property
is not checked for a given input adapter, since Forge will only log a warning instead of a fatal error.

Related Links

Endeca Confidential Oracle Endeca Commerce Tools and Frameworks Deployment Template

52 Replacing the Default Forge Pipeline | Common errors

Input record adapters on page 49
The record adapters load the source data.

Output record adapters on page 50
Output record adapters are often used to generate debug or state information. By default,
the location to which this data is written will be overridden by the —-outputDir flag.

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Chapter 4
Managing Data Operations

This section describes how to incorporate test data and production data into an application.

Running a baseline update with test data

A deployed application includes test data that you can process with baseline update scripts, baseline
test data, and a baseline Forge pipeline. Because this task describes test data, not production data,
you use the load_baseline_test_ data script to simulate the data extraction process (or to set
the data readiness signal, in the case of an application that uses a non-extract data source).

The load_baseline_test_data script loads the test data stored in
[appdir]/test_datasbaseline andrunsthe set_baseline_data ready_ flag script which
sets a flag in the EAC indicating that data has been extracted and is ready for baseline update
processing.

When you are done familiarizing yourself with the data processing steps and the test data, see Running
a baseline update with production data on page 54. Processing production data requires the following
changes to an application' s configuration:

* Replacethe steptorun load_baseline_test data with a data extraction process that delivers
production data into the [appdir]/test_data/basel ine directory. Delete the data. txt file
from [appdir]/test_data/baseline. This step is not necessary if your application does not
use data extracts: for example, if your application retrieves data directly from a database via ODBC
or JDBC or from a CAS crawl.

« Set the baseline_data_ready flag in the EAC. You set the baseline_data_ready flag by
making a Web service call to the EAC or by running the set_baseline_data ready_ flag
script.

To run a baseline update with test data:

1. Ensure that the Endeca HTTP Service is running on each server in the deployment environment
and that you have already deployed and initialized an application.

. Start a command prompt (on Windows) or a shell (on UNIX).
Navigate to the control directory of deployed application.

w N

This is located under your application directory. For example: C:\Endeca\apps\<app
name>\control.

4. Runthe load_baseline_test data script.

54 Managing Data Operations | Running a baseline update with production data

5.

6.

e On Windows:
[appdir]\control\load baseline_test data.bat

+ On UNIX:
[appdir]/control/load_baseline_test data.sh

Run the basel ine_update script.

* On Windows:
[appdir]\control\baseline_update.bat

¢ On UNIX:
[appdir]/control/baseline_update.sh

Examine the indexed data in an Endeca front-end application.

For example, start a Web browser and open the JSP reference application at
http://1ocalhost:8006/endeca_jspref.

You should see 10 records.

Running a baseline update with production data

You run the basel ine_update script to process production data and distribute the resulting index
files to one or more Dgraphs. Production data may come from any number of sources including data
extracts, CAS crawls, or direct calls to a database via ODBC or JDBC.

To run a baseline update with production data:

1.

Ensure that the Endeca HTTP Service is running on each server in the deployment environment
and that you have already deployed and initialized an application.

Replace the default Forge pipeline (Developer Studio configuration files) in
[appdir]/config/pipeline with the Developer Studio configuration files for your application.
For details, see Replacing the Default Forge Pipeline on page 43.

Replace the baseline test data stored in [appdir]/test_data/baseline with production data
for the application. This step varies depending on your application requirements. It can include any
of the following approaches:

» Add a data extract file to the [appdir]/test_data/baseline and delete the test data
extract.

» Setup a CAS crawl to run as part of the basel ine_update script.
* Make a direct call to a database via ODBC or JDBC.

Start a command prompt (on Windows) or a shell (on UNIX).
Navigate to the control directory of deployed application.

This is located under your application directory. For example: C:\Endeca\apps\<app
name>\control.

Set the baseline_data_ready flag in the EAC by running the
set_baseline_data_ready_ flag script.

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Managing Data Operations | Running a partial update with production data 55

e On Windows:
[appdir]\control\set baseline_data ready flag.bat

+ On UNIX:
[appdir]/control/set_baseline_data ready flag.sh

Run the basel ine_update script.
* On Windows:

[appdir]\control\baseline_update.bat

¢ On UNIX:
[appdir]/control/baseline_update.sh

Examine the indexed data in an Endeca front-end application.
For example, start a Web browser and open the JSP reference application at
http://1ocalhost:8006/endeca_jspref.

Running a partial update with production data

You run the partial_update script to process incremental changes in production data and distribute
the resulting index files to one or more Dgraphs. Production data may come from any number of
sources including data extracts, CAS crawls, or direct calls to a database via ODBC or JDBC.

For more information on partial updates, see the MDEX Engine Partial Updates Guide.

To run a partial update with production data:

1.

Ensure that the Endeca HTTP Service is running on each server in the deployment environment
and that you have already deployed and initialized an application.

Replace the default Forge pipeline (Developer Studio configuration files) in
[appdir]/config/pipeline with the Developer Studio configuration files for your application.
For details, see Replacing the Default Forge Pipeline on page 43.

Provide the partial data (incremental data changes since the last baseline update). This step varies
depending on the application requirements. It can include any of the following approaches:

» Add a data extract file to the [appdir]/test _data/partial.
e Set up a CAS crawl to run as part of the baseline_update script.
» Make a direct call to a database via ODBC or JDBC.

Start a command prompt (on Windows) or a shell (on UNIX).
Navigate to the control directory of deployed application.

This is located under your application directory. For example: C:\Endeca\apps\<app
name>\control.

. Setthe partial_data_ready flag in the EAC by running the set_partial_data ready_ flag

script.

* On Windows:
[appdir]\control\set partial _data ready flag.bat

Endeca Confidential Oracle Endeca Commerce Tools and Frameworks Deployment Template

56 Managing Data Operations | Running CAS crawls

e On UNIX:
[appdir]/control/set partial_data ready flag.sh

7. Run the partial_update script.
* On Windows:

[appdir]\control\partial update.bat

* On UNIX:
[appdir]/control/partial_update.sh

8. Examine the indexed data in an Endeca front-end application.
For example, start a Web browser and open the JSP reference application at
http://localhost:8006/endeca_jspref.

Running CAS crawils

In your Datalngest.xml code, you can run baseline or partial updates that include CAS crawls using
the methods available in ContentAcquisitionServerComponent.

For details about ContentAcquisitionServerComponent, see the EAC Component AP Reference
for CAS Server (Javadoc) installed in CAS\<ver si on>\doc\cas-dt-javadoc and see the CAS
examples in Script Reference on page 57.

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Chapter 5

Script Reference

This section describes scripts that are included with the Deployment Template, provides additional
sample scripts, and provides information about running and configuring them.

Deployment Template script reference

The Deployment Template includes a set of utility scripts with deployed applications.

The following scripts are available in the control directory of a deployed application:

Script

baseline_update

export_site

get_editors_config

get _media

get_templates

import_site

Purpose

Runs a baseline update.

Takes a path to an XML file as an argument and exports the
content in the Endeca Configuration Repository to the specified
XML file.

If no file is specified, site data is exported to
<App_Name>-<timestamp>.xml, where the timestamp format
is YYYY-MM-DD_HH-MM-SS.

Exports editor configuration to the
<App_Dir>\config\editors\config directory.

Exports media configuration to the <App_Dir>\config\media
directory.

Exports template configuration to the
<App_Dir>\config\cartridge_ templates directory.

Takes a path to an XML file and imports the content to the
Endeca Configuration Repository. Optionally, you can use the
--TForce flag to override the confirmation prompt for overwriting
site content that already exists.

58 Script Reference | Deployment Template script reference

Script Purpose
load_baseline_test_data Copies data from the <App_Dir>\test_data\baseline\
directory to <App_Dir>\data\incoming for a baseline update
and calls the set_baseline_data_ready_flag script.

load_partial_test_data Copies data from the <App_Dir>\test_data\partial\

directory to <App_Dir>\data\partials\incoming for a
partial update and calls the set_partial_data ready flag
script.

partial_update Runs a partial update.

romote_content , o : .
P - Promotes content and configuration in the authoring environment

to the live environment.

runcommand Provides a means of invoking methods in AppConfig.xml

against specified instances of objects.

You can run runcommand with the --help flag for a list of
command line arguments and flags.

set_baseline_data_ready_flag Sets the baseline_data_ready flag in the EAC.

set_editors_config Imports editor configuration from

<App_Dir>\config\editors\config to the Endeca
Configuration Repository.

set_media Imports media from <App_Dir>\config\media to the Endeca

Configuration Repository.

set_partial_data_ready_flag Sets the partial_extract flag in the EAC.

set_templates Imports templates from

<App_Dir>\config\cartridge_templatestothe Endeca
Configuration Repository.

initialize_services This script should be run once after deploying an application. It

does the following:
* Removes existing application provisioning
« Sets new EAC provisioning and performs initial setup
Calls set_editors_config
Calls set_media
» Calls set_templates

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Script Reference | Provisioning scripts 59

Provisioning scripts

The EAC allows scripts to be provisioned and invoked via Web service calls. A script is provisioned

by specifying a working directory, a log directory into which output from the script is recorded, and a
command to execute the script.

The AppConfig.xml document allows defined scripts to be provisioned by specifying the command
used to invoke the script from the command line. When the provisioning configuration information is
included, the script is provisioned and becomes available for invocation via Web service calls or from
the EAC Admin console in Oracle Endeca Workbench. When excluded, the script is not provisioned.
<script id="BaselineUpdate'>
<log-dir>./logs/provisioned_scripts</log-dir>
<provisioned-script-command>
-/control/baseline_update.bat
</provisioned-script-command>
<bean-shell-script>
<I[CDATAL

11>)
</bean-shell-script>
</script>

The command line used to invoke scripts can always be specified in this form, relative to the default
Deployment Template working directory:

-/control/runcommand. [sh]bat] [script id]

Forge-based data processing

The Deployment Template supports running baseline and partial updates using Forge. In this processing
model, an update essentially runs a CAS crawl (if applicable), Forge, Dgidx, and then updates the
Dgraphs in an application.

Dgraph baseline update script using Forge

The baseline update script defined in the Datalngest.xml document for a Dgraph deployment is
included in this section, with numbered steps indicating the actions performed at each point in the
script.

<script id="BaselineUpdate'>
<I[CDATA[
log.info(*'Starting baseline update script.');

1. Obtain lock. The baseline update attempts to set an ""'update_lock" flag in the EAC to serve as
a lock or mutex. If the flag is already set, this step fails, ensuring that the update cannot be started
more than once simultaneously, as this would interfere with data processing. The flag is removed
in the case of an error or when the script completes successfully.

// obtain lock
it (LockManager.acquireLock(*'update lock™)) {

2. Validate data readiness. Check that a flag called "baseline_data_ready" has been set in the
EAC. This flag is set as part of the data extraction process to indicate that files are ready to be
processed (or, in the case of an application that uses direct database access, the flag indicates
that a database staging table has been loaded and is ready for processing). This flag is removed

Endeca Confidential Oracle Endeca Commerce Tools and Frameworks Deployment Template

60 Script Reference | Forge-based data processing

as soon as the script copies the data out of the data/incoming directory, indicating that new
data may be extracted.

// test if data is ready for processing
if (Forge.isDataReady()) {

3. If Workbench integration is enabled, download and merge Workbench configuration. The Config-
Manager copies all Developer Studio config files to the complete_index_config directory.
Then, all Workbench-maintained configuration files are downloaded. Any files that are configured
in the ConfigManager component to be maintained by the Oracle Endeca Workbench are copied
to the complete_index_config directory, overwriting the Developer Studio copy of the same
file, if one exists. The final result is a complete set of configuration files for Forge to use. If Workbench
integration is not enabled, the ConfigManager copies all Developer Studio config files to the
complete_index_config directory.

it (ConfigManager.isWebStudioEnabled()) {
// get Workbench config, merge with Dev Studio config

ConfigManager.downloadWsConfig();
ConfigManager . fetchMergedConfig();

} else {
ConfigManager . fetchDsConfig();
}

4. Clean processing directories. Files from the previous update are removed from the
data/processing, data/forge_output, data/temp, data/dgidx_output and
data/partials/cumulative_partials directories.

// clean directories

Forge.cleanDirs();
PartialForge.cleanCumulativePartials();
Dgidx.cleanDirs();

5. Copy data to processing directory. Extracted data in data/incoming is copied to
data/processing.
// Tetch extracted data files to forge input
Forge.getlncomingData();

6. Release Lock. The "baseline_data_ready" flag is removed from the EAC, indicating that the
incoming data has been retrieved for baseline processing.

LockManager .releaselLock(*'baseline_data ready™);

7. Copy config to processing directory. Configuration files are copied from
data/complete_index_config to data/processing.
// fetch config files to forge input
Forge.getConfig();

8. Archive Forge logs. The logs/forges/Forge directory is archived, to create a fresh logging
directory for the Forge process and to save the previous Forge run's logs.

// archive logs

Forge.archivelLogDir();
9. Forge. The Forge process executes.

Forge.run(Q);

10. Archive Dgidx logs. The logs/dgidxs/Dgidx directory is archived, to create a fresh logging
directory for the Dgidx process and to save the previous Dgidx run's logs.

// archive logs
Dgidx.archiveLogDir(Q);

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Script Reference | Forge-based data processing 61

11. Dgidx. The Dgidx process executes.
Dgidx.runQ;

12 Distribute index to each server. A single copy of the new index is distributed to each server that
hosts a Dgraph. If multiple Dgraphs are located on the same server but specify different srcln-
dexDir attributes, multiple copies of the index are delivered to that server.

13 Update MDEX Engines. The Dgraphs are updated. Engines are updated according to the
restartGroup property specified for each Dgraph. The update process for each Dgraph is as
follows:

Create dgraph_input_new directory.

Create a local copy of the new index in dgraph_input_new.
Stop the Dgraph.

Archive Dgraph logs (e.g. logs/dgraphs/Dgraphl) directory.
Rename dgraph_inputto dgraph_input_old

Rename dgraph_input_new to dgraph_input
Start the Dgraph.

Remove dgraph_input_old

S@ "0 o0 o

This somewhat complex update functionality is implemented to minimize the amount of time that
a Dgraph is stopped. This restart approach ensures that the Dgraph is stopped just long enough
to rename two directories.

// distributed index, update Dgraphs
DistributelndexAndApply.run();

<script id="DistributelndexAndApply"'>
<bean-shell-script>
<I[CDATAL
DgraphCluster.cleanDirs();
DgraphCluster.copylndexToDgraphServers();
DgraphCluster.applylndex();
>

</bean-shell-script>
</script>

14. If Workbench integration is enabled, upload post-Forge dimensions to Oracle Endeca Workbench.
The latest dimension values generated by the Forge process are uploaded to Oracle Endeca
Workbench, to ensure that any new dimension values (including values for autogen dimensions
and external dimensions) are available to Oracle Endeca Workbench for use in, for example,
dynamic business rule triggers.

%
Note: This action does not add new dimensions or remove existing dimensions. These
changes can be made by invoking the update_web_studio_config. [bat]sh] script.

// if Workbench is integrated, update Workbench with latest

// dimension values

it (ConfigManager.isWebStudioEnabled()) {
ConfigManager.cleanDirs();
Forge.getPostForgeDimensions();
ConfigManager .updateWsDimensions();

Endeca Confidential Oracle Endeca Commerce Tools and Frameworks Deployment Template

62 Script Reference | Forge-based data processing

15. Archive index and Forge state. The newly created index and the state files in Forge's state directory
are archived on the indexing server.
// archive state files, index

Forge.archiveState();
Dgidx.archivelndex();

16. Cycle LogServer. The LogServer is stopped and restarted. During the downtime, the LogServer's
error and output logs are archived.

// cycle LogServer
LogServer.cycle();

17. Release Lock. The "update_lock" flag is removed from the EAC, indicating that another update
may be started.

// release lock
LockManager .releaselLock(*'update_lock™);

log.info(''Baseline update script finished.");

} else {

log.warning(""Failed to obtain lock."™);

11>]
</bean-shell-script>
</script>

Related Links
Dgraph partial update script using Forge on page 62
The partial update script defined in the Datalngest.xml document for a Dgraph deployment
is included in this section, with numbered steps indicating the actions performed at each point
in the script.

Dgraph partial update script using Forge

The partial update script defined in the Datalngest.xml document for a Dgraph deployment is
included in this section, with numbered steps indicating the actions performed at each point in the
script.

<script id="PartialUpdate'>
<bean-shell-script>
<I[CDATAL

1. Obtain lock. The partial update attempts to set an "update_lock" flag in the EAC to serve as a
lock or mutex. If the flag is already set, this step fails, ensuring that the update cannot be started
more than once simultaneously, as this would interfere with data processing. The flag is removed
in the case of an error or when the script completes successfully.

log.info("'Starting partial update script.™);

// obtain lock
if (LockManager.acquireLock("'update lock™)) {

2. Validate data readiness. Test that the EAC contains at least one flag with the prefix "partial_ex-
tract: :". One of these flags should be created for each successfully and completely extracted
file, with the prefix "partial_extract: :" prepended to the extracted file name (e.g. "partial_ex-

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Script Reference | Forge-based data processing 63

tract: :adds.txt.gz"). These flags are deleted during data processing and must be created
as new files are extracted.

// test if data is ready for processing
if (PartialForge.isPartialDataReady()) {

3. Archive partial logs. The logs/partial directory is archived, to create a fresh logging directory
for the partial update process and to save the previous run's logs.

// archive logs
PartialForge.archivelLogDir();

4. Clean processing directories. Files from the previous update are removed from the
data/partials/processing, data/partials/forge_output, and data/temp directories.

// clean directories
PartialForge.cleanDirs();

5. Move data and config to processing directory. Extracted files in data/partials/incoming with
matching "partials_extract: :"flags in the EAC are moved to data/partials/processing
Configuration files are copied from config/pipeline to data/processing

// fetch extracted data files to forge input
PartialForge.getPartial IncomingData();

// fetch config files to forge input
PartialForge.getConfig();

6. Forge. The partial update Forge process executes.

// run ITL
PartialForge.run();

7. Apply timestamp to updates. The output XML file generated by the partial update pipeline is renamed
to include a timestamp, to ensure it is processed in the correct order relative to files generated by
previous or following partial update processes.

// timestamp partial, save to cumulative partials dir
PartialForge.timestampPartials();

8. Copy updates to cumulative updates. The timestamped XML file is copied into the cumulative
updates directory.

PartialForge.fetchPartialsToCumulativeDir();

9. Distribute update to each server. A single copy of the partial update file is distributed to each server
specified in the configuration.

// distribute partial update, update Dgraphs
DgraphCluster.copyPartialUpdateToDgraphServers();

10. Update MDEX Engines. The Dgraph processes are updated. Engines are updated according to
the updateGroup property specified for each Dgraph. The update process for each Dgraph is as
follows:

a. Copy update files into the dgraph_input/updates directory.
b. Trigger a configuration update in the Dgraph by calling the URL admin?op=update.

DgraphCluster.applyPartialUpdates();

Endeca Confidential Oracle Endeca Commerce Tools and Frameworks Deployment Template

64 Script Reference | Forge-based data processing

11. Archive cumulative updates. The newly generated update file (and files generated by all partial
updates processed since the last baseline) are archived on the indexing server.

// archive partials
PartialForge.archiveCumulativePartials();

12 Release Lock. The "update_lock" flag is removed from the EAC, indicating that another update
may be started.

// release lock
LockManager .releaselLock('update_lock™);
log.info("Partial update script finished.");

else {
log.-warning(*"Failed to obtain lock.™);

}

11> .
</bean-shell-script>
</script>

Preventing non-nillable element exceptions

When running the partial updates script, you may see a Java exception similar to this example:

INFO: Starting copy utility “copy partial _update_to host MDEXHostl".

Oct 20, 2008 11:46:37 AM org.apache.axis.encoding.ser._BeanSerializer seri-
alize

SEVERE: Exception:

Java.i1o0.10Exception: Non nillable element “fromHostID" is null.

If this occurs, make sure that the following properties are defined in the AppConfig.xml configuration
file:
<dgraph-defaul ts>

<properties>

<property name="'srcPartialsDir" value="./data/partials/forge output"
/>

<property name="'srcPartialsHostld"” value="ITLHost" />

<property name="'srcCumulativePartialsDir" value="_/data/partials/cu-

mulative_partials" />
<property name="'srcCumulativePartialsHostld" value="I1TLHost" />
</properties>

</dgraph-defaults>

The reason is that the script is obtaining the fromHostID value from this section.

Related Links
Dgraph baseline update script using Forge on page 59
The baseline update script defined in the Datalngest.xml document for a Dgraph
deployment is included in this section, with numbered steps indicating the actions performed
at each point in the script.

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Script Reference | Forge-based data processing 65

Dgraph baseline update script using Forge and a CAS full crawl script

After running a full CAS crawl, you can run a baseline update using Forge to incorporate the records
from a Record Store instance.

This example runs a baseline update that includes a full CAS crawl. The crawl writes output to a Record
Store instance and then Forge incorporates the records from the crawl. To create this sequential
workflow of CAS crawl and then baseline update, you can do the following:

« Remove the default Forge . i sDataReady check from the baseline update script. This call handles
concurrency control around Forge input files. The Record Store has built-in logic to handle
concurrency between read and write operations, so no external concurrency control is required.
Removing this call means that the lock manager does not check the flag or wait on the flag to be
cleared before running a CAS crawl.

e Add a call to runBaselineCasCrawl () to run the full CAS crawl.
« Remove the call to Forge .getlncomingData() that fetches extracted data files.

For example, this baseline update script calls CAS . runBasel ineCasCrawl (*"MyCrawl'") which
runs a full CAS crawl that writes output to a Record Store instance. Then the script continues with
baseline update processing.

<I--
B R R

Baseline update script
#
-——>
<script id="BaselineUpdate'>
<log-dir>./logs/provisioned_scripts</log-dir>
<provisioned-script-command>./control/baseline_update.bat</provisioned-
script-command>
<bean-shell-script>
<I[CDATAL
log.info(*'Starting baseline update script.');
// obtain lock
if (LockManager.acquireLock("'update lock'™)) {

// call the baseline crawl script to run a full CAS
// crawl.
CAS.runBaselineCasCrawl ("'"MyCrawl™);

// clean directories

Forge.cleanDirs();
PartialForge.cleanCumulativePartials();
Dgidx.cleanDirs();

// fetch extracted data files to forge input
Forge.getlncomingData();
LockManager .removeFlag(“'baseline_data ready');

// fetch config files to forge input
Forge.getConfig();

// archive logs and run ITL
Forge.archivelLogDir(Q);
Forge.run(Q;
Dgidx.archivelLogDir();
Dgidx.-run(Q);

// distributed index, update Dgraphs

Endeca Confidential Oracle Endeca Commerce Tools and Frameworks Deployment Template

66

Script Reference | Forge-based data processing

DistributelndexAndApply.run();

WorkbenchManager .cleanDirs();
Forge.getPostForgeDimensions();
WorkbenchManager . updateWsDimensions();

// archive state files, index
Forge.archiveState();
Dgidx.archivelndex();

// (start or) cycle the LogServer
LogServer.cycle();

// release lock
LockManager .releaselLock('update_lock™™);
log.info("'Baseline update script finished.");

} else {
log.warning("'Failed to obtain lock."™);
b

11>)
</bean-shell-script>
</script>

You run the baseline update by running basel ine_update in the apps/[appDir]/control
directory.

For example:
C:\Endeca\apps\DocApp\control>basel ine_update.bat

Dgraph partial update script using Forge and a CAS incremental crawl
script

After running an incremental CAS crawl, you can run a partial update that incorporates the records
from a Record Store instance.

To create this sequential workflow of incremental CAS crawl and then partial update, you can do the
following:

* Remove the default PartialForge . isPartialDataReady check from the partial update script.
This call handles concurrency control around Forge input files. The Record Store has built-in logic
to handle concurrency between read and write operations, so no external concurrency control is
required. Removing this call means that the lock manager does not check the flag or wait on the
flag to be cleared before running a CAS crawl.

* Add a call runlncrementalCasCrawl () to run the incremental CAS crawl.

« If the pipeline does not read from sources in the Forge incoming directory, remove the call to
PartialForge.getPartial IncomingData() that fetches extracted data files.

For example, this partial update script calls CAS. runIncrementalCasCrawl (*’"MyCrawl'") which
runs an incremental CAS crawl named MyCrawl. Then the script continues with partial update
processing.

<1-—
W R R R R

Partial update script
#

-—=>

<script id="PartialUpdate">

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Script Reference | Forge-based data processing 67

<log-dir>./logs/provisioned_scripts</log-dir>
<provisioned-script-command>./control/partial_update.bat</provisioned-
script-command>
<bean-shell-script>
<I[CDATAL
log.info("'Starting partial update script.™);

// obtain lock
if (LockManager.acquireLock("'update lock'™)) {

// call the partial crawl script to run an incremental
// CAS crawl.
CAS.runlncrementalCasCrawl ("*MyCrawl™) ;

// archive logs
PartialForge.archivelLogDir();

// clean directories
PartialForge.cleanDirs();

// fetch config Files to forge input
PartialForge.getConfig(Q);

// run ITL
PartialForge.run();

// timestamp partial, save to cumulative partials dir
PartialForge.timestampPartials();
PartialForge.fetchPartialsToCumulativeDir();

// distribute partial update, update Dgraphs
DgraphCluster.cleanLocalPartialsDirs();
DgraphCluster.copyPartialUpdateToDgraphServers();
DgraphCluster.applyPartialUpdates();

// archive partials
PartialForge.archiveCumulativePartials();

// release lock

LockManager .releaselLock("'update_lock™™);

log.info("Partial update script finished.");
} else {

log.warning(*"Failed to obtain lock.™);

11>)
</bean-shell-script>
</script>

You run the partial update by running partial_update in the apps/[appDir]/control directory.
For example:

C:\Endeca\apps\DocApp\control>partial_ update.bat

Multiple CAS crawls and Forge updates

There are more complicated cases where multiple CAS crawls are running on their own schedules,
and Forge updates are running on their own schedules. To coordinate this asynchronous workflow of
CAS crawls and baseline or partial updates, you add code that calls methods in ContentAcquisi-
tionServerComponent.

Endeca Confidential Oracle Endeca Commerce Tools and Frameworks Deployment Template

68 Script Reference | CAS-based data processing

In your Datalngest.xml code, the main coordination task is one of determining how you time running
CAS crawls and how you time running baseline or partial updates that consume records from those
crawls. For example, suppose you have an application that runs three full CAS crawls and those
records are consumed by a single baseline update. In that scenario, each of the three full crawls has
its own full crawl script in Datalngest.xml that runs on a nightly schedule. And the Datalngest.xml
file contains a baseline update that runs nightly to consume the latest generation of records from each
of the three crawls. The Forge . isDataReady check is not required in the baseline update script
because the source data is not locked.

CAS-based data processing

The Deployment Template supports running baseline and partial updates using CAS as a replacement
for Forge. In this processing model, the update runs a CAS crawl to produce MDEX-compatible output.
This is the step that removes the need for Forge. Then the update runs Dgidx and updates the Dgraphs
in an application.

Dgraph baseline update script using CAS

You do not need to run Forge if you run a CAS crawl that is configured to produce MDEX-compatible
output as part of your update process.

This example runs a baseline update that includes afull CAS crawl. The crawl writes MDEX compatible
output and then the update invokes Dgidx to process the records, dimensions, and index configuration
produced by the crawl. To create this sequential workflow of CAS crawl and then baseline update,
you add a call to runBasel ineCasCrawl () to run the CAS crawl.

For example, this baseline update script calls CAS. runBasel ineCasCrawl (""'${lastMileCrawl-
Name}') which runs a CAS crawl that writes MDEX-compatible output to instance. Then the script
continues with baseline update processing.

<1__
HHBHH TR R R R R R R R R R R

Baseline update script
#
-——>
<script id="BaselineUpdate'>
<log-dir>./logs/provisioned_scripts</log-dir>
<provisioned-script-command>./control/basel ine_update.bat</provisioned-
script-command>
<bean-shell-script>
<I[CDATAL
log.info("'Starting baseline update script.');
// obtain lock
iT (LockManager.acquireLock("'update lock™)) {
// clean directories
CAS.cleanCumulativePartials();
Dgidx.cleanDirs();

// archive logs and run the crawl.
CAS.runBaselineCasCrawl (""${lastMileCrawlName}');
Dgidx.archiveLogDir();

Dgidx.run();

// distributed index, update Dgraphs

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Script Reference | CAS-based data processing 69

DistributelndexAndApply.run();

WorkbenchManager .cleanDirs();

CAS.copyOutputDimensionsFile("'${lastMileCrawlName}", WorkbenchManag-
er.getWorkbenchTempDir(Q));

WorkbenchManager .updateWsDimensions();

// archive state files, index
Dgidx.archivelndex();

// (start or) cycle the LogServer
LogServer.cycle();

// release lock

LockManager .releaselLock('update_lock™);
log.info(''Baseline update script finished.');

} else {

log.warning(""Failed to obtain lock."™);

}
11>)
</bean-shell-script>
</script>

You run the baseline update by running basel ine_update in the apps/[appDir]/control
directory.

For example:
C:\Endeca\apps\DocApp\control>basel ine_update.bat

Dgraph partial update script using CAS

You do not need to run Forge if you run a CAS crawl that is configured to produce MDEX-compatible
output as part of your update process.

This example runs an incremental CAS crawl that writes MDEX compatible output and then runs a
partial update that to process data records (not index configuration or dimension value records) and
then distributes the data records to the Dgraph. To create this sequential workflow of CAS crawl and
then partial update, you add a call to runlncrementalCasCrawl () to run the CAS crawl.

For example, this partial update script calls CAS. runlncrementalCasCrawl (""'${lastMileCrawl-
Name}') which runs a CAS crawl that writes MDEX-compatible output to instance. Then the script
continues with update processing.

<I--
HHHHHHHH

Partial update script
#
-——>
<script id="PartialUpdate™>
<log-dir>./logs/provisioned_scripts</log-dir>
<provisioned-script-command>./control/partial_update._bat</provisioned-
script-command>
<bean-shell-script>
<I[CDATAL
log.info(*'Starting partial update script.™);
// obtain lock
if (LockManager.acquireLock("'update lock'™)) {

Endeca Confidential Oracle Endeca Commerce Tools and Frameworks Deployment Template

70 Script Reference | CAS crawl scripts for Record Store output

// run crawl and rename iIn data/cas_output w/timestamp.
CAS.runlncrementalCasCrawl (""${lastMi leCrawIName}');

// Copy the partial to the master cumulative directory
CAS. fetchPartialsToCumulativeDir("${lastMileCrawlName}'™);

// copy from srcPartials to localCumulative for authoring
AuthoringDgraphCluster.copyPartialUpdateToDgraphServers();

// copy from local to mdex"s update-dir and trigger the update for
authoring
AuthoringDgraphCluster.applyPartialUpdates();

// copy from srcPartials to localCumulative for live
LiveDgraphCluster.copyPartialUpdateToDgraphServers();

// copy from localCumulative to mdex"s update-dir and trigger the
update
LiveDgraphCluster.applyPartialUpdates();

// Archive accumulated partials
CAS.archiveCumulativePartials();

// release lock

LockManager .releaselLock('update_lock™);

log.info("Partial update script finished.");
} else {

log.warning("'Failed to obtain lock."™);

}
11>)
</bean-shell-script>
</script>

You run the baseline update by running partial_update in the apps/[appDir]/control directory.

For example:
C:\Endeca\apps\DocApp\control>partial_ update.bat

CAS crawl scripts for Record Store output

This topic provides an example CAS crawl script with a crawl that is configured to write to Record
Store output. To create a similar CAS crawl script in your application, add code to AppConfig.xml
that specifies the CAS crawl to run locks the crawl (to wait for any running crawls to complete), runs
the crawl, and releases the lock. Depending on your environment, you may need a script that runs a
full CAS crawl and a script that runs an incremental CAS crawl.

This example AppConfig.xml code runs a full crawl that writes to a Record Store instance:

<I--
HHH

Ffull crawl script
#
-——>

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Script Reference | CAS crawl scripts for Record Store output 71

<script id="MyCrawl_ fullCrawl">
<log-dir>_/logs/provisioned_scripts</log-dir>
<provisioned-script-command>./control/runcommand.bat MyCrawl_fullCrawl
run</provisioned-script-command>
<bean-shell-script>
<I[CDATAL
crawlName = "MyCrawl";

log.info(*'Starting full CAS crawl "' + crawlName + ""_.");

// obtain lock
iT (LockManager.acquireLock(*'crawl_lock " + crawlName)) {

CAS.runBaselineCasCrawl (crawlName) ;

LockManager .releaselLock(*'crawl _lock " + crawlName);

else {
log.-warning(*"Failed to obtain lock.™);
}

log.info("Finished full CAS crawl """ + crawlName + "".');
11>
</bean-shell-script>
</script>

This example runs an incremental crawl! that writes to a Record Store instance:

<I--
HHHHHHHH

incremental crawl script
#
-——>
<script id="MyCrawl_IncrementalCrawl'>
<log-dir>./logs/provisioned_scripts</log-dir>
<provisioned-script-command>./control/runcommand.bat MyCrawl_Incremen-
talCrawl run</provisioned-script-command>
<bean-shell-script>
<I[CDATAL
crawIName = "MyCrawl™;

log.info("'Starting incremental CAS crawl "' + crawlName + ""_'");

// obtain lock
if (LockManager.acquireLock(*'crawl_lock "™ + crawlName)) {

CAS.runlncrementalCasCrawl (crawlName) ;

LockManager .releaseLock(*'crawl lock "™ + crawlName);

else {
log.warning('Failed to obtain lock.™);

}

log.info("Finished incremental CAS crawl """ + crawlName + ""_.');
11>

Endeca Confidential Oracle Endeca Commerce Tools and Frameworks Deployment Template

72 Script Reference | CAS crawl scripts for record file output

</bean-shell-script>
</script>

CAS crawl scripts for record file output

This topic provides an example CAS crawl script with a crawl that is configured to write to record file
output. To create a similar CAS crawl script in your application, add code to Datalngest.xml that

specifies the CAS crawl to run locks the crawl (to wait for any running crawls to complete), runs the

crawl, and releases the lock. Depending on your environment, you may need a script that runs a full
CAS crawl and a script that runs an incremental CAS crawl.

This example Datalngest.xml code runs a full crawl that writes to record file output:
<I--
B R R R R R R

Ffull crawl script
#

-

<script id="MyCrawl_ fullCrawl">
<log-dir>./logs/provisioned_scripts</log-dir>
<provisioned-script-command>./control/runcommand.bat MyCrawl_fullCrawl
run</provisioned-script-command>
<bean-shell-script>
<I[CDATAL
crawlName = "MyCrawl"";

log.info(*'Starting full CAS crawl "' + crawlName + ""_.");
// obtain lock
iT (LockManager.acquireLock(*'crawl_lock " + crawlName)) {

if (ICAS.isCrawlFileOutput(crawlName)) {
throw new UnsupportedOperationException('The crawl " + crawlName
+

" does not have a File System output type. The only supported
output type for this script is File System.™);

log.info(*'Starting full CAS crawl "' + crawlName + ""_.");
// Remove all files from the crawl"s output directory
CAS.cleanOutputDir(crawlName);

CAS.runBaselineCasCrawl (crawlName) ;

// Rename the output to Files to include the crawl name

// so they do not collide with the output from other crawls
CAS.renameBasel ineCrawlOutput(crawlName) ;

destDir = PathUtils.getAbsolutePath(CAS.getWorkingDir(),
CAS.getCasCrawlFul I0utputDestDir());

// create the target dir, if it doesn"t already exist
mkDirUtil = new CreateDirUtility(CAS.getAppName(),
CAS.getEacHost(), CAS.getEacPort(), CAS.isSslEnabled());
mkDirUtil.init(CAS.getCasCrawlOutputDestHost(), destDir, CAS.get-
WorkingDirQ));
mkDirUtil_.run();

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Script Reference | CAS crawl scripts for record file output 73

// clear the destination dir of full crawl from previous crawls
CAS.clearFulICrawlOutputFromDestinationDir(crawlName) ;

// remove previously collected incremental crawl files,
// which are expected to be incorporated in this full crawl
CAS.clearlIncrementalCrawlOutputFromDestinationDir(crawlName);

// copy the full crawl output to destination directory
CAS.copyBasel ineCrawlOutputToDestinationDir(crawlName);
LockManager .releaselLock(*'crawl _lock "™ + crawlName);

}

else {
log.warning('Failed to obtain lock.™);

log.info("Finished full CAS crawl """ + crawlName + "".');
11>
</bean-shell-script>
</script>

This example Datalngest.xml code runs an incremental crawl that writes to record file output:

<I--
HHHHHHHHH

incremental crawl script
#
—_—>
<script id="MyCrawl_IncrementalCrawl'>
<log-dir>./logs/provisioned_scripts</log-dir>
<provisioned-script-command>./control/runcommand.bat MyCrawl_Incremen-
talCrawl run</provisioned-script-command>
<bean-shell-script>
<I[CDATAL
crawIName = "MyCrawl™;

log.info("'Starting incremental CAS crawl "' + crawlName + ""_'"");

// obtain lock
iT (LockManager.acquireLock(*'crawl_lock "™ + crawlName)) {

if (ICAS.isCrawlFileOutput(crawlName)) {
throw new UnsupportedOperationException(''The crawl

+ crawlName

" does not have a File System output type. The only supported
output type for this script is File System.™);

log.info("'Starting incremental CAS crawl "' + crawlName + ""_'"");
// Remove all files from the crawl®s output directory
CAS.cleanOutputDir(crawlName) ;

CAS.runlncrementalCasCrawl (crawlName) ;

// Timestamp and rename the output to files to include the

// crawl name so they do not collide with the output from

// previous incremental output from this crawl or incremental
// output from other crawls
CAS.renamelncrementalCrawlOutput(crawlName) ;

destDir = PathUtils.getAbsolutePath(CAS.getWorkingDir(),
CAS.getCasCrawl IncrementalOutputDestDir());

Endeca Confidential Oracle Endeca Commerce Tools and Frameworks Deployment Template

74 Script Reference | Configuration update script

// create the target dir, if it doesn"t already exist

mkDirUtil = new CreateDirUtility(CAS.getAppName(),
CAS.getEacHost(), CAS.getEacPort(), CAS.isSslEnabled());

mkDirUtil.init(CAS.getCasCrawlOutputDestHost(), destDir, CAS.getWork-

ingDirQ));
mkDirUtil_.run();

// copy crawl output to destination directory

// Note: We assume a downstream process removes incremental crawl
output

// from this directory that has already been processed.

CAS.copylncrementalCrawlOutputToDestinationDir(crawlName) ;

LockManager .releaselLock(*'crawl _lock "™ + crawlName);

}

else {
log.-warning(*"Failed to obtain lock.™);
}

log.info("'Finished incremental CAS crawl "' + crawlName + ""_'");

11>)
</bean-shell-script>
</script>

Configuration update script

The configuration update script defined in the Datalngest.xml document is included in this section,
with numbered steps indicating the actions performed at each point in the script.

Note that the script starts by checking if Oracle Endeca Workbench integration is enabled, taking no
action (other than logging a message) if disabled.
<script id="ConfigUpdate'>
<bean-shell-script>
<I[CDATAL
log.info("'Starting dgraph config update script.');
if (ConfigManager.isWebStudioEnabled()) {

1. Download the Oracle Endeca Workbench Dgraph config files. Download Workbench-maintained
configuration files that can be applied to a Dgraph. Remove any files from this set that are not
configured to be maintained in Oracle Endeca Workbench in the ConfigManager component.

ConfigManager .downloadWsDgraphConfig();

2. Clean working directories. Clear any files in the local Dgraph configuration directories to which files
are distributed on each Dgraph server.

DgraphCluster.cleanLocalDgraphConfigDirs();

3. Distribute configuration files to each server. A single copy of the Dgraph configuration files is
distributed to each server specified in the configuration.

DgraphCluster.copyDgraphConfigToDgraphServers();

4. Update MDEX Engines. The Dgraph processes are updated. Engines are updated according to
the restartGroup property specified for each Dgraph. The update process for each Dgraph is
as follows:

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Script Reference | Report generation 75

a. Copy configuration files into the dgraph_input directory.
Trigger a configuration update in the Dgraph by calling the URL config?op=update.

c. Flushthe Dgraph's dynamic cache to ensure the new configuration is applied by calling the URL
admin?op=Fflush.

=

This somewhat complex update functionality is implemented to minimize the amount of time that
a graph is stopped. This restart approach ensures that the graphs are stopped just long enough
to rename two directories for each Dgraph.

DgraphCluster.applyConfigUpdate();
} else {

log.-warning(""Workbench integration is disabled. No action will be
taken.");

}
log.info(""Finished updating dgraph config.");
11>

</bean-shell-script>
</script>

Report generation

Four report generation scripts are defined in the Datalngest.xml document.

Two of the scripts are used to generate XML reports for Oracle Endeca Workbench and two generate
HTML reports that can be viewed in a browser. All scripts share similar functionality, so only one is
included below, with numbered steps indicating the actions performed at each point in the script.
<script id="DailyReports'>
<bean-shell-script>
<I[CDATAL
log.info("'Starting daily Workbench report generation script.');

1. Obtain lock. The report generation script attempts to set a "report_generator_lock" flag in
the EAC to serve as a lock or mutex. If the flag is already set, this step fails, ensuring that the report
generator cannot be started more than once simultaneously, as the default report generators share
input directories and working directories. The flag is removed in the case of an error or when the
script completes successfully.

if (LockManager.acquireLock("report_generator_lock™)) {

2. Clean working directories. Clear any files in the report generator's input directory.

// clean report gen input dir
Dai lyReportGenerator.cleanlnputDir();

3. Distribute configuration files to each server. A single copy of the Dgraph configuration files is
distributed to each server specified in the configuration.

DgraphCluster.copyDgraphConfigToDgraphServers();

4. Roll LogServer. If the LogServer is actively writing to a file and the file is required for the specified
time range, the LogServer needs to be rolled in order to free up the log file. This code handles that
test and invokes the roll administrative URL command on the LogServer, if necessary.

// roll the logserver, if the report requires the active log file
ifT (LogServer.isActive() &&
LogServer.yesterdaylncludesLatestLogFile()) {
LogServer.callLogserverRollUrl();

}

Endeca Confidential Oracle Endeca Commerce Tools and Frameworks Deployment Template

76 Script Reference | Report generation

5. Retrieve logs for specified report. The LogServer identifies log files in its output directory that are
required to generate a report for the requested date range. Those files are copied to the target
directory configured for the LogServer. Note that this step could be modified to include retrieving
logs from multiple LogServers, if more than one is deployed.

// retrieve required log files for processing
LogServer.copyYesterdaylLogFilesToTargetDir();

6. Update Report Generator to the appropriate time range and output file name. Oracle Endeca
Workbench requires reports to be named according to a time stamp convention. The Report
Generator component’s provisioning is updated to specify the appropriate time range, time series
and output filename. The output file path in the existing provisioning is updated to use the same
path, but to use the date stamp as the filename. Files default to a “.xm1” extension, though the
component will attempt to retain a “. html” extension, if specified in the AppConfig.xml.

// update report generator to the appropriate dates, time series
// and to output a timestamped file, as required by Workbench
Dai lyReportGenerator .updateProvisioningForYesterdayReport();

7. Archive logs. If one or more files were copied into the report generator's input directory, report
generation will proceed. Start by archiving logs associated with the previous report generator
execution.

it (DailyReportGenerator.reportinputDirContainsFiles()) {
// archive logs
Dai lyReportGenerator .archivelLogDir();

8. Run report generator. Execute the report generation process.

// generate report
Dai lyReportGenerator.run();

9. Copy report to Oracle Endeca Workbench report directory. By default, Oracle Endeca Workbench
reads reports from a directory in its workspace. Typically, the directory is
[ENDECA_TOOLS_CONF]/reports/[appName]/daily or
[Endeca TOOLS CONF]/reports/[appName]/weekly. Starting in Oracle Endeca Workbench
1.0.1, this location can be configured by provisioning a host named "webstudio" with a custom
directory named "webstudio-report-dir." The Deployment Template provisions this directory
and delivers generated reports to that location for Workbench to read. The report file (and associated
charts) will be copied to this directory, as specified in the AppConfig.xml, which defaults to
[appdir]/reports. Note that this step is not necessary for HTML reports, as those reports are
not viewed in Oracle Endeca Workbench.

// copy generated report and charts
// defined in "webstudio™ host and its "webstudio-report-dir"
// directory
reportHost = "webstudio';
absDestDir = PathUtils.getAbsolutePath(webstudio.getWorkingDir(),

webstudio.getDirectory("'webstudio-report-dir'"));
isDaily = true;
Dai lyReportGenerator .copyReportToWebStudio(reportHost,
absDestDir, isDaily);

else {
log.warning("'No log files for report generator to process.");

}

LockManager .releaselLock(*'report_generator_lock'™);
log.info("Finished daily Workbench report generation.');

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Script Reference | Report generation 77

else {
log.warning('Failed to obtain lock.™);

}
11>)
</bean-shell-script>
</script>

Endeca Confidential Oracle Endeca Commerce Tools and Frameworks Deployment Template

Appendix A
EAC Development Toolkit

The EAC Development Toolkit provides a common set of objects, a standard and robust configuration
file format and a lightweight controller implementation that developers can leverage in order to implement
operational controller applications. The toolkit is designed to enable quick deployment, while providing
complete flexibility for developers to extend and override any part of the implementation to create
custom, project-specific functionality.

EAC DevelopmentToolkit distribution and package contents

The EAC Development Toolkit is distributed as a set of JAR files bundled with the Deployment Template.

The toolkit consists of three JAR files and depends on two others that are distributed with this package.
The following sections describe the JAR files. Details about classes and methods can be found in
Javadoc distributed with the EAC Development Toolkit. These JAR files must be on the classpath of
any application built using the EAC Development Toolkit.

eacTool kit.jar

This JAR contains the source and compiled class files for the core EAC Development Toolkit classes.
These classes encompass core EAC functionality, from which all component implementations extend.
Included are low-level classes that access the EAC's central server via SOAP calls to its Web Service
interface as well as higher level objects that wrap logic and data associated with hosts, components,
scripts and utilities. In addition, this JAR includes the controller implementation used to load the Toolkit's
application configuration file, and to invoke actions based on the configuration and the user's command
line input.

eacConponent s. j ar

This JAR contains the source and compiled class files for common implementations of Oracle Endeca
components. These classes extend core functionality in eacToolkit. jJar and implement standard
versions of Forge, Dgidx, Dgraph and other components of an Oracle Endeca deployment.

eacHandl ers. j ar

This JAR contains the source and compiled class files for parsing application configuration documents.
In addition, the EAC Dev Toolkit's application configuration XML document format is defined by an
XSD file packaged with this JAR. Finally, the JAR includes files required to register the schema and
the toolkit's namespace with Spring, the framework used to load the toolkit's configuration.

80 EAC Development Toolkit | EAC Development Toolkit usage

spring.jar

The toolkit uses the Spring framework for configuration management.

bsh-2.0b4.j ar

The toolkit uses BeanShell as the scripting language used by developers to write scripts in their
application configuration documents.

EAC Development Toolkit usage

The EAC Development Toolkit provides a library of classes that developers can use to develop and
configure EAC scripts.

Classes in the library expose low level access to the EAC's web services and implement high level
functionality common to many EAC scripts. Developers may implement applications by simply
configuring functionality built in the toolkit or by extending the toolkit at any point to develop custom
functionality.

This document discusses the toolkit's configuration file format, BeanShell scripting, command invocation
and logging. This document does not provide a reference of the classes in the toolkit, or the functionality
implemented in various objects and methods. Developers should refer to Javadoc or Java source files
distributed with this package for details about the implementation.

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Appendix B
Application Configuration File

The EAC toolkit uses an XML configuration file to define the elements that make up an application. In
most deployments, this document will serve as the primary interface for developers and system
administrators to configure, customize, and maintain a deployed application.

Spring framework

The EAC Development Toolkit uses the Spring Framework's Inversion of Control container to load an
EAC application based on configuration specified in an XML document.

A great deal of functionality and flexibility is provided in Spring's IoC Container and in the default bean
definition XML file handled by Spring's XmIBeanDefinitionReader class. For details about either
of these, refer to Spring Framework documentation and JavaDoc.

The EAC Development Toolkit uses a customized document format and includes a schema and custom
XML handlers to parse the custom document format. It uses Spring to convert this customized
configuration metadata into a system ready for execution. Specifically, the toolkit uses Spring to load
a set of objects that represent an EAC application with the configuration specified for each object in
the configuration document.

XML schema

A customized document format is used to provide an intuitive configuration format for EAC script
developers and system administrators.

However, this customization restricts the flexibility of the configuration document. The following sections
describe elements available in the custom namespace defined by the eacToolkit.xsd XML schema.
Each element name is followed by a brief description and an example configuration excerpt. For details,
refer to the eacToolkit.xsd schema file distributed within the file eacHandlers. jar.

Related Links

Application elements on page 82
This section describes the application elements available in the custom namespace defined
by the eacToolkit.xsd XML schema.

Hosts on page 82
This section describes the host element available in the custom namespace defined by the
eacToolkit.xsd XML schema.

82 Application Configuration File | XML schema

Components on page 83
This section describes the component elements available in the custom namespace defined
by the eacToolkit.xsd XML schema.

Utilities on page 86
This section describes the utility elements available in the custom namespace defined by the
eacToolkit.xsd XML schema.

Customization/extension within the toolkit's schema on page 87
Most configuration tasks are performed by simply altering an element in the configuration
document, by adding elements to the document, or by removing elements from the
configuration.

Customization/extension beyond the toolkit's schema on page 89
Customization approaches within the existing schema will be sufficient for the majority of
applications, but some developers will require even greater flexibility than can be supported
by the XML document exposed by the toolkit.

Application elements

This section describes the application elements available in the custom namespace defined by the
eacToolkit.xsd XML schema.

For more details, refer to the eacToolkit.xsd schema file distributed within the file
eacHandlers._jar.

Element Description
app This element defines the global application settings inherited by all other objects in
the document, including application name, EAC central server host and port, data
file prefix, the lock manager used by the application and whether or not SSL is
enabled. In addition, this object defines global defaults for the working directory and
the logs directory, which can be inherited or overridden by objects in the document.

<app appName="myApp" eacHost="devhost.company.com"™ eac-
Port="8888"
dataPrefix="myApp" sslEnabled="false'" lockManager="Lock-
Manager' >
<working-dir>C:\Endeca\apps\myApp</working-dir>
<log-dir>./logs/baseline</log-dir>
</app>

lock-manag- This element defines a LockManager object used by the application to interact with

er the EAC's synchronization web service. Lock managers can be configured to release
locks when a failure is encountered, ensuring that the system returns to a "neutral”
state if a script or component fails. Multiple lock managers can be defined.
<lock-manager id="LockManager' releaselLocksOnFailure="true"
/>
Hosts

This section describes the host element available in the custom namespace defined by the
eacToolkit.xsd XML schema.

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Application Configuration File | XML schema 83

The host element defines a host associated with the application, including the ID, hostname and
EAC agent port of the host. Multiple host elements can be defined.

<host id="1TLHost" hostName=""itlhost.company.com" port='8888" />

Components

This section describes the component elements available in the custom namespace defined by the
eacToolkit.xsd XML schema.

For more details, refer to the eacToolkit.xsd schema file distributed within the file

eacHandlers. jar.

Element

forge

forge-cluster

Endeca Confidential

Description

This element defines a Forge component, including attributes that define the
functionality of the Forge process as well as custom properties and directories
used to configure the functionality of the Forge object's methods. Multiple forge
elements can be defined.

<forge id="Forge'" host-id="ITLHost">
<properties>
<property name="numStateBackups" value="10" />
<property name="numLogBackups' value="10" />
</properties>
<directories>
<directory name=""incomingDataDir'>_/data/incoming</di-
rectory>
<directory name="configDir''>_/data/complete_config</di-
rectory>
<directory name="wsTempDir'>_/data/web_stu-
dio_temp_dir</directory>
</directories>
<args>
<arg>-vw</arg>
</args>
<input-dir>./data/processing</input-dir>
<output-dir>./data/forge output</output-dir>
<state-dir>./data/state</state-dir>
<temp-dir>./data/temp</temp-dir>
<num-partitions>1</num-partitions>
<pipeline-file>._/data/processing/pipeline.epx</pipeline-
file>
</forge>

This element defines a Forge cluster, including a list of ID references to the
Forge components that belong to this cluster. This object can be configured to
distribute data to Forge servers serially or in parallel.

<forge-cluster id="ForgeCluster" getDatalnParallel="true'">

<forge ref="ForgeServer" />

<forge ref="ForgeClientl" />

<forge ref="ForgeClient2" />
</forge-cluster>

Oracle Endeca Commerce Tools and Frameworks Deployment Template

84 Application Configuration File | XML schema

Element Description
dgidx . ,

This element defines a Dgidx component, including attributes that define the
functionality of the Dgidx process as well as custom properties and directories
used to configure the functionality of the Dgidx object's methods. Multiple dg i dx
elements can be defined.

<dgidx id="Dgidx" host-id="1TLHost">

<args>
<arg>-v</arg>

</args>
<input-dir>./data/forge_output</input-dir>
<output-dir>./data/dgidx_output</output-dir>
<temp-dir>./data/temp</temp-dir>
<run-aspell>true</run-aspell>

</dgidx>

indexing-clus- This element defines an indexing cluster, including a list of ID references to the

ter Dgidx components that belong to this cluster. This object can be configured to
distribute data to indexing servers serially or in parallel.
<indexing-cluster id="IndexingCluster" getDatalnParal-
lel=""true">
<dgidx ref="Dgidx1l" />
<dgidx ref="Dgidx2" />
</indexing-cluster>
dgraph

This element defines a Dgraph component, including attributes that define the
functionality of the Dgraph process as well as custom properties and directories
used to configure the functionality of the Dgraph object's methods. Multiple
dgraph elements can be defined. Each dgraph element inherits, and potentially
overrides, configuration specified in the dgraph-defaults element (see
below).

<dgraph id="Dgraphl' host-id="MDEXHost" port="15000">
<properties>
<property name="'restartGroup' value="A" />
<property name="'updateGroup' value="a" />
</properties>
<log-dir>_/logs/dgraphs/Dgraphl</log-dir>
<input-dir>./data/dgraphs/Dgraphl/dgraph_input</input-
dir>
<update-dir>./data/dgraphs/Dgraphl/dgraph_input/up-
dates</update-dir>
</dgraph>

dgraph-defaults This element defines the default settings inherited by all dgraph elements

specified in the document. This enables a single point of configuration for
common Dgraph configuration such as command line arguments, and script
directory configuration. Only one dgraph-defaul ts element can be defined.

<dgraph-defaul ts>
<properties>
<property name="srclndexDir" value="_./data/dgidx_out-
put" />

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Element

dgraph-cluster

logserver

report-genera-
tor

Endeca Confidential

Application Configuration File | XML schema 85

Description

<property name="'srclindexHostld" value="ITLHost" />
<property name="numLogBackups' value="10" />
</properties>
<directories>
<directory name="local IndexDir">
./data/dgraphs/local_dgraph_input
</directory>
</directories>

<args>
<arg>--threads</arg>
<arg>2</arg>

<arg>--spl</arg>
<arg>--dym</arg>
</args>
<startup-timeout>120</startup-timeout>
</dgraph-defaults>

This element defines a Dgraph cluster, including a list of ID references to the
Dgraph components that belong to this cluster. This object can be configured
to distribute data to Dgraph servers serially or in parallel.

<dgraph-cluster id="DgraphCluster' getDatalnParal-
lel="true">

<dgraph ref="Dgraphl™ />

<dgraph ref="Dgraph2" />
</dgraph-cluster>

This element defines a LogServer component, including attributes that define
the functionality of the LogServer process as well as custom properties and
directories used to configure the functionality of the LogServer object's methods.
Multiple logserver elements can be defined.

<logserver i1d="LogServer" host-id="ITLHost" port="15002">

<properties>
<property name="‘numLogBackups' value="10" />
<property name="‘targetReportGenDir" value=""_./reports/in-
put" />
<property name=""targetReportGenHostld" value="ITLHost"
/>
</properties>
<log-dir>_/logs/logserver</log-dir>
<output-dir>./logs/logserver_output</output-dir>
<startup-timeout>120</startup-timeout>
<gzip>false</gzip>
</logserver>

This element defines a ReportGenerator component, including attributes that
define the functionality of the ReportGenerator process as well as custom
properties and directories used to configure the functionality of the
ReportGenerator object's methods. Multiple report-generator elements
can be defined.

<report-generator id="WeeklyReportGenerator"™ host-
id="I1TLHost">

Oracle Endeca Commerce Tools and Frameworks Deployment Template

86 Application Configuration File | XML schema

Element Description

<properties>
<property name="‘webStudioReportDir"
value=""C:\Endeca\MDEXEngine\workspace/reports/MyApp" />
<property name="webStudioReportHostld" value="ITLHost"
/>
</properties>
<log-dir>_/logs/report_generators/WeeklyReportGenera-
tor</log-dir>
<input-dir>./reports/input</input-dir>
<output-file>_/reports/weekly/report.xml</output-file>
<stylesheet-file>
./config/report_templates/tools report_stylesheet.xsl

</stylesheet-file>
<settings-file>
-/config/report_templates/report_settings.xml

</settings-file>

<time-range>LastWeek</time-range>

<time-series>Daily</time-series>

<charts-enabled>true</charts-enabled>
</report-generator>

custom-compo-

nent This element defines a custom component, including custom properties and

directories used to configure the functionality of the custom component object's
methods. Multiple custom-component elements can be defined, though each
must specify the name of the implemented class that extends
com.Endeca.soleng.eac.toolkit.component.CustomComponent.

The custom component is also used to implement the Configuration Manager,
Workbench Manager, and IFCR components.

<custom-component id="I1FCR" host-id="ITLHost"
class=""com.endeca.soleng.eac.toolkit.component. IFCRCompo—
nent'>
<properties>
<property name="repositoryUrl" value="http://local-
host:8006/ifcr™ />
<property name="‘username' value="admin" />
<property name="‘password'” value="admin"™ />
<property name="'numExportBackups' value="3" />
</properties>
</custom-component>

Related Links

Display component status on page 97
The controller provides a convenience method for displaying the status of all components
defined in the configuration document.

Utilities
This section describes the utility elements available in the custom namespace defined by the
eacToolkit._xsd XML schema.

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Application Configuration File | XML schema 87

For more details, refer to the eacToolkit.xsd schema file distributed within the file
eacHandlers. jar.

Element Description
copy This element defines a copy utility invocation, including the source and destination and
whether or not the source pattern should be interpreted recursively. Multiple copy
elements can be defined.

<copy id="CopyData™ src-host-id="1TLHost" dest-host-id="1TLHost"

recursive="true" >
<src>./data/incoming/*.txt</src>
<dest>./data/processing/</dest>
</copy>

shell This element defines a shell utility invocation, including the command to execute and

the host on which the command will be executed. Multiple shel I elements can be
defined.

<shell id="ProcessData" host-id="ITLHost" >

<command>perl procesDataFiles.pl ./data/incoming/data.txt</com-
mand>
</shell>

backup This element defines a backup utility invocation, including the directory to archive, how

many archives should be saved and whether the archive should copy or move the
source directory. Multiple backup elements can be defined.

<backup i1d="ArchiveState"™ host-id="I1TLHost" move=""true' num-
backups="'5">

<dir>C:\Endeca\apps\myApp\data\state</dir>
</backup>

rollback This element defines a rollback utility invocation, including the directory whose archive

should be recovered. Multiple rol Iback elements can be defined.

<rollback id="RollbackState" host-id="I1TLHost">
<dir>./data/state</dir>
</rollback>

Customization/extension within the toolkit's schema

Most configuration tasks are performed by simply altering an element in the configuration document,
by adding elements to the document, or by removing elements from the configuration.

These three actions enable users to alter the behavior of objects in their application, change which
objects make up their application and change the way scripts acts on the objects in their application.

In addition to these simple actions, users can customize the behavior of objects in their application or
create new objects while continuing to use the EAC development toolkit's XML configuration document
format. The following are examples of customization that are possible within the constructs of the XML
schema defined in the eacToolkit.xsd schema file.

Endeca Confidential Oracle Endeca Commerce Tools and Frameworks Deployment Template

88

Application Configuration File | XML schema

Implement a custom component

Users can develop new custom components by extending the class
com.Endeca.soleng.eac.toolkit.component.CustomComponent. This class and its associated XML
element allow any number of properties and directories to be specified and accessed by methods in
the object. This customization method may be appropriate for cases where functionality needs to be
developed that is not directly associated with an Oracle Endeca process.

Extend an existing object

Users can implement customizations on top of existing objects by creating a new class that extends
an object in the toolkit. Most elements in the configuration document (with the notable exception of
the "app" element, which specifies global configuration, but does not directly correspond to an object
instance) can specify a class attribute to override the default class associated with each element. For
example, a user could implement a MyForgeComponent class by extending the toolkit's ForgeCom-
ponent class.

package com.Endeca.soleng.eac.toolkit.component;
import java.util_logging.Logger;

import com.Endeca.soleng.eac.toolkit.exception.AppConfigurationException;
import com.Endeca.soleng.eac.toolkit.exception.EacCommunicationException;
import com.Endeca.soleng.eac.toolkit.exception.EacComponentControlException;

public class MyForgeComponent extends ForgeComponent

{

private static Logger log =
Logger .getLogger(MyForgeComponent.class.getName());

protected void getlncomingData() throws AppConfigurationException,
EacCommunicationException, EacComponentControlException,
InterruptedException

{

// custom data retrieval implementation

}
}

The new class can override method functionality to customize the behavior of the object. As long as
the new object does not require configuration elements unknown to the ForgeComponent from which
it inherits, it can continue to use the forge element in the XML document to specify object configuration.

<forge class=""com.Endeca.soleng.eac.toolkit.component.MyForgeComponent"
id=""CustomForge" host-id="I1TLHost">

</forge>

Implement custom functionality in BeanShell scripts

Users can implement custom functionality by writing new code in the XML document in new or existing
BeanShell scripts. This form of customization can be used to add new functionality or to override
functionality that is built in to toolkit objects. While this customization approach is very flexible, it can
become unwieldy and hard to maintain and debug if a large amount of custom code needs to be
written.

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Application Configuration File | XML schema 89

Customization/extension beyond the toolkit's schema

Customization approaches within the existing schema will be sufficient for the majority of applications,
but some developers will require even greater flexibility than can be supported by the XML document
exposed by the toolkit.

This type of customization can still be achieved, by switching out of the default eacToolkit namespace
in the XML document and leveraging the highly flexible and extensible Spring Framework bean definition
format.

As an example, a developer might implement a new class, PlainOldJavaObject, which needs to
be loaded and accessed by EAC scripts. If the object is implemented, compiled and added to the
classpath, it can be loaded based on configuration in the XML document by specifying its configuration
using the "spr" namespace.

<spr:bean id="MyP0JO" class=""com.company.PlainOldJavaObject">
<spr:constructor-arg>true</spr:constructor-arg>
<spr:property name="Fieldl" value="StrValue" />
<spr:property name="Mapl'>
<spr:map>
<spr:key>one</spr:key>
<spr:value>1</spr:value>
<spr:key>two</spr:key>
<spr:value>2</spr:value>
</spr:map>
</spr:property>
</spr:bean>

Endeca Confidential Oracle Endeca Commerce Tools and Frameworks Deployment Template

Appendix C
BeanShell Scripting

The EAC Development Toolkit uses BeanShell to interpret and execute scripts defined in the app
configuration document. The following sections describe the toolkit's use of the BeanShell interpreter
and provide sample BeanShell script excerpts.

Script implementation

In the toolkit, the com.Endeca.soleng.eac.toolkit.script.Scriptclassimplements scripts.

This class exposes simple execution logic that either uses a BeanShell interpreter to execute the script
specified in the configuration file or, if no BeanShell script is specified in the script's configuration, uses
the Script object's scriptimplementation method. By default, the scriptimplementation
method has no logic and must be overridden by an extending class to take any action. This allows
developers to leverage BeanShell to implement their scripts or to extend the Script object, overriding
and implementing the scriptimplementation method.

By implementing scripts as BeanShell scripts configured in the toolkit's XML configuration document,
developers can quickly develop and adjust scripts, and system administrators can adjust script
implementations without involving developers. The scripting language should be familiar to any Java
developer, as it is a Java based scripting language that can interpret strict Java code (i.e. code that
could be compiled as a Java class). BeanShell also provides a few flexibilities that are not available
in Java; for example, BeanShell allows developers to import classes at any point in the script, rather
than requiring all imports to be defined up front. In addition, BeanShell allows variables to be declared
without type specification.

> . . L
77" Note: For details about BeanShell and ways in which it differs from Java, developers should
refer to BeanShell documentation and Javadoc.

BeanShell interpreter environment

The most common use of BeanShell scripts in the EAC Development Toolkit is to orchestrate the
elements defined in the application configuration document.

More precisely, BeanShell scripts are used to orchestrate the execution of methods on the objects
that are loaded from the configuration document. In order to enable this, when the toolkit constructs
the BeanShell Interpreter environment, it sets internal variables associated with each element defined

92

BeanShell Scripting | BeanShell interpreter environment

in the configuration document. While additional variables can be declared at any point in a script, this
allows scripts to immediately act on objects defined in the document without declaring any variables.

Take, for example, the following configuration document:

<app appName="'myApp'" eacHost="devhost.company.com" eacPort="8888"
dataPrefix="myApp" sslEnabled="false" lockManager="LockManager" >
<working-dir>C:\Endeca\apps\myApp</working-dir>
<log-dir>_/logs/baseline</log-dir>
</app>

<host i1d="1TLHost" hostName="itlhost.company.com" port='38888" />

<copy i1d="CopyData" src-host-id="I1TLHost" dest-host-id="ITLHost"
recursive="true" >
<src>./data/incoming/*_txt</src>
<dest>./data/processing/</dest>
</copy>

<backup i1d="ArchiveState"” host-id="ITLHost" move=""true' num-backups="5">
<dir>C:\Endeca\apps\myApp\data\state</dir>
</backup>

<forge id="Forge" host-id="ITLHost">
<properties>
<property name="‘numStateBackups' value="10" />
<property name="numLogBackups' value="10" />
</properties>
<directories>
<directory name="incomingDataDir'>_/data/incoming</directory>
<directory name="configDir'>./data/processing</directory>
</directories>
<args>
<arg>-vw</arg>
</args>
<input-dir>./data/processing</input-dir>
<output-dir>./data/forge_ output</output-dir>
<state-dir>./data/state</state-dir>
<temp-dir>_/data/temp</temp-dir>
<num-partitions>1</num-partitions>
<pipeline-file>_/data/processing/pipeline.epx</pipeline-file>
</forge>

A BeanShell script defined in this document will have five variables immediately available for use:
ITLHost, CopyData, ArchiveState, Forge, and 1og. Note that there is no variable associated
with the app element in the document, as this element does not correspond to an object instance.
Each of the other elements is instantiated, loaded with data based on its configuration and made
available in the BeanShell interpreter. In addition, a special variable called log is always created for
each script with a Java.util .Logger instance.

A simple BeanShell script can then be written without importing a single class or instantiating a single
variable.

<script id="SimpleForgeScript'>
<bean-shell-script>
<I[CDATAL
log.info("'Starting Forge script.');
CopyData.run();
Forge.run(Q);
ArchiveState.setNumBackups(Forge.getProperty("'numStateBackups'™));
ArchiveState.run();

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

BeanShell Scripting | About implementing logic in BeanShell 93

log.info("Finished Forge script.');
11>
</bean-shell-script>
</script>

In addition to exposing objects defined in the document, the toolkit imports and executes a default
script each time a BeanShell script is invoked. If a file named "beanshel I . imports" is successfully
loaded as a classpath resource, that file is executed each time a BeanShell script is executed. This
allows a default set of imports to be defined. For example, the following default file imports all of the
classes in the toolkit, exposing them to BeanShell scripts:

import com.Endeca.soleng.eac.toolkit.*;

import com.Endeca.soleng.eac.toolkit.application.*;
import com.Endeca.soleng.eac.toolkit.base.*;

import com.Endeca.soleng.eac.toolkit.component.*;

import com.Endeca.soleng.eac.toolkit.component.cluster.*;
import com.Endeca.soleng.eac.toolkit.exception.™;

import com.Endeca.soleng.eac.toolkit.host.*;

import com.Endeca.soleng.eac.toolkit.logging.*;

import com.Endeca.soleng.eac.toolkit.script.>;

import com.Endeca.soleng.eac.toolkit.utility._*;

import com.Endeca.soleng.eac.toolkit.utility._perl._*;
import com.Endeca.soleng.eac.toolkit.utility.webstudio.*;
import com.Endeca.soleng.eac.toolkit_utility.wget.*;
import com.Endeca.soleng.eac.toolkit.utils.*;

About implementing logic in BeanShell

BeanShell scripts will typically be used to orchestrate method execution for objects defined in the
configuration document.

However, scripts can also implement logic, instantiating objects to provide a simple point of extension
for developers to implement new logic without compiling additional Java classes.

For example, the following script excerpt demonstrates how a method can be defined and referenced
in a script:

<script id="Status'">
<bean-shell-script>
<I[CDATAL

// define function for printing component status
import com.Endeca.soleng.eac.toolkit.component.Component;
void printStatus(Component component) {
log. info(component.getAppName() + "." +
component.getElementld() + ": ™ +
component.getStatus().toString());

}

// print status of forge, dgidx, logserver
printStatus(Forge);

printStatus(Dgidx);

printStatus(LogServer);

// print status for dgraph cluster
dgraphs = DgraphCluster.getDgraphs().iterator();
while(dgraphs.hasNext()) {

printStatus(dgraphs.next());

}

Endeca Confidential Oracle Endeca Commerce Tools and Frameworks Deployment Template

94 BeanShell Scripting | About implementing logic in BeanShell

11>)
</bean-shell-script>
</script>

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Appendix D
Command Invocation

The toolkit provides a simple interface for invoking commands from the command line.

Invoke a method on an object

By default, the controller tries to invoke a method called "run" with no arguments on the specified
object.

The following simple command invokes the run method on the BaselineUpdate script object:
Java Controller --app-config AppConfig.xml BaselineUpdate

If a method name is specified, the controller looks for a method with that name on the specified object
and invokes it. For example, the following command executes the apply Index method on the
DgraphCluster object:

java Controller --app-config AppConfig.xml DgraphCluster applylndex

In addition to no-argument method invocation, the controller allows any number of String arguments
to be passed to a method. The following example shows the releaseLock method being invoked
on the LockManager object with the single String argument "update_lock" specifying the name of
the lock to release:

jJava Controller --app-config AppConfig.xml LockManager releaselLock
update_ lock

Identify available methods

In order to help users identify the objects and methods available for invocation, the controller provides
a help argument that can be called to list all available objects or methods available on an object.

If specified with an app configuration document, the help command displays usage and available
objects:
java Controller --app-config AppConfig.xml --help

The following objects are defined in document "AppConfig.xml":
[To see methods available for an object, use the --help command line argument
and specify the name of the object.]

96

Command Invocation | Identify available methods

[com.Endeca.soleng.eac.toolkit.base.lLockManager]

LockManager
[com.Endeca.soleng.eac.toolkit.component.ConfigManagerComponent]

ConfigManager
[com.Endeca.soleng.eac.toolkit.component.DgidxComponent]

Dgidx
[com.Endeca.soleng.eac.toolkit.component.DgraphComponent]

Dgraphl

Dgraph2
[com.Endeca.soleng.eac.toolkit.component.ForgeComponent]

Forge

PartialForge
[com.Endeca.soleng.eac.toolkit.component.LogServerComponent]

LogServer
[com.Endeca.soleng.eac.toolkit.component.ReportGeneratorComponent]

WeeklyReportGenerator

Dai lyReportGenerator
[com.Endeca.soleng.eac.toolkit.component.cluster.DgraphCluster]

DgraphCluster
[com.Endeca.soleng.eac.toolkit.host_Host]

ITLHost

MDEXHost
[com.Endeca.soleng.eac.toolkit.script.Script]

Basel ineUpdate

DistributelndexAndApply

PartialUpdate

DistributePartialsAndApply

ConfigUpdate

The name of each object loaded from the configuration document is printed along with the object's
class. To identify the available methods, the help command can be invoked again with the name of
an object in the document:

jJava Controller --app-config AppConfig.xml --help DgraphCluster

The following methods are available for object "DgraphCluster®:

[Excluded: private, static and abstract methods; methods inherited from

Object; methods with names that start with "get", "set” or "is". For details,
refer to Javadoc for class com.Endeca.soleng.eac.toolkit.component.clus-

ter.DgraphCluster.]

start(), stop(), removeDefinition(), updateDefinition(), cleanDirs(),
applylndex(), applyPartialUpdates(), applyConfigUpdate(),

cleanLocal IndexDirs(), cleanLocalPartialsDirs(),
cleanLocalDgraphConfigDirs(), copylndexToDgraphServers(Q),
copyPartialUpdateToDgraphServers(),
copyCumulativePartialUpdatesToDgraphServers(),
copyDgraphConfigToDgraphServers(), addDgraph(DgraphComponent)

Note that not all methods defined for the class com.Endeca.soleng.eac.toolkit.compo-
nent.cluster._DgraphCluster are displayed. As the displayed message notes, methods declared
as private, static or abstract are excluded, as are methods inherited from Object, getters and setters,
and a few reserved methods that are known not to be useful from the command line. These restrictions
are intended to make the output of this help command as useful as possible, but there are likely to be
cases when developers will need to refer to Javadoc to find methods that are not displayed using the
help command.

Oracle Endeca Commerce Tools and Frameworks Deployment Template Endeca Confidential

Command Invocation | Update application definition 97

Update application definition

By default, the controller will test the application definition in the configuration document against the
provisioned definition in the EAC and update EAC provisioning if the definition in the document has
changed.

This will happen by default any time any method is invoked on the command line.

System administrators may find it useful to update the definition without invoking a method. To facilitate
this, a flag has been provided to perform the described definition update and exit.

Java Controller --app-config AppConfig.xml --update-definition

In addition, there may be a need to invoke a method without testing the application definition. This can
be accomplished by using an alternate command line argument:

jJava Controller --app-config AppConfig.xml --skip-definition
Basel ineUpdate

Remove an application

The controller provides a convenience method for removing an application from the EAC's central
store.

When invoked, this action checks whether the application loaded from the configuration document is
defined in the EAC. If it is, all active components are forced to stop and the application's definition is
completely removed from the EAC.

jJjava Controller --remove-app --app-config AppConfig.xml

Display component status

The controller provides a convenience method for displaying the status of all components defined in
the configuration document.

When the following method is invoked, the controller iterates over all defined components, querying
the EAC for the status of each one and printing it.
java Controller —-print-status --app-config AppConfig.xml

Related Links

Components on page 83
This section describes the component elements available in the custom namespace defined
by the eacToolkit.xsd XML schema.

Endeca Confidential Oracle Endeca Commerce Tools and Frameworks Deployment Template

Index

A

Application configuration 20
Application descriptors 12
Application settings

Report Generator 34

CAS Server 24

Configuration Manager 37

Dgidx 27

Dgraphs 28

Forges 26

global 21

hosts 21

IFCR 35

Lock Manager 21

log server 34

WorkbenchManager 36
Applications, custom 12
Automated deployments 11

custom 15

B

Baseline update
Forge flags 48
running sample scripts 53
BeanShell scripting
about implementing logic 93
interpreter environment 91
script implementation 91

C

CAS Server 24
Command invocation
display component status 97
identify available methods 95
method on an object 95
remove an application 97
update application definition 97
Configuration file, application 20
Configuration Manager 37
Configuration overrides 41
Configuration update script 74
Configuring an application 20
customizations
commonly used 19
introduced 19

D

Deploying
EAC application 9

Deploying (continued)
on UNIX 9
on Windows 9

Development Toolkit, See EAC Development Toolkit

Dgraph

clusters 28

enabling SSL 33

partial update script 62
Dimension adapters 49
Dimension servers 51

E

EAC
applications 9
deploying an EAC application 9
SSL-enabled 15

EAC Development Toolkit
application configuration file 81
BeanShell scripting 91, 93
command invocation 95, 97
distribution 79
package contents 79
Spring framework 81
usage 80
XML schema 81, 82, 83, 87, 89

F

fault tolerance for components, configuring 22

File-based deployment 11
custom 15

Forge cluster 26

Forge flags 48

G

Global application settings 21

Indexer adapters 50
Indexing cluster 27
Installer tokens 12

L

LockManager
configuring 21
default 21

Log directory, default 21

Index

O

Oracle Endeca Deployment Template
automated deployment 11, 15
configuration overrides 41
configuration update script 74
deploying XQuery modules 32
Dgraph partial update script 62
displaying version 18
integration with Oracle Endeca Workbench, reporting
37
provisioning scripts 59
report generation script 75
sample pipelines 43
standard Forge flags 48
with SSL-enabled EAC 15

Oracle Endeca Workbench
reporting 37

Output record adapters 50

P

Partial updates
Dgraph scripts 62
Forge flags 48
Pipeline configuration
creating a new project 44
modifying a project 46
record spec 47
polling intervals for components, configuring 22

R

Report generation script 75
Report Generator 34

S

Sample pipeline
common errors 51

100

Sample pipeline (continued)
creating a new project 44
dimension adapters 49
dimension servers 51
Forge flags 48
indexer adapters 50
modifying a project 46
output record adapters 50
overview 43
record spec 47

sample scripts
baseline update script 53

scripts 57

Spring framework 81

SSL-enabled deployments 15

U

Update script, configuration 74
utilities, setting fault tolerance and polling intervals for
23

\Y,

version of Deployment Template, displaying 18

w

Working directory, default 21

X

XML schema 81
application elements 82
components 83
customization 87, 89
extension 87, 89
hosts 83
utility elements 87
XQuery modules, deploying 32

Oracle Endeca Commerce

	Contents
	Preface
	About this guide
	Who should use this guide
	Conventions used in this guide
	Contacting Oracle Support

	Deploying and initializing an EAC Application
	Deployment prerequisites
	About deploying EAC applications
	Deploying and initializing an EAC application
	Configuring automated/file-based deployment
	Modifying the template files to support custom applications
	Custom application descriptors
	Configuring an automated/file-based deployment for a custom application

	Communicating with SSL-enabled Oracle Endeca components
	Displaying the Deployment Template version

	Configuring an EAC Application
	About configuring an EAC application
	About the application configuration files
	Configuring the application configuration files
	Global application settings
	Hosts
	Lock Manager
	Fault tolerance and polling interval properties
	CAS Server
	Forges
	Dgidxs
	Dgraphs
	Log server
	Report Generators
	IFCR
	Workbench Manager
	Reporting

	Configuration Manager

	Configuring the BeanShell scripts
	Configuration overrides

	Replacing the Default Forge Pipeline
	About the sample pipelines
	Sample pipeline overview
	Specifying a pipeline
	Creating a new project
	Modifying an existing project
	Configuring a record specifier
	Forge flags
	Input record adapters
	Dimension adapters
	Indexer adapters
	Output record adapters
	Dimension servers
	Common errors

	Managing Data Operations
	Running a baseline update with test data
	Running a baseline update with production data
	Running a partial update with production data
	Running CAS crawls

	Script Reference
	Deployment Template script reference
	Provisioning scripts
	Forge-based data processing
	Dgraph baseline update script using Forge
	Dgraph partial update script using Forge
	Dgraph baseline update script using Forge and a CAS full crawl script
	Dgraph partial update script using Forge and a CAS incremental crawl script
	Multiple CAS crawls and Forge updates

	CAS-based data processing
	Dgraph baseline update script using CAS
	Dgraph partial update script using CAS

	CAS crawl scripts for Record Store output
	CAS crawl scripts for record file output
	Configuration update script
	Report generation

	EAC Development Toolkit
	EAC Development Toolkit distribution and package contents
	EAC Development Toolkit usage

	Application Configuration File
	Spring framework
	XML schema
	Application elements
	Hosts
	Components
	Utilities
	Customization/extension within the toolkit's schema
	Customization/extension beyond the toolkit's schema

	BeanShell Scripting
	Script implementation
	BeanShell interpreter environment
	About implementing logic in BeanShell

	Command Invocation
	Invoke a method on an object
	Identify available methods
	Update application definition
	Remove an application
	Display component status

	Index

